iy

OPERATOR IDENTIFICATION IN ALGOL 68

by

. *YING KWAN
B.Sc., Taiwan Normal University, 1963

M.A., University of British Columbia, 1970

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the Department
of

COMPUTER SCIENCE

We accept this thesis as conforming to the

required standard

THE UNIVERSITY OF BRITISH COLUMBIA

April, 1973

In presenting this thesis in partial fulfilment of the requirements for
an advanced degree at the University of British Columbia, I agree that
the Library shall make it freely available for reference and study.

I further agree that permission for extensive copying of this thesis
for scholarly purposes may be granted by the Head of my Department or
by his representatives. It is understood that copying or publication
of this thesis for financial gain shall not be allowed without my

written permission.

Department of CO mpwE/Y S‘c/'en e
/

The University of British Columbia
Vancouver 8, Canada

Date /é[ju /}/bn‘[, (9 73.

ii

ABSTRACT

The special feature that modes and operators can be
defined by the user of ALGOL 68 has induced the problems of

coercion, balancing and operator identification.

This work deals with the mode manipulation and operator
identification in ALGOL 68. The algorithms are based on
those of [Z]. Some of the revisions tc the ALGOL 68 Report
concerning modes, such as no proceduring, the void symbol,
the definition of NONPROC, the definition of a vacuum, and
the hipping of a vacuum are included. The program in ALGOL

W is based on that of [P].

The program described in this thesis does four main
jobs: mode eguivalencing, mode coercion, mode balancing and
operator identification. In mode equivalencing, it checks
the context conditions concerning ®showing" [R.4.4.47] and
the multiple occurrence of the same field selector in a
structure [R.4.4.3e], and checks related mpodes in unions
[R.4.8,.3b,d4]. In mode coercion, it determines the coercion
steps. This is also’a basic part of mode balancing and
operator identification. In balancing, it also considérs

collateral displays. This 1is a model for the operator

identification part of an ALGOL 68 compiler.

iii

ACKNOWLEDGEMENTS

I am deeply indebted to Professor J. E. L. Peck for
initiating my study of ALGOL 68 and ALGOL W, for suggesting
the topic of this thesis and for rendering invaluakble
assistance, encouragement and patience throughout the course
of my work. I would 1like to thank the group which is
working under Dr. Peck for the ALGOL 68 implementation, Ir.
We J. Hansen and especially Dr. M. Zosel for many

helpful suggestions and discussions.

I gratefully acknowledge the financial support of NRC.

CHAPTER 1

CHAPTER II

.

CHAPTER III:

CHAPTER IV

CHAPTER V :

CHAPTER VI :

CHAPTER VII:

REFERENCES :

APPENLIX A:

APPENDIX B:

iv

TABLE OF CONTENTS

Page
I“troduction ® ® © 0 9 90O 0O OO0 T OO DA DO OO O 1
HOde Representation LI B B B B B B OE BN B 3L IR B IR B BRI B IR 2 6

Mode EquivalenCing .ecececessccscscccccescs 14
Coercion Of MOACS <eeescceccscecccncssccsa 30
Mode BAlaNCiNg .ceeeccsesscscssccccsccncces Ub
Operator Identification ...cecescsscesss 66U
Concluding ReMATKS cesssceccecccscassccss 09
cessscsnseanscsssscsesseccnccancascsnonans /1
The Program And Y 4
HOW TO US€ It .cecsvcssnasessncsnscacnssce ID

The Revised Syntax RUleS ceececscscscess 102

INTRODUCTION 1
HAPTER I

INTRODUCTION

A very important factor of the power of a general
purpose language ié the facility incorporated to treat the
bits of computer memory as different data types: bits,
logical values, characters, integers, reals, complex
numkers, arrays, strings, lists, trees, etc. Some
programming languages allow the user to define new data
types and to extensively use the definéd data types by:

(1) using them in further definitions,

(2) using them as parameters to procedures,

(3) extending the range of existing operators to 1include
them and

(4) define new operators to operate on them. ALGOL 68
permits the user to define data types termed modes, and
allows the four features mentioned. This generality in the
language poses the focllowing problems for the compiler
implementor:

(1) when there are two modes representing the same data type
(equivalencing),

(2) when and how a mode can be transformed to another
(coercion),

(3) tc what mode should elements of a list of wmodes be
coerced (balancing) and

(4)- how the operator definition in an applied occurrence of

the operator is determined (operator identification).

INTRODUCTION 2

Example(1), real x := 3; where tﬁe value possessed by 3 is
of mode integral and the value which 1is +to be assigned
must be of mode real. So the value of mode real which is
equivalent to 3 must be derived before the assigment. The
process of transforming integral to rtTeal 1is a coercion
called widening.

Example(2), real x,y; x:= xty; in the expression x+y, the
operatcr is +, the operands are x and y which are of mode
reference to real. This is an applied occurrence of the
operator +. The defining occurrence of the operator +
must be determined. In the Report, there are at least 16
defining occurrences c¢f the operatoer + [R.10.2.3i,7d,
10.2.41,3, 10.2.5a,b, 10.2.6b, 10.2.7Jsk,FsgsT,S,
10.2.10j,k,1.]. Amcng then,

op + = (L real a,b) L real : a--b; [R.10.2.41i] is
the only defining occurrence to be identified by the

fcromula x+y.

Coercion is the way through which one mwmode <can be
transformed to another. only COERCENDS can be coerced.
There are five different positions for a COERCEND: strong,
firm, meek, weak and soft. There are seven different
coercions: deproceduring, dereferencing, uniting, rowing,

widening, hipping and voiding.

Balancing occurs 1in a conditional <clause, serial
clause, the firm MODE balance PACK in a firm collateral =tow

of MODE clause or the strong structure PACK in a strong

INTRODUCTION 3

collateral structure clause. There are also five positicns
of balancing. In a FEAT balance, one of the constituent

CLAUSE must be FEAT, while the other may be strong.

Operator identification is necessary when there is more
than one defining occurrence of an operator. In operator-
identification, the ©position of an operand is always firm.
In this process of mode manipulation and cperator
identification, the Froblem of determining whether
(aix]y) (i) is a slice or a call can be solved when the (a

priori) modes of x and y are given.

This work deals with the mcde manipulation and cperator
identification in ALGOL 68 with the algorithms based on
those of [Z2]. It is Lkased on the revised syntax which |is
given in Appendix B so some of the revisions to the ALGOL 68
Report concerning modes, such as nc proceduring, the void
synbol, the definition of NONPROC, the definition of a
vacuum, and the hipping of a vacuum are included. The

program in ALGOL ® is based on that of [P].

The program described in this thesis does four main
jobs: mode equivalencing, mode coercion, mode balancing and
operator identification. 1In mode equivalencing, it checks
the context conditions concerning "showing" [R.4.4.U47 and
the multiple occurrence of the same field éelector in a
structure [R.4.4.3e], and checks related modes in unions
[R.4.4.3b,d]. In mode coercion, it determines the coercion

Steps. This 1is also a basic part of mode balancing and

INTRODUCTION 4

operator identification. 1In balancing, it also considers

collateral displays.

This work is an extension of [P], so the input, output
format and the internal tepreéentation are the same and it
is different frowm [P) in the fcllowing respects:

(1) An echo print for input is added.

(2) An explicit void symbol is included.

(3) The treatment of skips, nihils, jumps and vacuums are
included and they are considered as special modes.

(4) The consideration starts from the a priori mode (the
scurce mode) that avoids some unnecessary flagging
of some modes.

(5) Makes use of vectors of bitstrings and the orperations
AND and OR instead of the APL operator A/B in many
places. The length of the parameterlist remains the
same throughout the process here while that is not
the case in [P]. .

(6) Changes in the revised Report such as no proceduring,
meek coercion are included and |

(7) The identification of a(i) as slice or call is alsé

included.

In this thesis, each chapter that describes a part of
the prcgram, is divided into three sections which may be
subdivided. In the first secticn, the meanings of the terms
concerned in that chapter are shown, and perhaps some syntax

rules about them are given. So the terms used in the abgve

INTRODUCTION 5

paragraphs are nct explained here. In the second section,
the algdrithm is given and in the third section, an example

is given to show how the program works.

For the sake of brevity, contracticns such as int for
integral, ref for 7reference to, etc., are used throughout

this work.

MODE REPRESENTATION 6

CHAPTER 11

MODE REPRESENTATIORN

This chapter describes how a mode is declared and how

it is stored.

2.1. Mode declarers:

The syntax of declarers is provided in the Report:
[Re1e2e1], [Re142.2], [Re122.7], [Re7.1.1]) and [R.7.2.1].

Examples of mode declarations are:

mode md = struct (string t, cw, bits flag, int mn, nf, ref
union (nd, md) link, field);
mode nd = struct (ref mpd v, ref nd nxtmd).

2.2. The mode storage grammar:

Modes can be represented by a grammar [Z, P2]. Let the
ptimitive nodes ke P1 = { wvoid, bcocl, int, real, char,
format, bits, bytes, skip, jump, nil, vacuum} (void, skip,
jump, nil and vacuun are not really mcdes, however, they are
treated 1like modes. The 1iong versions of int, real and
compl are not considered in this}thesis). Let the prefixes
be sukdivided into two sets :

P2 = { ref, proc, row, rowof } and
P3 = { union, struct, procp } where procp is procedure with

parameters (row, rowof are used for {).

MODE REPRESENTATION 7

Let the MODE declarers be viewed as a grammar
g=<T,N,P > where
the set of terminals is
T=P10P20UP3 U PY,
where P1,P2,P3 are defined above. PU is the set of all
field selectors of the defined structures.
N is the set of nonterminals, i.e., the set of all the modes
{each represented by an integer) and
P is the set of production rules, A production rule 1is in
the form of
px = ¢ my(1) my(2) ... my(n)
with mx, my{(1), my{2), ee.., BDYy(n) 1in N, p called the
terminal, in T3
if p is in P1 then my (1) ... my(n) is empty,
if p is in P2 then n=1 and my (1) is the declarer fcllowing
P in mx,
if p is in P4 then n=1 and my (1) is the declarer of the
pcrtrayal containing the field selector p,
if p is in P3 then n>1 and the my(i)'s for i = 1,...,0n are
the constituents of p where
if p 4is “ygnion®, my(l1), ®my(2), ... My(n) are the
constituent modes for p;
if p is "struct” then my(i) is the i-th portrayal;
if p is procp then my(1),...my{n-1) are the modes of the
parameters and my(n) is the mode delivered by the
preccedure,

Portrayals of a structure {revised R.7.1.1.ea] are part of

MODE REPRESENTATION 8

the mode so there are modes in the form mx = q my with q not
in the union of P1, P2 and P3. 1In this case, g nust be a
field selector of a structure and my is the mode of g. ©Note
that it 1is convenient here to interchange the order in a

portrayal.

As modes can be infinite in length but not the
declarers, modes are stored as declarers. Each mode
declarer is represented by a number. The primitive modes
considered in this study are:

n0 = void,

m1 = bool,
m2 = int,
m3 = real,

m4 = char,

n5 = format,

m6 = bits,

m7 = bytes,
mn12 = skip,
m13 = jump,

mil4 = nil,

n1sS

vacuum,

The standard modes which reside in the program are the
primitives together with the following:

mB8

.struct 10 ni11 (complex)

m9

towof mb (string)

m10 = re n3

MODE BEPRESENTATION 9

m11 = im m3.

Here m10 and m11 are the two portrayals of m8.

2.3.1. Representation of the modes in the program:

As the program is written in ALGOL W, all the ternms

used here are in ALGOL W sense.

In the program, a record 'md! is allocated to each mode
numker defined in the above way. The record class 'md!' is
defined as
record md (string (6) t, cw; bits flag; integer wmn, nf;

reference (nd, nd) 1link, field);

L L) T T R 1 3 ¥ k]
| t | cw { £lag | mn] nf | link | field |
| | | | | | | |
j mw | wmw g dint | dint | —> | —-—> |
| | | |] | (nd, md) | (nd,mnd)}
[. L 4 A 4. 1 = 1 X |

where nd is another record class defined as

record nd (peference (md) v; reference (nd) nxtmd);

s s e e it — v

nxtmd

b o e o
e e s e

-=> (nd)

which is wused for a list of modes. (The arrow indicates a

reference.)

In the record 'md', the first field 't' is a string of
6 characters, which is the terminal of the mode. The seccond
field 1'cw' 1is a string of 6 characters, which is used as

temporary storage for the coercion word for the mode in the

MODE REPRESENTATION 10

process o©f coercion. The third field 'flag' is a bitstring
used to store the flags in the process ¢f coercion. This is
the most useful field in the manipulation. The fourth field
'mn' is an integer for mode number. This is the integer of
the left hand side of a rule of the mode grammar, or a fixed
nunber for a standard mode. For examfle: *mn' of void is O,
bool 1is 1. The fifth field *nf' is an integer to show the
nunber of modes referenced by *field' of the mode. If the
terrinal 1is a primitive mode then the 'nf' is 0, otherwise
it is equal to the number of modes in the mode 1list to
follow the terminal in the rule. The sixth field *link?' is
a reference to either an *md' or an 'nd'. *link' is used as
working storage to reference an 'md' to 1link those @modes
which are of the same class in. equivalence or to link
backwards in coercion. The seventh field *field' is also a
reference to either an 'md' or an 'nd'. For a primitive
mode, it is null otherwise it points to the mode 1list that
contains the <constituents of the terminal, if the terminal
is union, struct or procp, or it points to the mode that

follows the terminal of the present mode.

A record "md' is also allocated to something that is
not really a mode in the ALGCL 68 sense, but that is looked
upon as a mode and is used to help simplify the manipulation
in the program; in this case, the record 'md' is said to be
used for a ‘'pseudo-mode'. There are two cases of a
!pseudo-node':

(1) -the mode0 in the prcgram:

MODE REPRESENTATION 11

T T T T T - T ; T ” 1
| mw o owow $0 | -1 | 0 | null | null |
J

L 4 . 41 4 i A 4

-

(2) An 'md* vyhose ‘'cuw'-field <contains "cond®, "seri" or
"coll® to show that its 'link'-field points to a mode 1list

for a conditional, serial or collateral clause. An example

is:

r | — T) T ” T T ¥ 1
] " | "cond™) #0 | -1 | 0 |-->(nd){ null |
| % A y i . | 4 i § 4 ¥

2.3.2. An exanmple to show how it works in the program:

In using the program, mode declarers are entered by
using the comﬁand “GRAMMAR" énd a set of rules of grammar to
be entered followed by an integer less than -1 that shows
the end of the set of rules. Each rule cf the mode grammar
is entered as

m t P

where {(a) m is an integer such that 15 < m < 35. & uafning
will be given and the rule will be entered at the end
of the whole set of rules for the first time this
restriction is.hroken, if it is broken more than once,
only the last of the rules breaking this restriction’
will be entered and the others that break this
restriction will be neglected.
(b) t is a terminal which is a string so that it must
te enclosed in quotes.
(c) p is either a mode i.e. an integer i such that

0 £1i < 35 0or a mode list i.e. a sequence of modes

MODE REPRESENTATICN 12

followed by an integer less than -1,

Exanmple:

grammar"
16 Wrefw 17
17 "gnion" 2 18 19 -2
18 "rowof% 3
19 "struct" 20 21 23 -2
20 nan 9
21 npw 22
22 wref® 19
23 nwee 22
24 “refn 18
25 “proc® 3
-2

In the atove example,
D16 = ref upnion (int, [] real, m13),
19 = struct (string a, ref mi19 b, ref mig9 c),
mi8 = rowof real,
024 = ref [] real,
m25 = proc real.

The -2 in
union, the -2
the fields
the rules of
to an end.
‘md's, MODE,

the elenents

m17 is to terminate the list of modes in the
in m19 is to terminate the list of modes in
of the structure. The last -2 is to terminate
the grammar. The command "GRAMMAR"™ then cones
All the modes defined are put in an array of
of which the first 16 are fixed. Now somne of

of MODE are as followus:

MODCE REPRESENTATION

MODE (16) is

13

f ; T T T T . T g |
] ref |] 0 | 16] 1] null | —-=>]
| | | | | | |mode (17) |
L 4 A 1 i A i J
MODE (17) is

r - T T T - T - T - T - g |
| union | | 0 1 17 } 3 { null | -=> |
| ' |] | | | | 'A' |
L A ; 4 4 1 4 4
where B is

r - v r T 3 r T 3
|=——>MODE(2) ‘| —4+->| ——>HMODE(18) | —-4->| ——D>MNODE (19) |NULL]
L : L3 L d_J L i 4
MOLE (18) is

¥ A s T ¥ v T . L 3 3
] Ttowcf | | 0] 18 | 1 } null | -~-=>]
| | | |] | |mode(3) |
L 1 4 1 i i i J
MODE (19) is

r T T X 4 .-_ T T T b}
jstruct |] 0 I 19 | 3 | null | -—>
| |] | |] | 'BY |
i R 4 A i 4 4 ¥ |
where B is

r = ™ r T r T 1
J]=—>MODE (20) } —+->| -->NODE(21) |} —-4->] ——DMODE (23) |NULL|
L J"] L 4 | i L J
MODE (20) is

L T :] T R g T T . k]
| a } | 0 | - 20 | 1 | null | -=>]
| | | | | | {mode (9) |
L o 4 A 1 1 L 4

and sc cn.

MCDE EQUIVALENCING 14

CHAPTER 111

. o s ars s e e e e S o S A ——

3.1.17. Equivalent modes:

In an ALGOL 68 program, the gprogrammer might have
defined some modes which are equivalent, that is they are
the same terminal production of the metanction MODE. An

exarple of equivalent mode declarers:

(1=
o
[
I
I
"

struct (int i, ref u J);

=]
10
o
1))
I
1]

struct (int i, ref struct (int i, ref v j)3Jj).

3.1.2. Related modes and raveling of a union mode:

Two modes are said tc be 'related? toc one ancther if
they are both firmly coerceable from one same mode
[R.4.8.3.b]. Thus a mode is related to itself. The nmodes
ref proc real and real are related while the modes ref real
and proc real are not (the latter two were related in R!),
since there 1is no proceduring coercion (in the revised
Report)., It is not allowed to define a mode united from two
modes related tc one another [R4.4.,34]. The relation
‘related' is only checked when the modes are the constituent
modes of a union. Since the union modes inside a union are

raveled, no unions are involved in this process.

If a union mode m1 is a constituent of another wunion
mode m, m1 1is to be raveled such that m1 is no longer a

constituent of m, but each constituent of w1 is a

MCDE EQUIVALENCING 15

constituent of . Example: wunion (bool , union (int ,

char)) will be changed to upion (bcol , int , char) when

its constituents are raveled. Befcre the relation 'related?
is checked, the constituents of the unicn mode are raveled,
sorted in order by mode numbers and duplicated constituents

are removed,

3.1.3. Some context conditions:

Since the programmer is allowed to define his own modes
and infinite modes may be declared, some conditions must be
satisfied such that (1) no mode may allow ambiguous parsing
of the program and (2) a value of any mode nmust ncot take
infinite storage space in the conputer.

An example for (1):

mode t = struct (int a, real a).

Exanmples for (2):

I=
10
1
o)
I
I
n
-+
-
<
(9]
(ad

_____ ({1:10] £ a, int s).
mode t = ref t .
The first condition is that no duplicate selector is allowed
in a structure mode [R.U4.4.3.e] and the second is the
context condition shielding ([R.4.4.4]7. The following
indications are shielded and so are legal:
(1) mode a = struct (int b, ref a ¢) where the second
occurrence of a 1is a virtual-declarer following a

reference-to-symbol in a portrayal.

(2) mcde a = ref struct (int b, a c¢c) where the second

occurrence of a 1s a virtual-declarer contained in a

MODE EQUIVALENCING 16

portrayal contained in a virtuval-declarer following a
reference-to-synbol.

{3) mode a = procp (a) a where the second occurrence of a is
a virtual parameter and the third occurrence of a is a
virtual declarer following a virtual-parameters-pack.

A declarer is "showing" if it contains a mode-indication

which is not "shielded" (see examples for (2) above).

3.2.1. Definition of equivalent modes in the mode-grammar:

In the mode-grammar described in CHAPTER 1II, twc modes
are unequal if the integers representing them are not the
same, There 1is a unique producticn rule for each
nonterminal. In the following, the terminals and the
nonterminals are those on the right hand sides of the
production rules for the modes., Two modes are not
equivalent if and only if one of tﬁe fcllowing is true:

(1) the terminals are not the sane,

(2) if the terminals are not ‘'unicn', the numbers of
ncnterminals are not equal,

{3) if the terwminals are not 'union?!, a nonterminal of one
production rule 1is nct equivalent to the corresponding
nonterginal of the other,

(4) if the terminals are ‘*union', there exists a
nonterminal of one rule not equivalent to any of the

nonterminals of the other.

MODE EQUIVALENCING 17

3.2.2. Algorithms:

In order to save storage space and not to complicate
the process of coercion and balancing, modes are
equivalenced, that is if two or more modes are equivalent,
only one 1is kept, as scon after they have been entered as
possible. Before equivalenciné, the context conditicns

described above are checked and unions are raveled.

The algorithm to check the context conditions of a mode:

Input: mode: a mode whose context <conditions are to be
checked.
ref: a 1logical value which is false when the
procedure 1is first called. This is true, if 'ref®
has appeared tefore.
struct: a logical value which is also false when
this procedure is first called. This is true, if
'struct?! has appeared before.

Output: error message, if the context conditions are not
net.

Function: to change duplicated field selectcrs to "%". To
change modes which are "showing" to 'bool?.

Stepl1: let m be *wmode'. If the flag-field of m is #1, then
goto stepéb.

Step2: set the flag-field of m to #1.

Step3: 1if the terminal of m is "procp" then goto step5. 1If
the terminal is Y"ref" then if 'struct* is true then

goto step5, if false then set 'ref'! true.

MOLE EQUIVALENCING 18

If the terminal is "struct" then gc to step7.

Step4: if the field-field of m points to an *md? then

recursively check the conditicns of the mode pointed
to by the field-field of m with the present 1logical
values of ‘'ref' and ?'struct®* (by going through
stepl).
If the field-field of m points toc an *nd' then
recursively check the conditions of each mode in the
mode 1list pointed to by the field-field of m with
the present logical values of 'ref' and ‘'struct?'.

Step5: set the flag-field of m back tc #0. Stop.

Step6: the mode m is showing itself. Set m to ‘'becol' to
avoid this dangerous situation and a message is
given. Stop.

Step7: check for repeated field-selector: check the modes in
the mode list pointed to by the field-field of m, if
there are two identical terminals, give an error
message and set the second one to "%v,

Step8: if ‘'ref' is true then goto stepS.

Step9: set 'struct? true. Goto stepl.

End of the algorithm for checking ccntext conditions of a

mode.

The algorithm for raveling the unicns in a mode 1list which
is the constituents of a union:
Input: mdlist: the list of modes which are the constituents

of a union mode, to be raveled.

MOLDE EQUIVALENCING

Output: .

19

Function: to change 'mdlist' to a list which contains the

non-union modes of *pdlist' and constituents

those raveled union modes of 'mdlist?.,

of

Stepl: if *mdlist' is null then gotoc step2 otherwise do

stepi.a through stepl.qg.
Stepl.a: if the terminal of v (*mdlist?) is not

then goto stepi.f.

Stepl.b: 1let g be a copy of the list of modes pointed

by the field-field of v ('mdlist?).
Stepl.c: let nxtmd('mdlist?) be concatenated to q.
Stepl.d: set *mdlist' = q; ravel ('mdlist?).
Stepl.e: goto step2.
Stepl.f: let p be equal to nxtmd ('mdlist').
Stepl.g: ravel(p).
Step2: stcre.

End of the algorithm for raveling unions.

The algorithm for equivalencing of all the defined modes:

Input: .
Output: .

Function: to partition all the rules defined in the

Yunion"

to

grammar

to equivalence classes such that two rules are in

the same class if and cnly if they are equivalent.

For each equivalent class of modes, only one is

kept, the rest is discarded.

Stepl: partition all the rules defined in the grammar

to

Step2:

Step3:

Stepl:

MODE EQUIVALENCING 20

equivalence classes such that two rules are in the
same class if and only if their terminals on the
right hand side are the sane.

partition each <class except the <class with the
terminal "union", obtained in stepl into subclasses,
such that two rules are in the same subclass if and
only if they have the same number of nonterminals on
the right side. So in this new partition of the
rules, all rules wvhose terminals are “union" are in
the same class, any other two rules are in the same
class if and only if they have the same terminals
and equal numbers of nonterminals.

subdivide each class whose terminal is not "union",
in the previous partition into subclasses such that
two rules are in the same subclass if and only if
the i-th non-terminal of one rule is in the same
class as the i-th nonterminal of the other for all
1 £ i £ n where n is the number of nonterminals on
the right hand side of the rule.

Subdivide each class whose terminal is "upion" in
the previous partition into subclasses such that two
rules are in the same subclass if and only if each
of the nonterminals of the one is in the same class
as one of the nonterminals of the other.

if no subdivision occurred in step3 then stop

otherwise gotc step3.

End of the algorithm for equivalencing.

MODE EQUIVALENCING 21

The algorithm to check if there are related modes in a list

of modes is as follows:

Input: a list of modes.

Output: a sublist of the input list that contains all the
modes such that each of them is related tc somne
other mode in the 1list (this list is null when no
twoc of the given modes are related).

Step1: mark each mode ml1, m2, ..., Dk of the list,

Step2: let ?'return' be a null mode list.

Step3: for i:=1 until k do step3.a to step3.c.

Step3.a: let m = pi.

Step3.b: if m = proc n ¢cr m = ref n then
in case that n is marked, then n and mi are related
and search-insert them to 'return? {that nmeans if
they were not there then insert them in order) else
set m = n and gotoc step3.b; otherwise,

step3.c: mi has been completely processed.

Stepli: 'return' is the mode list to be returned.

End of the algorithm for checking related modes.

3.2.3. Reverse raveling of unions:

The job of 'coerciont is to check if a given mode, the
source mode <can be transformed to some other mode, the
target mode. The source mode is called the a priori mode
and the target mode the a postericri mcde. 1In crder to
simplify the processes of ‘'coercion', ‘'balancing? and

*collateral', a procedure called 'reverse_ravel! is called

MODE EQUIVALENCING 22

immediately after equivalencing. In '‘reverse_ravel?,
defined sub-unions of a union mode are added as fields to

the given union mode., For example: if the mode unicn (int,

int, real, compl) will be changed to union (int, real,

— e e s s

compl, union (int, real)) by 'reverse_ravel'. In the
process of fcoercion', ‘'balancing! or ‘'collateral', the a
posteriori mode 1is flagged and the modes from which it can
be coerced are alsc flagged, for example, when the a
posteriori mode is real and the position is strong then real
and int are both flagged because int can be strongly widened

to real. So in the above example, whenever unjon (int,

—— o

real, compl) is given as the a postericri mode in strong or
firm coercion, as' a balanced wmode in balancing or as the
mode of an operand in a defined occurrence of an ‘operator
which is to be identified, then the modes upion (int, real,

comgpl), int, real, ccmgl and union (int, real) should all

be flagged. Without 'reverse_raveling?, from the modé union

(int, real, comp), the mode union (int, real) can be

reached only by searching through all the defined modes, and
a seagch for each occurrence of the given union mode as an a
posteriori mode is necessary. With 'reverse_raveling!, the
subunion modes can be accessed from the constituents, and

the search is once for all.

The algorithm for reverse raveling a union mode:
Input: mi, & union mode .

Output: 'mi‘,

MODE EQUIVALENCING 23

Function: to include the subunions of 'mi' in the 1list
referenced by the *field?~field of 'mil.

Stepl: for each defined union mode nj other than mi do
step2.

Step2: if the mode list pointed to by the field-field of nmj
is a sublist of the wmode list pointed to by the
field-field of mi then add mj to the mode 1list
pointed to by the field-field of nmi.

Step3: stop.

End of the algorithm for reverse raveling a union mode.

3.3.1. An example to show how to check the context

conditions for a given mode:

Suppose the following mode grammar is entered:
16 struct" 19

17 fref® 16

18 "struct" 20

19 nin 17

20 nn 18

-2

That is m16

]

struct (ref mi6 i) and

18

struct (m18 j).

In checking the conditions for mlé :

{1) MODE(16) is checked with ‘'ref' = false, ‘'struct!' =
false: £flag(MODE(16)) 1is set to #1 and the field selectors
are checked.

(2) MODE(19) is checked with 'ref' = false, 'struct? = true:

MODE EQUIVALENCING 24

flag (MODE(19)) is set tc #1.

{(3) MODE(17) is checked with 'ref? = false, 'struct! = true:
flag (HODE (17)) is set to #1.

(4) since its terminal is "ref", then flag(MODE(17))is =set
back to #0, and so are the flag-fields of MCDE(19),
MODE (16) .

In checking the conditions for pil8 :

(1) MODE(18) is checked with ‘'ref' = false, ‘'struct' =
false: flag(MODE(18)) is set to #1.

(2) MOLE(20) is checked with *ref! = false, 'struct' = true:
flag (MODE (20)) is set to #1

{(3) MOLE(18) is checked again with 'ref? = false, 'struct? =
true: flag(MODE(18)) 1is #1 already, so an error message is
given and MODE (18) is set to 'bool?, a mode equivalent to

MOBE(1).

3.3.2. The mechanism used to equivalence modes in the

program:

In the program, an *'nd* INITIAL is used such that each
mode in the mode list is from a different class. There is a
one to one correspondence of an element of the list INITIAL
and a class of the partition of the rules. All the modes in
each class are linked togéther through their link-fields to
form a 1linked 1list and this 1ist hangs down from that
element for this class in the list INITIAL. The flag-field
of the nmodes are wused for the class number of the class

which the mode is in.

MOLE EQUIVALENCING 25

At first, modes are <classified by their terminals,
i.e. each element of the list INITIAL hangs a list of modes,
linked through their 1link-fields, with the same terminal.
The first 12 classes (from 0 to 11th) are for the primitive
modes, the 12th and the 13th are for *re?! and 'im?! of
‘complex?'. The 14th is for 'rowof' and the 15th 1is for
*struct?, Classes with terminals other than the above 16,
are attached to the end of the list INITIAL. The mcdes are

like this:

INITIAL
1
l L : ¥ L) L 8 L 3
L ->|->mode (0) | —4+>1-Onode (1) | —4~Dews
[¥ | d L 4. J
T ¥ 1 L T 3
i ;. A Jd [N i 3

] . 1} 9 ¥ L] 3
ese—>|->mode (15) | —4+->{-Dmecde (10) | —4+->
[R A J L 4 3

A T L3 3

¥ X L ¥ 3
|->ncde (11) | —4->{->node(9) | —+-> |->mode (8) | —+-Dees
[& : A 4 L » 8 Jd L 4 .

The first 15 elements of the list are the standard
modes. All modes with the same terminal are in a 1list
hanging down from an element of the list INITIAL, and the
class number of each mode is recorded in the flag field.
The process of equivalencing is then divided into 'pass‘'es.
In each *pass' two pointers to mode lists, 'p' and ‘'final?
are 1initialized to point to the 13-th and the last element
of the list INITIAL, and a pointer to a mode list or a mode,

'‘tail?', initialised as a pointer to the last element of

MODE EQUIVALENCING 26

INITIAL, is used to point to the place where modes belonging
to a new class should be placed; and a rass is complete when
*p' goes from the 13-th to the end of the list INITIAL.
Each t*pass' is divided into ‘'scans?'. A t'scan' for an
element m of the mode list INITIAL is a moving of all those
modes which were in the same class with m, but are not now,
to the ©place pointed to by TAIL; that is the linked list
hanging from m is checked and all those modes in this 1list
that are no longer in the same class as mn are grcuped
together to form a new class hanging down from an element

added to the end of the mode list INITIAL.

In t'pass* 1, each class, except the ocne with terminal
"ynion" is subdivided according to the nf-field. This is
step2 of the algorithm. After ?'pass*' 1, all the union modes
are in the same class and each of the other classes contains
all the modes which are of the same terminal and have equal
nunbers of nonterminals. This 'pass' subdivides the classes
hanging from elements after the 12-th of the 1list INITIAL.

The class number recorded in the flag-field is updated.

In t*pass' 2, each class is subdivided as in step3 of
the algorithm by using the flag-field(s) of the mode (s)
pointed to by the field-field of the mode. This 'pass' is

repeated until no more new class is formed.

Now the mode list INITIAL contains as many elements as
equivalent classes. The link field of each mode is set to

point to the first element of 1its <class and all the

MODE EQUIVALENCING 27

field-fields of the modes are changed accordingly, that is,
a mode is replaced by the first mode cf its class. OCnly the
first element of a class is kept. Discard all duplicated

modes and compact the grammar.

For a unicn mode, the nonterminals are sorted and
repeated modes are removed and the context condition of
related modes 1is checked. The detail of how to check if a
list cf modes contains related modes will be in next

section.

In the program, this 1is initiated by the command

“EQUIVALENCE" and no cther data are required. .

3.3.3. Examples to show how related modes are checked:

In checking the context conditicon of related modes, the
flag-fields of the modes are used for marking the modes.
The command to test whether a list of modes contains_some
related modes is “RELATED" followed by a 1l1list of modes.
Note that 1if +two modes in the given list are related by
iﬁvolving the coercion *unite' cannot be detected by this
comrand as all the modes inside a union mode are supposed to
have been . raveled, and this conditicn is checked only when

the list cf modes forms the constituents of a union mode.

Example: suppose the grammar entered is
16 “refw 17

17 "proc? 3

MOLE EQUIVALENCING 28

18 “"proc" 19
19 nref" 3
20 urefn 19
21 "ref" 2

""2-

When the command

"RELATED"™ 16 18 20 -2
is entered, then
(1) The flag-fields of MODE(16), MODE(18) and MODE(20) are
set #1.
(2) Consider rtef proc real (MODE(16)), it begins with ref,
then check if the flag-field of proc real (i.e. MODE (17))
is #1, it is not.
(3) Consider proc real, it begins with proc then check if
the flag-field of real is #1, it is nct.
(4) Consider proc ref real (MODE({18)), it begins with proc
then check if the flag-field of ref real is #1; it is not.
{5) Consider ref real, it begins with ref then check if the
flag-field of real is #1; it is not.
{6) Consider ref ref real (MODE(20)), it begins with ref,
then check if the flag-field of ref real is #1; it is not.
(7) Consider ref real, it begins with ref, then check if the
flag-field of real is #1; it is not.

This list does not contain any set of related modes.

When the ccmmand is

MODE EQUIVALENCING 29

WRELATED"™ 16 18 20 3 -2
then
(1) The flag-fields of MODE(16), MODE(18), MODE(20) and
MODE (3) are set #1.
(2) Consider ref proc real, it begins with ref then check if
the flag-field of proc real is #1; it is not.
(3) Consider proc real, it begins with proc, then check if
the flag-field of real is #1; it is.
(4) Both real and ref proc real are inserted to the related
mode list 'return?,
(5) Consider proc ref real as before and the flag-field of
real 1is #1; so proc ref real is inserted to 'return' (real
is there already).
(6) Consider ref ref real as before and the flag-field of
Teal is #1; so ref ref real is also inserted to *'return?'.
The mode list *return' containing real, ref proc real, proc

ref real and ref ref real is delivered.

COERCION OF MODES 30

CHAPTER 1V

COERCION OF MODES

4L.1. The coercion process:

In ALGOL 68, since the programmer is allowed to define
modes according to the syntax rules [R.7.1.1 and R.7.2.1],
the coercion process, that is the way in which a mode can be
transformed to another, is more complicatad than any other
language which does not allow the programmer to have this

freedon.,

There are five pcsitions for coercion: strong, firm,
meek, weak and soft. The positicn depends on the context.
The coercicn process is described in the syntax of the
language {[R.8]. A mode MS is said tc be coerceable from a
mode MR if there is a path in the syntax such that

SORTETY MS base *==> MR base.
Graphically, the coercion rou;es described by the syntax are
shown in the following chart which is mcdified frcom p.208 of

{L]. This is for the revised syntax.

3

1

— -y ——

“ ﬂ _ . s
: : o nommnaoz OF =ocmm
, m | . -
. e !
| |
| | ,
. - - . * - ke s __ -,, - Nz - i
_ M . ” . 'Y i . H .
. . _ R T
_ .
. i : “] . » . . s
COLRCION CHART ~~ * % .
.. : .non-r.m:._..o_.::. o ’ Ta T
. : , . i MODE AVAILABLE (ajpriord) . N
N | empty conteats S ——
- . ' e D njvlaa.:onnn_:a” - proc'amode S.uSoanlﬁu
) . SRS) S 21) o m..vqoa 10 v0id e .
o .“ o © softcontexts - . — : o
Yo e R Y Franv«onain lJI..v.onsao% fo amode
ERRTRNS p”.,.... SR el J ‘ . rvz.:oéa
. R s f rlr%-n?-o:a el amude to amode ,
L R N " \ 3 <2r:.a2&.232 tef el amode to :?:::EJ
P LA e oo (P IR
: o KR \ " _ . 1. .
, S C 7. weak contexty | Lo L
. . . . R .) . ‘ - 4‘\ . . ‘ - -
. . c meck contexts o . o

: r:::p e : Eson.o.,.o usiion famodes)

firm ...o..:ou

!

MODE REQUIRED (a posteriosi)

he.

th ¢

=

. Wi

coniexti,

-

,~ . A J,m‘

int **'to rcal

T . real .u.......o ,nz::._ . .
. bits to {] bool
) bytes 3 string .
o

a4A Hl._:mc:.,?ac%c 1o uniun fmore amoduay

fh::« i n.ao%._..oa::u:._o;r.

[} ..:.:._c to {/:1] E:ouo

vaid e .:..::cr *to <=:_ ...I.}
(movfr e - :
. o nnos_o;v .

b void HIIER T PR
o KT RE HR,_.:.,v to <oi||ll).

u_cv to 2:23 S

=._ fo ..Q uao%

SN & nowo.non:.oan
o MU to (1:0) amoda

ref u.:.c.._o o vel (124 amode

ref : ».:o._n fo :_.. {1 _ amode

.

Because the

replaced by

vhere

whether

COERCION OF MODES

language allows the

L]
() synbols, a problem is pcsed.
y:=a (i)

a(i) 1s a slice or

because identifier identification is made at the

as

position of the *a' is soft
postericri

problem can be solved

the

coercicn process. The question is

or weak.

mode and the sort are not known,

and 1its scluticn

coercicn process,

4,2,

The
main theme of the algorithn.
the a posteriori mode.

follous:

with

(1) the

(2) the
(a)
(k)

The algorithm for ccercion:

following 1is

————
1 ()

2{a)

coercion step
conditions for entry to this state:
the form of the mode under consideration,

the form of mr and

symbols

For example:

a call is not known,

whether the
In such a case,
however this

included

the graphical representaticn of the
Mr is the a priori mode,

A state of the state diagranm

COERCION OF MODES 33

(c) coercend and
(3) the mode to consider next, specified in terms of 2(a).
Note that the <ccercion step can be taken only when the

conditions in (2) are satisfied.

In the graph, if mr is skip, Jjump, nil or vacuum do the
stepr hipped to see if it is coerceable or not, otherwise do
the following:

set the mode under consideration to be ms, then do
{1) determine the state (or states) to bte taken by
checking the conditions of
(a) the mode under consideration,
(b) the form of mr and
(¢) the coercend.
If this is not the starting step (i.e. if the mode under
consideration is not ms), then the state taken npust be
led +to through an arrow from the previous state. (ncte
that the thick bars are of both directions while the
other 1lines are one way onlj). If no proper state can
te found then, mr is not coerceatktle to ms and bhalt;
othervwise,
(2) transform the ccnsidered mode as specified, and
(3) if the considered mode
is the same as mr then, mr is coerceable to ms and halt;
otherwise, goto (1).
The step to be taken may not be unique. For exanple: if the
considered mode 1is row Trowocf bool, then both states for

‘rowed' and *'widened® have to be considered.

COERCION OF MODES

34

Y
{hipped|

skip

e .

| or |

| ISR |

| Sm—]
fhipped]

| ——
jhipped|

. o et

- 3

‘
thipped|
[]mo

vacuum

s et e e

. STRONG POSITION
—— 1; | FIRM | POSITION
—————y g———¥——1] ——d————
jrowed | jwidened) |] united |
________] pm
compl | /union{m1,
TSm———— l .o.‘-'mn)
l [
—_— |
| N
— [
] real | I ¥ |
[WIS |] § Dlyeeae,ln !
K| I;——a { | and all |
S } | sub-unions |
{ | of the |
— - !} | considered |
| widened] || mode |
-t 1t —
/' real - $'
—— |
|
————— ‘ f"":"‘-“'l
| jde—ref-|
——— | lerenced|
] int) | - -
| N | | m
l e e e e
| es Tef m
—t I
l PP
1 |
— - | ———
|widened| 1] tef m |
S 4 l | I — |
[] boecl\ L1 -1
PR : p N
Tm———— ' 4 A, (]
————e | |cedured] :
| bits | | —— |
S | n 1
|; ’ _____
_—1 l - e pIOC m
e = | s | ' m————
jvoided| }widened| |
Y S Y ‘ S —
void [] char | | proc m|
U, O l | O— |
‘4\1_\'____
—_—— | = |
morf |
T e i
jnon—proc| | bytes | |
|part of | e d]
I nr l Lag) | |
|

L.__IA_._..'..J

file:///----J

MEEK POSITION

P
| deyro—|
jcedured|

s e s s s st bt

{proc mi i
—

1 ==

-
j deref-|
jerenced|

S S g — am— T W — S — . —— — Y — — — S — — S — VN o — — — — —

COERCION OF MODES

HEA

POSITION
| e |

| depro-|
jcedured|

m

esePILOC W

. v i e e

jproc m|

l""‘\]
| deref-|
ferenced]
ref o
or
proc n
~efef ref n
or
--Tef proc n

jref ref|
|} m or |
| ref |

| proc nj
| WU |

s SR came R G WS e G ms e G A e S et PO (o S Mg VS cnin VT e - s T ety G g S g e e Smuws gumat

SOFT POSITION

~ T

| depro- |
jcedured |

e vt et et e i it

m

proc m

o e

| proc m |

| PO |

COERCION OF MODES 36

The algorithm for coercion:

"Input: mr: the a pricri mode (the source mode).
ms: the a posteriori mode (the target mode) or a
null mode 1list.
sort: the position. This is strong, firm, nmeek,
weak or soft.,
coercend: this tells whether it is a comorf or not.

Output: a logical value to tell whether ‘'mr' 1is ‘'sort'ly
coerceable to 'ms' or not,

Function: if aAcoercion sStep can be taken, the coercion word
is stored in the 'cw'-field of the mode. If *mr' is
tsort*ly coerceable to 'ms?! then the coercion
sequence is given,

Stepl1: let *‘return' be a logical value.

Combine the grammar rules for *ms® and ‘'mr!' and
apply the equivalence algorithm.

Step2: 1if 'sortt* is ® o, then let the first prefix other
than ref or proc of 'mr' be pi, if pi is not row or
rowof and pi is not procp then goto stepl9, if pi is
row or rtowct then tsortt':=weak otherwise
'sort*:=firm.

Step3: if *ms?* is null do step3.a to step3.d otherwise goto
stepb.

Ster3.a: let x ke 'nr?t.,
Step3.b: if x 1is proc m, then search-insert x to ‘'ms’,
i.e., 1f x is not in *ms*' then insert x to the 1ist

‘ms? in order, let x = m and goto step3.b;

COERCION OF MODES 37

otherwise,
step3.c: if x is ref m then do step3.c.?1 to step3.d
otherwise goto step3.d.
Step3.c.1: if 'sort!' is firm or meek then, search-insert x
to 'ms', let x = m and goto step3.b; otherwvise,
step3.c.2: 1if ‘'sort' is weak and if m is proc n or ref n
then, search-insert x to 'ms' , let x = m and goto
step3.b; otherwise,
step3.d: search-insert x to 'ms' and goto step22.
Stepli.a: let n = *mr*.,
Stepl.b: mark n. If n is ref x or proc x and that n can be
tsortt'ly deprocedured or dereferenced, then let
n = x and goto stepl.b; otherwise, go to stepS5.
Note that when a mode begins with proc, it can be
*sort'ly deprocedured; when a mode begins with ref,
it can be strongly, firmly cr meekly dereferenced,
or weakly dereferenced when the prefix following ref
is proc or ref. The algorithm is similar toc step10
to stepi’i. |
Step5: if 'sort! is "soft"™ then goto stepiZ.
If *sort?! is “weak" then gctc stepil.
If 'sort* is "meek® then goto step16.
Step6: if ‘*sort*' is "“strong" and 'mr' is "skip" or "jump",
then flag 'mr' and goto stepi0.
Step7: if 'sort' is "strong" and *'mr' is 'nil' then if ‘ms'
starts with 'ref?' then flag 'ar?! and goto stepi0.

StepB8: if t'sort? is ¥%strong% and 'mr? is "vacuun", if 'os?
E g

COERCION OF MODES 38

starts with *'row! or *'rowof! then flag 'mr' and goto
stepi0.

Step9: flag the nonterminal symbols in the combined grammar
as focllowus:

I1f ‘'sort* is ‘"strong" then start in state I
ctherwise start in state II. Each state gives the
flagging instructions and tells what further
nonterminals must be <considered or what further
instructions wmust be followed. The process stops
when there are no more ncnterminals to be
considered, or when there are some more terminals to
be considered and the nonterminal being considered

is marked.

COERCION OF MODES

STATE 1: flag the nonterminal ccnsidered.

39

Consider

new nonterminals follow the instructions as
fcllows:

if the right side of then in

the rule is consider STATE

rcw m m I
rowof m i I
rowof kool bits I11
rowof char bytes II11
union m (1) ... 0(k) (1) s eesy Mm(k) 11
ref m m 1v
compl real I
real int I
void goto step18
other no operation

step10:

Stepl1:

COERCION OF MODES 40

STATE 1II: flag the nonterminals considered.

Consider new nonterminals as follows:

if the right side of then in
the rule is ccnsider STATE
void unflag void and

gotc stepl0

union (1) ... mO{k) B{1), eeeym (k) 11
other no operation
STATE III: flag the nonterminal. No new

nonterminals to be considered.

STATE IV: do not flag the nonterminal. If the rule
for the considered nonterminal does not start with
'row' or 'rowof?! then there is nothing to do. If
the right side of the rule is rcew m or rowcf m then,
if ref m is in the grammar then flag the nonterminal
ref nm, coqsider the terminal m in STATE IV {even if

ref m is not in the grammar).

consider the nonterminal 1. If the nonterminal

considered is flagged (in step9, step7, step8 or

Stepi2::

Step13:

Stepll:

Stepi15:

Stepl6:

Step17:

Step18:

COERCION OF MODES 41

stepb), then *ms' is STIRMly coerceable from ‘'mr?
and stop. if the rule for the considered
nonterminal is ref m or proc m, then set n = m and

goto step11; otherwise, stop and 'ms' is not STIRMly
coerceable from ‘'mr?.,

let n = 'nrt.

if n = *ms' then goto step22. 1If n = proc m then
set n = n and goto step13, otherwise goto step20.
let n = 'mr*.

if n = 'ms*' then goto step22. If n = proc m then
set n = m and goto stepil5. If n=ref m and
m=ref por m= proc p then set n = m and goto
step15. Goto step20.

let n = *nr?,

if n = 'ms* then goto step22. If n = proc m or n =
ref m then set n = m and goto stepl17, otherwise goto
step20. |

(a) if the a posteriori mode is not void then unflag

void, the mode under consideration and goto stept0

{R.8.2.3.1.2), {after voiding, noc coercion may take

place) (R.8.2.4.1.and R.8.2.6.1); otherwise

{b) if the coercend 'mr* is a comorf, then flag
'‘mr', the a priori mode (R.8.2.8.1.a) and goto
step10; cotherwuwise,

{c) if the a priori mode *mr' ends with non-proc

void (where non-proc is any prefix other than precc)

then unflag 'void' (R.8.2.2.1.a) (only deproceduring

COERCION OF MODES 42

can go before vciding R.8.2.1.1) and go to step10;
otherwise, ’
(d) 1if the a priori mode 'mr' is not *'void' or does
not end with proc void then flag the mode fcllowing
the last proc of 'mr' (R8.2.1.b)and goto stepiO.
Step19: give an error message.
Step20: return := false,
Step21: 'return' is the lcgical value tc be returned. Stop.

Step22: return:=true and goto step21.

End of coercion algorithn.

h.3. An example to show how the coercion procedure works:

In the program, the flag-field of a mode is used for
marking the terminal in step# and planting the flags in
step6, step7, step8 and step9 of the algorithm, the cw-field
is to store the coerciocn word and the link-field is used as
a backward 1link so that the <coercion sequence can be
obtained from the cw-fields of the modes through the

link-field.

In the program, the command to check whether mode MR is
SORT1ly coerceable to mode MS is "COERCE" followed by the a
priori mode, the a posteriori mode, the position and the
coercend which tells whether *'mr' is a COMORP or not. The a
priori mode is a mode represented by a number and so is the
a Fposteriori mode. The positicn 1is ‘*"strong", "firm",

“"meek", "weak" or "soft"., The coercend is either “"comorf"

COERCION OF MODES 43

or " n,
Example: suppose the grammar entered is
16 “proc" 17
17 nrefn 2
18 “uynion" 1 2 3 -2
-2
If the command
"COERCE™ 16 18 "firpw » n»
is entered then proc ref int, ref int and int are marked and

then MOLE (18) is changed from

T - T T T T T :]
{ UNIGN | | 0 } 17 | 3 | NULL | —> L1 |
L i _ Y " 4 n 1 P
to

r ‘ T T T T T T 1
} URION | l 1 i 17 | 3 | NOLL } -=> L1 |
L n 1 s 4 4 1 4

where L1 is

7 i -y 1 r v r T 1
{ —> MODE(1){ —4->§ -—> MCDE(2)}| ~-4->] ——> MODE(3)|NULL]
L 4 J L i 4 3

MODE{1) is changed from

L T v . 4 LI k2 h |

i BOQL | § 0 i 1 i 0 | NOLL | NULL |
L Y — d 1 1 A i 4
to

{ T T L] T T T)
i BOOL | UNITE | 1 i 1 | 0 | -—>] NULL |
|] | | | | MODE (17) | |
1 i d 1 1 1 4 4

MODE(2) is changed from

COERCION OF MCDES 4y

T ’ T ' T T T T T h
| INT | i 0 i 2 | 0 i NOLL | NULL |
L 1 : i A 1 A EY J
to

| ” T i L 4 T T T T 3
| INT | UNITE | 1 | 2 i 0 1 -=> { NULL |
| | | | | JMODE (17) | !
L i A 1 4 A A 4

MODE(3) 1is not considered though it is in the list of nmodes
to be considered, because MODE (2) is marked. Then MODE(16)
is considered: the flag-field 1is 40, and the terminal is
"proc", the coercion word is deprocedure. MODE (17) is
considered: the flag-field is #0, and the terminal is "ref",
the <coercion word is dereference. HMODE(2) is considered,
and flag-field is #1; so MODE(18) is firmly coerceable fronm
MODE (16) and the coercion sequence 1is deprocedure,

dereference, unite.

If the command
WCOERCE"™ 2 8 n"strong® "

is entered, then int is marked and MODE(8) is changed fronm

T ¥ T v k L 4 ik J L]
| STRUCT| i 0 i 8] 2 | NULL | -=> L2}
s i <4 4 1 4 i J
to
1 v T v k3 ¥ 1
| STRUCT| | 1 I 8 1 2 | NULL | ——> L2}
L 4 N 1 § | L 4 i o]

where L2 is

r T T T 1
| -—=> MOCE {10)}| -4->| —--D>NODE(11) |NULL|
: 1 1 i

i -4 L

MODE (3) is changed from

COERCION OF MODES - 45

1 T . L} L T T Ll 1
) REAL | } 0 } 3 } 0 | NULL | NULL |
L P | : i i 4 4 4 J
to

¥ T L) 1 B R v R
| REAL { WIDEN | 1 i 3 | 0 | -2 | NULL |
| | | 1 I | MODE (8) | |
L §) 4 4 i 4 4 4
MODE (2) is changed from

r i T T T L1 Y 1
i INT | | 0 | 2 | 0 ! NULL | NULL |
[& i A 4 4 A i 4 J
to

1 R g T ¥ L] i3 ¥ 3
| INT] WIDEN | 1 { 2 | 0 | —> | ©NULL |
| | | | | | MODE (3)]]
L i i A 4 A - J

MOLE(2) is considered again. . Since its flag-field 1is #1,
MODE (8) is strongly coerceable from MODE(2) and the

coercion sequence is widen, widen.

MODE BALANCING 46
CHAPTER ¥

MCDE BALANCING

5«.1. Balancing and its related operations:

In serial clauses, ccllateral clauses and conditional
clauses, there is a special feature concerning mode that is
reflected by the rules:

R.6.1.1g: suite of FEAT CLAUSE trains: FEAT CLAUSE train;
FEAT CLAUSE train, completer, suite c¢f strong
CLAUSE trains; strong CLAUSE train, ccmpleter,
suite of FEAT CLAUSE trains,

R.6.2.1d: firm collateral row cf MODE clause: firm MODE
balance PACK.

Re6o.2.1e: firm MODE balance: firm MODE unit, comma symbcl,
strong MODE unit list; strong MODE unit, comma
symbol, firm MODE wunit; strong HOEE unit, comna
symbol, firm MODE balance.

R.6.84.1d: FEAT choice CLAUSE: FEAT then CLAUSE, strcng
else CLAUSE; strong then CLAUSE, FEAT else CLAUSE.

This feature is that when the a posteriori mode and the
positon of a serial, collateral, or ccnditicnal clause are
given we have to check whéther the constituents of the
clause are syntactically correct or not. This 1is called
balancing of the mwmodes (the a priori modes of the
constituents) to the a posteriori'mode which is called the

balanced mode.

MODE BALANCING 47

In balancing, if a list of a priori modes is given, the
a posteriori mode and the sort (position) are also given,
(the last two are not necessarily given and this will be
discussed 1later) then we can check whether the list of a
priori modes can ke 'sort'ly balanced tc¢ the a pcsteriori
mode by checking: (1) that each of the a priori modes is
strongly coerceable tc the a postericri mode and (2) that
one of the a priori modes is 'sort'ly coerceable to the a

posteriori mode if sort is not strong.

For example:

bool a; real x; x:=(a}310.3);

where we have a conditional <clause, (a|340.3), whose
position is strong, the a posteriori mode is real and the a

priori modes are int and real.

Sometimes the a posteriori 'mode is not Kknown. For

example:
int y; real x; x:=(x>0]y1x)+3;

where the a posteriori mode of the <conditicnal clause
(x>0}ylx) is not known., 1In such a case, a possible list of
a posteriori modes can be supplied. Thus we have to extend
the meaning of balancing such that when a 1list of a
posteriori modes which may be null or a singleton, the
position and a list of a priori modes are given, balancing
is to find a mode or some modes or to identify a mode or
some modes of the list of a posteriori modes to which the

list of a priori modes can be 'sort'ly balanced.

MOLDE BALANCING 48

In y:=(x>0}alb) (i); whether a{i) and b(i) are slices or
calls may not yet be known. 1In such a case, the position
and the a posteriori mode are not given and we have to
determine whether the ©positiocn 1is weak or soft and to

provide a possible list of a posteriori modes.

In addition to the above, <collateral c¢lauses should
also be taken care of here because a constituent may be a
ccllateral clause e.g.

[1:3] real a1, kcol p; atl := (p1(1,2.2,3)1(14,2,3)); .

If the list of a posteriori modes (possibly null) and the
position are given when a collateral display (i.e. a list of
a priori modes) is given, the jocb of the procedure
'collateralt is to find or to identify from the a posteriori
mode list, a mode or some modes which can be coerced from a

row or structural display made up of the elements of the a

priori mode list.

5.2. The algorithms:

In the following algorithms, the operations AND and OR
between two Loolean vectors produces the vector result of
applying them between corresponding elements of the vectors.
Balance Algqorithm: |
Input: parameterlist: a list of nonterminal symbols uhicﬁ

represent the a posteriori modes (may be null).
operandlist: a list of modes which are the a priori

nodese.

Output:

MODE BALANCING 49

sort: strong, firm, meek, weak or soft.

a boolean vector selecting the elements of the

'parameterlist' for which a 'sort' balance of the

'‘operandlist?! can be found.

Function: if 'sort' is null then assign weak or wmeek to

Step1:

Ysort' if the a priori mode contains a slice or a
call, or give an error message if the a priori nmode
desen't. If the ‘'parameterlist' is null, then a
list of possible balanced mode is assigned to the
‘parameterlist?®,

ravel the 'operandlist*, i.e. 1if the list contains
an element which is a set of modes to be balanced
then rerlace thié by the set of modes. This process
is similar to the raveling of unicns. This can be
done because in 'sort?! balancing all of the a priori
modes must be strongly coerceable to the a
posteriori mode and only one of the a priori mode
must be *'sort'ly ccerceable to the a postericri
mode. If one of the a priori modes is a balance
pack, this is either 'sort'ly ccerceable or strongly
coerceable to the a posteriori mode. In the first
case, all the other a pricri modes are strongly
coerceable to the a posteriori mode and all the
constituents of the ©balance pack are strongly
coerceable with one *sort'ly coerceable to the a
posteriori nmode. In the second case, one of the

other a priori modes is 'sort'ly coerceable to and

MODE BALANCING 50

all the others together with the constituents of the
balance pack are strongly ccerceable toc the a
posteriori mode.

Step2: if 'sort' is ncot given, then let mi be the first mode
cther than skip, Jjump, nil or vacuum in the
'‘operandlist®; 1let the first prefix other than ref
cr proc of mi be pi. If pi is row or rowof then
*sort! := weak, 1if pi 1is prccp then 'sort':=firnm
otherwise goto stepiil.

Step3: if 'parameterlist' is null and if the 'sort' 1is not
strong and not firm then 1let k be the number of
modes in the 'operandlist' and for 1i:=1 to k do
step3.a to step3.d below; ctherwise, goto stepl.

Step3.a: let x ke the nonterminal representing operand(i).

Step3.b: if x 1is proc m, then search-insert x to the
‘parameterlist?', let x = mn and goto step3.b;
ctherwise,

step3.c: if x is ref m then do steps 3.c.1, 3.c.2;
otherwise, goto step3.d.

Step3.c.1: if t'sort' is firm or meek then search-insert x
to the 'parameterlist?!, let x = m and goto step3.b;
otherwise,

step3.c.2: if 'sort' is weak and if m is proc n or m is
ref n then search insert x to the 'parameterlist?,
let x = @ and goto step3.b; otherwise,

step3.d: search-insert X to the '‘parameterlist?’.

Operand (i) has been completely processed in forming

Stepl:

MODE BALANCING 51

the paranmeterlist.

let n be the number of elements in the
'‘parameterlist?, Let check_hip be a vector of 4
boolean values, which are for *skip','jump?, 'nil'
and *vacuyum?', Any cne ¢cf them is in the
‘operandlist' if and only if the corresponding value

is true.

Step5: let strong_matrix be a boolean matrix of dimension

nXm where m is the number of modes defined.

Strong_matrix is formed in the fcllowing way:

step5.a : for j:=1 to n do the fcllowing:

step5.a.1: unflag all the flags of the modes.

Step5.a.2: create a set of flags as directed by step9 of

the coercion algorithm, starting from state I with
parameter (j) as the nonterminal considered, and if
check_hip is not all false, then the set of flags is
modified by following step5, step6, or/and step8 of

the coercion algorithm.

Step5.a.3: strong_matrix(i,n-j) := flag(mode(i)), for

i=1'6-.'m.

StepS5.a.l4: parameter (j) has been completely processed.

Stepb:

if ‘'sort! 1is strong then gotc step7 otherwise let
'sort_matrix' be a boolean matrix of dimension nXm.

'sort_matrix' is formed in the following way:

stepb.a: for j:=1 to n do the following:

sterb.a.1: unflag all the flags of the modes.

Stepb.a.2: create a set of flags as directed by step9 of

MCOLCE BALANCING 52

the coercion algorithm., Start in state II if 'sort!
is firm else in state IITI with parameter(j) as the
nonterminal under consideration.
Step6.a.3: 'sort_matrix* (i,n-j) := flag(mode(i)), for
i=1,ee.,0.
Stepb.a.l: parameter(j) has been completely processed.
Step7: let A, B be boolean vectors of n elements; A be all
true and B all false. Let k be the number of
elements in the ?cperandlist?’.
Step8: for i:=1 to k do stepB8.a to stepB8.f.
Step8.a: let C, B be boclean vectors cf length n.
Step8.b: if operand{(i) is a defined mode then 1let 11 be

11-th Tow of

the nonterminal of operand{(i), C :
strong-matrix; ctherwise, gotc step8.c.

Ster8.b.1: let operand (i) be Xx.

Step8.b.2: if x = ref m or prcc m then 1let 12 be the
nonterminal of m, D := 12-th row of strong_matrix,
C :=C OR D, let x 3:= m and goto step8.b.2;
otherwise gotc stepB.d.

Step8.c: if operand (i) is a collateral clause then

C := collateral (parameterlist,the list of modes of
the <collateral <clause, strcng) otherwise gcto
step8.f.

Step8.d: A := A and C.
StepB.e: if 'sort! is strong then goto step8.f.
Step8.e.1: if operand (i) is a defined mode then

C := the 11-th row of *'sort_matrix' otherwise gcto

MODE BALANCING

step8.e.5.
Step8.e.2: let operand (i) be x.
StepB.e.3: if x = proc m or if x = ref m and X can
*sort'ly dereferenced then
L ::= 12-th row of ‘'sort_matrix'; otherwise
step8.e.6.
Step8.e.4: C 2= C OR D, let x := m and go to stepB.e.3
Step8.e.5: C := collateral (parameterlist, the 1list
modes of the collateral clause, *'sort?).
Step8.e.6: B := B OR C.
Step8.f: operand (i) has been completely processed.
Step9: if 'sort? is not strong then
A := A AND B.
Step10: return the boclean vector A and stog.
Step11: give an error message. Let A be all false.
step10.

End of the balance algorithm.

Collateral Algorithm:

Input: parameterlist: a 1l1list of ncnterminal symbols
modes which are the a posteriori modes.
operandlist: a list of nonterminal symbols cf m
which are the a priori modes.
sort: strong, firm, meek, weak or soft.

Output: a boolean vector selecting the elements
'parameterlist?' which can be *'sort'ly balanced

the collateral mode display ‘'operandlist?'.

53

be

goto

-

of

Goto

of

odes

of

from

MOCDE BALANCIRNG 54

Function: if the 'parameterlist' is null, a list of possible

Sterpl:

Step2:

balanced mode is assigned to 'parameterlist'.

create a bcolean vector *'row!, of which an element is
true if and only if the <corresponding element of
‘parameterlist! begins with row or rowof. If ‘'sort!
is strong, create a boolean vector *struct' cf which
an element is true if and only if the corresponding
element of 'parameterlist?' begins with struct. If
'parameterlist* is hull then insert all the defined
modes beginning with row or rowof to the
'‘parameterlist?,

let 'plist' be a list of modes such that 'plist?! and
Yparameterlist' are of the same length and if an
element of 'Yparameterlist' is row m or rowof m then
the corresponding element of *'plist?! is m, otherwise
the corresponding element of *'plist? is the pseudo-
mode (mode0) which is not a defined mcde, but
considered as a mode in the list. Let 'glist! be a

copy of ‘'operandlist®.

Step3: let B be a koolean vector.

Stepl:

B := balance(plist,glist,sort).

if 'sort' 1is not strong or 'struct' is a vector of
false values then goto step7. 1If 'sort' 1is strong
and ‘'struct' not all false then let 'plist?' be a
list of modes such that *plist?! and ‘parameterlist®
are of the same 1length and if an element of

tparameterlist? is struct pl1 p2 ... Mk and k is

MOCE BALANCING 55

equal to the number of entries in toperandlist' then
the corresponding element c¢f 'plist? is struct ml

«es Mk, otherwise the corresponding element of
'plist' is the pseudo node.

Step5: let A be a hdolean vector of which an element is true
if and only if the corresponding element of plist is
a mode (i.e, not the pseudo node). If A is all
false then goto stepé6.
For i:=1 to k do stepb.a to step5.g.

Step5.a: create a new mode list 'rlist' of the same length
as 'plist!' such that if an element of *plist' is a
defined mode then the <corresponding element of
rlist? is the i-th field of that mode of ‘*plist?
(which 1is a structure) otherwise it is the pseudo-
node model.

Step5.b: for each mode other than mode0 of ‘'rlist?', Jjump
over the selector to get the mcde.

Step5.c: <create a boolean vector *'check_hip' as in stepih
of the balance algorithm.

Step5.d: let strong_matrix be a boolean matrix of
dimension nXm as that in step5 of the balance
algorithm by doing stepS.a of balance algorithm with
n := number of elements in *rlist!' (the same as in
'parameterlist?').

Step5.e.1: let ¢ be a bcolean vector of length n.

Step5.e.2.a: 1if operand (i) is a defined mode then, let 11

be the nonterminal of operand(i), C := 11-th row of

MODE BALANCING 56

strong_matrix; otherwise goto stepS5.e.3.

StepS5.e.2.b: let operand{i) be =x.

StepS5.€.2.c: if x = ref m or x = proc m then, let 12 be
the nonterminal of m, D := 12-th row of
strong_matrix, C :=C OR D, 1let x = m and goto

step5.¢e.2.c; otherwise gotc stepb.f.
StepS5.e.3: if operand(i) is a cocllateral clause then
C := collateral(rlist, 1list of nodes cf the
collateral clause of operand (i), “strong") ;
cthervise,
stepS.e.l: if operand(i) is a serial or a conditional
clause then,
C := balance(rlist, 1list of modes of the clause of
operand (i) ,"strong"); otherwise goto step5.g.
Step5.f: A := A AND C, if A is all false, then goto step7.
StepS5.g: operand (i) has been completely processed that 1is
the i-th field of the structure has been ccmpletely
processed.
Step6: B z= B OR A
step7: return the boolean vector B and stop.

End of the collateral algorithm.

5«3. Examples to show how the procedures work:

In the program, instead of a boclean matrix, a vector
of bitstrings 1is formed so that a rcw c¢f the matrix in the
algorithm is but a bitstring. *balance' and 'collateral’

are two subroutines and bitstrings are returned by then.

MODE BALANCING 57

When the command is “BALANCE" follcwed by the operandlist,
the scrt and the parameterlist, 'balance' is called and a
sublist of the parameterlist (if it was not null) or a 1list
of wmodes to each of which the operandlist can be balanced
will be given. When the command is "COLLATERAL"™ followed by
the cperandlist, the sort and the parameterlist,
tcollateral? is called and a sublist cf the parameterlist or
a list of modes to each cof which the operand display can be
balanced will be given.
Example: suppose the mode grammer entered is

16 "refn 3

17 Wproc" 3

18 iref" 17

19 “"rowof" 3

20 "rowof" 2

-2.
When the command

"BALANCE" 17 18 19 -2 "firm" -2

is entered then
{1) As MODE(17), MODE (18) and NMODE(19) are modes, nothing is
done by 'ravel?,
(2) The parameterlist is null and sort is firm, then the
parameterlist is formed as follows:
MODE(17) 1is ref real, so ref real and real are inserted to
the 'parameterlist?'.
MODE (18) is ref proc real, so ref proc real, proc real and

real are inserted to the 'parameterlist?.

MODE BALANCING 58

MODE(19) is rowof real, so rowcf real is inserted to the
parameterlist.
The 'parameterlist' is now real, ref real, proc real, ref
proc real, and rowof real.
(3) the strong_matrix is formed as follcws:
(i) ‘*check_hip* is %0 as none of skip, jump, nil and
vacuum appears in the operandlist.
(ii) the last column (i.e. the 32nd cclumn) is

(C0010000000000000000) *t where (ab)*t means

- —
tro
| S |

’
Since real is the a posteriori mode in ‘'pcost' only the
flag field of real is set to #1, that is flag(MOLDE(3)) is
#1, therefore the fourth element is 1, the others are zero
for this column.

(iii) the 31st column is (00000000000000001000)*t since
ref real, that is MODE{16) is the a posteriori mode in
‘post! so the 17th element of this cclumn is 1, the others
are zero for this cclumn.

(iv). similarily the 30th .column is
(00000000000000000100) *t,

the 29th is (00000000000000000010)*t and the 28th is
(00010000000000000001)*t. Entries elsewhere are zero.

(4) the sort_matrix is formed 1like strong_matrix and the

sort_matrix is the same as strong_matrix except that

sort_matrix(3,28) is O while strong_matrix(3,28)is 1. This

is because in posting flags from rowecf real, real is flagged

MODE BALANCING

for strong but not for firm.
The strong_matrix is as follows:

r 1
100000000000000000000000000000000
100000000000000000000000000000000 |
100000000000000000000000000000000}
100000000000000000000000000010001
100000000000000000000000000000000}
100000000000000000000000000000000 |
j00000000000000000000000000000000
100000000000000000000000000000000
100000000000000000000000000000000
100000000000000000000000000000000 §
{00000000000000000000000000C00000]
100000000000000000000000000000000
100000000000000000000000000000000
100000000000000000000000000000000 |
100000000000000000000000C00C00000}
100000000000000000000000000000000
100000000000000000000000000000010
100000000000000000000000000000100 |
100000000000000000000000000001000)

100000000000000000000000000010000]
L 4

The firm_matrix is as follows:

r 1
100000000000000000000000000000000 1
100000000000000000000000000000000
§{00000000000000000000000000000000
100000000000000000000000000000001)
100000000000000000000000000000000 |
1000000000000060000000000000000000}
100000000000000000000000000000000
1000000000000000000000000000000001
100000000000000000000000000000000 |
100000000000000000000000000000000
1000000000000000000000000000000001
|00000000000000000000000000000000
100000000000000000000000000000000)
100000000000000000000000000C00000
1000000000000000000000000000000001
100000000000000000000000000000010¢{
100000000000000000000000000000110
}100000000000000000000000000001110
100000000000000000000000000011110
L 4

) A= (1111111111 11T1M1T1MIM I,

B = (00000000000000000000000000000000).

J 80 €

"
m

=(L0LL0000000000000000000000000000) =
(L0000000000000000000000000000000)
g0 (00L00000000000000000000000000000)
go (000L0000000000000000000000000000) = O
(10L0L000000000000000000000000000) =
(LOLlL000000000000000000000000000)
aNv (10L0L000000000000000000000000000) =
J ARY ¥ = ¥
“(10111L000000000000000000000000000) =
(10001 000000000000000000000000000)
40 (00100000000000000000000000000000)
g0 (000L0000000000000000000000000000) = 2

pe12pTIsuod sT Tea1 o201d 381 ‘(z)buelado o)

*(L0L00000000000000000000000000000)

J 30 €

it
s8]

(L01L00000000000000000000000000000) =
(10000000000000000000000000000000)

80 (00L00000000000000000000000000000) = D
(LOLOl000000000006000000000000000) =
(10L0L000000000000000000000000000)

Gy (bttibbLbbbebbbbbbbtietiiiibitel) =

J ANY ¥ = ¥
(10L01L000000000000000000000000000) =
(L000L000000000000000000000000000)

g0 (00L00000000000000000000000000000) = 2

pa2I2pTsuod sT [eax oo01d ‘(i) pueiado (9)

ONIDRVTIVE JQJON

*Teax ‘3uy ‘3ur SY 3IStIpueiado
273 aioynm (330s’3sTrpueiado’3strd) eouertRq = q (g)
"3UT ‘TedY SUTBIUOD 3ISTT eq4‘°é’t Z- Z € = W3st1dy (2)
= (00000000000000000000000000000000) = 13DODIIS,
*(t1L000000000000000000000000000000) = #0015 (1)
uay3
'Z- 0Z 61 w0ITFy ZT- € T T wTUNILVITOON

ST puemmOD @Yyl UIYM

*opom peosuereq s8Yz ST Teal Jomol *"a°1 ‘yTea1x
JOMOI :3}UDUS[D SUO SUTE3IUO0D pauinlax aq o3 3IsIT 295 (oL}

= (0000L000000000000000000000000000)

(LOLLL000000000000000000000000000)

any (0000L000000000000000000000000000)
g aNY ¥ = ¥ (6)
(LOLLL000000000000000000000000000) =
D¥0d =4
(0000L000000000000000000000000000) = D
(0000t 000000000000000000000000000) =
| D ANY ¥ = ¥

(0000L000000000000000000000000000) = 3

p2iepTsuod sT Teax Jomoxr “(g¢)pueaado (g)

"

*(10L1L0000000000000000000000000000)
(LOLL0000000000000000000000000000)

g0 (10L00000000000000000000000000000)

f

L9 DNIDNYIVE HJOW

MODE BALANCING

The strong_matrix is:

r)
100000000000000000000000000000000
{00000000000000000000000000000000
100000000000000000000000000000011
100000000000000000000000000000001
j]00000000000000000000000000000000)
100000000000000000000000000000000)
10000000000G000000000000000000000
100000000000000000000000000000000
}00000000000000000000000000000000}
100000000000000000000000000000000)
1000000000000000000000006000C00000
100000000000000000000000000000000
100000000000000000000000000C00000
100000000000000000000000000000000 |
]00000000000000000000000000000000
100000000000000000000000000000000§
100000000000000000000000000000000
{100000000000000000000000000000000
}00000000000000000000000000000000}
100000000000000000000000000000000
L

J

The sort_matrix is:

r 1
{100000000000000000000000000000000
|100000000000000000000000000000000
1000000000000000000000000000000101
100000000000000000000000000000001
100000000000000000000000000000000)
1]00000000000000000000000000000000
100000000000000000000000000000000
100000000000000000000000000000000
100000000000000000000000000000000
100000000000000000000000000000000}
100000000000000000000000000000000
100000000000000000000000000000000]
100000000000000000000000000000000 |
100000000000000000000000000000000}
100000000000000000000000000000000
100000000000000000000000000000000
100000000000000000000000000000000§
100000000000000000000000000000000
100000000000000000000000000000000 §

100000000000000000000000000000000
L J

So

A = (00000000000000000000000000000011) AND

MODE BALANCING

(00000000000000000000000000000011) AND
(0000000000000000000000000000000 1)
= (00000000000000000000000000000001)

B = (00000000000000000000000000000010) OR
(00000000000000000000000000000010) OR
(000000000000000000000000000C0001)

= (00000000000000000000000000000011)

A=A AND B

= (00000000000000000000000000000001)

(4) The list to Lbe returned contains rowcf real only.

63

OPERATOR IDENTIFICATION 64

OPERATOR IDENTIFICATICN

6.1. Operator identification:

ALGOL 68 allows the programmer to define new operators
or to extend the definition of existing operators tc¢ cover
modes which he has defined so that he may make full use of
the different defined modes. Because of this, the féllowing
problem arises., In an applied occurrence of an operator,
this operator may have been defined more than once, for
example, the operator + has had at least 16 definitions in
the standard prelude, the gquestion 1is how to chcose the
correct definition for the operatecr. The process = of
choosing the correct orperator in an applied occurrence is
called the identification of the operator~-defining
occurrence of the operator [R.4.3.2b, R.4.4c). An applied
occurrence of an cperator occurs in a formula where the
modes of the operands (a priori modes) are given and
naturally they may be conditional clauses, closed clauses,
collateral clauses or serial clauses vwhose a priori modes
are given. The syntax of a formula [R.8.4.1] allouws each
operand to be a firp MODE tertiary. Thus to identify an
operatcr is to find cut the defining occurrence of the
operator such that the modes of the parameters in that
defining occurrence are firmly coerceable fronm the

corresponding operands of +the applied occurrence of the

OPERATOR IDERTIFICATION 65

operatcr. Also the defining occurrence identified should be

unique

(a further discussion is in chapter 7).

6.2. The algorithm:

In this algorithm, the correct operator symbol and the

correct number of parameters are assumed.

Input:

Output:

Step1:
of

Step2:

left operand: the mode of the left operand of the
operator in the applied occurrence. This may be a
conditional/serial clause or collateral clause. It
is null if the operator is monadic.

right operand: the mode of the right operand of the
operator in the applied occurence. This is similar
to the left operand except that it cannot be null.
eligibleoplist: a list of operators denoted by mode
pairs, each of which is for the left and the right
parameter of a defining occurence of the cperator.

a boolean vector which selects from the
eligibleoplist those identified by the operands.
make a list, 'parameterlist' of nonterminals of modes
the right parameters of the 'eligibleoplist?,

let A,B be boolean vectors of n elements, where n is

the number of entries in the parameterlist. If ‘*right

operand' requires balancing, then goto step12 otherwise

step3:

let firm-matrix be an mXn boolean matrix where m is

the number of defined modes, n is the number of entries

in

the parameterlist; firm-matrix is formed in the

fcllowing way:

OPERATOR IDENTIFICATIGCN 66

for j=1 to n do stepl.a to step3.d.

Step3.a: unflag all the flags of the modes.

Step3.b: create a set of flags as directed by step9 of the
coercion algorithm starting from STATE II with the j-th
entry of the parameterlist as the mode considered.

Step3.c: firm-matrix (i, n-73j) = flag (mode (i)) for
1= 1,0ee,l.

Step3.d: the j-th entry of the parameterlist has been
completely processed.

Stept: let 1 be the nonterminal of the right operand, A be a
boolean vector of n false values.

Step5: A = A OR the 1-th row of firm-matrix. If 1 is ref m
or proc m then let 1 be the nonterminal of m» and goto
step5; otherwise,

stepé6: if the operator 1is nmonadic then goto stepll;
otherwise, replace the parameterlist by a 1list of
nonterminals representing the 1left parameters of the
'‘eligibleoplist®.

Step7: if the left operand requires balancing then go to
stepll; otherwise,

step8: the same as step3 (including step3.a to step3.d).

Step9: 1let 1 be the nonterminals of the 'left operand!, B a
bcoclean vector of n false values.,

Step10: B = B OR the 1-th row of firw-matrix, if 1 is ref m
or proc m then 1let 1 be the nonterminal of m and goto
step10, otherwise A = A AND B.

Step11: A is the vector to be returned. Stop.

OPERATOR IDENTIFICATION 67

Step12: make a list, 'olist' of the operands 1inside the
clause of the right operand.

Step13: if the right operand 1is a serial or conditional
clause then A = balance(parameteriist, clist, wfirn")
otherwise A = collateral{parameterlist, olist, “firm").
Goto stép6.

Stepili: make a list ‘Yolist*' of the operands inside the
clause of the left operand.

Step15: if the left operand 1is a serial or conditional
clause then B = balance (parameterlist,olist,"firm")
otherwise B = collateral (parameterlist,olist,"firn").

A = A AND B. Goto stepli.

End of the algorithm of operator identification.

6.3. An example:

In the program, a bitstring 1is used for a boolean
vector as in balance and collateral. The list of mode pairs
is terminated by -2 -2 or any two numbers less than -2. If
the operator is monadic, then Ehe list is

-2 n1 -2 n2 -2 n3 ... =2 -2
where n1,n2... Are nonterminals for the modes of the right
parameters of the operator, -2 may be replaced by any number
less than -2, When the command is "OPERATORS" followed by
the left operand, the right operand and the pairs of
parameters, a sublist of ‘operators! which can be identified
by the operands will be given.

For exanmple:

OPERATOR IDENTIFICATION

suppose the mode grammar entered is

16 “"ref" 3
17 "proc" 3

18 "ref" 17

-2

and the command

W"OPERATORS® -2 3 -2 3 -2 16 -2 -2

is entered,

(1) The firm_matrix is

-

(2) a

"

(3) A

(4) The

+real.

r 3
100000000000000000000000000000000 4
100000000000000000000000000000000}
100000000000000000000000000000000
100000000000000000000000000000001
{100000000000000000000000000000000
}000000000000000000000000000000001
100000000000000000000000000000000 }
100000000000000000000000000000000
100000000000000000000000000000000
100000000000000000000000000000000
]00000000000000000000000000000000
100000000000060000000000000000000|
100000000000000000000000000000000
100000000000000000000000000000000}
100000000000060000000000000000000
100000000000000000000000000000000
100000000000000000000000000000010}
}00000000000000000000000000000000}
1000000000000000000000000000000001
L 4

(00000000000000000000000000000000)
(00000000000000000000000000000000) OR
(00000000000000000000000000000001)
(00000000000000000000000000000001) «

operator is monadic. The operator

identified

68

-

1s

CONCLUDING REMARKS 69

CHAPTER VII

CONCLUDING REMARKS

This 1is a model in ALGOL W that shows how modes can be
manipulated in an ALGOL 68 implementation. This 1is dcne
according to £he revised syntax rules. The main changes in
the revised syntax are: void is a symbol (still not a mode),
no proceduring 1in cocercion, the <ccercion to vacuum 1is
hipping, the definition of vacuum and ncnproc are different,
hipping 1is not an explicit coercion, however implicitly it

is, and a compiler should take care of it.

The definition of equivalent modes is not given in ([R)
and not dincluded in the new syntax yet. The definition
given in chapter 3 is one modified, from that given by Mary
Zosel 1in p.7 of [Z], which is nct exact as we can see the
modes u and v defined below are not equivalent by the

definition,

Mode u union (bool, procp {u) int) and

mode v

v

union (bool, procp (u) int, proecp (v) int).

But they are equivalent by her algorithm. The definition is
not applicable owing to (1) the representation of a union
mode is not unique, (2) a union with two constituents may be
equivalent to a union with more than two constituents. The
present definition 1is only a suggested one, probably there

will be a proper definition in the Revised Report.

There are restrictions (R.4.4.2c and R.W4.4.3c) in

CONCLUDING REMARKS 70

defining occurrences of operators, and they have been shown
not powerful encugh to guarantee the uniqueness in
identification of operators in its applied occurrence [#],
[L1)e In identification of operators, one and only one
operator should be identified. In this work, a list of
operators identified is delivered, if this is null then no
defining occurrence can be identified, if this contains more

than one entry, then the operator is ambiguous.

In this model, the number of balanced modes or the
numbber of defining occurrences of an operator is at most 31.
When this is applied in a real compiler, in balancing, if
the balanced mode is given then the number of balanced modes
is one, if not, then a list of possitle balanced modes that
contains the a priori modes and modes 'sort'ly deferenced or
*sort'ly deprocedured from them will be supplied. Thus 31
is a number big enough for that. In operator
identification, if the number of defined occurrences of the
operator 1is greater than 31, then the list of operators to
be identified can be broken up into sublists of operators of

less than 31 elements so this restricticn can be handled.

If there is no 'firm <ccllateral display?' (which
may be included 1in the revised Report), the subroutine
*collateral? will be much simpler and the subroutine ‘pick?

can be simplified too.

[a]

[K]

L]

(L]

[P]

[p1]

[(r2]

[R]

(s}

(W]

[z]

REFERENCES 71

S e - o

Algol W Programming Manual, University of ©Newcastle
upon Tyne, 1970.

Koster, C. H. A. On Infinite Modes, Algol Bulletin

Lindsey, C. H. and van der Meulen, S. G. Informal
Introduction to ALGOL 68, North-Holland Publishing
Company, Amsterdanm, 1971.

Lindsey, C. H. Displays and locosely related, IFIP WG
2.1, No. 3 (168), Novosibirsk, Sept. 1971.

Peck, J. E. L. Some steps in compiling ALGOL 68,
Gesellschaft fur Informatik, Bericht NT. L,
Saarbrucken, 7-9 March, 1972.

Peck, J. E. L. An ALGOL 68 Companion, University
of British Columbia, 1971.

Peck, J. E. L. On storage of modes and some context
conditions, Proc., Informal Conference on ALGOL 68
Implementation, University of British Columbia, Aug.
1969 pp. 70-77.

van Wijngaarden, A., Mailloux, B. J., Peck, J. E,
L., and Koster, C. H. A. Report on the algorithmic
language ALGOL 68, Mathematisch Centrum, MR101,
Amsterdam, Oct., 1969, and Numerische Mathematic, 14,
1969 pp. 79-218.

Scheidig, H. Coercions in ALGOL 68, Technische
Hochschule, Munchen, Feb. 1970. N

Wossner,H. On identification of operators in ALGOL
68, ALGOL 68 Implementation, Peck (Ed.), North-Holland
Publishing Company, Amsterdam, 1971, pp.111-118.

Zosel, M. A formal grammar for the representation of
modes and its application to ALGOL 68. University of
Washington, Oct. 1971.

APPENDIX A 72

THE PROGRAM

BEGIN COMMENT date ————=————= 1973 April -=-—=—-—=—-- :
RECORD nd (STRING(6)t,cw; BITS flag;

INTEGER mn, nf; REFERENCE (md,nd) link,field);
COMMENT --- 'md's are used for the internal storage of
modes. The field *t' is the terminal, 'an' is the mode
number, 'nf' is the number of fields and 'field' is a
reference to another *md' (the field) or a reference to
an 'nd' list (the fields). The parts 'cw®, 'link* and
*flag' are dynamic, i.e. are used for temporary storage
during the mode manipulation algorithms. 'cw' is used
to store coercion steps, *'link' to link modes together
in lists and *flag' for various flags;
RECORD nd (REFERENCE (md) v; REFERENCE (nd)nxtrd) ;
COMMENT --- *nd* is used for simple lists of modes;
RECORD ndo (STRING (6) op_symbol; REFERENCE (md)1_par,r_par;

REFERERNCE (ndo) nxtop) ;

CONMMENT --—- the nodes 'ndo' are used for lists of operators;

COMMENT --- the procedures are related according to the
following grammar:

<<<utility>>>

clean_up :.
clean_flag : .
searchin : searchin.
mpr : .
ravel : select, ravel.

select : select.
post : consider, hip_1link, unions, search.

consider : .

hip_link : .

unions : consider.

search : equal.

equal : equal.

possible : searchin, fit.
fit .

<<<equivalenced>>>
equivalence : context, ravel, join_class, pass,
searchin, related, clean_flag.
context : context.
join_class : .
pass : scan.
scan : equivu, equivl.

equivu : elmu.
elmu : elnmu,
equivl : equivl,

related : searchin.

APPENDIX A 73

<<<coercion>>>
coerce : possible, fit, post.

<<<operator identification>>>
op_ident : operand_ident, clean_flag.
operand_ident : make_pars, form_matrix,
check_hip, which.
make_pars : make_pars.
form_matrix : post.
check_hip : check_hip.
which : id, clean_up, collateral, bala.
id @ fit .
collateral : searchin, fieldlister, pick,
balance, check_hip, form_matrix,
which, clean_flag.
fieldlister : fieldlister.
pick : pick.
balance : ravel, possible, form_matrix,
check_hip, clean_flag, bala.
bala : which. '

<<<testing>>>
test_them : equivalence, reverse_ravel, related,

clean_flag, coerce, clean_up, select,
identify, balance, collateral, selecto,
op_ident, enter_gramnmar.

identify : form_matrix, id.

reverse_ravel : include,

include : include.
selecto : selecto.
enter_grammar : mpr.

Each of the above procedures may call scme input or output
procedures which are not stated, in addition to read,
readon, write and writeon. The I/0 procedures are related

as follows:

<<Linputd>>>
readmdlist : readmd, readmdlist.
readmd : .
readoplist : readmd.
<<L<Loutput>>>

procedures to save output to the output buffer *out_line? :
saveoplist : saveopnd, saveon,
saveopnd : save, savemdlist, saveon, save_md.
savemdlist : saveopnd, saveon.
saveon : save.
save : .
save_mnd : save, saveon, save_nd.

The procedure to print out the output buffer *out_line!' :
saveout : . A

APPENDIX A <UTILITI> 74

COMMENT --- t'clean_up' cleans up the fields 'link?', 'flag®
and *'cw?! in each mode of the grammar;
PROCEDURE clean_up;
FOR i:=0 UNTIL max OO
BEGIN link (mode (i)) :=NULL; flag (mode(i)) :=#0;
cw (mode(i)) :=" " END;

COMMENT --- 'clean_flag' celans up the 'flag' field in each
mode of the grammar;
PROCEDURE clean_flag;

FOR i:=0 UNTIL max DO flag(mode (i)):=#0;

COMMENT =--- 'searchin' searches the 'nd' list 'r' for the
md? *p?' and inserts it, if necessary, in the order of mode
numnbers ('mn?) ;
PROCEDURE searchin (REFERENCE (md) VALUE p;
REFERENCE (nd) VALUE RESULT r):

IF r=NULL THEN r:=nd (p,NULL) ELSE

IF p=v{(r) THEN ELSE

IF mn(p)<mn (v{r)) THEN r:=nd(p,r) ELSE

searchin(p,nxtond (r)) ;

COMMENT --- “*mpr?! delivers the string "mi" where "i" is the
value of 'i', If i<min then it delivers the primitive mode
instead;
string (5) procedure mpr (integer value i)
BEGIN STRING (15)s; s3=% n;
IF i<0 THEN ELSE IF i<min THEN
s(016):=t (mode (i)) ELSE
BEGIN s:=intbase10(i); s{9}1):="m"; s(0}{6):=s{9|6) END;
s(015) END mpr;

COMMENT ——— 'ravel? ravels the unions ('i'=1) or the
conditional clauses ('i'=2) in the mode list *'pt'. In
raveling the unions, it assumes that ccntext con-
ditions have already been checked;
PROCEDURE ravel (REFERENCE(nd) VALUE RESULT p;
INTEGER VALUE i)
IF p-~=NULL THEN
BEGIN IF trace_it THEN
BEGIN save ("%ravel"); savemdlist(p); saveout END;
IF CASE i OF (t(v{p))="union",
(cw (v (p))="cond™) OR (cw(v(p))="seri")) THEN
BEGIN REFERENCE(nd) g,r; :=T:=CASE i OF
(select (~#0,field(v{(p))), lirk{v(p))):
WHILE nxtmnd (r)-=NULL DO r:=nxtmd(r) ;
nxtmd (r) :=nxtmd (p); p:=q; ravel(p,i) END
ELSE ravel (nxtmd {p), i) END;

COMMENT --- *select' performs the apl cperation a/list;
REFERENCE (nd) PROCEDURE select (BITS VALUE a;
REFERENCE (nd) VALUE list);
IF list=NULL THEN NULL ELSE IF a AND #1 = #1 THEN
nd{v(list), select(a SHR 1, nxtmd(list))) ELSE

APPENDIX A <UTILITY> 75

select(a SHR 1, nxtmd (list));

COMMENT --- *'post! flags 'mr' if 'mr' is "skip" or "jump",
if tor? is "nil" and 'ms* starts with v"ref", or if ‘'mr!
is "vacuunm" and '*ms? starts with "row" or *“rowof" otherwise
traces the a posteriori route through the grammar, from the
mode 'ms*, planting the flag *'flag1' as it goes;
PROCELCURE post (REFERENCE (md) VALUE nmr,ms; BITS VALUE flagl;
STRING (6) VALUE sort, coercend);
BEGIN REFERENCE (nde)cnsd; REFERENCE(md)m, lst;
INTEGER st; RECORD nde (REFERENCE (nde)nxtnde;
REFERENCE (md) mde, last;
INTEGER state) ;
COMMENT -=~ *'nde's are used by the queueing mechanisnm;
REFERENCE (nd) p;

COMMENT --- 'consider' queues the mode *m1*' along with
the state 'st' and saves coercion step 'cwd! in the ‘'‘cw!
field of *m1*;
PROCEDURE consider (REFERENCE (nd) VALUE m1;
INTEGER VALUE state;
STRING (6) VALUE cwd) ;
BEGIN IF cnsd=NULL THER cnsd:=nde(NULL,m1,m,state) ELSE
BEGIN REFERENCE (nde) q; g:=cnsd;
WHILE nxtnde (gq)-=NULL DO g:=nxtnde(q)
nxtnde (q) :=nde (NULL,n1,m,sState) END;
cw(m1) :=cwd END consider;

COMMENT --- ‘'hip_1link®' flags *mr' and links 'mr*, 'ms?
when 'mr' is coerceable to *ms' by hipping;
PROCEDURE hip_link;
BEGIN cw(mr) :="hipped"; flag(mr):=flag(mr) OR flagl;
link (mr) :=ms; link(ms):=mode0 END hip_link;

COMMENT -=- 'unions' takes care of the union mode *m* in
strong or firm coercion;
PROCEDURE unions (REFERENCE (md) VALUE n);
BEGIN REFERENCE(nd)p; p:=field(m); WHILE p-=NULL DO
BEGIN consider (v{(p),3,"unite"); p:=nxtmd (p) END
END unions;

COMMENT --- *search' searches through the mode grammar for

the mode equal to *q'. Only the *t*, 'nf' and *'field’

fields are examined;

REFERENCE (nd) PROCEDURE search (REFERENCE (md) VALUE g);
BEGIN

COMMENT --- 'equal' deternines whether the 'nd' lists
p and 'q' are equal;
LOGICAL PROCEDURE equal (REFERENCE (nd)VALUE p,q);
IF p=q THEN TRUE ELSE IF p=NULL THEN g=NULL ELSE
(v(p)=v(g)) AND equal (nxtmd (p),nxtmd (q)) ;

REFERENCE (rd)mi; INTEGER i; i:=min;

APPENDIX A <UTILITY>) 76

WHILE i<=max DO
BEGIN mi:=mode (i) ;
IF (nf(g)=nf (mi)) AND (t(g)=t(mi)) AND
(IF field(q) IS nd THEN equal(field(q),field(mi))
ELSE field (gq)=field (mi)) THEN i:=max+2 ELSE
i:=i+1 END;
IF i-~=max+2 THEN mi:=NULL;
mi END search;

cnsd:=NULL; m:=nodel;
consider (ms, :
IF sort="strong" THEN 1 ELSE IF sort="firm" THEN 2
ELSE 3, " m);
WHILE cnsd-~=NULL DO .
BEGIN st:=state(cnsd); m:=mde(cnsd); lst:=last(cnsd) ;
IF trace_it THEN write("**%* considering ",
IF m=NULL THEN "pull" ELSE mpr(mn(m))," in state ",
st, " last was ", IF lst=NULL THEN "null" ELSE
mpr (mn (1st))) ;
cnsd:=nxtnde (cnsd) ;
IF (flag(m)=-%#1) AND (t(m)="void") AND
{sort-=%"strong") THEN
COMMENT —--- if void appears as the a posteriori mode in
a position other than strong and that seems to be
coerceable, e.g. the a priori mode is ref proc void,
then a message will be given and the result is not
coerceable;
write("invalid a posteriori mode®) ELSE
BEGIN
CASE st OF
BEGIN
BEGIN COMMENT **#kdk%xk¥%¥* state 1 (strong);
link (m) :=1st; flag(m):=flag(m) OR flagl;
IF (t{mr)=%skip") OR (t (mr)="jump") THEN
hip_link ELSE
IF (t(mr)="nil") AND (t (ms)=*ref") THEN
hip_link ELSE
IF (t(mr)="vacuum") AND (t(ms)="ref") THEN
hip_link ELSE
IF t(m)="union" THEN unions(m) ELSE
IF t(m)="rowof" THEN
BEGIN consider (field(m),1,%row") ;
IF t(field(m))="bool" THEN
consider (mode (bits1),3,"widen") ELSE
IF t(field(m))="char" THEN
consider (mode (bytes),3,"widen") END ELSE
IF t(m)="row" THEN
consider (field (m),1,t (m)) ELSE
IF m=nmode(compl) THEN
consider {mode (realt), 1,"widen") ELSE
IF m=mode(3) THEN
consider (mode {(2),3,"widen") ELSE
IF t(m)="ref" THEN consider (field(m),4,"refrow")
ELSE

APPENDIX A <UTILITY> 77

IF t(m)="void" THEN
BEGIN IF link(m)-~=mode0 THEN
COMMENT --- no coercion goes after voiding,
so if the a posteriori mode is void, no
prefix should go before void;
flag(m) :=flag{m) AND =-flagl ELSE
BEGIN REFERENCE (md) mm, ®mp; Dm:=®mr;
IF (coercend="comorf") OR (coercend="loop")
THEN
BEGIN flag(mm) :=flag(mm) OR £flag1l;
cw(nm) :="voided”; link(mm) :=m END ELSE
BEGIN mp:=mr; WHILE field(mp) IS md LCO
BEGIN mm:=mp; mp:=field (mp) END;
IF (t{(mp)=%"void") AND (t(mm)-~=%"proc") AND
(nm-~=mp) THEN
flag(m):=£flag(m) AND ﬂflag1 ELSE
BEGIN mp:=mr; WHILE field (mp) IS md DO
BEGIN IF t(mp)="prcc" THEN mm'—fleld(mp)
ELSE IF t(mp) (0}j3)="row" THEN
mp:=md (™ w, v » _%0,0,0,NULL,mode0) ;
mp:=field(mp) END;
cw (mp) :="voided®; link{(mm):=
IF t(mm)="void" THEN NULL ELSE m;
flag (mm) := flag (mm) OR flag1l END END END
END END state_1;
BEGIN COMMENT #*%*%x*X*¥%%% state 2 (firm);
IF t (m)-~="void" THEN
COMMENT —--- void is assumed not to appear as the
a posteriori mode in any position other than
strong;
BEGIN link(m):=1lst; flag(m):=flag{m) OR flagl
END;
IF t(m)="union" THEN unions(m) END state_2;
BEGIN COMMENT **%%*¥%%%%%* state 3;
IF t(m)-~="void" THEN
BEGIN link (m):=1st; flag(m):=flag(m) OR flag1l
END END state_3;
BEGIN COMMENT #**%%%%%¥%%* state 4
IF t{m) (O§3)="row" THEN
BEGIN REFERENCE (md) mg1;
link (m) :=1st; consider (field (m),4,"refrow") ;
nqil:=search(nd ("refv»," v,#0,0, 1, NULL,
field (m)));
IF mg1-=NULL THEN
BEGIN 1link(mg1l) :=1st; =mgl; cw(m):="refrow"°
flag (m) :=flag (m) OR flag1 END END
END state_U4 END END;
IF flag{(m)=-%#0 THEN cnsd:=NULL END;
IF trace_it THEN writeon("flag = ",flag(m)) END post;

COMMENT --- 'possible! delivers a list of all modes which
can be 'sort'ly coerced from at least cne of the modes in
the list 'p*'., Note that it is not called when ?'sort' is
“strong" and when *'sort® is "firm" it does not consider

APPENDIX A <UTILITY> 78

uniting;
reference(nd) procedure possible(reference(nd) value p;
STRING (6) VALUE sort);
BEGIN REFERENCE (nd) return, gq; return:=NULL;
WHILE p-~=NULL DO
BEGIN REFERENCE(md) m; g:=NULL; m:=v(p);
COMMENT =--- 'skip', *jump?', 'nil' and 'vacuum' cannot
ke an a posteriori mode;
IF ~({(t(m)="skip") OR (t(m)="jump") OR (t(m)="nil") OR
(t (m)="vacuun")) THEN
BEGIN searchin(m,q); WHILE fit (m,sort) DO
BEGIN m:=field (m); searchin(m,q) END;
WHILE g-=NULL DO
BEGIN searchin (v (q),return); gq:=nxtmd (q) END END;
p:=nxtmd (p) END;
IF trace_it THEN
BEGIN save ("%possible"); savemdlist (p);
save (sort); saveout END;
return END possible;

COMMENT ——— %fit* determines whether the coercion step,
dereference or deprocedure, can be taken from the mode 'm';
LOGICAL PROCEDURE fit (REFERENCE (nd) VALUE m; STRING(6) VALUE
sort) 3
IF ¢t (m)="proc" THEN TRUE ELSE
IF (sort-=%soft") AND (sort-="weak®) THEN t (m)="ref" ELSE
IF sort="weak" THEN
BEGIN IF t(m)="ref" THEN
(t (field(m))="ref") OR (t(field(m))=%"procH")
ELSE FALSE END
ELSE FALSE;

COMMENT -~- 'equivalence' contains the mode equivalencing
procedures. During equivalencing the modes are in an 'nd?
list whose first element is 'initial® and whose last element
is "final': at the beginning, all the modes of the sane
terminals are linked together through their 'link' fields
and attached to one of the elements of the 'nd'. At the end
of equivalencing, there are as many elements in the 'nd?
list as there are equivalence classes. A set of equivalent
modes then hangs from each element of the 'nd'. The 'flag?
field of an *md' is used to record the equivalence class
number;
PROCELCURE equivalence;

BEGIN

COMMENT --- %context? checks for two context conditions.
It determines whether a mode shows itself and whether
there are multiple occurrences of the same field selector
in a structure;
PRCCEDURE context (REFERENCE (md) VALUE m;
LOGICAL VALUE ref, struct);
BEGIN IF flag(m)=#1 THEN
BEGIN

APPENDIX A <EQUIVALENCE> 79

write ("context condition error involving the mode");
save_md (m) ; saveon(","); saveout;
write (¥ which is replaced by 'boolt.");
COMMENT --- this dangerocus situation must be corrected
so we change the mode to something simple__ "bool";
field (m) :=NULL; t{(m):="bool"; nf(m) :=0 END ELSE
BEGIN flag(m):=#1;
COMMENT --- check for shielding;
IF t{m)-=%"procp" THER
BEGIN IP t(m)=%"struct" THEN
BEGIN REFERENCE(nd) p,q;
COMMENT --- check for repeated selectors;
p:=field(m); WHILE p-=NULL DOC
BEGIN g:=nxtmd (p) ; WHILE g-=NULL DO
BEGIN IF t(v(p))=t(v(q)) THEN
BEGIN IF max<35 THEN
BEGIN v(q) :=nd ("%"," v _flag(v(p)).,
BEGIN max:=max+1; max END, 1,
link(v(qg)), field(v(q9)));
mode (max) :=v (q) END;
write ("context conditicn error®,
" in the structure®); save_md (m) ;
save{"nultiple"); save ("selector") ;
save (t{v(p))); saveout END;
g:=nxtmd (g) END;
p:=nxtmd (p) END;
struct:=TRUE END ELSE
IF t(m)="ref" THEN ref:=TRUE;
IF -~{ref AND struct) THEN
BEGIN IF field(m) IS md THEN
context (field(m) ,ref,struct) ELSE
BEGIN REFERENCE (nd) p; p:i:=field(m) ;
WHILE p-~=NULL DO
BEGIN context(v(p),ref,struct) ;
p:=nxtmd (p) END END END END;
flag(m) :=#0 END END context;

COMMENT --- *join_class' adds the mode 'mi? to the class
which 'v(q) * belongs. This is used when *'mi' and *'v{(g)"
are of the same terminal;
PROCEDURE join_class (REFERENCE (md) VALUE mij;
REFERENCE (nd) VALUE q);

BEGIN REFERENCE (md) x; x:=v(q)3;

WHILE link (x)-~=NULL DO x:=1ink(x);

link (x):=mi; flag{mi):=flag (X) END;

COMMENT —--— t'pass' makes one pass through the 'nd' list.
The parameter 'i' determines which of the two different
kinds of tests for equivalence should be made.
1 - test the number of fields,
2 - +test the class numbers;
PROCEDURE pass (INTEGER VALUE 1i);
BEGIN

APPENDIX A <EQUIVALENCE> 80

COMMENT —--- *'scan' makes one scan through an *md' list.
It considers the initial mode and determines whether any
of the remaining modes of the list is in the sanme
equivalence class as the initial element. If one is not
then it is transferred to the list hanging from *'final’
and is given a new class nunber;
PROCEDURE scan (REFERENCE (nd) VALUE p; INTEGER VALUE 1i);
BEGIN

COMMENT --- *equivu' determines whether the united

nodes va' and *'b' should be in the same equivalence

class;

LOGICAL PROCEDURE equivu (REFERENCE (nd) VALUE a,b);
BEGIN

COMMENT --- t'elmu' determines whether the mode 'a‘
is equivalent to a member of the mode list 'b?';
LOGICAL PROCEDURE elmu (REFERENCE (md) VALUE a;
REFERENCE (nd) VALUE b);
IF b=NULL THEN FALSE ELSE
IF flag (a)=flag(v(b)) THEN TRUE ELSE
elmu (a,nxtod (b)) ;

LOGICAL return; REFERENCE (nd) p; return:=TRUE;
:=a; WHILE p-=NULL DO
IF elpu(v(p),b) THEN p:=nxtmd{(p) ELSE
BEGIN p:=NULL; return:=FALSE END;
IF return=TRUE THEN
BEGIN p:=b; WHILE p-~=NULL DO
IF elmu{v(p),a) THEN p:=nxtmd (p) ELSE
BEGIN p:=NULL; return:=FALSE END END;
return END equivu;

COMMENT ~--- 'equivl?' determines whether two *nd' lists
of modes are such that the corresponding elements are
in the same equivalence classes. It is called by
*scan' to deal with the modes whose terminals are
"struct" and “procp";
LOGICAL PROCEDURE equivl (REFERENCE (nd) VALUE a,b);

IF a=NULL THEN b=NULL ELSE

(flag(v(a))=flag(v(b))) AND

equivl (nxtmd (a) ,nxtmd (b)) ;

REFERENCE (mrd) g, r; r:=p; g:=1link(r);

WHILE g-=NULL DO IF CASE i OF ()
IF t{p)="union”™ THEN TRUE ELSE nf{p)=nf(q),
IF field (p)=field{(q) THEN TRUE ELSE
IF field(p) IS md THEN

flag (field (p))=flag (field (g)) ELSE
IF t(p)="union" THEN equivu(field(p),field(q))
ELSE equivl (field(p),field (q))
) THEN
BEGIN r:=link(r); g:=link (r) END ELSE
BEGIN link(r):=link(qg); link(g) :=NULL;

APPENDIX A <EQUIVALERCED 81

flag (g) :=bitstring (class);
IF tail IS nd THEN v{tail):=g ELSE 1link (tail):=q;
tail:=q; gq:=1link(r); IF trace_it THEN

BEGIN save ("%tail = "); save_md(tail); saveout
END END END scang

p:=pre; svcl:=class;
WHILE v (p)~=NULL DO
BEGIN IF v{(final)-=NULL THEN
BEGIN tail:=final:=nxtmd (final) :=nd (NULL,NULL) ;
class:=class+1 END;
scan(v(p),1i); p:=nxtmd(p) END
END pass;

REFERENCE (nd) initial, final, p, pre;
INTEGER class, svcl; REFERENCE (nd,md) tail;
COMMENT --- check context conditions and ravel all the
unions;
FOR i:=min UNTIL max DO
BEGIN context (mode (i) ,FALSE,FALSE) ;
IF t(mode(i))="union" THEN ravel(field(mode(i)),1) END;

COMMENT --- modes are classified by their terminals, i.e.
each element of the *'nd*' initial hangs a list of wmodes,
linked through their link-fields, with the same terminal.
The first 12 classes (from O0-th to 11-th) are for
primitives, the 12-th and the 13-th are for *'re!' and 'inm'
of 'complex'. the 14-th is for 'rowof! and the 15-th is
for 'struct?!. Classes with terminals other than the above
16, are attached to the end of 'nd*;
s=initial:=nd (mode (0) ,NULL) ;
FOR i:=1 UNTIL 7 DO -
BEGIN nxtmd (p) :=nd (mode (i) ,NULL) ;
flag(mode (i)) :=bitstring (i) ; p:=nxtmd (p) END;
FOR i:=1 UNTIL 4 DO
BEGIN nxtnd (p) :=nd (node (i+11) ,NULL) ;
flag(mode(i)) :=bitstring(i+7); p:=nxtwnd(p) END;
nxtmd (p) :=nd (node {10) , NULL) ;
flag (mode(10)) :=bitstring(12); pre:=p:=nxtmd (p);
nxtmnd (p) :=nd (mode (11) ,NULL) ;
flag (mode(11)):=bitstring(13); p:=nxtnd(p) ;
nxtned (p) :=nd (node (9) ,NULL) ;
flag (mode({9)) :=bitstring(14); p:=nxtnd(p):;
nxtnd (p) :=nd (mode (8) ,NULL) ;
flag (mode{8)) :=bitstring (15); final:=p:=nxtmnd(p);
class:=15; FOR i:=mnin UNTIL max DO
BEGIN IF nf (mode(i))=0 THEN p:=initial ELSE p:=pre;
WHILE nxtmd (p)~=NULL DO
BEGIN IF t (mode(i))-=t(v(p)) THEN p:=nxtmd (p) ELSE
BEGIN join_class(mode (i), p); p:=nd (NULL,NULL) END
END;
IF v(p)-~=NULL THEN
BEGIN IF t(mode(i))=t(v(p)) THEN join_class(mode(i),p)
ELSE

APPENCIX A <EQUIVALENCE> 82

BEGIN class:=class+1; nxtmd (p):=nd (node (i) ,NULL) ;
flag (mode (i)):=bitstring (class) END END END;
final:=pre; WHILE nxtmd (final)-~=NULL DO
final:=nxtmd (final);
COMMENT -=- classes are refined by the *'nft' field and the
class numbers in the flag-field(s) of the field-fields;
pass_1: pass(1);
COMMENT --- modes are separated by 'nf' field;
pass_2: svcl:=0; WHILE svcl<class DO pass(2);
COMMENT —-=- modes are separated by the *class-number' of
their field or fields;
COMMENT --- ccllect the garbage;
BEGIN REFERENCE(nd) p, q; REFERENCE(md) r, s; INTEGER 7j;
COMMENT —~~-- make all the 'link' fields of an *'md*' point
to the first element of the equivalence class and reset
the *flag’s;
:=initial; WHILE v (p)-~=NULL DO
BEGIN r:=v(p); WHILE r-=NULL DO
BEGIN s:=r; flag({r):=#0; r:=1link{(r); link(s):=v(p)
END; p:=nxtmd (p) END;
COMMENT —=-- go through all the modes and update the
1field' of the *md*' to point to the unique element
of the equivalence class;
p:=initial; WHILE v (p)-=NULL DO
BEGIN IF nf(v(p))>0 THEW
IF field {(v(p)) IS md THEN
field(v(p)):=link(field (v(p))) ELSE
BEGIN q:=field(v{p)); WHILE g-=NULL DO
BEGIN v{q):=l1link(v(qg)); g:=nxtmd (q) END END;
p:=nxtmd (p) END updating;
COMMENT --- compact the mode grammar;
j:=min; FOR i:=min UNTIL max DO
IF link(mode (i))=mode (i) THEN IF t(mode(i))-~=" " THEN
BEGIN mode (j)s=mode (i) ; mn (mode(j)):=j; j:=3j+1 END;:
FOR i:=3j UNTIL max DO
mode (1) :=md (™ w,» »_#0,i,0,NULL,NULL) ;
max:=j-1 END garbage_ccllection;
COMMENT ~=-- look at all unions to determine whether they
satisfy the condition regarding related modes;
FOR i:=min UNTIL max DO
IF t(mode(i))="union"™ THEN
BEGIN REFERENCE{nd) p, g9; g:=NULL;
COMMENT --- sort and remove repeated modes;
:=field (mode (1)) ; WHILE p-=NULL DO
BEGIN searchin(v(p).,q); p:=nxtmd(p) END;
field (mode{i)) :=q; :=related (q); clean_flag;
IF g~=NULL THEN
BEGIN write ("error in mode"); save_nd (node (i));
save("modes"); savemdlist(q); save("are");
save ("related"); saveout END END END equivalence;

COMMENT --- 'related? determines whether the set of modes in
*list®' contains a pair of related modes and if so, delivers
a list of modes of which each is related to some other mode

APPENDIX A <COERCION> 83

of the list;
REFERENCE (nd) PROCEDURE related (REFERENCE(nd) VALUE list);
BEGIN REFERENCE (nd)p, return; REFERENCE (md)x;
p:=list; return:=NULL; WHILE p-=NULL DO
BEGIN flag(v(p)):=#1; p:=nxtmd (p) END;
p:=list; WHILE p-=NULL DO
BEGIN x:=v{p); WHILE field (x)-=NULL DO
IF (t (x)="ref") OR (t{x)="proc") THEN
BEGIN x:=field (x); IF flag (x)=#1 THEN
BEGIN searchin (x,return); searchin(v(p),return) END
END ELSE x:=mode0;
p:=nxtmd (p) END;
IF trace_it THEN
BEGIN save ("%related:"); savemdlist(list);
saveout END;
return END related;

COMMENT --— 'coerce' determines whether the mode 'mr' can be
'sort?'ly coerced to mode 'ms';
LOGICAL PROCEDURE coerce{ REFERENCE (md) VALUE or;
REPERENCE (md,nd) VALUE RESULT ns;
STRING (6) VALUE RESULT sort;
STRING (6) VALUE coercend);
BEGIN LOGICAL return; REFERENCE (md) mm, m, mg; Mg:=mI=MWMC;
return:=TRUE; IF sort=% % THEN
BEGIN REFERENCE(md) mp; mp:=mm:=mr; WHILE mmp-~=NULL DO
BEGIN sort:=1IF t{(mm) (0§3)=%row" THEN "weak" ELSE
IF t (mm)="procp" THEN "meek" ELSE " %;
IF sort=%" " THEN
BEGIN np:=nm; opm:=field (mm) END ELSE
BEGIN mq:=IF t (mp)=%"ref" THEN mp ELSE mmn;
mm:=ms:=NULL END ENLC END;
IF sort=% " THEN
BEGIN write ("*** error: dubicus scrt %x%xxu);
return:=FALSE END ELSE
BEGIN IF ms=NULL THEN
BEGIN saveopnd (mr); save (sort); saveon ("ly");
save("coerceable®"); save("to"); IF sort-="strong"
THEN ms:=possible (nd (mg, NULL), sort);
savemndlist (ms) END ELSE
BEGIN save (sort); save (“coercion®"); save ("of");
save (coercend) ; saveopnd (mnr); save("to") ;
saveopnd (ms) ; save(":") ;
1F (sort-="strong") AND (sort-~=%"firm") THEN
BEGIN mm:=mnr;
WHILE (mr-~=ms) AND (mm-=NULL) DO
IF fit(mr, sort) THEN
BEGIN save (?de"); saveon (t(mr) (O4)) ;
mr:=field (mr); save ("to");
save (mpr (mn(mr))) END ELSE
BEGIN return:=FALSE; mm:=NULL END END ELSE
BEGIN WHILE (t (m)=%"refm) OR (t(m)="proc") DO
BEGIN flag(m):=-#1; m:=field (m) END;
flag(m) :=-#1;

APPENDIX A <OPERATOR IDENTIFICATION> 84

IF (flag(ms)=-~#1) AND (t (m)-="void") THEN
flag (ms) :=#1 ELSE
post (nr,ms,#1,sort,coercend) ;
m:=mr; WHILE (flag{(m) AND #1 = #0) AND return DO
IF (t(m)="ref") OR (t(m)="proc") THEN
BEGIN save ("de"); saveon(t(m)); save("to");
m:=field(m); save(mpr(mn(m))) END ELSE
return:=FALSE END END;
IF return=TRUE THEN WHILE link(m)-=NULL DO
BEGIN save(cw{(m)); m:=1link({(m);
IF link {m)-~=NULL THEN
BEGIN save ("to"); save (mpr(mn(m))) END END
END; return END coerce;

COMMENT --- %op_ident? is the operator identification
algorithm of Zosel. It receives a list of eligible operators
and delivers a list of those which can be identified . This
resulting list may have zero, one or mcre than one element;
BITS PROCEDURE cp_ident (REFERENCE (ndo) VALUE eligibleoplist;
REFERENCE (nd) VALUE r_opnd, 1_opnd);
BEGIN BITS a; BITS ARRAY s_matrix, f_matrix (0::max);

COMMENT —-=-- toperand_ident! delivers a bit string that
identifies the left parameters (i=1) or the right
parameters (i=2) of the given operators 'eligibeoplist?
bty the operand 'opnd?;

BITS PROCEDURE operand_ident (REFERENCE (ndo) VALUE

eligibleoplist; INTEGER VALUE i; REFERENCE (md) VALUE
opnd) ;
BEGIN REFERENCE (nd) p; BITS b;

COMMENT =-- 'make_pars' delivers an 'nd' list of the
left (i=1) or right (i=2) parameters of the elements of
*tlist;
REFERENCE (nd) PROCEDURE make_pars (REFERENCE (ndo) VALUE
list; INTEGER VALUE 1i);
IF 1list=NULL THEN NULL ELSE CASE i OF
(nd (1_par(list),make_pars(nxtop(list),i)),
nd (r_par (list) ,make_pars (nxtop(list),1)))

p:=make_pars(eligibleoplist,i);
form_matrix (p,#0,#1,"firn",f_matrix);
IF link(opnd) IS nd THEN
form_matrix (p,check_hip(link(opnd)),#1,"strong",
s_matrix) ;
b:=which (p,opnd,"firn",s_matrix,f_matrix);
b END operand_ident;

a:=operand_ident (eligitleoplist,2,r_cpnd);
IF 1_opnd -~= NULL THEN

BEGIN clean_flag; IF a-=#0 THEN

a:=a AND operand_ident(eligikleoplist,1,1_opnd) END;
a END op_ident;

APPENDIX A <OPERATOR ILENTIFICATIOND> © 85

COMMENT --- 'form_matrix' forms the ?scrt'_matrix of the
*plist?;
procedure form_matrix (reference(nd) value plist; bits value
’ k,g1; STRING(6) VALUE sort; BITS ARRAY
sort_matrix (¥));
BEGIN REFERENCE (nd) p; BITS f£1; p:=plist; f£1:=g1;
WHILE p-~=NULL DO
BEGIN IF v (p)-=mnode0 THEN
BEGIN post (mode (1), v(p), £1, sort, n w);
IF sort=%"strong" THEN
BEGIN IF k AND #1 -= #0 THEW
post (mode (skip),v{p),f1,s0rt, n n);
IF k AND #2 == #0 THEN
post (mode (jump) ,v{p),£1,sort, n) ;
IF kK AND #4 -= #0 THEN
post (mode (nil) ,v(p),£f1,s0rt, nw n);
IF k AND #8 -~= #0 THEN
post (mode (vacuum) ,v{p) ,f1,s0rt," ") END END;
p:=nxtmd(p); £1:=£f1 SHL 1 END;
FOR i:=0 UNTIL max DO sort_matrix(i):=flag (mode(i));
IF trace_it THEN
BEGIN save ("%form_matrix"); savemdlist (plist);
save(sort) ; saveout END
END form_matrix;

COMMENT --- ‘'check_hip® gives a bit string such that each of
the lowest 4 bits is on if *'skip?, 'jump', *nil' or *'vacuunm'
is in the 'olist®' respectively;
BITS PROCEDURE check_hip (REFERENCE (nd) VALUE olist);
BEGIN BITS k; REFERENCE(nd) p; k:=#0; p:=olist;
WHILE p-~=NULL DO
BEGIN IF v {p) -= mode0 THEN
BEGIN IF = (link(v(p)) IS nd) THEN
BEGIN IF t (v (p))="skip" THEN k:=k OR #1 ELSE
IF t(v(p))="jump® THEN k:=k OR #2 ELSE
IF t(v{p))="nil" THEN k:= k OR #4 FELSE
IF t(v(p))="vacuum™ THEN k:= k OR #8 END ELSE
k:=k OR check_hip(link(v(p))) END;
:=nxtmd (p) END;
k END check_hip;

COMMENT --- 'which' accepts a list of mcdes *list' and an
operand *'x* and, depending upon whether *x' is a mode, a
collateral mode display or a serial/conditional mode
display, it determines which method to use. it returns a bit
string that can be used for selecting those elements of
*1ist' which can be 'sort'ly coerced from 'x?%;

BITS PROCEDURE which (REFERENCE (nd) VALUE list;
REFERENCE {md) VALUE x; STRING (6) VALUE
sort; BITS ARRAY strong_matrix,
feat_matrix (*));

BEGIN BITS b;
IF trace_it THEN
BEGIN save ("%which:"):; savemdlist(list); saveon(":") ;

APPENDIX A <OPERATOR IDENTIFICATION> 86

saveopnd (x) ; saveon(";") ;save (sort); saveout END;
clean_up; b:= IF -~ (link(x) IS nd) THEN
BEGIN IF sort=vstrong" THEN id (x,"strong",
strong_matrix) ELSE
id (x, sort, feat_matrix) END ELSE
IF cw(x) = "coll" THEN
collateral (list, link(x), sort) ELSE
bala (1ist, link(x), sort,strong_matrix,feat_matrix);
b END which;

COMMENT --- tid' delivers a bit string b such that 'x? is
'scrt'ly coerceable to each of the modes in the list
corresponding to a *1' of b;
BITS PROCEDURE id (REFERENCE (md) VALUE x; STRING(6) VALUE
sort; BITS ARRAY sort_matrix(*));
BEGIN BITS b; b:=sort_matrix(mn(x));
IF trace_it THEN
BEGIN save ("%i1id"); save_md (x); save(sort);
saveout END;
WHILE fit(x,sort) DO
BEGIN x:=field(x); b:=b OR scrt_matrix(mn{x)) END;
b END id;

COMMENT --- 'collateral® delivers a bit string which may be
used for selecting those elements of 'parameterlist®' to
which the collateral mode display ‘operandlist! may be
*sort'ly balanced;

BITS PROCEDURE collateral (REFERENCE (nd) VALUE RESULT
parameterlist; REFERENCE (nd) VALUE
operandlist; STRING({6) VALUE
sort) ;

BEGIN

COMMENT -== 'fieldlistert! delivers a list of the i-th
field of each of the modes in 'list?;
REFERENCE (nd) PROCEDURE fieldlister(
INTEGER VALUE i; REFERENCE (nd) VALUE list);
IF list=NULL THEN NULL ELSE
IF field(v(list))=NULL THEN nd(mode0,fieldlister (i,
nxtmd (1ist))) ELSE
IF field(v(list)) IS md THEN
nd (field (v(list)), fieldlister (i,nxtmd (list))) ELSE
BEGIN REFERENCE(nd) p; p:=field(v(list));
FOR j:=2 UNTIL i DO p:=nxtnd(p);
nd (v (p) ,fieldlister (i,nxtmd (1ist))) END;

COMMENT —-—-— t'pick! forms a new 'nd' list such that a mode
corresponding to a *1' in 'a' is preserved otherwise mode0
is used; :
reference(nd) procedure pick(bits value a ;
REFERERCE (nd) VALUE list; INTEGER VALUE i);
IF list=NULL THEN NULL ELSE
BEGIN REFERENCE (md) m; m:=v(list);
nd(IF a AND #1 =#1 THEN

APPENDIX A <OPERATOR IDENTIFICATIOND> 87

CASE i OF (v(list),
md(t (m),cw{nm),flag(m) ,mn(m),nf (m),
pick (~#0,1link {m) ,i),field(m))) ELSE mode0,
pick(a SHR 1, nxtmd (list), i)) END;

BITS f,a,b,bl1,row,struct;REFERENCE (nd) plist,rlist,
gqlist,p; f:=#1; row:i=struct:=#0;
p:=parameterlist; WHILE p-~=NULL DO
BEGIN IF t(v(p)) (0}3)="row" THEN rcow:=row OR f ELSE
IF t(v(p))="struct" THEN struct:=struct OR f;
p:=nxtmd (p); f:=f SHL 1 END;
COMMENT --=- consider those which begin with 'row' or
‘rowof!';
if parameterlist=null then
BEGIN parameterlist:=nd (mode (9),NULL) ;
FOR i:=min UNTIL max DO
IF t(mode(i)) (0)3)="row" THEN
searchin {mode (i) ,parameterlist);
plist:=fieldlister(1,parameterlist) END ELSE
plist:=fieldlister (1,pick (row,parameterlist,!));
IF trace_it THEN
BEGIN save("%collateral:"); savemdlist(parameterlist) ;
saveon(";"); savemdlist (operandlist); saveon (";");
save (sort); savecut END;
qlist--pick(ﬂﬁo operandlist,2);
:=balance (plist,qlist,sort);
COMMENT —-=—— *'h!' remembers those which are possible if we
have a row display. Next consider strong structure
displays;
IF sort=%strong" THEN IF struct -=#0 THEN
BEGIN INTEGER no;
COMMENT —=-- first count the number *no' of elements in
the structure display 'operandlist?;
p:=operandlist; no:=0; WHILE p-~=NULL DO
BEGIN no:=no+1; p:=nxtmd (p) END;
b1:=#0; f:=#1; p:=parameterlist;
WHILE p-=NULL DO
BEGIN IF nf(v(p))=no THEN b1:=b1 OR f;
p:=nxtmd (p); f£:=f SHL 1 END;
COMMENT --- eliminate those structures of incompatible
length;
b1:=b1 AND struct; IF bi1-=#0 THEN
BEGIN plist:=pick(bl,parameterlist, 1);
f:=#1; p:=parameterlist; a:=b1;
FOR i:=1 UNTIL no DO
IFP a-~=#0 THEN
BEGIN COMMENT --- consider each operand element in
turn;
BITS ARRAY strong_matrix(0O::max); BITS k;
rlist:=fieldlister (i, plist);
COMMENT --- 'rlist' contains the corresponding
portrayals;
:=rlist; WHILE p-~=NULL DO
BEGIN COMMENT -—-- jump over the selector to get

APPENDIX A <OPERATOR IDENTIFICATION> 88

the mode;
v{p) := IF field(v(p))=NULL THEN mode0 ELSE
field (v{p)); p:=nxtmd (p) END;
clean_flag; IF link(v(operandlist)) IS nd THEN
k:=check_hip(link (v (operandlist))) ELSE
:=check_hip (nd (v (ocperandlist) ,NULL)) ;
form_matrix(rlist,k,#1,"strong",strong_matrix);
a:=a AND which(rlist,v (operandlist),"strong"®,
strong_matrix,strong_matrix);
operandlist:=nxtmd (operandlist) END;
b:=b OR a END END;
b END collateral;

COMMENT --- ‘'balance' produces a bit string which may be
used for selecting those elements of *parameterlist! to
which the serial/conditional display 'operandlist' may be
*sort'ly balanced. Note that if *'parameterlist' is null and
the '*sort' is meek, weak or soft, then it will supply its
own by calling *possible'. If the sort is not given, then it
will check if the 'operandlist' is a call or a slice, and it
will supply the suitable ?sort' and the 'parameterlist’;
BITS PROCEDURE balance (REFERENCE (nd) VALUE RESULT
parameterlist, cperandlist;
STRING (6) VALUE RESULT sort);
BEGIN REFERENCE (nd) plist, p; BITS a;
BITS ARRAY strong_matrix, feat_matrix (0::max);
ravel (operandlist, 2);
IF sort=n % THEN .
BEGIN REFERENCE(nd) mm; REFERENCE (md) nmnp, mng;
" mm:=operandlist; WHILE mm-=NULL DO
BEGIN mp:=v (mm);
IF (t(mp)="skip") OR (t (mp)="jump") OR (t(mp)="nil")
OR (t{mp)="vacuum®) THEN
mm:=nxtmd (mm) ELSE mm:=NULL END;
ng:=mnp; WHILE mp-=NULL DO
BEGIN sort := IF t{mp) (0}3) = "row" THEN "weak" ELSE
IF t(mp) = "procp" THEN "meek" ELSE " ";
IF sort = W % THEN
BEGIN mg:=mp; mp:=field (mp) END ELSE
BEGIN IF t (mg)-="ref" THEN mqg:=mp;
parameterlist:=possible (nd (mnq, NULL), sort)
END END ERD;
IF sort=" " THEN :
BEGIN write("*** error: dubiocus sort *%%xm); :=#0 END
ELSE
BEGIN IF parameterlist = NULL THEN
IF (sort-~=%"strong") AND (sort-="firm") THEN
parameterlist:=possible (operandlist, sort);
plist:=parameterlist;
form_matrix (plist, check_hip(cperandlist), #1, "strong",
strong_matrix) ;
IF sort ~= "strong"™ THEN
BEGIN clean_flag;
form_matrix(plist,#0,#1,sort,feat_matrix) END;

APPENDIX A <TESTING> 89

a:=bala (plist,operandlist,sort,strong_matrix,
feat_matrix);
IF trace_it THEN
BEGIN save("%balance:"); savemdlist(parameterlist);
saveon (";") ; savemdlist (operandlist); saveon (";%);
save(sort); savecut END END;
a END balance;

COMMENT —--- *bala' yields a bit string such that each of the
corresponding modes in the 'plist' can be 'sortt'ly balanced
from the tolist?;

BITS PROCEDURE bala (REFERENCE (nd) VALUE plist, olist;
STRING{(6) VALUE sort; BITS ARRAY
strong_matrix, feat_matrix (%*));

BEGIN BITS a,b; REFERENCE(nd) p;
p:=olist; a:=~#0; b:=#0;
WHILE p-=NULL DO
BEGIN IF v (p)-~=node0) THEN
BEGIN a := a AND which(plist, v(p), "strong",
strong_matrix, feat_matrix);
IF sort -= "strong"™ THEN
b := b OR which(plist, v {(p), sort, strong_matrizx,
feat_matrix) END;
p := nxtmd (p) END;
IF trace_it THEN
BEGIN save ("%bala"); savemdlist (olist);
save (sorit) ; saveout END;
IF sort=%strong® THEN a ELSE a AND b END balaj

COMMENT --- *test_them' tests all the procedures;
PROCEDURE test_thenm;
BEGIN

COMMENT --— 'reverse_ravel® is the reverse of raveling
unions. For each union mode, add to its field all defined
modes which are its proper subunions. A proper subunion
of a given union mode is a union, the set of whose
constituent modes is a proper subset of that of the given
mode. ;
PROCEDURE reverse_ravel;

BEGIN

COMMENT --- t'include?' determines whether the sorted 'nd?
list 'p* is included in the sorted *nd' list t'q’';
LOGICAL PROCEDURE include (REFERENCE (nd) VALUE p, q):

IF¥ p=NULL THEN TRUE ELSE IF gq=NULL THEN FALSE ELSE

IF v(p)=v{(q) THEN include (nxtmd (p),nxtmd (q)) ELSE

include (p,nxtmd(g9));

FOR. iz=min UNTIL max DO
BEGIN REFERENCE(md) mi; mi:s=mode (i) ;
IF t(mi)=%"union" THEN
BEGIN FOR j:=min UNTIL max DO
BEGIN IF t (mode(j))="union" THEN

APPENDIX A <TESTINGD> 90

IF i-~=3j THEN
IF include (field (mode(j)), field(mi)) THEN
BEGIN REFERENCE (nd) mqg; mg:=field(mi) ;
WHILE nxtmd (mg) -~=NULL DO mqg:=nxtmd (nq);
nxtmd (mg) :=nd (mode (j) ,NULL) END END END END;
IF trace_it THEN
BEGIN save("%reverse_ravel"); saveout END
END reverse_ravel;

REFERENCE (nd) mdl1, mdl2; REFERENCE (md) 1lo;
REFERENCE (rd,nd) ro; REFERENCE (ndo) op; STRING test;
STRING (6) sort, coercend; BITS b;
COMMENT ---= perform the required tests;
wrcite (n) ;
write ("enter command: dont't forget quotes"); write (" ");
read (test) ; write(" ") ;s writeon(test);
IF test="trace" THEN
BEGIN write("trace turned on"); trace_it:= TRUE END ELSE
IF test="notrace" THEN
BEGIN trace_it:=FALSE; write ("trace turned off") END
ELSE IF test='equivalence®"™ THEN
BEGIN equivalence;
FOR i:=0 UNTIL min-1 DO
BEGIN flag (mode(i)) :=#0; link(mode(i)) :=NULL END;
write (Ymodes equivalenced") ;
FOR i:=min UNTIL max DO
BEGIN save (mpr (i)); save ("=%"); save_md (mode {(i));
saveout; flag(mode(i)) :=#0; link(mode({i)):=NULL END;
reverse_ravel END ELSE
IF test="related" THEN
BEGIN write ("enter: modelist"); write (" ") s
save ("mode.list");
mdli:=readmdlist; savemdlist(mdll); saveout;
mdl2:=related (ndl1);
IF mdl2-~=NULL THEN
BEGIN save ("the"); save ("set"); savemdlist(mdl2) ;
save ("contains") ; save ("related"); save ("modes.");
saveout END ELSE
write ("no two of these modes are related");
clean_flag END ELSE
IF test="coerce"™ THEN
BEGIN write("enter: a priori mode, a posteriori mode,") ;

writeon (" sort, coercend"); write (" "y 3
lo:=readmd; ro:=readmd; readon(scrt); readon(coercend) ;
writeon (sort); writeon (" #) ;s writeon (coercend);

IF coerce(lo, ro, sort, coercend) THEN saveout ELSE
BEGIN out_line:=%" "; out_ptr:=1; save_nd (lo);
save ("not"); save(sort); saveon("ly");
save ("coerceableV) ; save ("to%"); save_nd (ro);
saveout END;

clean_up END ELSE

IF test="identify" THEN
BEGIN write ("enter: mode, sort, modelist"%);
write (" ") ; ro:=readmd; save("mode:"); saveopnd(ro) ;

APPENDIX A <TESTING> 91

saveon(";"); readon(sort); save(Ysort:"%) ; save(sort);
saveon(";"); writeon(sort); mdll:=readmdlist;
save ("mode.list:%) ; savemdlist (mdl1); saveout;
write ("possible modes identified: ") ;
savemndlist (select (identify (mndl1,ro,sort), mdl1));
clean_up; saveout ENLC ELSE

IF (test= "balance") OR (test—"collateral“) THEN

BEGIN
write ("enter: operand modes, sort, parameter modes") ;
write(® ")y s mdli:=readmdlist;

save ("operand.display:"); savemdlist (mdl1); saveon (";");
readon (sort); save("sort:%); writeon{(sort) ;
save (sort) ; saveon(";")3: mdl2:=readmdlist;
save {("parameters:"); savemrdlist(mdl2); saveout;
write ("possible ", test, ":w);
b:= IF test="balance®" THEN balance{mdl2,mdl1,sort) ELSE
collateral (md12,mdl1,sort);
savemdlist (select (b, mdl2)); clean_up; saveout END ELSE
IF test="operators" THEN
BEGIN write ("enter: left operand, right operand,",
" operators"); write (")
lo:=readmd; ro:=readmd; write (" ") ;s op:=readoplist;
save("left.operand:"); saveopnd(lo); saveon{";");
saveout; save ("right.operand:"); saveopnd(ro);
saveon("3"); saveout; save ("operators:%) ;
saveoplist (op) ; saveout; write ("possible operators:");
saveoplist (selecto (op_ident (op,ro,10) ,0p)); clean_up;
savecut END ELSE
IF test="grammar® THEN enter_grammar ELSE
IF test="stop" THEN work:=FALSE ELSE
BEGIN write("sorry - try again®,
-- coerce, related, grammar, identify, balance,",
¥ collateral, operators, equivalence, trace,"
" notrace or stop."); write(" ") END END test_them;

COMMENT —--- videntify' delivers a bit string that can be
used for selecting those elements of *plist?! to which the
mode 'x*' may be *'sort'ly coerced;
BITS PROCEDURE identify (REFEREKNCE (nd) VALUE plist;
REFERENCE {(md) VALUE x;
STRING (6) VALUE sort);
BEGIN BITS ARRAY strong_matrix, feat_matrix (0::max);
BITS k, b3 k:=#0;
IF trace_it THEN
BEGIN save ("%identify:"); savemdlist (plist);
saveon (";"); saveopnd(x); saveon(M";"); save(sort) ;
saveout END;
IF sort="strong" THEN
BEGIN form_matrix{(plist,check_hip(nd (x,NULL)),#1,sort,
strong_matrix);
b:=id (x,sort,strong_matrix) END ELSE
BEGIN form_matrix(plist,#0,%#1,sort,feat_matrix);
b:=id (x,sort,feat_matrix) END;
b END identify;

APPENDIX A <TESTING> 92

COMMENT —-- 'selecto' does the same job as 'select' but for
tndot-lists;
REFERENCE (ndo) PROCEDURE selecto (BITS VALUE a;
REFERENCE (ndo) VALUE 1list) ;
IF list=NULL THEN NULL ELSE IF a AND #1 = #1 THEN
ndo (op_symbol (list), 1_par(list), r_par(list),
selecto(a SHR 1, nxtop(list))) ELSE
selecto(a SHR 1, nxtop(list));

COMMENT --- 'enter_grammar®' accepts a number of rules of the
form 'n s m', where *n' is an integer, 's!' is a string and
*m' is an integer (representing one mode) or an integer
sequence followed by -2 (representing a list of modes). The
list is used in the case that the string is "struct®,
"uynion" QOr "Procp" :
PROCECURE enter_grammar;
BEGIN INTEGER i; STRING(6) terminal; max:=153
FOR i:=min UNTIL max+20 DO
mode (1) :=md (" », » »_ $#0, i, 0, NULL, NULL) ;
write("enter the grammar:"); write (" "y
WHILE BEGIN read (i) ; write (v #); writeon(i); i>-2 END DO
BEGIN IF (i>max) AND (i<35) THEN max:=1i;
IF (i<min) OR (i>34) THEN
BEGIN i:=35; IF t (mode(35))=" " THEN
write("*** warning #*** there is a restriction --- 9,
"15<i<35, ") ELSE
write ("*%% j is outside the limits 15<i<35 again, %,
"the previous mode (i) with i ocutside the ¥,
"limits will not be entered **%%") END;
readon (terminal); t(mode(i)):=terminal; writeon (" ")
writeon(terminal); field (mode ({i)):=
IF (terminal -= %“union®") AND
(terminal -~= "“struct") AND
{terminal -~= "procp") THEN readmd ELSE
BEGIN INTEGER n; REFERENCE({nd)1l1,12; l1:=readmdlist;
12:=11; n:=0; WHILE 12-=NULL DO
BEGIN 12:=nxtmd{12); n:=n+1 END;
nf (mode (i)):=n; 11 END;
IF field(mode(i)) IS md THEN
nf (node (i)) :=1 END;
IF t(mode(35))-~=" " THEN
BEGIN IF max<35 THEN
BEGIN max:=max+1; mode(max):=mcde(35) ENL END;
COMMENT --- print the mode table, first as a grammar and
second as a list of individual modes;
FOR i:=min UNTIL max DO
IF mode (i) -= NULL THEN
IF field(mode(i)) -= NULL THEN
BEGIN REFERENCE (md) m; save(mpr(i)); save ("=%);
:=mode (i) ; save(t(m)); IF field(m) IS md THEN
save (npr (mn (field(m)))) ELSE
BEGIN REFERENCE(nd) p; p:=field(m); WHILE p-=NULL DO
BEGIN save (mpr(mn{v{(p)))); ps=nxtmd(p); IF p-=NULL

APPENDIX & <INPUT> 93

THEN saveon(",") END END;
saveout END;
write (" "); FOR i:=min UNTIL max DO
BEGIN save(mpr(i)); save("="); save_mnd(mode(i)) ;
saveout END END enter_grammar;

COMMENT --- *'readmdlist' reads a sequence of integers which
it interpretes as a list of modes. The list must end with
the value '=2?';
REFERENCE (nd) PROCEDURE readmdlist;

BEGIN REFERENCE(md) m; m:=readrd;

IF m=NULL THEN NULL ELSE nd(m, readmdlist) END readmdlist;

COMMENT ~-- *'readmd' reads either a mode (i.e., an integer)
or a. mode display (i.e. -1 followed by a string followed by
an integer sequence followed by -2). Note that during input
of the grammar this procedure is always given a non-negative
integer;
reference (nd) procedure readnd;
BEGIN INTEGER i; REFERENCE(wmd) m; readon(i); writeon (i) ;
IF i>=0 THEN m:=mode (i) ELSE IF i<=-2 THEN m:=NULL ELSE
BEGIN STRING(6) s; readon(s); writeon({(s);
p:=md (" », s, 0, -1, 0, readmdlist, NULL) END;
m END readmd;

COMMENT --- 'readoplist' reads a sequence of integer pairs
which are interpreted as the left and right parameter modes
of the operator '+', It is terminated by the pair -2 -2;
REFERENCE (ndo) PROCEDURE readoplist;

BEGIN REFERENCE(nd)ml1,m2; ml:=readmd; m2:=readmd;

IF m2=NULL TREN NULL ELSE

ndo ("+", nl1, m2, readoplist) END readoplist;

COMMENT --- 'saveoplist' saves the operator list 'ol' for
cutput;
PROCEDURE saveoplist (REFERENCE (ndo) VALUE ol);
WHILE o0l-~=NOLL DO

BEGIN save (" {"); saveopnd (1_par(cl));

savecn (op_synbol (0l)) ; saveopnd (r_par (ocl)); saveon (")");

ol:=nxtop(ol);

IF 0l-~=NULL THEN saveon{%,") END saveoplist;

COMMENT --- 'saveopnd! saves a mode or a mode display for
output; ‘
PROCEDURE saveopnd (REFERENCE (md) VALUE 1lo0);
IF lo=NULL THEN save (“"null") ELSE
IF link (lo) IS nd THEN
BEGIN save (" ("); savemdlist (link (lo));saveon (")") END
ELSE save_md (lo);

COMMENT -~- 'savemdlist!' saves the mode list 'mdl' for
output;)
PROCEDURE savemdlist (REFERENCE (nd) VALUE mdl);

WHILE mdl-=NULL DO

APPENDIX A <OUTPUT>

BEGIN saveopnd(v{mdl)); mdl:=nxtmd (ndl);
IF mdl-=NULL THEN saveon(",") END savemdlist;

PROCEDURE saveon (STRING VALUE s1);
BEGIN out_ptr:=out_ptr-1; save(s1) END saveon;

COMMENT --- 'save' saves the non-blank part of *'s1? in
fout_line' followed by one blank;
PROCELDURE save (STRING VALUE s1);
BEGIN INTEGER i; i:=0; IF out_ptr>225 THEN saveout;
WHILE i<=15 DO
IF s1(i}1) = % " THEN i:=16 ELSE
BEGIN out_1line (out_ptr|1):=s1(i{1); i:=i+1;
out_ptr:=cut_ptr+1 END; .
out_ptr:=out_ptr+1 END save;

COMMENT --- 'save_md' saves the mode 'm' in the string
‘out_line' for the purpose of readable output;
PROCEDCURE save_md (REFERENCE (md) VALUE m);
BEGIN IF m -»= NULL THEN
BEGIN BITS sgn; sgn:=#80000000;
IF nf(m)=0 THEN save{t(m)) ELSE
1F¥ flag(m) AND sgn=#0 THEN
BEGIN save (t(m)); flag(m):=flag(m) OR sgn;
IF (t(m)=-="union®") AND (t (m)-="procp") AND
{(t{m) ~="struct") THEN
save_mnd (field(m)) ELSE
IF t(m)="procp™ THEN _
BEGIN REFERENCE (nd) p; save{"(%);
cut_ptr:=out_ptr-1; p:= field(m); WHILE p-=NULL
BEGIN IF nxtnd (p)=NULL THEN saveon(")");
save_md (v{p)); p:=nxtmd(p) END END ELSE
BEGIN save (" (¥); savemdlist (field (m)) ;
saveon (") ") END;
flag(m) :=flag(m) AND -~sgn END ELSE
save (mpr(mn{m))) END END save_mnd;

COMMENT -~-- 'saveout' prints out the ocutput buffer
*out_line?';
PROCELURE saveout;
BEGIN write (out_line(0}60)); IF out_ptr>60 THEN
write(out_:line (60]60));
IF out_ptr>120 THEN write(out_line (120160))
IF out_ptr>180 THEN write(out_1line (180}]60))
out_ptr:=1; out_line:=" " END saveout;

e @

LOGICAL trace_it, work;

94

DO

INTEGER void, int, bool, reall, char, fcrmat, bitsil, bytes,

strng, compl, skip, jump, nil, vacuum, min, max, out_p
REFERENCE (md) ARRAY mode(0::35); REFERENCE (nd) modeO;
STRING (240) out_line;

COMMENT —-- initialization part. 'trace_it! is a logical
variable which controls some built in tracing;

tr;

APPENDIX A 95

start: intfieldsize:=4; out_line:=" "; cut_ptr:=1;
trace_it:=FALSE; work:=TRUE; void:=0; bool:=1; int:=2;
real1:=3; char:=4; format:=5; bits1:=6; bytes:=7; ccnpl:=8;
strng:=9; skip:=12; jump:=13; nil:=14; vacuum:=15;
min:=16; max:=15;
modeQ:=md (" »," v,#0,-1,0,NULL,NULL) ;
mode (void) :=md ("voidw," »,$0,0,0,NULL,NULL) ;
rode (bool) :=nd ("bool®"," » 40,1,0,NULL,NULL) ;
mode (int) :=mnd ("intw," v #0,2,0,NULL,RULL) ;
mocde (reall) :=nd ("real"," v _#0,3,0,NULL,NULL) ;
mode {char) :=mnd ("charv," »,80,4,0,NOLL,NULL) ;
node {format) :=nd ("format”,"* »,#0,5,0,NULL,NULL);
mode (bits1) :=md ("bits"," v,$#0,6,0,NU0LL,NULL) ;
node (bytes) :=md ("bytes"," v, 40,7,0,NULL,NULL) ;
sode (10) :=nd ("re®," v _#0,10,1,NULL,node(reall)) ;
node (11) :=md ("ip"," ",#0,11,1,NULL,mode(reall));
mcode (skip) :=nd ("skip®," %,#0,12,0,80LL,NULL) ;
node (jump) :=nd (" jump"," »,4#0,13,0,N0LL,NULL) ;
mode (nil) :=md ("nilw,v» »_$0,14,0,NULL,NULL) ;
mode (vacuum) :=mnd ("vacaun"," *,%0,15,0,NULL,NULYL) ;
mode {(compl) :=nd (*struct»," »,#0,8,2,N0LL,

nd (mode (10) ,nd (node (11) ,NULL))) s
mode (strng) :=nd (Yrowof"," %,40,9,1,N0LL,node (char));
WHILE work DO test_then;
END.

o

3

Il eo 3

How To Use The Progranm

The program accepts the following commands which must
be enclosed in gquotes:
"TRACE", "NOTRACE", “GRAMMARY, "“EQUIVALENCEW", WCOERCE",
"RELATED", ®“IDENTIFY", "BALANCE", “"COLLATERAL", "Y“OPERATORS"
and "STOP", :
Except for "“TRACEY, "NOTRACE™, “EQUIVALENCE" and "STOP",
input in a certain format is to be entered. A mode which is
not null is represented by a non-negative integer less than
or equal to the maximum of the rule number entered in the
grammar (that is less than or equal tc 35). A null mode is
represented by an integer less than -1. A mode list is a
sequence of modes (0 < integers < 35) fcllowed by an integer

less than —-1. A mode display is a mode list preceded by -1
"coll", -1 "seri" or -1 %cond" e.g. -1 "ccll®" 2 3 14 -2,
*sort' is a string, it is "“strong®", "firm", ‘“meek", "weak"

or “"soft", ‘'coercend? is a string, it is either "comorf" to
tell that the coercend is a comorf or "moxrf" (or " ") to
tell that the coercend is not a comorf. An operand 1is a
mode or a mode display. A list of operators is a sequence
of pairs of operands terminated by -2 -2. An unary ocoperator
is an operator whose first (left) operand is null.

The standard modes of the program are as follows:

APPENDIX A 96

m0 = void

m1 = bool

m2 = int

n3 = real

m4 = char

n5 = format

m6 = bits

n7 = bytes

m8 = struct m10 m11 (complex)
m9 = rowof md4 (string)
10 = re n3

n1t = im m3

12 = skip

m13 = jump

m14 = nil

m15 = vacuun,

(1) The command "TRACE" turns on a built in trace, Y"NOTRACE"
turns that off.

(2) When the command is "GRAMMAR", rules of a mode grammar
followed by an integer less than -1 that shows the end of
the set of rules, are to be entered. Each rule of the mode
grammar is entered as
m t P
where
(a) m is an integer such that 15 < m < 35.
{b) t is a terminal which is a string so that it must be
enclosed 1in gquotes. The terminals are "ref", "“proc",
"row", "rowof", "“union", "struct", ‘"“procp" (procedure
with parameters), or a field-selector of a structure, or
any other standard mode.
(c) p is either a mode or when t is Ystruct®", "union" or
"procp" a mode list.
This command allocates a record 'md? to each rule entered,
so that they can ke used by some other commands to follow.

(3) The command "“EQUIVALENCE" compacts the mode grammar by
removing equivalent modes.

{4) When the command is "COERCE", the source mode (the a
priori mode), the target mode(the a posteriori mode), the
sort (position) and the <coercend are to be entered. It
determines whether the a priori mode is sortly coerceable to
the a posteriori nmode.

(5) For the command "“RELATED", the input 1is a mode 1list.
This determines whether there are related modes in the mode
list.

(6) The input following "IDENTIFY" is mode, sort and mode

APPENDIX A 97

list. This is to identify from the mcde list those modes to
which the given mode is sortly coerceable.

(7) The dinput following "BALANCE" or "COLLATERAL" is source
node list, sort, target mode list. The source mode 1list
contains the modes in a conditional/serial clause or a
collateral clause, and any one of these modes may be a
serial/conditional or collateral mode display. The command
“BALANCE" determines from the target mode list the modes to
which the serial/conditional mode display (i.e. the source
mode list) can be sortly coerced. The command "“COLLATERAL"
determines from the target mode list those modes to which
the ce¢llateral mode display can be sortly coerced.

(8) The input following the command "OPERATORSY" is left
operand, <right operand and the 1list of operators. This
identifies from the list of operators that operator (or
those operators if ambiguous) identified by a formula with
the given operands. Note that unary ofperators and binary
operators are not to be mixed in the operators and that only
a list of unary operators will be given as a target list for
a monadic formula.

(9) The command "STOP" terminates the execution.

ENTER COMMAND: DON'T FORGET QUOTES

NOTRACE
TRACE TURNED OFF

ENTER COMMAND: DON'T FORGET QUOTES

GRAMMAR
ENTER THE GRAMMAR:
16 REF 3
17 PROC 3
18 REF 17
19 ROWOF 3
20 REF 19
21 UNION 2 3 19 -2
22 STRUCT 23 25 -2
23 A 24
24 ROWOF 4
25 B 26
26 REF 22
27 ROWOF 1
28 UNION 1 21 -2
29 UNION 1 21 -2
30 REF 30

-2

APPENDIX A

416 = REF REAL

417 = PROC REAL

M18 = REF N17

M19 = ROWOF REAL

M20 = REF H19

M21 = UNION INT, REAL, M19

M22 = STRUCT M23, M25

M23 = A M24

424 = ROWOF CHAR

¥25 = B MN26

M26 = REF M22

M27 = ROWOF BOOL

128 = UNION BOOL, 421

¥M29 = UNION BOOL, M21

M30 = REF M30

¥M16 = REF REAL

M17 = PROC REAL

M18 = REF PROC REAL

119 = ROWOF REAL

H20 = REF ROWOF REAL

M21 = UNION (INT, REAL, ROWOF REAL)
M22 = STRUCT (A ROWOF CHAR, B REF M22)
M23 = A ROWOF CHAR

M24 = ROWOF CHAR

M25 = B REF STRUCT (A ROWOF CHAR, M25)
426 = REF STRUCT (A ROWOF CHAR, B 126)
m27 = ROWOF BOOL

128 = UNION (BOOL, UNION (INT, REAL, ROWOFT REAL))
M29 = UNION (BOOL, UNION (INT, REAL, ROWOF REAL))
M30 = REF M30
ENTER COMMAND: DON'T FORGET QUOTES

EQUIVALENCE

CONTEXT CONDITION ERROR INVOLVING THE MNODE
REF M30,

WHICH IS REPLACED BY *BOOL'.
MODES EQUIVALENCED

M16 = REF REAL

M17 = PROC REAL

M18 = REF PROC REAL

19 = ROWOF REAL

M20 = REF ROWOF REAL

M21 = UNION (INT, REAL, ROWOF REAL)
M22 = STRUCT (A ROWOF CHAR, B REF M22)
M23 = A ROWOF CHAR

M24 = B REF STRUCT (A ROWOF CHAR, M24)
M25 = REF STRUCT (A ROWOF CHAR, B M25)
M26 = ROWOF BOOL

M27 = UNION (BOOL, INT, REAL, ROWOF REAL)

ENTER COMMAND: DON'T FORGET QUOTES

COERCE

APPENDIX A 99

ENTER: A PRIORI NODE, A POSTERIORI MODE, SORT, COERCEND

18 0 STRONG COMORF
STRONG COERCION OF COMORF REF PROC REAL TO VOID : VOIDED TO
VOID

ENTER COMMAND: DON'T FORGET QUOTES

COERCE
ENTER: A PRIORI MODE, A POSTERIORI MODE, SORT, COERCEND
18 0 STRONG MORF

STRONG COERCION OF MORF REF PROC REAL TO VOID : DEREF TO M1
7 CEPRCC TO REAL VOIDED TO VOID

ENTER COMMAND: DON'T FORGET QUOTES

COERCE
ENTER: A PRIORI MODE, A POSTERIORI MODE, SORT, COERCEND
18 21 FIRHN MORF

FIRM COERCION OF MORF REF PROC REAL TO UNION (INT, REAL, R
OWOF REAL) : DEREF TO M17 DEPROC TO REAL UNITE TO M21

ENTER COMMAND: DON'T FORGET QUOTES

COERCE
ENTER: A PRIORI MODE, A POSTERIORI MODE, SORT, COERCEND

18 21 MEEK MORF
REF PROC REAL NOT MEEXLY COERCEABLE TO UNION {(INT, REAL, R
OWOF REAL)

ENTER COMMAND: DON'T FORGET QUOTES

COERCE
ENTER: A PRIORI MODE, A POSTERIORI MODE, SORT, COERCENWND
18 =2 TFIRM MORF

REF PROC REAL FIRMLY COERCEABLE TO REAL, PROC REAL, REF PRO
C REAL

ENTER COMMAND: DON'T FORGET QUOTES
RELATED
ENTER: MODELIST
3 16 17 18 19 -2

YMODE.LIST REAL, REF REAL, PROC REAL, REF PROC REAL, ROWOF R
EAL

THE SET REAL, REF REAL, PROC REAL, REF PROC REAL CONTAINS R
ELATED MODES.

ENTER COMMAND: DON'T FORGET QUOTES

IDENTIFY
ENTER: MODE, SORT, MODELIST
18 STRONG 16 20 21 22 -2

MODE: REF PROC REAL; SORT: STRONG; MODE.LIST: REF REAL, REF
ROWOF REAL, UNION (INT, REAL, ROWOF REAL), STRUCT (A& ROWO
F CHAR, B REF M22)

APPENDIX A 100

POSSIBLE MODES IDENTIFIED:
UNION (INT, REAL, ROWOF REAL)

ENTER COMMAND: DON'T FORGET QUOTES

BALANCE
ENTER: OPERAND MODES, SORT, PARAMETER MODES
20 16 -2 WEAK 3 18 19 20 -2

OPERAND.DISPLAY: REF ROWOF REAL, REF REAL; SORT: WEAK; PARA
METERS: REAL, REF PROC REAL, ROWOF REAL, REF ROWOF REAL
POSSIBLE BALANCE :

REF ROWOF REAL

ENTER COMMAND: DON'T FORGET QUOTES

BALANCE
ENTER: OPERAND MODES, SORT, PARAMETER MODES
20 18 -2 HMEEK 3 18 19 20 -2

OPERAND.DISPLAY: REF ROWOF REAL, REFP PROC REAL; SORT: MEEK;
PARAMETERS: REAL, REF PROC REAL, ROWOF REAL, REF RCWOF REAL

POSSIBLE BALANCE 2
ROWOF REAL

ENTER COMMAND: DON'T FORGET QUOTES

BALANCE
ENTER: OPERAND MODES, SORT, PARAMETER MNODES
17 18 -2 FIRH -2

OPERAND.DISPLAY: PROC REAL, REF PROC REAL; SORT: FIRM; PARA
METERS:
POSSIBLE BALANCE :

ENTER COMMAND: DON'T FORGET QUOTES

COLLATERAL
ENTER: OPERAND MODES, SORT, PARAMETER MODES
9 25 -2 STRONG 19 20 21 22 -2

OPERAND.DISPLAY: ROWOF CHAR, REF STRUCT (2 ROWOF CHAR, B M
25); SORT: STRONG; PARAMETERS: ROWOF REAL, REF ROWOF REAL, U
NION (INT, REAL, ROWOF REAL), STRUCT (A ROWOF CHAR, B REPF
M22)

POSSIBLE COLLATERAL :
STRUCT (A ROWOF CHAR, B REF MN22)

ENTER COMMAND: DON'T FORGET QUOTES

OPERATORS '
ENTER: LEFT OPERAND, RIGHT OPERAND, OPERATORS
18 3
21 21 22 22 8 3 -2 -2

LEFT.OPERAND: REF PROC REAL;
RIGHT.OPERAND: REAL;

APPENDIX A 101

OPERATORS: (UNION (INT, REAL, ROWOF REAL)+ UNION (INT, R
EAL, ROWOF REAL)), (STRUCT (A ROWOF CHAR, B REF M22)+ STRU
CT (A ROWOF CHAR, B REF M22)), (STRUCT (RE REAL, IM REAL)
+ REAL)
POSSIBLE OPERATORS:

(UNION (INT, REAL, ROWOF REAL)+ UNION (INT, REAL, ROWOF
REAL))

ENTER COMMAND: DON'*T FORGET QUOTES

OPERATORS
ERTER: LEFT OPERAND, RIGHT OPERAND, OPERATORS
-2 3
-2 3 -2 17 -2 16 -2 -2

LEFT.OPERAND: NULL;

RIGHT.OPERAND: REAL;

OPERATORS: (NULL+ REAL), (NULL+ PROC REAL), (NULL+ REF R
EAL)
POSSIBLE OPERATORS:

(NULL+ REAL)

ENTER COMMAND: DON'T FCRGET QUOTES

STOP
0001.64 SECONDS IN EXECUTION

APPENDIX B 102

REVISED SYNTAX RULES

This thesis 4is based on the syntax rules which are
brought forward to the meeting at Vienna in September, 1972,
(it is not yet adopted). The rules which are modified and
concern with this thesis are as followus:

The numbers are the same as used in the Report.

1.2.1. Metaproduction Rules of Modes

0) STOWED: structured with FIELDS; ROWS of MODE.
vb) ROWS: row; ROWS row,

1e2.2. Metaproduction Rules Associated with Modes

bb) ROW: row; row of.

d) deleted.

ea) NONREF: UNITED; PLAIN; format; PROCEDURE; structured
with FIELDS; ROWS of MODE.

h) NCNPROC: PLAIN; format; procedure with PARAMETERS

MOID; reference to NONPROC; UNITED; structured with
FIELDS; row of MODE.

ib) PARAMS: parameter and PARAMETERS; parameter.

rb) FOLDS: field TAG and FIELDS; field TAG.

1¢2.3. Metaproduction Rules Associated with Phrases and
Coercion

a) deleted.

b) deleted.

c) SOME: SORT MOIEL.

chb) SIGNLE: unitary; ENCLOSED.

d) ENCLOSED: closed; collateral; CHOICE.
e) deleted.

ea) CHOICE: condition; case; conformity.
eb) UNETY: UNITED; EMPTY.

ec) CONFETY: UNITED conformity; EMPTY.

f) deleted.

g) SORT: strong; FEAT.

h) FEAT: firm; meek; weak; soft.

i) STRONG: FIRM; widened; rowed; voided.
1) FIRM: MEEK; united.

1b) MEEK: unchanged from; deprocedured; dereferenced.
0) FROBYT: from; by; to.

1.2.4. Metaproduction Rules Associated with Coercends

b) FORM: MORF; COMNORF.

bb) FORMSPEC: FORM; specification.

c) deleted.

ca) MORF: routine text; PRIETY ADIC formula; selection;

mode identifier; slice; call.
cb) COMORF: assignation; cast; identity relation;

APPENDIX B 103

generator; denotation,
d) ALDIC: dyadic; monadic.
eb) PRIETY: PRIORITY; EMPTY.
6+.1. Serial Clauses

6.1.1. Syntax

a) SOME serial clause: declaration prologue series
option, SOME parade.

b) declaration prologue: strong void unit series option,
SINGLE declaration,

c) deleted.

d) deleted.

e) SOME unit: SOME unitary clause.

£) deleted.

qg) SORT MOID parade: SORT MOID train; SORT MOID train,

completion token, label, strong MOID parade; strong
MOID train, completion token, 1label, SORT MOID

parade.

h) SOME train: strong void labelled unit series option,
SOME labelled unit.

i) deleted.

) SOME labelled unit: 1label sequence option, SOME
unit.

6e2. Ccllateral Phrases

6.2.1. Syntax

c) STIRM ROW MODE collateral clause: STIRM MODE balance
PACK.

d) deleted.

e) SORT MOID CONFETY balance: SORT MOID CONFETY unit,

comma token, strong MOID CONFETY unit list; strong
MOID CONFETY unit, comma token, SORT MOID CONFETY
unit; strong MOID CONFETY unit, comma token, SORT
MOID CONFETY balance.

£) strong structured with FIELDS and FIELD collateral
clause: FIELDS and FPIELD portrait PACK.

qg) FIELDS and FIELD portrait: FIELDS portrait comma
token, FIELD portrait.

h) MODE field TAG portrait: strong MODE unit.

6.3. Closed Clauses

6.3.1. Syntax

a) SOME closed clause: SOME serial clause PACK.
6.4. Choice Clauses

6.4.1. Syntax

~

aa) * choice clause: SOME CHOICE clause.

ab)

ac)
ba)

bb)
bc)

ea)
eb)

ec)

ed)

ef)

eq)

7.1.

Te1e1a

e)
g)*
h)
ha)
hb)

hc)

hd)

he)

m)

APPENDIX B 104

SOME CHOICE clause: MATCH CHOICE start token, SOME
MATCH CHOICE <chcoser <clause, MATCH CHOICE finish
token,

SCME MATCH CHOICE chooser. clause: UNITY CHOICE, SOWE
MATCH UNETY CHOICE alternate clause.

condition: meek boolean serial clause.

case: meek integral serial clause.

UNITED conformity: meek UNITED serial clause.

SORT MOID MATCH UNETY CHOICE alternate clause: SORT
MOID MATCH UNETY CHOICE in clause, strong MOID MATCH
CHOICE out clause option; strong MOID MATCH UNETY
CHOICE in clause, SORT MOID MATCH CHOICE out
clause.

SOME MATCH condition in clause: MATCH condition in
token, SOME serial clause.

SOME MATCH case in clause: MATCH case ip token, SOME
balance.

SOME MATCH UNITED conformity in clause: MATCH
conformity in token, SOME UNITED conformity unit;
MATCH conformity in token, SOME UNITED conformity
balance.

SOME UNITED conformity wunit: wunited to UNITED
specification, SOME unit.

meek MODE specification: open token, formal MODE
declarer, MODE mode identifier option, close token,
alternate token.

SOME MATCH CHOICE out clause: MATCH CHOICE out token,
SOME serial clause; MATCH CHOICE again token, SOME
MATCH CHOICE chooser clause.

Declarers

Syntax

VICTAL structured with FIELDS declarator: structure
token, VICTAL FIELDS portrayer pack.

field portrayer : VICTAL FIELD portrayer.

deleted.

VICTAL reference to MODE FOLDS portrayer: virtual
reference to MODE declarer, VICTAL reference to MODE
FOLDS HOMETY continuation.

VICTAL NONREF FOLDS ©portrayer: VICTAL NONREF
declarer, VICTAL NONREF FOLDS HOMETY continuation.
VICTAL MODE field TAG and MNODE FOLDS homogeneous
continuation: MODE field TAG selector, comma token,

VICTAL MODE FOLDS HOMETY continuation.

VICTAL MODE field TAG HOMETY continuation: mode field
TAG SELECTOR.

VICTAL MODE1 field TAG and MODE2 POLDS continuaticon:
MODE1 field TAG selector, comma token, VICTAL MODE2
FOLDS portrayer.

formal reference to reference to MNODE declarator:
reference to token, virtual reference to MODE
declarer.

n)

0)

P)

pb)
pc)
9)

ra)

rb)
s)
t)
u)
v)
X)
z)
aa)
a4)

ee)

££f)

7.“'

Tola1a

a)
b)
C)
d)

e)

f)
9)
h)

i)
3)

APPENDIX B 105

formal reference tc NONREF declarer: reference to
token, formal NONREF declarer.

VICTAL ROWS of reference to MODE declarator: VICTAL
fleither coption, VICTAL ROWS rower BRACKET, virtuval
reference to MODE declarer.

VICTAL ROWS of NONREF declarator: VICTAL fleither
option, VICTAL ROWS rower BRACKET, VICTAL NONREF
declarer.

formal fleither: flexible token: either token.

actual fleither: flexible token.

VICTAL row ROWS rower: VICTAL row rower, comnma token,
VICTAL ROWS rower,

actual row rower: lower bound, up to token, upper
bound.

VIRMAL row rower: up to token cption.

deleted.

LOWPER bound: meek integral unit.

deleted.

deleted.

deleted.

virtual void declarer: void token.

deleted.

LMOODSETY LMOOD open BOX: LMOODSETY closed LMCOD end
BCX.

LMOODSETY 1 closed LMOODSETY?2 LMOOD end BOX:
LMOODSETY1 closed LMOODSETY2 LMOOD LMOOD end BOX;
LMOODSETY1 open LMOODSETY2 L¥COD BOX.

LMOODSETY1 closed LMOODSETY2 LMOOD1 end LMOODZ2 BOX:
LMOODSETY1 closed LMOODSETY2 LMCOD2 LMCOD1 end BOX.

Identifier Declarations

Syntax

identifier declaration: identity declaration;
variable declaration.

identity declaration: MODE identity declaration;
procedure identity declaration.
MODE identity declaration: formal MODE declarer, MODE
identity definition list.
MODE identity definition: MODE mode identifier,
equals symbol, strong MODE unit.

procedure identity declaration: procedure token,
PROCEDURE mode identifier, equals symbol, PROCEDURE
routine text,

variable declaration: MODE variable declaration;
procedure variable declaration.
MODE variable declaration: heap token option, actual
MODE declarer, MODE variable definition list.

MODE variable definition: reference to MODE mode
identifier, MODE initialization option,.
MODE initialization: becomes token, MODE source.
procedure variable declaration: heap token option,
procedure token, reference to PROCEDURE mode

APPENDIX B 106

identifier, becomes token, PROCEDURE routine text.
7.5. Operation Declarations

7.5.1. Syntax

a) operation declaration: operation token, operator
definition,
b) operator definition: PRAM ADIC operator, equals

symbol, PRAM routine text; virtual PRAM plan, PRAN
PRIETY ADIC operator, equals symbcl, strong PRAHM
unit.

8.1. Unitary Clauses

B.1.1. . Syntax

a) SOME unitary clause: SOME loop; SOME routine text;
SOME assignation; SOME identity relation; SOMNE
tertiary.

b) SOME tertiary: SOME cast; SOME PRIETY ADIC formula;
SOME secondary.

c) SOME secondary: SOME generator; SOME selection; SOME
primary.

d) SOME primary: SOME denotation; SOME mode identifier;
SOME slice; SOME call; SOME hip; SOME ENCLOSED
clause.

8.2. Coercends

8.2.0.1. Syntax

a)* coercend: COERCEND.

b) * STRONG coercend: STRONG to COERCEND.

c) deleted.

d) strong COERCEND: STRONG to COERCEND.

e) firm COERCEND: FIRM to COERCEND.

£) deleted.

fa) meek COERCEND: MEEK to COERCEND.

fb) weak reference to MODE FORN: meek reference to MODE
FORHN.

fc) weak NONREF FORM: unchanged from RONREF TFORUM;
deprocedured to NONREF FORHN.

G) soft reference to MODE FORMN: unchanged to reference
to MODE FORM; only deprocedured to reference to MODE
FORM.

h) unchange to MODE FORE: MODE FORM.

8.2.1. Dereferenced Coercends
8e.2.1.1. Syntax

a) dereferenced to MNODE FORM: meek reference to MODE
FORM.

APPENDIX B 107

8.2.2. Deprocedured Coercends

8.2.2.1. Syntax

aa) deprocedured to MODE FORM: meek procedure MODE FORHM.

ab) deprocedured to void MORF: meek procedure void MORF.

c) cnly deprocedured to MODE FORM: unchanged to
procedure MODE FORM; only deprocedured to procedure
MODE FORM. '

8.2.3. all deleted.

Be.2.4. United Coercends

8.2.4.1. Syntax

a) united to union of LMOODS MOOD mode FORMSPEC: one out

of LMOODS MOOL mode FORMSPEC; some of LMOODS MOOD
and but not FORMSPEC.

b) one out of LMOODSETY MOOD RMOODSETY mode FORMSPEC:
meek MOOD FORMSPEC. .
C) some of LMOODSETY1 MOOD and RMOODSETY but not

LMCODSETY2 FORMSPEC: some of LMOODSETY! and MOOD
RMOODSETY but not LMOODSETY2 TFORMSPEC; some of
LMOODSETY1 RMOODSETY but nct MOOD and LNOODSETY2
FORMSPEC.

d) some of EMPTY and LMOOD MOOD RMCODSETY but not LMOOD2
LMOODSETY2 FORMSPEC: meek wunion of LMOOD 400D
RMOODSETY mode FORMSPEC.

8.2.5. Widened Coercends
8.2.5.1 syntax

a) widened to LONGSETY real FORM: meek LONGSETY integral

FORM.
b) widened to structure with LONGSETY real field letter

r letter e and LONGSETY real field letter i letter nm
FORM: meek LONGSETY real FORM; widened to LONGSETY

real FORM.
c) widened to row of boolean FORM: meek BITS FORHN.
d) widened to row of character FORM: meek BYTES FORMN.

8.2.6: Rowed Coercends

8.2.6.1. Syntax

a) rowed to REFETY row of MODE FORM: strong REFETY MODE
FORM.
b) deleted.

8.2.7. Hips

8.2.741. Syntax

APPENDIX B 108

a) strong MOIL hip: MOID skip; MOID Jjump; MNOILC nihil;
MOID vacuum,
e) ROWS of MODE vacuum: vacuum token.

8.2.8. Vecided Coercends

Be2.8.1. Syntax

a) voided to void COMORF: unchanged from MODE COMORF.

b) voided to void MORF: deprocedured to NONPROC MORF;
unchanged from NONPROC MNORF.

8.32. Loops

8.3h.1. Syntax

a) strong void loop: for part option, from part option,
by part option, to part option, while part option,
do part.

b) for part: for token, integral mode identifier.

c) PROBYT part: FROBYT token, meek integral unit.

d) while part: while token, meek boclean serial clause.

db) do part: do token, strong void unit.

B+3.0.1. deleted.
8.3.2. Conformity Relations
8.3.2.7. Syntax

a) bcolean conformity relation: united to UNITED sample,
conforms to and becomes token, meek UNITED tertiary;
united to UNITED declarand, conforms to token, meek
UNITED tertiary.

b) meek MODE sample: soft reference to MODE tertiary.

<) meek MODE declarand: virtual MODE declarer.

8.4, Formulas

a) * formula: SOME PRIETY ADIC formula.

B) MOID PRIORITY dyadic formula: MODEY PRIORITY operand,
procedure with MODE1 parameter and MODE2 parameter
MOID PRIORITY dyadic operator, MODE2 PRIORITY plus
one operand.

c)* operand: MODE PRIETY operand.

4d) MODE PRIORITY operand: firm MODE PRIORITY dyadic
formula; MODE PRIORITY plus one operand.

e) MODE priority NINE plus one operand: firm MNODE
monadic formula; firm MODE secondary.

g) MOID wmonadic formula: procedure with HODE parameter

MOID monadic operator, MODE priority NINE plus one

h) *

8.6.1.

APPENDIX B 109

operand.
dyadic formula: MOID PRIORITY dyadic formula.

Slices

B8.6.1.1. Syntax

aa)

ab)

b)

C)

d)
e)
)

9)
h)
i)
j) *
k) *
1) *

Be6o2a

REFETY ROWS of MODE slice: weak REFETY ROWSETY ROWS
of MODE primary, ROWSETY ROWS leaving ROWS indexer
BRACKET; weak REFETY ROWS2 of ROWS of MODE primary,
ROWS2 leaving EMPTY indexer BRACKET.

REFETY NONROW slice: weak REFETY ROWS2 of NONROW
primary, ROWS2 leaving EMPTY indexer BRACKET.

row ROWS leaving row ROWSETY indexer: trimmer, comma
token, ROWS leaving ROWSETY indexer; subscript,
comma token, ROWS leaving row ROWSETY indexer.

row ROWS leaving EMPTY indexer: subscript, conma
token, ROWS leaving EMPTY indexer.

row leaving row indexer: trimmer option.

Tow leaving EMPTY indexer: subscript.

trimmer: lower bound option, up to token, upper bound
option, new lower bound part cption; new lower bound
part.

new lower bound part: at token, new lower bound.

new lower bound: meek interal unit.

subscript: meek integral unit.

trimscript: trimmer; subscript.

indexer: ROWS leaving ROWSETY indexer.

houndscript: LOWPER bound; newv lower bound;
subscript.

Calls

8.6.2.1. Syntax

a)

b)

MOID «call: meek procedure with PARAMETERS MOID
primary, actual PARAMETERS pack.
actual MODE parameter: strong MCDE unit.

