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Abstract

Techniques from interactive - gratghics 'and ' pqttérn
recognition are applied to the proklem of reducing map cutlines.
Since the resulting generalized outlines are intended for use in
interactive' graphics systems their  data content should be
considerably less than that of the original 1ings. Also it is
useful to have several léveis of'genefalizati;nAfc; the sane
line and an extension ofbthe X-Y coordinate encoding'%échéme-:is
.introduced ‘to represent such ﬁieraréhically fredﬁced,.lineé._
Experiments are conducted that Vsuégest-'tﬁét‘ pedple. lcok' at
outlineé' in different ways. To accomodate theée-difﬁérences in."
taste and purpcse the sfstem is ‘designéd to"adapt- to the
individual user‘s_iprefeienées. This is dcne Ey‘having_the user
reduce several outlines by hand. The sysiem analfzes patteﬁﬁs in
. thése 1;nes and‘so4learns to mimic the usef's béhﬁviéur.‘ Once
enough“ hag been .iéarned the systen is giveh;:ﬁeﬁ'liﬁé$ to.
generalize on its own. Experiments are performed to measure the
learning ability and the generalizéticn. ferformance. Other
experirents are performed to show the potential feasibility of:

this approach. There is a review of work dcne in related fields.
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INTRODUCTIGCN

The growing wuse of interactive graphic facilities for the
display, manipulation, and interrogation cf geographic
information has created a demand for a more flexikle and compact
representation of map outline data. Whereas in traditicnal raps
the accuracy and detail c¢f outlines were considered important,
in the <case of interactive graphics the primary concerns cften
are the reduction of storage requirements over a range of scale
dependent on 1levels of resolution, while encugh detail is
maintained for wvisual identification. The ccncern with
minimizing the stcrage requirements stems from the usually
severely limited memory capacities of CRT! display devices. 1In
addition the ©processing times fcr typical cperations such as
shading and intersecting regions often vary as the square of the
number of points along outlines. Due to the limited screen sizes
available at the present it 1is also necessary to change
radically the scale of the display of a map and at the same time
correspondingly change the level of detail. This is to enable a
person to view a large region at small scale and relatively 1low
level of detail and then "zoom" in on an area cof interest and

observe more detail as the scale bhecame larger.

While interactive graphics has created a demand for new
methods of representing map outlines it has at the same time
provided a potentially powerful tocl to~aid in the ccnversion of
outlines to a more compact form. This arises from the link that

can be established between the computer's speed and accuracy at

1 CRT = Cathode Ray Tube



arithmetic operations and the ability of people tc recognize

easily shapes and patterns in two-dimensional infcrmation.

The work described in this thesis represents cne attempt to
take advantage of this link offered by interactive graphics to
build a system for reducing the data ccntent of wap ocutlines.
The way in which this has been done is tc display a series of
outlines on the screen of the CRT and allow the wuser to train
the system by manually reducing their data content according to
his own particular tastes and requirements., The system learns ty
recording and analysing the actions of the wuser wuntil it can
satisfactorily mimic the person's behaviour. Once this point has
been reached the system is then given new lines to reduce ¢n its
own. The results can then be checked by the user and ccrrected.

The user can also re-teach the system if necessary.

Chapter 1 describes in general terms the processes involved
in the system and how they are related to work dcne by other

people.
Chapter 2 dgoes into the detailed workings of the system.

Chapter 3 describes and analyses the results cf experiments

with the system.

Chapter U4 evaluates the performance cf the system as well

as the work as a whole.



The work described here draws on wor} done in many other
fields. In a sense it properly belongs in cartcgraphy, but
contributions come from fields as diverse as perceptual
psychology, pattern recognition and learning, linguistics,
computer graphics, interactive systems, and numerical analysis.
Some of the influences from these areas are discussed in this

chapter.

1.1 Cartographic¢ Generalization

Reducing the information content of an outline is_just one
aspect of a process that cartographers refer tc as "automatic
generalization". Generalization is necessary whenever a map of
reduced scale or special purpose is to be produced from other
maps. The aim is "the exfpression of detailed by less detailed
information By selection, and simplification" (Keates(1972)).
Others think of it in terms of "simplification, selection, and
emphasis." (Robinson and Sale(1969)) This is dcne so that the
important spatial ielationships are conveyed simply and clearly
without interference from extranecus detail. For example, out of
a potentially 1large number of possible choices certain towuns,
rivers, roads, islands, and so on must be selected for inclusion
in a map while others are onmitted c¢r combined. Llines (e.g.,

boundaries, coastlines) must be simplified while maintaining



their character (e.g., a rocky coastline should wusually rerain
rough). This is in general a very complicated prccess demanding
much knowledge and skill of the cartcgrapher. fhe eventual
purpose and scale of the map, special knleedge cf the region,
aesthetics, graphic limitations must all be <considered by a
cartographer in this wecrk. It 1is thus highly subjective and
therefore difficult to autémate since any automatic scheme must

include provision for these factors.

A major contribution to the automation of generalization
has been the work of Topfer(1966). He has derived an expression
that relates the density of map items to the scale of the map.
This proviaes a quanhtitative critericn for judging the ‘results
of generalization. However this gives cnly an estimate of the
number of items to be selected without any direct indications cof
the particular items to be selected. Work by Sukhov(1970),
Srnka (1970), and others in Soviet circles have emplcyed
statistical and information theéretic principles tc aid in this
selection process. A combination cf these aﬁproaches promises to
be_ froitful for automating generalization. However the factors

of map purpose, aesthetics, and special regional kncwledge will

continue to demand the influence cf experienced cartographers.

Much of the work in the automation of generalization has
centred around the processing of 1line data; The work in this
area can be roughly'divided into two classes derending on how
the points along a 1line are . treated. The first <class is
characterized by "point filtering® schemes. What this means is

that the points defining lines in the new map are simply a

-



subset of the points from the original map. No pcint§ have Leen
added or moved. Hershey (1963) remcved ©points if they  were
closer than: sgme’ amount depending con the display device's dot
size. This teéhpique ran into trouble when 1lines became very
near each other and when there was a drastic scale change. lang
(1969) describes a schene @haé removes points if they do not
deviate too much from straight line approximations. In a similar
vein 1is recent work by Douglas (1972). The prccess starts by
considériﬁg a étraight line joining the end points of the 1line.
If the point on the line that is—furthest from this straight
liné is farther than a specified tolerance then that fcint is
selected. The process is repeated recursively cn each of the two
sections formed by the newly selected point until ncwhere is the
deviation greater than a specified amount. Figure 1.1
illustrates this and indicates the order in which Tfcints are
selected. Thus, in a way, the selection of points depends on all

of the rest of the line.

The work described in this thesis also belcngs to this
class. Points are selected based on the recognition of patterns

in the lines that have been taught tc the system by the user.

In the second grcup is work by Kceman and van der Weiden
(1970) . They use an averaging process cver a sequence cf rpoints
to alter the 1line, thus simplifying it. Recent wocrk by
Brophy (1972) combines approcaches o¢f both groups. Pocints are
first selected based <c¢n the desired scale and line width and
then moved according to the degree of generalizaticn tc either

exaggerate or simplify the line. Certain features are eliminated
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Douglas' Generalization Technique . - Figure 1.1

Outlines with points to be removed Figure 1.2 .

Outline with points removed - ,‘ - Figﬁre 1.3



if adjacent lines begin to merge.

This work in cartography, althcugh directed towards
reducing the information content of a line, is only of 1limited
applicability. The reason for this is that the maps/that result
are quite different from the sort cf maps we are interested in.
The cartcgrapher's maps are made of paper, they are "hard" and
static. They will be hung on walls, stared at, and measured
carefully. Accuracy 1is important and the points are usually
spaced according to the best resolution possikle (i.e., spacing
on the order of the 1line width). The degree of informaticn
reduction required is governed only by the eye's ability to
perceive and distinguish images from coloured ink con paper. On
the other hand, the maps that we are interested in are quite
different. Our maps will be dynamic, "soft", and fcrmed by the
glow of phosphor dots of the screen of a CRT. Most of these maps
will live only for a few seconds or minutes tc¢ <ccnvey some
relationship before being replaced by another. Accuracy will not
be so important since measurements will probably nct be made
from these maps. This means that points can be fairly far arart
- the 1important «critericn being that the objects are clearly
identifiable. The information content of lines will be reduced
to dinminish the storage requirements, transmission time, and
processing time. At CRT devices the amount of infcrmation that
can be displayed is often restricted by the memcry size of the
device. Transmitting large amounts of information to a display
terminal 1is often time-consuming and expensive. The processing
times for many operations that can be performed on waps grow

very dquickly with the number of points involved (e.g., finding



the intersection of twc regions can be proportional to the

square of the number of points).

These considerations encourage us tc be "bold and intrepid®
(Miller and Voskuil(1964)) in the eliminaticn cf points. Even
though we are forced to reduce drastically the number cf points
things are not so bad since the constraints of accuracy have
been loosened somewhat.

1.2 Psychology Qf Perception

We receive some additional indication that we shall &be
successful from the field of perceptual psychology. Studies by
Attneave (1954) show that most c¢f the information for the
recognition of a figure comes from the regions of maximunm
curvature. Related indications come from Ryan énd Shwartz (1956)
who report that caricatures, though distorted, are often more
readily recognized’ than photographs of the corresponding
subjects. This is because there is tco much detail and redundant
information in the original. Hopefully this will be tfue for the
identification of map outlines as well, If it is true then it
should only be necessary to recognize and select points where
the curvature 1is quite large in order to produce cutlines that
are easily recognizable. Scme contrary indicaticns come from
Gestalt Psycholdogy since it is maintained that the recognition
of a figure is dependent cn the figure taken as a whole. 1In
other words, figure recognition is a global rather than a local
process. Which of these views 1is the more important in our

situation will have tc be decided by experiment.

'



1.3 Pattern Recognition And Learhing

In deciding which points are to be removed frcm an outline
in order to reduce its data content the neighbouring portions of
the line must be considered. For exanrple, in the twc cases showun
in Figure 1.2 the point cn the left can safely be removed while
the one on the right cannot. The result cf removing these pcints
is shown ‘in Figure 1.3. In order for the system tc automatically
decidé on the fate of points . in a host of less clear cut cases
it must somehow "look"™ at sections cf the line and classify them
appropriately. This process is an example of what is commcnly
known as "Pattern Recognition". A pattern is descriked by an n-
tuple of features f. i.e., f = (fl,fz,...,fn). Pattern
Recognition consists of assigning these patterns tc classes, ¢ ,
out of a set of m classes ¢ = {cl,cz,...,c“ﬂ . A standard way of
looking at this problem is to consider the space cf patterns to
be divided into a number of disjoint regions each with a wunique
label chosen from c. Classifying a pattern now means finding the
label of the region in which the ©pattern vector lies. For
example figure 1.4 illustrates a case where n=2 and n=4., The
pattern vector £ lies in a region labelled "A", The difficulty

arises in defining the bcundaries c¢f these regicns.

Since we can rarely know a pricri what thg regicn
boundaries are a pattern recognizing machine must be trained to
determine them. This is wusually done by specifying initial
approximate boundaries and then adjusting them based on

externally classified patterns. This is done by giving the

"device a series of patterns to classify. These patterns should
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be fairly representative of all the pattern classes. If a
pattern is classified correctly then boundaries are often left
unchanged. However, if the <classification is ‘inccrrect the
boundary of the appropriate region is mcved closer to the point
S0 as to either give the correct «classificaticn or else conme
"nearer" to it. With successive patterns and with repetiticns of
the same patterns the classification should becomelmcre and mrore
reliable and the boundaries move less and less. If the pattern
classes are well separated by the measured features , the
training patterns are reasonably representative, and the initial
boundaries are not toco far out then this prccess should converge

and result in a satisfactory pattern classifier.,

A standard way of specifying region boundaries is in a
piece-wise fashion wusing hyperplanes. This means that only
linear polynonials are needed to evaluate Fattern class
membership. The learning process using this approach cocnsists of
adjusting polynomial coefficients., This is a fairly well
understood technique and would be appropriate for us except that
it demands that all n features be measured in order tc arrive at
a verdict for a pattern. In our case, in order toc consistently
guarantee that enough of the 1line surrounding a rpoint is
considered, n would have to be gquite large, sa? 10 or more
(using angles and lengths of straight line segments). Hcwever,
it is often possible to make the right decision by ccnsidering
only a single feature. This occurs when the 1line 1is wvirtually
straight at the point., Since there is a certain expense
associated with measuring a feature and sinpe learning is

generally slower and less reliable with more parameters a method

/
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which considers only the nminirum number of relevant features
would seem desirable. This is the approach taken 1in Sequential
Pattern Recognition (SPR) (Slagle and Lee(1971)). With SPR
features are considered one at a time as needed. When a new
feature 1is mneasured a test is made to determine whether the
pattern classification can be made reliably. If it can then we
can mnove on to the next pattern. If not then a decisicn is mrade
as to whether further features would be likely to 1increase the
reliability of the verdict and if so , which one. Only if this
is affirmative is another feature seleéted. Although the work
for each feature considered this way 1is mcre than in the
“"parallel" case, fewer features will be involved sc there can be

a considerable overall saving.

A simplified version of this SPR technique has been used in
this project. With each new feature the only decisicn made 1is
whether a verdict can be made. If it can, it is, otherwise the
next feature is considered. The order in which the features are
taken is fixed ahead of time. This decision prccess is
conveniently represented as a tree (see Fig. 1.5). The rocot is
the initial node and the features as they are measured in turn
cause transitions down the appropriate arcs wuntil a terminal
node is reached. At the beginning of the learnirg prccess the
tree consists only of the top 1level (root plus terminal
nodes,see Figure 1.6). As patterns are presented, if the verdict
agrees with the <classification given then that verdict is
reinforced. If there is disagreement then the tree either-
sprouts new terminal nodes from the previous terminal node or

else the verdict is weakened or changed depending on the depth
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and past history of that  verdict. This 1learning and
classification scheme 1is very similar to that cf EPAM

(FPeigenbaum (1963)) and the work of Sherman and Ernst (1969) .

Which features to measure is often a serious prolklem in
Pattern Recognition, They must contain the essential
distinguishing characteristics of the original, otherwise all
subsequent work will be futile. Since we are dealing with
graphic or two-dimensional information there might be an initial
temptation to measure two-dimensional features (as in the case
of Uhr and Vossler's pattern Trecognition machines(1963)).
However, since we are interested in the boundaries cf regions
and not the regions themselves, we can ccnveniently exploit the
essentially one-dimensional nature of our 1lirne drawings by
converting them into strings of characters. I have chosen to do
this by quantizing the lengths and the angles between individual
segments along the line since this appears to offer the best way
of capturing the essence of a 1line. The clas§ification
reco§nition problem can now be locked at as recognizing whether
strings belong to a particular language over a finite alphatet.
Since the data is "naturally" occuring‘ the language 1is very
messy and "ill-defined, but this crudely linguistic approach
could be fruitful in the future. Some people who have tried this

\
approach in other fields are Miller and Shaw(1968), Feder (19€8),

Pfaltz(1970), and Seeley (1970).
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1.4 Line Encoding Schemes

Whenever one comes to representing 1line data in the
computer one 1is faced witg making a choice of which of three
encoding schemes to use. The most traditicnal scheme is kncwn as
the vector approximation.or X-Y coordinate method. A curve is
approximated by a series of contiquous straight line segments
and the absolute coordinates of the endpcints of these segments
(or vectors) is recorded relative to a fixed coordinate systen.
For example, the curve shown in Figure 1.7 would be enccded

numerically as:

X P
10 22
15 35
25, 45
33 55 ,
40 65

Another way to encode 1lines 1is with the use c¢f Freeman
chains (Freeman (1961)). This is dcone by overlaying a rectangular
grid of fixed mesh size and finding the intersecticn ©pcints of
the curve with the grid. (see Fig. 1.8) The grid pcints nearest
these intersection points are determined and coﬁnected in order
with line segments whose length is either 1 or sgrt(2) times the
mesh size (see Fig. 1.9). These short segments are encoded with
the digits 0 through 7 according to the diagram shown in Fig
1.10. Thus the final encoding of the original curve would be

ee200101320... .

A third encoding scheme that is mainly suitable for closed
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curves 1is one first ©propecsed by Blum (1964). This method,
refefred to as  skeleton encoding, isv based on -finding the
maximal neighbourhoods of planar regicns. In a particular metric
the neighbourhood of a point is the set of all pcints within
some distance from that point. With the ¥city-block" metric in
Fig. 1.11 (from Pfaltz and Rosenfeld (1967)) the 2-neighbourhood
of the point P is indicated by the rhombus. For a closed region
in the plane every point in the inﬁerior of the region has a
neighbourhood completely within the region. The maximal
neighbourhoods of the region are the set of such neighbourhoéds
that a}e not comnpletely enclosed within some other
neighbourhood. The centres of these maximal neighbcurhccds form
stick—-like skeletons which tcgetﬁer with the corresponding radii
give an adequate description of the criginal outline (Figure

1.12). (see Pfaltz and Rosenfeld (1967), Fcntanari (1968)).

Bach of these methcds has 1its own advantages and
disadvantages, depending on the situation in which it is used.?!
Generally chain-encoding gives the most compact representation
for very detailed outlines and is well suited to finding lengths
and areas. Also, chain encoding 1ends itself to consideratle
theoretical analysis (see Freenan (1961) and Feder (1968)).
Skeleton—encoding,‘while poor for prcocesses associated with the
boundary, such as finding the perimeter of the region, is
superior when it comes to "areal" operations such as shading and
intersection of regions. Vector acgproximation 1is generally

intermediate. . It enjoys an advantage in eccncmy cf

—

1 see Deeker (1970) for a much more ccmplete comparison of these
three encoding schenes.
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representation when the cutline is fairly simple and pernits
easy rotation. It 1is better suited tc our particular purpcses

for reasons that will be discussed in the next charpter.

1.5 Line Reduction

The problem of reducing and simplifying line data is met in
many areas other than cartography. Some of the majcr scurces of
this data are photomicrographs of chromosomes and cells in the
biomedical field, bubble chanmber photographsl in. high energy
physics, and aerial photos in remcte sensing. Such applications
as these produce enormous quantities of line data that must be
reduced in some way before they are wanageakble. Jarvis (1971)
has done work on fitting low-order polygons to the chain-encoded
boundaries of muscle cells., The approach he took was tc pick a
point in the intericr of the cell and plct the distance to the
boundary as a function of angle. The peaks and troughs of this
function can be associated with the vertices of the original
shape. These vertices are added one by one tc the polygen
description until a least squares deviaticn errcr falls below a
specified threshold. Zahn (1969) has also attempted +tc reduce
the data 'content of chain-encoded boundaries but by not nearly
as drastic an amount. He essentially re-codes the description by
recognizing regularities in the chain. No informaticn is lost in
the process and' the original 1line can ke reccnstructed
precisely. More recéntly (Zahn and Roskies(1972)) he has used
Fourier Descriptors to encode lines. The coefficients 1in the
Fourier expansion of a 1line are sufficient tc sgpecify it

adequately. Since most of the information is usuallj stored 1in
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the 1lower terms the remainder can be drcpped in order tc reduce
the data contént of the line., There have been several attempts
to obtain the @winimum perimeter polygon (MPP) from the chain-
encoding of shape. An MPP of a shape is the polygen of wmininmum
perimeter that produces the same chain-enccding as the original
shape. Montanari(1970) was one of the first and his approach was
to start with a chain-encoding and then move the vertices around
within small neighbourhocds of their original positicns until
the resulting boundary was of wminimal 1length. 1In a &®ore

theoretical vein is the work of Sklansky et al(1972).

All fhese attempts have 1in commen the fact that the
resulting line nust satisfy some strict mathematical
relationship to the original line. This makes the 1lines nrore
suitable for comparision and analysis but does nct necessarily
give the best reducticns from the r[pocint of view of visual
recognition, It may well turn out that there is scme well-
defined mathematical criterion that produces the rost
appropriate reduction visuvally, but one is not kncwn yet. It
therefore seems reasonable tc allow the prospective user’ to
define empirically what he thinks is most agpgropriate by
reducing lines manually. The system cculd 1learn to mimic the
user and thus the criteria are established internally according

to the individual's needs and preferences.
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1.6 Interactive Graphics

This tailoring of the system to suit a particular user's
tastes 1is one of +the main attractions offered by interactive
computing. An interactive system is cne in which a ©person has
inmediate access to the computaticn process and plays a direct
~role in guiding its course. This is dcone by having terminal
devices attached to a computer that allow output frcm a progranm
to be displayed to the user and petmi{s the wuser to enter
information for the prbgram. The earliest compating systems were
of this nature. R person had the machine to himself and was atle
to directly monitor its performance and make changes to it and
the program as desired. As computers became faster and nmore
powerful it became necessary to submit prograwms in batches with
consequent separation of user and preccess. More recéntly, with
the advent of time-sharing systems, it again became pcssiltle to
put people and process back together again., This developnment
promised many great things. It was thought that ty coupling man
and machine it would be possible to exploit the diverse skill of
the two parties simultaneously. Ccmputers are well-suited to
performing simple repetitive operations quickly and accurately.
People, while poor at this are gocd at recognizing rpatterns in
information from diverse sources and identifying gcals: things

that computers are not gcecd at.
t

While many see this linking of people and computer with
their vastly different =skills and speeds of operation as
offering a much  improved method of tackling many froblenms,

Norbert Wiener did not share this cptimism. He wrote in 19€3:
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Disastrous Tresults are to be expected nct merely in
the world of fairy tales but in the real world
wherever two agencies essentially foreign tc each
other are coupled in the attempt to achieve a common
purpose., If the communication between these two
agencies as toc the nature of this purpose is
incomplete, it must only be expected that the
results of this cooperation will be unsatisfactory.
«ee One of the <chief causes of the danger of
disastrous consequences 1in the use of the learning
machine is that man and machine operate c¢n two
distinct time scales, so that the machine is much
faster than man and the two do not gear tcgether
without serious difficulties.
Although this was written before interactive systems were widely
available bis comments are still relevant and should te
considered seriously. An attitude of caution and scepticism 1is
especially important when confronting proponents cf Man-Machine
Symbiosis such as Licklider (1960) lest it be forgotten that the

machine is to be our tool.

On a more concrete level interactive systems promise to
make computing more efficient from ;he user's point cf view. Not
only would results generally be available faster than with batch
systems, but less work would be required on his part to oktain
them. This is partly because the context of any cperation could
be narrowed considerably. Since a prcgram can prompt for input
and show the results immediately, the wuser dces nct have to
anticipate ahead of time precisely what will be needed. This is
especially applicable to debugging programs, where the behaviour
is often unpredictable, and in editting programs and text, where
Athe context is limited tc the recent cutput and changes <can tLe

'verified immediately.

Generally, applications most suitabkle fcr interactive
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systems can be characterized according to the follcwing modes of
operation:
o Relatively few, straight-forward operations with
immediate response, e.dg., inguiry systems (airline
reservation systems, customer record systens)
e Many sequential decisions with fést respcnse, each
action often depending on the result of earlier
actions; €.Je, editting, Frogran debugging,
computer-aided learning (CAL), computer-aided design
{CAD) |
s Complex sequential operations, each actiocon heavily
dependent on results of previous ones; e.g., on-line
problem-solving, interactive simulations.
While these different categories overlap and in fact really
belong on a continuun they are intehded to highlight some of the
basic distinctions., It 1is in the second class that the work
described here belongs. The sequential wmanual selection and
rejection of points along an outline affects the shape of the
resulting outline and hence influences future actions. Alsc,
during 1learning it 1is important to know hou the systen is
behaving since this has a bearing on the order in which =sanmple

patterns are presented tc it.

Computer Graphics, which is the ccmputer manipulaticn and
display of 2-(or more) dimensional information (as <c¢fpposed to
the processing of one-dimensional string and numerical
information) goes naturally with interactive computing. This is
true for two distinct reasons. 1In the first case, with many

interactive situations a ccnsiderable amount of data is produced
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upon which the next action by the user is to ke based. This
information 1is often best represented graphically because this
is a form in which people are good at seeing rpatterns and
relationships. This is true even when the information itself is
not inherently graphic such as in numerical or statistical
applications., Secondly, when dealing with information that is
basically graphic , interactive methodé are cften highly
preferred to nobn-interactive methcds., This 1is because it
obviously makes sense to specify in graphic terms the cperatiocns
that are to be performed. The alternative is thrcugh numerical
or 1linguistic descriptions. These are in general necessarily
long and messy since so much context must be supplied that was
inherent 1in the original graphic form. This is a consequence of
the fact that pictures, diagrams, maps and sc cn are
informationally very rich. This fact, however, makes it
difficult to get raw graphic data into the machine. Because
present computers are not "graphic machines" such informatiocn
must be digitized somehow - usually a lengtﬁy and expensive
affair. The way to get around the problem c¢f specifying
operations graphically, cnce the basic informaticn has teen
entered the hard way, is to display this infcrmaticn con a
~graphic terminal and use the available interactive devices to
indicate the desired manipulations., These devices (such as
light-pens, joy=-sticks, function keys, "mice", tablets etc.)
allow one to enter graphic information directly. They can ke
used to draw figures, select picture components tc be operated

on, control the form of the display and so on.

The information that we are dealing with, since it comes
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from maps, is basically graphic. In addition the
selection/rejection of points demands the visual inspecticn cf
outlines and specificaticn of operaticns on a point Lty point
basis. For these reasons the facilities of interactive graphics
were used in the apprcach described here to the reductiocn of map

outlines.
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HAPTER 11 METHODS ANLD TECHNIQUES

2.0 Introduction

The learning and subsequent automatic generalization of
lines is enbedded in a considerably larger system for
manipulating lines and the levels that are attached to the
individual points on these lines. The basic com;onents cf this
system and their interrelations are shown in Figure 2.1. This
diagram shows the flow of information as lipes cn maps are
digitized and the data stored on a disk. A perscn using the
various devices around him can specify that these lines are to
be brought into the computer's internal memory, =manipulated 1in

various ways, and displayed on the =screen of the graphics

terminal.

2.1 Line Representation (external)

I chose to represent 1lines externally Lty means of the
standard X-Y coordinate method as described in the previous
chapter. The line used in the example then (see Figqure 1.7)
might be generalized several times to give a number of levels of
detail as shown in Figure 2.2 (a and b). The additional
information to be stored in the 1line is weasily handled by
attaching to each point of the vector approximation a nunter
that indicates the relative importance of that pcint in
conveying the shape of the line as a whole. In the case of the
previous example these values (or levels) of the points wculd te
as depicted in Figure 2.3. When it comes to displaying this line

at a particular level of detail, these 1levels tell wus which
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Levels of Detail S Figure 2.2

Level Values Attached to Points . Figure 2.3
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points to include and which to leave out. A line displayed at a
specified level will ccntain only thcose points whcose levels are
greater than or egqual to the specified level. Thus at level 0 we
get Figure 2.3 (without the numbers), at level 1 we get Figure
2.2a, and at level 2, Figure 2.2b., The numerical representation

of the line with all these levels would be:

X 1 y
10 22 2
15 35 0
25 45 1
33 55 0

The method described above for encoding lines at different
levels by attaching a wunique 1level +to each fpoint is quite
adequate as long as there is a strict hierarchical crdering cf
the 'importance* of each pcint. For example the 1line shown 1in
Figure 2.4 might appear at one level as in Fiqure 2.5 while at a
lovwer 1level of detail (i.e., higher level of display) appear as
in Figure 2.6. The point indicated by the /'X' cannot have a
unique level but needs rather ranges of levels asscciated with
it. A similar problem arises when handling the representations
of objects such as rivers. If the original map ccntained a river
as in Figure 2.7 and at a particular level of generalization it
was to appear as shown in Figqure 2.8 then single 1levels are
again not adequate since the two edges come together. This last
case can be taken care of by asscciating with each point two
values that specify the upper and lower limits of the levels at
which the point .can be displayed. In the case o¢f the river,

several different 1lines would bhave tc be associated with the
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river since the two river banks merge. By apprcpriate adjustment
of the values only the proper lines would appear when they were

all *'displayed' at scme particular level of generalization.

The impiemented system makes prcovision for the inclusion of
two values associated with each point, although the systen is
not really suitable for handling these more complicated cases in
a convenient way. For the remainder c¢f this discussicn cnly the
first of the two values will be referred to. Nc ccnfusion should

arise from this exclusion.

The vector approximation method for encoding curves was
chosen because it enjcys several considerable advantages over
the alternative methods. <Chain encoding using Freeman chains,
while an excellent way tc represent static lines, gives rise to
seiious problems when drastic generalization is attempted. The
reason for this is that data reduction can «c¢nly zreally be
accomplished by wmaking the base grid ccarser. Chain encoding's
reliance on a reqular grid means that it cannot take -advantage
of 1long, relatively featureless sections of outlines to reduce
storage requirements. These relatively straight sections of
outline occur quite frequently in the sort of data that we are
interested in (urban, political boundaries) and especially as
the 1lines become 1less detailed through géneralization. The
vector approximation method can take full advantage\ of these
sections,; concentrating vectors only in the areas of important
features. Another important objection to chain enccding is that
one nust maintain as many copies of a line as there are levels

of generalization. Although the space per copy decreases as the
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level of generalization increases, because of the larger step
sizes, it still results in being very clumsy tc handle .‘If one
is not happy with sections of the encoding at a particular level
then that whole 1line must be regenerated from the next lowest
level. The changes could also affect successively higher 1levels
of lines. The vector approximation with levels attached to the
points allows the changing of levels +to be dcne much &©more
easily. A further point in favour of vector apprcximation is
that nost of the data that was available was digitized by this
method. Also, the graphic display device (an AGT-10) is a vectcr

driven machine.

Skeleton-encoding is better svited tc representing
different levels of generalization than chain-enccding because
the radii of the maximal neighbcocurhocods already indicate to a
considerable extent the relative importance of that vparticular
neighbourhood. In this way generalization could be seen
naturally in terms of simply choosing those neighbcurhccds whose
radii were greater than scome particular value. 'This ‘would
probably 1lead to fairly decent representations. BHcwever the
expense of converting from the boundary encoding cf the initial
digitization 1into skeletcon form and then back again for display
would be considerable. Also there does not seem to be an obvious
and convenient way for simplifications 1in the ocutline to te
reflected in changes in the skeleton short of re-enccding the

whole region.
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I
In the previous section we have seen that an cutline can te
conveniently represented on several levels of generalization. by
attaching an extra value to\each Foint along the outline. In
this section I will describe the way in which these values can
be altered either en masse or singly, under the direct control

of the user.

i
\

In order to alter the levels of cone cr more fpoints several
stages of selection must be made; The first stage is to select
the subset of lines containing the desired points. This is done
by speciffing the identifiers o¢f these particular lines. In
addition the levels c¢f the 1lines in this subset are also
specifieé. If the set of line identifiers is I={it1,i2,...in} and
the level of selection is VAL then the set of‘points selected sc

s

far is:

P = \~‘J{(xik, Yik, Vvik) € Li 1'vik 2 VAL }
ierT
1€k< L)
(vhere jLi} is the number of points in line Li)
If a number of values agé to be altered simultanecusly then the
set P can be further refined by specifying an upper bcund (UBV)
and lower bound (LBV) for the values of the points tc be
altered. The resulting set of points is:
P* = { (Xj, Yj, Vj)E€P | LBV € Vj < UBV }
I1f, instead, the values are to be altered one at a time then a

specified fragment of P or one of the Li can be displayed on the
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screen of the display device at ancther specified level (VRL).
The fragment to be displayed is described by giving a starting
position (START) and a length (LEN) sc that what appears on the
screen is the set cf points:

PS = { (Xj, ¥3j, Vvi)eP | Vj 2 VAL, START < j < START + LEN }
If one of the‘lines'(Li) was given then the expression’for PS is
the same but with PaLi replacing P. 1i.e.,

PS = { (X3, Yj. Vj)epﬁLi | Vj > VAL, START € j < START + LEN }
Consecutive points are jcined by Sttaight lines 1f +the points
belong to the same 1line and they are all scaled to £ill the
screen as much as possible. Superimpcsed on the first pcint is a
small *X% and at the bottom of the screen‘ is scme text
indicating the level of display and the name of the line if one
was specified. If the value of the point indicated by the 'Xx' is
to be altered then a particular function key attached to the
graphics computer is pressed, othetwise a différent function key
is pressed. 1In either case the *X' mcves on to the next point.
If the new value of a point falls below the display 1level then
that point and its adjoining segments disappear, and if it was
not an end point the adjacent points . are reccnnected directly
(see TFig 2.9). Before the 'X' gets tc the end of the sectioh of
the line displayed on the screen, and if there are rpoints
remaining to be displayed then the next portion cf this set of
points is displayed together with the last few of the former
portion (see Fig. 2.10). The purpocse of this is sc that there
will always be a reasonable amount of context for making the
decision to alter the value of a point. In this way the 'X?

steps along the line and the value of each point is either
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Point Alterétion\ _ - © Figure 2.9

The Changing View of the Line Figure 2.10
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transformed or left unchangéd. Regardless of which method has
been used to select the points to be altered, the method cf
changing the values is the same. The values of the points that
have been selected undergo a linear transformaticn. i.e.:

Vnew = C1 + C2 * Vold
The parameters of this transformation (C1 and C2).are specified
by the wuser at the time he initiates the seccnd step of the

selection process.

———— . o oot o

In the last section we saw how lines coculd be generalized
by hand, so to speak. Although doing it this way is fairly fast,
it 1is still fairly expensive and very time consuming if many
lines are to be processed. For this reason a compcnent was added
to the system that allows it to learn to mimic the =selecticn
behaviour of the user. Once the program's performance reascnably
approximates that of the user then the jcb of selecting points

for alteration can be left up to the program.-

It is my hypothesis that if a person could do a
satisfactory Jjob o¢f selecting points, when all he could see at
one time was a small section of the line (10 points, say), then
so could a program. (The correctness of the basic assumption in
this hypothesis will be examined in the next chapter.) The first
step in getting the machine to recognize points fcr alteraticn
is to represent the lines in a more convenient form. The main
_criterion that a new encoding scheme must satisfy is that it

must represent lines in a w©uch more general way without
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sacrificing the essential features. It should alsoc consist of
the elements that are most important for visual discrimination.
1 suspect these are the lengths of the vectors and the angles
between them. For these reasons I chose to adopt a variant of
chain-encoding to represent 1lines toc be processed by the
learning ana automatic alteration components of the systen.
Using this scheme a 1line is represented bty an alternating
sequence of lenéthSI(Li)~and angles (Ai). For example, the line
in Figure 2.11 would ke stored as:
Ay L, By L By Ly...

So far there has been no infcrmaticn lost in the sense that the
original digitizZed line could be reccnstructed exactly. However
we have to go further than this since there is  still too much
distinction between essentially similar lines. The next step is
to gquantize these angles and lengths. I.e., they are transformed
to take on only discrete values. (In the current implementatiocn
the number of these discrete values for both angles and lengths
is 8.) The quantized length depends mainly on the 1logarithm of
the original length since it provides a good way tc ccumpress the
great rTange over which the lengths can vary and alsc because it
seems to correspond to visual importance. {Another good
potential candidate would be the Arctangent function since it
too compresses a great range of lengths.) The exact relationship
between the quantized and original 1length that the systen

currently uses is given by the following expressicn:

QLEN = 1og(_;§§__ * 8 + 1
MINLEN 1og(gg3;§g
- MINLEN

The parameters MINLEN and MAXLEN can be specified by the user
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based on prior knowledge of the lines being processed and should
approximate the actual bcunds on the lengths to be encountered.
The "8" corresponds to the number of levels of quantization. The
net effect is to transform the lengths ontc tﬁe integers 1
through 8 such that the gquantizaticn levels are closer together

with shorter lengths.

The angle between the two vectcrs at a point is calculated
by rigidly rotating the two vectors in order that the dincoring
‘vector lies along the ©positive x-axis. The angle made by the
outgoing ﬁector is then just the usual one with the restriction
that the angle must be between +1T and -1?. The correspondence
between this angle and the quantized angle 1is given by PFig.
2.12. Thus if the original angle was between THRESHOLD (2) and
THRESHOLD (3) the corresponding quantized angle would be 4, and
so On. The standard values for these threshclds are
approximately those depicted in Fig. 2.12, but can be changed at
will by the user. The thresholds are btunched around 18090 because
most angles will be in this range and this 1is the «critical

region for point elimination.

This gquantization process 1is applied alternately to each
angle and length along the entire 1line sc that a 1line that
originally appeared as in Figure 2.11 might result in:

04238332410
wvhere the O0's indicate undefined angles at the ends. When a
particular point is under consideration during the learning
process this quantized version of the 1line is reordered to

cofrespond to the 'view' of the line as seen from that point.

J
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There are a number cof ways that this could be done and the way I
have " chosen 1is as follows: If the line in the vicinity of a
point Pi is as depicted in Figure 2.13a and the direction of
pfocessing is to the right then the line is transfcrmed into the
chain shown in Figure 2.13b. This gives a bias tc lccking ahead

along the line.

Effectively we progressively loog farther in alternating
directions along the line. If one end of the line is encountered
then that direction of view stops and is continued in the other
direction until that end is reached tco. A bias is given to
angles in this scheme because it seems that they are more

important in visual discrimination than are lengths.

The learning prodess at a point begins by feeding the iline
in this converted form into a decision tree (see Fig 2.14#a) in
order to come up with a verdict on whether or not the point
should be altered. This string of symbols determines a fath
through the decision tree until a terminal node <containing the
verdict is reached. For example if the line was represented by
the sequence "3545..." then it would reach the indicated node
where the verdict is that the point should be altered. In
addition to the verdict being 1located at the terminal ncdes
there is also stored a measure of how 'strcng! or 'reliable? éhe
veidict is and also how %old* it is (i.e., the number of times

it has been referenced).

Once the expected verdict has been determined in this way
it 1is compared with the verdict of the user. If they agree then

the verdict at that terminal node can simply be made ‘'stronger!
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and 'older' by a unit value. However if they disagree then éhere
are several things that can be done: the verdict can be left the
same but made weaker, or the verdict can be changed, cr the tree
can sprout new terminal ncdes from that node, each with its own
verdict., Which of these three alternatives is chosen derends on
the depth of the node, the tage' and 'strength' of the verdict
and whether there are any more symbols left in the 1line. These

factors are contained in the following ALGOL-1like expression:

if (u *( 1= ___1 )- (_S.IBEEEEE:J_) >0
DEPTH MAXDEPTH AGE+1

then ®"SPROUT"

else if STRENGTH > 0
then YWEAKEN®
else "“CHANGE";

The effect of this expression is such that the deerer the node
is, the less likely it 1is that the tree will be expanded
further. This 1is done to avoid growing exceséively large trees
(¢«g., the number of nodes in a complete tree of depth d is
about 9%*d which grows very quickly with d). Alsc if the verdict
is nearly as  t*strong' as it is '0ld* and it is reascnably old
then it has given gobd service and so should only be punished
slightly. This is done by making it weaker by cne unit. If,
however, it is young or ¢ld and weak then it is much more likely
to have the verdict chgnged.,ln this case the age is incremented
as usual but the strength is’reduced by the unit amcunt, If, in
fact, it has been decided to sprout more terminal nodes then the
verdict of all these new nodes, except one, is set tc agree with
the verdict of the former terminal ncde. The opposite verdict is
given to the node reached by considering the next symbcl of the

)
line. For example if the input 1line is the same as in the
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example above (i.e., ™3545...") and it has been decided to
expand the tree because the user did not ccncur with the
expected verdict, then the additicns to the tree will a;pear as .
in Figure 2,.14b. In this manner the tree grows from being only

of depth 1 at the start cf learning.

There are two ways for the user to specify the true
verdict. One way is to manually alter the 1levels at the sanme
time. 1In other words the verdict comes directly from the person
pushing one of the two function keys at the graphics terminal.
An advantage of this method is that a preview of the decision of
the program is available on the screen. This can help the user
guide the training of the program. If the level tc which a pcint
is altered is lower than the level of display then the internal
quantized version of the line is changed to reflect the deletion
of this point. This allows the. tview' of the 1line to te

effectively expanded at no extra cost,

The other way to indicate the true verdict is to alter the
levels beforehand and then the verdict is determined by whether
the level of a point is below a specified‘level. This has the
advantage that the same line can be used many times to reinforce
the message. To help evaluate the behaviour of the program
learning statistics are available with both methods., These
statistics give a breakdown for each line processed in terms of
-the number of verdicts made stronger and weaker and "changed"
and the number of times the tree was enlarged. In general, the
program will have learned to capacity when continued learning

results mainly in verdicts getting stronger with relatively few
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verdicts beinqg made weaker or changed and only slcw enlargerent

of the tree.

2.4 putomatic Generalization

Once the program appears to have learned satisfactorily it
can be turned loose on new lines that are similar to the 1lines
it 1learned on. This is done ﬁy specifying the particular 1lines,
a level, and the transformation to be performed cn the levels of
the points to be selected. In this casej once a line has lLeen
quantized, converted, and fed into the decision tree, then the
verdict returned determines whether the point is to be al£ered.

If the new value for the point's level falls belcow the given

level then the quantized representation of the line is updated.

This automatic generalization can be helped out by raising
the levels of some potentially "borderline" points. This is done
so that even if these points are later altered the resulting
levels will still be sufficiently high to ensure that they will
always be part of the context of nearby points. After the lines
have been altered the results can te displayed fcr inspection
and correction. Those sections ‘that have been generalized poorly
can be redone manuvally. If there is some similarity between
these sections then the program can be taught some mcre as these
corrections are being made. This will hopefully diminish the

chances of the same mistakes being made in the future.
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Chapter III EXPERIMENTAL RESULTS

3.0 Introduction

There are a great many questions that can be asked
regarding the approach to the generalization that has ©Leen
described in the previous chapter. Three of the most important
and wide ranging of these questions are:

- What 1is the nature of peogple's perceptual
responses to generalized outlines?
- Is it possible to achieve satisfactory
generalization of outlines with purely lccal
considerations?
- How well does the system perform with regard toc
the generalization cf map outlines?
The remainder of this chapter is devoted to a discussicn of
experiments that were rfperformed in attempts to answer these
questions.

3.1 Perceptual Response tc Generalization

A major purpose of this work 1is to provide a way of
generalizing wmap outlines requiring a minimum cf data storage
while retaining enough of‘the essential components to be easily
recognizable by people. It is therefore neceséary to investigate
how people respond to ocutlines that have to be generalized
drastically. Is the rendition of prominent features the nwmost
important element of recognition o¢r is it the maintenance of

line character that is primary? What role does aesthetics play?

To help answer these gquestions two experiments were

performed that involved people ranking a number of
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generalizations of a particular outline according to the degree
to which they each resembled the original cutline. Both
experiments were conducted in the same way except that the
outlines used were different. The original line, used in both
cases, was the outline of the municipality of West Vancouver
(see Figure 3.1) that was digitized at a scale of approximately
1:200000. A smaller scale version (see Figure 3.2) was plotted
and mounted on a piece of opaque cardboard as were the various
generalizations of this outline (see Figures 3.3 and 3.4). 1In
each experiment the subject was given cards with the original
outline (marked with a "1") and its generalizations (which were
shuffled and marked with a Jletter) and asked tc arrange these
cards in order of the similarity tc the one pmarked min,  Each
subject was asked in the same way and were given nc guidance on
what "similarity" nmeant. .The opaque mounting trevented
N
overlaying the maps tc make compariscns directly and instead
forced the subjects to compare the different versions mecre by
their individual appearance. The result of these rankings in the
two experiments are recorded in Tables 3.1 and 3.2. Every trial
within an experiment was performed by a different perscn
although some individuals +took part in both. These sukjects
hardly represented a cross-section of society or even rpotential
interactive map users, coming, as they did, almost entirely fronm
among my colleagues and friends. However, the diversity of
opinion exhibited by this small sample is, I believe, indicative
of the range that might bé expected from a larger, less

homogeneous group and is quite sufficient for my purposes.

The outlines used in the first experiment were derived from
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RESULTS FOR EXPERIMENT 1

Ranking of similarity to outline 1

Trial High Low

Number 1 2 3 4 5 6 7
1 D E B C F G A
2 c D E B F G A
3 E D B C F G A
4 E D B c F G A
5 C D B E F G A
6 E D c B F G A
7 E D B c F G A
8 E D B c F G A
9 E D B C F G A
10 a E D cC B CF ¢ A

TABLE 3.1
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RESULTS FOR EXPERIMENT 2

Ranking of similarity to outline 1

Trial High " Low

Number 1 2 3 4 5 6 7 8
1 h £ br e c a d g
2 b c e g d h a £
3 a c e b g d f h
4 h b e c f d g a
5 e £ b ‘a c g d h
6 d b e g c a h f
7 b c d e g a h f
8 b e a c b h d g
9 b d e c g a h £
10 f h a c d b e | 8
11 b . e h a £ g 4
12 b e e h a g a £
13 d g e b a -c ~h 'fv

| 14 f h bA | a e> ¢ '» g d

TABLE 3.2
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the original in a variety of ways. The general aim was to reduce
the number of points to about 23, cne quartef cf the number of
points in the original (which is 92). Following are details of
the wvways in which the points uere selected for the various
outlines:

- Outline A - Randomly. Every foint was ccnsidered

in turn and was selected with a probability of 0.25.

22 points.

- Outline B. Douglas #1. The methcd of Douglas (see

Chapter 1) was used with a threshold deviaticn of

0.08", 23 points.

- Outline C. Hand-picked. The pointé were selected

by hand to ensure that the small inlet in the lower

right-hand corner remained open. 21 points.

- Outline D. Douglas #2. The same as for outline B

except that the threshold was reduced to 0.065. 26

points.

- Outline E. Lang. Points were selected using a

slight variation of Lang's method (see <Chapter 1)

with a threshold distance of 0.07". 27 points.

- Outline F. lLargest angles. The points that had the

23 largest angles (i.e. greater than 669 c¢f bend

were selected. 25 rpoints,

-~ Outline G. Every n'th point. Every fourth ©pcint

was kept. 24 points. ‘

Note: the points in the upper-left and upper-right

hand corners cf the map were automatically kept to

avoid gross distortions in the cases where the
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method used to cbtain the outline did not specify
‘they be kept. This was required with cutlines A
and G, There are also spmall wiggles 1inp these
outlines that do not correspond to actual pcints.
They arise from the incremental nature of the

Calcomp plotter that was used.

. By referring to Table 3.1 we can see that the average crder
of preference is EDCBFGA. This order was calculated by adding up
the position numbers of each letter for each trial. These totals
are 16, 19, 32, 33, 50, 60, 70 respectively. Genérally rpecple
conformed to this sequence, but it is the deviaticns that are
interesting. C and B are almost tied and in fact P was preferred
by more people than C. However, when C is preferred it is bty a
greater margin. This is probably due to the fact that the small
inlet in the lower right hand corner was left cpen while in B, D
aﬁd E it closed off. This suppositicn is borne out by corments
made by the subjects after they had finished ranking the
outlines. Some people said that they regarded the accurate
rendition of the lower right corner as the overriding factor
while others said the details along the left side were more
important. Some but not all regarded the maintenance of the
bumpy character along the bottom center as an important
consideration. The actual accuracy in terms of the total (or
integrated) deviation from the original probakly was nct a
crucial factor as someAfeople's preference for B over D and D
over E indicates. It is quite likely that people would prefer
line III to line II as a representation of line I (see Figure

3.5) although superimpcsing them as in Figure 3.6 shows that
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S IT

A Line and Two Possible Generalizations Figure 3.5

All Three Lines Superimposed : _ Figure 3.6
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line II obviously deviates much less.

Generally we can conclude from this experiment that
different people see maps in different ways and that they
respond to different aspects of them when making comparisons.
There is ligtle we cah say abcut how to generalize outlines
satisfactorily. This is partly because the outlines used vary in
the number of points along their bcundaries. Generally, of
course, the more points one has available the better the
rendition possible., What would be of interest is to see people's
preferenées among various versions of‘an original map that all
have the same number of points. It was with this aim in nind

that a second experiment was designed and performed.

The outlines used in the second experiment were all derived
in roughly the same way. In all of the 8 generalized outlines
there 1is the same basic set of 19 points together with four
other points chosen from an additional fixed set of 7. ! Thus
all outlines have 23 points (except d and :g).and ‘are fairly

t

sinmilare.

The average ranking, calculated in the same way as before,
is becahdfg and the totals are 33, 46, 57, 68, 69, 73, 76, 82
respectively. Certain lines are rated fairly consistently, sﬁch
as b, e and ¢, while others such as h, £ and d are more
controversial. This can be seen by inspection of Table 3.2 or
more rigorously by adding the deviations in each trial from

their mean positions. This gives totals of 19, 19, 23, 22, 33,

1 Except for 4 and g which have only 3 of the possible 7.
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27, 34, 30 (where the corder is the same as bkefore). By looking
at the individual outlines (see Figure 3.4) we <can rartially
account for this. Most peocple do nct like the sharp point at the
lower left but there are some who dc not mind. The character of
the line in the middle of the left is important to some while
for others it dis the overall shape. The comments people made
later to justify their ranking support these views. Every perscn
saw some particular aspects of the shape tc be mest important
while other aspects were relatively unimportant. Cne person said
that he was more interested in bays than ip peninsulas and
attributed this to the fact that he lcoked at a coastline from
the point of view of the land and not the sea. The tone and
expressiéns used by people also indicated that their perception
was quite subjective. Often they were "bothered" by the presence
or absence of particular features as if they were reacting cn

aesthetic grounds as well.

I think that this experiment shcuws even mcre clearly than
the first that pecple have quite different ways of lcoking af
outlines.and that a single technique for doing generalizations
will not satisfy everybody. Some people will 1like to see
character preserved, others particular features, and still
others the overall shape. This suggests that a method that can
be suited to an individual's tastes and preferences would enjoy
an advantage over less flexible methods. It is the aim of the

work dgscribed here tc provide such a flexible systen,
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3.2 Local Reduction

It is generally the  case that computer processing of
information is more easily and conveniently performed on a local
rather than global basis. Computer architecture and existing
software discourage making decisions using informaticn that is
widely separated. It is usually much simpler and cheaper to make
decisions based on information that is restricted spatially. In
this ‘sense this work is nc exception. However, it is not clear a
priori that local considerations will be adequate to perform
generalization satisfactorily. Even 1if we do not need fully
global considerations it is not obkvious what point on the local-
global continuum is most appropriate for our purgposes. Clearly,
making the decision to select or reject a point depending only
on the angle at that point will in general be unsatisfactory,
but how much more of a line does a program have to locok at? We
can get some estimate of a lower Lbound on the required view by
observing how well people perform at manually reducing outlines
when all that can be seen at one time is a small secticn. (If a
person cannot do 1it, then prcbably neither can a machine.) An

experiment to do just this was set up and performed.

Basically the experiment to investigate the adequacy of a
local view 1involved a number of subjects ﬁanually reducing an
outline of North Vancouver Municipality (see Figure 3.7) in the
manner described in Chapter 2, A section of the outline
containing at most 7 points was displayed on the screen with a
small "X" at one of the points. The person would then press one

of two buttons depending on whether that point was to be kept or
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Outline of North Vancouver Municipality

Figure 3.7

LEVEL=0 NORTH_VAN_DISTRICT

i
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removed. If the point was removed then the 1line was re-drawn
without that point. 1In either case the "X" pmoved to the next
point. If the "“X" moved to second to the last pcint, then the
line was re-drawn adding the next three points and keeping the
last four. In this way every point alcng the original outline
was considered in turn and with no fewer than 2 pcints cn either
side. The scale at which the individual fragments were displayed
was the same for every fragment and was chosen so that if the
whole outline were displayed it would just £fill the screen. The
individual fragments were also centered in the middle of the

screen to avoid dgiving spatial clues.

The task of generalizing a line under such circumstances
requires considerable skill and I suspected (based on my
personal experience) that the performance would depénd cn
practise. In order to give the subjects somé cpportunity to
learn how to do it they were given the ocutline of West Vancouver
to start with., They were shown first all of this outline on the
screen and asked to aim for a reduction of three-quarters
(i.e. leaving about 23 points). The fragments were then
displayed in turn and points eliminated. The reduced version was
then  displayed aﬁd the number of points remaining counted. This
gave the person an cpportunity to see how much nrcre ruthless
they would have to be in pruning points from the North Vancouver
outline. As can be seen from Tabkle 3.3, people were not very
successful in achieving the three-quarters reduction. The next
step was the reduction of the North Vancouver outline using only

the small fragments without seeing the whole thing first and

without knowing what it was. The result of these reductions for
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RESULTS FOR EXPERIMENT 3.

Number of Points Remainihg

Trial " West Vancouver o ‘ North Vancouver -

Number (92 points originélly). (134 points originally)
1 44 _' R 45

2 47 | 47

3 4 47

4 - 38 A

5 56 55

6 46 | T

TABLE 3.3
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both nmaps ﬁré shown in Figures 3.9 to 3.14 with the criginals
shown at the same scale in Figure 3.8.

In general terms we can see that the generalization was
done fairly well although there are some,glaring mistakes.
Almost all the main features are captured and the character of
the coastline on the right-hand is maintained. Referring tc this
series of figures and to Table 3.3 it is clear that the sulbjects
did learn to be more drastic iﬁ their reducticn. The average
reduction for West Vancouver was slightly over cne-half cof
original 92 points while with Ncrth Vancouver the average
reduction was slightly above one-third of the «c¢riginal 134
points. This vwas doné in spite of the large number of long
segments in the lower left corner, QOne person in particular (cn
Trial 6, Figure 3.18) became excessively concerned about the
desired degree of reduction and removed a large portion frcm the
lower middle although the remainder cf the 'line was done gquite
satisfactorily. This person actually left less than cne quarter

of the points remaining.

In order to more fully ansver the gquesticn posed at the
beginning of this section much more experimentation wculd bave
to be done., It would be interesting to see hcw people's
performance depended on the size of the view available, the
desired degree of reduction, and on their experience docing
generalization in this manner. The effect of the character of
the outlines used is alsc an important factor that would have to
be investigated. Relatively smooth lines will present different

problems than 1lines in which there are large angles between
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.
consecutive vectors, However, 1in spite of the limited extent cf
the testing that was done there is sufficient evidence to
- suggest that it is not hopeless to expect a procgram cperating
ohly on a local basis to perform generalizations satisfactorily.

3.3 The System's Generalization Performance

The third major question that was asked at the beginning of
this chapter was how well can the system described here learn tc
generalize map outlines. Since the system generalizes by first
learning to mimic a set of previously reduced <cutlines, the
question can Lke broken down into two parts: How well does it
mimic and how well does it do on ocutlines it has never net

before?

The first step in attempting tc answer these guéstions is -
the selection and nmanual reduction of an initial set of outlines
on which the system is to learn., In our case these 1lines were
chosen from the digitized. bcundaries cf some of E.t.'s Lcwer
Mainland Municipalities (see Figure 3;15). The cutlines latelled
with the letters A through F were <chosen to be the Dbasic
learning set. The reason that these particular lines were chosen
rather than others is simply that they spanned the regicn of the
map and that they appeared to contain a variety of features and
line types. These lines were reduced by hand so that displayed
at level 0 we have Figure 3.16 and at level 8 Figure 3.17. This
reduction was aimed to leave as close to one quarter of the
original number of points in each outline as pecssible without
excessive distortion. The o¢riginal and remaining number of

-

points for each line is shown in Table 3.5. This basic learning
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EVEL=0

Outlines of LowerMainland Municipalities: Figure 3.15 .
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LEVEL=0

Original Outlines for Learning Figure 3.16
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LEVEL=8

Reduced Outlines for Learning Figure 3.17
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set of outlines was then fed into the learning component of the
system in the manner described in - Chapter 2 with a point
threshold level of eight. The angle and length parameters were
standard ! and the maximum allowable depth in the decision tree
was twelve, thus permitting a view of the line abcut the same as
was permitted for the experiment degcribed in the previous
section. This 1learning procedure was performed five times in
succession to reinforce the message. After each iteraticn
statistics were produced to indicate how many terminal node
verdicts were made stronger, Qeaker cr changed and how many
times new nodes were added to the decision tree (seé Table 3.4).
In addition, after each iteration, the system was given the
learning set at level zero to generalize using its current
knowledge. The Tresulting outlines are shouwn in Figures 3.18
through 3.22 and the numbers of pceints in each of these outlines

~is given in Table 3.5.

There are several ways of using the 1results menticned so
far to answer the question of how well the system can mimic a
person's generalization behavior. The first step 1is tc ensure
that the system is actually capable cf duplicating the person's
performance. This clearly is the <case as can be seen ¢ty
comparing the results after five iteraticns (Pigure 3.22) with
the mwmodel 1lines shown in Figure 3.17. The only really
discernable difference occurs in the upper right corner of

outline ¥ and even then there can be doubt as tc whether the

1 je. The angle thresholds (in radians) were 0.65, 2.15, 2.80
and 3.05 respectively and the minimum and maxiwum lengths were
0.01" and 0.5" at the scale of Figure 3.15
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— £ Reduced Outli fter 1 Learning Iterati |
LEVEL =8 Reduced outlines after 1 Learning Itera lor;‘igure 3.18
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I_EVEL:8 Reducgd Outlines after 2 Learning Iterations VFj'_gure 3 19
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Reduced Outlines after 3 Learning Iterations

LEVFL=8

Figure 3.20



444

o

L_Ez\/fit_::faiReduced dutlines after 4 Learning Iterations

Figure 3.21
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L_EZ\/EZL_::EB REdgced Outlines after 5 Learning Iterations

Figure 3.22
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manually produced version gives a better rendition of the
original line than the automatically generated result, It is
necessary to note that at this stage all the measures indicate

that the learning has stabilized.

The fact that the systenm ié capable of fairly precise
mimicry is encouraging because 1t suggests that the lccal
viewing of lines that the system is forced to adcpt is quite
adequate. If the systen can account for a person's
generalization behavior over a representative set cf lines then
there shouyld be enough information available 1locally to
satisfactorily generalize any line. However, the prcblem remains
of how to ensure that cne has a truly representative set of

lines.

The next step in evaluating the system's ability to mimic
is to determine the rate at which it learns. There are several
measures available to us and they all give roughly consistent
results. Por each iteration we can lcok at the tctal number of
misclassifications o¢f points, the difference Letween the nunker
of points in the master copy and imitation (see Table 3.5), and
the <changes that the decision tree has undergone (see Tatle
3.4). A dgraph sumparizing this last set of information is shown
in Figure 3,23, From it we can see that the learning seems tc be
fairly rapid, although there 1is no independen% standard for

comparison,

Of course the real test of the system comes when we look at
how well it generalizes outlines that it has never nmet befcre.

To test this aspect of performance the generalization component
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Learning Results

Number of Points in Outline

Outline Original ~Learning ' After Learning Iteration
~ Outline Master 1 2. 3 4 5

A 92 23 33 29 29 29 23

B 134 41 48 40 41 41 41

C 37 19 19 19 19 19 19

D 59 16 15 15 15 15 15

E 29 10 11 11 11 11 10

F 131 33 36 . 34 33 ° 33 33.

Table 3.5

Generalization Results

Number of Points In'Outline
Outline Original 1/4 Original Learning Iteration Douglas Method
: ' 1 2 3 4 5 0.05" 0.04"

92 .23 .33 29 29 29 23 16 26

A
B 134 35 48 40 41 41 41 - 30 35
C 37 9 19 19 19 19 19 . 14 16
D 59 15 15 15 15 15 15 13 15
E 29 7 11 11 11 11 10 10 10
F 131 33 36 34 33 33 .33 32 33
G 308 77 44 39 40 40 39 38 48
H 51 13 10 12 11 11 11, 10 10
I 23 6 5 5 8 8 8 5 5
J 123 31 18 15 17 15 16 - 19 24
K 38 10 9 9 9 10 9 5 9
L 55 14 13 15 15 15 14 10 11
M 27 7 5 5 5 5 4 6 6
N 182 _ 46 26 28 25 24 24 24 32
0 29 7 6 6 5 5 5 4 4
P 51 13 8 9 8 8 8 5 8
Q

26 7 5 5 5 5 5 5 5

Table 3.6
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N
of the system was presented after each of the five learning
iterations, with 'all the outlines shown inp Figure 3.15. The
resulting outlines are found in Figures 3.24 through 3.28. while
Table 3.6 gives the number of points in each outline originally
and the number of ©points actually remaining after each

generalization,

e can see that the generalization has keen successful in
that the general shapes of the c¢utlines have been well
naintained and that the reduction in the number of points is of
the desired degree. However, there are some glaring flaws
(especially in outline N) that immediately catch the eye. There
are also a number of other serious distortions, scme <¢f which
diminish with increased 1learning although there is generally
little change throughout +the sequence. This is somewhat
discouraging since, 1in view of the fact that the learning wuas
virtually stalilized, we cannot loock to additional 1learning to
remedy the situation. The actions that are left cpen are: alterx
the learning parameters (ie. the angle thresholds,
minimum/maximum lengths and tree depth), increase the learning
set making it more representative, re-reduce the learning =set
and give a more general renditicn, or manually reduce the
offending portions while learning at the same time. The 1last
alternative is Ia particular case of the preceding one and Ltoth
are reasonalble steps to take if there 1is a 1large, relatively
homogenebus set of outlines that need to be generalizZed. The
second alternative is probably not 1likely tc make such
difference especially since it is not clear where the current

manual reduction could be improved significantly. If we restrict
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-V EL ....8 Reduced Outlines after 1 Learning Iteration
- - Figure 3.24
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L—Ei\jEiL—::EB Reduced Outlines éfter 2 Learning Iterations

Figure 3.25
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LEVEL=3

Reduced Outlines after 3 Learning Iterations Figure 3.26
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EVEL=8

Reduced Outlines after 4 Learning Iterations

Figure 3.27
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LEVEL=8

Reduced Outlines after 5 Learning Iterations

Figure 3.28
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ourselves to the original given set of outlines then an obviocus

step to take is to alter scome of the learning parameters.

Another way to evaluate the generalization perfcrimance of
this learning method is to compare it with other nmethods of
generalization. , The methcd chosen for compariscn is the one
proposed by Douglas (1972) and described ’in Chapter 1. The
routines required for this methcd are straight-forward and were
easily incorporated into the system as just another means for
selecting subsets of points whose values are tc undergb a
specified transformation. This methcd was chosen for ccmparison
not \only for convenience, but also because it is a gccd method.
It has the advantage that effectively glotal ccnsiderations are
involved in the selection of points, and it also guarantees that
no point in the original 1line is further than a specified
distance from the generalized version. Thus some of the glaring
mistakes ‘encountered with the previcus method will be avoided.
Using this method with deviation thresholds of 0.C05" and 0.04"
the complete set of outlines was generalized. The resulting
outlines are shown in Figures 3.29 and 3.30 respectively while
the lést two columns in Table 3.6 record the numbter of points in
each of the outlines. There is little doubt that these are, on
the whole, better generalizations than the earlier ones. .Also,
the computation required +to do them 1is considerably 1less
(approximately 2.0 seconds of CPU time as cppcsed to 7.5
seconds). . It 1is therefore clear from this comparison that the

/
learning method does have some deficiencies.

The learning method for generalization does, hcwever, enjoy

i
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‘ L;E:\/E:L__—Ea Reduced Outlén%s using Douglas Method
. - Tolerance=0.05" .

Figure 3.29
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L E\/ EL :9 Reduced Outlines using Douglas' Method
_ Tolerance = 0,04"

Figure 3.30



an advantage when it ccmes to special types of 1lines that are
being generalized for special purposes. This is becaucse the
generalization is dcne essentially by recognizing patterns

within the line. An extreme example illustrates this pcint.

Stylized versions of the arabic numerals 0,1,2,...,9 were
digitized (see Figure 3.31) and then given to the 1learmning
component (with suitable adjustment of parameters) with the
instruction that the numerals 3,4 and 9 were to be retained
wvhile the remaining numerals were to be reduced to a point.
After each of the digits had been presented several times they
were all reduced according to what had been learned. The result

appears in Figure 3.32.

A more practical example involves the generalizaticn of a
coastline cbntaining docks. From the cutline depicted‘in Fiqure
3.33 one person (a ship's pilot, say) may want a generalization
that keeps the docks (Figure 3.34) while another person may want
the docks removed to show the original landform (Figure 3.35).
These tvwo versions were used to teach the system (cn separate
occasions) and after four iterations the learning had stabilizeq
to the point  that generalizaticns of the oriqinal line vere
virtually identical to their respective models (seé Figures 3.36
and 3.37). The same 1learning was enmplcocyed to generalize a
portion of the Vancouver waterfront (see Fiqure 3.38, which is
an enlargement of a section of the upper edge of outline G in
Figure 3,15) giving the two versicns shown in Figures 3.39 and
3,“0. The key in this case was the adjustment <cf the angle

thresholds to recognize right angles.
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Arabic Numerals

LEVEL:D ‘ | Figure 3.31
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Reduced Arabic Numerals

Figure 3.32
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A Coastline with Docks

LEVEL=0 DOCKS - igure .33



484

Reduced Coastline for Learning (docks kept)

Figure 3,34

LEVEL=8 DOCKS_KEPT
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Reduced Coastline for Learning (docks removed)

Figure 3.35

(EVEL=8 DOCKS_GONE
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Reduced Coastlinev'af.ter Learning (docks kept)

LEVEL:8 ' | ‘ | : | Figure 3.36 '
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Readced Coastline after Learning (docks removed)

LEVELZS _ ‘ | Fﬁue337
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Original Vancouver Waterfront

LEVEL=0 VANCOUVER_DBCKS | e
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Reduced Vancouver Waterfront (docks kept)

LEVEL=8 T bgmesn
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Reduced Vancouver Waterfront (docks removed)

LEVEL=8 o Figure 340
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3.4 Other Questions

Apart from the questions that have teen discussed so far,
there are ﬁany other questions that can be asked about the
system and answered through experiments. One largely untouched
problem is that of measuring the homogeneity of a set cf 1lines
and selecting representative subsets. I have made some initial
attempts in this area by looking at the distributicn cf 1lengths
and angles within 1lines and also by ccnsidering the quantized
lengths and angles along lines as Markov chains., ©Ncthing very
promising has yet emerged, however. wifhout some understahding
of the similarities and differences between lines the =selecticn
of a representative learning set and the assignment of parameter
values is very much a hit or miss affair. A related prcblem that
deserves more attention 1is how the rate of learning and the
transferability of this learning is affected by rparticular

assignments of parameter values.

Another interesting question that might be asked concerns
the "psychology" of the learning process. Sinée the 1learning
mechanism is EPAM-like (Feigenkaum (1963)) we shculd expect to
see evidence of such psychglogical features of 1learning as

oscillation, forgetting, interference and so on.

/
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Chapter IV EVALUATION

4.0 Introduction

There are three main aSpects of this work that may be of
some significance. These are :
-an encoding scheme that is suitable fecr the
representation of hierarchically generalized lines.
-an .interactive graphics system that provides the
means io manipulate lipes represented in this way
and generalizg then either manually or
automatically.
-a system that performs generalization by learning
to recognize patterns in lines.
These are summarized <critically in this chapter as well as:
related topics that I think deserve future investigaticn. Some
of my ethical concerns are touched on and the chapter ends with

a summary and conclusions.

. . e i oAl i i

I believe the idea of a line with levels attached to the
points to’ be a potentially useful notion. This is because
several versions of a line, each generalized to a different
degree, can be represented within a single entity. Apart frcm
being compact, it also allows a conceptually elegant way of
referring to a whole family of related lines. For example, with
only a single level attached to each ©point, rerresenting the
importance of the point in conveying the message of the line, it
is possible to conveniently specify the enlargement fprocess

observed in the sequence of Figures 4.1 through U4.3. This 1is



50a

LEVEL=8

Outlines of Lower Mainland Municipalities’

with reduced Detail

Figure 4.1
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LEVEL = 4 Enlargement of Figure 4.1

with more Detail

Figure 4,2
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Enlargement of Figure 4.2 with more Detail
Figure 4.3

LEVEL = 0O
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typical of many interactive graphics applications and in this
case can be handled by simply specifying the 1lines to be
displayed, the windcw [parameters and the relationship tketween
scale and level of display. For the enlargement chserved in
Figure 4.4 two levels attached to each point are adeguate for

the representation of the streets that are involved.

The compactness cf encoding arises from the fact that the
individual points that are shared by several versions of the
same line need be stored only once. The actual saving cf course
depends on factors such as the character of the lines, the
number of levels of generalization, and the particulai internal

machine representation of the points,

This line representation technique does have some
drawbacks. It means that every time a line is used each point
must be inspectéd to determine if it is to be included. It might
be cheaper and more convenient, if a qood generalizaticn schenme
is available, to generalize the line to the desired degree every
time. This way the specific needs do not have to be anticipated
and all the generalization done beforehand. The relative

tradeoffs here are Jjust another instance of the "disgplay

structures" versus "display procedures" (Newman (1971))
argument,
An interactive graphics system suitable for line

generalization 1is another aspect cof this work that is of some
interest, It provides a means of kringing in lines frcm external
storage, associating values with the points alcng the lines and

displaying these 1lines at various levels. The manipulation cf
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values can be done manually using a rapidly updated image on the
screen of a graphics terminal or else by a variety cf automatic
methods with the results available within seconds for correcticn
if necessary. Such capabilities are desirakle features in any
generalization and geographic editting scheme. However, since
the system was designed mainly as a vehicle for develcping and
testing the learning part, it 1lacks many of the ccmponents
necessary for it to be a practical and useful system. It has, I
believe, a sound basic structure and conceptual framework but
has a number of inconsistenciés énd is often clumsy to use. I
could tolerate these since I knew it intimately and had
restricted goals, but they would prove to be stumbling blccks
for the average user. For example, if cne makes a mistake 1in
assigning a value it <can often be difficult to ccrrect since
points have to be processed sequentially within lines., Making
provision for the use of the light pen cr cross hairs would nct
be hard to d6 and wculd overconme much' of this current
difficulty. At present there is no way tc change the cccrdinates
of a point  although this would be necessary in many real
applications. The fact that the syster is not ©presently very
useful is a shortcoming of this work since through its use not
6nly would more people benefit, but also a wnuch tetter
understanding of generalization could be oktained. Hcuever, the
system does represent an initial step and does have ©potential
for development in;o a flexible and wuseful tcol for nmap

generalization.

The major emphasis in this work has been the development of

a technique for the gepneralizaticn c¢f map cutlines’ which

\
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operates by recognizing patterns that have teen taught to it ty
people. The aim of this generalization is tc prcduce maps
suitable for use in interactive graghic situaticns, which means
they must require much less data storage but at the same time
retain their recognizability. Since people have widely differing
views about the similarity of maps and sinée these generalized
maps may be used for a variety of pﬁrpcses there is a need to
tailor the generalization to a particular individual®'s wants and
tastes. The system described previously was constructed to
satisfy this need by learning to mimic the user's behaviour at
generalizing lines manually. Exreriments with people suggest
that a program should be able to generalize Ly recognizing
fairly 1local patterns within linpesland in fact the performance
of the system bears this out. It 4is able to 1learn to .mimic
almost ©precisely the person, with relatively few learning
trials., It is also able to generalize new lipes but is not as
reliable nor as proficient as existing analytic methods with
general types of lines. This appears tc be due tc gaps or hcles
in the learning that are a result cf not having a representative
enough set of lines to learn from and not being able to
generalize its learning sufficiently from the cases presented to
it. While 1 have 1little doubt that the system could
satisfactorily deneralize any reascnably homogeneous set of
lines, the trouble taken to do this would not be worthwhile.
Like a del}cate instrument it weculd require a great deal of
tinkering before working properly. This rather defeats the
purpose of being easily suited to an individual's regquirements.

One possible way to cvercome this difficulty is to have a ltasic
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repertoire of 1learning lines that contain many of the combcnly
occurring features. Then the system is taught with extra: lines
that are specially chosen to "tune" it for a particular
application. Another disadvantage of the current system is that
it is significantly more expensive to use thah cther methods,
both in terms of processing and storage requirements. Perhaps
with decreasing hardware costs this factor will diwinish in
importance as an obst;cle to the applicaticn of this technigque

for generalization.

4,2 Future work

Since the technique for generalization in this thesis is
new there are several areas that require further investigation
before the technique becomes a wuseful one. One =such area
concerns the way in which people perceive and recognize maps,
especially when their data ccntent has been reduced drastically.
Related to this, there mpust be more study of outline
generalization. What are the various criteria that dermine how
well a particular generalization approximates the original line?
it is this question that has been at the heart of my

investigation,

Another  area of interest is in trying alternative
technigues of pattern recognition fcr generalizaticn. Currently
each point is considered in turn and its immediate environment
inspected to determine whether the point should be removed or
not. This approach was taken simply for convenience but it wculd
perhaps be more logical to reccgnize certain features in 1lines

(such as bays, inlets, docks, rocky shorelines, fperinsulas,
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etc.) and to generalize the whole feature at once. FEither the
feature could be removed completely or] replaced by a few
suggestive lines or Jjust simplified =lightly. Which of the
possible actions 1is taken could ke chosen according tc various
probabilities that are dependent on varicus parameters of the
feature so. that it would be possible to maintain the character
of large sections of outline (e.g., a deeply indented <coastlipe
such . as that of northern British Columbia) . In order to obtain

a Tepresentative learning set for any pattern recogniticn scheme

more work must be done to categorize different types cf lines.

On a more concrete level there is much to be done on the
currently implemented technique before its ©potential for
imbrovement is exhausted. Apart from seeing in mcre detail how
the 1learning and generalization performance depend cn fparameter
values and on the types of 1lines wused 1in the learning,
modification to the heuristics employed in the learning
component might also lead to §ignificant1y improved performance.
I suspect that changes to the.way in which the decision tree is
expanded'could be particularly fruitful.

4.3 Ethical Concerns

Appréximately half of the papers that I made use of in my
work were supported by the U.S.A. Military. This disturbs nme
because it makes me wonder whether the uses to which my work is
put, if any, will be ©beneficial. This fact alcne is not
sufficient to convince me that I should do other work but it is
an aséect that I must consider. What disturlts me ©@mcre is fhat

other people are apparently not‘so concerned abtout the potential
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uses of their work. Very seldom are the dangers of the fpotential
applications of work discussed. Nowhere have I found any mention
of the dubious use of pattern recognition in the analysis of air
photos for milit;ry espijonage fcor instance, an often-cited
application. There should be a much more open discussicn of how
research might be wused and what the consequences of this use
might be. I believe this to be essential if research is gcing to
be of net benefit to mankind.

4.4 Conclusions

It has been a principal ainm of mine in doing this work to
explore techniques for wmaking the ccmputer a useful tool to
serve peopie. The problem of generalizing map cutlines for wuse
in interactive graphics situations is one area which requires of
a computer system a certain amount of tailcring to ab
individual's needs. I believe I have shown that the apgplicaticn
of interactive graphics and pattern recognition tc this prcblenm

can be fruitful .in providing flexible encugh systens.
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