CONTINUAL PATTERN REPLICATION
by
JAMES IAN MUNRO

B. A., University of New Brunswick, 1968

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
in the Department
of

Computer Science

We accept this thesis as conforming to the

required standard.

The University of British Columbia

August, 1969

In presenting this thesis in partial fulfilment of the requirements for
an advanced degree at the University of British Columbia, | agree that
;the Library shall make it freely availableifor reference and study.

| further agree tha pemmission for_extehsive copying of this thesis
for scholariy purposes may be granted by thevHead of my Department or
by his representatives, 1t is understood that copying or publication
of this thesis for financial gain shall not be allowed without my

written pemission.

Department of Computer Science

The University of British Columbia
Vancouver 8, Canada

Date September, 1969

ABSTRACT

This thesis continues the studies of A. Waksman (1969) in the
repeated generation of finite strings in a one dimensional array of fi-
nite automata., Waksman handles thispproblem by the use of a '"modulo
arithmetic" algorithm. This is shown to be very restrictive with regard
to the number of charécters permitted in the output string. In fact, it
is shown that unless the length of the string which is to be repeated is
of the form pm, where p is prime, only one output character is permitted.
This of course makes the process quite meaningless,

For this reason, a new algorithm is developed. This is re-
ferred to as the wheél algorithm, since there is an obvious analpgy
between it and a wheel, with the output string on its circumference
rolling alonggthe array and leaving the imprint of the characters in the
string behind it in the same way that a wheel leaves tire tracks. The
number of states required for such an algorithm is large and so the bi-
nary wheel algorithm is introduced. By using this algorithm, in which
an output state is represented as a string of bits in several cells, the
numbef of states required, in addition to the n output states, can be
reduced to about & log2 n.

Both the wheel and binary wheel algorithms are then extended

to the two dimensional and finally the d-dimensional cases.

IT

I1T

Iv

VI

VII

TABLE OF CONTENTS

Page
INtYoduCtion o « o o o o o o o o o o o0 o o o o o o1
A More Direct Method of Determining‘{bi})
The Value of = 12
An Alternative Method of Continual Replication
of Linear Patterns -— The Wheel Algorithm 22
Extension of the Wheel Algorithm to the 2-dimensional
CASE@ 4 4 4 o o o s o o o o o s o o o o s o o o0 o 31
Extension to the d-dimensional Space . « « « & o o 44

ConCluSion e o & o o o ® * 8 e & o ° & o o o v o o 46

ii

iii

ACKNOWLEDGEMENTS

I wish to thank Dr. R. S, Rosenberg for the guidance and
assistance which he extended to me in the preparation of this thesis

and Dr. A, Mowshowitz for his helpful remarks in preparing the final

manuscript.

The financial assistance of the National Research Council of

Canada is also gratefully acknowledged.

I INTRODUCTION

In a recent paper, Waksman (1969) uses a one-dimensional array
of finite state machines tb model the céntinual replication of a sequence
of k symbols represented By the states of the cells of the array. By
continual replication of a sequence of length k we mean that after an
appropriate length of time, dependent on m, the subsets of cells

{ik+1, ik+2,...(i+1)k} for i=1,2,...,m will each be replicas of the de-
sired sequence of k symbols. Thus if our alphabet were {0,1} and we
wanted to reproduce the string of length 4 (0111) continually, after an
appropriate length of time we would have

{0111011101110111...}

The principal restriction on the transformation to be performed
is that the state of any cell at time (t+l) is a function of the states
of that cell and its two immediate neighbours at time t. Waksman shows
a method of generating continually strings of length k in the previously
described manner provided the characters from which the string is con<=
structed are chosen from the ring of integers mod 8y ng; where

g = gcd{(?)} i=1,2,...,k~1. (1.1)

That is, is the greatest common division of the set of binomial co-

8

efficients (?) other than those which are 1.

The problem is formulated by Waksman as follows:
Suppose we want to generate continually the string‘{ai} i=1,2,...,k;
then, we start with the initial configuration consisting of cell 0 in a
transition state, P, the next k cells in states bi i=1,2,...,k and all

other cells in the quiescent state, Q. It can be seen that the relation

between the strings a; and bi is given by

1 -
a =73 (1 1

) b, (1.2)
1 4a1

j=1" 7]

The actual method of calculating'{bi}given'{éi} will be ex-
plained later. It is to be understood that all arithmetic will be modulo
8y

At each time step one and only one cell is in the transition
state, P, At time t, cell t only will be in state P. The process for
any cell is basically broken into two segments, the time before it enters
state P and the time after it enters stateFP., At each time step the cell
in state P and its right hand neighbour exchange states. After this has.
happened to a cell, it retains this state. The interesting part of the
process is, then, what happens before a cell enters the transition state.

If cell i is in state ét ., at time t, with the initial condition a, ,=b

" 0,1 "1
for i=1,2,...,k; we define 44,1 by
a .=a .+ a .
1,1 ei t,i-1 , : (1.3)

where a cell in the quiescent state is considered to be in state 0.

To redefine the function in a more formal manner we may follow
Table 1 which indicates the transformation up to the time of entry into
the terminal state. To rigorously define the function we may think of
the cells as having an additional flip flop which is off until the right
neighbour of a cell enters state P, aAt that time the flip flop is

turned on and no further change can occur in the state of the cell.

-TABLE 1%
Flip flop in position O
Q = quiescent state
P = transition state
® = no cell present (left neighbour of cell 0)
a; = an element of Zg,

* The output given in this and all similar tables is at
time t+1,

A Right neighbour
cell state at

time t .. .a, Q... . a,
i - i

ar a;ta, a;ta

Left
neighbour
P P P
Right neighbour Right neighbour
Left Ql Q Left P |a,
neighbour neighbour J
] a
Q| Q 3
% 2 % | %

No other configurations can occur, Thus if we initialize the
array as previously mentioned and follow the transition of Table 1, cell

‘0 will enter the terminal state ars cell 1, bl+b2 = a, and in general
cell i-]1 enters terminal state
Ioi-1
: ()b, = a, (by equation 1.2)
jo1 3717 3 H

at time t=i, Out problem is now to calculate {bi}for a given set {ai}.
Waksman found thét'{bi} could be generated from-[af' in the following

manner, Let a,.za, - 1i=1,2,...,k and write a

1i°% - 1T 11210 00 @

1K Then

]

complete a k x k matrix by letting

a =

mj am_l,j‘-, + am—l,j:l—l m=i:.'§,...,k

3=1,2,...,k-1
(1.4)

and a = a = a
mk
The arithmetic is of course mod 8 Waksman shows that the
process is continued for m = k+1, k+2,..., and that the matrix is re-

peated, or that a « = any tue .posigive integer..; Thig property

. a_
ek, j m, j

is due to ‘the fact that the arithmetic is done modulo 8+ This process
is essentially what happens in the actual generating machine before the
P state is entered. The only difference is that the k-tuple remains
stationary instead of moving to the right.

After the k x k matrix has been formed the first column will be
called the first transposition column, This column is taken as an ini-
tializing row for a second matrix formed in the same manner, and hence
thé first column of this matrix is called the second transposition column.
Waksman shows that if 8y such matrices are formed the gkth transposition
column will be the set'{ai}. Therefore the first row of the gkth mat;ix,
or the (gk—l)st transposition column generates'{éi} in a manner corres-
ponding to that of the generating function. Hence the (gk-l)st trans-
position column may be taken as'{bi}.

‘A numerical example may make this process somewhat clearers
Suppose we are to generate {021} continually, so k=3 and gk=3.
Then write

0 21 and follow formula (1.4) 3-1=2 times

1y o021
201 0 2 2 is the first tramsposition column
211
2y 022
: 0 2 0 is the second transposition
212 \
column and so 0,2,0 = bi
002

To check that {0,2,0} will indeed produce {0,2,1} we shall form
the g, or third matrix,
(3) 020
220
120
We see then, that the desired sequence {0,2,1} is produced. To illustrate
the previously mentioned fact that if this process is continued the entire
matrix will be repeated, and so the gkth transposition column will be re-

peated we shall continue a few more time steps.,

|1 20

(020

6.

We shall now start the generating function with‘{bi}s{O,Z,O}

"TABLE 2

6 0 2 1 0 2 1 P O 2 0 Q
7 021 0 2 1 0%P 2 2 O
After time step 3 wé note that the desired sequence has been
generated once and that the '"generating bud" is the same as it was when
initialized. Thus we see that the process will work.
An important consideration in judging the merit of such a scheme
is the number of states required. Waksman requires the following states:
1 Q the quiescent state
1 P the transition state
2.gk the integers from 0 to (gk—l) and also a flip flop to
indicate whether a cell has entered its terminal state
or not.
This gives a total of z(gk+1) states, that is about twice as many states
as output characters. Another method of continual generation of se-

quences will be introduced in Chapter 4 and at that time it will be

7.‘
useful to compare the number of states required for the present method

and the one introduced at that time.

11 .A_More.Direct_Method.of_Determining1{bi}

Oncel{bi}'has been determined and the generating function has
been initialized the generation of ai's is straight forward. The process
occurs as fast as can be expected for such a structure; that is, one new
output cell per time step. The generation of'{bi} by Waksman's method
is, however, very tedious, expecially if gk is fairly large. Fortunately
it turns out that the method is somewhat inefficient and that {b } may
be determined directly, rather than by iterative procedures, from {ai}.
Consider the following discussion:

Recall equation 1.2

Rewriting this in vector-matrix notation, we have:

{ r RO Y SR) ,-;P 3 N
2 A

. = : l—l ; : (2 .1)
. . G _1) : :

Lak) \l 1“ Kka

or

a=Ab

We want to express b in terms of a. This may be done by rewriting equation

2.1 to yield

8.

Our problem is now simply to invert A. We shall show that:

R

-1 1 é

1 1 E

Ao - i i
g"{<§:i)<—1>i+j}- é

NS hi k'(-l)k+2 R o b Ll 1

To express this simply in words, A 1 has the same elements as
. i+j
A, however the (k,j)th element has the sign of (-1) . A more useful

way of writing this relation would be as Theorem 2,1.

Theorem 2,1

b

-

_ im1y oy i
17 (j_l)(1) 3.

To prove this theorem we need the following lemma:

Lemma 2,11
i i-1, ,m-1 m
L (m_l)(j_l)(—l) =0
m=]
_ G-} . _ @Dt _m
Tt @DE-m ! GO @)
w=j
: (i-1)1 -t m
= L (-1)

G- 1@E-in (i-m) ! (m-3)!

i
. i-1 i=3y o 1ym 1V (1Y
= (j_l) mi_ (m_j)(1 (i-1)-@ }) i-3
=] :
(i-3)-(m~j)=i-m
let k = n—j
h = i-j
h
j ,i-1 h k
= DGEID T ED
J k=0
. . h
By expanding (1-1) we note that
h
k
I OEDE =0
k=0
and hence
3 dhahplao
oG Ga
n=] ‘
QED

We are now ready to prove the theorem.

Proof of Theorem 2.1

i-1 : . .
(;_1) for i=1,2,.00,k §=1,2,..4,1
Let a,, =
0 for i=1,2,...,k j=it+l,...,k

This defines the matrix A ='{aij}.
Similarly we define

-1 {4 - .)
e (J%—]_) (_l)l J i_=ls29-°°’k j=1,2,..0,1

0 i=1,2,...,k j=i+l,...,k

and so define A' = {a“.}.
1]

10.
Then from the definition of'{bi}\in equation 1.2, we have
shown that a = A b,

What we are to prove is that

i-1 i+j
(j_lg (_l) a.

o
|
[I e

j=1 3

or that b = A'a,
That means A_l = A' or that AA'=I,

Let AA' = {«, }
1]

k
then g = z a, a&. .
m=1 J

We 'shall show that “iq = 1 and that mij =0 if 4.# j, by

considering the three cases (1) i < j

(11) 1 =
(1ii) i > j
(1) 1i<j

A is triangular, therefore a; . 0 for m=it+l,...,k

A' is triangular, therefore a%j = 0 for m=1,2,...,j-1
Therefore a, a;j =0 for m=1,2,...,(j-1)

and. for m=(i+l), ...,k

and. as 1 < ja,.a. , =0 . for m=1,2,...,k
Am mj- -
Hence «,, = 0 for i < j.
1] co T
(11) i =3

Again we have

a, =0 for m=i+1,...,k

-
1]

0 for m=1,2,...(j-1)

(iii)

\

but as i = j

a, a', =0
im mj

therefore «,,
ii

but
i-1
333 = Gop)
a,. =
11

therefore «, .
1]

i>j

again a,
& im

' =

mj

therefore a aéj =0

Hence «,, =
i

[}
™

m=j

(-1)3

i-
-

we have

for m # i

=a,, al

ii Tii

=1

. -1 2i
GPEDT =1

=1 for i = j

0 for m=(i+1),...,k
0 for m=1,...,(3-1)

for m=l,...,j-1
and m=(itl),...,k

k i
z a; a', =
s

- a, a.,
., im “mj.
m=J - o . -

1
1

m-1
j-1

mt]

) (G _7)(-1)

: i«l, m-
% (m_l)(j_

1 m
. 1)(—l)
m=]j

0 by lemma 2.11

Therefore mij =0 for i > j.
1 if 1 = j

Hence ij — { otherwise

| . | . -1
So AA" =1 or A" = A

i
. {44

thus b, = = ChHnida

Ioya1 j=1 J

QED

11.

12,

Recalling the example at the end of chapter I we shall now

recalculate {bi} givenA{ai} = {0,2,1} k=3 gk=3
By.Theorem 2,1
w1 dhen™
j=1
so
bl =a; = 0
b2 =a, - a = 2
. b3‘= ay - 2a2 + a; = 1-202)+0=0 (mod 3)

Hence we have'{bi} {0,2,0} which agrees with the value
calculated by Waksman's method. It is easy to see that when k is

fairly large Waksman's method involves a great deal of calculation --

(g, ~1)k(k-1) additions. The method which we have just developed is
k

k
much ‘more direct, requiring less than £ 2(i-1) arithmetic operations.
i=1
. O+k-1 - . .
That is less than 2° 5 * k = k(k-1)- arithmetic operations. The

method is better by a factor 8y * For the entire process to have any

meaning g, must be at least 2.

ITI The Value of 8y

.Agk is essentially the number of characters permitted in the
alphabet over which the string is generated by the Waksman.technique,
since there are 8 elements in ng.

Waksman says nothing more about the size of the alphabet, from
which the characters to be generated may be chosen, other than to define

g, as g.c.d{(E)} i=1,2,...,k=1. As it turns out, upon closer

13.
investigation, = is .1 unless k is a prime or a power of a prime. To

put it even more simply, is in general 1 and so the Waksman' technique

B
of generating sequences continuélly is meaningless except in special
cases of k. For to generate a string of any length with only one character
continually is merely to generate this one character continually,

To prove the result we have just stated we must first prove
several lemmas, |

First, define Np(x) as the number of times the prime p is a

factor of x. Hence N2(12)=2, N5(l7)=0 et cetera, It is quite clear

Np(xq)=Np(x)+Np(y) when x#0, y#0.

Lemma 3,11

Np(i+k§3)=Np(i) for 1=1,2,..., (@ -1)

or if i=p6 and P *(k+l).

" "Proof
Let i-= mpcc b*m then O0<«x<g
so N (1+kp®) = Np(p*<m+kp5’“)) - «+Néan+kp8'“)

But as p*m, Q*(Hﬁkps-m)

then N (i+kp®) = « = N (1) for i=1,2,...,(0"-1)
B

If on the other hand, i=p” and Q *(k+l) we have

Np(i+kp?) - Np((k+1)g3) = B+ N (D)
But, as

P (k+1)

Np(i+kp6) =B = Np(i)

QED

14,

We shall prove this lemma by induction on «, First, it is
obviously true for «=0 and for~e«=1, We shall assume the lemma is true
for «=8 and prove it for «=R+1l. Hence by induction the lemma will be

true.
B , . _
Assuming Np(pg!) = I (pg l) write out ¢Y6+ll) in full and
j=1
divide it into p- sections as shown.

p Dy w2 L oBlefi L 28] L (e B Ll p P

Now by lemma 3.11 we know that

B

Np(i+kp.5) = N,(1) for 1=1,2,...,5" when k=0,1,...%-2)

and also for i=l,2,...(p$—l) when ksp-1.
8

Furthermore when i=p.

A N 11y By - N
Np(1+kp-) = Np((P 1+1)p ") Np(p

and k=p-1

By = g1 = npf) +1

Thus P is a factor of each of the sections shown, except the last, the
same number of times; and is a factor of the last one more time than of

the others. However, the first section is pB!, and so p- is a factor

B ‘o1
T (37 times.
j=1
g .
Thus N (p‘(BH)!) =p ¢ (@7 l) + 1
P i=1
j
B .
= 1 pJ +i1
j=1
B8 .
= 3 pi
j=0
B+l

QED

Q.
[}

~<

15,
This lemma may be extended to give the value of Np(r!) where
r is not necessarily a power of p.

Lemma 3,13

Np<<p“x>z> = pr<p“!> N (Gxl)

Proof:

Clearly the lemma is true for x=1. We shall therefore assume
the lemma is true for x=y and prove it for x=y+l. Hence by induction

the lemma will be true.

(3 (y+HL))! = (B y)! - (}+p“y>- cee t(ytD) T

@y)! + T (i+py)
i=1

By lemma 3,11

Np (i+p°:y) = Np(i) for i=l,2’co-,(Pm—l)
and Np (p +P y) == + NP(Y+1) = Np(P) + Np(y"'l)
then Np((p“(y+1)s) = Np((p“y)!) + Np(p“!) + Np<y+1)

(using the induction assumption)

pr(p“z) +N (1) + Np(p“!) + N (3+1)

(y+1) Np<p“!> N (GHD D)

[noting that Np((y+1)!) Np(y!) + NP(Y+1)]

QED

" 'Lemma 3.14

If k = me, where P * %X, x > 1 and P is prime, then P * 8

16.
Proof:
S K .
gk = gQC.d{(i)} 1=l,2,ooo,(k-l)o
To show p * 8, we need only find one i such that p * (?).
Consider the-jcase‘in which i ='i)m.

Let us evaluate Np (('gmx))

Since (I;:x) - ® “x!)
P! ((x=1)p=)t °?

we have Np ((gsx)) = Np((‘?ax)!) - Np(Pm!) - Np(((x—l)Pm)!)

but then
o« * i1
N (p x)!) =x I p + N (x!)
p .21 p
i
N @ 1) = % p'J"_l
p se1
and N (((x=1p)1) = (x=1) £ p3 T + N ((x=1)1)
p .21 p
i
from lemmas 3.12 and 3.13.
Then N ((Eo:x)) =x z pd 7l 4N xD)
P ‘ t=1 P
3
T S DRI R ¢ DT
j=l j=1 p
= N_(x!) - N ((=1)1) + (x-1 =(x-1)) £ p3~t
p p 51

Np(x!) - Np((x—l)!)

Np(x) =0 as p * x

Hence P * 81
QED

17.

With the proof of this lemma the desired result follows
easily.
Theorem 3.1

If k #p, & =1, or the elements of'{(?)} i=1,2,...(k=1)
are relatively prime,
Proof:

k = (li{) C {(li{)}, hence g, | k.
Then for every prime p which divides k, apply lemma 3.14. Hence, no
factor of k is a factor of g - Then, since g | &, g =il.

QED

Let us now consider the case in which k = pct and determine the
size of the alphabet permitted in generating continually a string of
length k by Waksman's method. We can see by the following Theorem that
in this case gk = p,
Theorem 3.2

If k = pﬁ, where p is prime and « > 1, then-gk = Pp.
Proof:

By the definition of g

X it must be a factor of k. Hence, in

this case,_vgk = pm, where 0 < B < «,

We -shall show that g, = P by showing first that 8 > 1 and
secondly that 8 < 1.
1) We are to show B > 1, that is, P | 8

Consider first the term

(P 1) (P =i+1) ... (P7=1)
il

s . which is

of the form of the product. of i consecutive integers

2)

18.
dividediby i!. By Theorem 74 of Hardy and Wright (1945),
i! divides the product of any i consecutive positive

integers. Hence

N, (‘(pm—i) (pq-'iﬁ)‘.‘.'.“(pq—'l))

is defined and > 0.

If we replace (ﬁq-i), in the term, by pa, clearly the
value of NP will be increased as Np(bm—i) b Np(p“) for
1<i<p.

Then

pmk _ '(p&-i+l)'.'.'.'(pqc-'l)‘Poc
N () =N ¢ =)

sy (@D L. (7D
P it

> O.

Thus N ((?m)) > 1.
p 1 QED

We shall now show that 8 < 1 and so that 8, = P-

. . .. <=1
Consider now the case in which i %= p, and so the member

oy P
of {1, <5¢-1)

¢y -o - p !
P "™ " h!

Therefore,

[+

P _ * xe=] cc_ =]
N [(Pm_1>] =N 7D - N @D - N (@T- P D)

P

19.

where N (PI!) = I .Pj—l
p j=1
. =]
N oty = ¢ opdTt
P 41

N (" " hy = Np<<p“'1<p-1>>!>

=1

= -1 & Pt N (-1 = @-1) z piTt
j=1 P j=1
as P * (p-1)
Therefore
L« o« . a1 A =] ,
no1C 1=z # oz o3 e ooy 5 pd7
P p j=1 j=1 j=1
(r_l .-l
=1+ (p-1 -(p-1)) I p’
j=1
=1
Hence 8y =.P where k = P
QED

We can now see the full implications of Waksman's method of
continual replication of strings.. If the length of the desired string,
k, is a prime, P, or a power of P; then the alphabet from which the
elements of k may be chosen is bijective to ZP. Otherwise the alphabet
consists of a single character and hence no meaningful string can be
-generated.

As an example, let us generate the string (120222101). We

note that this can be done using Waksman's technique as k=9 hence gk=3.

The calculation of'{bi} is carried out in Table 4,

TABLE 3

Pascal's Triangle

The binomial coefficients (;)

3 1 3 31

w 1 4 6 4 1

s 1 51010 5 1

e 1 6152015 6 1

; 1 721353521 7 1

g 1 82856 7056 28 8 1

20,

21,
"TABLE 4
Calculation Qf'{bi}
) i=1
Refer to TABLE 3 for (j—l)

{a} = {1,2,0,2,2,2,1,0,1}

b, = 351 (§:i)(—l)i+3'éj arithmetic.is mod:g,

b, =1

b, =2-1=1

by =0-2(2) +1=0

by =2-3(0) +3(2) -1=1

bg =2 =4(2) + 6(0) - 4(2) +1 =2

bé = 2 =5(2) + 10(2) - 10(0) + 5(2) - 1 = 0

§;> =1 -6(2) + 15(2) - 20(2) + 15(0) - 6(2) + 1 = 1

gé, =0 -7(1) + 21(2) - 35(2) + 35(2) - 21(0) + 7(2) - 1 =0

bé, = 1 -8(0) + 28(1) - 56(2) + 70(2) - 56(2) + 28(0) - 8(2) + 1 = 2

With'{bi} determined we may proceed with the continual generation

of the sequence under the rules of TABLE 1,

22.
TABLE 5
Generation of the sequence (120222101)

cell i »

61 2 3 4% 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20

¢t 0P 1 10 1 2 0010 2 Q Q Q

¥ ,
112 P2 11021122 QQ=--=--=-= === =
2 1 2P0 212072012QQ===+= - - =
1 20?2002 22 1021QQ--- - - =

8 1.2 0 2 2 21 0P 1012 20012 4Q4QqQ -

9 1 2 02 2 2 10 1P 11012010 2 Q Q

103 2022 2101 1%P 2110211 2 2 Q

After the 9th time step we notice that the pattern a; has
been generated once and that the initial configuration bi is now in
cells 10~18., At this point we see that the process will clearly

generate the desired sequence continually.

IV "An Alternative Method of Continual Replication of Linear Patterns -

" "The Wheel Algorithm

It is clear that Waksman's method is very restrictive with

regards to the alphabet permitted in continual generation of a sequence

>

23,
of arbitrary length. It is also quite clear that no simple modification
.of his "modulo arithmetic stheme" can be generalized to any significant
degree. For this reason we now turn to a more general method of repli-
cation. This method, in its elemgntary form, requires 0(n2) states,
however, rather than O(n) as did Waksman's method, where n is the size
of the alphabet from which the characters are chosen. This metﬁod may
be modified somewhat so that the number of states required is about
n+ 4 log2 n and so less than the 2 nt+2 required in Waksman's method
for reasonably large n.

The idea behind this general scheme is quite simple. Write
thé state of each cell as a pair of elements of the desired output
alphabet -- say [;] [g] [;]. Then think of this six-tuple of states
as positions on é wheel rolling to the right, and so clockwise, Hence
the algorithm may be referred to as the wheel algorithm. The next
position of the wheel will be [Z] [2] [Z]. Now suppose B is left in the
positioniinitially occupied by [:], that is, the wheel leaves a track
behind it as it rolls, the image of the bottom part which was last in
that position,

Using [E] [z] [?] as an initial configuration we have TABLE 6.

"TABLE 6
1 [51 (51 Q Q
b 31 131 157 g
d, b, ra
bd [L] [C]Q

batrll 8100

24,

From this i; can be seen the sequence b,d,f,e,c,a will be
generated continually. Thus to generate a,b,c,d,e,f the appropriate
initial configuration would be obtained by writing this sequence in a
counter-clockwise manner around the wheel ~- [z] [EJ [i]. It may be
noted that this method is directly applicable to sequences of even length.
If a sequence of odd length is to be replicated it may be written twice
and considered a sequence of even length, Thus to generate continually
fabd the appropriate initial configuration would be [:] [E] [2].

The general rule for determining the state‘of a cell at time
t+l is that the upper half of the cell moves two positions to the right
and the lower half stays in position, except at the ends. The lower half
of the left-most péir stays in position, but also moves to occupy the
top half of the cell to its right, which then becomes the leftmost cell.
The top half of the right-most occupied cell does not move two positions
to the right, but moves to occupy the bottom half of the cell immediately
to its right which was previously in the quiescent state, but now becomes
the right-most occupiéd cell,

This process violates one of the rules which Waksman had stated.
That is with the wheel algorithm the state of cell i at time t+1 will
depend, in general, on the state of cell i-2 (the top half of the cell
moves two places to the right) at time t. To modify the scheme and avoid
this problem requires the introduction of a time flip-flop and so
essentially doubling the number of states, This flip-flop wili alternate,
being 0 at even time steps and 1 at odd times. The upper half of the

pair representation of a cell will move 1 position to the right at each

25,

time step. The ends will be handled by appropriate means

time.

Present
State

Left
Neighbour

TABLE 7 formally describes the function.

" 'TABLE 7
a,b,c - - output characters
0 - - - an arbitrary character
Q - - - quiescent state
[ﬁ] - - - generating pairs
® - - - no cell present
X - - - any. character
Right Neighbour
[2] X(t=1) X(£=0)
e e e
5]] ;]
g
g b]
o) b -
a X
o] a
b a
Q Q
a a
g 191 t=1
[.Q £=0

depending on

26.
To illustrate this, consider the following example;

It is desired to generate continually the patternlhbcﬁﬁ Then

we have:
b c
t=0 ja| {b}] Q Initial configuration
0] \0 - (the bottom symbol is a time flip-flop)
t=1 b\ .
a |b c| Q Note that any state could be substituted
1) {1 "for the dummy state O
t=2 al (b
a |b c| Q
0} 10)
t=3 (a) (0]

t=4 b a
a b c| |b Q
0) (0]
t=5 {b] (0]
a b ¢ |b al Q
Lla LlJ
t=6 (c] (b)
asb ¢ (b al Q
\0) 10}
t=7 c] {0
~a b ¢ b a| |b Q
1) i1

One slight drawback to this method is that 2 time steps are
required to generate each new output character. The number of states

required can be seen to be O(n2) as:

27.

2 *n states are required for all possible pairs of outputs and
time flip-flop.
n output states
; Q, the quiescent state

2n2+n+l states is the total number required.

It should be noted that the number of states required is
totally independent of the. length of the string to be replicated.

The next question to be asked is can the number of states re=-
quired be reduced from 0(n2) to 0(n), perhaps at the expense of the time
required for generation of each output character?

The.basic scheme:zof this algorithm is to represent each output
state as a binary number and so only pairs of binary digits are manipu-
lated. This mapping is an arbitrary bijection frem the output alphabet
to Zn. As it takes log n* bits to represent uniQuely the integers of Zn
a time counter running from O to log n will be required as well, Hence
4(log n) + 1 states are required to represent this. The n output states
and the quiescent state are also required. This gives a total of
n + 4(log n) + 5 states which are needed for this method.

Let F denote the mapping from the output alphabet to Zn. For
example, if the output alphabet is (a,b,c), then n=3 and we could define
F(a)=0, F(b)=1,F(c)=2, TABLE 8 indicates formally the workings of the

binary wheel algorithm.

*log n will be used to denote the least integer i_log2 n,

28.

" TABLE 8
a,b,c binary digits if in pairs, output states if alone
Q quiescent state
0 - 0 state
X any arbitrary cell state

At each step the time counter is incremented by 1 modulo

((log N) +1). Output states are reached at time (t+1).

Right Neighbour

o | G e
. e e e
Left [f] [b] [b]
Neighbour
o, g b b
Q Q - a X
Q Q ¢,b a
2] 21
c c

t=1,2,...,((log n)-1)

[E] [3] Q If right neighbour is Q then
' ' ' a=0 is the only possible
value during these inter-
e e) 0 mediate time steps.
5] g1 1
_ *
g g)
2#—2 ___
d
F(g)

*greatest integet <

29.

Q Q o a . .[3]
X Q ,b (FLera) + 2571 d) 7
t=log n

(2] gl Q

e e e

5] 51 5]

g [E] -

(o4

Q I Q a [4]
X Q o,b a

As an example, consider the generation of the sequence[bZiL

where n=3 and so log n=2,

Then 0= 002 - ’
l= Ol2
2 = 102

Initialize at time O writing 021 in binary around the wheel
in a counter clockwise manner but with the order of bits of each character
inverted. Since the product of log n and the length of the sequence is

even only one copy of the binary representation of the sequence is re-

quired.

Thus:

t=0 0! (1] (1
0{ (0] |0 Q
0} 105 |0

This represents 0/’1 \2

~—

30.

t=1 0] 1] (o)
o |o| {o]| |1 Q

1) 1) 1)

=2 (0] {o] (o]
o ol 1] |1 Q

2] 2} {2

t=3 (0] (0] (o)
o |ol (1] |1 Q

\0) 10) {0)

t=t4 (0) (o] (o)
o o0 |1{ (1| |o Q

1) 1) (1)

t= 0) {o) (o)
o 2 |1} |o]| o Q

2] \2) \2)

t=6 (1) fo] (o)
o 2 11| (ol o Q

LO) OJ LOJ

t=7 (1) (1] (o]
o 2 1 ol lo| |o Q

le lJ LlJ

t=8 (1] (1] (o)
o 2 1 |o] |o] |0 Q

\2) \2) 2]

£=9 (0] (1) (1)
o 2 1 |o] |of (O Q

\0) 0] 10}

At this point the string has been completely generated once and
the generating bud section (cells 4,5,6) is the same as the initial con-

figuration of the original generating bud section (cells 1,2,3 at t=0).

31.

A reminder on time considerations would appear to be in order.
Waksman's method is undoubtedly the fastest of the three methods discussed
as one cell is generated at each time step. The simple wheel algorithm
requires two time steps for each symbol and the binary wheel is the
slowest, fequiring*u((log n) +1) time steps for each character to be
generated. The advantage of the wheel and binary wheel algorithms is
that the length of the desired sequence has no bearing on the size of
alphabet which may be used. In-fact the size of alphabet and length of
string are both completely arbitrary. For a given string length the size
of alphabet is determined automatically in Waksman's method. Furthermore,
it is only in special cases that the size of this alphabet.is not 1.
The advantage of the binary wheel algorithm over the simple wheel algorithm

is the drastic reduction in the number of states required.

The next step in the preceding 1ine of thought is clearly to
generate rectangular, rather than just linear patterns. This can be
approached in much the same manner as the linear case, The problem can
now be formulated in the following manner; -

Define a function on a 2-dimensional array of identical finite
state automata, such that the state of cell (i,j) at time (t+l) is a
function of the stafes of that cell and its four immediate ngighbours
[(1,3), (i-1,j), (i+1,3), (i,j-1), (i,j+1l)] and so that an arbitrary

predetermined rectangular pattern of cell states will be generated

32,
coﬂtinually throughout the space.

This problem may be solved by applying the wheel algorithm
twice. First the algorithm is used, moving in the horizontal direction,
to produce generators similar to those used in the one dimensional case.
These then generate the pattern vertically. The generators in the one
dimensional case are pairs of output characters together with a time
flip-flop. In the two dimensional case we shall start with pairs of
pairs and a time flip~flop. The first application of the wheel algorithm
generates pairs of characters, and also sets a time flip-flop to zero.

Consider the general case of rectangular pattern replication,

that is, generate

m,1 m, 2 m,n
22,1 :
al,l _ al’2 © o o s s s o o s s o al’n continually,

It should be noted that cells are numbered as points in the
first quadrant of the Cartesian plane and not asﬂmatrix elements. Hence
al,l is in the lower left hand corner.

The first problem is to decide what the initial configuration

should be, To generate the columns in the upward direction, we require

that at some time column j + kn k=0,1,2,..., i=1,2,...,n be of the

33.
erm (
a. .,

1,3

a .
m,]

with all cells above cell (m,j) in the quiescent state, Once this
configuration is reached a straightférward application of the wheel
algorithm will generate the (j +-kn)th column in the proper manmner.

Therefore the generation process on the ith row i=1,2,...,m

should yield as output

w11 | fmea,2)) [P, | Peeitn

4,1) {®i,2 21,5 4i,n

repeatedly. Thus the initial configuration becomes evident. Cell (i,j),

34.
i=1,2,...,m, j=l,2,...4,n, will be in state
¢ 3
qm-i+l, n-j+l
#i,n-4+1
a '(5.1)
m-i+1,j '

1,3

initially;
It may be noted that in certain cases only part of this initial
configuration must be present, although the inclusion of the entire con-

figuration as stated above will certainly produce the correct result., It

o

may be noted that if m is even the first 5

rows are identical to rows

m

2

larly if n is even only the first

+ 1 to m; and hence, only the first-% rows need be initialized. Simi-

n

> columns need be initialized.

To illustrate this process more fully let us consider the

continual generation of the pattern

a b c d
e f g h
i j k m

The time flip-flop will be seen to be O at even times and 1 at

odd times. for horiéonpalfgeneration and reversed -for vertical generation.

35,

The initial configuration is given by (5.1)aas

Q Q
=0 (A { k)
e 7] []
. Q
[] ,
.0) . 0
() (A
[5]
€] [Q
L0) .0)
(C 3 r \
i 5]
13 1 Q
. 0) . 0

The development of the pattern may be calculated by following

a table similar to TABLE 7, but in which we consider pairs of the form
a
12
0

[s] as one symbol and produce output symbols of the form . After

these symbols are produced we continue with them as in TABLE 7, reading
lower neighbour for left neighbour, and upper neighbour for right neigh-
bour. Thus the desired output symbols are propagated in an upward

direction.

t=1

1l
[\

t

36.

Q 37.
The generation of the pattern can be seen clearly from this
point. The general form of the pattern while being generated can be

seen at time t=12,

t=12

column
1 2 3 L 5 [7 8 9
row 10 Q Q Q Q Q Q Q Q - Q
r 3
1] ¢ @ ¢ @ @ o o Q
kl/
o (1] [19)
: . Q Q Q Q Q Q Q
L]‘) LlA.J
(. (N (3
7 (e b 0
5| 0 | R T S T
\.l) LlJ Lll
6 (3] (2 (:04)
a | & (1] e e e e
LlJ (L)la LlJ
(oY (o) (.0.)
T 9 50 1 196 Y I S B S
V1) (1) (1)
I . rh\ ra\ rO\
- T 151 g 1 | N T
Lla Lll LlJ
((e) (.4) (i)
3 i £ i i
a b c d [a] [b] [b] [a] Q
Ll/ LlJ
IR
LOJ L0)
(e (el
2 e f g h e [[2]] [g] [:] Q
1
&1 |
L0) L0
4 R (3\
T S T 5 1 g
1 |1
\0, LOJ

38.

This algorithm works as quickly as can be expected. The
length of each column is increased by one every second time step and the
number of columns containing final output symbols is increased every
second time step. ﬁowever the number of states required for this opera-
tion is fairly large since we are forced to deal with quadruples of out-
put states in the initial generation process, The actual number of

states may be calculated as follows:

1 quiescent state
2n4 ’ all possible quadruples of output states in each of
the two possible time positions
2n2 all possible pairs in each time position
n output states
284+ 202441

Clearly this is quite an undesirable number of states to re-
quire especially when n is quite large. At this point we may look back
to the one dimensional case and recall that the corresponding problem was
solved by mapping bijectively the n output characters, in an arbitrary
manner, onto the ring of integers modulo n, that is Zn. Then only bits
need be manipulated until the actual character generating time step.
There must however, be a time counter running from 0 to log n associated
with the pairs of bits and a time flip-~flop, associated with the quadruples.

Therefore the number of states for this method may be determined as

follows
1 quiescent state
2:24 possible quadruples of bits and a time flip-flop
22.((log n)+l - possible pairs with time counter
n output states

nt4 log nt+36 states are required

39,

As in the one dimensional case, the binary representation has
two drawbacks. First, it is more difficult to write down the required
initial configuration, which occupies log n times as many cells in each
direction as does the non-binary form, and secondly, the output characters
are produced only once in every (log n) + 1 time steps in each colﬁmn.

In general, hbwever, the column generation processes will be out of-

phase with each other due to the fact that column generation will begin

on a new column at every other time step. Symbols are produced in a
"triangular" form as in the non-binary case. Hence the rate of production
of a new output céllsis proportional‘to the time t.

A simple example of the use of the binary wheel algorithm in
two dimensions would probably make the workings of the general case
much clearer.

Suppose we are to replicate continually the square [2 2] .

Then n=4, so log n=2, We-can define a bijection F from the alphabet to

24 by - a <> 0 =00

2
b<——>1=012
c > 2 = 102
d < 3 = ll2

Then using the non-binary method we could initialize the
process with cell (1,1) in state [i] .

. |:b
[
0

However, using the binary technique the process is not quite

as easy to initialize, Let us first look at the sets of pairs which

4Q.
must be generated by the quadruples in order to generate the desired
pattern., For the sake of clatity, let us temporarily abandon the function

F as defined and let

F(a) 2.a. + a

1 2
F(b) = 2fbl + b2
F(e) = 2'c1 + ¢,
F(d) = 2°dl + d2
where a5 855 .. are either Olor l;

Then to generate the odd numbered columns, which have a’

{caca ...} form we must produce

(row 2) ?i
koJ

fal)

(row 1) c;
0

as the elements in the first two rows of these columns.

Similarly

fb21

(row 2) dl

0

r 3

. bl

(row 1) d2

O |

must be generated in the even numbered columns,

Thus the output for the horizontal generator in row 1 is

41,

ra 3 rb 3

cl dl and in row 2
2 2

0) 0]

(3 3

a2 fzz

€1 1

0 J 0

must be generated continually,

Therefore the initial configuration of roy.l is
() ()

4

a F » and for row 2 a
&l X
2) .

TABLE 10 traces the development of the pattern through several
time steps after replacing a1s @gsees with their defined values. Hori-
zontal propagation in straight forward, vertical propagation follows

TABLE 8 in Chapter IV,

t=

row(2)

row (1)

t=1

t

[

" TABLE 10

42,

t=3 (\
01 o
12)
(0.)
(o] {[i]
(2)10
c [(1)]
O /
t=4 C0.) (.0.)
ig1] |91
L0 (1)
1 fon
[51] |
LO J k‘\l J
c b
t=5 (3
0
o1 Q
v 1)
(51| |1g)
L) L2
a |13
L2)
c d

43.

bLb,

From this the general replication pattern may be seen.

VIl Extension to d-dimensional space

The next step in the development of this theory is the ex-
tension to arbitrary (d) dimensional space. That is, to define a function
on a d-dimensional array of identical finite automata so that, given the
appropriate finite initial configuration, the entire positive region of
d-space will be filled with repeated images of an arbitrary predetermined
d-dimensional hypercuboid. Again we have the condition that the state
of any cell at time (t+l) be a function of the states of that cell and
its 2d immediate neighbours at time t.

The technique used is the obvious extension of that used in
the 2-dimensional case. The wheel algorithm is used on the dth level
generatérs to form (d-1l)st level generators. These in turn generate
(d-2)nd level generators in the same way that the vertical or first
level generators were produced by the horizontal, or second level
generators in the 2-dimensional case. In any case, after d such trans-
formations the terminal or output states emerge., As in the 2-~dimensional
case, when n is large the number of states required becomes much larger,
Actually, as may be expected, when d is large the number of states re-
quired becomes astronomical, Therefore, to keep the number of states
within reason signals may be sent in binary, as in the 2~dimensional
binary wheel method., Only %EYthe actual generation of output symbols do
non-binary forms'héve to be dealt with, Hence, it should not be sur-

prising that the effect of dimension size (d) and alphabet size (n) upon

45,
number of states required are totaliy independeﬁt. That is

number states = F(d) + G(n).

Let us now determine the number of states required to generate
continually an arbitrary d-dimensional hypercuboid of elements of an
alphabet -0f cardinality n. TFirst consider the non-binary representation.
To apply the wheel algorithm and move from 1 dimensional generators to
the output state we require the quiescent state, the n output states and
all possible pairs of outputs together with a time flip-flop, or 2n2
states., To ‘generate the pairs, quadruples are needed, and so on up to

2d tuples, Thus the number of states S(d,n) required will be given by

[«

2j
S(dyn) =1+n+ I n
3=1

(6.1)

ws

a large number for surprisingly small d.

In the binary wheel representation, the number is much lower,
The quiescent state and n output states are required as are the
4((log n)+1l) states which are needed in moving from binary pairs to
output states, At higher 1evels; however, the process is a simple
transfer of 2j tuples. In general thé jth level requires all possible
2j tuples at both time positions, gé 2-,2ZJ states. Therefore the number
of states required in the d-dimensional apélication of the binary wheel
algorithm (Sb(d,n)) is given:by‘

5
22

2

o0,

Sb(d,n) 1+n+ 4((log n)+1) + 2 ‘
J
d
n+4logn+ I 2
3=1

2341

3. (6.3)

46,
As was mentioned before, this can be viewed as the sum of a function of

n and a function of d.

VII Conclusion

The restrictions inherent in Waksman's method of continual
replication of a linear string have been shown. If the length of the
desired string is not of the form P" where P is a prime, only one character
may be produced. This means that no meaningful string may be generated.
Furthermore if the string length is of the form P , only P output
characters are permitted. These restrictions cannot be overcome using a
modulo arithmetic algorithm. For this reason the wheel algorithm was
developed. Using this algorithm the number of characters in the output
alphabet is completely independent of the length of the string, and in fact,
both are arbitrary. The binary wheel algorithm was developed to reduce
the number of states required to produce a string containing n different
characters to 0(n). It was shown also that both the wheel algorithm and
the binary wheel algorithm can be generalized to produce continually a
d-dimensional hypercuboid. Finally, it should again be noted that the
number of states required to generate patterns in d~space using an

alphabet of cardinality n is of the form

F(d) + G(ii)
where
2d
F(d) = 027)
= n + 4log n.

and 7 G(n)

BIBLIOGRAPHY

1, Hardy, G. H. and Wright, E. M. .An Introduction to the Theory of

Numbers. Oxford University Press, London, 1945.

2, Waksman, A. A Model of Replication. Journal of the Association

for Computing Machinery 16,1 (January 1969), pp. 178-188.

