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Abstract 

Developable surfaces are surfaces that can be unfolded into the plane with 
no distortion. Although ubiquitous in our everyday surroundings, there is 
currently no easy way to model them on a computer. This thesis fills this 
void by presenting a general method for creating developable geometry that 
utilizes the connection between developable surfaces and the convex hulls of 
their boundaries. Given an arbitrary, user-specified 3D polyline boundary, 
our system generates a smooth discrete developable surface that interpolates 
this boundary. We identify desirable properties of such surfaces, present a 
practical algorithm to compute them, and extend it to handle.darts and 
internal singular points. We demonstrate the effectiveness of our method 
through a series of examples, from architectural design to garments, using 
a sketch-based interface to quickly create the boundaries. 
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Chapter 1 

Introduction 

1.1 Developable Surfaces 

Developable surfaces are surfaces that can be unfolded into the plane wi th 

out dis tort ion. A s shown in Figure 1.1, cylinders and cones are examples of 

developable surfaces since each can be unfolded to the plane wi thout stretch

ing or shearing the surface. The unfolded, planar surface is referred to as 

the pattern or development of the original surface, depending on the appl i 

cation. A n example of a non-developable surface is a sphere. T o il lustrate, 

consider the cartographical problem of representing the 2D curved surface 

of the earth on a flat map (i.e., a plane). Figure 1.2(b) shows one possible 

projection, though it exhibits gross stretching at the north and south poles 

(e.g., Greenland i n white). A s explained in Chapter 2, there is i n fact no way 

to map a sphere to a plane without introducing distort ion. T h e abi l i ty of a 

surface to map to the plane wi th l i t t le or no distort ion is extremly pract ical , 

making developable surfaces useful in several applications. 

(a) Cylinder (b) Cone 

Figure 1.1: Examples of developable surfaces and their corresponding pat
terns. 
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Chapter 1. Introduction 

^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂  

(a) Spherical Ear th 

Figure 1.2: M a p p i n g a sphere to the plane. Greenland is highl ighted i n 
white to indicate distort ion. 

1.2 App l i ca t i ons 

Developable surfaces are commonly used when manufacturing w i t h mate

rials that do not stretch or tear. A n y process manipula t ing fabric, paper, 

leather, sheet metal or p lywood w i l l benefit from developable surface model

ing techniques since these materials admit l i t t le dis tor t ion. In typ ica l setups, 

the patterns of the product are first designed by trained individuals , w i th 

a computer performing a bending simulation to help forecast the manufac

tured result. T h e product is then fabricated by cut t ing out the patterns of 

the surface from a flat sheet of the respective mater ia l and bending these 

planar patterns to form the desired shape. Appl ica t ions include model ing 

ship hulls, buildings, airplane wings, garments, ducts, automobile parts. 

In ship design, the hul l is usually constructed by segmenting it into pieces 

fitted wi th large metal sheets. O n singly curved parts of the hu l l , sheets can 

be fitted by a process called rolling, which s imply bends the sheets to the 

desired shape. The result of roll ing is a developable surface which is typ

ical ly cyl indr ica l . Ro l l i ng alone is normally not sufficient to construct an 

entire hul l since some parts of the hul l may be doubly curved and thus 

non-developable. For example, the bow usually includes a bulbous piece 

(Figure 1.3(a)) which moves water around the hul l in the direct ion of least 

resistance, u l t imate ly reducing fuel consumption. In these non-developable 

regions, a heating process is used to deform a sheet after rol l ing i n order to 

(b) Mercator Projection 



Chapter 1. Introduction 

introduce the addi t ional curvature direction. The heating process is usually 

performed manual ly by an experienced individual who heurist ical ly deter

mines the parameters required to achieve the correct amount of bending. 

The heating process is t ime consuming, labour intensive and error prone. 

Thus, model ing a hul l pr imar i ly w i th developable surfaces minimizes the 

use of heating and simplifies and improves the fabrication process [11, 12]. 

(a) Ship Hu l l [38]. (b) Peter B. Lewis bui lding [7]. 

(c) Connecting tubes [37]. (d) Garment Design [9]. 

Figure 1.3: Appl ica t ions of developable surfaces. 

T h e benefits of developable surfaces in ship hul l design are also perti

nent when designing buildings from sheets of mater ial . T h e prolific and 

contemporary architect Frank Gehry extensively uses developable surfaces 

i n his structures. Shelden notes that a major accomplishment of Gehry ' s 

work is the abi l i ty to create innovative designs w i th in the context of con

ventional construction processes [36]. Though any free form shape can be 

constructed by the digi tal C N C fabrication techniques commonly used by 

the aerospace and computer animation industries, the costs of these meth

ods are frequently prohibit ive when applied in an architectural setting. B y 
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Chapter 1. Introduction 

ut i l iz ing developable constraints and. staying wi th in the realm of exist ing 

fabrication practices, Gehry is able to reduce costs and fabrication error, 

ensuring the final form is t ight ly correlated to the original design. Figure 

1.3(b) shows an image of the Peter B . Lewis bui ld ing at Case Western Re

serve Univers i ty in Cleveland, U S A . T h e brick and steel portions of the 

bui ld ing are both modeled as piecewise developable surfaces [36]. 

In duct construction, a common problem is fabricating a metal surface 

that connects two tubes of different shapes. Specifically, given two space 

curves p and q, the problem is finding a surface that interpolates both p 

and q (Figure 1.3(c)) [37]. Though there are an infinite number of such con

necting surfaces, using a connecting developable surface ( C D S ) is desirable 

since a C D S is most easily fabricated from sheet metal . T h i s problem is 

straightforwardly solved by the algori thm presented in Chapter 4. 

In fashion design, developable surfaces have great uti l i ty. Garments are 

constructed by sewing together panels that are cut out as patterns from 

fiat sheets of fabric. For example, in Figure 1.3(d), the dress on the right is 

assembled by cu t t ing out and sewing together the patterns on the left. W h e n 

designing garments, a core requirement is construct ibi l i ty and ensuring that 

each panel of the garment can be developed from a flat sheet. A l t h o u g h 

certain materials stretch slightly due to gravity after assembly (e.g., cotton 

weave), garments are t radi t ional ly modeled as developable surfaces since 

the effect of this stretch is negligable when assembling the panels together. 

Designing sewing patterns is a challenging task, requiring significant t ra ining 

to understand the many ways that panels can jo in together to correctly form 

around the geometry of humans. The next section introduces a modeling 

paradigm that greatly simplifies the task of pattern creation and allows 

interesting garments to be designed. 

1.3 Developables from Boundaries 

Despite their ubiquity, developable surfaces remain difficult to model , par

t icular ly for non-expert users. Th i s thesis focuses on the problem of easily 

modeling developable surfaces and presents a method i n which users s imply 

4 



Chapter 1. Introduction 

specify the boundaries of each surface patch as a 3D curve. 3D bound

ary curves are a natural modeling choice since they can be easily specified 

and manipulated through a variety of interfaces (Chapter 5) and provide 

intui t ive shape control for the underlying surface. 

T o enable this modeling paradigm, we introduce a method for creat

ing developable surfaces which interpolate arbitrary boundaries (Chapter 

4). We observe the correlation between a developable surface interpolat ing 

a boundary curve and the convex hul l of that curve. T h i s linkage is the 

basis for a novel a lgori thm that generates interpolating developable surfaces 

for any given smooth input boundary. T h e method explores the space of 

possible interpolating surfaces searching for solutions which have a desired 

set of shape properties. It allows the user to rank the importance of the 

different properties in order to control the shape of the resulting surface and 

supports exploration of alternative solutions. 

Chapters 2 and 3 review the relevant mathemat ical background and 

survey related work. Chapter 4 describes a novel a lgori thm operating in a 

discrete setup for computing a developable surface interpolating an arbi t rary 

polyl ine boundary. Results obtained from this a lgori thm are showcased i n 

Chapter 5. F ina l ly , Chapters 6 and 7 summarize and discuss future work. 

5 



Chapter 2 

Background 

Developable surfaces have a lengthy mathematical history originat ing in 

differential geometry. T h i s section reviews their main properties, focusing 

on those used by the algori thm presented in Chapter 4. 

2.1 Ruled and Developable Surfaces 

A ruled surface is a surface containing (at least) one one-parameter family 

of straight lines [22]. A ruled surface S C K 3 may be represented in the 

form 

x(s,i) = b(s) + tS(s), 

where b(s) is called the directrix or the base curve of the surface and S(s) 

is called a generator. Intuitively, a ruled surface can be thought of as being 

constructed by continuously sweeping out a line in space (i.e., the generator) 

w i t h some marked point of the line following the path of the directr ix. In

deed, for a given fixed value of s, the above formula reduces to the equation 

of a straight line. T h i s line is called a ruling of the surface. 

A developable surface is a ruled surface wi th the addi t ional property that 

the tangent plane is constant at a l l points along a given ru l ing [22]. Since 

the tangent plane at a point can be described by the surface normal at that 

point, an equivlent requirement is that the surface normal at a l l points along 

a given rul ing is constant [31]. A ruled surface which is not developable has 

normal variat ion along its rulings and is thus called a warped ruled surface. 

A ruled surface is a developable surface if and only if 

b • (S x 6) = 0 
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Chapter 2. Background 

where the dot above denotes the derivative wi th respect to s (Theorem 58.1 

of [22]). F igure 2.1 shows a developable surface and warped ruled surface 

sharing the same boundary. 

(a) Developable Surface (b) Warped Ruled Surface 

Figure 2.1: Developable and warped ruled surfaces. In (a), the normals are 
constant along the specified rul ing while in (b), the normals vary along the 
rul ing. 

2.2 Gaussian Curvature under Isometric 

Mapping 

A bijective function / : S C M 3 —> T C R 3 is an isometric or length preserv

ing mapping if the length of any arc on S is the same as that of its image 

on T under / . For example, rotation around a given axis is an isometric 

mapping. A n extremely useful property is that the intr insic properties of a 

surface, those depending only on the first fundamental form, are invariant 

under isometric mapping (Theorem 57.1 of [22]). T h e pr inc ipa l curvatures 

at a point on a surface measure the min imum and m a x i m u m bending of the 

surface at that point. Gauss ' theorema egregium states that the Gaussian 

curvature K, the product of the pr incipal curvatures, is an intr insic property 

of a surface [19]. Therefore, K is invariant under isometric deformation. 

7 



Chapter 2. Background 

2.3 Properties of Developable Surfaces 

A port ion of a surface is developable if and only i f K = 0 everywhere on the 

por t ion (Theorem 59.2 of [22]). Since a plane has K = 0 everywhere, a plane 

is an example of a developable surface. Furthermore, since K is invariant 

under isometric deformation and isometries are bijective, any surface that 

can be isometrically mapped to the plane is developable. T h e converse of this 

statement, that any developable surface can be isometrically mapped to the 

plane, is also true and is proved in Theorem 59.3 of [22]. Thus , developable 

surfaces are the only surfaces that can be isometrically deformed to the 

plane. Th i s property explains why it is impossible to map a sphere to the 

plane without distort ion (Figure 1.2). Since a sphere has K > 0 everywhere, 

it is not developable and thus cannot be isometrically mapped to the plane. 

T h e Gauss map is a function that maps every point p of an oriented 

surface in R 3 to the point on the unit sphere that is parallel to the normal 

at p. In general, the Gauss map of a surface is another surface (right side 

of Figure 2.5(d)). However, in the case of developable surfaces, since the 

normals are constant along a given rul ing, the Gauss map degenerates into 

a curve (right side of Figure 2.5(c)) or possibly a network of curves (Figure 

2.2(b)). If the Gauss map is a single curve, then the directr ix of the surface 

is a single continuous curve. Po t tmann and Wallner [31] refer to these 

surfaces as developable ruled surfaces or torsal ruled developable surfaces. To 
avoid ambiguity w i t h ruled surfaces as defined in Section 2.1, these surfaces 

w i l l be referred to as torsal developable surfaces, in contrast to composite 

developable surfaces whose Gauss map is a network of curves. A composite 

developable surface is thus made of a union of torsal developable surfaces 

joined together by transi t ion planar regions [16], where the latter correspond 

to the branching points on the Gauss map. In either case, another useful 

property of developable surfaces is that their image under the Gauss map is 

one dimensional. 

O n a developable surface, the tangent planes of most rulings bound some 

local neighbourhood of the rul ing in one of the two closed half-spaces induced 

by the plane (Figure 2.3(a)). Therefore, most tangent planes of rulings are 

8 



Chapter 2. Background 

(a) (b) 

Figure 2.2: A composite developable surface and its Gauss map. 

supporting planes [23], the exception being rulings where the surface has an 

inflection (Figure 2.3(b)). When the tangent plane of a ruling is a supporting 

plane, since all rulings in the local neighbourhood lie on one side of the plane, 

the given ruling lies on the convex hull of the neighbourhood (i.e., the local 

convex hull) [17]. In contrast, on a warped ruled surface, most rulings lie 

inside their local convex hull. 

(a) (b) 

Figure 2.3: (a) Tangent plane is a supporting plane on a developable surface; 
(b) Profile view of (a). Only on the inflection ruling is the tangent plane 
not a supporting plane. 
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Chapter 2. Background 

2.4 Developable Boundary Triangulations 

G i v e n a polyl ine w i th vertices sampled from an input piecewise smooth 

curve, a boundary tr iangulation is a manifold t r iangulat ion w i t h no interior 

vertices whose boundary is the polyline. B y construction, any boundary 

t r iangula t ion is developable, as the triangles can be unfolded into the plane 

wi th no distort ion. In the l imi t however, as the sampling density of the 

polyl ine increases, not every tr iangulat ion w i l l approximate a smooth de

velopable surface. Specifically, the l imi t ing surface of a t r iangulat ion is a 

developable surface if and only if the majori ty of the interior edges of the 

tr iangulat ion are locally convex [17]. A n interior edge is defined as locally 

convex if it lies on the convex hul l of its end vertices and the four adjacent 

polyl ine vertices [17] (Figure 2.4(a)). A n interior edge is non-convex i f it lies 

inside this convex hul l (Figure 2.4(b)). 

(a) Locally Convex (b) Non-Convex 

Figure 2.4: L o c a l l y convex and non-convex interior t r iangulat ion edges PiPj. 

For a t r iangulat ion to approximate a smooth developable surface, the 

number of non-convex edges should not depend on the sampling density of 

the polyl ine. Figure 2.5 shows two triangulations of the same polyl ine, one 

of which approximates a developable surface, while the other approximates 

a warped ruled surface. In the first case, a l l the interior edges are local ly 

convex (Figure 2.5(a)). In the second case, the majori ty of edges are non-

convex (Figure 2.5(b)). 

10 



Chapter 2. Background 

(a) Developable Triangulation (b) Warped Ruled Triangulation 

(c) Gauss map of 2.5(a) and of limit surface (d) Gauss map of 2.5(b) and of limit surface 

Figure 2.5: Developable and warped ruled triangulations interpolat ing the 
same polyl ine and corresponding Gauss maps. 
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Chapter 3 

Related Work 

In computer graphics and modeling, developable surfaces have raised inter

est in several different contexts including reconstruction from point clouds 

[12, 29] and mesh segmentation into nearly developable charts for parame

terization and pattern design [20, 35, 43]. The following review only covers 

methods for modeling developables either v i a developable approximat ion or 

directly. 

3.1 Developable Approximation 

Given an existing non-developable surface, a large number of methods a im 

at approximat ing it w i th one or more developable surfaces. Some of the 

methods operate on triangle meshes in a discrete setup [15, 25, 28, 41] while 

others operate in a continuous setup for incorporation into N U R B S based 

model ing systems. 

3.1.1 Discrete Methods 

Wang and Tang [41] increase the developability of a mesh surface by min 

imiz ing its Gaussian curvature. Us ing a penalty based function, they solve 

a global constrained opt imizat ion problem that accounts for Gaussian cur

vature, the amount of deformation, and continuity between patches. Since 

solving the global opt imizat ion may be slow, they addi t ional ly formulate 

an iterative local opt imizat ion scheme. The authors note that if a high 

degree of developability is required, large discrepancies result on the final 

surface. Since the surface normals are not constrained i n the opt imizat ion, 

these discrepancies are often manifested as wrinkles, a possibly undesirable 

12 



Chapter 3. Related Work 

effect. 

Simi lar to W a n g and Tang [41], Frey [18] also attempts to increase the 

developabili ty of a mesh by min imiz ing its Gaussian curvature. Frey at

tempts to introduce singular vertices into a 2.5D developable t r iangulat ion 

in order to model buckled developable surfaces. E a c h singular vertex is it-

eratively moved i n the z direction unt i l the sum of angles around the vertex 

equals 27T. L i k e many others, Frey translates the property of a developable 

surface having zero Gaussian curvature everywhere into a requirement that 

the sum of angles around each vertex equals 2ir. 

Decaudin et a l . [15] describe a system for designing v i r t ua l garments 

where a user first constructs a non-developable garment that is segmented 

into overlapping mesh patches. For each mesh patch, the local ly best approx

imat ing developable surface is computed and the mesh is deformed towards 

this surface. A s evident in Figure 3.1, the resulting surfaces are "more" 

developable in the sense that their Gauss map covers less area. 

(a) Typical Input (b) Approximation (c) Gauss M a p of (d) Gauss M a p of 
Output 3.1(a) 3.1(b) 

Figure 3.1: V i r t u a l garments [15]. 

In their conical meshes paper, L i u et al. [25] address approximat ion in 

the context of architectural design. Given a quadri lateral t i l i ng of an input 

model , the method iteratively perturbs vertices to create a t i l i ng w i t h planar 

faces and the same connectivity as the input. Al te rna t ing the per tubat ion 

w i t h subdivis ion induces a method for modeling developable strips. 

13 
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3.1.2 Continuous Methods 

P o t t m a n n and Wal lner [30] approximate an input N U R B S surface w i t h cer

tain types of developable N U R B S surfaces. The i r technique finds a devel

opable surface that approximates a set of tangent planes.sampled from the 

input surface. The fidelity of the approximation is defined in terms of a 

distance metric defined between planes. T h i s distance metric is opt imized 

to construct the approximating developable surface. 

Chen et a l . [12] focus on approximating ship hulls. T h e y in i t i a l ly seg

ment the input surface using a region growing approach and each segment is 

approximated ind iv idua l ly by a cone or cylinder of revolution. These pieces 

can then be joined together w i th Gl continuti ty using [24], or a Gr (r > 2) 

approximating developable can be found using [30]. 

Wang et al . [39] increase the developability of a t r immed N U R B S surface 

by min imiz ing its Gaussian curvature. Analagous to their approach for 3D 

meshes described in [41], the opt imizat ion function accounts for both the 

overall Gaussian curvature and the amount of deformation. T h e opt imiza

t ion process adjusts the positions and weights of the control points of the 

original t r immed surface. The authors note that the running t ime may be 

significant and that the Gaussian curvature may actually increase locally. , 

3.1.3 Benefits and Limitations of Approximation 

M o d e l i n g developable surfaces through approximation is attractive as de

signers do not have to concern themselves w i t h developabili ty constraints 

.during the modeling process. Ideally, they can freely ut i l ize a l l sorts of 

modeling tools (e.g., blends, fillets) and then rely on an approximat ion algo

r i t hm to yield a developable result. In practice though, the approximat ion 

approach is highly restricted since the methods can only succeed if the orig

inal input surfaces already have fairly smal l Gaussian curvature. Moreover, 

i n most cases the final result is not analyt ical ly developable. W h i l e this is 

not a problem for applications such as texture-mapping, it can be problem

atic for manufacturing, where the surfaces need to be realised from planar 

patterns (e.g., sewing). In these setups the distort ion caused by using un-

14 
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folded patterns from approximate developables can be quite significant, as 

demonstrated in Figure 3.2. In this example from [20], the horse model was 

segmented into nearly developable charts unfolded into the plane w i t h I? 

stretch of less than 1.01 [20]. Th i s can be visual ly confirmed by observing 

that the isolines i n Figure 3.2(a) are perpendicular and define squares of 

approximately equal area. However, when the patterns created from the 

unfolding were sewn back together, the resulting toy horse had significantly 

different proportions from the in i t ia l model (e.g., the front legs). T h o u g h m i 

nor surface details are expectedly lost due to the resilience of the fabric and 

possible sewing and cutt ing errors, a contr ibut ing factor to the discrepancy 

in proportions is the fact that the charts are not completely developable. 

(a) (b) 

Figure 3.2: Artefacts i n using approximate developables [20] for manufac
turing, (a) approximate developable segmentation ( L stretch 1.01); (b) 
reassembled model . 

3.2 Direct Modeling 

A s opposed to model ing by approximation, another class of techniques d i 

rectly model developable surfaces, ensuring that the user has an analyt ica l ly 

developable surface at a l l times. Mos t existing methods for model ing devel

opable surfaces consider only torsal developable surfaces, surfaces whose 

normal map is a single curve, and are restricted to model ing four sided 

15 



Chapter 3. Related Work 

patches. In the continuous setup, these surfaces are often represented us

ing ruled Bezier or B-Spl ine patches and developabili ty is enforced using 

non-linear constraints [4, 5, 13]. 

A u m a n n [4] proposes a general condit ion required for a developable 

Bezier surface to interpolate two given Bezier curves. To compute such 

a Bezier surface, the presented method restricts the input boundary curves 

to lie in parallel planes. T h i s requirement greatly simplifies the non-linear 

system of equations, though at the expense of the model ing capabi l i ty of the 

developable patches. 

C h u and Sequin [13] derive Aumann ' s developability condi t ion [4] geo

metr ical ly from the de Casteljau algori thm. Th i s formulation permits them 

to work wi th boundary Bezier curves ly ing i n non-parallel control planes. In 

their method, given one freely specified boundary curve, the second bound

ary curve has five available degrees of freedom. 

In a later work, A u m a n n [5] extends the de Castel jau style approach of 

[13] by increasing the number of available design parameters using degree 

elevation. T h e resulting algori thm generates a developable Bezier surface 

interpolating two given Bezier curves of arbi trary degree and shape. 

A common requirement of these continuous methods is that users must 

clearly specify rul ing directions for the final surface. T h i s type of interaction 

assumes that users have sufficient geometric knowledge to know what ru l ing 

directions actual ly are, preventing these methods from being adopted by 

non-experts. 

Wang and Tang [40] use a discrete setup for model ing torsal developable 

surfaces. T h e input to their method is two polyline directrices for the rul ing 

and the output is a developable triangle strip where each interior edge ap

proximates a rul ing connecting the two directrices (Figure 3.3). T h e y cast 

the problem as a Dijkstra 's shortest path search [14] on a weighted solution 

graph whose vertices represent potential edges i n the final t r iangulat ion. 

The shortest path corresponds to the op t imal t r iangulat ion. Different op

t imiza t ion objectives, such as min imal area or max ima l convexity, can be 

realized by varying the weights used in the solution graph. 

Po t tmann and Wallner [31] use a dual space approach to define a plane-
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(a) Polyl ine Directrices (b) Torsal Boundary Triangulation 

Figure 3.3: Torsal boundary tr iangulation interpolat ing polyl ine directr i 
ces [40]. 

based control interface for modeling developable patches. Con t ro l l ing such 

an interface requires significant geometric expertise. 

For garment design, a highly time consuming approach presented by 

some commercial modeling tools [10, 27] is to first design a planar pattern 

for the surface and then deform it into the desired shape using bending and 

physical s imulat ion. Since designing sewing patterns is a challenging task, 

this approach is l imi ted to the realm of expert users. 

B o and W a n g [8] introduce a modeling system for developable surfaces 

w i t h an emphasis on paper bending. The system utilizes the relationship 

between a torsal developable surface and a geodesic curve l y ing on that 

surface. Users isometrically manipulate a smooth 3D curve representing a 

geodesic and the system finds the unique torsal developable surface con

ta ining the user's curve. T h e input curve is reparameterized numerical ly at 

each t ime step to ensure an isometric deformation. Though composite de

velopable surfaces are supported by the system, users must manual ly specify 

each ind iv idua l torsal piece wi th a separate geodesic curve. 

Frey [17] describes a method for computing discrete height-field devel

opable surfaces that interpolate a given polyline (Figure 3.4). G i v e n a user-

provided projection plane, the method first computes a l l of the possible 

interior edges in the polygon formed by projecting the polyl ine to the plane. 

It then classifies edges in terms of their l ikel ihood of being part of a de

velopable surface, g iving a higher priori ty to local ly convex edges. F ina l ly , 
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i t selects a subset of the edges that forms a val id t r iangulat ion by simu

lat ing the bending caused by closing a blankholder. A blankholder is the 

component of a press machine that holds the punch surface, the surface 

that is pressed over an in i t ia l ly flat sheet (the blank) to cause the blank to 

bend. T h i s a lgori thm operates under the assumption that the projection 

to the plane of the desired tr iangulat ion contains no self intersections, re

s tr ic t ing the method to height field (2.5D) surfaces. W h i l e the method is 

well suited for predict ing the bending of a metal sheet under the closing 

of a blankholder, using the technique for modeling developable surfaces is 

difficult since the only available control over the final surface is the user's 

choice of projection direction. 

Figure 3.4: Mode l ing height field developable surfaces [17]. 

T h e following chapter introduces a novel a lgor i thm to compute a de

velopable boundary tr iangulat ion interpolating an arbi t rary smooth input 

boundary. 

18 



Chapter 4 

Constructing Developable 
Triangulations 

A s mentioned in Section 1.3, developable surfaces are difficult to model . 

Chapter 3 pointed out that approximation techniques may admit too much 

"distortion to be pract ical for manufacturing setups. Direct model ing ap

proaches, though guaranteeing analyt ical ly developable surfaces, are often 

difficult to control and require users to have significant geometric expertise. 

Addi t iona l ly , most direct modeling approaches are l imi ted to only model

ing torsal developable surfaces. In order to model composite developable 

surfaces w i t h these approaches, users must manual ly segment their desired 

composite surface into ind iv idua l torsal pieces, a non-intuit ive operation. 

T h i s chapter describes an algori thm for computing a developable bound

ary t r iangulat ion interpolat ing an input polyl ine. C o m b i n i n g this a lgor i thm 

w i t h a user interface for specifying 3D curves (Section 4.9) creates an easy-

to-use system for modeling developable surfaces. Users s imply specify a 

closed boundary and the algori thm returns a developable surface w i t h de

sirable surface properties (Section 4.2) that interpolates the boundary. T h e 

system is easily accessible to non-experts since users are not required to have 

significant knowledge of geometry or the properties of developable surfaces. 

T h e algori thm is sufficiently robust and can handle complex boundaries, 

including boundaries w i th darts (Section 4.5) and tangential discontinuities. 

The next section introduces the linkage between a developable surface inter

polat ing a boundary curve and the convex hul l of that curve and explains 

how this can be used as the basis for the algori thm. 
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4.1 Developability and Convexity 

Section 2.4 discussed the potential of boundary triangulations to represent 

developable surfaces that interpolate a given boundary polyl ine . A s ex

plained, triangulations that approximate smooth developable surfaces have 

the property that the majori ty of their edges are local ly convex. A gen

eral method for obtaining such triangulations is now described. Section 

4.3 refines this method to efficiently search for tr iangulations which satisfy 

addi t ional requirements. 

We make the following observation which forms the basis for our method: 

Since most edges of a desirable triangulation must be locally convex, a natu
ral place to identify developable regions interpolating a boundary polyline is 
the convex hull of the boundary, where every edge is locally convex. T h i s 
observation is well motivated by the continuous case where the convex hul l 

of almost every sufficiently smooth closed space curve consists of planar re

gions and torsal developable surfaces, w i th the torsal developable surfaces 

interpolat ing parts of the curve [34]. We rely on this observation i n order 

to significantly narrow the search space when looking for desirable tr iangu

lations. 

If a smooth space curve lies entirely on its convex hul l (i.e., the curve 

is convex), the hul l is separated into two developable envelopes [34]. In 

the discrete case, the convex hul l of a closed polyl ine is a tr iangular mesh 

containing a subset of the polyline's vertices. If the polyl ine is convex, the 

hul l is separated into two developable triangulations. These triangulations 

are the left and right hul l envelopes and are defined w i t h respect to the 

orientation;of the boundary (Figure 4.1). If the polyl ine is planar, then these 

envelopes are identical . B y construction, bo th triangulations interpolate the 

polyl ine. Moreover, as desired, every interior edge in each t r iangulat ion is 

local ly convex since it is an edge on the convex hul l . 

If the polyl ine is not convex, it w i l l not separate its convex hul l into 

two envelopes and a more sophisticated modeling strategy is required. A s 

mentioned previously, the convex hul l of almost every closed sufficiently 

smooth space curve consists of planar regions and torsal developable sur-
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(a) Polyl ine (b) Convex Hul l with (c) Left Envelope (d) Right Envelope 
Envelopes 

Figure 4.1: Envelope triangulations for a convex polyl ine. T h e a lgor i thm in 
Section 4.3 selects (d). 

faces [34], where each of these torsal developable surfaces interpolates parts 

of the curve. If a polyline is sampled sufficiently densely from a smooth 

space curve, its convex hul l w i l l closely approximate the convex hul l of the 

curve. We observe that the torsal developable surfaces on the hul l of the 

continuous curve correspond to regions, or charts, of consecutive triangles on 

the polyline 's hu l l having edges on the polyline (Figure 4.2(b,c,d,e)). Such 

charts are formally defined as sequences of hul l triangles, such that: 

1. each triangle shares at least one edge wi th another triangle in the same 

chart; 

2. each triangle shares at least one edge wi th the input polyl ine; 

3. a l l of the triangles are oriented consistently w i t h respect to the poly

line. 

T h e second requirement implies that charts are separated from each other by 

interior triangles: triangles of the convex hul l w i th no edges on the polyl ine 

(shown in brown i n Figure 4.2(b)). The last requirement ensures that the 

tr iangulat ion constructed by the algori thm is manifold and orientable. 

Subtracting each chart from the polyline by removing the portions of the 

polyl ine inside the chart and replacing them wi th the interior boundaries 

of the chart results i n one or two smaller closed polyl ine subloops (Figure 

4.2(c), (d), (e)). If the subloops lie on their convex hulls, their left and right 

envelopes w i l l provide triangulations, which together w i t h the removed chart 
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/ 1 X 

(h) (g) 

Figure 4.2: Ex t r ac t i ng a local ly convex tr iangulat ion: (a) boundary; (b) 
convex hul l w i t h extracted charts (interior triangle shown in black); (c), (d), 
(e) ind iv idua l charts and remaining subloops after subtract ion; (f) recursing 
on the subloop formed by removing the purple chart; (g) result ing t r ian
gulations (the framed tr iangulation is the one returned by the a lgor i thm 
i n Section 4.3); (h) two of the triangulations created w i t h different chart 
choices. 
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w i l l interpolate the original polyline (Figure 4.2(f)). If a subloop does not 

lie on its convex hul l , we can identify charts on this convex hul l and proceed 

recursively. B y construction, charts on the subloop hulls w i l l also correspond 

to torsal developable surfaces interpolating the original polyl ine. 

It is theoretically possible, though unlikely, for a hu l l to contain no val id 

charts. In this pathological case, the algori thm treats each hul l triangle as 

a separate chart. 

T h e recursion is guaranteed to terminate as the number of polyl ine ver

tices decreases at each i teration and a polyline w i th three vertices always lies 

on its hul l . In any resultant tr iangulation, the only potential ly non-convex 

edges w i l l bound adjacent triangles computed at different levels of the re

cursion. A l l other edges are necessarily local ly convex as they originated 

from wi th in a convex hul l , either that of the original polyl ine or of one of 

the subloops. A s desired, the number of non-convex edges is very smal l and 

is related to the boundary complexity and not to the number of boundary 

vertices. However, as shown in Figure 4.2(g) and (h), the choice of different 

charts to proceed from leads to drastically different tr iangulations, raising 

the question of which choice the user would prefer. T h e subsequent sections 

analyse the desirable shape characteristics of discrete developable surfaces 

and describe an algori thm which guides the selection to efficiently obtain a 

good interpolating surface. 

4.2 Desirable Triangulation Properties 

W h e n considering triangulations which approximate a smooth developable 

surface, we require the majori ty of tr iangulat ion edges to be local ly convex. 

A n addi t ional constraint, ignored in Section 4.1, is smoothness: requiring 

the dihedral angles between adjacent triangles to be low. Even w i t h these 

two restrictions, there may exist mult iple boundary tr iangulations providing 

a val id solution (see Figure 4.2 (g),(h)), raising the question which of these is 

expected when a part icular boundary is specified. Clearly, when designing 

a model ing tool , predictability is a desirable property. H u m a n perception 

studies indicate that "simplici ty is a principle that guides our perception..." 
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[6]. T h i s principle is well known in Gestalt theory and is commonly used 

i n sketch interpretation [21]. In our work, it implies that the surface the 

user expects is the simplest developable surface fi t t ing a given boundary. 

Based on numerous examples, we hypothesize that a surface is considered 

simpler and hence more predictable if its normal map has fewer branches, 

or equivalently, i f its directr ix has fewer discontinuities. 

In addi t ion to predictabili ty, or instead of it , we can consider the fairness 

of the created surface. Frey [17] and Wang and Tang [40] describe a large 

set of measures of surface fairness, including metrics of mean curvature and 

bending energy. We found that min imiz ing the integral I2 mean-curvature 

described as the sum of squared dihedral angles across interior edges re

sults i n visual ly fair triangulations. T h e advantage of this metric is that 

it can be extended to provide a lower bound on the fairness of a boundary 

tr iangulat ion given only a subset of its triangles (Section 4.4.1). 

T h e next section presents a pract ical method for comput ing boundary 

triangulations that satisfy a l l of these requirements, and thus define which 

developable surfaces to output. 

4.3 Branch-and-Bound Search Algor i thm 

We now extend the basic methodology described in Section 4.1 to search 

specifically for smooth triangulations and describe a procedure to efficiently 

navigate the search space to obtain triangulations that are predictable and 

fair. 

We observe that for convex polylines, the two hul l envelopes mentioned 

above are not necessarily the best solutions wi th respect to smoothness (see 

the pink and blue envelopes at i teration one in Figure 4.4). Therefore, our 

a lgori thm extracts not only these envelopes, but also the separate charts that 

are part of the convex hul l . It then proceeds to explore possible interpolat ing 

triangulations that contain one or more of the identified charts. Fragmenting 

the envelopes into charts can increase the number of non-convex edges i n the 

final t r iangulat ion. However, their number remains a function of boundary 

complexi ty and does not depend on the number of boundary vertices, as 
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Figure 4.3: P l ana r i t y metric. The second row is a profile view of the first 
row. A higher value indicates a more planar polyline. T h e completely planar 
polyl ine in (a) has a value of o o . 

desired. 

A s mentioned previously, if the polyline is planar, then the two hul l 

envelopes are identical . Clearly, if a polyline is planar then any manifold 

t r iangulat ion of it is developable. To measure the planar i ty of a polyl ine, 

we fit an orthogonal distance regression plane to it and consider the ratio 

of the largest and smallest eigenvalues of the covariance ma t r ix [2]. Th i s 

metric is positive, scale independent, and approaches infinity as the polyl ine 

becomes more planar. To illustrate, Figure 4.3 shows increasingly non-

planar polylines superimposed wi th their regression planes and the values 

of their corresponding planarity metric. Polylines whose planar i ty metr ic is 

larger than a user provided threshold (we use 100 ,000 in our examples) are 

considered planar and triangulated by a single triangle fan. T o prevent this 

specific choice of t r iangulat ion from influencing the fairness computa t ion 

(Section 4.2), internal edges of the tr iangulation are marked as having a 

dihedral angle of zero across their adjacent faces. 

T o obtain smooth triangulations we require that any interior edge in a 

chart has a dihedral angle below a specified threshold. Char t s w i t h larger 

dihedral angles are not considered for future processing. For instance, i n the 

first i teration of the algori thm in Figure 4.4, this invalidates the light and 

dark green charts. We also require the angles on edges between any chart 

and the adjacent interior triangles to lie below the threshold. W e observe 

that since these edges are on the convex hul l , the dihedral angle between 
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Iteration 1 

/ V a l i d alid 
..Ik. 

Nol valid 

New covers 

Popped cover and Envelopes 
remaining subloop 

Charts 

Iteration 2 
/ v a l i d New cover 

Popped cover and Envelopes 
remaining subloop 

Charts 

Added to queue 

Redundant 
Not added to queue 

Iteration 3 

y 
Popped cover and Envelopes 
remaining subloop 

•^al icT New cover 

Charts Added to queue 

Iteration 4 

Popped cover and E n v e | o p e s 

remaining subloop 

Valid " ^ H ^ - New cover 

Added to queue 
Triangulation 

Figure 4.4: A l g o r i t h m stages on a simple example. Interior triangles are 
shown in black. T h e framed tr iangulation is the output . T h e cover pushed 
into the queue in i teration four w i l l be discarded at i terat ion five in stage 1 
(it is not better than the best tr iangulation). 
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the chart and any other triangle formed using these edges is bounded from 

below by the current angle. Charts which violate this property are also 

eliminated. In the first i teration i n Figure 4.4, this invalidates the orange 

and dark yellow charts. 

To reduce the number of non-convex edges and to speed up processing, 

we only consider charts larger than a certain percentage of the convex hul l 

area (we use 1% - 3% in our examples). B o t h the angle and size thresholds 

can be adjusted depending on the input. If both are completely relaxed, our 

method w i l l find a solution for pract ical ly any input . 

G i v e n these definitions of val id charts, our a lgori thm computes bound

ary triangulations that are unions of charts and envelopes. T h e a lgor i thm 

uses a variat ion of the branch-and-bound approach [14], which helps drive 

the search towards a good solution while avoiding the explorat ion of non-

promising ones. Similar to A * search [33], the method uses a pr ior i ty queue 

of sets of charts, or covers, that interpolate segments of the polyl ine (Figure 

4.4). T h e queue is ini t ia l ized w i t h the empty cover. T h e pr ior i ty function 

of the queue is based on a potential metric (Section 4.4.2) and orders cov

ers such that the next popped cover is expected to lead to an acceptable 

boundary t r iangulat ion fastest. 

D u r i n g processing, the method maintains the best boundary tr iangula

t ion found to that point. The quali ty of a t r iangulat ion is measured w i t h 

respect to the desired tr iangulat ion properties (Section 4.2). T h e same met

ric is used to measure the quali ty of a cover, as a lower bound on the quali ty 

of any possible t r iangulat ion containing this cover. A t each i terat ion of the 

a lgori thm the following sequence of operations is performed as visualized i n 

Figure 4.4. 

1. Pop Cover: The algori thm pops a cover C from the pr ior i ty queue, 

based on the potential metric. If a boundary t r iangulat ion was already 

found, the method compares the quali ty of the best triangulation-found 

.to the quali ty of C. If the quali ty of C is worse, it is immediately 

discarded. Otherwise, the method obtains the set of polyl ine subloops 

S formed by subtracting (as defined in Section 4.1) the cover charts 
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from the original boundary and computes their convex hulls. 

2. Explore Possible Triangulations: The method checks if the con
vex hulls of each of the subloops are separable into two envelopes. 

If the envelopes exist for a l l the subloops, then each permutat ion of 

them combined wi th the cover's triangles defines a t r iangulat ion of 

the original boundary. Triangulations having interior dihedral angles 

above the smoothness threshold are discarded. In Figure 4.4, this dis

cards a l l the boundary triangulations in iterations one through three. 

If there are mult iple possible triangulations satisfying the smoothness 

constraint, the algori thm selects the highest qual i ty one among them 

(Section 4.4.1). If this is the first t r iangulat ion found or i f the new 

tr iangulat ion is better than the best t r iangulat ion found so far, then 

the best t r iangulat ion is appropriately updated. 

3. Form New Covers: The method then extracts val id charts from the 

convex hulls of a l l the subloops in S. If a chart shares a boundary w i t h 

the cover C, i t tests i f the dihedral angle across the shared edge satisfies 

the smoothness threshold. Charts which fail the test are discarded. 

For each of the remaining charts the method forms a new cover N 

combining C and the new chart. 

4. A d d to Queue: We observe that a subset of a new cover N may 

already be present in the pr ior i ty queue. In this case, naively adding 

N to the queue can lead to repeated computations. To avoid this 

redundancy, the method checks if N contains a cover already in the 

queue. If this is not the case then ./V is added to the queue. If a 

subset of N is i n the queue and the quali ty of N is better than that 

of the subset one, the subset cover is removed from the queue and N 

is inserted. If it is worse, then N is discarded. In Figure 4.4, i terat ion 

two, the blue-red cover is discarded since a better subset of it (the 

purple cover) was added to the queue at i terat ion one, and was not 

yet processed. 

5. Termination: The algori thm terminates if the queue is empty or if 
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the best computed tr iangulat ion is deemed to be acceptable, using the 

measures described in Section 4.4.1. Otherwise, the a lgor i thm goes 

back to Stage 1. 

A s mentioned previously, the algori thm uses a variat ion of the branch-

and-bound approach [14] and operates s imilar ly to A * search [33]. L ike 

a l l branch-and-bound methods, the algori thm maintains the best solution 

found so far and uses it as an upper bound against which the current cover 

is compared. The algori thm is similar to A * in the sense'that it uses a 

pr ior i ty queue of par t ia l solutions (i.e., covers) and processes them in the 

order most l ikely to lead to a solution the fastest. However, unlike classical 

A * , there is no a priori goal state. A s described i n Stage 5, the a lgor i thm only 

terminates when the queue is empty or if the best solution found so far is 

acceptable. Addi t iona l ly , to avoid repeated computat ion, the a lgor i thm does 

not mainta in an explicit closed list of previously processed covers. Rather , as 

described i n Stage 4, the method avoids repeated computat ion by checking 

if the current cover entirely contains a cover already in the pr ior i ty queue, 

and if so appropriately removes one of these. 

T h e pseudocode for the algori thm is presented in Figure 4.5. 

4.4 Metrics 

4.4.1 Triangulation Quality 

W h e n evaluating t r iangulat ion quality, we consider two of the cr i ter ia dis

cussed i n Section 4.2: predictabil i ty and fairness. We do not need to 

take smoothness into account as the algori thm automatical ly discards non-

smooth triangulations. To evaluate predictability, we compute the number 

of branching points on the surface normal map. In a discrete setup, these 

correspond to interior triangles in the tr iangulat ion and hence can be eas

i ly counted. Fairness is measured as the sum of squared dihedral angles 

across interior t r iangulat ion edges. Note that the op t imum is zero for b o t h 

metrics. In our setup, we consider predictabil i ty as more important than 
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Input: Polyl ine orig 

best <- Null ; 
PriorityQueue pq ; 
pq. Insert (Em ptyCover); 
while pq not empty and best not good enough do 

C <— pq.PopO; 
if best is better quality than C then continue ; 

S <— orig.Subtract (C); 
ComputeConvexHulls(S); 

. if every subloop € S has envelopes then 
foreach permutation P of envelopes do 

if P + C is smooth then 
if P + C is better quality than best then 

best <- P + C ; 
end 

end 
end 

end 
foreach subloop 6 S do 

Charts <— ComputeCharts(hull of subloop); 
foreach chart 6 Charts do 

N <— chart + C ;' 
if N is not smooth then continue ; 
if N D some other cover R 6 pq then 

if N is better quality than R then 
pq.Remove(R); 
pq.Insert(N); 

end 
else 

pq.Insert (N); 
end 

end 
end 

end 
return best 

Figure 4 . 5 : Pseudocode of main loop. 
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fairness. Thus , to compare two triangulations, we first compare predictabi l 

i ty and only if the predictabi l i ty is the same compare fairness. 

W h e n determining if a t r iangulat ion is acceptable (Stage 5), the two 

cri ter ia can be compared against lower bounds set by the user. Us ing such 

lower bounds can speed up the processing, as the a lgori thm w i l l terminate 

once an acceptable t r iangulat ion is found. 

4.4.2 Cover Quality 

We consider the same two cri teria when evaluating a cover, wherein a cover 

evaluation aims to provide a lower bound on the quali ty of any tr iangulat ion 

that contains i t . The lower bound on predictabil i ty measures the min ima l 

number of interior triangles in any tr iangulat ion containing the cover. To 

compute this value, we consider the set of subloops S formed by subtract ing 

the cover charts from the original boundary. We observe that i f a subloop 

shares edges wi th more than two cover charts, any t r iangulat ion of it w i l l 

contain at least one interior t r iangle 1 . A subloop which is adjacent to one 

or two cover charts can potential ly be tr iangulated wi thout any interior 

triangles. Thus the predictabi l i ty metric of a cover is the number of subloops 

adjacent to more than two cover charts. 

To measure the fairness of a cover we first compute the sum of squared 

dihedral angles wi th in the cover charts and then add to it a lower bound on 

the sum of angles for the subloops in S computed as follows. If a subloop 

has two adjacent cover charts, we first fit an orthogonal distance regression 

plane to the subloop and compute the dihedral angles a i and OLI between 

the plane and the chart triangles adjacent to the subloop (Figure 4.6). T h e 

sum of the two angles gives us a lower bound on the sum of angles on any 

interpolat ing tr iangulat ion of the subloop and between this t r iangulat ion 

and the adjacent charts. To bound the sum of squared angles, we assume 

equal dis t r ibut ion on a l l the n — 1 edges involved, where n is the number of 

vertices on the subloop 2 . Thus for each such subloop we add to the fairness 

' T h e triangulation has n — 2 triangles and less than n — 3 edges on the original boundary, 
where n is the polyline size. Hence at least one triangle has no boundary edges. 

2 W e arrive at n — 1 as the number of interior edges in the triangulation n — 3 plus the 
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(b) Profile of (a) (c) Dihedral Angles 

Figure 4.6: C o m p u t i n g a lower bound on fairness, (a) A n orthogonal dis
tance regression plane (blue) is fit to the red subloop and normals are cal
culated, (b) Profile view; (c) Nota t ion used for the dihedral angles. 

metric (a\ + ct2)2/(n — 1). If a subloop has more than two adjacent cover 

charts, we pick a random pair and do the same computat ion. If a subloop 

has only one adjacent chart, we return zero as an estimated lower bound for 

that subloop. 

A cover and a t r iangulat ion or two covers are compared i n the same way 

as two triangulations, by first considering predictabi l i ty and then fairness. 

Since the cover qual i ty is a lower bound, it can be safely used when deciding 

to discard a cover if it cannot lead to a t r iangulat ion better than the current 

one (Stage 1). 

4.4.3 Cover Potent ia l 

The purpose of this metric is to prioritize covers based on their potential 

to be part of the expected final tr iangulation. T h e final t r iangula t ion is 

expected to have a very small number of interior triangles. Thus a cover 

is more l ikely to lead to an acceptable tr iangulat ion if it contains a smal l 

number of charts, where at least one of the charts is quite large. We first 

order the covers in ascending order based on the number of charts, and then 

two edges adjacent to the charts. 
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(a) (b) 

Figure 4.7: Mode l ing a cone by a boundary w i t h a single dart, 

in descending order based on the largest consecutive chart area. 

4.5 Darts and Mult iple Boundaries 

Our method is the first to our knowledge to seamlessly handle darts as well 

as mult iple boundary loops. Darts are duplicate edges on the boundary 

and are frequently used in design setups such as garment making to intro

duce points or lines of non-zero curvature onto the surface. To il lustrate, 

Figure 4.7 shows how a cone can be modeled by a boundary w i t h a single 

dart. The processing of darts is straightforward and requires only minor 

data-structure modifications to support coincident polyl ine vertices. W h e n 

processing boundaries w i th mult iple loops the method priorit izes processing 

of charts which connect separate loops before processing any other chart. If 

such charts are unavailable, the method connects the loops by the shortest 

tree of edges, treating those as interior edges for processing purposes. 

4.6 Addi t ional Modeling Control 

The algori thm, as described, returns the best boundary t r iangulat ion com

puted, based on user indicated preferences in terms of qual i ty metrics. 

Clearly, there might be cases when a user has addi t ional constraints in mind . 

For instance, for the gazebo in Figure 5.6 we had a par t icular orientat ion in 

mind . We provide two mechanisms for users to expl ic i t ly control the final 

surface: specifying rulings and overriding opt imal selection. 
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4.6.1 Specifying Rul ings 

To influence the final surface, users can specify a few of the rulings they 

expect to see on the result. These rulings are treated as t r iangulat ion edges 

which are constrained to be part of the final surface. For the purse example 

(Figure 5.11) we used this option to specify a rul ing to the right of the handle, 

causing the purse to bulge outwards instead of curv ing inside (Figure 4.8). 

The specified edges segment the boundary into several separate subloops 

and the a lgor i thm is run separately on each subloop, considering only the 

original polyl ine edges as boundary edges for chart extract ion. 

4.6.2 Over r id ing O p t i m a l Selection 

In addi t ion to user drawn rulings, we provide another mechanism for obtain

ing alternative triangulations. Each t ime the a lgor i thm computes a t r iangu

lat ion, it is immediately visualised and stored while the rest of the processing 

continues. T h e user thus has the option to interrupt the a lgor i thm when 

they see a t r iangulat ion that they like, and they may also browse a l l the com

puted triangulations at any point during or after processing. T h e gazebo 

(Figure 5.6) was selected this way. Alternatives found by the method are 

shown in Figure 4.9. 

Figure 4.8: Specifying Rulings, (a) Or ig ina l input boundary network; (b) 
Surface structure of (a); (c) Boundary network and specified rul ing; (d) 
Surface structure of (c) 
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Figure 4.9: Al te rna t ive triangulations for the gazebo example (Figure 5.6) 
found by our method, (a) Or ig ina l input boundary; (b) Solu t ion used to 
make gazebo; (c), (d), (e) Al ternat ive solutions. 

4.7 Runtime 

The search space for the algori thm is exponential i n the number of charts 

found. However, using the pr ior i ty queue combined w i t h the potent ial and 

qual i ty estimations, the method typical ly performs only a smal l number of 

iterations (less than two thousand for a l l the models shown in Chapter 5). 

A t each i terat ion the dominant component of the runtime is the convex 

hul l computat ion, which takes 0(n log n) t ime in the number of vertices on 

the input boundaries. Thus, in practice, the overall runt ime varies from a 

few seconds for simple models such as the Opera House (Figure 5.5), to a 

few minutes for more complex models. We observe that the to ta l runt ime 

strongly depends on the number of charts formed at each i terat ion, which 

is direct ly l inked to the complexity of the input boundary rather than to 

the number of vertices on it. Table 4.1 lists running t ime statistics for sev

eral of the examples presented in Chapter 5. The to ta l t ime is the amount 

of t ime passed unt i l the pr ior i ty queue of covers is empty, at which point 

the algori thm terminates since it has exhausted its search space. Since we 

permit overriding the opt imal selection (Section 4.6.2), we also show the 

solution t ime which is the amount of time for the a lgor i thm to first ar

rive at the presented surface as a solution. For some of the examples such 

as the skyscraper roof or the paper lamp leaf, the presented surface was 

found almost immediately, though the algori thm continued to find alterna

tive solutions unt i l its search space was exhausted. T h e running times were 

collected on a computer w i th an A M D Opteron 2218 processor and 4 G B of 
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M o d e l # Vertices Solut ion T i m e (s) To ta l T i m e (s) 

Skir t (back) 737 17.8 19.9 

Skir t (front) 736 31.2 34.7 

Tanktop (back) 354 4.2 4.6 

Tanktop (front)* 358 38.7 156.8 
Opera House 245 2.8 2.8 
Skyscraper B o d y 300 + 400 8.9 11.2 
Skyscraper R o o f 400 0.9 82.7 

Paper L a m p PetaU 509 13.2 243.2 
Paper L a m p Leaf* 300 1.4 476.0 

Helmet (back middle) 214 3.8 4.0 

Helmet (back left/right) 466 4.1 4.3 

Helmet (front middle) 310 4.3 9.2 

Helmet (front left/right) 835 15.7 17.8 

B r o w n Cha i r 244 4.5 5.3 

R e d C h a i r 232 1.5 1.6 
*1.5% t 2% 

Table 4.1: R u n n i n g times for the algori thm on several examples. Solut ion 
t ime is the amount of t ime for the algori thm to first arrive at the presented 
surface as a solution. Tota l t ime is the amount of t ime passed un t i l the 
pr ior i ty queue of covers is empty and the algori thm has exhausted its search 
space. A l l of the examples were run wi th an area threshold of 3%, unless 
otherwise specified. 

ma in memory. 

4.8 Robustness 

We observe that the topology of a convex hul l is easily affected by noise in 

the input polyline. Th i s can drastically affect the a lgor i thm runtime as it 

leads to chart fragmentation and can sometimes also influence the resulting 

surface. To ensure a robust convex hul l calculation, the a lgor i thm expects 

smooth and sufficiently well sampled polylines as input . 

To further increase the robustness of the hul l calculat ion, the a lgor i thm 

computes the center of mass C of the polyline boundary and slightly offsets 

each vertex radial ly from it . Th i s offsetting effectively makes the curve more 
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" convex". T h i s pre-processing drastically reduces the number of interior t r i 

angles on the hul l and improves stability. The offsetting also bends nearly a l l 

planar portions of the boundary, which would otherwise allow for ambiguous 

triangulations and possible numerical issues when comput ing the planari ty 

metric. A d d i t i o n a l offsetting from a sl ightly shifted center is performed in 

the rare cases where C is in the same plane as part of the boundary. 

4.9 User Interface3 

The algori thm requires as input a polyline boundary which is assumed to 

be sampled from an underlying smooth 3D space curve. There are several 

ways of specifying such a 3D space curve. For example, support for edi t ing 

N U R B S curves is common in most commercial modeling packages (e.g., [1], 

[3]). However, to make our modeling metaphor feasible for non-expert users, 

a fast, sketch-based interface, based on [15], is available. Though easy to use, 

this interface is sufficiently powerful to generate r ich and complex examples. 

Indeed, the majori ty of the examples in Chapter 5 were created using this 

sketch-based interface. 

In the interface, users can create the 3D boundary curves by first sketch

ing them in one plane and then deforming them from a different viewpoint . 

Addi t iona l ly , s imilar to [15], the sketching system infers depth information 

from a single sketch when the polyl ine is drawn over an exist ing model (F ig

ures 4.10). The polyline is then set at a frontal distance to the model that 

interpolates the two distances at the extremities. T h i s feature is especially 

useful for our garment examples (Section 5.1), where we drew the desired 

boundaries on top of a 3D mannequin automatical ly keeping the boundaries 

at the desired distance from the body. 

T h e sketching system identifies darts as polyl ine sections that start from 

a closed boundary loop. W h e n a dart is detected, this section is duplicated 

and added twice to the parent polyline while its orientation is switched, 

forming a single closed boundary. Lastly, when the t ip of a dart reaches 

3 T h e user interface for specifying boundaries is not a contribution of this thesis and is 
discussed only for completeness. 
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(a) User's Sketch (b) Extracted Boundary 

Figure 4.10: Sketching a shoe overtop of an under lying model of a foot. 

the same boundary again, the latter is split into two loops, enabling easy 

generation of a boundary network. 

Since a user's sketch may have smal l amounts of noise due to j i t te r i n 

their hands, the interface smooths the sketch strokes by fit t ing a piecewise 

B-spline curve. T h i s curve is then sufficiently sampled to create a polyl ine 

that is satisfactory for the algori thm. 

4.10 Limitations 

T h e theoretical setup of our algori thm assumes that the polyl ine boundaries 

are sampled from a sufficiently smooth curve. A s shown by the examples, the 

algori thm remains robust even when this is not the case. A s noted earlier, 

though it is possible that a convex hul l may not contain any va l id charts, 

such situations are extremely rare. If such a si tuat ion occurs the runt ime is 

significantly increased, but the method is s t i l l guaranteed to find a solution. 

We also observe that there may exist smooth developable surfaces where 

no rul ing of the surface appears on the convex hul l of its boundary. One 

such example is provided by Wang [42]. Consider a non-intersecting smooth 

curve C ly ing on the unit sphere centered at origin. C should be sufficiently 

long so that its convex hul l contains the origin in its interior. A n offset 

curve C is then constructed by radial ly extruding C inwards towards the 

origin (Figure 4.11(a)). A developable surface D w i t h boundaries C and C 
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(a) (b) (c) (d) (e) 

Figure 4 .11: Boundary i l lustrat ing l imitations, (a) Bounda ry curve defined 
w i t h its outer por t ion ly ing on the unit sphere centered at the or ig in . T h e 
inward por t ion is created by extruding the outer por t ion radia l ly towards 
the origin; (b) A developable surface is defined by connecting correspond
ing points on the outer and inner portions wi th straight lines; (c) T h e de
velopable surface in (b) is entirely contained inside the convex hul l of its 
boundary. None of the rulings of the surface lie on the convex hul l ; (d) The 
boundary is split into two parts by specifying a single rul ing; (e) E a c h part 
how has a convex hul l containing rulings from the surface i n (b). 

is then defined by connecting together corresponding points on C and C 

(Figure 4.11(b)). Since a l l rulings pass through the or igin and the origin 

lies inside the convex hul l , no rulings lie on the convex hul l . Therefore, D is 

entirely contained inside the convex hul l of its boundary (Figure 4.11(c)). In 

cases like this, our method w i l l not find the desired developable surface D. 

However, adding one or two extra rulings (Figure 4.11(d)) would typica l ly 

break such surface into parts that part ial ly lie on the respective boundary 

hulls and are thus computable by the method (Figure 4.11(e)). 
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Chapter 5 

Results 

T h i s chapter demonstrates the applicat ion of our method on a variety of 

inputs coming from different applicat ion areas where developables are used. 

T h e purple and white coloring of the surfaces shows the surface structure 

wi th torsal developable surfaces shown in purple and interior triangles, cor

responding to planar transi t ion regions, in white. 

5.1 Garments 

Figures 5.1, 5.2, 5.3, and 5.4 show several garments generated from simple 

sketches using our system. The modeling of each of the garments took only 

a few minutes compared to hours using t radi t ional garment model ing tools 

such as [27] where the user is required to manual ly specify the 2D patterns 

for the garment. Rea l garments at rest are always piecewise developable 

since they are assembled from flat fabric pieces. Once worn by a character 

or a mannequin they stretch slightly due to gravity and collisions. T h e 

main challenge when modeling garments is obtaining the rest shape and 

the corresponding 2D patterns. Once these exist, s tandard s imulat ion or 

procedural techniques can be applied to account for collisions and gravity 

[1, 15, 27]. In the examples in this thesis, we focused on obtaining the rest 

shapes. We then used a standard simulat ion tool, Autodesk 3ds M a x w i t h 

Reactor [1], to visualise the garment behaviour for the poncho, skirt and 

tanktop, and dress subject to the physical forces involved. A s expected, 

the results after s imulation appear less stiff but remain very similar to the 

developable rest shapes. We note that in a l l of the examples the garments 

are generated using a network of seams. Each ind iv idua l panel surrounded 

by seams is a developable surface, but the surfaces are not developable across 

40 



Chapter 5. Results 

JPh> 13' 13 ' 
(a) Boundary Net- (b) Composite So- (c) Torsal Solution (d) Rendering of 
work lution (c) 

Figure 5.1: Ha t (modeled from six panels) 

seams. Mos t of the examples in this section uti l ize darts as part of the input 

polylines which are robustly handled by our method. In most cases, the 

created surfaces are composite developable surfaces, each containing several 

torsal developable surfaces connected by transi t ion planar regions. Since 

the created surfaces are analyt ical ly developable, the patterns (e.g., F igure 

5.3(e)) can be used as-is to create reliable real-life replicas of the garments 

and the garment texture exhibits no distortion. 

(a) Boundary Network (b) Front Structure (c) Back Structure 

(d) Simulation Result (e) Front Pattern (f) Back Pattern 

Figure 5.2: Poncho (modeled from two panels, front and back) 
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(a) Boundary (b) Front (c) Back Struc- (d) Simulation (e) Patterns 
Network Structure ture Result 

Figure 5.3: Tanktop (modeled from four panels) and Ski r t (modeled from 
two panels) 

(a) Boundary (b) Front Struc- (c) Back Struc- (d) Sim- (e) Patterns 
Network ture ture ulation 

Result 

F igure 5.4: Dress (modeled from seven panels) 
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5.2 Architecture 

Figures 5.5, 5.6, and 5.7 show examples of architectural structures generated 

using our method. T h e Opera House model (Figure 5.5) was inspired by the 

Sydney Opera House and created by duplicat ing a single developable surface 

six times at different scales. The boundary for the developable surface was 

generated using the sketch based system. T h e gazebo (Figure 5.6) is an 

example of a complex composite surface which cannot be projected to a 

plane without intersection and hence could not be easily generated by any 

previous method for modeling developables. It was modeled by sampling 

a B-spline curve wi th control vertices ly ing on the surface of a cone. T h e 

skyscraper (Figure 5.7) was created from two surfaces, one for the body of 

the bui ld ing and one for the roof. The body surface is an example of a mul t i 

loop boundary that is easily handled by our method. S imi la r to the gazebo, 

the roof of the skyscraper is a complex composite developable surface that 

cannot be projected to a plane without intersection. 

(a) Boundary (b) Surface Struc- (c) Rendering 
ture 

Figure 5.5: Opera House 

43 



Chapter 5. Results 

(a) Boundary (b) Surface Structure (c) Rendering 

Figure 5.6: Gazebo 

(a) Boundary (b) Surface (c) Rendering 
Structure 

Figure 5.7: Skyscraper 
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5.3 Paper Design 

Paper and foil are both commonly used materials used i n the design of 

home artifacts. T h e tul ip lamp modeled from developable petals and leaves 

(Figure 5.8) is mimick ing Ar t -Nouveau paper lamps. The flower is created 

by dupl icat ing and scaling a developable petal surface. W h i l e the gold-

foil leaves are composite developable surfaces the paper petals are torsal 

ruled surfaces and thus could be modeled by previous techniques, e.g. [40]. 

However, i n contrast to these approaches, w i t h our approach the user is not 

required to specify the rul ing directions or even know what ru l ing directions 

are, allowing non-experts to use the system. Furthermore, the method, 

not the user, is able to determine that a single torsal developable surface 

interpolat ing the boundary exists, a non-tr ivial observation, mak ing the 

method more attractive for non-experts. 

(a) Boundaries (b) Surface (c) Rendering 
Structures 

Figure 5.8: Tu l i p paper lamp wi th developable paper petals and gold-foil 
leaves 
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(a) Boundary (b) Smooth Solu- (c) Sharp Angles (d) Rendering of 
Network tion Solution (c) 

Figure 5.9: Helmet , (b) Solut ion obtained w i t h a smoothness threshold of 
60° ; (c) Solut ion obtained wi th a smoothness threshold of 100° . B y relaxing 
the smoothness threshold, we create the appearance of metal ridges. 

5.4 Leather, Wood Veneer, and Metal Goods 

Figures 5.9, 5.10, 5.11, 5.12, and 5.13 show a variety of objects designed 

from flat sheet materials: a metal helmet, chairs, a leather purse, a shoe, 

and a glove. Despite the complexity of the modeled surfaces, no model ing 

expertise was required when sketching them using free-form drawing. The 

examples also show the control mechanisms available to the user, such as the 

use of rulings to guide the construction of the purse as explained i n Section 

4.6.1 and the impact of smoothness threshold i n the helmet example, where 

we relaxed the threshold to create the appearance of metal ridges. The 

shoe example (Figure 5.12) was inspired by a pair of actual woman's shoes 

(Figure 5.12(a)). T h e actual shoes were fabricated wi th a single piece of 

leather and were developable almost everywhere, the only exception being 

the t ip where the leather was rounded using a heating process. To model 

this effect using only developable surfaces, we inserted a rounded dart at the 

t ip of our boundary (5.12(b)). L ike the garment examples (Section 5.1), a l l 

of these results are analyt ical ly developable, permi t t ing real life replicas to 

be manufactured. 
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(a) Boundaries (b) Rendering 

Figure 5.10: Chairs 

(a) Boundary Network and (b) Surface Structure of (c) Rendering of (b) 
Specified Rul ing (a) 

Figure 5.11: Purse 
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(a) Reference Photo (b) Boundary (c) Surface Struc- (d) Rendering 
ture 

Figure 5.12: Shoe 

(a) Boundary Network (b) Surface Structure (c) Rendering 

(d) Boundary Network (e) Surface Structure (f) Rendering 

Figure 5.13: Glove 
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Summary 

T h i s thesis presents an algori thm for computing developable surfaces in 

terpolating arbi trary 3D polygonal boundaries. Combin ing this a lgor i thm 

w i t h an interface for edi t ing 3D curves results i n an easy to use system 

for modeling composite developable surfaces i n which users s imply specify 

the boundaries of each surface patch. Unl ike many previous approaches for 

modeling developable surfaces, significant geometric expertise is not pre

requisite, which is an attractive option for non-expert users. However, the 

method permits user interaction and opt imizat ion of different surface prop

erties, granting more advanced users the abi l i ty to finely control the output 

surface. 

T h e algori thm is based on the linkage between between a developable 

surface interpolat ing a boundary curve and the convex hul l of that curve. 

The method explores the space of possible interpolating developable surfaces 

searching for solutions which have a desired set of shape properties. T h e 

presented approach is fairly generic and can be easily extended to handle 

addit ional shape metrics. The runtime of the a lgori thm is strongly affected 

by the complexi ty of the input boundary, and to a lesser degree, the number 

of vertices on the boundary. In practice, the overall runtime is low, ranging 

from a few seconds for simple boundaries to a few minutes for more complex 

boundaries. 

A s demonstrated by the numerous examples in Chapter 5, the method 

robustly computes developable surfaces interpolating a vast, array of input 

boundaries and can be used to model an assortment of developable shapes. 

Dar ts are direct ly supported by the method, making it especially pract ical 

for garment design setups. In a l l of the presented examples, since the results 

are analyt ical ly developable, the flattened 2D patterns are available. T h i s 
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permits real replicas of the shapes to be fabricated. 
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Chapter 7 

Future Work 

The algori thm presented in Chapter 4 presented smoothness, predictabi l 

ity, and fairness as desirable surface characteristics. These characteristics 

were used to guide the algori thm towards an interpolating surface that op

t imized these traits. However, one could consider alternative properties to 

optimize for. For example, Wang and Tang [40] identify min ima l surface 

area, m in ima l bending energy, min ima l mean curvature variat ion, and min i 

mal normal variat ion as opt imizat ion objectives. Exp lo r ing these and other 

surface metrics would permit addi t ional user control and further improve 

the algori thm. 

G i v e n a network of boundary curves, the a lgori thm runs separately on 

each surface patch, returning a developable surface interpolat ing each. The 

resulting composite developable surface thus has C° cont inui ty across its 

seam lines and the surface is not developable across seams. However, i n 

certain designs, higher orders of continuity are required. For example, C 2 

continuity is necessary to ensure continuous highlights and reflection lines. 

One approach to support higher geometric continuity would be to modify the 

algori thm so that it is globally aware of a l l of the patches, not just local ly 

aware of its current patch. W h e n in i t ia l ly selecting charts on the convex 

hul l of a patch, it could favour charts having a corresponding "continuation 

chart" on the convex hul l of an adjacent patch. 

A d d i t i o n a l support for singularities would be an interesting endeavour. 

Though the a lgori thm currently supports darts as a mechanism for intro

ducing singular lines, less restrictive results may be achieved by exploring 

other types of singularities (e.g., crescent singularities and stretching ridges 

Fina l ly , formalized user studies i n which individuals are tasked wi th de-

[26]). 
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signing developable objects would be beneficial. In addition to helping iden

tify strong and weak points of the user interface, user studies could possibly 

provide a notion of the amount of design experience required to use the 

system. 
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