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Abstract 

This thesis addresses the problem of extracting object masks from video se­

quences. It presents an online, dynamic system for creating appearance masks 

of an arbitrary object of interest contained in a video sequence, while making 

minimal assumptions about the appearance and motion of the objects and scene 

being imaged. It examines a region-based approach, in contrast to more recently 

popular pixel-wise approaches to segmentation to illustrate the advantages in 

the reduction of the complexity of the labeling problem. 

The redundancy of information typically present in a pixel-wise approach 

is exploited by an initial oversegmentation of the current video frame. The 

oversegmentation procedure is based upon a modified version of the classic 

watershed segmentation algorithm. This oversegmentation produces a set of 

appearance/motion-consistent regions upon which a conditional random field is 

constructed. Observations at each region are collected based upon the colour 

statistics within a region and the motion statistics as determined by the optical 

flow over the region. An unparameterized model for both the object of interest 

and the remainder of the scene are constructed on a frame by frame basis. 

The conditional random field model is used in conjunction with a first order 

hidden markov model over the frames of the sequence. Mean field approxima­

tions for variational inference in this model produce a region-based filter frame­

work which incorporates both spatial and temporal constraints. This framework 

is used to determine an appropriate labeling for each region in each frame. The 

reduction in the complexity of the field model produced by the regions (as op­

posed to pixels) results directly in a reduced cost for the labeling problem with 

minor effects on accuracy. 
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Introduction 

The task of image segmentation is well known and long studied. The ability to 

separate an object of interest from a dynamic scene has myriad applications, 

and is accomplished effortlessly in humans during virtually every instant of our 

waking lives. Like many perceptual vision problems, it is perhaps due to the 

entirely effortless nature with which this task is performed by humans that 

has caused the problem of image segmentation in computational vision to be 

somewhat ill-defined. 

The goal of image segmentation has often been argued, namely because it is 

very hard to define what a "good" segmentation is. The simplest definition of 

the problem can likely be described as achieving a partitioning of the visual ele­

ments within an image so that similar elements are grouped together. Similarity 

could be determined in terms of such low level cues as colour or texture, or it 

could be determined through higher level notions of the conceptual consistency 

associated with the objects in a scene. A single image can produce several dif­

ferent segmentations that each optimize such different, but valid, criteria. The 

segmentation of a scene even by human subjects can vary from person to person 

depending on the individual interpretation of the scene (see Figure 1.1). 

As suggested, at the core of segmentation is the idea of grouping perceptually 

consistent items. The perceptual grouping problem has been a long studied one 

in the fields of psychology and neuroscience [32]. Two key concepts from this 

literature are typically exploited in the segmentation problem; similarity and 

proximity (see Figure 1.2). One interpretation can simply be to group elements 

of a visual scene which are both contiguous and similar in appearance. 
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Figure 1.1: Different segmentation interpretations by different human subjects, cour­

tesy of the Berkeley segmentation database [26]. On the left are the original images. In 

the centre and on the right are the hand segmentations provided by different subjects 

asked to segment the images. There are obvious and significant variations between 

subjects for identical images. 
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(a) (b) (c) (d) 

Figure 1.2: Classic examples of grouping by proximity and similarity. Upon observing 

the dot configurations (a) and (b), subjects typically report perception of four rows 

for (a), and four columns for (b). This effectively illustrates the tendency to group 

according to proximity. Conversely, the configurations (c) and (d) typically elicit the 

perception of four columns and four rows, respectively. This shows the tendency to 

group according to similarity, while at the same time illustrating the ability of one cue 

to supersede another. 

Consequently, solutions to the task of image segmentation typically delin­

eate a series of boundaries within an image which separate and distinguish these 

main conceptual and visual groups within the image. At a lower level, this can 

mean simply identifying boundaries across which there exist large changes in 

image intensities or visual textures, in order to group together those which are 

most similar and contiguous. However, at a higher level, the aim is typically 

to produce a segmentation which separates specific objects of interest within 

a scene from the background, rather than one that specifically optimizes lower 

level criteria successfully without achieving a consistent higher level interpreta­

tion. 

As a result, a "good" segmentation of an image is often denned as one 

that would, in high likelihood, also be given by a human subject. This makes 

the definition of the problem somewhat clearer. Still, as illustrated, different 

human subjects can disagree to some extent on their choices for segmentation 

boundaries in an image, but overall some definite trends can be observed. At 

the very least, statistics can be collected on which elements of an image were 

included within one segmentation versus another in order to establish the ground 
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truth segmentation for a given image. 

The static image segmentation problem still remains an extremely difficult 

one. Only recently has it been recognized that to perform such a task and 

achieve a result similar to that of a human typically requires some information 

about the object which is being segmented. As a result, approaches which 

combine both bottom-up and top-down cues for static image segmentation are 

currently seeing the most success. However, it is still apparent that humans 

can leaxn about and segment novel objects for which we do not have a previous 

experience. Indeed, we have been doing it since infancy. 

One explanation for this might be the robust cues that the general motion 

similarity and temporal consistency of everyday objects provide in the dynamic 

scenes we experience throughout our daily lives. These concepts are intimately 

tied to the idea of common fate [32], another of the classic perceptual grouping 

criteria. Common fate represents the tendency to group together elements that 

exhibit similar behaviour over time. In this way, segmenting objects from video 

sequences is directly related to but distinct from static image segmentation. 

Between the two problems lie the above mentioned important differences. 

Specifically, powerful temporal cues are present in the segmentation of a video 

sequence that are not present in the segmentation of a static image. There is an 

obvious interpretation of the segmentation of a video sequence, induced by the 

coherent nature of the visual elements appearing over the course of an image 

sequence. Such an interpretation may not be clear in a static image where such 

cues are absent. The consistent appearance and motion of an object over a 

series of frames as well as its tendency to occupy a contiguous space over time 

lends itself naturally to less ambiguity at both lower and higher levels. This 

leads us to define the problem of segmentation in video sequences. 

Similarly to static image segmentation, the goal of object segmentation in 

video sequences is to robustly separate elements of each image which describe 

coherent objects of interest from the other elements and objects of the sequence. 

Specifically, this amounts to determining which elements in each frame of the 

sequence belong to an object of interest, and which do not. However, in the 
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case of an image sequence, this partitioning of visual elements into coherent 

structures must also necessarily consider the notion of consistency over time. 

There are many frustrating factors in performing such a task when using the 

grouping cues as described above. 

Simply segmenting by similarity and proximity is often an inadequate ap­

proach. Several constructs with a similar appearance may be present in the 

scene. As a result, simply identifying those elements with a similar appearance 

and contiguous nature to the object of interest can easily result in drastic errors. 

On the other hand, simply grouping by common fate (which in many cases is 

interpreted simply as consistent motion) can easily lead to similar erroneous 

labeling of elements which only happen to exhibit similar motion. Combining 

these cues can certainly help to reduce confusion between similarly appearing 

or similarly moving objects. In addition, the nature of objects in a dynamic 

scene to occupy not only contiguous space but to do so over time is another cue 

to be exploited. 

The question then becomes how to combine these cues to achieve the seg­

mentation task. This question remains open, and it is this question which is 

central to this work. We present a novel approach to the video segmentation 

problem. Unlike some more popular recent approaches which operate by assign­

ing image elements to the object of interest on the level of pixels, this approach 

works at the level of regions determined by an initial oversegmentation of the 

image into elements of consistent appearance (see Figure 1.3). 

The aim here is two-fold. First, the most general of pixel based approaches, 

such as [46], note the undesirable effects of noise in image and motion data on 

the resulting segmentation. To counteract such effects, a probabilistic approach 

is employed to combine the above cues and achieve the partitioning of the visual 

elements of each frame by assigning a label (e.g., object or background) to each 

pixel in the image. Such models typically incorporate constraints to deal with 

such noise. However, defining observations by examining the data over an entire 

region instead of on a pixel by pixel basis is another way to further reduce the 

effects of pixel-wise noise in the data. 
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F i g u r e 1 . 3 : A b r i e f i l l u s t r a t i o n o f t h e o v e r a l l p r o c e s s , ( a ) A n o r i g i n a l i m a g e f r o m a 

s e q u e n c e , ( b ) M o t i o n i n f o r m a t i o n f r o m t h e p r e v i o u s f r a m e t o t h e c u r r e n t o n e i n t h e 

f o r m o f o p t i c a l flow m a g n i t u d e s , ( c ) T h e o v e r s e g m e n t a t i o n o f t h e i m a g e b a s e d u p o n 

a p p e a r a n c e a n d m o t i o n i n f o r m a t i o n , ( d ) A l a b e l i n g o f t h e r e g i o n s f r o m ( c ) w h i c h 

i n c o r p o r a t e d m o t i o n a n d a p p e a r a n c e i n f o r m a t i o n . 

Second, to sufficiently reduce this noise, it was found necessary for the iden­

tity of the label at a given pixel to be affected by a large number of nearby pixels. 

This requires an examination of each of these neighbouring pixels for each given 

pixel in the image. Larger neighbourhood sizes result in a direct increase in 

the complexity of the probabilistic model being applied to achieve the segmen­

tation as dependencies between each pixel and each of its neighbours must be 
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considered. This in turn results directly in an increase in cost for determining 

an optimal partitioning as defined by the model. If instead the model was based 

upon regions consisting of groups of pixels with very similar appearance, rather 

than the pixels themselves, the model complexity could be greatly reduced. 

To this end, an initial oversegmentation step is performed to exploit the 

redundancy in the data at a pixel-wise level. Groups of pixels of relatively 

constant appearance and motion are identified and treated as a single region 

entity. The process by which this is accomplished as presented in a following 

section includes a novel modification to the classic watershed algorithm [44] to 

incorporate motion information. The resulting regions are then determined as 

either belonging to an object of interest within each video frame, or not. 

The proposed method takes a probabilistic approach similar to that in [46]. 

The above cues are combined to achieve the partitioning of the visual elements 

in each image frame. A distribution is defined over the observed image data 

and the hidden variables which determine a label for each region in an image 

as determined by the initial oversegmentation. A discriminative framework is 

adopted, in contrast to the more classical generative approach of similar models, 

the advantages and disadvantages of which are discussed in a later section. 

Unlike previous region-based approaches, this method presents a unified filter 

framework, generalized from [46] to apply to situations where the structure of 

the probabilistic model used to determine the labeling from frame to frame may 

change. The framework imposes, on a region-based level, the spatial constraints 

associated with similarity, proximity and common fate, as well as the temporal 

constraints associated with the relatively consistent nature of an object over 

time. 

A n outline of the remaining pages in this document is as follows. A survey of 

related work to this problem is presented in Section 2. It examines the various 

approaches taken in the past, their strengths and weaknesses, and identifyies 

the situation of this work amongst them. Section 3 presents in detail the theory 

necessary to understand the operation of this approach. The implementational 

details are discussed in Section 4, and some results of this method applied to real 
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video sequences are presented in Section 5. Section 6 presents a brief discussion 

of possible paths available for future work. 
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Related Work 

2.1 Introduction 

Segmentation in a sequence of images has been a subject of interest and research 

for a long time. In general, video segmentation techniques attempt to exploit 

the spatiotemporally coherent nature of the elements in a video scene. The aim 

then becomes to identify the elements within the scene that move and appear 

consistently. Many approaches have been taken to solving the problem posed 

in this way, and this section examines some of the major directions taken in the 

past, as well as their strengths and weaknesses. 

Regardless of the exact approach taken, spatiotemporal segmentation tech­

niques typically try to group together image features into meaningful and co­

herent visual structures. The features used in the grouping process vary from 

method to method, but they usually come in one of three forms. Many tech­

niques operate directly on the level of image pixels [10, 25, 45, 46], and treat 

each pixel as a separate entity that needs to be grouped with other pixels to 

form an object. Others work at the level of regions or patches that result from 

an initial grouping of pixels based strictly upon low levels cues like colour and 

texture [29, 33, 42]. The regions are then combined in some fashion to form 

distinct objects. Lastly, some methods perform a grouping based primarily on 

geometric features or interest points computed from image data [9, 43]. Either 

the objects are represented simply as the collection of features, or regions can 

be grown in images around feature locations that are deemed to belong to a 

single object. 
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Video segmentation techniques have, in the past, been presented as falling 

into one of three categories [27]: (1) techniques that segment an image sequence 

with a priority on spatial cues (i.e., cues contained within a single frame of the 

sequence) and then integrate temporal consistency; (2) techniques that segment 

with a priority on temporal cues (i.e., cues that are spread across the frames 

of the sequence) and then search for spatial support; and (3) techniques that 

segment jointly over spatial and temporal cues simultaneously. 

Each category has its own general approach to combining spatiotemporal in­

formation, each with its advantages and disadvantages. Temporally prioritized 

methods often rely upon the ability to track features or regions throughout a 

sequence, which can allow for robust estimates for the motion of an object. 

However, this can become a problem when these entities cannot be correctly 

corresponded across frames or simply disappear periodically over the course of 

a sequence. Joint spatial and temporal methods can incorporate more data to 

resolve such ambiguities. However, the amount of data involved in simultane­

ously processing of an entire video volume can become quite prohibitive. 

Spatially prioritized methods enjoy much attention due to the close similarity 

they share with the well studied static image segmentation problem. Many 

methods have been developed to explore the different manners in which temporal 

cues can be incorporated into frame by frame spatial structures. Because the 

proposed method is most closely related to techniques which place a priority on 

spatial cues, the review will begin with the latter two categories. 

2.2 Temporally Prioritized Methods 

Methods that rely primarily upon temporal segmentation typically operate first 

by extracting interest points or regions across a series of frames within a se­

quence. These methods then perform some manner of temporal grouping over 

the features into what are often referred to as motion trajectories (see Figure 

2.1). The goal is typically to identify which features exhibit a coherent motion 

over time. Grouping over a longer time interval (as opposed to a single pair 
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Figure 2.1: An illustration of grouping features into trajectories over time. Three dis­

tinct features on three separate trajectories. Trajectories can be subsequently grouped 

together into objects. 

or triplet of frames) allows for more accurate estimations of motions, making it 

easier to discriminate between features belonging to distinct objects. 

Many different approaches to the temporal grouping of features have been 

proposed. Originally, some methods simply relied on a direct comparison of 

motion trajectories that have been collected over a sequence [2, 28]. Trajec­

tories can be represented simply as vectors in a high dimensional space, or by 

some combination of temporal derivatives [2]. Distances can then be measured 

to determine similarity between vectors and an appropriate clustering can be 

determined [28]. 

Other temporal methods rely on the assumption that under certain camera 

models, motion trajectories associated with different objects in a scene fall into 

separate parameter subspaces. Several methods have been developed to exploit 

this property and cluster trajectories into sets of consistently moving features 

which define an object [9, 34, 39]. These methods are intimately tied to the well 

known structure from motion problem [16]. Many such methods fail, however, 

when the data includes frames where no features are visible on some trajectories. 
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Incomplete or inconsistent data is a common problem in video sequences due to 

occlusions as objects move throughout the scene. 

Vidal and Hartley [43] present a method termed generalized principal com­

ponents analysis ( G P C A ) which elegantly deals with such problems. The seg­

mentation of motion trajectories is again treated as a clustering problem where 

affine motion data is mapped into a higher dimensional space. The mapping em­

ploys a form of nonlinear function which automatically deals with the problem 

of missing data along motion trajectories. Subspaces corresponding to the mo­

tion of each specific object in the scene are automatically determined by fitting 

a set of homogeneous polynomials to the projected motion data and obtaining 

basis vectors using the polynomial derivatives. The result is a method robust 

to incomplete motion trajectories. 

Some methods instead try to determine the number and parameters of prob­

abilistic models which best fit the motion data in a sequence. They treat the seg­

mentation problem as one of model selection and parameter estimation, which 

is in itself an entire field of research (the discussion of which is out of the scope 

of this review). Motions of the features tracked between frames are used as 

data points which are typically fit to a mixture model whose optimal parame­

ters can be determined through any number of estimation techniques. A classic 

example is presented in [40] where a parametric mixture model is learned for all 

objects in a sequence. Each object is represented by a mixture component in 

the model. A classic probabilistic modeling algorithm termed expectation max­

imization (EM) [11] is used to cluster the trajectories in a sequence by assigning 

each a label which corresponds to one of the mixture components. 

Drawbacks of such temporal-based methods include the necessity and ability 

to track an object, or more accurately a distinct subset of its features, through 

a volume of video frames in order to build a set of trajectories. This, of course, 

requires access to an entire video sequence ahead of time. Additionally, such 

methods typically result in groups of points or small regions belonging to an 

object which could be reliably tracked throughout a sequence, and not an actual 

appearance-based segmentation of the object within the sequence. Finally, often 
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implicitly assumed in such methods is some notion of object rigidity so that 

trajectories on an object are sufficiently similar to be clustered separately from 

other elements in the video scene, or a sufficiently simple model can be fit to 

the motion. 

2.3 Joint Spatial and Temporal Methods 

Similarly to temporal prioritization, methods which attempt to more equally 

prioritize spatial and temporal cues also typically use information throughout 

a video volume to perform a segmentation. At the same time, these methods 

consider spatial appearance and similarities within an image. In some cases, this 

means simply performing the parameter estimation of a model which includes 

not only motion information but spatial appearance information as well. For 

example, Greenspan et al. [15] use the aforementioned E M algorithm to learn 

a Gaussian mixture model in a 6 dimensional space, where measures for colour, 

spatial position and temporal position are included. Each mixture component 

in the model describes a coherent spatio-temporal region. 

Other methods take a graph-based approach to segmenting the video volume 

[13, 35]. In general, graph-based approaches treat the segmentation problem as 

the minimization of an energy function represented in a graphical format. This 

energy function is typically defined by a cost for dissimilarity between the desired 

labeling of an image pixel and the agreement with the observed data at that 

pixel, while at the same time including some notion of cost for dissimilarity 

between pixels. A different labeling of the pixels results in different costs as 

determined by the energy function. 

In the original graph cuts framework [6], a graph is constructed based upon 

a current labeling of the image pixels and the dissimilarity costs associated with 

such a labeling as defined by the energy function. Pixels are represented by 

nodes in the graph, and similarity measures are assigned to the edges connecting 

adjacent pixels. A source and sink node are included in the graph, representing 

a possible change in label for each pixel, and an edge representing the cost 
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associated with such a labeling is added. The optimal partitioning of the nodes 

in such a graph, as determined by the cost associated with the edges cut to 

achieve the partition, describes a new labeling. This new labeling is shown to 

be a step towards the optimal solution of the energy minimization problem. As 

described in [6], efficient techniques for computing optimal partitions in these 

types of graphs are already well-known in the graph theoretic community. These 

techniques can be applied in an iterative fashion to the graphs defined by the 

new labeling after each step in order to achieve an optimal configuration. 

In [35], a similar graph structure is created where each node represents a 

pixel in the video volume, and edges are drawn both between pixels within an 

image (spatial constraints) and pixels across different frames within a sequence 

(temporal constraints). A motion-based similarity measure is used and costs are 

assigned to the edges depending on motion values at each pixel. The partition of 

the graph in this framework is achieved using the normalized cuts algortihm [36]. 

This involves solving an approximating system of linear equations determined by 

the structure of the graph and the associated costs as denned by the similarity 

functions. The solution to this system determines the "optimal" breaking of 

edges, resulting in spatiotemporal segments defined by those nodes of the graph 

which remain connected. 

In [13], the pixel-based graph structure includes a feature vector at each node 

with information about motion and appearance at the corresponding pixel, as 

well as information about its spatial and temporal location. Different feature 

dimensions are weighted independently and normalized cuts is again applied, 

this time in an approximate framework. 

In [48], an initial step is added to this process where an estimate for the 

appearance of spatiotemporal segments is obtained. Seed correspondences are 

determined over a short section of the video and regions are grown- around 

them using a graph cuts approach integrated with a level sets framework [31]. 

The regions are merged to obtain an initial representation for the layers in the 

video volume. These representations are then refined in another graph cut over 

the entire video volume. Special considerations to occlusion constraints are 
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taken to account for inconsistency in layer appearance and improve the final 

segmentation. 

A n approximate method is absolutely necessary in such joint spatial/temporal 

methods to offset the prohibitive cost of computing the graph cut over the ex­

tremely large amount of data provided in even very short, relatively low res­

olution video sequences. Computation still remains relatively expensive. This 

is a major drawback of joint spatial and temporal segmentation methods: the 

vast amounts of data which need to be simultaneously analyzed. They also 

suffer from some of the same constraints as temporal methods which analyze 

sequences of images. Additionally, some notion of consistency in appearance is 

often necessary in order to allow for the learning of a single model of sufficient 

simplicity for objects. 

2.4 Spatially Prioritized Methods 

Finally, there remains the category of spatiotemporal segmentation methods 

which prioritize spatial cues within an image sequence and then integrate tem­

poral consistency. This set of methods can probably be considered the richest 

of the three categories mentioned as many of these methods include ideas from 

the related and also long studied problem of static image segmentation. Many 

varied approaches have been taken to integrate the spatial and temporal cues 

in a manner which prioritizes the cues within a single frame primarily and then 

seeks for support across frames in the sequence. 

Several techniques operate directly upon grouping the motion estimates of 

objects between images in the sequence [7, 33, 45]. Horn and Schunk [17] 

describe the well known optical flow constraint (that the intensity of a particular 

pixel in the image remains constant along its motion trajectory) and how it can 

be used to generate a 2D vector value for the motion at each pixel in a given 

frame, resulting in a motion field the same size as an image. Optical flow 

information can be highly unreliable, especially at object boundaries, and many 

efforts have been taken to improve the quality of the estimates of image motion 
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(e.g., [5, 38]). 

None the less, optical flow information is often an integral part of video 

segmentation techniques. For example, Chang et al. [7] present a Bayesian 

framework that combines motion estimation and segmentation based on a rep­

resentation of the motion field as the sum of a parametric field and a residual 

field. A piecewise smooth segmentation field is generated by learning the para­

metric models for each motion segment in an iterative Bayesian fashion taking 

into account how well they predict the appearance of successive frames in the 

sequence. The segmentation of the motion field for each frame is then applied 

directly to the intensity images of the sequence to achieve an appearance seg­

mentation for each frame. 

Another popular approach to video segmentation is often referred to as the 

extraction of video layers, as introduced in the seminal paper by Wang and 

Adelson [45], and has seen some continued interest. This representation is based 

largely upon ideas used in traditional eel animation, in which an image is com­

posed by first creating a background upon which is laid a series of sheets of clear 

celluloid (or eels). Each eel layer has painted on it an image which occludes the 

part of the background it is laid upon. As the eel moves, it occludes and reveals 

different parts of the background layer (see Figure 2.2). 

Thus, an image sequence can be decomposed into a set of layers, each of 

which contains three different maps: 1) an intensity (or texture) map describing 

the appearance of the layer; 2) an alpha map describing the visibility of the layer; 

and 3) the velocity or warp map, which describes how the other maps change 

over time. 

In Wang and Adelson's original layer representation, appearance maps con­

sist of a pixel-wise description of the gray level or colour intensity information 

associated with each layer. The alpha maps describe the pixel-wise association 

of each pixel with each layer. The warp map describes an affine transformation 

which is applied to the image on a pixel-wise basis to produce the observed ap­

pearance of the layer in each frame. The result is a single representation for the 

appearance of each layer and a set of warps that correspond to each individual 
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F i g u r e 2 .2 : F r o m [45]. T h e des i red d e c o m p o s i t i o n o f a h a n d sequence in to layers. 

T h e h a n d arcs across the sequence to the r igh t as the b a c k g r o u n d moves cons is ten t l y 

d o w n a n d to the left, (a) T h e b a c k g r o u n d layer . T h e in tens i t y m a p cor responds to 

the checke rboa rd p a t t e r n ; the a l p h a m a p is u n i t y eve rywhere (s ince the b a c k g r o u n d is 

a s s u m e d to be opaque ) ; the ve loc i t y m a p is cons tan t , (b) T h e h a n d layer. T h e a l p h a 

m a p is u n i t y where the h a n d is present a n d zero where the h a n d is absent ; the ve loc i ty 

m a p is s m o o t h l y v a r y i n g , (c) T h e resyn thes ized image sequence based on layers. 
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frame of the sequence. 

Originally in [45], each image in the sequence is segmented by clustering 

image patches based on local motion estimates and assigning each patch to a 

consistent affine motion model. The entire sequence is then examined and in­

formation from each frame is combined over time so that the stable information 

within a layer can be accumulated and the warp for each image can be deter­

mined. The result is a consistent layered representation including a static depth 

ordering for each layer. 

Such a process imposes some implicit limitations on the nature of the video 

scene being analyzed. Namely, for such a process to work, the layer appearances 

must remain consistent throughout the entire scene. Additionally, the number 

of layers within a scene must be known and cannot change, as no consistent 

representation could be arrived at with a fixed number of layers. Further, in 

order to facilitate the layer learning process, there must be a single occlusion 

ordering for the layers which must be discovered and can not change throughout 

the sequence. 

Several other methods have been developed which build on this approach 

and address some of these issues. Jojic and Frey formally present the idea of 

sprites in [19]. A sprite is a vector of pixel intensities the same size as the input 

image, accompanied by a corresponding vector of mask values. Associated with 

each sprite, and with each image in a sequence, is a transformation that can be 

applied to the appearance and mask vectors in order to reproduce the sprite's 

appearance in a given frame. 

So that the appearance of each sprite may vary from image to image, a 

probabilistic representation termed the "flexible sprite" is introduced. A flexible 

sprite allows for different instantiations from image to image, all of which are 

typical under the probability model that defines the flexible sprite. The sprite 

models are governed by parameters determining the mean and variation in both 

the appearance and mask vectors, as well as the prior probabilities for each sprite 

class and the transformations that need be applied to reproduce the sprite in 

each image. The problem then becomes one of learning the optimal parameters 
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to describe the sprites given an entire image sequence. 

Although this approach extends [45] to allow for some variation in sprite 

appearance from image to image, and no longer requires the use of optical flow 

information, the parameter learning problem posed is intractable. Despite the 

assumption of simple translational/rotational motion throughout the sequence, 

the discretization of the transformation space yields an intractable number of 

possible configurations (e.g., 10 1 5 for a 320x240 image containing 3 sprites in 

3 layers) which need to be examined. Additionally, the form of the posterior 

distribution over the appearances and masks is not in a tractable closed form. As 

a result, a generalized E M approach is taken to obtain an approximation at each 

step and learn the parameters for each sprite model and F F T tricks are employed 

due to the simple transformational constraints to reduce computational costs. 

To somewhat address this issue, Allan et al. [1] present an extension that 

uses a preprocessing stage to match invariant features across images in the 

sequence. This step clusters feature matches across an entire sequence to both 

automatically determine the number of layers in the scene, as well as provide 

an initial approximation for the transformations which need to be considered. 

The size of the transformation space is drastically reduced, allowing for a richer, 

affine transformation model to be considered. 

However, the parameter learning performed over the entire image sequence 

is still intractable, and a variational E M approach is taken to approximate. 

Additionally, the preprocessing stage requires the objects in the scene to not 

only remain consistent in appearance throughout the sequence, but remain rigid 

so that their features can be associated with a single object. 

In general, such layer methods based on the original Wang and Adelson 

proposal still require an entire image sequence ahead of time to learn about the 

appearances of and segment out the objects of interest within the sequence in an 

offline process. This is a drawback they share with most temporally prioritized 

methods and, of course, limits their applicability. Due to the complexity of 

the representation for each layer, the parameter estimation process is typically 

intractable, and approximate methods need to be taken to arrive at a solution. 
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Even still, such a solution is computationally expensive, and the models still 

require a somewhat strict notion of consistency in object appearance throughout 

the entire sequence. 

Additionally, the layer-based methods described above do not make use of 

some constraints naturally present in video data. The sequential nature of im­

ages captured in a dynamic environment imposes a relationship between adja­

cent frames in a sequence. This temporal information is not typically exploited 

by these methods. Furthermore, although these methods operate primarily on 

spatial motion or appearance of elements within a frame, there is no notion 

of spatial cohesion of a layer. That is, connectedness between elements, which 

is another natural tendency of the data, is not included in the notion of the 

layer within the model. Objects tend to occupy a contiguous region in space, 

resulting in a contiguous 2D region when imaged. As a result, adjacent points 

in an image generally belong to the same object. Incorporating such additional 

spatial constraints, and additionally including temporal constraints, into the 

process of video segmentation has been accomplished in a variety of ways. 

In [37], a system for object discovery is presented to identify independently 

moving objects within a dynamic scene. Normalized cuts is applied to appear­

ance and depth information obtained from a stereo system to obtain a set of 

depth and appearance consistent regions. Regions are then grouped based upon 

features which appear within them between successive frames of the video se­

quence. A voting system based upon the consistency with which the features 

and regions are observed determines which regions and features are grouped 

together to form an object. 

[29] presents a region merging method based on graph clustering. Each 

image in the sequence is subjected to an initial oversegmentation procedure. The 

images are then examined in a pairwise basis and the spatiotemporal coherence 

of regions is evaluated. Spatial and temporal similarity metrics are defined 

and values computed for each pair of regions. These metrics are based upon the 

significance value of a hypothesis test over temporal (in this case, simply motion 

characteristics) and spatial (in this case appearance and adjacency) similarity 
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between regions. Using these measures, a graph is constructed to represent the 

information and is in turn used in a graph-clustering framework to merge nodes 

into spatiotemporally consistent objects in the scene. A final post-processing 

step is performed to remove any remaining small regions by merging them with 

larger ones. 

Such graph-based representation and approaches have been popular in these 

types of methods. One important step ahead in this direction was to formu­

late the segmentation problem as a statistical contextual labeling problem, as 

proposed in the seminal paper by Geman and Geman [14]. The problem then 

becomes one of determining the appropriate object label for each pixel in an 

image. Spatial coherence in this case can then be directly enforced by using a 

probabilistic graphical model termed a Markov random field (MRF) [24]. 

Similarly to the graph-based approaches mentioned above, a field is con­

structed where sites correspond to visual elements in the image, and edges are 

drawn from some notion of spatial adjacency. The M R F then allows for sin­

gle site comparisons between observed data and the given label on a site by 

site basis, while at the same time including a pairwise comparison of labels 

at neighbouring sites within the graph. Favourable comparisons are rewarded 

with a higher probability, and unfavourable comparisons are penalized. The 

label configuration of the field yielding the highest probability when considering 

both single and pairwise site comparisons is then determined and the resulting 

labeling is taken as the segmentation. 

Of such MRF-based methods, the most related to the proposed approach is 

the work of [33] and [42]. In [33], the initial oversegmentation is accomplished 

by a watershed segmentation over the gradient image of a frame. A n M R F is 

constructed over the regions produced by the segmentation, where neighbouring 

sites are determined by adjacency of regions in the segmentation. Spatial con­

straints are enforced in the typical M R F label smoothness fashion. Temporal 

constraints are incorporated by projecting the region onto the previous frame 

labeling and rewarding the current label by counting the pixel wise labels in the 

previous frame that agree. 
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Temporal constraints are included through motion compensated intensity 

differences in the M R F energy functions to distinguish between objects. The 

motion is modeled as a 6D affine transformation, and the parameters are deter­

mined jointly in a framework that optimizes both the label configurations and 

the motion estimates of each model. Previous as well as subsequent frames have 

to be considered in order to resolve the ambiguity presented by the motion field 

in the case of occlusions. 

In [42], a watershed segmentation is again used to obtain an initial overseg­

mentation of the image. This time, a static camera is assumed. This severely 

limits the applicability of the method, or requires an additional step to register 

frames to compensate for camera motion (which is known to be error prone 

and an area of study within itself). Additionally, a drastic simplification in 

the segmentation process is assumed where the problem becomes one of simply 

classifying regions as moving (part of the foreground) or stationary (part of the 

background). 

Again, an M R F is employed to enforce spatial consistency and label regions 

as either object or background. Again, a parametric affine motion model for 

each region is estimated to facilitate the classification process. Again, special 

considerations need to be taken to insure that occlusion does not adversely affect 

the determination of the model parameters. Temporal consistency is enforced 

in a similar manner by examining the pixels the region is projected onto and 

how they were classified in previous frames. However, this is accomplished by 

warping the regions to the positions predicted by the motion estimates. 

[23] introduces a supervised form of the M R F model, termed a conditional 

random field (CRF) . This model relaxes some of the strict independence as­

sumptions made between observations by the M R F model, as well as allowing 

for data-dependent interactions between sites. At the same time, an assumption 

is made during training of the model about the availability of the labels assigned 

to hidden variables. The M R F model requires no such assumption as it infers 

these values during the learning process. Regardless, the result in many cases is 

an improvement in the accuracy of labeling problems when using C R F s versus 
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M R F s [22]. 

The C R F model was first applied to the video segmentation task in [46]. 

It incorporates both spatial and temporal constraints at a pixel-wise level in 

an online fashion over an image sequence. Given the number of objects in a 

sequence and the first frame of the sequence, an initial segmentation is obtained 

through the motion clustering method previously mentioned in [45]. Parametric 

appearance models of the objects are constructed based upon the initial labeling 

and a pixel-wise C R F is used to model each subsequent frame of the sequence. 

Sites with similar labels are rewarded to encourage spatial consistency, while 

sites whose labels are consistent with the previous frame are rewarded to en­

courage temporal consistency. At the same time, labels are assigned based 

upon the observations at each site and their similarity to each object model. 

No hard assignment concerning labels from previous frames is made to enforce 

the temporal consistency. Instead, a filter framework is adopted to recursively 

incorporate temporal dependencies through a state transition function denned 

on pixel-wise temporally neighbouring regions. 

To address issues of noise and robustness, and to increase accuracy of the fi­

nal labeling, very large neighbourhood sizes are adopted. This results directly in 

an increased cost computationally while at the same time imposing a patch-like 

structure to the problem. Additionally, a learning of parameterized generative 

models is performed at each step, including the usual problems associated with 

model selection and learning. 

The proposed work combines ideas from the above field-based methods. In 

the proposed work, and unlike [42], no assumptions about camera motion are 

made, making the approach more general. As such, no global corrections need to 

be applied to the image data beforehand. Additionally, no estimation of affine 

motion parameters needs to be perrformed as in [33], reducing the cost and 

complexity of the optimization step. Only the previous frame in the sequence 

needs to be considered and no other considerations need to be taken as no 

motion ambiguity needs to be dealt with. 

Unlike [33] and [42], spatiotemporal constraints are enforced by a C R F sim-



Chapter 2. Related Work 24 

ilarly to [46] through the energy functions governing the interactions between 

neighbouring sites and the observed data. However, no parameterized model 

learning is required as discriminative non-parametric measures are used instead. 

A n initial oversegmentation is used to construct the field which allows for more 

robustness to pixelwise noise, as well as a more simplified energy space for the 

label determining inference procedure. The filter is shown to be applicable to 

a general graph structure produced by the oversegmentation. The resulting 

method can segment a specified object from a video sequence without the ex­

pense of explicitly/implicitly learning models of the rest of the objects in a 

scene. 
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Theoretical Background 

3.1 Introduction 

This chapter presents the theoretical background required to understand and 

evaluate the proposed approach. It includes a discussion of each of the major 

theoretical components involved in the synthesis of the overall system. The well-

defined concepts of Markov [4] and conditional random fields [23] are discussed, 

and how they apply to the segmentation problem. The problem of intractable 

inference within random field models is also discussed, as well as a standard ap­

proach, termed mean field approximation [30], often taken to solve this problem. 

The well-known hidden Markov model framework is introduced to allow for the 

incorporation of temporal consistency into the model. Finally, a recursive filter 

is derived. It combines the above ideas to illustrate how the online update of 

an unfixed, general random field structure, a generalization to [46], amounts to 

inference in a general conditional random field at each time step. 

3.2 Markov and Conditional Random Fields 

for Segmentation 

Segmentation can be considered as a labeling problem. Each visual element in an 

image needs to be assigned a label that indicates to which segment and therefore 

to which real world visual construct the image element belongs. Although many 

schemes exist for the solution to the labeling problem, one popular approach in 

terms of image segmentation is to apply a Markov Random Field (MRF) model. 
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Applying the M R F model involves creating a graphical structure to represent 

a probability distribution. This probability distribution is over the labels that 

each site in an image can be assigned in a possible segmentation. The graph is 

created by designating a set of unordered nodes to represent image sites, each 

of which corresponds to a random variable which will determine the label for 

that site. As random variables, each site can take on one of a set of discrete 

labels, the likelihood of which depends on the data observed at the particular 

site. At the same time, a neighbourhood system is defined over all of the sites to 

enforce spatial interactions, representing a dependence between the correspond­

ing variables. The assignment of labels which maximizes the probability of the 

distribution over the random variables represented in the field is sought as the 

solution to the segmentation. 

More formally, a random field X is defined by a set of hidden random vari­

ables indexed b y 5 = {l,2,..n}, each of which is associated with one of the image 

sites. A single site in the field can be indexed by i € S and is denoted X(i). 

Each random variable can take on one of a discrete set of labels L = {l..m}. 

The joint event that (X(l) = x(l),X(2) = x(2), ...,X(n) = x(n)) is abbreviated 

(X = x), and the set of values x = {a;(l),x(2), ...,x(n)} is referred to as a con­

figuration of the field. The probability that a variable X(i) takes on a particular 

value x(i) is denoted p(X(i) = x(i)) or simply p(x(i)), while the probability of 

a particular configuration is denoted p(X = x) or simply p(x). 

With each site is associated a neighbourhood relating it to other sites in S. 

That is, each site i has associated with it a set Nt of other other sites from 

S. The neighbour relationship is determined through some notion of adjacency 

in the field, which can vary depending on the field's overall structure and is 

represented in the field by edges connecting neighbouring sites (see Figure 3.1). 

The neighbour relationship is self-exclusive, i.e., a site cannot neighbour itself 

(i Ni) and symmetric, i.e., if site j is a neighbour to site i, then site i is a 

neighbour to site j (if j € Ni then i e Nj). 

X is a Markov random field if and only if the following two properties hold: 
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Figure 3.1: Examples of field structures over hidden variables. On the left is a 

standard 4-neighbour lattice, typically used to represent individual pixels in an image. 

On the right is a more general field configuration, typically used to represent a region-

based image. The circles represent the variable sites and the edges represent neighbour 

relationships. 

p ( x ) > 0 , V x (3.1) 

and 

p(x(i)\x({S-i}))=p(x(i)\Ni). (3.2) 

The first relationship simply states the standard probabilistic assumption 

that any configuration must yield a probability value greater than zero, and 

is made for technical reasons [3]. The second relationship states the Markov 

assumption that the label at any given site depends only on those sites included 

in its neighbourhood, and is independent of the rest of the sites in the field. 

Here, {S — i) represents the set of all sites S except site i. 

According to the Hammersly-Clifford theorem [3], an M R F can be equiva­

lent^ characterized by a Gibbs distribution, which is of the following form: 

p(x) = ±exp(-E{x)) (3.3) 

where 
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F igure 3.2: A depiction of graph cliques. Each clique associated with the shaded node 

is depicted as an outline around the clique. A clique is a set of nodes that can be be 

grouped together without including a node that does not have an edge to each other 

node in the set. Here, all cliques are pairwise, because no other node can be included 

with any pair without adding an edge. 

Z = £ exp(-E(x)) (3.4) 

and 

£(x) = £ YI #=(0.*C/)) • (3-5) 
i£S L j€Ni,j<i -1 

E(x) is termed the energy function, and i t is the sum of potentials over a l l 

cliques induced by the neighbourhood system and the M a r k o v assumption (see 

F igure 3.2). In most cases, and is the case i n this work, on ly up to pairwise 

clique potentials are assumed to be non-zero, y ie ld ing a t e rm for single site 

(<p(x(i))) and pairwise site (ip(x(i),x(j))) interactions. 

T h e single and pairwise site potent ia l functions are used to express the fitness 

of labels at each site i n the field. T h e value of the functions depends upon 

the loca l configurat ion of the field and the da ta observed at each site. These 

functions enforce adherence to a par t icular classification mode l and to spat ial 

constraints. T y p i c a l single site potent ia l functions reward labels that better 

ma tch the observed da ta at the site w i t h a lower value, resul t ing i n a higher 
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value for configurations with that labeling as determined by Equations 3.3 to 

3.5. Similarly, typical pairwise potential functions also reward a labeling that 

agrees with the labeling of neighbours with a lower value. When the form of the 

potential functions is independent of the location and orientation of the clique 

to which they correspond, the field is said to be homogeneous and isotropic. 

This is typically the case in segmentation problems and is the assumed case in 

this work. 

The choice of potential functions is not restricted to those which will result 

in a specific probabilistic interpretation as the conditional or marginal distri­

butions, although this can sometimes be the case. One consequence of this 

generality is that the resulting marginal distribution will not be normalized. 

This necessitates the inclusion of the normalization constant Z, which is often 

called the partition function. It is simply the sum of all possible configurations 

of the field, ensuring that the distribution in Equation 3.3 is normalized and 

sums to one. 

To compute the p(x) distribution, the partition function Z must be evalu­

ated. This requires the enumeration and summing of all possible configurations 

of the field. Since each of the n sites in x can take one of m different discrete 

labels, this amounts to summing over m" different configurations. It is easy to 

see that this evaluation becomes prohibitive even for models of moderate size. 

The next section discusses a class of techniques for approximating this constant 

and examines, in detail, the method used in this system. 

The MRF is typically used in a probabilistic generative framework to model 

the joint probability of the labels at each site and the corresponding observed 

data. That is, given a set of observations y corresponding to the sites of x, the 

posterior over the label field can be expressed asp(x|y) oc p(x,y) = p(y\x)p(x), 

where p(x) is modeled as an MRF. A segmentation is achieved typically by 

seeking the configuration of the field that yields the maximum probability in 

the posterior distribution. 

In the generative case, energy is expended modeling the joint distribution 

p(x, y) which implicitly involves modeling of the observations y. In some cases, 
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the underlying generative model can be quite complex. This extra modeling 

effort is wasted in these cases when we are really only concerned with the clas­

sification task. The complex nature of any underlying observation models can 

also make any parameter learning task much more complicated. 

Additionally, for computational tractability, the likelihood model p(y|x) is 

typically assumed to have strict independence at each site, and thus has a 

factorized form such as p(y|x) = riiesP^WI^W)- Such strict independence 

assumptions have been found too restrictive for many image analysis tasks [8, 

47]. 

To avoid such pitfalls, Lafferty et al. [23] introduced the conditional ran­

dom field model which was extended to 2D by [22]. In contrast to generative 

approaches using an M R F , the C R F directly models the posterior over labels 

given the observations at each site. In addition, the C R F model allows for a 

relaxation of the strong independence of likelihood assumptions made at each 

site by the M R F model and allows for data interactions to occur in pairwise site 

potential functions. 

In the C R F model, both the label sites x and the observation sites y are 

treated as random fields. When the label field x is conditioned on the observa­

tion field y, the following Markov property holds: 

p(x(i)\y,x({S - t})) = p(a;(t)|y,Nt). (3.6) 

The C R F can be thought of as a random field of labels globally conditioned 

on the observations. Again using the Hammersly-Clifford theorem, and again 

assuming up to only pairwise clique potentials, the posterior distribution can 

now be written as: 

p(xly) = \exA J2 ^teM-y) + V'(^W^O')-y) )• (3-7) 

Note that the single site potential function <j)(x(i),y), and the pairwise site 

potential function tp(x(i),x(j),y), are in this case both a function of y. That 

is, the energy function can now depend explicitly on all observations, instead 



Chapter 3. Theoretical Background 31 

of allowing only a single site observation, or none at all, to influence the poten­

tials. As in the M R F framework, the C R F framework seeks for the maximal 

configuration of labels for the posterior distribution to achieve the segmenta­

tion. Again, this requires the evaluation of the partition function Z through the 

use of approximate methods. 

In summary, the C R F framework allows for a segmentation to be performed 

on each frame of a sequence based upon the labeling at each site. The probability 

of a particular configuration of labels is determined by the interactions between 

the labels and data in the single and pairwise potential functions indicated in 

Equation 3.7. Spatial influences between sites can be incorporated through 

favourable interactions denned by the potential functions resulting in a lower 

energy for a given labeling. This in turn results in a higher probability in the 

posterior distribution p(x|y). The segmentation for a given frame is determined 

by the configuration of labels which results in the maximal probability in the 

posterior distribution. 

In the case of the approach taken by the proposed method, field sites are 

associated with regions of the image as opposed to individual pixels, while neigh­

bourhoods are determined by the adjacency of regions within an image. The 

construction of the field from a given image is detailed later in the implemen­

tation section. 

3.3 Inference in Random Fields 

As mentioned in the previous section, the segmentation problem can be consid­

ered as one of labeling sites within an image using a random field model. The 

problem then becomes one of determining the configuration of labels for the 

field which results in the highest probability for the distribution represented by 

the field. In this case, we are interested in determining the configuration which 

produces the maximal probability in the distribution from Equation 3.7. Due 

to the nature of the partition function Z (i.e. that it requires a summation 

over all possible configurations of the field), evaluation of this distribution is 
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intractable. There are many approaches to address this intractability. This sec­

tion is devoted to a discussion of variational methods, and in particular, mean 

field theory for approximating intractable distributions. 

3.3.1 The Variational Approach 

We have a distribution p(x) which we wish to evaluate but it is intractable to do 

so. The variational approach seeks to approximate this intractable distribution 

with a suitable candidate q(x) from a restricted family of tractable distribu­

tions. The best candidate approximate distribution from this family can be 

determined by using a common measure for similarity between two distribu­

tions; the Kullback-Liebler (KL) divergence [21]. The K L divergence is always 

nonnegative and equal to zero only when the two distributions being compared 

are identical. 

As mentioned, in the case of field models where only up to pairwise potentials 

are considered, p(x) is of a standard Gibbs form p(x) = exp{ —E(x)}/Z. In this 

case, the K L divergence yields: 

KL(q\\p) = £ 9 ( x ) l n ^ (3.8) 

= 5>(x)[ln g(x) + l n Z + £ ( x ) ] 
X 

= ^ g ( X ) l n 9 ( x ) + ^ g ( x ) l n Z + ^ g ( x ) E ( x ) 
X X X 

= l n Z + £ g ( x ) l n g ( x ) - | - £ g ( x ) £ ? ( x ) . (3.9) 

X X 

Some of the terms in Equation 3.9 may look familiar to those from a sta­

tistical physics background. The negative of the log of the partition function, 

— InZ, is often referred to as the Helmholtz free energy, while the remaining 

terms will be referred to as the Gibbs free energy. They consist of a variational 
energy term ^ x 9 ( x ) S ( x ) , and an entropy term q(x)lnq(x). 

The variational approach seeks to minimize these energy terms. Since the 

K L divergence measure is always nonnegative and equal to zero only when the 

distributions p(x) and q(x) are identical, it will reach its minimal value of 0 
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when the Gibbs free energy reaches its minimal value of — ln Z and the distri­

butions are identical. Allowing the approximate distribution to vary (hence the 

name variational for this type of approach) while minimizing the K L divergence 

between the two distributions will result in the best candidate distribution from 

the restricted family. 

3.3.2 Mean Field Theory for CRF Inference 

In the case of a pairwise C R F model, the intractable distribution is over hidden 

variables given a set of corresponding observed variables as given by Equation 

3.7. The variational mean field method [30] seeks to approximate p(x|y) with 

a candidate from a family of fully factorized distributions of the form 

q(x) = l[bi(x(i)). (3.10) 
i 

Here, bi are referred to as the variational mean field parameters or beliefs 

which correspond to marginal probabilities which sum to one over each node 

x(i). The parameters are obtained by minimizing the K L divergence between 

p(x|y) and g(x). Since the minimal K L divergence is obtained when the Gibbs 

free energy is minimized, minimizing K L divergence is equivalent to minimizing 

the Gibbs free energy. In the case of the fully factorized family of distributions 

used for mean field approximation, the Gibbs free energy can be written as: 

GMF = ^ g ( x ) l n g ( x ) + ^ g ( x ) E ( x ) 
X X 

= J^(l[bi(x(i))^Ylb^X^ 
x \ i i 

+ £ 1 1 ^ ) ) ( - E m ^ ) , * ( j ) ) - £ l n # r ( i ) ) 
x i \ <ij> i 

= ~ E E bMWi(zti)Mx(iUti)) 
<ij> <x(i),x(j)> 

+ ^ ^ 6 i ( a ; ( i ) ) [ l n t i ( x ( t ) ) - l n ^ ( i ) ) ] . 
i x{i) 

(3.11) 
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where < ij > and < x(i),x(j) > refer to all possible combinations of i, j and 

x(i),x(j) respectively. 

Minimizing this term concurrently for all marginals is complicated, but it 

can be minimized for a given marginal bk by taking the partial derivative with 

respect to that marginal. Using a Lagrange multiplier to enforce the constraint 

that yjx(fc) bk{x(k)) = 1 and setting the derivative of the Gibbs free energy to 

zero results in: 

ij x(i),x{j) 

+ E E WO)[Inh(x(i)) - In 4>(x(i)) - A ( £ bk(x(k)) - 1)' 
i x(i) x{k) 

o = - E E 6 ^ ' ) M ^ 
kj x(j) x(k) 

h(x(k)) = act>(x(k))exp{Y, J2b^x(W^(x(k),x(j))}. (3.12) 
je.Nk x(j) 

The term in Equation 3.12 allows us to minimize the free energy with respect 

to a particular marginal. This requires simply computing its single site potential 

and its pairwise potentials with its neighbours, while renormalizing with some 

constant a. Of course, since the resulting value depends upon that of the 

neighbouring nodes whose marginals are also to be varied to minimize the free 

energy, an iterative scheme must be used. Al l nodes are initialized to a preset 

value and nodes are updated using Equation 3.12 until convergence of the Gibbs 

free energy. 

3.4 Hidden Markov Models 

To incorporate temporal consistency into the segmentation framework, the no­

tion of the standard hidden Markov model (HMM) is introduced [4]. A n H M M 

is a graphical model that is appropriate for modeling sequence data because 
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<0 

o o 
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Figure 3.3: The graphical depiction of a hidden Markov model. Each state qt is 

dependent upon the previous state qt-i with the exception of the initial state qo. The 

observation yt is assumed to have been generated based upon the current state of the 

system and is therefore dependent upon the current state qt-

it incorporates temporal dependencies between different states in a sequence. 

It consists of a finite set of states, each of which is associated with a separate 

probability distribution. Transitions between states are governed by a set of 

transition probabilities. With each state is associated an observation which is 

assumed to have been influenced by the probability distribution for that state. 

The state is not observable (that is it remains hidden, hence the name) and 

it can only be inferred from the observed outcomes. This makes the inference 

problem for an H M M one of taking a sequence of observed events and producing 

a probability distribution for each underlying state as output. 

More formally, an H M M is defined by the following set of criteria. It consists 

of some number of states n, and a set of state transition probabilities p(qi\qj) 
from states j to i, where 1 < i, j < n. At any given time t, the state of the 

system is denoted by the random variable qt and the observation of the system 

at this time is denoted by the observed output variable yt. These relationships 

are typically represented graphically as illustrated in Figure 3.3. 

The first state in the sequence has no parent and is represented with an 

unconditional distribution p(qo), while every other state in the sequence depends 
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on previous states. This is the main property of interest in the H M M , the 

conditional nature of a state at time t upon the states immediately proceeding 

it in the sequence. This dependence is defined by the order of the model. For 

example, a first order H M M conditions only upon the immediately preceding 

state at time t — 1, while a second order H M M conditions upon the two previous 

states at times t — 1 and t — 2. 

As is often the case, and as is assumed in this work, the H M M is of first 

order and thus the state qt only depends on its sole parent qt-i- Similarly, 

each observation variable yt depends only upon its sole parent qt- As a result, 

conditioning on qt renders all states qu,u < t and qv,v > t + 1 independent of 

each other. 

The joint probability of a sequence of observations and the states that gen­

erated them, (q,y) = (qo, qi, • qr,2/o, V\, VT) is expressed as 

There are several types of existing problems to which H M M s are applied, but 

of particular interest in this case is the filtering problem. Consider a sequence of 

observations y that arrives in an online fashion, where it is desired to compute 

the probability of the state at time t, without waiting for future data. That is, 

at time t it is desired to compute the probability p(qt\yo,yi, •••,yt) — p{Qt\yi-.t)-
Making use of the conditional independencies in the model and applying Bayes 

rule while conditioning upon the observations up to the previous time t — 1, this 

can be written as 

T T 

p(q,y) = p(?o)X[p(9tl9t-i) Hp(ytlQt)-
(3.13) 

t = l t=l 

p(Qt\yv.t) = p{qt\yv.t-i,yt) 
p(yt\qt)p{qt\yi-.t-i) 

p{yt\yv.t-\) 
(3.14) 

where p{qt\yv.t-\) is often referred to as the prediction, and can be further 

expressed as 
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p(Qt\yi-.t-i) = ^p(qt\Qt-i)p(gt-i\yv.t-i)- (3.15) 
q t - i 

Equations 3.14 and 3.15 illustrate how the posterior at time t can be com­

puted recursively using the posterior input from the previous step and the tran­

sition probabilities in conjunction with the likelihood at the current step. This 

approach can then be used in conjunction with the C R F model to incorporate 

temporal dependencies between successive segmentations in a sequence. 

3.5 The General Spatiotemporal CRF 

As mentioned previously, the problem of object segmentation in a video involves 

obtaining a segmentation for each image in a sequence. Given such a sequence 

of images, the goal is to determine the best assignment of labels to each site 

in a random field representing each image in the sequence by computing the 

field posterior at time T . This section illustrates how the H M M and C R F ideas 

can be combined similarly to [46] into such a structure which incorporates both 

spatial and temporal constraints. Here, no assumptions are made about field 

structure, and the structure of the field is allowed to vary from step t to t + 1. 

, I v p ( x i : r , y i : T ) „ , M 
p ( x 1 : T | y i : T ) = y ( y i r ) (3.16) 

Here, x t is a field over variables from a set St, consisting of some number of 

sites representing regions in an image t of the sequence, and connected on the 

basis of adjacency within the image as described further in the implementation 

section. Similarly, y t are the observations corresponding to these regions. Spe­

cific locations in the field are indexed by i, such that xt(i) and yt(i) refer to 

the label and observation at site i in fields x t and y t respectively, for the fields 

at time t. The joint distribution over segmentation fields and observation fields 

for the sequence can be expressed in the standard H M M framework described 

above. 
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T 

p(X ! :T ,y i :T ) = P(x 0 ) fj p(xt |xt_i)p(yt |xt) 

n{p(xt|xt-i) • Z?««*(E>?' 2 (3-17) 
t = i »es t jeWi 

Here, </> and »̂ refer to the single and pairwise site potential functions, respec­

tively. In particular, and 0j" refer to the single site potential for the fields 

representing the transition probability and observation likelihood functions at 

location i for field t. tpff and refer to the pairwise site potentials in the 

transition and observation functions for sites i and j, where j is drawn from the 

set of neighbours Ni of site i, again for field t (see Figure 3.4). 

The distributions over the initial chain variable and the observation likeli­

hoods have been replaced by Gibbs distributions with single and pairwise po­

tentials as shown along with the appropriate normalization constants. In this 

case of fields being constructed from regions produced by an initial overseg-

menation, the structure and dimension of the fields in each frame can change. 

Due to this fact, the transition function p(xt|xt_i) must consider the possible 

dimension change from the field at step t — 1 to the field at step t. However, the 

transitional distributions in this case will also be represented simply as Gibbs 

distributions with appropriate potentials. 

p(xi:T,yi:r) = ^ e z p ( E [ # ° ( 3 - 1 8 ) 

f[{Z?exp(J2W + E • Zlexp{Y,\<t>V + E V#D> 
t=i iest jeNi i€St jeNi 

The single site transition potential 4^ makes use of temporal neighbours 

in order to enforce temporal coherence between segmentations throughout the 

sequence. Temporal neighbours are sites from the previous segmentation field 

xt_i that have been designated as neighbours to site i in field xt, and are denoted 
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Figure 3.4: First row: A n illustration of two consecutive frames in a sequence with 

their region-based representations and resulting segmentation fields. Second row: a 

depiction of a possible set of spatial and temporal neighbours for a node of interest 

in field x t . The shaded nodes in frame x t are the spatial neighbours, Ni, of the black 

node i. The shaded nodes in field x t _ i are the temporal neighbours, Ti. Thi rd row: 

A closer look at a node i and its associated potentials. Omitted for clarity from the 

previous illustrations are the observation field nodes, which are here represented by 

shading and connected to their applicable label nodes. The potential functions to 

which each edge corresponds are also shown. 
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by the set Tj (see Figure 3.4). The temporal neighbour relationship represents 

the dependency that the state at time t, in this case the field x t , has on the 

previous field at time t — 1. The single site transition potential incorporates this 

information through a summation over contributions from the site's temporal 

neighbours, determined by a temporal neighbouring potential function (f>^. 

4>? = £ 4>% (3-19) 
j€Ti 

Each is a function of the current site z and one of its temporal neighbours 

j . The precise formulation is discussed in the implementation section. 

3.6 The Filter 

The filtering algorithm is used to recursively update the posterior distribution 

of the segmentation field. A first-order Markov assumption is made on segmen­

tation fields. At time t, observation field y t is used to update the posterior 

probability distribution of the segmentation field x t . 

, , s P(y*|xt)p(xtlyi:t-i) ,n 9 n x P(x t yi:t) = -.—j > (3.20) 
p(yt|yi:t-i) 

The prediction step involves determining the posterior distribution of the 

segmentation field at time t given the observation fields up to the previous step, 

p( x t |y i : t - i ) - This can be written as 

p(xt|yi:t-i) = £ p ( x t | x t - i ) p ( x t _ i | y i : t _ i ) . (3.21) 
• X t - l 

This computation involves summing over the possible configurations of the 

field x t _ i . This is, of course, intractable. However, p (x t - i | y i : t - i ) can be 

approximated using a factorization according to mean field theory, making the 

computation tractable. Similarly to [46], substituting the transition function 

from Equation 3.18 and the mean field approximation for the posterior from 
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the previous step yields 

P(x t |yi:t-i) oc exp[- E E ' 
i€St j€Ni 

E N - E E ^ l ' II p(^-iWlyi:t-i))-(3.22) 

T h e first t e rm is the spat ia l smoothness of labels from the t rans i t ion prob­

ab i l i ty function, wh ich does not depend exp l i c i t ly on the previous frame. T h e 

second te rm, wh ich sums over a l l possible configurations of field x t _ i , contains 

the mean field approx imat ion , p ( x t _ i ( i ) | y i : t - i ) « E h e S t - i P~(xt-i{i)\yi:t-i), of 

the segmentation field from the previous step. T h e terms can be rearranged so 

tha t the exponent ia l sum is i n terms of the sites i n the field for step t — 1 and 

their t empora l neighbours i n the field from step t. T h i s neighbouring relat ion­

ship w i l l be referred to as reverse temporal neighbours and such neighbours to 

a node xt-i{i) w i l l be denoted Tf1. T h e second t e rm can be manipu la ted to 

produce: 

E W - E E f • II p(*t-i«|yi:t-i)} 
x t _ i i€Stj€Ti t e S t - i 

= 53{ea;p[^i(st(l),xt_i(l))] • esp[^(zt(l),a:t_i(2))] • • • 
X t _ l 

II. p^t-iWIyi^-i)} 
i e S t _ i 

= I>*P[- E E II p(^-i(0lyi:t-i)} 
x t - i i € S t - i j e t ' 1 i&St-i 

- E I I e x t i E ^;]p(^-iWiyi:t-i). (3-23) 
x t - i igSt_i jETf1 

Due to this arrangement of terms and the full factor izat ion of the approxi­

mate d i s t r ibu t ion provided by mean field, the intractable sum of products t e rm 

can be converted to a tractable product of sums. 

E II exp{ E ^ylPfo-iWIyiit-i) 
xt_i i e s t _ i j e T " 1 
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= rjj £ e*Pl~ £ ^]'P(^-i(Olyi:t-i)} (3-24) 

The resulting term is nearly a Gibbs distribution. However, since the expo­

nential function is convex, we can apply Jensen's inequality to pull it out of the 

sum and therefore approximate the term using its lower bound. 

]J{ £ exp[- £ ^]-p(zt-i(*)|yi:t-i)} 
i&St xt-i(i) JST71 

> Jl{exp[- £ P(a:t-i(0lyi:t-i) £ fit}} (3-25) 
ieS t xt-i(i) jCT'1 

The terms can again be rearranged so that the sums are now with respect 

to single sites in the field from step t, as before, in the standard Gibbs form. 

As a result, the expression for the filter prediction step becomes the following 

Gibbs distribution: 

P(x t|yi:t-i) oc exp[- £ £ Vf/] • 

LT{£ £ p(^-iWlyi:t-i)^}. (3.26) 
iest jeTix^U) 

This result can then be used in an update step that requires the application 

of this distribution to the likelihood for the current frame. Recall that the 

likelihood p(yt |x t ) consists of simply a Gibbs distribution with the appropriate 

single and pairwise site potentials. 

p ( y t | x t ) = e z p ( £ [ # " £ ^ ] ) (3.27) 

Collecting all terms from Equations 3.27 and 3.15 into one equation for the 

posterior yields 

p ( x t | y 1 : t _ i ) = Zt . p ( y t | x t ) p ( x t | y 1 : t ) 
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oc eM- E [ E v# + 

E E P(^t-l(0|yi:t-l)^ + 
jeTiXt-i(j) 

(3.28) 

As can be seen from Equation 3.28, the combination of Gibbs distributions in 

the H M M framework has resulted in simply another field equation. It incorpo­

rates both the temporal and spatial labeling constraints (the (pt and tpt terms), 

as well as the single and pairwise likelihoods (the <f>y and ipy terms). With the 

inclusion of data interactions in the pairwise potentials, the field equation thus 

represents a C R F over the current frame xt. 

Computation of the distribution is again intractable. However, a mean field 

approximation can again be applied to the field equation resulting from the 

update step, where each site is iteratively updated using the mean field update as 

illustrated above. The resulting approximation can be used to determine which 

labels should be applied to each node. Namely, due to the factorization by the 

mean field approximation, the label with the maximal posterior probability at 

each site is used to determine its label at time t. The approximated distribution 

is then stored and can be used as the input to the next filter step. 
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Chapter 4 

Implement at ion 

This section discusses the implementational details of the proposed method. 

This includes a discussion of the optical flow calculation used to obtain motion 

information, the oversegmentation approach and the construction of the result­

ing field from an image. Also discussed are the observable quantities extracted 

from the image and the precise formulation of the energy functions in which 

this observed information is applied. 

4.1 Object Motion and Optical Flow 

The notions of object motion and optical flow are intimately tied within the 

image analysis framework. During the observation of a dynamic scene, motion 

of an object can be observed due to either the movement of the object itself, 

or the movement of the camera in relation to the object. The location of the 

object in the resulting sequence of images changes depending on the nature 

of the motion the object undergoes. The manifestation of this motion in the 

image sequence is typically referred to as optical flow. It is this optical flow 

information that is taken advantage of in this approach. 

Optical flow is a vector field which can be loosely defined as the apparent 

motion of brightness patterns in a sequence of images (see Figure 4.1). It is an 

approximation of the motion field which represents the projection of the true 

motion in a scene onto the 2D viewing plane. It can be computed from time-

varying image sequences under the simplifying assumptions that the surfaces 

are generally Lambertian, the light sources are pointwise at infinity and that no 

photometric distortions in the scene are present. The error of this approximation 
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Figure 4.1: A n illustration of optical flow. The top two images are from a sequence 

where the camera pans to the left to follow a jeep driving down a bumpy snow-covered 

road. The slight difference in location of the the jeep in each image is evident as due to 

it's motion between frames. On the bottom is a vector field illustrating the optical flow 

estimations for individual pixel locations in the image. The dominant motions in the 

image are apparent. As the camera pans to the left, the background moves relatively 

to the right. This is evidenced by the horizontal vectors in background areas. While 

the jeep moves towards the camera, bouncing up and down, the optical flow vectors 

capture this information as well. In regions of little or no texture, such as the sky, the 

flow information is either spurious or nonexistent. 
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is small at points with high spatial gradients, and exactly zero only when the 

motion of an object is such that the illumination direction is parallel to the 

angular velocity [18]. 

Optical flow is typically calculated by examining the motion of the bright­

ness patterns in the image. These brightness changes are usually induced by 

the motion of the scene, when the assumptions hold true, although this is not 

necessarily the case. Certain circumstances can result in an optical flow which 

is not at all indicative of the motion in the underlying scene. Such examples can 

include a light being turned on or off during an image sequence, the rotation of 

an untextured sphere, or the classic example of a rotating barber pole. In any 

such case, the brightness change present in the image is not actually informative 

about the true motion in the scene. In general, however, such cases are unusual 

and in this work the optical flow is generally assumed to be indicative of the 

motion of the objects in the scene relative to the camera. 

Computation of optical flow also relies on the assumption that apparent 

brightness of moving objects remains constant, in conjunction with the assump­

tion that there is also some constancy of the apparent brightness of the observed 

scene. This can be written as the stationarity of the image brightness E over 

time: ^ = 0. Here, the image brightness E is a function of both the spatial 

coordinates of the image plane, and of time. In turn, the spatial coordinates 

are both functions of time, and the total temporal derivative can be written 

using the chain rule. This results in what is known as the brightness constancy 

equation[l8}. 

Virtually all approaches to estimation of optical flow rely on this relationship 

[41]. Due to the fact that the underlying assumptions of this relationship can 

sometimes be violated, the resulting estimation of optical flow can be in error. 

In addition to this, since many methods rely on corresponding image patches 

across frames to determine the flow vectors at a given location, optical flow 

(4.1) 
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estimation can often suffer from noisy results when the matches are in error. 

This often occurs around object boundaries in an image when occluded and 

unoccluded areas may not have a true match, or in areas without sufficient 

texture to determine a reliable match. 

Many approaches have been taken to address these issues to varying degrees 

of success. Any number of methods for computation of optical flow would be 

suitable for use in this approach. The method presented in [5], often termed 

Robust Optical Flow, was chosen for its relatively favourable accuracy and avail­

ability, although it too can often be susceptible to the above problems. 

4.2 Oversegmentation 

A n oversegmentation seeks to exploit redundancy in image information in order 

to reduce the complexity of the labeling task. Oversegmentation of a scene 

before labeling is becoming a popular approach to visual segmentation problems 

and many methods exist for both image segmentation and oversegmentation 

with varying degrees of success [12, 36, 37], but the two should not be confused. 

A segmentation of an image typically seeks to identify boundaries between 

the major visual components of the scene. Each image element is labeled as 

either belonging to a particular object or not. A n oversegmentation, on the 

other hand, typically seeks to simply identify contiguous regions of relatively 

constant appearance. These regions may or may not belong to the same object 

in an image but the intent is to simply identify regions such that any given 

region does not likely belong to more than one object in the image. That is 

to say, a region's boundaries should not violate an object's boundaries within 

the image, although there may be many more region boundaries than object 

boundaries (see Figure 4.2). The result is a set of regions over an image, each of 

which needs to be assigned a label instead of a pixelwise assignment of labels. 

This is advantageous for a number of reasons. As mentioned, the labeling 

task in the C R F framework, as presented above, is much less expensive since 

there is a large reduction in the number of nodes in the model. This is desirable 
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Figure 4.2: A n illustration of oversegmentation on an image. On the top, the original 

image. In the middle, a hand segmented version of the image into its main visual 

components. On the bottom, an oversegmentation of the image. For the most part, the 

contours from the segmented image are preserved in the oversegmentation, although 

many more contours are present in the oversegmented image. 
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since methods for inference in C R F s often require an iterative updating of the 

nodes in a model until convergence is reached, and is certainly the case in 

mean field inference. Furthermore, a reduction of nodes in the model is often 

accompanied by a reduction in complexity of the error/energy space, hopefully 

resulting in a faster convergence to a non-local minimum. 

The segmentation in the proposed approach is accomplished by a modifica­

tion to the watershed algorithm as presented by Vincent and Soille [44]. The 

general idea of watershed segmentation is to identify regions of relatively con­

stant appearance. This is accomplished by either operating directly upon image 

intensity values or upon some transformed version of these values. The values 

are treated as heights in a landscape over the extent of the 2 D image. The 

topography of this landscape is then used to determine the appropriate location 

for boundaries which separate regions of consistent appearance. 

The image to be segmented is first subjected to a Gaussian smoothing to 

reduce the effects of image noise. Next, it is convolved with the derivative of 

a Gaussian to produce a gradient intensity image. The result can be thought 

of as a three dimensional gradient intensity landscape, where large changes in 

gradients which likely correspond to boundaries in the image are represented by 

high intensity values and therefore peaks in the landscape. Areas of relatively 

constant intensity in the original image, on the other hand, correspond to small 

changes in gradient and result in valleys in the gradient intensity landscape (see 

Figure 4.3). 

The peaks separating the valleys in the gradient intensity landscape are 

referred to as watershed lines, while the valleys themselves are referred to as 

catchment basins. The terms come from the field of geographic topography 

where they are typically used to describe the path that water will take when 

falling on a three dimensional landscape. These ideas are central to the operation 

of the watershed segmentation algorithm. Each catchment basin has associated 

with it a single minimal value, or minimal altitude on the landscape. Al l points 

on the landscape (which correspond to pixels in the gradient intensity image) 

associated with a catchment basin have a strictly non-decreasing path to the 
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(c) (d) 

Figure 4.3: A n illustration of the watershed process. Image (a) shows the original 

image and (b) a gradient intensity image resulting from a Gaussian smoothing and 

then a convolution with a derivative of a Gaussian. Image (c) depicts the gradient 

intensity image as a three dimensional landscape. Image (d) shows a two dimensional 

slice of the landscape for clarity. It illustrates the gradient intensity curve along this 

slice, as well as the watershed lines and the catchment basins that they separate the 

landscape into. 
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basin minimum. 

Watershed algorithms typically deal with determining which minima and 

therefor which basin each pixel in an image belongs to by determining its down­

stream path. In the Vincent and Soille version [44], this is accomplished by 

"filling" the catchment basins from the bottom. Imagine that there is a hole in 

the bottom of each catchment basin, and that the gradient intensity landscape 

was plunged into water. The basins would begin to fill from the bottom, and 

regions of water would start to grow in the two dimensional plane as observed 

from above. Each water region would correspond to the connected pixels of an 

area of low gradient intensities, which in turn correspond to regions of relatively 

constant appearance in the original image. 

As the basins continued to fill, they would begin to merge as the water level 

overtook the peaks separating them. In the case of the watershed algorithm, 

a "dam" is built where the regions would intersect at a watershed line. Once 

the entire landscape is under water, the flooding stops. The resulting watershed 

lines then represent the oversegmentation boundaries within an image. 

The operation of the actual algorithm is very similar to this intuitive ex­

planation. Pixels in the gradient intensity image are sorted in terms of their 

intensity values and an intensity histogram is created. At each flooding step, 

the flood value, / , is increased in intensity and the bin of the histogram cor­

responding to the new flood value is examined. Any pixels of intensity lower 

than / have already been assigned to a basin, while pixels of intensity equal to 

/ need to be assigned to a basin. 

Influence zones are computed for each basin determined thus far. The in­

fluence zone for a basin is defined by the set of non-labeled pixels of current 

flood intensity / that are contiguous with the basin and closer to it than to any 

other basin (see Figure 4.4). Each pixel of value / is examined and if a neigh­

bouring pixel already carries a basin label, the pixel is assigned the same label. 

Remaining pixels are assigned labels based upon the basin influence zones. If a 

pixel cannot be assigned to a bin by the above procedure, then it must be the 

member of a new basin beginning at the altitude / . A new basin label is created 
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Figure 4.4: A n illustration of assignments to catchment basins. The darker gray 

regions represent basins determined from previous iterations of intensity values lower 

than the current flood intensity / . Lighter gray regions represent the influence zones 

associated with each catchment basin, where the boundaries between zones are delin­

eated with a line. A new catchment basin is also depicted where the assignment rules 

fail to associate the region with any previous basin. The unshaded regions within the 

bounding box represents all the pixels of higher intensity than / that have yet to be 

considered. 

and the appropriate pixels are assigned. W h e n a l l pixels have been assigned, 

the current flood intensity / is incremented and the process repeated. 

Watershed segmentation, while being relat ively fast and easy to compute, 

typ ica l ly relies ent irely upon informat ion from a gradient intensi ty image taken 

of a grayscale image. T h i s can result i n incorrect boundaries between regions 

where the gradient may not be par t icu la r ly strong. To increase the chance that 

watershed boundaries more often correspond to real image boundaries, colour 

informat ion can also be used i n the watershed process. A n image i n the H S V 

colour space can be used and the gradient of each colour channel can be taken, 

t reat ing each channel as a grayscale image. T h e gradient values can be compared 

across planes and the m a x i m a l value for each loca t ion can be adopted for a final 
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gradient intensi ty image wh ich is then fed to the watershed a lgor i thm (simi lar 

to [42]). 

Add i t i ona l l y , the opt ica l flow images can also be used to further improve the 

correspondence between oversegmentat ion boundar ies and image boundar ies. 

T h e gradient of the magni tude of the vectors f rom the x y opt ica l flow planes 

can be computed and again values can be compared. In the proposed method , 

bo th the colour channel gradients and opt ica l flow gradient images can al l be 

computed and the m a x i m a l intensi ty value across these images can be taken and 

stored in a f inal gradient intensi ty image. T h e gradient in tensi ty image is then 

given to the watershed a lgor i thm. A n example of a watershed segmentat ion 

f rom a frame in one of the test sequences is prov ided in F igure 4.5. 

4.3 Construction of the Region-based CRF 

Model 

Once the opt ica l f low has been calculated and the oversegmentat ion of an image 

f rom the sequence has been per formed, a general p lanar C R F structure must be 

constructed f rom the image. T h i s involves creat ing the graph structure based 

upon the oversegmentat ion, as wel l as ext rac t ing the observable in fo rmat ion to 

be associated w i t h the observat ion f ield. T h i s process is performed as follows. 

G i v e n an image wh ich is subjected to an in i t i a l oversegmentat ion, a C R F is 

constructed w i t h each labe l site x(i) and observat ion site y(i) corresponding to a 

region in the image. Site adjacency i n the field is determined by the adjacency 

of the regions they correspond to in the image. Thus , edges are drawn in 

the C R F between sites wh ich correspond to regions in the image that share a 

border (see F igu re 4.6). For each region, the length of the border between it 

and neighbour ing regions is noted as a percentage of the to ta l border length of 

the region. 

T h e process for determin ing tempora l neighbours as in t roduced i n the H M M 

framework is a l i t t le more compl ica ted. T h e average mot ion vector for each re-
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Figure 4.5: A n example of the watershed segmentation from a frame of a test sequence. 

The smoothing parameter used for the initial Gaussian smoothing step generally con­

trols the resulting number of segments in the oversegmentation. In this case, a was 

set to 2, which was found to achieve an oversegmentation of approximately 200-300 

segments in the above test sequence. On the left is the original image. In the centre, 

the gradient image obtained from the hybrid colour/flow information. O n the right, 

the segmentation produced from the watershed algorithm. 
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Figure 4.6: An example of a field built upon region adjacency in a planar map. A 

node is created to represent each region in the map and an edge is drawn between any 

nodes whose corresponding regions share a border. Such a planar map can be produced 

by an initial oversegmentation procedure as described in the implementation section, 

and an appropriate field constructed to represent it. 

gion, as determined by the optical flow over the region, is computed and the 

reverse vector is applied to all the pixels in the region. Since the initial over-

segmentation can include optical flow information, the motion within a region 

should be fairly consistent, and an average should be a reasonable estimate for 

the motion of the region. The transformed region is then projected onto the pre­

vious frame and the overlapping regions are determined. Each region overlapped 

is assigned as a temporal neighbour of the original region to which the trans­

formed region corresponds. Again, a weight is computed for each region-based 

on the percentage of pixels which overlap each of the temporally neighbouring 

regions (see Figure 4.7). 

4.3.1 The Observables 

The observation at each site consists of both a measure of appearance and mo­

tion for the corresponding region. The HSV colour model is used to populate an 

appearance histogram for each region. The values from the hue and saturation 

planes of the HSV colour space which are obtained from each pixel in the region 
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frame t-1 frame t 

Temporally Neighbouring 
Regions 

Figure 4.7: An illustration of the determination of temporal neighbours. The optical 
flow over a region is determined and the region is transformed according to the average 
flow. The transformed region is projected onto the oversegmentation of the previous 
frame and the overlapped regions are determined to be the temporal neighbours. 

axe used to populate an n by n two dimensional histogram. The remaining in­

tensity information from the value plane is then used to populate an n bin one 

dimensional histogram. The HS histogram is then strung out to produce a sin­

gle dimension n • n bin histogram which is concatentated with the V histogram 

to produce a one dimensional n • n + n bin histogram. This histogram is then 

stored as the appearance observation for a region (Figure 4.8). 

Optical flow information for each frame is used to populate a motion his­

togram for each region in a similar manner. A two dimensional histogram of n 

by n bins is populated with the x and y vector values obtained from the optical 

flow at each pixel. The two dimensional histogram is again strung out into an 

n • n bin single dimension histogram. The resulting histogram is stored as the 

motion observation for a region. 

Models for the foreground object of interest, and the remaining background 

information in a scene, are learned from the M A P labeling of the segmenta­

tion field from the previous frame. The appearance and motion histograms 

constructed for each region are used to construct the model for each of the fore-
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Figure 4.8: A depiction of the histogramming process for a size of n = 10 bins 

over an entire image. On the top, the image with its final one dimensional H S V 

histogram below. In the middle, the two dimensional HS histogram of the image with 

the one dimensional V histogram beside. On the bottom, the final concatenated H S V 

histogram. 
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ground and background labels. The histograms from all regions whose maximal 

probability corresponds to a particular label are added together to create an 

aggregate appearance and motion histogram model for that label. 

An appearance history is kept over the last five frames to reduce the effects 

of spurious labelings in a single frame on the labeling of subsequent frames. 

At the same time, the adaptive appearance model allows for changes in the 

appearance of the object being tracked. The histograms from these past five 

frames are added together and subsequently normalized to create the appearance 

model used for comparison. No similar such model history is used for motion as 

similar assumptions cannot be made about object movement, since it is more 

unpredictable and less likely to be consistent over time. 

4.4 The CRF Energy Functions 

Once the optical flow has been calculated, the image has been oversegmented 

and the segments have been processed for appearance and motion data, it re­

mains to define the CRF energy functions and performance of the inference step. 

These energy functions, used to represent both spatial and temporal smooth­

ness over labels, as well as likelihoods for observed data on both a single and 

pairwise site basis, are detailed below. 

The single site potential function for temporal label smoothness at site i is 

defined as follows: 

<t>? = E ^ M O . s t - i C T i ) ) 
jeTi 

= - * ( * , ( * ) - s t - i ( j ) ) ) ] - (4-2) 

Again, T; is the set of temporal neighbours from field x t _ i of site i in field x t . 

As can be seen, this function is used to enforce a pairwise interaction between 

the labels of a site i and its temporal neighbours j € Tj. The Kronecker delta 

function, 5(-), allows this potential function to reward a site with a labeling 
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that matches that of its temporal neighbours by giving it a lower value, which 

of course results in a higher probability for a configuration containing that 

labeling. The pairwise site potential function for spatial label smoothness is 

implemented as 

v# = ^(st(o.stO')) 
= a2{l - 6(xt(i) - xt-iij))). (4.3) 

Here, the effect of the Kronecker delta function is again used to reward 

labelings that result in similar labels between spatial neighbours with a lower 

energy. In a sequence of images oversegmented as described by the process in a 

previous section, this should generally apply to both situations. The parameters 

ct\ and a2 allow us to weight the importance of spatial vs. temporal smoothness 

between labels. In this work, aa<i > 0, resulting in what is referred to a the 

"ferromagentic" case in the statistical physics literature. 

The single and pairwise site potentials for the likelihood are separated into 

those for motion (mt) and appearance (at). The reasonable assumption that 

motion and colour, given the segmentation field, are conditionally independent 

is made (the colour of an object should not affect the way it moves). This allows 

the likelihood to be factored into separate motion and appearance likelihoods. 

P(yt|xt) = p(at,mt|xt) 
= p(at|xt)p(mt|xt) (4.4) 

This in turn results in additive single and pairwise potentials. The single 

site potentials are based on a distance measure for the observed data from the 

motion and appearance model for each label. 

= <f>yt(yt(i)\xt(i)) 

= 4>yt{mt(i)\xt(i))+cf>y>{at(i)\xt(i)) 



Chapter 4. Implementation 60 

= b(mt(i),Xt(i)) + b{at{i),xt{i)) (4.5) 

Here, mt(i) refers to the motion observed at the region corresponding to 

site i in the field at time t, while at(i) refers to the appearance. The term 

b(mt (i), xt (i)) refers to the similarity of the observed motion to what is expected 

of the motion model for a given labeling at site i, while the term b(at(i),xt(i)) 
refers to the appearance similarity with the appearance model. Labels for which 

the observations are closer to its model are rewarded with a lower energy through 

the assignment of a smaller similarity value. Since the motion and appearance 

observables and models are all represented as histograms, the similarity function 

&(•) was chosen in this case to be a metric employing the Bhattacharya coefficient 

The Bhattacharya coefficient is an approximate measurement of the amount 

of overlap between two statistical samples. The coefficient often used as a mea­

sure of similarity between the two samples being considered. Typically, the 

samples being compared are continuous probability distribution functions. De­

termining the coefficient requires that these PDFs first be discretized into a 

prespecified number of partitions so that a sum can be performed in the place 

of an integration. In this case, the PDFs have already been discretized into 

histogram-based appearance/motion observations and models. 

Calculating the Bhattacharya coefficient essentially amounts to a rudimen­

tary form of integration of the overlap of the two samples. The number of 

members of each sample in each bin of the discretization is used in the following 

formula: 

Here the sample histograms are A and B, where n is the number of bins, 

and Ai, Bi are the number of entries of A and B in the i'th bin. 

As can be seen, this quantity is larger when corresponding bins in each 

histogram have more entries. It can be subject to discretization error, and 

as a result, the choice of number of bins for the histogram can effect the its 

[20]. 

n 

(4.6) 
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performance. Too few bins will lose accuracy by over-estimating the entries in 

corresponding bins. Too many bins will lose accuracy by creating bins with no 

entries despite being next to well populated bins just a single step away. The 

the quantity will be 0 if there is no overlap at all due to the multiplication by 

zero in every bin. For normalized histograms, this quantity is exactly 1 for a 

perfect match. The the metric we use is simply A / 1 — D(A, B) for normalized 

histograms. 

The pairwise potentials are based on the same distance measure between 

observations given the similarity between labels. 

The Kronecker Delta function is again used to reward label configurations 

for neighbouring sites which have similar motion when their labels are similar. 

Since motion is represented as a histogram, the Bhattacharya coefficient is again 

used as a similarity measure between the motion observations of each region. 

Since appearance similarities have already largely been exploited by the over-

segmentation process, no appearance term is included in the data dependent 

pairwise potentials. Similarly to the label smoothing potentials, parameters Q\ 

can be included to weight relative importance of pairwise motion characteristics. 

Again, as for a.\ and a^, 3\ > 0. 

In addition to the above potential functions and parameters is the weight 

associated with the border between each pair of regions. Each pairwise potential 

is subsequently multiplied by this border weight determined during the segmen­

tation step to affect the interaction between neighbouring regions appropriate 

to the extent to which they border. Similarly, the temporal smoothness poten­

tial (eq 4.2) is weighted according to the extent to which the region in question 

overlaps each of its temporally neighbouring regions as determined during the 

field construction. 

V# = ^(»t(0,yt0')kt(i),x t0')) 

= ipVt(mt(i),mt{j)\xt(i),xt(j)) (4.7) 

= 3i • b(mt(i),mt(j)) • 5(xt(i) - xt-i(J)) (4.8) 
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Node and pairwise potentials are calculated and used in the mean field in­

ference step as described in the theory section. The initial distribution over the 

labels for each node is set to be equal across labels. The mean field update is 

performed until convergence of the Gibbs Free energy to a tolerance of 10~ 3, 

with a maximal allowance of 200 iterations. The resulting label distributions at 

each node are used to determine an appearance mask for the object being seg­

mented. The regions represented by nodes whose object label is maximal in its 

distribution are flagged as belonging to the object and the pixels comprising the 

region can maintain their original appearance. The pixels belonging to regions 

whose label distributions indicate otherwise are set to 0. 
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Results 

This section presents some of the results obtained through experiments with 

various implementations of the proposed system. It shows a demonstration 

of the ability of the proposed method to distinguish between interacting fore­

ground objects, or moving objects within a scene in the presence of a dynamic 

background. It also compares different segmentation methods in the presegmen-

tation step, illustrating the effects of choosing more expensive oversegmentations 

over cheaper ones. It concludes with a comparison against a leading pixelwise 

method with respect to the accuracy of the classification of pixels in the image 

as belonging to an object of interest. 

5.1 Presegmentations 

The presegmentation step is essentially separate from the labeling step, and 

allows for different methods to be plugged in to this part of the system. The 

purpose of this section is to validate the choice of the watershed segmentation 

presented in the implementation section. It shows a comparisons of different 

oversegmentation options over a test sequence; the well-known normalized cuts 

for image segmentation [36], the relatively inexpensive watershed segmentation, 

and a simple grid segmentation based on 10x10 image patches. Each of these 

segmentation methods was substituted into the presegmentation step and a field 

was constructed over the regions as outlined in the implementation section. 

A challenging test sequence was created with interacting foreground objects 

and illumination artifacts (shadows and specularities). Each frame was labeled 

with the ground truth segmentation containing the object of interest. In this 
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Figure 5.1: Examples of framewise oversegmentations from the mug test sequence. 
On the left, a watershed segmentation of approximately 200 segments. In the middle, a 
normalized cuts segmentation of 200 segments. On the right, a patchwise segmentation 
of the image into 10 by 10 pixel squares. 

case, the object of interest was a hand gripping a coffee mug as it occluded and 

was occluded by a box during its movement throughout the sequence. 

To allow for the fairest comparison, approximately the same number of seg­

ments were aimed for from each of the oversegmentation methods. A standard 

normalized cuts oversegmentation was performed on the grayscale image of each 

frame resulting in 200 segments. A small image size of 160x120 was adopted 

to reduce computational cost, but the available M A T L A B implementation still 

required on the order of minutes per frame. The patch-based oversegmentation 

divided the image into 192 equal size square patches of 10x10 pixels each, so as 

to produce a comparable number of regions. The number of segments produced 

by the watershed segmentation algorithm can not be controlled directly as it is 

determined by the shape of the gradient landscape generated on an image by 

image basis. However, the amount of smoothing over the initial image directly 

affects the number of segments produced. The watershed algorithm was run 

with an initial smoothing parameter of a = 2, which was found to also result 

in approximately 200 regions per frame. The entire watershed process, in our 

matlab implementation, took a small fraction of a second. In the interests of 

a fair comparison, only the grayscale image information was used in the water­

shed segmentation, instead of the full colour and motion data. Examples of the 

segmentations are shown in Figure 5.1. 
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Figure 5.2: Frame by frame percentage misclassification of pixels error for the 100 

frame mug test sequence. The watershed segmentation is generally the best performer, 

followed by normalized cuts and the patch-based segmentations. On the right end of 

the plot are the mean errors for each segmentation variation illustrated in crosses of 

the corresponding colour. 

W i t h the g r id and normal ized cuts approaches, the number of segments 

appropriate for an image must be forced upon the resul t ing segmentation. In 

the case of normal ized cuts, this w i l l produce superfluous boundaries when this 

number is too large, and w i l l result i n missed boundaries when this number is 

to smal l . In the patch based approach, the g r id size must be chosen as wel l . 

Regardless of the precise discret izat ion chosen, there w i l l necessarily be patches 

spanning boundaries as image informat ion is completely ignored. T h e watershed 

approach, on the other hand, allows for the appropriate number of segments to 

be chosen based upon the available image informat ion. 

A l l weights affecting the single and pairwise potentials as described i n the 

implementa t ion section were set at un i ty across a l l segmentation variat ions. A s 

can be seen from F igure 5.2, there is not much difference i n the overall accuracy 

of the final segmentation based on the different segmentation methods. However, 

the magni tude of the pixel-wise misclassification errors i n the video segmentation 

are quite smal l ( typica l ly less than 5% as can be noted from F igure 5.2, and 
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error false positive false negative 

Appearance/Motion Only 46.1 36.7 9.33 

Spatial Smoothness 41.1 32.4 8.73 

Temporal Smoothness 6.85 0.25 6.60 

Full Spatiotemporal C R F 4.00 1.00 3.01 

Table 5.1: This table shows the average error over the test sequence for the 

different variations of the model. Error is in the percentage of misclassified 

pixels. Each row describes the error as more constraints are added to the model. 

in the following subsections), and as a result, even small improvements in the 

error on the order of 1% or 2% should be noted. Not surprisingly, the coarser 

patch-based segmentation which ignores any boundary information in the image 

is generally the worst performer. The normalized cuts segmentation, although 

much more expensive, performs very closely to the relatively cheap watershed 

segmentation. 

5.2 Model Complexity 

This section illustrates the improvements in accuracy afforded by the increases in 

complexity of the video segmentation model. A comparison over a test sequence 

is made between different variations of the model. In each case, the bin size for 

the histogram models of appearance and motion was set to n — 10 bins. In 

each case the sequence was initialized with the ground truth labeling for the 

first frame. Labeling accuracy is presented in Figure 5.2 and table 5.1. 

The first variation involves only colour and motion observations as compared 

to the colour and motion models learned for the foreground and background 

each frame. That is, any label or data dependent interactions between sites 

were omitted and the temporal label smoothness constraint was not included 

in the potential functions. The test sequence shows that error can be extreme 

when appearance and motion are not necessarily discriminative in particular 
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Figure 5.3: Frame by frame percentage misclassification of pixels error for the 150 

frame I U test sequence. The appearance/motion only ( A M ) and appearance/motion 

with incorporated spatial smoothness ( A M + S ) versions of the model can be seen to 

perform quite poorly on a realistic test sequence. The next version of the model incor­

porating the temporal constraints ( A M + S T ) can be seen to perform quite favourably, 

with the full C R F ( A M + S T C R F ) version described in the previous section outper­

forming all others. On the right end of the plot are the mean errors for each model 

variation illustrated in crosses. 



Chapter 5. Results 68 

frames of the scene. 

The second variation incorporates label smoothing constraints to encourage 

similar labeling of adjacent sites as described in the implementation section, but 

data dependence in pairwise interactions was still omitted. An equal weighting is 

given to both the observables and the label smoothness between regions in terms 

of the energy functions. The results from the test sequence again show that the 

accuracy is still greatly affected when appearance and motion alone cannot be 

counted on to discriminate foreground from background. In fact, in some cases, 

encouraging label smoothness among incorrect labeling can propagate incorrect 

labelings to other sites in the image, drastically increasing the error. 

The third variation incorporates temporal label smoothness into the model 

in sufficiency to discourage incorrect labeling due to ambiguous appearance and 

motion of regions. In this case, temporal consistency was given twice the weight 

of the observable's adherence to object models and the spatial label smoothness, 

as this was found in practice to produce favourable results. The result is a 

marked improvement in accuracy. This can be attributed to the tendency of an 

object to remain consistent temporally between frames and the incorporation 

of the above temporal constraints into the model which encourage such labeling 

behaviour, even in the face of uncertainty concerning appearance and motion. 

The final variation includes the full model as described in the theory and 

implementation sections. The result is a further improvement in accuracy. The 

data-dependent interactions allow for increased support for the similar labeling 

of consistent neighbouring regions. This helps to overcome label smoothness 

in spatial and temporal constraints near the boundaries of objects where the 

tendency might otherwise be to label as background. 

5.3 Robust Object Segmentation 

This section illustrates the ability of the proposed method to handle the interac­

tion of foreground objects, as well as a dynamic background, and still segment 

only an object of interest. This is in contrast to other video segmentation tech-



Chapter 5. Results 69 

niques that rely primarily on the presence of movement to distinguish an object 

of interest from the rest of a scene (e.g.,[10, 42]). 

The model parameters were set equally except for temporal smoothness, 

which was given twice the weight, and the system was given an office scene 

sequence as input where movement not belonging to the object of interest is 

present. The object of interest in this case was the woman in the foreground 

of the scene. A seed region was selected on her face as an initialization to the 

sequence and the subsequent segmentation recorded. 

As can be seen from Figure 5.4, the proposed method is robust to the dy­

namic background in such sequences. The joint motion and appearance models 

used to describe the woman and the rest of the scene allow for a discrimination 

between the object of interest and objects moving in the background. Although 

two other people enter and leave the scene throughout the course of the se­

quence, the segmentation remains generally on the woman in the foreground. 

This can be attributed to the inclusion of the optical flow information and its 

discriminatory power across models when motion differs. This is in contrast to 

methods which rely simply on a learned background model or motion subtrac­

tion to segment a dynamic scene. 

5.4 Comparison to a Pixel-Wise C R F 

This section illustrates the difference in misclassification error between a pix-

elwise C R F and the region-based CPvP proposed in this work. The most ap­

propriate method for comparison is detailed in [46] and was implemented as 

described except for one detail. The models for each frame for the object and 

background were not mixtures of gaussians learned via the adaptive mixtures 

algorithm based upon an E M update step. Details in the paper were insuffi­

cient to recreate the learning process, so instead, non-parametric lookup tables 

were used to learn a discretized probability distribution for each model in each 

frame. This approach has been supported recently in [10], where such models 

were found to give the same performance in a similar setting without having to 
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Figure 5.4: A n illustration of robustness to dynamic backgrounds by using a few 

example frames from a test sequence. The images l a and 2a show frames from the 

original sequence. The images l b and 2b show frames from the segmented sequence 

where the woman is the object of interest. The images l c and 2c show a ground truth 

labeling based on the motion of objects throughout the scene. 
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address to problems typical to learning a generative model. 

Both methods were initialized with the ground truth labeling for the first 

frame. Again the parameters for the region-based approach were set to equal 

except for the temporal weighting which was set to twice the weight of the 

other parameters. The overall weighting scheme described in [46] was adopted 

to determine the relative weights for the appearance vs motion and the spatial 

vs temporal. 

Results ofthe comparison are detailed in Figures 5.5 and 5.6. The reader may 

notice a pronounced difference between the performance of the method on the 

test sequences used here in comparison to those used in the original paper [46]. 

As the same test sequences were unavailable and the authors were unreachable, 

we were unable to reproduce the exact results due to some parametric details 

absent in the original publication. The results produced for this comparison 

are the product of our best guess (and limited patience). While the proposed 

method may clearly outperform [46] on the given test sequences, the comparison 

may not be entirely fair for the above reasons. 

A more qualitative comparison of the segmentations can be seen in Figure 

5.7, where the M A P labelings for two separate frames of the coast sequence 

taken from [46] are illustrated. Included for comparison are the corresponding 

frames for the proposed method using each of the boats in the sequence as an 

object of interest. The M A P labeling between the each object of interest and the 

background were taken and the segmentation applied accordingly. [46] reports 

errors on average of 2.1% for such frames. The proposed method reports errors 

of 4.3% for the depicted frames. Our labeling is able to distinguish the wake 

from the boat, while the pixel-wise method includes the wake as part of the 

smaller boat object. [46] treats such a labeling as correct, however. 

A firm argument can be made to the contrary however. While the wake 

exhibits some motion characteristics that distinguish it from the background, 

its motion and appearance are not really the same as that of the smaller boat. Its 

adjacency to the boat and its dissimilarity from the background have apparently 

caused it to be classified as being part of the boat, when it is in fact not. 
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Figure 5.5: A comparison of the frame by frame error between the pixelwise and 

region-based approaches for the I U test sequence. 

B a r r i n g an o p t i m a l parameter set i n terms of the classification accuracy, the 

rate of convergence of the two methods can s t i l l be examined. A s can be seen, 

the proposed region-based method requires many less i terat ions of the mean 

field update to converge to a solut ion. Cons ider ing the complex i ty of a mean 

field update depends d i rec t ly on the number of nodes and edges i n a graph, this 

can be a substant ia l cost. Reca l l , a mean field update requires an examina t ion 

of each node, and the effects on i t from each of its neighbours: 

bk(xk) = act>(x{k))exp{ £ £ 6 j ( x ( j ) ) In V>(z(*0> z ( j ) ) } i5-1) 
j€Nk x(j) 

For a graph w i t h n nodes and a neighbourhood size of k, over I possible 

labels, this is nkl. In the case of [46], this involves a 320 by 240 node graph 

(a node for each p ixe l i n a 320 by 240 image), w i t h a 25 node neighbourhood. 

T h i s results i n close to 2 m i l l i o n comparisons per i tera t ion. In comparison, 

the proposed region-based approach resulted i n somewhere around 300 nodes 

graph for a 320 by 240 image, and and average neighbourhood size of around 5 

neighbours (these numbers fluctuate from frame to frame and can be affected 

by the parameters used i n the oversegmentation). T h i s results i n about 3000 
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Figure 5.6: A comparison of the number of iterations of mean field updates before 

convergence for both the pixelwise and region-based approaches for the I U test se­

quence. The dashed line indicates the number of iterations before convergence for the 

proposed region-based method. The solid line indicates the number of iterations for 

the pixel-based method. It is clear that the pixel-based method requires many more 

iterations for convergence. 
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Figure 5.7: A comparison of frame labelings for the pixel-wise method of [46] and 

the proposed region based approach. 1(a) and (b) present two frames of the coast 

sequence. 2(a) and (b) depict the labelings for each boat and the background as 

determined by [46]. 3(a) and (b) show the labelings for the proposed approach. 



Chapter 5. Results 75 

comparisons per iteration. 

In conjunction with the reduced number of iterations required for conver­

gence, the savings are obvious. This reduction in the cost of mean field iterations 

is, of course, directly paid for by the cost of the oversegmentation. However, 

depending on the precise oversegmentation scheme (such as the proposed wa­

tershed segmentation), this cost can be relatively small. 
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Chapter 6 

Conclusions and Future 

Work 

We have presented a novel online approach for labeling regions in an image 

sequence to achieve an object based segmentation of video. It combines the 

spatiotemporal filtering ideas presented in [46] within a region based framework. 

Spatial and temporal consistencies are enforced through interactions between 

segments produced by an initial oversegmentation process in each frame of the 

video sequence. The solution is expressed in terms of an optimal labeling as 

determined by a mean field approximation in a conditional random field based 

upon these interactions. In the process, we have also introduced a modification 

to the classic watershed algorithm to take advantage of motion information, in 

the form of optical flow, during the initial oversegmentation process. 

We have shown results which validate the choice of such a simple overseg­

mentation scheme even when much more complex and popular schemes are 

available. We have also shown the validity of the choices in the model in terms 

of an increased accuracy with increased complexity. Finally, a comparison to 

an appropriate pixel-based segmentation method is made to illustrate the com­

parable error rates and where a region-based approach can be advantageous. 

We have illustrated a generalization to the filter presented in [46] that applies 

to a general field model based upon regions in an image obtained from an initial 

oversegmentation step. This model is shown to have much less complexity than 

a corresponding pixel-wise model, and has the freedom to change in structure 

from frame to frame to appropriately fit the data. The cost of inference in the 
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resulting filter is greatly reduced, both in the number of iterations required for 

convergence, as well as the cost of each iteration. The resulting segmentation 

of an image sequence is shown to have comparable accuracy to that produced 

by similar pixel-wise methods. 

Avenues exist for exploration of future work. Parameter learning for the 

weights affecting the potential functions could be employed. However, a static 

parameter weighting learned over the duration of multiple sequences might not 

be appropriate for the challenges presented in novel seqeunces. More appro­

priate might be some form of adaptive weighting scheme based upon the data 

observations each frame. Frames in which motion or appearance is uninforma-

tive can have the appropriate parameter weighting adjusted. 

Additionally, while labels for regions in the interior of an object are seldom 

misclassified, the regions occupying object boundaries are much more suscep­

tible to misclassification. This is a direct side effect of the label smoothness 

constraints adopted in such approaches. While this effect can be addressed 

somewhat through the adjustment of the parameter that weights the importance 

of label smoothness, some notion of shape similarity between frames might also 

be introduced. This might help to avoid the "nicker" around object boundaries 

in the video segmentation resulting from the misclassification of background 

bordering regions. 

There is always a choice over which observable features to use. Currently, a 

simple histogram-based approach to region descriptors has been employed and 

found to be quite effective. Other options for region-based measures and models 

can be explored which may be more discriminative. However, the more complex 

the descriptors, the higher the cost of computation. This is of concern when 

dealing with the amounts of data involved with video segmentation. 

Finally, the possibility exists of employing other approximation techniques 

to the inference problem. Currently, mean field approximation is used as the 

inference engine and the filter is derived to accommodate it. Other approx­

imation techniques for inference exist, such as Loopy Belief Propagation, ex­

pectation propagation, Monte Carlo, conditional mean field, and higher order 
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approximate distributions for use in the variational scheme. The application of 

such approximation schemes could be explored and re-derivations of the filter 

performed in order to accommodate them where necessary. 
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