
Improving Aspect Mining with Program

Dependencies
By

Navjot Singh

B. Tech. (I.T.), Indian Institute of Information Technology, Allahabad, India, 2004

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR

THE DEGREE OF

Master of Science

in

The Faculty of Graduate Studies

(Computer Science)

The University of British Columbia

November, 2006

© Navjot Singh 2006

Abstract

Aspect mining is the process of semi-automatically identifying crosscutting concerns in non-

aspect oriented code so that they may be refactored into structured aspect oriented code. In

this work, we extend work on aspect mining by examining how patterns of control and data­

flow can be used as indicators of aspectual (or crosscutting) behavior. We look for indicators

of code which could be refactored into aspects with a clear, narrowly defined interface to the

code it would advise. We validated the usefulness of our approach by implementing three

analyses and examining the results applied to two open-source projects.

ii

Table of Contents
Abstract 1 1

Table of Contents i i i

List of Tables v

List of Figures V 1

Acknowledgements v n

1. Introduction 1

2. Motivating Examples 4

1. Caching , 4

2. Logging 6

3. Branch Scopes 9

1. Approach: Branch Scopes 9

2. Evaluation: Branch Scopes 11

4. Slice Metrics • 18

1. Approach: Slice Metrics 18

2. Evaluation: Slice Metrics 21

iii

5. Implementation Details 26

1. Common Implementation Details 26

2. Branch Scopes 27

3. Slice Metrics 28

6. Discussion 29

1. Threats to Validity of Claims 29

2. Future Directions -30

7. Related Work 32

8 . Conclusion 34

Bibliography • 35

iv

List of Tables

1. Results for Branch Scopes 10

2. Top Ranked Results for Around Metric 20

3. Top Ranked Results for Before Metric 23

List of Figures
1. Caching in Spring.Net 6

2. Logging in Spring.Net 8

3. Lazy Initialization in Spring.Net 13

4. False Positives due to Backward Slice 15

5. Internal Logging in Log4Net .17

6. Assertion Checking in Log4Net 24

vi

Acknowledgements

No acknowledgement can sufficiently recognize the inputs that Eric and Kris have made to

the work presented here. Thank you, for being such fantastic supervisors!

This research is funded by Microsoft's "Phoenix - Excellence in Programming Award" so a

shout-out to them is due here too.

V l l

Chapter 1

Introduction
We extend work on aspect mining by examining how patterns of control and data­

flow dependencies can be used as indicators of aspectual (or crosscutting)

behavior. Our hypothesis is that static code-analysis based aspect-mining

techniques can be improved by identifying patterns where fragments of code

within a method are controlled or use program data differently from one another.

Here we consider three patterns which concretely define this notion of

differentiation for aspect mining.

Aspect mining is the process of semi-automatically identifying crosscutting

concerns in non-aspect oriented code, so that they may be refactored into

structured aspect oriented code. The right choice of refactoring can significantly

decrease the effort required to understand and maintain large code bases.

However, refactoring can be extremely difficult without proper tool support so we

seek to improve the state-of-the-art for these tool based approaches.

Mining approaches focus on locating scattered or tangled code (or both). Code is

scattered when logically cohesive fragments are spread across many modules; a

method is tangled [14] when logically uncohesive code fragments are interspersed

with the primary concern. Fragments might be contiguous statements in a method

or statements belonging to a control-flow or data-flow dependency chain. Current

mining approaches are based on textual patterns, patterns of method calls, high

fan-in methods or duplicated code fragments [1-7]. Our approach is novel in that

we consider program dependency information that has not previously been

exploited for aspect mining. Although program dependence graphs were used

1

previously for detecting code clones (scattering), they have not been used for

identifying tangled code within methods.

The high-level approach works by looking for distinct interfaces between

juxtaposed code in a method and data available in its context. Our intuition was

inspired from the work of Walker et al. [16] who claim that aspects should have a

clear, narrowly defined interface with the code that they advise. They show that

"the separation provided by aspect oriented programming seems most helpful

when the interface is narrow (i.e.: the separation is more complete)". Three

concrete analyses are presented which are inspired by previous work on program

understanding.

The first analysis is primarily based from the work of Rinard et al. who introduce

the concept of aspect scopes. These scopes are sets of object-oriented class

members that are read or written to by class methods or those that are accessed by

aspect advice. Different kinds of interactions are classified by examining how the

scopes for classes and aspects relate. Unfortunately, since aspect mining works on

legacy code, there is no clear distinction between class methods and aspect code.

So using the above intuition and taking a reverse approach, we look for fragments

of methods with clearly distinct scopes to draw a developer's attention to potential

refactorings.

The other two analyses are primarily inspired from the work of Ettinger et al. [14]

who show how demand-driven program slicing can be used to aid in the

extraction of tangled behavior within a class' method. Again applying the above

intuition of distinct advice/method interfaces, we compute data dependencies for

all statements in a method, looking for markedly independent data-flows. We

validated the usefulness of our approach by implementing the three analyses and

examining the results applied to two open-source projects. The results include a

range of code fragments corresponding to behavior widely characterized as

2

potential crosscutting concerns in aspect-oriented literature. The rest of the report

is organized as follows: Chapter 2 presents two examples to motivate the analyses

that we implemented, Chapters 3-4 describe the strategies in further detail and

present the results observed on 3 different codebases. Chapter 5 discusses some

implementation details. Chapter 6 discusses inherent limitations of the approach

and builds a case for future research in this area. Related work follows in Chapter

7 and we conclude in Chapter 8.

Chapter 2

Motivating Examples

Now, we discuss examples from real codebases to motivate the approach we have

taken.

1. Caching

Significantly different behavior exhibited by two branches of a condition
indicate potential refactorings: Conditional branches in the control flow of

methods are often points for choosing between alternate behaviors. That leads us

to expect that branches will often be the points where crosscutting concerns are

being introduced into the primary decomposition. Since all branches are certainly

not tangled concerns, we need a more selective strategy. If we could differentiate

branches by the behaviors they enclose, the branching points with significantly

different behavior on the two branches could be flagged as good advice

candidates. The way we differentiate behavior is by keeping track of the state

being accessed on a branch using the idea of scopes from Rinard et al. Caching

and lazy initialization are two examples of the kinds of concerns we identified

using this analysis.

The first example is from the Spring.Net framework (Figure 1), an open-source

middleware platform for .NET. This is a typical implementation of object

caching. Here, we see that the method GetNestedObjectWrapper (line 1)

4

returns the cached object nestedwrapper retrieved on line 9 or creates a new

one, adds it to the cache (line 13-23) and then returns it.

According to our hypothesis, the branch instruction at line number 11 that

controls whether a new object is created or an existing one retrieved from the

cache could be a point of interest for a developer engaging in aspect-oriented

refactoring. Our tool can determine that the branch that is taken when the object

does not exist in the cache can be differentiated from the one that is taken when it

does. This is achieved by looking at how the state of the class is affected on the

two paths. Specifically, there is a write to a field variable when the object is not

found in the cache but only reads when it does. Differentiating control-flow paths

in this fashion makes up our first analysis and is described in detail in Chapter 3.

5

1. ObjectWrapper GetNestedObjectWrapper
2. (s t r i n g n e s t e d P r o p e r t y)
3. •{
4. •/* • •
5. * code d e f i n i n g canonicalname
6. * /
7. // lookup cached sub-ObjectWrapper, c r e a t e new one

i f not found...
8.
9. ObjectWrapper nestedWrapper- =

_nestedObjectWrappers[canonicalName];
10 .
11. i f (nestedWrapper == n u l l)
12. {
13. //Logging
14. nestedWrapper = new ObjectWrapper (
15. p r o p e r t y V a l u e ,
16. _nestedPath + canonicalName

+ Ne s t e d P r o p e r t y S e p a r a t o r) ;
17 .
18. if(CustomConverters.Keys.Count != 0)
19. {
20. //some code t o prepare nestedWrapper
21. }
22. _nestedObjectWrappers[canonicalName] =
23. nestedWrapper;
24. }
25. e l s e
26. {
27. // Logging
28. } '
29. r e t u r n nestedWrapper;
30. }
31. }

Figure 1: Caching in Spring.Net

2. Logging

Tangling [14] can be measured to indicate potential refactorings: A number of

well known crosscutting concerns, like logging and failure handling, tend to be

6

fairly independent of surrounding code. This corresponds to the notion that ideal

candidates for aspect refactoring should not be tightly coupled with their context.

A program slice is built on a point of interest in a method and consists of all parts

of the method that can potentially affect or be affected by the point of interest.

The point of interest - also referred to as the slicing criterion - can be an

instruction or an operand.

We claim that some well known crosscutting concerns have limited interactions

with their context and that metrics can be used to highlight their presence.

In our second example, we consider a typical implementation of logging. Figure 2

shows parts of a method from Spring.Net, an application framework for the .Net

runtime. We are interested in this example because it has the logging concern.

Let us compare program slices built on the logging instructions with those built

on the other instructions. A slice built on an instruction in a method includes parts

of the method that are related to the instruction by control or data dependencies.

The forward slice includes parts that are dependent on the instruction and those on

which the instruction depends are included in the backward slice. To keep the

discussion short, we consider a slice built on a logging instruction. Notice that the

backward slice on 12 shows a dependency on line 5, 4, and 1 transitively.

However, the forward slice is empty. Our analysis would detect this as a potential

before advice as it is tightly coupled to the method input but loosely coupled to

the rest of the method body.

In practice, we expect some slices for concerns to be more complicated. Hence,

we have devised two ranking schemes (metrics) to rank slices as potential

before or around advice. These are described in Chapter 4. Detection of

a f t e r advice is left for future work.

7

1. o b j e c t G e t P r o p e r t y V a l u e (P r o p e r t y T o k e n H o l d e r tokens)
2. {
3. S t r i n g propertyName = tokens.CanonicalName;
4 . S t r i n g actualName = tokens.ActualName;
5. P r o p e r t y l n f o p i = G e t P r o p e r t y l n f o (a c t u a l N a m e) ;
6. i f (!pi.CanRead)
7. {
8. throw new No t R e a d a b l e P r o p e r t y E x c e p t i o n (...) ;
9. }
10. i f (log.IsDebugEnabled)
11. {
12. . log.Debug("About t o invoke read method [{0}] on

i n s t a n c e of c l a s s [{ 1 }] . " , pi.Name,
pi.DeclaringType.FullName));

13. } .
1.4. s t r i n g k e y l n C a s e O f E r r o r = n u l l ;
15. t r y {
16. Methodlnfo readMethod = p i . G e t G e t M e t h o d (t r u e) ;
17. o b j e c t v a l =

re a d M e t h o d . I n v o k e (t h i s . W r a p p e d l n s t a n c e , n u l l) ;
18. ' • •
19. //Rest of method o m i t t e d

Figure 2: Logging in Spring.Net

Chapter 3

Branch Scopes

In Section 2.1 we discussed the intuition for differentiating behavior on different

paths taken from a conditional statement. Now we explain the details (Section

3.1) and evaluate the approach (Section 3.2).

For every conditional statement in a control flow graph, a branch is defined as the

code executed on one of the two outgoing paths up to the point where the control

flow meets again or the method returns, whichever occurs first. In this approach

two branches are compared based on the properties of their respective scopes. As

in [15] we define the scope to be the sets of fields of the class that they read or

write to.

Again looking at Figure 1, consider the conditional statement on line 11. One

branch comprises line numbers 13-23 and the other comprises line 27. In our

analysis, these branches are enhanced in two ways.

We include shared behavior before and after the branches that either affects which

branch is taken or is affected by the branch that is taken. To include the code that

affects the condition, we build a backward data slice on the guard condition and

add it to both branches. Line number 7 and a few others fall in this slice. Next,

1. Approach: Branch Scopes

9

forward data dependency slices on the instructions of the two branches are also

added. This results in the addition of line number 21.

Having built these new slices, we define what constitutes a significant difference

between their scopes. Two slices are considered significantly different when only

one of them writes to the state while both may read it. So, we flag the conditional

statements where one branch contains a write to a field of the class and the other

branch has a read but no write. For instance, in Figure 1, there is a write on line

15 and both slices read the state on line 21.

T a b l e 1: Results for Branch Scopes

Kinds of

Results

Spring.

Net

Core

Log4.

Net

Total 22 67

Caching 7 16

Lazy

Initialization

9 19

Other 3 6

False

Positives

3 26

10

2. Evaluation: Branch Scopes

We ran our analysis on two moderately sized codebases. In this section, we

summarize the results obtained.

The first codebase we consider is the Spring.Net framework. It is an application

framework based on the Spring framework for Java. Spring.Net has many

modules and we ran our analyses on Spring.Core (~20K NCLOC). The second

codebase is Log4Net (~20K NCLOC), another port of a Java codebase to the .Net

runtime. It is a tool to help developers in sending log statements to different

output targets.

The analysis successfully identified several instances of crosscutting concerns like

caching [9] and lazy initialization [9]. Table 2 shows that a majority of the

crosscutting concerns identified fall into one of two categories. We introduce both

of these concerns with an example drawn from the results.

a. Caching

Caching, the storing of results from expensive computations for future use, shows

up in two of the two codebases. We found 7 occurrences in Spring.Net and 16 in

Log4.NET.

Object-oriented implementations for caching vary widely depending on the

amount of time and energy expended in designing the caching scheme. Caching

has been widely recognized as a crosscutting concern by the AOP community [9].

As discussed in Section 2.1, we expected our analysis to be able to identify

caching where it occurs. True to our expectation, a fair number of the results

identified are different implementations of caching. To estimate the percentage of

i i

http://Log4.NET

caching code flagged, we searched the source for words like 'cache', 'caching'

etc. We found 6 instances of caching using this method and 7 using our analysis.

While the keyword search is by no means a precise estimate of all the caching

code in the application, our results were a superset of those found by the textual

search. This fact, combined with our understanding of common caching strategies

and our observation that the Spring codebase is fairly well documented, makes us

fairly confident that we are able to flag most, if not all, instances of caching in

the codebases. So we conclude that similar caching code occurring in poorly

documented or undocumented code would also be identified.

Caching behavior of this kind has been considered a good candidate for aspect

oriented refactoring [9]. In the example under consideration, the primary concern

of the method is to get the object wrapper from the cache and return it. The

tangling with code which deals with creating a new object, registering its type

converters and adding it to the cache can be avoided by moving this functionality

into the advice of a caching aspect.

b. Lazy Initialization

Lazy initialization refers to the case where some expensive operation such as

creation of an object or computing a value is delayed until the first time it is

needed. This is another well known crosscutting concern that shows up frequently

in our results. We identified 9 cases in Spring and 19 cases in Log4.Net.

12

http://Log4.Net

Figure 3 shows an instance of lazy initialization identified in the Spring.Net

framework. The example belongs to the property ConfigSections in the class

PropertyResource Configurer. The property returns the private member variable

_configSections if it has a valid value. If it doesn't, it is initialized appropriately

and then returned. The analysis identifies the branch at line number 9 as a point of

interest. From this point, there is one branch consisting of line number 11 but the

other branch is empty (there is no else clause). However, constructing the forward

slice (using the technique from Section 3.1) adds line number 13 to both. As a

result, we have one branch scope with a write (line number 11) while the other

scope only has the read at line 13. This example is a good representative of the

other lazy initialization code found by the analysis.

1. c l a s s PropertyResourceConfigurer
2. {
3. // d e t a i l s e l i d e d
4. p r i v a t e s t r i n g [] _ c o n f i g S e c t i o n s ;
5. p u b l i c s t r i n g [] ConfigSections
6. {
7. get
8 . {
9. i f (_configSections == n u l l ||

_configSections.Length ==0)
10. {
11. _ c o n f i g S e c t i o n s = new s t r i n g []

{DefaultConfigSectionName};
12. }
13. r e t u r n _ c o n f i g S e c t i o n s ;
14. . }
15. }
16. }

Figure 3: Lazy Initialization in Spring.Net

13

In the example above, the code responsible for initialization is tangled with the

primary functionality of the method, which is to simply return the field. In other

instances, the primary functionality could be a use of the object being initialized.

[9] discusses a recommended aspect oriented refactoring for this concern. The

aspect oriented refactoring involves using the get pointcut to advise read access

on the field or object and performing the initialization in the advice whenever it is

required. An aspect-oriented refactoring is important is this case to prevent

programmers from accidentally accessing the field directly and bypassing the lazy

initialization code.

c. Other Concerns

This analysis also produced some results from other well known crosscutting

concerns such as exception handling (shown in Table 2 under Other). However,

we do not report these as positive results for our analysis because such concerns

are easily located by searching for keywords in a programming language (e.g.

throws or catch). We don't report these as false positives either because they

are easy to filter for exactly the same reason.

14

1. p u b l i c v i r t u a l i n t C a p a c i t y
2 - <

3. s e t
4. {
5. i f (value < m_count)
6- . <
7. v a l u e = m_count;
8. } . '
9. i f (value != m_array.Length)
10. {
11. i f (value > 0)
12. {
13. I P l u g i n [] temp = new I P I u g i n [v a l u e] ;
•14. A r r a y . Copy (m_array, 0, temp, 0,

m_count);
15. m_array = temp;
16. }
17. e l s e
18. {
19. m_array = new

IPIugin[DEFAULT_CAPACITY] ;
20. }
21. }
22. }
23. }

Fieure 4: False Positive due to Backward Slice

d. False Positives

Not surprisingly, our strategy, being quite general, gives some false positive

results. Their number is very low on Spring.Net but more significant on Log4.Net.

Figure 4 shows a false positive where one of the two branches is empty but a read

of a field is introduced into it because we add the backward and forward slices to

both branches (as described in Section 3.1). The property C a p a c i t y in class

P l u g i n C o l l e c t i o n of Log4.Net has an i f condition on line number 9 with

15

http://Log4.Net
http://Log4.Net

no e l s e block. Notice the backward slice on the i f condition includes a read of

the field m c o u n t in line number 7 and this leads to the method being flagged as

a result.

We note that it is possible that certain false positives could be considered as

application specific crosscutting concerns by a developer more knowledgeable of

the semantics for these code bases. Since we had only a surface knowledge, we

only report positive results for those that are widely considered as aspects in the

literature.

16

1. p u b l i c v o i d Configure(XmlElement element)
2. {
3. / / d e t a i l e l i d e d
4 . LogLog.Debug("XmlHierarchyConfigurator:

C o n f i g u r a t i o n r e s e t b e f o r e r e a d i n g c o n f i g . ") ;
5. •
6. foreach (XmlNode currentNode i n element.ChildNodes){
7. i f (currentNode.NodeType == XmlNodeType.Element){
8 . XmlElement currentElement =

(XmlElement)currentNode;
9. i f (currentElement.LocalName == LOGGER_TAG){
10. ParseLogger(currentElement);

}
11. // d e t a i l elided
12. >
13. }
14. // L a s t l y s e t the h i e r a r c h y t h r e s h o l d
15. s t r i n g t h r e s h o l d S t r =

element.GetAttribute(THRESHOLD_ATTR);
16 . LogLog.Debug("XmlHierarchyConfigurator:

H i e r a r c h y T h r e s h o l d [" + t h r e s h o l d S t r + "] ") ;
17. i f (t h r e s h o l d S t r . L e n g t h > 0 && t h r e s h o l d S t r !=

" n u l l ") {
18. L e v e l t h r e s h o l d L e v e l = (Level)

C o n v e r t S t r i n g T o (t y p e o f (L e v e l) , t h r e s h o l d S t r) ;
19. i f (t h r e s h o l d L e v e l != n u l l) {
20. m h i e r a r c h y . T h r e s h o l d = t h r e s h o l d L e v e l ;
21. ' }
22. e l s e {
23. LogLog.Warn("XmlHierarchyConfigurator: Unable

t o s e t h i e r a r c h y t h r e s h o l d u s i n g v a l u e [" +
t h r e s h o l d S t r + "] (wit h a c c e p t a b l e - c o n v e r s i o n
t y p e s) ") ;

24. }
25. }
26. // Done r e a d i n g c o n f i g
27. }

Figure 5: Internal Logg ing in Log4Net

17

Chapter 4

Slice Metrics

In Section 2.2 we motivated an approach based on metrics for program slices to

capture the interactions with their context. Here, we further refine that discussion

with two concrete metrics.

1. Approach: Slice Metrics
We devised two metrics to identify before and around advice candidates based on

their interactions with the methods they advise.

a. Around Metric

The first metric was designed for identifying around advice candidates. Logging

is a typical example of crosscutting behavior which can be refactored using

around advice. We look at an example of logging from log4net and use that to

explain our second metric which ranks data dependency slices on methods. Notice

that log4net includes logging as a functional concern and also as a non functional

concern for its own internal debugging by log4net developers. Strategies based on

keyword indicators would find it more difficult to distinguish these two behaviors.

Figure 5 shows the method C o n f i g u r e . Large parts of the method have been

omitted for clarity. Line numbers 4, 16, and 23 are all involved in logging

behavior which is tangled with the primary functionality of this method. If we

observe the data dependencies between the various logging instructions, we notice

18

that they do not induce any data dependencies on line numbers 6-13 which belong

to the primary concern and are shown in bold. This allows writing logging as an

around advice with a clearly defined, narrow interface with the method which

executes before and after the method's execution. This suggests a metric on data

dependency slices to mine around advice. The metric should "reward" data slices

that exclude a significant block of code in the method. The block of code

excluded would correspond to the primary concern and hence, should be

relatively independent. The data slice that skirts this block of code would

correspond to the around advice and hence, would, ideally, not intersect with data

slices built on other instructions in the method.

We put the above observations together into a metric for identifying around

advice. The first step involves constructing forward data slices instead of the

program slices constructed earlier. The individual data slices are not

representative of the tangling between the slice and the method because they can

intersect with forward slices built on other instructions. In Figure 5, the forward

data slice built on line number 4 comprises the line numbers 4, 16 and 23. The

slice built on line number 15 comprises 15, 16, 17, 18, 19, 20, 23. Neither of the

two slices tells the complete story, however. For instance, the first slice does not

tell us that line number 23 is also dependant on information from line number 15.

Merging the two slices to yield the combined slice is more representative of the

data dependencies. Hence, we merge all slices that intersect at any point in the

method.

From the set of merged slices, we identify slices that jump over relatively large

blocks of contiguous code. Such slices are desirable on account Of two factors.

First, the relatively large parts of source that are skipped have no data

dependencies with the slice. This makes the slice amenable to extraction into

advice. Second, a large block of code that is independent of the slice is also more

19

likely to be the primary concern of the method. The metric, then, boils down to

ranking the merged slices by the size of the largest jump. A jump is defined as the

number of non -commented lines of source separating two consecutive

instructions in the slice.

Table 2: Top Ranked Results for Around Metric

Kinds of Spring Log4Net

Results .Net

Core

Total 16 30

SecurityContext 0 3

Synch ronization 6 19

Logging 1 3

Other 6 0

False Positives 3 5

b. Before Metric

We build slices on every instruction in a method and rank the slices in increasing

order of relative complexity. First, we provide brief background to relavant

concepts in program slicing and then describe our approach.

We compute slices by first constructing a program dependence graph (PDG) [8,

20, 21] for a method and then performing reachability on it. Using a PDG helps

20

here because the most expensive part of the computation - constructing the PDG -

is performed only once. A program dependence graph incorporates both control

and data dependence relationships in one graph. Data dependence edges represent

the data flow relationships in a program. Control dependence edges are built from

the control flow graph and represent the essential control flow relationships in a

program. A backward slice, built on an instruction or operand called the slicing

criterion, consists of parts of the program that affect the value of the slicing

criterion. A forward slice, on the other hand, includes parts that are affected by

the slicing criterion. In a PDG with instructions as nodes, the forward or

backward slice for an instruction is the set all of all nodes that can be reached in

the appropriate direction.

The complexity of slices built on an instruction gives us a measure of how closely

coupled the instruction is with the rest of the method. We expect that instructions

belonging to the primary decomposition will be closely coupled and have

complex slices. To rank slices by complexity, we start with a simple size measure.

We count the number of lines of source included in the slice. This is then

normalized against the average size of all slices built on that method to give us

relative complexity. Normalizing against the average size of slices is desirable

because it means that slices that are ranked highest are the ones that are most

significantly different in complexity from their local context. In other words, we

want slices that are small in relation to slices constructed on code surrounding

them.

2. Evaluation: Slice Metrics

Table 2 and 3 present the results of computing our metrics on the two codebases.

Since we build slices for every instruction in a method, the complete set of results

21

is actually the entire codebase; programmers are directed to interesting results

based on our ranking scheme. The typical use case for this strategy would involve

a developer examining results till the number of false positives encountered make

further examination non-profitable. This also means that the number of results in

each class is not representative of the total number of instances of that concern in

the codebase or of the fraction of those concerns identified by our strategy. For

our evaluation, we looked at the top few results obtained only. With the Around

Metric, we examined results till the gap size was reasonably large. For

Spring.Net, this number was 5 while for Log4Net it was 6.

As can be seen from Table 2, the around metric successfully identified 19

instances of synchronization, 3 of logging and 3 uses of the .Net class

S e c u r i t y - C o n t e x t i n Log4Net. The number of false positives in the

results examined was acceptably low at 5 cases. The results for Spring.Net were

similar.

For the before metric, we look at the results obtained in more detail in Section 4.2.

Table 3 summarizes the results obtained on each of these codebases. We were

able to identify three classes of widely known crosscutting concerns in the results.

We'll discuss some of these results to understand why they are identified.

a. Assertion Checking

One of crosscutting concerns identified by the before metric is assertion checking.

This refers to code that throws exceptions or executes special behavior when

variables have illegal values or the program is in an illegal state. Again, the aspect

oriented refactoring has been widely dealt with in [11]. Figure 6 shows a typical

example.

22

Table 1: Top Ranked Results for Before Metric

Kinds of

Results

Spring

.Net

Core

Log4.Net

Aspects 26 32

Logging 6 7

Assertion

Checking

16 15

Other 4 10

False

Positives

9 12

Assertion checking is one of the set of systemic aspects that were first conceived

as potential use cases for AOP at PARC. Assertion checking involves validating

the state of various variables or arguments before computations that depend on

that state are performed. Typically, assertion checking code occurs towards the

beginning of a method and does not interact much with the rest of it. Due to the

small size of slices created, assertion checking was the largest class of results

mined.

Figure 6 has some sample code that handles failure conditions in line number 5

through 9. The method DoAppend from the class A p p e n d e r S k e l e t o n sends

an error message if an append operation is attempted while the object is in a

closed state (lines 5-9). From our previous discussion, it should be obvious that

the slices on line number 7 only depends on the class' fields.

23

http://Log4.Net

I . v o i d DoAppend(LoggingEvent l o g g i n g E v e n t)
2- {
3. l o c k (t h i s)
4. {
5. i f (m_closed)
6. {
7. E r r o r H a n d l e r . E r r o r (" A t t e m p t e d t o append t o

c l o s e d appender named ["+m_name+"].");
8. r e t u r n ;
9. }
10. / / d e t a i l s e l i d e d
I I . t r y ,
12. { ,
13. m _ r e c u r s i v e G u a r d = t r u e ;
14. i f (F i l t e r E v e n t (l o g g i n g E v e n t) &&

PreAppendCheck())
15 .
16 .
17 .
18 .
19 .
20.
21.

c a t c h (E x c e p t i o n ex)

E r r o r H a n d l e r . E r r o r (" F a i l e d i n DoAppend

t h i s . A p p e n d (l o g g i n g E v e n t) ;

ex) ;
22 .
23 .
24 .
25 .
26.
27 .
28 .

f i n a l l y

m _ r e c u r s i v e G u a r d = f a l s e ;

Figure 6: Assertion Checking in Log4Net

24

b. Other Concerns .

Besides logging and assertion checking, a number of other concerns came up in

smaller numbers. Lazy initialization was one. However, we believe our first

strategy was better at finding lazy initialization.

c. False Positives

As seen in Table 3, we encountered a reasonable number of false positives using

the before metric. A number of results were due to limitations of our

implementation. Mainly, this is because of our current implementation's inability

to track data dependencies arising out of the use of Get and Set Properties. For

instance, a Set property would induce forward dependencies on the field it sets.

Additionally, we don't track side effects of method calls. We've implemented a

few work-arounds to mitigate the situation somewhat and these are discussed in

Chapter 5.

25

Chapter 5

Implementation Details

In this Chapter, we provide additional details about our current implementation.

The analyses presented are implemented using Microsoft's Phoenix compiler

backend. We take .Net binaries as input and raise them to a register-based

intermediate representation. We then construct program dependencies from the

Phoenix SSA representation.

1. Common Implementation Details

A detail that is common to both our approaches is that our analysis is limited in

how it tracks changes to fields of objects. Our current implementation is not able

to identify get and set methods with the fields they access. Moreover, side effects

of methods are not analyzed; we have not yet implemented a robust inter-

procedural analysis. Based on a visual inspection we saw that this led to several of

the false positives in both our strategies.

For Brach Scopes, the false positives result when writes to aliases of fields aren't

detected as such. With slice metrics, this limitation results in dependencies that

are not detected and that gives rise to small slices which, in reality, should be

much bigger. We did mitigate the problem by using a few heuristics. First, we

parse all methods and flag those that have writes to their fields. While building a

slice, if we encounter a call to a method, we look for it in the list of flagged

26

methods. If it exists, we induce a data dependency on the method receiver. These

heuristics are imprecise but can be improved upon with a points-to analysis [18]

in the future.

2. Branch Scopes

Our definition of branches excludes sites where loops start. While they are

technically points where control flow branches, we didn't feel they were likely to

correspond to points that select between two alternate behaviors - a crosscutting

concern and a primary concern.

3. Slice Metrics

For slice metrics, we use a measure of slice size that depends on the number of

source lines in the slice. Note however, that the analysis works on an intermediate

representation. Since there are a number of IR instructions for every line of

source, we had to implement a workaround that used the information in program

debugging database (pdb) files to find the source corresponding to each IR. When

multiple IR instructions correspond to the same source instruction, we use the

largest amongst the slices built on these instructions to represent the slice for the

line in source.

Another workaround we implemented involved filtering out slices built on

initialization instructions. We noticed that slices built on instructions which

assigned some default values such as null to local variables would almost

invariably be very small since there would be no backward slice and the forward

27

slice would only extend till the time the variable would be initialized with its

proper value. We filtered these results out since they were always false positives.

28

Chapter 6

Discussion

We have proposed an approach that is significantly different from other work on

aspect mining. We validated our intuitions by targeting well known crosscutting

concerns. The first half of this Chapter discusses possible threats to the validity of

our work. The rest discusses some directions for future work and explains why we

feel this is a promising direction for future research in aspect mining.

1. Threats to Validity of Claims

One critique of the work could be directed against the underlying assumption that

there is enough information in data-flow patterns to identify crosscutting

concerns. In regards to this we think it is important to distinguish between classes

of aspects targeting functional crosscutting concerns and non-functional (or

systemic) crosscutting concerns. Based on our results and understanding of

related work we believe that other work such as [1] which targets design level

information (e.g. method naming conventions) will be important for

understanding functional concerns. However, systemic concerns such as caching,

lazy initialization, may not be logically attached to information in the program

design and as such an approach such as ours can be complementary.

Another criticism could be that the results are skewed towards the two codebases

chosen. We've tried to address this by discussing the intuitions underlying each

29

approach. Moreover, the two codebases are all fairly large and that should

mitigate some of these concerns.

Finally, our results only consider well known crosscutting concerns. This reflects

our desire to confidently validate our results due to the difficulty of verifying

application specific refactorings. A solution to this problem would be to analyze a

number code bases for which a legacy version and an aspect-oriented version

were available. This could serve for a more formal "clean-room" validation of the

approach. Unfortunately, we did not have such code available but we expect them

to emerge as AOP is further adopted.

2. Future Directions

By targeting well known crosscutting concerns, we've demonstrated that the our

hypothesis is partially validated; in one case (caching) we were able to prove low

false negatives as well. In all cases the number of false positives was reasonable.

In the rest of this section, we discuss some ways to enhance both strategies to

target a wider range of aspects.

Branch Scopes: The comparative nature of this strategy currently involves

finding pairs, of branches where one writes to the class fields and the other only

reads. Rinard et al. [15] introduced a classification for aspect interactions

including several other types of interaction. For direct interactions, they classify

advice based on how and when the method executes after crosscutting. For

instance, with Augmentation advice the entire body of the method always

executes but with Narrowing advice, the execution of the method is conditional

on the advice. Additionally, they also classify indirect interactions which are

based on the fields that are accessed by the advice and method. As we described,

30

the sets of fields of classes read and written by an advice or method defines it's

scope. Depending on the scopes, 5 kinds of interactions are identified. Their

classification scheme is more refined than ours but they only use it to classify

existing aspects as against mining for aspects in legacy code. In the future, we

intend to develop a wider set of branch analyses corresponding based on their

classification.

Slice Metrics: The central concept behind out strategies is that good aspects

should have a narrow well-defined interface with their context [16]. This led us to

the idea to rank slices by a dependency measure. Our current measure for before

advice simply measures the size of the slices. However, there are a number of

other factors that could be considered when determining the aspect likelihood of a

slice. We list some factors that could decrease advice likelihood and explain the

intuition briefly:

1. Forward slice includes return value of the method: When methods return a

value, any instructions that contribute to that value are not likely to be a

part of a before advice.

2. Dependence edges in the forward slice: When an instruction affects

computations that follow it in the method, it is more likely to be part of the

primary decomposition or an around advice. Hence, our approach could be

adaptive to apply the around metric when it detects such a case.

Incorporating the above intuitions and other intuitions about program structure

(e.g.: calls to external, static methods are more likely to aspect candidates) will

require developing a scoring mechanism to take all the factors into account and

could be an interesting direction.

31

Chapter 7

Related Work

There have been a number of papers that have surveyed aspect mining approaches

or compared them. By and large, aspect mining approaches rely on one of the

following: textual patterns, patterns in execution, high fan-in methods or

duplicated code fragments.

Mens and Tourwe [3] look for textual patterns in method and class identifiers

through formal concept analysis. They relying on naming conventions and narrow

the results to those that are crosscutting by looking for methods and classes that

belong to at least two different class hierarchies.

Breu and Krinke [2] looked for patterns in execution traces to mine aspects. In [7]

Breu enhances the approach by using static type information to remove some

ambiguities. Tonella and Cecatto [4] perform formal concept analysis on

execution traces.

Marin et al [5] find aspects with a large footprint by looking for high fan in

methods. Two different techniques for using code duplication to find aspects have

been discussed. Shepherd et al [1] look for duplication in the beginning of PDGs.

Bruntink et al [6] discuss token-based, AST-based and metrics-based clone

detection techniques.

Dependence graphs have been used in software development for optimization [8]

as well as refactoring [13]. The use of program slices in refactoring [17] ties in

very closely with our first strategy. In fact, Ettinger and Verbaere use slices to

untangle crosscutting concerns in methods [14]. Their work is the closest related

32

work to our first strategy. To the best of our knowledge, there is no prior work on

finding aspects by differentiating local interactions in code.

Ishio et al. [24] use a program slicing technique to isolate functional concerns in

source code. Different from our approach their approach works from a seed

criterion guided by a developer. We feel our approach is complementary in that

we identify a class of non-functional concerns indicated by patterns in code.

Many approaches [22-26] involve the developer in the aspect mining process. Our

approach can help point the developer in the right direction before using other

approaches that bring them into the loop.

33

Chapter 8

Conclusions

We've laid out the underpinning of our approach to aspect mining based on

detection of data-flow patterns. We built on the intuitions inspired by previous

work to implement two strategies that targeted well known crosscutting concerns.

We tested the strategies on two moderately sized codebases and validated our

intuitions. Finally, we discussed important ways in which they can be enhanced to

target a wider variety of aspects. The results showed both places for improvement

and also a promising approach for future research in aspect mining.

34

Bibliography

[l] D.Shepherd, E.Gibson, and L.Pollock. Design and evaluation of an automated

aspect mining tool. In Proc. International Conference on Software

Engineering Research and Practice, 2004.

[2] S.Breu and J.Krinke. Aspect mining using event traces. In Proc. Conference

on Automated Software Engineering, 2004.

[3] K. Mens and T. Tourwe. Delving source code with formal concept analysis.

Elsevier Journal on Computer Languages, Systems & Structures, 2005. To

appear.

[4] P.Tonella and M.Ceccato. Aspect mining through the formal concept analysis

of execution traces.In Proc. Working Conference on Reverse Engineering,

2004.

[5] M . Marin, A.van Deursen,and L. Moonen. Identifying aspects using fan-in

analysis. In Proc. Working Converence on Reverse Engineering, 2004.

[6] M . Bruntink, A.van Deursen, R.van Engelen, and T. Tourwe. An evaluation of

clone detection techniques for identifying crosscutting concerns. In Proc. of

the International Conference on Software Maintenance, 2004.

[7] S.Breu. Towards hybrid aspect mining: Static extensions to dynamic aspect

mining. In Proc. Workshop on Aspect Reverse Engineering, 2004.

[8] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence graph

and its use in optimization. ACM Trans. Prog. Lang. Syst., 9(3)<:319--349, July

1987

[9] R. Laddad. AspectJ in Action. Manning Publications Co.,2003

35

[10] Filho, F., Rubira, C , Garcia, A., (2005). A Quantitative Study on the

Aspectization of Exception Handling. Workshop on Exception Handling in

OO Systems (held with ECOOP), Glasgow, Scotland, 25 July 2005.

[li] M . Lippert, C. Lopes. A Study on Exception Detection and Handling Using

Aspect-Oriented Programming. In Proc. oflCSE, pages 418—427, 2000.

[12] M . Weiser. Program slicing. IEEE Trans. Softw. Eng., 10(4):352—357, July

1984.

[13] M . Verbaere. Program slicing for refactoring. MSc thesis, University of

Oxford, 2003

[14] R. Ettinger and M . Verbaere. Untangling: A Slice Extraction Refactoring. In

Proceedings of the Aspect-Oriented Software Development Conference

(A OSD), pages 93-101. A CM Press, 2004

[15] Rinard, M . , Salcianu, A., and Bugrara, S. 2004. A classification system and

analysis for aspect-oriented programs. In Proceedings of the 12 th ACM

SIGSOFT Twelfth international Symposium on Foundations of Software

Engineering. A C M Press, 2004

[16] R.J. Walker, E.L.A. Baniassad, and G.C. Murphy. An initial assessment of

aspect oriented programming. In Proc. of the International Conference on

Software Engineering, 1998.

[17] W. G. Griswold and D. Notkin. Automated assistance for program

restructuring. A C M TOSEM, 2(3):228-269, 1993.

[18] R. Ghiya and Laurie Hendren. Putting pointer analysis to work. In Proc of the

Symposium on Principles of Programming Languages, 1998.

[19] R. Komondoor and S. Horwitz. Effective automatic procedure extraction. In

Proceedings of the International Workshop on Program Comprehension, 2003.

36

[20] K.J. Ottenstein and L . M . Ottenstein. The program dependence graph in a

software development environment. In Proc. of the Software Engineering

Symposium on Practical Software Development Environments, 1984.

[21] S. Horwitz and T. Reps. The use of program dependence graphs in software

engineering. In Proc. of the International Conference on Software

Engineering. 1992.

[22] C. Zhang and H-A. Jacobsen. Quantifying aspects in middleware platforms. In

Proc. of the International Conference on Aspect-oriented Software

Development, 2003.

[23] J. Hannenmann, G. Murphy, and G. Kiczales. Role-based refactoring of

crosscutting concerns. In Proc. of the International Conference on Aspect-

oriented Software Development, 2005.

[24] T. Ishio, R. Niitani, and K. Inoue. Towards locating a functional concern

based on a program slicing technique. In Proc. of the Asian Workshop on

Aspect-oriented Software Development, 2006.

[25] D. Shepherd, L. Pollack, and K. V-Shanker. Towards Supporting On-demand

virtual remodularization using program graphs. In Proc. of the International

Conference on Aspect-oriented software development, 2006.

[26] A. Colyer and A. Clement. Large-scale AOSD for Middleware. In Proc. of the

International Conference on Aspect-oriented software development, 2004.

37

