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Abstract 

Peer data management system (PDMS) is a decentralized system, in which each 
peer is autonomous and has its own schema and database. With the help of 
pairwise schema mapping built between any two relevant peers, a query at one 
peer can be rewritten and broadcast to the whole PDMS. Then answers from 
multiple peers are returned to the querying peer. In our thesis, we exploit 
the access control issues in the query-answering process of the X M L P D M S . 
We propose a formal syntax for access control policy (ACP) to specify the 
fine-grained access control privileges on peers' local X M L database. We also 
design several query-answering algorithms that aim to handle access control 
in the PDMS, define the algorithm properties of Information Leakage Free and 
Completeness, and analyze every designed query-answering algorithm on the two 
properties. A comprehensive cost model, which consists of the major tasks and 
primitive operations, is proposed by us to assess the query-answering algorithms. 
We implement the designed query-answering algorithms, compare their running 
time, and test the scalability in different facets. 
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Chapter 1 

Introduction 

The peer data management system (PDMS) is emerging as a flexible distributed 
data management architecture. Moreover, with the significant increase of web 
data, X M L is now used as the underlying data model of peers in a P D M S . 
However, the existing PDMS research has paid little attention to the access 
control requirement in each peer for its database, which might greatly affect 
the query-answering process in a PDMS. The access control issues in an X M L 
P D M S will be explored in our thesis. 

In this chapter, we first introduce the background knowledge of P D M S , 
X M L , and X M L queries (Section 1.1), then motivate our work by a concrete 
example (Section 1.2). Section 1.3 concisely states the access control problem 
in an X M L P M D S . Our main contributions are summarized in Section 1.4. 

1.1 B ackground 

In this section, we introduce the background knowledge of our work: peer data 
management systems, X M L and X M L queries. 

A peer data management system (PDMS) is a distributed database man­
agement system based on a peer-to-peer architecture. Each node in a P D M S is 
called a peer. A peer is autonomous, has its own database and schema. A peer 
can join and leave the P D M S dynamically. Unlike the data integration system, 
there is no server playing the central-control role in a P D M S . If two peers are 
considered to be similar, one of their administrators builds a mapping between 
the database schemas of the two peers. Such peers are called acquaintances. 
Thus, the topology of a PDMS is an arbitrary connected graph, in which each 
edge is such a pairwise mapping. A query can be put forth at any peer. The 
query is first evaluated at the peer's local database, then it is passed to each of 
its acquaintances. When the query is passed to each acquaintance, the mapping 
is used to translate the query into a new query over the acquaintance's schema. 
Similarly, it is then passed to all acquaintances of all those acquaintances and 
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Chapter 1. Introduction 

thus broadcast to the whole PDMS. Finally the answers at every relevant peer 
is returned to the querying peer. 

Vancouver 
General Hospital 

Schema 

Montreal 
General Hospital 

Schema 

Boston 
General Hospital 

Schema 

Toronto 
General Hospital 

Schema 

Figure 1.1: A Simple PDMS Example 

As an illustration, Figure 1.1 shows a simple P D M S with four peers: Van­
couver General Hospital, Montreal General Hospital, Boston General Hospital, 
and Toronto General Hospital. In this example, Toronto General Hospital is an 
acquaintance of Boston General Hospital, so a mapping is built from Toronto 
General Hospital Schema to Boston General Hospital Schema (the mapping is 
denoted by an arrow from Toronto General Hospital Schema to Boston General 
Hospital Schema). Similarly, other pairwise mapping are built between peers. 
When a query Q is put forth at Toronto General Hospital, it is first evaluated 
locally. Then Q is rewritten into Q' according to the mapping from Toronto 
General Hospital Schema to Boston General Hospital Schema. Q' is sent to 
Boston General Hospital and evaluated there. The answer of Q' is routed back 
to Toronto General Hospital. By this way, rewritten queries are broadcast in 
the whole P D M S , and the answer from each hospital is returned to Toronto 
General Hospital. 

X M L (extensible Markup Language) currently is the W 3 C recommendation 
for publishing electronic data on the web. Nowadays, it is the de facto standard 
for web documents and data storage. An X M L document is plain text inter­
leaved with some markup, which divides the document content into character 
data, container elements, and attributes of the elements. There is one and only 
one root element in an X M L document. Sub-elements are embedded within 
an element. Thus, an X M L document is modeled as a tree structure, in which 
each node is an element or a character string. Normally, an X M L document is 
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Chapter 1. Introduction 

accompanied with an X M L Schema, which fully specifies the structure and data 
type information for this document. Therefore, X M L can be used as databases 
for peers in a PDMS. Mappings are built between schemas of X M L databases 
residing on acquaintances. 

The standard query form for X M L databases is XQuery. XPath is the main 
functional structure of XQuery, and it is the syntax to accurately address parts 
of an X M L document. An XPath is a path expression for a sequence of steps 
from one node to another node. In each step, there are three components: (1) 
axis specifier: ' / ' denotes child, ' / / ' denotes descendant, '@' denotes attribute, 
etc; (2) node test: 'comment()' denotes a comment node, ltext()' denotes the 
text value of a node, etc; (3) predicate: a mathematic expression put in a square 
bracket as a filter. Predefined operators can also be used in XPath, such as ' | ' 
denoting the union of two node sets. As the first example, the XPath expres­
sion "publication//paper/*[@id='001']" selects the element, whatever its name 
('*'), if its id attribute value of '001', who is a child ('/') of a paper element that 
itself is a descendant ('//') of a publication element. As a more concrete ex­
ample, the Xpath expression "publication//paper[/author/text()='Rachel Pot-
tinger']" selects the paper element, if it is a descendant ('//') of a publication 
element and has an author child element ('/') whose text content ( ltext()') is 
Rachel Pottinger. This Xpath expression retrieves the full paper list for Rachel 
Pottinger. XPath queries can be categorized into several fragments according 
to whether including ' / ' , ' / / ' , '[ ]','*', ' | \ Schema or D T D (another type of 
X M L schema). In this thesis, we concentrate on the XPa th fragment 
only with '/'> '//'> '[ ]'• F° r instance, our second XPath example "publi-
cation//paper[/author/text()='Rachel Pottinger']" belongs to this XPath frag­
ment. 

The tree pattern is the key construct for modeling XPath. A tree pattern 
includes two components: (1) a tree, in which the nodes are labeled with vari­
ables, (2) a set of formulas, which are constraints on the tree nodes and their 
properties (i.e. tags, attributes, contents). The tree has two types of edges: pc 
(parent-child) edges and ad (ancestor-descendant) edges, which correspond to 
' / ' and ' / / ' in XPath. 

3 



Chapter 1. Introduction 

1.2 Motivation and Challenges 
As a flexible data management environment, a peer data management system is 
suitable for many applications, such as the public medical institutions, the inter­
national company management, and the insurance system, etc. For example, a 
public medical institution environment may consist of several hospitals, health­
care centers, the Ministry of Health, and emergency units. Each institution is 
independent, has its own database and share the data across the web. Quite 
often these institutions need to collaborate. For instance, when a patient is 
transferred between hospitals, the patient's medical history needs to be shared. 
Probably there is no global schema for all the hospitals, so a data integration 
system does not help. A P D M S is useful at this time. With the help of the 
pairwise schema mapping, the patient's illness history can be easily transferred 
from one hospital to another one. Furthermore, a query asking for one patient's 
information can be put forth at a peer and broadcast in the whole P D M S , and 
results will be retrieved from every relevant peer. 

Although the existing P D M S projects [13, 35, 37, 40] can handle the prob­
lems of schema mapping and query rewriting, they do not effectively take into 
account the access control requirements of peers, i.e., all the data on each peer 
is public for other peers. This is not true for a realistic application. Because 
a peer is autonomous, it has the requirement to define access control privileges 
on its database, i.e., which peers have the right to access a specific part of its 
database. For example, a hospital may only allow other hospitals to access the 
illness history of a patient, but forbid any institution to access the personal 
information of a patient. Such access control requirements are so common in 
today's database management systems that they should not be ignored in a 
realistic PDMS. When access control exists in a PDMS,,security problems will 
arise. The existing query-answering algorithm does not work well in this case. 

Let us observe a concrete example. It is shown in Figure 1.2. There are 
four peers in the X M L PDMS: Vancouver General Hospital, Montreal General 
Hospital, Boston General Hospital and Toronto General Hospital. The schemas 
for their X M L databases are shown in the figure. The pairwise mappings of 
their schemas are denoted by dash arrows. For simplicity, we call the four 
peers Vancouver General Hospital, Montreal General Hospital, Toronto General 
Hospital and Boston General Hospital separately as 'vg', 'mg', 'tg' and 'bg'. And 
the database residing on each peer is 'vg.xml' for 'vg', 'mg.xml' for 'mg', 'tg.xml' 
for 'tg', 'bg.xml' for.'bg'. The possible message routing paths are denoted by 
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Chapter 1. Introduction 

bold arrows. 
Suppose a query "retrieve the illness history of Mary Smith" is put forth at 

'vg', rewritten according to schema mappings, and broadcast to the P D M S . Let 
us treat 'tg' as the current answering peer. The rewritten query is evaluated on 
'tg.xml' to get the 'Event' elements for Mary Smith. If 'tg' does not specify any 
access control on its database, i.e. any peer can access all the data of 'tg.xml', 
the answer can be routed back to 'vg' via either the path "tg —> mg —> vg" or 
the path "tg —* bg —» vg". This is the existing query-answering algorithm. The 
case with access control may be different. Suppose in our scenario, 'mg' and 
'tg' do not have a collaboration relationship such that 'tg' specifies the access 
control of forbidding 'mg' to access any information on it. Thus, the answer for 
the query "retrieve the illness history of Mary Smith" at 'tg' can not be routed 
via the path "tg —» mg —> vg". Otherwise, information leakage will arise, i.e., 
'mg' will see data that it is forbidden to access by 'tg'. The answer can only 
be routed via the path "tg —> bg —* vg". From this example, we see that the 
access control requirements of peers affect the P D M S query-answering process. 
Furthermore, access control on a peer database can be more fine-grained and 
complicated than the previous example, especially when X M L is the data model. 
What is the impact of access control on the P D M S query-answering process is 
still unknown according to existing research work. 

The major challenges we are faced with in a X M L P D M S with access control 
include: (1) How can we specify the access control requirement for a peer's 
X M L database, which is fine-grained and expressive enough? (2) What is the 
semantics of P M D S query-answering with access control? (3) What kind of 
algorithms can be used for the P D M S query-answering process? (4) What is 
the security property of these algorithms? (5) How to build a rational cost 
model and assess the algorithms using this model? A l l these challenges will be 
tackled in this thesis. 

1.3 Problem Statement 
A peer in a realistic peer data management system probably has access control 
requirement on its own database. Therefore, a precise syntax for specifying 
a access control requirement is necessary for an X M L PDMS. Furthermore, 
in a P D M S with access control, a naive query-answering algorithm no longer 
works in terms of the security issue. Thus, new query-answering algorithms 
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need to be designed, theoretically ensuring no information leakage and other 
good properties. A cost model is also required to assess any query-answering 
algorithm for an XML PDMS. 

1.4 Contributions 
The following contributions are made in this thesis: 

• We propose a formal syntax for the Access Control Policy (ACP), which is 
fine-grained and expressive enough for specifying the access control priv­
ilege on the XML database of a peer in the PDMS. Semantics of PDMS 
query-answering with ACPs is also presented. (Chapter 3) 

• We divide a query-answering algorithm into two parts: a (query trans­
mitting) Strategy and an (answer routing) Option. Several strategies and 
options have been designed to handle the access control requirements in 
PDMS. (Chapter 4) 

• Some novel algorithms in the strategies and options, such as (i) query 
rewriting algorithm in light of ACPs (ii) safe peer list finding algorithm 
(iii) annotating and partitioning algorithm, are presented. (Chapter 7) 

• As important properties, Information Leakage Free and Completeness for 
an (Strategy, Option) pair are formalized. We propose the sufficient and 
necessary condition for the two properties, and analyze these properties 
for every (Strategy, Option) pair designed. (Chapter 5) 

• We build a comprehensive cost model, which includes the major tasks and 
the corresponding primitive operations and cost units. The cost model is 
used to assess the (Strategy, Option) pairs designed. (Chapter 6) 

•^We experiment on the designed (Strategy, Option) pairs, compare their 
execution speed, and test the scalability in terms of ACP amount pe peer, 
database size, etc. (Chapter 8) 

1.5 Thesis Outline 
The remaining of the thesis is organized as follows. Chapter 2 reviews related 
works on peer data management system (PDMS), query containment, and access 
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control on X M L documents. In Chapter 3, we present the general access control 
problem in the X M L PDMS, the formal definition of Access Control Policy 
(ACP), and the semantics of P D M S query-answering with ACPs . In Chapter 4, 
we divide a query-answering algorithm into two parts - a strategy and an option. 
Several strategies and options, which can handle access control, are also designed 
there. Chapter 5 presents the formal definitions of IL-free and completeness, the 
sufficient and necessary condition for each of them, and the analysis result for all 
(Strategy, Option) pairs designed. In Chapter 6, we propose a comprehensive 
cost model that is used to assess all (Strategy, Option) pairs. In Chapter 7, 
some novel algorithms adopted in our strategies and options are elaborated 
and illustrated in detail. Chapter 8 is the experimental study for algorithm 
comparison, algorithm scalability, etc. Finally, our conclusions are stated in 
Chapter 9, along with the future work. 



Chapter 2 

Related Work 

As described in Chapter 1, the work of the thesis concentrates on the access 
control scheme of the X M L peer data management system. Peer data man­
agement system (PDMS) is the network environment we are working in; access 
control is the main issue we are researching on; and query containment is a 
necessary theoretical tool to design the query writing algorithm in the P D M S 
query-answering process and to ensure the algorithm correctness. 

Therefore, in this chapter we will summarize the previous research work on 
peer data management system (Section 2.1), query containment (Section 2.2) 
and access control on local X M L documents (Section 2.3). 

2.1 Peer Data Management System (PDMS) 

Data integration systems have been researched and adopted in academia and 
industry for a long time [5, 8, 16, 22, 28, 29, 30, 31]. They work well for sharing 
information in a specific domain. However, data integration is faced with a big 
problem: it requires to.predefine a mediated schema before all nodes can share 
information. Thus the mediated schema has become a bottleneck' in a data 
integration system. 

Recently, the idea of a peer data management system (PDMS) [23] has 
emerged as a step beyond data integration systems. A PDMS is a distributed 
database management system based on a peer-to-peer architecture. In such 
a system, each web node is an autonomous peer and has its local database 
management system. The P D M S satisfies the need to have a decentralized, 
loosely-coupled data management environment, in which any web node can 
have different data model and contribute data, schema or mappings among 
schemas. Unlike data integration systems, a P D M S does not require a central 
control server or a global schema. Instead, mappings are constructed between 
the schemas of any two related peers. 

A simple example can help to understand the difference between data in-
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Figure 2.1: Data Integration System Example 

Figure 2.2: P D M S Example 

tegration system and PDMS. It is a scenario about sharing database research-
related data that is used in the Piazza project [40]. The data integration system 
is shown in Figure 2.1, and the P M D S having the same functionality is shown 
in Figure 2.2. The schema and database of each independent node are put 
in a dotted frame. An arrow denotes a mapping from one schema to another 
schema. The data integration system is a tree-based hierarchy, in which the 
Mediated Schema is the root node and all other machines are the leave nodes. 
There exists a mapping from the Mediated Schema to each node schema (e.g. 
UPenn Schema). Any query can only be put forth to the Mediated Schema, 
rewritten into some sub-queries (according to the schema mappings) and dis­
tributed to each leaf node (i.e. Princeton peer, UPenn peer, U W peer, Stanford 
peer and Berkeley peer). The sub-queries are evaluated at each leaf node, then 
the answers are returned to the root node. On the other side, the P D M S is an 
arbitrary connected graph of nodes/peers. There is no such a peer who holds 
a global mediated schema. Mappings are built between the schemas of any two 
relevant peer (e.g. the mapping from Stanford Schema to Berkeley Schema). A 
query can be put forth at any peer. Besides evaluated at the local database, the 
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query is rewritten into new' queries with the help of the schema mappings and 
broadcast in the P D M S . Answers from every peer will be returned to the query­
ing peer. For example, if a query Q is put forth at Stanford peer, Q is firstly 
evaluated at Stanford Database. Meanwhile, Q is rewritten into Q' according to 
the mapping from Stanford Schema to Berkeley Schema, sent to Berkeley peer 
and evaluated there. Q is also rewritten into Q" and sent to U W peer. By this 
way, the original query Q is broadcast in the whole P D M S . A l l answers will be 
returned to Stanford peer in the end. 

In the following, We will analyze some important P D M S projets. 
Piazza [23, 24, 40] is a classic PDMS using X M L as the peer data model. Be­

cause each peer may have a different schema, Piazza provides a pairwise schema 
mapping language similar to XQuery [12] and a query reformation algorithm 
for rewriting queries between peers. Piazza recognizes and motivates the access 
control as an important problem for a PDMS, but the only solution to the prob­
lem is a description of general plans to use encryption to enforce security. The 
details of this approach were left as,future work. 

The Hyperion project [37] is relational database-based P D M S . Hyperion 
builds and manages the mapping tables between peers at run time. And both 
schema-level and data-level mappings are supported. Hyperion's emphasis is 
query answering among heterogenous peers, and it doesn't address access control 
or security issues. 

HePToX [13] is a P D M S prototype using X M L as peers' underlying databases. 
Peers are heterogenous. HePToX emphasizes on semi-automatically generating 
Datalog-like mapping rules and the efficient query translation algorithm. Access 
control issue is not considered in HePToX. 

PeerDB [35] is an interesting system. The underlying database for each 
peer is a relational database system. However, there is no mapping between 
peer schemas. Instead, PeerDB uses the Information Retrieval (IR) technique 
to retrieve answers from different peers. Thus, PeerDB is a combination of 
database and IR systems. No access control issue is discussed in PeerDB. 

As a conclusion, we see that the existing typical P D M S systems have not 
studied the access control problem, although some of them have recognized it 
as an important issue for a realistic PDMS. That is the work we will exploit in 
this thesis. 

11 
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2.2 Query Containment 
As we mentioned at the beginning of this chapter, query containment will be 
used as a theoretical tool to design our query rewriting algorithm in the P D M S 
query-answering process. Intuitively speaking, when a query Q is rewritten into 
a new query Q' in light of an access control rule R, it must ensure that the 
answer of Q' is contained by both the answer of Q and the answer of R. That 
is why query containment is important for our work. 

Query containment problem was firstly exploited for conjunctive queries. 
Conjunctive Query (CQ) is put forth by A . K . Chandra and P .M. Merlin [15]. A 
Conjunctive Query is defined as a datalog rule H <— G\, . . . ,G„, where H is 
the head, the right side hand is the body and G,(i = l..n) are relations, which 
are referred to as subgoals. The answer for a conjunctive query Q<evaluated on 
a relational database D is denoted as Q(D). In more details, Q(D) is the set 
of the head got by performing a possible value substitution for variables in Q, 
where the substitution turns every subgoal of Q's body into a tuple in D. 

Example 2.1 p(X, Y) <— a(X, W), b(W, Z), c(Z, Y) is a conjunctive query Q. 
Specifically, it states the following. The body describes the relations a, b, and 
c. The re-use of variables indicates that the values must be the same. So the 
body specifies that the second attribute of a must equal the first attribute of b, 
and that the second attribute of b must equal the first attribute of c. For each 
set of tuples that satisfy the body requirement, the head is instantiated. In this 
case, a new tuple of relation p is created, and the attributes of p are given the 
values of X and Y from the body. E.g., given a database D, there are three 
relational tables a, b and c in it. In a, there is one tuple (xi,wi); In b, there 
is one tuple (w\,z\); In c, there is one tuple (z\,y\). Then for the substitution 
{X = x\, Y = 2/i, Z = z\, W = W,}, each subgoal in the body of Q is a tuple in 
the database D. Thus, the instantiated headp(x\,y\) is in Q{D). 

Give the definition of CQ and the meaning of a CQ evaluated on a database, 
CQ Containment can be defined as: 

Let Qi and Q2 be two CQs. Q\ C Q2 iffV database D: Qi(D) C 
Q2(D). 

There are two classic approaches to test CQ containment: (1) containment 
mapping, (2)canonical database. Containment Mapping can be defined as: 
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< 2 i and Q2 are CQs, where Q\ : head\ <— sg\,.:.,sgk and Q2 : 

head2 <— SG\,5Gm. Then a containment mapping is a function 

fi : vars(Q2) —> i>ars(Qi) such that (1) p(head2) = heqdi, (2) 

Vi : u(SGi) = sgj, for some j . 

If Qi and Q2 are CQs, then Q\ C Q 2 iff 3 a containment mapping /x : vars(Q2) —> 

•yars(Qi). 

Example 2.2 We fcai/e two CQ's: Qx : p{X,Z) <- o(X, W)> 6(IV, Z) and 
Q2 : p[X,Z) <— o(X, W), 6(y, Z) . There exisis a mapping fi from vars(Q2) 

to vars(Qi): W —> W, X —* X, Y —> IV, Z —> Z . /x makes the mapped 

head of Q2 as p(X, Z), which equals the head of Q\. For Q2's subgoals, we see 

that p(a(X, W)) = a(X, W), which is a subgoal in Qi's body, and p,(b(Y, Z)) = 

b(W, Z), which is a subgoal in Q\'s body. Thus fi is a containment mapping 

from Q2 to Qi, then Q\ C Q2. 

Canonical Database method is to build a small number of databases D\, 

Dn, such that Q\ C Q2 iff Qi(Dj) ^ Q2{Di), where i = 1, ...,n. This method 
is not used in our work, so we do not illustrate it here. For more details, please 

refer to [41]. 
The C Q containment problem has been recognized as NP-complete in [15]. 

Much attention have been devoted to finding special classes of queries that ad­

mit polynomial time algorithms for containment and minimization[6, 7, 11, 17, 

26, 27, 43], 

With the popularity of X M L query applications, query containment research 

expands from CQs to X M L queries. • XQuery [12] is recognized as the X M L 

query standard. But it provides too many supportive structures, such as the 

F L W O R expressions and constructors. To avoid being distracted by these sup­

portive structures, researchers have concentrated on XPath and its equivalent 

representation Tree Pattern, which is the main functional structure of XQuery. 

The concept and approaches for CQ containment have evolved to the work for 

containment of XPath queries (or tree patterns). The difference of XPath con­

tainment from CQ containment is that the query structures are trees and the 

queries may have recursions. 
The semantics of XPath containment is exactly the same as that of CQ con­

tainment. Existing approaches for checking CQ containment work for XPath 
query containment as well, but after some extension. The canonical model 
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(database) technique [19, 32, 33], the homomorphism (containment mapping) 
technique [9, 20, 33, 36, 42] are widely used in the complexity ,analysis and al­
gorithm design of XPath containment. For example, homomorphism is formally 
redefined for tree pattern containment in [20]: 

"A homomorphism h from a pattern q to a pattern p is a total 
mapping from the nodes of q to the nodes of p such that: (1) h pre­
serves node types (i.e. Vu £ JV, : A 9(u) ̂ ' *' => Xq(u) = A p(/i(u)), 
where u is a node in q, Nq is the node set of q, and AQ is the func­
tion to find a node tag.); (2) h preserves structural relationships (i.e. 
whenever v is a child (resp. descendant) of u in q, h(v) is a child 
(resp. descendant) of h(u) in p)." 

Checking query containment for many XPath fragments has been verified 
to be extremely hard. Fortunately, for some XPath fragments we can still find 
polynomial time algorithms. A l l the complexity results for containment of dif­
ferent XPath fragments are summarized in [38]. As mentioned in Section 1.1, 
in the thesis we deal with an XPath fragment only with ' / ' , ' / / ' , '[ ]', which is 
shown in [38] to have a polynomial time algorithm for finding a query contain­
ment. Most XPath expressions in usual X M L queries fall into this fragment and 
it is a good start for us to design algorithms for this XPath fragment. 

2.3 Access Control on XML Documents 

Access control in an X M L P D M S is the main problem we are working on. It is 
necessary for us to analyze the existing approaches for securing X M L documents. 

With the development of web-based applications, X M L has become the de 
facto standard of semi-structured data representation. It provides an easy way 
to publish information. Selective distribution and sharing of X M L documents 
requires enforcement of access control. This ensures that specific information is 
accessible only to authorized entities or roles. 

Different access control approaches for local X M L documents have been pro­
posed. Among them, access control policy model is widely recognized as an 
expressive, fine-grained method. An Access Control Policy is a rule defined 
to permit or deny the use of some objects/elements in an X M L document by a 
subject/user. 

XACML[39] presents an X M L schema for specifying access control policies 
on X M L documents. However, it is very complicated and even requires a spe-
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cific processing model to interpret the access control policies. Paper [25] defines 
an access control language using the concept of role, which is an abstract repre­
sentation of a set of privileges and could be assigned to users. It supports both 
read/write and positive/negative policies. Paper [21] formalizes access control 
policies in a SQL security model compatible manner, but it doesn't support 
negative policies. For all these work, the permission/prohibition on an element 
is automatically propagated to its subelements. The above work concentrate on 
the formal expression of an access control policy, not on its usage. 

Access control policies can also be manipulated in different ways. The 
method of [18] is view-based. It allows the definition and enforcement of ac­
cess control directly on X M L documents, then produces a separate view on the 
document for each user. The method of [10, 34] are encryption-based. They de­
fine a formal syntax of access control policies for X M L documents, and encrypt 
different portions of the same document according to different encryption keys. 
Then various users can use their own encryption keys to get the desired portion 
of the same encrypted document. Paper [14] is the first step to handle query­
ing X M L data in light of access control policies. Its access control policies are 
XML-compatible. But only very simpleXQuries can be transformed to directly 
incorporate restrictions of access control policies on XQuery variables. 

In later chapters, we will see that our access control policy model supports 
both read/write and positive/negative privileges, and it plays an important role 
in the query rewriting algorithm. 
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Access Control in X M L 
PDMS 

In Section 2.3, we have summarized the work of access control on local X M L 
documents. However, the existing research work does not reveal what problems 
will arise in a P D M S , where access control on distributed X M L data sources are' 
required. 

In Section 3.1, we describe a general view of the access control problems in 
a PDMS. Then we concentrate on our solution - Access Control Policy (ACP) 
in the X M L P D M S . We present the A C P formal syntax in Section 3.2, the A C P 
examples in Section 3.3, and the semantics of P D M S query answering under 
ACPs in Section 3.4. 

Access control and its subsequent problems arise not only in local X M L docu­
ments, but in peer data management systems. As the owner of a database, a 
peer is not always ready to publish all its data for any other peer. Peers need to 
control their data in fine-granularity, i.e., which part of data can be accessible 
by which peers. 

When access control exists in peers of a PDMS, some problems will arise. 
In Section 3.1.1 we will present the general sense of two important problems in 
access control:, information leakage and answer completeness. 

There are multiple methods that can be used to enforce access control. Dif­
ferent possibilities have different characteristics. In Section 3.1.2, we analyze a 
few typical methods. In Section 3.1.3, we use an example to illustrate what the 
differences are in these methods. 

3.1 The Problem in General 
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3.1.1 General Sense of Information Leakage and 
Completeness 

Generally speaking, information leakage means that some protected data are 
accessed by unauthorized subjects. Given certain access control requirements 
in a PDMS, information leakage must be avoided. It is the basic security issue for 
a PDMS. Information leakage in a P D M S mainly include the following aspects: 

• in the query-answering process, an answer tuple is routed to a peer, who 
is not authorized to see this tuple according to any access control rule; 

• some data is malevolently exposed to peer p\ by peer even p\ is not 
authorized to see these data by access control rules of the original data 
owner; 

• access control instances are improperly distributed to unauthorized peers. 

The first aspect is our focus, which can be effectively avoided by a well 
designed query-answering algorithm. The other two aspects are not issues that 
can be solved at an algorithm level. So they will not be in the scope of our 
work. 

Completeness refers to the answer completeness. After a query is put forth 
by a peer in a P D M S , completeness refers to that, the maximum answer set 
will be retrieved. Given enough time, network bandwidth and powerful local 
computation capability, we expect the requesting peer can get back the theo­
retically maximum answer set. A good query-answering algorithm for a P D M S 
can ensure the maximum and sound answer set to return. 

3.1.2 General Methods of Access Control 

Now we have a general idea about access control. We need to know more about 
how access control can be enforced in a PDMS. Let us briefly study the general 
methods that can be used in the P D M S access control. 
(1) E n c r y p t i o n vs. N o E n c r y p t i o n 

When the intermediate answer is routed back to the source peer, the system 
must ensure no information leakage in this process. To ensure that there is no 
information leakage, either encryption or non-encryption method can be used. 
Using the encryption method means to encrypt the answer at the target peer, 
and decrypt the answer when it arrives at the source peer. Using the non-
encryption method means to route the original answer from the target peer to 

17 



Chapter 3. Access Control in XML PDMS 

the source peer via a selected path (maybe answer transformations are needed 
during the process), while ensuring that every peer in the path have right to 
access the answer. 

Using the encryption method, the answer can be routed along any path. 
Its overhead is that the answer needs to be encrypted at the target peer and 
decrypted at the source peer. Furthermore, the target peer needs to know who 
is the source peer for each incoming query, such that the decryption key can 
be distributed. Using the non-encryption method, there is no overhead caused 
by the encryption and decryption, but there exists a risk of information leakage 
and if steps are taken to reduce it, the returned answer set may be incomplete. 
Thus, the answer routing algorithm should be carefully designed. 

In a P D M S , any peer can be a source peer or a target peer, so the aforemen­
tioned decryption key distribution in the encryption method is a heavy burden. 
Moreover, because of scheme heterogeneity, when an answer set is routed among 
peers, it is decrypted and rewritten adhering to the database schema of each 
passing peer, and then encrypted for routing to the next peer. That means, de­
cryption and encryption are needed at each routing peer. This is another heavy 
burden. Thus, in the thesis we concentrate on query-answering algorithms with­
out encryption. 
(2) Evaluating vs. Rewriting 

How is a query handled and computed in a P D M S with access control? 
There are two different methods: evaluating and rewriting. Evaluating a query 
means passing along a query as initially written (presumably along with some 
annotation of what the passing peers are), and then the target peer that is 
returning the answer is responsible for extracting only the tuples that are rel­
evant according to the access control requirements. Rewriting a query means 
taking the query along the way and changing the query at each peer such that. 
it adheres to the access control requirements for the peer. 

Using evaluating, the query is enforced with access control rules once at the 
target peer. But it requires to keep record of all peers along a query transmitting 
path. Using rewriting, the query is enforced with access control rules at every 
peer along the query transmitting path. Rewriting requires all access control 
rules have been distributed to peers where they are needed. 
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Figure 3.1: Example for General Methods of Access Control 

3.1.3 Example 
Let us take an small example to illustrate the methods in Section 3.1.2. There 
is a P D M S with four peers (a, b, c\, C2) ; whose topology is shown in Figure 
3.1. In the PDMS, a is the source peer that puts forth a query Q, and b is the 
target peer that answers Q. For simplicity, we assume (1) all peers have the 
same schemas, (2)the database on 6 is a relational database. The database on 
b holds one table T, in which there are only two tuples t\ and t^. Peer b defines 
the access control rules R\ and / J 2 : 

R\: only peer a and c\ have access to tuple t\. 
R2: only peer a and C2 have access to tuple £2-

The query Q is "SELECT * from T". The access control rules R\ and R2 
ensure that a can access to all tuples in table T, i.e., t\ and (2- Thus, the final 
answer set arriving at a should be { t i , ^ } -

First, let us consider the encryption and non-encryption methods for answer 
routing. If the encryption method is used, the target peer b evaluates the 
incoming query Q, gets the answer set S = {ii . te}, and encrypts S as S'. 
Then the 5" can be routed back to o along either the path b —* c\ —» a or 
the path b —> C2 —» a. The encryption ensures no information leakage. When 
S' arrives at a, it is decrypted back to S. If the non-encryption method is 
used, the target peer b evaluates the incoming query Q, and gets the answer set 
S = {ti , *2}• Pick the path b —» C\ —> a and route t\ back via this path, because 
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peer c\ just has access to t\ (according to R\) but no access to t2. Similarly, 
pick the path b —» c2 —> a and route t2 back via this path, because peer c2 just 
has access to t2 (according to R2) but no access to t\. 

Secondly, let us consider the evaluating and rewriting methods. Suppose we 
use the non-encryption answer routing method and route the computed answer 
backtracking the query incoming path. Consider the path a —» c\ —> b. If the 
evaluating method is used, the query Q is routed along a —» c\ —> b as initially 
rewritten, keeping an annotation of all passing peers {a,ci}. When Q arrives 
at 6, b notices the annotation {a,ci} and uses the relevant access control rules 
R\ and R2 to rewrite Q into Q'. The answer is evaluated from Q' and routed 
back along b —+ c\ —» a. If the rewriting method is used, we must make sure 
that R\ has been distributed to o and c\, and R2 has been distributed to o and 
c2. Consider the path a —» c\ —» b. The query Q is first rewritten into Q' at o 
according to rules Ri and R2, which ensures the answer of Q' can be accessed 
by a. Next, when Q' arrives at c i , it is rewritten into Q" according to R\, which 
ensures the answer of Q" can be accessed by c\. Thus Q", which will finally 
arrive at b, ensures its answer can be accessed by both a and c\. After Q" is 
computed at b, the answer can be safely routed back to a via b —* c\ —+ a. 

3.2 Access Control Policy (ACP) Formal 
Definition 

Having a general idea about the access control problems in a PDMS, we will 
take the first step into our own solution. 

As shown in Chapter 2, access control policy (ACP) is a flexible, expressive 
and fine-grained approach. Once specified, ACPs are platform-independent and 
can be easily transformed and distributed in a P D M S environment. Thus our 
work adopts A C P as the access control model for peer databases. Our whole 
access control scheme is based on such an A C P model. 

Let us propose the A C P formal definition and syntax for the X M L PDMS: 

Definition 3.1 (Access Control Policy (ACP)) An access control policy ACP 
is defined in the following form: +/ — R(u,x) <— SLA(target,u),q(x). Such a 
policy defines that a set of peers u has read access to some target data elements 
x under the restrictions of service level agreement SLA (target, u) and object 
constraint q(x). 
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• +/- denotes authorize/deny access. 

• R denotes that it is a READ ACP. That means, the authorized peers will 
have the READ privilege of the target data elements. 

• u denotes the set of subject/user/role, which are the identifiers of users in 
the system and often refer to peers. 

• x denotes the set of target data elements. Here we define target schema 
• as the data schema on which the ACP has effect. Target data elements 

are some elements in the data schema, which are those elements that the 
A CP is allowing or denying access to. 

• target refers to the target peer, who is the owner of the target schema. 

• SLA(target,u) denotes a predicate that tests the role of the peers, i.e. 
whether peers u have a service level agreement with the target peer. If u 
satisfies SLA(target,u), u will have the access privilege defined by this 
ACP. 

• q(x) is the DB predicate or value constraints, which expresses the con­
straints on the target XML document: q(x) can be a conjunction of atoms. 
An atom can be a variable binding, a relational expression of equality or 
inequality. However, the expression of q(x) doesn't mean these constraints 
only have the domain of the target elements x, normally they are the con­
straints on all related elements. In this abstract expression, we don't treat 
x as the domain of q(x). 

• The authorize/deny access on an element x is automatically propagated 
to its subelements. We believe it makes sense to be consistent with the 
semantics of XQuery answers. 

• Similarly, we use W(u, x) to denote a WRITE/EDIT ACP. That means, 
the authorized peers will have the WRITE privilege of the target data ele­
ments. 

Without any specification, the strength of SLA(target, u) in an A C P may 
become boundless. We place a limit on what SLA(target,u) can contribute: 
SLA(target, u) only checks the agreement relationship between peers, i.e. which 
peers are authorized the privilege on target database by this A C P . In some 
cases, an A C P needs to match the peer's ID with an element value in the target 
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database. For example, assume there is an element in the database of my peer 
about the visitor's ID. My peer defines an A C P that only the classmate peers 
have access to my database information. The A C P needs a way to compare the 
visitor peer's ID with the element value in my database. In our A C P syntax, 
we use a function compatible(x, y) to deal with the match of a peer ID and an 
element value in the target database. The basic A C P structure and use of the 
SLA(target,u) and compatible(x,y) functions are illustrated in the examples 
of next section. 

3.3 PDMS Scenarios with ACP Examples 

In the previous section, we introduced the formal syntax of an A C P . In this 
section we illustrate it with some concrete P D M S scenarios and A C P instances. 
The examples show that the A C P syntax is XPath-based and XQuery-compatible 
It makes a good basis for our later X M L query rewriting algorithm. 

The first example illustrates the basic structure of the R E A D A C P . The 
scenario is a hospital P D M S from the HePToX project [13]. It is shown in 
Figure 3.2. 

'•Vancouver General > ^Montreal General TorOT&General; 

Figure 3.2: Hospital P D M S Example 

The Vancouver General, Montreal General and Toronto General are the 
three peers in this PDMS. For simplicity, we call Vancouver General, Montreal 
General, Toronto General separately as 'vg', 'mg' and 'tg'. Suppose there is 
only one X M L database on each peer and they are 'vg.xml' for 'vg', 'mg.xml' 
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for 'mg', 'tg.xml' for 'tg'. 
Suppose there are two access control requirements on the schema of 'mg': 

1. peer 'vg' has READ access to patient's admission and process 
information later than Jan 1, 1990 of peer 'mg'; 

2. Nobody has read access to patients' admission and progress 
information later than Jan 1, 2004. 

Then we can create the corresponding A C P s for the above requirements: 

R l : 
+R(u,a,p) <— SLA('mg',u), 

doc("mg.xml")/MG/Admission a, 
doc("mg.xml")/MG/Progress p, 
a/ID = p/PatRef, 
p/Symptom/Date > 'Jan 1, 1999'. 

Where only u = 'vg' satisfying SLA('mg',u). 

R2: 
—R(u,a,p) <— SLA('mg',u), 

doc("mg.xml")/MG/Admission .a, 
doc("mg.xml")/MG/Progress p, 
a/ID = p/PatRef, 
p/Symptom/Date > 'Jan 1, 2004'. 

Where for every peer u there is a ('mg',u) tuple satisfying SLA. 

In this example, we see the basic structure of a R E A D A C P . The first A C P 
Rl is positive, which authorizes a peer to have the R E A D privilege on elements 
a and p under restrictions. The second A C P R2 is negative, which denies a 
peer to have the R E A D privilege on elements a and p. Assume there is an SLA 
database. There is only one tuple < 'mg', 'vg' > for Rl in the SLA database, 
but every peer u has a tuple < 'mg',u > for R2 in the database. We also see 
any legal arithmetic expression in XQuery, such as p/Symptom/Date > 'Jan 1, 
2004', can be used in an A C P . 

The second example illustrates the use of the compatible1^) function. The 
scenario is an academic conference proceeding. The target peer is named 'conf, 
and the X M L database on this peer is 'conf.xml'. The schema of 'conf.xmP is 
shown in Figure 3.3. 
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.•Name Area 

mm-

Figure 3.3: Conference Example 

Suppose we want to express the following access control requirements on this 
database schema: 

1. Every PC member has READ access to all papers in his area of expertise. 

2. No PC member has READ access to any of his own papers regardless of his area. 

The corresponding ACPs are listed as follows: 
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Rl: 
+R{u,p) «- SLA('conf',u), 

doc("conf.xml")/PC/Member pm, 
doc("conf.xml")/Papers /paper p, 
compatible(u, pm/Name), 
pm/Area = p/Area. 

Where SLA('conf ,u) defines the membership relation of any user 
for the conference, the function compatibleQ checks matching of 
a peer ID u and a P C member's name. 

R2: 

-R{u,p) <- SLA('conf',u), 
doc("conf.xml")/PC/Member pm, 
doc("conf.xml")/Papers/paper p, 
p/Author pa, 
pa = pm/Name, 
compatible(u, pm/Name). 

Where SLA('conf ,u) defines the membership relation of any user for 
the conference, compatibleQ checks matching of a peer ID u and a 
P C member's name. 

In this example, we see the use of the function compatibleQ. As described 
in Section 3.2, the function compatibleQ checks to see if a peer ID matches an 
element in the target database. 

The third example illustrates the W R I T E A C P and the negative use of the 
compatibleQ function. The scenario is a company management P D M S . This 
company has several departments. Each department server is a autonomous 
peer. Each department has a manager and some employees. (The manager is 
also an employee.) The database schema for one department peer is shown in 
Figure 3.4: 

We name the peer in the figure as'd', its X M L database as 'department.xml'. 
Suppose we need to express the following access control requirements on the 
schema of 'd ' : 
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tDepartmentlrifb '.•;Empibyee IvMager.-; 

DNarhe -Lo cati bri ̂ .eptlD 

Figure 3.4: Company Management P D M S Example 

1. Every manager has W R I T E access to any employee's full information 

in his department. 

2. Every manager is denied W R I T E access to any employee's information 

in other departments. 

3. Every employee has R E A D access to his own information. 

4. Every employee is denied R E A D access to other's salary information. 

Then the corresponding A C P s are specified as follows: 
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R l : 
+W(u,e)<-SLA('d',u), 

doc("department.xml")/Department/Employee e, 
doc("department.xml")/'Department/Manager m, 
compatible(u,m/I D), 
m/DeptID = e/DeptlD. 

Where SLA('d', u) defines the relation for membership in this 
company, the function compatibleQ checks matching of a peer ID u 
and a manager's ID, "m/DeptID = e/DeptID" shows the manager 
and the employee are in the same department. 

R2: 
- W ( u , e ) <- SLA('d',u), 

docQ'department.xml") /Department/Employee e, 
doc("department.xml")/Department/Manager m, 
m/DeptID\ = e/DeptID. 

Where SLA('d',u) defines the relation for membership in this 
company, "m/DeptID\ = ejDeptID" shows the manager and 

the employee are not in the same department. 

R3: 
+R(u,e) «- SLA('d',u), 

doc("department.xml")/Department/Employee e, 
compatible(u,e/EID). 

Where SLA('d',u) defines the relation for membership in this 
company, the function compatibleQ checks matching of a peer ID u 
and an employ's ID. 

R4: 
-R{u,s)^-SLA{id',u), 

doc{"department.xml")/Department/Employee e, 
e/Salary s, 
N O T compatible^, e/EID). 

Where SLA('d',u) defines the relation for membership in this 

company, the function compatibleQ checks matching of a peer 

ID u and an employ's ID. 

In this example, we see the positive and negative W R I T E ACPs (Rl & 
R2). And we also see that compatibleQ function can be used with " N O T " to 
represent mismatching (R4). 
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3.4 Semantics of PDMS Query-Answering 
under ACPs 

Given that all ACPs are specified and distributed as needed, what is the answer 
semantics of the P D M S query-answering? More specifically, what kind of answer 
do we expect to get after a query is put forth at a peer in a PDMS? In this 
section, we will formalize the semantics of P D M S query answering under ACPs. 

The access control issue is orthogonal to the issue of schema heterogeneity. 
Thus, to simplify the problem, we assume that all peers use the same schema. 
This allows us to tackle access control without adding in the complications of 
schema heterogeneity. We leave the addition of schema heterogeneity to the 
problem as future work. Besides, we do not distinguish a peer with a requester. 
Several requesters may put queries on a peer to the whole P D M S . We assume 
all queries are put forth by a same peer. This simplification will help us to see 
the nature of the semantics problem. 

Firstly let us start with the answer semantics of a P D M S without access 
control. Given a P D M S with n peers (pi, P2,---, Pn), each peer has a local 
database DBPi (i = l..n). In a practical P D M S , there may be some peers who 
are virtual nodes and do not have a local database. However, this case is not 
considered here. Suppose a query Q is put on p\. The full answer set returned 
at pi is the union of the answer set from every peer. For each peer pi(i = l..n), 
the partial answer set is Q(DBVi) (i = l..n). Thus, the semantics of answer 
returned by the P D M S is \Jt Q(DBPi) (i = l..n). 

Next let us add the factor of access control. Let AVPl(DBPi) be the access 
view for peer pi on peer p^s database, which holds for a centralized system 
using any access control policy model. For each peer pi (i = l..n), the answer 
that pi has the permission to see on DBPi is Q(AVPl(DBPi)). Thus, naively, 
one might expect the full answer returned to pi to be \Jt Q(AVPI (DBPi)), where 
i = l..n. But it is not correct. Because any answer tuple needs to be routed 
from the answering peer pi to p\ via some other peers. It must ensure that an 
answer tuple can be accessed by every peer along the routing path. Consider 
this problem in another way: when a query is transmitted from p i to Pi, the 
query will pass via some other peers, and these peers will add access control 
constraints on the access view of pi to make the final answer set smaller than 
Q(AVpl(DBPi)). 

Consider the following example. Figure 3.5 is a P D M S topology. Suppose 
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Figure 3.5: Example for Semantics of PDMS Query Answering under ACPs 

p sends a query Q, and peer q returns partial result by several routing paths. 
The label attached to each edge denotes the policy constraint. E.g. (p, 1,2) 
denotes a query through this path can only be evaluated on the access view 
AVp{DBq) n AVi(DBq) n AV2{DBq), or simply as AVipAt2)(DBq). Thus the 
final result returned from q to p is Q(AV(Piii2)(DBq)) U Q(AV(Pti]2i3-)(DBq)) U 
Q(AV{Pi3t2)(DBq)) U Q{AV(Pi3){DBq)), or simply as 
l)ppq Q{AVppq (DBq)), where Pvq is a path from p to q. This answer is different 
from AVp{DBq). 

Generalize the above result for a P D M S with n peers pi,...,pn, where p\ 
puts forth a query Q and every peer answers it. The final answer set returned 
to pi is UiUp P I P. Q(AVpPiPi(DBPi)) (i = l..n), where PPlPi is a path from pi 
to Pi. This is the semantics of the P D M S query-answering under ACPs . 
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Chapter 4 

Strategies and Options for 
the Query-Answering 
Process 

Chapter 3 presented the syntax of the access control policy and showed that it is 
expressive enough to specify fine-grained access control on peers' local database. 
But we have not described how to enforce ACPs, or say, how ACPs are used in 
the PDMS query answering process. 

Intuitively, a query-answering process can be clearly divided into two parts: 
query transmitting and answer routing. Thus we separate a query-answering al­
gorithm into two parts: a (query transmitting) strategy and an (answer routing) 
option. 

Study on the general methods for access control (Section 3.1.2) inspires our 
designing strategies and options. In this chapter, we present the intuition (Sec­
tion 4.1) and formal definitions of a strategy and an option (Section 4.2), then 
describe the basic assumptions (Section 4.3) and our designed strategies and 
options that make use of access control polices (Section 4.4). 

4.1 Intuition 
The security problem arising in a P D M S concentrates on the query-answering 
process. Such a query-answering process is under the control of a distributed, 
runtime algorithm. The algorithm distributes the query or its rewritten form 
from the source peer to many target peers and retrieves answers from these 
target peers to the source peer. The example used in Section 3.1.3 is helpful for 
illustrating the problem. Please refer to Figure 3.1. The example setting is ex­
actly, the same, including the topology, peers, ACPs , query, and so on. Assume 
a non-encryption query-answering algorithm controls the query-answering pro-
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cess of the PDMS. When a query Q is put forth at peer a, the query-answering 
algorithm transmits Q via every path from peer a to peer b, and for each path 
Q is rewritten to a new query according to relevant ACPs. Let the rewritten 
query via path a —> c\ —• b be Q', the rewritten query via path a —> c2 —> b be 
Q". Then the answer set for Q' is { i i} , and the answer set for Q" is {t2}- If the 
query-answering algorithm routes {ti} back to o via b —• c2 —» o, the informa­
tion leakage arises. Because peer c2 is not authorized to access t\ by any A C P . 
Thus, to ensure nd information leakage, the query-answering algorithm must 
route back to a via b —> c\ —> o. Likely, the query-answering algorithm 
must route {t2} back to a via b —» c2 —> a. 

To study the problem, we concentrate on the basic building block: trans­
mitting a query asked by a single source peer to a single target peer, and then 
routing the answer set from that target peer back to the source peer. When a 
query Q is posed at a source peer c, the answer set for Q from any target peer 
containing relevant data needs to be computed and routed to c, modulo ACPs . 
Thus, the overall problem is built up oh basis of the simpler problem of single 
source peer and single target peer. 

The above pair-wise idea makes clear the building block of the query-answering 
algorithm. Next, let us consider the query-answering process for a pair of given 
source peer and target peer. The process can be clearly divided into two se­
quential, non-overlapping parts: 

I. query t ransmit t ing: informally speaking, transmitting the rewritten 
queries of the original query from the source peer to the target peer via 
some paths; 

II. answer rout ing: informally speaking, routing back the set of answer, 
tuples from the target peer to the source peer via some paths. 

From now on, we call an algorithm handling Part I as Query Transmitting 
Strategy, or Strategy; and an algorithm handling Part II as Answer Routing 
Option, or Option. Then a distributed query-answering algorithm is composed 
of a Strategy and an Option. We will use a (Strategy, Option) pair to denote 
a query-answering algorithm, simply as an (S, O) pair. The properties of an 
(S, O) pair are those of the corresponding query-answering algorithm. 
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4.2 Formal Definitions for Strategy and Option 

In this section, we will present the formal definitions for a Strategy and an 

Option. First of all, we define some terminology, which will be widely used in 

later discussion: 

• A C P of x for y: x's definition of what y can have access to x's data, where 

x and y are both peers 

• associated peer c of A C P A: peer c is defined in A C P A to access some 
data of another peer 

• V: a set of peers in a graph 

• o: the source peer 

• 6: the target peer 

• D: a database 

• £>(,: the database residing on b 

• Q: a query 

• Q{D): the database to hold the answer of evaluating Q on D. 

• t: an (answer) tuple in some Q{D). Here the word "tuple" refers to the 

building block of Q(D). For example, if D is a relational database and Q 
is a SQL query, t is a tuple in the relation Q{D)\ if D is an X M L database 

and Q is an XQuery, t is an X M L subtree or a combination of variable 

values. 

• PL(D): a new database, which defines part of database D that can be 

accessed for all peers in the set L . If L contains just one peer c, pi{D) 
can be simply written as pC{D) instead of p{cy(D). 

• P: a path (sometimes it also refers to the set of all peers in a path if 

there is no ambiguity). Note that throughout we assume that any path 

conforms to the given topology. 

• Pa-,b- a path from a to 6 

• P a — t h e set of all paths from a to fe 
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The formal definitions for Strategy and Option that are used to transmit 
queries and answers over a single source peer and target peer set are shown in 
Definition 4.1 and 4.2. As mentioned in the previous section, this is the building 
block of the general case of one source peer and many target peers. 

Definition 4.1 (Strategy) Given source peer a, target peer b, query Q, choose 
a set of paths from a to b, and V such path: transmit some rewritten query Q' 
tob. 

Definition 4.2 (Option) Given source peer a, target peer b, query Q, a set of 
tuples S at b, choose a set of paths ¥b->v from b to V, where V is a set of peers, 
and send each tuple t € S down 0 or more paths € Pb^v-

These definitions are at an abstract level. Note that "choose a set of paths" 
refers to the fact that the strategy or option will decide which paths the query 
or tuples will be sent down and does not reply that the path will be chosen 
apriori. The combination of a strategy and an option decides the distributed, 
runtime features of the query-answering process in a P D M S . Because there is 
little complication for query evaluation (i.e. generating answer tuples at the 
target peer), it is regarded as a separate phase between a Strategy and an 
Option, and not included in either of them. 

4.3 B a s i c A s s u m p t i o n s 

To evaluate the approach, we created a number of general strategies and options. 
These strategies and options cover quite a broad spectrum, so we believe that 
most other strategies and options are variants of them. In this section, we 
propose a few important assumptions, which build the basis for our strategies 
and options. 

1. Databases residing on all peers have the same schema. Although 
this assumption is not true for a realistic P D M S , schema heterogeneity 
will not affect the essence of security problem. Query rewriting or data 
transformation among different schemas is orthogonal to access control. 
This assumption simplifies the linguistic expressions, and allows us to 
concentrate on security issues in the query-answering process. So in later 
discussion, we ignore the query rewriting only with respect to schema het­
erogeneity. We leave the addition of schema heterogeneity to the problem 
as future work. 
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2. When a query Q is transmitted along a path P, P is noted for Q. 
Assume there is a trivial way to record passing peer ID's with the routed 
query Q. It is handy and costs little. We ignore the cost of this task in 
later discussion. 

3. Peers don't collude with each other. In other words, peers will not 
viciously share information to seek unauthorized data. Given peers c\, c2, 
C3, tuple t S DCl, and c2 has got t from c\, which is authorized by ci's 
ACPs . Then c2 can not share t with C3 unless c2 have enough knowledge 
(annotations, ACPs) from c\ to verify C3's right to access t. Else we call 
it an illegal behavior. We don't consider such illegal behaviors, even when 
we discuss information leakage in Section 5.1. 

4. Assume a tuple t can be accessed by peer c\ and has been routed 
to ci.'t can be distributed from peer c\ to another peer c2, only if 
C\ has sufficient witness from i's source peer s, on whose database 
t is computed. That means, even c\ has the right to access t, it doesn't 
have the right to willfully distribute t. The concrete cases we are concerned 
include: (1) ci must respect t's annotation. More specifically, if t has been 
routed to ci together with its annotation At (the set of safe peer ID's), 
c\ obeys t's annotation only to share it with peers d € At- (2) ci must 
have all ACPs of s for c2 to determine if c2 can access t. The precondition 
for this assumption is: each peer behaves legally according to the query-
answering algorithm and trusts data from other peers. More specifically, 
if peer c\ receives tuple t, Ci trusts any information about t received from 
other peers. 

5. Let Ai be an A C P of the target peer b for peer c\. If A\ is 
required for rewriting a query Q at c\, A\ must have been dis­
tributed to ci in a safe way. According to the definition, Strategy is 
a runtime algorithm. Distributing ACPs to requiring peers is the prepa­
ration for a strategy. Although we don't consider how to perform this 
work in a strategy, it is indeed a precondition of a strategy. Later we 
will elaborate on this task and count in its cost in the cost model and in 
(Strategy, Option) pairs' costs. 

6. Let A\ be an A C P of the target peer b for peer c\. Assume c\ 
and c2 are adjacent peers in the P2P network, and c2 attempts to 
route an answer tuple t to c\. If A\ is required at c2 to determine 
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whether c\ has access to tuple t, A\ must have been distributed 
to C2 in a safe way. One might think it is risky to distribute the A C P 
A\ for peer c\ to peer C2, which will cause information leakage. But in 
fact it is safe on condition of Assumption 3 and Assumption 4. Under 
Assumption 3 and 4, even C2 knows A C P A\, there is no way for C2 to 
get illegal data from c\. Because ci will use ACPs of target peer b for 
C2 to determine whether send 6's data to C2- According to the definition, 
an option is a runtime algorithm. Distributing ACPs to requiring peers 
is just the preparation for an option. We don't consider how to conduct 
it in an option. But later we will elaborate on this task and count in the 
cost of it in our cost model and in (Strategy, Option) pairs' costs. 

Without special claim, Assumption 1 to 4 hold for any strategy and option. 
Assumption 5 and 6 hold when the "if" conditions are met. 

4.4 Strategies and Options Designed 

In this section, we will present the strategies and options we designed. The 
terminology for these strategies and options is listed at the beginning of Section 
4.2. The basic assumptions are listed in Section 4.3. 

The following are the strategies we worked out, which make use of ACPs. 
We use Si to 54 to denote them. 

51 Proactive Rewriting: Assumption 5 holds. V path P € Pa-»6, S i trans­
mits Q along P by: at each peer c £ P, when the query, thus far Q', is 
transmitted to it, it transmits Q" to the next peer in P, where Q" — Q' 
rewritten to adhere to ACPs of b for c. 

52 Lazy Rewriting - Dumb: For one path P € P0->&, 5 2 transmits Q via 
P. When Q is transmitted at b, Q is rewritten into Q' — Q rewritten to 

adhere to ACPs of b for all peers in the PDMS. 

53 Lazy Rewriting - Path: V path P £ Pa-»i>, 53 transmits Q via P. When 
Q is transmitted at b, Q is rewritten into Q' = Q rewritten to adhere to 
ACPs of b for all peers in P. 

54 Jobless: V path P € P 0-.&, 54 just transmits Q via P. 
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In order to make Si (i=1..4) work well, there are necessary obligations for 

peers in the PDMS: 

• For Si, V peer c (except the target peer b): c use all ACPs of b for c to 
correctly rewrite the received query Q' into the new query Q" A c route 
Q" to the next peer. 

• For 52 and 53, V peer c (except the target peer b): c forwards the received 
query Q to the next peer. For the target peer b: b correctly rewrites the 
received query using required ACPs. 

• For 54, V peer c (except the target peer b): c forwards the received query 

Q to the next peer. 

The following are the options we designed, which make use of ACPs. We 
use Oi to Oe to denote them. 

Oi Whole — Backtracking: Given target peer 6, database D at 6, query Q 
that has been transmitted at b via some path P £ Pa->&, Q and P have 
been chosen by some strategy. Q{D) is regared at b as the answer set. 
Annotate answer set Q(D) with path P. At each peer c £ P, c routes 
Q(D) to the previous peer in P until c = a. 

O2A Whole — Subl: Given target peer b, database D at b, query Q that has 
been transmitted at b via some path P € P a->6 , Q and P have been 
chosen by some strategy. pp(Q(D)) C Q(D) is regarded as the answer set 
at b. Annotate answer set with path P. Choose a path P' s.t. P' £ Pi,_»a 

A P ' C P , Route pP(Q(D) down P', 

O2B Whole - Sub2: Given target peer b, database D at b, query Q that has 
been transmitted at b via some path P € P Q ^ 6 , Q and P have been 
chosen by some strategy. Q{D) is regarded as the returned answer set at 
b. Annotate answer set with path P. Choose a path P' s.t. P' £ Pb-» a A 
P' C P. Route Q(D) down P'. 

O3 Whole — Target Annotating: Given target peer 6, database D at b, 
query Q that has been transmitted at b via some path P £ P a->6 , Q 
and P have been chosen by some strategy. The returned answer set at 
b is A = pp(Q(D)) C Q(D). Use ACPs of b to decide the safe peer list 
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• L = {c\pc(A) = A}. Annotate the answer set A with L. Choose a path 
P' s.t. P' 6 Pb -a A P' C L. Route A x {L} down P'. 

O4A Whole - Dynamic Routing: Assumption 6 holds. Given target peer b, 
database D at b, query Q that has been transmitted at b via some path 
P £ P 0 - » 6 , Q a n d P have been chosen by some strategy. The returned 
answer set at b is A = pp(Q(D)) C Q(D). V peer c that received A: c 
routes A to peer d if pd{A) = A, until A arrives at a. 

O4B Whole - Dynamic Routing: Assumption 6 holds. Given target peer b, 
database D at 6, query Q that has been transmitted at b via some path 
P. £ P 0 - . 6 , Q and P have been chosen by some strategy. The returned 
answer set at b is A = pp(Q(D)) U S, where 5 is the set of supporting 
elements. V peer c that received A c routes A to peer d if pd{A) = A, 
until A arrives at a. 

O5 Partition - Target: Given target peer b, database D at b, query Q at b, 
Q has been chosen by some strategy. Q(D) is regarded as the answer set. 
(1) Partition Q(D) as follows: let the partition K = K \ , K n , where 

n 

[JKi = Q{D) A Ki n Kj = 0(t ^ j ) 

Vffi (i = l..n), use ACPs of 6 to compute its annotation L i , where Li = 
{c\pc{Ki) = Ki) 
(2) MK~i(i = l..n): if ifj x {Lj} arrives at peer c, c routes ifj x {Li} to all 

its neighbors d, where d £ Li. 

OQA Dynamic Routing: Assumption 6 holds. Given target peer b, database 
D at b, query Q at 6, Q has been chosen by some strategy. The returned 
answer set at b is Q{D). Let c be a peer who receives a subset K C Q(D). 
Vc V its neighbor d: c routes Pd{K) to d. Notice: all parts sent by c to its 
neighbors may not be disjointed. 

O&B Dynamic Routing: Assumption 6 holds. Given target peer b, database 
D at b, query Q at 6, Q has been chosen by some strategy. The returned 
answer set at 6 is A = Q(D)US, where S is the set of supporting elements. 
Let c be a peer who receives a subset K C A. Vc V its neighbor d: c routes 
Pd{K) to d. Notice: all parts sent by c to its neighbors may not be 
disjointed. 
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In OtB and OQB, there is a new concept "supporting element". Suppor t ing 
elements refer to the elements that should be projected out in the answer tuples 
but are needed for later usage, especially as filters of ACPs to determine the 
safe peers. In OUB and O&B, without help of tuple annotations, it is necessary 
to keep supporting elements within the answer tuples during the answer routing 
process. 

In 05, the notation "Ki x {Li}" is mainly intended for logical correctness. 
It doesn't necessarily mean to attach each answer tuple t in Ki with L j . An 
implementation for O5, which factors away the common repeating L ; for all 
the tuples in a set Ki, is entirely consistent with this notation. Likewise the 
explanation works for "A x {L}" in O3. 

In order to make O, (i=1..6) work well, there are necessary obligations for 
peers in the PDMS: 

• For O i , V peer c (except the source peer a) who receives/has an answer 
set Q(D): c correctly routes Q(D) to the previous peer in path P. The 
target peer b correctly annotates the answer set Q(D) with the path P. 

• For O2A and O2B, V peer ci (except the source peer a) who receives/has 
an answer set: ci correctly routes the answer set to a peer c2 € P. The 
target peer b correctly annotates the answer set with the path P . 

• For O3, V peer ci (except the source peer a) who receives/has an answer 
set: ci correctly routes the answer set to a peer c2 £ L. The target peer 
b correctly annotates the answer set with the list L. 

• For OAA and O4B, V peer ci (except the source peer a) who receives/has 
an answer set: Ci uses all related ACPs to correctly find a safe peer c2 for 
the answer set, and routes the answer set to c2. 

• For O5, V peer ci (except the source peer a) who recieves/has a partition 

Ki\ 6\ correctly routes Ki U Li to a peer c2 G L j . The target peer b cor­

rectly partitions Q(D) and annotates each partition Ki with an annotation 

•Li. 

• For OQA and O&B, V peer c (except the source peer a) who recieves/has a 
partition K, V peer d who is adjacent to peer c: c uses all related ACPs 
to correctly compute and route Pd{K) to peer d. 
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The combination of any strategy and any option in this section forms a full 
query-answering algorithm in a P D M S . In the next chapter, we will analyze the 
information leakage and completeness properties of each (S, O) pair. 
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Chapter 5 

Information Leakage and 
Completeness for (S,0) 
Pairs 

The properties of a query-answering algorithm in a P D M S are those of an (S, 0) 
pair. Information leakage and completeness (of the answer) are among the most 
important properties for an (S, O) pair. 

In Section 5.1, we present the definition of information leakage (IL), the 
sufficient and necessary condition for IL-free, then analyze the IL-free property 
for all (S, O) pairs; in Section 5.2, we present the definition, the sufficient and 
necessary condition for completeness, then analyze the completeness property 
for all (S, O) pairs. 

5.1 I n fo rma t i on Leakage ( IL) 

The general sense of information leakage has been given in Section 3.1.1: some 
protected data are accessed by unauthorized subjects. Information leakage for 
a P D M S query-answering algorithm will be formally defined and studied in this 
section. 

5.1.1 Definitions 
Avoiding information leakage is an important security issue in the P D M S query-
answering process. The information leakage we are concerned with concen­
trates on the query-answering process. Informally speaking, during the query-
answering process under control of an (5,0) pair, if peer c happens to receive 
tuple t but isn't authorized access to t, information leakage arises. Because 
which peer to receive a tuple is determined by an (5,0) pair, we regard infor-
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mation leakage (or no information leakage) as a runtime property of an (5,0) 
pair. Now let us make a formal definition for information leakage. 

Definition 5.1 (Information Leakage (IL)) Given source peer a, target peer 
b, database D at b, query Q, (5,0) has information leakage iff (i) 3 path Pa->b 

from a to b, P a - , b is chosen by S: S will send Q' to b through Pa-*b (S defines 
the rewritten query Q' from Q), (ii) 3 a tuple t £ Q'(D), (iii) 3 path P b ^ x from 
b to peer x, P b - , x is chosen by O: O will send t down that path A 3 c on that 
path s.t. t £ pc{D). {S,0) is IL-free iff it has no information leakage, V a, b, 
Q. 

IL-free is defined as the negation of Information Leakage in the above defi­
nition. For clarity, we reword the IL-free definition as follows: 

Definition 5.2 (IL-Free) Given source peer a, target peer b, database D at 
b, query Q, (S, O) has no information leakage iff (i) V path P a _,6 from a to b, 
which is chosen by S: S will send Q' to b through P a->6 (S defines the rewritten 
query Q' from Q), (ii) V tuple t £ Q'(D), (iii) V path Pb-+X from b to peer x, 
Pb—x is chosen by O: O will send t down that path A V c on that path s.t. 
t £ pc(D). (S,0) is IL-Free iff it has no information leakage, V a, b, Q. 

The expression "t £ Pc{D)" in the above definition needs to be explained. As 
mentioned in Section 4.2, "pc(D)" denotes the part of database D that can be 
accessed by peer c. Thus, "r. £ pc(Z?)" means "tuple t is computed from D and 
can be accessed by peer c". From the viewpoint of schema, t and D have different 
schemas and they are not comparable. Nevertheless, from the viewpoint of 
information containment, t is contained in D. Since we are discussing IL-Free 
in terms of information containment, we accept the expression "t £ pc(D)". 
Another similar expression is aQ(D) C D". Given specific schemas of Q(D) and 
D, there is no reason to say Q(D) C D. But from the viewpoint of information 
containment, we accept aQ(D) CD" as a fact. 

The above discussion is based on Assumption 3 & 4 of Section 4.3. We 
don't discuss the cases violating these assumptions. Furthermore, we assume no 
caching here. As a common approach to accelerate the query-answering process, 
caching is useful and worth noting. Nevertheless, as a supportive approach for 
query-answering, caching is not in the central place. A system works smoothly 
without caching. So at this moment we omit caching. We leave the security 
problems involved in caching as future work. 
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5.1.2 T h e Sufficient a n d Necessary C o n d i t i o n for IL-Pree 

IL-free is a security property for an (S, O) pair. However, we cannot expect to 
use the IL-free definition ,to check if an (S, 0) pair is IL-free. First, because 
the IL-free definition is based on execution, you would need to run (S, O) on all 
possible source peers, target peers, queries, query routing paths, etc. Secondly, 
the IL-free definition has a tuple-based granularity, which is far different from 
the description of a strategy or an option. So we need a general condition that 
can be directly applied to the description of any (S, O) pair and check if it is 
IL-free. 

The following ideas are illuminating for finding such a condition: 

• By the definitions of strategy and option, the answer tuples are computed 
only at the target peer, and no more tuples are created in the answer 
routing process. The option O determines whether to send an existing 
tuple to a peer, but cannot create a new tuple and send it to a peer. Thus, 
if peer Co has an answer set T and option O will route the set T' from 
peer CQ to its neighbor c, it must have T' C T . 

• By the definition of IL-free, if the option O sends a tuple t to some peer c, 
c must have access to t. In other words, O will send to c only the tuples 
that c has access to. 

Based on the above observation, we propose the sufficient & necessary 
condition (SNC) for an arbitrary (S, O) pair to be IL-free. 

S N C : For an (S,0) pair, V source peer o, V target peer b, V query Q at o, V 
peer Co, V neighbors c of CQ: CQ has answer set T and routes set T" C T to 
c ^ T ' C P c ( T ) . 

Proof: 
1. SNC is Sufficient. We shall show if (S,0) satisfies SNC, it also satisfies 

the IL-free definition. Assume (S, O) satisfies SNC. Given source peer a, target 
peer b, database D at b, query Q at o, rewritten query Q' of Q at 6, peer co, 
co's neighbor c, let the answer set at peer CQ be T and the set sent to peer c 
be T' C T. By SNC, we know V C pc(T). Let an arbitrary tuple t e T'. 
Since T' C pc(T), it follows t £ p c (T). By the definition of Strategy and 
Option, we can infer T C Q'(D). Since we also have the fact Q'{D) C D in 
sense of information containment, it follows T C D. Applying exactly the same 
restriction pc() to both sides of this term, we get pc{T.) C pc{D). Since we 
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already have t £ pc(T) and pc{T) C pc(D), it follows t £ pc(D). The expression 
t £ pc{D) holds for every peer c, via which tuple t is routed. And it holds V a, 
6, D, Q, Q', t £ £/(£>). By the definition of IL-free, (S,0) satisfies the IL-free 
definition. 

2. SNC is Necessary. We shall show if (S, O) satisfies the IL-free definition, 
it also satisfies SNC. Assume (S, O) is IL-free. Given source peer a, target peer 
b, database D at b, query Q at a, rewritten query Q' of Q at 6, let t £ Q'{D) be 
an arbitrary answer tuple. By the definition of IL-free, t is routed by O down 
some paths. Let Pbx be one of these paths. Let Co and c be arbitrary adjacent 
peers on path Pf,x and CQ routes t to c. By the definition of IL-free, we know 
t £ pc(D). Without loss of generality, t is in set T C Q'(D) at Co, and t is in 
set T" C T routed from Co to c. Since we have (i) T C Q'(D) and (ii) the fact 
Q'{D) C O in sense of information containment, it follows T C. D. There is 
another fact: given T C D, pc{T) is exactly T npc(D). Since we have this fact 
ATQD/\teTAt£ pc{D), it follows t £ pc(T). t € pc(t) holds for any 
tuple t £ V. Thus, V C p c (T). This expression holds V a, b, Q, c 0 , c. By the 
statement of SNC, (5,0) satisfies SNC. • 

5.1.3 IL-Free Analysis for all (S,0) pairs 

In the previous section, we get the sufficient and necessary condition SNC for 
IL-free. A n (5,0) pair is IL-free, if and only if (5,0) satisfies SNC. 

Table 5.1 is the IL-free Result Matrix for the (5 ,0) pairs we have designed in 
Chapter 4. It summarizes which (5,0) pairs guarantee to be IL-free, where " Y " 
denotes "guarantee IL-free" and " N " denotes "may cause information leakage". 

Oi 02A 0 2 B o 3 04A 04B o5 oeA 
06B 

Si Y Y Y Y Y Y Y Y Y 
s 2 

Y Y Y Y Y Y Y Y Y 
s 3 

Y Y Y Y Y Y Y Y Y 
s 4 

N Y N Y Y Y . Y Y Y 

Table 5.1: IL-free Result Matrix 

Let us analyze the result in the matrix by using the sufficient and necessary 
condition SNC. We will discuss the matrix in a column-by-column order. 

First, consider (S i ,O i ) and (S3 ,0i). By the descriptions of S i , S3, O i , the 
answer set is pp(Q(D)) at each routing peer, where path P £ Pa->b- Let Co and 
c be adjacent peers on the reversed path of P. There exists a fact: for c £ P and 
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tuple set X, pp{X) = pc(pP(X)). Replacing X by Q(D) in the previous term, 
we get PP{Q(D)) = Pc(pP(Q(D))). Therefore, pP(Q(D)) C Pc{pP{Q{D))). 

Since (i) pP(Q(D)) C pc{pP(Q(D))) and (ii) by Oi, peer CQ has answer set 

pP{Q(D)) and routes exactly pP(Q{D)) to c, we see that (5i,Oi) and (53, Oi) 

satisfy SNC. 

Let us consider (S2,Oi). By S2 and Oi, the answer set is PA(Q{D)) at 

each routing peer, where A is the set of all peers in the P2P system. Let a 
path P G P 0 - » 6 i

 co and c be adjacent peers on the reversed path of P. There 
exists a fact: for c G P and tuple set X, PA(X) — pc(pA(X)). Replacing X by 
Q(D) in this term, we get pA(Q(D)) = PC{PA(Q{D))). Therefore, pA(Q(D)) C 

PC(PA{Q{D))). Since (i) pA(Q(D)) C pc(pA(Q(D))) and (ii) by Oi, peer c 0 has 

answer set p/i(<3(L>)) and routes exactly pA(Q(D)) to c, we see that (52, Oi) 
satisfies SNC. 

Let us consider (S4,Oi). By S4 and Oi, the answer set is Q(D) at each 
routing peer. Let a path P G Pa->6> Co and c be adjacent peers on the reversed 
path of P. By Oi, Co has the answer set Q(D) and routes exactly Q(D) to 
c. However, there is no guarantee Q(D) C pC(Q(D)). That is to say, (54, Oi) 
doesn't satisfy SNC. 

Let us consider (5j,02.4) (i = 1,3,4). By 5, (i = 1,3,4) and 0 2 A , the 
answer set is pP(Q(D)) at each routing peer, where path P G P a - .6- Let co and 
c be adjacent peers on the returning path P'. By 02^, we know P' C P . Thus, 
c G P. There exists a fact: for c G P and tuple set X, pP{X) = pc(pP{X)). 
Since we already have c G P, replace X by Q{D) in the previous term, then get 

PP(Q{D)) = Pc(pP(Q(D))). Therefore, pP(Q(D)) C PC(PP{Q{D))). Since (i) 

pP(Q(D)) C PC(PP(Q(L ) ) ) ) and (ii) by 02>i, peer Co has answer set pP(Q(D)) 

and routes exactly pP(Q(D)) to c, we see that (£1,02.4) (i = 1,3,4) satisfies 
SNC. 

Let us consider (52,02,4)• By S2 and 02,4, the answer set is pA(Q(D)) 

at each routing peer, where A is the set of all peers in the P2P system. Let 
co and c be adjacent peers on a returning path P'. Since A is the set of all 
peers in the P2P system, it follows c G A. There exists a fact: for c G A 
and tuple set X, pA{X) = pc(pA{X)). Replacing X by Q(D) in this term, we 
get PA{Q(D)) = Pc(PA{Q{D))). Therefore, pA{Q{D)) C Pc(pA{Q(D))). Since 

(i) PA{Q(D)) C PC{PA{Q{D))) and (ii) by S2 and O2A, peer Co has answer set 

PA(Q(D)) and routes exactly PA[Q{D)) to c, we see that (52,02A) satisfies 

SNC. 

Let us consider (Si, 02B) (i = 1,3). Analyzing the case exactly as (Si, 02A) 
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(i = 1,3,4), we will get that (Si,02B) (i = 1,3) satisfies SNC. 
Let us consider (S2,02B)- Analyzing the case exactly as (S2,02A), we will 

get that (S2,02B) satisfies SNC. 

Let us consider (S4,02B)- By 54 and 02B, the answer set is Q(D) at each 
routing peer. Let Co and c be adjacent peers on a returning path P'. By 02B, 
Co has the answer set Q(D) and routes exactly Q(D) to c. However, there is no 
guarantee Q(D) C pC(Q(D)). Thus, (S 4 ,0 2 B) doesn't satisfy SNC. 

Let us consider (Si, 03) (i = 1,3,4). By Si (i — 1,3,4) and 0 3 , the an­
swer set is pp(Q(D)) at each routing peer, where path P € P a - » 6 - Let CQ 

and c be adjacent peers on the returning path P'. By O3, we know P' C L 
and L = {c\Pc(pP{Q{D))) = pP(Q(D))}. Since c £ P' A P' C L A L = 

{c\Pc(pp(Q{D))) = pP(Q(D))}, it follows pc(pp(Q(D))) = PP(Q(D)). There­
fore, PP(Q(D)) C pc(pp(0(£>))). Since (i) pP(Q(D)) C pc(pP(Q(£>))) and (ii) 
by O3, peer co has answer set pp(Q(D)) and routes exactly pp(Q(D)) to c, we 
see that ( S i , 0 3 ) (i = 1,3,4) satisfies SNC. 

Let us consider (52,03). The analysis is almost the same as (Si,03) (i = 
1,3,4). The only difference is: the answer set is PA(Q(D)) at each routing peer, 
where A is the set of all peers in the P2P system. We will get that (S2,03) 
satisfies SNC. 

Let us consider (Si, OUA) (i = 1-4) and (Si, 04B) (* = 1..4). By 04,4 or O4B, 

the answer set is always some A at each routing peer. Let Co and c be adjacent 
peers on a returning path. By 0\A or 0 4 B , we know pc(A) = A. Therefore, 
4 C pc(A). Since (i) A C pc(A), (ii) by O4A or 04B, peer CQ has answer set 
A and routes exactly A to c, we see that (Si, 04^) (i = 1..4) and (Si,04s) 
(i = 1..4) satisfy SNC. 

Let us consider (Si.Os) (i = 1..4). By O5, the answer set is divided into 
several partitions Ki (i — l..n). Let Li be K^s annotation, Co and c be adjacent 
peers on a path to route Ki back. Since by O5 we know that Li = {c\pc(Ki) = 
Ki} A . peer c G Lj, it follows pc(^i) = Ki. Then C pc(Ki). Since (i) 
.K"i C pc(Ki), (ii) by 05, peer CQ has answer set i f i and routes exactly Ki to c, 
we see that (Si,0s) (i = 1..4) satisfies SNC. 

Last, let us consider (Si,06 î) (i = 1..4) and (Si,06s) (i = 1..4). Let Co 
and c be adjacent peers on a returning path, be the answer set that Co has, 
K' be the set that co routes to c. By 06,4 or 06B, we know K' = pc(K). Then 
K' CPc(K). Thus, (Si,06yi) (i = 1-4) and (Si,06B) (i = 1-4) satisfy SNC. 
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5.2 Comp le teness 

The general sense of completeness has been given in Section 3.1.1. It will be 
formally defined and studied in this section. 

5.2.1 Definitions 

Given the source peer o, target peer 6, and query Q at a, the answer set A 
arriving at peer a may be different for different (S, O) pairs. The set A is 
expected to be maximized, or Complete. Because the returned answer set A is 
largely decided by the query-answering algorithm, the completeness is expected 
to be a property of an (5,0) pair. 

To define completeness, we need to make the following assumptions: 

• As the property of an (5,0) pair, completeness is independent of 
the query Q at source peer a. In other words, the completeness of the 
answer set is not query-sensitive. If an (S, O) pair has the completeness 
property, it ensures the completeness of the returned answer set for every 
query Q. 

• As the property of an (S, O) pair, completeness is independent 
of the source peer a, the target peer b, and the database D at 
b. Whatever a, b or D is, the completeness means that the corresponding 
maximum answer set A should be retrieved from b to a. The completeness 
of the answer set is independent of the source peer and target peer, given 
an {S,0) pair. 

Firstly, let us define the Ideal Completeness: 

Definition 5.3 (Completeness I (Ideal Completeness)) Given source peer 
a, target peer b, database D at b, query Q at a, (S, O) is complete for (a, b, Q) 
iff: V tuple t 6 pa(Q(D)), 3 path P from a to b A 3 path P' from b to a, S 
sends Q' to b Ate Q'(D) A O sendst to a via P' At £ pc(D), V peer c on P'. 
(S, O) is complete iff it is complete for (a, b,Q), V a, b, Q. 

The Ideal Completeness definition implies "maximal completeness based on 
soundness". In other words, it is the completeness on the condition of no infor­
mation leakage. Because the condition "£ £ Pc{D), V peer c on P'" in the above 
definition ensures no information leakage. However, the Ideal Completeness 
depends on the network topology and the target peer's ACPs for other peers. 
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a ' C b 
Figure 5.1: Problem in Completeness I (Ideal Completeness) 

Here we have an example for this dependency. It is shown in Figure 5.1: a 
is the source peer; b is the target peer; D is the database at b; b has an A C P 
saying that a can access all 6's data; b has another A C P saying that c can access 
none of 6's data; Q is the query put forth by a. We see that pa{Q{D)) equals 
Q(D). But for the restriction of the topology and ACPs, the answer set Q(D) 
will be blocked at c and nothing can be routed back to a. Any (S,0) cannot 
satisfy Completeness I, no matter how smart (S,0) is. 

This is not what we want. If Completeness is to be a property to distinguish 
(5,0) pairs, another assumption needs to be made: Completeness is not 
affected by the network topology and A C P distribution. Now we will 
define another type of Completeness, which accounts for the network topology 
and A C P distribution: 

Definition 5.4 (Completeness II) Given source peer a, target peer b, database 
D at b, query Q at a, let the ideal answer set L = { t | t G Q{D) A 3 path 
P £ Pb_ a•(* £ PP{D))}; let the returned answer set L'•= { t | 3 path P 6 P 0 - 6 
3 path P' € P6_a (Q' is the written query of Q defined by.S A S transmits 
Q' to b via P A t G Q'{D) A O routes t to a via P')}• (S,0) is complete for 
(a, b, Q) iff L = L ' , V database D at b. (S, O) is complete iff (S, O) is complete 
for (a,b,Q), V a, b, Q. 

Note that in the above definition, we have an equivalent form for the ideal 
answer set L : L = { t | 3 path P G P b _ a {t G pP(Q(D)))}. This form of L is 
more concise than the original one, and will be used in our later discussion. 

The Completeness II definition likewise implies " maximal completeness based 
on soundness". Because it requires not only L C L ' but also L ' C L . What 
differs Completeness II from Completeness I is that the former is independent 
of the network topology and A C P distribution. Therefore, Completeness II can 
be regarded as a property of an (5, O) pair. 

By the Completeness II definition, The ideal answer set L is independent of 

any (5, O) pair. Thus, a fact can be inferred from the definition of Completeness 
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II: 

Given the PDMS topology, the query Q, the source peer a, the target 
peerb and its database D. Assume (Si,Oi) and (Sj,Oj) both satisfy 
Completeness II. Let L{ be the returned'answer set of (Si,Oi), and 
Lj be the returned answer set of (Sj,Oj), where the returned answer 
set is defined as L' in the Completeness II definition. Then we have 
Li = Lj. 

The proof for this fact is trivial. Let L be the ideal answer set as defined 
in Completeness II. By the definition of Completeness II, we know L* = L and 
Lj = L . Therefore, we have Li = Lj. 

Because Completeness II allows us to account for the conditions imposed 
by the topology, throughout this thesis we consider Completeness II when we 
consider completeness. 

5.2.2 The Sufficient and Necessary Condition for 
Completeness 

We cannot expect to use the definition of Completeness II (as defined in the 
previous section) to check if an (S, O) pair satisfies Completeness II. First, L ' 
in the Completeness II definition has an execution manner, you have to run 
(S, O) on all possible source peers, target peers, queries, query routing paths, 
etc. Secondly, both L and L ' have the tuple-based granularity, which is far 
away from the description of a specific strategy or a specific option. So there is 
a need for a condition that can be easily applied to the description of any (S, O) 
pair and check if it satisfies Completeness II. Since (i) the ideal answer set L is 
independent of any (S, O), (ii) L has an equivalent form as we pointed out after 
the Completeness II definition, we get the following sufficient and necessary 
condition for checking if an (S, O) pair satisfies Completeness II. 

S N C : For an (S, O) pair, V source peer a, V target peer 6 and its database D, 
V query Q at a: the returned answer set V at a is 

U PP(Q(D))-
P€Pa-.b 

Proof: 
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Before proving that SNC is a sufficient and necessary condition, we need 

some preparation work. 

(i) The fact is: if there is a path P € Pb_ai there must be a path P' G P0->b> 

where P' is the reversed sequence of P. By this fact, if P and P' are treated 

as sets of peers, we have P = P'. Therefore, for any Q(D) and P, pp(Q(D)) — 
PP'(Q(D)). 
(ii) By the definitions of set and set union, we have 

(J pP(Q(D)) = {t\3pathPePa^b(tepp(Q(D)))}. 
P6P„-b 

Since we have (i) and (ii), it follows that 

|J pP(Q(D)) = {t\3pathPen-+a(t£pp(Q(D)))}. 

Next, let us prove that SNC is a sufficient and necessary condition for Com­

pleteness II. 

1. SNC is Sufficient. We need to show if (S, O) satisfies SNC, it also satisfies 

Completeness II. Assume (5, O) satisfies SNC. Given source peer a, target peer 

b, database D at b, query Q at a, let L' be the answer set at a that (S,0) 
returns. By SNC, we know 

£'= U M W ) . 
P € P „ „ 6 

Since we also have 

(J pP(Q(D)) = {t\3pathP G P „ _ a ( i G pp(Q(D)))}, 
P€Pa-b 

it follows V = {t\3pathP G P t_ a (* € pP(Q{D)))}. By the definition of Com­
pleteness II, the ideal answer set L = {t\3pathP G Pb-.o(< £ PP(Q(D)))}-
Since V = {t\3pathP G P i _ a ( t 6 PP{Q{D)))} and L = {t\3pathP G P 6 - a ( * € 

pP{Q{D)))}, it follows L = L'. The term L = L' holds V a, 6, Q. By the 
definition of Completeness II, we see that (5,0) satisfies Completeness II. 

2. SNC is Necessary. We need to show if (S,0) satisfies Completeness II, it 
also satisfies SNC. Assume (S, O) satisfies Completeness II. Given source peer 
a, target peer 6, database D at b, query Q at a, let L be the ideal answer 
set, and V be the answer set at a that (5,0) returns. By the definition of 
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Completeness II, L = {t\3pathP £ P 6 - a ( t £ pP{Q{D)))} and L = V. Thus, 
we have L' = {t\3pathP £ Pb~.a(t £ Pp(Q(D)))}. Since we also have 

(J pp(Q(D)) = {t\3pathP£Vb^a(t£pP(Q(D)))}, 
PePo-6 

it follows 

P€Pa-b 

This equation for V holds V a, 6, £>, Q. By the description of SNC, we see that 
(5,O) satisfies SNC. • 

5.2.3 Completeness Analysis for all (S,0) pairs 

In the previous section, we get the sufficient and necessary condition SNC for 
Completeness II. A n (5, O) pair satisfies Completeness I I , if and only if 
(S,0) satisfies S N C . 

Table 5.2 is the Completeness II Result Matrix for all (5, O) pairs we de­
signed in Chapter 4. It summarizes which (5, O) pairs have the completeness II 
property, where " Y " refers to "Completeness II holds" and "N" refers to "Com­
pleteness II doesn't hold". If an (5,0) pair isn't IL-free, we skip it and fill in 

Ox 02A 0 2 B o 3 o4A 
0AB o5 o6A o6B 

Si Y Y Y Y N H Y N N 
5 2 

N N N N • N N N N N 
5 3 

Y Y Y Y N N Y N N 
SA - Y -' Y N N Y N N 

Table 5.2: Completeness II Result Matrix 

Let us analyze the result in the matrix by using the sufficient and necessary 

condition SNC. We will discuss the matrix in a column-by-column order, except 

Si. • 
First of all, let us consider (52,Oj) (i = 1..6). By the descriptions of 5 2 

and Oi (i = 1..6), the answer set computed at the target peer b is pA(Q{D)), 
where A is the set of all peers in the P2P system. Since answer tuples are only 
computed at b and no more tuples are created in the answer routing process, it 
follows that the returned answer set at a is V C pA(Q(D)). Since A is the set 
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of all peers in the PDMS, normally we have , 

PA(Q(D))C (J PP(Q{D)). 

Since V C pA(Q(D)) and 

PA(Q(D))C \J PP{Q(D)), 
P€P 0 -b 

it follows 
L'C [j PP(Q(D)). 

PePo-b 

Therefore, (S 2 ,Oi ) (i = 1..6) doesn't satisfy SNC. 
Let us consider (S\,Oi) and (S^GY). By the descriptions of S i , S3 and 

Oi, V path P e P a _ 6 : the answer set at b is pP(Q(D)). Then by O i , V path 
P 6 P a _ b : the answer set pp(Q(D)) is routed at a via the reversed path of P. 
Thus, the returned answer set L' at a is 

U PP(Q(D))-
P€P„_6 

Therefore, (S i ,O i ) and ( S 3 , O i ) satisfy SNC. 
Let us consider (SI,02A) (i — 1, 3,4). By the descriptions of Si (i = 1,3,4) 

and O2A, V path P e P a — t h e answer set at b is pp(Q(D)). Then by O2A, 
V path P G P 0 - » 6 : the answer set pp(Q(D)) is routed at a via some path P', 
where P' € Pb—o A P ' C P . Thus, the returned answer set L' at a is 

U PP(Q(D))-

Therefore, (Si, 02>i) (i = 1,3,4) satisfy SNC. 
Let us consider (Si ,0 2 B) (i = 1,3). Analyzing the case exactly as (Si,0 2>i). 

(i = 1,3,4), we will get that (S i ,0 2 f l ) (* = 1,3) satisfies SNC. 

Let us consider (Si,C>3) (i = 1,3,4). By the descriptions of Si (i = 1,3,4) 
and O3, V path P € P a _b: the answer set at b is pp(Q(D)), annotated with a 
safe peer list L. Then by O3, V path P € PQ-,b: the answer set pp(Q(D)) is 
routed at o via some path P', where P' £ Pb-»a A P' C L. (Hint: In the worst 
case, P' could be the reversed path of P, because P C L. ) Thus, the returned 
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answer set L' at a is 

U PP(Q(°))-
P€P 0 - .b 

Therefore, (St, 03) (i = 1,3,4) satisfy SNC. 
Let us consider (Si,OiA) (i = 1,3,4). By the descriptions of Si (i = 1,3,4) 

and 0 4 A , V path P € P A - * 6 : the answer set at b is pP(Q(D)). By 0 4 ^ , V path 
P e Pa—b'- the answer set pp(Q(D)) is routed to peer d if Pd(pp(Q(D))) = 
PP(Q(D)). However, without the help of tuple annotations and supporting 
elements, the answer set pp(Q(D)) might be blocked during the routing process. 
Thus, the returned answer set at a might be 

L'c |J PP(Q(D)). 

Therefore, (Su OiA) (i = 1,3,4) doesn't satisfy SNC. 
Let us consider ( 5 J , 0 4 B ) (i = 1,3,4). The analysis is similar with that 

of ( 5 J , 0 4 A ) (* = 1,3,4). The only difference is as follows. By C>4B, V path 
P e P 0_,b: the answer set pp(Q(D)) U S might be blocked at some peer c, 
where S per se cannot be safely accessed by c. Therefore, (Si, O 4 B ) (i = 1,3,4) 
doesn't satisfy SNC. . 

Let us consider (Si,05) (i = 1,3). By the descriptions of Si (i = 1,3) and 
0 5 , V path P £ P Q - .&: the answer set at b is pP(Q(D)). Then by 0 5 , V path 
P G PQ-,6: the answer set pp(Q(D)) is partitioned and routed back at a via 
some paths. (Hint: In the worst case, pp(Q(D)) cannot be partitioned and is 
routed back to a via the reversed path of P.) Thus, the returned answer set L' 
at a is 

U PP(Q(D))-

Therefore, (Sj.Os) (i = 1,3) satisfy SNC. 
Let us consider ( S 4 , 0 5 ) . By the descriptions of 5 4 and 0 5 , V path P € P A - .&: 

the answer set at b is Q(D). By 0 5 , Q(D) is partitioned and routed. Notice that 
only the subset pp(Q(D)) is possible to be routed back to o, where P e P A —6-

Thus, the returned answer set V at a is 

U PP(Q(D)). 
P 6 P a ^ b 

Therefore, (S4,05) satisfies SNC. 
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Let us consider (Si, 06.4) (i = 1,3). By the descriptions of 5, (i — 1,3) 
and C-6A, V path P € PA->6: the answer set at b is pp(Q(D)). By OQA, V path 
P £ P 0 - t & : P e e r c, who has the subset K C Pp(Q(D)), routes Pd{K) to peer d. 
However, without the help of tuple annotations and supporting elements, some 
answer tuples in pp(Q(D)) might be blocked/lost during the routing process. 
Thus, the returned answer set at a might be 

L'c U PP(Q(D)). 

Therefore, (Si,06A) (i = 1,3) doesn't satisfy SNC. 
Let us consider (S4,OQA)- By the descriptions of S4 and 0§A, V path P £ 

P a _ i , : the answer set at 6 is Q(D). However, by OQA, the problem of no tuple 
annotations and no supporting elements still exists. Some answer tuples might 
be blocked during the routing process. Therefore, (S4, OQA) doesn't satisfy SNC. 

Let us consider (5I,C>6B) (* = 1,3,4). It is similar to the case of (Si, 06.4) 
(i — 1,3,4). Even with help of supporting elements, 06B might block/lost 
some answer tuples during the routing process, if the supporting elements per 
se cannot be safely accessed by a routing peer. Therefore, (Si,06B) (i = 1,3,4) 
doesn't satisfy SNC. 

53 



Chapter 6 

Cost Analysis for (S,0) 
pairs 

Thus far, we presented the designed strategies and options in Chapter 4, and 
the IL-free and Completeness property analysis for all (S, O) pairs in Chapter 
5. But the cost related to each (S, O) pair has not been studied. 

In this chapter, we build the cost model for an (S,0) pair (Section 6.1), 
conduct the cost analysis for all (S,0) pairs (Section 6.2), and compare the 
analysis to hypothesize which (S, O) pairs perform the best under which condi­
tions (Section 6.3). 

6.1 The Cost Model 
A cost model estimates the cost of the query-answering process in a PDMS, in 
control of an (S,0) pair. The following are the assumptions for the cost model: 

• We only consider the cost for given one source peer and one 
target peer. The cost estimation can be extended to a general case with 
one source peer and multiple target peers. 

• We assume that databases residing on all peers have the same 
schema. As mentioned in Section 3.4, the access control issue is or­
thogonal to the issue of schema heterogeneity. Tackling query-answering 
among different peer schemas is the main task of previous research work 
in PDMSs (Section 2.1), which is beyond the scope of the thesis. 

• In the cost model, we do not count in the cost of Answer Gen­
erating, which is the cost for the target peer to compute answer tuples 
for a query upon its local database. The reason of not including the cost 
lies in that (1) this, cost is mandatory for every (S, O) pair, and the costs 
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are similar and nondistinctive, (2) answer generating is a local task, whose 
time cost is fairly low comparing to those of the networking transaction. 

Under the above assumptions, there are several major tasks in the query 
answering process of a PDMS: 

• Query Transmitting: transmit a query Q from the source peer a to the 
target peer b. 

• Query Rewriting: rewrite a query Q using ACPs when it is transmitted 
from the source peer a to the target peer b. 

• ACP Evaluation: use ACPs to determine if a peer has access to certain 
answer tuples. 

• Answer Routing: ship answer tuples back to the source peer a. 

• ACP Distributing: distribute ACPs from the target peer b to other ap­
propriate peers. 

• Annotating: associate every partition of the answer tuples with a specific 
annotation. 

• Annotation Shipping: ship annotations together with the "pure" answer 
tuples back to the source peer a. 

Now let us identify the primitive operations and the corresponding cost 
unit for each task. In order to find reasonable primitive operations and cost 
unit for each major task, the following approximation assumptions need to be 
made. 

Assumption 1: The numbers of. constraints in different ACPs do not differ 
too much. 

Assumption 2: Using each constraint for a query rewriting will cost approx­
imately constant time. 

Assumption 3: Using each constraint as a filter to determine whether a peer 
has access to an answer tuple will cost approximately constant time. 

Assumption 4: In a PDMS, the time to transmit a message between any two 
adjacent peers is approximately constant. Thus, it takes approximately 
equal time for a small size,message to be transmitted between any two 
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adjacent peers. Of course, networking costs do differ, but they are small 
enough that the differences are dominated by the other factors. 

Assumption 5: The sizes of different answer tuples do not differ too much. 

Assumption 6: The sizes of different ACPs do not differ too much. 

Assumption 7: The sizes of different annotations do not differ too much. 

Assumption 8: An annotation is in the form of a set of peer ID's. Insert­
ing/deleting an peer ID into/from an annotation costs approximately con­
stant time. 

Assumption 9: The sizes of a query and its rewritten forms do not differ too 
much. 

Assumption 10: An annotation is directly associated and shipped with a set 
of tuples. It requires no supportive structure. ; 

Each of the following cost is the time cost for a major task in the query 
answering process of a PDMS. 

The Query Transmitting Cost refers to the cost of transmitting a query 
Q from the source peer a to the target peer b. According to Assumption 4 and 
9, it can be inferred that the cost of shipping a query down one network link 
is approximately an'constant time. "Shipping a query down one network link" 
is then the primitive operation. We identify the cost unit as "query-hop", 
which is the charge associated with the primitive operation. Thus the Query 
Transmitting Cost can be measured in terms of query-hops. 

The Query Rewriting Cost refers to the cost of rewriting a query Q using 
ACPs when it is transmitted from the source peer o to the target peer b in 
the framework of an (S, O) pair. According to Assumption 1 and 2, it can be 
inferred that rewriting query Q using A C P A\ will cost approximately equal 
time to that of rewriting query Q using A C P A?, no-matter what Q is, or what 
A\ and A2 are. So the primitive operation for query rewriting can be regarded 
as "rewriting a query using one A C P " . We identify the cost unit as "qrewrite-
acp", which is the charge associated with the previous primitive operation. 
Thus the Query Rewriting Cost can be measured in terms of qrewrite-acps. 
E.g. rewriting 1 query using 100 ACPs costs 100 qrewite-acps, which has the 
same cost of rewriting 2 queries using 50 ACPs each. 
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The A C P Evaluation refers to using ACPs to determine if a peer is au­
thorized to access certain answer tuples. It happens in two different places: (1) 
when certain answer tuples are to be routed from peer c\ to peer c2, related 
ACPs are used at ci to determine if c2 is authorized to access these answer 
tuples, (2) ACPs are used as filters at a peer, usually the target peer, to decide 
the set of peers that is authorized to access each answer tuple. According to As­
sumption 1 and 3, it can be inferred that evaluating an A C P over a tuple costs 
approximately constant time, no matter how the answer tuple looks like. So the 
primitive operation for A C P evaluation is "evaluating an A C P over an answer 
tuple to decide the related safe peers". The cost unit is identified as "acp-eval", 
which is the charge associated with the primitive operation. It's measured on 
a per tuple basis, e.g. if we evaluated 1 A C P over 1000 tuples versus 10 ACPs 
over 100 tuples each, both cases incur the same cost: 1000 acp-evals. Thus the 
A C P Evaluation Cost can be measured in terms of acp-evals. 

The Answer Routing Cost refers to the total cost of shipping answer 
tuples back to the source peer. According to Assumption 4 and 5, it can be 
inferred that the cost of shipping one answer tuple down one network link is 
approximately an constant time. "Shipping one answer tuple down one network 
link" is then the primitive operation. We identify the cost unit as "tuple-hop", 
which is the charge associated with the previous primitive operation. Thus the 
Answer Routing Cost can be measured in terms of tuple-hops. E.g. if 100 
tuples are sent down a path of 10 links, the cost is 1000 tuple-hops, which is 
also the same charge if 1 tuple is sent down a path of length 1000. Note that 
we are considering the amount of work in the network. Actually it is faster to 
send 100 tuples down a path of 10 links than to send 1 tuple down a path of 
1000 links. The former does the primitive operations in a concurrent way. In 
our cost model, we simply sum up all primitive operations as if they are done 
sequentially. Likewise, the assumption applies to, the Query Transmitting Cost 
and the A C P Distributing Cost. 

For certain (S, O) pairs, ACPs need to be distributed from the target peer to 
other peers. The A C P Distributing Cost refers to such kind of distributing 
cost. According to Assumption 4 and 6, it can be inferred that the cost of 
shipping one A C P down one network link could be treated as an approximately 
constant time. Thus "shipping one A C P down one network link" is the primitive 
operation for A C P Distributing Cost. We identify the cost unit as "acp-hop", 
which is the charge associated with the previous primitive operation. So the 
A C P Distributing Cost can be measured in terms of acp-hops. E.g. if 100 
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ACPs are sent down a path of 10 links, the cost we charge is 1000 acp-hops, 
which is the same cost if 1 ACPs are sent down a path of length 1000. 

The Annotating Cost is the cost of associating every partition of the 
answer tuples with a specific annotation. As mentioned in Assumption 8, an 
annotation is in the form of a set of peer ID's. Then the task of annotating refers 
to the operations of inserting/deleting peer ID's into/from annotations. The 
primitive operation then can be treated as "insert/delete a peer ID into/from an 
annotation". Such an primitive operation is the atomic step for any annotating 
algorithm. It works for both tuple-based and partition-based algorithms, i.e. 
an algorithm annotating one tuple at a time or an algorithm annotating a set 
of tuples at a time. According to Assumption 8, the cost unit is identified 
as "annot-update", which is the charge associated with the aforementioned 
primitive operation. So the Annotating Cost can be measured in terms of annot-
updates. E.g. if we insert 4 peer ID's into an annotation, then delete 2 peer ID's 
from another annotation, the cost we'd charge is 6 annot-updates. Generally 
speaking, in a specific annotating algorithm, the task of annotating is often 
interleaved with the following tasks: 

• answer generating, i.e. computing answer tuples for a query 

• A C P evaluation, i.e. using ACPs as filters to decide the peers that have 
access to each answer tuple in the answer set 

We ignore the cost of answer generating, as mentioned at the beginning of this 
section. For A C P evaluation, it is included in the A C P Evaluation Cost. 

In some query-answering algorithms, the annotations are routed together 
with the answer tuples. This will increase the workload for the whole network. 
This cost is called the Annotation Shipping Cost. According to Assumption 
4, 7 and 10, it can be inferred that the cost of shipping one annotation down one 
network link can be treated as an approximately constant time. Then "shipping 
one annotation down one network link" is the primitive operation. The cost unit 
is identified as "annot-hop", which is the charge associated with the primitive 
operation. Thus the Annotation Shipping Cost can be measured in terms of 
annot-hops. E.g. if 10 annotations are sent down a path of 4 links, the cost 
charged is 40 annot-hops, which has the same cost if 2 annotations are sent 
down a path of length 20. 

Now we have identified the cost unit for each major task in the cost model. 
Although these cost units are different from each other, we can certainly find 
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the relationship for some of them. For instance, "tuple-hop", "acp-hop" and 
"annot-hop" are quite similar. The only difference is the size of "cell" to be 
shipped. Coefficients can be assigned to illuminate the relationship: 

• • 1 tuple-hop = C\ • acp-hop 

• 1 acp-hop = C 2 • annot-hop 

where c\ and c 2 are application-specific coefficients. With these relationships, 
it is possible to sum up the costs of Answer Routing, A C P Distributing and 
Annotation Shipping, which helps us to calculate the best/fastest (S,0) pairs. 

6.2 Cost Analysis Result 
The cost model in Section 6.1 can be used to assess an (S, O) pair. In this 
section, we analyze and compare the costs for every (5,0) pair we already 
designed. Each cost presented in this section is for O N E query, O N E source 
peer, and O N E target peer. Because IL-free and Completeness are necessary 
properties for an (S, O) pair, only (S, O) pairs that are both IL-free and complete 
are analyzed in this section. 

In the results of this section, we sum up the cost of a major task for each 
(S,0) pair, as if the primitive operations in this task are done sequentially. But 
in a real PMDS, we can pipeline the primitive operations, then a task takes less 
time. 

For clarity, we define the following terminology, which is used in later dis­
cussion. Given the P D M S topology, all ACPs , the source peer a, the target peer 
b: 

• The number of all paths from a to b is |P a _; , | ; 

• Let No be the number of all peers in the PDMS; 

• Let path P, € Pa—& (i = 1, ••, | P a — N i be the number of peers (except 
b) in Pi, or the length of Pi; 

• When considering only one routing path in P 0_>b (e.g. in S 2 ) , we will 
use the simplified symbols: P denotes the path, N denotes the number of 
peers(except b) in P or the length of P; 

• If Cj is a peer, let X , be the number of the target peer b's ACPs for Cj, dj 
be the shortest path from the target peer b to cy, 
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• If Pi is a path, let XPi be the number of the target peer fc's ACPs , each 
of which is for at least one peer in Pi\ 

• Let Y be the total number of the target peer b's ACPs; 

• If query Q' is transmitted at the target peer b via path Pi G P a ->6, let Ti 
be the number of returned answer tuples for Q' at b. 

6.2.1 Query Transmitting Cost 

For Query Transmitting Cost, "Shipping a query down one network link" is the 
primitive operation, and the cost unit is identified as "query-hop", which is the 
charge associated with the primitive operation. 

Table 6.1 is the matrix summarizing the Query Transmitting Cost for every 
(5,0) pair. We do not.assess the (S,0) pairs, who are either not IL-free or 
incomplete. 

(5 1 ,O i ) ( i = l , 2 A , 2 B , 3 , 5 ) E i ^ 1 n 
(S2,Oi)(i = 1..6) -

(5 3 ) Oi) ( i = 1,2,4,25,3,5) 
{SitOi){i = 2A,3,5) 

Table 6.1: Query Transmitting Cost (unit: query-hop) 

Getting the result in the matrix is not hard: by S\ or S3 or S4, the query Q 
is transmitted along every path Pi € P a->6 (i = 1. ••, |Pa->6|)-

6.2.2 Query Rewriting Cost 

For Query Rewriting Cost, "rewriting a query using one A C P " is the primitive 
operation, and the cost unit is identified as "qrewrite-acp", which is the charge 
associated with the primitive operation. 

Table 6.2 is the matrix summarizing the Query Rewriting Cost for every 
(S, O) pair. We do not assess the (S, O) pairs, who are either not IL-free or 
incomplete. 

As a fact, Query Rewriting Cost is related only to strategies, not to options. 
By Si, the query Q is transmitted along every path € P 0 ->6 (i = 1> ••, |Pa-»b|) i 

Q is rewritten at every peer CJ [j = l-.Ni) on path Pt, "using Xj ACPs. Thus, 
the query rewriting cost for (Si,Oi) is E'LT 6' E J ^ I Xj qrewrite-acps. 
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(SuOi){i = l,2A,2B,3,5) 2^i=l 2^7 = 1 ^3 
(S2,Oi)(i = 1..6) -

(S3,Oi)(i = l,2A,2B,3,5) 2si=\ l~ii=\ ^3 

(S4,Oi)(i = 2A,3,5) 0 

Table 6.2: Query Rewriting Cost, (unit: qrewrite-acp) 

The case of S3 is similar to that of S i . The only difference is that S3 

rewrites the query Q when it is transmitted at the target peer b. Thus, the 
query rewriting cost for (S3, Oi) is also E i L V 6 ' Ej2i ^3 qrewrite-acps. 

By S4, the query Q is never rewritten. Thus, the query rewriting cost for 
(S4,Oi) is 0 qrewrite-acp. 

6.2.3 A C P Evaluation Cost "> 

For A C P Evaluation Cost, "evaluating an A C P over an answer tuple to decide 
the related safe peers" is the primitive operation, and the cost unit is identified 
as "acp-eval", which is the charge associated with the primitive operation. 

Table 6.3 is the matrix summarizing the A C P Evaluation Cost for every 
(S, O) pair. We do not assess the (S, O) pairs, who are either not IL-free or 
incomplete. We will go though the matrix entries column by column. 

Oi o2A 02B OiA 

Si 0 0 0 T,trb](Ti-(Y -XPi)) - -
s 2 

- - - - - ' -

S3 0 0 0 T,f=r"KTi-(Y-xPi)) - -
S4 - Ei=rblm •Y) - Y&rbl{Ti-(Y-XPi)) - -

06A 06B 

S i E ! rbl(Ti-Y) - -
s 2 

- - -

S3 Ei=rblm-n - -

5 4 EJ! rbl(Ti-Y) - -

Table 6.3: A C P Evaluation Cost (unit: acp-eval) 

Let us consider (Si, Oi) (i = 1,3). By Ou for any path P £ P A _ 6 , the 
answer set at b is routed via the reversed path of P. Thus, there is no A C P 
evaluation cost for (Si ,Oi) (i = 1..3). 

Let us consider (Si,0 2>i) (i = 1,3). By S{ (i = 1,3) and 0 2 / i , 'we know that 
for any path P e Pa-*b, the query at b can be directly evaluated and the answer 
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set is routed via some path P', where P' G Pb—a A P'. C P. Thus, there is no 
A C P evaluation cost for (Si,C>2A) (i = 1,3). 

Let us consider (SA,02A)- By 54, for any path P G Pa-.b, Q(D) computed 
from Q is not exactly Pp(Q(D)), which is the answer set O2A will route back. 
Thus, O2A needs to evaluate every A C P over every tuple in Q(D) to decide the 
returned answer set. Since we know (i) for every path P G P a -»6, the number 
of tuples in Q(D) is Tj and (ii) the total number of the target peer's A C P s is 
Y, it follows the A C P evaluation cost is E ' L T " ' ^ ' " Y ) -

Let us consider (5,,C>2B) (i = 1,3). By O2B, for any path P G P0->t, the 
answer set at b is directly computed by the query Q at b and routed via some 
path P', where P' G Pf,_0 A P' C P. Thus, there is no A C P evaluation cost 
for (5i,02B) (t = 1,3). 

Let us consider (Si, O3) (i = 1,3,4). By O3, for every P G Pa->6, we know.(l) 
a query Q is transmitted at the target peer b, and the number of answer tuples 
is Ti, (2) for each answer tuple t, every A C P of b needs to be evaluated over 
t, except the XPi ACPs for the peers in Pi (They have been evaluated over i). 
Thus, the A C P evaluating cost for (Si, 03) (i = 1,3,4) is £ i = f b l ( r i - (Y-XPi)). 

Let us consider (5,, O5) (i = 1,3,4). By O5, we know that for every incoming 
path, for every tuple t in the answer set, each A C P of the target peer needs to 
be evaluated over t. Thus, the A C P evaluation cost is Ei=V'>'C^ ' w h e r e Ti 
is the number of answer tuples at the target peer and Y is the total number of 
the target peer's ACPs. However, this is the theoretical cost. In practice, the 
implementation of O5 may annotate (partition) the answer set before the answer 
tuples are computed,, and the A C P evaluation cost for (Si, O5) (i = 1,3,4) will 
decrease dramatically. 

6.2.4 Answer Rout ing Cost 

For Answer Routing Cost, "shipping one answer tuple down one network link" 
is the primitive operation, and the cost unit is identified as "tuple-hop", which 
is the charge associated with the primitive operation. 

Table 6.4 is the matrix summarizing the Answer Routing Cost for every 
(5,0) pair. We do not assess the (5,0) pairs, who are either not IL-free or 
incomplete. We will go through the matrix entries column by column. 

Let us consider (Si,0\) (i = 1,3). By 0\ and 5j (i = 1,3), for any path 
Pi € P 0-.6, the answer set is returned via the reversed path of Pj. Since the 
number of tuples in the answer set is Tj and the length of Pi is Ni, it follows 
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Oi 02A 02B 

Si T}!=rbKTi-ni),ni<iNi s2 - - -
S3 El=rblw-M) Ei=r f c l(r*-n i ),n i <iV i 

SA - E!=r f c l (Ti-ni) ,n i <N i 
-

OiA,iB o5 

SI E!:=Tblm-mi) - « Ei 'V 'Wi -(<*)"]/( ! -c fc)-Ti} 
s2 '- - -
S3 Ejlr 'm-mi) — 

SA Eiir 6 l ( r i -m i ) - «Ei=r 6 l{Mi-(cfc) n]/(i-'*)-ri} 

Si -
s2 -
S3 -
Si -

Table 6.4: Answer Routing Cost (unit: tuple-hop) 

that the answer routing cost for (Sj .Oi) (i = 1,3) is Ei=f b'(Ti ' ^ 0 -

Let us consider (5j,C>2.4) (i = 1,3,4) and (Sit02B) (i = 1,3). By 02A, 02B 
and Si, we know for any path Pi € P a ->6, the answer set is returned via P[ C Pj. 

Since the number of tuples in the answer set is Tj and the length of Pi is Ni, 
it follows that the answer routing cost for (Si,02A) (i = 1,3,4) and (Si,02B) 
(i = 1,3) should be Ei=rb l(^i' m), m < 

Let us consider (Si, O3) (i = 1,3,4). By Si and O3, for every path Pi € Pa->& 
(length of Pi is iVj), the answer set is annotated with annotation Li at the target 
peer and returned via path P[ C Li. Let be the length of path P-. Since the 
number of tuples in the answer set is Ti, it follows that the answer routing cost 
for (Si,03) (i = 1,3,4) is Ei=f "'(̂ i • rm). Normally, rm < N(. 

Before turning to (Si,Os) (i = 1,3,4), Let us study (Si,OiA) and (Si,04B) 
(i = 1,3,4). Although (SUOAA) and (Si,OiB) (i = 1,3,4) cause either in­
formation leakage or incompleteness, the analysis for (Si,OiA) and (Si,OiB) 

(i = 1,3,4) helps to find the cost of (Si,0*,) (i = 1,3,4). By OiA and O i B , 

for any path Pj € P a ->6, for every peer c i that received the answer set Af. Ai 
is routed from c i to c2 if p C 2 (4j) = Ai. Let k be the average fanout of a peer 
(average number of neighbors of a peer), c be a coefficient between 0 and 1 (the 
average reduction factor of a peer's "safe" neighbor number over all its neighbor 
number), n is the average length of an answer routing path. It is not hard to 
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see the number of peers receiving Ai is the sum of a geometric sequence: k, 
cfc2, c2k3

r..cnkn+1.The sum is fc[l - (cfc) n]/(l - ck). Since the number of tuples 
in the answer set Ai is T*, it follows the answer routing cost is approximately 

ElL°r4'{*[i- (ckry(i-ck)-Ti}. 

Let us consider (Si,0s) (i = I.A). By O5, the answer set is partitioned and 
routed back to the source peer. In a global view, the answer routing cost in 
this case, in terms of "tuple-hops", has no difference from the case of routing 
the answer set as a whole in ( S i , 0 4 / i ) and (Si,C?4B) (i = 1,3,4). Thus, we'd 
like to adopt the approximate costs for (Si, O^A) and (Si, 0 4 B ) (* = 1,3,4), i.e., 

« Ef=rbl (Mi -(ckry(i-ck)-Ti}. 

6.2.5 A C P D i s t r i b u t i n g Cost 

For A C P Distributing Cost, "shipping one A C P down one network link" is the 
primitive operation, and the cost unit is identified as "acp-hop", which is the 
charge associated with the primitive operation. 

Table 6.5 is the matrix summarizing the A C P Distributing Cost for every 
(S, O) pair. We do not assess the (S, O) pairs, who are either not IL-free or 
incomplete. 

Oi 02A 0 2 B 03 

Si £f=°i {Xi-di) E-MXi-di) 
s2 

- - - -
S3 0 0 0 0 
s 4 - 0 - 0 

04.4,4B OeA,6B 

Si -
s 2 

- - -
S3 - 0 - • 
5 4 - 0 -

Table 6.5: A C P Distributing Cost (unit: acp-hop) 

An A C P of the target peer b for peer c is distributed only to c if it is needed, 
not to any other peer. Only such A C P distribution cost is considered. On the 
other side, if peer c's neighbor c2 has the requirement to possess ACPs for c, c 
can share.ACPs with c2 with little cost. We don't count in this part of cost. 

The fact is: any (S, O) pair requiring A C P distribution will have the same 
A C P distributing cost, i.e., distributing A C P s from the target peer to the rel­
evant peers. More specifically, for (S, 0 ) requiring A C P distribution, the A C P 
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distributing cost is J2i=i(^i ' ^i) , where iVo is the number of all peers int the 
P2P system, Xi is the number of ACPs of the target peer b for peer cit di is the 
distance from b to c*. By the descriptions of strategies and options, we know 
that only S\ requires A C P distribution. Thus, the corresponding matrix entries 
for Si are Ei=i(xi • di)-

6.2.6 A n n o t a t i n g C o s t 

For Annotating Cost, "insert/delete a peer ID into/from an annotation" is the 
primitive operation, and the cost unit is identified as "annot-update", which is 
the charge associated with the primitive operation. 

Table 6.6 is the matrix summarizing the Annotating Cost for every (S, O) 
pair. We do not assess the (S, O) pairs, who are either not IL-free or incomplete. 
We will go through the matrix entries column by column. 

Oi 02A o2B o3 OiAAB o5 O^AfiB 

Si 0 0 0 5Xr 1 u - 2^i=i 2^7=1 li -
s2 - - - - - - • -
s3 

0 0 0 2^i=i '» - 2^i=i 2^7=1h -
5 4 - 0 - Vlp<—*l 7 l^i-l 2^7 = 1 l3 -

Table 6.6: Annotating Cost (unit: annot-update) 

Let us consider {SuOi) (i = 1,3), {Si,02A) (i = 1,3,4), (Si,02B) (i =1,3). 
By the descriptions of Oi, 02A and 02B, they don't require to annotate answer 
tuples. Thus, the annotating cost for them is 0. 

Let us consider {Si,03) [i — 1,3;4). By 03, for each path P; € P a - .b, the 
returned answer set is annotated with the list L j . Let Z, be the number of peer 
ID's in L j . Thus, the annotating cost for {Si,03) (i = 1,3,4) is the sum of k, 

Let us consider (S,,C>5) (i — 1,3,4). By O5, for each path Pi £ Pa—b, 
the returned answer set is partitioned and annotated. For a query incoming 
path Pi £ PQ- ,6, let ki be the number of partitions of the answer set,(j be the 
number of peer ID's in the j-th partition. Thus, the annotating cost for (Si, O5) 

( » = 1 ,3 ,4) is ElLr'Eji,^--
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6.2.7 A n n o t a t i o n S h i p p i n g C o s t 

For Annotating Shipping Cost, "shipping one annotation down one network 
link" is the primitive operation, and the cost unit is identified as "annot-hop", 
which is the charge associated with the primitive operation. 

Table 6.7 is the matrix summarizing the Annotating Shipping Cost for every 
(S, O) pair. We do not assess the (S, O) pairs, who are either not IL-free or 
incomplete. We will go through the matrix entries column by column. 

Oi o2A o2B o3 
OiA,iB 

Si 0 0 0 -
s2 

- - - - -
s3 

0 0 0 -
Si - 0 - -

Os OQA,6B 

Si ~ Elrbl{ki[i - (cA) n i ] / ( i - cih) .Pi} -

s2 
- -

s3 » E[-T l l{*i[l - (ciki)ni]/(l - Ciki)-pi} -
Si « S b ^ ' t e l i - M i ) n ' ] / ( i - cih) -Pi} 

Table 6.7: Annotation Shipping Cost (unit: annot-hop) 

Let us consider (Sj.Oi) (i = 1,3), (St,02A) (i =1 ,3 ,4 ) and (Si,02B) 
(i = 1,3). By the description of Oi, 02A and 02B, none of them requires 
answer annotating, thus no annotation shipping cost. 

Let us consider (Si,03) {i = 1,3,4). By Si and 03, we know for every path 
Pi £ P0-»6 (length of Pi is Ni), the answer set is annotated with an annotation L , 
at the target peer and returned via path P[ C L j . Let m, be the length of path 
P[. Thus, the annotation shipping cost for (Si,03) (i = 1,3,4) is Ei=°f"' ' 'm«-
Normally, we expect m t ^ Ni. 

Let us consider (Si, Or,) (i = 1,3,4). There is no way to accurately quan­
tify the annotation shipping cost in this case. However, we can do the ap­
proximation. By 05, for any path Pi € Pa->&, for every peer ci that received 
the answer set Ai and its annotation Lf. Ai x {Li} is routed from ci to c2 

if pC2(Ai) = Ai. Let ki be the average fanout of a peer (average number of 
neighbors of a peer), C j be a coefficient between 0 and 1 (the average reduction 
factor of a peer's "safe" neighbor number over all its neighbor number), rc.j is 
the average length of an answer routing path. It is not hard to see the num­
ber of peers receiving Ai x {Li} is the sum of a geometric sequence: ki, Cikf, 
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c?/v? , . . . c" i fc t

n i + 1 . The sum is - (c i/c i)" i]/(l - ah). Let the number of parti­
tions (annotations) be pi. Thus, the annotation shipping cost is approximately 

El=r k l{fci[i-(c^) n i]/(i-c ifc i)-p i}. 

6.3 Hypothesis for Best (S,0) pairs 
Now let us make the hypothesis on which (S, O) pairs are the best in (1) being 
IL-free and complete as proved in Chapter 5, (2) fastest one as estimated by 
the results in Section 6.2. 

First, (Si-,0\) and (S4,02B) are excluded because they are not IL-free. 
Besides, {S2,Oj) {j = 1-6), (S^OAA) (» = 1-4), (Si,04B) (t = 1-4), (Si,06A) 
(i = 1-4), (Si,OeB) (i = 1-4) are excluded because they are not complete. 

Next let us pick out the best (S, O) pairs according to each major cost: 

• Query Transmitting Cost is non-discriminative, because this cost for each 

(S, O) pair is exactly the same. 

• For Query Rewriting Cost, the best (5,0) pairs are (Si,Oi)(i = 2/1,3,5). 

• For A C P Evaluating Cost, the best (5, O) pairs are (Si, Oj) (j = 1,2A, 2B), 
(S3,Oj) (j = l,2A,2B). 

• For Answer Routing Cost, the best (S, O) pairs are (Si, O2.4) (i = 1,3,4) 
and (Si, 02 B) (* = 1,3). (Si, O3) (i = 1,3) cost at the same level of those 
best (S, O) pairs. 

• For A C P Distributing Cost, the best (S, O) pairs are (S3, Oj) 

(j = 1,2>1,2B,3,5) and (S4,Oj) U = 24,3,5). 

• For Annotating Cost, the best (S, O) pairs are (Si, Oi) (i = 1,3), (Si, 02A) 

(i = 1,3,4) and 02B)( t .= 1,3)'. • 

• For Annotation Shipping Cost, the best (S, O) pairs are (Si, 0\) (i = 1,3), 

{Si,02A) (i = 1,3,4) and (SU02B) (t = 1,3). 

In the above list, (S3, 02A) and (S3, 02B) are always among the best, except 
for the Query Rewriting Cost. As we know, query rewriting is done at peers 
locally, and is normally faster than the network transportation, such as query 
transmitting and answer routing. Thus, if the local computing speed of peers in 
a P D M S is much faster than the network transportation speed, {S3,02A) and 
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(53,02B) perform better than any other (S,0) pair. Notice that when S3 is 
used, given source peer a, target peer b, database D at b, query Q that has been 
transmitted at b via some path P € P0-.i>, we have pp(Q(D)) = Q(D). That 
means, ( 5 3 , 0 2 A ) and ( 5 3 , 0 2 B ) behave exactly the same. Therefore, if the 
local computing speed of peers in a P D M S is much faster than the 
network transportation speed, ( £ 3 , 0 2 . 4 ) is the best (S, O) pair. 

Another notable point is: if the local computing speed of peers in a P D M S is 
much faster than the network transportation speed, (S3,02A) may not always be 
the best/fastest (S, O) pair. If the local computing speed of peers in a P D M S is 
much faster than the network transportation speed, Answer Routing Cost is the 
major cost and really matters. From the above bullets, we know that (S,,03) 
(i = 1,3) perform fairly well at answer routing, though they are not among 
the best (S, O) pairs according to most other costs. Given a good P D M S 
topology, and A C P distribution, (Si,03) [i = 1,3) could be the best 
(S, O) pairs, even faster than ( £ 3 , 0 2 , 4 ) . 
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Algorithm Details 

We have implemented the strategies and options that can be combined to form 
an (S,0) pair being both IL-free and complete. They are Si, S3, S4, Oi, O2A, 
O2B, O3, and O5. In this chapter, we present the crucial algorithms in these 
strategies and options. 

7.1 Algorithm for Query-Rewriting in light of 
ACPs 

By the descriptions of Si and 53 in Section 4.4, during the query transmitting 
process controlled by these two strategies, a query is rewritten into a new query 
at some peer to adhere to ACPs defined by the target peer. Therefore, the 
algorithm for query-rewriting in light of ACPs plays the central role in Si and 
S3. We present this algorithm in Section 7.1.1, and illustrate it by an example 
in Section 7.1.2. 

7.1.1 Algor i thm Description 

Given a query Q and an A C P R, the intuition of the query rewriting algorithm 
is to rewrite Q into a new query Q' such that Q' satisfies any structure/value 
constraint in either Q or R. In another word, for any database, the answer for 
Q' is contained by both the answer for Q and the answer for R, where Q, Q', R 
are treated as tree pattern queries. According to the query containment concept 
in Section 2.2, we have Q'.Q Q and Q' C R. In our algorithm, the containment 
mapping approach is used to ensure these query containment relationships. 

First, let us go through some terminology that will be used in the algorithm. 
Let Q be a query, R be an A C P . Both Q and R can be expressed as tree pat­
terns. For a tree pattern, there exists an output node that means only instances 
corresponding to this output node are returned as the answer set. The output 
element in query Q is called return element, and the output element in A C P 
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R is called visible element. There are two types of edges in a tree pattern, i.e., 
pc (parent-child) edge and ad (ancestor-descendant) edge. Secondly, we assume 
no more than two nodes in R, or the extension form of R, have the same tag 
name. That is the A C P fragment our algorithm currently handles. 

The algorithm for Query-Rewriting in light of A C P is shown in Figure 7.1. 
Let us explain more on few steps of the algorithm. In step 3 of the algorithm, 

it requires that the schema scm is available, at least for all the ancestors and 
descendants of visible nodes in TP.R. In step 6, it ensures that the nodes in 
TP-R.ext, which are attached with new constraints in step 5 (b), must be in 
the range of mapping M. Because the nodes in TP-Q-ext with the original 
constraints are in the domain of M (in fact, every node in TP-Q-ext is in the 
domain of M), thus their mapped nodes in TP.R.ext to accept these constraints 
are in the range of M. So these nodes will not be pruned in step 6 according to 
the second condition. 

As mentioned earlier, the algorithm ensures Q 3 Q' and R 2 Q'. Q 2 Q' 
because there exists a containment mapping from the tree pattern of Q to the 
tree pattern of Q' (TP-R.ext), as described in step 5. RD Q' because there is 
a obvious containment mapping from the tree pattern of R to the tree pattern 
of Q' (TP.R.ext) since all we've done is adding elements to TP-R.ext. 

7.1.2 Example 

Let us use an example to illustrate the algorithm in the previous section. In our 
example, the output nodes in tree patterns are capitalized. 

The database schema scm and the results after each step of the algorithm 
are shown in later figures. 

After step 1, the corresponding tree patters of given query Q and A C P R are 
built. We directly show the tree patterns here, skipping the string expressions 
of Q and R. 

After step 2, TP-R is marked, where marked nodes are tagged with a "*". , 
After step 3, TP-R is expanded to TP-R.ext. (Please refer to the schema 

scm.) 
After step 4, TP.Q is expanded to TP.Q.ext. (Actually nothing changes, 

just TP.Q has been replicated as TP.Q.ext.) 
Step 5(a) finds the obvious mapping. Because every node in TP.Q.ext can 

be mapped and every edge is preserved. Specially, the "ad" edge "c => b" 
in TP-Q-ext is mapped to a path " c - > g- > f- > 6" in TP-R.ext. The 

70 



Chapter 7. Algorithm Details 

Algorithm QueryRewriteACP 
Input: query Q, ACP R, database schema son 
Output: the rewritten query Q', or NULL if Q cannot be rewritten in light of R 

1. Let TP_R be the tree pattern of R 
Let TP_Q be the tree pattern of Q 
Build TPJi and TP-Q 

2. Mark each element in TP.R 

3. Expand TP-R to TPJi-ext. TP.R.ext includes: 
(1) allofTP_R 
(2) all ancestors to visible nodes exposed 
(3) all descendants of visible nodes exposed 

4. Expand TP-Q to TP.Q.ext. TP.Q.ext includes: all of TP.Q 

5. Do the containment mapping related work: 

(a) Attempt to find a containment mapping M, from TP.Q.ext to 
TPJi-ext: 
Given that nodes of TPJi-ext have distinct tags, finding M is 
as follows: V node x in TP-Q-ext: define h(x) = node y in 
TPJi-ext where x.tag = y.tag. Then test if (1) this mapping M 
preserves edges/paths, i.e. a "pc" edge is mapped to a "pc" edge, 
while an "ad" edge is mapped to a path with arbitrary number 
of nodes; (2) the return element x in TP-Q-ext is mapped to a 
node y that is a descendant of the visible element (including itself) 
in TPJi-ext. If the test succeeds, the containment mapping M exists. 

If the containment mapping M doesn't exist, return NULL 

(b) Identify the constraints from TP.Q-ext and attach them to TPJi-ext, 
after converting the variable names. 

6. Prune each element e e TPJi-ext s.t. 
(1) e is not marked (see step 2) 
(2) e is not in the range of M (i.e., it is not mapped to) 
(3) TP-R.ext remains a tree 

7. Set the return element in TPJi-ext as the mapped node of the return 
element in TP-Q-ext 

8. Translate TPJi-ext to a query Q', and return Q' 

Figure 7.1: Query-Rewriting in light of A C P Algorithm 
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mapping succeeds. And we can see that element d in TP.R.ext, which is the 
mapped element of the return element D in TP.Q.ext, is a child of the visible 
element B in TP.R.ext. 

Step 5(b) identifies the constraint "c > 8" from TP.Q.ext and attach it to 
TP.R.ext. ' 

After step 6, TP.R.ext is pruned. The difference is that node g,f,e,m,n have 
been deleted because they are neither marked nor mapped to by TP.Q.ext. 
Furthermore, to keep TP.R.ext a tree, the "ad" edge between c and B is com­
pensated. 

After step 7, the return element in TP.R.ext is set as D. 
After step 8, TP.R.ext is translated into an XQuery Q'. 

after step 1: 

TP_Q = I TP_R = 

a 1 a 
1 1 1 \ 
c (c>8)1 c i 
1 1 1 1 1 
b 1 
i i 

B 
1 

1 1 
D 1 

1 
d 
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after step 2 : 

TP_Q = 1 TP_R = 

a 1 a* 

1 1 1 \ 
c (c>8)1 c* i * 

1 1 1 I I ' . ' 
b 1 
i i 

B* . 
I 

1 1 
D 1 

1 
d* 

after step 3: 

TP_q'= 1 TP_R = 1 TP.R.ext = 

a 1 
I 1 
c (c>8)1 
II 1 

a* 
1 \ 
c* i * 
1 i 

1 a* 
1 1 \ 
1 c* i * 
I I 

1 1 1 
b 1 
1 1 

i i 
B* 
1 

i i 
1 g 
I I 1 1 

D 1 
i . 
d* 

i i 

1 f 
1 1 
IB * 
1 1 \ 
1 d* e 

1 l \ 

1 m n 

after step 4: 

TP_Q = 1TP.Q.ext1 TP.R = 1 TP.R.ext = 

a | a 1 a* l a * 

1 II 1 1 \ 1 1 \ 
c (c>8)1 c (c>8)1 c* i * 1 c* i * 

II 1 II 1 1 1 I I 
b l b I 
i t i l 

B* 
1 

1 g 
1 i 

1 I I 1 
D ID 1 

1 
d* 

l i 
I f 
1 i 

1 1 
1 1 
1 B* 

1 1 1 1 \ 
| 1 I d* e 
1 1 1 l \ 

1 1 1 m n 
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after step 5: 

TP_Q = |TP_Q_ext| TP_R = 1 TP_R_ext = 

a | a 1 a* l a * ' 

1 I I 1 1 \ 1 7 \ 
c (c>8)I c (c>8)1 c* i * 1 c*(c>8) i * 

II I I I 1 1 1 1 1 
b l b 1 
l I I 1 

B* . 
1 I s 

1 i 1 I I l 
D I D 1 

l 
d* 

i i 
1 f 
1 i 

| | 
i i 
I B * ' " 

1 1 1 1 \ 
| | 1 d* e 
1 I 1 l \ 

1 1 1 m n 

after step 6: 

TP_Q = lTP_Q_ext| TP_R = 1 TP_R_ext = 

a l a I 

I I I 1 
c (c>8)I c (c>8) 1 
II 1 II 1 

b l b 1 
i I I l 

a* 
1 \ 
c* i * 
i i 

l a * 
1 / A 
1 c*(c>8) i * ' 
1 1 1 

a l a I 

I I I 1 
c (c>8)I c (c>8) 1 
II 1 II 1 

b l b 1 
i I I l 

i i 
B* 

, 1 

I I I 

1 B* 
1 1 1 I I 1 

D I D 1 
1 

d* 
I I 

I d * 

after step 7: 

TP_Q = |TP_Q_extl TP_R = 1 TP_R_ext = 

a l a 1 a* 1 a* 

1 I I 1 1 \ 1 / \ 
c ( c>8)1 - c (c>8)I c* i * 1 c*(c>8) i * 

II 1 II 1 1 1 1 II 
b l b 1 
I l l l 

B* 
1 

1 b* 
I 1 

1 I I 1 
D I D I 

1 
d* 

1 1 
1 D* 
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after step 8: 

Q': 
FOR $nl IN doc("example.xml")/a, 

$n2 IN $nl/c, 
$n3 IN $n2/b, 
$n4 IN $n3/d, 
$n5 IN $ n l / i 

WHERE xs:integer($n2)>8 
RETURN ($n4) 

7.2 Algorithms for 0 3 

By the description of option O3 in Section 4.4, a safe peer list L for the returned 
answer set needs to be computed. After that, the answer set is routed back via 
peers in L. 

In this section, we go into the details of the safe-peer-list finding algorithm 
and the answer routing algorithm adopted in O3. 

7.2.1 Safe-Peer-List Finding Algor i thm 

Assume only positive ACPs are considered. The intuition of finding the safe 
peer list is: find the peers, each of which satisfy the intersection of the A C P 
sets defined by the target peer for all peers in the query incoming path. Here is 
an example. 

R2; 

Figure 7.2: Example for Safe-Peer-List Finding Algorithm 

In Figure 7.2, a is the source peer, b is the target peer. 6 defines ACPs for 
every other peer. There are three ACPs R\, R2 and R3. R\ is defined by b for 
a and c\\ R2 is defined by b for a, c2 and C 3 ; R3 is defined by b for a and c2. 
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Suppose the query Q is transmitted along the path a —» c\ —> c2 —* b. Let the 
rewritten query at b be Q'. The initial safe peer list L is {a,c\,c2}- The target 
peer b knows that the A C P set (defined by itself) for a is S a = {R\, R2, R3}, 

the A C P set (defined by itself) for ci is SCl = {R\,R2}, the A C P set (defined 
by itself) for c2 is SC2 = {R2,Rz}, the A C P set (defined by itself) for C3 is 
5 C 3 = {R2}- b notices that the intersection of the A C P sets for all peers in the 
query incoming path is I = 5 a n 5 C l C\SC2 = {^2} and / C 5 C 3 . That means, the 
data, which can be accessed by o, c\ and c2, can also be accessed by C3. Thus, 
c 3 can be added into the safe peer list: L = {a, c\, c 2 , C 3 } . Then the answer set 
for Q' can be routed via any peer in L. The answer can be routed via the path 
b —* C3 —+ a, which is shorter than the path b —> c2 —• c\ —» a. 

The Safe-Peer-List Finding Algorithm described by the above example is 
shown in Figure 7.3. For clarity, the algorithm uses two hash tables H\ and H2. 
Hi is the hash table keeping all (peer ID, {(ACP ID, target peer ID)}) pairs, 
where {(ACP ID, tar get peer ID)} is the set of (ACP ID, target peer ID). 
H2 is the hash table keeping all ((ACP ID, target peer ID), {peer ID}) pairs, 
where {peer ID}) is the set of peers for whom this A C P is defined by the target 
peer. 

7.2.2 Answer Routing Algorithm 

After the safe peer list L is found, O3 routes the answer set back to the source 
peer via peers in L. There exists an opportunity for 03 to find a better/shorter 
answer routing path than the reversed path of the query incoming path. In this 
section, we describe the answer routing algorithm designed for O3. 

Because no peer in the P D M S has the complete knowledge about the P D M S 
topology, there is no algorithm to find the optimal answer routing path. But 
given the safe peer list L, a peer, who is routing the answer set, is able to find 
a "local" shortcut. Here we use an example to illustrate the idea. Please refer 
to Figure 7.4. 

In the P D M S , S is the source peer, and T is the target peer. The routed 
answer set is accompanied with two supported structures: a stack ST with the 
current routing peer on the stack top, a safe peer list L created by the Safe-Peer-
List Finding Algorithm in the previous section. When the answer set is routed 
from T, the initial status of ST is a stack containing all peers in the query 
incoming path. In our example, the query incoming path is S —» ... —» C —» 
X Y -* Z -* A T, so the initial ST is {S,...,C,X,Y,Z,A,...,T}. 
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Algorithm FindSafePeers 
Input: the set S of all peer IDs along the query incoming path, the database 
DBR of tuples (ACPJD,targetPeerID,peerID) 
Output: the safe peer list L 

Let Hi be the hashtable for (peerID,{(ACP-ID,targetPeerID)}) pairs 
Let H2 be the hashtable for ({ACPJD,targetPeerID),{peerID}) pairs 

1. Traverse DBR to build Hi and H2 

2. Initialize L = S 

3. Let / be the intersection of the A C P set V peer G S 
Initialize / as the key set of H2 
F O R each peS { 

(a) From Hi, get the set Si = {(ACPJD,targetPeerID)} 

(b) Update / = / n S i 

} 
4. F O R each p e the key set of Hi { 

Let S2 be the set {(ACPJD,targetPeerID)} for p 

(a) Get 5 2 from Hi 

(b) IF S2 2 / { 
Update L = L U {p} 
}. 

} 
Return L 

Figure 7.3: Safe-Peer-List Finding Algorithm 
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Stack ST: Safe Peer List L: 

Figure 7.4: Example for 0 3 Answer Routing Algorithm 

78 



Chapter 7. Algorithm Details 

At the moment, the answer set is at A. The corresponding stack ST and safe 
peer list L is shown in Figure 7.4. 

Assume there is an easy way for each peer to know its neighbor's adjacent 
peers, e.g., a peer sends a message to ask its neighbors for such information. 
(In our implementation, we use a similar way to achieve it.) For instance, in 
Figure 7.4, A knows the adjacent peers of Z are { j4 ,y}. Then A can utilize 
some peer in L to skip a few peers in stack ST. (The naive answer routing 
method is to route the answer set via peers in ST one by one.) In our example, 
A checks the safe peer list L, finds that B is in L and one of B's neighbor is C, 
which exists in stack ST. Then the answer set is routed from A to C via B. A l l 
the entries above C in stack ST is popped. By this tactic, two hops are saved. 
(Instead of being routed via A —> Z —*Y—> X —> C, the answer set is routed 
via A —> B —> C.) Repeat the tactic at each passing peer, until the answer set 
arrives at S. The O3 Answer Routing Algorithm is formalized in Figure 7.5. In 
this algorithm, if such peer B can not be found, the answer set is routed to the 
top element (peer) of the stack ST. This ensures that the answer set will be 
routed back to the source peer. 

Algorithm AnswerRouting03 
Input: stack ST, safe peer list L 

1. pop a peer ID A from ST 
2. IF A is the source peer{ 

RETURN 
• • } 

3. find peer ID B s.t. 
(1) B is A's neighbor 
(2) B € L 
(3) B's neighbor C £ ST 

4. IF such B exists { « . 

(a) Pop all entries above C from ST 
(b) Route the answer set to C via A —» B —* C 

} 
ELSE { 

(a) Get the top entry TV of ST 
(b) Route the answer set to N 

} , ' 
Figure 7.5: O3 Answer Routing Algorithm 
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7.3 Algorithms for Option 5 
According to Chapter 4, option 05 partitions the answer set and associates each 
partition Ki with an annotation L j , where Lj is the safe peer list for Ki. Ki 
is routed via peers in L j . In this section, we present the partitioning semantics 
and methodologies (Section 7.3.1), the data-level partitioning algorithm (Section 
7.3.2) and the schema-level partitioning algorithm (Section 7.3.3). 

7.3.1 Partitioning Semantics and Methodologies 

Given query Q, the database D at the target peer b, all ACPs of b for other peers. 
A n annotating and partitioning algorithm of O 5 divides the answer set Q(D) 
into several non-intersecting partitions, and annotates each partition with a set 
of safe peers, which are authorized by ACPs to access tuples in the partition. 

The partitioning semantics is explained by Figure 7.6. 

Iff' 
:'|. 

{a;b,c} {<?}; \ernptyset 

Figure 7.6: Answer Partitioning Semantics 

In the PDMS, there are three peers a, b, c, besides the target peer. The 
rectangle denotes the whole answer set Q(D). The three circles separately 
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denote the set of answer tuples that can be accessed by a, b, c, according to the 
ACPs defined by the target peer. As we see, the answer set Q{D) is divided 
into eight non-intersecting partitions, separately attached with annotations {a}, 
{b}, {c}, {0,6}, {a,c}, {6,c}, {a,b,c}, 0. Each partition is maximized and its 
annotation set is maximized. More specifically, after partitioning, every answer 
tuple t G Q{D) is put into a partition that has an annotation S, such that S is 
the maximum set of safe peers for t. This is the semantics for partitioning and 
annotating. 

There are two possible methods of conducting the annotating and partition­
ing: 

Method 1. Interleave A C P checking with evaluation of Q{D). In another 
words, whenever computing an answer tuple according to Q and an A C P , 
modify this tuple's, annotation. After all tuples have been computed and 
annotated, partition them according to their annotations. 

Method 2. First evaluate Q(D) and get the answer set. Then find an algo­
rithm for checking all ACPs on all the answer tuples and annotating them. 
Finally partition tuples according to their annotations. 

Method 2 relies on the supporting elements, which might have been projected 
out but are required to be kept in the answer tuples of Q(D). However, Method 1 
doesn't have such a restriction. So we choose to use Method 1 in our partitioning 
algorithm. 

There are two types of ACPs: data-level and schema-level ACPs . Data-
level ACPs do not affect the schema of answer tuples, which all adhere to the 
same schema; while schema-level ACPs will project on some elements and thus 
affect the schema of answer tuples. We will work on the data-level partitioning 
algorithm in Section 7.3.2 and the schema-level partitioning algorithm in Section 
7.3.3. 

7.3.2 Data-level Partitioning Algorithm 

Assume all ? ACPs defined by the target peer are data-level ACPs. Then ACPs do 
not affect the schema of answer tuples. Therefore, it is easy to check if an answer 
tuple exists in an answer set. From this conclusion, the intuition of our data-
level partitioning algorithm is as follows. Initialize the answer set as an empty 
set. Each A C P is independently combined with the original query to compute 
answer tuples. For each computed answer tuple, check whether it exists in the 
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current answer set. If so, we expand its annotation to include peers associated 
with the current A C P ; else we add the tuple to the answer set, annotating with 
peers associated with the current A C P . After the process, the annotation of each 
answer tuple is maximized. Then according to their annotations, the tuples can 
be grouped to form proper partitions, which have the same property as Figure 
7.6. The Data-level Partitioning Algorithm is shown in Figure 7.7. 

In Algorithm DataLevel Partition, step 1 and step 2 are responsible for 
computing and annotating answer tuples, step 3 call Procedure Grouping to 
form partitions. Procedure Grouping traverses the annotated answer tuples 
once and groups them into several partitions. Any tuple t is put into a partition 
with the same annotation of t. 

7.3.3 Schema-level Part i t ioning A l g o r i t h m 

The partitioning algorithm in the previous section can only handle data-level 
ACPs. Now let us extend the algorithm to tackle both data-level and schema-
level ACPs. 

In order to partition answer tuples in different schemas, we must have a clear 
idea on what an answer tuple schema and an answer tuple are. An answer tuple 
schema is the schema of an answer tuple. It is a set of attributes. A n answer 
tuple is a set of attribute values. More specifically, in a relational query, each 
answer tuple is a set of table attribute values; in an XQuery, each answer tuple 
is a set of user-defined variable values , if not considering result restructuring. 

There is a useful relationship between two answer tuples in different schemas. 

We define it as a new operator, Tuple Containment: 

Definition 7.1 (Tuple Containment) Let T\ be an answer tuple and S\ be 
T\'s schema. Given an attribute value v € T\, v.attrSi is v's corresponding 
attribute € Si. Let T2 be an answer tuple and S2 be T2's schema. Given an 
attribute value v € T2, v.attrS2 is v's corresponding attribute £ S2. T\ is Tuple-
Contained by T2 if and only ifVv € T\: 3v £ T2 s.t. v.attrSi = v.attrS2. It 
is written as T, < T2. If T, < T2 and Si C S2, we say Ti is strictly Tuple-
Contained by T2, written as Ti <T2. 

Here is an example for the Tuple Containment. The schema for answer tuple 
t is (Ai,A3) and t = ('a',, 'a'3); the schema for answer tuple t' is (Ai,A2,A3) 
and t'—('a'i, 'a'2, 'a'3). According to the tuple containment definition, we have 

t<?: . 
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Algorithm DataLevelPartition 
Input: query Q, target peer b, database D at peer b, all A C P s Ai (i = l..fc) of 
peer b for other peers. 
Output: partitions of Q(D), where every answer tuple t is put into a partition 
that has an annotation A s.t. A is the maximal set of safe peers for t. 

1. Initialize the answer set 5 = 0. 

2. F O R each A C P R { 

(a) Let Si be the peer set associated to R 
Use R to rewrite query Q, and compute the answer set I 

(b) F O R each answer tuple t £ I { 

IF (t £ S) { 

i . Let So be t's current annotation 
Update So = So U Si 

} 
E L S E { l/t^S 

i . Assign Si as t's annotation. 
i i . Update S = SU{t}. 

} / / E L S E 

} / / F O R 

} / / F O R 

3. Call the procedure Grouping to return partitions of Q(D) 

Procedure Grouping 
Input: a set S of answer tuples with annotations 
Output: partitions of these answer tuples. Each partition has an annotation, 
which is a set of peer IDs. Each answer tuple t is put into the only partition with 
the same annotation of t. 

1. Let Si be the set of tuple partitions 
Let S2 be the set of tuple annotations 
Initialize Si = 0, S2 = 0 

2. F O R each tuple teS { 

(a) Let A be t's annotation 
IF(A € S2) { 

i . Add t to partition P where P £ S i A P has annotation A. 

} 
E L S E { 11A $ S2 

i . A d d A to S2. 
i i . Create a new partition P', with annotation A in Si. 

i i i . A d d t to P'. 
} 

} / / F O R 

3. Return Si 

Figure 7.7: Data-level Partitioning Algorithm 
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Intuitively, answer tuple t\ is tuple-contained by t2 if and only if all infor­
mation in t\ is covered by t2. It infers a useful conclusion: if t\ <l t2 and t2 

can be accessed by peer p, then t i can also be accessed by p. With this 
conclusion, we design a new partitioning algorithm that extends the partition­
ing algorithm in the previous section to handle both data-level and schema-level 
ACPs . It is shown in Figure 7.8. The procedure Grouping called in step 3 is 
exactly the same as in the previous section. 

A n supporting data structure is required for every answer tuple in Algorithm 
SchemaLevelPartition. This datastructure is called Affected Tuple Set. The 
idea is: given tuples t\ and t2, if t2 < t\, t2 is put in t\s Affected Tuple Set. 
Therefore, a tuple t's Affected Tuple Set can accurately identify which tuples' 
annotations need to be modified when t's annotation is modified. For example, 
if t2 < t\, then t2 is in ti's Affected Tuple Set. When peer p is added to ti 's 
annotation, p should also be added to t2's annotation. 

For an answer tuple t, the intuition of the algorithm is: (1) Check whether 
t is in the current answer set. If so, expand t's annotation to include peer 
IDs associated with this A C P ; accordingly expand the annotations of tuples 
identified in t's Affected Tuple Set. (2) Else t isn't in the current answer set. 
Assign peer IDs associated with this A C P as annotation of t. Furthermore, 
check whether there exists an answer tuple t' in the current answer set such 
that t O t'. According to our previous conclusion, the annotation of t will be 
expanded to include peer IDs in the annotation of t'. (1) and (2) ensure the 
annotation for each answer tuple is maximized. Thus, the algorithm returns the 
correct partitions. 
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Algorithm SchemaLevelPartition 
Input: query Q, target peer b, database D at peer 6, all A C P s Ai (i = l..fc) of 
peer 6 for other peers. 
Output: partitions of Q(D), where every answer tuple t is put into a partition 
with an annotation A, such that A is the maximal set of safe peers for t. 

1. Initialize the answer set S = 0. 

2. F O R each A C P R { 

(a) Let Si be the peer set associated to R 

(b) Use R to rewrite query Q, and compute the answer set T 

(c) F O R each tuple t 6 T { 

i . IF t G 5 { 
A . Let So be the existing annotation of t. Update So = So U Si. 
B . Let ATS be the Affected Tuple Set of t. For every tuple h 

identified in ATS, update ti's annotation Stt = St, US i . 

} / / I F 

E L S E { Ht $ S 
A . Assign t's annotation So = Si. 

B. F O R every answer tuple t', where f ' e S and t < t' { 
• Let S' be the annotation of t'. Update So = So U S'. 
• Let ATSt, be the Affected Tuple Set oft'. Update ATSt> = 

ATSf U {t}. 
} / / F O R 

C. Add t (with So) to S. 
D. Let ATS be the Affected Tuple Set of t. Compute ATS. 

For every tuple ti identified in ATS, update ti's annotation 
Stj = Stj U So. 

} / / E L S E 

} / / F O R 

} / / F O R 

3. Call procedure Grouping to return partitions of Q(D) 

Figure 7.8: Schema-level Partitioning Algorithm 
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Chapter 8 

Experimental Study 

In Chapter 3, we introduced the information leakage and completeness problems 
of the query answering process in a P D M S with access control requirements. 
Then in Chapter 4, our solution for the problem was presented: we designed 
some strategies and options to handle access control. Furthermore, we built a 
cost model to theoretically analyze the cost for each (S, O) pair that ensures IL-
free and completeness in Chapter 6, where a hypothesis for best/fastest'(5, O) 
pairs are proposed by us. 

In this chapter, we use experiments to verify our hypothesis for best (S,O) 
pairs, and study the algorithm scalability. Specifically, we describe the experi­
ment implementation in Section 8.1,'compare the running time of (5,0) pairs 
in Section 8.2, and study the scalability in different facets in Section 8.3. 

8.1 Experimental Settings and Implementation 

To setup the P2P networking environment, FreePastry [3] is used in our ex­
periment. FreePastry is an open-source P2P overlay network implementation. 
It provides an efficient algorithm for message routing, whose complexity is 
0(logN), where N is the number of nodes in the network. Moreover, user-
specified applications can be easily integrated with existing FreePastry source 
codes. In our experiment, FreePastry version 1.4.4 is used. 

As to the emulation test bed, Emulab [2] is adopted in our experiment. 
Emulab holds a collection of hundreds of PCs for allocation. For an experiment 
at Emulab, the user can freely specify the topology of a network, the type of 
PCs in the network, latency, bandwidth, and so on. During the experiment life 
cycle, the user has full control on the allocated PCs. Thus, user applications 
can be loaded on any P C in the experiment. In our experiment, 47 PCs in 
Emulab are required and allocated: 31 of them work as peers in a P D M S , and 
the remaining 16 as the delay nodes that controls the networking traffic shaping. 
Unless specified otherwise, in later experiments, the network bandwidth is 50 
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M B , the latency is 100 ms. The bandwidth is big enough to avoid the bottleneck, 
comparing with the size of query/answer messages (at most few K B each). Every 
P C allocated has 3.0 GHz 64-bit Xeon processor and 2 G B R A M , with Testbed 
version of RedHat Linux 9.0 as the operating system. Our P D M S application 
built on FreePastry and the database are loaded on each P C . 

To the best of our knowledge, Qizx [4] is the fastest open-source Java X M L 
query engine. So it is used in our experiment for peers to query their local X M L 
databases. Qizx supports the standard XQuery language, and also provides 
Java APIs to invoke the XQuery engine. In our experiment, Qizx version 1.0 is 
used. 

In order to make the X M L databases on peers general enough, we choose 
XMark [1] data generator to randomly create X M L data. XMark project pro­
vides a benchmark suite for users. The XMark data generator can produce 
random X M L documents modeling an auction website. Important structure 
features in a typical X M L document is included in an XMark-created X M L 
document. In our experiment, we create several X M L databases, whose sizes 
range from 10 Mb to 40 Mb. 

We manually build the schema for Xmark-created X M L databases and a 
library of 20 ACPs. We design a topology generator to randomly create the 
P D M S topology we need. A l l the strategies and options, which can be combined 
while keeping IL-free and Completeness properties, are implemented. The peer 
application, which specifies its strategy and the option, is loaded on each P C 
(peer) allocated by Emulab. 

Our implementation is written in Java 1.5 to make it cross-platform. 

8.2 (S,0) Pair Comparison and Analysis 

In this section, we experiment to compare the running time of the query-
answering process controlled by (S, O) pairs that are both IL-free and complete. 
The running time here and in the next section is for O N E source peer, O N E 
target peer and O N E query, which adheres to the setting of the theoretical 
cost analysis for an (S,0) pair (Chapter 6). The first reason lies in that using 
the same setting, the experiment result can directly verify our theoretical cost 
analysis and hypothesis. The second reason is that the result for one query, 
one source peer and one target peer can be extended to a general case with 
one query, one source peer and multiple target peers, which doesn't violate our 
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existing conclusion. 
The compared (S,0) pairs include ( S i , 0 , ) (j = 1,24,3,5), (S3,Oj) (j = 

1,24,3,5), (54,05). Our experiment setting is: 50Mb bandwidth, 100ms la­
tency, 10 peers, average 2 neighbors per peer, 10M database, 1 acp defined for 
each peer. The P D M S topology is fixed but randomly created. For each running 
time value, we execute the experiment for three times and get the average value. 
The result is shown in Figure 8.1. 

Figure 8.1(a) is the running time of the query-answering process for all (5,0) 

pairs. We can see that (5 ; ,05) (i•= 1,3,4) is much slower that other (5,0) 

pairs. To clearly see which (5,0) pair is the fastest, we extract the first three 
groups of bars and put them into 8.1(b). In this figure, we see that (1) for Oj 
(j = 1,24,3), {S3,Oj) is slightly faster than (5 i ,0,) ; (2) (Si,02A) (» = 1,3) 
are faster than others. Thus, ( 5 3 , 0 2 / i ) is the fastest among all (5,0) pairs, 
which adheres to the hypothesis we made in Section 6.3: if the local computing 
speed of peers in a P D M S is much faster than the network transportation speed, 
(53,02.4) is the best (5,0) pair. 

Now let us retain the setting of the previous experiment, except decreasing 
the network latency to 10 ms, and repeat the experiment. This time the network 
transportation speed is so fast that the assumption "the local computing speed 
of peers in a P D M S is much faster than the network transportation speed" no 
longer holds. So the hypothesis U(S3,02A) is the best (5,0) pair" may not 
be true. The experiment result is shown in Figure 8.2. We see that (5j,Os) 
(i = 1,3,4) is still much slower that other (5,0) pairs. But there is no (5,0) 

pair that is apparently faster than others. 

However, as we mentioned in Section 6.3, even given the condition "the 
local computing speed of peers in a P D M S is much faster than the network 
transportation speed", (S3, 02A) may not always be the best/fastest (5, O) pair; 
if given a proper P D M S topology and A C P distribution, (Si, O3) (i = 1,3) could 
be the best, even faster than (53,02A)- T O verify the hypothesis, we conduct 
another experiment. The experiment setting remains the same as the first one: 
50Mb bandwidth, 100ms latency, 10 peers, average 2 neighbors per peer, 10M 
database, 1 acp defined for each peer. But this time, the P D M S topology and 
A C P distribution are carefully designed to benefit O3 finding a short answer-
routing path. More specifically, the topology and A C P distribution enables O3 

to find a shortcut for the reversed path of the longest query incoming path, with 
the help of safe peers outside the query incoming path. (Otherwise O3 has to 
route the answer back to the source peer via the reversed query incoming path.) 
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(a) the R u n n i n g T i m e o f the Q u e r y - A n s w e r i n g P r o c e s s for A l l (S, O) P a i r s B e i n g C o m p a r e d 

Algorithm Comparison 1a.2 

• S1 

• S3 

(b) the R u n n i n g T i m e o f the Q u e r y - A n s w e r i n g P r o c e s s for A l l (S, O) P a i r s B e i n g C o m ­
p a r e d , E x c l u d i n g ( S j . O s ) (i = 1 ,3 ,4 ) 

Figure 8.1: Running Time Comparison of (S,0) Pairs, in case of Large Network 
Latency 
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Algorithm Comparison 1b.1 
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(a) the R u n n i n g T i m e o f the Q u e r y - A n s w e r i n g P r o c e s s for A l l ( S , O ) P a i r s B e i n g C o m p a r e d 

Algorithm Comparison 1b.2 

time (in 
seconds) • S1 

• S3 

(b) t h e R u n n i n g T i m e o f the Q u e r y - A n s w e r i n g P r o c e s s for A l l (5,0) P a i r s B e i n g C o m ­
p a r e d , E x c l u d i n g (St,Os) (i = 1,3,4) 

Figure 8.2: Running Time Comparison of (5,0) Pairs, in case of Small Network 
Latency 
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On the other side, the topology in this experiment doesn't benefit O2 finding a 
shortcut for the reversed path of the longest query incoming path, i.e., if a path 
is treated as a set of peers, there doesn't exist an answer routing path, which 
is a subset of the longest query incoming path. The experiment result is shown 
in Figure 8.3. We can clearly see that (Sj,03) (i = 1,3) are the fastest, even 
faster than (SZ,C>2A)-

Because (Sj,Os) (i = 1,3,4) is always much slower than other (5,0) pairs 
and even intolerable, in the experiments on scalability we will not consider 
(5 i , 0 5 ) (i = 1,3,4). 

8.3 Scalability Results and Analysis 
In this section, we experiment on the (5 ,0) pair scalability in different facets. 

(1) Scalability o n Database Size 
In this experiment, we test the running time trend of the query-answering 

process for (5,0) pairs with the change of database size on the target peer. 
The experiment setting is: 50Mb bandwidth, 100ms latency, 10 peers, av­

erage 3 neighbors per peer, 1 acps per peer. In the experiment, the P D M S 
topology is fixed but randomly created. For each running time value, we exe­
cute the experiment for three times and get the average value. The experiment 
result is shown in Figure 8.4. 

We can see that the running time for any (5,0) pair is proportional to 
the database size of the target peer. The result is reasonable: normally, the 
database query time and the returned answer set size are linear functions of the 
target database size, which in turn determines the query-answering time is a 
linear function of the target database size. 

What is the effect if we increase the network latency? As a comparison, let 
us retain the setting of the previous experiment, except increasing the network 
latency to 1000 ms, and do the experiment again for (Si ,Or) . The result is 
shown in Figure 8.5. We can see that the running time is still approximately 
a linear function of the target database size, but the slope is much more flat. 
This result is not hard to explain: with the increase of network latency, the 
affect of the target database size is diluted. The total running time now is 
mainly decided by the network transportation, which is irrelevant to the target 
database size. As an ultimate case, if the local computing time is by far smaller 
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Algorithm Comparison 2.1 

80.000 
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BSI 
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Options 
05 

(a) the R u n n i n g T i m e o f the Q u e r y - A n s w e r i n g P r o c e s s for A l l (S, O) P a i r s B e i n g C o m p a r e d 

Algorithm Comparison 2.2 

4.100 
4.000 

E3S1 

• S3 

Options 

(b) the R u n n i n g T i m e o f the Q u e r y - A n s w e r i n g P r o c e s s for A l l (S, O) P a i r s B e i n g C o m ­
p a r e d , E x c l u d i n g ( S j . O s ) (i = 1 ,3 ,4 ) 

Figure 8.3: Running Time Comparison of (5,0) Pairs. Under this experiment 
setting, the P D M S topology and A C P distribution benefit 0 3 finding a short 
answer-routing path, but doesn't benefit 02A-
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Figure 8.4: the Running Time of the Query-Answering Process V.S. the 
Database Size of the Target Peer for Each Compared (S,0) Pair. The net­
work latency is 100 ms. 

than the network latency, the curve for our experiment result is expected to be 
a horizontal line. 

(2) Scalability on Number of ACPs per Peer 
ACPs are defined by the target peer for other peers. In this experiment, we 

study the running time trend of (S, O) pairs with the change of the number of 
ACPs defined by the target peer for each peer. 

The experiment setting is: 50Mb bandwidth, 2ms latency, 10 peers, 2 neigh­
bors per peer, 10M database. The P D M S topology is fixed but randomly cre­
ated. For each running time value, we execute the experiment for three times 
and get the average value. The experiment result is shown in Figure 8.6. By 
this curve, the running time seems to be a polynomial function of the number 
of ACPs per peer. But it is hard for us to explain where this result comes from. 
So we conduct the second experiment to discover the hidden fact. 

In the second experiment, we test the running time trend of (S\,0\) with 
the changes of both the number of ACPs per peer and the network latency. The 
experiment setting is: 50Mb bandwidth, 10 peers, 2 neighbors per peer, I M 
database. The result is shown in Figure 8.7. From the result curves, we see that 
the running time is a polynomial function of the number of ACPs per peer, and 
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Figure 8.5: the Running Time of the Query-Answering Process V.S. the 
Database Size of the Target Peer for (S\,Oi). The network latency is 1000 

ms. 

a linear function of the network latency (because the distance between each two 
curves approximately remains a constant, and the distance between the curve 
of 0 ms latency and the curve of 100 ms latency equals the distance between 
the curve of 100 ms latency and the curve of 200 ms latency). Hinted by the 
experiment result, we reach a theoretical explanation: total running time T = 
message transmitting time + local query evaluation time = 2 * n * I + E * r", 
where n is the longest path from source to target, I is the network latency, E 
is the local evaluation time for a query, r is the number of ACPs per peer. The 
expression rn is the number of rewritten queries at the target peer, which is de­
cided by S\. From the above equation, it is clear that the total running time T 
is a polynomial function of r and linear function of /, which explains the results 
in Figure 8.6 and Figure 8.7. 

(3) Scalability on Length of the Longest Path 
The running time of the query-answering process for an (S, O) pair might be 

largely affected by the length of the longest path for a message having a round 
trip between the source peer and the target peer. For (Si .C^A) and ( £ , , 0 3 ) , 

such a longest path is hard to decide because the answer-routing path is decided 
by both the topology and A C P distribution. To make our experiment clear, we 
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Figure 8.6: the Running Time of the Query-Answering Process V.S. the Number 
of ACPs per Peer for Each Compared (S, O) Pair 

running time v.s. acps/peer 2 

Figure 8.7: the Running Time of the Query-Answering Process V.S. the Number 
of ACPs per Peer for (S\,0\), with the Network Latency of 0 ms, 100 ms and 
200 ms Separately 
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choose to study ( 5 i , O i ) , for whom such a longest path is simply twice the 
length of the longest path from the source peer to the target peer. 

In this experiment, we test the running time trend of the query-answering 
process for (Si , 0\) with the change of length of the longest path from the source 
peer to the target peer. The experiment setting is: 50Mb bandwidth, 100ms 
latency, 1M database, 2 neighbors per peer, 1 acp per peer. Given the same 
setting, we do the experiment on two PDMS of different sizes: one P D M S with 
20 peers and the other PDMS with 30 peers. The experiment result is shown 
in Figure 8.8. By the result, we see the running time is proportional to length 
of the longest path from the source peer to the target peer, but nearly has no 
relation to the number of peers in the PDMS (because the two lines overlap). 
This result can be also explained by the aforementioned formula: total running 
time T = message transmitting time -I- local query evaluation time = 2 * n * I 
+ E * r n , where n is the longest path from source to target, / is the network 
latency, E is the local evaluation time for a query, r is the number of A C P s per 
peer. In our experiment setting, r = 1. Thus, T = 2*n*l + E. It indicates 
that T is proportional to n. 
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Figure 8.8: the Running Time of the Query-Answering Process V.S. the Length 
of the Longest Path from Source Peer to Target Peer for ( S i , O i ) . The experi­
ment is done for both a P D M S with 20 peers and a P D M S with 30 peers. 
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Chapter 9 

Conclusions and Future 
Work 

In this thesis, we have studied the access control issue in the X M L peer data 
management system. To the best of our knowledge, our work is the first attempt 
to systematically analyze the access control problems in the P D M S . Our main 
contributions include: 

• A formal syntax for the Access Control Policy (ACP) is proposed. The 
A C P syntax is fine-grained and expressive enough for specifying the access 
control privilege on the X M L database of a peer in the P D M S . (Chapter 
3) 

• We design several (query transmitting) Strategies and (answer routing) 
Options, whose combinations form the query-answering algorithms and 
can handle the access control requirements in a P M D S . (Chapter 4) 

• Some novel algorithms used in the strategies and options, such as (i) query 
rewriting algorithm in light of ACPs (ii) safe peer list finding algorithm 
(iii) annotating and partitioning algorithm, are designed. (Chapter 7) 

• We formalize the definitions for Information Leakage Free and Complete­
ness, which are important properties of an (Strategy, Option) pair. Fur­
thermore, we propose the sufficient and necessary conditions for them, and 
analyze every (Strategy, Option) pair designed. (Chapter 5) 

• We propose a cost model, which consists of the major tasks and the cor­
responding primitive operations and cost units. A l l (Strategy, Option) 
pairs are assessed by this cost model. (Chapter 6) 

• Experiments are conducted on the designed (Strategy, Option) pairs, com­
paring their execution speed and testing the scalability in terms of the tar-
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get peer database size, A C P amount pe peer, length of the longest path 
from the source peer to the target peer. (Chapter 8) 

There are some directions that we would like to pursue in our future work: 

• In our work we assume that all peers use the same schema, which avoids 
adding in the complications of schema heterogeneity. In a realistic P D M S , 
the schema heterogeneity will force ACPs to be rewritten if they are dis­
tributed among the PDMS. And the schema heterogeneity may also affect 
the query-rewriting in light of ACPs algorithm. 

• Caching is not discussed in the thesis. However, as a common approach to 
accelerate the query-answering process, caching is worth noting. If caching 
is used in a P D M S , we need to be more careful to avoid information 
leakage. The IL-free and Completeness definitions in the thesis need to 
be modified. And other strategies and options can be designed to utilize 
caching. 

• Thus far, our algorithm for query-rewriting in light of ACPs can only 
handle one fragment of tree patterns, whose corresponding XPath is with 
'/'> '//'>' 'I ]'• And It also requires, that nodes of TP.R.ext have distinct 
tags. We would like to remove the restrictions and make the algorithm to 
handle more general cases. 
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