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ABSTRACT 

This thes i s continues the studies of A . Waksman (1969) i n the 

repeated generation of f i n i t e s t r i n g s i n a one dimensional array of f i ­

n i t e automata. Waksman handles thispproblem by the use of a "modulo 

ar i thmet ic" a lgor i thm. This i s shown to be very r e s t r i c t i v e with regard 

to the number of characters permitted i n the output s t r i n g . In f a c t , i t 

i s shown that unless the length of the s t r i n g which i s to be repeated i s 

oc 

of the form p , where p i s prime, only one output character i s permit ted . 

This of course makes the process qu i t e meaningless. 

For t h i s reason, a new algor i thm i s developed. This i s r e ­

f e r r e d to as the wheel a lgor i thm, s ince there i s an obvious analpgy 

between i t and a wheel, with the output s t r i n g on i t s circumference 

r o l l i n g alonggthe array and l eav ing the imprint of the characters i n the 

s t r i n g behind i t i n the same way that a wheel leaves t i r e t r a c k s . The 

number of s tates required for such an a lgor i thm i s large and so the b i ­

nary wheel a lgor i thm i s in troduced. By us ing t h i s a lgor i thm, i n which 

an output s ta te i s represented as a s t r i n g of b i t s i n s evera l c e l l s , the 

number of s tates r e q u i r e d , i n a d d i t i o n to the n output s ta tes , can be 

reduced to about 4 n . 

Both the wheel and b inary wheel algorithms are then extended 

to the two dimensional and f i n a l l y the d-dimensional cases. 
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I INTRODUCTION 

In a recent paper, Waksman (1969) uses a one-dimensional array 

of f i n i t e s tate machines to model the cont inua l r e p l i c a t i o n of a sequence 

of k symbols represented by the states of the c e l l s of the a r r a y . By 

cont inua l r e p l i c a t i o n of a sequence of length k we mean that a f ter an 

appropriate length of t ime, dependent on m, the subsets of c e l l s 

{ik+1, i k + 2 , . . . ( i + l ) k } for i = l , 2 , . . . , m w i l l each be r e p l i c a s of the de­

s i r e d sequence of k symbols. Thus i f our alphabet were {0,1} and we 

wanted to reproduce the s t r i n g of length 4 (0111) c o n t i n u a l l y , a f t e r an 

appropriate length of time we would have 

{0111011101110111...} 

The p r i n c i p a l r e s t r i c t i o n on the transformation to be performed 

i s that the s tate of any c e l l at time (t+1) i s a funct ion of the states 

of that c e l l and i t s two immediate neighbours at time t . Waksman shows 

a method of generating- c o n t i n u a l l y s t r i n g s of length k i n the prev ious ly 

described manner provided the characters from which the s t r i n g i s con­

s truc ted are chosen from the r i n g of integers mod g^, ^§k> where 

g k = gcd{(^)} i - l , 2 k - 1 . (1.1) 

That i s , g^ i s the greatest common d i v i s i o n of the set of b inomial co-

k 

e f f i c i e n t s (^) other than those which are 1. 

The problem i s formulated by Waksman as fo l lows: 

Suppose we want to generate c o n t i n u a l l y the s t r i n g (a^} i = l , 2 , . . . , k ; 

then, we s t a r t with the i n i t i a l conf igurat ion c o n s i s t i n g of c e l l 0 i n a 

t r a n s i t i o n s t a t e , P, the next k c e l l s i n s tates b^ i = l , 2 , . . . , k and a l l 

other c e l l s i n the quiescent s ta t e , Q. I t can be seen that the r e l a t i o n 
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between the s t r i n g s and b^ i s given by 

a. = I (T"h b . (1.2) 

The a c t u a l method of c a l c u l a t i n g {b^}given {a^} w i l l be ex­

p la ined l a t e r . I t i s to be understood that a l l ar i thmet ic w i l l be modulo 

At each time step one and only one c e l l i s i n the t r a n s i t i o n 

s t a t e , P . At time t , c e l l t only w i l l be i n s tate P. The process for 

any c e l l i s b a s i c a l l y broken i n t o two segments, the' time before i t enters 

s ta te P and the time a f t e r i t enters statePP. At each time step the c e l l 

i n s tate P and i t s r i g h t hand neighbour exchange s ta te s . A f t e r t h i s has 

happened to a c e l l , i t r e ta ins th i s s t a t e . The i n t e r e s t i n g part of the 

process i s , then, what happens before a c e l l enters the t r a n s i t i o n s t a t e . 

I f c e l l i i s i n s ta te a . at time t , with the i n i t i a l cond i t ion a„ .=b. 
t , i o , i 1 

for i=l,2,...^kY we def ine a , . by 
-' C T J , J X 

a t + l , i = a t , i + a t , i - l , (1.3) 

where a c e l l i n the quiescent s tate i s considered to be i n s tate 0. 

To redef ine the funct ion i n a more formal manner we may fol low 

Table 1 which i n d i c a t e s the transformation up to the time of entry in to 

the terminal s ta te . To r i g o r o u s l y define the funct ion we may th ink of 

the c e l l s as having an a d d i t i o n a l f l i p f lop which i s o f f u n t i l the r i g h t 

neighbour of a c e l l enters s tate P. aAt that time the f l i p f lop i s 

turned on and no fur ther change can occur i n the s tate of the c e l l . 
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•TABLE 1* 

F l i p f lop i n p o s i t i o n 0 
Q = quiescent s ta te 
P = t r a n s i t i o n s tate 
$ = no c e l l present ( l e f t neighbour of c e l l 0) 
a. = an element of Ze, 

* The output given i n t h i s and a l l s i m i l a r tables i s at 
time t+1. 

c e l l s ta te at 
time t a. 

l 

Right neighbour 

L e f t 
a k a i + a k a i + \ L e f t 

a i + a k a i + \ 

neighbour 

P P P 

L e f t 
neighbour 

Q 

a. 

Right neighbour 

Q 

Q 

L e f t 
neighbour 

Right neighbour 

a. 

No other conf igurat ions can occur . Thus i f we i n i t i a l i z e the 

array as prev ious ly mentioned and fol low the t r a n s i t i o n of Table 1, c e l l 

0 w i l l enter the terminal s tate a^, c e l l 1, h^+b2 = a^ and i n general 

c e l l i-1 enters terminal s tate 
i 
E (. ^) b . = a_̂  (by equation 1.2) 

j = l 2 ~ 3 1 

at time t = i . Out problem i s now to c a l c u l a t e { b } for a given set { a} . 

Waksman found that { b .} could be generated from { a.} i n the fo l lowing 

manner. Let a, .=a. i=l.,2 , . . . ,k and wr i t e a l T . a . „ . . . a 1 7 . Then l i I ' ' 11 12 l k 
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complete a k x k matrix by l e t t i n g 

a . = a + a m = 2 , 3 , . . . , k 
mj m-l,jv- m - l , j + l . , * ' * 1 

and a , = a, , = a, (1.4) mk l k k 

The ar i thmet ic i s of course mod g^. Waksman shows that the 

process i s continued for m = k+1, k + 2 , . . . , and that the matrix i s r e ­

peated, or that a

m ^ o c ] c j = a

m j a = a n y tue p o s i t i v e i n t e g e r . Thi$ property 

i s due to the fact that the ar i thmet ic i s done modulo g^. This process 

i s e s s e n t i a l l y what happens i n the ac tua l generating machine before the 

P s tate i s entered. The only d i f f erence i s that the k - tup le remains 

s t a t i o n a r y instead of moving to the r i g h t . 

A f t e r the k x k matrix has been formed the f i r s t column w i l l be 

c a l l e d the f i r s t t r a n s p o s i t i o n column. This column i s taken as an i n i ­

t i a l i z i n g row for a second matrix formed i n the same manner, and hence 

the f i r s t column of t h i s matrix i s c a l l e d the second t r a n s p o s i t i o n column. 

Waksman shows that i f g^ such matrices are formed the g^th t r a n s p o s i t i o n 

column w i l l be the set {a.}. Therefore the f i r s t row of the g, th matr ix , 
X K. 

or the ( g , - l ) s t t r a n s p o s i t i o n column generates {a.} i n a manner c o r r e s -

ponding to that of the generating f u n c t i o n . Hence the (g^- l )s t t r a n s ­

p o s i t i o n column may be taken as {b_̂ }. 

A numerical example may make t h i s process somewhat c l e a r e r * 

Suppose we are fo generate {021} c o n t i n u a l l y , so k=3 and 

Then wr i t e 

0 2 1 and fol low formula (1.4) 3-1=2 times 
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(1) 0 2 1 

2 0 1 0 2 2 i s the f i r s t t ransposition column 

2 1 1 

0 2 0 i s the second transposition 

column and so 0,2,0 = b. 
' ' l 

To check that {0,2,0} w i l l indeed produce {0,2,1} we s h a l l form 

the or t h i r d matrix. 

(3) 0 2 0 

2 2 0 

1 2 0 

We see then, that the desired sequence {0,2,1} i s produced. To i l l u s t r a t e 

the previously mentioned fac t that i f t h i s process i s continued the e n t i r e 

matrix w i l l be repeated, and so the g^th transposition column w i l l be re­

peated we s h a l l continue a few more time steps. 

• 

1 2 0 

0 2 0 

2 2 0 

1 2 0 

0 2 0 

2 2 0 

1 2 0 

02.2 0 

2 2 0 

(2) 0 2 2 

2 1 2 

0 0 2 
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We s h a l l now s t a r t the generating funct ion with {b^}={0,2,0} 

TABLE 2 

0 1 2 3 4 5 6 7 8 9 10 

0 P 0 2 0 Q Q 

1 0 P 2 2 0 Q 

2 0 2 P 1 2 0 Q - - - -

3 0 2 1 P 0 2 0 Q - - -

4 0 2 1 0 P 2 2 0 Q - -

5 0 2 1 0 2 P 1 2 0 Q -

6 0 2 1 0 2 1 P 0 2 0 Q 

7 0 2 1 0 2 1 0 P 2 2 0 

A f t e r time step 3 we note that the des ired sequence has been 

generated once and that the "generating bud" i s the same as i t was when 

i n i t i a l i z e d . Thus we see that the process w i l l work. 

An important cons iderat ion i n judging the merit of such a scheme 

i s the number of states r e q u i r e d . Waksman requires the fo l lowing s ta tes : 

1 Q the quiescent s tate 

1 P the t r a n s i t i o n s tate 

2.g^ the integers from 0 to (g^-1) and a lso a f l i p f lop to 

i n d i c a t e whether a c e l l has entered i t s terminal s tate 

or not . 

This gives a t o t a l of 2(g^+l) s ta te s , that i s about twice as many states 

as output charac ters . Another method of cont inua l generation of se­

quences w i l l be introduced i n Chapter 4 and at that time i t w i l l be 



useful to compare the number of states required for the present method 

and the one introduced at that time. 

II A More Direct Method of Determining {b_̂ } 

Once {b_̂ } has been determined and the generating function has 

been i n i t i a l i z e d the generation of a^'s is straight forward. The process 

occurs as fast as can be expected for such a structure; that i s , one new 

output c e l l per time step. The generation of {b^} by Waksman's method 

i s , however, very tedious, expecially i f g^ is f a i r l y large. Fortunately 

i t turns out that the method is somewhat inefficient and that {b_̂ } may 

be determined directly, rather than by iterative procedures, from {a_̂ }. 

Consider the following discussion: 

Recall equation 1.2 
i . , 

a. = S (T~:) b . . 1 • 1 J-1 3 J=l J J 

Rewriting this in vector-matrix notation, we have: 

a l i o 
1 

(2.1) 

or 

a = A b 

We want to express b in terms of a. 

2.1 to yield 

This may be done by rewriting equation 
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Our problem i s now simply to i n v e r t A . We s h a l l show that: 

A " 1 = A 1 = 

1 0 ... 

-1 1 

1 1 

u j : i ) ( - D 1 + j } 

( - l ) k + 1 k ( - l ) k + 2 

-1 

0 

k ( - l ) 2 k _ 1 1 

To express t h i s simply i n words, A has the same elements as 

A , however the ( k , j ) t h element has the s ign of (-1)"''+ .̂ A more use fu l 

way of w r i t i n g t h i s r e l a t i o n would be as Theorem 2.1. 

Theorem 2.1 

b . = E d " h ( - l ) i + J a , . 
1 j-1 j 

To prove t h i s theorem we need the fo l lowing lemma: 

Lemma 2.11 

m=j 

l 

E ( i - l ) ! (m-1) ! 
m=j 

(m- l ) ! ( i -m) ! ( j - l ) ! ( m - j ) ! ( - D m 
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( i - l ) - ( j - l ) = i - j 

(i-j)-(m-j)=i-m 

l e t k = m-j 

h = i - j 

= <-l)j (J" 1) S ( h ( - D k  

J " i k=0 K 

By expanding (1-1) we note that 

h . 
2 C ) ( - l ) = 0 
k=0 K 

and hence 

QED 

We are now ready to prove the theorem. 

Proof of Theorem 2.1 
f 1-1 
(. n) for i=l,2,...,k j=l,2,...,l 

Let a. . ="S 

0 for 1=1,2,...,k j=l+l,...,k 

This defines the matrix A = {a..}. 

S i m i l a r l y we define 

f / i - l w _ i N i + : J <;_?<-i>-

a'.. H 

l — l y 2 j • i«jk 2™* 1*̂*1 > • • • >k 

and so define A v = {a1;.} 
13 
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Then from the d e f i n i t i o n of {b }. i n equation 1.2, we have 

shown that a = A b . 

What we are to prove i s that 

b . = Z d " h ( - l ) i + j a . 
1 j-1 2 2 

or that b = A ' a . 

That means A - 1 = A ' or that AA'=I. 

Let AA' = { « . . } 

k 
then « . . = Z a. a ' . i i i im mi J m=l J 

We s h a l l show that <*.. =1 and that « . . = 0 i f i ; ^ j , by 
i i i j 

cons ider ing the three cases ( i ) i < j 

( i i ) 1 = j 

( i i i ) i > j 

( i ) i < j 

A i s t r i a n g u l a r , therefore a. =0 for m = i + l , . . . , k 
• im 

A 1 i s t r i a n g u l a r , therefore a ^ = 0 for m=l,2 , . . . , j-1 

Therefore a. a ' . = 0 for m=l,2 (j-1) 
im mj 

and for m=(i+1) , . . . ,k 

and as i < j a. a . =-0 for m=l,2, . . . ,k J im mj ' ' ' 

Hence « . . = 0 for i < j . 

( i i ) i = j 

Again we have 

a. =0 for m = i + l , . . . , k 
im 

a ' . = 0 for m=l,2,...(j-1) 
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but as i = j we have 

a. a ' . = 0 for m ^ i 
im mj 

therefore . = a . , a ! . 
1 1 i i i i 

but 

a . . - ( ? - b - l 
i i l - l 

a i i = ( i : i ) ( - D 2 i = i 

therefore <=. . = 1 f o r i = j 

( i i i ) i > j 
again a. =0 for m=(i+1) , . . . ,k im 

a ' . = 0 for m = l , . . . , ( j - l ) 

therefore = 0 for m = l , . . . , j - l 
' m m - ' and m= (i+1) , . . . ,k 

Hence « . . = E a. a . = E a. a . i i , ". im mi . im mi-J m=l J m=j • • 

m=j m _ 1 2 ~ 1 

( - D d E c b e ' i ^ - 1 ) 1 1 1 

m—1 i-1 
m=j 

0 by lemma 2.11 

Therefore . = 0 f or i > j . 

u j-l i f i = j Hence . . = { n i j 0 otherwise 

So AA' = I or A' = A - 1 

thus b . = E ( T " b ( - l ) i + j a . 
1 J - l J " 1 J 

QED 
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R e c a l l i n g the example at the end of chapter I we s h a l l now 

r e c a l c u l a t e {b.} given {a.} = {0,2,1} k=3 Su=^ 

By theorem 2.1 

h - l ( J i i x - i ) 1 * . , 

3 —1 

so 

b l * a l - ° 

b 2 = a 2 - & 1 = 2 

b 3 = a 3 - 2 a 2 + a 1 = 1 - 2(2) + 0 = 0 (mod 3) 

Hence we have {b^} = {0,2,0} which agrees with the value 

c a l c u l a t e d by Waksman's method. I t i s easy to see that when k i s 

f a i r l y large Waksman's method involves a great deal of c a l c u l a t i o n — 

(g, - l ) k ( k - l ) a d d i t i o n s . The method which we have j u s t developed i s 
k k 

much more d i r e c t , r e q u i r i n g l ess than E 2 ( i - l ) ar i thmet ic operat ions . 

i = l 

That i s less than 2* 1 * k = k ( k - l ) - ar i thmet ic operat ions . The 

method i s b e t t e r by a fac tor g^. For the e n t i r e process to have any 

meaning g^ must be at l eas t 2. 

I l l The Value of ^ 

g.^ i s e s s e n t i a l l y the number of characters permitted i n the 

alphabet over which the s t r i n g i s generated by the Waksman technique, 

s ince there are g^ elements i n ^g^* 

Waksman says nothing more about the s i ze of the alphabet , from 

which the characters to be generated may be chosen, other than to define 

g, as g .c .d{ ( k ) } i = l , 2 , . . . , k - l . As i t turns out , upon c l o s e r 
rC X 
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i n v e s t i g a t i o n , g^ i s 1 unless k i s a prime or a power of a prime. To 

put i t even more s imply , g^ i s i n general 1 and so the Waksman technique 

of generating sequences c o n t i n u a l l y i s meaningless except i n s p e c i a l 

cases of k. For to generate a s t r i n g of any length with only one character 

c o n t i n u a l l y i s merely to generate t h i s one character c o n t i n u a l l y . 

To prove the r e s u l t we have j u s t s tated we must f i r s t prove 

severa l lemmas. 

F i r s t , define Np'(x) as the number of times the prime p i s a 

f a c t o r of x. Hence N2(12)=2, N,-(17)=0 et c e t era , I t i s qui te c l e a r 

N p (xq)=N p (x)+N p (y) when x#), y#). 

Lemma 3.11 

N (i+kp e)=N ( i ) for 1=1,2 ( p 3 - l ) 
P P 

or i f i = p 3 and p ^(k+l) . 

Proof 

Let i = mp p^m then 0<_a<3 
so N (i+kp 3 ) = N ( p a ( m + k p e " ° C ) ) = <*+N (m+kp3"") 

P P P 

But as pVi» P^On+kp^ ) 

then N p ( i+kp 3 ) = cc = N p ( i ) for 1=1,2 (pS-l) 

I f on the other hand, i - p 3 and p. ^(k+1) we have 

N (i+kp B ) = N ( (k+l )p e ) = 3 + N (k+1) 
P P P 

But , as 

J?Vk+l) 

N ( i+kp 3 ) = 6 = N ( i ) 
P P 

QED 
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Lemma 3.12 
cc 

N (ps!) = Z p j _ 1  

P J-1 

Proof: 

We s h a l l prove t h i s lemma by induc t ion on F i r s t , i t i s 

obvious ly true for «=0 and f o r r : a = l . We s h a l l assume the lemma i s true 

for " ^ B and prove i t for <*=8+l. Hence by induct ion the lemma w i l l be 

t r u e . 

8 3 i — 1 8+1 Assuming N (p !) = E (p- ) wr i te out (p 1) i n f u l l and 
P j - 1 

d i v i d e i t in to p sect ions as shown. 

p ^ + D , . 1 f 2 . m m t P ^ I (p.B+l) . . . 2 p 6 | . . . | ( ( p ' - l ) p e + l ) ' . . . p -

Now by lemma 3.11 we know that 

N p ( i+kp B ) = N p ( i ) for i = l , 2 , . . . , p e when k = 0 , 1 , . . . <p -2) 

and a lso for i = l , 2 , . . . (p --1) when k=p- l . 

- 8 
Furthermore when i=p and k=p-l 

N (i+kp B ) = N ( ( p - l + l ) p B ) = N ( p B + 1 ) = 8+1 = N(p P ) +1 
P P P 

Thus p i s a fac tor of each of the sect ions shown, except the l a s t , the 

same number of times; and i s a f a c t o r of the l a s t one more time than of 
g 

the o thers . However, the f i r s t s ec t ion i s p ! , and so p i s a fac tor 

3 1-1 

E (p J ) t imes. 
j = l 
Thus N ( p ( 3 + 1 ) ! ) = P E ( p J _ 1 ) + 1 

P j - 1 
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This lemma may be extended to give the value of N p ( r ! ) where 

r i s not n e c e s s a r i l y a power of p. 

Lemma 3.13 

N ( (p 'x) ! ) = xN (p"!) + N (x!) 
P P P 

Proof : 

C l e a r l y the lemma i s true for x=l . We s h a l l therefore assume 

the lemma i s true for x=y and prove i t for x=y+l. Hence by induct ion 

the lemma w i l l be t r u e . 

cAy+D)! = (P°V)! • (i+P°V)- ... -(y+D" 
= (P°V)I * n (i+P°V) 

1=1 

By lemma 3.11 

N p (i+p°V) = N p ( i ) for i = l , 2 ( p ' - l ) 

and N p (p^+p^y) = <* + N p(y+1) = N p ( p ° ) + N p(y+1) 

then N ( ( p ° ( y + l ) ! ) = N ((p°V)!) + N (p*!) + N (y+1) 
P P P P 

(using the i n d u c t i o n assumption) 

- y N p ( p a ! ) + N p ( y ! ) + N (p*!) + N (y+1) 

= (y+1) N p ( p a ! ) + -N ((y+1)!) 

[noting that N ((y+1)!) = N (y!) + N (y+1)] 
P P P 

QED 

Lemma 3.14 

I f k = p x, where p 1 x, x > 1 and p i s prime, then P ^ g, . 

\ 
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Proof ; 

g k = g.c.d{(J)} 1=1,2 (k-1) . 

To show p ^ g^ we need only f i n d one i such that p \ (^). 

• cc 
Consider the case i n which i = p . 

P a x 
Let us evaluate N (( )) 

P P 

Since ( ? c c x ) - (p g x! ) 
V P « ! (( x - l ) p « ) ! ' 

. CC 
we have N (<f- X )) - N (( p ' x ) ! ) - N (p*!) - N ( ( ( x - l ) p ! ) 

tr ^ r Jr tr 

but then 

" 1-1 
N ((p x)! ) = x E p + N (x!) 

P J - l ? OC 
N (p^!) = E p i"" 1  

P J - l CC 
and N ( ( (x - l )p") ! ) = (x-1) E p j - 1 + N ((x-1)!) 

P J - l P 

from lemmas 3.12 and 3,13. 

Then N ( ( ? « X ) ) = x E p J - 1 + N (x!) 
P V j = 1 P 

- E p j - 1 - (x-1) E p ^ " 1 - N ((x-1)!) 
J - l j - l P 

N (x!) - N ((x-1)!) + (x-1 - (x -1) ) E p i " 1  

P P J - l 

= N (x!) - N ((x-1)!) 
P P 

N p (x ) = 0 as p | x 

Hence p ^ g k 

QED 
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With the proof of t h i s lemma the des ired r e s u l t fol lows 

e a s i l y . 

Theorem 3.1 

k 

I f k ^ p , g, = 1, or the elements of {(.)} i = l , 2 , . . . ( k - 1 ) 

are r e l a t i v e l y prime. 

Proof : 
k k 

k = C { ( i ) } » hence g f c | k. 

Then for every prime p which d iv ides k, apply lemma 3.14. Hence, no 

f a c t o r of k i s a fac tor of g^.. Then, s ince g^ | k , g^ = 1. 

QED 
cc 

Let us now consider the case i n which k = p and determine the 

s i z e of the alphabet permitted i n generating c o n t i n u a l l y a s t r i n g of 

length k by Waksman's method. We can see by the fo l lowing Theorem that 

i n t h i s case g^ = p. 

Theorem 3.2 
I f k = p , where p i s prime and « >_ 1, then g^ = p. 

Proof : 

By the d e f i n i t i o n of g^, i t must be a fac tor of k. Hence, i n 

cc 

t h i s case, g^ = p , where 0 <_ 3 <_ 

We s h a l l show that g^ = p by showing f i r s t that 3 >_ 1 and 

secondly that 3 <_ 1. 

1) We are to show 3 >_ 1, that i s , ,p | g^. 

Consider f i r s t the term 

( P a - i ) * ( p a - i + l ) . . . (P^-l) 
which i s 

of the form of the product of i consecutive integers 
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d iv ided by i ! . By Theorem 74 of Hardy and Wright (1945), 

i ! d iv ides the product of any i consecutive p o s i t i v e 

i n t e g e r s . Hence 

cc cc 
N ( (p - i ) ( p -i+1) . . . (p -1) ) 

P - i ! 

i s defined and 0. 

cc cc 
I f we replace (p - i ) , i n the term, by p , c l e a r l y the 

cc < cc 
value of N w i l l be increased as N (p - i ) < N (p ) for 

P P P 

1 < i < p". 

Then 

N ((?")) - N ( - ( p " - i + l ) - : ; - - ( p ^ l ) ' p " ) 
p i p l ! 

> N ( (p'-D (p'-l+D ' ( p ' - l ) \ 
p i ! 

> 0. 

Thus N ( ( ? ) ) > 1. 
P 1 QED 

We s h a l l now show that 6 <_ 1 and so that g^ = p. 

Consider now the case i n which i = p , 1 and so the member 

p 

(P ) = p !  

(P ) ! (p - P ) ! 

Therefore , 

N [ ( P , ) ] - N (p " l ) - N (P"" 1 !) - N ((p"- P"" 1 ) ! ) 
P p ^ - l P P P 
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j - 1 where N (P !) = Z P 
P J - 1 

cc_ l 
N ( p " _ 1 ! ) = Z P j - 1  

P J - 1 

N ((P."- p" X ) ! ) - N ( ( P ™ - 1 (P - l ) ) !) 
P P 

cc—2. cc 
= (P- l ) Z P j _ 1 + N (P- l ) = (P- l ) Z p j - 1 

j - 1 P j - 1 

as P ^ (P- l ) 

Therefore 

. cc a cc— 2_ cc—J_ 
N [ ( P )] = Z P j _ 1 - Z P j _ 1 - (P- l ) Z P j _ 1  

P P " 1 j - 1 j = l j = l 

« - l . , 
= l + ( P - l -(P-D) s p J _ 1 

j - 1 

= 1 
cc 

Hence = P where k = P 

QED 

We can now see the f u l l impl i ca t ions of Waksman's method of 

c o n t i n u a l r e p l i c a t i o n of s t r i n g s . I f the length of the des ired s t r i n g , 

k, i s a prime, P , or a power of P; then the alphabet from which the 

elements of k may be chosen i s b i j e c t i v e to Z^. Otherwise the alphabet 

cons i s t s of a s i n g l e character and hence no meaningful s t r i n g can be 

generated. 

As an example, l e t us generate the s t r i n g (120222101). We 

note that t h i s can be done using Waksman's technique as k=9 hence 8^-3. 



The c a l c u l a t i o n of {b.} i s c a r r i e d out i n Table 4. 

TABLE 3 

Pasca l ' s T r i a n g l e 

The b inomial c o e f f i c i e n t s ("!") 

j -*• 

0 1 2 3 k 5 6 7 

0 1 

1 1 1 

2 1 2 1 

3 1 3 3 1 

1 4 6 4 1 

5 1 5 10 10 5 1 

6 1 6 15 20 15 6 1 

7 1 7 21 35 35 21 7 1 

8 1 8 28 56 70 56 28 8 
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TABLE 4 

C a l c u l a t i o n of {b.} 
1 

Refer to TABLE 3 for C^""1) 

{a±} = {1 ,2 ,0 ,2 ,2 ,2 ,1 ,0 ,1} 

b-i = ~E ) ( - 1 ) 1 + ? a. ar i thmet ic i s mod;g, 
1 j = i J x J ° k 

b l = 1 

b 2 = 2 - 1 = 1 

b 3 = 0 -2(2) + 1 = 0 

b,4 l = 2 -3(0) + 3(2) -1 = 1 

b 5 = 2 -4(2) + 6(0) - 4(2) +1 = 2 

b,, = 2 -5(2) + 10(2) - 10(0) + 5(2) - 1 = 0 
b 

b ? = 1 -6(2) + 15(2) - 20(2) + 15(0) - 6(2) + 1 = 1 

b g ; = 0 -7(1) + 21(2) - 35(2) + 35(2) - 21(0) + 7(2) - 1 = 0 

= 1 -8(0) + 28(1) - 56(2) + 70(2) - 56(2) + 28(0) - 8(2) + 1 = 2 

With (b^} determined we may proceed with the cont inua l generation 

of the sequence under the ru le s of TABLE 1. 
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TABLE 5 

Generation of the sequence (120222101) 

c e l l i -»• 

0 1 2 3 4 5 6 7 -8 9 <!° 11 12 13 14 15 16 17 18 19 20 

0 P 1 1 0 1 2 0 1 0 2 Q Q Q 

1 1 P 2 1 1 0 2 1 1 2 2 Q Q 

2 1 2 P 0 2 1 2 0 2 0 1 2 Q Q 

3 1 2 0 P 2 0 0 2 2 2 1 0 2 Q Q 

1 2 0 2 P 2 0 2 1 1 0 1 2 2 Q Q 

5 1 2 0 2 2 P 2 2 0 2 1 1 0 1 2 Q Q - - — ' -
6 1 2 0 2 2 2 P 1 2 2 0 2 1 1 0 2 Q Q - - -
7 1 2 0 2 2 2 1 P 0 1 2 2 0 2 1 2 2 Q Q - -
8 1. 2 0 2 2 2 1 0 P 1 0 1 2 2 0 0 1 2 Q Q -
9 1 2 0 2 2 2 1 0 1 P 1 1 0 1 2 0 1 0 2 Q Q 

10 1 2 0 2 2 2 1 0 1 1 P 2 1 1 0 2 1 1 2 2 Q 

A f t e r the 9th time step we not ice that the pa t t ern a^ has 

been generated once and that the i n i t i a l conf igura t ion b_̂  i s now i n 

c e l l s 10-18. At t h i s point we see that the process w i l l c l e a r l y 

generate the des i red sequence c o n t i n u a l l y . 

IV An A l t e r n a t i v e Method of Cont inual R e p l i c a t i o n of L i n e a r Patterns - 

The Wheel Algor i thm 

I t i s c l e a r that Waksman's method i s very r e s t r i c t i v e with 

regards to the alphabet permitted i n cont inua l generation of a sequence 
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of a r b i t r a r y l ength . It i s a lso qui te c l ear that no simple modi f i ca t ion 

of h i s "modulo ar i thmet ic scheme" can be general ized to any s i g n i f i c a n t 

degree. For t h i s reason we now turn to a more general method of r e p l i -

2 

c a t i o n . This method, i n i t s elementary form, requires 0(n ) s ta te s , 

however, ra ther than 0(n) as d i d Waksman's method, where n i s the s i ze 

of the alphabet from which the characters are chosen. This method may 

be modified somewhat so that the number of states required i s about 

n + 4 log2 n and so l e ss than the 2 n+2 required i n Waksman's method 

for reasonably large n . 

The idea behind t h i s general scheme i s qui te s imple . Write 

the s ta te of each c e l l as a p a i r of elements of the des ired output 
3. C e 

alphabet — say [̂ ] [̂ ] [^]. Then th ink of t h i s s i x - t u p l e of states 

as p o s i t i o n s on a wheel r o l l i n g to the r i g h t , and so c lockwise . Hence 

the a lgor i thm may be r e f e r r e d to as the wheel a lgor i thm. The next 
ID EL C 

p o s i t i o n of the wheel w i l l be [̂ ] [̂ ] [ ]• Now suppose b i s l e f t i n the 

p o s i t i o n ( i n i t i a l l y occupied by [^], that i s , the wheel leaves a track 

behind i t as i t r o l l s , the image of the bottom part which was l a s t i n 

that p o s i t i o n . 
a c e 

Using [̂ ] [̂ ] [̂ ] as an i n i t i a l conf igura t ion we have TABLE 6. 

TABLE 6 

Q # [ f ] * Q 

b [*] [ f l [°J Q 

b d [d

f] [\] [ a] Q 

b d f [ f ] [ d] [ b] Q e c a 
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From t h i s i t can be seen the sequence b , d , f , e , c , a w i l l be 

generated c o n t i n u a l l y . Thus to generate a , b , c , d , e , f the appropriate 

i n i t i a l conf igurat ion would be obtained by w r i t i n g t h i s sequence i n a 

f e d 
counter-c lockwise manner around the wheel — [ ] [ , ] [ ] • I t may be 

a b c 

noted that t h i s method i s d i r e c t l y a p p l i c a b l e to sequences of even l ength . 

I f a sequence of odd length i s to be r e p l i c a t e d i t may be w r i t t e n twice 

and considered a sequence of even l ength . Thus to generate c o n t i n u a l l y 

c b a 
[abcj the appropriate i n i t i a l conf igura t ion would be [ ] [ , ] [ ] . a. D c 

The general r u l e for determining the s tate of a c e l l at time 

t+1 i s that the upper h a l f of the c e l l moves two pos i t i ons to the r i g h t 

and the lower h a l f stays i n p o s i t i o n , except at the ends. The lower h a l f 

of the le f t -most p a i r stays i n p o s i t i o n , but a l so moves to occupy the 

top h a l f of the c e l l to i t s r i g h t , which then becomes the leftmost c e l l . 

The top h a l f of the r ight-most occupied c e l l does not move two pos i t ions 

to the r i g h t , but moves to occupy the bottom h a l f of the c e l l immediately 

to i t s r i g h t which was prev ious ly i n the quiescent s t a t e , but now becomes 

the right-most occupied c e l l . 

This process v i o l a t e s one of the ru les which Waksman had s ta ted . 

That i s wi th the wheel a lgor i thm the s tate of c e l l i at time t+1 w i l l 

depend, i n genera l , on the s tate of c e l l i - 2 (the top h a l f of the c e l l 

moves two places to the r i g h t ) at time t . To modify the scheme and avoid 

t h i s problem requires the i n t r o d u c t i o n of a time f l i p - f l o p and so 

e s s e n t i a l l y doubl ing the number of s ta t e s . This f l i p - f l o p w i l l a l t e r n a t e , 

being 0 at even time steps and 1 at odd t imes. The upper h a l f of the 

p a i r representat ion of a c e l l w i l l move 1 p o s i t i o n to the r i g h t at each 
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time s tep . The ends w i l l be handled by appropriate means depending on 

t ime. TABLE 7 formal ly describes the func t ion . 

TABLE 7 

a , b , c 

0 -

Q -

[ a] -L b J 

Present 
State 

L e f t 
Neighbour 

output characters 

an a r b i t r a r y character 

quiescent s tate 

generating p a i r s 

$ - — - - no c e l l present 

X - _ any character 

Right Neighbour 

X(t=l) X(t=0) 

[ 6] L b J 'Si 

g b 

$ b -

a X 

$ a 

b a 

Q Q 

a a 

t=l 

; .Q t=G 
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we have: 

V c 
t=0 a b Q 

0 0 

t= l 
a b c Q 

w \\ 
t=2 a V 

a b c Q 
loj loj 

t=3 a fo] 
a b c b 

W w 

t=4 b 
f -\ 
a a b c b 
0 

To i l l u s t r a t e t h i s , consider the fo l lowing example: 

It i s des ired to generate c o n t i n u a l l y the pat tern febcbj. Then 

I n i t i a l conf igurat ion 
(the bottom symbol i s a time f l i p - f l o p ) 

t=5 

t-6 

t=7 

w 0" 
a b c b a 

w 1 

f ' 
c b 

a l'/b c b a 
Loj loj 

t i 
c 

f \ 

0 
a b c b a b 

w w 

Note that any s ta te could be subst i tu ted 
for the dummy state 0 

One s l i g h t drawback to t h i s method i s that 2 time steps are 

required to generate each new output charac ter . The number of states 

2 
requ ired can be seen to be 0(n ) as: 



states are required for a l l poss ib le p a i r s of outputs and 

time f l i p - f l o p . 

n output s tates 

1 Q, the quiescent s tate 

2 
2n +n+l s tates i s the t o t a l number r e q u i r e d . 

I t should be noted that the number of states required i s 

t o t a l l y independent of the length of the s t r i n g to be r e p l i c a t e d . 

The next quest ion to be asked i s can the number of states r e -

2 

quired be reduced from 0(n ) to 0(n) , perhaps at the expense of the time 

required for generation of each output character? 

The b a s i c schemexof t h i s a lgor i thm i s to represent each output 

s tate as a b inary number and so only p a i r s of b inary d i g i t s are manipu­

l a t e d . This mapping i s an a r b i t r a r y b i j e c t i o n from the output alphabet 

to ]L^. As i t takes l og n* b i t s to represent uniquely the integers of 

a time counter running from 0 to l og n w i l l be required as w e l l . Hence 

4 ( log n) + 1 s tates are required to represent t h i s . The n output states 

and the quiescent s ta te are a l so r e q u i r e d . This gives a t o t a l of 

n + 4 ( log n) + 5 s tates which are needed for th i s method. 

Let F denote the mapping from the output alphabet to Z^. For 

example, i f the output alphabet i s ( a , b , c ) , then n=3 and we could define 

F(a)=0, F(b)=l ,F(c)=2 . TABLE 8 ind ica te s formal ly the workings of the 

b inary wheel a lgor i thm. 

* log n w i l l be used to denote the l eas t integer >_log- n . 
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TABLE 8 

a , b , c b inary d i g i t s i f i n p a i r s , output s tates i f alone 

Q quiescent s tate 

0 0 s tate 

X any a r b i t r a r y c e l l s tate 

At each step the time counter i s incremented by 1 modulo 

( ( log N) +1). Output s tates are reached at time (t+1). 

Right Neighbour 

L e f t 
Neighbour 

1P Q 

I f l ft ft 

$,g b b 

Q Q a X 
a 

Q 

[ a] L b J 

c 

Q 

ft 

c 

0,b a 

t=l ,2 ( ( log n ) - l ) 

ft ft Q 

ft ft [ ° i 

g 

2 t" 2 

d 

— 

. intege . < : F(g) 
4. O 

I f r i g h t neighbour i s Q then 
a=0 i s the only pos s ib l e 
value during these i n t e r ­
mediate time s teps . 



t=log n 

X 

X $,b 
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ft 

[ F _ 1 ( F ( a ) + 2 t " 1 . d ) ] 

ft ft Q 

ft ft ft 

g ft 
-

ft 

As an example, consider the generation of the sequenceC02l|> 

where n=3 and so l og n=2. 

Then 0 = 00 2 

1 = o i 2 

2 = 10 n 

I n i t i a l i z e at time 0 w r i t i n g 021 i n b inary around the wheel 

i n a counter clockwise manner but with the order of b i t s of each characte 

i n v e r t e d . Since the product of l og n and the length of the sequence i s 

even only one copy of the b inary representat ion of the sequence i s r e ­

q u i r e d . 

Thus: 

t=0 
0 
0 

0 
0 

This represents 0 2 
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t=l f *s 
1 f°l 

0 0 0 1 

llj w llj 

t=2 fo] fo" fo' 
0 0 1 1 

UJ 

t=3 fo' fo] fo] 
0 0 1 1 

loj 0 
V J 

l ° J 

t=4 fo] fo] fo] 
0 0 1 1 0 

w 1 

V J 

t=5 fol 0 fo' 
0 2 1 0 0 

Uj w UJ 

t=6 fl] fo] 
0 2 1 0 0 

10J loj loj 

t=7 f f f f r \ 

0 
0 2 1 0 0 0 

w llj l l j 

t=8 1 1 
f \ 

0 
0 2 1 0 0 0 

UJ 12J 12J 

t=9 fo] fl] f l] 
0 2 1 0 0 0 

loj loj l°J 

At t h i s point the s t r i n g has been completely generated once and 

the generating bud sec t ion ( c e l l s 4 ,5,6) i s the same as the i n i t i a l con­

f i g u r a t i o n of the o r i g i n a l generating bud sec t ion ( c e l l s 1,2,3 at t=0). 
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A reminder on time considerat ions would appear to be i n order . 

Waksman's method i s undoubtedly the fas tes t of the three methods discussed 

as one c e l l i s generated at each time s tep . The simple wheel a lgor i thm 

requires two time steps for each symbol and the b inary wheel i s the 

s lowest , -requiring ( ( log n) +1) time steps for each character to be 

generated. The advantage of the wheel and b inary wheel algorithms i s 

that the length of the des ired sequence has no bear ing on the s i ze of 

alphabet which may be used. In fact the s i z e of alphabet and length of 

s t r i n g are both completely a r b i t r a r y . For a given s t r i n g length the s i z e 

of alphabet i s determined automat ica l ly i n Waksman's method. Furthermore, 

i t i s only i n s p e c i a l cases that the s i z e of t h i s a l p h a b e t , i s not 1. 

The advantage of the b inary wheel a lgor i thm over the simple wheel a lgor i thm 

i s the d r a s t i c reduct ion i n the number of s tates r e q u i r e d . 

V Extension of the Wheel Algor i thm to the 2-Dimensional Case. 

The next step i n the preceding l i n e of thought i s c l e a r l y to 

generate rec tangu lar , rather than j u s t l i n e a r pat terns . This can be 

approached i n much the same manner as the l i n e a r case. The problem can 

now be formulated i n the fo l lowing manner; 

Define a funct ion on a 2-dimensional array of i d e n t i c a l f i n i t e 

s tate automata, such that the s tate of c e l l ( i , j ) at time (t+1) i s a 

func t ion of the states of that c e l l and i t s four immediate neighbours 

t ( i , j ) , ( i - l , j ) , ( i + l , j ) , ( i , j - l ) , ( i , j + l ) ] and so that an a r b i t r a r y 

predetermined rectangular pat tern of c e l l s tates w i l l be generated 
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c o n t i n u a l l y throughout the space. 

This problem may be solved by apply ing the wheel a lgor i thm 

twice . F i r s t the a lgor i thm i s used, moving i n the h o r i z o n t a l d i r e c t i o n , 

to produce generators s i m i l a r to those used i n the one dimensional case. 

These then generate the pat tern v e r t i c a l l y . The generators i n the one 

dimensional case are p a i r s of output characters together with a time 

f l i p - f l o p . In the two dimensional case we s h a l l s t a r t with p a i r s of 

p a i r s and a time f l i p - f l o p . The f i r s t a p p l i c a t i o n of the wheel a lgori thm 

generates p a i r s of charac ters , and a l so sets a time f l i p - f l o p to zero . 

Consider the general case of rectangular pat tern r e p l i c a t i o n , 

that i s , generate 

a i a . ~ . . . . . . a 
m, l m, z m,n 

a 2 , l 

a, .. . . -a- „ • a, c o n t i n u a l l y . 

1,1 1,2 l , n 

I t should be noted that c e l l s are numbered as points i n the 

f i r s t quadrant of the Cartes ian plane and not as' matrix elements. Hence 
a.. 1 i s i n the lower l e f t hand corner , 

i » i 

The f i r s t problem i s to decide what the i n i t i a l conf igura t ion 

should be. To generate the columns i n the upward d i r e c t i o n , we require 

that at some time column j + kn k = 0 , l , 2 , . . . , j = l , 2 , . . . , n -be of the 
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form 

1.3 
a 

t m » 3 j 

2,1 
a -t • 

m-i+1, j 
a. . 

I 1»J 

a„ . 
I 2>3 J 

m>3 
a. . 

I x>3j 

with a l l c e l l s above c e l l (m,j) i n the quiescent s t a t e . Once t h i s 

conf igura t ion i s reached a s tra ight forward a p p l i c a t i o n of the wheel 

a lgor i thm w i l l generate the (j + kn)th column i n the proper manner. 

Therefore the generation process on the i t h row i=l,2,..., 

should y i e l d as output 

m-i+1,1 
a. 

m-;+i,2 
i a i,2 

m-i+1, j 
a. . 

I i»3 

m-f+l,n 
a. 

repeated ly . Thus the i n i t i a l conf igurat ion becomes ev ident . C e l l ( i 
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i = l , 2 , . . . , m , j = l , 2 , . , w i l l be i n s tate 

m-i+1, n-j+1 

[ a i , n - j + l -

m-i+1,j 
a. . 

I 1»3 

0 

(5.1) 

i n i t i a l l y . 

I t may be noted that i n c e r t a i n cases only part of t h i s i n i t i a l 

c o n f i g u r a t i o n must be present , although the i n c l u s i o n of the e n t i r e con­

f i g u r a t i o n as s ta ted above w i l l c e r t a i n l y produce the correc t r e s u l t . I t 

may be noted that i f m i s even the f i r s t — rows are i d e n t i c a l to rows 

y + 1 to m; and hence, only the f i r s t — rows need be i n i t i a l i z e d . S i m i ­

l a r l y i f n i s even only the f i r s t — columns need be i n i t i a l i z e d . 

To i l l u s t r a t e t h i s process more f u l l y l e t us consider the 

c o n t i n u a l generation of the pat tern 

a b c d 

e f g h 

i j k m 

The time f l i p - f l o p w i l l be seen to be 0 at even times and 1 at 

odd t i m e s . f o r h o r i z o n t a l generation and reversed for v e r t i c a l generat ion. 
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The i n i t i a l conf igura t ion i s given by (5.1)aas 

t=0 

Q Q 

ft ' f t ' 

ft ft 

Q 

0 
* 

ft' ' f t ' 

ft ft Q 

0 . o . 

ft' ft 

ft Q 

0 0 

The development of the pa t t ern may be c a l c u l a t e d by fo l lowing 

a tab le s i m i l a r to TABLE 7, but i n which we consider p a i r s of the form 

[̂ ] as one symbol and produce output symbols of the form ft 
0 

Af ter 

these symbols are produced we continue with them as i n TABLE 7, reading 

lower neighbour for l e f t neighbour, and upper neighbour for r i g h t ne igh­

bour. Thus the des ired output symbols are propagated i n an upward 

d i r e c t i o n . 
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t=l 

t=2 

ft 

ft 

ft 

ft 

' ft 

ft 

[ [°] 1 
ft 
c 

Q 

r-H
 1 

l h J \ ft} 

ft 
Q 

m 

[ c ] Q 

1 

Q Q Q 

ft ft 

ft 

ft 

ft 

0 

ft ft 

ft 

0 

ft 

ft 

ft 
0 

ft 
m 

[°] 
0 
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The generation of the pat tern ean be seen c l e a r l y from t h i s 

p o i n t . The general form of the pat tern whi le being generated can be 

seen at time t=12. 

t=12 
column 
1 2 

row 10 

tt 

tt 

Q 

Q 

tt 
1-

tt 
l 

tt 

1 

f 

Q 

Q 

t°] 

tt 

tt 

1 

k 

Q 

Q 

tt 

tt 

tt 
m 
1 
d 

m 

5 

Q 

Q 

6 

Q 

Q 

tt Q 

1 

[*] [tt 
1 

tt [tt 
1 l 

tt 

.7 8 9 

Q Q Q 

Q Q Q 

Q Q Q 

Q Q Q 

Q Q Q 

Q Q Q 

Q Q Q 

tt tt Q 

tt tt 
0 

' t t 1 ' t t ' 
Q 

tt 
I ° J 

' t t ' 
[ i ] Q 

L k J 

10, { o J 
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This a lgor i thm works as qu ick ly as can be expected. The 

length of each column i s increased by one every second time step and the 

number of columns conta in ing f i n a l output symbols i s increased every 

second time s tep . However the number of states required for th i s opera­

t i o n i s f a i r l y large s ince we are forced to deal with quadruples of out­

put s tates i n the i n i t i a l generation process . The a c t u a l number of 

s tates may be c a l c u l a t e d as fo l lows: 

1 quiescent s tate 

4 
2n a l l p o s s i b l e quadruples of output s tates i n each of 

the two poss ib le time pos i t ions 
2 

2n a l l pos s ib l e p a i r s i n each time p o s i t i o n 

n output s tates 
° n 4 2 
2n +2n +n+l 

C l e a r l y th i s i s qu i te an undes irable number of s tates to r e ­

quire e s p e c i a l l y when n i s qu i te l a r g e . A t • t h i s point we may look back 

to the one dimensional case and r e c a l l that the corresponding problem was 

solved by mapping b i j e c t i v e l y the n output charac ters , i n an a r b i t r a r y 

manner, onto the r i n g of integers modulo n , that i s Z^. Then only b i t s 

need be manipulated u n t i l the ac tua l character generating time s tep . 

There must however, be a time counter running from 0 to l og n assoc iated 

with the p a i r s of b i t s and a time f l i p - f l o p , associated with the quadruples. 

Therefore the number of states for t h i s method may be determined as 

fol lows 

1 quiescent s ta te 

4 
2:2 poss ib le quadruples of b i t s and a time f l i p - f l o p 

2 

2 . ( ( l o g n)+l pos s ib l e p a i r s with time counter 

n output states n+4 log n+36 states are required 
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As i n the one dimensional case, the b inary representat ion has 

two drawbacks. F i r s t , i t i s more d i f f i c u l t to wr i t e down the required 

i n i t i a l c o n f i g u r a t i o n , which occupies log n times as many c e l l s i n each 

d i r e c t i o n as does the non-binary form, and secondly, the output characters 

are produced only once i n every ( log n) + 1 time steps i n each column. 

In genera l , however, the column generation processes w i l l be out of 

phase with each other due to the fact that column generation w i l l begin 

on a new column at every other time s tep . Symbols are produced i n a 

" t r i a n g u l a r " form as i n the non-binary case. Hence the rate of product ion 

of a new output ce l l s i s p r o p o r t i o n a l to the time t . 

A simple example of the use of the b inary wheel a lgor i thm i n 

two dimensions would probably make the workings of the general case 

much c l e a r e r . 

fa b 
Suppose we are to r e p l i c a t e c o n t i n u a l l y the square c ^ 

Then n=4, so log n=2. We can define a b i s e c t i o n F from the alphabet to 

by a «-»- 0 = 00 2 

b -w 1 = 0 1 2 

c 2 = 10 

d -M- 3 = 1 1 2 

Then using the non-binary method we could i n i t i a l i z e the 

Si 
process with c e l l (1,1) i n s tate [ ] 

0 

However, us ing the b inary technique the process i s not qui te 

as easy to i n i t i a l i z e . Let us f i r s t look at the sets of p a i r s which 
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must be generated by the quadruples i n order to generate the des ired 

p a t t e r n . For the sake of c l a r i t y , l e t us temporari ly abandon the funct ion 

F as defined and l e t 

F(a) = 2-a± + &2 

F(b) = 2'b± + b 2 

F(c) = 2'c± + c 2 

F(d) = 2 - d 1 + d 2 

where a , , 

a>2 9 • • • 3. ire e i ther 0 or 1. 

Then to generate the odd numbered columns, which have a 

{caca ...} form we must produce 
(row 2) 

(row 1) 

r \ 

a i 
C 2 
0 

as the elements i n the f i r s t two rows of these columns. 

S i m i l a r l y 

fb. 
(row 2) 

(row 1) 

,0 , 

0 

must be generated i n the even numbered columns. 

Thus the output for the h o r i z o n t a l generator i n row 1 i s 



41. 

a l 
C 2 

10 J 
f \ 

a 2 
C l 

and i n row 2 

0 

,0 , 

fb. 

0 

must be generated c o n t i n u a l l y . 

Therefore the i n i t i a l conf igurat ion of row. 1 i s 

f 

and for row 2 
a 2 

, c l , 
0 

TABLE 10 traces the development of the pat tern through severa l 

time steps a f t er r e p l a c i n g a^, a ^ , . . . with t h e i r defined va lues . H o r i ­

zonta l propagation i n s t r a i g h t forward, v e r t i c a l propagation follows 

TABLE 8 i n Chapter IV . 



t=0 
row (2) 

row(l) 

ft 

ft 

' f t ' 

ft 

0 

t= l 

ft 
0 

ft-

[°] 

0 

ft 

ft 

[°] 

ft 

ft 
0 

' f t ' 

ft 

0 

42. 

TABLE 10 
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[°] 

[°] tt 
0 

tt 
0 

f0 1 
[ ] 
L0 J 

[°] 

[°] 

f t 0 ] 1 
tt' 

0 1 
V J 

' t t ' t t ' 

0 
V. J 

c b 

tt 

0 

tt 

tt 
0 

[°] 

ft [°] 

tt ' t t ' 

f 

0 

•[°] 

0 

tt 

I 

: t t 

tt 
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From t h i s the general r e p l i c a t i o n pat tern may be seen. 

VI Extension to d-dimensional space 

The next step i n the development of t h i s theory i s the ex­

tens ion to a r b i t r a r y (d) dimensional space. That i s , to def ine a funct ion 

on a d-dimensional array of i d e n t i c a l f i n i t e automata so tha t , given the 

appropriate f i n i t e i n i t i a l c o n f i g u r a t i o n , the e n t i r e p o s i t i v e region of 

d-space w i l l be f i l l e d with repeated images of an a r b i t r a r y predetermined 

d-dimensional hypercuboid . Again we have the condi t ion that the s tate 

of any c e l l at time (t+1) be a funct ion of the states of that c e l l and 

i t s 2̂  immediate neighbours at time t . 

The technique used i s the obvious extension of that used i n 

the 2-dimensional case. The wheel a lgor i thm i s used on the dth l e v e l 

generators to form ( d - l ) s t l e v e l generators . These i n turn generate 

(d-2)nd l e v e l generators i n the same way that the v e r t i c a l or f i r s t 

l e v e l generators were produced by the h o r i z o n t a l , or second l e v e l 

generators i n the 2-dimensional case. In any case, a f t er d such t r a n s ­

formations the terminal or output s tates emerge. As i n the 2-dimensional 

case, when n i s large the number of s tates required becomes much l a r g e r . 

A c t u a l l y , as may be expected, when d i s large the number of states r e ­

quired becomes as tronomica l . Therefore , to keep the number of states 

w i t h i n reason s igna l s may be sent i n b i n a r y , as i n the 2-dimensional 

b inary wheel method. Only iiti the ac tua l generation of output symbols do 

non-binary forms have to be deal t w i th . Hence, i t should not be sur ­

p r i s i n g that the e f f ec t of dimension s i z e (d) and alphabet s i z e (n) upon 
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number of s tates required are t o t a l l y independent. That i s 

number states = F(d) + G(n) . 

Let us now determine the number of states required to generate 

c o n t i n u a l l y an a r b i t r a r y d-dimensional hypercuboid of elements of an 

alphabet of c a r d i n a l i t y n . F i r s t consider the non-binary representat ion . 

To apply the wheel a lgor i thm and move from 1 dimensional generators to 

the output s ta te we require the quiescent s ta t e , the n output states and 

2 

a l l pos s ib l e p a i r s of outputs together with a time f l i p - f l o p , or 2n 

s ta te s . To generate the p a i r s , quadruples are needed, and so on up to 

2^ t u p l e s . Thus the number of s tates S(d,n) required w i l l be given by 

The quiescent s tate and n output s tates are required as are the 

4 ( ( l og n)+l) states which are needed i n moving from binary p a i r s to 

output s t a t e s . At higher l e v e l s , however, the process i s a simple 

t r a n s f e r of 22 tup le s . In general the j t h l e v e l requires a l l poss ib le 

i 2 j 

2 J tuples at both time p o s i t i o n s , or 2«,2 s ta t e s . Therefore the number 

of s tates required i n the d-dimensional a p p l i c a t i o n of the b inary wheel 

a lgor i thm (S, (d,n)) i s given by 

d 
S(d,n) = 1 + n + E n 

j - 1 

(6.1) 

a large number for s u r p r i s i n g l y small d . 

In the b inary wheel representa t ion , the number i s much lower. 

S, (d,n) = 1 + n + 4 ( ( l og n)+l) + 2 E 2 
b . „ 

J=2 

d 
= n + 41og n + E 2 

j = l 
- 3. (6.3) 
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As was mentioned be fore , t h i s can be viewed as the sum of a funct ion of 

n and a funct ion of d . 

VII Conclus ion 

The r e s t r i c t i o n s inherent i n Waksman's method of c o n t i n u a l 

r e p l i c a t i o n of a l i n e a r s t r i n g have been shown. I f the length of the 

CC 
des ired s t r i n g i s not of the form P where P i s a prime, only one character 

may be produced. This means that no meaningful s t r i n g may be generated. 

Furthermore i f the s tr ing length i s of the form P , only P output 

characters are permit ted . These r e s t r i c t i o n s cannot be overcome us ing a 

modulo a r i t h m e t i c a lgor i thm. For t h i s reason the wheel a lgor i thm was 

developed. Using t h i s a lgor i thm the number of characters i n the output 

alphabet i s completely independent of the length of the s t r i n g , and i n f a c t , 

both are a r b i t r a r y . The b inary wheel a lgor i thm was developed to reduce 

the number of s tates requ ired to produce a s t r i n g conta in ing n d i f f e r e n t 

characters to 0 (n) . I t was shown a l so that both the wheel a lgor i thm and 

the b inary wheel a lgor i thm can be general ized to produce c o n t i n u a l l y a 

d-dimensional hypercuboid . F i n a l l y , i t should again be noted that the 

number of s tates requ ired to generate patterns i n d-space us ing an 

alphabet of c a r d i n a l i t y n i s of the form 

F(d) + G(S) 

where 

F(d) = 0(2 Z ) 

and G(n) = n + 41og. n . 
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