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Abstract 
Although examples play a key role in cognitive skill acquisition, research demonstrates 
that learning outcomes are heavily influenced by the meta-cognitive skills students bring 
to bear while using examples. This dissertation involves the design, implementation and 
evaluation of the Example Analogy (EA)-Coach, an Intelligent Tutoring System that 
provides adaptive support for meta-cognitive skills during a specific type of example-
based learning known as analogical problem solving (APS, using examples to aid 
problem solving). To encourage the targeted meta-cognitive skills, the EA-Coach 
provides multiple levels of scaffolding, including an innovate example-selection 
mechanism that aims to choose examples with the best potential to trigger learning and 
enable problem solving for a given student. 

To find such examples, a key factor that needs to be taken into account is 
problem/example similarity, because it impacts the APS process. However, full 
understanding has yet to be reached on how various levels of similarity between a 
problem and an example influence students' APS behaviours and subsequent outcomes. 
Here, we provide a novel classification of problem/example differences and hypotheses 
regarding their impact on APS. In particular, we propose that certain differences between 
a problem and an example may actually be beneficial in helping students learn from APS, 
because they promote the necessary meta-cognitive skills. However, given the great 
variance in terms of knowledge and meta-cognitive skills that exists between students, a 
key challenge with our approach is how to select examples that provide enough 
scaffolding for different learners. Our solution to this challenge involves a two-step 
decision-theoretic process. First, the EA-Coach student model, which corresponds to a 
dynamic Bayesian network, is used to predict how a candidate example will help a 
student solve the problem and learn from doing so. Second, the model's prediction is 
quantified via a utility function, which assigns an expected utility to the candidate 
example. This process allows the framework to present to the student the example with 
the highest expected utility for enabling learning and problem solving. We evaluated this 
approach via a controlled laboratory study, which demonstrated the EA-Coach's 
pedagogical effectiveness for supporting problem solving and triggering meta-cognitive 
skills needed for learning during APS. 
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C h a p t e r 1 

Introduction 

This dissertation research involves the design, implementation and evaluation of an 

Intelligent Tutoring System that fosters meta-cognitive skills needed for analogical 

problem solving (APS), that is, using examples to aid problem solving. 

1.1 Background and Motivation 

An example is a problem whose solution is given to the student, along with the solution's 

derivation. Research shows that students rely heavily on examples during problem 

solving when learning a new skill [Anderson, Farrell et al., 1984; Pirolli and Anderson, 

1985; Reed, Dempster et al., 1985; LeFevre and Dixon, 1986; Novick, 1995; VanLehn, 

1996; VanLehn, 1998], and that examples are more effective aids to problem solving than 

general procedures alone [Reed and Bolstad, 1991] or hints on the instructional material 

[Ringenberg and VanLehn, 2006]. However, research in cognitive science also indicates 

that how beneficial examples are for supporting learning strongly depends on a student's 

ability to apply the relevant meta-cognitive skills [VanLehn, 1998; VanLehn, 1999]. 
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Meta-cognition refers to "one's knowledge concerning one's own cognitive processes and 

products or anything related to them" [Flavell, 1976]; more informally, meta-cognition 

has been referred to as "thinking about thinking". Meta-cognitive skills are therefore 

domain-independent abilities that are an important aspect of knowing how to learn in 

general. Unfortunately, research shows that not all students can apply meta-cognitive 

skills effectively, during either APS or other instructional activities such as studying 

examples, which hinders learning outcomes [Chi, Bassok et al., 1989; Renkl, 1997; 

VanLehn, 1998; VanLehn, 1999]. Two meta-cognitive skills that are relevant to APS 

include: 

Min-analogy: solving the problem on one's own as much as possible instead of by 

copying from examples, and referring to examples only to resolve problem-solving 

impasses [VanLehn and Jones, 1993a; VanLehn, 1998]. 

Explanation-based learning of correctness (EBLC): learning new domain principles 

via a form of self-explanation (the process of explaining and clarifying instructional 

material to oneself [Chi, Bassok et al., 1989; Bielaczyc, Pirolli et al., 1995; Renkl, 

1999]). EBLC involves relying on one's existing common sense or overly general 

knowledge to explain how an example solution step is derived [Chi and VanLehn, 

1991; VanLehn, 1992; VanLehn , 1999]. 

Min-analogy and EBLC are complementary meta-cognitive skills that are beneficial for 

learning from APS: min-analogy allows students to strengthen their knowledge through 

practise and discover knowledge gaps, while EBLC can be used to fill these gaps. 

Unfortunately, some students prefer more shallow processes that hinder learning, such as 

copying as much as possible from examples without any proactive reasoning on the 

underlying domain principles (e.g., [VanLehn, 1998; VanLehn, 1999]). For this reason, in 

this thesis we aim to devise computer-based support to help students learn effectively 

from APS by fostering min-analogy and EBLC. 
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1.2 An Intelligent Tutoring System for APS: the Example 
Analogy (EA)-Coach 

Intelligent Tutoring Systems (ITS) are computer applications that employ artificial 

intelligence techniques to instruct students in an "intelligent way" [VanLehn, 1988]. 

Although there isn't an accepted definition of the term "intelligent", a characteristic 

shared by many ITS is that they possess knowledge and reasoning capabilities to adapt 

the instruction to the needs of each individual student. This functionality is motivated by 

research demonstrating that tailored, one-on-one instruction is more effective in 

improving learning outcomes than standard classroom instruction [Bloom, 1984]. To 

provide tailored instruction, a traditional ITS architecture contains the following three 

components [Shute and Psotka, 1996]: 

• The domain model represents/reasons about the domain. 

• The tutoring model represents/reasons about pedagogical strategies. 

• The user model represents/reasons about the user. In the ITS community, a user 

model is also commonly referred to as a student model, a term we adopt in this 

thesis. 

The ITS developed for this dissertation work is referred to as the Example Analogy (EA)-

Coach. The EA-Coach aims to support effective APS by fostering the two meta-cognitive 

skills we introduced above, min-analogy and EBLC. The EA-Coach's target instructional 

domain is introductory Newtonian physics. We chose physics because it is one of the 

domains for which there is a well-recognized need for innovative educational tools, due 

to the extreme difficulties that students often encounter in bridging theory and practice. 

These difficulties arise because students struggle making the leap from theory acquisition 

to effective problem solving, and/or because they may learn to solve problems effectively 

without grasping the underlying theory [Halloun and Hestenes, 1985]. 

The design of the EA-Coach is based on cognitive science research, allowing the tutor to 

target known student shortcomings during APS. In particular, cognitive science findings 

show that students have difficulty selecting appropriate examples and applying example 
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solutions effectively [Reed, 1987; Novick, 1988; VanLehn, 1998]. Thus, the EA-Coach 

provides students with 

• adaptively selected examples that are chosen to encourage min-analogy and EBLC; 

• multiple layers of scaffolding embedded in its interface aimed at encouraging 

students to use the selected example effectively during problem solving. 

In order to find appropriate examples, a key factor that needs to be taken into account is 

the similarity between the problem the student is working on (target problem from now 

on) and the selected example. This factor has substantial impact on the APS process. On 

the one hand, differences between the target problem and the example may hinder both 

learning and problem-solving success during APS, if students lack the skills to bridge 

these differences [Novick, 1995]. On the other hand, while examples that are highly 

similar to the target problem support problem-solving success, they may interfere with 

learning, because they allow the solution to be generated by copying from the example 

[Reed, Dempster et al., 1985]. Unfortunately, there is not much understanding of how 

different levels of similarity influence students' APS behaviors. We argue that certain 

problem/example differences may actually be beneficial to learning because they promote 

the necessary APS meta-cognitive skills. This assumption is embedded in the EA-

Coach's example-selection process, and one goal of this research is to test it via an 

empirical evaluation of the EA-Coach. 

A key challenge with our approach is how to balance learning and problem-solving 

success for different students. That is, the goal is to find examples that are different 

enough from the problem to discourage copying and trigger min-analogy and EBLC, but 

still provide enough scaffolding to help students achieve problem-solving success. Our 

solution to this challenge is a decision-theoretic approach that allows the EA-Coach to 

adaptively select examples tailored to each student's specific needs. The approach entails 

• incorporating relevant factors (student knowledge and meta-cognitive skills, as well 

as problem/example similarity) into a probabilistic student model that corresponds 

to a dynamic Bayesian network [Dean and Kanazawa, 1989], and using the model 
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to predict how a student will solve the problem and learn from doing so in the 

presence of a candidate example; 

• using a utility function to quantify the model's prediction in terms of the candidate 

example's expected utility for learning and problem-solving success. 

The empirical findings from our evaluation of the EA-Coach validate this approach. In 

particular, the results demonstrate that the EA-Coach's adaptively selected examples 

trigger the targeted meta-cognitive skills needed for learning, while supporting successful 

problem solving. 

1.3 Thesis Contributions 

The contributions of this dissertation are to the Intelligent Tutoring Systems, User 

Modeling and Cognitive Science communities [Muldner and Conati, 2005a; Muldner and 

Conati, 2005b; Conati, Muldner et al., 2006; Muldner and Conati, 2007], as follows: 

1. We provide a novel Intelligent Tutoring System that fosters the meta-cognitive 

skills needed for effective APS by selecting examples with different levels of 

similarity to the problem, tailored to a student's needs. To date, Intelligent Tutoring 

Systems that support APS via example selection choose the example with a 

solution most similar to the target problem's solution, and do not target students' 

meta-cognitive skills (e.g., [Weber, 1996b; Guin-Duclosson, Jean-Duabias et al., 

2002]). Although some Intelligent Tutoring Systems do target meta-cognitive skills 

related to those supported by the EA-Coach (e.g., [Conati and VanLehn, 2000; 

Aleven, McLaren et al., 2004]), none do so during APS. Consequently, the design 

of these tutors does not need to account for an example's impact on problem 

solving. 

2. We provide a probabilistic user model that infers how problem/example similarity 

and student characteristics impact learning and problem-solving outcomes during 

APS. Although there has been substantial work on devising probabilistic user 

models to assess and/or predict learning and/or problem solving outcomes [e.g., 
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Pek and Poh, 2000; Mayo and Mitrovic, 2001; Conati, Gertner et al., 2002; Murray, 

VanLehn et al., 2004; Ting, Zadeh et al., 2006], all these models are embedded into 

ITS that support instructional activities different from APS. 

3. Through the evaluation of the EA-Coach, we provide insight on the impact of 

problem/example similarity on student APS behaviors and subsequent learning and 

problem solving outcomes. Work in the cognitive science community has 

investigated how students solve problems and learn from doing so during APS 

(e.g., [Reed, Dempster et al., 1985; Novick, 1988; VanLehn, 1998]). However, to 

date there has been a lack of understanding on how similarity influences APS 

behaviors and subsequent outcomes, and whether some examples can actually help 

students to both solve the target problem and learn from doing so. 

1.4 Thesis Outline 

In chapter 2, we first describe the cognitive science background on APS. We then show 

how we leveraged this research to generate our own hypotheses on the impact of student 

characteristics and problem/example similarity on APS outcomes. In chapter 3, we 

describe a series of pilot evaluations we conducted to gain some preliminary insight into 

whether our hypotheses were generally appropriate. The pilot evaluations were also used 

to refine the design of the EA-Coach interface, which along with the system architecture 

is described in chapter 4. In chapter 5, we present details on the computational 

mechanisms enabling the EA-Coach to provide students with adaptively selected 

examples: In chapter 6, we describe the full evaluation that we conducted to evaluate the 

pedagogical effectiveness of the EA-Coach. We then present the related work from the 

Intelligent Tutoring Systems community in chapter 7. Finally, we conclude in chapter 8 

and offer suggestions for future work. 
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C h a p t e r 2 

Cognitive Science 
Foundations 

In this chapter, we begin by describing the cognitive science background that has shaped 

the design of the EA-Coach. Although there is considerable cognitive science research on 

APS, full understanding has yet to be reached on the impact of student characteristics and 

problem/example similarity on learning and problem solving outcomes. In the latter 

portion of the chapter, we show how we leveraged cognitive science findings to propose 

our own hypotheses on the relationship between similarity, student characteristics and 

APS outcomes, as described in [Muldner and Conati, 2005]. These hypotheses are 

embedded into the computational mechanisms that deliver the EA-Coach's instructional 

support, which are described in subsequent chapters. 
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2.1 Cognitive Science Background 

APS can be characterized by two phases: (1) example selection, i.e., choosing an example 

and (2) example application, i.e., using the example to solve the target problem 

[VanLehn, 1998]. If students select appropriate examples and apply example solutions 

effectively during problem solving, then APS provides opportunities for them to 

strengthen existing and acquire new domain knowledge (e.g., [Anderson, 1993; VanLehn 

and Jones, 1993a; VanLehn, 1998; VanLehn, 1999]. Unfortunately, difficulties that 

students experience in either or both the selection and application phases can hinder 

learning and problem solving. 

2.1.1 Example-Selection Phase 

The example-selection phase involves retrieving an example that is similar to the target 

problem and therefore helpful during problem solving. Problem/example similarity is 

typically characterized using two dimensions, superficial (also referred to as surface) and 

structural [Chi, Feltovich et al., 1981; Novick, 1988; Bassok, Wu et al., 1995], defined as 

follows: 

• Superficial similarity is determined by comparing features that appear in the 

problem/example specifications and/or solutions but that are not part of the domain 

knowledge needed to derive the respective solutions. 

• Structural similarity is determined by comparing the domain knowledge needed to 

derive the problem and example solutions. 

If an example is not structurally similar to the target problem then it is not appropriate for 

APS, because its solution cannot be applied to generate the problem solution (as we will 

discuss in section 2.1.2.3). Unfortunately, students have a tendency to rely heavily on 

superficial similarity during example selection, without considering structural similarity 

[Holyoak and Koh, 1987; Novick, 1988; Reed, Willis et al., 1994]. Novick and 

colleagues [Novick, 1988; Novick and Holyoak, 1991] showed that when 'distracter 

examples' are available, i.e., examples that are only superficially similar to the target 
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problem, students selected them over structurally-appropriate but superficially dissimilar 

examples. When students only have access to examples that are both superficially and 

structurally similar to the target problem, then reliance on superficial similarity leads 

them to select maximally similar examples that are structurally appropriate [Reed, Willis 

et al., 1994]. However, students don't learn effectively from using highly similar 

examples, as we will describe in section 2.1.2.3. Students' reliance on superficial 

similarity also means that they may fail to notice when a structurally appropriate example 

is helpful, if the example is not superficially similar to the target problem [Holyoak and 

Koh, 1987]. Thus, in general, students'' reliance on superficial similarity hinders their 

ability to find appropriate examples during APS. 

Reliance on superficial similarity during example selection is particularly common 

among novice students who have low domain expertise, while students with higher 

domain expertise are more likely to take into account structural similarity during example 

selection [Novick, 1988]. The impact of expertise on students' similarity judgments has 

also been demonstrated in studies involving problem categorization, where students 

classified mathematics problems according to common mathematical structure [Silver, 

1979; Chi, Feltovich et al., 1981; Schoenfeld, 1982; Quilici and Mayer, 1996]. 

2.1.2 Example-Application Phase 

The example-application phase involves applying the selected example's solution to 

generate the target problem's solution. How students do so and what they learn as a result 

has been the topic of substantial research, which we now describe. 

2.1.2.1 Application Phase: ACT-R 

John Anderson's Atomic Components of Thought-Rational (ACT-R) is a theory of human 

cognition. ACT-R includes the 'analogy mechanism' as a fundamental mechanism of 

human learning [Anderson and Thomson, 1989; Anderson, 1993]. The mechanism is 

derived from studies on APS in the LISP programming domain. It encodes how to (1) use 

the example solution to generate the problem solution and (2) generalize from doing so to 

learn a new domain rule. 
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P r o b l e m 

Write a LISP function to rnultiply ^ andti. 
The LISP operator for multiplying is 
' * ' •* 

S o l u t i o n : 

/ 6 ) 

•— E x a m p l e 

Write a LISP function to aTid \ and^. 
The LISP operator for adding is 

t 
11 

S o l u t i o n : 

(+ 2 3) 

Figure 2-1: (1) Mapping process for a LISP problem & example (see dotted lines) and (2) 
Application of mapping to generate the '*' in the problem solution (see solid 
lines/corresponding dotted line, bottom) 

I f the goal i s to w r i t e a LISP f u n c t i o n 
and the f u n c t i o n a p p l i e s arithmeticQperation to numl & num2 
and the LISP operator f o r arithmeticOperation i s Op 

t h e n 
(Op numl num2) 

Figure 2-2: Rule inferred from LISP problem/example in figure 2-1 

Using the example to generate the problem solution involves the following two 

processes: 

1. Mapping: finding a correspondence between the problem/example constants in the 

respective specifications. Figure 2-1 shows the mapping between a LISP 

problem/example specifications via dotted lines. 

2. Application of mapping: transferring the example solution over to the problem, 

relying on the mapping to replace example-specific constants by those needed for the 

problem solution. Figure 2-1 shows how the mapping guides the replacement of the 

example constant '+' by the constant in the problem solution. 

The mapping and application processes are generalized by creating a rule, where 

• the rule's antecedent is the conjunction of the elements making up the 

problem/example specifications (in figure 2-2, see z/part of the rule inferred from 

the problem/example in figure 2-1); 

10 



• the rule's consequent is the example solution (in figure 2-2, see then part of the rule 

inferred from the problem/example in figure 2-1); 

• constants involved in the mapping phase are replaced by variables (e.g., in figure 

2-2, numl and num2 replace constants 7/6 and 2/3 from the problem/example in 

figure 2-1, while Op replaces constants '*' and '+'). 

2.1.2.2 Application Phase: Impact of Meta-Cognitive Skills 

VanLehn's work on the role of examples in skill acquisition focuses on investigating how 

learning outcomes are influenced by individual differences between students, and 

particularly the meta-cognitive skills that students bring to bear [VanLehn, 1992; 

VanLehn and Jones, 1993a; VanLehn, 1998; VanLehn, 1999]. The research is based on 

protocol analysis of students studying Newtonian physics examples and subsequently 

solving problems with access to the examples. 

During APS, students have the choice of generating the problem solution on their own or 

by copying it from the available examples. Copying is the transfer of the example 

solution over to the problem with no changes or minor changes. An example of a minor 

change is the substitution of example constants by those needed for the problem solution, 

a process VanLehn refers to as transformational analogy. Figure 2-4 illustrates how, 

given the physics problem/example in figure 2-3, transformational analogy can be used to 

transform a solution step in the example to make it suitable for the problem solution. 

Note that this process is analogous to the mapping/application processes in ACT-R. 

However, while this process is associated with learning in ACT-R, in VanLehn's work it 

is associated with a lack of learning, as we will describe shortly. 

How much a student copies during APS characterizes a meta-cognitive skill that 

VanLehn identifies as relevant to APS. Specifically, this meta-cognitive skill is min-

analogy: generating the problem solution through the application of one's own 

knowledge rather than by copying, relying on examples primarily to overcome impasses 

that block problem-solving progress. Therefore, students who have a min-analogy 

tendency prefer to minimize copying from examples. Min-analogy is beneficial to 

learning for two reasons. 



Problem: A workman pushes a 50 kg. block along the floor. He pushes it hard, 
with a magnitude of 120 N, applied at an angle of 25 degrees as shown. Find the 
normal force on the block. 

Solution: 
[step 1] To solve this problem, we apply Newton's Second Law. 
[step 2] We choose the block as the body. 
[step 3] There is a normal force N on the block that is due to the floor, 
[step 4] It is directed straight-up (90 degrees CCW from the horizontal). 

Example: A person pulls a 9 kg. crate up a ramp inclined 30 degrees to the 
horizontal. The pulling force is applied at an angle of 30 degrees CCW from the 
horizontal, with a magnitude of 100N. Find the normal force on the crate. 

Solution: 
[step 1] To solve this problem, we apply Newton's Second Law. 
[step 2] We choose the crate as the body. 
[step 3] There is a normal force N on the crate that is due to the ramp, 
[step 4] It is directed 120 degrees CCW from the horizontal. 

Figure 2-3: Physics problem & example 

Problem Specification 

A workman pushes a 50 kgTblock) along the 
floor. He pushes it hard, witrupftagnitude of 
120 N . applied at an angle of 35 degrees as 
shown. Find the normal force the block 

i 
i 

Solution: i 
+ r 31 

We choose the block as the bodv 

Example Specification 

A person pulls a 9 kg(crate)up a ramp inclined 30 
degrees to the horizorrtaT/ffhc pulling force is 
applied at an angle of 30 degrees C C W from the 
horizontal, with a magnitude of LOON. Find the 
normal force on the crate, i 

i 
Solution: i 

[1] 
step 1] To solve this problem, we apply 

Newton's Sccohd Law, 
'[step 2] We choose the(crate) as the body 

| step. There is a normal force N on (he erase. 
[step 4j it is directed 120 CCW from the horizontal. 

To transform example solution step 2 to make it suitable for the problem: 
[1] Isolate the example constant 'crate' in the example specification 
[2] Find the corresponding constant 'block' in the problem specification 
[3] Generate the step in the problem solution, replacing 'crate' by 'block' 

Figure 2-4: Illustration of transformational analogy applied to the problem/example in figure 2-3 
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First, if students solve problems on their own, they strengthen their existing domain 

knowledge through practice. Like Anderson, VanLehn proposes that procedural 

knowledge is represented by if-then rules. Each time a student applies a rule on her1 own 

without copying, she solidifies that rule in her memory. This increases the likelihood that 

she will remember the rule the next time it is needed, which increases the chances of 

problem-solving success (provided that the student has learned a correct rule). Second, 

min-analogy provides students with opportunities to encounter problem-solving 

impasses, which expose missing knowledge (referred to as knowledge gaps by 

VanLehn). Gap discovery is an important prerequisite to learning domain principles, 

since once a student becomes aware of a gap, she may take action to repair it. 

Unfortunately, although some students prefer min-analogy, others have the opposite 

tendency, i.e., a max-analogy tendency. Students with a max-analogy tendency 'turn 

control over to the example', maximizing copying without trying to generate the solution 

on their own, even if they have the knowledge to do so. Thus, these students miss the 

opportunity to strengthen their knowledge through practice and discover their knowledge 

gaps. Of course, gap discovery is not sufficient to learn new domain principles. VanLehn 

postulates that learning is accomplished through a form of self-explanation referred to as 

Explanation-based learning of correctness (EBLC) [Chi and VanLehn, 1991; VanLehn, 

1992; VanLehn, 1999]. EBLC is a meta-cognitive skill that involves using one's existing 

common sense and overly general knowledge, in conjunction with domain rules, to infer 

new rules that explain how a given example solution step is derived. To demonstrate how 

EBLC works, figure 2-5 shows how it can be used to explain the existence of the normal 

force mentioned in step 3 of the example in figure 2-3. Specifically, the student relies on 

her existing 

1. common sense knowledge to infer that since the ramp supports the crate, there is a 

force on the ramp applied by the crate (Common sense rule in figure 2-5); 

2. overly general knowledge to infer that this force is an 'official physics force' 

(Overly general rule in figure 2-5); 

In this thesis, we will use a mix of feminine and masculine pronouns. 
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[Commonsense rule} 
I f a n o b j e c t s u p p o r t s o b j e c t 0 2 t h e n 

T h e r e i s a f o r c e F o n 0X d u e t o 0 2 

-CL 
[Overly general r u l e ] 
I f F i s a f o r c e i n f e r r e d b y c o m m o n s e n s e r e a s o n i n g t h e n 

F i s a n o f f i c i a l p h y s i c s f o r c e 

-0-
[Newton's Third Law r u l e ] 
I f a n o b j e c t s e x e r t s a f o r c e o n o b j e c t 0 2 t h e n 

0 2 e x e r t s a n e q u a l a n d o p p o s i t e f o r c e o n 01 

•0-
[Normal-exists r u l e ] 

I f an object 02 i s supported by object 0 2 then 
There i s a normal force on 02 due to 0i 

Figure 2-5: Rule inferred via E B L C from physics problem/example in figure 2-3 

3. domain knowledge to infer that there is a reaction force exerted by the ramp on the 

crate (Newton's Third Law rule in figure 2-5). 

As a consequence of this line of reasoning, the student learns a new domain rule 

(Normal-exists rule, figure 2-5). Unfortunately, some students miss learning opportunities 

because they do not have a tendency for EBLC. These students resolve impasses during 

APS by resorting to alternative strategies not as conducive to learning to generate the 

problem solution, such as guessing or copying from the available examples. 

To summarize, the meta-cognitive skills of min-analogy and EBLC are complimentary in 

supporting learning from APS. In particular, min-analogy helps students to strengthen 

their knowledge through practice and to discover knowledge gaps, while EBLC can be 

used to fill those gaps. However, having one meta-cognitive skill does not necessarily 

guarantee the presence of the other. For instance, min-analogy will help a student 

discover her knowledge gaps, but this does not guarantee that she will rely on EBLC to 

fill those gaps, since she can resort to alternative means such as guessing to do so. To 

date, however, VanLehn has not explored how the two meta-cognitive skills interact with 

one another, and so more research is needed to gain understanding of this issue. 
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I f a n a g e n t A a p p l i e s a f o r c e P w i t h a m a g n i t u d e M ~\ A I 
a n d a n g l e & t o a n o b j e c t Obj t h a t i s o n s u r f a c e S t h e n K. °/ 

t h e r e i s a n o r m a l f o r c e o n o b j e c t Obj J Mechanism 

I f a n o b j e c t 0 2 i s s u p p o r t e d b y o b j e c t t h e n . 
T h e r e i s a n o r m a l f o r c e o n 0 2 d u e t o 0X ' } 

Figure 2-6: Rules formulated via the ACT-R analogy mechanism & E B L C 

We should point out that compared to ACT-R's analogy mechanism, EBLC appears to 

have better potential for inferring appropriate rules in the presence of complex examples, 

like those in the physics domain targeted by the EA-Coach. ACT-R's analogy mechanism 

is appropriate for learning from simple examples involving a minimal number of solution 

steps, such as the LISP examples on which the mechanism is based (e.g., such as the 

example in figure 2-1). However, with more complex multi-step examples, rules inferred 

via the analogy mechanism are overly specific and do not reflect a true understanding of 

the underlying domain principles. To illustrate this limitation, figure 2-6 shows the 

'Normal-exists'' rule inferred by each mechanism from the problem/example pair in 

figure 2-3. The analogy-mechanism rule's antecedent is based on the complete 

problem/example specifications, while its consequent is based on the example solution 

step. Therefore, the rule reflects at best a shallow understanding of the normal force, 

because its structure is too closely tied to the problem/example specifications from which 

it is derived. The rule inferred by EBLC, on the other hand, reflects the kind of 

knowledge students should possess with respect to the normal force. Consequently, 

EBLC appears to be the more appropriate learning mechanism for the EA-Coach's 

domain, and so this is the learning mechanism targeted by the EA-Coach. Similarly, we 

adopt VanLehn's view that although transformational analogy may enable problem 

solving during APS, it hinders learning. 
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2.1.2.3 Application Phase: Impact of Problem/Example Differences 

Typically, an example shares some differences with the target problem (otherwise, the 

example is a direct solution). The differences are commonly classified according to the 

two similarity dimensions introduced in section 2.1.1, i.e., (1) structural and (2) 

superficial (e.g., [Reed, Dempster et al., 1985; Novick, 1995; Quilici and Mayer, 1996]). 

[Reed, Ackinclose et al., 1990] compared the impact of two kinds of structural 

differences on the example-application phase 

• differences due to the fact that the problem solution includes steps derived by 

domain principles (rules) not needed for the example's solution; 

• differences due to the fact that the example solution includes steps derived by rules 

not needed for the problem's solution. 

The first type of difference means that the example does not afford students the 

opportunity to apply its solution to generate all the steps in the problem solution (i.e., 

either by copying or learning new domain principles needed to generate the problem 

solution). The second type of difference means that students have to 'filter out' 

extraneous solution steps in the example. Reed showed that the first type of structural 

difference hindered students' ability to generate the problem solution more than did the 

second type of difference. 

Several other studies compared the impact of examples, including the first type of 

structural difference vs. examples that had no structural differences with the target 

problem [Reed, Dempster et al., 1985; Reed, 1987; Novick, 1995]. All of these studies 

showed that this type of structural difference hinders the application phase. [Novick, 

1995] also found an expertise effect. In particular, students with low domain expertise 

had more difficulty overcoming structural differences when applying the example 

solution, compared with students with high expertise. A likely explanation for this 

finding is that students with high expertise have the knowledge to generate steps 

corresponding to structural differences on their own, although this was not verified in 

[Novick, 1995] (i.e., the author does not provide a fine-grained analysis of the 
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relationship between students' pre-existing domain knowledge and structural 

differences). In our work, we focus on this type of structural difference, i.e., when the 

problem solution is derived by rules not needed for the example's solution, because 

research shows that this difference hinders APS (while the impact of the second type of 

structural difference is still under investigation). 

There is also some research exploring the impact of superficial differences on the 

example application phase. In [Quilici and Mayer, 1996] students were given two 

problems to solve, with access to two examples. The superficial similarity between the 

problems and the examples was assessed using a binary classification, as either high or 

low. The classification was performed by the authors based on their subjective judgment 

on how similar the problem/example specifications were to each other. In this study, the 

superficial similarity between the problems and the examples was held constant at low for 

all students; the superficial similarity between the two examples was varied, so that some 

students received two examples that were superficially similar to each other (high 

similarity), while other students received two examples that were not similar to each 

other (low similarity). Compared to high superficial similarity, low superficial similarity 

between the examples better triggered learning (measured via subsequent post-test). The 

authors suggest that an explanation for this finding is that (1) exposure to multiple 

examples influences the nature of the principles students infer from the examples and (2) 

low superficial similarity emphasizes structural characteristics, helping students to 

abstract the irrelevant superficial aspects of the example specifications. However, the 

paper does not discuss how the abstraction occurs. 

Although [Quilici and Mayer, 1996] found that high superficial variability between 

examples encouraged learning, they did not directly explore the impact of varying the 

superficial similarity between the problems and the examples. This was investigated by 

[Ross, 1987], who found that low superficial similarity between a problem/example 

hindered example application. Ross investigated the impact of reversing the relationships 

between objects appearing in the problem/example specifications of algebra word 

problems (e.g., in a problem specification, computers are assigned to offices, while in an 

example specification, offices are assigned to computers). Students were more successful 
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in applying the example's solution to generate the problem solution when the object 

correspondences were not reversed than when they were, i.e., when the examples were 

more superficially similar to the problem. However, neither type of example triggered 

students to learn the underlying domain principles. This finding that high superficial 

similarity better helps students generate the problem solution than low superficial 

similarity, but that neither low nor high superficial similarity stimulates learning was also 

shown in [Reed, Dempster et al., 1985]. 

2.2 Leveraging Cognitive Science Findings: Impact of 
Problem/Example Differences on APS 

Although cognitive science research shows that problem/example differences have an 

impact on APS, there is not yet a complete understanding of how various kinds of 

differences influence APS behaviors and subsequent learning and problem solving 

outcomes for learners with various levels of cognitive and meta-cognitive skills. To 

design the support delivered by the EA-Coach, it was therefore necessary to formulate 

our own hypotheses. These hypotheses draw directly from the cognitive science 

background that we presented in the first portion of this chapter on student reasoning 

during APS. Before we can present our hypotheses, however, we need to introduce some 

terminology. 

2.2.1 Terminology 

The terminology we present here is based on the established approach of classifying 

problem/example relations as superficial!structural (e.g., [Reed, Dempster et al., 1985; 

Novick, 1995; Quilici and Mayer, 1996]). However, we extend this work by proposing a 

novel classification of superficial differences. 

We begin by providing some intuition regarding the structural and superficial relations in 

our classification. We consider a pair of problem/example steps as structurally identical 

if the steps are generated by the same rule and structurally different otherwise. Two 
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structurally identical steps may include different constants and so be superficially 

different. This scenario is illustrated in figure 2-7, which shows steps 3 and 4 from the 

problem and example originally shown in figure 2-3. For each solution step, figure 2-7 

shows a portion of the step's textual description and the rule used to derive that step. 

Since problemSteps and exampleStep3 are generated by the same rule (Normal-exists), 

they are structurally identical. Likewise, problemStep4 and exampleStep4 are generated by 

the same rule (Normal-dir) and so are structurally identical. However, both problemStep3 

and problemStep4 are superficially different from their corresponding example steps, in 

the following ways: 

• problemStep3 and exampleStep3 are superficially different in two respects: (1) the 

object a normal force exists on, block vs. crate and (2) the object the force is due 

to, floor vs. ramp 

• problemStep4 and exampleStep4 are superficially different with respect to the angle 

specifying the normal force, 90" vs. 720" 

Problem Specification (Pspec): 
A workman pulls a 50 kg block. 

Problem Solution P s o i : 

IpioM'riuS^pi j To solve ihis problem '.ee upply 
Newron's Second Law 

|probl;:niSk-p;, j We choose tin1 block ;is the bod\ 

Normal-exists 

i[problemStep3] There is a normal force N on the 
j5[ocJ)due to the (Joor) 4 — 

Normal-dir 

[problemStep.,] This force is oriented f̂ W) 
C C W from the horizontal 

Example Specification (Espcc): 
A person culls a 9 kg crate. 

Example Solution E s „ i : 

ifexampldSlept} Tosolve this problem wc ;u>|>!y 
tNevvroii's Second Law 

JlcxamploSvep.] We choose die ertite as she; body 

• Structurally identical. 

Superficial differences 

. Structurally identical _ 

• Superficial difference -

Normal-exists 

:[exampleStep3] There is a normal force N on the 
(crat̂ due to the (ami 

Normal-dir 

[exainpleStep4] This force is oriented Q20* 
i C C W from the horizontal 

Figure 2-7: Illustration of superficial & structural relations 
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The key question is how these various superficial differences should be classified and in 

particular, whether they should all be considered 'equal'. Our approach entails classifying 

the differences according to how easily they can be resolved: whether they require in-

depth reasoning such as EBLC or whether they allow the problem solution to be 

generated by copying from the example. As mentioned in section 2.1.2.2, copying 

involves transferring the example solution over to the problem with no changes, or with 

'minor' changes, including 

i) replacing problem specific constants with ones needed to solve the problem via 

transformational analogy (see section 2.1.2.2); 

ii) changing the order of terms in the equations of the transferred example step; 

iii) minor omissions, such as leaving out brackets; 

iv) choosing to use different variable names to denote problem solution elements (e.g., 

see W in exampleStep3 of the example in figure 2-7). 

Notice that modification (i) above corresponds to resolving a problem/example difference 

required to generate a correct problem solution. If a student is successful at resolving the 

difference, then he can generate the problem solution by copying. In contrast, the other 

three modifications (ii-iv) are changes a student chooses to introduce but that are not 

required in order to generate a correct problem solution. Since the first type of 

modification allows the problem solution to be generated by copying, it is critical to 

identify superficial differences that can be resolved in this manner. 

Returning to our scenario, the two superficial differences between problemStep3 and 

exampleStep3 can easily be resolved by transformational analogy. Recall that 

transformational analogy relies on (1) devising a mapping between the example and 

problem specifications and (2) using the mapping to substitute example-specific constants 

by ones needed for the problem solution [Anderson, 1993; VanLehn, 1998]. Because 

both differences between problemStep3 and exampleStep3 correspond to constants that 

appear in the problem/example specifications, transformational analogy is enabled to 

resolve the differences, allowing a student to generate the problem step by copying from 

the example. We classify such differences as trivial. In contrast, the superficial 

differences between problemStep4 and exampleStep4 can not be easily be resolved by 
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transformational analogy because the example constant corresponding to the difference is 

missing from the problem/example specifications, and so a student cannot generate the 

necessary mapping between the specifications. Thus, the student needs to perform more 

in-depth reasoning. We classify such differences as non-trivial. 

The subsequent section presents formal definitions corresponding to our classification, 

which are the formalisms the EA-Coach relies on to assess problem/example similarity, 

as we will see in subsequent chapters. 

2.2.1.1 Formal Definitions 

A problem and an example consists of (1) a specification and (2) a solution. We represent 

both specifications and a solutions as a sequence of elements ei,e2,...,en. Each element e, 

(for 1< i < n) is a vector of the form <typei sloth!,..., sloth k> where: 

. typej identifies the type of element ej 

• slotij (for 1 < j < kj) is the pair (ay, C y ) , where ay is the slot's attribute and C y is the 

constant assigned to that attribute 

For a problem P, we denote its specification as P s p e c and its solution as PS0|. Similarly, for 

an example E, we denote its specification as E s p e c and its solution as ES 0|. In the following, 

we will refer to 

• elements in a problem or example solution as steps, where each problem/example 

step is generated by a domain principle that dictates the form of the step's vector 

representation; 

• a solution step in PS0| as problemStep and a slot in problemStep as problemSlot; 

• a solution step in E s o, as exampleStep and a slot in exampleStep as exampleSlot. 

Given the following: 

Pso]: problemstep1,problemStep2,..., problemStepn 

E s oi: exampleStepi,exampleStep2,..., exampleStepm 

we define two steps, problemStep, and exampleStepj (for 1 <i < n and 1 <j < m), to be 

structurally different if they are not generated by the same domain principle and 

structurally identical otherwise. 
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Now let's consider two structurally identical steps problemStepand exampleStep j. To 

simplify subsequent discussion, we drop the subscripts i and j and refer to the steps as 

problemStep and exampleStep. When two steps are structurally identical, their vectors are 

of the same type and length: 

problemStep = <typeproblemSlot\ problemSlotk> 

exampleStep- <type exampleSlot\exampleSlot^> 

In addition, their corresponding slots (i.e., slots appearing at the same position .in the 

vector) have identical attributes: 

problemSloth=(ah, ch), exampleSloth =(ah, ch') for 1 < h<k 

However, even though steps problemStep and exampleStep are structurally identical, they 

may include some superficial differences between their respective slots. Specifically, two 

corresponding slots problemSlot=(a, c) and exampleSlot=(a, c') are superficially different 

if c 4- c'. The difference is defined as: 

1. trivial if 

i. example constant c' is in an element e in E s p e c and 

ii. problem constant c is in an element p in P s p e c and 

iii. problem and example specification elements e and p are of the same 

type2 

2. non-trivial otherwise 

To illustrate the formal definition, figure 2-8 shows the problem/example pair in figure 

2-7 supplemented with the formal representation of the problem/example specifications 

and steps. As we have already pointed out, although both problemStep3 and problemStep4 

are structurally identical to the corresponding example steps exampleStep $ and 

exampleStep4, they are superficially different from them. In section 2.2.1, we 

characterized the superficial differences as trivial or non-trivial; we will now do so by 

2 Recall that as we defined above, specification elements are vectors of the form <type; slot i ( 1 ,..., 
slot i , k i> 
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Problem Specification (P s p ec) : Example Specification (Espec): 
A workman pulls a 50 kg block. 

;<object (name, block)> \ 
kfsurface (name,floor) \ 

(incline, ? ) > j 

A person pulls a 9 ks. crate. . 
;<object (name, crate)> 
^surface (name, ramp) 
\ (incline, 30)> 

Problem Solution P s o i : 
Iprobii'niSic));.] To solve this problem we apply 
Newton's Second J .aw 

[probitmSrcp,:] We choose the block as the body 

Example Solution E s o i : 
i[i.*MiM']jil!:St<.*pjJ To solve this problem wu apply 
jNewton's Second Uiw 

i|'t:xu.it)pIcSi<:p:.'| We choose the crau-; as the body 

[problemsiep3] There is a normal force N on the 
block due to the floor 

Normal-exists 

(normalForce(applied-to, block) 
(applied-by, floor) 
{varName, N)> 

Structurally identical • 

Superficial differences 
(trivial) 

! [exampleStep3] There is a normal force N on the 
jcrate due to the ramp 

Normal-exists 

'^normalForce (applied-to, crate) \ 
: (applied by, ramp) \ 
• (varName, N)> \ 

;[problemStep4] This force is oriented 90" 
;CCW from the horizontal 

Normal-dir 

\<normal-force-dir(value, 90) 
\ (for-force, N)> 

Structurally identical • 

Superficial difference • 
(non-trivial) 

: [examplestep4] This force is oriented 120" 
=CCW from the horizontal 

Normal-dir 

\<normal-force-dir (value, 120) 
j (for-force, N)> 

Figure 2-8: Classification of superficial & structural relations from figure 2-7 supplemented with 
formal representation 

relying on the formalisms introduced above. ProblemStep3 and exampleStep3 include two 

trivial differences: 

• A trivial difference corresponding to the objects the normal force is acting on, crate 

and block (see exampleSlot ( a p p i i e d - t o , crate) and problemSlot ( a p p l i e d -

t o , block) in figure 2-8). The difference is trivial because the example constant 

crate appears in the example specification (see < o b j e c t ( n a m e , crate) > in E s p e c , 

figure 2-8) and has a corresponding constant in the problem specification (see 

< o b j e c t ( n a m e , block) > in Pspec> figure 2-8). 

• A trivial difference corresponding to the objects applying the normal force, ramp 

and floor (see exampleSlot ( a p p l i e d - b y , ramp) and problemSlot ( a p p l i e d - b y , 
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floor) in figure 2-8). The difference is trivial because the example constant ramp 

appears in the example specification (see < s u r f a c e (name, ramp) ( i n c l i n e , 30) > 

in E s p e c , figure 2-8) and has a corresponding constant in the problem specification 

(see < s u r f a c e (name, floor) ( i n c l i n e , ?)> in P s p e c, figure 2-8). 

On the other hand, problemStep4 and exampleStep4 include one non-trivial difference: 

• The difference corresponds to a constant specifying the direction of the normal 

force (see exampleSlot ( v a l u e , 120) and problemSlot ( v a l u e , 90) in figure 

2-8). The difference is non-trivial because the constant is missing from the 

problem/example specifications (i.e., in figure 2-8, the constant 120 does not 

appear in the example specification; the constant 90 does not appear in the problem 

specification). 

2.2.2 Impact of Differences: Hypotheses 

Given our classification of superficial and structural relations, the key question is: what 

impact do various kinds of differences have on APS behaviors and subsequent problem-

solving success and learning? We argue that this impact depends on the students' APS 

meta-cognitive skills and domain knowledge. 

If the problem and example are structurally different with respect to a problem step, then 

the student cannot rely on the example to derive it, i.e., transfer of the step from the 

example is blocked. This hinders both problem solving and learning if the student lacks 

the knowledge to generate the problem step on his own. If, on the other hand, the student 

does have the knowledge to generate the step on his own, then the structural difference 

encourages min-analogy by blocking copying, which will help to solidify the student's 

knowledge of the corresponding rule. 

In contrast, superficial differences between structurally identical problem/example steps 

do afford students the opportunity to rely on the example to derive the problem step, 

because the two steps are derived by the same rule. However, as we already pointed out 

in Section 2.2.1, what distinguishes trivial vs. non-trivial differences is how easily they 

may be resolved in order to apply the example step to generate the problem step. Because 
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trivial differences are easily resolved by transformational analogy, they encourage 

copying for students with poor APS meta-cognitive skills. Although copying increases 

the chances the student will generate the problem solution, it does not stimulate min-

analogy or EBLC for students with poor domain knowledge and poor meta-cognitive 

skills, and thus hinders learning. 

On the other hand, because non-trivial differences are not easily resolved by 

transformational analogy, they may encourage min-analogy and EBLC for students with 

poor meta-cognitive skills and poor domain knowledge. To see how this could occur, 

let's consider the non-trivial difference between exampleStep<4 and problemStep 4\w figure 

2-8. Since the direction of the normal force in exampleStep4 does not appear in the 

example specification, a student cannot generate the problem solution step by copying 

from the example, because he cannot rely on transformational analogy to resolve the 

difference between the problem/example steps. Consequently, if the student knows the 

Normal-dir rule needed to generate this step, then the non-trivial difference may 

encourage him to generate the step via the application of his own knowledge, i.e., to 

engage in min-analogy. If, on the other hand, the student does not know the Normal-dir 

rule, then the non-trivial difference may encourage him to explain through EBLC how the 

example step was generated, i.e., to learn the rule. If the student is successful at learning 

the rule, then he can apply the newly-acquired knowledge to generate the corresponding 

solution step, thereby resolving the difference between the problem and example on this 

step. 

Our hypotheses on problem/example differences presented in this section are embedded 

into the EA-Coach student model's operation, which we describe in detail in chapter 5. 

2.3 Summary 

In this chapter, we first described the cognitive science background on APS that has 

shaped our design of the EA-Coach. We then presented our own hypotheses on how 

problem/example similarity and student characteristics impact APS outcomes. In the next 
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chapter, we will describe a series of pilot evaluations that helped us gain some 

preliminary insight as to whether our hypotheses are generally appropriate. 
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C h a p t e r 3 

Pilot Evaluations 

In this chapter, we describe a series of pilot evaluations, including a primary pilot as well 

as two follow-up pilots. The goal of the primary pilot was to gather some first-hand 

observations on how the various types of superficial differences defined in our 

classification influence APS, in order to make sure that we were on the right track in 

terms of our hypotheses presented in the previous chapter. In particular, we wanted to 

compare how students solved problems in the presence of examples that included trivial 

vs. non-trivial differences with respect to the target problem. The primary and two 

follow-up pilot evaluations were also used to inform interface design decisions for the 

EA-Coach interface. 

3.1 Primary Pilot Evaluation 

The primary pilot evaluation involved students using a preliminary version of the EA-

Coach interface. Before we provide details on the pilot, we will describe this interface. 
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3.1.1 Preliminary EA-Coach Interface 

The preliminary EA-Coach interface included a problem and an example window, used 

to enter the problem solution and access an example, respectively (see figure 3-la and 

figure 3-lb). The windows were based on windows in two existing ITS supporting 

learning of Newtonian physics, namely Andes [Conati, Gertner et al. 2002] and the SE-

Coach [Conati and VanLehn 2000]. Andes supports pure problem solving without 

providing access to examples, while the SE-Coach supports pure example studying 

without providing problems. Since the EA-Coach supports problem solving with access 

to examples and the Andes and SE-Coach interfaces have undergone extensive usability 

testing, we intended to base the EA-Coach's interface on their respective designs for the 

problem and example windows. 

The problem-solving window in the preliminary interface (see figure 3-la) included two 

panels for entering the problem solution. The Free-Body panel (see left panel in figure 

3-la) allowed students to draw free-body diagrams via the provided tools (see Free-Body 

toolbar above the problem statement in figure 3-la). The tools included (1) the body tool, 

used to select the body to apply Newton's Law to, (2) the axes tool, used to draw the 

axes, (3) the force tool, used to draw the forces and (4) the acceleration tool, used to 

draw acceleration vectors. The Equation panel (see bottom-right panel in figure 3-la) 

allowed students to type equations via the keyboard. The window's design was directly 

based on the Andes design, the key exception being that the Andes interface provides 

feedback for correctness (realized by coloring students' solution entries red or green for 

incorrect and correct entries, respectively). The preliminary EA-Coach interface did not 

provide such feedback, for two main reasons. First, although cognitive science work 

suggests that students are not always effective at diagnosing their own errors [Chi, 

Bassok et al., 1989], we wanted to gather some first-hand information on whether 

students diagnosed errors in their solutions. Second, we wanted to investigate APS 

behaviors in a context that was similar to existing cognitive science research (e.g., 

[VanLehn, 1998]), which does not provide such feedback. 
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, i F H 

Bob pushes a box of mass 4.4 kg 
up a ramp inclined 21 degrees 

with respect to the horizontal. 
He pushes with a magnitude of 
40N, applied at 14 degrees to 
the horizontal (or 35 degrees 
with respect to the incline]. 
The box is accelerating at 
4 m/sA2. What is the magnitude 
of the normal force on the box? 

^ 14 

A person pushes a crate along the street 
with an acceleration of 2 m/s*2. The crate 
has mass m = 32kg.The person pushes it 
with a force P of 85 Newtons, applied at 40 
degrees from the horizontal. What is the 
normal force on the crate? 

We can answer this question by applying Newton's Second Law. 

First, we choose the crate as the body, using the body tool. t j 

Next, we find all the forces acting on the crate rzzfi 
Al l these forces can be drawn with the force tool. IHM! 

The first force acting on the crate is the normal force N 

The second force acting on the crate is the weight force W 

Its magnitude is9.8*mass = 9.8 " 32 

The third force acting on the crate is the pushing force P 

Its magnitude is85 N. 

We choose a coordinate system with the X axis directed ^ | 
to the right and the Y axis directed up. using the axis toot - ^ 1 

+Y 

>N 

We are now ready to apply Newton's Second Law. 

(a) Problem Window (a) Example Window 

Figure 3-1: Preliminary EA-Coach interface (shown without the masking interface, which is 
displayed in Figure 3-2) 

The example-viewing window in the preliminary EA-Coach interface (see figure 3-lb) 

was directly based on the SE-Coach's design. The example was presented using a format 

loosely based on the one used in physics textbooks. To provide information on which 

example steps students viewed, the example window included the so-called masking 
interface, following the SE-Coach design (see figure 3-2; note that the masking interface 

is not shown in figure 3-1). The masking interface covered the example specification and 

solution steps. Moving the mouse over a region in the masking interface uncovered the 

region and covered whatever region was previously uncovered. A region remained 

uncovered until the mouse was moved over a new region. 
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Bob pushes a box of mass 4.4 kg 
up a ramp inclined 21 degrees 

with respect to the horizontal. 
He pushes with a magnitude of 
40N, applied at 14 degrees to 
the horizontal (or 35 degrees 
with respect to the incline). 
The box is accelerating at 
4 m/sA2. What is the magnitude 
of the normal force on the box? 

The second force acting on the crate is the weight force W 

a) Problem Window a) Example Window 

Figure 3-2: Masking interface 

3.1.2 Primary Pilot Evaluation Particulars: Participants, 
Methodology and Materials 

3.1.2.1 Participants 

The participants were 8 first-year university students who were in the process of taking or 

had completed Physics 100 at UBC (the equivalent to a high-school grade-twelve physics 

class that provides an introduction to Newtonian physics of the type targeted by the EA-

Coach). Participants were paid ten dollars per hour. 
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3.1.2.2 Methodology 

Each participant 

1. completed a physics pencil and paper pre-test (Appendix 2); 

2. solved two physics problems (experimental phase); 

3. completed a physics pencil and paper post-test (Appendix 2). 

For all three phases, subjects were told to take as much time as they needed, with the 

typical session lasting approximately 1.5 hours. 

During the experimental phase, for each problem that subjects were asked to solve, they 

had access to a corresponding worked-out example (see table 3-1). Students selected the 

problem they wished to work on, which automatically opened the corresponding 

example. Once students closed a problem, which also automatically closed the 

corresponding example, they were not allowed to re-open it. To enter solutions and 

access examples, subjects used the preliminary version of the EA-Coach interface 

described in section 3.1.1. 

For each problem, the corresponding example was hand-selected before run-time (i.e., 

not selected by the system), and all students saw the same problem/example pairs (see 

table 3-1). To explore the impact of similarity on students' APS behaviors, the superficial 

similarity between the problem and its corresponding example was manipulated for the 

problem/example pairs, as follows: 

• [trivial condition] problema-i™, and its example only included trivial differences 

(summarized in table 3-3, section 3.1.2.3) 

• [non-trivial condition] problemnon.triviai and its example included both trivial and 

non-trivial superficial differences (summarized in table 3-4, section 3.1.2.3) 

In the pilot evaluation, each subject was exposed to both conditions (i.e., a within-subject 

design was used). We chose this design because it increases the ability to detect 

differences between the conditions, by accounting for the variability between subjects. 

The variability arises from differences between subjects in expertise, APS tendencies and 

verbal expression of self-explanation (which we captured). 
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Table 3-1: Problems & examples used in primary pilot 

Problem t r i v i a i Corresponding Example 

A cat pushes his toy, a mouse of mass 
2.3 kg which is hanging from a string, Va.rf^t26 
with a magnitude of 31 N, applied at an Sv..<^_ 
angle of 16 degrees. The string is now at 
an angle of 26 degrees to the horizontal 
as shown. What is the tension force in 
the string? 

A pumpkin of mass 2.21 kg is suspended by 32y 
a cord and pushed with a 24 N force until / 
the cord forms an angle of 32 degrees with mm*, 
the horizontal (the pushing force is applied lif§Sl̂ t 
at an angle of 18 degrees to the horizontal). .^>. 
What is the tension force in the cord? 

Problem n o n . t r i V i a i Corresponding Example 

Bob pushes a box of mass 4.4 kg up a 
ramp inclined 21 degrees with respect to V "\ 
the horizontal. He pushes with a _.— 
magnitude of 40N, applied at 14 degrees ^~~~~7}x 

to the horizontal (or 35 degrees with 
respect to the incline). The box is 
accelerating at 4 m/s A2. What is the 
normal force on the box? 

40 
A person pushes a crate along the street — -p. 
with an acceleration of 2 m/s A2. The crate / ~ ~ ^ 
has mass m = 32kg. The person pushes with ' 
a magnitude of 85N, applied at 40 degrees guar 
to the horizontal. What is the normal force 
on the crate? 

During the study, we used two types of data collection techniques. First, to capture 

students' reasoning processes, we used the talk-aloud method and asked students to 

verbalize their thoughts during the experimental phase of the study [Ericsson and Simon, 

1980]. We video-taped and subsequently transcribed all sessions. Second, we logged all 

student problem-solving and example-viewing actions in the EA-Coach interface. 

3.1.2.3 Materials 

The problems and examples used in the primary pilot were based on typical "Newton's 

Second Law" problems used in physics courses (as we identified through on-line 

searches/textbooks, e.g., [Halliday and Resnick, 1988]). The problems we selected 

(problemtriviai and problemnon.lrivjai in table 3-1) were intended to be equivalent in terms of 

difficulty, because we did not want problem type (problema-mai vs. problemnon.trivial) to 

obscure the results by having an impact on the measures of interest (described in section 

3.1.3). However, we also wanted the problems to be somewhat different, because it does 

not make sense to ask students to solve two very similar problems, for two reasons. First, 

students would likely not be motivated to generate the solution to two very similar 
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Table 3-2: Structural differences between problem l r i v i a l and problem 

Problem trivial Problem n o n . t r i v i a i 

Normal force exists, 

acceleration vector exists, 

parallel-vector component equation. 

Tension force exists, 

acceleration is null. 

problems. Second, learning effects between two very similar problems could be so high 

as to obscure any other effects. To balance these two constraints, the two problem 

solutions were similar (e.g., required the application of 'Newton's Second Law', had the 

same number of steps, had many structurally identical steps between the two problems, 

i.e., corresponded to the same rules) but also had several structural differences 

(summarized in table 3-2). The structural differences were present because it is very 

difficult to satisfy the second constraint without introducing some of these differences. 

The superficial differences between the problem/example pairs are summarized in table 

3-3 and table 3-4. 

Table 3-3: Superficial differences between problemtriviai & corresponding example steps 

Simplified fragment of solution step 
corresponding to the difference 

Problemtrivial 

Solution Step 
Corresponding 
Example 
Solution Step 

Type of 
Difference 

Body to apply Newton's 2nd Law mouse pumpkin Trivial 

There is a pushing force on the ... mouse pumpkin Trivial 

The pushing force magnitude is... 31N 24N Trivial 

There is a weight force on the ... mouse pumpkin Trivial 

The magnitude of weight force is 9.8 *... 2.3kg 2.21 kg Trivial 

There is a tension force on the ... mouse pumpkin Trivial 

The x-component equation for the tension 
force is 

T*cos(26) T*cos(32) Trivial 

The x-component equation for the pushing 
force is 

-P*cos(16) -P*cos(18) Trivial 
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Table 3-4: Superficial differences between problem n o n . u i v i a I & corresponding example steps 

Simplified fragment of solution step 
corresponding to the difference 

Problemnon.,rivia| 
Solution Step 

Corresponding 
Example 
Solution Step 

Type of 
Difference 

Body to apply Newton's 2nd Law box crate Trivial 

The acceleration is.... 4 m/s2 2m/s A2 Trivial 

There is a pushing force on ... box crate Trivial 

The pushing force direction (drawn in free-
body diagram) 

— — Non-Trivial 3 

The pushing force magnitude is ... 40 N 85 N Trivial 

There is a weight force on the ... box crate Trivial 

The magnitude of weight force is 9.8 *... 4.4 kg 32 kg Trivial 

There is a normal force on ... box crate Trivial 

The normal force direction (drawn in free-
body diagram) 

— - Non-Trivial 

The acceleration direction (drawn in free-
body diagram) 

— — Non-Trivial 

The axis is inclined ... . 4 21 degrees 0 degrees Non-Trivial 

The y-component equation of the weight 
force is 

-W cos (21) -P cos (50) Non-Trivial 

The y-component equation of the pushing 
force is 

-P cos (55) -P cos (50) Non-Trivial 

3 Note that this entry was not classified as a difference in the trivial condition. For the primary 
pilot, we hand-classified the superficial differences. In the trivial condition, the pushing force 
direction appeared virtually identical in the problem/example free-body diagrams and so it was not 
classified as a difference (students were not required to enter the value corresponding to a force 
direction explicitly, i.e., they could simply draw the force in the free-body panel without 
specifying the angle). On the other hand, in the non-trivial condition, the pushing force direction 
does appear quite different and so was classified as such. 

4 Students may choose several different axis configurations - the data in the table assumes a 
slanted axis is chosen in the problem solution because this is what the rule in the Knowledge Base 
for optimal axis selection suggests: to minimize the number of vectors that need to be decomposed 
into components. 
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3.1.3 Primary Pilot Evaluation: Results 

To analyze the impact of example similarity on APS, we considered the following 

dependent measures in the data analysis: 

• Task time: the time students took to generate a problem solution 

• Errors: the number of errors in a final problem solution 

• Copy Events: the number of copy episodes for a problem solution 

• Self-explanation Events: the number of self-explanations expressed while 

generating a problem solution 

Since the pilot involved a small subject pool, we limited the statistical analysis to 

obtaining means/standard deviations, which would provide a sense of the relevant trends. 

We describe the results of this analysis below, and summarize them in table 3-5. 

Task Time. As the data in table 3-5 shows, on average students spent similar amounts of 

time to generate a problem solution in both conditions (14min., 8sec. in the trivial 

condition vs. 14min., 28 sec. in the non-trivial condition). 

Errors. To see how successful students were in problem solving, we analyzed their final 

solutions. For each solution, we checked to see (1) if the solution was complete in that it 

had all the necessary parts (e.g., all forces were specified, Newton's Second Law was 

applied to the corresponding components, etc.) and (2) if the solution elements contained 

any errors. When checking for errors, solution steps that contained errors corresponding 

to the same misconception were only counted once. Minor typographical errors were not 

counted as errors (e.g., if variable names were slightly inconsistent, such as if students 

used Ax to specify the acceleration component in one equation, but A_x to do so in 

another equation). 

Note that we did not analyze the number of errors a student generated while producing a 

problem solution. This is because we did not indicate to students that they had to finish 

working on a given entry (i.e., make sure it was correct) before moving on to generate 

another entry. Thus, students would sometimes enter a portion of a solution step, start 

generating another step, and then return to the original step to finish it. This made it 
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Table 3-5: Summary of data analysis for primary pilot 

Trivial Condition 

(mean, std. dev.) 

Non-trivial Condition 

(mean, std. dev.) 

Task Time 14min, 8sec (4 min, 31sec ) 14min, 28sec (3 min, 38sec) 

Errors 0.63 (1.06) 1.75 (2.05) 

Copy Events 3.5 (4.03) 2.5 (3.5) 

Self-explanation Events 1 (2.07) 0.75 (1.16) 

impossible to determine the correctness of a given step until students declared that they 

was done with the target problem. 

Although all problem solutions in both conditions were complete, on average the problem 

solution in the trivial condition contained fewer errors than the problem solution in the 

non-trivial condition (0.63 vs. 1.75, respectively, table 3-5). The difference in the number 

of errors between the two conditions was due to the data of four subjects. The other four 

subjects had no errors in their solutions - these were also the subjects who had answered 

all pre-test questions correctly. A key difference between these two groups of subjects 

(denoted as successful vs. unsuccessful from now on) is that the unsuccessful subjects 

provided no indication of being aware of the errors. A second difference is that the 

unsuccessful subjects were also the only ones who copied or self-explained from 

examples. A likely explanation for this latter finding is that the successful subjects had 

the necessary knowledge to generate the solution, as suggested by their pre-test 

performance, and so did not need to rely on examples (they also likely had a strong min-

analogy tendency, as suggested by the lack of copying). Since we wanted data on how 

students copied/self-explained from examples, we restricted the remainder of the analysis 

to the unsuccessful participants. To provide the reader with a better sense of the 

variability among the unsuccessful subjects, table 3-6 shows the results using data only 

from these four participants. 
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Table 3-6: Summary of analysis for the four subjects who copied/self-explained from examples 

Trivial Condition 

(mean, std. dev.) 

Non-Trivial Condition 

(mean, std. dev.) 

Task Time 13min, 31sec (4 min, 37sec) 16min, 35sec (2 min, 13sec) 

Errors 1.25 (7.5) 3.5 (7.2) 

Copy Events 7 (2.31) 5 (3.46) 

Self-explanation Events 2(2.77) 1.5 (7.29) 

Copy Events. Recall that as we indicated in section 2.2.1, copying involves transferring 

content from an example's solution over to the problem with no changes or minor 

changes. To recognize copy events, we used the log files to identify (1) which steps 

students accessed in the example solution and (2) whether these steps were subsequently 

copied. To identify which example steps students accessed, we primarily relied on the 

information provided by the masking interface, since students were not always reliable in 

verbalizing example solution steps they accessed. To identify if accessed example 

solution steps were subsequently copied, we checked for correspondences between 

accessed steps and students' subsequent input to the problem solution. Problem entries 

that were identical to accessed example steps or that shared minor differences of the type 

listed in section 2.2.1 were flagged as 'copied'. In our coding scheme, access to an 

example solution step corresponded to at most one copy event (i.e., each term in the step 

was not counted separately). To decide whether a given problem-solving entry was 

copied, we only considered recently viewed example steps, i.e., the last three example 

steps accessed before a given problem entry. Although it is conceivable that we missed 

some copy events because students may have remembered and copied example steps that 

were accessed earlier, we did not see indications of this in our study. In fact, students 

who relied on copying from examples tended to do so on a line-by-line basis (i.e., 

uncover an example step, copy it, uncover the next example step, copy it, etc.), in a 

fashion similar to that described in VanLehn's study [VanLehn, 1998]. We did not 

consider only the last step accessed in the example, for two reasons. First, when students 
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Problem Example 
bob pushes a crate ... A workman pushes a'block 

Uncover example specification to find 

Generate problem step, 
replacing example 
constant with one needed 
for problem solution 

example constant ( 2 

© We choose the block as the body ( l 

We choose the crate as the body Uncover solution step in masking 
interface 

Figure 3-3: Sample viewing sequence in masking interface; two example regions are uncovered: 

(1) example solution step and (2) example specification. • 

accessed an example step, students sometimes inadvertently uncovered a line or two in 

the example as they were moving the mouse over to the problem window to copy the 

step. If we only considered the last accessed step, we would have missed the copy event. 

Second, after viewing a given example solution step, students would sometimes refer to 

the example specification or free-body diagram to identify example-specific constants, 

thereby uncovering additional steps that were related to the copied step. For instance, 

figure 3-3 shows a viewing sequence where a student (1) uncovered an example step 

stating that the block is chosen as the body, (2) uncovered the example specification to 

find the constant block and (3) copied the example step, replacing the example constant 

block by the one needed for the problem solution, crate. 

As table 3-6 shows, on average students copied more in the trivial condition than the non-

trivial condition (on average, 7 vs. 5 copy events respectively). 

Self-Explanation Events. Since EBLC is a form of self-explanation, for the purposes of 

the pilot study we focused on identifying self-explanations, without classifying whether 

they involved common sense or overly general reasoning characteristic of EBLC. This 

decision is based on the fact that self-explanation is a highly constructive activity that 

correlates strongly with positive learning outcomes [Chi, Bassok et al., 1989; Bielaczyc, 

Pirolli et al., 1995; Renkl, 1997; Renkl, 1999; Chi 2000]. Therefore, we felt that 

analyzing all possible self-explanations would provide insight into the impact of 
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similarity on how they generate explanations during APS. As defined in [Chi, Bassok et 

al., 1989], self-explanations are 

"any comments that pertain to physics content but are not paraphrases. Thus, self-

explanations infer some additional pieces of information, regardless of how minute 

they are." 

We relied on this definition to identify self-explanations in the verbal protocols (e.g., see 

figure 3-4). We considered utterances expressed both during example studying and 

problem solving. Utterances related to the same concept were only counted separately if 

they were separated by problem-solving entries or explanations pertaining to other 

concepts. Utterances that were not considered self-explanations included 

• paraphrases, such as "the x component of W is zero" from 'W_x = 0' example 

equation; 

• self-monitoring statements, such as "I'm confused"; 

• statements related to transformational analogy that only mentioned syntactic 

mappings without mentioning any physics content, such as "my mouse is like their 

block". 

As table 3-6 shows, on average, students generated slightly more self-explanations in the 

trivial condition than in the non-trivial condition (on average, 2 vs. 1.5 respectively). 

" w_x is zero because it doesn't have an x component" 

Expressed after reading w_x = 0 in the example corresponding to problem t, i v i a l 

"it's negative because it is in the negative direction" 

Expressed after reading P_y = - P cos(50) in the example corresponding to problem n o n T r i v i a | 

Figure 3-4: Sample self-explanations 
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3.1.4 Primary Pilot: Discussion 

We will limit our discussion of the primary pilot evaluation to the four students who 

copied and/or self-explained from examples during problem solving. These students had 

similar task times in the two conditions. However, in the trivial condition, on average 

students copied more than in the non-trivial condition. An explanation for this finding is 

related to the type of superficial differences between the problem/example pairs in the 

two conditions. Recall that in the trivial condition, problemu-jviai only had trivial 

superficial differences with the corresponding example. As discussed in chapter 2, this 

type of difference allows students to generate the problem solution by copying from the 

corresponding example. In contrast, in the non-trivial condition, the problem/example 

pair had some non-trivial superficial differences, which blocked copying of the 

corresponding steps. Students appeared to realize this, as is supported by the fact that 

over all the students, only two non-trivially different example steps were copied (from a 

total of 20 copy episodes; the remaining copy episodes corresponded to example steps 

that included only trivial differences or no differences with the problem). As one subject 

expressed: "this one (points at example in the trivial condition) related a lot more so I 

was able to use all of it but the other one — I just took little bits from". Ironically, 

although this subject felt the example in the trivial condition "related more", the behavior 

imposed on her by the example in the non-trivial condition was more desirable, since it 

discouraged copying of the entire solution. Her behavior supports her claim, in that she 

copied the majority of her solution in the trivial condition, but only a few steps in the 

non-trivial condition (nine vs. two copy events, respectively; the two copied entries in the 

non-trivial condition corresponded to steps with trivial differences or no differences with 

the problem solution). 

The fact that students copied less in the non-trivial condition increased the number of 

errors in that condition, when students tried to generate the solution on their own but did 

not have the necessary domain knowledge. As is summarized in table 3-7, out of all the 

errors, 68.4% were due to entries students self-generated without copying during problem 

solving: while in the trivial condition, only 15.8% of errors were the result of incorrectly 
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Table 3-7: Source of errors in primary pilot evaluation: copying vs. problem-solving 

Trivial Non-trivial Total 

% of errors from problem-solving 

without copying 

15.8% (3/19) 52.6% (10/19) 68.4% (13/19) 

% of errors from incorrectly copied steps 10.5% (2/19) 21.1% (4/19) 31.6% (6/19) 

Total 26.3% (5/19) 73.7% (14/19) 100% (19/19) 

generated steps, in the non-trivial condition, a higher percentage of errors, i.e., 52.6%, 

corresponded to incorrectly generated steps. A second source of errors was the result of 

students incorrectly copying from the example, which was slightly higher in the non-

trivial condition. As is summarized in see table 3-7, out of all the errors, 31.6% were due 

to incorrectly copied steps; of these, 10.5% came from incorrectly copied steps in the 

trivial condition, and 21.1% came from incorrectly copied steps in the non-trivial 

condition. In the trivial condition, all of the incorrectly copied entries (2 from a total of 

28 copied entries) corresponded to steps that included trivial differences or no differences 

with the problem step and were the result of slips (i.e., a subject would neglect to copy a 

necessary portion of an equation)5. In the non-trivial condition, half of the incorrectly 

copied entries corresponded to non-trivial differences (2 of the 4 incorrectly copied steps, 

from a total of 20 copy events); the other half of the incorrectly copied entries 

corresponded to slips. 

Above, we argue that the superficial similarity influenced students' success in generating 

a problem solution, because it influenced how much they copied and how successful they 

were at doing so. However, there are two alternative explanations deriving from the fact 

5 A l l of the correctly copied entries corresponded to example steps that included trivial differences 
or no differences with the problem step. 
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that the design of the pilot evaluation was not fully counterbalanced, although our data 

suggests that these are not likely. One of these alternative explanations is that students 

found the problem in the non-trivial condition more difficult than the problem in the 

trivial condition. Unfortunately, the assignment of problems to conditions was not 

counter-balanced, making this a confounding variable in the analysis (i.e., problenvjvjai 

was always assigned to the trivial condition, while problemnon.triviai was always assigned to 

the non-trivial condition). To shed some light on this issue, we checked how many of the 

students' errors were due to structural differences between the problems (i.e., differences 

in the domain knowledge needed to generate the solution). We found that only one error 

in the non-trivial condition was related to a structural difference between the two 

problems (a subject incorrectly drew a normal force). This suggests that the difference in 

the number of errors between the two conditions was not likely due to the differences 

between the problems. The second alternative explanation for the findings is related to 

the lack of counterbalancing of the study conditions (recall that students were free to 

select the order in which they solved the two problems). Thus, the difference in the 

number of errors could have been due to learning. Specifically, if most students solved 

the problem in the non-trivial condition first (i.e., problemnon.triviai) and learned from doing 

so, this could have helped reduce errors when they solved the subsequent problem in the 

trivial condition (problemij.iviai). To see if this was the case, we checked the order in which 

students solved the two problems. We found that three of the four subjects solved 

problemtriviai first. Thus, if learning was the cause of the difference, students should have 

had fewer errors in the problemnon_triviai's solution,, which was not the case. 

To summarize, although further investigation is needed because of the small number of 

subjects, the results from this pilot evaluation gave us an initial indication that our 

hypotheses on the impact of problem/example similarity on copying are generally 

appropriate. In particular, we hypothesized that non-trivial superficial differences have 

better potential to encourage min-analogy by discouraging copying, compared with trivial 

differences. The pilot results showed encouraging trends that this occurs. Since min-

analogy is beneficial for learning, this finding is positive. On the other hand, in our pilot 

evaluation non-trivial differences lowered students' problem-solving success. This 
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suggests that if students do not have all of the appropriate domain knowledge needed to 

generate a correct problem solution, then non-trivial differences can hinder problem 

completion. In addition, contrary to what we hypothesized, non-trivial differences did not 

encourage students to self-explain. We believe that one likely explanation for both of 

these findings, however, is related to the lack of feedback for correctness in the pilot. As 

we already pointed out, students did not seem aware of the errors in their final problem 

solutions. Feedback for correctness would make the errors explicit and so encourage 

students to fix them, which in turn would help them achieve problem-solving success. 

The process of fixing the errors could trigger students to fill knowledge gaps through 

self-explanation. Since students had more errors in the non-trivial condition, this 

condition had higher potential than the non-trivial condition to trigger self-explanation. 

Therefore, helping students achieve problem-solving success could be a way of 

encouraging them to learn the necessary domain principles. To summarize, feedback for 

correctness has the potential to trigger both learning and problem-solving success. Thus, 

as our next step, we incorporated such feedback into the EA-Coach. The feedback 

followed the Andes design and was realized by coloring student problem-solving entries 

green or red in the interface (for correct and incorrect entries, respectively). 

3.2 Two Follow-up Pilot Evaluations 

In this section, we describe the two follow-up pilot evaluations that we conducted and the 

subsequent refinements made to the preliminary EA-Coach interface. The first follow-up 

pilot involved three students and was intended to evaluate the incorporation of feedback 

for correctness to the EA-Coach. The addition of this feedback meant that students now 

had to use a more rigorous entry format than during the primary pilot. In particular, 

equations in the problem solution now had to include appropriate and consistent variable 

names. To support students in doing so, a 'variable definition' pane was added to the 

problem-solving window, following the Andes design (figure 3-5 shows a sample pane 

that contains two variables corresponding to a block and a weight force). 
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i; Variables 

f Name pDeTmrtion -̂comp j Ycdmp I 

block 
W 

mass of block 
magnitude of Weight Force on block due to Earth 

Figure 3-5: Variable definition pane 

As we will describe in chapter 4, a variable-definition pane contains the variable names 

and corresponding definitions for steps entered into the problem solution. Apart from this 

one exception, the same interface was used in the first follow-up pilot as during the 

primary pilot. In particular, the example format corresponded to the SE-Coach format for 

presentation of examples. Since students did not indicate being uncomfortable with this 

format in the primary pilot evaluation, we intended to use it in the EA-Coach. However, 

the follow-up pilot revealed that students felt this format was not sufficiently similar to 

the problem-solving window's design. One common complaint was related to the lack of 

a variable definition pane in the example window. In the context of the example, the 

variable definition pane could help identify the meaning of the variables contained in the 

example solution6. Although this lack of similarity between the problem and example 

windows could be a form of scaffolding to discourage copying, we found that for several 

subjects it hindered problem solving. To address this issue, we changed the example 

format to more closely mirror the problem-solving format (we describe this format in 

chapter 4). We also made the following two refinements: 

6 A possibility for why this was not an issue during the primary pilot is that students in that pilot 
were not aware of instances when their solutions contained errors corresponding to inappropriate 
variable names. 
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• We added one additional layer of scaffolding to the feedback delivered by the 

system, corresponding to having the EA-Coach inform students when their entry 

could not be interpreted due to syntactic errors (such as undefined variable names, 

missing algebraic operators, etc). We made this change after we observed one pilot 

subject struggling because she had incorrect variable names in her equation, but 

was not aware of the problem and so could not interpret the Coach's feedback. 

Since syntactic errors are not the result of domain misconceptions but rather of the 

input format imposed by the EA-Coach, we wanted to prevent students from 

wasting time trying to fix the errors. 

• We modified the format for example solution steps corresponding to equations that 

represented vector components inclined with respect to an axis. In the preliminary 

pilot, component equations corresponding to vectors that were inclined with respect 

to the x or y axis were shown in the example using the same form ( i.e., with the 

cos trigonometric function, (F_{x,yJ - F * cos(angle)). This format is used in the 

SE-Coach. However, the pilot revealed that some students found this representation 

confusing, because it was not what they were taught. Instead, students were 

accustomed to representing vector component equations inclined with respect to the 

y-axis using the sin function instead of the cos function (i.e., F_y = F * sm(angle)). 

Thus, we decided to use this representation in the example window. 

The second follow-up pilot evaluation involved four subjects and was used to evaluate 

the refinements to the interface described above. This pilot did not indicate the need for 

any additional refinements. 

3.3 Summary 

In this chapter, we have described a series of pilot evaluations. The primary pilot 

evaluation was carried out to gather preliminary insight into the impact of the various 

types of superficial differences in our classification on APS. This pilot evaluation as well 
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as the two follow-up pilots were also used to refine the design of the EA-Coach interface, 

which we introduce in the next chapter along with the system architecture. 
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C h a p t e r 4 

Introduction to the 
EA-Coach 

This chapter introduces the EA-Coach tutoring framework [Conati, Muldner et al., 2006]. 

The design of the framework is based on the cognitive science findings presented in 

chapter 2 and has evolved from the pilot evaluations described in chapter 3. In particular, 

cognitive science research shows that students experience difficulties during both 

example selection and application and that these difficulties are due to a lack of both 

expertise and meta-cognitive skills. Given these findings, the EA-Coach (1) takes over 

the responsibility of example selection, to ensure that students have access to appropriate 

examples, i.e., ones that discourage copying by stimulating the targeted meta-cognitive 

skills, namely min-analogy and EBLC, and (2) provides scaffolding to further encourage 

students to use the examples effectively. Before we provide details on the EA-Coach, 

however, we should point out that the tutor is designed to complement rather than replace 

traditional classroom instruction. Therefore, students are expected to have some domain 

knowledge obtained through regular curricular activities when using the system. Students 
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Before Run-time 

Problem/Example 
• Specifications 

Author Interface 

At Run-time 

Problem Pool 

Solution Graph 

Problem Specification 

Graphical Description 

Example Pool 

Solution Graph 

Example Specification 

• Graphical Description Long-term 
Student Model 

Figure 4-1: The EA-Coach architecture 

can refine this knowledge by solving problems and referring to examples with the EA-

Coach. 

4.1 The EA-Coach Architecture 

To automatically assess the impact of a given example on a student's APS behavior, 

including how she will generate the problem solution and what she will learn from it, the 

EA-Coach needs a formal representation of the problems and examples in the target 

domain. The EA-Coach also needs to encode a given student's domain knowledge and 

relevant meta-cognitive skills in a computational student model that can be used to guide 

the tailoring of instructional support. These requirements are implemented in the EA-

Coach architecture, shown in figure 4-1. Note that two of the EA-Coach's architecture 

components come from Andes, an ITS we introduced in chapter 3 for problem solving 

without examples [Conati, Gertner et al. 2002]. These components, which we describe 

below, include (1) the knowledge base and (2) the problem-solving student interface. 
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Rule: goal-try-Newton's 2 n d Law 

7/the problem goal is to find a force 
then set the goal to try Newton's Second Law to solve the problem 

Rule: goal-choose-body 

//there is a goal to try Newton's Second Law to solve the problem 
then set the goal to select a body to which to apply the law 

Rule: body-by-force 

//there is a goal to select a body to apply Newton's Second Law 
and the problem goal is to find a force 

then select as the body the object to which the force is applied 

Rule: normal-exists 

//there is a goal to find all the forces on a body 
and the body rests on a surface 

then there is a normal force exerted on the body by the surface 

Figure 4-2: Sample rules in the knowledge base 

4.1.1 Before Run-time 

The knowledge base contains a rule-based representation of the physics domain (e.g., see 

figure 4-2). The rules were developed by the Andes project team [Conati, Gertner et al. 

2002], in collaboration with three physics professors. The rules encode (1) physics 

knowledge (e.g., rules 'body-by-force' and 'normal-exists' in figure 4-2) and (2) planning 

knowledge that encodes higher-level 'abstract plans' an expert might use to focus the 

problem-solving process (e.g., rules 'goal-try-Newton 's-2no'Law' and 'goal-choose-body 

in figure 4-2). 

The EA-Coach problem/example pools are populated before run-time with the 

problem/example graphical descriptions, specifications and solutions graphs. The 

graphical description of each problem and example is generated by a human author 

through the author interface. The graphical description corresponds to what the student 

sees in the student interface, which we describe shortly (see figure 4-4). The author 

interface is based on the interface in Andes [Conati, Gertner et al. 2002], but is extended 
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to include functionality for creating the graphical description of the EA-Coach examples. 

The human author also provides, for each problem/example, the formal specification of 

the 'problem statement', which is encoded using the vector representation we introduced 

in chapter 2 (figure 4-3a shows the 'problem statement' and a fragment of the 

corresponding formal specification). The problem solver1 uses the specification and the 

rules in the knowledge base to automatically generate the system's internal representation 

of the corresponding solution, in a structure called the solution graph [Conati, Gertner et 

al. 2002]. 

The solution graph is a dependency network representing how each solution step derives 

from previous steps and rules in the knowledge base. Figure 4-3b shows a fragment of the 

solution graph for the problem in figure 2-3. In the solution graph, solution steps are 

represented by facts and goals, collectively referred to as proposition nodes (nodes F: and 

G: nodes in figure 4-3b). The proposition nodes contain the system's internal 

representation of the solution steps, which like the specification are encoded using the 

vector representation we introduced in chapter 2. The proposition nodes have as parents 

the rules (R: nodes) that derived them and previous propositions matching the rules' 

enabling conditions. Thus, to solve the problem of finding the force on the block (node 

Gfind-force-on-block), the highlighted segment of the network in figure 4-3b encodes 

the following (see nodes in bold in figure 4-3b). First, the rule R:try-Newton' s-2ndLaw 

establishes the goal to apply Newton's 2nd Law (node G:try-Newton's-2ndLaw). Next, the 

rule R:goal-choose-body sets the sub-goal to find a body to apply Newton's 2nd Law 

(node G:choose-body). Finally, the R:body-by-force rule selects the block as the body 

(node F:block-is-body). The solution graph serves a number of key functions in the EA-

Coach, as we will describe shortly. 

The Problem Solver is an 'off-the-shelf application: CLIPS, a forward-chaining expert system. 
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A workman pushes a 50 kg. block along the floor. He pushes it hard, with a magnitude of 
120 N, applied at an angle of 25 degrees as shown. Find the normal force on the block. 

(a) 
< o b j e c t (name, b l o c k ) > 
<mass ( o b j , b l o c k ) ( v a l u e , 50) ( u n i t s , kg)> 
< s u r f a c e (name, f l o o r ) ( i n c l i n e , ?)> 

< g o a l - p r o b l e m ( i s , f i n d - n o r m a l ) ( a p p l i e d - t o , b l o c k ) > 

(b) 
G:find-force-on-block 

<goal (is, try-NSL)> I 

I G:choosc-body 
<goal (is, choose-body)> 

F:block-is-body 
<body (name, block){varName, b)> ^^gcral-find-forces^ 

G:find-forces 
<goal (name, find-forces) (body, block)> 

R:normal-exists 

F: normal-exists 
<nomal {applied-to, block) 

(applied-by, floor)(varName N)> 

R: normal-dir 

F:normal-dir 
<normal~dir (value, 90)(for-force, K)> 

Figure 4-3: (a) Fragment of formal specification for problem in figure 2-3 (shown here, top); (b) 
corresponding solution graph fragment for the problem. 
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4.1.2 At Run-time 

The student interface (interface from now on) allows students to solve problems from the 

problem pool and refer to examples from the example pool. During problem solving, the 

EA-Coach uses the solution graph to provide feedback for correctness on students' 

problem-solving entries, by matching entries to elements in the solution graph, based on 

the approach in [Conati, Gertner et al. 2002]. The examples that students refer to are 

dynamically selected by the example-selection mechanism, which corresponds to the 

student model and expected utility (EU) calculation components. 

The student model is a dynamic Bayesian network that is automatically constructed when 

a student opens a new problem. The network is based on (1) the problem's solution graph 

and (2) information on the student's domain knowledge and meta-cognitive tendencies, 

stored in the long-term student model. The framework uses the student model to predict 

how each example from the example pool will help a student solve the target problem 

and what he will learn from it. To generate the simulation, the model integrates 

information on 

• the similarity between the problem and the current example, assessed by comparing 

the solution graphs and specifications of the problem/example pair; 

• the student's knowledge of the domain principles needed to derive the problem 

solution and his meta-cognitive tendencies. 

The student model's prediction is passed to the EU calculation component, which 

quantifies the suitability of a candidate example by calculating its expected utility in 

terms of enabling successful problem solving and learning. Once the example-selection 

mechanism has calculated the expected utility for each candidate example, the coach 

retrieves the example with the highest expected utility and presents its graphical 

description in the interface. As the student proceeds with problem solving, the student 

model assesses how he actually uses the example to solve the problem and what he learns 

from it by integrating the aforementioned sources of information, as well as the student's 

interface actions (passed to it by the coach, as shown in figure 4-1). When the student 

closes the target problem, the long-term model is updated with the student model's 
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assessment of how the student's knowledge and meta-cognitive tendencies have evolved 

as a result of solving the problem. This allows the student model to have up-to-date 

information on the student each time he opens a problem to work on. 

4.2 Interacting with the EA-Coach 

We will now discuss student interaction with the EA-Coach. The EA-Coach offers 

several levels of scaffolding for the targeted meta-cognitive skills, i.e., min-analogy and 

EBLC. In this section, we describe the scaffolding that is embedded in the EA-Coach 

interface, while in chapter 5 we describe the details of the scaffolding provided through 

its adaptive example-selection mechanism. 

The EA-Coach interface evolved from the pilot evaluations described in chapter 3 to the 

final version described here. The interface includes two windows that students use to 

solve problems and refer to examples (problem and example windows in figure 4-4). To 

work on a problem, students choose one through the 'Open Problem' menu item found in 

the 'File' menu8. The problem window's design is directly based on that in Andes 

[Conati, Gertner et al. 2002] and includes three panels. The two panels used for entering 

the problem solution were described in section 3.1.1, namely the Free-body panel used to 

draw free-body diagrams with the provided tools (see left panel in figure 4-4a) and the 

Equation panel used to enter equations (see bottom-right panel in figure 4-4a). The 

system does not constrain input of the problem solution, in that students are free to enter 

the solution steps in any order and/or skip steps if they wish. The problem window also 

includes a Variable panel, which contains the list of variables used in the problem 

solution (e.g., 'm' is the variable corresponding to the mass of the block in the top right 

panel of figure 4-4a). The EA-Coach automatically adds variables to the Variable panel 

8 The problems are organized by the 'human author' into folders according to topic, and the 
responsibility is on the student to choose a problem, as is the case when students are doing 
exercises from a text book (i.e., currently, the EA-Coach does not provide support for helping a 
student choose a problem). 
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A workman pushes a 50 kg. block 
along the floor. He pushes it hard 
with a magnitude of 120N, applied 
at an angle of 25 degrees as shown. 
The block is moving with an 
unknown acceleration. 

Find the normal force on the block. 

Name Definition 

Variables 

j X-'co'rnp j Y-comp" 

Get Exarnpl 

m=50 

a) Problem Window 

A person pulls J AS kg. cute up a ram; 
inclined 30 degrees to the horizontal. 
The pulling force is applied at an angli 
of 30 degrees CCWfrom the horizon til, 
with a magnitude ot 100N. The crate's 
acceleration is not known. Find the 
the normal force on the crate. 

We answer this question by using 
Newton's Second Law. 
First, we choose the crate as 
the body, using the body tool. 

Next, we define the body's properties: 
The mass of crate is9 kg 
The ciate's acceleration is unknown 

Next, we find all the forces acting 
on the crate using the force tool \Pi\ 

The Weight force W on the crate 
is due to the Earth. J 

It is oriented at 270 degrees Z_L 
Ifsmagnitude is:W= gravity*mass, 
which is9.8*9 

The normal force N on the crate is due 
to the floor J 

It is oriented at 120 degrees ZJ_ 
The pulling force applied to the crate 
is due to the person. J 

It is.oriented 30 denrees /_L 

INaneir iDefinifjon j X<bwpv [.Y-Goropt 

mass of crate 

accelaration of crate 

mag. of Weight force due to Earth 

mag. of Normal force due to ramp 

mag. of Applied force due to person 

net force on crate 

1_K 

N_x 

P x 

* _ y (I 

W _ y 11 
N_y I 
P_V 
net_y 

___ I: 

To find the normal fore* onthe cratt̂ w* apply 
Newton's Second Law along.thesy-axis:. ' " < 

net_y = m* a_y 

H_y + W_y + P_y = m 1 a_y 

To solve the above.equation, weneed.tojdecompose all: 
the.forces and: accelerations into their y. components: s . 

W_y = -WsinCBO) 

P_y=0 

a_y ° 0 

Ŝubstituting these intoour.Newton's equation:' 

N • W'sin(60) = m ' a_y 

b) Example Window 

Figure 4-4: The EA-Coach interface (shown without the masking interface, which is displayed in 
figure 4-5) 

when a student draws free-body elements; students can also add variables by clicking on 

the Variable pane. To allow the EA-Coach to assess the correctness of equations, any 

variables that students include in their equations must appear in the variable pane. 

The EA-Coach provides immediate feedback for correctness on student problem-solving 

entries, by colouring correct vs. incorrect entries red or green, respectively. The EA-

Coach also notifies students when it cannot interpret their entry because of improper 
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syntax, such as undefined variable names or missing arithmetic operators. This feedback 

is the first form of scaffolding for effective APS provided by the EA-Coach. As evidence 

in cognitive science demonstrates [Chi, Bassok et al., 1989] and as we confirmed through 

our pilot studies, some students lack self-monitoring skills and so are unable to diagnose 

their own misconceptions or errors. We argue that immediate problem-solving feedback 

can help trigger the right APS behaviours in these students. For instance, suppose a 

student with a tendency for max-analogy is generating the problem solution by 

indiscriminately copying from an example that includes some differences blocking 

'correct' copying of its solution. Immediate feedback for correctness can make the 

student aware of the incorrectly copied steps and so discourage excessive copying by 

highlighting its limitations. Likewise, suppose a student inferred an incorrect rule via 

EBLC from an example and applied it to generate the problem solution (students may 

need several attempts before a correct rule is inferred [Chi 2000]). Feedback for 

correctness can make the student aware of the misconception and encourage her to repair 

it. As a final example, consider a min-analogy student who has poor self-monitoring 

skills and so does not realize she has errors in her solution. Feedback for correctness can 

help her realize the existence of the errors and seek help from an available example to fix 

them. 

While working on a problem, students can use the 'Get Example' button to ask for an 

example, which the EA-Coach adaptively selects and presents in the example window 

(figure 4-4b). The format of the example shown in the example window evolved from our 

pilot evaluations described in chapter 3. Based on pilot subjects' feedback, the example 

format is intended to mirror the problem-solving window's design. In particular, the 

example window includes a variable definition pane in order to help students identify the 

meaning of variables that appear in the example solution. The example window includes 

mechanisms to provide further scaffolding for the targeted meta-cognitive skills. One 

form of this scaffolding corresponds to the masking interface that covers the example 

specification and solution steps (see figure 4-5; note that the masking interface is not 

shown in figure 4-4). Moving the mouse over a region in the masking interface uncovers 

the region and covers whatever region was previously uncovered. The masking interface 
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A workman pushes a 50 kg. block 
along the floor. He pushes it hard 
with a magnitude of 120N, applied 
at an angle of 25 degrees as shown, 
The block is moving with an 
unknown acceleration. 

Find the normal force on the block. 

Name Definition | X-comp j Y-cornp | 

m moss of block h 

•J m=50 

2 

3 

A. 

•j 

,6 I 

'7 • 

8. 

9 ' 

1 0 ' 

12 

a) Problem Window 

First, we choose the crate as•£ 
the body, using the body tool.-

Vaiables 2* „ • 

•H 

b) Example Window 

Figure 4-5: Masking interface 

is intended to (1) discourage copying, because of the effort needed to explicitly uncover 

the example solution, and (2) encourage EBLC, by helping to focus students' attention on 

individual example solution steps. 

To further discourage copying, another form of scaffolding corresponds to the lack of 

'Copy' and 'Paste' functionality between the example and problem windows. This design 

is based on findings from an earlier study we conducted involving an interface that 

allowed cutting and pasting [Muldner 2002]. That study showed that some students 
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abused these functionalities to copy entire example solutions. A likely explanation for 

this finding is that the functionalities allow for the problem solution to be quickly 

generated, making it difficult for some students to resist using them. 

It should be noted that although the EA-Coach provides several forms of scaffolding for 

the targeted meta-cognitive skills, they are all quite subtle. In particular, the framework 

does not provide any hints or prompts on meta-cognitive strategies or the target physics 

domain. Therefore, much of the responsibility to learn from APS is on the student. This 

design is intended to stimulate students to take initiative in the learning process, rather 

than enforcing a strict tutorial interaction in which students passively follow a tutor's 

directive. 

4.3 Summary 

In this chapter, we introduced the EA-Coach. We began by describing the framework's 

architecture and then illustrated how students interact with the EA-Coach. 

In the next chapter, we provide details on the key computational mechanisms that enable 

the EA-Coach to provide tailored support for APS through its example-selection 

mechanism, including the student model and the expected utility calculation components. 
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C h a p t e r 5 

Tailored Support for 
APS through Example 
Selection 

In this chapter, we describe the tailored support the EA-Coach provides for APS by 

presenting students with adaptively selected examples. We begin by stating the EA-

Coach's example-selection objectives. We then introduce the EA-Coach student model, 

which plays a key role in helping the system meet its selection objectives. After 

presenting the general approach the EA-Coach takes for example selection, we describe 

the example-selection process and corresponding computational mechanisms in detail 

[Muldner and Conati, 2007]. Finally, we describe how the selected example is used to 

refine the student model's assessment of the student [Muldner and Conati, 2005]. 
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5.1 EA-Coach's Example-Selection Objectives 

When a student asks for an example, the EA-Coach selects the one from its example pool 

that best meets the following two objectives: 

1. Learning objective: the example triggers strengthening of existing and learning of 

new domain rules by encouraging min-analogy and E B L C 

2. Problem-solving success objective: the example helps generate the target problem 

solution 

A challenge with our approach is balancing learning with problem-solving success for 

different learners. Examples that are not highly similar to the target problem may support 

the learning objective by discouraging shallow APS behaviors such as pure copying. 

However, they may also hinder students from producing a problem solution, because they 

do not provide enough scaffolding for students who lack the necessary domain 

knowledge or meta-cognitive skills (also referred to as meta-cognitive tendencies here). 

Thus, it is key that the EA-Coach consider both similarity and student characteristics 

during the example-selection process. In particular, the system needs to take into account 

(1) the impact of a given student's knowledge and meta-cognitive tendencies on how he 

will use an example to solve the target problem, so that the EA-Coach can select 

examples that have the best potential to enable problem solving and learning for that 

student and (2) how the student's knowledge and meta-cognitive tendencies actually 

develop from using the example to solve the problem, so that the system will have up-to-

date information on the student the next time it selects an example for him. To meet these 

requirements, the EA-Coach relies on the ITS component that is responsible for 

representing and reasoning about the student, i.e., the student model. 

5.2 Introduction to the EA-Coach Student Model 

A traditional function of a student model is to generate an assessment of the student 

based on information coming from her interaction with the ITS. For instance, a student 
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model could use a student's problem-solving entries to infer that she knows the 

corresponding domain rules. However, a student model can also be used to simulate the 

impact that a tutorial action will have on the states of interest. For instance, a student 

model could simulate how a particular hint will impact a student's knowledge. To meet 

the example-selection requirements listed in the previous section, the EA-Coach operates 

in both these modes, as follows: 

[Assessment Mode] The model generates an assessment of how a student's 

knowledge and meta-cognitive tendencies for min-analogy and EBLC evolve as she 

engages in APS with the EA-Coach. This assessment allows the example-selection 

mechanism to have up-to-date information on the student. 

[Simulation Mode] The model generates a prediction of how a student will solve a 

problem in the presence of a particular example and what she will learn from doing 

so. This prediction forms the basis for the example-selection mechanism's ability to 

tailor its operation to a student's needs. 

To infer a student's learning and problem-solving outcomes, the model aims to infer the 

APS behaviors (copying, EBLC) influencing the outcomes. All of these inferences are 

challenging to generate, due to the quality and type of information available to the model. 

Recall that, as we indicated in chapter 4, in both modes the model takes into account 

information on both problem/example similarity and student characteristics (knowledge 

and meta-cognitive tendencies). In assessment mode, the model also uses information 

coming from a student's interface actions, including the problem steps the student entered 

in the interface and the example steps the student viewed in the masking interface. 

However, in neither mode does the model have direct information on students' APS 

behaviors corresponding to copying and EBLC or meta-cognitive tendencies and 

subsequent learning outcomes. During assessment mode, the lack of direct information 

stems from the fact that the EA-Coach interface does not require students to explicitly 

communicate to the student model how they are reasoning. In particular, the interface is 

not designed to capture copying/self-explanation through EBLC, for instance via 

specially designed tools that students would be required to use in order to copy example 

60 



solutions or generate EBLC self-explanations. Our design allows for a natural interaction 

with the EA-Coach, but it means that the information available to the model is much 

more ambiguous than if the system constrained students' interaction. As far as learning is 

concerned, the only information available to the model that a student has learned a rule is 

when she generates the corresponding solution step. However, generating a step does not 

guarantee that a student has learned the rule needed to do so, because a student could, for 

instance, generate the step by guessing or copying. Likewise, lack of direct information 

on copying and EBLC reasoning complicates the assessment of APS meta-cognitive 

tendencies (min-analogy and EBLC). During simulation mode, the model has even less 

information than during assessment. That is, the model aims to infer how a student will 

solve the problem and learn from it solely from information on problem/example 

similarity and the student's cognitive and meta-cognitive skills. 

The fact that the model only has access to indirect information on the target student states 

during the assessment/simulation modes introduces a good deal of uncertainty to the 

student-modeling process. Uncertainty also stems from the fact that the relationships 

between the sources of information and the states the model aims to infer are uncertain, 

including: 

• How similarity impacts APS for different learners. As we pointed in chapter 2, it is 

not clear how various levels of similarity influence APS behaviors and subsequent 

learning and problem-solving success for students with different levels of expertise 

and meta-cognitive skills. 

• How EBLC interacts with learning. Although EBLC reasoning increases the 

likelihood that a student learns a domain principle it does not guarantee it, since 

students may sometimes require several attempts before correct domain principles 

are inferred [Chi, 2000]. 

5.2.1 Handling Uncertainty through Dynamic Bayesian Networks 

To handle the uncertainty in the modeling process, the EA-Coach student model relies on 

dynamic Bayesian networks, an extension of the formal framework for representing and 
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reasoning under uncertainty provided by Bayesian networks [Pearl, 1988]. A Bayesian 

network is a directed acyclic graph in which the nodes represent random (uncertain) 

variables, and the arcs represent the direct probabilistic dependencies between them. To 

specify a Bayesian network, the following must be defined: (1) the graphical structure of 

the network; (2) a probability distribution for each node in the network, corresponding to 

specifying the prior probability of the values of each root node, and the conditional 

probability of the values of each non-root node given its parents. 

A key advantage of a Bayesian network is that it can be used to efficiently answer 

probabilistic queries about the variables encoded in the network. This is because 

Bayesian network algorithms exploit the independencies between the variables to reduce 

the computational complexity of probabilistic inference. 

Figure 5-1 shows an example of a Bayesian network containing the following binary 

random variables: 

• Rulel: the probability the student knows the formula needed to compute the weight 

of an object (Weight=m*g, where m is the mass of the object and g is the 

gravitational acceleration) 

• Rule2: the probability the student knows the formula for Newton's Second Law 

(X/7 = m*a, where is the net force on an object, m is the object's mass and a is 

the object's acceleration) 

• Fact: the probability the student derives W=m*g in her head 

• Action: the student writes the equation W=m*9.8 

This network encodes the following relationships between the variables (see figure 5-1): 

(1) it is possible to derive Fact by knowing either Rulel or Rulel (see [1] figure 5-1, top 

right), although even if both rules are not known, there is a small probability that Fact 

can be derived by some other means, such as guessing and (2) if the student derives an 

equation mentally (in his head) then there is a high probability that he will write the 

equation, but there is also a small probability that the equation will not be written (see [2] 

figure 5-1, bottom right). 
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P (Rule2) = 0.5 

P (Fact| Ru l e l , Rule2) = 0.95 
P (Fact| Rule l , - .Ru le2) = 0.9 [1] 
P (Factj --Rule l , Rule2) =0.5 
P (Fact| - .Rule l , -.Rule2) = 0.01 

Action: 
W=m*9.8 

P (Action| Fact) = .99 

P (Actionj -. Fact) = 0.05 [2] 

Figure 5-1: Example of a Bayesian network 

Given the network depicted in figure 5-1, we can perform various types of inference, 

including the following: 

• Observe that the student wrote iW-m*9.8' and ask for the probability that he 

knows either of the rules (diagnostic inference) 

• Observe that the student knows Rulel and ask for the probability that he will write 

the correct equation W=m*9.8 (predictive inference) 

• Observe that the student wrote the lW=m*9.8' equation and that he knows Rulel 

and ask for the probability that he knows Rulel (inter-causal inference) 

The Bayesian network in figure 5-1 is static: each node represents a variable whose value 

is fixed, i.e., does not change over.time (although the model's belief in the variable's 

value may change). However, the EA-Coach student model aims to represent how a 

student's knowledge and meta-cognitive tendencies evolve throughout the course of her 

interaction with the tutor. To do so, it uses an extension of a Bayesian network that 
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Slice t-1 Slice t Slice t + 1 

Figure 5-2: Simple dynamic Bayesian network 

allows for modeling the evolution of random variables over time, namely a dynamic 

Bayesian network (DBN) [Dean and Kanazawa, 1989]. 

In a DBN, the temporal evolution of a variable's true value is modeled by a sequence of 

nodes corresponding to the variable (e.g., nodej in slice t-1, slice t and slice t+1 in the 

very simple network shown in figure 5-2). A 'slice' represents the state of the random 

variables in the model at a given time. Typically, a slice is created at each point one 

wants to model the variables' temporal evolution (e.g., slice t in figure 5-2 represents a 

probability distribution over the variable encoded by nodej at time i). This temporal 

evolution is encoded via temporal links between slices, which capture that a variable's 

value depends on its earlier value (temporal links are shown as 'dotted' lines in figure 

5.2.2 Student Model Construction through the Andes Approach 

A key challenge associated with using Bayesian networks for the modeling task 

corresponds to building the network, including specifying its structure and parameters. 

The EA-Coach constructs its network by relying on the approach taken by Andes, an ITS 

we introduced in chapter 3 that supports pure problem solving [Conati, Gertner et al., 

2002]. However, the EA-Coach student model operates in a different instructional 

situation (APS) than the Andes model (pure problem solving). Thus, it distinguishes itself 

from the Andes model in several key ways, which we illustrate once we describe how 

Andes creates its student model Bayesian network. 

5-2). 
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Proposition . . . Proposition 

Rule 

P (Proposition=True | (all parents = True)) = 1 - a 
P(Proposition=True | (at least 1 parent = False)) = (3 

Figure 5-3: Andes Bayesian network student model 

When a student opens a new problem to work on, Andes automatically creates the student 

model Bayesian network from the target problem's solution graph. Recall that the 

solution graph encodes how the problem's solution can be derived from domain rules and 

intermediate solution steps. The system converts the solution graph into a Bayesian 

network by supplementing the solution graph nodes (Rule & Proposition nodes, see 

figure 5-3) with probability distributions over the nodes' values. 

Rule Nodes. Rule nodes have binary values True and False: P(Rule-True) represents the 

probability P that the student knows the rule. In the Andes network, rule nodes are root 

nodes. The priors come from information on a specific student's knowledge (e.g., from a 

pre-test) - i f this information is not available, the priors are set using generic values (e.g., 

Proposition Nodes. Proposition nodes have binary values True and False: 

P(Proposition-True) represents the probability P the student can generate the 

proposition. Propositions represent the following two kinds of elements in the problem 

solution: 

• Equations and free-body entries that a student can generate in the interface (i.e., 

fact nodes from the solution graph, ' F : ' in figure 4-3) 

• High-level planning steps that cannot be explicitly entered in the interface (i.e., 

goal nodes from the solution graph, 'G:' in figure 4-3) 

0.5). 
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The conditional probabilities for the proposition nodes are defined by using canonical 

interactions (e.g., Leaky/Noisy-AND [Henrion, 1989]). Doing so adequately 

approximates the dependencies in the network, while greatly simplifying the specification 

of the conditional probabilities. Specifically, the conditional probabilities between a 

proposition node and its parents are modeled by a Leaky/Noisy-And relationship, shown 

in figure 5-3, which encodes the following assumptions: 

• The 'noise' parameter a models that there is a non-zero probability a proposition is 

false even if all parents are true. This encodes the possibility that even if the student 

does have the necessary prerequisites to generate the corresponding problem step, 

she may not generate the step. 

• The 'leak' p parameter models that there is a non-zero probability a proposition is 

true even if some of its parents are false. This encodes the possibility that even if 

the student does not have the necessary prerequisites to generate the step, she may 

still generate the corresponding problem step by using alternate means, such as 

guessing or asking a friend. 

As a student solves a problem, Andes uses the Bayesian network to perform knowledge 

assessment and plan recognition of the students' actions. To do so, a student's problem-

solving entries are used to generate a probabilistic estimate of the student's knowledge. 

This enables the Bayesian network to infer which part of the solution the student is 

working on and which part is causing the student difficulty. 

The EA-Coach follows the Andes approach to construct its initial student model when a 

student opens a problem, by (1) converting the problem's solution graph into a Bayesian 

network and (2) specifying the conditional probabilities between the solution graph nodes 

using canonical interactions. However, while the Andes Bayesian network is static, the 

EA-Coach uses a dynamic Bayesian network, needed to model the evolution of students' 

knowledge from EBLC explanations. The EA-Coach model also has two other key 

differences from the Andes model. First, as we already pointed out above, the EA-Coach 

model operates in a different instructional situation than the Andes model, i.e., APS vs. 

pure problem solving. Thus, the EA-Coach model aims to infer how the presence of an 
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example influences students' problem solving and subsequent learning. To do so, the EA-

Coach dynamic Bayesian network includes additional nodes that represent occurrence of 

(1) EBLC/copying, (2) problem/example similarity and (3) the students' APS meta-

cognitive tendencies. The second difference between the EA-Coach model and the Andes 

model is related to the type of inference each model performs. Both models are used to 

generate an assessment of the student while she is solving a problem. However, the EA-

Coach model is also used to generate a simulation (prediction) of how the student will 

solve the problem given a particular example. As will be described shortly, this 

simulation is a critical component of the EA-Coach's example-selection mechanism. 

5.3 A Decision-theoretic Approach for Example Selection 

Before providing details on the example-selection mechanism, we will introduce the 

general approach we adopted for example selection. As we pointed out above, the student 

model plays a key role during example selection by generating a simulation of a student's 

problem solving and learning. However, the fact that the model's information is 

permeated with uncertainty complicates the decision regarding which example to select, 

since it means that the EA-Coach needs to consider not only which outcome is desirable 

but also how likely it is to happen. To handle this uncertainty in a principled manner 

during the decision-making process, the EA-Coach relies on a decision-theoretic 

framework [Clement, 1996; Russell and Norvig, 1995]. In a decision-theoretic 

framework, an agent's decision depends on the following two factors: 

• What the agent believes, represented using probability theory. 

• What the agent wants, i.e., its preferences between different outcomes, represented 

using utility theory. Specifically, preferences are represented by a utility function 

that assigns a value to each outcome expressing its desirability. 

A decision-theoretic framework provides the specification of what it means to act 

rationally when choosing between actions with uncertain outcomes: an agent is rational if 

and only if it chooses the action that yields the highest expected utility, averaged over all 
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possible outcomes of that action. Therefore, a decision-theoretic agent evaluates an action 

by weighing the utility of each possible outcome by the probability that it occurs. 

In the context of the EA-Coach, the decision under consideration corresponds to which 

example to present to the student. Finding an example with the highest expected utility 

involves a two-phase process for each candidate example: 

[Simulation Phase] First, the EA-Coach uses its student model to simulate how a 

student will solve a given problem in the presence of the candidate example and what 

the student will learn from doing so. Thus, the outcome of this simulation is a 

probabilistic prediction of how a candidate example impacts problem-solving success 

and learning. 

[Expected Utility Calculation Phase] Given this prediction, the EA-Coach uses a utility 

function to quantify the candidate example's expected utility in terms of meeting the 

learning and problem-solving success objectives. 

The simulation and utility calculation phases are repeated for each example in the EA-

Coach's example pool, and the example with the highest expected utility for learning and 

problem-solving success is presented to the student. We now describe the simulation and 

utility calculation phases. 

5.4 Simulation Phase 

During the simulation phase, the EA-Coach uses its student model to generate a 

prediction of learning and problem-solving success for a candidate example. Doing so 

involves first adding a simulation slice to the dynamic Bayesian network, and then 

incoporating nodes into the slice to model a student's APS behaviors. We will illustrate 

these steps by relying on a concrete scenario. Suppose a student opens the problem in 

figure 2-3 and asks for an example. Opening the problem results in the construction of the 

dynamic Bayesian network from the target problem's solution graph (a fragment of the 

network is shown in slice t, figure 5-4, left). Initially, this network contains all of the 
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solution graph rule and proposition nodes ('/?', 'G', 'F' nodes in slice t, figure 5-4), as 

well as two binary-valued nodes to model meta-cognitive tendencies, as follows: 

• MinAnalogyTend node, where V(MinAnalogyTend •= True) represents the 

probability a student has a tendency for min-analogy (see 'MinAnalogyTend' node 

in slice t, figure 5-4) 

• EBLCTend node, where P(EBLCTend = True) represents the probability a student 

has a tendency for EBLC (see 'EBLCTend' node in slice t, figure 5-4) 

The prior probabilities for the rule and tendency nodes come from the long-term model 

(see EA-Coach architecture, figure 4-1). The conditional probabilities for the proposition 

nodes are specified using the canonical interactions described in section 5.2.2. We now 

illustrate the simulation phase with this network, assuming the candidate example is that 

shown in figure 2-3. 

5.4.1 Simulation Slice 

As the first step in the simulation phase, a special 'simulation' slice is added to the 

network (figure 5-4, slice t+1, simulation slice). This slice will be used to generate a 

prediction of how a student will solve the problem in the presence of the candidate 

example, and how the student's knowledge will evolve from doing so. Initially, the 

simulation slice is directly based on the slice directly before it (pre-simulation slice from 

now on), in that it contains all the same rule and proposition nodes (figure 5-4, pre-

simulation and simulation slices, R and F/G nodes). The simulation slice does not, 

however, include the two APS tendency nodes ('EBLCTend' and 'MinAnalogyTend' 

nodes in slice t, figure 5-4). This is because the simulation does not predict the impact of 

an example on a student's APS tendencies. Although doing so is an interesting 

possibility, it adds additional complexity to the simulation, and so we decided to leave 

this possibility for future work, after we have validated the approach on the simplified 

model. 
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G:goal-try-Newton's2"dLaw 

(^Rigoal choose-body 

G:choose-body 

R:body-by-force 

R:goal-find-forces> 

G:find-forces 

G:find-forces 

F:normal-exists 

F:normal-dir 

EBLCTend 

Slice t 
(Pre-Simulation Slice) 

MinAnalogy Tend 

> G:goal-try-Newton's2 Yaw 

•^ffgoal-choose-body 

G:choose-body 

•^Ribody-by-(oree^ 

^—>(^R^al-find-forces^) 

F:block-is-body 

F:normal-exists 

F:normal-dir 

Slice t+1 
(Simulation Slice) 

Figure 5-4: Fragment of the EA-Coach dynamic Bayesian network 

5.4.2 Nodes to Model APS Behaviors 

As a second step in the simulation phase, to model students' APS behaviors, additional 

nodes are incorporated into the simulation slice (figure 5-5 shows a fragment of the 

network from figure 5-4 with the additional nodes in bold), as follows: 

• Similarity nodes encode the similarity between the problem solution step and the 

corresponding example step, if any (e.g., figure 5-5, simulation slice, 'Similarityn. 

exists' and 'Similarityn-for nodes). 
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• Copy nodes encode the probability that the student will generate a step in the 

problem solution by copying from the example (e.g., figure 5-5, simulation slice, 

'Copy„.exisls' and '.Copyn.dir' nodes). 

• EBLC nodes encode the probability that the student will infer a given rule via 

EBLC by explaining an example9 step (e.g., figure 5-5, simulation slice, 'EBLCn. 

exists' and 'EBLCn.ftir' nodes). 

9 Although in [VanLehn, Ball et al., 1990], the authors suggest that students could also learn via 
E B L C during pure problem solving (i.e., without an example), this is not currently modeled 
because very little detail is provided on how it occurs. 
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The general procedure is that a Copy node and a Similarity node is added for each fact 

node corresponding to a solution step in the network CF:' nodes in the dynamic Bayesian 

network), while an EBLC node is added for each rule node {'R:' nodes in the dynamic 

Bayesian network). Goal nodes ('G:' nodes in the dynamic Bayesian network) and 

corresponding rules represent a special case in the simulation, which will be described in 

section 5.4.4. 

5.4.2.1 Similarity Nodes 

During the simulation phase, the only form of direct evidence for the student model 

corresponds to the similarity between the problem and candidate example, encoded by 

the Similarity nodes (e.g., ' Similarity „ . e x i s , / and ' Similarity^/ nodes in the simulation 

slice from the network in figure 5-5, shown in figure 5-6 with some additional 

information on node values). A similarity node is added for each fact node in the 

simulation slice (referred to as step in subsequent discussion). 

The similarity node's value is based on the definitions presented in section 2.2.1.1 and is 

either None, Trivial or NonTrivial. To set a similarity node's value, the EA-Coach 

compares the solution graphs of the problem and the candidate example, as well as their 

specifications stored in the EA-Coach's knowledge base, using the following algorithm: 

[Step 1] locate the problem step node sp that the similarity node is linked to the problem's 
solution graph, 

[Step 2] Identify the rule R that generated sp, 

[Step 3] Check if rule R is in the example's solution graph: 

[Case 3a: Structurally different; Value = None] If R is not in the example's solution graph, 
then a structural difference exists between the problem and example with respect to sp. Set 
the value of the similarity node to None. 

[Case 3b: Structurally identical; Value = Trivial or NonTrivial] If/? is in the example's 
solution graph, then the problem/example are structurally identical with respect to sp. 
Identify the type of superficial relation (trivial, non-trivial) between the problem and 
example with respect to sp: 

[Step 4] Identify the set of nodes S={ sei...sen } in the example's solution graph that were 
derived by R. 
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[Step 5] Identify which node se in S to compare with sp: 

[Case 5a] If | S |=1, this is straightforward, i.e., se = sej. 

[Case 5b] If | S |>1, then use heuristics to identify se (see Appendix 1). 

[Step 6] Assess the superficial similarity between sp and se and set the similarity 
node value accordingly. Since sp and se encode the solution step using the 
formal vector representation we described in chapter 2, determining the 
superficial similarity involves comparing the corresponding slots in sp/se's 
vectors, and setting the similarity node according to our definitions presented in 
section 2.2.1.1. In particular, the value of the similarity node is set to NonTrivial 
if sp and se include at least one non-trivial difference and to Trivial otherwise. 
Given a superficial difference between sp and se, to determine if it is trivial or 
non-trivial, the system checks if (1) the example constant corresponding to the 
difference appears in the example specification, and (2) has a corresponding 
constant in the problem specification; if (1) and (2) are true, then the difference 
is assessed as trivial, and otherwise, as non-trivial. 

In figure 5-6, the value of the Similarity „ _ e x i s , s node is Trivial because the problem step it is 

linked to, which encodes that a normal force exists, only includes trivial differences with 

the corresponding example solution step (i.e., the constants corresponding to the 

differences appear in both the problem and example specifications; see section 2.2.1.1 for 

full details). On the other hand, the value of the Similarityn.Air node is NonTrivial because 

the problem step it is linked to, which encodes the normal force direction, includes a non-

trivial difference with the corresponding example solution step (i.e., the constant 

corresponding to the difference is missing from the example specification; see section 

2.2.1.1 for full details). 

Similarity nodes play a fundamental role in predicting APS behaviors according to our 

hypotheses presented in chapter 2, as we will see shortly. 

5.4.2.2 Copy Nodes 

Copy nodes allow the model to predict whether the student will generate the 

corresponding problem solution step by copying from the example (e.g., 'Copyn.exists' and 

'Copyn-jir' nodes in the simulation slice from the network in figure 5-5 shown here in 

figure 5-6). A copy node is added for each problem solution step in the simulation slice. 
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F:normal-exists 
True=.25 

F:normal-dir 
True=.24 

Slice t (Pre-Simulation Slice) 

F:normal-exists 
True=0.96 

F:normal-dir 
True=0.77 

Slice t+1 (Simulation Slice) 

Figure 5-6: Copy nodes in simulation slice 

Table 5-1: Copy node CPT 

MinAnalogyTend True False 

Similarity NonTrivial None Trivial NonTrivial None Trivial 

Cojpy=False 0.99 0.99 0.8 0.99 0.99 0.05 

Copy=True 0.01 0.01 0.2 0.01 0.01 0.95 
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Copy nodes have binary values True and False, where P(Copy=True) is the probability P 

the student will generate the corresponding problem step by copying. The copy node's 

Conditional Probability Table (CPT, see table 5-1) expresses how its value depends on 

the following factors: 

• The similarity between the problem step the copy node refers to and the 

corresponding step in the example solution, captured by the parent similarity node 

(e.g., figure 5-6, 'Similarity^/ node linked to the 'Copyn.,n/ node in the simulation 

slice) 

• The student's tendency for min-analogy, captured by the parent min-analogy 

tendency node (e.g., figure 5-6, 'MinAnalogyTend' node linked to the 'Copy,,.^/ 

node in the simulation slice) 

The probabilities in the CPT encode that if the value of the parent similarity node is 

NonTrivial or None, then the probability of the corresponding problem solution step 

being generated by copying is virtually zero, because the example does not afford 

students the opportunity to do so. If the value of the parent similarity node is Trivial, then 

the example allows the student to generate the problem solution step by copying. In this 

case, the probability of copying depends on the student's tendency for min-analogy. If the 

student does not have a tendency for min-analogy, indicating that she prefers to generate 

the problem solution by copying, the probability of copying is high. On the other hand, if 

the student does have a tendency for min-analogy, then the probability of copying is low. 

The impact of these factors is shown in figure 5-6. The probability the student will 

generate the problem step corresponding to node 'F-.normal-exists' by copying is high 

(simulation slice, 'Copyn.exisls', True=.S9). This is because the problem/example similarity 

allows for it (simulation slice, 'Similarity n. e x i si s'=Trivial,) and the student has a low 

tendency for min-analogy (pre-simulation slice, 'MinAnalogyTend', True=.\). In contrast, 

the probability the student will generate the problem step corresponding to node 

'Finormal-dif by copying is very low (simulation slice, 'Copyn.Ai/, True=.0l). This is 

because the non-trivial difference (simulation slice, ''Similarity<n.dir' =NonTrivial) between 

the problem step and corresponding example step blocks copying. 
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We should point out that the values in the copy node's CPT, as well as the CPTs 

described in subsequent sections, represent our best first estimate of the impact of factors 

such as student characteristics/similarity on the variable under consideration, and may 

need to be refined in the future, for instance via sensitivity analysis. Future work could 

involve using machine learning, i.e., learning the CPT parameters from data, for instance 

via the Expectation Maximization (EM) algorithm [Dempster, Laird et al., 1977]. A key 

challenge with taking this approach for setting the CPT values is obtaining the data 

needed for the learning task. 

5.4.2.3 EBLC Nodes 

EBLC nodes allow the simulation to predict whether the student will learn the 

corresponding rule through EBLC from the example (e.g., 'EBLCn.exisls' and '£BLC„_rf,>' 

nodes in the simulation slice from the network in figure 5-5 shown here in figure 5-7). 

During the simulation phase, the framework adds one EBLC node for each rule node in 

the simulation slice that (1) can be derived via this type of reasoning, based on [VanLehn, 

Jones et al., 1992] that describes how domain rules but not planning rules can be learned 

through EBLC (the difference between EBLC on planning vs. domain rules will be 

discussed in section 5.4.4), and (2) is included in the example solution (i.e., the example 

includes a step that is structurally identical to the problem step derived by the rule under 

consideration). 

EBLC nodes have binary values True and False, where P(EBLC=True) is the probability 

P the student will reason via EBLC on the corresponding example solution step in an 

attempt to learn the rule deriving the step. The EBLC node's CPT (see table 5-2) 

expresses how its value depends on the following factors: 

• The probability the student knows the rule, captured by corresponding rule node in 

the pre-simulation slice (e.g., figure 5-7, pre-simulation slice 'R:normal-dir' node, 

linked to the 'EBLCn.,nr' node in the simulation slice) 

• The probability the student will generate the problem solution step derived by this 

rule by copying, captured by the corresponding copy node (e.g., figure 5-7, 

simulation slice, 'Copyn.(iir' node, linked to the 'EBLCn.dir' node) 
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Figure 5-7: E B L C nodes in simulation 

Table 5-2: E B L C node CPT 

Rule, (Pre-Simulation Slice) False True 

Copy False True False True 

E B L C Tend (Pre-Simulation 
Slice) 

False True False True False True False True 

EBLC=False 0.55 0.05 0.99 0.7 0.99 0.99 0.99 0.99 

EBLC=True 0.45 0.95 0.01 0.3 0.01 0.01 0.01 0.01 
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• The student's tendency for EBLC, captured by the parent EBLC-tendency node 

(e.g., figure 5-7, pre-simulation slice 'EBLCTend' node, linked to the 'EBLCn^ir' 

node in the simulation slice) 

The CPT encodes the assumption that if the student already knows the rule, then the 

probability of EBLC is low, since the student does not need to learn the rule via EBLC. If 

the student does not know the rule, then the probability that he will reason via EBLC to 

derive the rule depends on two factors: his tendency for this type of reasoning, and the 

probability that he will generate the corresponding problem step by copying from the 

example. The CPT expresses that if there is a high probability the student will not copy, 

then he has more incentive to reason via EBLC than if he does copy, but this probability 

is mediated by the model's belief in the student's EBLC tendency. In particular, if the 

student has a low tendency for EBLC then the probability that he will engage in EBLC is 

low, even if he does not copy. 

The impact of these factors is shown in figure 5-7. The model predicts the student is not 

likely to reason via EBLC to learn the rule corresponding to the 'R: normal-exists' node in 

the simulation slice (simulation slice, 'EBLC„.ej:,J/s', True=.22). This is because of the 

high probability that the student will copy the corresponding solution step (simulation 

slice, 'Copyn.exists', True=.&9), and the moderate probability of her having tendency for 

EBLC (pre-simulation slice, 'EBLCTend ', True=.5). In contrast, a low probability of 

copying (simulation slice, 'Copyn.dir', True=0.01) combined with a moderate tendency for 

EBLC (pre-simulation slice, 'EBLCTend ', True=.5) increases the probability for EBLC 

reasoning (simulation slice, 'EBLC n.(ur', True=.66). 

Note that the network's structure with respect to EBLC and copying means that the two 

are not mutually exclusive, i.e., one can reason via EBLC and still copy. Although this 

seems unlikely, cognitive science research does not provide clear answers on how EBLC 

and copying interact, and so we wanted to account for this possibility in our network. 

There is one special case pertaining to EBLC nodes, when a rule derives more than one 

step in the problem solution. In this case, multiple copy nodes will exist (i.e., one for each 

step). In order to avoid having all these nodes as direct parents of the EBLC node, which 
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would increase the size of the CPT, we use a "filter" node to link the copy nodes to the 

EBLC node (see figure 5-8). The relationship between a filter node and the copy nodes is 

expressed through a canonical AND-interaction, encoding that its value is True if all its 

inputs are true and False otherwise. This allows the model to encode that if one of the 

steps will not be generated by copying, then there may be incentive for the student to 

learn via EBLC (but this is mediated by knowledge and tendency). 

5.4.3 Prediction of Learning and Problem-Solving Success 

The student model's prediction of EBLC and copying influences its prediction of learning 

and problem-solving success, as follows. The probabilities for the rule nodes in the 

simulation slice represent the model's prediction of whether the student will learn the 

corresponding rule in the presence of the candidate example (e.g., 'R:normal-exists', 

'R:normal-dir' nodes in the simulation slice from the network in figure 5-5 shown here in 

figure 5-9). A rule node's CPT (see table 5-3) encodes how its value depends on the 

following factors: 

• The probability that the student already knows the rule, captured by the 

corresponding rule node in the pre-simulation slice (e.g., figure 5-9, pre-simulation 

slice 'R:normal-dir' node, linked to 'R:normal-dir' node in the simulation slice) 

Filter | 

Figure 5-8: Special case for E B L C node 
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F:normal-exists 
True=.25 

F:normal-dir 
True=.24 

Slice t (Pre-Simulation Slice) 

F:normal-exists 
True=0.96 

F'.normal-dir 
True=0.77 

Slice t+1 (Simulation Slice) 

Figure 5-9: Prediction of learning & problem-solving success 

Table 5-3: Rule node CPT 

Rule (Pre-Simulation Slice) False True 

E B L C False True False True 

Rule=False 0.99 0.1 0.01 0.01 

Rule=True 0.01 0.9 0.99 0.99 
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• The probability that the student will learn the rule via EBLC, captured by the 

corresponding EBLC node (e.g., figure 5-9, simulation slice, 'EBLCn.dir' node 

linked to the 'R:normal-dir' node) 

Learning of a rule is predicted to occur if the probability of a rule being known is low in 

the pre-simulation slice and the simulation predicts the student will reason via EBLC to 

learn the rule (e.g., as is the case for rule 'R:normal-dir' in the simulation slice in figure 

5-9). However even in this case learning is not guaranteed to occur, since cognitive 

science findings show that students may require several attempts before correct principles 

are inferred [Chi, 2000]. 

The probabilities for the problem steps in the simulation slice represents the model's 

prediction of whether the student will generate a given step in the interface (e.g., 

'F':normal-exists', 'F:normal-dir' nodes in the simulation slice from figure 5-5 shown 

here in figure 5-9). A step node's CPT (see table 5-4) encodes how its value depends on 

the following factors: 

• The probability of the corresponding step in the pre-simulation slice, encoding that 

a step's value depends on its past value (e.g., figure 5-9, pre-simulation slice 

'F:normal-dir' node linked to F:normal-dir' node in the simulation slice) 

• The probability that the student will generate the step by copying, captured by the 

corresponding copy node (e.g., figure 5-9, simulation slice, 'Copy„.dir' node linked 

to 'F:normal-exists' node) 

• The probability that the student has the necessary prerequisites to generate the step 

on her own (i.e., knows the rule for deriving the step and can generate all 

prerequisite steps). In table 5-4, this is summarized by the 'Parents' entry (e.g., 

figure 5-4, simulation slice, 'R:normal-dif and 'G.-find-forces' nodes linked to 

'F-.normal-exists' node) 
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Table 5-4: Step (fact) node CPT 

Fact (Pre-
Simulation Slice) 

False True 

Parents False True False True 

Copy False True False True False True False True 

Fact=False 0.75 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Fact=True 0.25 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

If a problem step is not already generated in the pre-simulation slice10, the simulation 

predicts that the student will generate it either if she copies from the example (as is the 

case for 'F-.normal-exists' node in the simulation slice in figure 5-9) or by the application 

of her own knowledge (as is the case for 'F.normal-dir' node in the simulation slice in 

figure 5-9). 

5.4.4 Accounting for Goals in the Simulation 

Planning solution steps encoded in the dynamic Bayesian network using goal ('G.-') 

nodes and corresponding rules are a special case in the simulation, for two reasons. First, 

the simulation tries to predict if a student will generate the target problem steps and how 

he will do it (on his own vs. by copying). However, students can never actually generate 

goal steps in the EA-Coach interface because it does not support the entry of goals (e.g., 

there is no way for students to specify that they have the goal to, for instance, apply 

Newton's Second Law). Second, the simulation does not model learning of this class of 

rules (i.e., ones corresponding to planning knowledge). A key reason for this is that the 

only mechanism for learning embedded into the student model's operation is EBLC. 

Although we could have assumed that planning rules are learned via ELBC in the same 

1 0 This occurs if the student generates a solution step(s) and then asks for an example. Accounting 
for this means that the model does not need to consider whether an example will help the student 
generate the step, since she already achieved problem-solving success on that step. 
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Parents 

Goal 

[ Similarity J 
>| Goi 

Slice t 
(Pre-Simulation Slice) 

Slice t+1 
(Simulation Slice) 

Figure 5-10: Special case in simulation: goal nodes 

manner as domain rules, cognitive science research does not describe if or how students 

learn planning knowledge via EBLC. In addition, the model infers EBLC by taking into 

account copying, but as we already pointed out, goal steps cannot actually be copied in 

the EA-Coach interface. Thus, the absence of information on copying makes it even less 

clear how the model should infer EBLC. 

Given these factors, the simulation does not try to predict students' APS behaviors 

(copying, EBLC) with respect to goals, and so copy/EBLC nodes are not added to the 

simulation slice for these nodes. However, the example solutions seen by the student in 

the EA-Coach interface do include solution steps related to goals (e.g., "We answer this 

question by using Newton's Second Law', see figure 4-4b in chapter 4). Consequently, we 

wanted the simulation to account for the student being able to rely on the example to help 

him generate the problem solution. To model this, a simplified network structure is used, 

shown in figure 5-10. Specifically, a similarity node is added for each goal node in the 

network and directly linked to it (without an intermediate copy node). A goal node's CPT 

is almost identical to the fact node's CPT, with one exception: the Similarity node 

replaces the Copy node in the table (see table 5-5; the Parents entry still corresponds to 

the rule that derived the goal and any pre-requisite proposition nodes in that slice). The 

CPT encodes the assumption that Goal-True if the value of the corresponding similarity 

node is Trivial in the simulation slice, because this type of similarity allows for 

'copying'. This is a simplification, since it does not account for a student's tendency and 

how it will influence copying. However, this allows the simulation to have a very basic 
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notion of how the example may be helpful for generating the problem solution, without 

explicitly modeling APS behaviors related to copying and EBLC. 

Table 5-5: Goal node CPT 

Goal (Pre-
Simulation 
Slice) 

False True 

Parents False True False True 

Similarity Trivial NonTrival/ 

None 

Trivial NonTrival/ 

None 

Trivial NonTrival/ 

None 

Trivial NonTrival/ 

None 

Goal=False 0.01 0.75 0.01 0.01 0.01 0.01 0.01 0.01 

Goal=True 0.99 0.25 0.99 0.99 0.99 0.99 0.99 0.99 

5.5 Expected Utility Calculation Phase 

Once the simulation phase is completed for a candidate example, the second phase of the 

example-selection process involves quantifying the student model's prediction in terms of 

the candidate example's expected utility. 

Recall that the EA-Coach has two objectives when choosing an example: (1) learning and 

(2) problem-solving success. Therefore, the outcome from the example-selection process 

is characterized by two attributes encoding how these objectives are achieved. For 

instance, an outcome could be that an example supports problem-solving success, but not 

learning11. When an outcome is characterized by more than one attribute, a factor that 

needs to be taken into account during the decision-making process is how the attributes 

1 1 Note that as we pointed out in section 5.1, an example may support one of learning or problem-
solving success objectives, without necessarily supporting both. For instance, an example may 
help a student achieve problem-solving success, because it allows its solution to be copied; 
however, because its solution may be copied, the example fails to foster learning. 
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compare in terms of importance. Such decision problems are handled by multi-attribute 

utility theory (MAUT) [Keeney and Raifa, 1976; Clement, 1996]. MAUT provides a 

specification for how to represent a decision maker's preferences between several 

attributes using various multi-attribute utility functions. The EA-Coach relies on a 

particular kind of multi-attribute utility function, a linearly additive one, which has the 

following form: 
n 

U(xx,x2,...,xn) = J w , ^ ^ ) 
i=i 

where (1) x, are the attributes; (2) U(xj, x 2 x „ ) is the utility of the outcome described 

by the conjunction of the attributes xs, x 2 x n , ; (3) Ufa) is the utility of an attribute X;; 

(4) Wj is the weight assigned to that attribute encoding its importance. We discuss 

considerations related to using this kind of a function after we describe how it is used in 

the EA-Coach framework to calculate an example's expected utility. 

As is illustrated graphically in figure 5-11, the EA-Coach obtains an overall expected 

utility for a candidate example by combining utilities for learning and problem-solving 

success. These are in turn obtained by combining utilities for the individual rules and 

problem steps (facts). 

To calculate an example's expected utility for learning, first, the expected utility (EU) for 

learning each individual rule in the problem solution is calculated (captured by the nodes 

'Rulei Utility', 'Rulen Utility' in figure 5-11). This is the sum of the probability P of 

each possible learning outcome for that rule (i.e., value of a rule node), multiplied by the 

utility U of that outcome: 

EU(Rule,) = P(known(Rulei)) • U(known(Rulei)) + 

P(-*known(Rulei)) • U(^known(Rulei)) 

Since we define U(known(Rule$)=\ and U(->known(Rulei))=Q, the expected utility of a 

rule corresponds to the probability that the rule is known. 

85 



Figure 5-11: The EA-Coach utility model 

Next, an example's overall expected utility for learning is calculated (captured by the 

node 'Learning Utility' node in figure 5-11). This is the weighted sum of the expected 

utilities for learning the individual rules: 
n 

^EU(Rulq)-Wi 

i 

Since we consider all the rules to have equal importance, all the weights w are assigned 

an equal value (i.e., 1/n, where n is the number of rules in the network that can be derived 

via EBLC). 

The same approach is used to obtain the measure for the problem-solving success 

objective. First, the expected utility (EU) of each fact being generated is calculated 

(captured by the nodes 'Fact] Utility', 'Fact2 Utility' in figure 5-11). This is the sum of 

the probability P of each possible problem-solving outcome for that fact (i.e., value of a 

fact node), multiplied by the utility U of that outcome: 
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EU(Factt) = P(generated(Factj)) • U(generated(Factj)) + 

P(^generated(Factj)) • U(-^generated(Facti)) 

As was the case with expected utility for learning an individual rule, we define 

U(generated(Facti))=l and U(->generated(Fact,))=0. 

An example's overall expected utility for problem-solving success is the weighted sum of 

the expected utilities for the individual facts (captured by the node 'PS Success Utility' 

node in figure 5-11): 
m 

J^EUiFacO-w, 
i 

As was the case for rule nodes, we assume that all the facts are equally important, and so 

the weights are assigned an equal value (i.e., 1/m, where m is the number of facts in the 

network). 

The expected utilities for learning and problem-solving success are combined in a 

weighted sum to obtain an example's overall expected utility (captured by the node 

'Overall Utility' node in figure 5-11): 

Overall EU(example) = EU(Learning) • W] + EU(PS Success) • w2 

The weights w/ and w2 are currently set to the same value (i.e., 1/2), since we assume 

learning and problem-solving success to be equally important. 

5.5.1 Using a Linearly Additive Multi-Attribute Utility Function: 
Implications 

Using a linearly additive multi-attribute function greatly simplifies the utility 

computation, since the utilities can be specified and calculated independently of each 

other. However, a linearly additive function assumes additive independence among the 

agent's preferences. To illustrate additive independence, suppose we have two scenarios 

A and B, where a scenario corresponds to two possible outcomes, each with a 0.5 

probability of occurring: 
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A (low Learning, low PS Success) with probability 0.5 

(high Learning, high PS Success) with probability 0.5 

B . (low Learning, high PS Success) with probability 0.5 

(high Learning, low PS Success) with probability 0.5 

For instance, in scenario A, the two outcomes are (1) both learning and problem-solving 

success are low and (2) both learning and problem-solving success are high. If the 

decision maker is indifferent between the two scenarios then additive independence 

holds. However, if the decision-maker prefers scenario B over A because she prefers that 

at least one of PS Success or Learning is realized and does not want to risk neither 

happening, then additive independence does not hold. More formally, additive 

independence is defined as "changes in lotteries in one attribute do not affect preferences 

for lotteries in the other attribute" [Clement, 1996], where a lottery (i.e., scenario in our 

example above) is a probability distribution over outcomes. In the context of the EA-

Coach, whether additive independence holds depends on the agent whose preferences the 

tutor is emulating (an instructor's, the researcher's, etc.) However, assuming additive 

independence even when it does not hold has been shown to be acceptable in many 

practical applications [Clement, 1996]. 

5.6 Example-Selection Process: Summary 

The EA-Coach example-selection process involves the following two phases for a 

candidate example: 

1. Simulation phase: generating a prediction of how the student will solve a problem 

in the presence of the candidate example and what she will learn from it 

2. Expected utility calculation phase: quantifying this prediction via a linearly 

additive multi-attribute utility function to obtain the candidate example's expected 

utility 

When a candidate example's expected utility is calculated, its simulation slice is 

discarded from the network. The simulation and utility calculation phases are repeated for 
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each example in the framework's pool and the example with the highest expected utility 

is presented to the student. 

5.7 Role of the Example in the Student Model's 
Assessment 

Once an example is selected and presented to the student, the student model assesses how 

the student actually uses the example to solve the target problem and how her knowledge 

and meta-cognitive tendencies evolve as a consequence. Although the same network and 

parameters are used in assessment mode as during simulation mode, there are two key 

differences between the two modes. First, during assessment the model generates its 

appraisal as a response to student actions. Specifically, a new slice is added to the 

network each time a student produces a correct problem-solving entry12. To illustrate this, 

let's consider the following scenario. Suppose a student opens the problem in figure 2-3, 

which results in the construction of a dynamic Bayesian network based on that problem's 

solution graph (see slice t in figure 5-12). Next, the student asks for an example and the 

EA-Coach presents her with the one shown in figure 2-3. The student then generates a 

correct problem-solving entry corresponding to specifying the normal force. In response, 

a new slice is added to the dynamic Bayesian network (e.g., see slice t+1, figure 5-12). 

This slice initially contains the same solution graph and APS tendencies nodes as the 

slice before it. In the newly added slice (see slice t+1, figure 5-12), the following occurs: 

• A similarity, a copy and an EBLC node is added and linked to the fact and rule 

nodes corresponding to the problem-solving entry (see 'Similarity„.exisls', 'Copyn. 

exists', 'EBLCn-exists' nodes in slice t+1, figure 5-12). The value of the similarity node 

is set using the same algorithm as during simulation. Recall that to do so, the 

1 2 Slices are only added for correct entries because the model only contains a representation of the 
correct problem solution. Although incorrect entries could be used to infer that a student does not 
know a particular rule or that she is incorrectly copying from an example, modeling this would 
require determining which entry the student was trying to generate. Doing so is not 
straightforward and so for the time being is not implemented. 

89 



Figure 5-12 : Fragment of the EA-Coach dynamic Bayesian network used during assessment mode 

framework (1) identifies which example step to compare with the problem step 

corresponding to the student's entry and (2) assesses the similarity between the 

problem/example steps. During assessment mode, the framework stores the 'id' of 

. the example step that is compared with the problem step, referred to as 

'exampleStepId' below (we explain what purpose this serves shortly). 

• The student's problem-solving entry is entered as evidence into the network by 

setting the value of the corresponding fact node in the network to 'True' (see 

'Fnormal-exists' node in slice t+1, figure 5-12). 
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• A 'View' node is added and linked to the fact node corresponding to the student's 

problem-solving entry (see lViewn.exisls' node in slice t+1, figure 5-12). The view 

node encodes information on students' example viewing, as we describe below. 

Therefore, a second key difference between simulation and assessment is that during 

assessment the model has evidence on student actions, including (1) problem-solving 

entries and (2) example-viewing actions in the masking interface (stored in the viewing 

history, i.e., the sequence of steps a student viewed in the example). Problem-solving 

entries help the model infer that a student knows a given rule. In particular, if the 

probability of copying is low, then evidence from a student's entry results in belief 

propagation to the parent rule node, increasing the probability that the student knows the 

rule. If, on the other hand, the probability of copying is high, then the copy node 

'explains away' much of the evidence so that it does not propagate to the parent rule 

node. This reflects the assumption that copied entries do not provide evidence that a 

student knows the rule needed to generate the problem step. To help assess copying, the 

model relies on information coming from a student's example-viewing actions in the 

masking interface. Specifically, the model takes into account whether prior to generating 

a problem-solving entry, the student actually viewed the corresponding step in the 

example solution. This information is encoded in the network by the view node. The 

node's value is binary (True/False) and is set to: 

• True if prior to generating her entry, the student viewed a corresponding step in the 

example solution, i.e., 'exampleStepId' is in her viewing history. The search for a 

step in the viewing history is constrained to the last three steps viewed since the 

last problem-solving entry. This encodes the assumption a student would not 

remember example steps she viewed further back. 

• False otherwise. 
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Table 5-6: Copy node CPT used during assessment 

View False True 

MinAnalogy 
Tend 

False True False True 

Similarity Trivial NonTrival/ 

None 

Trivial NonTrival/ 

None 

Trivial NonTrival/ 

None 

Trivial NonTrival/ 

None 

Copy=False 0.99 0.99 0.99 0.99 0.01 0.01 0.4 0.01 

Copy=True 0.01 0.01 0.01 0.01 0.99 0.01 0.6 0.01 

The View node is linked to the copy node (see figure 5-12). Therefore, the probability a 

student generated the entry by copying depends on (see table 5-6) the following factors: 

• The similarity between the problem step the copy node refers to and the 

corresponding step in the example solution, captured by the parent similarity node 

• The student's tendency for min-analogy, captured by the parent MinAnalogyTend 

node in the previous slice 

• Whether the student viewed the corresponding step in the example, encoded by the 

view node 

As is the case during simulation mode, if the value of the parent similarity node is 

NonTrivial, then the probability of copying is virtually zero. On the other hand, if the 

value of the similarity node is Trivial, then the example allows a student to generate the 

problem solution step by copying. In this case, the probability of copying depends on the 

student's existing tendency for min-analogy and whether she viewed the corresponding 

step in the example solution, encoded by the view node. If the value of the view node is 

False, then the probability of copying is very low, even if the student has a low tendency 

for min-analogy. If, on the other hand, the value of the view node is True, then 

probability of copying is increased (although this increase is mediated by the student's 

tendency for min-analogy). For instance, if a student viewed a step in the example 

solution and then generated the corresponding step in the problem solution and the 
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similarity between the problem step and example step was trivial, then the probability of 

copying is increased (even if the student has a high tendency for min-analogy). 

A student's example-viewing actions are also used to determine whether to add an EBLC 

node to the network. Specifically, an EBLC node is added if (1) the rule can be derived 

EBLC and the example affords the student the opportunity to learn the rule, i.e., a 

structurally identical step exists in the example and (2) the student viewed the 

corresponding step in the example (i.e., 'exampleStepId' is in her viewing history). If the 

EBLC node is added, its value and influence on the rule node it is linked to depends on 

the same factors as during simulation, described in section 5.4.2.3 (i.e., identical CPT is 

used during simulation and assessment modes). If the EBLC node is not added, then the 

rule corresponding to the student's problem-solving entry only has one parent: the rule in 

the previous slice. In this case, the value of the parent rule node is simply transferred over 

to the child rule node. 

The model uses information on copying and EBLC to assess a student's corresponding 

meta-cognitive tendencies in the new slice. To assess tendency for min-analogy, the 

model uses its appraisal of the student's copying behaviors. For instance, belief in the 

student having copied (e.g., >Copyn.exis,s', True=.93 in figure 5-12) decreases the model's 

belief in the student's tendency for min-analogy ('MinAnalogyTend', True= . 1 in slice t-1 

decreases to True =.09 in slice t). To assess tendency for EBLC, the model uses its 

appraisal of EBLC episodes. For instance, if the probability of EBLC is low, then belief 

in EBLC tendency to decrease ('EBLCTend', True=.5 in slice t-1 decreases to True =.48 

in slice t). Note that if an EBLC node is not added, then the EBLC tendency node has as 

its only parent the EBLC tendency node in the previous slice. In this case, the value of 

the parent tendency node is simply transferred over to the child tendency node. 

5.8 Summary 

In this chapter, we provided details on the computational mechanisms enabling the EA-

Coach to provide adaptive support for APS through its example-selection mechanism, 
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corresponding the framework's student model and expected utility calculation 

components. 

In the next chapter, we describe the evaluation we conducted to evaluate the pedagogical 

effectiveness of EA-Coach and its example-selection mechanism. 

94 



C h a p t e r 6 

Evaluation of the 
EA-Coach 

In this chapter, we describe the controlled laboratory study we conducted to formally 

evaluate the effectiveness of the EA-Coach [Muldner and Conati, 2007]. Since the 

primary form of support delivered by the EA-Coach corresponds to its example-selection 

mechanism, the study focused on this component. We begin by specifying our study 

objectives and the approach we adopted to achieve them. After presenting the particulars 

of the study, we describe the dependent measures we considered in our data analysis, and 

then devote the remainder of the chapter to describing the study results. 

6.1 Objectives & Approach 

As we mentioned in earlier chapters, the challenge for the EA-Coach example-selection 

mechanism is to choose examples that are different enough to trigger learning by 

encouraging effective APS behaviors (learning goal), but at the same time similar 
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enough to help the student generate the problem solution (problem-solving success goal). 

To verify how well the EA-Coach example-selection process meets these goals, we 

compared it with a selection approach corresponding to choosing examples that are as 

similar as possible to the target problem. The latter is the standard approach advocated by 

existing ITS that perform example selection [Weber, 1996b; Aleven and Ashley, 1997; 

Nogry, Jean-Daubias et al., 2004]. In contrast, the EA-Coach selection mechanism may 

choose examples that include some differences with the target problem. 

In order to compare how the two example-selection approaches influence learning, we 

focused on analyzing how each approach influences APS behaviors that impact learning 

outcomes, i.e., min-analogy and EBLC. Our hypothesis was the following: 

the EA-Coach's example-selection strategy will be more effective than the strategy of 

selecting maximally similar examples in terms of encouraging EBLC and min-

analogy. 

The approach of assessing learning by performing a fine-grained analysis of behaviors 

that impact learning outcomes is advocated in [Chi, Bassok et al., 1989], where it is used 

to assess students' domain understanding by analyzing their self-explanations. Although 

this approach makes the analysis challenging because it requires that students' reasoning 

is captured and analyzed, it does have the advantage of providing in-depth insight into 

how each example-selection strategy impacts learning via the relevant meta-cognitive 

processes. Another way to measure learning is via pre/post test differences (i.e., if 

students show a gain from pre to post test, then this shows they learned). Although we did 

conduct some analysis using this measure, this was not the focus of our evaluation, for 

two reasons. First, it is hard to use this approach with the within-subjects design we 

adopted (as we describe in 6.6.1.3). Second, this approach does not provide fine-grained 

information on the process of learning, i.e., it does not tell us why learning did or did not 

occur. 
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6.2 Study Participants 

The study participants were university students who 

• were either (1) in the process of taking the Physics 100 course at UBC (equivalent 

to a grade twelve physics course) or (2) had completed either Physics 100 or a 

grade twelve physics course at any point prior to the study; 

• had not taken any higher-level physics courses. 

Subjects were paid ten dollars per hour for their participation. Since we needed subjects 

who provided information on APS behaviors, and our pilot studies showed that students 

who have a high level of expertise are less likely to use examples while problem solving, 

we pre-screened subjects based on knowledge. Specifically, subjects were given a pre

test (see section 6.3), and those who answered all the questions correctly did not 

participate in the remainder of the study. In addition, remaining subjects who did not use 

any examples during the study were not included in the analysis. 

A total of thirty-two subjects signed-up for the experiment and completed the pre-test. 

Eleven subjects answered all the pre-test questions correctly and did not participate in the 

remainder of the study. Of the remaining twenty-one subjects, two were discarded. One 

subject was discarded because of system instability (the subject accidentally received an 

older unstable version of the system which compromised her interaction with the 

interface). The second subject was discarded because she did not follow the experimental 

procedure: she took a prolonged phone break during the pre-test phase and did not 

diligently answer the pre-test questions, which could have confounded the results. Three 

subjects did not access any examples during the experimental phase of the study and so 

they did not complete the remainder of the experiment (i.e., the post-test), nor were they 

included in the data analysis. 

This left us with data from 16 subjects (14 were female). We describe how this data was 

used in the analysis in section 6.6, when we present the results. 
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6.3 Study Methodology 

The methodology for the study evolved from the pilot evaluations we described in 

chapter 3. In particular, the study methodology was based on the primary pilot's and was 

refined using the two follow-up pilots. The key refinement to the methodology 

corresponded to the addition of a 'training phase' that introduced subjects to the EA-

Coach, added after the first follow-up pilot. Recall that the first follow-up pilot was used 

to evaluate the addition of feedback for correctness to the system. As a consequence of 

this addition, participants were required to use a more rigorous solution-entry format than 

they did in the primary pilot. The first follow-up pilot revealed that some participants had 

difficulty with the rigorous format. To address this issue, in addition to modifying the 

format of the example window (see chapter 3), we added a training phase to the study 

that introduced participants to the EA-Coach interface. We piloted this addition with the 

second follow-up pilot. 

As was the case with the pilots, we used a within-subject design for the evaluation of the 

EA-Coach, because it increases an experiment's power to detect differences between 

conditions. This is accomplished by exposing each subject to all the conditions, thus 

accounting for the variability between subjects arising from individual differences in, for 

instance, expertise, APS tendencies and verbosity (which impacts verbal expression of 

self-explanation/EBLC). Each participant 

1. completed a pencil and paper pre-test (subjects were given 30 minutes to complete 

the pre-test); 

2. was given a 10 minute break during which her pre-test was graded and the pre-test 

data was used to initialize the system parameters (initialization phase); 

3. was introduced to the EA-Coach Interface, which took approximately 10 minutes 

(training phase); 

4. solved two physics problems using the EA-Coach (experimental phase); 

5. was given a 5 minute break; 
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6. completed a pencil and paper post-test (subjects were given 30 minutes to complete 

the post-test). 

We begin with the descriptions of the training and experimental phases. 

6.3.1 Training Phase 

During the training phase, subjects were introduced to the functionalities in the EA-

Coach interface. Subjects were first given a high-level overview of how to enter a 

problem solution and access an example in the EA-Coach. To solidify the process in 

subjects' memory, they were then asked to (1) use each of the tools needed to enter the 

problems solution and were guided through this process; (2) access an example. To avoid 

any carry-over effects from training, we used a problem and an example that contained 

'place-holders' instead of actual physics content. For instance, instead of actual physics 

problem/example specifications, the problem/examples had text that specified "here you 

will see a physics problem". The example solution contained just enough generic text 

(e.g., "equation 7", "Force F" etc,) to provide a reference point during the training phase, 

for instance, to allow us to point out that the variable pane contained the definitions of the 

variables that appeared in the example solution. 

6.3.2 Experimental Phase 

During the experimental phase, subjects used the EA-Coach interface (figure 6-1) to 

solve two physics problems (p, and p2, section 6.4). Subjects were instructed on which 

problem to open first, and used the 'File Open' menu to do so. Once subjects finished a 

problem and closed it, they were not allowed to re-open it. To control the overall 

experiment time while providing adequate opportunity to generate the problem solution, 

subjects were given 60 minutes per problem. Although all the pilot subjects required less 

time to generate the solutions (on average, 26 minutes during the two follow-up pilots), 

we set the threshold higher because there was considerable variability between the pilot 

subjects' task time (the fastest being 15 minutes, while the slowest was 41 minutes). 
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••f l^.tt- . - .^iHi*! 1 

A workman pushes a 50 kg. block 
along the floor. He pushes it hard w 
with a magnitude of 120N, apphedi: 
at an angle of 25 degrees as show 
The block is moving with an i; 
unknown acceleration. 

Find the normal force on the block j 

Variables 

Variables 

Name • iss Defimbon 

Next, we find all the forces acting; 
on the crate using the force tool 

Figure 6-1: The EA-Coach interface 

For each problem, subjects had the option to refer to one example (opened by clicking on 

the 'Get Example' button in figure 6-1). Subjects were instructed to treat this phase of the 

study as a homework situation, where they had some problems to solve, had access to a 

worked-out example, and were trying to both do their homework and prepare for an 

upcoming test. Subjects were told that it was up to them to use the examples and if they 

did, how to use them. 

To compare the EA-Coach's example-selection approach to the standard approach, the 

example-selection strategy was manipulated as follows: 

[static-selection condition] For one of the problems, subjects received an example 

that was highly superficially and structurally similar to the problem (as will be shown 
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in section 6.4)12. We refer to this selection type as static because the choice of 

example did not depend on a subject's characteristics and so was constant for all 

students for a given problem. 

[adaptive-selection condition] For the other problem, the example was adaptively 

selected by the EA-Coach at run-time from the pool of examples (presented in 

section 6.4). In order to maximize learning and problem-solving outcomes, the EA-

Coach adaptively tailors the choice of the example for each student (as we describe in 

section 6.3.3, for the study the example-selection mechanism was initialized using 

subjects' pre-test data). Thus, in contrast to the statically selected example, the 

adaptively selected example is not necessarily the most similar to the target problem. 

Therefore, the evaluation included two conditions: a static-selection condition and an 

adaptive-selection condition; to clarify the following discussion, we will also refer to the 

two conditions simply as static or adaptive. To account for carry-over effects, the 

presentation order of the problems and the conditions was fully counterbalanced, with 

subjects assigned to the problem/condition combinations in a round-robin fashion. Since 

the study involved two problems (p; and p2) and two conditions (static and adaptive 

selection), counterbalancing resulted in four problem/condition combinations: 

• pi/static selection, p2/adaptive selection 

• pi/adaptive selection, p2/static selection 

• p2/static selection, pi/adaptive selection 

• p2/adaptive selection, pi/static selection 

Both conditions used the version of the EA-Coach interface described in chapter 4. In 

particular, the EA-Coach provided feedback for correctness on subjects' problem-solving 

entries, realized by coloring the entries red or green for correct and incorrect entries, 

This pairing was accomplished by hand before run-time - but the framework could have 
performed this selection at run-time by selecting the example that had the fewest differences with 
the corresponding problem. 
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respectively. The coach also informed subjects when it could not interpret their entries 

because of syntactic problems related, for instance, to undefined variable names. The 

coach did not, however, provide any other hints or interventions related to domain-

specific help or APS strategies. 

During the experimental phase, we used the same data collection techniques as during the 

primary pilot (see chapter 3), which included (1) using the talk-aloud technique [Ercisson 

and Simon, 1980] to capture students' reasoning, and videotaping and subsequently 

transcribing all sessions and (2) logging all student actions in the problem and example 

windows of the EA-Coach interface. 

6.3.3 Initialization Phase 

During the initialization phase that preceded the training/experimental phases described 

above, we initialized the EA-Coach example mechanism. As we described in chapter 5, 

the mechanism takes into account the similarity between the target problem and candidate 

example, as well as information about a student's knowledge and meta-cognitive 

tendencies. The mechanism still functions without being initialized with student-specific 

information, but in this case its operation is not tailored to a given student's 

characteristics at the onset of the interaction. Initializing the selection mechanism 

corresponds to setting the priors for knowledge and APS tendency nodes in the Bayesian 

network student model. 

To initialize the knowledge node priors we relied on data from the pre-test, which was 

designed to provide information on students' physics knowledge. Specifically, the pre

test contained several questions corresponding to each relevant physics rule involved in 

the problems/example solutions in the experimental phase (i.e., knowledge node in the 

Bayesian network). To illustrate this, figure 6-2 shows the three pre-test questions and 

corresponding marking scheme used to initialize the priors for the normal-existslnormal-

dir rules. If a student 

• answered all questions correctly, the corresponding rule was assigned a prior of 

0.95 to reflect the probability that the student most likely knew the rule; 
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• answered all questions incorrectly, the corresponding rule was assigned a prior of 

0.05, to reflect the probability that the student likely did not know the rule; 

• answered some questions correctly, the corresponding rule was assigned a prior 

based on the percentage of correct responses, to reflect the probability that the 

student had some knowledge of the rule. 

For instance, if the student drew the normal force for all three corresponding questions in 

figure 6-2, but only drew the force's direction correctly in the first two questions, then the 

prior for the normal-exists rule was set to 0.95, while the prior for the normal-dir rule 

was set to 0.67. 

/_ 

Problem 1 
A vase with a mass of 2 kg sits on a frictionless shelf that is inclined 21 degrees from the horizontal. The vase is held in 
place by a taut string that runs parallel to the incline. Draw all the forces/ their direction that are acting on the vase. 

Normal Force drawn: 1 point 
Direction correct: 1 point 

Problem 2 
Bob pulls a large package along the ground with a force of F=100N, applied at 34 degrees to the horizontal. Draw the 
acceleration vector and all the forces that are acting on the package. 

Normal Force drawn: 1 point 
Direction correct: 1 point 

Word Problems: Problem 2 
Jane pushes a 4 kg book into the wall. She applies the push at an angle of 30 degrees with the horizontal, and a 
magnitude of 105 N. The book is sliding up the wall with some acceleration. What is the acceleration of the block ? 
(assume no friction!) 
Please draw free-body diagram as part of your answer, include the acceleration vector 

Normal Force drawn: 1 point 
Direction correct: 1 point 

Figure 6-2: Pre-test questions/corresponding marking scheme used to initialize the normal-
exists/normal-dir rules 
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Obtaining information to initialize the APS tendency priors proved more challenging. We 

are not aware of the existence of a cognitive test to assess a student's APS tendencies. 

One possibility we considered to obtain this information involved adding a third problem-

solving phase to our experiment. Specifically, we would use the above-described design, 

but prior to the experimental phase, we would introduce a 'baseline' phase. In this phase, 

students would solve a problem with access to a statically selected example, and the 

model would assess the students' tendency by monitoring their APS behaviors. Recall 

that statically selected examples are highly similar to the target problem, allowing 

students to copy as much or as little as they desire, thus providing an opportunity to 

observe their inherent tendencies. Unfortunately, adding this phase would mean 

introducing another static condition that always appears first. Consequently, our 

experiment would no longer be counterbalanced, since the adaptive condition would 

never appear as the first trial. This would make it difficult to draw conclusions about the 

adaptive condition in isolation from the baseline phase. Given this consideration we 

decided against this option and instead chose to initialize the tendency node priors to 0.5 

for all the subjects. 

As we indicated above, the initialization phase occurred prior to the training/ 

experimental phases. The model did not update this assessment of knowledge/meta-

cognitive tendencies during the study (i.e., it was not used in assessment mode). This 

decision was based on the following two factors: 

• Due to the need to counterbalance the study conditions, allowing the assessment to 

be updated during the study would mean that the EA-Coach example-selection 

mechanism had varying amounts of information about a student's tendency (i.e., 

depending on whether the adaptive condition was first, or followed the static 

condition), which could bias the results. 

• It allowed us to evaluate the example-selection mechanism in isolation from the 

model's assessment. 
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6.4 Study Materials 

The evaluation involved two types of materials: pencil and paper pre and post tests, as 

well as problem and examples students solved and referred to during the experimental 

phase of the study. 

6.4.1 Pre and Post Tests 

The pre and post tests included the same number of problems (7 problems, some with 

sub-parts, see Appendix 3). The pre and post tests were based on the ones used for the 

primary pilot study described in chapter 3, but expanded to allow for a fine-grained 

assessment of students' physics knowledge (this refinement was piloted in the two 

follow-up pilots). Specifically, the problems were designed to provide information on 

subjects' knowledge of individual rules in the EA-Coach Knowledge Base, used to 

initialize the example-selection mechanism. To improve accuracy, the tests included 

several questions per concept to account for the possibility of slips, etc. To motivate 

students to answer the post-test questions, we designed the pre and post tests to have 

equivalent questions, but we varied the constants and objects that appeared in the 

problem specifications. 

6.4.2 The EA-Coach Problems and Examples 

The problems (see table 6-1) and the examples (see table 6-2) used during the 

experimental phase of the study are based on typical "Newton's Second Law" problems 

used in physics courses (identified through on-line searches / textbooks (e.g., [Halliday 

and Resnick, 1988]). However, we did not take all of the problems and examples directly 

from a textbook, because we needed ones that satisfied particular constraints in terms of 

their similarity to each other (for instance, we needed two examples that included only 

trivial superficial differences with the problem). Since such problems/examples were not 

in present textbooks, we had to design them ourselves. 
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Table 6-1: Problems used during the experimental phase 

Problem 
label 

Problem specification 

Pi Rarh has rWirlprl rn attar-h a pirfnrr tn hpr railing T o S P P ^ 

what it would look like, she holds it against the ceiling. She is 
applying a pushing force of 190N at an angle of 21 degrees to cjT<^\ 
the horizontal. The picture has a mass of 3 kg and is moving 
along the ceiling with some unknown acceleration. What is 
the magnitude of the normal force on the picture? 

P2 A toy mouse of some unknown mass hangs from the ceiling 
on a string. A playful cat pushes the mouse with a force of 4 0 

50N, at an angle of 30 degrees to the horizontal, as shown. At jfr 3* 5 

this point, the mouse is not moving and the string makes an £i.*< 
angle of 40 degrees with the horizontal. What is the tension in 
the string? 

Table 6-2: Examples included the EA-Coach example pool during the experimental phase 

Example 
label 

Example specification 

ei Jake is trying to install a light fixture of mass = 2 kg. He is 
pushing it into the ceiling with a magnitude of 180 N . He is ^ f e s 
applying his force at an angle of 33 degrees to the horizontal Ĝ k̂ 
and the fixture is moving along the ceiling, with some 
unknown acceleration. What is the magnitude of the normal 
force on the fixture? 

e2 
Greg is pushing a crate of mass 40 kg along the floor. He 
pushes with a magnitude of 65 N . This force is directed ^ s N ^ 
downwards and applied at an angle of 30 degrees from the C.—-i-
horizontal. The crate is moving with some unknown 
acceleration. Find the magnitude of the normal force on the 
crate. 

e3 
A child is pushing a sled of mass 4 kg up a hill inclined at 10 o 
degrees to the horizontal. This pushing force is applied / .- \ 
parallel to the horizontal (i.e., at 0 degrees), but we don't v^^CCl^T 
know its magnitude. The crate is moving with an acceleration 
of 1.2 m/sA2. Find the magnitude of the normal force on the 
sled. 
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Example 
label 

Example specification 

e4 A pumpkin of some unknown mass is suspended by a cord \ . 
and pushed by Ann with a 45 N force until the cord forms an ~ ~ / -» 
angle of 32 degrees with the horizontal (as shown). At this 
point, the pumpkin is at rest. The pushing force is applied at Jfs±™ 
an angle of 18 degrees with the horizontal. What is the tension 
in the cord? 

e5 
A yoyo (fully unwound) of mass 2 kg is hanging from a V s v 
string. Jane is pushing the yoyo so that its string makes an -JiL-^s 
angle of 25 degrees with the horizontal - at this point, the yo-
yo is at rest. Jane applies the pushing force at an angle of 60 'Y\ eo 
degrees to the horizontal, as shown. We don't know the 
magnitude of the pushing force. What is the tension in the 
string? 

e6 
A block is attached to a string, which is attached to the N... 
ground. Bob pulls on the block with a force that has a \ * ' r^ 
magnitude of 40 N , applied at an angle of 35 degrees to the 3 5 ' C V ? 

horizontal. At this point, the block is at rest. The angle the 2 /7^ 
string makes with the horizontal is 25 degrees. We don't know 
the mass of the block... What is the tension in the string? 

The two problems were based on the ones involved in the primary pilot. However, we 

replaced problerTVjvjai (see table 3-1) with a similar problem. This was prompted by one 

subject's comment during the primary pilot, who said that "this problem [problem,riviai] is 

a little different..." and then when she opened problem „on-triviai "this is the problem I'm 

really familiar with". Based on an informal search through on-line physics problem sets, 

as well as a standard physics text book [Halloun and Hestenes, 1985], problem^™! did 

indeed appear to have a less-common problem situation than problemnon.tl.ivial. Thus, to 

make the two problems more equivalent in terms of familiarity, we replaced problemnon. 

trivial with problem pi, one that required the same domain knowledge to generate the 

solution but that appeared to involve a less-common problem situation. 

As we pointed out in chapter 3, our goal was to choose problems equivalent in terms of 

difficulty but different enough so that it made sense to ask students to solve them. 
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Table 6-3: Structural Differences between problems pi and p 2 

Problem PI Problem P2 

Normal force exists, 

acceleration vector exists, 

inclined-vector component equation (y-axis), 

parallel-vector component equation. 

Tension force exists, 

acceleration is null, 

inclined-vector component equation (x-axis). 

However, satisfying these two constraints meant that the two problems included some 

structural differences (summarized in table 6-3). These differences are the same as were 

involved in the primary pilot (with one exception discussed shortly). Since the primary 

pilot suggested that the structural differences did not impact subjects' behaviors, we felt 

they would satisfy the two constraints listed above. The one exception is that the primary 

pilot problems did not include a structural difference relating to vector {x/y}-component 

equations inclined with respect to an axis. In the primary pilot, these were represented 

using the same form and so did not correspond to a structural difference, i.e., were 

derived by the same rule. Recall that after the primary pilot, we modified the 

representation of vector component equations, which meant that the equations were 

derived by two rules (i.e., one to generate equations for the x-component and one to 

generate equations for the y-component, F_x = F * cos{angle} and F_y = F * sin{angle}, 

respectively). 

In the static condition, problem p, was paired with example e] and problem p2 was paired 

with example e4 (for convenience, the pairs are shown in table 6-4). We summarize the 

superficial differences between the two problem/example pairs in the static condition in 

table 6-5 and table 6-6. 
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Table 6-4 : Problem/example pairs used in the static condition 

Problem pi Corresponding Example ei 

Barb has decided to attach a 1 ^ r 
picture to her ceiling. To see 
what it would look like, she 
holds it against the ceiling. She 
is applying a pushing force of 
190N at an angle of 21 degrees 
to the horizontal. The picture has 
a mass of 3 kg and is moving 
along the ceiling with some 
unknown acceleration. What is 
the magnitude of the normal 
force on the picture? 

Jake is trying to install a light BHHIH 
fixture of mass = 2 kg. He is ^ 5 ? 
pushing it into the ceiling with ill"... 
a magnitude of 180 N . He is 
applying his force at an angle 
of 33 degrees to the horizontal 
and the fixture is moving 
along the ceiling, with some 
unknown acceleration. What is 
the magnitude of the normal 
force on the fixture? 

Problem p2 

A toy mouse of some unknown \ 
mass hangs from the ceiling on a «< r$s^ 
string. A playful cat pushes the Jib 
mouse with a force of 50N, at an <0-Ji__ 
angle of 30 degrees to the 
horizontal, as shown. At this 
point, the mouse is not moving 
and the string makes an angle of 
40 degrees with the horizontal. 
What is the tension in the string? 

Corresponding Example e4 

A pumpkin of some unknown \ . 
mass is suspended by a cord 2fjSk 
and pushed by Ann with a 45 ^ - J p * ' " 
N force until the cord forms //"v* 
an angle of 32 degrees with 
the horizontal (as shown). At 
this point, the pumpkin is at 
rest. The pushing force is 
applied at an angle of 18 
degrees with the horizontal. 
What is the tension in the 
cord? 
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Table 6-5: Superficial differences between problem p, & corresponding example ei in the static 
condition 

Simplified fragment of solution step 
corresponding to the difference 

Problem 
Solution Step 

Corresponding 
Example Solution 
Step 

Type of 
Difference 

Body to apply Newton's 2 n d Law picture light fixture Trivial 

The mass of the ... is ... picture / 3kg light fixture / 2kg Trivial/ 
Trivial 

There is a pushing force on ... due to picture / Barb light fixture / Jake Trivial/ 
Trivial 

The pushing force direction is drawn ... 
C C W 1 3 from the horizontal 

159° 147° Non-
Trivial 1 4 

The pushing force magnitude is ... 190N 180N Trivial 

There is a weight force on the ... picture light fixture Trivial 

The magnitude of weight force is 9.8 
* 

3kg 2 kg Trivial 

There is a normal force on ... due to 
the ceiling 

picture light fixture Trivial 

The y-component equation of the 
pushing force is ... 

P sin (21) Psin (33) Trivial 

1 3 counter-clockwise 
1 4 Note that this difference is classified as non-trivial because it cannot be resolved by 
transformational analogy. This is because the constant corresponding to the angle of the pushing 
force does not appear in both the example specification and solution. In particular, the example 
solution states that the pushing force is drawn 147 degrees from the horizontal; in the problem 
solution, students are required to specify the angle counterclockwise from the origin in the E A -
Coach interface. However, the constant 147 does not appear in the example specification, since the 
specification provides the pushing force angle clockwise from the horizontal (33 degrees, see ei). 
Therefore, transformational analogy is not enabled, and the difference is classified as non-trivial. 
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Table 6-6: Superficial differences between problem p 2 & corresponding example e4 in the static 
condition 

Simplified fragment of solution step 
corresponding to the difference 

Problem Solution 
Step 

Corresponding 
Example 
Solution Step 

Type of 
Difference 

Body to apply Newton's 2 n d Law mouse pumpkin Trivial 

There is a pushing force on the ... due 
to ... 

mouse/cat pumpkin/Ann Trivial/ Trivial 

The pushing force direction is ... C C W 
from horizontal 

30° 18° Trivial 

The pushing force magnitude is... 50 N 45 N Trivial 

There is a weight force on the ... mouse pumpkin Trivial 

There is a tension force on the... due to mouse/string pumpkin/cord Trivial/ Trivial 

The direction of the tension force is ... 140° 148° Non-Trivial 1 5 

The x-component equation for the 
tension force is ... 

-T*cos(40) -T*cos(32) Trivial 

The x-component equation for the 
pushing force is ... 

P*cos(30) P*cos(18) Trivial 

1 5 Note that the difference between the directions of the tension force the problem/example is non-
trivial, while the difference between the directions of the pushing force is trivial. This is because 
the difference corresponding to the pushing force direction can be resolved by transformational 
analogy, while the difference corresponding to the tension force direction cannot. The pushing 
force difference can be resolved by substituting example constant 18 by the problem constant 30 
(since the constant 18 appears in both the example solution and specification and has a 
corresponding constant in the problem specification, enabling transformational analogy). On the 
other hand, the constant corresponding to the angle of the tension force does not appear in both the 
example specification and solution. In particular, the example solution specifies that the tension 
force angle is 148 degrees counterclockwise from the horizontal. However, this constant does not 
appear in the example specification, because it gives the cord angle clockwise from the horizontal 
(i.e., 32 degrees, see e4 specification). Therefore, transformational analogy is not enabled, since 
148 does not appear in both the example solution and specification, and so the difference is 
classified as non-trivial. 



Table 6-7: Superficial differences: mean number of trivially and non-trivially different 
problem/example steps in the two conditions 

Static selection Adaptive selection 

Mean # trivial differences (st. dev.) 8(0) 8 (.81) 

Mean # non-trivial differences (st. dev.) HO) 4.75 (.95) 

To help clarify the discussion of the results, we report on the level of similarity between 

the statically vs. adaptively selected examples and corresponding problems. Recall that as 

we indicated in section 6.4, in the static condition examples ei and e4 were paired with 

problem pt and p2, respectively. In the adaptive condition, the EA-Coach never chose to 

make this pairing16. Consequently, as is summarized in table 6-7, the adaptively selected 

examples were always less superficially similar to the target problem than the statically 

selected ones, since (1) the total number of trivial and non-trivial differences between the 

problem/example was always higher in the adaptive condition than in the static condition 

and (2) the adaptive condition always had more non-trivial differences. The EA-Coach 

example mechanism chose less similar examples because it predicted that such examples 

had better potential to trigger learning, while helping students to achieve problem-solving 

success. We will see how this prediction was realized once the dependent measures have 

been described. 

1 6 There are some circumstances that may lead the EA-Coach to select highly similar examples. 
For instance, if a student has a very low tendency for E B L C hindering her ability to learn rules, 
then by taking this into account the system may select highly similar examples that at least will 
help the student to generate the problem solution. 
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6.5 Dependent Measures 

Recall that the objective of the evaluation was to analyze how the two example-selection 

approaches (adaptive vs. static) impacted learning and problem-solving success. To 

assess the impact on learning, we analyzed: 

• Effect of example selection on min-analogy and EBLC. To determine example 

selection's impact on min-analogy, we analyzed copy events, i.e., the number of 

copy episodes for a problem solution. To determine example selection's impact on 

how students self-explained, we analyzed Self-explanation/EBLC events, i.e., the 

number of self-explanations expressed while generating a problem solution, 

including EBLC explanations. 

• Learning gains from pre to post test: the percentage of rules learned in each 

example-selection condition. 

To assess the impact on problem-solving success, we determined how many students 

generated a correct problem solution in each condition. We also analyzed the impact of 

example selection on students' performance during the problem-solving process by 

measuring: 

• Task time: the time to generate a problem solution. 

• Errors: the number of errors made while generating a problem solution. 

6.6 Results 

To obtain results for the dependent measures of interest, the key analysis techniques we 

used were (1) univariate repeated-measures ANOVA and (2) Wilcoxon signed ranks test. 

The former is a standard technique used for statistical analysis of data, but it involves 

averaging over participants [Howell, 1997]. Consequently, it has the potential to obscure 

how a particular treatment impacts an individual [Vicente and Torenvliet, 2000]. Thus, 

we also report this information, and analyze it using the Wilcoxon signed ranks test. 
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As far as the ANOVA analysis is concerned, only one within-subject factor may be 

included in the analysis at a time. Although in our experiment, the primary within-subject 

factor of interest was example-selection type (also referred to as selection below, static 

vs. adaptive), our study design included another within-subject factor, namely problem 

(i.e., pi vs. P2). Even though we designed the problems to be equivalent in terms of 

difficulty, we first confirmed that this was the case by running the ANOVA with problem 

as the primary within-subjects factor. The ANOVA revealed that there were no 

significant main, interaction or order effects for problem for any of the dependent 

variables. Therefore, we performed the remainder of the analysis with selection as the 

within-subject factor. In this analysis, we considered selection in combination with the 

between-subject factors resulting from the counterbalancing of selection and problem 

types, referred to as selection order and problem order1, respectively. Therefore, the 

ANOVA used was a 2 (example-selection type) x 2 (selection order) x 2 (problem order), 

where selection order and problem order were control variables. 

We first verified that there was no significant difference in subjects' performance on pre

test between the four groups arising from the counterbalancing of problem/condition 

combinations, which was the case (F(3,15)=0.23, p=0.874). Of the sixteen subjects that 

completed all stages of the experiment, two accessed an example in only one of the two 

selection conditions, but did not even open the example in the other condition. 

Specifically, one subject did not access the adaptively selected example, but did access 

the statically selected one; a second subject did not access the statically selected example, 

but did access the adaptively selected one. We originally intended to include these 

subjects' data in the within-subjects statistical analysis. After further consideration, 

1 7 We kept problem order in this analysis because although we did not find it to have an impact in 
isolation of selection (i.e., when the analysis included problem as the within-subject factor) we 
wanted to account for the possibility that it did play a role when the analysis was performed with 
selection as the within-subject factor. It turned out that this was not the case: we did not find any 
significant problem order interactions or effects. 
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however, we decided not to, since it is hard to argue that selection has an impact on APS 

behaviors if the student does not open the available example. Thus, all of the within-

subjects statistical analysis is based on the data from the fourteen subjects who used 

examples in both the static and adaptive selection conditions. We did perform some 

analysis that did not involve within-subjects comparisons, for which we considered data 

from all 16 participants - when this is the case, it is clearly indicated in the text. 

6.6.1 Results: Learning 

We first report on how example selection impacted APS behaviors that impact learning, 

namely min-analogy and EBLC. We then provide findings from the analysis on the 

pre/post test differences. 

6.6.1.1 APS Behaviors: Min-Analogy 

As we indicated in section 6.5, to analyze example selection's impact on min-analogy, we 

analyzed students' copy events. To identify copy events, we used the same method as in 

the pilot study, which we described in section 3.1.3 and summarize here. This involved 

identifying instances when students (1) accessed a step in the example solution and (2) 

generated the corresponding step in their problem solution. If the student's entry to a step 

accessed in the example was identical or included minor differences of the type listed in 

section 2.2.1, then it was classified as 'copied'. Note that this analysis included both 

correct and incorrect copy events. 

The ANOVA results for copy events are shown in table 6-8. There was a significant main 

effect of example selection on copying (F(l,10) - 7.978, p=0.018). On average, students 

copied less from the adaptively than from the statically selected examples (on average, 

5.9 vs. 8.1, respectively)18. This was true for 10 of the 14 participants involved in the 

within subject analysis, while 2 participants copied more in the adaptive condition and 2 

No other effects or interactions were significant. 
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Table 6-8: Summary of A N O V A analysis for copy events (N=14) 

Source SS Df MS F Sig. 

Selection 34.074 1 34.074 7.978 .018 

Selection * Problem 0, d e r 3.646 1 3.646 0.854 .377 

Selection * Selection 0 ] d e r 
0.074 1 0.074 0.017 .898 

Selection * Problem o r d e,*Selection o l d e, 2.503 1 2.503 0.586 .462 

Error 42.708 10 4.271 

participants had an equal number of copy events in both conditions. These individual 

differences between the two conditions are statistically significant according to the 

Wilcoxon signed ranks test (p=0.011), confirming the ANOVA results that students 

copied significantly less in the adaptive condition. 

6.6.1.2 APS Behaviors: Self-explanation/EBLC Events 

To identify EBLC, we analyzed the verbal protocols. EBLC is a form of self-explanation 

that involves learning a rule by using overly general or common sense reasoning, as 

opposed to explaining a solution step using a domain rule that is already known. We refer 

to the latter as 'domain-based' explanations. Although identifying self-explanation is 

fairly straightforward, further distinguishing between EBLC and domain-based 

explanation is more challenging. This is because students' explanations are often 

fragmented or incomplete (other attempts to classify EBLC faced similar issues, e.g., 

[VanLehn, 1999]). To make this more concrete, figure 6-3 shows some examples of self-

explanations expressed during the study, including a discussion of why it is hard to 

identify the type of explanation (the classification for the explanations in figure 6-3 will 

be provided shortly). Given the challenge of identifying EBLC, we took a two-tier 

approach to analyze example selection's impact on self-explanation. We first classified 

utterances as self-explanation, without trying to distinguish between domain and EBLC 

explanations. As mentioned above, this is an easier classification, and it already provides 



Figure 6-3 : Sample self-explanations 

[1] "a_x is zero - not moving at this point... " 
Explanation expressed while reading the example solution step "a_x = 0" for example 64. Not 
enough information is provided to determine how this inference is made; no indication of 
EBLC-style reasoning is provided. 

[2] "... it's zero because it is on the y axis (points to the example free body diagram) but this 
(points to her problem) can't be because...it's at an angle" 
Explanation expressed while looking at free body diagram in example &s a f t e r reading example 
solution step "Px=0". The subject correctly infers why the x component of the pushing force is 
zero (i.e., because its component is perpendicular to the x-axis) but it is not clear what 
reasoning she uses to make this inference. 

[3] "/ think force W will be force N because both are pointing down - will that be right? " 
Explanation expressed while solving problem pi. Subject then writes incorrect equation "Fn = 
Fw", where Fn and Fw are the variables representing the magnitude of the normal and weight 
force, respectively, which the subject has drawn correctly in her free-body diagram. Since both 
the forces related to the explanation are drawn straight down, the explanation appears to relate 
to a overly general rule that the magnitude of two forces is equal if they point in the same 
direction. 

[4] "should be negative - it is in the negative quadrant (gestures towards her free body)" 
Explanation expressed while solving problem p,. No indication of E B L C provided. 
[5] "... It's negative because it's under the x axis (referring to the tension vector while looking 
at free body diagram of example e5) my tension is above the x axis so it should be positive and 
it will be cos... the angle it makes with it will be 40" 

Explanation expressed after reading the example solution step "T_x = -Tcos(5)" in example e4. 
Subject appears to be relying on an overly general mathematics rule to infer that components 
for all vectors below the x-axis are negative. 

[6] "It is 21 degrees to the horizontal and the picture is going that way (gestures left) so maybe 
it is the other way around... so it would be 180 — 21" 
Explanation expressed after an incorrect attempt to draw the pushing vector while solving 
problem p,. Specifically, subject tried several times to enter the direction of the pushing force as 
21 degrees, which is the value given in the problem description. Subject appears to be making a 
link between the direction of motion and the direction of the pushing force, possibly relying on 
common sense reasoning that when a push is applied to an object causing the object to move in 
a particular direction then the pushing force is also oriented in the direction of motion. 

[7] "py equals zero... why are you zero ... oohh it is because it is zero degrees" 
First portion of utterance expressed after reading example solution step "Py=0" in e3 ; second 
portion expressed while looking at the example's free body diagram, which shows that the 
pushing force is parallel to the x-axis. The subject's inference is not clear: a literal translation is 
that she infers the component is zero because the force direction is zero degrees from the x-axis, 
which is slanted with respect to the horizontal; an alternative is that she infers that the 
component is zero because the force is oriented zero degrees to the horizontal. 
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Table 6-9: Summary of A N O V A analysis for self-explanation events (N=14) 

Source SS Df MS F Sig. 

Selection 23.574 1 23.574 6.422 0.030 

Selection * Problem o r d e r .003 1 .003 .001 .978 

Selection * Selection o r d e r 1.574 1 1.574 .429 .527 

Selection * Problem o l d e r*Selection o r d e, 2.860 1 2.860 .779 .398 

Error 36.708 10 3.671 

some insight into how example selection impacts how students reason during APS. We 

then classified self-explanations as EBLC or domain based, as we describe below. 

To identify self-explanation, the verbal protocols were analyzed by the author following 

the same method as was used during the pilot study (see section 3.1.3). The ANOVA 

results are shown in table 6-9. There was a significant main effect of example selection 

on self-explanation (F(l, 10) = 6.42, p= 0.03): students expressed significantly more self-

explanations in the adaptive condition than in the static condition (on average, 4.07 vs. 

2.57, respectively) 1 9. This was true for 9 of the 14 participants involved in the within-

subject analysis, while 3 students self-explained more in the static condition, and 2 

students generated the same number of self-explanations in both conditions. These 

individual differences are statistically significant according to the Wilcoxon signed ranks 

test (p=0.023), confirming the ANOVA results that students self-explained significantly 

more in the adaptive condition. 

To get a sense of when self-explanation took place, we identified explanations that 

occurred during (1) example studying, when students explained from an example vs. (2) 

problem solving, when students explained their own solution entries without referring to 

the example. Figure 6-3 shows examples of explanations generated in each context: 

1 9 No other effects or interactions were significant. 
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explanations [1], [2], [5] and [7] were expressed during example studying; explanations 

[3], [4] and [6] were expressed during problem solving. In the adaptive condition, about 

half of the self-explanations generated occurred in each context (on average per student, 

53% during example studying vs. 48% during problem solving). In the static condition, a 

higher percentage of self-explanations was generated during example studying (on 

average per student, 79% during example studying vs. 21% during problem solving). We 

discuss the implications of this finding in terms of the EA-Coach in section 6.6.1.4. 

To identify EBLC-based self-explanations, we followed the approach in [VanLehn, 1999] 

and looked for instances where either (1) students appeared to rely on common sense or 

overly general reasoning as indicated via the verbal protocols or (2) when students 

managed to generate explanations for domain principles that they did not have good 

domain understanding of (as indicated by pre-test and/or confusion expressed during the 

study), suggesting that knowledge gaps existed which required EBLC style reasoning to 

generate the explanation. In figure 6-3, explanations [2-3] and [5-7] were classified as 

EBLC 2 0 , while the remaining two explanations, namely [1] and [4], were classified as 

domain-based explanations21. 

The ANOVA results for EBLC events are shown in table 6-10. There was a significant 

main effect of example selection on EBLC (F(l,10) = 12.8, p = 0.005). On average, 

students generated significantly more EBLC-based explanations in the adaptive condition 

than in the static condition (2.92 vs. 1.14, respectively). This was true for 9 of the 14 

students involved in the within-subject analysis, while 5 students generated the same 

For explanation [6], the classification is based on the subject's confusion regarding the 
corresponding domain principle; for explanation [3], the classification is based on the fact that the 
subject appears to be using overly general reasoning; for the remaining explanations, the 
classification is based on the fact that the explanations correspond to principles subjects did not 
have pre-existing domain knowledge, as indicated by pre-test data. 
2 1 The classification is based on the fact that these two explanations did not appear to involve 
common sense or general reasoning and related to principles for which subjects answered 
corresponding pre-test questions correctly. 
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Table 6-10 : Summary of A N O V A analysis for E B L C events (N=14) 

Source SS Df MS F Sig. 

Selection 22.012 1 22.012 6.422 0.005 

Selection * Problem o r d e r 2.679 1 2.679 4.560 .240 

Selection * Selection o r d e r .012 1 .012 .007 .935 

Selection * Problem o l d e i.*Selection o r d e r .107 1 .107 .062 .808 

Error 17.167 10 1.717 

number of EBLC explanations in both conditions. These individual differences are 

statistically significant according to the Wilcoxon signed ranks test (p=0.007), confirming 

the ANOVA results. In contrast, there was no difference in the number of domain-based 

self-explanations between the two conditions (on average, 1.143 in the adaptive condition 

vs. 1.12 in the static condition, F(l, 10) = 0.28, p = 0.87). 

6.6.1.3 Pre/Post Test Gains 

With the analysis presented above, we evaluated how example selection influences 

learning by analyzing how it triggers APS behaviors that are known to foster it. Another 

way to measure learning is via pre/post test differences: if a student shows gains on 

questions corresponding to a given rule from pre to post test, then this provides evidence 

that the student has solidified knowledge of that rule. We found that in general, students 

significantly improved from pre to post test (2-tailed t(13)=7.49, p<0.001; table 6-11 

provides information on subjects' pre and post test performance). Given the within-

subject design, however, to analyze how each selection condition impacted learning it is 

necessary to consider rules that only appeared in one of the two conditions. This is 

because if a rule was involved in both conditions, it is impossible to unambiguously 

determine the condition that triggered learning (if any). 
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Table 6-11: Subjects' pre and post test performance (N=14) 

Pre-Test Post Test 

Mean (/34) 20.6 29.3 

Standard Deviation 8.2 6.8 

To gain insight into student learning based on individual rules, we first identified for each 

student the set of rules that met the following criteria: 

• Were involved in only one of the two conditions and the student used the example 

in that condition 

• Were not known or partially known as indicated by the pre-test (since the test 

included several questions per rule, a student could have 'partial' knowledge by 

answering some but not all questions correctly) 

We refer to the rules satisfying these conditions as 'learning opportunities'. Over all 16 

students, six rules22 met these criteria and so were learning opportunities. We then 

identified, for each student and each rule under consideration, the condition in which the 

student experienced the rule. Recall that because we counterbalanced both the problems 

and the selection conditions, some subjects experienced a given rule in the adaptive 

condition, while other subjects experienced this rule in the static condition. If we consider 

all 16 subjects, this left us with 11 students who had learning opportunities in the static 

condition, and 11 who had learning opportunities in the adaptive condition (see table 

6-12, which also shows the average number of learning opportunities per student in each 

condition). Because many subjects had learning opportunities in only one condition, we 

chose to conduct a between subjects analysis with all 11 subjects in each condition. 

The fact that the number of rules considered as learning opportunities is small is a function of 
the low number of structural differences between the two problems. 
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Table 6-12: Pre/Post test gains 

Static Selection Adaptive Selection 

Number of students who had learning 
opportunities (over all 16 students) 

11 11 

Average number of learning opportunities per 
student 

2 2.18 

Percentage of rules learned on average per student 52% 77% 

T o identify 'learning events' (i.e., rules learned) given a students' learning opportunities, 

we analyzed, for each student, the number of rules that the student showed gains 2 3 on 

from pre to post-test corresponding questions. Table 6-12 shows the average percentage 

of rules learned by each student in the two selection conditions. For a given student, this 

percentage is calculated by dividing that student's 'learning events' by her 'learning 

opportunities'. 

A s the data in table 6-12 indicates, we found a trend that the percentage of learning 

events was higher for rules students experienced in the adaptive condition than rules 

experienced in the static condition (t(20)=1.72, p=0.056). 

6.6.1.4 Learning: Summary of Key Results and Discussion 

We found that the EA-Coach's adaptively selected examples encouraged students to 

engage in the effective A P S behaviors better than the statically selected examples. 

Specifically, in the adaptive condition, students copied significantly less and generated 

significantly more EBLC-based explanations. We also found encouraging trends that 

students learned more rules in the adaptive condition than in the static condition. 

A gain occurs if, for a given rule, a student performs better on corresponding questions on the 
post-test than she did for the pre-test. 
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The results show that in general, the E A - C o a c h meets its learning goal, thus supporting 

our assumption that certain superficial differences encourage effective A P S behaviors. 

The statically selected examples were highly similar to the target problem and thus made 

it possible to generate the problem solution by copying, of which students took 

advantage. A s one subject stated during an informal discussion after the study, "1st 

example [statically selected] is most useful, more straightforward ...you don't have to 

think that much because it is same thing - step by step". Conversely, the adaptively 

selected examples were less superficially similar to the target problem. This provided 

incentive for students to generate the problem solution without copying, i.e., to engage in 

min-analogy, when they realized that copying was not an effective strategy. For some 

students this realization happened after copy attempts resulted in errors, which 

discouraged subsequent copying. One subject articulated this by saying " / should just 

ignore this and solve the problem on my own", after several incorrect copy attempts. To 

see i f there was a difference in terms of how successful students were in copying in the 

two conditions, we labeled each copy event as correct or incorrect. In the static condition, 

4.8% (20/416) of the total errors were the result of incorrectly copied steps, compared to 

6.7% (28/416) in the adaptive condition (table 6-17 in section 6.6.2.3 summarizes the 

source of all errors, which are discussed in that section). On average per student, 66% of 

copying was correct in the adaptive condition, vs. 86% in the static condition. A l l of the 

correct copy events in both conditions corresponded to example solution steps that had 

trivial superficial differences or no differences with the problem. 

N o w let's discuss why some steps were incorrectly copied. In the static condition, all of 

the copy errors corresponded to example solution steps that either had no differences or 

only trivial differences with the problem, and were the result of typos or poor attempts at 

substituting examples constants via ones needed for the problem's solution. Students 

tended to easily fix these errors when the E A - C o a c h signaled them, making it unlikely to 

discourage copying. In the adaptive condition, on average of the 11 students who had 

copy errors, 86% of the errors corresponded to students attempting to copy example 

solution steps that had non-trivial differences with the problem, and so could not easily 

be resolved by fixing slips. There were 23 such errors out of a total of 28 copy errors; all 
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but 4 were resolved (as will be described in section 6.6.2.1, two students did not generate 

a full problem solution). The remaining copy errors in the adaptive condition (5 out of a 

total of 28 copy errors) were the result of students copying example solution steps that 

either had no differences or only trivial differences with the problem (and so could easily 

be resolved). 

Thus, for the most part students managed to resolve errors resulting from incorrect 

copying in both the selection conditions. However, what differentiates the two conditions 

is how easily the errors could be resolved. In the static condition, all the copy errors could 

easily be resolved because they corresponded to either trivial differences or slips. In 

contrast, in the adaptive condition, the majority of copy errors could not easily be 

resolved by fixing slips because they corresponded to non-trivial differences. This, in 

conjunction with the finding that students were more successful at copying correctly in 

the static condition, suggests that the type of superficial similarity was responsible for 

facilitating/ discouraging copying in the static and adaptive selection conditions, 

respectively. 

Although adaptively selected examples effectively discouraged copying, we should point 

out that we saw some instances where subjects appeared to switch from one bad behavior 

to another. In particular, sometimes when students were not successful at copying a step 

from the corresponding example, they would switch to rapidly entering what appeared to 

be alternative guesses to generate the problem step (a behavior that may be referred to as 

'gaming the system' [Baker, Corbett et al., 2006a]). Since the system provided feedback 

for correctness, students could resort to gaming instead of deriving the step by learning 

the corresponding rule. For instance, one student produced forty attempts to generate a 

problem step, after unsuccessfully trying to copy it from the example (the example and 

problem shared a non-trivial difference at this point that blocked copying). This student, 

who generated very few self-explanations, continued to produce subsequent solution 

attempts quite quickly, leaving little or no time for reasoning of any kind. Gaming 

behavior was sometimes apparent in the protocols - for instance, another student said 

"I'm just trying things, I don't feel like thinking about it". 
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Table 6-13: Results of correlation analysis (learning; N=14 ) 

Copy Events Errors 

E B L C Events Pearson Correlation 

Significance (1 tailed) 

-.207 

.145 

.468 

0.006 

In addition to influencing copying, example selection influenced when and how much 

students self-explained. As far as when self-explanations occurred, recall that in the 

adaptive condition, about half of the self-explanations occurred during problem solving 

and about half during example studying. In contrast, in the static condition students 

generated more self-explanations during example studying than during problem solving. 

One possible explanation for this finding is that because students were copying less in the 

adaptive condition, they were more proactive during the problem-solving process. This 

resulted in more self-explanations during problem solving. Although students could have 

referred to the example to generate the self-explanations, the data suggests that they tried 

to avoid switching contexts (from the problem solution that they were generating over to 

the example solution). Recall that currently the EA-Coach student model only represents 

self-explanation from an example. The fact that students also explained during problem 

solving without referring to an example suggests that the model could take this into 

account (discussed in chapter 8). 

Now let's discuss why students generated more EBLC-style self-explanations in the 

adaptive condition. According to one of the assumptions embedded in the EA-Coach's 

example-selection mechanism, blocking copying when a student is lacking knowledge of 

a principle relevant for generating a problem step encourages the student to learn via 

For the correlation analysis, we used data from 14 students who used examples in both 
conditions (i.e., N=14) but we collapsed across conditions: we used data from both conditions in 
the analysis. Therefore, the number of data points involved in the analysis was actually 28, i.e., 
two per subject. 
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EBLC. Since students copied less in the adaptive condition, this may explain the higher 

number of EBLC explanations in that condition. To see if this was indeed the case, we 

checked whether a correlation existed between EBLC and copying. For this and 

subsequent correlation analysis, since we were interested in general about whether a 

given relationship existed, we collapsed across conditions (i.e., used data from both 

conditions in the analysis). 

The results of the correlation analysis are summarized in table 6-13. We found a trend 

indicating that less copying was associated with more EBLC, although this correlation 

did not reach significance (pearson correlation = -.207, 1 tailed p=.145). Another 

possibility for why students had more EBLC explanations in the adaptive condition is 

related to the 'error' dependent variable. In particular, errors may have triggered EBLC 

reasoning to fill the gap revealed by the error, as is proposed by some cognitive theories 

of learning [VanLehn, 1996]. As will be discussed in section 6.6.2.2, students made 

significantly more errors in the adaptive condition than in the static condition. 

Consequently, the adaptive condition provided more triggers for EBLC to resolve the 

errors. We found that errors were indeed associated with EBLC (pearson correlation = 

.468, 1 tailed p=0.006). 

Instances when the learning goal was not satisfied. Although in general the adaptively 

selected examples encouraged our target APS behaviors and thus satisfied the learning 

goal, this was not always the case. We begin by discussing when this happened with 

respect to the copy findings. As reported in section 0, two students copied more in the 

adaptive condition than the static condition. One of these students had an above average 

number of copy events in both conditions (10 vs. 12 copy events in the adaptive and 

static conditions, respectively, compared to the average of 5.9 vs. 8.1, respectively), 

suggesting that she had a max-analogy tendency. Thus, it appears that more explicit 

scaffolding than the EA-Coach's may be needed to encourage a shift over to min-analogy 

for students with a strong max-analogy tendency. The second student had an average 

number of copy episodes in the adaptive condition, and about half of the average number 

of copy episodes in the static condition (6 vs. 4 copy events in the adaptive and static 

conditions, respectively). One explanation as to why this student copied more in the 
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adaptive condition may be related to the order in which this student experienced the 

conditions. Specifically, the student solved the problem in the adaptive condition first. 

Although we did not find overall that selection order had an effect, for this student the 

adaptively selected example may have discouraged copying, but this did not become 

apparent until the subsequent (static) condition. Two other students had the same number 

of copy events in the adaptive and static conditions; both number of copy events were 

below average (one student only copied once in each condition, while the other copied 

four times in each condition). This suggests that they already had a tendency for min-

analogy, and so adaptively selected examples did not influence how much they copied. 

As far as the EBLC events are concerned, although none of the students expressed fewer 

explanations in the adaptive condition than in the static condition, five students generated 

an equal number of explanations in the two conditions. Three of these students expressed 

a below-average number of explanations, and so appeared to have a low EBLC tendency 

(two students generated only one explanation in each condition, while one student 

generated no explanations, compared to the average 2.92 vs. 1.14 in the adaptive and 

static conditions, respectively). This suggests that additional scaffolding may be 

beneficial to encourage EBLC for students who have a particularly low tendency for 

EBLC (discussed in chapter 8). As far as the other two students are concerned, who 

generated two EBLC explanations in each condition, it is not clear why the adaptively 

selected examples did not encourage them to self-explain more than the statically selected 

examples. In addition to the cases discussed above, two other students in the adaptive 

condition were not able to learn the rules that were required to generate the problem 

solution, which hindered their problem-solving success; we discuss these two cases in 

section 6.6.2.3. 

6.6.2 Results: Problem-Solving Performance 

We first report on how example selection influenced students' success in terms of the 

final problem solution. We then provide findings on selection's impact on performance 

during the problem-solving process. 
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6.6.2.1 Problem-Solving Success 

Problem-solving success is achieved if students generate a correct problem solution. For 

the 14 students considered in the within-subjects analysis, problem-solving success was 

realized as follows: 

• In the static condition, all 14 subjects generated a correct problem solution. 

• In the adaptive condition, 12 subjects generated a correct problem solution. The 

other two subjects produced a partial problem solution (both first solved problem pi 

in the adaptive condition and both referred to the available example in both 

conditions). 

This difference between the two conditions, however, is not statistically significant (sign 

test, p=0.5)25, indicating that overall, both statically and adaptively selected examples 

helped students generate the problem solution.26 

We should point out that feedback for correctness delivered by the EA-Coach was likely 

a factor in helping students achieve a fully correct solution. This feedback led students to 

either try and fix errors or erase them, and consequently none of the students' final 

solutions contained errors (two students had incomplete solutions, but even these did not 

contain errors). 

6.6.2.2 Task Time & Errors 

To analyze how example selection affected the problem-solving process, we analyzed 

students' task time and errors in each condition. The ANOVA results for the task time 

dependent variable are shown in table 6-14. There was a significant main effect of 

example selection on task time (F(l, 10) = 31.59, p<0.001): students took significantly 

The sign test was used instead of the Wilcoxon test because the data does not include magnitude 
information, making the Wilcoxon test inappropriate. 

2 6 As far as the two students who used an example in only one condition are concerned, both 
generated a correct problem solution in the static and the adaptive condition. 
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longer to generate the problem solution in the adaptive condition than in the static 

condition (on average, 42min, 23sec vs. 25min, 35sec, respectively). This was true for 13 

of the 14 students involved in the within subject analysis (these individual differences 

between the two conditions are statistically significant according to the Wilcoxon signed 

ranks test, p=0.004). 

Table 6-14: Summary of A N O V A analysis for task time (N=14) 

Source SS Df MS F Sig. 

Selection 2250.25 1 2250.245 31.598 <.001 

Selection * Problem o r d e r 70.245 1 70.245 0.986 .344 

Selection * Selection o r d e r 576.164 1 576.164 8.090 .017 

Selection * Problem 0, d e r*Selection o r d e r 28.94 1 28.94 .406 .538 

Error 712.19 10 71.22 
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Figure 6-4: Interaction between selection and selection order for task time 
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In addition, there was a significant interaction between example selection and selection 

order, indicating that the presentation order of the conditions disproportionately affected 

task time (F(l,10)=8.09, p=0.017)27. As the graph of this interaction in figure 6-4 shows, 

the magnitude of the difference in task time between the two conditions was greater if the 

adaptive condition was first in the selection order than if it followed the static condition. 

This suggests that students took longer to solve the problem in the adaptive condition if 

they saw it first instead of second. To gain more insight into this result, we analyzed the 

difference in task time between the two conditions for each selection order, adaptive-

static and static-adaptive. Using a Bonferroni adjustment [Howell, 1997] to re-set the 

significance threshold to p=0.05/2 = 0.025, this analysis revealed a significant simple 

effect of example selection on task time in the adaptive-static selection order 

(t(5)28=4.99, p=0.004). Students in this selection order took longer to generate the 

problem solution in the adaptive condition than in the static condition (on average, 

51min, 55sec vs. 24min, 38sec, respectively). Although task time was also higher for the 

adaptive condition in the static-adaptive selection order (on average, 35min, 15sec vs. 

26min, 18sec for the static condition), this simple effect (t(7)29=2.52, p=0.04) was only 

marginally significant after the Bonferroni adjustment. Thus, although task time was 

higher in the adaptive condition, this effect was strongest for students who experienced 

the adaptive condition first in the selection order. 

For the error analysis, we counted all errors a student made while generating a problem 

solution in each selection condition; the ANOVA results are shown in table 6-15. There 

was a significant main effect of example selection on error (F(l, 10) = 11.53, p=0.007): 

students produced significantly more errors while generating the problem solution in the 

No other effects or interactions were significant. 
2 8 Of the 14 students whose data we used in the within-subjects analysis, 6 experienced the 
adaptive-static selection order. 
2 9 Of the 14 students whose data we used in the within-subjects analysis, 8 experienced the static-
adaptive selection order. 
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adaptive condition than in the static condition (on average, 22.35 vs. 7.57, respectively). 

This was true for 11 of the 14 students involved in the within subject analysis (these 

individual differences between the two conditions are statistically significant according to 

the Wilcoxon signed ranks test, p=0.017). 

Table 6-15: Summary of the A N O V A analysis for error (N=14) 

Source SS Df MS F Sig. 

Selection 1876.298 1 1876.298 11.532 .007 

Selection * Problem o r d e r 37.333 1 37.333 .229 .642 

Selection * Selection o r d e r 1122.012 1 1122.012 6.896 .025 

Selection * Problem o l d e r*Selection o l d e r 76.190 1 76.190 .468 .509 

Error 1627.083 10 162.708 
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In addition, there was a significant interaction between selection and selection order, 

indicating that the presentation' order of the conditions disproportionably affected error 

(F(l,10)=6.89, p=0.025)30. As was the case for the time dependent variable, the 

magnitude of the difference in number of errors between the two conditions was greater 

if the adaptive condition was first in the selection order than if it followed the static 

condition (the graph of this interaction is shown in figure 6-5). We then analyzed the 

difference in number of errors between the two conditions for each selection order, 

adaptive-static and static-adaptive. This analysis revealed a marginally significant simple 

effect of selection on error in the adaptive-static selection order after the Bonferroni 

adjustment re-set the significance threshold to p=0.05/2 = 0.025 (t(5)31=3.07, p=0.028). 

This effect indicates that students in the adaptive-static selection order generated more 

errors in the adaptive condition than in the static condition (on average, 35 vs. 5.67, 

respectively). Although on average, students in the static-adaptive selection order also 

generated more errors in the adaptive condition than in the static condition, this was not 

significant (12.63 in the adaptive condition vs. 8.88 in the static condition, t(7)32=1.04, 

p=.331). As was the case with task time results, these findings demonstrate that although 

in general the number of errors was higher in the adaptive condition, this effect was 

strongest for students who experienced the adaptive condition first in the selection order. 

6.6.2.3 Problem-Solving Performance: Summary of Key Results and Discussion 

As stated above, problem-solving success is achieved if the student generates the problem 

solution, and is not a function of performance (task time, number of errors) while doing 

so. We found that in general students were successful in generating the problem solution 

in both the static and adaptive selection conditions. 

No other effects or interactions were significant. 
3 1 Of the 14 students whose data we used in the within-subjects analysis, 6 experienced the 
adaptive-static selection order. 
3 2 Of the 14 students whose data we used in the within-subjects analysis, 8 experienced the static-
adaptive selection order. 
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Instances when the problem-solving success goal was not satisfied. Two students 

generated a correct but incomplete solution in the adaptive condition. Both of these 

students received an example with non-trivial superficial differences that blocked 

copying of some of its solution steps, because the EA-Coach student model predicted that 

this would trigger learning via EBLC. This prediction is mediated by the model's 

assessment of the student's EBLC tendency, to which we had assigned a generic prior 

probability of 0.5 for both students due to lack of more accurate information. This 

appeared to have been inaccurate for one of these students, who showed no desire to 

engage in any in-depth reasoning during the study and so likely had a very low EBLC 

tendency. The other student, however, generated a number of EBLC self-explanations, 

indicating that inaccurate prior on EBLC tendency was not the reason for suboptimal 

example selection in terms of problem-solving success. This student invested 

considerable effort and did learn some of the rules needed to solve the problem (as we 

found by comparing her pre and post-test answers on related questions). However, 

although the student model simulation predicted she would learn all the necessary rules 

and thus generate the full problem solution, she was unable to do so within the allotted 60 

minutes. We can't predict whether this student would have eventually generated a full 

solution if more time was available or whether she would have become overwhelmed and 

frustrated by the process. There is a fine line between taking extra time to learn from 

one's errors, and entering what is referred to as, floundering, i.e., engaging in too many 

trial and error attempts that obstruct learning. Thus, even if students have good APS 

tendencies there is no guarantee that-they will learn all the rules needed to generate a full 

problem solution. This suggests that the system could be improved by the addition of 

more explicit scaffolding to help students learn rules via EBLC when they are 

floundering, as we discuss further in chapter 8. 

Task time & errors. Students took longer/made more errors in the adaptive condition 

than in the static condition. This was particularly the case in the adaptive-static selection 

order (i.e., task time and number of errors were lower if the adaptive condition followed 

the static condition). The most plausible explanation for this finding is that solving the 

problem in the static condition first provided a scaffold that better prepared students to 
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Table 6-16: Results of correlation analysis (problem-solving performance; N=14 ) 

Copy Events E B L C Events 

Task Time Pearson Correlation -.362 .508 

Significance (1 tailed) 0.028 0.003 

Errors Pearson Correlation -.271 .468 

Significance (1 tailed) .082 .006 

solve the problem in the adaptive condition. As one of the subjects in the static-adaptive 

order indicated, "/ liked the transition between the two... one was very similar, exactly 

the same [i.e., statically selected example] - this one [i.e., adaptively selected example] 

you had to manipulate the set up... It's not hard to manipulate but you'd have to think 

about the cjuestion and how to relate them - the first one showed you the basics". 

In general, however, the fact that students had a higher task time and more errors in the 

adaptive condition is not a negative result from a pedagogical standpoint, because these 

are by-products of learning. Specifically, cognitive science research shows that learning 

takes time and may require multiple attempts before the relevant pieces of knowledge are 

inferred/correctly applied (e.g., [VanLehn, 1990; Chi, 2000]). In particular, it is 

reasonable to assume that not copying and trying to reason via EBLC can take longer and 

result in more errors before a solution is found. To gain more insight into the 

relationships between APS behaviors and problem-solving performance during APS in 

our study, we checked for correlations between the corresponding variables (time/errors 

For the correlation analysis, we used data from 14 students who used examples in both 
conditions (i.e.,. N=14) but we collapsed across conditions: we used data from both conditions in 
the analysis. Therefore, the number of data points was actually 28, i.e., two per subject 
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Table 6-17: Source of errors (N=14) 

Static Selection Adaptive Selection Total 

% of errors from incorrectly 

copied steps 

4.8% (20/416) 6.7% (28/416) 11.5% (48/416) 

% of errors from problem-

solving without copying 

20.4% (85/416) 68.1% (283/416) 88.5% (368/416) 

Total 25.2% (105/416) 74.8% (311/416) 100% (416/416) 

and copying/EBLC) . As table 6-16 shows, as far as errors are concerned, this analysis 

suggests that 

• generating a problem solution without copying is associated with more errors 

during the problem-solving process; 

• errors are associated with increased EBLC - this result was discussed in section 

6.6.1.4. 

Since generating a solution without copying is associated with more errors, the analysis 

also provides insight as to why students had more errors in the adaptive condition than in 

the static condition: because they generated more of the problem solution on their own, 

without copying. Table 6-17 summarizes the overall percentage of errors that came from 

copying vs. problem solving without copying in the two conditions. 

As far as task time is concerned, the correlation analysis suggests that 

• copying is associated with decreased task time; 

• EBLC is associated with increased task time. 

As was the case for the correlation-related analysis in section 6.6.1.4, the analysis included data 
from both conditions. 
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6.7 Summary 

In this chapter, we described a controlled evaluation of the EA-Coach. The evaluation 

focused on the key form of support delivered by the framework, its adaptive example-

selection mechanism. To verify how well the EA-Coach example-selection process met 

its learning and problem-solving success goals, we compared it with a selection strategy 

that involves choosing the maximally similar example, which is the approach is 

advocated by existing ITS that perform example selection. 

The evaluation of the EA-Coach demonstrated that its example-selection mechanism 

meets the two selection goals. As far as learning is concerned, the EA-Coach's example-

selection mechanism is more effective at encouraging EBLC and min-analogy than 

statically selected examples that are maximally similar to the target problem. 

Specifically, on average, students generated significantly more EBLC-based self-

explanations and copied significantly less when presented with the EA-Coach's 

examples, as compared to statically selected examples. Since cognitive science research 

shows that copying is detrimental to learning and EBLC fosters learning, these findings 

provide support regarding the EA-Coach's pedagogical effectiveness. In addition to APS 

behaviors, we also analyzed learning gains from pre to post test. Although this analysis 

was limited by our within-subject design, we did find encouraging trends that students 

had higher pre to post test gains on rules they experienced in the adaptive condition. 

As far as problem-solving success is concerned, we showed that overall, students were 

successful in generating the problem solution in the presence of statically and adaptively 

selected examples. Since the adaptively selected examples were less similar to the 

corresponding target problem than the statically selected examples, they required students 

to rely more on their own reasoning during APS. This resulted in more errors and higher 

task time during the problem-solving process. While this prevented two students from 

generating a problem solution, we have evidence that one of these students did learn from 

the process. In general, the fact that most students were able to achieve problem-solving 

success in the adaptive condition given the minimal scaffolding offered by the EA-Coach 

is a very positive result, because it shows that minor additions to the EA-Coach 
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scaffolding may be sufficient to enable problem-solving success for all students, in 

addition to learning. 
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C h a p t e r 7 

Related Work 

In the past decade, substantial advances have been made in improving students' learning 

outcomes by incorporating ITS into classroom curricula [Koedinger, Anderson et al., 

1997; Morgan and Ritter, 2002], demonstrating that ITS research can make and has made 

a practical impact on education. Here, we review a representative sample of related work 

from the ITS community, starting with ITS that support APS. An alternative instructional 

activity related to APS is problem solving without examples, i.e., pure problem solving. 

Once we describe ITS that support pure problem solving, we present ITS that provide 

support for meta-cognitive skills. Finally, we describe ITS that rely on a decision-

theoretic approach for action selection. 

7.1 ITS Supporting APS 

Since cognitive science research shows that students have difficulty choosing appropriate 

examples, ITS that support APS all perform example selection for students. However, 

none of these tutors reason about how the selected example will impact a given student's 
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learning/problem-solving outcomes from APS or take the approach of assuming some 

problem/example differences are actually beneficial to learning while enabling problem-

solving success when selecting an example. 

We begin by describing ITS that support APS in domains where there isn't a clear-cut 

notion of correct and incorrect behavior, also referred to as ill-structured domains 

[Lynch, Ashley et al, 2006]. One such ITS is CATO [Aleven and Ashley, 1997], which 

helps students build legal arguments by dynamically generating examples of how an 

expert would argue about a particular legal case. In the law domain, a legal case typically 

has some features favoring the plaintiff and some the defendant. The key to successful 

argumentation is the ability to compare and contrast the 'current' case with precedent 

ones, either downplaying or emphasizing the connection between them. 

In CATO, a legal case is represented by a set of factors, which are facts that make a case 

stronger or weaker for the plaintiff or the defendant. The factors, along with related 

abstract legal knowledge, are stored in CATO's Factor Hierarchy. Students use the 

hierarchy to build legal arguments and can ask CATO to provide argumentation 

examples. To generate an example of a legal argument, CATO first finds precedent cases 

that have factors in common with the current case. CATO then generates the example by 

emphasizing or downplaying the connection between the case and precedent cases. The 

example corresponds to an 'expert solution' of how a lawyer would generate an 

argument. Since CATO does not attempt to model students' progress or understanding as 

they interact with the system, the examples it generates are not tailored to individual 

learners. 

Another ITS that provides support in an ill-structured domain is SPIEL [Burke and Kass, 

1995]. SPIEL is embedded in a simulation environment that students use to practice skills 

needed to be an effective salesperson. SPIEL helps students acquire these skills by 

monitoring their interaction with the system and presenting 'stories' when a story-telling 

opportunity presents itself. The stories are video clips that illustrate first-person narratives 

about actual experiences. The relevance of a story for SPIEL is not based on a notion of 

correct or incorrect way to perform a task, but rather whether the story presents an 
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interesting story-telling opportunity. To recognize when to present a story, SPIEL relies 

on a set of rules. The rules are automatically created by SPIEL before run-time from the 

stories in SPIEL's story base and general story-telling strategies embodying how a story 

could be interesting. Like CATO, SPIEL does not try to model a students' social skills as 

they interact with the system and so does not adapt its support to individual learners. 

In contrast to the ITS described in this section thus far, some ITS support APS via 

example selection in well-structured domains, where there is a clear notion of correct and 

incorrect behavior. AMBRE [Guin-Duclosson, Jean-Duabias et al., 2002; Nogry, Jean-

Daubias et al., 2004] aims to help students generate solutions to algebra word problems 

by structuring the interaction according to three phases. First, students reformulate the 

problem in terms of its structural features (reformulation phase). Second, students select 

an example that is "nearest to the target problem" (selection phase). Third, students rely 

on this example to generate the problem solution (solution phase). The authors state that 

AMBRE provides 'guidance' for all three stages, but no detail is given on how this 

occurs. 

ELM [Weber, 1996a; Weber, 1996b] is an ITS for LISP programming that incorporates a 

case base of worked-out examples. As students are solving a problem, they can ask for an 

example, which ELM selects for them. ELM's selection criteria is to find "the most 

similar example to the target problem" [Weber, 1996b]. In actuality, ELM aims to select 

the example that is the most structurally similar to the target problem, i.e., whose solution 

is derived by the same rules as the problem's solution (as far as superficial similarity is 

concerned, unfortunately, it is not clear if or how ELM takes it into account). To find 

examples that are maximally similar, ELM first generates the solution to the target 

problem. ELM then compares the problem solution to the example solutions stored in the 

case base, quantifying each example's similarity to the problem based on the formula: 

Sim(E, P) =fE , P) - g(E, P) - h(P, E) 

[where P, E are the problem / example solutions] 

The function / returns a weighted sum of the number of steps P and E have in common. 

The function g returns the number of solution steps that are in P but not in E, while the 
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function h returns the number of solution steps that are in E but not in P. Once each 

example's similarity has been quantified, ELM selects the example with the highest 

similarity score. 

ELM incorporates a very basic student model, corresponding to maintaining information 

on which rule a student is likely to use when generating the problem solution. In ELM, a 

given solution step can often be derived by several rules. Initially, the rules all have equal 

weights. As a student solves problems, ELM updates the weights so that rules the student 

uses have a higher weight than unused rules. 

Of the ITS described in this section, ELM and AMBRE target learning in problem-

solving domains that are most similar to the EA-Coach's, because they have a clear 

notion of correct and incorrect behavior. As we already indicated, no detail is provided on 

AMBRE's example-selection mechanism, making it impossible to compare it to the EA-

Coach's. On the other hand, ELM' example-selection mechanism does share some 

similarities with the EA-Coach's. Both ELM and the EA-Coach compare problem and 

example solutions when selecting an example. However, ELM and the EA-Coach do not 

treat problem/example differences in the same way. First, the EA-Coach assumes that 

some differences are actually beneficial in helping students learn, while in ELM all 

differences diminish an example's possibility of being selected. Second, ELM takes into 

account when the example solution includes extra rules not needed for the target 

problem's solution, which the EA-Coach does not do. Although this is something we may 

incorporate into the EA-Coach's selection process in the future, further investigation is 

needed to understand how this type of difference impacts APS. Third, ELM quantifies an 

example's 'utility' by relying on a formula that only takes into account the similarity 

between the problem/example solutions. In contrast, the EA-Coach quantifies an 

example's utility by relying on a decision-theoretic approach. This approach involves 

taking into account how a student's knowledge and meta-cognitive tendencies in 

combination with problem/example similarity will impact the problem-solving success 

and learning. 
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7.2 ITS Supporting Pure Problem Solving 

Some ITS support problem solving by providing tutor-generated help instead of 

examples, i.e., support pure problem solving. In this section, we describe ITS that support 

pure problem solving but that do not target meta-cognitive skills or rely on a decision-

theoretic approach (ITS that support pure problem solving and target meta-cognitive 

skills/take a decision theoretic-approach will be described in subsequent sections). Andes 

[Conati, Gertner et al., 1997] is an ITS for Newtonian physics that we introduced in 

chapter 3. Andes lets student take the initiative in the problem-solving process by 

affording freedom of interaction: students are not required to follow specific solution 

paths or show all problem-solving steps. During problem solving, Andes provides two 

forms of guidance: (1) immediate feedback for correctness on students' problem-solving 

entries and (2) tailored hints, presented upon a student's request for help or when the 

system detects the student is floundering. The key to Andes' ability to tailor its support is 

its student model, which we described in chapter 5. Another ITS that aims to maintain 

freedom of interaction during problem solving is Ms. Lindquist, which helps students 

solve algebra word problems [Heffernan and Koedinger, 2002]. As is the case with 

Andes, students interacting with Ms. Lindquist are free to enter their solution steps in the 

order/manner of their choice. However, Ms. Lindquist incorporates a more complex tutor 

model than Andes, which is based on how human tutors support learning of algebra. In 

particular, the model encodes a set of tutorial strategies, represented via rules, that Ms. 

Lindquist relies on to respond to students' problem-solving entries. To tailor its support, 

Ms. Lindquist relies on its student model, which is also represented by a set of rules 

encoding correct and incorrect domain knowledge. 

On the other hand, some ITS maintain stricter control over students' interaction. An 

example of such an ITS is the Lisp Tutor [Anderson, Conrad et al., 1989], which supports 

learning of the LISP programming language. The Lisp Tutor constrains students' 

problem-solving entries by asking them to enter their code top-down and left-to right, and 

requiring them to repair any errors before moving on. The Lisp tutor provides immediate 

feedback for correctness on students' problem-solving entries, as well as tailored hints 
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when students make mistakes or ask for help. Like Andes and Ms. Lindquist, the LISP 

Tutor relies on its student model to tailor its feedback. In the Lisp Tutor, the student 

model corresponds to a set of production rules that encode correct and incorrect ways to 

generate LISP code. 

7.3 ITS Supporting Meta-Cognitive Skills 

In recent years, there has been increasing interest in developing ITS that target general 

meta-cognitive skills rather than domain-specific skills. To date, existing tutors have not 

targeted meta-cognitive skills during APS, and thus none have supported min-analogy 

(which is specific to APS). On the other hand, the meta-cognitive skill of self-explanation 

has been targeted in a variety of instructional activities. Instead of selecting examples, 

however, the standard approach for supporting self-explanation has been to provide 

students with tools that they can use to derive the explanations and/or provide prompts 

encouraging self-explanation. With one exception, described in the next section, none of 

the existing tutors that aim to support meta-cognitive skills rely on a decision-theoretic 

approach for action selection. 

Some ITS support self-explanation during pure example studying, i.e., when students 

only study examples, without a problem-solving component. The Self-Explanation 

Assistant (SEA) [Kashihara, Hirashima et al., 1995] supports learning of operating 

system concepts by presenting worked-out examples that have gaps in their solutions. 

Students are asked to fill in the gaps by self-explaining them. This is accomplished by 

selecting the explanation from a list in the SEA interface (a process referred to as gap-

filling self-explanation [VanLehn and Jones, 1993b]). 

SEA tailors its support to a given student, realized by including solution gap(s) only if 

doing so does not incur too high a cognitive load for the student. The cognitive load 

calculation is based on a student's knowledge of the domain principles to be self-

explained, in that the lower a student's knowledge of a principle, the higher the cognitive 

load incurred by explaining it. Once the gap selection process is complete, SEA 
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dynamically generates the example content by relying on Natural Language Generation 

(NLG) techniques. SEA incorporates a basic student model, corresponding to a vector of 

numeric values representing students' knowledge of domain principles. 

Like SEA, the SE-Coach [Conati and VanLehn, 2000] provides tailored support for gap-

filling self-explanation, in the domain of Newtonian physics. Specifically, the SE-Coach 

selects solution gaps only if they correspond to domain principles the student has 

mastered after studying fully detailed examples. Once the gaps are selected, the SE-

Coach relies on NLG techniques to dynamically generate the example content. The SE-

Coach also targets two other types of self-explanations 

• step correctness self-explanation, i.e., justifying a solution step in terms of the 

domain theory (e.g., [Conati, Larkin et al., 1997; Conati and VanLehn, 2000]); 

• step utility self-explanation, i.e., relating solution steps to goals in the abstract plan 

underlying the example solution [Conati, Larkin et al., 1997; Conati and VanLehn, 

2000]. 

The SE-Coach provides interface tools that students can use to generate all three types of 

self-explanations. It also provides feedback for correctness on the explanations and 

generates interventions encouraging students to self-explain. The interventions are 

tailored based on the SE-Coach's student model. The model is a Bayesian network, used 

to assess how a student's self-explanations reflect her understanding of the example 

solution. The network is automatically created from the currently open example's 

solution graph (following the Andes approach that we described in chapter 5). To 

generate its assessment of the student, the SE-Coach student model integrates information 

on (1) the time a student spent viewing the example solution steps, (2) self-explanations a 

student generated via the provided tools and (3) a student's knowledge of the principles 

needed to derive the corresponding example solution steps. 

In addition to supporting self-explanation during pure example studying, there is some 

work on incorporating support for self-explanation into open learning environments. 

These environments place less emphasis on supporting learning through structured 

explicit instruction and more on allowing the learner to freely explore the available 
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instructional material [Collins and Brown, 1990; White, Shimoda et al., 1999; White, 

1993]. The Adaptive Coach for Exploration (ACE) is an environment that helps students 

to learn about mathematical functions [Bunt, Conati et al., 2001] by supporting self-

explanation during the exploratory process [Bunt, Conati et al., 2004; Conati, Merten et 

al., 2005]. ACE includes a student model corresponding to a dynamic Bayesian network 

that is used to assess how effectively students are exploring. This involves detecting 

whether students (1) explore the salient domain concepts and (2) self-explain their 

exploratory actions, either explicitly via the provided tools or implicitly (i.e., in their head, 

without tool usage). Detecting implicit self-explanation is particularly challenging due to 

lack of hard evidence of its occurrence. The ACE student model meets this challenge by 

incorporating information on (1) the length of time a student devoted to a given 

exploratory action, 2) a student's knowledge and self-explanation tendency and (3) her 

attention patterns in the ACE interface, based on information provided by an eye-tracker. 

Although some preliminary work has been done on using the student model's assessment 

to provide tailored support for self-explanation, such as prompts encouraging students to 

self-explain, this work is still in the developmental phases. 

Thus far, we have described ITS that support the meta-cognitive skill of self-explanation 

during example studying and exploration. Some ITS support self-explanation during pure 

problem solving, without making examples available. The Geometry Explanation Tutor 

[Aleven and Koedinger, 2002] targets self-explanation during geometry theorem proving, 

while Normit-SE's [Mitrovic, 2003] support is provided during database normalization. 

Both tutors 

• target self-explanation for step correctness (i.e., justifying a solution step in terms 

of the domain theory); 

• provide interface tools for generating the explanations, as well as feedback for 

correctness on the explanations. 

Normit-SE and the Geometry Explanation Tutor do not tailor their support according to 

specific shortcomings in students' self-explanation behaviours. The Geometry 
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Explanation Tutor prompts students to self-explain every problem-solving step, while 

Normit-SE prompts students to self-explain every new or incorrect problem-solving step. 

The Geometry Explanation Tutor has been extended via a Help-Seeking (HS) Tutor that 

provides support for the meta-cognitive skill of help seeking [Aleven, McLaren et al., 

2004]. For instance, two aspects of effective help seeking involve knowing when to ask 

for help, and not abusing available help by asking for hints too frequently. The HS Tutor 

relies on a production rule model to detect ineffective help-seeking behaviors and 

generates prompts to correct them. Note that help abuse is a form of 'gaming the system', 

i.e., attempting to succeed in an educational environment by exploiting properties of the 

system rather than by learning the material and using that knowledge to generate the 

solution [Baker, Corbett et al., 2006a]. Since gaming can interfere with learning, there is 

interest in investigating ways of detecting gaming [Baker, Corbett et al., 2006b] and 

preventing it [Baker, Corbett et al., 2006a; Roll, Aleven et al., 2006]. All of this work 

involves ITS that support pure problem solving by providing detailed hints instead of 

examples. Consequently, although effective help-seeking is related to min-analogy since 

both skills involve not abusing available help, the manner in which students can abuse 

help in these tutors involves asking for detailed hints too frequently, instead of by 

indiscriminately copying from examples. 

7.4 ITS Relying on a Decision-Theoretic Approach for 
Action Selection 

In contrast to the ITS described thus far, some ITS rely on a decision-theoretic approach 

for action selection, quantifying the expected utility of tutorial actions via a user model's 

prediction. However, none of these tutors target APS. Thus, to date, no ITS has (1) 

formalized the utility of an example in terms of its ability to facilitate learning and 

problem-solving success outcomes from APS or (2) included a probabilistic user model 

for inferring how APS-specific factors, such as problem/example similarity, impact these 

outcomes. 

146 



The INQPRO [Ting, Zadeh et al, 2006] ITS aims to help students acquire scientific 

inquiry skills by targeting hypothesis generation in the domain of introductory science. 

To do so, INQPRO provides learners with an interface that they can use to generate 

hypotheses. Once a student enters a hypothesis, INQPRO generates a simulation to help 

the student visualize the outcomes of her predictions. To support the inquiry process, 

INQPRO provides tailored meta-cognitive interventions that are intended to assist 

students in generating effective hypotheses. 

To decide which intervention to generate, INQPRO relies on a Bayesian network 

supplemented with utility and decision nodes, i.e., a decision network. The Bayesian 

network is used to model students' reasoning during the inquiry process, and in 

particular, to assess students' hypothesis generation. The assessment, in conjunction with 

the utility and decision nodes embedded in the dynamic network, allows INQPRO to 

select interventions that have best potential to target specific shortcomings in a given 

student's exploratory behavior. 

Like INQPRO, some tutors take a decision-theoretic approach for action selection, but do 

not aim to support meta-cognitive skills. All these tutors provide their support during 

pure problem solving. The CAPIT [Mayo and Mitrovic, 2001] tutor is designed to help 

students acquire punctuation skills. CAPIT provides two forms of support: (1) it selects 

problems for students to work on that fall into a given student's zone of proximal 

development (i.e., that are not too hard but also not too easy); (2) it provides students with 

hints that are generated when students make errors. 

CAPIT includes a student model corresponding to a dynamic Bayesian network. The 

network's nodes represent constraints, where a constraint specifies conditions that must 

be satisfied by all correct solutions to the target problem. When a student's problem-

solving entry violates a constraint, this is used to infer information about the student's 

knowledge. In order to decide which problem or error message to select, CAPIT first uses 

the Bayesian network to predict the impact of a candidate tutorial action (i.e., a problem 

or error message). The network's prediction is then quantified via a single-objective 

utility function, allowing CAPIT to select the tutorial action with the maximum expected 
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utility. For instance, to find problems within a student's zone of proximal development, 

CAPIT aims to find ones that are likely to trigger one or two errors over problems 

triggering none or a large number of errors. 

Another tutor that supports learning by selecting problems for students to work on is 

iTutor [Pek and Poh, 2000]. Like CAPIT, iTutor aims to choose problems that are not too 

easy but not overly challenging either. iTutor relies on a dynamic Bayesian network to 

predict how a given problem will impact a student's knowledge, quantifies this prediction 

via a utility function, and presents the problem with the highest expected utility in terms 

of helping the student learn as a result of solving it. 

Instead of selecting problems for students, the Decision Theoretic (DT)-Tutor [Murray, 

VanLehn et al., 2004] selects tutorial actions. Examples of tutorial actions include 

provide a hint, do the step for the student, provide positive feedback, do nothing, etc. 

Although DT-tutor has yet to be integrated into a full ITS, its action-selection approach 

has been simulated in two domains: mathematical functions and elementary reading 

skills. 

As is the case for CAPIT and iTutor, DT-Tutor's student model corresponds to a dynamic 

Bayesian network. DT-Tutor follows the Andes approach [Conati, Gertner et al., 2002] 

by basing the backbone of the network's structure on the target problem's solution graph, 

which is extended to also model the student's affective state. To model tutorial actions 

and their utility, decision and utility nodes are incorporated into the network, thereby 

converting it into a dynamic Decision network. DT-Tutor uses the network to calculate a 

candidate tutorial action's expected utility in terms of its impact on a student's 

knowledge, problem-solving progress and affective state. This process allows DT-Tutor 

to select the tutorial action with the highest expected utility in terms of helping the 

student learn, make problem-solving progress and maintain a positive affective state. 
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C h a p t e r 8 

Conclusions and Future 
Work 

The main objectives of this dissertation work have been to design, implement and 

evaluate an Intelligent Tutoring System for supporting APS. The underlying motivation is 

that examples are both a natural and effective means of learning: students tend to 

spontaneously rely on examples during problem-solving activities, and examples are 

more beneficial aids to problem solving than general procedures alone. However, 

research shows that learning gains from APS strongly depend on how effectively students 

use examples, and in particular, what meta-cognitive skills students bring to bear. Given 

this finding, it seems highly valuable to provide computer-based support for meta-

cognitive skills relevant to APS, to complement the extensive availability of computer-

based support targeting meta-cognitive skills during other instructional activities. 
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The dissertation work has fulfilled all three objectives: an ITS for supporting APS was 

designed, implemented and evaluated. Throughout the course of the thesis work, we have 

adopted an interdisciplinary approach, encompassing research from Cognitive Science, 

Artificial Intelligence and Human-Computer-Interaction. In particular, the design of the 

EA-Coach's support is directly based in cognitive science research on APS and relies on 

Artificial Intelligence techniques to provide students with tailored support. The 

evaluation of the system follows established Human-Computer-Interaction 

methodologies, which we relied on to analyze its pedagogical effectiveness. 

The dissertation research has three key contributions [Conati, Muldner et al., 2006; 

Muldner and Conati, 2005; Muldner and Conati, 2005; Muldner and Conati, 2007], as 

follows: 

1. We bring a contribution to Intelligent Tutoring Systems. In particular, the EA-

Coach is the first Intelligent Tutoring System that supports meta-cognitive skills 

during APS and does so by adaptively selecting examples with various levels of 

similarity to the target problem. Although there has been growing interest in recent 

years in devising ITS to support meta-cognitive skills, none of this support has 

targeted APS or EBLC, making the EA-Coach the only tutor to support the meta-

cognitive skills of min-analogy and EBLC. The EA-Coach also distinguishes itself 

from ITS targeting meta-cognitive skills in the style of support it delivers. 

Specifically, other ITS provide more explicit support than the EA-Coach. This is 

because they provide interface tools and/or explicit prompts to encourage the target 

meta-cognitive skills, which the EA-Coach does not do. Instead, the EA-Coach's 

key form of scaffolding for meta-cognition corresponds to its example-selection 

mechanism. While some work has been done on supporting APS via example 

selection, as we already pointed out none of this work targets meta-cognitive skills. 

In addition to this distinction, the EA-Coach is unique in its example-selection 

approach because it is the only tutor that (1) tailors the choice of example to a 

given student, (2) considers some differences between a problem/example to 

actually be beneficial in terms of triggering learning while supporting successful 
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problem solving and (3) adopts a decision-theoretic approach for finding examples 

that enable both outcomes (learning and problem solving). 

2. We bring a contribution to User Modeling. The EA-Coach student (user) model 

relies on our formal definition of similarity to infer the impact of problem/example 

similarity, in conjunction with student characteristics, on APS outcomes for a given 

student. To date, ITS supporting APS incorporate basic student models that assess 

a student's knowledge based on her problem-solving actions alone, without taking 

into account her meta-cognitive skills or problem/example similarity. Although 

some ITS incorporate richer models that like the EA-Coach rely on Bayesian 

networks for the modeling task, none of these tutors support APS. Consequently, 

the EA-Coach student model differentiates itself from existing models by explicitly 

representing (1) APS behaviors corresponding to copying and EBLC, (2) students' 

min-analogy and EBLC meta-cognitive tendencies, (3) problem/example similarity 

and by (4) reasoning about how these factors, in conjunction with a student's 

domain knowledge, impact learning/problem-solving APS outcomes. 

3. We bring a contribution to Cognitive Science through the evaluation of the EA-

Coach on the influence of problem/example similarity on APS behaviors and 

subsequent learning and problem-solving outcomes. Work in the cognitive science 

community shows that (1) examples that are too different from the target problem 

can hinder learning and problem-solving success, particularly for novice students 

and (2) very similar examples may help students achieve problem-solving success 

but do not trigger learning. However, full understanding has yet to be reached on 

how examples can help students achieve problem-solving success and trigger 

learning. Our evaluation has provided insight into this issue, and in particular, 

showed that non-trivial superficial differences can help students achieve problem-

solving success, while triggering EBLC and min-analogy needed for effective 

learning. 

In the course of fulfilling the thesis objectives, we have opened up interesting avenues for 

future work, which we now describe. 
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8.1 Future Work 

8.1.1 Additional Scaffolding 

The EA-Coach encourages min-analogy and EBLC through fairly implicit means, putting 

much of the responsibility for learning during APS on the student. As we stated in 

chapter 4, this is intended to encourage students to take initiative in the learning process. 

However, a possible drawback is that the system's support may' not be sufficiently strong 

to trigger min-analogy or EBLC for some students. Our evaluation confirmed that some 

students did indeed require more explicit scaffolding during APS. There are several 

possibilities regarding how this scaffolding could be realized. 

One form of scaffolding could correspond to providing students with tools to help them 

infer the appropriate domain principles via EBLC. To date, ITS that provide tools for 

self-explanation have scaffolded only domain-based reasoning (e.g., [Kashihara, 

Hirashima et al., 1995; Conati and VanLehn, 2000; Aleven and Koedinger, 2002]). For 

instance, figure 8-1 shows a tool provided by the SE-Coach, where the student generates 

the self-explanation by selecting from drop-down lists. Notice that the explanation 

process only involves domain-based reasoning, and the student's input of the explanation 

is constrained by the system, which allows the SE-Coach to monitor and provide 

feedback on students' self-explanations. Constraining student's input of explanations 

was a standard approach until recently, when researchers investigated allowing students 

to generate free-form explanations. Specifically, the Geometry Explanation Tutor now 

also allows students to enter the explanation by typing [Aleven, Popescu et al, 2004]. 

Since with this latter approach students are not constrained in how they generate 

explanations, they could express EBLC-reasoning to the system. However, the Geometry 

Tutor can not provide feedback on EBLC, since it does not have the capabilities to 

recognize overly general/common sense reasoning. Thus, in general, it is an open 

question with respect to how tools for EBLC should be designed to provide the necessary 

scaffolding, or how to incorporate the complex domain and student models needed to 

allow the system to capture and provide feedback on EBLC. 
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Figure 8-1: The SE-Coach tool used to generate a self-explanation on the existence of a normal 
force 

Cognitive science research shows that students use EBLC reasoning to derive new 

domain principles when learning on their own, i.e., in the absence of any tools. However, 

if an ITS provides tools supporting self-explanation without scaffolding common 

sense/overly general reasoning, e.g., of the type shown in figure 8-1, then students could 

still learn the rule, but without any guidance for EBLC from the system. An advantage of 

guiding EBLC is that some students have a very low tendency for this kind of reasoning 

and so require assistance with this process, which may in turn help them gain experience 

with EBLC so that they can apply it on their own, in the absence of tools. To see if and 

how this occurs, it would be interesting to compare if and how scaffolding 

commonsense/overly general reasoning impacts learning outcomes. 

In addition to tools, another form of scaffolding could correspond to system-generated 

meta-cognitive interventions for min-analogy and EBLC, which our evaluation suggested 

could be beneficial for some students. Since our goal is to maintain freedom of 

interaction with the EA-Coach, the system should intervene only if a given student's APS 

behaviors are hindering her learning outcomes. This can be accomplished by relying on 

the student model's assessment of a given student's capabilities, thereby tailoring the 

interventions to individual students' needs. A common approach for realizing meta-

cognitive interventions involves generating prompts, e.g., to encourage self-explanation 

[Conati and VanLehn, 2000], or effective help-seeking [Aleven, McLaren et al., 2004]. 

Another approach involves using animated pedagogical agents to express approval or 
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lack of it, based on whether students are gaming the system in ways that interfere with 

learning [Baker, Corbett et al., 2006a]). Yet a third possibility involves making the use of 

tools, such as the ones to scaffold EBLC, mandatory if the system detects that students 

are not reasoning effectively. 

8.1.2 Scaffolding the Progression of Skill Acquisition 

The EA-Coach provides its support within a general ITS framework that incorporates two 

other tutors: the SE-Coach and Andes. These target different types of instructional 

activities, i.e., pure example studying without making problems available (SE-Coach) and 

pure problem solving without the aid of examples (Andes). Cognitive science research 

suggests that a natural progression in cognitive skill acquisition exists, which starts with 

example studying, moves to APS and then finally proceeds to pure problem solving 

[VanLehn, 1996]. Having all three tutors present in one coherent framework opens up the 

opportunity for investigating this progression. For instance, a question of general interest 

is whether there are optimal trajectories that students can follow to go from pure example 

studying (SE-Coach), to APS (EA-Coach), to pure problem solving (Andes). If so, how 

can they be defined and supported? 

8.1.3 Further Analysis 

The evaluation of the EA-Coach focused on its adaptive example-selection mechanism. 

Since the EA-Coach's student model is a key component of the mechanism, the 

evaluation demonstrated the value of the model, and in particular, that our assumptions 

embedded into the model are generally appropriate. For our evaluation, however, the 

model was used for simulation but not for assessment, for reasons stated in section 6.3.3. 

Although the same model structure and parameters are used during simulation as 

assessment, direct insight on the model's accuracy in assessment mode could by gained 

by analyzing its performance in this mode. This analysis could take several forms, as 

follows: 
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• Evaluating the accuracy of the model's intermediate assessment, i.e., during a 

student's interaction with the EA-Coach. For instance, it would be interesting to 

determine if the model's assessment of EBLC at a given point during APS is 

accurate by correlating its appraisal at this point with data from the protocol 

analysis. 

• Evaluating the accuracy of the model's final assessment, i.e., after a student's 

interaction with the EA-Coach. This could be done, for instance, by correlating the 

model's final assessment of learning of domain principles with post-test scores on 

corresponding questions. 

8.1.4 Novel Technologies 

An interesting extension to the EA-Coach would involve the incorporation of eye-

tracking technology. Currently, the EA-Coach's ability to track students' example usage 

is due to the masking interface. The interface, however, provides less information than an 

eye tracker. For instance, since the masking interface only covers the example window, it 

does not provide information on eye-gaze patterns in the problem window (although this 

could be implemented, it has the potential for being intrusive). The eye tracker is also 

able to provide fine-grained information on which problem/example constants students 

are attending to, which could help the model assess whether students are reasoning via 

transformational analogy. An open question is how to incorporate this information into 

the model's assessment and how useful it would be in terms of improving the model's 

accuracy. 

An eye tracker also makes it possible to evaluate the masking interface's impact on APS. 

Recall that in addition to providing information on students' visual attention, the masking 

interface is intended to provide scaffolding to discourage copying. Since an eye tracker 

provides information on visual attention without the need to cover the example solution, 

it would facilitate evaluating if and how the masking interface scaffolds APS. 
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8.1.5 Refinements to the Student Model 

We already discussed one possible refinement to the model above in section 8.1.4, 

corresponding to incorporating information provided by an eye tracker into the model's 

operation. Another refinement could correspond to how the model assesses self-

explanation. The EA-Coach student model currently aims to infer if a student is self-

explaining via EBLC from an example. However, our evaluation indicated that students 

also self-explain during pure problem solving without relying on examples. The 

challenge in having the model assess explanation during pure problem solving is that 

given the current design of the system, there is very little information on whether it is 

occurring. On the other hand, if tools are incorporated into the system as we propose in 

section 8.1.1, then tool usage during problem solving would provide information on 

whether students are reasoning via EBLC. 

8.1.6 Subsequent Evaluations 

Since the controlled laboratory study described in chapter 6 was the first evaluation of the 

EA-Coach, its design was geared at providing as much insight as possible into the 

system's overall pedagogical effectiveness. While we achieved this goal, there are several 

obvious possibilities related to future evaluations. We have already provided several 

suggestions above, including 

• evaluating the EA-Coach's role in the progression of skill acquisition; 

• comparing domain-based vs. EBLC-based tools as scaffolds for self-explanation, as 

well as evaluating the masking interface's impact on copying. 

Another possibility for a future laboratory experiment is investigating the impact of the 

EA-Coach on learning by measuring pre to post test differences via a standard between-

subjects design. Specifically, the study would involve two groups of students: the control 

group would received statically selected examples and the treatment group would receive 

adaptively selected examples. This design does not afford as much experimental power as 

the within-subjects design we chose, but does have the advantage of making it easier to 

measure pre to post test differences between the groups. Instead of a laboratory 
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experiment, another option for a future evaluation is a longitudinal field study, where 

students would use the EA-Coach for a longer period of time than is afforded by a 

laboratory experiment, for instance while enrolled in a physics course. A longitudinal 

study has the advantages of affording greater ecological validity than a laboratory 

experiment, and making it possible to evaluate the EA-Coach's long-term impact on 

students. 
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A p p e n d i x 1 

Heuristics for Implementing 
Case5b of the Algorithm in section 

There are three heuristics defined to handle Case5b of the algorithm in Figure 5-3: 

- Heuristic 1, used for solution graph nodes representing vector-component equations 

(e.g., sp„, Figure A-1) 

- Heuristic 2, used for solution graph nodes representing the sign of a vector-component 

equation (e.g., spn+1, Figure A-l) 

- Heuristic 3, used as the fallback if heuristics (1) and (2) do not apply. 

For the following description we rely on terminology introduced in Figure 5-3, which we 

summarize here: 

- sp is a problem step (i.e., fact) in the Bayesian network derived by rule R, 

- S is the set of nodes S-{ se/...se„ } in the example's solution graph that were derived 

by R. 
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Heuristics 1 and 2 

These heuristics apply to equations specifying the components of a vector (e.g., 'Tx= -

T*cos(40)\ Figure A-l, top left). The subsequent discussion of the corresponding 

heuristics for dealing with Case5b requires an understanding of how this type of step is 

represented in the solution graph. A vector-component equation has two nodes in the 

solution graph, because it is derived by two rules: one to generate the vector component 

equation, but without its sign (see node spn Figure A-l, left) and one to generate the sign 

(see node spn+1 Figure A-l, left). Although we could have represented the principle to 

derive the equation by one rule, it would not allow the framework to model students' 

knowledge on a fine-grained level (for instance, to distinguish between instances when 

students knew how to generate the equation but not its sign). 

Figure A-l illustrates a situation requiring the two heuristics. Heuristic 1 is needed for 

node spn encoding a vector-component equation. This node is related to two nodes in the 

example's solution graph, se„ and sem, since they are derived by the same rule as spn. 

Heuristic 2 is needed for node spn+/ encoding the vector-component equation's sign, 

since it also is related to two nodes in the example's solution graph (i.e., sen+1 and sem+1). 

Heuristic 1. To identify which node in S to compare with sp: 

- [Case 1-A] If a node se exists in 5 such that sp and se correspond to the same force 

type (e.g., tension, weight, etc., as is the case for spn and sen in Figure A-l) and there 

is only one such node se then 

- use node se in Step 6 of the algorithm in Figure 5-3 (i.e., compare sp with se). 

This heuristic is based on the assumption that force type is a salient attribute that 

guides how students transfer from the example. For instance, a student who aims to 

generate a vector-component equation for the tension force by copying from the 

example will refer to the vector-component equation for the tension force in the 

example solution. 

- [Case 1-B] Otherwise, there is no obvious way of identifying which step in S should 

be compared with se. In this case, the fallback heuristic is used, heuristic 3. 
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Equation in Problem Solution: 
Tx= - T*cos(40) 

.So.lutio.r)..G.caR.h.£raame.o.t 

<^^~"~Component-Eq Rule~~^> 

(^~Sign Rule 

Equations in Example Solution: 
Tx= +T*cos(30) 
Px = - P * cos(20) 

.SQl.utio.n..<3irap.hi.Fr.agrxien.t... 

Component-Eq Ru ie^ 

se „: Tx = T*cos(30) 

^~5ign Rul"e~~vj 

Se„„: sign = '+' 

C[]^Component-Eq^Ruie^ 

s e m : P x = P*cos(20) 

^~"S ign Rule^-vj 

se m + i : S i gn ='-' 

Figure A - l : Representation of vector-component equations in the solution graph 

Heuristic 2. Since nodes in the solution graph encoding the sign of a vector component 

equation are related to the equation itself, this is utilized when determining the similarity. 

Specifically, for a node sp in the problem's solution graph corresponding to the sign of a 

component equation: 

- find sp's parent node sp<:amponent_eqm,im for the corresponding the component equation 

(e.g., for node sp „+, in Figure A-l, this is node sp „); 
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- [Case 2-A] If the parent node spcompment_equnlion has a corresponding node 

component jquaiion in the example solution graph according to Heuristic 1, Case 1-A 

(e.g., for node sp „ in Figure A-l, this is node se „) then 

- find s e C ( , m p m e n t _ e q m , i 0 n S , child node sesisn corresponding to the sign of the 

component equation (e.g., for node se „ in Figure A-l, this is node se „+/ ); 

- use node sesit,n in Step 6 of the algorithm in Figure 5-3 (i.e., compare sp with 

- [Case 2-B] Otherwise, there is no obvious way of identifying which step in 5 should 

be compared with se. In this case, the fallback heuristic is used, heuristic 3. 

Heuristic 3 

The fallback heuristic is to compare sp with each node se in S and set the similarity to: 

- Trivial if a node se exists in 5 such that includes a trivial difference with sp, 

- NonTrivial otherwise. 

Note that if Case 1-B is reached, then Step 6 of the algorithm in Figure 5-3 is skipped. 



A p p e n d i x 2 

Pre and Post Test used During 
Primary Pilot (Chapter 3) 



P r e T e s t 

Name: 

Date/Time: 



For all problems, assume a frictionless surface !!! 

Forces / Directions: 

For the following problems, please draw the free-body diagrams by showing the 
direction of all forces acting upon an object in the given situations (Don't worry 
about reflecting the magnitude of the force in the diagram by scaling the forces -
just draw each force in the correct direction, and make sure to label each force 
clearly. 

Problem 1 
Jane is trying to hang a very very small picture. To see if it is straight, she pushes 
it into the wall and holds it there with her finger. Draw all the forces/ their 
direction that are acting on the picture. 

Problem 2 
Bob pulls a large package along the ground with a force of F=100N, applied at 34 
degrees to the horizontal. Draw all the forces/ their direction that are acting on 
the package. 

Problem 3 
A crate has a string attached to it, which is pulled taut. Draw all the forces /their 
direction that are acting on the crate. 
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Axes 

For the following situations, draw in the a x e s that you would use to define the 
component equations. 

Yo-yo held by string 

Components 

Below is shown a free-body diagram, including the axis (shown in a dotted line) 
and the angles. 
For each force (labeled F l , F2, F3 below), specify in the space provided the 
horizontal and vertical components. 

Horizontal components (X): 
F l _ x : 
F2_x: 
F3_x: 

Vertical components (Y): 
F l_y : 
F2_y: 
F3_y: 

Block resting on incline, held 
there by a piece of string 

< ca: \ F2 
' 5 

+x 

F3 

> / 
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Word Problem 

Please show ALL your work - the more steps you show, the more helpful it will 
be! 
Don't worry about calculating things like cos(15) - just leave it in that form. 

Bob pulls a loaded box of stuff, with a force of 140 N. The box has a mass 40 kg. 
This force is applied at 19 degrees from the horizontal. 

19° 

1) What physics principle (or law) would you use to solve this problem? 
2) Find the normal force N exerted by the ground on the box. 
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P o s t T e s t 

Name: 

Date/Time: 



For all problems, assume a frictionless surface, unless otherwise stated. 

Forces / Directions: 

For the following problems, please draw the free-body diagrams by showing the 
direction of all forces acting upon an object in the given situations. Don't worry 
about reflecting the magnitude of the force in the diagram by scaling the forces -
just draw each force in the correct direction, and make sure to label each force 
clearly. 

Problem 1. 
A boy pushes an eraser into the chalkboard, holding it there with his finger. Draw 
all the forces/ their direction that are acting on the eraser. 

Problem 2. 
Ann pulls a sled with a force of F=80N, applied at 45 degrees to the horizontal. 
Draw all the forces/ their direction that are acting on the sled. 

Problem 3. 
A string is attached to a toy, as shown below, and pulled so that it is taut. Draw all 
the forces /their direction that are acting on the toy. 

19' 
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Axes 

For the following situations, draw in the a x e s that you would use to define the 
component equations. 

Sculpture resting on incline, 
held there by a rope 

Components 

Below is shown a free-body diagram, including the axis (shown in a dotted line). 
For each force (labeled F l , F2, F3 below), specify in the space provided the 
horizontal and vertical components. 

/ 

w F l 

< 51" '• \ 

V

 +Y 

F2 

F3 

\ 

*• > 
+X 

Horizontal Components (X): 
F l _ x : 
F2_x: 
F3 x: 

Vertical components (Y):: 
F l_y : 
F2_y 
F3_y 
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Word Problem 

Please show ALL your work - the more steps you show, the more helpful it will 
be! 
Don't worry about calculating things like cos(15) - just leave it in that form. 

Ann pulls a along a box of books. The box has a mass 45 kg. This force is applied 
at 17 degrees from the horizontal. 

V 
1. What physics principle (or law) would you use to solve this problem? 
2. Find the normal force N exerted on the box. 
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Appendix 3 

Pre and Post Test used in 
Evaluation of the EA-Coach 



PreTest 

Name: 

Date/Time: 



For all problems, assume a frictionless surface! 

For the problems on this page, please draw the free-body diagrams: 
show the direction of all forces acting upon an object in the given 
situations 
don't worry about reflecting the magnitude of the force in the diagram by 
scaling the forces - just draw each force in the correct direction, and make 
sure to label each force clearly. 

Problem 1 
A vase with a mass of 2 kg sits on a frictionless shelf that is inclined 21 degrees 
from the horizontal. The vase is held in place by a taut string that runs parallel to 
the incline. Draw all the forces/ their direction that are acting on the vase. 

Problem 2 
Bob pulls a large package along the ground with a force of F=100N, applied at 34 
degrees to the horizontal. Draw the acceleration vector and all the forces that are 
acting on the package. 

Problem 3 
A picture hangs from two wires as shown below. Draw all the forces/ their 
directions that are acting on the picture. 
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Axis 

For the following problems, don't answer the question 
you would use to define the component equations. 

•just draw in the axis that 

Block of mass 2kg resting on incline, held 
there by a piece of string which runs parallel to 
the incline. Find the normal force on the block. 

A man pulls a crate with a force P, applied at an angle 
of 31 degrees lo the horizontal, with a magnitude of 
100N. The weight of the crate is 40 kg, its acceleration 
is unknown. What is the normal force on the crate? 

Components 

A box is being pulled by 4 forces. Below is shown the free-body diagram, 
including the axis (shown in a dotted line) and the angles. For each force (labeled 
Fl , F2, F3, F4 below), specify in the space provided the equations for the 
horizontal and vertical components of each force acting on the box. 

Horizontal components (X): 
F l x : 
F2X: 
F3X: 
F4X: 

Vertical components (Y): 
F l y : 
F2y: 
F3y: 
F4y: 
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Word Problems 
Please show A L L your work - the more steps you show, the more 
helpful it will be. 
Assume no friction, 

- Don't worry about calculating things like cos(15) - just leave it in that 
form. 

Question 1 

A 0.5 kg toy is hanging from a string. A child pushes on the toy so that the string 
makes an angle of 35 degrees with the horizontal. The push is applied parallel to 
the horizontal (i.e. the angle it makes with the ground is 0 degrees), but we don't 
know its magnitude. The toy is not moving. The tension in the string at this point 
is 8.5 N 

What is the magnitude of the pushing force on the toy? 

Please draw free-body diagram below as part of your answer. 
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Question 2 

Jane pushes a 4 kg book into the wall. She applies the push at an angle of 30 
degrees with the horizontal, and a magnitude of 105 N. The book is sliding up the 
wall with some acceleration. 

What is the acceleration of the block ? (assume no friction!) 

Please draw free-body diagram as part of your answer, include the acceleration 
vector. 
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PostTest 

.Name: 

Date/Time: 
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For all problems, assume a frictionless surface! 

For the problems on this page, please draw the free-body diagrams: 
show the direction of all forces acting upon an object in the given 
situations 
don't worry about reflecting the magnitude of the force in the diagram by 
scaling the forces - just draw each force in the correct direction, and make 
sure to label each force clearly. 

Problem 1 
A box is held in place on an incline by a tight rope, which runs parallel to the 
incline. Draw all the forces/ their direction that are acting on the box. 

Problem 2 
Ann pulls a sled with a force of F=80N, applied at 45 degrees to the horizontal. 
Draw the acceleration vector and all the forces that are acting on the sled. 

Problem 3 
A circus stuntwoman has fallen and hangs suspended by two ropes. Draw all the 
forces/ their direction that are acting on the stuntwoman. 
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Axis 

For the following problems, don't answer the question - just draw in the axis that 
you would use to define the component equations. 

Block of mass 13kg resting on incline, held 
there by a piece of string which runs parallel to 
the incline. Find the normal force on the block. 

A man pulls a crate with a force P with a magnitude of 
70N, applied at an angle of 30 degrees to the 
horizontal.. The weight of the crate is 22 kg, its 
acceleration is unknown. Find the magnitude of the 
normal force on the crate. 

o 

/ Z L 

Components 

A box is being pulled by 4 forces. Below is shown the free-body diagram, 
including the axis (shown in a dotted line). For each force (labeled F l , F2, F3, F4 
below), specify in the space provided the equations for the horizontal and vertical 
components acting on the box. 

Horizontal components (X): 
F l x : 

F2X: 
F3X: 
F4X: 

Vertical components (Y): 

F2y: 
F3y: 
F4V: 
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Word Problems 
- Please show A L L your work - the more steps you show, the more 

helpful it will be. 
Assume no friction, 
Don't worry about calculating things like cos(15) - just leave it in that 
form. 

Question 1 

A 3 kg block is hanging from a rope. A man pushes on the block so that the string 
makes an angle of 30 degrees with the horizontal. The push is applied parallel to 
the horizontal (i.e. the angle it makes with the ground is 0 degrees), but we don't 
know its magnitude. The block is not moving. The tension in the rope at this point 
is58N 

What is the magnitude of the pushing force on the block? 

Please draw free-bodv diasram as Dart of vour answer. 
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Question 2 

Bob pushes a 3.5 kg block into the wall. He applies the push at an angle of 35 
degrees with the horizontal, and a magnitude of 100 N. The block is sliding up the 
wall with some acceleration. What is this acceleration of the block? (Ignore 
friction in this problem!) 

Please draw free-body diagram, including the acceleration vector as part of your 
answer. 

Block 
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