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Abstract 

Aspect mining is the process of semi-automatically identifying crosscutting concerns in non-

aspect oriented code so that they may be refactored into structured aspect oriented code. In 

this work, we extend work on aspect mining by examining how patterns of control and data­

flow can be used as indicators of aspectual (or crosscutting) behavior. We look for indicators 

of code which could be refactored into aspects with a clear, narrowly defined interface to the 

code it would advise. We validated the usefulness of our approach by implementing three 

analyses and examining the results applied to two open-source projects. 
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Chapter 1 

Introduction 
We extend work on aspect mining by examining how patterns of control and data­

flow dependencies can be used as indicators of aspectual (or crosscutting) 

behavior. Our hypothesis is that static code-analysis based aspect-mining 

techniques can be improved by identifying patterns where fragments of code 

within a method are controlled or use program data differently from one another. 

Here we consider three patterns which concretely define this notion of 

differentiation for aspect mining. 

Aspect mining is the process of semi-automatically identifying crosscutting 

concerns in non-aspect oriented code, so that they may be refactored into 

structured aspect oriented code. The right choice of refactoring can significantly 

decrease the effort required to understand and maintain large code bases. 

However, refactoring can be extremely difficult without proper tool support so we 

seek to improve the state-of-the-art for these tool based approaches. 

Mining approaches focus on locating scattered or tangled code (or both). Code is 

scattered when logically cohesive fragments are spread across many modules; a 

method is tangled [14] when logically uncohesive code fragments are interspersed 

with the primary concern. Fragments might be contiguous statements in a method 

or statements belonging to a control-flow or data-flow dependency chain. Current 

mining approaches are based on textual patterns, patterns of method calls, high 

fan-in methods or duplicated code fragments [1-7]. Our approach is novel in that 

we consider program dependency information that has not previously been 

exploited for aspect mining. Although program dependence graphs were used 

1 



previously for detecting code clones (scattering), they have not been used for 

identifying tangled code within methods. 

The high-level approach works by looking for distinct interfaces between 

juxtaposed code in a method and data available in its context. Our intuition was 

inspired from the work of Walker et al. [16] who claim that aspects should have a 

clear, narrowly defined interface with the code that they advise. They show that 

"the separation provided by aspect oriented programming seems most helpful 

when the interface is narrow (i.e.: the separation is more complete)". Three 

concrete analyses are presented which are inspired by previous work on program 

understanding. 

The first analysis is primarily based from the work of Rinard et al. who introduce 

the concept of aspect scopes. These scopes are sets of object-oriented class 

members that are read or written to by class methods or those that are accessed by 

aspect advice. Different kinds of interactions are classified by examining how the 

scopes for classes and aspects relate. Unfortunately, since aspect mining works on 

legacy code, there is no clear distinction between class methods and aspect code. 

So using the above intuition and taking a reverse approach, we look for fragments 

of methods with clearly distinct scopes to draw a developer's attention to potential 

refactorings. 

The other two analyses are primarily inspired from the work of Ettinger et al. [14] 

who show how demand-driven program slicing can be used to aid in the 

extraction of tangled behavior within a class' method. Again applying the above 

intuition of distinct advice/method interfaces, we compute data dependencies for 

all statements in a method, looking for markedly independent data-flows. We 

validated the usefulness of our approach by implementing the three analyses and 

examining the results applied to two open-source projects. The results include a 

range of code fragments corresponding to behavior widely characterized as 
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potential crosscutting concerns in aspect-oriented literature. The rest of the report 

is organized as follows: Chapter 2 presents two examples to motivate the analyses 

that we implemented, Chapters 3-4 describe the strategies in further detail and 

present the results observed on 3 different codebases. Chapter 5 discusses some 

implementation details. Chapter 6 discusses inherent limitations of the approach 

and builds a case for future research in this area. Related work follows in Chapter 

7 and we conclude in Chapter 8. 



Chapter 2 

Motivating Examples 

Now, we discuss examples from real codebases to motivate the approach we have 

taken. 

1. Caching 

Significantly different behavior exhibited by two branches of a condition 
indicate potential refactorings: Conditional branches in the control flow of 

methods are often points for choosing between alternate behaviors. That leads us 

to expect that branches will often be the points where crosscutting concerns are 

being introduced into the primary decomposition. Since all branches are certainly 

not tangled concerns, we need a more selective strategy. If we could differentiate 

branches by the behaviors they enclose, the branching points with significantly 

different behavior on the two branches could be flagged as good advice 

candidates. The way we differentiate behavior is by keeping track of the state 

being accessed on a branch using the idea of scopes from Rinard et al. Caching 

and lazy initialization are two examples of the kinds of concerns we identified 

using this analysis. 

The first example is from the Spring.Net framework (Figure 1), an open-source 

middleware platform for .NET. This is a typical implementation of object 

caching. Here, we see that the method GetNestedObjectWrapper (line 1) 
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returns the cached object nestedwrapper retrieved on line 9 or creates a new 

one, adds it to the cache (line 13-23) and then returns it. 

According to our hypothesis, the branch instruction at line number 11 that 

controls whether a new object is created or an existing one retrieved from the 

cache could be a point of interest for a developer engaging in aspect-oriented 

refactoring. Our tool can determine that the branch that is taken when the object 

does not exist in the cache can be differentiated from the one that is taken when it 

does. This is achieved by looking at how the state of the class is affected on the 

two paths. Specifically, there is a write to a field variable when the object is not 

found in the cache but only reads when it does. Differentiating control-flow paths 

in this fashion makes up our first analysis and is described in detail in Chapter 3. 
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1. ObjectWrapper GetNestedObjectWrapper 
2. ( s t r i n g n e s t e d P r o p e r t y ) 
3. •{ 
4. •/* • • 
5. * code d e f i n i n g canonicalname 
6. * / 
7. // lookup cached sub-ObjectWrapper, c r e a t e new one 

i f not found... 
8. 
9. ObjectWrapper nestedWrapper- = 

_nestedObjectWrappers[canonicalName]; 
10 . 
11. i f (nestedWrapper == n u l l ) 
12. { 
13. //Logging 
14. nestedWrapper = new ObjectWrapper ( 
15. p r o p e r t y V a l u e , 
16. _nestedPath + canonicalName 

+ Ne s t e d P r o p e r t y S e p a r a t o r ) ; 
17 . 
18. if(CustomConverters.Keys.Count != 0) 
19. { 
20. //some code t o prepare nestedWrapper 
21. } 
22. _nestedObjectWrappers[canonicalName] = 
23. nestedWrapper; 
24. } 
25. e l s e 
26. { 
27. // Logging 
28. } ' 
29. r e t u r n nestedWrapper; 
30. } 
31. } 

Figure 1: Caching in Spring.Net 

2. Logging 

Tangling [14] can be measured to indicate potential refactorings: A number of 

well known crosscutting concerns, like logging and failure handling, tend to be 
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fairly independent of surrounding code. This corresponds to the notion that ideal 

candidates for aspect refactoring should not be tightly coupled with their context. 

A program slice is built on a point of interest in a method and consists of all parts 

of the method that can potentially affect or be affected by the point of interest. 

The point of interest - also referred to as the slicing criterion - can be an 

instruction or an operand. 

We claim that some well known crosscutting concerns have limited interactions 

with their context and that metrics can be used to highlight their presence. 

In our second example, we consider a typical implementation of logging. Figure 2 

shows parts of a method from Spring.Net, an application framework for the .Net 

runtime. We are interested in this example because it has the logging concern. 

Let us compare program slices built on the logging instructions with those built 

on the other instructions. A slice built on an instruction in a method includes parts 

of the method that are related to the instruction by control or data dependencies. 

The forward slice includes parts that are dependent on the instruction and those on 

which the instruction depends are included in the backward slice. To keep the 

discussion short, we consider a slice built on a logging instruction. Notice that the 

backward slice on 12 shows a dependency on line 5, 4, and 1 transitively. 

However, the forward slice is empty. Our analysis would detect this as a potential 

before advice as it is tightly coupled to the method input but loosely coupled to 

the rest of the method body. 

In practice, we expect some slices for concerns to be more complicated. Hence, 

we have devised two ranking schemes (metrics) to rank slices as potential 

before or around advice. These are described in Chapter 4. Detection of 

a f t e r advice is left for future work. 
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1. o b j e c t G e t P r o p e r t y V a l u e ( P r o p e r t y T o k e n H o l d e r tokens) 
2. { 
3. S t r i n g propertyName = tokens.CanonicalName; 
4 . S t r i n g actualName = tokens.ActualName; 
5. P r o p e r t y l n f o p i = G e t P r o p e r t y l n f o ( a c t u a l N a m e ) ; 
6. i f ( !pi.CanRead) 
7. { 
8. throw new No t R e a d a b l e P r o p e r t y E x c e p t i o n (...) ; 
9. } 
10. i f (log.IsDebugEnabled) 
11. { 
12. . log.Debug("About t o invoke read method [{0}] on 

i n s t a n c e of c l a s s [ { 1 } ] . " , pi.Name, 
pi.DeclaringType.FullName) ); 

13. } . 
1.4. s t r i n g k e y l n C a s e O f E r r o r = n u l l ; 
15. t r y { 
16. Methodlnfo readMethod = p i . G e t G e t M e t h o d ( t r u e ) ; 
17. o b j e c t v a l = 

re a d M e t h o d . I n v o k e ( t h i s . W r a p p e d l n s t a n c e , n u l l ) ; 
18. ' • • 
19. //Rest of method o m i t t e d 

Figure 2: Logging in Spring.Net 



Chapter 3 

Branch Scopes 

In Section 2.1 we discussed the intuition for differentiating behavior on different 

paths taken from a conditional statement. Now we explain the details (Section 

3.1) and evaluate the approach (Section 3.2). 

For every conditional statement in a control flow graph, a branch is defined as the 

code executed on one of the two outgoing paths up to the point where the control 

flow meets again or the method returns, whichever occurs first. In this approach 

two branches are compared based on the properties of their respective scopes. As 

in [15] we define the scope to be the sets of fields of the class that they read or 

write to. 

Again looking at Figure 1, consider the conditional statement on line 11. One 

branch comprises line numbers 13-23 and the other comprises line 27. In our 

analysis, these branches are enhanced in two ways. 

We include shared behavior before and after the branches that either affects which 

branch is taken or is affected by the branch that is taken. To include the code that 

affects the condition, we build a backward data slice on the guard condition and 

add it to both branches. Line number 7 and a few others fall in this slice. Next, 

1. Approach: Branch Scopes 
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forward data dependency slices on the instructions of the two branches are also 

added. This results in the addition of line number 21. 

Having built these new slices, we define what constitutes a significant difference 

between their scopes. Two slices are considered significantly different when only 

one of them writes to the state while both may read it. So, we flag the conditional 

statements where one branch contains a write to a field of the class and the other 

branch has a read but no write. For instance, in Figure 1, there is a write on line 

15 and both slices read the state on line 21. 

T a b l e 1: Results for Branch Scopes 

Kinds of 

Results 

Spring. 

Net 

Core 

Log4. 

Net 

Total 22 67 

Caching 7 16 

Lazy 

Initialization 

9 19 

Other 3 6 

False 

Positives 

3 26 
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2. Evaluation: Branch Scopes 

We ran our analysis on two moderately sized codebases. In this section, we 

summarize the results obtained. 

The first codebase we consider is the Spring.Net framework. It is an application 

framework based on the Spring framework for Java. Spring.Net has many 

modules and we ran our analyses on Spring.Core (~20K NCLOC). The second 

codebase is Log4Net (~20K NCLOC), another port of a Java codebase to the .Net 

runtime. It is a tool to help developers in sending log statements to different 

output targets. 

The analysis successfully identified several instances of crosscutting concerns like 

caching [9] and lazy initialization [9]. Table 2 shows that a majority of the 

crosscutting concerns identified fall into one of two categories. We introduce both 

of these concerns with an example drawn from the results. 

a. Caching 

Caching, the storing of results from expensive computations for future use, shows 

up in two of the two codebases. We found 7 occurrences in Spring.Net and 16 in 

Log4.NET. 

Object-oriented implementations for caching vary widely depending on the 

amount of time and energy expended in designing the caching scheme. Caching 

has been widely recognized as a crosscutting concern by the AOP community [9]. 

As discussed in Section 2.1, we expected our analysis to be able to identify 

caching where it occurs. True to our expectation, a fair number of the results 

identified are different implementations of caching. To estimate the percentage of 

i i 
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caching code flagged, we searched the source for words like 'cache', 'caching' 

etc. We found 6 instances of caching using this method and 7 using our analysis. 

While the keyword search is by no means a precise estimate of all the caching 

code in the application, our results were a superset of those found by the textual 

search. This fact, combined with our understanding of common caching strategies 

and our observation that the Spring codebase is fairly well documented, makes us 

fairly confident that we are able to flag most, if not all, instances of caching in 

the codebases. So we conclude that similar caching code occurring in poorly 

documented or undocumented code would also be identified. 

Caching behavior of this kind has been considered a good candidate for aspect 

oriented refactoring [9]. In the example under consideration, the primary concern 

of the method is to get the object wrapper from the cache and return it. The 

tangling with code which deals with creating a new object, registering its type 

converters and adding it to the cache can be avoided by moving this functionality 

into the advice of a caching aspect. 

b. Lazy Initialization 

Lazy initialization refers to the case where some expensive operation such as 

creation of an object or computing a value is delayed until the first time it is 

needed. This is another well known crosscutting concern that shows up frequently 

in our results. We identified 9 cases in Spring and 19 cases in Log4.Net. 
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Figure 3 shows an instance of lazy initialization identified in the Spring.Net 

framework. The example belongs to the property ConfigSections in the class 

PropertyResource Configurer. The property returns the private member variable 

_configSections if it has a valid value. If it doesn't, it is initialized appropriately 

and then returned. The analysis identifies the branch at line number 9 as a point of 

interest. From this point, there is one branch consisting of line number 11 but the 

other branch is empty (there is no else clause). However, constructing the forward 

slice (using the technique from Section 3.1) adds line number 13 to both. As a 

result, we have one branch scope with a write (line number 11) while the other 

scope only has the read at line 13. This example is a good representative of the 

other lazy initialization code found by the analysis. 

1. c l a s s PropertyResourceConfigurer 
2. { 
3. // d e t a i l s e l i d e d 
4. p r i v a t e s t r i n g [ ] _ c o n f i g S e c t i o n s ; 
5. p u b l i c s t r i n g [ ] ConfigSections 
6. { 
7. get 
8 . { 
9. i f (_configSections == n u l l || 

_configSections.Length ==0) 
10. { 
11. _ c o n f i g S e c t i o n s = new s t r i n g [ ] 

{DefaultConfigSectionName}; 
12. } 
13. r e t u r n _ c o n f i g S e c t i o n s ; 
14. . } 
15. } 
16. } 

Figure 3: Lazy Initialization in Spring.Net 

13 



In the example above, the code responsible for initialization is tangled with the 

primary functionality of the method, which is to simply return the field. In other 

instances, the primary functionality could be a use of the object being initialized. 

[9] discusses a recommended aspect oriented refactoring for this concern. The 

aspect oriented refactoring involves using the get pointcut to advise read access 

on the field or object and performing the initialization in the advice whenever it is 

required. An aspect-oriented refactoring is important is this case to prevent 

programmers from accidentally accessing the field directly and bypassing the lazy 

initialization code. 

c. Other Concerns 

This analysis also produced some results from other well known crosscutting 

concerns such as exception handling (shown in Table 2 under Other). However, 

we do not report these as positive results for our analysis because such concerns 

are easily located by searching for keywords in a programming language (e.g. 

throws or catch). We don't report these as false positives either because they 

are easy to filter for exactly the same reason. 
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1. p u b l i c v i r t u a l i n t C a p a c i t y 
2 - < 

3. s e t 
4. { 
5. i f (value < m_count) 
6- . < 
7. v a l u e = m_count; 
8. } . ' 
9. i f (value != m_array.Length) 
10. { 
11. i f (value > 0) 
12. { 
13. I P l u g i n [ ] temp = new I P I u g i n [ v a l u e ] ; 
•14. A r r a y . Copy (m_array, 0, temp, 0, 

m_count); 
15. m_array = temp; 
16. } 
17. e l s e 
18. { 
19. m_array = new 

IPIugin[DEFAULT_CAPACITY] ; 
20. } 
21. } 
22. } 
23. } 

Fieure 4: False Positive due to Backward Slice 

d. False Positives 

Not surprisingly, our strategy, being quite general, gives some false positive 

results. Their number is very low on Spring.Net but more significant on Log4.Net. 

Figure 4 shows a false positive where one of the two branches is empty but a read 

of a field is introduced into it because we add the backward and forward slices to 

both branches (as described in Section 3.1). The property C a p a c i t y in class 

P l u g i n C o l l e c t i o n of Log4.Net has an i f condition on line number 9 with 

15 
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no e l s e block. Notice the backward slice on the i f condition includes a read of 

the field m c o u n t in line number 7 and this leads to the method being flagged as 

a result. 

We note that it is possible that certain false positives could be considered as 

application specific crosscutting concerns by a developer more knowledgeable of 

the semantics for these code bases. Since we had only a surface knowledge, we 

only report positive results for those that are widely considered as aspects in the 

literature. 
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1. p u b l i c v o i d Configure(XmlElement element) 
2. { 
3. / / d e t a i l e l i d e d 
4 . LogLog.Debug("XmlHierarchyConfigurator: 

C o n f i g u r a t i o n r e s e t b e f o r e r e a d i n g c o n f i g . " ) ; 
5. • 
6. foreach (XmlNode currentNode i n element.ChildNodes){ 
7. i f (currentNode.NodeType == XmlNodeType.Element){ 
8 . XmlElement currentElement = 

(XmlElement)currentNode; 
9. i f (currentElement.LocalName == LOGGER_TAG){ 
10. ParseLogger(currentElement); 

} 
11. // d e t a i l elided 
12. > 
13. } 
14. // L a s t l y s e t the h i e r a r c h y t h r e s h o l d 
15. s t r i n g t h r e s h o l d S t r = 

element.GetAttribute(THRESHOLD_ATTR); 
16 . LogLog.Debug("XmlHierarchyConfigurator: 

H i e r a r c h y T h r e s h o l d [" + t h r e s h o l d S t r + " ] " ) ; 
17. i f ( t h r e s h o l d S t r . L e n g t h > 0 && t h r e s h o l d S t r != 

" n u l l " ) { 
18. L e v e l t h r e s h o l d L e v e l = (Level) 

C o n v e r t S t r i n g T o ( t y p e o f ( L e v e l ) , t h r e s h o l d S t r ) ; 
19. i f ( t h r e s h o l d L e v e l != n u l l ) { 
20. m h i e r a r c h y . T h r e s h o l d = t h r e s h o l d L e v e l ; 
21. ' } 
22. e l s e { 
23. LogLog.Warn("XmlHierarchyConfigurator: Unable 

t o s e t h i e r a r c h y t h r e s h o l d u s i n g v a l u e [" + 
t h r e s h o l d S t r + "] (wit h a c c e p t a b l e - c o n v e r s i o n 
t y p e s ) " ) ; 

24. } 
25. } 
26. // Done r e a d i n g c o n f i g 
27. } 

Figure 5: Internal Logg ing in Log4Net 
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Chapter 4 

Slice Metrics 

In Section 2.2 we motivated an approach based on metrics for program slices to 

capture the interactions with their context. Here, we further refine that discussion 

with two concrete metrics. 

1. Approach: Slice Metrics 
We devised two metrics to identify before and around advice candidates based on 

their interactions with the methods they advise. 

a. Around Metric 

The first metric was designed for identifying around advice candidates. Logging 

is a typical example of crosscutting behavior which can be refactored using 

around advice. We look at an example of logging from log4net and use that to 

explain our second metric which ranks data dependency slices on methods. Notice 

that log4net includes logging as a functional concern and also as a non functional 

concern for its own internal debugging by log4net developers. Strategies based on 

keyword indicators would find it more difficult to distinguish these two behaviors. 

Figure 5 shows the method C o n f i g u r e . Large parts of the method have been 

omitted for clarity. Line numbers 4, 16, and 23 are all involved in logging 

behavior which is tangled with the primary functionality of this method. If we 

observe the data dependencies between the various logging instructions, we notice 
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that they do not induce any data dependencies on line numbers 6-13 which belong 

to the primary concern and are shown in bold. This allows writing logging as an 

around advice with a clearly defined, narrow interface with the method which 

executes before and after the method's execution. This suggests a metric on data 

dependency slices to mine around advice. The metric should "reward" data slices 

that exclude a significant block of code in the method. The block of code 

excluded would correspond to the primary concern and hence, should be 

relatively independent. The data slice that skirts this block of code would 

correspond to the around advice and hence, would, ideally, not intersect with data 

slices built on other instructions in the method. 

We put the above observations together into a metric for identifying around 

advice. The first step involves constructing forward data slices instead of the 

program slices constructed earlier. The individual data slices are not 

representative of the tangling between the slice and the method because they can 

intersect with forward slices built on other instructions. In Figure 5, the forward 

data slice built on line number 4 comprises the line numbers 4, 16 and 23. The 

slice built on line number 15 comprises 15, 16, 17, 18, 19, 20, 23. Neither of the 

two slices tells the complete story, however. For instance, the first slice does not 

tell us that line number 23 is also dependant on information from line number 15. 

Merging the two slices to yield the combined slice is more representative of the 

data dependencies. Hence, we merge all slices that intersect at any point in the 

method. 

From the set of merged slices, we identify slices that jump over relatively large 

blocks of contiguous code. Such slices are desirable on account Of two factors. 

First, the relatively large parts of source that are skipped have no data 

dependencies with the slice. This makes the slice amenable to extraction into 

advice. Second, a large block of code that is independent of the slice is also more 
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likely to be the primary concern of the method. The metric, then, boils down to 

ranking the merged slices by the size of the largest jump. A jump is defined as the 

number of non -commented lines of source separating two consecutive 

instructions in the slice. 

Table 2: Top Ranked Results for Around Metric 

Kinds of Spring Log4Net 

Results .Net 

Core 

Total 16 30 

SecurityContext 0 3 

Synch ronization 6 19 

Logging 1 3 

Other 6 0 

False Positives 3 5 

b. Before Metric 

We build slices on every instruction in a method and rank the slices in increasing 

order of relative complexity. First, we provide brief background to relavant 

concepts in program slicing and then describe our approach. 

We compute slices by first constructing a program dependence graph (PDG) [8, 

20, 21] for a method and then performing reachability on it. Using a PDG helps 
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here because the most expensive part of the computation - constructing the PDG -

is performed only once. A program dependence graph incorporates both control 

and data dependence relationships in one graph. Data dependence edges represent 

the data flow relationships in a program. Control dependence edges are built from 

the control flow graph and represent the essential control flow relationships in a 

program. A backward slice, built on an instruction or operand called the slicing 

criterion, consists of parts of the program that affect the value of the slicing 

criterion. A forward slice, on the other hand, includes parts that are affected by 

the slicing criterion. In a PDG with instructions as nodes, the forward or 

backward slice for an instruction is the set all of all nodes that can be reached in 

the appropriate direction. 

The complexity of slices built on an instruction gives us a measure of how closely 

coupled the instruction is with the rest of the method. We expect that instructions 

belonging to the primary decomposition will be closely coupled and have 

complex slices. To rank slices by complexity, we start with a simple size measure. 

We count the number of lines of source included in the slice. This is then 

normalized against the average size of all slices built on that method to give us 

relative complexity. Normalizing against the average size of slices is desirable 

because it means that slices that are ranked highest are the ones that are most 

significantly different in complexity from their local context. In other words, we 

want slices that are small in relation to slices constructed on code surrounding 

them. 

2. Evaluation: Slice Metrics 

Table 2 and 3 present the results of computing our metrics on the two codebases. 

Since we build slices for every instruction in a method, the complete set of results 
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is actually the entire codebase; programmers are directed to interesting results 

based on our ranking scheme. The typical use case for this strategy would involve 

a developer examining results till the number of false positives encountered make 

further examination non-profitable. This also means that the number of results in 

each class is not representative of the total number of instances of that concern in 

the codebase or of the fraction of those concerns identified by our strategy. For 

our evaluation, we looked at the top few results obtained only. With the Around 

Metric, we examined results till the gap size was reasonably large. For 

Spring.Net, this number was 5 while for Log4Net it was 6. 

As can be seen from Table 2, the around metric successfully identified 19 

instances of synchronization, 3 of logging and 3 uses of the .Net class 

S e c u r i t y - C o n t e x t i n Log4Net. The number of false positives in the 

results examined was acceptably low at 5 cases. The results for Spring.Net were 

similar. 

For the before metric, we look at the results obtained in more detail in Section 4.2. 

Table 3 summarizes the results obtained on each of these codebases. We were 

able to identify three classes of widely known crosscutting concerns in the results. 

We'll discuss some of these results to understand why they are identified. 

a. Assertion Checking 

One of crosscutting concerns identified by the before metric is assertion checking. 

This refers to code that throws exceptions or executes special behavior when 

variables have illegal values or the program is in an illegal state. Again, the aspect 

oriented refactoring has been widely dealt with in [11]. Figure 6 shows a typical 

example. 
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Table 1: Top Ranked Results for Before Metric 

Kinds of 

Results 

Spring 

.Net 

Core 

Log4.Net 

Aspects 26 32 

Logging 6 7 

Assertion 

Checking 

16 15 

Other 4 10 

False 

Positives 

9 12 

Assertion checking is one of the set of systemic aspects that were first conceived 

as potential use cases for AOP at PARC. Assertion checking involves validating 

the state of various variables or arguments before computations that depend on 

that state are performed. Typically, assertion checking code occurs towards the 

beginning of a method and does not interact much with the rest of it. Due to the 

small size of slices created, assertion checking was the largest class of results 

mined. 

Figure 6 has some sample code that handles failure conditions in line number 5 

through 9. The method DoAppend from the class A p p e n d e r S k e l e t o n sends 

an error message if an append operation is attempted while the object is in a 

closed state (lines 5-9). From our previous discussion, it should be obvious that 

the slices on line number 7 only depends on the class' fields. 
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I . v o i d DoAppend(LoggingEvent l o g g i n g E v e n t ) 
2- { 
3. l o c k ( t h i s ) 
4. { 
5. i f (m_closed) 
6. { 
7. E r r o r H a n d l e r . E r r o r ( " A t t e m p t e d t o append t o 

c l o s e d appender named ["+m_name+"]."); 
8. r e t u r n ; 
9. } 
10. / / d e t a i l s e l i d e d 
I I . t r y , 
12. { , 
13. m _ r e c u r s i v e G u a r d = t r u e ; 
14. i f ( F i l t e r E v e n t ( l o g g i n g E v e n t ) && 

PreAppendCheck()) 
15 . 
16 . 
17 . 
18 . 
19 . 
20. 
21. 

c a t c h ( E x c e p t i o n ex) 

E r r o r H a n d l e r . E r r o r ( " F a i l e d i n DoAppend 

t h i s . A p p e n d ( l o g g i n g E v e n t ) ; 

ex) ; 
22 . 
23 . 
24 . 
25 . 
26. 
27 . 
28 . 

f i n a l l y 

m _ r e c u r s i v e G u a r d = f a l s e ; 

Figure 6: Assertion Checking in Log4Net 
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b. Other Concerns . 

Besides logging and assertion checking, a number of other concerns came up in 

smaller numbers. Lazy initialization was one. However, we believe our first 

strategy was better at finding lazy initialization. 

c. False Positives 

As seen in Table 3, we encountered a reasonable number of false positives using 

the before metric. A number of results were due to limitations of our 

implementation. Mainly, this is because of our current implementation's inability 

to track data dependencies arising out of the use of Get and Set Properties. For 

instance, a Set property would induce forward dependencies on the field it sets. 

Additionally, we don't track side effects of method calls. We've implemented a 

few work-arounds to mitigate the situation somewhat and these are discussed in 

Chapter 5. 
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Chapter 5 

Implementation Details 

In this Chapter, we provide additional details about our current implementation. 

The analyses presented are implemented using Microsoft's Phoenix compiler 

backend. We take .Net binaries as input and raise them to a register-based 

intermediate representation. We then construct program dependencies from the 

Phoenix SSA representation. 

1. Common Implementation Details 

A detail that is common to both our approaches is that our analysis is limited in 

how it tracks changes to fields of objects. Our current implementation is not able 

to identify get and set methods with the fields they access. Moreover, side effects 

of methods are not analyzed; we have not yet implemented a robust inter-

procedural analysis. Based on a visual inspection we saw that this led to several of 

the false positives in both our strategies. 

For Brach Scopes, the false positives result when writes to aliases of fields aren't 

detected as such. With slice metrics, this limitation results in dependencies that 

are not detected and that gives rise to small slices which, in reality, should be 

much bigger. We did mitigate the problem by using a few heuristics. First, we 

parse all methods and flag those that have writes to their fields. While building a 

slice, if we encounter a call to a method, we look for it in the list of flagged 
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methods. If it exists, we induce a data dependency on the method receiver. These 

heuristics are imprecise but can be improved upon with a points-to analysis [18] 

in the future. 

2. Branch Scopes 

Our definition of branches excludes sites where loops start. While they are 

technically points where control flow branches, we didn't feel they were likely to 

correspond to points that select between two alternate behaviors - a crosscutting 

concern and a primary concern. 

3. Slice Metrics 

For slice metrics, we use a measure of slice size that depends on the number of 

source lines in the slice. Note however, that the analysis works on an intermediate 

representation. Since there are a number of IR instructions for every line of 

source, we had to implement a workaround that used the information in program 

debugging database (pdb) files to find the source corresponding to each IR. When 

multiple IR instructions correspond to the same source instruction, we use the 

largest amongst the slices built on these instructions to represent the slice for the 

line in source. 

Another workaround we implemented involved filtering out slices built on 

initialization instructions. We noticed that slices built on instructions which 

assigned some default values such as null to local variables would almost 

invariably be very small since there would be no backward slice and the forward 

27 



slice would only extend till the time the variable would be initialized with its 

proper value. We filtered these results out since they were always false positives. 
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Chapter 6 

Discussion 

We have proposed an approach that is significantly different from other work on 

aspect mining. We validated our intuitions by targeting well known crosscutting 

concerns. The first half of this Chapter discusses possible threats to the validity of 

our work. The rest discusses some directions for future work and explains why we 

feel this is a promising direction for future research in aspect mining. 

1. Threats to Validity of Claims 

One critique of the work could be directed against the underlying assumption that 

there is enough information in data-flow patterns to identify crosscutting 

concerns. In regards to this we think it is important to distinguish between classes 

of aspects targeting functional crosscutting concerns and non-functional (or 

systemic) crosscutting concerns. Based on our results and understanding of 

related work we believe that other work such as [1] which targets design level 

information (e.g. method naming conventions) will be important for 

understanding functional concerns. However, systemic concerns such as caching, 

lazy initialization, may not be logically attached to information in the program 

design and as such an approach such as ours can be complementary. 

Another criticism could be that the results are skewed towards the two codebases 

chosen. We've tried to address this by discussing the intuitions underlying each 
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approach. Moreover, the two codebases are all fairly large and that should 

mitigate some of these concerns. 

Finally, our results only consider well known crosscutting concerns. This reflects 

our desire to confidently validate our results due to the difficulty of verifying 

application specific refactorings. A solution to this problem would be to analyze a 

number code bases for which a legacy version and an aspect-oriented version 

were available. This could serve for a more formal "clean-room" validation of the 

approach. Unfortunately, we did not have such code available but we expect them 

to emerge as AOP is further adopted. 

2. Future Directions 

By targeting well known crosscutting concerns, we've demonstrated that the our 

hypothesis is partially validated; in one case (caching) we were able to prove low 

false negatives as well. In all cases the number of false positives was reasonable. 

In the rest of this section, we discuss some ways to enhance both strategies to 

target a wider range of aspects. 

Branch Scopes: The comparative nature of this strategy currently involves 

finding pairs, of branches where one writes to the class fields and the other only 

reads. Rinard et al. [15] introduced a classification for aspect interactions 

including several other types of interaction. For direct interactions, they classify 

advice based on how and when the method executes after crosscutting. For 

instance, with Augmentation advice the entire body of the method always 

executes but with Narrowing advice, the execution of the method is conditional 

on the advice. Additionally, they also classify indirect interactions which are 

based on the fields that are accessed by the advice and method. As we described, 

30 



the sets of fields of classes read and written by an advice or method defines it's 

scope. Depending on the scopes, 5 kinds of interactions are identified. Their 

classification scheme is more refined than ours but they only use it to classify 

existing aspects as against mining for aspects in legacy code. In the future, we 

intend to develop a wider set of branch analyses corresponding based on their 

classification. 

Slice Metrics: The central concept behind out strategies is that good aspects 

should have a narrow well-defined interface with their context [16]. This led us to 

the idea to rank slices by a dependency measure. Our current measure for before 

advice simply measures the size of the slices. However, there are a number of 

other factors that could be considered when determining the aspect likelihood of a 

slice. We list some factors that could decrease advice likelihood and explain the 

intuition briefly: 

1. Forward slice includes return value of the method: When methods return a 

value, any instructions that contribute to that value are not likely to be a 

part of a before advice. 

2. Dependence edges in the forward slice: When an instruction affects 

computations that follow it in the method, it is more likely to be part of the 

primary decomposition or an around advice. Hence, our approach could be 

adaptive to apply the around metric when it detects such a case. 

Incorporating the above intuitions and other intuitions about program structure 

(e.g.: calls to external, static methods are more likely to aspect candidates) will 

require developing a scoring mechanism to take all the factors into account and 

could be an interesting direction. 
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Chapter 7 

Related Work 

There have been a number of papers that have surveyed aspect mining approaches 

or compared them. By and large, aspect mining approaches rely on one of the 

following: textual patterns, patterns in execution, high fan-in methods or 

duplicated code fragments. 

Mens and Tourwe [3] look for textual patterns in method and class identifiers 

through formal concept analysis. They relying on naming conventions and narrow 

the results to those that are crosscutting by looking for methods and classes that 

belong to at least two different class hierarchies. 

Breu and Krinke [2] looked for patterns in execution traces to mine aspects. In [7] 

Breu enhances the approach by using static type information to remove some 

ambiguities. Tonella and Cecatto [4] perform formal concept analysis on 

execution traces. 

Marin et al [5] find aspects with a large footprint by looking for high fan in 

methods. Two different techniques for using code duplication to find aspects have 

been discussed. Shepherd et al [1] look for duplication in the beginning of PDGs. 

Bruntink et al [6] discuss token-based, AST-based and metrics-based clone 

detection techniques. 

Dependence graphs have been used in software development for optimization [8] 

as well as refactoring [13]. The use of program slices in refactoring [17] ties in 

very closely with our first strategy. In fact, Ettinger and Verbaere use slices to 

untangle crosscutting concerns in methods [14]. Their work is the closest related 
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work to our first strategy. To the best of our knowledge, there is no prior work on 

finding aspects by differentiating local interactions in code. 

Ishio et al. [24] use a program slicing technique to isolate functional concerns in 

source code. Different from our approach their approach works from a seed 

criterion guided by a developer. We feel our approach is complementary in that 

we identify a class of non-functional concerns indicated by patterns in code. 

Many approaches [22-26] involve the developer in the aspect mining process. Our 

approach can help point the developer in the right direction before using other 

approaches that bring them into the loop. 
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Chapter 8 

Conclusions 

We've laid out the underpinning of our approach to aspect mining based on 

detection of data-flow patterns. We built on the intuitions inspired by previous 

work to implement two strategies that targeted well known crosscutting concerns. 

We tested the strategies on two moderately sized codebases and validated our 

intuitions. Finally, we discussed important ways in which they can be enhanced to 

target a wider variety of aspects. The results showed both places for improvement 

and also a promising approach for future research in aspect mining. 

34 



Bibliography 

[l] D.Shepherd, E.Gibson, and L.Pollock. Design and evaluation of an automated 

aspect mining tool. In Proc. International Conference on Software 

Engineering Research and Practice, 2004. 

[2] S.Breu and J.Krinke. Aspect mining using event traces. In Proc. Conference 

on Automated Software Engineering, 2004. 

[3] K. Mens and T. Tourwe. Delving source code with formal concept analysis. 

Elsevier Journal on Computer Languages, Systems & Structures, 2005. To 

appear. 

[4] P.Tonella and M.Ceccato. Aspect mining through the formal concept analysis 

of execution traces.In Proc. Working Conference on Reverse Engineering, 

2004. 

[5] M . Marin, A.van Deursen,and L. Moonen. Identifying aspects using fan-in 

analysis. In Proc. Working Converence on Reverse Engineering, 2004. 

[6] M . Bruntink, A.van Deursen, R.van Engelen, and T. Tourwe. An evaluation of 

clone detection techniques for identifying crosscutting concerns. In Proc. of 

the International Conference on Software Maintenance, 2004. 

[7] S.Breu. Towards hybrid aspect mining: Static extensions to dynamic aspect 

mining. In Proc. Workshop on Aspect Reverse Engineering, 2004. 

[8] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence graph 

and its use in optimization. ACM Trans. Prog. Lang. Syst., 9(3)<:319--349, July 

1987 

[9] R. Laddad. AspectJ in Action. Manning Publications Co.,2003 

35 



[10] Filho, F., Rubira, C , Garcia, A., (2005). A Quantitative Study on the 

Aspectization of Exception Handling. Workshop on Exception Handling in 

OO Systems (held with ECOOP), Glasgow, Scotland, 25 July 2005. 

[li] M . Lippert, C. Lopes. A Study on Exception Detection and Handling Using 

Aspect-Oriented Programming. In Proc. oflCSE, pages 418—427, 2000. 

[12] M . Weiser. Program slicing. IEEE Trans. Softw. Eng., 10(4):352—357, July 

1984. 

[13] M . Verbaere. Program slicing for refactoring. MSc thesis, University of 

Oxford, 2003 

[14] R. Ettinger and M . Verbaere. Untangling: A Slice Extraction Refactoring. In 

Proceedings of the Aspect-Oriented Software Development Conference 

(A OSD), pages 93-101. A CM Press, 2004 

[15] Rinard, M . , Salcianu, A., and Bugrara, S. 2004. A classification system and 

analysis for aspect-oriented programs. In Proceedings of the 12 th ACM 

SIGSOFT Twelfth international Symposium on Foundations of Software 

Engineering. A C M Press, 2004 

[16] R.J. Walker, E.L.A. Baniassad, and G.C. Murphy. An initial assessment of 

aspect oriented programming. In Proc. of the International Conference on 

Software Engineering, 1998. 

[17] W. G. Griswold and D. Notkin. Automated assistance for program 

restructuring. A C M TOSEM, 2(3):228-269, 1993. 

[18] R. Ghiya and Laurie Hendren. Putting pointer analysis to work. In Proc of the 

Symposium on Principles of Programming Languages, 1998. 

[19] R. Komondoor and S. Horwitz. Effective automatic procedure extraction. In 

Proceedings of the International Workshop on Program Comprehension, 2003. 

36 



[20] K.J. Ottenstein and L . M . Ottenstein. The program dependence graph in a 

software development environment. In Proc. of the Software Engineering 

Symposium on Practical Software Development Environments, 1984. 

[21] S. Horwitz and T. Reps. The use of program dependence graphs in software 

engineering. In Proc. of the International Conference on Software 

Engineering. 1992. 

[22] C. Zhang and H-A. Jacobsen. Quantifying aspects in middleware platforms. In 

Proc. of the International Conference on Aspect-oriented Software 

Development, 2003. 

[23] J. Hannenmann, G. Murphy, and G. Kiczales. Role-based refactoring of 

crosscutting concerns. In Proc. of the International Conference on Aspect-

oriented Software Development, 2005. 

[24] T. Ishio, R. Niitani, and K. Inoue. Towards locating a functional concern 

based on a program slicing technique. In Proc. of the Asian Workshop on 

Aspect-oriented Software Development, 2006. 

[25] D. Shepherd, L. Pollack, and K. V-Shanker. Towards Supporting On-demand 

virtual remodularization using program graphs. In Proc. of the International 

Conference on Aspect-oriented software development, 2006. 

[26] A. Colyer and A. Clement. Large-scale AOSD for Middleware. In Proc. of the 

International Conference on Aspect-oriented software development, 2004. 

37 


