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A b s t r a c t 

By modeling dynamic join points, pointcuts, and advice in a continuation-passing 
style interpreter, we provide a fundamental account of these A O P mechanisms. This 
account frames interesting type-and-effect properties of the mechanisms, such as the 
range of interactions between advised code and advice, and provides a general framework 
for describing these aspect interactions. 
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Preface 

Mathematics holds elegance in high regard. From my undergraduate studies in 
pure mathematics, I developed an appreciation that a simple, clear explanation 
of existing results is not only a legitimate scientific advance in itself, but also 
the engine that moves the discipline forward. With clarity comes insight — and 
applicability. 

This dissertation aims to provide a simple, clear presentation of dynamic join 
points, pointcuts, and advice, based on fundamental principles in programming 
languages theory. The highest accolade this work can garner was provided by 
Varmo Vene during the summer of 2005, when he said to me: "Now I under
stand what aspects are about". If you, the reader, come to the conclusion of 
this dissertation and say "but that's obvious", then I will have succeeded in my 
endeavour. 

From this clarity, will come two important insights. First, that pointcuts and 
advice are natural for any dynamic semantics. Second, layering these kinds of 
aspects is a challenging task; there is no single correct interaction. Programmers 
must spell out their intentions, but we can help to highlight contentious places. 

This dissertation is certainly not the last word on this subject. Indeed, this 
presentation hints at a deeper understanding of the modularity offered by point-
cuts and advice. Just as classes classify class-instances (objects) which abstract 
primitive values,. there is a tantalizing parallel where dynamic aspects classify 
aspect-instances which abstract continuation structure. Filinski's categorical du
ality between continuations and values may connect the two hierarchies together, 
giving us a more unified theory of modularity over data and control. 

As Gregor Kiczales once said, "the fun has just begun... "[92]. 
CHRIS D U T C H Y N 

Vancouver, Canada 
November 6, 2006 
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C H A P T E R 

Introduction 

Current programming languages offer many ways of organizing code into concep
tual blocks, whether through functions, objects, modules, or some other mech
anism. However, programmers often encounter features that do not correspond 
well to these units of organization. Such features are said to scatter and tangle 
with the design of a system, because the code that implements the feature ap
pears across many program units. This scattering and tangling may derive from 
poor modularization of the implementation; for example, as a result of maintain
ing pre-existing code. Recent work [31; 52; 109; 152] shows that, in some cases, 
traditional modularity constructs cannot localize a feature's implementation. In 
these cases, the implementation contains features which inherently crosscut each 
other1. In a procedural language, such a feature might be implemented as parts 
of disjoint procedures; in an object-oriented language, the feature might span 
several methods or classes. 

These crosscutting features inhibit software development in several ways. For 
one, it is difficult for the programmer to reason about how the disparate pieces of 
the feature interact. In addition, they compound development workload, because 
features cannot be tested in isolation. Also, they prevent modular assembly: the 

1. Strictly speaking, crosscutting is a three-place relation: we say that two concerns crosscut 
each other with respect to a mutual representation. The less rigorous 'two concerns crosscut 
each other' means that they crosscut each other with respect to an implementation that closely 
parallels typical executable code. Traditional modularity constructs, such as procedures and 
classes, have a close parallel between source and executable code. 

1 



1. INTRODUCTION Motivation 

programmer cannot simply add or delete these features from a program, since 
they are not separable units. 

1.1 Motivation 

Recently, many researchers have proposed aspect-oriented software development 
as a method for organizing crosscutting features [13; 26; 79; 94; 107; 124; 157]. In 
particular, Kiczales et al. [94] have presented aspect-oriented programming (AOP); 
in this paradigm, the fragments of any given crosscutting feature precipitate 
into a separate component, called an aspect. In addition to containing the code 
necessary for a feature, the aspect must indicate how this code should combine 
with other modules to provide the desired behavior. 

Kiczales et al. also implemented a practical aspect-oriented extension to Java, 
called AspectJ, which allows the programmer to define aspects [93]. One portion 
of this implemented language provides dynamic aspects in the form of pointcuts 
and advice. Simplistically, pointcuts identify dynamic join points — places where 
features interact, and advice implement a feature relative to the join point. 

Our task is to provide a formal model for these constructs: dynamic join 
points, pointcuts, and advice; and, to explore how features implemented in this 
way might interact. 

T h e s i s 

We claim that a model of dynamic join points, pointcuts, and advice based on 
a continuation-passing style interpreter provides a fundamental account of these 
AOP mechanisms; and that this account frames interesting type-and-effect prop
erties of the mechanisms, such as the range of interactions between advice and 
advised dynamic join points, and provides a general framework for describing 
these interactions. 

C o n t r i b u t i o n s 

This research provides two semantic descriptions of dynamic join points, point-
cuts, and advice for procedural languages. 

The first semantic specification, a dynamic semantics, moves from our pre
viously published expression-oriented, big-step system to a novel continuation-

2 



1. INTRODUCTION Motivation 

based, small-step semantics. This translation yields an elegant model of dynamic 
join points as principled program control points, pointcuts as identifiers of these 
points, and advice as specializers of the behaviour of these control points. The 
second semantic specification, a static semantics, captures the essential abstrac
tion of continuations, that of computational effects, and develops an abstraction 
of pointcuts and advice with regard to the effects they express. This abstraction 
to effects supports and refines existing aspect classifications, yielding interesting 
types-and-effects properties for dynamic joinpoints, pointcuts, and advice. 

The specific contributions are: 

1. A novel development of continuation-based dynamic semantics for dynamic 
join points, pointcuts, and advice for a first-order, mutually-recursive pro
cedural language showing that 

a) Dynamic join points, pointcuts, and advice aspects can be modeled 
directly in continuation semantics; without the need for labels or con
tinuation marks, 

b) Principled dynamic join points arise naturally, as continuation frames, 
from describing programming languages in continuation semantics, 
and 

c) Advice acts as a procedure on these continuation frames, providing 
specialized behaviour for them. 

2. An application of this construction to a higher-order procedural language, 
Scheme, yielding a semantic description of AspectScheme which includes 
lexically-scoped and dynamically-scoped pointcuts and advice. 

3. An implementation of AspectScheme, constructed as a language extension 
to PLT Scheme [72], using macros and their language extension points, with 
lexically-scoped and dynamically-scoped aspects, as well as the more usual 
top-level (declarative) pointcuts and advice aspects. 

4. A demonstration that cflow pointcuts, which identify dynamic join points 
based on control flow context, break tail-call properties of programming 
languages and add a state effect into the languages. 

5. A static semantics that focuses on the key property of continuations: that 
they carry computational effects. We 

3 



1. INTRODUCTION Plan of Presentation 

a) characterize dynamic join point shadows by their input, output, state 
access and state mutation regions; 

b) associate dynamic join point effects with pointcuts, yielding reports 
summarizing and contrasting these effects; 

c) characterize advice bodies, describing their input, output' and state 
effects as well as repetition of join point behaviour. 

6. An effect reporting algorithm that extends ones already accepted for aspect-
oriented languages. Ours includes 

a) five control interaction classes that cover a broader range than the 
existing classes, 

b) six data interactions, including one missing from the existing analyses, 

c) an alternate input (output) categorization with four categories 

d) exception categorization that helped highlight an AspectJ/Java incon
sistency, and 

e) three simple concurrency interactions. 

1.2 Plan of Presentation 

This work proceeds in two major parts. The first part deals with dynamic seman
tics. In Chapter 2 we introduce direct semantics for P R O C , an eager, call-by-value, 
first-order recursive procedural language. We then pass to the continuation-
passing style (CPS) semantics, and characterize dynamic join points, pointcuts, 
and advice in terms of these continuation structures. To emphasize the generality 
of our construction, we provide a second account in Chapter 3 where we identify 
dynamic join points, pointcuts, and advice in a core implementation of Scheme, 
a higher-order procedural language. 

The second part deals with static semantics. In Chapter 4 we present com
putational effects and show how to abstract effect descriptions for our pointcuts 
and advice. In Chapter 5, we demonstrate the utility of these effect abstractions 
by classifying them in a taxonomy that extends the existing formulations for rea
soning about dynamic aspects. Last, in Chapter 6, we summarize the work and 
consider some avenues for additional research. 

4 



PART 

Dynamic Semantics 



C H A P T E R 

A M o d e l for Dynamic Jo in Points, 
Pointcuts, and Advice 

principle /'prmsip(9)l/ n. 

1. a fundamental truth or law as the basis 
of reasoning or action. 

2. a) a personal code of conduct, 
b) (in pl.) such rules of conduct. 

3. a general law in physics etc. 

4. a law of nature forming the basis for the 
construction or working of a machine 
etc. 

5. a fundamental source; a primary 
element. 

principled /'pnnsip(a)ld/ adj. based on or having 
(esp. praiseworthy) principles of behaviour. 

The Concise Oxford Dictionary, 8ed. [6] 

This chapter comprises the core of our dissertation. We give a formal model of 

dynamic join points, pointcuts, and advice built on the well-understood processes 

of conversion to continuation-passing-style, and defunctionalizatiom We demon

strate that dynamic join points arise naturally in this formulation, as continuation 

frames. Therefore, advice can specialize their behaviour directly in our construc

tion. Furthermore, we demonstrate that, in our model, cflow corresponds to a 

continuation context, and interacts poorly with tail-call optimizations. 

6 



2. A M O D E L FOR D J P S , P C S , AND A D V I C E PROC - Direct Semantics 

(define-struct PROG (decls body)) ;; <(id * decl)... * exp> 

(define-struct LIT (val)) ;; literal value 
(define-struct VAR (id)) ;; variable 
(define-struct IFX (test then else)) ;; conditional <exp * exp * exp> 
(define-struct APP (id rands)) ;; application <id * exp... > 

(define-struct PROC (ids body)) ;; <id... * exp> 
;;; primitives are procedures 

Figure 1: P R O C Abstract Syntax 

2.1 A Procedural Language — Direct Semantics 

As with other semantics presentations [56; 57; 169], we choose to work with a 
first-order, mutually recursive procedural language, P R O C . In the next chapter, 
we will re-examine this construction for a core higher-order procedural language. 
Throughout this chapter, our systems are given as definitional interpreters, as 
introduced by Reynolds [135, 137], in the style of Friedman et al. [74]. This 
interpreter-based approach to modeling various AOP mechanisms originated with 
our work in the Aspect Sandbox [56; 57] and related papers [113; 114; 167; 168; 
169], and was later adopted by others, including Filman [69]. 

We begin with the usual syntax and direct-style, big-step semantics, given in 
Figure 1 and Figure 2 respectively. Programs comprise a set of named mutually-
recursive, first-order procedures, and a closed, top-level expression. We assume 
programs and terms are well-typed. Environments are standard. 

One important feature of this definition is that we do not specify the order 
of evaluation for procedure operands. In particular, we use the Scheme map 
procedure to explicitly provide this non-deterministic behaviour [91]. 

We should point out that several usual constructs are lacking from our lan
guage; but this does not impair its expressiveness. In particular, the usual con
structs are 

• (SEQ x\...) which evaluates each sub-expression in left-to-right order, 
yielding the value of the last expression, and 

• (LET ([i\ x\\...) x) which evaluates the body x in an environment enriched 
with variables in bound to the values of the corresponding expressions xn. 

7 



2. A M O D E L FOR D J P S , P C S , AND A D V I C E PROC - Continuation Semantics 

;;; values :: integers, booleans 
;;; evaluator 
(define (eval x r) 

(cond {{LIT? x) (LIT-val x)} 
[(VAR? x) (lookup r (VAR-id x))] 
[(IFX? x) (let ([v (eval (IFX-test x) r)]) 

(eval ((if v IFX-then IFX-else) x) r))] 
[(APP? x) (let ([vs (map (A (x) {eval x r)) (APP-rands x))]) 

(let ([p (lookup-proc/prim (APP-id x))}) 
(cond [(PROC? p) (eval (PROC-body p) 

(bind (PROC-ids p) vs empty))} 
[(procedure? p) (p vs)])))])) 

(define *procs* '([+ . ,(A (vs) (+ (car vs) (cadr vs)))] 
[display . ,(A (vs) (display (car vs)) 0)] 
[newline . ,(A (vs) (newline) 0)])) 

(define (run s) 
(let ([g (parse-prog s)}) 

(set! *procs* (cons (PROG-decls g) *procs*)) 
(eval (PROG-body g) empty))) 

Figure 2: P R O C Big-step (Direct) Semantics 

As usual in the literature, these can be denoted in our language by the addition 
of helper procedures as seen in Figure 3. For the sequel, we will employ these 
notational shorthands. 

2.2 A Procedural Language - Continuation 
Semantics 

In order to identify dynamic join points in a principled way, we need to 
move to a continuation-passing style (CPS) implementation. Continuations, also 
known as goto's with arguments, were first identified by Landin [102] and Strachey 
[155] to model control flow in programs. Later, Reynolds [136] applied them to 
ensure that semantics given by definitional interpreters yields a formal model 
independent of the defining language control constructs. 

8 



2. A M O D E L FOR D J P S , P C S , AND ADVICE PROC - Continuation Semantics 

(SEQ xi) = xi ' 
(SEQ xi x2 ...) = (APP f oo i . . . xO . 

with helper procedure 
(f oo . {PROC (i ... _) (SEQ x2 ...))) 

where foo is fresh, and each i ... are the free variables of the subsequent expres
sions X2 ... 

(LET () x) = x 
(LET ([ix xi] ... [i„ xn]) x) EE (APP f oo i . . . xi . . . xn) 

with helper procedure 
(foo . (PROC ( i . . . i i . . . i n ) x)) 

where foo is fresh, and each i ... are the free variables of the body x excluding 
i i ... i n -
i — 

Figure 3: PROC Shorthand Expressions 

The CPS transformation [48] of our interpreter is systematic, following closely 
that of Hatcliff and Danvy [82]. In essence, we treat each of the let expressions in 
the direct eval semantics as a monadic let [119; 120]. These lets express a bind 
operation between the computation of an operand and the computation awaiting 
that value. Continuations explicitly sequence these bind operations, and reify the 
computation awaiting the value. 

Usually continuations are presented as closures [45], but Ager et al. [5] pro
vide a systematic defunctionalization of these closures into tagged structures and 
an apply procedure that gathers the operations of each closure. Each tagged 
structure must contain the values for each variable that the closures reference. 
The continuation structures required for our small-step interpreter are given in 
Figure 4. 

As usual in operational semantics, we introduce two auxiliary continuations, 
ARG and CONS, to support multiple arguments to procedures2. These two con
tinuations provide a strict right-to-left evaluation order for procedure operands. 
This choice is arbitrary. We could have supplied a non-deterministic ordering in 
the CPS semantics, but that would distract us from our focus. The essential no
tion is that these supporting continuations have no basis in the direct semantics: 

2. We refer to continuations which arise from the CPS transformation and provide sequencing 
which is unspecified in the big-step semantics as auxiliary. 

9 



2. A M O D E L FOR D J P S , PCs, AND A D V I C E PROC - Continuation Semantics 

i 1 
;;; frames 
(define-struct TEST (env then else)) ;; < env * exp * exp> I—'boolean 
(define-struct CALL (id)) ;;<id> I—ival... 
(define-struct EXEC (args)) ;; <val... > I—iproc 
(define-struct ARG (env exp)) ;;<env * exp> I—>val... 
(define-struct CONS (vals)) ;; <val... > I ival 
;;; continuations :: frm... 
(define (push f k) 

(cons f k)) 

(define ((pop end step) k) 
(if (null? k) 

(end) 
(step (car k) (cdr k)))) 

Figure 4: P R O C Small-step (CPS) Semantics — Continuations 

they serve only to bridge the gap between the big-step and small-step systems. 
Some formalisms avoid this work by silently introducing products or tuple 

values. Then a polyadic procedure actually accepts a single tuple argument, and 
explodes the tuple before evaluation of the body. Similarly, procedure applica
tions would contain a hidden tupling action; paralleling our CONS continuation 
behaviour. 

Formal, lambda-calculus approaches eliminate the auxiliary continuations by 
currying procedures and replace polyadic applications with multiple applications. 
This simplifies the underlying formalism, allowing development of the soundness 
proofs of the CPS transformation; Thielecke [159] provides the details. 

For our restricted procedural language, the full power of the A-calculus is 
not required. Indeed, in the A-calculus, the TEST continuation is unnecessary 
as well. A simple syntactic transformation makes the consequent clauses into 
thunks (parameterless closures [47]). True and False become binary procedures 
that simply apply one or the other thunk. In summary, we characterize ARG, 
CONS, and TEST as auxiliary continuations3. 

3. These should not be confused with serious and trivial continuations [135; 137], nor with 
administrative continuations [73]. Serious continuations are ones which may not terminate, 
i.e. they may lead to recursion or other indefinite stack growth. Procedure application contin
uations are serious. Trivial continuations are ones which perform some trivial (i.e. known to 
terminate) operation on the values at hand, and then call their continuation. Administrative 

10 



2. A M O D E L FOR D J P S , P C S , AND A D V I C E PROC - Continuation Semantics 

The defunctionalized CPS definition of our interpreter is given in Figure 5. 
Our construction is standard, except in three respects. First, we extend 

Agere's construction to explicitly linearize the continuation. In Agere's construc
tion, each continuation structure, representing a suspended operation awaiting 
the value of some expression, would contain the rest of the continuation as a field. 
Only a halt continuation would not have this, as it has nowhere to continue to. 

In our construction, we represent the entire continuation as a list of frames. A 
frame is a single element in the list representation of the continuation; it indicates 
the immediate action when this continuation is activated. The remainder of the 
continuation is in the tail of the list. 

• push :: frm * frm... —> frm... — extends an existing continuation with 
another frame. 

• pop :: ((—+ unit) * ((frm * frm...) —> unit)) —> frm...—> unit — takes a 

continuation, and either 

- applies the first procedure (end) because the continuation is empty, or 

— applies the second procedure (step) to the top continuation frame and 
the rest of the continuation. 

In our case, the halt continuation is represented by the empty list. 
Second, our implementation lifts primitives from the direct interpreter to take 

the existing continuation as an additional argument. This allows us to provide 
flow control operations, such as Felleisen's abort [61; 63], as primitives. This is 
seen in Figure 6. 

Third, our implementation distinguishes the lookup of procedures into a sep
arate continuation, EXEC. Ordinarily, we would require only one continuation, 
CALL, to await the evaluation of the operands into argument values. That single 
continuation would be responsible for locating the desired procedure and initiat
ing the evaluation of it's body-expression with the desired bindings. 

Examining the direct semantics closely, we can see that there are two let 
expressions present in the case of an APP expression. Other one-step [50] and 

continuations are those which can be automatically reduced during the CPS transformation. For 
example, translating a let into a procedure application yields an administrative continuation 
where the closure is immediately applied; the continuation that performs the application can be 
administratively reduced. This leads to A-normal forms, the subject of Flanagan et al. [73]. 

11 



2. A M O D E L FOR D J P S , P C S , AND A D V I C E PROC - Continuation Semantics 

;;; values :: integers, booleans 

;;; evaluator 
(define (eval x r k) 

(co'nd [(LIT? x) (apply (LIT-val x) k)} 
[(VAR? x) (apply (lookup r (VAR-id x)) k)} 
[(IFX? x) (eval (IFX-test x) 

r 
(push (make-TEST r IFX-then IFX-else) k))] 

[(APP? x) (evlis (APP-rands x) 
r 
(push (make-CALL (APP-id x)) k))})) 

(define (evlis xs r k) 
(if (null? xs) 

(apply '() k) 
(evlis (cdr xs) 

r 
(push (make-ARG r (car xs)) k)))) 

(define ((step/prim v) f k) 
(cond [(TEST? /) (eval ((if v TEST-then TEST-else) f) 

(TEST-env f) 
k)] 

[(CALL? f) (apply (lookup-proc/prim (CALL-id x)) 
(push (make-EXEC v) k))} 

[(EXEC? /) (cond [(PROC? v) (eval (PROC-body v) 
(bind (PROC-ids v) 

(EXEC-args f) 
empty) 

k)} 
;; primitives now take args and cont 
[(procedure? v) (apply (v (EXEC-args f) k))})} 

[(ARG? f) (eval (ARG-exp f) (ARG-env f) 
(push (make-CONS v) k))] 

[(CONS? f) (apply (cons v (CONS-vals /)) k)})) 

(define (halt v) 
(display v) (newline)) 

(define (apply/prim v k) 
((pop (halt v) 

(step/prim v)) 

*)) 
(define apply apply/prim) 

Figure 5: P R O C Small-step (CPs) Semantics — Evaluator 12 



2. A M O D E L FOR D J P S , PCs, AND A D V I C E Exposing Our AOP Constructs 

;;; primitives 
(define ((lift p) vs k) 

(apply (p vs) k)) 1 

;;; lifted primitives 
(define *procs* '([+ . ,(lift (A (vs) (+ (car vs) (cadr vs))))] 

[display . ,(lift (A (vs) (display (car vs)) 0))] 
[newline . ,(lift (A (vs) (newline) 0))] 
[abort . ,(A (vs k) (apply (car vs) '()))])) 

(define (run s) 
(let ([g (parse-prog s)]) 

(set! *procs* (cons (PROG-decls g) *procs*)) 
(eval (PROG-body g) empty))) 

Figure 6: P R O C Small-step (CPS) Semantics — Primitives 

A-normal [73; 140] transformations optimize portions of this transformation, usu
ally the inner let. Our more naive approach allows us to expose the two separate 
operations, which will be valuable as we extend the system to incorporate dy
namic join points, pointcuts, and advice. 

2.3 Exposing Our A O P Constructs 

With these preliminaries, we are prepared to expose dynamic join points in PROC, 

and provide syntax to denote pointcuts and advice. We need to describe three 
items: 

1. dynamic join points — "principled points in the execution" [94]. These 
will be states in the interpreter where values are applied to non-auxiliary 
continuation frames. 

2. pointcuts — "a means of identifying join points"4. These will be syntax 
for predicates over the value and continuation frame content. 

3. advice — "a means of affecting the semantics at those join points"5. This is 
implemented as the advice body as a procedure applied to the continuation 
frame. 

4. ibid 
5. ibid 
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2. A M O D E L F O R D J P S , P C S , A N D A D V I C E Exposing Our AOP Constructs 

Dynamic Join Points 

Dynamic join points are the first abstraction in our model. Other semantic 
models provide a list of dynamic join points separately. For us, join points are 
activations of certain continuation frames. Recall that we introduced additional 
auxiliary frames to support our eager, left-to-right evaluation order in the C P S 
semantics. Therefore, we adopt the following principle: 

Principle. A dynamic join point is modeled as a state in the interpreter where 
values are applied to a non-auxiliary continuation. 

Therefore, we have two frames corresponding to dynamic join points: 

• CALL (id \r -^val...) — consumes a list of values and emits an EXEC 
continuation frame with the identifier of the procedure to execute, 

• EXEC (val... I <proc) — consumes a procedure and evaluates its body 
with identifiers bound to the stored values. 

The type signatures indicate the type of the information stored in the contin
uation frame before the turnstile (h) and the type of the expected value to be 
consumed by the continuation after the ->. Jouvelot and Gifford [86] and Murthy 
[122] originated the use of -> types; Thielecke [159] explores this in detail. 

Therefore, our dynamic join points are simply the activation of either of these 
continuation frames. In each dynamic join point has two items available: 

1. a procedure, either by name (in the case of CALL) or as an actual structure 
(in the case of EXEC), 

2. a list of values corresponding to the arguments to the procedure. 

In our model, dynamic join points make accessible the latent control struc
ture of the language semantics. Dynamic join points correspond to continuation 
frames, and are modeled by states within the interpreter. If the semantics of 
the language change, through the addition of new constructs or a change in the 
semantic equations such as explicitly partially-evaluating some terms, the set of 
dynamic join points would be expected to change. 

Our dynamic join points systematically align with points in the model that 
are well-accepted as being semantically meaningful. Our principle defines this 
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;;; natural pointcuts 
(define-struct CALLPC (pname anames)) ;<id id... > 
(define-struct EXECPC (pname anames)) ;<id id... > 

;;; combinational pointcut 
(define-struct ORPC (pel pc2)) ;<pc pc> 

Figure 7: PROC Pointcuts — Abstract Syntax 

systematic alignment. In other models, some have framed dynamic join points 
as program rewrite points [11; 139]. Other accounts have dynamic join points 
appear as an ad-hoc list, including in our earlier work [169]. 

Pointcuts 

The second abstraction we must add to our model is pointcuts. Pointcuts are 
syntax that provide a means to identify our dynamic join points. We have a 
pointcut for identifying call dynamic join points, and another for identifying exec 
dynamic join points. We adopt the following syntax for pointcuts. It contains 
two structures, one for each kind of dynamic join point. 

We have chosen a direct pointcut syntax, where the procedure name and 
the argument names are given directly in the pointcut. In the next section, 
we will use the argument names to offer access to the arguments in the advice. 
The semantics of a pointcut is to examine whether the current interpreter state 
matches the identified continuation frame - both in kind and content - and the 
current value. This is seen in Figure 8. 

In the case of a CALLPC pointcut, we ensure that the frame is a CALL 
frame, and that it holds a procedure name equal to the one given in the pointcut. 
For a EXECPC pointcut, we ensure that the frame is an EXEC frame and that 
the supplied value is a procedure whose name is equal to the one given in the 
pointcut. 

We also include one combinational pointcut. It is ORPC, which matches any 
dynamic join point which matches the first subpointcut; or, failing that, matches 
the second subpointcut. This allows us to abstract a concern that cuts across 
multiple procedures. For example, one might consider two display! procedures, 
each with a different output format, to be a single display concern. 

15 



2. A M O D E L F O R D J P s , P C s , A N D A D V I C E Exposing Our A O P Constructs 

;;; pointcut matching - returns #f or ids 
(define ((match-pc p) v f) 

(cond [(CALLPC? p) (and (CALL? f) 
(string^? (CALLPC-pname p) 

(CALL-id /)) 
(CALLPC-ids p))} 

[(EXECPC? p) (and (EXEC? f) 
(eq? v (lookup/proc (EXECPC-pname p))) 
(EXECPC-ids p))} 

[(ORPC? p) (or ((match-pc (ORPC-pl p)) v f) 
((match-pc (ORPC-p2 p)) v '/))))) 

Figure 8: P R O C Pointcuts — Implementation 

This combinational pointcut provides a simple specialization ordering to point-

cuts; and, by extension, advice. A n y given pointcut, A, is more specialized than 

ORPC(k B) for any distinct B pointcut. Pointcuts do not have a unique total 

ordering, only a partial order. They can be totally ordered using the standard 

topological sort. B y extension, advice can be ordered by this total pointcut order. 

If a pointcut matches the top continuation frame, the list of identifiers from 

the pointcut is returned. If a match is not found, # f (Scheme false) is returned. 

In our implementation, matching against an ORPC pointcut yields the identifiers 

for the matching sub-pointcut. This means that each sub-pointcut must provide 

the same identifiers. 

One important property of pointcuts is that they identify dynamic join points, 

but do not alter their semantic behaviour. It provides a clear distinction among 

the roles assigned to each construct. This matches our intuit ion about pointcuts. 

For example, consider the case of advice which simply proceeds; there should be 

no effect regardless of what the pointcut attached to the advice body. The effect 

of a piece of advice should be determined by the advice body, not the pointcut. 

Principle. Pointcuts identify dynamic join points; they do not do not alter the 

semantic behaviour of the identified dynamic join points. 

This wi l l have repercussions when we consider the cflow pointcut found in As

pectJ and other languages. That pointcut is responsible for identifying dynamic 

join points that occur during the control flow of another dynamic join point. 
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r 

(define-struct ADVICE (pc body)) ;; <pointcut expression> 

Figure 9: PROC Advice Declaration - Abstract Syntax 

(BEFORE pc x) = (AROUND pc (SEQ x proceed)) 

(AFTER pc x) = (AROUND pc (APP foo (proceed))) 
with fresh helper procedure 

(foo . (PROC (v) (SEQ x v))) 
i 

Figure 10: PROC Before and After Advice 

In our model, pointcuts are first-order predicates for dynamic join points. In 
this general view, we are no different from other accounts of dynamic join points, 
pointcuts, and advice AOP. However, dynamic join points are continuation frames 
at which advice bodies are to. operate. Hence, we can view advice as extending 
and specializing the behaviour of control points in programs. 

Advice 

Now we come to the third feature of our model — advice. A piece of advice 
needs to specify a means of affecting the semantics at join points. Syntactically, 
it contains two parts: 

1. a pointcut — which indicates which dynamic join points are to be affected 

2. an advice body — an expression 

The new syntax element for advice declarations is given in Figure 9. Advice 
are declarations in our model, just like procedures. Therefore, they will have 
identifiers bound to them, just as procedures do. 

In our-system, all advice in our system is around advice. That is, it has 
control over, and alters the behaviour of, the underlying dynamic join point. Our 
advice may proceed that dynamic join point zero, one, or many times. This does 
not restrict the generality of our model, as common before and after advice are 
two possible orderings of the advice body and proceed, as shown in Figure 10. 
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Semantically, an advice resembles a procedure. The pointcut part identifies 
the affected dynamic join points, and provides binding names for the arguments 
of the dynamic join point. In our model, the advice body acts like a procedure 
body, but its locus of application differs. 

A procedure is usually applied to some values to yield another value. For 
example, the procedure pick in the following code: 

(define (pick x) (if x 1 2)) 

(+ (pick #t) 3) 
is applied to #t to yield a new value 1. Filinski [65] first recognized that pick 
transforms the continuation of the procedure application from 

(A (n) ; await number, add three, halt 
(+ n 3) 

to 
(A (b) ; await boolean 

(let ([n (if 6 12)]) ; select number 
((A (n) (+ n 3)) ; original continuation 
n))) ; given the selected number 

One way to discern this different mode of application is to consider the types 
of the elements involved. Jouvelot and Gifford [86] recognized that the type of the 
original continuation is -mumber (read as consumes number), and that applying 
pick has extended the continuation to consume a boolean (typed ->boolean). Pick 
has type boolean —• number when considered as a value transformer, and has type 
-•number —+ -̂ boolean as a continuation transformer. 

In Filinski's symmetric lambda calculus [65], procedures could be applied in 
either way: to values, yielding new values; or to continuations, yielding new 
continuations. In our model, advice provides this similar procedure application 
to continuations. We present our semantics in five parts - advice elaboration and 
matching, altered step/prim to support .advice execution, a new step/weave to 
weave advice into the execution of the program, advice invocation, and last, the 
proceed expression. 

First, we recognize that advice is a declaration; hence we need to elaborate 
the advice declarations, in the same trivial way we did for procedure declarations. 
This is displayed in Figure 11. 
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;;; advice elaboration 
(define * advice* #f) 

(define (run s) 
(let ([g (parse-prog s)]) 

(set! *procs* (cons (collect (X (d) 
(PROC? (cdr d))) 

(PROG-decls g)) 
*procs*)) 

; collect advice declarations 
(set! *adv* (collect (X (d) 

(ADVICE? (cdr d))) 
(PROG-decls g))) 

(eval (PROG-body g) empty))) 

;;; advice matching 
(define-struct MATCH (ids adv)) 

(define (collect-matches v f) 
(collect (X (a) 

(let ([ids (match-pc (ADVICE-pc a) v /)]) 
(if ids 

(make-MATCH ids a) 
#f))) 

* advice*)) 

Figure 11: P R O C Advice - Elaboration and Matching 

Matching is also shown in Figure 11. We simply walk the elaborated list of ad
vice, comparing the pointcuts and returning a MATCH containing the pointcut-
match identifiers and the advice itself. 

We need to have a new continuation frame to support advice execution. We 
also will end up needing a special marker frame to disable matching in the case 
that we have proceeded to the actual dynamic join point itself. These frames 
are called ADVEXEC and APPPRIM, shown in Figure 12. The extensions to 
step/prim are shown in that figure as well. For simplicity, we make the final 
element of the matches be a representation of the original dynamic join point: 
for a CALL dynamic join point we store the procedure name, for an EXEC 
dynamic join point we store the PROC or procedure. 
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;;; advice continuation frames 
(define-struct ADVEXEC (matches)) ;<match... | id | PROC | procedure> 
(define-struct APPPRIM ()) ;indicates call step/prim rather than step - administrative 

;;; step/prim contains original step 
(define ((step/prim v) f k) 

(cond ;.. . ;original content unchanged 
[(ADVEXEC? f) (invoke/adv (ADVEXEC-matches f) v k)} 
[(APPPRIM? /) (apply/prim v k)])) 

Figure 12: P R O C Advice - Frames 

Pointcuts not only provide parameters at the application site, but also auto
mate the application of advice to all matching dynamic join points. This universal 
application of advice extends the semantics of matching dynamic join points to 
contain additional behaviour. We need to implement a weaver that determines 
applicable advice at each dynamic join point. We implement step/weave and use 
it to re-define apply in our system. The implementation is shown in Figure 13. 

Execution of advice is displayed in Figure 14. This figure shows that advice 
invocation parallels that of procedure execution. 

A subtle difference is that advice can extend the behaviour of a join point, 
by calling proceed, a new expression in our P R O C language. It takes a set of 
arguments and passes them on to the next advice, or the underlying dynamic 
join point if all advice has been invoked. The syntax for proceed, as well as the 
extension of eval is given in Figure 15. 

In order for proceed to work, we need.to provide the remaining matched 
advice, and a representation of the original join point. This is done by binding a 
special variable, %proceed into the environment for the advice6. It contains the 
remaining advice, if any, and the original procedure name (in the case of a CALL 
dynamic join point), the original PROC or procedure (in the case of an EXEC 
dynamic join point). 

Recalling our principle that dynamic join points correspond to frame activa
tions, we recognize that our new frame, ADVEXEC defines a new set of dynamic 
join points that may be matched against. By construction, all of our declara-

6. Note that the shorthand expressions (Figure 3) must carry this additional variable into 
helper procedures if they contain proceed. This is a trivial operation. 
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1 

;;;step/weave weaves advice based on matches 
(define ((step/weave v) f k) ;; step with advice weaving 

(let ([ms (collect-matches v /)]) 
(if (null? ms) 

((step/prim v) f k) 
(invoke-adv (append ms ;more advice 

(cond [(CALL? f) (CALL-id /)] ;final proceed 
[(EXEC? f) v] 
[(ADVEXEC? /) (ADVEXEC-matches /))) 

(cond [(CALL? f) v] ; arguments to advice 
[(EXEC? f) (EXEC-args /)] 
[(ADVEXEC? f) v}) 

k)))) 
(define (apply/weave v k) 

((pop (halt v) 
(step/weave v)) 

k)) 

(define apply apply/weave) 

Figure 13: P R O C Advice - Weaving 

tions are bound to identifiers, advice declarations will also have names. Hence, 
we can easily provide an advice-execution dynamic join point, and its associated 
matching operation. By construction, all activations of ADVEXEC frames are 
processed by step/weave, so the weaving of additional behaviour is automatic. 
We simply need to have invoke/adv recognize that if the last element in the match 
is a list, then we are back to proceeding the original advice. The call structure 
that makes this so is: 

• apply calls step/weave 

• step/weave looks for matching advice 

- if there is none, step/prim provides the fundamental behaviour of the 
dynamic join point 

— if there is a match, invoke/adv is called to evaluate arguments and 
push an advice execution dynamic join point 
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;;; advice invocation 
(define (invoke/adv ms vs k) 

(let ([m (car ms)}) 
(cond [(symbol? m) (apply vs ;proceed to CALL 

(push (make-APPPRIM) 
(push (make-CALL m) 

*0))] 
[(PROC? m) (apply vs ;proceed to EXEC PROC 

(push (make-APPPRIM) 
(push (make-EXEC m) 

*)))] 
[(procedure? m) (apply vs ;proceed to EXEC prim 

(push (make-APPPRIM) 
(push (make-EXEC m) 

*)))] 
[(list? m) (apply vs ;proceed to ADVEXEC 

(push (make-APPPRIM) 
(push (make-ADVEXEC m) 

*)))] 

[(MATCH? m) (eval (ADVICE-body (MATCH-adv m)) 
(bind (cons '%proceed (MATCH-ids m)) 

(cons (cdr ms vals)) 
empty) 

k)\ 

Figure 14: P R O C Advice - Invocation 

;;; proceed expression 
(define-struct PROCEED (rands)) ;<exp... > 

(define (eval x r k) 
(cond ; . . . ;original cases unchanged 

[(PROCEED? x) (evlis (PROCEED-rands x) 
r 

(push (make-ADVEXEC (lookup '%proceed r)) 

*))])) 

Figure 15: P R O C Advice - Proceed 
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• proceed expressions call invoke/adv to extract the next advice or the final 

dynamic jo in point and initiate it's execution. 

In our model, an advice body provides new behaviour for each dynamic join 

point (control point) identified by the pointcut associated wi th that advice. This 

new behaviour extends the original because advice may contain additional pro

gram operations. This new behaviour specializes the original because the original 

behaviour is available through the proceed expression. 

2.4 Comparison to Other Semantics 

We compare our dynamic join point schema to those of other semantic models. 

The first two are semantic models developed as joint work between this author 

and others. 

A s p e c t S a n d b o x 

In joint work, Dutchyn et al. [56, 57] and Wand et al. [167], we developed a num

ber of semantic models of aspect-oriented programs, both for object-oriented and 

procedural languages. The culmination of that work, Wand et al. [169] provides a 

model of a first-order, mutually-recursive procedural programming language. In 

that semantic model, three kinds of dynamic join points were constructed ex ni-

hilo: pcall, pexecution, and aexecution. This work develops the principle behind 

the intuition of those three dynamic join point kinds. 

Our model also eliminates some of the irregularities in these other implemen

tations. For instance, because Wand et al. [169] implements a direct semantics, 

it maintains a separate stack of dynamic join points rather than relying on struc

tured continuations to do this. Further, it relies on thunks to delay execution of 

proceed; in our semantics, this arises from the continuation structure. 

We focus on the core semantic model for our system, therefore we have avoided 

the more extensive pointcut languages found in mainstream languages. We adopt 

conventions from early versions of AspectJ [93]. The current version of AspectJ 

provides a pointcut calculus with separate binding combinators (e.g., args, and 

target), as well as pattern matching and other features. We also avoid within, 

a pointcut that identifies dynamic join points based on lexical structure. In our 
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model, && provides no additional expressive power, so we do not include it. In 
summary, our'pointcut language provides a reasonable fit for our model approach. 

Another sort of pointcut is also part of the Aspect Sandbox: cflow. In some 
sense, it is the dynamic equivalent of within: it identifies dynamic join points 
which are within the control flow context of another dynamic join point. As this 
pointcut matches dynamic join points based on their dynamic context, it has sub
tle interaction with tail-call optimization. Furthermore, because it motivates the 
second part of the dissertation on effects, we defer its discussion until Section 3.2. 

Wand et al. [169] chooses to statically weave execution dynamic join points 
into the procedure declarations. In the case of multiple proceed calls, this can 
lead to code bloat, as the body of the procedure is replicated. They also need to 
ensure freshness of variables, as inserting a let around a proceed can cause acci
dental capture. Our implementation avoids this duplication of code and maintains 
existing lexical structures. 

A s p e c t S c h e m e 

Our model provides a straightforward way to implement dynamic join points, 
pointcuts, and advice languages. We attempted this with Scheme, yielding As
pectScheme. A semantic description of AspectScheme, based on our principle of 
dynamic join points as continuation frames, is given in the next chapter. 

This author contributed the semantic description of AspectScheme [58] and 
the online implementation [55]. AspectScheme models join points as procedure 
applications in the context of other in-progress procedure applications. It depends 
on novel continuation marks to express the structure of the continuation stack, 
and relies on macros to provide weaving whenever a procedure is applied. This is 
a practical solution for extending Scheme where continuations are available only 
as opaque procedures—their structure cannot be examined. This work simplifies 
the AspectScheme semantic presentation to recognize that continuation marks 
are not required, provided Ager et al. [5]'s defunctionalized continuation model 
is available. 

AspectScheme offers only a single kind of dynamic join point, a procedure 
application in the context of pending procedures. This corresponds to our EXEC 
dynamic join point, but with additional context. However, because dynamic join 
points are first-class objects, namely temporally ordered lists of procedures and 
arguments in AspectScheme, the programmer can extend the set of pointcuts by 
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w r i t i n g the i r o w n . T h i s expressiveness is p u t to g o o d use i n s h o w i n g p r a c t i c a l 

app l i ca t i ons of adv ice . 

T h e p u b l i s h e d A s p e c t S c h e m e language provides some o the r p o i n t c u t s , one of 

these is cflow (pc). T h i s w a l k s the contex t of p e n d i n g p rocedures to see i f the 

des i red one is encounte red . U n f o r t u n a t e l y , to suppo r t the e x p e c t e d semant ics , 

genera l t a i l - c a l l o p t i m i z a t i o n i n Scheme mus t be d i sca rded , as we w i l l see i n the 

nex t chapter . 

PolyAML and //ABC 

D a n t a s et a l . [41] p r o v i d e P o l y A M L , a p o l y m o r p h i c aspec t -o r ien ted p r o g r a m m i n g 

language. It is i m p l e m e n t e d i n two levels, a p o l y m o r p h i c surface syn t ax , w h i c h is 

t r ans l a t ed i n to a m o n o m o r p h i c d y n a m i c semant ics , FA- T h e i r focus is o n type-

check ing , a n d around aspects are i n c o m p a t i b l e w i t h t h a t goa l . T h e y c a n o n l y 

suppo r t o b l i v i o u s [70] aspects , w h i c h mus t be before a n d after only . A la ter 

pape r [42] solves the t y p i n g diff icul t ies w i t h around adv ice , u s i n g n o v e l l o c a l t y p e 

inference techniques . 

T h e i r m o n o m o r p h i c m a c h i n e is desc r ibed i n te rms of con tex t semant ics [4]. 

Br ie f ly , a con tex t is a n express ion w i t h a hole, w h i c h the cur ren t redex w i l l p l u g , 

once i t reduces to a va lue . T h e mach ine shifts in to deeper a n d deeper contexts 

u n t i l values c a n be d i r e c t l y c o m p u t e d , e i ther as l i te ra ls o r va r i ab l e references. 

O n c e a l l the holes are p lugged i n a redex, i t is r educed to a va lue a n d p lugged 

in to i t s p e n d i n g con tex t . D a n v y et a l . inves t iga ted the equiva lence be tween con 

tex t semant ics a n d c o n t i n u a t i o n semant ics . P o l y A M L ' s l a b e l m e t h o d for p ro 

v i d i n g aspects i n m o n o m o r p h i c con tex t semant ics appears to be equiva len t to 

A s p e c t S c h e m e ' s c o n t i n u a t i o n m a r k s i n a c o n t i n u a t i o n semant ics . 

It w o u l d be in t e r e s t i ng t o a t t e m p t to remove the labe ls f r o m t h e i r F A core 

ca lcu lus b y re i fy ing the a c t u a l c o n t i n u a t i o n s t ruc tures . W e expec t t ha t the p r i n 

c i p l e d set o f d y n a m i c j o i n po in t s w o u l d aga in become apparen t , r a the r t h a n 

i m p o s e d ex te rna l ly . 

B r u n s et a l . [20] prov ides an u n t y p e d core ca lcu lus for aspects . A s D a n t a s 

et a l . [41] note , t h i s core ca lcu lus s t r ong ly resembles the i r F A m o n o m o r p h i c con 

tex t semant ics . A g a i n , labels are used to annota te a con tex t a n d p r o v i d e an 

u n d e r s t a n d i n g of d y n a m i c j o i n po in t s . T h e y suppo r t f u l l around adv ice , bu t 

make no a t t e m p t to s u p p l y s t a t i c t ype check ing or inference. 
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Other Related Work 

Several other semantic formulations for aspects have been offered. 
Douence et al. [53] considers dynamic join points as events, and provides 

oblivious aspects. This is done by providing a custom sequencing monad that 
recognizes computations, and wraps them with the additional behaviour of the 
advice. Unfortunately, this is insufficient to allow around advice to alter the 
parameters of the wrapped computation. Only the option to proceed with the 
original arguments is available. 

Andrews [8] provides a process-calculus description of aspects. Oblivious 
aspects are provided. Constrained by encapsulated processes, full around aspects 
are not possible. • 

2.5 Summary 

In summary, our work provides a well-founded implementation of aspects with 
three key properties: 

1. Dynamic join points, pointcuts, and advice aspects are modeled directly in 
continuation semantics; without the need for labels or continuation marks, 

2. Principled dynamic join points arise naturally, as continuation frames, from 
describing programming languages in continuation semantics, and 

3. Advice acts as a procedure on these continuation frames, providing special
ized behaviour for them. 
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C H A P T E R O 

Advice in Higher Order Languages 

In this chapter, we apply our framework to Scheme, a higher-order language, 
making pointcuts and advice accessible to the programmer. We present the dy
namic semantics of this language, AspectScheme, in terms of a C E K S machine. 
This framework will enable us to make precise statements about properties of 
dynamic join point, pointcut, and advice languages. In particular, we will inves
tigate the cflow pointcut, including two different potential formal models. From 
this, we will recognize state, the computational effect inherent in this pointcut. 

3.1 AspectScheme Model 

The AspectScheme programming language is described in Dutchyn et al. [58]; the 
dynamic semantics given here draw heavily on that published presentation. One 
focus of the published presentation, scoping of dynamic join points, pointcuts, 
and advice aspects [54; 55], is not examined in detail here; but informs our 
understanding of the interactions of these kinds of AOP. 

We begin by laying out the semantics for a functional language which ex
presses dynamic join points, pointcuts, and advice. We first give a primer on 
the machine model which we use to define our operational semantics. Subse
quent sections then explain some key rules, including those for declaring these 
constructs, testing function equality, and applying functions. Last, we informally 
sketch the connection between the implementation, given in Appendix B and the 
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operational semantics. 

B a c k g r o u n d o n t h e C E K S m a c h i n e 

We use a variation on the C E K S machine [62] as the model for our semantics. 
We have three reasons for using the C E K S machine in defining our semantics. 

1. Pointcuts identify points in the computation; the structure of our defunc-
tionalized continuations give us this concrete representation. 

2. Because the machine uses an environment to maintain variables, we can 
easily add a second environment to keep track of aspects in scope. 

3. Programmers often use side-effects in writing useful aspects (e.g. logging, 
tracing, error reporting); hence, we include a model that contains an ab
stract store. 

The C E K S model defines program behavior by a transition relation from one 
program state to the next. Transitions that key on an expression correspond to 
eval clauses; and, transitions that key on a value correspond to apply clauses. 
We distinguish these transitions by differing arrows, 

r> for eval transitions and 

• for apply transitions. 

The C E K S machine adds two more pieces of information to the state of a 
computation. First, it pairs each control string with an environment that maps 
variable names to locations in an abstract store. Second, each state has an 
abstract store that maps locations to value-environment pairs. Formally, we 
represent the state of a computation with a triple of the following form: 

1. The control string (C) and its environment (E). 

2. The current continuation (K). 

3. The current store (5). 

In order to use a C E K S machine, we must describe how to initiate a com
putation, and to recognize when it has terminated. Given a program, a closed 
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1 1 

(((o Mx ...Mn),E),K,S) 
> p n m {(Mi,E), (op-k o,(),((M2,E),...,(Mn,E)),K),S) 

(VCm, (op-k o, (VOn_i,. . . , Vd), {MCm+u MCn),K),S) 
• p r i m (MQn+l, (Op-k 0, (VCm, • • • , W7l), ( M C m + 2 , . . . , MCn), K), S) 

(VCn, (op-k o, (VC^-i , . . . , Vd), (),K),S) •pw™ (<J(o, VCU VCn),K, S) 

Figure 16: C E K S Primitives Transitions 

top-level expression M, the machine is initialized with the triple: 

((M,£ 0 ) ,mt-k,So) 

where EQ = x H-> error is the initial environment that binds no variables, and 
So = £ >—> error is the initial store that binds no locations. The machine steps 
through transitions until a terminal state ((V, E),mt-k, S) is reached, whereupon 
V is the final value of the program. 

During the execution of the C E K S machine, various primitive operations must 
be performed. In our case, we provide a minimal sufficient set for manipulating 
the list values we support: empty?, cons, first, and rest. The transition rules are 
given in Figure 16. 

In this formal system, VC = (V, E) represents a closure of a value over an 
environment. Operands are evaluated left-to-right; with administrative continu
ation frame (op-k o, VC ..., MC ...,.) The 5 function receives the resulting value 
closures, and implements the actual primitives. Specifically, we define 5 in Fig
ure 17. 

D e c l a r i n g A d v i c e 

To declare advice, we use around and fluid-around expressions to expose the 

continuation structure of a functional programming language, 

(around pc adv body) 
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5{empty?, VC) (true.Eb) if VC = (empty, E) 
(false, EQ) otherwise 

6(cons, Vd, VCi) ((cons Vd VC2),E0) 

S(first, ((cons Vd VC2),E)) Vd 

5(rest, ((cons Vd VC2),E)) Vd 

Figure 17: C E K S Primitive Operations 

(fiuid-around pc adv body) 

We will first describe the semantics of around; the semantics of fluid-around 

is nearly identical. 
When the programmer declares an advice via around, the machine may 

later access the advice during function application. This situation resembles the 
use of variables: the programmer declares them with lambda or let, and later 
accesses them by variable references. Drawing on this analogy, we add a second 
environment to our machine—one for storing advice. The reduction rules for our 
model will be similar to those for the C E K S machine, except that closures now 
include both a variable environment and an advice environment. The template 
for a reduction rule now includes advice environments, Ai, in closures: 

where (C,E,A) is either a value closure (C — V) , abbreviated as VC, or an 
expression closure (C — M) , abbreviated as MC. We provide AQ = 0 as the 
initial, empty advice environment. 

The evaluation of around has three reduction rules, given in Figure 18. 

1. The first rule moves evaluation to the pointcut, M p c , while remembering 
that the declaration was for a s t a t i c advice. 

2. The second rule says that once the pointcut computes to a value (VCPC), 

evaluate the advice ( M C a d v ) next. 

«a , . E i , A i ) ) . K i ) S i > =» ((C2,E2,A2),K2,S2 
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(((around M p c M a d v M),E, A),K,S) 
>around ((Mpc,E, A), (aroundl-k static, (M a d v , E, A), (M, E, A),K),S) 

(VCpc, (aroundl-k scope, MC a d v , MC, K),S) 
*>around (MCadv, (around2-k scope, VCpc, MC,K),S) 

(VC^, (around2-k scope, VCpc, (M,E,A),K),S) 
^ around 

((M,E,AU {(scope, VCpc, VCadv)}),K,S) 

(((fluid-around Mpc M a d v M) ,E,A), K, S) 
>fluid-around ((Mpc,E,A), (aroundl-k dynamic, (M a d v ,E ,A) , (M, E, A),K), S) 

Figure 18: C E K S Around Transition Rules 

3. The third rule applies after both the pointcut and advice become values. 
The rule moves evaluation to the body of the around expression, but with 
an extended advice environment. We add the triple (scope, VCpc, VCadv) 
to the advice environment; that is, the scope tag (static for around), the 
pointcut value (VCpc), and the advice value (VCadv)-

To support fluid-around, we simply add a rule similar to the first one for 
around, except that its scope tag is dynamic. 

In short, the semantics of advice declaration say to evaluate the pointcut and 
advice, then add them (along with the appropriate scope tag) to the advice .envi
ronment when evaluating the body. The continuation frames (aroundl-kscope, VC, MC,) 
and (around2-k scope, VC,MC,) are administrative. 

Function Equality 

Next we.address the issue of function identity in a higher-order language. In 
AspectScheme, a pointcut can refer to one or more procedures; for example, 
the pointcut (call open-file) denotes dynamic join points representing calls to 
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the function open-file. Thus, at each function application, we must determine 
whether the function being applied is open-file. In a language like Java, this 
would be an easy test—we just use string equality to compare the name open-file 
with the name of the method being invoked. In a functional language, how
ever, two problems arise. First, the term in the function position need not be a 
variable name—it may be an arbitrary expression that evaluates to a function. 
Second, even if the function is the variable open-file, we cannot tell by its name 
whether this was the open-file in scope when the advice was defined. Consider 

the following expression: 
(let ({open-file (A (/) ...)]) 

(around (call open-file) trace-advice 

(let ([open-file (A (/) ...)]) 
(open-file "Vancouver")) ) ) 

In this example, should the call to open-file invoke the advice body? The answer 
is no—because the open-file in the pointcut really refers to the outer open-file, 
while the function application refers to the inner open-file. 

To cope with this challenge of function equality, we will borrow the definition 
of equality used in Scheme [91]. The predicate eq? in Scheme can be used to 
compare functions. One interpretation of function e<??-ness is: 

Two function closures are equal if they have the same textual source 
location and their environments are identical. 

To capture this meaning, we assume that each lambda expression in the source 
program is labeled with a unique location identifier and each environment is 
labeled with a unique store location when it is constructed. In order to do this, 
we must extend our definition of environment to include a store location tag, 
E :: I) with Ea = (£Q, X t—> error) , and store to include the set of locations 
allocated to environments, S :: ({<?},£>-> VC) with SQ = ({lo},? error) where 
to is initially allocated to EQ. This construction is similar to that given for R5RS 
Scheme [91] in order to meet a minimal specification for eq?. 

Two function closures are then eq? if and only if both location identifiers are 
the same and both environment locations are equal. An additional case for the S 
function illustrates this definition, given in Figure 19. 

This definition does not identify all functions that are observationally equal, 
but it is a conservative approximation of that relation that is both useful and can 
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5(eq?, ((A (x) M)t, (£, e), A), ((A (x>) M>)t,, (£', e'), A')) 

= (true, E0,A0) if t = t' and £ = 

= (false, EQ, AQ) otherwise 

Figure 19: C E K S Equality Operation 

be computed in constant time. 

Primitive Function Application 

Our language has two constructs for function application: the default application 
rule, which injects advice into the computation, and a "primitive" application 
(named app/prim), which does not observe advice. As we saw earlier, we use 
app/prim mainly to model AspectJ's proceed calls from within the body of an 
advice. 

The semantics of app/prim are the same as that of application in the original 
C E K S machine, save for the question of how to handle the advice environment. 
With regular (variable) environments, we have two choices: 

1. We can use static scoping—we evaluate the body of the procedure using 
the environment from its definition site. 

2. We can use dynamic scoping—we evaluate the body of the procedure using 
the environment from its application site. 

Since we support simultaneous static and dynamic advice, we use some advice 
from both advice environments. Specifically, we evaluate the body of the function 
using static advice from the site of definition, and dynamic advice from the site 
of application. 

The evaluation of primitive application comprises three reduction rules, given 

in Figure 20. 

1. The first rule moves evaluation to the function position, Mf u n , and keeps 
track of the static advice from the aspect environment at the application 
site. 
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(((app/prim M f u n M a r g ) , E, A),K, S) 
>app/Prim ((M{un, E, A), (apppriml-k (Ma r g, E, A), A, K),S) 

(yCfun, (apppriml-k M C a r g , A a p p , K), S) 
• app/prim (MCarg, (appprim2-k VQun, A a p p , K), S) 

(VCarg, (appprim2-k ((A (x) M)t, E, A f u t l ) , A a p p , K),S, 

• app / prim 
((M, E', A'), K, S') 

where 
(E',S') = (E,S) + {x^ VCarg} 

A1 — A a p p | d y n a m i c U A f u n | s t a t i c 

Figure 20: C E K S Primitive Application Transitions 

2. The second rule moves evaluation to the argument position, once the func
tion is fully evaluated. 

3. The third rule performs the actual application. It moves evaluation to 
the body of the lambda expression, extends the environment and store to 
reflect the parameter binding, and combines the two advice environments 
as described above. 

To extend an environment and store with a variable and value, we use the 

following definition: 

((e,e),(L,s)) + {x~ VC} = ((ee,e[xr-.lv}),(Lu{ee},s[£v~ VC})} 

where £e,£v £ L U dom(S) 

where e[x i—> £] and s[£ i—> VC} employ the usual function extension. 
These reduction rules for primitive application only differ from the original 

C E K S machine in one respect: they create the appropriate advice environment 
before evaluating the body of the function. 
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i 

« ( M f u n Marg),E,A),K,S) 
>aPP ((M{un, E, A), (appl-k ( M a r g , E, A),E, A,K),S) 

(VQan, (appl-k M C a r g , E a p p , Aapp, K),S) 
*-aPP (MCaTg,(app2-k VCfun,Eapp,Aapp,K),S) 

i i 

Figure 21: C E K S Application Transitions 

R e g u l a r F u n c t i o n A p p l i c a t i o n 

Three transition rules dictate the evaluation of function application, given in 
Figure 21. The first two steps are standard, because we do not invoke advice until 
the function and its argument are evaluated. The first rule moves evaluation to 
the function position, remembering the advice environment from the application 
site. The second rule moves evaluation to the argument position. We now come 
to the heart of our semantics: the mechanism for invoking advice during function 
application. 

Three things must happen during advice invocation. First, we must generate 
a dynamic join point representing the application; second, we must test and apply 
any advice transforming the dynamic join point; and third, we must allow the 
transformed dynamic join point to execute. 

In our original publication of AspectScheme [58], dynamic join points were 
the application of a procedure to arguments. However, we also chose to adorn 
the dynamic join point with its context of pending procedure applications. In 
order to provide this context, we needed to provide a special continuation mark 
continuation frame to store each procedure while it was executing. This technique 
made cflow7 pointcuts more direct, but made Scheme's tail-call optimizations 
unsound. 

For many languages, tail-call optimization is permissible. For example, the 
Java programming language [78] explicitly supports tail optimization as discussed 
for the StackOverf lowException class. The C and C++ programming languages 

7. Recall that cflow pointcuts enable dynamic join points to be identified within the control-
context of another dynamic join point. 
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specifications are silent about tail call optimization, and several popular imple
mentations, including the G N U compiler suite include support for this feature. 
Therefore, presuming upon a semantics that omits tail-call optimization is unac
ceptable. 

In the presence of tail-call optimizations, a central theme of this chapter is 
to recognize that cflow has a control effect. Therefore, we consider two imple
mentations of dynamic join points. The first implementation corresponds to the 
original AspectScheme specification, where dynamic join points are given in con
text made available by continuation marks. In this first case, we identify the 
unsound optimizations mandated by the Scheme standard [91]. The second im
plementation relies on the aspect programmer to accumulate context. In this 
second case, we note that tail-call optimizations are sound, and recognize that a 
state effect is entailed. 

3.2 AspectScheme with Cflow 

The first step in applying advice is to generate dynamic join points. The definition 
of dynamic join points is given via the J[»J function, shown in Figure 23. It's 
purpose is to examine the defunctionalized continuation and extract the parts of 
interest. In this section, the parts of interest are procedure applications which are 
in-progress, along with the procedure being applied and the argument values at 
that application site. In order to retain the information about the pending calls, 
we extend the continuation with an additional frame to store the procedure and 
the arguments it is being applied to. When the body of the procedure completes, 
the result value is applied to the continuation-mark frame, which simply applies 
the result value to the next frame in sequence. This is formally expressed in 
Figure 22. 

This continuation-traversing implementation of J is given in Figure 23. 
The second step in applying advice is to match the advice pointcut against 

the dynamic join point and weave as appropriate. We do this for each advice in 
the advice environment, 

A = {(scope, pc%, adv1) \ i = 1,..., | A \}. 

This entails applying pc1 to the dynamic join point in context (jp*). If this returns 
false, we return the original (untransformed) procedure. Otherwise, the pointcut 
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I : 1 

(VCaig, (app2-k <(A(x) M)u E(un, A{un), Eapp, Aapp, K), S) 
• a p p ((M',E',Aapp),K',S') 
where 

M' = (app/prim W\\ Aapp \] arg) 

K' = <markapp-k ((A.(a:) M)t,E(un,A{un), VCaTg,K) 

(E',S') — (Eapp,S) 
+ {fun ^ ((A (x) M)u Ehm, A{un), arg »-> VCaig, jp* i -> J\K'\} 
+ {pJ .-> VCpci, advi >-> VCadvt | (scope, F C p c i , VCadvi) € A a p p } 

(VC, (markapp-k V C f u n , V C a r g , if), 5} (FC, K, S) 

Figure 22: C E K S Continuation Marking Application Rules 

J[mt-k] = (empty, E0, A0) 

J[(markapp-k VCfun, VCarg,K)j = ((cons (cons VQun, VCavg), JIK]),E0,A0) 
J{{...,K)} = JIKJ otherwise 

Figure 23: C E K S Dynamic Join Point Construction 1 

will have returned a list of context arguments. We apply the corresponding 
advice adv1 to the context arguments to yield a procedure transformer. That 
transformer is applied to the original function yield a new, advised function. 
The transformation, W, with base case of the original function, fun, is given in 
Figure 24. 

Notice the following points about W: 

1. If no advice exists, it simply returns the original function, which will be 
applied, using app/prim, to the argument. 

2. It applies each pointcut to the dynamic join point. 
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WIO} = fun 
W\i\ = (app/prim (A (/) (let ([a (app/prim pc{ jp*)}) 

(if a 
((app/prim adv1 f) a) 

/))) 
W\i-\\) for i > 0 

Figure 24: C E K S Advice Weaving 

3. If no pointcut holds, again it returns the original function. 

4. If some pointcuts hold, then it uses app/prim to apply the final trans
formed procedure to the original argument. Note that applications in the 
body of the transformed procedure may also invoke advice. 

Third, we take the procedure resulting from all applicable advice transforma
tions and app/prim it to the original argument, yielding a new expression for 
this function application: 

The third transition rule applies advice as described above, binding the var
ious variables for the function, fun, the argument, arg, dynamic join point, jp*, 
and all advice components (pc% and adv1) in the environment and store. Evalu
ation moves to the new M', carrying the dynamic advice environment A a p p for 
use within M', but the static advice environment remains available as part of the 
fun closure. 

Cflow and Optimizations 

With the entire pending call structure available through «/[•]], implementing the 
cflow pointcut is straightforward, as seen in Figure 25. The J dynamic join point 
constructor has supplied a list of the in-progress calls in the continuation. We 
simply traverse the list, looking for matches. 

Af' = (app/prim W\\ A a p p |] arg) 
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I : 1 

(define ((cflow pc) jp*) 
(and (not (empty? jp*)) 

(or (app/prim pc jp*) 
(app/prim (app/prim cflow pc) (rest jp*))))) 

i : 1 

Figure 25: C E K S Cflow Pointcut Implementation 

Our implementation has eliminated Scheme's tail-call optimizations. In the 
standard, Scheme implementations are required to be "properly tail-recursive", 
meaning that "an infinite number of active tail calls" must be supported [30; 91]. 
However, our implementation cannot do this because every active tail call accu
mulates additional continuation frames. Fortunately, we have no other option, 
because we must carry the additional continuation-mark frames; otherwise the 
behaviour of the program in Figure 26 is incorrect. We expect that program to 
print 

(4 1) (3 4) 
(3 4) (2 12) 
(2 12) (1 24) 

Without the context contained in the continuation-mark frames, each recursive 
call to fact is a tail call and the enclosing call is optimized off the continuation 
stack. Hence, with tail call optimization, we would get no printed output. Tail 
call optimization is unsound if dynamic join points include context. 

Because we (intentionally) destroy tail-call optimization, our approach suf
fers from a run-time penalty. Given that cflow and cflowbelow pointcuts can 
discriminate the number and order of calls, it is straightforward to see that this 
cannot be improved to full tail-call optimization. In languages like AspectJ (sans 
args except for the top-most dynamic join point), the entire range of interest
ing continuation-mark sequences is known in advance. In that case, a regular 
automaton can recognize the dynamic join points [144], and the actual continu
ation marks need only denote the current automaton state. Thus, phased imple
mentations like ajc [84], and abc [12], can restore tail-recursive optimizations for 
procedure calls which do not alter the automaton state; the process is similar to 
that described by Clemens and Felleisen [24; 25]. 

AspectScheme supports capturing arguments from cflow dynamic join points; 
therefore a regular automaton no longer suffices: a push-down automaton is 
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;; accumulator-style tail recursive factorial 
(define (fact n a) 

(if (zero? n) 
a 
(fact (- n 1) (* n a)))) 

(let ([(((adv proceed) nl al ) n a) 
(print (nl al) (list n a)) 
(newline) 
(app/prim proceed n a)]) 

(around (&& (&& (cflowbelow (call fact)) 
args) 

(&& (exec fact) args)) 
adv 

(fact 4 1))) 

Figure 26: Tail-recursive Factorial and Advice 

required. Now, there clearly is context building up and tail-call optimization is ' 
manifestly impossible in the general case. 

3.3 State Effects Cflow 
In this section, we pare our dynamic join point model back to that of Chapter 2. 
That is, we eliminate context from a dynamic join point and show that tail-call 
optimization is restored. Then, we show how to recover cflow constructs using 
state effects. Again, we examine the three steps for applying advice: 

1. generate the dynamic join point, 

2. match it to the pointcut, and 

3. apply the advice body as appropriate. 

The first step in applying advice is to generate dynamic join points. In this 
implementation, the dynamic join point does not carry context. Therefore, the 
continuation K does not need to be extended with a continuation mark. Also, 
the «/[•] function is considerably simpler, needing only to examine the closure in 
the top continuation frame, (app2-k ((A (x) M)t, E{un, Af u n), Eapp, A&pp, )and the 
applied value. This is illustrated in Figure 27. 
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i 1 

{VCaig, (a P P2-k ((A (x) M)t, E{un, A(un),Eapp, Aapp, K),S) 
• a p p ((M',E',Aapp),K,S') 
where 

M' = (app/prim W(| A a p p |] arg) 

(E', S') = (Eapp, S) 
+ {fun ' ^ ((A (x) M)u Eiun, A f u n ) , arg h-» I/C a r g, .-> J[(A (z) Af)t]} 
+ {pc* V C p c i , ariŵ  ^ 1/C a d v i | {scope, VCpci, VCadvi) £ A a p p } 

Figure 27: C E K S Application Rules 2 

4/1 = / 

Figure 28: C E K S Dynamic Join Point Construction 2 

It is important to note that the continuation stack is strictly smaller in this 
implementation of application, yielding the needed tail-call behaviour. 

The simpler implementation of J is given in Figure 28. It declares that a 
dynamic join point is only the current function to be applied. We no longer need 
to traverse each continuation frame to accumulate dynamic join point context. 

The second step in applying advice is to match the advice pointcut against 
thesdynamic join point and weave as appropriate. We do this for each advice in 
the advice environment, 

A = {{scope, pc1, adv1) | i = 1 , . . . , | A \}. 

This entails applying p& to the dynamic join point in context (jp). If this returns 
false, we return the original (untransformed) procedure. Otherwise, the pointcut 
will have returned a pair comprising the function and the argument. We apply 
the corresponding advice adv1 to these values to yield a procedure transformer. 
That transformer is applied to the original function yield a new, advised function. 
The transformation, W, with base case of the original function, fun, is given in 
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W{0j = fun 
Wlij = (app/prim (A (/) (if (app/prim pc1 jp) 

(app/prim adv1 f) 

/)) 

W\i - 11) f o r i > o 

Figure 29: C E K S Advice Weaving 2 

Figure 29. 
This weaver differs from the previous one only in that context arguments are 

no longer provided and applied as part of the transformation process. This is as 
expected, given that cflow is not available natively. 

The third step is to take the procedure resulting from all applicable advice 
transformations and app/prim it to the original argument, yielding a new ex
pression for this function application: 

M' = (app/prim W{\ A a p p |] arg) 

The third transition rule applies advice as described above, binding the var
ious variables for the function, fun, the argument, arg, dynamic join point, jp, 
and all advice components (pc1 and adv1) in the environment and store. Evalu
ation moves to the new M', carrying the dynamic advice environment Aapp for 
use within M', but the static advice environment remains available as part of the 
fun closure. 

Regenerating Cflow 

Now we turn our attention to providing the equivalent functionality that cflow 
gave us originally. We offer two distinct techniques for doing this, each embodied -
as a translation of cflow into this simpler AspectScheme dialect. By examining 
these translations, we will identify the control effect that cflow engenders. 

In this section, we consider a pointcut containing cflow. Without loss of 
generality, it is structured as (&& (cflow PCc) PC), where PC may be empty. 
Our model advice is given in Figure 30. 
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(around (&& {cflow PCC) PC) 
(A (argsc) 

(A UP) 
(A (args) 

body))) 

Figure 30: Cflow Model Advice 

(around PCc 
(A UPC) 

(X(argsc) 
(fluid-around PC 

(A ftp) 
(X(args) 

body)) 
(app/prim jpc argsc)))) 

Figure 31: Invalid Cflow Translation 

Cflow by Dynamic Advice Introduction 

One potential translation of cflow is given in Figure 31 . 
The idea behind this implementation is that a cflow pointcut specializes an 

advice so as to have different behaviour inside and outside a matching dynamic 
join point. Unfortunately, cflow only recognizes the closest enclosing dynamic 
join point. So, for a simple example: 

(define (cf-fwn x) 
(if (= x 0) 

(cf-fun (- x 1))) 
(fun)) 

(define (fun) (display 'fun)) 
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(around (&& (&& (cflow (call cf-fun)) 

(args)) 

(call fun)) 

(A(z) 
(A (jp) 

(A'(#;no-args) 
(display x) 

(app/prim jp)))) 

(cf-fun 1)) 

the displayed result will be 

0 1 fun 1 fun 

rather than 

0 fun 1 fun 

What has happened is that two advice are applied in the translated version, 
whereas only one is applied in the original AspectScheme semantics. In order 
for this to work, some sort of search cut operation for nesting related advice is 
required. The following, correct, translation captures this cut as a state effect. 

Cflow by Effects 

Masuhara et al. [114] identified another translation of the stack-crawling imple
mentation of cflow. In that paper, we used partial-evaluation to validate a model 
where each cflow pointcut is represented as a separate context stack. We show 
the AspectScheme variation of this in Figure 32. 

Our model accounts for this optimization. It recognizes that the behaviour 
is to restore tail-call optimizations by incorporating a side-effected stack and the 
necessary operations around each dynamic dynamic join point matching the cflow 
pointcut argument. 

In the original AspectScheme implementation, every procedure application 
needed to mark the continuation to ensure that the calling structure was available 
for cflow pointcuts to match against. In practice, however, only a subset of the 
procedure calls actually required this breaking of proper tail-recursion. In this 
translation, only those calls matching PCc have this improper tail recursion. 
Advice has altered their behaviour to incorporate additional behaviour, (set! stk 
(cdr stk)), which mutates a cell in the store. 

44 



3. A D V I C E I N H I G H E R O R D E R L A N G U A G E S State Effects Cflow 

(let ([stk'()}) 
([adv (X(jp) 

(X(args) 
(if (null? stk) 

(app/prim jp args) 
(let ([argsc (car stk)}) 

body))))}) 
(around PCc 

(A (jpc) 
(X (argsc) 

(set! stk (cons argsc stk)) 
(app/prim jpc argsc) 
(set! stk (cdr stk)))) 

(around PC2 

adv 

•••)))' 
i i 

Figure 32: Valid Cflow Translation 

This translation technique also clarifies one difficult situation for cflow iden
tified in our AspectScheme article [58]. 

(let (\f(X (g) 
(let ([ft (A() 1)]). 

(around (&& (call h) 
(cflow (call g))) 

(A(jp) 
(A() 
(+ i UP)))) 

W)))}) 
( / / ) ) 

The application of / to itself makes the cflow (call g) pointcut true. Therefore, 
the advice within / should be applied, requiring us to remember the calling con
text even in the absence of any advice at the time of the call to /. AspectScheme, 
as given in Section 3.2 maintains the entire calling context, and therefore does ap
ply the advice. The translated version would need the let ([stk ... ]) to be hoisted 
outside the call (/ /) making it explicit that it covers the entire expression. 
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3.4 Related Work 

Two groups have explored the idea of aspects in higher-order languages, specifi
cally the ML family [118]. 

One group has developed Aspectual CaML [115] which incorporates aspects 
for pointcuts and advice, and intertype declarations into the ML [118] fragment 
of Ocaml. They support similar dynamic join points to AspectScheme, as well 
as ones related to structure creation and matching. Although Ocaml is a higher-
order language, pointcuts and advice are not higher-order in their variant. They 
work from an expression-based (syntax-derived) understanding of aspects, and 
implement the weaver as compile-time rewriting. This differs from our work where 
we recognize the semantic foundations of A O P , built on structured continuations. 
They also omit the thorny issue of cflow, only providing the lexical version, 
within. They do tackle one challenging problem, that of inferring and statically 
checking types for aspects, which our latently-typed system ignores. 

The MiniAML system [165], discussed earlier, also provides a higher-order 
language with pointcuts and advice aspects. Their system translates a stripped-
down functional fragment of ML into a lower-level system, FA- In this target 
language, labeled evaluation contexts correspond to our marked continuations. 
Pointcuts are higher-order label matchers; advice inserts additional behaviour. 
However, they only support before and after advice. Hence, cflow and more gen
eral aspects are not included. This simplifies their static analysis, which focuses 
on type-inference and checking. Surprisingly, they comment that polymorphic 
around advice appears to be intractable. 

Both ML-based systems provide aspects for the expression-based core lan
guage, ignoring the modules and functors part of the standard. We also ignore 
modules for AspectScheme, because there is currently no standard. 

Another system, SteamLoom [18], provides facilities similar to our higher-
order pointcuts and advice. It is an extended Java virtual machine that supports 
dynamic aspect instantiation and execution. Our AspectScheme implementa
tion provides a similar facility by allowing pointcuts and advice to be passed as 
arguments, and installed dynamically. 
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3.5 Summary 
This concludes our dynamic semantics account of dynamic join points, point-
cut, and advice. In a first-order procedural framework, we moved from an 
expression-based understanding of dynamic join points, pointcuts, and advice, to 
a continuation-based understanding of these constructs. In doing so, our model 
supports a principle for dynamic join points, elevating them from "well-defined" 
points in an execution to "principled" points. This has enabled us to directly ex
pose well-founded dynamic join points, pointcuts, and adyice within a standard 
language, Scheme, and to identify and resolve issues regarding aspect scoping and 
tail-call optimization. 

Our investigation of optimizations has given us a glimpse of the next part 
the dissertation, where we try to understand the static semantics of dynamic join 
points, pointcuts, and advice A O P . In particular, our implementation of cflow 
identifies state as the fundamental effect that its advice must supply. 

47 



PART I I 
S t a t i c S e m a n t i c s 
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C H A P T E R 

Abstracting Pointcuts and Advice 
to Effects 

A value is, a computation does. 

Paul Blain Levy 

Call-By-Push-Value [104] ' 

In the preceding part of this dissertation, we have presented a novel dynamic 
semantic construction for dynamic joinpoints, pointcuts, and advice. Our goal in 
this part is to examine the corresponding static semantics. This examination is 
divided across two chapters. This chapter describes an effect analysis [125]8 for 
the P R O C language, especially the novelty of effect descriptions for pointcuts. The 
next chapter will apply these analyses to characterize the interaction of pointcuts 
and advice, and compare our results to similar work. 

Static Semantics Static semantic descriptions are focussed on providing an 
abstraction of program constructs, which can be applied to one of three main 
goals: 

optimize compilation — identify and validate compilation optimizations, such 
as code inlining, closure conversion, code motion, and dead-code elimina
tion; 

8. Also referred to as behaviour analysis. 

49 



4. A B S T R A C T I N G PCs A N D A D V I C E T O E F F E C T S Computational Effects 

optimize execution — identify and validate runtime optimizations, such as 
stack allocation instead of heap allocation of variables, and elimination of • 
dynamic type tests (especially in latently typed languages); 

validate intent — document, and validate programmer intent; including check
ing type annotations, and inferring types and computational effects. 

In this work we are focused on the third goal, for which the dynamic semantics 
presented in Chapter 2 is well suited. 

We will also restrict our attention to expressing computational effects rather 
than on type inference and checking. Type inference and checking of dynamic join 
points, pointcuts, and advice is certainly a fruitful endeavour; Walker et al. [165] 
and Dantas et al. [41, 42] have closely investigated this subject, and recently 
discovered sophisticated local and global type-inference algorithms that make 
inference work. Effect checking has not received the same attention in the research 
community. 

Furthermore, our novel semantic description highlights the understanding of 
dynamic join points as activations of continuation frames — constructs that have 
an effect as well as a type. Just as reasoning about continuations led to effect 
analysis (cf. Jouvelot and Gifford [86] and Sabry and Felleisen [141]), we believe 
pointcuts and advice naturally admit an effect-based description. In the next 
chapter, we examine the additional insight that develops from characterizing 
dynamic join points, pointcuts, and advice in terms of effects. 

4.1 Computational Effects 

Before we develop our effect analysis, it is instructive to briefly describe compu
tational effects. Below, we enumerate a number of fundamental computational 
effects which various researchers have identified and studied. Based on work be
ginning with Moggi [120] and continuing to recent work [143; 163; 164], we adopt 
the monadic taxonomy of effects. 

State — captured by monad Ta = a * v, the product type-constructor; where a 
is the original computation and v is a value containing the desired state. 

Exception — captured by monad Ta = a+e, the disjoint sum type-constructor; 
where a is the original computation and e represents exceptions. 
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Concurrency — captured by monad Ta = [a], the list type-constructor; pro
viding multiple a computations interleaved by bind and return. 

Nondeterminism — captured by the monad Ta = [a], the list type-constructor; 
providing multiple a computations executed in-order by bind and return. 

All of these effects correspond to a restricted subset of global program transfor
mations. The restriction is that the transformation can be abstracted into an 
execution monad (Ta, return, bind) as outlined in Wadler [160]. The essential 
idea of a monad is that return provides an effect-free computation, and bind 
sequences two computations so that their effects are ordered properly. 

Two or more effects can be combined in either simple or complex ways. For 
example, combining two state monads in the obvious way is isomorphic to pro
viding a single state monad where v is a pair. Input/output can also be modeled 
as a combination of two state monads, but with a stronger coupling: all output 
computations that appear before an input computation must be sequenced to 
complete before the input computation. This provides the expected interactive 
behaviour. 

Different effects can also be combined in different ways; and the order of com
bination can yield dramatic differences. For example, combining exceptions and 
state can yield two different behaviours. If exceptions wrap a stateful computa
tion (i.e. Ta = (a*s) + e), then an exception will drop state changes, resulting in 
transaction-like behaviour. Most imperative programming languages wrap state 
around exceptions (i.e. Ta = (a+e)*s), retaining state changes in the event of an 
exception. Exceptions and concurrency also combine in two different layerings. 
If concurrency wraps exceptions, then exceptions are isolated to each thread and 
do not impact the other threads. Alternately, exceptions wrapping concurrency 
supports an exception aborting all threads. 

Our P R O C language provides an effect model summarized as 

Ta = (([(a + e)] * sgi0bal) + eabort) * output 

State is global only. Exceptions do not reset global state nor output; and abort 
discards all execution but leaves output intact. 
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This is essentially the effect model of Java9, summarized as 

Ta = (([(a + e)] * s g i 0 bai ) + e a b 0 r t ) * output 

Exceptions are isolated to> individual threads. Global state is shared across all 
threads, but is not preserved if the entire system is aborted. Last, output is 
preserved even if the program is aborted. 

The goal of our effect analysis is to supply a report of the effects of procedures, 
pointcuts, and advice. From these reports, programmers may identify unexpected 
pointcut properties and unusual interactions between program code and advice. 

4.2 Effect Analysis for Proc 

First, we provide a basic behaviour analysis for P R O C , predicated on our contin
uation-based dynamic semantics. That system captures input/output, state, and 
sequencing provided respectively the read and display primitives, the get and set 
expressions, and the seq expression. Later, we extend it with additional effects, 
namely exceptions and threads, in order to provide a more robust set of effect 
descriptions. 

As we are working with continuations, we use a continuation-passing style 
intermediate language. This construction originated with with Appel [10], and 
was applied by Shivers [147] as the basis for control- and data-flow analysis in 
Scheme. Contemporaneously, Harrison [81] inaugurated procedure string to an
notate the abstract effects of procedures. Our effect string descriptions will be a 
variation of these procedure strings. 

Effect Strings for Procedures 

We begin by computing effect descriptions of procedures. We provide a straight
forward implementation of behaviour analysis. Continuations are abstracted into 
pureS, representing pure computations, bindS, representing sequencing of two 
potentially effect-ful expressions, and a variety of expression-specific abstract 
continuations. This unfolding operation relies on a standard codewalker, shown 
in Figure 33. 

9. Note that s i o c a i is provided indirectly; each thread-local variable exists as a Map data struc
ture, with values keyed by thread objects. 
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! 1 

(define (walk f x) 
(f (cond [(UtX? ic) x] 

[(varX? x) x] 
[(ifX? x) (make-ifX (walk f (ifX-test x)) 

(walk f (ifX-then x)) 
(walk f (ifX-else x)))] 

[(seqX? x) (make-seqX (map (X (x) (walk f x)) 
(seqX-exps x)))} 

[(letX? x) (make-letX (letX-ids x) 
(map (X (x) (walk f x)) 

(letX-rands X)) 
(walk f (letX-body x)))] 

[(getX? x) x\ 
[(setX? x) (make-setX (setX-id x) 

(walk f (setX-rand x)))] 
[(appX? x) (make-appX (appX-id x) 

(map (X(x) (walk f x)) 
(appX-rands x)))} 

[(pcdX? x) (make-pcdX (map (X (x) (walk f x)) 
(pcdX-rands x)))] 

[else (error 'parse "not an exp: "a" s')]))) 

Figure 33: Expression Codewalker 

;;; shadow frames - abstraction of continuations 
;; auxiliary shadow frames 
(define-struct pureS [val]) 
(define-struct bindS [1st 2nd}) 
(define-struct bind2S [1st 2nd 3rd}) 

;; join point shadow frames 
(define-struct getS [id}) 
(define-struct setS [id}) 
(define-struct callS [id}) ; includes exec 

;; for advice analysis 
(define-struct pcdS [rands})) 

Figure 34: Shadow Frames 
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(define (unfold x) 
(walk (A (x) 

(cond [(litX? x) (make-pureS)} 
[(varX? x) (make-pureS)} 
[(ifX? x) (make-bindS (ifX-test x) 

(make-bind2S (ifX-then x) 
(ifX-else x)))] 

[(seqX? x) (let loop ([exps (seqX-exps x)]) 
(cond [(null? exps) (make-pureS)} 

[(null? (cdr exps)) (car exps)] 
[else (make-bindS (car exps) 

(loop (cdr exps)))]))] 
[(letX? x) (foldr make-bindS 

(letX-body x) 
(letX-rands x))] 

[(getX? x) (make-getS (getX-id x))] 
[(setX? x) (make-bindS (setX-rand x)) 

(make-setS (setX-id x)))] 
[(appX? x) (foldr make-bindS 

(make-appC (appX-id x)) 
(appX-rands x))] 

[(pcdX? x) (foldr make-bindS 
(make-pcdC (pcdX-rands x)) 
(pcdX-rands x))] 

[else (error 'parse "not an exp: "a" s)])) 
x) 

Figure 35: Unfolding Expressions into CPS Form 

The unfold operation terminates, yielding a structure abstracting the se
quence of effect-ful operations comprising the expression. For procedure declara
tions, we abstract their procedure body expressions and compress this sequence 
into a procedure string [81]. Compression is done by walking the CPS intermediate 
language and accumulating the effects present. This yields a tuple 

(I,0,G,S) 

describing 
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I — input effect (read primitives), 

O — output effect (display and newline primitives), 

G — state access (getS abstract frames), 

S — state mutation (setS abstract frames). 

In the case of the latter two items, sets of globals that are read and mutated are 
kept. These sets are simple instances of regions; attributes of effects that detail 
limitations of effects. In this case, the region indicates the subset of the entire 
store. We will denote the effect string for a pure computation as 

3) = {#f,#f,0,0> 

Last, we combine the effects of procedure calls. We walk the C P S intermedi
ate form for each procedure declaration repeatedly, constructing more complete 
values for Ery by taking the union of the original procedure's tuple and each 
called procedure's tuple. This iterative process will terminate, because the effect 
combination is idempotent. 

Theorem. The translation to C P S intermediate form and the calculation of effect 
strings terminates. 

Proof Sketch: Translation strictly monotonically reduces the number of sub
expressions remaining. The process of iteratively combining effect strings strictly 
monotonically increases the number of procedure declarations subsumed into each 
procedure string. Since these are finite, termination is assured. 

Effect S t r ings for D y n a m i c J o i n P o i n t s 

We have kept all of this simple, because our attention is not on developing new 
effect analyses, but on dynamic join points, pointcuts, and advice. Therefore, 
within this framework, we extend the effect analysis to the three aspect-oriented 
constructs in our language, beginning with dynamic join points, shown in Table 1. 

Dynamic join points are not actually present in our C P S intermediate lan
guage; only their shadows are. Dynamic join point shadows are the static ab
straction of dynamic join points. These shadows appear as our abstract (shadow) 
frames in the C P S intermediate language. Auxiliary frames correspond to bindS 
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ED(i) . = Esfbody} 
where 

(i (proc ids body)) is a procedure declaration 

EsKpureS v...)\ = E0 

EslibindS X l x2)} = EsM + Eslx2} 
where 

(IuOuG1,S1) + (I2l02,G2,S2) 
= (h | / 2 , O i | 0 2 , G i U G 2 , S i U G 2 ) 

Esl(bind2S X l x2 x3)j = £ s | n ] + £, s [a ; 2 J + £ 5 [ x 3 J 

£ s [( f f e*Si)J = ( # f , # f , i , 0 ) 

£ s [ ( 5 e * S i)l = < # f , # f , 0 , O . 
£s|[(caHS 0 1 = 

Es[(ea:ecS t)] = EP(t) 

£ p ( r e a d p r i m ) = ( # t , # f , 0 , 0 ) 

£ p ( d i s p l a y p r i m ) = < # f , # t , 0 , 0 ) 

E p ( n e w l i j Q e p r i m ) = (# f ,# t , 0 ,0> 

•̂ p(iprim) = -Eo for other primitives 
Ep(iProc) = Eo(i) for user-declared procedures 

Figure 36: C P S Intermediate Language Effects 

Dynamic Join 
(loc ig) • (getF) 
(loc ig) • (setF val) 

(val ...) • (callF ip) 
(proc ip) • (execS val...) 

Table 1: Dynamic Join Points 

and bind2S abstract frames. The other frames that are activated at a dynamic 
join point are represented individually: 
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• getS - for getF dynamic join points 

• setS - for setF dynamic join points 

• callS - for callF and execF dynamic join points. 

The correspondence is shown in Table 2. 
In rare circumstances, a shadow may correspond to one dynamic join point; 

but, they usually abstract many dynamic join points. To see this, consider a 
recursive procedure call. The recursive call expression will be CPS-translated into 
a single callS shadow. At execution, each recursive call will generate a new callF 
continuation frame; activating each of these frames is a new dynamic join point. 

Dynamic join points in P R O C are get and set of global variables, or call and 
exec of procedures; reified as applications of values to the appropriate continu
ation frames. Each of these dynamic join points has a well-known effect given 
either as the state operation and associated region (in the case of getF and setF) 
or the effect computed for the procedure (in the case of callF and execF). There
fore, we can attach these effects to the shadows as well10. We will use these to 
determine an effect description of pointcuts. 

Effect Strings for Pointcuts 

Although pointcuts do not have effects, they identify dynamic join points which 
do have effects. In the case of pointcuts, we do not have a single procedure string 
representing the pointcut effect. Instead, because pointcuts may correspond to 
multiple dynamic join point shadows, we maintain a list of the effects correspond
ing to the shadows. Also, for use later in advice bodies, we also maintain a list 

Dynamic Join Point Shadow 
[he ig) • (getF) (getS ig) 
(loc ig) • (setF val) (setS ig) 

(val ...) • (callF ip) (callS ip) 
(proc ip) • (execS val...) (callS ip) 

Table 2: Dynamic Join Point Shadows 

10. Note that the effects associated with arguments to procedure calls and global sets are 
not included in the effect of the dynamic join point. This matches the behaviour of the CPS 
semantics, where evaluation of arguments is not part of the dynamic join point. 
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i ; ' 1 

Ecl(getCig)l = (EsKgetS i9)l$) 
EcKsetC ig »„)] = {EslisetS ig)l{iv}) 

EcKcallC ip i...)] = {EslicallS ip)}, {i...}) 
EcKexecC ipi...)J = {Esl{callS ip)j, {i...}) 

Ec\{notC pc)} = (JSb,0) 
Ed(orC pci pc2)j = ((^iU^ 2),Ai) 

where 
((EuAJ) = Edpcij 
((E2,A2)) = Ec{pc2\ 

Figure 37: Inferred Pointcut Effects 

of argument names from the pointcut. Therefore, the effect string for a pointcut 
is an ordered pair (E, V) where 

E — is a list of the original four-tuples (I, O, G, S), one for each matched point-
cut, 

V — is the list of variable names to be bound from the dynamic join point11 

Therefore, by examining dynamic join point shadows and the pointcut, we can 
associate effect descriptions with pointcuts, as displayed in Figure 37. 

P o i n t c u t E f f e c t R e p o r t s 

The first benefit of this effect analysis is now at hand. Our analysis allows us 
to report an effect description of pointcuts to the programmer - essentially a 
summarization of the effects expected at all the dynamic join points that match 
the pointcut. 

One would expect that often these dynamic join point effects would be con
sistent. Since pointcuts match multiple dynamic join points, and an advice ap
plies at all of those dynamic join points, it seems reasonable that the dynamic 

11. We assume well-formed programs, hence the variable names are consistent across sub-
pointcuts. 
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join point effects would be consistent. It appears unusual to have dramatically 
different behaviour among the dynamic join points identified by the pointcut. 
Furthermore, the effects of those dynamic join points would be expected to have 
similar effect annotations. For example, an advice designed to maintain consis
tency in a model-view-controller design would have pointcuts identifying changes 
to state variables in the model, and advice informing the view to update. The 
altered behaviour manifested by the advice must provide some new effect that 
suits all of the identified dynamic join points. 

For each pointcut, we summarize the following global properties: 

• whether all, some, or none of the sub-pointcuts' effect strings contain the 
input effect, 

• whether all, some, or none of the sub-pointcuts' effect strings contain the 
output effect, 

• the common region for state access effects — the global variables which are 
accessed in all sub-pointcuts, 

• the common region for state mutation effects — the global variables which 
are mutated in all sub-pointcuts. 

For each pointcut, we report 

• the region of state access effects, 

• the region of state mutation effects; 

excluding the common region in each case. One avenue of research which we have 
only begun to pursue is to compare across sub-pointcuts; leading to abstractions 
such as "each sub-pointcut accesses and mutates a region disjoint from the other 
sub-pointcuts." This would seem more useful in a language with more structure 
to the global variables; for example, one designed to force programs to obey 
a Law of Demeter [107; 108]. This is because our language has no concept of 
limited knowledge about other units; the address space is a single, flat, global 
store. With more structure to the global store, e.g. partitioning into individual 
objects, then well-founded disjoint regions would appear. Then we could apply 
the Law of Demeter to these. 

59 



4. A B S T R A C T I N G P C S A N D A D V I C E TO E F F E C T S Effect Analysis for PROC 

The report supplies the effect description for the pointcut and the effect de
scriptions for the various dynamic join point shadows. This contains enough 
information to highlight two unexpected situations: 

1. Inconsistent effects at different dynamic join point shadows: that is the 
dynamic join points separate into sets with substantially different effects. 
This may be a situation where the programmer has advised superfluous 
dynamic join points. 

2. Incomplete dynamic join point shadow sets: other dynamic join point shad
ows in the program may have the substantially the same effect, but are not 
identified by the pointcut. This may be a situation where the programmer 
has incorrectly omitted dynamic join points that ought to be advised. 

It is important to stress that this analysis is unique for providing effect de
scriptions for pointcuts alone. No previous research offers this abstraction of 
pointcuts. We will examine this in more detail when we apply the effect analysis 
and compare/contrast with others' work in the next chapter. 

E f f e c t S t r i n g s fo r A d v i c e B o d i e s 

We now turn our attention to determining the effect behaviour of advice bodies. 
An advice body is superficially similar to a procedure body; but, it contains 
an additional kind of abstract frame, pcdS for representing pcdF applications 
generated by proceed expressions. Therefore, in addition to composing effects 
at the dynamic join point, advice bodies permit the same dynamic join point to 
proceed 

• zero times, 

• once, 

• or more than once; 

and these proceed points can be conditional or unconditional. 
Our procedure string for advice bodies must recognize these unique capabil

ities. Hence, we provide two additional elements in the procedure string repre
senting the effect of the advice body: 

1. Nu — the number of unconditional proceed calls in the advice body, and 
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2. Nc — the number of contingent proceed calls in the advice body. 

These are simple counting operations implemented for the codewalker, shown in 
Figure 38. Conditional proceeds occur within the consequents of an ifX expres
sion; unconditional ones occur do not. If an ifX expression contains unconditional 
proceeds in both consequents, the minimum count will be carried forward as un
conditional proceeds for the entire expression. 

Our effect string for advice bodies is given by: 

Ealbody} = (I,0,G,S,Nu,Nc) 

where 

(I,0,G,S)=Eslbodyj 

The discrimination among number of proceeds is informative of the behaviour 
of the advice. 

• Only conditional proceeds suggests that the effects of the dynamic join 
point are being masked by the advice body. Other portions of the program 
code that rely on the effects caused by the dynamic join point may become 
inoperative. 

• A single unconditional proceed suggests that the advice body exists solely 
to compose additional effects at the dynamic join point. This causes the 
advice effects and the dynamic join point effects to be fused into a larger 
composed effect; these probably correspond to before or after advice in 
AspectJ. 

• Multiple proceeds indicates that dynamic join point effects are occurring 
multiple times; this is significant for dynamic join points with output or 
state mutation effects. 

The next chapter will utilize these reported values to characterize classes of point-
cut and advice interactions. 

Advice Effect Reports 

Now that we have effect strings for pointcuts and for advice bodies, we can 
inform the programmer about the interaction behaviour between the advice and 
the control flow points identified by the pointcut. 
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(define (sum-proceeds cl c2) 
(let-values ([(clu clc) cl] 

[(c2u c2c) c2]) 
(values (+ clu c2u) 

(+ clc c2c)))) 
(define (count-proceeds-helper x) 

(cond [(UtX? x) (values 0 0)] 
[(varX? x) (values 0 0)] 
[(ifX? x) (let-values ([(tu tc) (ifX-then x)] 

[(eu ec) (ifX-else x)]) 
(sum-proceeds (ifX-test x) 

(let ([n (min tu eu)]) 
(values n 

(max (+ (— tu n) tc) 
(+ (- eu n) ec))))))} 

[(seqX? x) (foldr sum-proceeds 
(values 0 0) 
(seqX-exps x))] 

[(letX? x) (foldr sum-proceeds 
(letX-body x) 
(letX-rands x))] 

[(getX? x) (values 0 0)] 
[(setX? x) (setX-rand x)] 
[(appX? x) (foldr sum-proceeds 

(values 0 0) 
(appX-rands x))\ 

[(pcdX? x) (foldr sum-proceeds 
(values 1 0) 
(pcdX-rands x))} 

[else (error 'count-proceeds "not an exp: " a " x)])) 

(define (count-proceeds x) 
(walk count-proceeds-helper x)) 

Figure 38: Proceed Counting 
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Our effect string for advice combines the pointcut and the advice body effect 
strings: 

EA{(advice pc body) = (IC,OC,GC,SC, VC,IB,OB,GB, SB,C) 

where 
Eclpcj = ((Ic,Oc,Gc,Sc),Vc) 

EB(bodyj = (IB,OB,GB,SB,NC,NU) 

C = (NC,NU,P) 

and 

(i (advice pc body)) is an advice declaration 

where P indicates whether all proceeds will be called with the original values 
from the dynamic join point. This latter item utilizes information from the point-
cut and the advice body. From the pointcut, we generate the list of identifiers 
just as in match-pc. In the advice body we check that the operands to each pcdS 
shadow are the same variables bound by the pointcut. 

This data-flow analysis is simple and conservative; we could sharpen it to 
recognize cases such as: 

• identical operand values returned by both branches of if, 

• operand values that are stored into a global and then accessed from that 
global variable without mutation,12 

• operand values that are rebound in a let and returned from that rebound 
variable, 

• operand values that are returned as the last expression of a seq, 

• application of procedures that would return the correct operand value un
changed, 

and other typical situations. For our purposes, a more sophisticated data-flow 
analysis serves only to obscure the fundamental property that we want to high
light: whether the dynamic join point would proceed with the same arguments. 

With this effect string, we answer the following questions: 

12. This case would be unsafe if concurrency is permitted. 
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1. How many times is the dynamic join point proceeded conditionally? 

2. How many times is the dynamic join point proceeded unconditionally? 

3. Are the arguments to any proceed changed from the original values bound 
by the pointcut at the dynamic join point? 

4. What is the overlap between the pointcut-common state-effect regions and 
the advice body state-effect regions? 

5. What advice-body state-effect regions are disjoint from the corresponding 
pointcut state-effect regions? 

The first two questions are answered directly from the advice body analysis. 
The remaining items result from combining properties of the pointcut and the 
advice body. The third question is answered by the previously noted data-flow 
analysis. The last two questions are answered by comparing the access and 
mutation regions for the pointcut and the advice body. If these are disjoint, then 
the advice interacts with the program in simple ways, as we will see in the next 
chapter. Alternately, if these regions have substantial overlap, then advice and 
dynamic join point effects are tangled together and may be difficult to reason 
about. 

4.3 Exceptions and Threads 

We extended the P R O C language with exceptions to provide additional effects for 
analysis. This implementation is straightforward in a C P S framework, and follows 
the standard literature [14]; see Figure 39. Exceptions are denoted by identifiers; 

(define-struct tryX [body id hdlr]) ; — TRY exp id exp 
(define-struct raiX [id)) ; — RAISE id 

(define-struct frkX [thr]) ; — FORK exp 

Figure 39: Expressions for Exceptions and Threads 

fork supplies a new empty continuation to the sub-expression. Concurrency is 
supplied by a round-robin scheduler and related code shown in Appendix C. 
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For our behaviour analysis, we need to extend the effect string to capture 
these additional effects. For exceptions, we add the following fields to the effect 
string: 

X — the set of exceptions that might escape from this construct 

Y — the set of exceptions that cannot escape from this construct 

Clearly the existing frame shadows leave this new field unchanged13; but the 
new try expression and raise expression add and remove the exception identifier 
from X, respectively. In addition, we keep track of the covered exceptions, Y to 
identify which exceptions may be masked. To support thread-based concurrency, 
we twin the effect string, so that it now contains duplicate fields for effects that 
appear in another thread (i.e. arise from sub-expression to fork). 

Our effect reports now encompass this additional information. 

• Pointcut reports now identify whether all, some, or none of the dynamic 
join points might throw some common or individual set of exceptions. 

• Advice reports now identify exceptions that can no longer escape; providing 
information about effect masking [86]. Similarly with state effects, we can 
report effect isolation, where state is related only to a particular advice; 
reducing the cognitive load for programmers. 

• Advice also reports effects that occur in the main and the secondary thread. 

Proceed interacts in interesting ways with fork. For example, in the following 
program the exception effect is pushed into a different thread which crashes with 

i ! : — : 1 
(((thrower proc () 

(throw checked)) 

(adv advise (call thrower ()) 
(fork (proceed ())))) 

(call thrower)) 

i . — 1 

an un-handled exception. 

13. Compressing the bindZS shadow simply merges the sets; our analysis does the same for 
both sub-effect strings. 
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When we were first exploring the feasibility of effect analyses for advice lan
guages, we hand-examined a number of test cases in AspectJ. We tried the cor
responding test case, where the advice does not annotate the checked exception 
in AspectJ. Surprisingly, it was not refused by the static type-checker, despite 
Java's static typing rules enforcing that all checked exceptions must be anno
tated. We discovered that AJDT 1.1.10 compiles to the Java virtual machine 
specification, which does not enforce exception annotations. Therefore, this pro
gram was not rejected by Java's static type-checking. Our principled semantic 
exploration of effects in dynamic join points, pointcuts, and advice languages has 
helped discover a subtle bug in a mainstream aspect language. 

The results of our effect analysis allow us to highlight advice with unexpected 
behavioural interactions, including the following: 

1. advice which push an exception into another thread, and out of the control 
flow of an exception handler, 

2. advice which introduce new un-handled exceptions into a control flow, 

3. advice which push state mutation into a new thread, allowing control flow 
to return before the expected update completes. 

4.4 Effect Analysis for AspectScheme 

Although this chapter uses P R O C as the model for applying behaviour analysis, 
our extended language, AspectScheme is also amenable to this kind of analysis. 
Here we discuss which parts are tractable. 

The problem of determining effects in Scheme is much more difficult than in 
our P R O C language. In particular, control flow analysis is difficult to formulate 
when procedures are first-class. Shivers [147, 148] shows how to braid data flow 
and control flow analyses together to provide a tractable and useful effect analysis 
for Scheme. That same analysis can be extended to AspectScheme by recognizing 
advice as higher-order procedures. 

Dynamic join points and pointcuts are more difficult to analyse in AspectScheme. 
Instead of simply providing a declarative language for identifying continuation 
structure, pointcuts in AspectScheme are higher-order user-defined procedures. 
They can inspect continuation marks as well as examine and mutate other pro
gram state. Hence the set of dynamic join points which a pointcut might iden-
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tify is not computable in general. If we restrict ourselves to applications of the 
system-provided, pure pointcuts, call, exec, and adv-exec, then.dynamic join 
point shadows are identifiable for AspectScheme. In this case, pointcuts support 
the same analysis that our model language, P R O C , does. 

Other imperative languages, such as C, Java, C++, etc. also include aliasing 
effects because values can be passed by reference (e.g. objects). Various existing 
data flow analyses [17; 125; 142] have been developed for these situations; and 
more research is continuing. Applying these is out-of-scope for this dissertation: 
it distracts us away from the static analysis of pointcuts and advice. 

4.5 Related Work 

Our effect analysis system draws heavily on three main sources: previous work 
on CPS-based program representations, previous work with effect analyses based 
on procedure strings, and the general body of types-and-effects analysis. 

Our work is distinguished by our exploitation of C P S . Our static semantics is a 
direct abstraction of our dynamic semantics - the C P S frames translate to shadow 
frames, and dynamic join points lead to dynamic join point shadows. This gives 
a firm foundation to our analysis, and serves to develop our understanding of 
dynamic join point shadows. 

Brooks et al. [19]; Steele [153] initiated the development of CPS-based compi
lation techniques, and introduced the first C P S intermediate language. Contem
poraneously, Wand and Friedman [166] also investigated the utility of C P S for 
compilation. Shivers [147] used this facility to show that control flow analysis 
in the C P S frame work was tractable and useful. From there, many additional 
papers applying this framework have been written [77; 133; 134]. Flanagan et al. 
[73] has reduced the C P S intermediate language to A-normal forms and shown 
that many of the original analyses carry over. Most recently, Might and Shivers 
have re-examined the C P S intermediate forms to solve the environment problem 
and provide more powerful inter-procedural optimizations. Sabry [140] offers 
A-normal forms which, as noted in Chapter 2, eliminate some of the dynamic 
join points that aspect-oriented programming wishes to identify. Doing behav
iour classification with a C P S intermediate language is novel; but it allows us 
to directly extend the analysis to support new control flow capabilities, such as 
threads and exceptions, that pointcuts and advice can manipulate. 
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Procedure string analysis was developed by Harrison [81]. His goal was to 
analyse Scheme programs, identifying inter-procedural optimizations and auto
mate code parallelization. Many of the interactions that reduce opportunities for 
concurrency are the ones which our reports endeavour to highlight. Might and 
Shivers [117] extend these procedure strings to frame strings, as they move into 
a C P S intermediate language. Loucassen [110] and related papers [86; 111; 116] 
explore the effect behaviour supported by continuations, and consider various op
timizations facilitated by this analysis. In particular, they developed the idea of 
effect masking, one of the obvious applications of dynamic join points, pointcuts, 
and advice. 

Nielson et al. [125] are the primary reference for types and effects analysis. 
They provide a variety of data-flow, control-flow, and effect analyses over a simple 
procedural language similar to our P R O C . The idea of regions for state effects is 
lifted directly from their model state analysis. These techniques are beginning to 
be applied to object-oriented languages; Skalka et al. [151] has recently provided 
a type-and-effect analysis for featherweight Java. A full Java language system is 
still unavailable. Lam et al. [99, 100] combine a number of pluggable analyses to 
provide control- and data-flow analyses, which they have applied to Java code. 

Effects, as the awkward squad [129], are explicit in languages such as Haskell [83], 

Therefore, they have encountered a wide variety of effects as monadic compu
tations [105; 131; 162]. The various combinations have been explored in this 
monadic framework by a number of researchers: Espinosa [60], Steele [154], King 
and Wadler [95], and Jones and Duponcheel [85]. But they all relate back to 
Moggi's continuation-backed monadic models [119; 120], as described in a nice 
series of papers [46; 66; 67; 68] and by Wadler [161]. We lifted our range of 
computational effects from these sources. 

Overall, our C P S intermediate language, and the abstraction to effects is a 
instantiation of Cousots' non-standard abstract interpretation framework of pro
gram analysis [32; 33; 34; 35; 36]. 

4.6 Summary 

In this chapter, we have described our effect analysis implementation for P R O C , 

supporting state and input/output effects, and an extended version that supports 
additional effects—exceptions and concurrency. By abstracting the C P S dynamic 
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semantics to a static CPS-based intermediate language we provide a natural de
velopment of dynamic join point shadows from the translation of continuation 
frames to shadow frames. 

Our static semantics focuses on the novel property of continuations: that they 
carry computational effects. We 

• characterize dynamic join point shadows by their input, output, state access 
and state mutation regions; 

• associate dynamic join point effects with pointcuts, yielding reports sum
marizing and contrasting these effects; 

• characterize advice bodies, reporting their input, output and state effects 
as well as repeated proceeding of dynamic join points 

• compare and contrast the effects of pointcuts and advice by reporting the 
overlap between regions for each part. 

Our effect analysis is conservative, losing precision compared to a collecting 
(execution) semantics. These include 

• we compress effect strings for entire procedures, losing details about effect 
sequencing; 

• we combine effect strings for both branches of a ifX, losing precision about 
path-dependent effects; 

• we over-estimate the number of proceeds in an advice body by assuming 
the maximum; 

• we partition concurrent effects into only two categories: this thread and all 
other threads. 

Some restrictions, such as compressing effect strings, are necessary to ensure ter
mination of our analysis." Others are mandated by working in a static framework 
where values which determine program flow are unavailable. 

Our analysis is also for a simple language. An implementation for a main

stream language should include: 

• input/output regions — represented by sets of channels or file handles; our 
language only has one input and output channel; ' 
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• data-flow analysis clarifying variable aliases — objects are a prime example 
of call-by-reference behaviour. 

There is potential for robust research into this area. Supporting these additional 
analyses does not provide fundamentally new capabilities for effect analysis of 
aspect-oriented constructs; just more precision. 

In the next chapter, we look closely at the reports generated by our effect 
analysis, and compare them with other A O P analyses. 
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Classifying Pointcut and Advice 
Interactions 

Pointcuts and advice admit a wide range of composition strategies, ranging from 
expected and acceptable to surprising and undesirable. For example, adding 
tracing operations to procedure calls, an output effect, seems clearly acceptable. 
Within a transactional context, this output behaviour would invalidate the all-
or-nothing property expected of transactions: a clearly unacceptable result. The 
effect reports of the previous chapter highlight effect properties of the program, 
informing the developer of the interaction behaviour of their program. 

These interactions appear in two situations: 

• simple interactions, where advice interacts with the program (advice on 
program), and 

• compound interactions, where more than one piece of advice applies at a 
dynamic join point (advice at advice). 

In this chapter, we provide a classification system of simple interactions based. 
on the components of the effect string. The classification proceeds along five axes: 

1. control interactions — five categories, 

2. data interactions — six categories, 
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3. input/output interactions — four categories, 

4. exception interactions — three categories, and 

5. concurrency interactions — three categories. 

We show that our classification is a refinement of another accepted classification 
system given by Rinard et al. [138] showing the value of our effect analysis. 

As shown in Rinard et al.,'effect characterization of aspects permits a clas
sification system for aspect-oriented programs written in AspectJ, a mainstream 
A O P language. In this chapter, we offer an extended classification system, built 
upon the behaviour analysis developed in Chapter 4, that 

• characterizes patterns of advice interaction, 

• automates recognition of these patterns, and 

• highlights for focused attention, those interactions with potentially sur
prising behaviour. 

The basis of our classification system consists of a number of pairwise effect 
combinations which offer specific interactions. Our work is a refinement of the 
categorization given by Rinard et al. to incorporate concurrency and exceptions. 
We consider control flow interactions, data interactions, exception interactions, 
and concurrency interactions. 

5.1 Simple Interactions 

Simple interactions occur when an advice defines a new behaviour at a dynamic 
join point. The interaction is between the advice body and the dynamic join 
point identified by the pointcut. The dynamic join point may arise within the 
main program expression, a procedure body, or an advice body. 

C o n t r o l F l o w Categor ies 

The classification system for direct interaction focuses on control flow elements 
that affect how and when the advised dynamic join point executes. We identify 
five distinct kinds of interaction based upon the proceed behaviour of the advice 
body. These are summarized in Table 3, where C is given as in Equation 1 on 
Page 63. 
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Coupling The advice body permits the dynamic join point to proceed, uncon
ditionally, exactly once, with the original arguments. This style of interaction, 
where the advice body couples the original behaviour of the dynamic join point, 
matches the application of before and after advice in languages such as AspectJ. 
Instrumentation aspects, such as tracing, monitoring, and subject-observer en
forcement fit into this category. 

Extension The advice body permits the dynamic join point to proceed, un
conditionally, exactly once, with (potentially) different arguments. This style of 
interaction, where the advice body extends the behaviour of the dynamic join 
point, matches the application of before and after advice in languages such as 
PolyAML. Safety aspects which offer defaults, such as move-limiting and clipping 
fit into this category. 

These two categories were originally captured by the single class, augmen
tation, by Rinard et al. 1 4 Our analysis more finely divides this category, based 
on whether arguments are passed unchanged through to the proceed expression. 
Both styles are present in existing A O P languages. 

Narrowing The advice body permits the dynamic join point to proceed, con
ditionally, exactly once. Because the dynamic join point behaviour is not always 
maintained, the advice body narrows the behaviour of the dynamic join point. 
Safety aspects which ensure security or consistency before allowing the dynamic 
join point to proceed fit into this category. 

Replacement The advice body never permits the dynamic join point to pro
ceed. Instead, the behaviour of the advice body replaces the behaviour of the 
dynamic join point. This category contains aspects to disable portions of a system 
without removing the program code. 

Repetition This catch-all category gathers advice bodies which repeat the dy
namic join point more than once in any combination. Rinard et al. termed this 
combination, but our designation seems more informative. Regardless, this con
trol flow interaction is one which merits programmer attention, as the effects 

14. Rinard et al. also requires that exceptions cannot be thrown by the advice; we examine 
that portion of the analysis later in this chapter. 
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corresponding to the dynamic join point occur more than once. The developer 
must verify that the repetition yields correct program behaviour. 

Our control flow analysis yields five disjoint categories of control flow interac
tions. Coupling is clearly the simplest interaction. Extension appears relatively 
simple, although pre- and post-conditions for the dynamic join point may require 
some additional analysis because dynamic join point arguments change. Nar
rowing interactions require analysis to understand the conditions placed by the 
advice on proceeding with the dynamic join point. Replacement is more complex 
to reason about - program invariants enforced by the dynamic join point now 
become the concern of the advice body. Repetition is the most complex inter
action: unless the dynamic join point is idempotent, repetition requires careful 
examination. 

C = (Nc, Nu, ^ > 
Interaction Rinard 

( o, 1, #t> coupling augmentation 

< o, 1, #0 extension augmentation 

( 1, 0, -> narrowing narrowing 
( o, 0, - ) replacement replacement 

- ) repetition combination 

Table 3: Control Flow Interactions 

Our categorization subsumes the four categories that Rinard et al. identifies, 
and provides a more precise distinction over the communication of dynamic join 
point arguments to single unconditional proceed advice. Rinard et al. provides 
one category: augmentation; we provide two: coupling for unchanged arguments 
(viz. before/after in AspectJ), and extension for modified arguments (viz. be
fore/after in PolyAML). By inspection of Table 3, it is clear that our categoriza
tion is complete: every control interaction has a place. 

5.2 Data Interaction Categories 

In this section, we enumerate a covering set of state-based interactions mediated 
by advice. We characterize them based upon the state descriptions of the advice, 

L 
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given in Equation 1 on Page 63. In this section, we use 

• A = G A U S A 

for all the global references recognized as accessed and mutated by the advice 
body effect analysis and 

for all the global references recognized as accessed and mutated by the pointcut 
effect analysis. Typically, mutation masks access, so the set of references mutated 
is treated as a subset of those accessed; i.e. A — GA, and P — Gp. Our list 
comprises six different possible interactions, ranging from no possible interaction 
to very closely coupled data interactions. Just as with control interactions, we 
maintain Rinard et al.'s nomenclature. 

Orthogonal This is where the access sets (and hence mutation sets) for the 
pointcut and advice body are disjoint. There is no communication between the 
pointcut and the advice body, other than through arguments. We say the dy
namic join point arid the advice are orthogonal. Coupling advice with orthogonal 
data interactions cannot influence the behaviour of the dynamic join point; al
lowing the programmer to understand the dynamic join point behaviour and the 
advice behaviour separately. 

Independent This is where the access sets may intersect, but the mutation 
sets remain disjoint. Although they can examine state of interest to each other, 
neither the pointcut nor the advice body affects the state of interest to the other. 
They are independent. Again, coupling advice with independent data interactions 

P = GpUSp 

Figure 40: Orthogonal Interaction 
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allows separate understanding of the dynamic join point behaviour and the advice 
behaviour. 

Figure 41: Independent Interaction 

Observation The pointcut mutation set overlaps with the advice body's ac
cess set. This means that the advice body can observe mutations made during 
execution of the dynamic join point. With coupling advice, the behaviour of the 
original dynamic join point remains unchanged; but, understanding the advice 
behaviour does depend on understanding the dynamic join point behaviour. 

Figure 42: Observation Interaction 

Actuation The advice mutation set overlaps with the pointcut's access set. 
This means that the dynamic join point(s) can observe mutations made by the 
advice body. In this case, we have a channel of communication from the advice to 
dynamic join point, where the advice can actuate the behaviour of the dynamic 
join point. With coupling advice, the behaviour of the advice can be understood 
alone; but, understanding the dynamic join point behaviour does depend on 
understanding the advice behaviour. 
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Figure 43: Actuation Interaction 

Influence This occurs when the advice actuates the dynamic join point(s), and 
the advice observes the dynamic join point(s). That is, each has influence over the 
other by mutating a value that is accessed by the other. Except for replacement 
advice, this data interaction requires an understanding of the advice and the 
dynamic join point in order to understand the composed behaviour. Curiously, 
Rinard et al. omit this kind of interaction altogether - there is no category in his 
taxonomy that accommodates it. 

Figure 44: Influence Interaction 

Interference This interaction occurs when the advice and the pointcut muta
tion sets overlap; that is, the dynamic join point and the advice body mutate the 
same field. This interaction requires both the dynamic join point behaviour and 
the advice behaviour to be understood and their sequencing to be understood. 

Our data interactions match nicely with Rinard et al.'s taxonomy. Five of 
ours are identical to theirs. In our analysis, we discovered an additional category, 
influence, that does not appear in their categorization. By inspection of Table 4, 
we see that our enumeration is complete. 

Rinard et al. introduces the concept of scopes, an abstraction of collections 
of global state. They attempt to identify these automatically by recognizing P 
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Figure 45: Interference Interaction 

A n P AnSp SAr\P SADSP Interaction Rinard 

0 •0 0 0 orthogonal orthogonal 
— 0 0 0 independent independent 
— — 0 0 observation observation 
— 0 — 0 actuation actuation 
— — — 0 influence NA 
— — — -|0 interference interference 

Table 4: Data Interactions 

and Sp sets for methods (dynamic join points). They also allow the programmer 
to supply an abstraction function that groups sets of state locations. Then, the 
data flow analysis treats any access and or mutation of a set element as involving 
the whole set. As this does not alter the interaction categories, we do not provide 
this automation. 

Input (Output) Interactions 

Input and output effects are informative when considered in concert with the con
trol effect categories. This is because input and output operations are essentially 
not idempotent. Reading from input is a destructive operation-the data read is 
no longer available on the input stream. Writing to output is usually treated as 
un-erasable.15 We examine four different categories of input (output) behaviour; 
the same analysis applies to input and output symmetrically. 

15. Certainly, in some buffered situations, input and output can be undone, but entails signif
icant effort on the part of the programmer. 
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IA(OA) / P ( O P ) Interaction 

#f #f neither 
#t #f advice only 
#f #t join point only 
#t #t both 

Table 5: Input (Output) Interactions 

Neither In this case, neither the advice nor the pointcut exhibit input (output) 
behaviour. The interaction is trivial, regardless of the control interaction. 

Advice only This interaction, where the advice body performs input (output), 
but the pointcut effect indicates no input (output), is relatively straightforward. 
As the dynamic join point performs no input (output) behaviour, understanding 
the effect of the advice entails understanding the input (output) behaviour of the 
advice body only. 

Dynamic join point only In this case, the pointcut effect description shows 
input (output) behaviour, but the advice does not. This means that understand
ing overall behaviour depends on whether the dynamic join point proceeds. If 
coupling (unconditional proceed with original arguments) occurs, then the behav
iour of the dynamic join point is preserved. Extension (unconditional proceed 
with altered arguments) requires examination of the altered arguments to verify 
correct program behaviour. Replacement ensures that the dynamic join points' 
input (output) operation does not occur. Narrowing is more complex, because 
the dynamic join points' input (output) operation may or may not occur — ex
amining the dynamic join points and the advice are important to verify program 
behaviour. Repetition is most complex: multiple input (output) operations will 
ensue as the dynamic join point is activated more than once. 

Both If both the pointcut effect annotation and the advice body annotation 
display input (output) effects, then all cases become complex. Replacement is 
probably the simplest control interaction, because the dynamic join point oper
ation is discarded. In all cases, understanding the interaction requires consider
ation of the dynamic join point and advice body code. 
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Rinard et al. do not perform input/output analysis in their classification sys
tem. Instead they treat the input/output state as a new abstract variable and 
group it with data-flow interactions. Our analysis is separate and provides more 
detail about input and output operations. As described in the previous chapter, 
our analysis could be sharpened to use sets of channels, rather than just boolean 
flags. This would lend precision to the effect region, and yield one more category, 
7/̂4 n Ip = 0, indicating that the two sets of channels are disjoint. 

E x c e p t i o n I n t e r a c t i o n s 

Our effect string with exceptions keeps track of the set of exceptions that might 
be thrown by procedures, pointcuts, and advice bodies. We also keep track of 
any exceptions that may be caught by catch blocks. This analysis allows us to 
recognize two anomalous situations, in addition to the usual normal exception 
propagation behaviour. 

Masking The advice effect catch set overlaps with the pointcut effect throwing 
set. In this case, the advice is said to mask the exception(s) in common. This 
situation is highlighted for the programmer, because it is important to ensure 
that the exceptional circumstance is handled correctly when compared to the 
original handler (which we do not locate). 

Injection If the advice effect throwing set is not a subset of the dynamic join 
point throwing set, then the advice is said to inject a new exception into the 
control flow. This situation is highlighted for the programmer because it is pos
sible that it is not handled at a higher level in the program. This would result in 
advice creating un-handled exception errors. 

Rinard et al. do not categorize exception behaviour, except to insist that aug
menting interactions must not throw exceptions. This may be a result of using 
AspectJ as the testbed for their system. In comparison to checked exceptions in 
Java, our injection analysis appears to add no additional value. The Java lan
guage expects all checked exceptions to be annotated and verified at compilation 
time. Unfortunately, the Java virtual machine specification does not encompass 
checked-exception annotations and verification. Therefore, aspects in AspectJ, 
when compiling to bytecode, can inject exceptions into program behaviour with-
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out the usual Java compilation warnings. This flexibility is valuable, but marks 
a strong distinction between Java and AspectJ. 

Concurrency Interactions 

Our concurrency analysis is simple. Our effect analysis yields a pair of effect 
strings, E = {Esync, -Easync), o n e describing the behaviour in the original thread 
(-Esync) and a second separate effect string that combines effects from forked 
threads (-Easync)- This separation allows us to recognize which effects will occur 
asynchronously. We recognize three categories of concurrency, by examining the 
the content of each effect string: 

Synchronous In the synchronous case, there are no effects visible in the £ a s y n c 

effect string. This is the most common case, and the simplest interaction to 
understand: the sequential ordering of the program is preserved and described 
by the kind of control interaction given for Esync. 

Mixed In this case, neither -E Sync nor E a sync are empty. This is the most 
complex interaction, and highlights to the programmer that the dynamic join 
points and the advice need to be examined. 

Asynchronous In the asynchronous case, there are no effects visible in the 
Esync effect string. This case is not as simple as the synchronous case, because 
we conservatively combined all spawned threads together. The programmer must 
carefully examine the code to understand the parallelism and potential race con
ditions. 

Our analysis does allow the programmer to identify the following example 
situations: 

1. an advice which pushes push an exception into another thread, and out 
of the control flow of an exception handler, these exceptions will never be 
caught by the original handler. 

2. an advice which pushes state mutation into a new thread: any.expectation 
of atomicity arising from default synchronous behaviour is unwarranted. 

3. an advice which pushes input or output into a new thread also waives any 
expectation of sequential behaviour. 
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The programmer can be directed to those advice bodies which are are highlighted 
as bringing asynchrony effects. 

Summary of Interactions 

To summarize, our effect analysis, developing as a natural static analysis from our 
continuation-based dynamic semantics, yields a classification system for aspect-
oriented programs. It is very similar to Rinard et al., but more precise and 
complete. 

1. It offers more precise control interaction categories, in particular, differen
tiating two components of Rinard's augmentation class into coupling and 
extension classes, 

2. It is complete with regard to data interaction categories, by including the 
influence class which is missing in Rinard's categorization, 

3. It characterizes exceptions and concurrency in a simple way, but highlights 
interactions that are omitted by Rinard, 

4. It has allowed us to identify an inconsistency between Java and AspectJ, 
where checked exceptions may be introduced by advice without triggering 
the usual Java errors. 

5.3 Compound Interactions 

Compound interactions occur when two (or more) advice compose at a single 
dynamic join point. To preserve deterministic behaviour, one advice must go 
first, and the next advice applies only when invoked when the first one proceeds. 
This is similar to applying advice at advice-execution dynamic join points. The 
overall effect of the two advice is to layer the effect of the dominant one over the 
subordinate one. 

Purely from a containment perspective, we report when multiple advice have 
common pointcuts, using whole-program analysis. That is, when two advice have 
an overlapping set of dynamic join points, we draw the programmer's attention to 
this. For example, in the following code, we indicate that advl2 and advlS affect 
the same dynamic join points, namely calls to pl. We draw the programmer's 
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(((pl proc () 1) 
(p2 proc () 2) 
(p3 proc 0 3) 

(advl advise (call pl ()) 
...) 

(advl2 advise (or (call pl ()) 
(call p2 ())) 

. . . ) 
(adv23 advise (or (call p2 ()) 

(call p3 '())) 
• • • ) ) 

•••) 

Figure 46: Multiple Advice at Dynamic Join Points 

attention to the fact that both advice apply; it remains her duty to ensure they 
work together. 

The significant consideration is that the order of application matters. Besides 
textual ordering, another natural order is to consider pointcuts as subsetting 
dynamic join points. In Figure 46, the set of dynamic join points matched by 
the advice advl is a subset of those matched by advl2. Therefore, advl can be 
considered as more-specific, since it affects a smaller set of dynamic join points. 
Nelson et al. [123] examined a variety of orderings for a simple bounded buffer 
system, and showed that most-specific to least-specific offers the best result - it 
maintained more liveness properties. AspectJ adopts this most- to least- spe
cific strategy. In some applications, this ordering does not provide the correct \ 
semantics; hence declare precedence (superseding the previous dominates 
construct) was added. 

This ordering is not generally computable; as the example in Figure 46 shows. 
Advice advl2 is neither more specific nor less specific than adv23. In this case, 
some other criterion must be used. During execution, lexical ordering is applied. 
The programmer may not anticipate this ambiguity; so the default ordering can 
be highlighted in the effect report. 

For these reasons, we simply supply the effect categorization, arid report the 
advice ordering and conflicts to the programmer. It remains their responsibility' 
to determine whether the layering provides the desired results. 
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(run '(([depth global] 

[f proc (x) (if (call = 0 x) 

(begin (call display (get depth)) 
1) 

(call * x (call f (call - x 1))))) 
[bef advise (exec f v) (begin (call display (get depth)) 

(set depth (call + (get depth) 1)) 
(proceed v))] 

[aft advise (exec f v) (let ([r (proceed v)]) 
(begin (call display (get depth)) 

(set depth (call - (get depth) 1)) 
r))D 

(begin (set d 0) 
(calif 5)))) 

Figure 47: Tracing Instrumentation 

5.4 Example Interactions and Reports 

Here, we provide the results of applying our analysis to four archetypical A O P 
programming situations. 

T r a c i n g 

The tracing aspect given in Section 2.4.2 of Laddad [98] instruments a given 
method call with before and after logging messages. We translate this to our 
extended P R O C language, yielding the code displayed in Figure 47. 

Our analysis of this instrumentation code shows that these advice have the 
following interaction behaviours. 

Each of the advice interact with the dynamic join point as 

• coupling - the arguments are passed through, unchanged, to the single 
unconditional proceed; 

• actuation - the fact procedure reads the depth global value, which is mu
tated by each advice, 

• advice output - the advice body provides additional output effects; 
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i — — i 

(run '(([minx global] 

[xpos global] 
[al advise (set xpos v) (if (call < v (get minx)) 

(raise outOfBounds) 
(proceed v))] 

[a2 advise (set minx v) (if (call < (get xpos) v) 
(raise outOfBounds) 
(proceed v))]) 

(begin (set minx 1) 
(set xpos 2) 
(set xpos 1) 
(set xpos 0)))) 

i '. 1 

Figure 48: Move Limiting 

• normal exceptions - no addition masking or injection of exceptions oc
curs; 

• synchronous - no effects are pushed into additional threads. 

Furthermore, each advice interacts with the other at the same dynamic join 
point with interference state effects, because each reads and writes the depth 
global. Our report indicates that the advice apply to the same dynamic join 
points, and so they conflict. This warns the programmer to review their ordering 
(which is lexical in our implementation). 

Move Limiting 

From Clifton and Leavens [28], we take the MoveLimiting aspect, where mutation 
of a state value is restricted to positive values by an aspect. Our translation is 
shown in Figure 48. 

Our analysis against bounds checking code shows that each advice has the 
following interaction behaviour: 

• coupling - the arguments are passed through, unchanged, to the single 
unconditional proceed; 
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(run '(([p proc (x) (if (call = 0 x) 
(raise zero) 
1)] 

[a advise (exec p v) (try (proceed v) 
catch zero (begin (call display 0) 

(raise exc)))]) 

(begin (call p 1) 
(call p 0)))) 

Figure 49: Exception Logging Instrumentation 

• orthogonal - there is no interaction regarding state variables; 

• none - the advice body provides no additional input/output behaviour; 

• injects exceptions - it injects a new exception into the flow control of the 
program, and the programmer should be notified to ensure that appropriate 
catch expressions are in place; 

• synchronous - no effects are pushed into additional threads. 

This advice ensures that xpos is never less than minx. There is no state interac
tion - minx is not referenced by set xpos expressions, and vice versa. However, 
there is notification to the programmer that a new exception is injected into the 
program. It becomes their responsibility to ensure the correct catch expressions 
are available. 

Exception Logging 

The exception logging advice given in Section 5.4.2 of Laddad [98] instruments an 
application with after advice that logs exceptions thrown from method invocation. 
We translate this to our extended P R O C language, yielding the code displayed in 
Figure 49. 

Our analysis against simple exception throwing code shows that this advice 
has the following interaction behaviour: 

• coupling - the arguments are passed through, unchanged, to the single 
unconditional proceed; 
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. . . 1 

(run '(([ret global] 

[p proc (x) (set ret x)] 

[a advise (exec p v) (fork (proceed v) 
0)]) 

(begin (set ret 0) 
(call p 1) 
(call (display (get ret))) 
(set ret 2))) 
(call p 0)))) 

Figure 50: Runnable With Return 

• orthogonal - neither reading nor writing of mutable references occurs in 
the advice body; 

• advice output - the advice body provides additional output effects; 

• normal exceptions - no addition masking or injection of exceptions oc
curs; 

• synchronous - no effects are pushed into additional threads. 

This advice couples the instrumentation code to exception propagation out of the 
named procedure. Our analysis shows that it can be reasoned about modularly, 
in isolation from the rest of the program. 

Runnable With Return 

Laddad [98] provides a number of examples where execution is deferred to an
other thread, using his RunnableWithReturn class. Here we provide a simple 
implementation of this for P R O C in Figure 50, and apply our effect analysis to it. 

The system reports the effect of the dynamic join point (execp x) as mutating 
the global variable ret. Although this is a simple example, that summary can 
alert the programmer that ret is also updated outside of p, as in the main body 
of the program. 

The key result from our analysis is to note that this code inserts an asyn
chronous effect into the program. In particular, setting the global ret via the 
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procedure p is asynchronous and can interfere with other uses of ret. The pro
grammer is notified of the potential race condition. 

With this understanding of the analysis and its use, we turn our attention to 
the sorts of analyses that others have recently proposed. 

5.5 Other Analyses and Related Work 

Other research groups have recognized the effect of advice on programming. 
Clifton and Leavens [27, 28] have provided another taxonomy of spectators, 
observers, and assistants. Katz [89]; Katz and Gil [90]; Sihman and Katz [149] 
has explored a third set of descriptions for understanding the effects of pointcuts 
and advice. Dantas and Walker [40] provide a type-and-effect characterization of 
harmless advice. 

Clifton et al. 

Clifton proposes two distinct kinds of advice interaction: based on the effect of the 
advice on the dynamic join point. They are called spectators and assistants. Here, 
we examine each of these, and place it as a subset of our interaction taxonomy. 

Spectators Spectators, originally termed observers, are aspects which do "not 
change the behaviour of any other module." Specifically, a spectator 

• may only mutate state that it owns (i.e. not accessed by other modules) 

• may mutate the program world state (i.e. perform input/output), 

• must not change the control flow to or from the dynamic join point, 

• must proceed exactly once, unconditionally and without changing argu
ments, 

• must not explicitly throw any checked exceptions, 

Therefore, spectators are aspects with coupling and observation interactions and 
with no exception or concurrency interactions. They are, by design, simple to rea
son about - the advice and the dynamic join point behaviour can be understood 
and implemented as separate modules. 
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Assistants Assistants are the catch-all for any other type of aspect; those that 
change the behaviour of the advised module. These interactions encompass all 
other kinds in our taxonomy. 

The goal of Clifton et al.'s work is to identify advice whose interactions are 
simple enough to be understood independently. They provide a static analysis for 
a substantial object-oriented language, including the necessary alias and pointer 
analysis, to ensure that spectators conform to the specification. They syntac
tically enforce coupling interaction by marking spectators as before, after, or 
surround to ensure the unconditional, single proceed with original arguments. 
Any other kind of advice is an assistant, and they insist that modules include 
explicit reference, an accepts declaration, for any permitted assistant. In this 
way, their system provides a measure of modular reasoning: either an advice is a 
spectator and has no impact on reasoning about any module, or it is an assistant 
and must be explicitly documented in the modules with which it interacts. 

Katz et al. 

Katz [89] together with Katz and Gil [90] have categorized aspects based on 
temporal properties. They identify three main categories of aspects: spectative, 
regulative, and invasive, based upon a sophisticated state graph model. In par
ticular, they characterize aspects as additive, in that they extend an underlying 
program - one without aspects. Here, we show how their categories are subsumed 
by our taxonomy. 

Spectative A spectative aspect "can change the values of variables local to the 
aspect, but does not change the value of any variable or the flow of method calls of 
the underlying system." This is directly characterizes as providing a refinement 
of the underlying state graph - inserting state nodes with effects not shared with 
the unadvised system. This description matches the coupling and observation 
interactions that we previously described. 

Katz [88] relaxes these restrictions to permit termination of execution as well. 
These are called weakly spectative. We do not have a specific category for this 
possibility; it seems to be narrowing or replacement, but with a very specific 
alternative operation. 
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Regulative A regulative aspect is a spectative aspect that is permitted to 
remove state graph edges without adding connections, and to repeat some states 
nodes. Removing state graph edges without adding connections corresponds with 
our narrowing and our replacement control interactions. Repeating a state note 
does not include multiple proceeds, because that adds additional connections. 
Furthermore, repeating a state node is permitted only when the repeated node 
does not alter the state other than that local to the aspect. So, regulative aspects 
must be observational. 

Invasive Invasive aspects are permitted to alter state graph of the underly
ing system in any way. This catch-all group contains the remaining interaction 
possibilities in our classification. 

In principle, invasive aspects can invalidate any property of the system; but 
Katz et al. claim that many invasive aspects change the underlying system in re
stricted ways. Therefore, they separate out a group of weakly invasive aspects — 
ones which augment the state graph with new transitions beginning only at points 
in the underlying state graph. They leverage this to show that a property of the 
original system is preserved if the advice body also preserves the property, with
out checking the entire system. They indicate that deriving this property is not 
possible statically, but the examples they give fit into the extension+observation 
and coupling+actuation groups. 

Dantas et al. 

Dantas and Walker [40] provide a type-and-effect analysis for harmless advice -
that which obeys a weak non-interference property. Specifically, harmless advice 

• may change the termination behaviour of computations, 

• may perform input/output operations, 

• but does not otherwise influence the final result. 

This allows programmers to ignore harmless advice when reasoning about the 
partial correctness of their programs, and to extend programs without breaking 
important data invariants offered by the original program. They recognize aspects 
providing profiling, invariant checking, security enforcement, instrumentation, 
and persistence features as harmless. Although their analysis system differs from 
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Rinard et al., they declare that harmless advice falls into orthogonal, independent, 
and observation interactions. 

Some of this work takes effect descriptions in different direction, into the 
checking realm. In particular Clifton et al. insists that every assistant be visible 
to any module that it affects, by including its name in a new accepts declara
tion. Failing to annotate this implies that the aspect must be a spectator, and 
Clifton provides static analysis to prove this property. Failure of this check causes 
compilation errors. 

Krishnamurthi et al. [97] provide a different model-checking system for as
pects. They expect the programmer to supply computational tree logic descrip
tions of desired properties of the system and apply a model checker to prove these 
of a system augmented with aspects. 

5.6 Summary 

Our effect analysis from Chapter 4 has given us the information to provide an 
automated system of classifying advice and highlighting interactions that merit 
programmer inspection. Our classification system, based upon interaction and 
comparisons of the effect strings, refines that of Rinard et al. by 

• subdividing the augmentation control interaction into extension and cou
pling 

• recognizing a missing data interaction, influence, 

• providing an alternate input/output characterization that can be extended 
to recognize multiple I/O channels, 

• includes exception interactions in a more general way, and 

• provides simple concurrency categories. 

Our exception categorization also led us to discover an unexpected property of 
AspectJ, namely that it does not provide the same assurances as Java that all 
checked exceptions are annotated in method signatures. Last, we have shown 
how our categorization also subsumes those of Clifton et al., Katz'(et al.), and 
Dantas et al. 
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Our classification could become the foundation for annotations that express 
desired advice interactions and for statically checking effects against those anno
tations. Those goals are beyond the scope of this work. Our success is to show 
that our semantic development provides a workable effect analysis system. 
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Conclusion 

Having presented the technical material of our work, we review the contributions 
of this dissertation and close with a summary of open research questions arising 
from our results. 

6.1 Contributions 

This research provides two semantic descriptions of dynamic join points, point-
cuts, and advice for procedural languages. 

One, a dynamics semantics, moves from our previously published expression-
oriented, big-step system to a novel continuation-based, small-step semantics. 
This translation yields an elegant model of dynamic join points as principled 
program control points, pointcuts as identifiers of these points, and advice as 
specializers of the behaviour of these control points. The second semantic spec
ification, a static semantics, captures the essential abstraction of continuations, 
that of computational effects, and develops an abstraction of pointcuts and ad
vice with regard to the effects they express. This abstraction to effects supports 
and refines existing aspect classifications, yielding interesting types-and-effects 
properties for dynamic joinpoints, pointcuts, and advice. 

The specific contributions are: 

1. A novel development of continuation-based dynamic semantics for dynamic 
join points, pointcuts, and advice for a first-order, mutually-recursive pro-
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cedural language showing that 

a) Dynamic join points, pointcuts, and advice aspects can be modeled 
directly in continuation semantics; without the need for labels or con
tinuation marks, 

b) Principled dynamic join points arise naturally, as continuation frames, 
from describing programming languages in continuation semantics, 
and 

c) Advice acts as a procedure on these continuation frames, providing 
specialized behaviour for them. 

2. An application of this construction to a higher-order procedural language, 
Scheme, yielding a semantic description of AspectScheme which includes 
lexically-scoped and dynamically-scoped pointcuts and advice. 

3. An implementation of AspectScheme, constructed as a language extension 
to PLT Scheme, using macros and their language extension points, to sup
ply, and lexically-scoped, dynamically-scoped, and the more usual top-level 
(declarative) pointcuts and advice aspects. 

4. A demonstration that cflow pointcuts break tail-call properties of program
ming languages and add a state effect into the languages. 

5. A static semantics that focusses on the key property of continuations: that 
they carry computational effects. We 

a) characterize dynamic join point shadows by their input, output, state 
access and state mutation regions; 

b) associate dynamic join point effects with pointcuts, yielding reports 
summarizing and contrasting these effects; 

c) characterize advice bodies, describing their input/output and state 
effects as well as any repetition of join point behaviour. 

6. An effect reporting algorithm that extends ones already accepted for aspect-
oriented languages. Ours includes 

a) five control interaction classes that cover a broader range, 

b) six data interactions, including one missing from the existing analyses, 
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c) an alternate input (output) categorization with four categories, 

d) exception categorization that helped highlight an AspectJ/Java incon
sistency, and 

e) three simple concurrency interactions. 

Any substantial research must focus on specific questions, leaving others for 
future work. In addition, as it solves some problems, it must illuminate new areas 
of investigation also. We now consider some of these. 

6.2 Open Questions 

As semantics for AOP languages is still in its infancy, many unanswered ques
tions remain. Even with its limited focus on dynamic aspects, this work leaves 
open many avenues for further investigation. They come in three clusters: one 
related to directly extending and further formalizing this work; one related to al
ternate language families - specifically object-oriented languages; and one related 
to productizing the effect analysis. 

E x t e n d i n g a n d F o r m a l i z i n g 

Implementation Our construction provides an elegant account of dynamic 
join points, pointcuts, and advice. The efficiency of this model, however, is un
clear. Tail call optimization has been preserved, at the cost of exposing crow's 
internal effects. Exposing administrative frames which separate operator and 
operand reduces the potential for optimal instruction reordering. C P S optimiza
tions identified by Shivers [148] and others may be invalidated, and partial eval
uation opportunities given by Danvy et al. [43] and Damian and Danvy [39] may 
become unavailable. 

Full Abstraction Several semantic specifications of dynamic join points, point-
cuts, and advice aspect-oriented languages have been posed[20; 42; 58; 115; 169]. 
This work identifies the underlying continuation structure which this kind of AOP 
attempts to abstract and modularize. The various specifications differ in subtle 
ways: some provide syntactic control to enforce coupling interactions (before, 
after, surround advice types); some relax this to extension interactions; others 
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expand beyond declarative pointcut languages. How can we be sure that we've 
captured the essence of AOP? 

We attempt to do this by construction from the denotational semantics of 
our previous work[169].. By virtue of the correctness of the CPS conversion, our 
abstract machine semantics matches the original at relevant points, but it is more 
precise at the auxiliary continuations. This over-specification is undesirable. 

Formal verification of the equivalence of language semantics is a full abstrac
tion problem: show that two models are observationally equivalent - neither is 
more expressive than the other. Providing this level of correspondence between 
abstract machine and denotational' semantics for procedural languages was chal
lenging, and the complete result is relatively recent [3]. Sub-typing has only 
recently become expressible in game semantics, so a full OO language with dy
namic dispatch seems still to be a ways off. 

Solving the full abstraction problem for procedural languages required a new 
kind of semantic specification: (two-player) game semantics [2]. Recently, Abram-
sky [1] has extended this theory to multi-player game_semantics, which I believe 
offers the right framework for full abstraction of AOP. Otherwise, one must choose 
to compose aspects either into the language (i.e., extending the opponent) or into 
the program (i.e., rewriting the player). 

Inter-type Declarations Masuhara and Kiczales [112] demonstrate that, the 
pointcuts and advice model generalizes a number of other AOP forms. 

• Open classes [29] and inter-type declarations [23]: in this case, we posit a 
dynamic semantics for the elaboration phase [21]16. 

• Composition filters [13] and Hyper J [128]: both of which are based on a 
domain-specific program composition language. 

• Traversals as given in Demeter [107]: which is based on a traversal definition 
language. 

In our view, each of these languages have a (well-defined) dynamic semantics, 
amenable to CPS conversion and defunctionalization. We see each as providing a 
set of dynamic join points, and a method for composing new behaviour at those 

16. For example, Scheme R 6 RS standardization work has specifically recognized this in the 
letrec* formulation of define. 
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dynamic join points. For example, inter-type declarations appear interested in 
side-effecting elaboration-stage values such as methods, classes, and operations. 
Is this construction truly as general as it appears? 

Type-checking Aspects Our work explicitly eschews type checking. There 
has been some work on applying type-checking and type-inference to aspects [41; 
42]. Type inference of around advice is especially difficult; it is conjectured [165] 
to be impossible in pure Hindley-Milner-Damas [38; 127; 150; 158]. Recently, 
Dantas et al. [42] provide a clever and novel blending of global and local type 
inference [132] for parametric polymorphism in aspects. The scheme is still im-
predicative, and requires some type annotations. Interesting remaining questions 
include "how much type annotation is required?", "are there relationships be
tween advice that requires annotation and the effects it provides?", and "can 
aspects replace type constraints across data flows to permit greater modular-
ity?". 

Object-Oriented Languages 

Our focus has been on procedural languages - systems providing alternative di
mensions of modularity. We perceive a cluster of open questions revolving around 
aspects and object languages. 

Dynamic Join Point Construction We believe that that our semantic con
struction will yield the same intuitive dynamic join points that the original aspect 
language designers identified. An initial implementation looks promising. 

Frame Activation Pointcut AspectJ 

(/ie/fiiocation i) • (getfieldframe o) getfield o.i getfield o.i 
o • ( s e t f i e l d { r a m e field\ocat\on i) setfield o i setfield o.i 

v* • (dispatchfTame o i) dispatch o.i(...) call o.i(...) 
( m e t h o d i o c a t i o n i) • ( e x e c { r a m e o v*) exec o.i(...) exec o.i(...) 

v* • ( a l l o c a t e { T a m e i) alloc i(...) init i(...) 
(class i) • ( i n i t f i a m e v*) init i(...) preinitialize i(...) 

Figure 51: Object-Oriented Dynamic Join Points 
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6. CONCLUSION Open Questions 

Object / Aspect Duality Filinski [65] noted the categorical duality between 
values and continuations. Object-oriented technology has provided abstract and 
modular values. What might the equivalent abstraction and modularity of contin
uations be? How might the Galois connection between direct and CPS semantics, 
explored, by Danvy [44] and Danvy and Lawall [49], affect this modularity re
lationship? We hypothesize that the result is similar to pointcuts and advice 
AOP. If so, that helps us understand a fundamental question: what do aspects 
modularize? 

A n Effect Checking Tool 

We give an effect reporting tool. However, effects can compose in a variety of 
ways. Different orderings give different behaviours, such as resetting state on 
exceptions (yielding transactional behaviour), or preserving state on exceptions 
(the more common behaviour). Both of these are legitimate; therefore, an effect-
checking tool requires a syntax for annotating desired effects. One place where 
these kinds of properties are again being investigated is in typestate checking [64; 
101; 156] and regular types [76; 126]. 

Other than in research prototypes for domain-specific applications (e.g. con
currency [7] and mobility [96]), effects are most common as monadic type anno
tations in Haskell and related languages. Perhaps these syntaxes can be adapted 
for use with AOP, to describe layered and combined effects like transactions. This 
is an open question, because, making it expressive and lightweight are opposing 
forces: utility is the desired end - usability studies seem to be mandated. Fur
ther, this composition is problematic [60; 85; 95; 106]. Three ways to circumvent 
these composition difficulties are 

• to examine our construction as a special case of delimited continuations [15; 
16; 87; 145; 161] where each frame is captured by shift and reset. In 
future work, we intend to examine this relationship as a degenerate form 
of monadic reflection, following Shan's lead in applying polarized logic to 
help illuminate the construction [146]; 

• to re-examine our construction in terms of monads, potentially yielding the 
sort of configurable applications of Angus [9]; 

• or to examine a more mathematical formulations of effects, such as Fuhrmann 
[75]. 
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A P P E N D I X 

AspectScheme CEKS Semantics 

A . 1 Syntactic Categories 

Expressions M := V 

(M M) 
\oM...) 
(if M M M) 
(set! x M) 
(around M M M) 
(fluid-around M M M) 
(app/prim M M) 

x :: identifier 

Expression closures MC ::— (M,E,A) 
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A . A S P E C T S C H E M E C E K S SEMANTICS Syntactic Categories 

Values V (X(x) M)t 

true 
false 
empty 
(cons VCVC) 

t : source location tag 

Value closures VC (V,E,A) 

Continuations K mt-k 
(appl-k MC,E,A,K) 
(app2-k VC,E,A,K) 
(if-k MC, MC, K) 
(set-k x, E, A, K) 
(aroundl-k scope, MC, MC, K) 
(around2-k scope, VC, MC, K) 
(markapp-k VC,K) 
(apppriml-k MC, A, K) 
(appprim2-k VC,A,K) 
(op-ko, (VC,...),(MC,...),K) 

S0 = ( {4} ,^ error) 

£ :: store location 

£Q — fixed store location 

Stores S ({£},£-+ VC) 
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A . A S P E C T S C H E M E C E K S SEMANTICS Syntactic Categories 

Environments E :: (£,x —* £) 
EQ = (£o, x i - » error) 

({£,e),(L,s)) + {x^VC} = ((£e, e[x H - > gv]), (L U {4}, s[£v i-> VC])) 
where £e,£v L U dom(S) 

( £ , S ) + {xi h-» y C i , . . . , ^ ^ V G J = <£,5) + {n >->>Ci} + • • • + {xn ^ VCn} 

Advice environments A :: {(scope, VC, VC)} 
A0 = 0 

scope £ {static,dynamic} 

Primitive operations o ::= eq? 
| cons 
I T^si 
| rest 
| empty? 
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A . A S P E C T S C H E M E C E K S SEMANTICS Transition Rules 

A.2 Transition Rules 

Initialization and Termination 

M >init ((M,E0,A0), mt-k, S0) 

((V,E,A),mt-k,S) + t e r m V 

Literals 
There are no transition rules for literal (value) expressions; they will either ap
pear as the whole program (and hence become value closures by initialization), or 
they will become closures as their enclosing expression is evaluated. 

Variables . 

((x,E,A),K,S) >var (S(E(x)),K,S) 

/ / : 

(((ifMMthenMelse),E,A),K,S) 

>if « M , E, A), (if-k (M t h e n , E, A), (Meise, E, A),K), S) 

((true, E, A), (if-k M Q h e n , MC e l s e , K), S) <MCthen, K, S) 

((false, E, A), (if-k MCthen, MCelse, K),S) (MC e i s e , K, S) 

Continuation Marks 

(VC, (markapp-k VQun,K),S) >mark (VC,K,S) 
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A . A S P E C T S C H E M E C E K S SEMANTICS Transition Rules 

Set! 

(((set! x M),E,A),K,S) >set ( (M, E, A), (set-k x, E, A, K), S) 

(VC, (set-k x, E, A, K),S) +set (VC, K, S[E(x) >-> VC]) 

(((o M1...Mn),E,A),K,S) 
> Prim {(Mi, E, A), (op-k o, (), {{M2, E,A),... ,{Mn, E, A)),K),S) 

(VCm,(op-ko,(VCm^,...,VC1),(MCm+l,...,MCn),K),S) 
•Prim (MCm+l, (op-k o, (VCm,..., Vd), (MCm+2,MCn),K),S) 

(VCn, (op-k o, {VCn-u Vd), (),K),S) + p n m (6(0, Vd,VCn), K, SY 

5(cons,Vd,VC2) = ((cons VdVC2),E0,A0) 

5(first, ((cons VCxVd),E,A)) = Vd 

S(rest, ((cons VC±Vd),E,A)) = Vd 

5(eq?,((X(x) M)t, (£,e),A), ((A(x1) M')ti, (£',e'),A')) 

Primitive Operations 

where 

5(empty?, VC) = 
(true, £fj, A0) if VC = (empty, E, A) 
(false, EQ, AQ) otherwise 

(true,E0,A0) if t = t' and £ = £' 
(false, Eo, AQ) otherwise 
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A . A S P E C T S C H E M E C E K S SEMANTICS Transition Rules 

Around and Fluid-around 

(((around MpcMadvM),E, A),K,S) 
>around ((M p c , E, A), (aroundl-k static, (Af a d v, E, A), (Af, E, A),K), S) 

(((fluid-around MpcMadvM), E, A),K, S) 
>around ((Mpc,E,A), (aroundl-k dynamic, (Madv,E,A), (M,E,A),K),S) 

(VCpc, (aroundl-k scope, MCadv,MC, K), S) • 
• around (MCadv, (around2-k scope, VCpc, MC, K),S) 

(VCadv, (around2-k scope, VCpc, (M,E,A),K),S) 

^ around 
((M,E,Au{(scope, VCpc, VCadv)}),K,S) 

App/prim 

(((app/prim M f u n Af a r g ) ,E, A),K,S) 
^ app I prim ({M{un,E, A), (apppriml-k (Afarg, E, A), A, K), S) 

(VCfun, (apppriml-k M C a r g , Aapp,K),S) 
^app/prim (MCkrg, (appprim2-k E Q u n , Aapp, K), S) 

(VCaTg, (appprim2-k ((A (a;) Af ) t ) E, K),S) 
> app I prim ((M, E', A'), K, S') 

where 

(E',S') = (E,S) + {x^ VC a r g} 

A = A a p p | d y n a m i c U A f u n | s t a t i c 
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A . A S P E C T S C H E M E C E K S SEMANTICS Transition Rules 

Function applications 

(((M{UNMAIG),E,A),K,S) 

>aPP ((Affon, E, A), (appl-k ( M a r g , E, A),E, A, K ) , S ) 

(VQun, (appl-k M C a r g , K),S) 
• app ( M C a r g , (app2-k V Q U N , EAPP, AAPP,K),S) 

(FCarg, (app2-k ((A ( i ) M)t, E{UN, A H M ) 
> -fi'app! -̂ -app; E), /S) 

• A P P ((M',E',AAPP),K',S') 

where 

M ' = (app/prim W\\ Aapp |J arg) 

K' = (markapp-k ((A (x) M ) T , E { U N , Afun), K ) 

( E ' , S ' ) = (EAPP,S) 

+ {fun i - » ((A (x) M ) T , E(UN, Afun), arg ^ V C a r g , jp* J{K'J} 

+ {pc* .-> V C P C I , adv1 .-> VCadvi \{scope\ VCpci, VCadvi) G A p p } 

fun iii = 0 
(app/prim (A (/) (if (app/prim pc1 jp*) otherwise 

W[i] = { (app/prim advi f) 
/ )) 

Wli - 11) 

(empty, EQ, AQ) if K = mt-k 
J p q = J ((cons V C J \ K ' \ ) , E Q , A Q ) if K = (markapp-k VC, K ' ) 

, J \ K ' \ U K = ( . . . , K > ) 
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A P P E N D I X 

AspectScheme 2.3 Implementation 

This appendix contains the implementation for AspectScheme 2.3, available from 
the PLaneT archive via the following PLT Scheme preamble: 

(require (planet "aspect-scheme2.ss" ("cdutchyn" "aspect-scheme.pit" 2 1))) 

at the start of your program. 
The source code is also available for download at http://www.cs.ubc.ca/ 

~cdutchyn/downloads/AspectScheme/aspect-scheme2.plt. 

5 ) ) 

;;; AspectScheme v. 2.3 - with bindings, execution join points, and top-level aspects. 
;;; Copyright (c) 2005, 2006 by Christopher Dutchyn (cdutchyn@cs.ubc.ca); 
;;; all rights reserved. 

( m o d u l e aspect-scheme2 mzscheme 
(require (only (lib "list.ss") foldl foldr)) 

;; Join Point 
;; proc args 
;; jp ::= cal l - jp a->b a ;; procedure application ('a' can be values (ie. tuple .. .) 
; ; I exec-jp a->b a ;; procedure execution (cannot be advised only matched) 
; ; I adv-jp adv c ;; advice execution . . . 'c' can be values as well 

;; Pointcut 
;; pc :: [jp] *jp* [jp] ->c ;; above * jp * below 
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B . A S P E C T S C H E M E 2 .3 I M P L E M E N T A T I O N 

Advice 
adv :: (a->b)->c->(a->b) 

Aspect 
aspect :: fluid-around pc adv body 

I around pc adv body 
I toplevel-around pc adv 

; dynamic scoping 
; lexical scoping 
; top-level scoping (i.e. body is rest of repl) 

Other kinds of advice (before, after) are special cases; using them might inform a type-
checker and enable i t to recognize behaviour as extensional rather than superpositional. 

(before pc 

(A ctxt 
(A arg 

...adv-body...)) 

body) 

(after pc 

(A ctxt 
(A args 

...adv-body...)) 

body) 

(after-throwing pc 

(A ctxt 
(A args 

. . .adv-body...)) 

body) 

(around pc 
(A (proceed) 

(A ctxt 
(A args 

...adv-body... 
(proceed args)))) 

body) 

(around pc 
(A (proceed) 

(A ctxt 
(A args 

(let-values 
(Cr (with-handlers ([(A (x) #t) 

(A (x) ...adv-body. 
raise x)]) 

(proceed args)]) 
...adv-body... 
(values r))))) 

body) 

(around pc . 
(A (proceed) 

(A ctxt 
(A args 

(with-handlers ([(A (x) #t) 
(A (x) ...adv-body... 

raise x)]) 
(proceed args))))) 

body) 
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B . A S P E C T S C H E M E 2 .3 I M P L E M E N T A T I O N 

( a f t e r - r e t u r n i n g pc 

(A c t x t 

(A a r g s 

( a r o u n d p c 

(A ( p r o c e e d ) 

(A c t x t 

(A a r g s 

. . . a d v - b o d y . . . ) ) 

( l e t - v a l u e s ( [ r ( p r o c e e d a r g s ) ] ) 

. . . a d v - b o d y . . . 

( v a l u e s r ) ) ) ) ) 

body) body) 

(dynamic-wind swap (A () e ...) swap)))])) 

;; aspect structure 
(define-struct aspect (pc adv)) 

(define-struct jp (target args)) 
(define-struct (call-jp jp)Q) 
(define-struct (exec-jp jp)()) 
(define-struct (adv-jp jp)()) 

;; join points implemented via continuation marks 
(define (jp-context) 

(continuation- mark-set —dist 
(current-continuation-marks) 
'joinpoint)) 

(define-syntax with-joinpoint 
(syntax-rules () 

[(_ jp body ...) 

(with-continuation-mark 'joinpoint jp 
(begin body ...)))])) 

((X(x) x) 
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B . A S P E C T S C H E M E 2 .3 IMPLEMENTATION 

;; dynamically-scoped aspects 
(define dynamic-aspects (make-parameter '())) 

(define static-aspects (make-parameter '())) 

(define-syntaxes (fluid-around around) 
(let ([round (X(param) 

(A (stx) 

(syntax-case stx () 
[(_ pc adv bodyO ...) 

(quasisyntax/loc stx 

(fluid-let-parameter ([#,param (cons (make-aspect pc adv) 
(#,param)))) 

bodyO ...))})))}) 

(values (round #'dynamic-aspects) ;dynamically-scoped 
(round #'static-aspects)))) ;lexically-scoped 

;; lexically-scoped aspects 
(define-syntax lambda/static 

(syntax-rules () 
[(_ params body ...) 

(let ([aspects (static-aspects)]) 

(A params 

(fluid-let-parameter ([static-aspects aspects]) 

- body...)))])) 

;; top-level aspects 
(define toplevel-aspects (make-parameter '())) 

(define (toplevel-around pc adv) 
(toplevel-aspects (cons (make-aspect pc adv) (toplevel-aspects)))) 

;; current aspects - in decending order of application! 
(define (current-aspects) 

(append (dynamic-aspects) 

(static-aspects) 

(toplevel-aspects))) 
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B . A S P E C T S C H E M E 2 .3 I M P L E M E N T A T I O N 

;; weaver 

;; replacement for #%app 

(define-syntax app/weave 

(syntax-rules () 

[(_ / a ...) (app/weave/rt fa...)])) 

(define (app/weave/rt fun-val . arg-vals) 

(if (primitive? fun-val) 

(apply fun-val arg-vals) 

(let (\jp (make-call-jp fun-val arg-vals)]) 

(with-joinpoint jp 

(apply (weave (X arg-vals 

(with-joinpoint (make-exec-jp fun-val arg-vals) 

(apply fun-val arg-vals))) 

'() 3P (jp-context) 

(current-aspects)) 

arg-vals))))) 

(define (weave fun-val jp- jp jp+ aspects) 

(foldr (X (aspect fun) 

(cond 

[((aspect-pc aspect) jp- jp jp+) 

=> (X (ctxt-vals) 

(with-joinpoint (make-adv-jp (aspect-adv aspect) ctxt-vals) 

(apply ((aspect-adv aspect) fun) ctxt-vals)))] 

[else fun])) 

fun-val 

aspects)) 
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B . A S P E C T S C H E M E 2.3 IMPLEMENTATION 

;; pointcuts - strict combinators 
(define ((&& . pes) jp- jp jp+) 

(let loop ([pes pes] 
[res '()]) 

(if (null? pes) 
(reverse res) 

(let ([r ((car pes) jp- jp jp+)]) 
(and r 

(loop (cdr pes) (append (reverse r) res))))))) 

(define ((|| . pes) jp- jp jp+) 
(let loop ([pes pes)) 

(and (not (null? pes)) 
(or ((car pes) jp- jp jp+) 

(loop (cdr pes)))))) 

(define ((/ pc) jp- jp jp+) 

(and (not (pc jp- jp jp+)) 

'())) . 

;; pointcuts - 'binding' 
(define (target jp- jp jp+) 

(list (jp-target jp))) 

(define (args jp- jp jp+) 
(jp-args jp)) 

(define ((some-args as) jp- jp jp+) 
(foldl (A (a v I) 

(if a 
(cons v I) 

0) 
'0 
as 
(jp-args jp))) 

126 



B . A S P E C T S C H E M E 2 .3 IMPLEMENTATION 

;; pointcuts - structural 
(define (top? jp- jp jp+) 

(and (null? jp+) 
'())) 

(define (top pc) 
(&& pc 

(! (cflowbelow pc)))) 

(define ((below pc) jp- jp jp+) 
(and (not (null? jp+)) 

(pc (cons jp jp-) (car jp+) (cdrjp+)))) 

(define ((above pc) jp- jp jp+) 
(and (not (null? jp-)) 

(pc (cdr jp-) (car jp-) (cons jp jp+)))) 

(define (bottom pc) 
(&& pc 

(! (cflowabove pc)))) 

(define (bottom? jp- jp jp+) 

(and (null? jp-) 

'())) 

;; pointcuts - compatibility 
(define (cflow pc) 

((cflow-walk below top?) pc)) 

(define (within f) 
(cflowbelow (&& (exec f) 

(! (cflowabove call?))))) 
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B . A S P E C T S C H E M E 2 .3 I M P L E M E N T A T I O N 

;; pointcuts - fundamental 

(define ((kind= k?) jp- jp jp+) 

(and (k? jp) 

'())) 

(define call? (kind= call-jp?)) 

(define exec? (kind— exec-jp?)) 

(define adv? (kind= adv-jp?)) 

(define ((target= f) jp- jp jp+) 

(and (eq? f (jp-target jp)) 

'())) 

(define (call f) 

(&& call? 

(target= /))) 

(define (exec f) 

(&& exec? 

(target^ /))) 

(define (adv a) 

(&& adv? 

(target= a))) 

;; pointcuts - higher-order recursive 

(define (((cflow-walk step end) pc) jp- jp jp+) 

((II PC 
(&& (! end) 

(step ((cflow-walk step end) pc)))) jp- jp jp+)) 
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B . A S P E C T S C H E M E 2 .3 I M P L E M E N T A T I O N 

;; pointcuts - higher-order points-free 
(define (cflowtop pc) 

(cflowbelow (top pc))) 

(define (cflowbelow pc) 
(below ((cflow-walk below top?) pc))) 

(define (cflowabove pc) 
(above ((cflow-walk above bottom) pc))) 

(define (cflowbottom pc) 
(cflowbelow (bottom pc))) 

;; language definition 
(provide (all-from-except mzscheme #%app A) 

(rename app/weave #%app) 
\ (rename #%app app/prim) 

(rename lambda/static A) 

fluid-around 
around 
toplevel-around 

&& || / 
top? top below above bottom bottom? 

target args some-args 

call? exec? adv? call exec adv 

cflowtop cflowbelow cflowbottom cflowabove 

cflow within 

)) 

i ; 1 
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A P P E N D I X c 
PROC Implementation 

This appendix contains the implementation for the P R O C language, as described 
in Chapter 2, and extended with exceptions and threads. 
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C. PROC I M P L E M E N T A T I O N Syntax 

C . l Syntax 

;;; Syntax - mutually-recursive, first-order procedural [WKD04] 

;;program 

(define-struct pgrri [decls body)) ; PGM ::= (id * decl)... * exp 

;; declarations 

(define-struct procD [ids body}) ; DECL ::— PROC id... * exp 
(define-struct globD Q) ; — GLOBAL 
;; expressions 
(define-struct UtX [val]) ; EXP ::= LIT val 
(define-struct varX [id]) ; — VAR id 
(define-struct ifX [test then else}) ; — IF exp exp exp 

(define-struct seqX [exps]) ; — SEQ exp... 
(define-struct letX [ids rands body]) ; — LET (id * exp)... exp 

(define-struct getX [id]) ; — GET id 
(define-struct setX [id rand]) ; — SET id exp 

(define-struct appX [id rands]) ; — CALL id exp... 

(define-struct pcdX [rands]) ; — PROCEED exp... 
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C.2 Parser 

(define (parse-pgm s) ;: sexp —> pgm 

(make-pgm (map parse-named-decl (car s)) 

(parse-exp (cadr s)))) 

(define (parse-named-decl i+s) ;: sexp —> (id * decl) 

(cons (car i+s) 

(parse-decl (cdr i+s)))) 

(define (parse-decl s) ;: sexp —> decl 

(case (car s) 

[(proc) (make-procD (cadr s) (parse-exp (caddr s)))] 

[(global) (make-globD)] 

[(advise) (make-advD (parse-pc (cadr s)) (parse-exp (caddr s)))] 

[else (error 'parse-decl "not a decl: "a" s)])) 

(define (parse-exp s) ;: sexp —> exp 

(cond [(number? s) (make-litX s)j 

[(if) (make-ifX (parse-exp (cadr s)) 

(parse-exp (caddr s)) 

(parse-exp (cadddr s)))} 

[(seq) (make-seqX (map parse-exp (cdr s)))] 

[(let) (make-letX (map car (cadr s)) 

(map parse-exp (map cadr (cadr s))) 

(parse-exp (caddr s)))] 

[(get) (make-getX (cadr s))} 

[(set) (make-setX (cadr s) (parse-exp (caddr s)))} 

[(call) (make-.appX (cadr s) 

(map parse-exp (cddr s)))] 

[(proceed) (make-pcdX (map parse-exp (cdr s)))} 

[else (error 'parse "not an exp: ~a" s)])] 

[(boolean? s) (make-litX s)] 

[(symbol? s) (make-varX s)] 

[(pair? s) (case (car s) 

[else (error 'parse "not an exp : ~a" s)})) 
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(define (parse-pc s) 
(case (car s) 

[(get) (make-getC (cadr s))] 
[(set) (make-setC (cadr s) (caddr s))] 
[(call) (make-callC (cadr s) (cddr s))} 
[(exec) (make-execC (cadr s) (cddr s))] 
[(or) (make-orC (map parse-pc (cdr s)))\ 
[(not) (make-notC (parse-pc (cdr s)))] 
[else (error 'parse-pc "not a pointcut "a" 5)])) 

I : 1 
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C.3 Elaborator 

i - i 

;;; Elaborator 

(define * globs* #f) ;: (id * boxed- val)... 
(define *procs* #f) ;: (id * proc/prim)... 
(define *advs* #f) ;: (pc * adv) 

;; values - val ::= constant — procedure , 
(define-struct procV [ids body]) ;; PROC id... exp 

(define -init-vaL 0) ;: val 

;; location LOC ::= ref val (ie. box) 

(define (lookup-glob i) ;: id —> loc 
(let ([i+b (assq i *globs*)]) 

(if i+b 
(cadr i+b) 
(error 'glob "not found: ~a" i)))) 

(define (lookup-proc i) ;: id —> proc 
J (let ([i+p (assq i *procs*)}) 

(if i+p 
(cadr i+p) 
(error 'proc "not found: ~a" i)))) 

(define (get-glob I) ;: loc —> val 
(unbox I)) 

(define (set-glob I v) ;: (loc * val) —> val 
(let ([ov (unbox I)]) 

(set-box! I v) 
ov)) 

(define ((lift o) v* k) ;: (val... —» val) -» (val... * cont) —> Ival... 
(apply k (o v*))) 
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(define (elab! prims i+d*) ;: ((id * (val... * cont —> !))... * (id * decl))... —» ! 

(set! *globs* '()) 

(set! *procs* prims) 

(set! *advs* '()) 

(for-each (A (i+d) 

(let ([d (cdr i+d)} 

[i (car i+d)]) 

(cond [(procD? d) (set! *procs* '((,i ,(make-procV (procD-ids d) 

(procD-body d))) 

. ,*procs*))\ 

[(globD? d) (set! *globs* '((,i ,(box Jnit-vaL)) 

. ,*globs*))] 

[(advD? d) (set! *advs* '((,(advD-pc d) . ,(advD-body d)) 

. ,*advs*))] 

[else (error 'elab "not a decl: "a" d)}))) 

i+d*) 

(set! step (adv-step *advs*))) 
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C.4 E valuator 

;;; Evaluator 

;;; frames 
;; auxiliary 
(define-struct testF [then else era;]) ; FRM ::= TEST exp exp env :: !bool 
(define-struct bindF [ids body env]) ; — BIND id... exp env :: !val... 
(define-struct nextF [exps env]) ; — NEXT exp... env :: !val 
(define-struct randF [exp env]) ; — RAND exp env :: !val... 
(define-struct konsF [vals]) ; — KONS val... :: !val 
(define-struct rhsF [id]) ; — RHS id :: !val 
;; effective 
(define-struct getF []) ; — GET :: Hoc 
(define-struct setF [val]) ; — SET val :: Hoc 
(define-struct callF [id]) ; — CALL id :: !val 
(define-struct execF [args]) ; — EXEC val... :: !proc 

(define-struct pcdF [v—>v+f advs]) ; — PCD val... —> val+frm adv... :: !val... 

;;; continuations ::=>frm... 
(define (push f k) ;: (frm * cont) —> cont 

(cons / k)) 

(define ((pop e s) k) ;: ((val —> !) * ((frm * cont) —> (val —>!)—> cont —> val —> 
(if (null? k) 

e 
. (s (car k) (cdr k)))) 
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;;; evaluator - expression side 
(define (eval x r k) ;: (exp * env * cont) —> ! 

; (display '(E ,x ,k))(newline) 
(cond [(UtX? x) (apply k 

(HtX-val x))] 
[(varX? x) (apply k 

(lookup-env r (varX-id x)))] 
[(ifX? x) (eval (ifX-test x) 

r 
(push (make-testF (ifX-then x) (ifX-else x) r) 

k))] - • 
[(seqX? x) (let ({x* (seqX-exps x)}) 

(if (null? x*) 
(apply k 0) 
(evseq (car x*) (cdr x*) r k)))] 

[(letX? x) (evlis (letX-rands x) 
r 

(push (make-bindF (letX-ids x) (letX-body x) r) 

*))] 
[(getX? x) (apply (push (make-getF) 

k) 
(lookup-glob (getX-id x)))] 

[(setX? x) (eval (setX-rand x) 
r 

(push (make-rhsF (setX-id x)) 

*))] 
[(appX? x) (evlis (appX-rands x) 

r 

(push (make-callF (appX-id x)) 

k))] 
[(pcdX? x) (evlis (pcdX-rands x) 

r 
(push (make-pcdF (lookup-env r '%proceed) 

(lookup-env r '%advs)) 
*))] 

[else (error 'eval "not an exp: "a" 2;)])) 
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(define (evseq x x* r k) ;: (val * exp... * env * cont) —> ! 
(eval x 

r 

(if (null? a*) 

k 

(push (make-nextF x* r) 

(define (evlis x* r k) ;: (exp... * env * cont) —> ! 
(if (null? x*) 

(apply k 

'()) 

(evlis (cdr x*) 

r 

(push (make-randF (car x*) r) 

(define (halt v) ;: val —> ! 

(display v) 

(newline)) 

(define (apply k v) ;: (cont * val) —> ! 
;(display '(A ,k ,v))(newline) 
(((pop halt 

step) 

k) 

v)) 
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;;; eva lua to r - c o n t i n u a t i o n side 

(define ((base-step f k) v) ;: ( f rm * cont) —> v a l —> ! 

(cond ;; a u x i l i a r y frames 

[(testF? f) (eval ((if v testF-then testF-else) f) 
(testF-env f) 
k)) 

[(nextF? /) (let ([a* (nextF-exps /)]) 
(evseq (car x*) (cdr x*) (nextF-env /) k))} 

[(randF? f) (eval (randF-exp f) 
(randF-env f) 
(push (make-konsF v) 

k))] 
[(konsF? /) (apply k 

(cons v (konsF-vals /)))] 

[(bindF? f) (eval (bindF-body f) 
(extend-env (bindF-ids f) 

v 
(bindF-env /)) 

*)] • 
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;; non-auxiliary frames 
[(getF? f) (apply k 

(get-glob v))] 
[(rhsF? f) (apply (push (make-setF v) 

k) 
(lookup-glob (rhsF-id /)))] 

[(setF? f) (apply k 
(set-glob v (setF-val /)))] 

[(callF? f) (apply (push (make-execF v) 
k) 

(lookup-proc (callF-id /)))] 
[(execF? f) (cond [(procV? v) (eval (procV-body v) 

(extend-env (procV-ids v) 
(execF-args f) 
empty-env) 

k)} 
[(procedure? v) (v (execF-args f) k)} 
[else (error 'exec "not a procedure: ~a" v)])} 

[(pcdF? f) (let-values ([(vl fl) ((pcdF-v-*v+f /) «)]) 
(((adv-step (pcdF-advs /)) fl k) vl))] 

[else (error 'step "not a frame: ~a" /)])) 

(define (((adv-step advs) f k) v) ;: adv... —> (frm * cont) —> val —> ! 
(let loop ([advs advs]) 

(cond [(null? advs) ((base-step f k) v)} 
[(match-pc (caar advs) v f) => (A(m) 

(eval (cdar advs) 
(extend-env '(%proceed 

%advs 
. ,(match-ids m)) 
'(,(match-prcd m) 

,(cdr advs) 
. ,(match-vals TO)) 

empty-env) 

k))] 
[else (loop (cdr advs))}))) 
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;;; denned once the *adv* are elaborated 

(define step ;(adv-step *adv*)) ;: (frm * cont) —> val —> ! 

#0 
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C.5 A O P Constructs 

;;; pointcuts and advice aop 

;; pointcuts 

;; effective continuation frame matching 
(define-struct getC [gid]) ; PCUT ::= GETPC id 
(define-struct setC [gid id}) ; — SETPC id id 
(define-struct callC [pid ids}) ; — CALLPC id id... 
(define-struct execC [pid ids}) ; — EXECPC id id... 
•;; combinational 
(define-struct orC [pes}) ; — ORPC pcut... 
(define-struct notC [pc}) ; — NOTPC pcut 

(define-struct andC [pes]) ; — ANDPC pcut... 
;; declarations 
(define-struct advD [pc body}) ; DECL +:= ADVICE pcut exp 

(define-struct match [ids vals prcd}) ; MATCH id... val... (val... —» (val * frm)) 

(define (merge-match ml m 2 ) 
(make-match 

(append (match-ids ml) (match-ids m 2 ) ) 

(append (match-vals ml) (match-vals m 2 ) ) 

(\(nv) 

(let-values ([(nvl fl) (match-prcd ml nv)]) 

(match-prcd m 2 nvl))))) 
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;;; matching 
(define (match-pc c v f) ;: (pcut * val * frm) —* match 

(cond ;; combinational pointcuts 
[(orC? c) (let loop ([pes (orC-pcs c)]) 

(if (null? pes) 
#f 
(or (match-pc (car pes) v f) 

(loop (cdr pes)))))] 
[(notC? c) (if (match-pc (notC-pc c) v f) 

#f 
(make-match '() 

'0 
(X(nv) 

(values v /))))] 
;; [(andC? c) (let loop ([pes (andC-pcs c)]) 
;; (if (null? pes) 
;; (make-match '() 
;;'() 

;; (lambda (nv) 
;; (values v f))) 
;; (merge (match-pc (car pes) v f) 
;; (loop (cdr pes)))))] 
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C . P R O C I M P L E M E N T A T I O N A O P Constructs 

;; fundamental pointcuts 
{(getC? c) (and (getF? f) 

(eq? (lookup-glob (getC-gid c)) v) 
(make-match '() 

'0 
(\(nv) 

(values v /))))] 
[(setC? c) (and (setF? f) 

(eq? (lookup-glob (setC-gid c)) v) 
(make-match '(,(setC-id c)) 

• '(,(setF-val /)) 
(X(nv) 

(values v (make-setF (car nv))))))\ 
[(callC? c) (and (callF? /) 

(eq? (callC-pid c) (callF-id /)) 
(make-match (callC-ids c) 

v 
(X (nv) 

(values nv /))))] 
[(execC? c) (and (execF? f) 

(eq? (lookup-proc (execC-pid c)) v) 
(make-match (execC-ids c) 

(execF-args f) 
(X (nv) 

(values v (make-execF nv)))))] 
[else (error 'match-pc "not a pointcut: " a " c)])) 
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C.6 Environments 

i • 1 

;;; Environments 

;;; environment - env :: id —> val 

(define (empty-env i) ;: env 
(error 'lookup "not found: "a" i)) 

(define ((extend-env i* v* r) i) ;: (id... * val... * env) —> id —> val 
(let loop ([i* i*} [v* v*]) . • 

(cond [(null? i*) (r i)} 
[(eq? (car i*) i) (car v*)] 
[else (loop (cdr u) (cdr v*))]))) 

(define (lookup-env r i) 
(r i)) 
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C.7 Top Level 

;;; top level 

(load "env.scm") 
(load "syntax.scm") 
(load "elab.scm") 
(load "eval.scm") 
(load "aop.scm") 
(load "parse.scm") 

(define _przms_ 

<([+ ,(Hft (\(vs) 
(+ (car vs) 

(cadr vs))))] 
[= ,(lift (\(vs) 

(= (car vs) 
(cadr vs))))] 

[display ,(lift (A (vs) 
(display (car vs)) 
0))] 

[newline , (lift (A (vs) 

(newline) 

0))] 
[abort ,(A(us fc) ; Felleisen A operator 

(apply '() (car vs)))})) 

(define (run s) 
(let (\g (parse-pgm s)]) 

(elab! -prims- (pgm-decls g)) 
(eval (pgm-body g) 

empty-env 

'()))) 

(load "tests.scm") 
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