
CONTINUAL PATTERN REPLICATION

by

JAMES IAN MUNRO

B. A . , U n i v e r s i t y of New Brunswick, 1968

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

i n the Department

of

Computer Science

We accept t h i s thes i s as conforming to the

required standard.

The U n i v e r s i t y of B r i t i s h Columbia

August, 1969

In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f the r e q u i r e m e n t s f o r

an advanced degree at the U n i v e r s i t y o f B r i t i s h C o lumbia, I agre e t h a t

t h e L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s t u d y .

I f u r t h e r agree t h a p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s

f o r s c h o l a r l y p u r p o s e s may be g r a n t e d by the Head o f my Department o r

by h i s r e p r e s e n t a t i v e s . I t i s u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n

o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be a l l o w e d w i t h o u t my

w r i t t e n p e r m i s s i o n .

Department o f Computer S c i e n c e

The U n i v e r s i t y o f B r i t i s h Columbia
Vancouver 8, Canada

Date September, 1969

ABSTRACT

This thes i s continues the studies of A . Waksman (1969) i n the

repeated generation of f i n i t e s t r i n g s i n a one dimensional array of f i ­

n i t e automata. Waksman handles thispproblem by the use of a "modulo

ar i thmet ic" a lgor i thm. This i s shown to be very r e s t r i c t i v e with regard

to the number of characters permitted i n the output s t r i n g . In f a c t , i t

i s shown that unless the length of the s t r i n g which i s to be repeated i s

oc

of the form p , where p i s prime, only one output character i s permit ted .

This of course makes the process qu i t e meaningless.

For t h i s reason, a new algor i thm i s developed. This i s r e ­

f e r r e d to as the wheel a lgor i thm, s ince there i s an obvious analpgy

between i t and a wheel, with the output s t r i n g on i t s circumference

r o l l i n g alonggthe array and l eav ing the imprint of the characters i n the

s t r i n g behind i t i n the same way that a wheel leaves t i r e t r a c k s . The

number of s tates required for such an a lgor i thm i s large and so the b i ­

nary wheel a lgor i thm i s in troduced. By us ing t h i s a lgor i thm, i n which

an output s ta te i s represented as a s t r i n g of b i t s i n s evera l c e l l s , the

number of s tates r e q u i r e d , i n a d d i t i o n to the n output s ta tes , can be

reduced to about 4 n .

Both the wheel and b inary wheel algorithms are then extended

to the two dimensional and f i n a l l y the d-dimensional cases.

i i

TABLE OF CONTENTS

Page

I In troduct ion 1

II A More D i r e c t Method of Determining {bO 7

I I I The Value of ^ . . . 12

IV An A l t e r n a t i v e Method of Cont inual R e p l i c a t i o n

of L i n e a r Patterns — The Wheel Algor i thm 22

V Extension of the Wheel Algor i thm to the 2-dimensional

Case . 31

VI Extension to the d-dimensional Space 44

VII Conclus ion 46

i i i

ACKNOWLEDGEMENTS

I wish to thank D r . R. S. Rosenberg for the guidance and

ass i s tance which he extended to me i n the preparat ion of t h i s thes i s

and Dr. A. Mowshowitz for h i s h e l p f u l remarks i n prepar ing the f i n a l

manuscript .

The f i n a n c i a l ass i s tance of the Nat iona l Research Counc i l of

Canada i s a lso g r a t e f u l l y acknowledged.

1.

I INTRODUCTION

In a recent paper, Waksman (1969) uses a one-dimensional array

of f i n i t e s tate machines to model the cont inua l r e p l i c a t i o n of a sequence

of k symbols represented by the states of the c e l l s of the a r r a y . By

cont inua l r e p l i c a t i o n of a sequence of length k we mean that a f ter an

appropriate length of t ime, dependent on m, the subsets of c e l l s

{ik+1, i k + 2 , . . . (i + l) k } for i = l , 2 , . . . , m w i l l each be r e p l i c a s of the de­

s i r e d sequence of k symbols. Thus i f our alphabet were {0,1} and we

wanted to reproduce the s t r i n g of length 4 (0111) c o n t i n u a l l y , a f t e r an

appropriate length of time we would have

{0111011101110111...}

The p r i n c i p a l r e s t r i c t i o n on the transformation to be performed

i s that the s tate of any c e l l at time (t+1) i s a funct ion of the states

of that c e l l and i t s two immediate neighbours at time t . Waksman shows

a method of generating- c o n t i n u a l l y s t r i n g s of length k i n the prev ious ly

described manner provided the characters from which the s t r i n g i s con­

s truc ted are chosen from the r i n g of integers mod g^, ^§k> where

g k = gcd{(^)} i - l , 2 k - 1 . (1.1)

That i s , g^ i s the greatest common d i v i s i o n of the set of b inomial co-

k

e f f i c i e n t s (^) other than those which are 1.

The problem i s formulated by Waksman as fo l lows:

Suppose we want to generate c o n t i n u a l l y the s t r i n g (a^} i = l , 2 , . . . , k ;

then, we s t a r t with the i n i t i a l conf igurat ion c o n s i s t i n g of c e l l 0 i n a

t r a n s i t i o n s t a t e , P, the next k c e l l s i n s tates b^ i = l , 2 , . . . , k and a l l

other c e l l s i n the quiescent s ta t e , Q. I t can be seen that the r e l a t i o n

2.

between the s t r i n g s and b^ i s given by

a. = I (T"h b . (1.2)

The a c t u a l method of c a l c u l a t i n g {b^}given {a^} w i l l be ex­

p la ined l a t e r . I t i s to be understood that a l l ar i thmet ic w i l l be modulo

At each time step one and only one c e l l i s i n the t r a n s i t i o n

s t a t e , P . At time t , c e l l t only w i l l be i n s tate P. The process for

any c e l l i s b a s i c a l l y broken i n t o two segments, the' time before i t enters

s ta te P and the time a f t e r i t enters statePP. At each time step the c e l l

i n s tate P and i t s r i g h t hand neighbour exchange s ta te s . A f t e r t h i s has

happened to a c e l l , i t r e ta ins th i s s t a t e . The i n t e r e s t i n g part of the

process i s , then, what happens before a c e l l enters the t r a n s i t i o n s t a t e .

I f c e l l i i s i n s ta te a . at time t , with the i n i t i a l cond i t ion a„ .=b.
t , i o , i 1

for i=l,2,...^kY we def ine a , . by
-' C T J , J X

a t + l , i = a t , i + a t , i - l , (1.3)

where a c e l l i n the quiescent s tate i s considered to be i n s tate 0.

To redef ine the funct ion i n a more formal manner we may fol low

Table 1 which i n d i c a t e s the transformation up to the time of entry in to

the terminal s ta te . To r i g o r o u s l y define the funct ion we may th ink of

the c e l l s as having an a d d i t i o n a l f l i p f lop which i s o f f u n t i l the r i g h t

neighbour of a c e l l enters s tate P. aAt that time the f l i p f lop i s

turned on and no fur ther change can occur i n the s tate of the c e l l .

3.

•TABLE 1*

F l i p f lop i n p o s i t i o n 0
Q = quiescent s ta te
P = t r a n s i t i o n s tate
$ = no c e l l present (l e f t neighbour of c e l l 0)
a. = an element of Ze,

* The output given i n t h i s and a l l s i m i l a r tables i s at
time t+1.

c e l l s ta te at
time t a.

l

Right neighbour

L e f t
a k a i + a k a i + \ L e f t

a i + a k a i + \

neighbour

P P P

L e f t
neighbour

Q

a.

Right neighbour

Q

Q

L e f t
neighbour

Right neighbour

a.

No other conf igurat ions can occur . Thus i f we i n i t i a l i z e the

array as prev ious ly mentioned and fol low the t r a n s i t i o n of Table 1, c e l l

0 w i l l enter the terminal s tate a^, c e l l 1, h^+b2 = a^ and i n general

c e l l i-1 enters terminal s tate
i
E (. ^) b . = a_̂ (by equation 1.2)

j = l 2 ~ 3 1

at time t = i . Out problem i s now to c a l c u l a t e { b } for a given set { a} .

Waksman found that { b .} could be generated from { a.} i n the fo l lowing

manner. Let a, .=a. i=l.,2 , . . . ,k and wr i t e a l T . a . „ . . . a 1 7 . Then l i I ' ' 11 12 l k

4.

complete a k x k matrix by l e t t i n g

a . = a + a m = 2 , 3 , . . . , k
mj m-l,jv- m - l , j + l . , * ' * 1

and a , = a, , = a, (1.4) mk l k k

The ar i thmet ic i s of course mod g^. Waksman shows that the

process i s continued for m = k+1, k + 2 , . . . , and that the matrix i s r e ­

peated, or that a

m ^ o c] c j = a

m j a = a n y tue p o s i t i v e i n t e g e r . Thi$ property

i s due to the fact that the ar i thmet ic i s done modulo g^. This process

i s e s s e n t i a l l y what happens i n the ac tua l generating machine before the

P s tate i s entered. The only d i f f erence i s that the k - tup le remains

s t a t i o n a r y instead of moving to the r i g h t .

A f t e r the k x k matrix has been formed the f i r s t column w i l l be

c a l l e d the f i r s t t r a n s p o s i t i o n column. This column i s taken as an i n i ­

t i a l i z i n g row for a second matrix formed i n the same manner, and hence

the f i r s t column of t h i s matrix i s c a l l e d the second t r a n s p o s i t i o n column.

Waksman shows that i f g^ such matrices are formed the g^th t r a n s p o s i t i o n

column w i l l be the set {a.}. Therefore the f i r s t row of the g, th matr ix ,
X K.

or the (g , - l) s t t r a n s p o s i t i o n column generates {a.} i n a manner c o r r e s -

ponding to that of the generating f u n c t i o n . Hence the (g^- l)s t t r a n s ­

p o s i t i o n column may be taken as {b_̂ }.

A numerical example may make t h i s process somewhat c l e a r e r *

Suppose we are fo generate {021} c o n t i n u a l l y , so k=3 and

Then wr i t e

0 2 1 and fol low formula (1.4) 3-1=2 times

5.

(1) 0 2 1

2 0 1 0 2 2 i s the f i r s t t ransposition column

2 1 1

0 2 0 i s the second transposition

column and so 0,2,0 = b.
' ' l

To check that {0,2,0} w i l l indeed produce {0,2,1} we s h a l l form

the or t h i r d matrix.

(3) 0 2 0

2 2 0

1 2 0

We see then, that the desired sequence {0,2,1} i s produced. To i l l u s t r a t e

the previously mentioned fac t that i f t h i s process i s continued the e n t i r e

matrix w i l l be repeated, and so the g^th transposition column w i l l be re­

peated we s h a l l continue a few more time steps.

•

1 2 0

0 2 0

2 2 0

1 2 0

0 2 0

2 2 0

1 2 0

02.2 0

2 2 0

(2) 0 2 2

2 1 2

0 0 2

6.

We s h a l l now s t a r t the generating funct ion with {b^}={0,2,0}

TABLE 2

0 1 2 3 4 5 6 7 8 9 10

0 P 0 2 0 Q Q

1 0 P 2 2 0 Q

2 0 2 P 1 2 0 Q - - - -

3 0 2 1 P 0 2 0 Q - - -

4 0 2 1 0 P 2 2 0 Q - -

5 0 2 1 0 2 P 1 2 0 Q -

6 0 2 1 0 2 1 P 0 2 0 Q

7 0 2 1 0 2 1 0 P 2 2 0

A f t e r time step 3 we note that the des ired sequence has been

generated once and that the "generating bud" i s the same as i t was when

i n i t i a l i z e d . Thus we see that the process w i l l work.

An important cons iderat ion i n judging the merit of such a scheme

i s the number of states r e q u i r e d . Waksman requires the fo l lowing s ta tes :

1 Q the quiescent s tate

1 P the t r a n s i t i o n s tate

2.g^ the integers from 0 to (g^-1) and a lso a f l i p f lop to

i n d i c a t e whether a c e l l has entered i t s terminal s tate

or not .

This gives a t o t a l of 2(g^+l) s ta te s , that i s about twice as many states

as output charac ters . Another method of cont inua l generation of se­

quences w i l l be introduced i n Chapter 4 and at that time i t w i l l be

useful to compare the number of states required for the present method

and the one introduced at that time.

II A More Direct Method of Determining {b_̂ }

Once {b_̂ } has been determined and the generating function has

been i n i t i a l i z e d the generation of a^'s is straight forward. The process

occurs as fast as can be expected for such a structure; that i s , one new

output c e l l per time step. The generation of {b^} by Waksman's method

i s , however, very tedious, expecially i f g^ is f a i r l y large. Fortunately

i t turns out that the method is somewhat inefficient and that {b_̂ } may

be determined directly, rather than by iterative procedures, from {a_̂ }.

Consider the following discussion:

Recall equation 1.2
i . ,

a. = S (T~:) b . . 1 • 1 J-1 3 J=l J J

Rewriting this in vector-matrix notation, we have:

a l i o
1

(2.1)

or

a = A b

We want to express b in terms of a.

2.1 to yield

This may be done by rewriting equation

8.

Our problem i s now simply to i n v e r t A . We s h a l l show that:

A " 1 = A 1 =

1 0 ...

-1 1

1 1

u j : i) (- D 1 + j }

(- l) k + 1 k (- l) k + 2

-1

0

k (- l) 2 k _ 1 1

To express t h i s simply i n words, A has the same elements as

A , however the (k , j) t h element has the s ign of (-1)"''+ .̂ A more use fu l

way of w r i t i n g t h i s r e l a t i o n would be as Theorem 2.1.

Theorem 2.1

b . = E d " h (- l) i + J a , .
1 j-1 j

To prove t h i s theorem we need the fo l lowing lemma:

Lemma 2.11

m=j

l

E (i - l) ! (m-1) !
m=j

(m- l) ! (i -m) ! (j - l) ! (m - j) ! (- D m

9.

(i - l) - (j - l) = i - j

(i-j)-(m-j)=i-m

l e t k = m-j

h = i - j

= <-l)j (J" 1) S (h (- D k

J " i k=0 K

By expanding (1-1) we note that

h .
2 C) (- l) = 0
k=0 K

and hence

QED

We are now ready to prove the theorem.

Proof of Theorem 2.1
f 1-1
(. n) for i=l,2,...,k j=l,2,...,l

Let a. . ="S

0 for 1=1,2,...,k j=l+l,...,k

This defines the matrix A = {a..}.

S i m i l a r l y we define

f / i - l w _ i N i + : J <;_?<-i>-

a'.. H

l — l y 2 j • i«jk 2™* 1*̂*1 > • • • >k

and so define A v = {a1;.}
13

10.

Then from the d e f i n i t i o n of {b }. i n equation 1.2, we have

shown that a = A b .

What we are to prove i s that

b . = Z d " h (- l) i + j a .
1 j-1 2 2

or that b = A ' a .

That means A - 1 = A ' or that AA'=I.

Let AA' = { « . . }

k
then « . . = Z a. a ' . i i i im mi J m=l J

We s h a l l show that <*.. =1 and that « . . = 0 i f i ; ^ j , by
i i i j

cons ider ing the three cases (i) i < j

(i i) 1 = j

(i i i) i > j

(i) i < j

A i s t r i a n g u l a r , therefore a. =0 for m = i + l , . . . , k
• im

A 1 i s t r i a n g u l a r , therefore a ^ = 0 for m=l,2 , . . . , j-1

Therefore a. a ' . = 0 for m=l,2 (j-1)
im mj

and for m=(i+1) , . . . ,k

and as i < j a. a . =-0 for m=l,2, . . . ,k J im mj ' ' '

Hence « . . = 0 for i < j .

(i i) i = j

Again we have

a. =0 for m = i + l , . . . , k
im

a ' . = 0 for m=l,2,...(j-1)

11,

but as i = j we have

a. a ' . = 0 for m ^ i
im mj

therefore . = a . , a ! .
1 1 i i i i

but

a . . - (? - b - l
i i l - l

a i i = (i : i) (- D 2 i = i

therefore <=. . = 1 f o r i = j

(i i i) i > j
again a. =0 for m=(i+1) , . . . ,k im

a ' . = 0 for m = l , . . . , (j - l)

therefore = 0 for m = l , . . . , j - l
' m m - ' and m= (i+1) , . . . ,k

Hence « . . = E a. a . = E a. a . i i , ". im mi . im mi-J m=l J m=j • •

m=j m _ 1 2 ~ 1

(- D d E c b e ' i ^ - 1) 1 1 1

m—1 i-1
m=j

0 by lemma 2.11

Therefore . = 0 f or i > j .

u j-l i f i = j Hence . . = { n i j 0 otherwise

So AA' = I or A' = A - 1

thus b . = E (T " b (- l) i + j a .
1 J - l J " 1 J

QED

12.

R e c a l l i n g the example at the end of chapter I we s h a l l now

r e c a l c u l a t e {b.} given {a.} = {0,2,1} k=3 Su=^

By theorem 2.1

h - l (J i i x - i) 1 * . ,

3 —1

so

b l * a l - °

b 2 = a 2 - & 1 = 2

b 3 = a 3 - 2 a 2 + a 1 = 1 - 2(2) + 0 = 0 (mod 3)

Hence we have {b^} = {0,2,0} which agrees with the value

c a l c u l a t e d by Waksman's method. I t i s easy to see that when k i s

f a i r l y large Waksman's method involves a great deal of c a l c u l a t i o n —

(g, - l) k (k - l) a d d i t i o n s . The method which we have j u s t developed i s
k k

much more d i r e c t , r e q u i r i n g l ess than E 2 (i - l) ar i thmet ic operat ions .

i = l

That i s less than 2* 1 * k = k (k - l) - ar i thmet ic operat ions . The

method i s b e t t e r by a fac tor g^. For the e n t i r e process to have any

meaning g^ must be at l eas t 2.

I l l The Value of ^

g.^ i s e s s e n t i a l l y the number of characters permitted i n the

alphabet over which the s t r i n g i s generated by the Waksman technique,

s ince there are g^ elements i n ^g^*

Waksman says nothing more about the s i ze of the alphabet , from

which the characters to be generated may be chosen, other than to define

g, as g .c .d{ (k) } i = l , 2 , . . . , k - l . As i t turns out , upon c l o s e r
rC X

13.

i n v e s t i g a t i o n , g^ i s 1 unless k i s a prime or a power of a prime. To

put i t even more s imply , g^ i s i n general 1 and so the Waksman technique

of generating sequences c o n t i n u a l l y i s meaningless except i n s p e c i a l

cases of k. For to generate a s t r i n g of any length with only one character

c o n t i n u a l l y i s merely to generate t h i s one character c o n t i n u a l l y .

To prove the r e s u l t we have j u s t s tated we must f i r s t prove

severa l lemmas.

F i r s t , define Np'(x) as the number of times the prime p i s a

f a c t o r of x. Hence N2(12)=2, N,-(17)=0 et c e t era , I t i s qui te c l e a r

N p (xq)=N p (x)+N p (y) when x#), y#).

Lemma 3.11

N (i+kp e)=N (i) for 1=1,2 (p 3 - l)
P P

or i f i = p 3 and p ^(k+l) .

Proof

Let i = mp p^m then 0<_a<3
so N (i+kp 3) = N (p a (m + k p e " ° C)) = <*+N (m+kp3"")

P P P

But as pVi» P^On+kp^)

then N p (i+kp 3) = cc = N p (i) for 1=1,2 (pS-l)

I f on the other hand, i - p 3 and p. ^(k+1) we have

N (i+kp B) = N ((k+l)p e) = 3 + N (k+1)
P P P

But , as

J?Vk+l)

N (i+kp 3) = 6 = N (i)
P P

QED

14.

Lemma 3.12
cc

N (ps!) = Z p j _ 1

P J-1

Proof:

We s h a l l prove t h i s lemma by induc t ion on F i r s t , i t i s

obvious ly true for «=0 and f o r r : a = l . We s h a l l assume the lemma i s true

for " ^ B and prove i t for <*=8+l. Hence by induct ion the lemma w i l l be

t r u e .

8 3 i — 1 8+1 Assuming N (p !) = E (p-) wr i te out (p 1) i n f u l l and
P j - 1

d i v i d e i t in to p sect ions as shown.

p ^ + D , . 1 f 2 . m m t P ^ I (p.B+l) . . . 2 p 6 | . . . | ((p ' - l) p e + l) ' . . . p -

Now by lemma 3.11 we know that

N p (i+kp B) = N p (i) for i = l , 2 , . . . , p e when k = 0 , 1 , . . . <p -2)

and a lso for i = l , 2 , . . . (p --1) when k=p- l .

- 8
Furthermore when i=p and k=p-l

N (i+kp B) = N ((p - l + l) p B) = N (p B + 1) = 8+1 = N(p P) +1
P P P

Thus p i s a fac tor of each of the sect ions shown, except the l a s t , the

same number of times; and i s a f a c t o r of the l a s t one more time than of
g

the o thers . However, the f i r s t s ec t ion i s p ! , and so p i s a fac tor

3 1-1

E (p J) t imes.
j = l
Thus N (p (3 + 1) !) = P E (p J _ 1) + 1

P j - 1

15.

This lemma may be extended to give the value of N p (r !) where

r i s not n e c e s s a r i l y a power of p.

Lemma 3.13

N ((p 'x) !) = xN (p"!) + N (x!)
P P P

Proof :

C l e a r l y the lemma i s true for x=l . We s h a l l therefore assume

the lemma i s true for x=y and prove i t for x=y+l. Hence by induct ion

the lemma w i l l be t r u e .

cAy+D)! = (P°V)! • (i+P°V)- ... -(y+D"
= (P°V)I * n (i+P°V)

1=1

By lemma 3.11

N p (i+p°V) = N p (i) for i = l , 2 (p ' - l)

and N p (p^+p^y) = <* + N p(y+1) = N p (p °) + N p(y+1)

then N ((p ° (y + l) !) = N ((p°V)!) + N (p*!) + N (y+1)
P P P P

(using the i n d u c t i o n assumption)

- y N p (p a !) + N p (y !) + N (p*!) + N (y+1)

= (y+1) N p (p a !) + -N ((y+1)!)

[noting that N ((y+1)!) = N (y!) + N (y+1)]
P P P

QED

Lemma 3.14

I f k = p x, where p 1 x, x > 1 and p i s prime, then P ^ g, .

\

16.

Proof ;

g k = g.c.d{(J)} 1=1,2 (k-1) .

To show p ^ g^ we need only f i n d one i such that p \ (^).

• cc
Consider the case i n which i = p .

P a x
Let us evaluate N (())

P P

Since (? c c x) - (p g x!)
V P « ! ((x - l) p «) ! '

. CC
we have N (<f- X)) - N ((p ' x) !) - N (p*!) - N (((x - l) p !)

tr ^ r Jr tr

but then

" 1-1
N ((p x)!) = x E p + N (x!)

P J - l ? OC
N (p^!) = E p i"" 1

P J - l CC
and N (((x - l)p") !) = (x-1) E p j - 1 + N ((x-1)!)

P J - l P

from lemmas 3.12 and 3,13.

Then N ((? « X)) = x E p J - 1 + N (x!)
P V j = 1 P

- E p j - 1 - (x-1) E p ^ " 1 - N ((x-1)!)
J - l j - l P

N (x!) - N ((x-1)!) + (x-1 - (x -1)) E p i " 1

P P J - l

= N (x!) - N ((x-1)!)
P P

N p (x) = 0 as p | x

Hence p ^ g k

QED

17.

With the proof of t h i s lemma the des ired r e s u l t fol lows

e a s i l y .

Theorem 3.1

k

I f k ^ p , g, = 1, or the elements of {(.)} i = l , 2 , . . . (k - 1)

are r e l a t i v e l y prime.

Proof :
k k

k = C { (i) } » hence g f c | k.

Then for every prime p which d iv ides k, apply lemma 3.14. Hence, no

f a c t o r of k i s a fac tor of g^.. Then, s ince g^ | k , g^ = 1.

QED
cc

Let us now consider the case i n which k = p and determine the

s i z e of the alphabet permitted i n generating c o n t i n u a l l y a s t r i n g of

length k by Waksman's method. We can see by the fo l lowing Theorem that

i n t h i s case g^ = p.

Theorem 3.2
I f k = p , where p i s prime and « >_ 1, then g^ = p.

Proof :

By the d e f i n i t i o n of g^, i t must be a fac tor of k. Hence, i n

cc

t h i s case, g^ = p , where 0 <_ 3 <_

We s h a l l show that g^ = p by showing f i r s t that 3 >_ 1 and

secondly that 3 <_ 1.

1) We are to show 3 >_ 1, that i s , ,p | g^.

Consider f i r s t the term

(P a - i) * (p a - i + l) . . . (P^-l)
which i s

of the form of the product of i consecutive integers

18.

d iv ided by i ! . By Theorem 74 of Hardy and Wright (1945),

i ! d iv ides the product of any i consecutive p o s i t i v e

i n t e g e r s . Hence

cc cc
N ((p - i) (p -i+1) . . . (p -1))

P - i !

i s defined and 0.

cc cc
I f we replace (p - i) , i n the term, by p , c l e a r l y the

cc < cc
value of N w i l l be increased as N (p - i) < N (p) for

P P P

1 < i < p".

Then

N ((?")) - N (- (p " - i + l) - : ; - - (p ^ l) ' p ")
p i p l !

> N ((p'-D (p'-l+D ' (p ' - l) \
p i !

> 0.

Thus N ((?)) > 1.
P 1 QED

We s h a l l now show that 6 <_ 1 and so that g^ = p.

Consider now the case i n which i = p , 1 and so the member

p

(P) = p !

(P) ! (p - P) !

Therefore ,

N [(P ,)] - N (p " l) - N (P"" 1 !) - N ((p"- P"" 1) !)
P p ^ - l P P P

19.

j - 1 where N (P !) = Z P
P J - 1

cc_ l
N (p " _ 1 !) = Z P j - 1

P J - 1

N ((P."- p" X) !) - N ((P ™ - 1 (P - l)) !)
P P

cc—2. cc
= (P- l) Z P j _ 1 + N (P- l) = (P- l) Z p j - 1

j - 1 P j - 1

as P ^ (P- l)

Therefore

. cc a cc— 2_ cc—J_
N [(P)] = Z P j _ 1 - Z P j _ 1 - (P- l) Z P j _ 1

P P " 1 j - 1 j = l j = l

« - l . ,
= l + (P - l -(P-D) s p J _ 1

j - 1

= 1
cc

Hence = P where k = P

QED

We can now see the f u l l impl i ca t ions of Waksman's method of

c o n t i n u a l r e p l i c a t i o n of s t r i n g s . I f the length of the des ired s t r i n g ,

k, i s a prime, P , or a power of P; then the alphabet from which the

elements of k may be chosen i s b i j e c t i v e to Z^. Otherwise the alphabet

cons i s t s of a s i n g l e character and hence no meaningful s t r i n g can be

generated.

As an example, l e t us generate the s t r i n g (120222101). We

note that t h i s can be done using Waksman's technique as k=9 hence 8^-3.

The c a l c u l a t i o n of {b.} i s c a r r i e d out i n Table 4.

TABLE 3

Pasca l ' s T r i a n g l e

The b inomial c o e f f i c i e n t s ("!")

j -*•

0 1 2 3 k 5 6 7

0 1

1 1 1

2 1 2 1

3 1 3 3 1

1 4 6 4 1

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1

7 1 7 21 35 35 21 7 1

8 1 8 28 56 70 56 28 8

21.

TABLE 4

C a l c u l a t i o n of {b.}
1

Refer to TABLE 3 for C^""1)

{a±} = {1 ,2 ,0 ,2 ,2 ,2 ,1 ,0 ,1}

b-i = ~E) (- 1) 1 + ? a. ar i thmet ic i s mod;g,
1 j = i J x J ° k

b l = 1

b 2 = 2 - 1 = 1

b 3 = 0 -2(2) + 1 = 0

b,4 l = 2 -3(0) + 3(2) -1 = 1

b 5 = 2 -4(2) + 6(0) - 4(2) +1 = 2

b,, = 2 -5(2) + 10(2) - 10(0) + 5(2) - 1 = 0
b

b ? = 1 -6(2) + 15(2) - 20(2) + 15(0) - 6(2) + 1 = 1

b g ; = 0 -7(1) + 21(2) - 35(2) + 35(2) - 21(0) + 7(2) - 1 = 0

= 1 -8(0) + 28(1) - 56(2) + 70(2) - 56(2) + 28(0) - 8(2) + 1 = 2

With (b^} determined we may proceed with the cont inua l generation

of the sequence under the ru le s of TABLE 1.

22.

TABLE 5

Generation of the sequence (120222101)

c e l l i -»•

0 1 2 3 4 5 6 7 -8 9 <!° 11 12 13 14 15 16 17 18 19 20

0 P 1 1 0 1 2 0 1 0 2 Q Q Q

1 1 P 2 1 1 0 2 1 1 2 2 Q Q

2 1 2 P 0 2 1 2 0 2 0 1 2 Q Q

3 1 2 0 P 2 0 0 2 2 2 1 0 2 Q Q

1 2 0 2 P 2 0 2 1 1 0 1 2 2 Q Q

5 1 2 0 2 2 P 2 2 0 2 1 1 0 1 2 Q Q - - — ' -
6 1 2 0 2 2 2 P 1 2 2 0 2 1 1 0 2 Q Q - - -
7 1 2 0 2 2 2 1 P 0 1 2 2 0 2 1 2 2 Q Q - -
8 1. 2 0 2 2 2 1 0 P 1 0 1 2 2 0 0 1 2 Q Q -
9 1 2 0 2 2 2 1 0 1 P 1 1 0 1 2 0 1 0 2 Q Q

10 1 2 0 2 2 2 1 0 1 1 P 2 1 1 0 2 1 1 2 2 Q

A f t e r the 9th time step we not ice that the pa t t ern a^ has

been generated once and that the i n i t i a l conf igura t ion b_̂ i s now i n

c e l l s 10-18. At t h i s point we see that the process w i l l c l e a r l y

generate the des i red sequence c o n t i n u a l l y .

IV An A l t e r n a t i v e Method of Cont inual R e p l i c a t i o n of L i n e a r Patterns -

The Wheel Algor i thm

I t i s c l e a r that Waksman's method i s very r e s t r i c t i v e with

regards to the alphabet permitted i n cont inua l generation of a sequence

23.

of a r b i t r a r y l ength . It i s a lso qui te c l ear that no simple modi f i ca t ion

of h i s "modulo ar i thmet ic scheme" can be general ized to any s i g n i f i c a n t

degree. For t h i s reason we now turn to a more general method of r e p l i -

2

c a t i o n . This method, i n i t s elementary form, requires 0(n) s ta te s ,

however, ra ther than 0(n) as d i d Waksman's method, where n i s the s i ze

of the alphabet from which the characters are chosen. This method may

be modified somewhat so that the number of states required i s about

n + 4 log2 n and so l e ss than the 2 n+2 required i n Waksman's method

for reasonably large n .

The idea behind t h i s general scheme i s qui te s imple . Write

the s ta te of each c e l l as a p a i r of elements of the des ired output
3. C e

alphabet — say [̂] [̂] [^]. Then th ink of t h i s s i x - t u p l e of states

as p o s i t i o n s on a wheel r o l l i n g to the r i g h t , and so c lockwise . Hence

the a lgor i thm may be r e f e r r e d to as the wheel a lgor i thm. The next
ID EL C

p o s i t i o n of the wheel w i l l be [̂] [̂] []• Now suppose b i s l e f t i n the

p o s i t i o n (i n i t i a l l y occupied by [^], that i s , the wheel leaves a track

behind i t as i t r o l l s , the image of the bottom part which was l a s t i n

that p o s i t i o n .
a c e

Using [̂] [̂] [̂] as an i n i t i a l conf igura t ion we have TABLE 6.

TABLE 6

Q # [f] * Q

b [*] [f l [°J Q

b d [d

f] [\] [a] Q

b d f [f] [d] [b] Q e c a

24.

From t h i s i t can be seen the sequence b , d , f , e , c , a w i l l be

generated c o n t i n u a l l y . Thus to generate a , b , c , d , e , f the appropriate

i n i t i a l conf igurat ion would be obtained by w r i t i n g t h i s sequence i n a

f e d
counter-c lockwise manner around the wheel — [] [,] [] • I t may be

a b c

noted that t h i s method i s d i r e c t l y a p p l i c a b l e to sequences of even l ength .

I f a sequence of odd length i s to be r e p l i c a t e d i t may be w r i t t e n twice

and considered a sequence of even l ength . Thus to generate c o n t i n u a l l y

c b a
[abcj the appropriate i n i t i a l conf igura t ion would be [] [,] [] . a. D c

The general r u l e for determining the s tate of a c e l l at time

t+1 i s that the upper h a l f of the c e l l moves two pos i t i ons to the r i g h t

and the lower h a l f stays i n p o s i t i o n , except at the ends. The lower h a l f

of the le f t -most p a i r stays i n p o s i t i o n , but a l so moves to occupy the

top h a l f of the c e l l to i t s r i g h t , which then becomes the leftmost c e l l .

The top h a l f of the r ight-most occupied c e l l does not move two pos i t ions

to the r i g h t , but moves to occupy the bottom h a l f of the c e l l immediately

to i t s r i g h t which was prev ious ly i n the quiescent s t a t e , but now becomes

the right-most occupied c e l l .

This process v i o l a t e s one of the ru les which Waksman had s ta ted .

That i s wi th the wheel a lgor i thm the s tate of c e l l i at time t+1 w i l l

depend, i n genera l , on the s tate of c e l l i - 2 (the top h a l f of the c e l l

moves two places to the r i g h t) at time t . To modify the scheme and avoid

t h i s problem requires the i n t r o d u c t i o n of a time f l i p - f l o p and so

e s s e n t i a l l y doubl ing the number of s ta t e s . This f l i p - f l o p w i l l a l t e r n a t e ,

being 0 at even time steps and 1 at odd t imes. The upper h a l f of the

p a i r representat ion of a c e l l w i l l move 1 p o s i t i o n to the r i g h t at each

25.

time s tep . The ends w i l l be handled by appropriate means depending on

t ime. TABLE 7 formal ly describes the func t ion .

TABLE 7

a , b , c

0 -

Q -

[a] -L b J

Present
State

L e f t
Neighbour

output characters

an a r b i t r a r y character

quiescent s tate

generating p a i r s

$ - — - - no c e l l present

X - _ any character

Right Neighbour

X(t=l) X(t=0)

[6] L b J 'Si

g b

$ b -

a X

$ a

b a

Q Q

a a

t=l

; .Q t=G

26.

we have:

V c
t=0 a b Q

0 0

t= l
a b c Q

w \\
t=2 a V

a b c Q
loj loj

t=3 a fo]
a b c b

W w

t=4 b
f -\
a a b c b
0

To i l l u s t r a t e t h i s , consider the fo l lowing example:

It i s des ired to generate c o n t i n u a l l y the pat tern febcbj. Then

I n i t i a l conf igurat ion
(the bottom symbol i s a time f l i p - f l o p)

t=5

t-6

t=7

w 0"
a b c b a

w 1

f '
c b

a l'/b c b a
Loj loj

t i
c

f \

0
a b c b a b

w w

Note that any s ta te could be subst i tu ted
for the dummy state 0

One s l i g h t drawback to t h i s method i s that 2 time steps are

required to generate each new output charac ter . The number of states

2
requ ired can be seen to be 0(n) as:

states are required for a l l poss ib le p a i r s of outputs and

time f l i p - f l o p .

n output s tates

1 Q, the quiescent s tate

2
2n +n+l s tates i s the t o t a l number r e q u i r e d .

I t should be noted that the number of states required i s

t o t a l l y independent of the length of the s t r i n g to be r e p l i c a t e d .

The next quest ion to be asked i s can the number of states r e -

2

quired be reduced from 0(n) to 0(n) , perhaps at the expense of the time

required for generation of each output character?

The b a s i c schemexof t h i s a lgor i thm i s to represent each output

s tate as a b inary number and so only p a i r s of b inary d i g i t s are manipu­

l a t e d . This mapping i s an a r b i t r a r y b i j e c t i o n from the output alphabet

to]L^. As i t takes l og n* b i t s to represent uniquely the integers of

a time counter running from 0 to l og n w i l l be required as w e l l . Hence

4 (log n) + 1 s tates are required to represent t h i s . The n output states

and the quiescent s ta te are a l so r e q u i r e d . This gives a t o t a l of

n + 4 (log n) + 5 s tates which are needed for th i s method.

Let F denote the mapping from the output alphabet to Z^. For

example, i f the output alphabet i s (a , b , c) , then n=3 and we could define

F(a)=0, F(b)=l ,F(c)=2 . TABLE 8 ind ica te s formal ly the workings of the

b inary wheel a lgor i thm.

* log n w i l l be used to denote the l eas t integer >_log- n .

28.

TABLE 8

a , b , c b inary d i g i t s i f i n p a i r s , output s tates i f alone

Q quiescent s tate

0 0 s tate

X any a r b i t r a r y c e l l s tate

At each step the time counter i s incremented by 1 modulo

((log N) +1). Output s tates are reached at time (t+1).

Right Neighbour

L e f t
Neighbour

1P Q

I f l ft ft

$,g b b

Q Q a X
a

Q

[a] L b J

c

Q

ft

c

0,b a

t=l ,2 ((log n) - l)

ft ft Q

ft ft [° i

g

2 t" 2

d

—

. intege . < : F(g)
4. O

I f r i g h t neighbour i s Q then
a=0 i s the only pos s ib l e
value during these i n t e r ­
mediate time s teps .

t=log n

X

X $,b

29.

ft

[F _ 1 (F (a) + 2 t " 1 . d)]

ft ft Q

ft ft ft

g ft
-

ft

As an example, consider the generation of the sequenceC02l|>

where n=3 and so l og n=2.

Then 0 = 00 2

1 = o i 2

2 = 10 n

I n i t i a l i z e at time 0 w r i t i n g 021 i n b inary around the wheel

i n a counter clockwise manner but with the order of b i t s of each characte

i n v e r t e d . Since the product of l og n and the length of the sequence i s

even only one copy of the b inary representat ion of the sequence i s r e ­

q u i r e d .

Thus:

t=0
0
0

0
0

This represents 0 2

30.

t=l f *s
1 f°l

0 0 0 1

llj w llj

t=2 fo] fo" fo'
0 0 1 1

UJ

t=3 fo' fo] fo]
0 0 1 1

loj 0
V J

l ° J

t=4 fo] fo] fo]
0 0 1 1 0

w 1

V J

t=5 fol 0 fo'
0 2 1 0 0

Uj w UJ

t=6 fl] fo]
0 2 1 0 0

10J loj loj

t=7 f f f f r \

0
0 2 1 0 0 0

w llj l l j

t=8 1 1
f \

0
0 2 1 0 0 0

UJ 12J 12J

t=9 fo] fl] f l]
0 2 1 0 0 0

loj loj l°J

At t h i s point the s t r i n g has been completely generated once and

the generating bud sec t ion (c e l l s 4 ,5,6) i s the same as the i n i t i a l con­

f i g u r a t i o n of the o r i g i n a l generating bud sec t ion (c e l l s 1,2,3 at t=0).

31.

A reminder on time considerat ions would appear to be i n order .

Waksman's method i s undoubtedly the fas tes t of the three methods discussed

as one c e l l i s generated at each time s tep . The simple wheel a lgor i thm

requires two time steps for each symbol and the b inary wheel i s the

s lowest , -requiring ((log n) +1) time steps for each character to be

generated. The advantage of the wheel and b inary wheel algorithms i s

that the length of the des ired sequence has no bear ing on the s i ze of

alphabet which may be used. In fact the s i z e of alphabet and length of

s t r i n g are both completely a r b i t r a r y . For a given s t r i n g length the s i z e

of alphabet i s determined automat ica l ly i n Waksman's method. Furthermore,

i t i s only i n s p e c i a l cases that the s i z e of t h i s a l p h a b e t , i s not 1.

The advantage of the b inary wheel a lgor i thm over the simple wheel a lgor i thm

i s the d r a s t i c reduct ion i n the number of s tates r e q u i r e d .

V Extension of the Wheel Algor i thm to the 2-Dimensional Case.

The next step i n the preceding l i n e of thought i s c l e a r l y to

generate rec tangu lar , rather than j u s t l i n e a r pat terns . This can be

approached i n much the same manner as the l i n e a r case. The problem can

now be formulated i n the fo l lowing manner;

Define a funct ion on a 2-dimensional array of i d e n t i c a l f i n i t e

s tate automata, such that the s tate of c e l l (i , j) at time (t+1) i s a

func t ion of the states of that c e l l and i t s four immediate neighbours

t (i , j) , (i - l , j) , (i + l , j) , (i , j - l) , (i , j + l)] and so that an a r b i t r a r y

predetermined rectangular pat tern of c e l l s tates w i l l be generated

32.

c o n t i n u a l l y throughout the space.

This problem may be solved by apply ing the wheel a lgor i thm

twice . F i r s t the a lgor i thm i s used, moving i n the h o r i z o n t a l d i r e c t i o n ,

to produce generators s i m i l a r to those used i n the one dimensional case.

These then generate the pat tern v e r t i c a l l y . The generators i n the one

dimensional case are p a i r s of output characters together with a time

f l i p - f l o p . In the two dimensional case we s h a l l s t a r t with p a i r s of

p a i r s and a time f l i p - f l o p . The f i r s t a p p l i c a t i o n of the wheel a lgori thm

generates p a i r s of charac ters , and a l so sets a time f l i p - f l o p to zero .

Consider the general case of rectangular pat tern r e p l i c a t i o n ,

that i s , generate

a i a . ~ a
m, l m, z m,n

a 2 , l

a, -a- „ • a, c o n t i n u a l l y .

1,1 1,2 l , n

I t should be noted that c e l l s are numbered as points i n the

f i r s t quadrant of the Cartes ian plane and not as' matrix elements. Hence
a.. 1 i s i n the lower l e f t hand corner ,

i » i

The f i r s t problem i s to decide what the i n i t i a l conf igura t ion

should be. To generate the columns i n the upward d i r e c t i o n , we require

that at some time column j + kn k = 0 , l , 2 , . . . , j = l , 2 , . . . , n -be of the

33.

form

1.3
a

t m » 3 j

2,1
a -t •

m-i+1, j
a. .

I 1»J

a„ .
I 2>3 J

m>3
a. .

I x>3j

with a l l c e l l s above c e l l (m,j) i n the quiescent s t a t e . Once t h i s

conf igura t ion i s reached a s tra ight forward a p p l i c a t i o n of the wheel

a lgor i thm w i l l generate the (j + kn)th column i n the proper manner.

Therefore the generation process on the i t h row i=l,2,...,

should y i e l d as output

m-i+1,1
a.

m-;+i,2
i a i,2

m-i+1, j
a. .

I i»3

m-f+l,n
a.

repeated ly . Thus the i n i t i a l conf igurat ion becomes ev ident . C e l l (i

34.

i = l , 2 , . . . , m , j = l , 2 , . , w i l l be i n s tate

m-i+1, n-j+1

[a i , n - j + l -

m-i+1,j
a. .

I 1»3

0

(5.1)

i n i t i a l l y .

I t may be noted that i n c e r t a i n cases only part of t h i s i n i t i a l

c o n f i g u r a t i o n must be present , although the i n c l u s i o n of the e n t i r e con­

f i g u r a t i o n as s ta ted above w i l l c e r t a i n l y produce the correc t r e s u l t . I t

may be noted that i f m i s even the f i r s t — rows are i d e n t i c a l to rows

y + 1 to m; and hence, only the f i r s t — rows need be i n i t i a l i z e d . S i m i ­

l a r l y i f n i s even only the f i r s t — columns need be i n i t i a l i z e d .

To i l l u s t r a t e t h i s process more f u l l y l e t us consider the

c o n t i n u a l generation of the pat tern

a b c d

e f g h

i j k m

The time f l i p - f l o p w i l l be seen to be 0 at even times and 1 at

odd t i m e s . f o r h o r i z o n t a l generation and reversed for v e r t i c a l generat ion.

35.

The i n i t i a l conf igura t ion i s given by (5.1)aas

t=0

Q Q

ft ' f t '

ft ft

Q

0
*

ft' ' f t '

ft ft Q

0 . o .

ft' ft

ft Q

0 0

The development of the pa t t ern may be c a l c u l a t e d by fo l lowing

a tab le s i m i l a r to TABLE 7, but i n which we consider p a i r s of the form

[̂] as one symbol and produce output symbols of the form ft
0

Af ter

these symbols are produced we continue with them as i n TABLE 7, reading

lower neighbour for l e f t neighbour, and upper neighbour for r i g h t ne igh­

bour. Thus the des ired output symbols are propagated i n an upward

d i r e c t i o n .

36.

t=l

t=2

ft

ft

ft

ft

' ft

ft

[[°] 1
ft
c

Q

r-H
 1

l h J \ ft}

ft
Q

m

[c] Q

1

Q Q Q

ft ft

ft

ft

ft

0

ft ft

ft

0

ft

ft

ft
0

ft
m

[°]
0

« 37.

The generation of the pat tern ean be seen c l e a r l y from t h i s

p o i n t . The general form of the pat tern whi le being generated can be

seen at time t=12.

t=12
column
1 2

row 10

tt

tt

Q

Q

tt
1-

tt
l

tt

1

f

Q

Q

t°]

tt

tt

1

k

Q

Q

tt

tt

tt
m
1
d

m

5

Q

Q

6

Q

Q

tt Q

1

[*] [tt
1

tt [tt
1 l

tt

.7 8 9

Q Q Q

Q Q Q

Q Q Q

Q Q Q

Q Q Q

Q Q Q

Q Q Q

tt tt Q

tt tt
0

' t t 1 ' t t '
Q

tt
I ° J

' t t '
[i] Q

L k J

10, { o J

38.

This a lgor i thm works as qu ick ly as can be expected. The

length of each column i s increased by one every second time step and the

number of columns conta in ing f i n a l output symbols i s increased every

second time s tep . However the number of states required for th i s opera­

t i o n i s f a i r l y large s ince we are forced to deal with quadruples of out­

put s tates i n the i n i t i a l generation process . The a c t u a l number of

s tates may be c a l c u l a t e d as fo l lows:

1 quiescent s tate

4
2n a l l p o s s i b l e quadruples of output s tates i n each of

the two poss ib le time pos i t ions
2

2n a l l pos s ib l e p a i r s i n each time p o s i t i o n

n output s tates
° n 4 2
2n +2n +n+l

C l e a r l y th i s i s qu i te an undes irable number of s tates to r e ­

quire e s p e c i a l l y when n i s qu i te l a r g e . A t • t h i s point we may look back

to the one dimensional case and r e c a l l that the corresponding problem was

solved by mapping b i j e c t i v e l y the n output charac ters , i n an a r b i t r a r y

manner, onto the r i n g of integers modulo n , that i s Z^. Then only b i t s

need be manipulated u n t i l the ac tua l character generating time s tep .

There must however, be a time counter running from 0 to l og n assoc iated

with the p a i r s of b i t s and a time f l i p - f l o p , associated with the quadruples.

Therefore the number of states for t h i s method may be determined as

fol lows

1 quiescent s ta te

4
2:2 poss ib le quadruples of b i t s and a time f l i p - f l o p

2

2 . ((l o g n)+l pos s ib l e p a i r s with time counter

n output states n+4 log n+36 states are required

39.

As i n the one dimensional case, the b inary representat ion has

two drawbacks. F i r s t , i t i s more d i f f i c u l t to wr i t e down the required

i n i t i a l c o n f i g u r a t i o n , which occupies log n times as many c e l l s i n each

d i r e c t i o n as does the non-binary form, and secondly, the output characters

are produced only once i n every (log n) + 1 time steps i n each column.

In genera l , however, the column generation processes w i l l be out of

phase with each other due to the fact that column generation w i l l begin

on a new column at every other time s tep . Symbols are produced i n a

" t r i a n g u l a r " form as i n the non-binary case. Hence the rate of product ion

of a new output ce l l s i s p r o p o r t i o n a l to the time t .

A simple example of the use of the b inary wheel a lgor i thm i n

two dimensions would probably make the workings of the general case

much c l e a r e r .

fa b
Suppose we are to r e p l i c a t e c o n t i n u a l l y the square c ^

Then n=4, so log n=2. We can define a b i s e c t i o n F from the alphabet to

by a «-»- 0 = 00 2

b -w 1 = 0 1 2

c 2 = 10

d -M- 3 = 1 1 2

Then using the non-binary method we could i n i t i a l i z e the

Si
process with c e l l (1,1) i n s tate []

0

However, us ing the b inary technique the process i s not qui te

as easy to i n i t i a l i z e . Let us f i r s t look at the sets of p a i r s which

40.

must be generated by the quadruples i n order to generate the des ired

p a t t e r n . For the sake of c l a r i t y , l e t us temporari ly abandon the funct ion

F as defined and l e t

F(a) = 2-a± + &2

F(b) = 2'b± + b 2

F(c) = 2'c± + c 2

F(d) = 2 - d 1 + d 2

where a , ,

a>2 9 • • • 3. ire e i ther 0 or 1.

Then to generate the odd numbered columns, which have a

{caca ...} form we must produce
(row 2)

(row 1)

r \

a i
C 2
0

as the elements i n the f i r s t two rows of these columns.

S i m i l a r l y

fb.
(row 2)

(row 1)

,0 ,

0

must be generated i n the even numbered columns.

Thus the output for the h o r i z o n t a l generator i n row 1 i s

41.

a l
C 2

10 J
f \

a 2
C l

and i n row 2

0

,0 ,

fb.

0

must be generated c o n t i n u a l l y .

Therefore the i n i t i a l conf igurat ion of row. 1 i s

f

and for row 2
a 2

, c l ,
0

TABLE 10 traces the development of the pat tern through severa l

time steps a f t er r e p l a c i n g a^, a ^ , . . . with t h e i r defined va lues . H o r i ­

zonta l propagation i n s t r a i g h t forward, v e r t i c a l propagation follows

TABLE 8 i n Chapter IV .

t=0
row (2)

row(l)

ft

ft

' f t '

ft

0

t= l

ft
0

ft-

[°]

0

ft

ft

[°]

ft

ft
0

' f t '

ft

0

42.

TABLE 10

43.

[°]

[°] tt
0

tt
0

f0 1
[]
L0 J

[°]

[°]

f t 0] 1
tt'

0 1
V J

' t t ' t t '

0
V. J

c b

tt

0

tt

tt
0

[°]

ft [°]

tt ' t t '

f

0

•[°]

0

tt

I

: t t

tt

44.

From t h i s the general r e p l i c a t i o n pat tern may be seen.

VI Extension to d-dimensional space

The next step i n the development of t h i s theory i s the ex­

tens ion to a r b i t r a r y (d) dimensional space. That i s , to def ine a funct ion

on a d-dimensional array of i d e n t i c a l f i n i t e automata so tha t , given the

appropriate f i n i t e i n i t i a l c o n f i g u r a t i o n , the e n t i r e p o s i t i v e region of

d-space w i l l be f i l l e d with repeated images of an a r b i t r a r y predetermined

d-dimensional hypercuboid . Again we have the condi t ion that the s tate

of any c e l l at time (t+1) be a funct ion of the states of that c e l l and

i t s 2̂ immediate neighbours at time t .

The technique used i s the obvious extension of that used i n

the 2-dimensional case. The wheel a lgor i thm i s used on the dth l e v e l

generators to form (d - l) s t l e v e l generators . These i n turn generate

(d-2)nd l e v e l generators i n the same way that the v e r t i c a l or f i r s t

l e v e l generators were produced by the h o r i z o n t a l , or second l e v e l

generators i n the 2-dimensional case. In any case, a f t er d such t r a n s ­

formations the terminal or output s tates emerge. As i n the 2-dimensional

case, when n i s large the number of s tates required becomes much l a r g e r .

A c t u a l l y , as may be expected, when d i s large the number of states r e ­

quired becomes as tronomica l . Therefore , to keep the number of states

w i t h i n reason s igna l s may be sent i n b i n a r y , as i n the 2-dimensional

b inary wheel method. Only iiti the ac tua l generation of output symbols do

non-binary forms have to be deal t w i th . Hence, i t should not be sur ­

p r i s i n g that the e f f ec t of dimension s i z e (d) and alphabet s i z e (n) upon

45.

number of s tates required are t o t a l l y independent. That i s

number states = F(d) + G(n) .

Let us now determine the number of states required to generate

c o n t i n u a l l y an a r b i t r a r y d-dimensional hypercuboid of elements of an

alphabet of c a r d i n a l i t y n . F i r s t consider the non-binary representat ion .

To apply the wheel a lgor i thm and move from 1 dimensional generators to

the output s ta te we require the quiescent s ta t e , the n output states and

2

a l l pos s ib l e p a i r s of outputs together with a time f l i p - f l o p , or 2n

s ta te s . To generate the p a i r s , quadruples are needed, and so on up to

2^ t u p l e s . Thus the number of s tates S(d,n) required w i l l be given by

The quiescent s tate and n output s tates are required as are the

4 ((l og n)+l) states which are needed i n moving from binary p a i r s to

output s t a t e s . At higher l e v e l s , however, the process i s a simple

t r a n s f e r of 22 tup le s . In general the j t h l e v e l requires a l l poss ib le

i 2 j

2 J tuples at both time p o s i t i o n s , or 2«,2 s ta t e s . Therefore the number

of s tates required i n the d-dimensional a p p l i c a t i o n of the b inary wheel

a lgor i thm (S, (d,n)) i s given by

d
S(d,n) = 1 + n + E n

j - 1

(6.1)

a large number for s u r p r i s i n g l y small d .

In the b inary wheel representa t ion , the number i s much lower.

S, (d,n) = 1 + n + 4 ((l og n)+l) + 2 E 2
b . „

J=2

d
= n + 41og n + E 2

j = l
- 3. (6.3)

46.

As was mentioned be fore , t h i s can be viewed as the sum of a funct ion of

n and a funct ion of d .

VII Conclus ion

The r e s t r i c t i o n s inherent i n Waksman's method of c o n t i n u a l

r e p l i c a t i o n of a l i n e a r s t r i n g have been shown. I f the length of the

CC
des ired s t r i n g i s not of the form P where P i s a prime, only one character

may be produced. This means that no meaningful s t r i n g may be generated.

Furthermore i f the s tr ing length i s of the form P , only P output

characters are permit ted . These r e s t r i c t i o n s cannot be overcome us ing a

modulo a r i t h m e t i c a lgor i thm. For t h i s reason the wheel a lgor i thm was

developed. Using t h i s a lgor i thm the number of characters i n the output

alphabet i s completely independent of the length of the s t r i n g , and i n f a c t ,

both are a r b i t r a r y . The b inary wheel a lgor i thm was developed to reduce

the number of s tates requ ired to produce a s t r i n g conta in ing n d i f f e r e n t

characters to 0 (n) . I t was shown a l so that both the wheel a lgor i thm and

the b inary wheel a lgor i thm can be general ized to produce c o n t i n u a l l y a

d-dimensional hypercuboid . F i n a l l y , i t should again be noted that the

number of s tates requ ired to generate patterns i n d-space us ing an

alphabet of c a r d i n a l i t y n i s of the form

F(d) + G(S)

where

F(d) = 0(2 Z)

and G(n) = n + 41og. n .

BIBLIOGRAPHY

Hardy, G. H . and Wright , E . M. An Introduct ion to the Theory of

Numbers. Oxford U n i v e r s i t y Press , London, 1945.

Waksman, A . A Model of R e p l i c a t i o n . Journal of the A s s o c i a t i o n

f o r Computing Machinery 16,1 (January 1969), pp. 178-188.

