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ABSTRACT 

In this thesis, we first surveyed and analyzed the Kermit, XMODEM, YMODEM, and 

ZMODEM file transfer protocols. A number of theoretical channel utilization equations were 

then developed that would predict the effective utilization, and hence effective throughput, of 

stop and wait protocols and streaming protocols. A series of experiments were performed 

that measured the effective throughput of the protocols at various baud rates and error rates 

and showed the utilization equations to be within ±5% of the measured values. Based upon 

these results, a full-streaming communications protocol, MAX2, was designed. A subset of 

the MAX2 protocol was then implemented and tested at different baud rates and error rates. 

These results were within ±1.5% of the theoretical values and showed that the MAX2 

protocol to be more efficient than the Kermit, XMODEM, YMODEM, and ZMODEM 

protocols at all baud rates and error rates when using comparable maximum packet sizes . 

These results also indicated that in order to achieve maximum effective throughput, the 

packet size must change as the communication channel's error rate changes. 
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1. INTRODUCTION 

1.1 MOTIVATION AND OBJECTIVES 

There are a large variety of protocols that can be used to transfer a file between two 

computer systems. Although many of these protocols are proprietary, there are several that 

are in the public domain and suitable for use on microcomputers. Protocols such as the 

Kermit, XMODEM, YMODEM, and ZMODEM protocols are in the public domain and are 

designed to perform end-to-end file transfers. The Kermit, XMODEM, and YMODEM are 

stop and wait protocols while the ZMODEM protocol is a streaming protocol with go back N 

retransmission. 

Each of these protocols have different capabilities and characteristics that determine 

its channel utilization under various communication channel conditions. After examining 

these protocols, it was felt that none of the protocols make optimal use of the 

communications channel under all conditions and that a better protocol could be designed. 

This can be confirmed experimentally or by using mathematical equations that analyze the 

channel utilization of these and other similar protocols under different communication 

channel error rates, error distributions, and transmission speeds. 

Work performed by Zacharov [16] and Field [3] showed that a protocol's packet size 

affects the channel utilization. As a packet's size increases, the chance that it is corrupted 

by transmission errors increases and the cost of recovering from a corrupted packet also 

increases. However, for a given communication channel error rate and distribution, there is 

a packet size that will allow for maximum channel utilization. Unfortunately, neither Field 

nor Zacharov considered the effect of a protocol's timeout period on the channel utilization of 

stop and wait protocols. 
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Miller [11], however, analyzed the throughput of several link level protocols as a 

function of the communication channel's bit error rate. The protocols examined used either a 

selective or nonselective retransmission scheme. As a result of his research, Miller, 

concluded that there is little performance difference between different retransmission 

strategies with a reliable communications channel. However, Miller's analysis did not take 

into account the possibility that a reply packet could be corrupted. 

A set of simple channel utilization equations for stop and wait protocols and sliding 

window protocols have been derived by Stallings [13]. However, the equations assume that 

reply packets are always transmitted correctly. In addition, the channel utilization 

equations do not consider the effect that timeouts and reply packet sizes may have on a 

protocol's channel utilization. A more accurate set of channel utilization equations have been 

derived by Tanenbaum [16]. Although these equations take more factors into consideration, 

they do not differentiate between the possibilities that a packet can be lost or corrupted. 

1.2 OUTLINE 

A summary of the public domain file transfer protocols, Kermit, XMODEM, 

YMODEM, and ZMODEM is presented in Chapter 2. The packet sizes, packet formats, and 

encoding algorithm of each of the protocols and their variants are described. In addition, the 

capabilities and strengths of these protocols were compared. 

In Chapter 3, a number of mathematical models are derived that analyzes the 

channel utilization of stop and wait protocols, streaming protocols with selective 

retransmission, and streaming protocols with go back N retransmission. These models show 

the effect that a protocol's data packet size, reply packet size, timeout period, and data 

encoding algorithm and the communication channel's error rate, error distribution, and 
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transmission speed have on a protocol's effective channel utilization. Once a protocol's 

effective channel utilization has been determined, the protocol's effective data throughput 

can be calculated by taking the product of the communication channel's transmission speed 

and the protocol's channel utilization. The validity of these mathematical models were 

verified by measuring the throughput of the Kermit, XMODEM, YMODEM, and ZMODEM 

protocols under different communication channel transmission speeds, error rates, and error 

distributions. 

A new data link protocol, MAX2, is presented in Chapter 4. Using the information 

obtained from the work performed in Chapter 3, the MAX2 protocol is designed to be a 

powerful, versatile protocol that provides better channel utilization than the protocols 

described in Chapter 2. A prototype of the MAX2 protocol was implemented and its effective 

data throughput measured under different communication channel transmission speeds and 

error rates. These results were used to validate the channel utilization model for streaming 

protocols with selective retransmission and to show that it offers better channel utilization 

than the public domain file transfer protocols described in Chapter 2. 
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2. PROTOCOL SURVEY 

2.1 INTRODUCTION 

There are many protocols that can be used to transfer information over serial 

telecommunication lines. Several of these protocols have been placed in the public domain 

and are used by many users to transfer files between machines of possibly different 

architectures and operating systems. 

This section summarizes the capabilities, strengths, and weaknesses of the following 

public domain file transfer protocols: Kermit, XMODEM, YMODEM, and ZMODEM. 

Although these protocols do not contain all seven layers of the OSI Model*, they contain 

aspects of the application and data link layers. However, since each of these protocols are 

fully described in their respective protocol documents, only those aspects of the protocols that 

have a direct bearing on the channel utilization are described here. 

2.2 KERMIT 

2.2.1 Introduction 

In 1981, a new file transfer protocol, Kermit, was developed at Columbia University 

by Bill Catchings and Frank da Cruz [3] to allow the exchange of data between a diverse 

mixture of computer systems. Unlike existing protocols, Kermit could be implemented on 

any computer system capable of transparently transmitting ASCII characters over seven bit 

serial lines. In addition to placing the Kermit protocol and its implementations in the public 

1. Data and Computer Communications [13], page 389 
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domain, Columbia University also took on the task of coordinating the maintenance and 

distribution of the Kermit protocol and its implementations. 

2.2.2 Classic Kermit 

The original Kermit protocol, Classic Kermit, was a simple stop and wait protocol 

with selective retransmission. To ensure that communications between extremely dissimilar 

systems and possibly over seven bit serial lines will be successful, the Kermit protocol 

packets contain only seven bit printable ASCII characters, values 32 to 126. 

In order to do so, the Kermit protocol applied two encoding algorithms to its packets. 

The first algorithm, "tochar", converted one byte unsigned integer field values into one byte 

encoded ASCII values by adding the value 32 to them. Consequently, Kermit integer field 

values were restricted to the values 0 to 94. 

The second encoding algorithm, prefix encoding, is applied to the user data. It was a 

three pass algorithm that performs, in order, repeat encoding (optional), eighth bit encoding, 

and control encoding. These algorithms are shown in Figures 1, 2, and 3, respectively. 
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BEGIN Repeat Encoding Algorithm 
count = 1; 
WHILE (more data) AND (value = next value) AND (count < 94) DO 

count = count + 1 
value = next value 

END WHILE 
IF (count > REPEAT_THRESHOLD) THEN 

IF (tochar (count) = REPEAT_PREFIX_CHAR) THEN 
encoded count = REPEAT_PREFIX_CHAR, REPEAT_PREFIX_CHAR 

ELSE 
encoded count = tochar (count)) 

END IF 
IF (value = REP EAT_P REFIX_CHAR) THEN 

RETURN (encoded count, value, value) 
ELSE 

RETURN (encoded count, value) 
END IF 

ELSE 
WHILE (count > 0) DO 

encoded value = encoded value, value 
IF (value = REPEAT_PREFIX_CHAR) THEN 

encoded value = encoded value, value 
END IF 
count = count - 1 

END WHILE 
END IF 

END Repeat Encoding Algorithm , 

Figure 1. Kermit Repeat Encoding Algorithm 

BEGIN Eighth B i t P r e f i x Encoding 
IF (value = EIGHTH_BIT_PREFIX_CHAR) THEN 

RETURN (EIGHTH_BIT_PREFIX_CHAR, EIGHTH_BIT_PREFIX_CHAR) 
ELSE IF (value > 7Fh) AND (7 b i t communications) THEN 

RETURN (EIGHTH_BIT_PREFIX_CHAR, value & 80h) 
ELSE 

RETURN (value) 
END IF 

END Eighth B i t P r e f i x Encoding 

Figure 2. Kermit Eighth Bit Encoding Algorithm 
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BEGIN Control P r e f i x Encoding 
IF (value == CONTROL_PREFIX_CHAR) THEN 

RETURN (CONTROL_PREFIX_CHAR, CONTROL_PREFIX_CHAR) 
ELSE IF (32 <= (value AND 7Fh) <= 12 6) THEN 

RETURN (value) 
ELSE 

RETURN (CONTROL_PREFIX_CH AR, value XOR 40h) 
END IF 

END Control P r e f i x Encoding 

Figure 3. Kermit Control Prefix Encoding Algorithm 

Once the data has been encoded, it is partitioned and inserted into the DATA field of 

packets, whose format is shown in Figure 4, such that the value of each packet's LEN field 

does not exceed 94 and no encoded sequence is split across two packets. If Kermit's 

CRC-CCITT checksum is used, each data packet could contain a maximum of 89 bytes of 

encoded data. 

1 LEN bytes j 

MARK LEN SEQ TYPE DATA CHECK EOL 

1 CHECKsummed 1 

i n d i c a t e s s t a r t of packet, u s u a l l y CTL-A 
length of remainder of packet - 1 <= 94 
sequence number MOD 64 
packet type 
0 to 91 bytes of encoded user data 
1 to 3 byte checksum 

end of l i n e character, usually carriage return 

Figure 4. Classic Kermit Packet Format 

The Kermit protocol's error mechanism is very simple. After sending a data packet, 

the sender waits for the receiver to send an acknowledgement. Since all needed information 

MARK 
LEN 
SEQ 
TYPE 
DATA 
CHECK -
EOL 
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is contained within the reply packet's header, the DATA field is empty. If the reply is a 

positive acknowledgement, the next data packet is sent; otherwise, the current data packet is 

retransmitted. However, if the sender does not receive a reply within a preset timeout 

period, it resends the current data packet. Conversely, if the receiver does not receive a data 

packet within its preset timeout period, it either resends its last reply or sends a negative 

acknowledgement for the expected data packet. 

2.2.3 Extended Length Packet Extension 

In 1986, extended length packets were added to the Kermit protocol. This extension 

was fully backwards compatible with the original protocol and provided a greater effective 

data throughput by allowing larger data packets to be used. The format of this extended 

length Kermit packet is shown in Figure 5. 
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(95 * LEN1 + LEN2) bytes 

MARK LEN SEQ TYPE LEN1 LEN2 HCHECK DATA CHECK EOL 

HCHECKsummed 
; CHECKsummed 

MARK - i n d i c a t e s s t a r t of packet, u s u a l l y CTL-A 
LEN - set to 0 
SEQ - sequence number MOD 64 
TYPE - packet type 
LEN1 - 0 to 94 
LEN2 - 0 to 94 
HCHECK - one byte arithmetic checksum of SEQ, TYPE, LEN1, 

and LEN2 f i e l d s 
DATA - 0 to 9023 bytes of p r e f i x encoded user data 
CHECK - 1 to 3 byte checksum 
EOL - end of l i n e character, u s u a l l y carriage return 

Figure 5. Extended Length Kermit Packet Format 

Although the use of extended length packets must be agreed upon by both the sender 

and receiver during the connection phase, both standard and extended length packets may 

be intermixed within the negotiated session. If the LEN field of a packet is greater than 

three, the packet is a standard length packet; otherwise, if the LEN field is zero, the packet 

is an extended length packet. Consequently, both extended length data packets and 

standard length reply packets can and are used during the data transfer phase. 

2.2.4 Sliding Window Extension 

In 1985, an extension was added to the original Kermit protocol that would allow 

sliding windows to be used with the existing Kermit packets. When the sliding windows 

extension is being used, the sender is allowed to send successive data packets without 
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waiting for their replies as long as the window is not full. The receiver simply sends 

acknowledgements for each data packet received. In addition, negative acknowledgements 

are sent to the sender for any missing packets that are detected by the receiver. 

2.3 XMODEM 

2.3.1 Introduction 

The original version of the XMODEM protocol was developed by Ward Christensen in 

1977 [4]. It is also referred to as "MODEM", "MODEM7", and the "Christensen Protocol". 

Since then, a number of modifications have been made that have produced XMODEM-CRC 

and XMODEM-1K. However, each of these modified XMODEM protocols, like the original, 

require an asynchronous transmission medium that is capable of providing 8 data bits, no 

parity bit, and one stop bit. 

2.3.2 XMODEM (Original) 

The XMODEM protocol is a simple stop and wait protocol. It is comprised of only 

two types of packets: control and data packets. The control packets, ACK, NAK, CAN, and 

EOT, are simple one byte packets. Meanwhile, data packets, shown in Figure 6, are 132 

bytes long. Furthermore, the XMODEM protocol does not perform any encoding. 
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SOH BLOCK # 255 - BLOCK # DATA CHECKSUM 

SOH 
BLOCK 
255 -
DATA 

# 
BLOCK # -

01H, i n d i c a t e s s t a r t of packet 
sequence number MOD 256 
ones complement of sequence number 
128 bytes of user data 

CHECKSUM - bytewise checksum 
Figure 6. XMODEM DATA Packet Format 

After the sender has sent a DATA packet, it waits for a reply from the receiver. If 

the reply is an ACK, the next DATA packet is sent; otherwise, if the reply is an NAK, the 

DATA packet is resent. However, if the reply is a CAN, the transfer is aborted. If the sender 

does not receive a reply before its timeout period expires, it resends the current DATA 

packet. Conversely, if the receiver times out, it sends an NAK 

2.3.3 XMODEM-CRC 

The XMODEM-CRC protocol is a simple extension of the XMODEM protocol to 

provide CRC-16 checksums. During the connection phase, if the receiver sends the C packet, 

a new control packet, instead of the NAK packet, the sender uses the DATA-CRC packets 

shown in Figure 7 instead of the normal DATA packets. 

SOH BLOCK # 255 - BLOCK # DATA CRC-16 

SOH - 01H, i n d i c a t e s s t a r t of packet 
BLOCK # - sequence number MOD 25 6 
255 - BLOCK # - ones complement of sequence number 
DATA - 128 bytes of user data 
CRC-16 - 16 b i t CRC 

Figure 7. XMODEM-CRC DATA-CRC Packet Format 
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2.3.4 XMODEM-1K 

In 1982, Chuck Forsberg improved the throughput of XMODEM and XMODEM-CRC 

by extending the size of the DATA packets and created the XMODEM-1K protocol [4]. This 

protocol required a simple modification to the XMODEM-CRC protocol and the addition of a 

DATA-IK packet shown in Figure 8. 

STX BLOCK # 255 - BLOCK # DATA CHECKSUM 

STX 
BLOCK 
255 -

# 
BLOCK # -

02H, i n d i c a t e s s t a r t of packet 
sequence number MOD 256 
ones complement of sequence number 

DATA - 1024 bytes of user data 
CHECKSUM - CRC16 (st r o n g l y recommended) or 

bytewise a r i t h m e t i c checksum 
Figure 8. XMODEM-1K DATA-IK Packet Format 

The checksum used in the DATA-IK packets is determined by the receiver. Like the 

XMODEM-CRC protocol, if the receiver sends the C packet at start up, the sender uses a 

CRC-16 checksum in its data packets; otherwise, a bytewise arithmetic checksum is used. 

Like the other XMODEM packets, DATA-IK packets are fixed length and its contents are 

not encoded. 

2.4 YMODEM 

The YMODEM protocol is a modified XMODEM-1K protocol developed by 

Chuck Forsberg that allows multiple files to be transferred after a connection has been 

established [4]. When the sender receives a C packet, it sends a DATA packet containing the 

name (and possibly size) of the file about to be transferred. Upon receiving this DATA 
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packet, the receiver acknowledges it appropriately. When the file information has been 

received correctly, if it is possible to receive and store the specified file, another C packet is 

sent; otherwise, a CAN packet is sent to abort the transfer of the specified file. 

Once the sender receives the second C packet, the file transfer begins and is identical 

to the XMODEM-1K protocol. When the file transfer is complete, the receiver sends a C 

packet to request information on the next file to be transferred. If there is no file to be 

transferred, the sender responds with a DATA packet containing a blank file name. Once 

this packet is successfully ACKed the connection is terminated. 

A variant of the YMODEM protocol, YMODEM-g, is a streaming version of 

YMODEM with error detection but no error recovery. It is initiated by the receiver sending a 

G packet instead of the C or NAK packet at start up. In this mode, the sender simply sends 

data packets as fast as the transfer medium will accept them. If the receiver detects a 

transmission error in any data packet, it aborts the transfer. 

2.5 ZMODEM 

In 1986, Telenet, a Public Data Network, funded a project to develop a public domain 

file transfer protocol. The purpose of this new protocol was to provide Telenet customers 

with a protocol capable of greater throughput than what was possible with existing protocols 

such as XMODEM, YMODEM, and Kermit. This new protocol, ZMODEM, was designed by 

Chuck Forsberg [5]. 

The ZMODEM protocol is a streaming protocol with a "go back N" error recovery 

mechanism. During the data phase, the sender sends a ZDATA control packet followed by 

data packets. If the receiver detects a transmission error, it sends a ZRPOS control packet to 

request retransmission of file data beginning at the position specified. If the ZRPOS packet 
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was received by the sender correctly, it responds with a ZDATA packet and then data 

packets containing the requested information. 

Although a ZMODEM data packet, shown in Figure 9, is always "binary" encoded, a 

control packet, shown in Figures 10 and 11 can be "binary" or "hex" encoded. 

DATA ZDLE TYPE CRC 

0 - 1024 bytes o f user data 
i n d i c a t e s end of user data 
i n d i c a t e s data packet type 
e i t h e r a 16 or 32 b i t CRC, same 
as p r e c e d i n g packet 

Figure 9. ZMODEM Data Packet Format 

Although the binary encoding algorithm is similar to Kermit's control encoding 

algorithm, ZMODEM's algorithm only prefix encodes the following control values: 16,17,19, 

24, 127,144,145,147, and 255. In addition, each character in the Telnet command string, 

"CR-@-CR", is prefix encoded. The operator may also request that all control values be prefix 

encoded. If the control packet is "hex" encoded, each byte is represented by a two character 

ASCII (lower case) string which corresponds its hexadecimal value. In either case, the 

checksum of the packets shown in Figure 11 is also similarly encoded. 

DATA -
ZDLE -
TYPE -
CRC -
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TYPE DO DI D2 D3 

TYPE - packet type 
DO - p o s i t i o n byte 0 (PO) or f l a g byte 3 (F3) 
DI - p o s i t i o n byte 1 (PI) or f l a g byte 2 (F2) 
D2 - p o s i t i o n byte 2 <P2) or f l a g byte 1 (FI) 
D3 - p o s i t i o n byte 3 <P3) or f l a g byte 0 (FO) 

Figure 10. ZMODEM Control Packet Data Field 

ZPAD ZDLE ZBIN DATA CRC-16 
16 b i t CRC Binary Encoding 

ZPAD ZDLE ZBIN32 DATA CRC-32 
32 b i t CRC Binary Encoding 

ZPAD ZPAD ZDLE ZHEX DATA CRC-16 CR LF XON 
16 b i t CRC HEX Encoding 

LF - ASCII v a l u e 10 (^J) 
CR - ASCII v a l u e 13 ( A M ) 
XON - ASCII v a l u e 17 (^Q) 
ZDLE - ASCII v a l u e 24 PX) 
ZPAD - ASCII v a l u e 42 (*) 

ZBIN - ASCII v a l u e 65 (A) 
ZHEX - ASCII v a l u e 66 (B) 
ZBIN32 - ASCII v a l u e 67 (C) 
DATA - ZMODEM C o n t r o l Packet 

Figure 11. ZMODEM Control Packet Formats 

2.6 SUMMARY 

The protocols surveyed each offer their own unique combination of features. This 

often makes one protocol more suitable than others under different conditions. These 

features are summarized in Table 1. 

The strength of the Kermit protocol is its ability to reliably transfer data between 

widely dissimilar systems. However, in order to do so, the Kermit protocol used packets 
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consisting of only printable ASCII characters. Unfortunately, this resulted in a high protocol 

overhead and ultimately low effective channel utilization. 

The XMODEM and YMODEM protocols and their variants, on the other hand, do not 

perform any encoding. However, although these protocols offer a high effective channel 

utilization, they require eight bit data communication channels that allow all eight values to 

pass through transparently. Unfortunately, these protocols are not very reliable since their 

single byte acknowledgement packets are unprotected. 

While the other protocols surveyed are stop and wait protocols, the ZMODEM 

protocol is a streaming protocol with a "go back N" error recovery mechanism. This protocol 

offers control character encoding and protected acknowledgements like Kermit but with a 

protocol overhead comparable to that of the XMODEM and YMODEM protocols. 

Consequently, it can offer reliable data transfers and a high effective channel utilization. 
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Kermit Kermit XMODEM 
FEATURE C l a s s i c Extended CRC YMODEM ZMODEM 

FLOW CONTROL: 
• Stop and Wait • • • • o 
• S l i d i n g Windows o o X X o 
• Streaming X X X o • 

ERROR DETECTION: 
• 1 byte sum • • • • X 
• 2 byte sum • • X X X 
• 16 b i t CRC • • • • • 
• 32 b i t CRC X X X X • 

ERROR RECOVERY: 
• s e l e c t i v e 

retransmission • • • • X 
• go back N X X X X • 

PACKET SIZES 1: 
• Data Packet (Min) 8 8 133 1029 3 
• Data Packet (Max) 97 1033 2 133 1029 1027 
• Reply Packet 8 8 1 1 21 
• Max. Data F i e l d 89 1024 128 1024 1024 

OVERHEAD: 
• Bytes Encoded^ 70 70 0 0 9 
• Encoding Factor 1.273 1.273 1.000 1.000 1.035 
• Raw Data / Packet 70.0 804.1 128.0 1024.0 989.2 
• Overhead To Send 
One Data Packet 4 50.0% 29.5% 4.7% 0 . 6% 3.8% 

\/ - supported 
0 - supported but not normally used 
X - not supported 
1 - based on 16 b i t CRC checksum 
2 - f o r data f i e l d of 1024 bytes 
-* - assuming minimum encoding on stream of 0 to 255 
4 - 1 - (Data Packet + ACK Packet) / Raw Data 

Table 1. Protocol Survey Feature Summary 
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2.7 CONCLUSION 

Of the protocols surveyed, ZMODEM has become the protocol of choice whenever it is 

available. It offers the reliability of the Kermit protocol, efficiency comparable to YMODEM, 

and the ability to resume an incomplete file transfer. 

However, despite Kermit's low efficiency, it is often the protocol used to transfer data 

between dissimilar systems. In many cases, it is the only protocol implemented on both 

systems. In addition, because of its aggressive encoding which uses only printable ASCII 

characters, its packets often make it through communication channels successfully where 

other protocols fail. 
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3. PROTOCOL CHANNEL UTILIZATION 

3.1 INTRODUCTION 

When several communication protocols are available and each capable of successfully 

transferring data between two systems, it is often not clear which protocol is the most 

appropriate. Some protocols offer a higher effective data throughput over an error free 

communications channel but degrade rapidly as the error rate increases. However, since a 

protocol's behaviour and characteristics can be represented mathematically, we set out to 

derive a set of equations that would calculate a protocol's effective data throughput or 

channel utilization under different mathematically representable conditions. 

The equations that were developed ignored the overhead of the connection 

establishment and the disconnect phases of the protocols. The equations also assumed that 

an unreliable communications channel only corrupts data and its behaviour can represented 

by its error rate and distribution. However, although no data is lost, a packet may be missed 

due to the corruption of the packet's header byte or byte sequence. The equations also take 

the turnaround time and propagation delay into account. If a protocol's theoretical 

throughput is desired, it can be computed by simply taking the product of the channel's 

transmission speed and the protocol's theoretical channel utilization. 

3.2 ANALYSIS 

The operation of a protocol can be broken down into six basic events. When a data 

packet is transmitted, it is either received correctly (Data OK), received with transmission 

errors (Data BAD), or lost (Data LOST) due to header corruption. The probability of these 

events occurring is determined by the error rate and distribution of the communications 
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channel and the size of the packet. Similarly, a reply packet can be received correctly 

(Reply OK), received incorrectly (Reply BAD), or lost (Reply LOST). 

Channel utilization equations will be derived for stop and wait protocols, streaming 

protocols with selective retransmission, and streaming protocols that "go back N" for 

uniformly distributed byte errors and randomly distributed bit errors. Each of these 

equations will be expressed as a function of the probability of the six basic events occurring. 

This allows the utilization equations to handle any error distribution provided probabilities 

can be assigned to each of the basic events. 

3.2.1 Uniform Deterministic Error Distribution 

Although not realistic, one of the error distributions examined is uniform and 

deterministic. In this distribution, it is assumed that an error occurs every K bytes that are 

placed on the communications channel. Consequently, if P is the number of bytes in a 

packet, the probability that it is received correctly is 

P (Packet OK) = 1 - P / K Eq. 1 

However, if we assume that a packet has a header byte which must be received 

correctly in order for the receiver to not miss the packet, then the probability that a packet is 

lost is 

P (Packet LOST) = 1 / K Eq. 2 

Therefore, the probability that a packet is received with transmission errors is 
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P(Packet BAD) = 1 - P(Packet OK) - P(Packet LOST) 
= 1 - ( 1 - P / K ) - 1 / K 
= (P - 1) / K 

Eq. 3 

Although these equations offer a very simplistic model of the packet error 

distribution, it should be sufficient provided the size of the data packet is many times greater 

than the reply packet. Under these constraints, transmission errors will occur primarily in 

the data packets. 

3.2.2 Poisson Error Distribution 

A more realistic error distribution is the poisson distribution. In this distribution, 

each bit placed on the communications channel has an equally likely probability Q that it 

will be corrupted. Thus, if a packet has P bytes and each byte contains W bits (including the 

start and stop bits if necessary), then the probability that a packet is received correctly is 

P (Packet OK) = (1 - Q) ( p * w ) Eq. 4 

Again, if we assume that a packet has a header byte which must be received correctly 

so as to not be missed by the receiver, then the probability that a packet is lost is 

P (Packet LOST) = 1 - (1 - Q ) w Eq. 5 

Consequently, the probability that a packet is received with transmission errors is 
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P(Packet BAD) = 1 - P(Packet OK) - P(Packet LOST) 
= (1 - Q ) w - (1 - Q) <p * W) 

Eq. 6 

3.3 CHANNEL UTILIZATION EQUATION FOR STOP AND WAIT PROTOCOLS 

With stop and wait protocols, in order for the sender to consider a data packet 

successfully received, the receiver must have received it correctly and the positive 

acknowledgement must be received correctly by the sender. Thus, the probability of a data 

packet being successfully received is 

P (Success) = P(Data OK) * P (Reply OK) Eq. 7 

The data packet may also be resent immediately by the sender upon receipt of the 

receiver's reply. If the reply is negative, the data packet is resent. However, if the reply is 

corrupted, it is assumed that the sender resends the data packet immediately since this is 

more efficient than waiting for the timeout period to expire. Thus the probability that a data 

packet is resent upon receipt of a reply, P(Resend), is the sum of three products. 

P(Resend) = P (Data OK) * P (Reply BAD) + Eq. 8 
P(Data BAD) * P(Reply OK) + 
P(Data BAD) * P(Reply BAD) 

If either the data or reply packet is lost, the data packet is resent after the timeout 

period expires. The probability that a timeout will occur is 
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P(Timeout) = P(Data OK) * P(Reply LOST) + 
P(Data BAD) * P(Reply LOST) + 
P(Data LOST) 

Eq. 9 

After the sender has sent the data packet, there will be an elapsed time before the 

receiver's reply is received. This time period, Turn, encompasses the propagation delay and 

the time required by the receiving system to decode the data packet and to send the 

appropriate reply. Thus, if B represents the channel speed in bytes per second, the channel 

bandwidth required to send a data packet of D bytes and receive a reply packet of R bytes is 

D + R + Turn * B Eq. 10 

Similarly, if Time is the timeout period in seconds, the bandwidth occupied by a 

timeout is 

D + Time * B Eq. 11 

Since the probability of sending a data packet correctly and receiving the positive 

acknowledgement correctly is P(Success), the expected number of trials before a success is 

T r i a l s = 1 / P (Success) Eq. 12 
= 1 / (P (Data OK) * p(Reply OK)) 

The encoding overhead of the protocol is calculated as a ratio of the number of bytes 

needed to represent the byte stream of values from 0 to 255 versus the number of raw bytes, 

256. This ratio, E, is greater than or equal to 1. Using this figure, the amount of raw data 

that is in a data packet containing DF bytes of encoded data is simply 
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Raw Data = DF / E Eq.13 

With the above figures and equations, the bandwidth required to successfully 

transfer a data packet can be calculated as 

T o t a l Bandwidth (P(Success) * (D + R + Turn * B) + 
P(Retry) * (D + R + Turn * B) + 
P(Timeout) * (D + Time * B)) * T r i a l s 

= ((1 - P(Timeout)) * (D + R + Turn * B) + 
P(Timeout) * (D + Time * B) ) * T r i a l s 

(1 - P(Timeout)) * (D + R + Turn * B) 
+ P(Timeout) * (D + Time * B) 

P(Data OK) * P(Reply OK) 

where P(Success) + P(Retry) = 1 - P(Timeout) 
and T r i a l s i s g iven by Equation 12 

Consequently, the theoretical channel utilization, U, is 

Raw Data 
U = 

T o t a l Bandwidth 

(DF / E) * P (Data OK) * P(Reply OK) 

Eq. 14 

Eq.15 

[(1 - P(Data LOST)) * (1 - P(Reply LOST))] * 
(D + R + Turn * B) + 

[(1 - P(Data LOST) * P(Reply LOST) + 
P (Data LOST)] * (D + Time * B) 

Figure 12. Utilization Equation For Stop and Wait Protocols 
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3.4 CHANNEL UTILIZATION EQUATION FOR STREAMING PROTOCOLS 

With many streaming protocols, when a data packet is received with no detectable 

transmission errors, no positive acknowledgement is required. However, there are some 

streaming protocols that require a positive acknowledgement to be sent for some or all 

correctly received data packets before the data packet is considered to be received 

successfully. Thus, if AR represents the percentage of data packets that need to be positively 

acknowledged, the probability that a data packet is successfully received is 

P (Success) = P(Data OK) * P (ACK OK) * AR + Eq. 16 
P(Data OK) * (1 - AR) 

However, if a data packet is corrupted, a negative acknowledgement is sent back to 

the sender. If it is received correctly, the sender resends the corresponding data packet. A 

negative acknowledgement is also sent when the receiver detects a lost data packet. The 

probability of this occurring is 

P(Resend) = P (Data BAD) * P (NAK OK) + Eq. 17 
P(Data LOST) * P(NAK OK) 

= (1 - P(Data OK)) * P(NAK OK) 

In order to handle the case when the receiver only sends negative 

acknowledgements, we will assume that only the receiver will timeout. This occurs when it 

does not receive the data packet requested before its timeout period expires. Thus, the 

probability of a timeout occurring is 
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P(Timeout) = P(Data OK) * P(ACK BAD) * AR + Eq. 18 
P(Data OK) * P(ACK LOST) * AR + 
P(Data BAD) * P(NAK BAD) + 
P (Data BAD) * P(NAK LOST) + 
P(Data LOST) * P(NAK BAD) + 
P(Data LOST) * P(NAK LOST) 

= P(Data OK) * (1 - P(ACK OK)) * AR + 
(1 - P(Data OK)) * (1 - P(NAK OK)) 

Like stop and wait protocols, the number of trials needed to send a data packet 

successfully is given by Equation 12 and the amount of raw data in a data packet is given by 

Equation 13. 

Unlike stop and wait protocols, there is more than one error recovery mechanism 

used by streaming protocols. If the receiver keeps the correct packets received after the 

detected error, the sender only retransmits the packet in question. This error recovery 

mechanism is referred to as selective retransmission. Conversely, with a "go back N" error 

recovery mechanism, the receiver discards all packets received since the detected error and 

the sender retransmits the packet in question and all packets that were subsequently 

transmitted. Unfortunately, a channel utilization equation must be derived for each error 

recovery mechanism. 

3.4.1 Selective Retransmission 

If data and reply packets are exchanged in half-duplex mode, then the channel 

bandwidth required to send a data packet and receive its reply is simply the sum of the 

packet sizes. However, if the data packet is lost, there is no corresponding reply packet. 

Thus, if D, A, and N represent the size of the data, positive acknowledgement, and negative 

acknowledgement packets, respectively, the total bandwidth required to successfully transfer 

a data packet is 
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T o t a l Bandwidth = [P (Data OK) * (D + A * AR) + Eq. 19 
P(Data BAD) * (D + N) + 
P(Data LOST) * (D + N)] * T r i a l s 

[P(Data OK) * (D + A * AR) + 
P(Data BAD) * (D + N) + 
P(Data LOST) * (D + N)] 

P(Data OK) * P(Reply OK) 

where T r i a l s i s given by Equation 12 

Thus the channel utilization of a half-duplex streaming protocol using selective 

retransmission is 

Raw Data 
U = 

Eq. 20 

T o t a l Bandwidth 

(DF / E) * P(Data OK) * P(ACK OK) 

- P(Data OK) * (D + A * AR) + 
P(Data BAD) * (D + N) + 

- P (Data LOST) * (D + N) 

Figure 13. Utilization Equation For Half-Duplex Streaming Protocols (Selective 
Retransmission) 

However, if data and reply packets are exchanged in full-duplex mode, the reply 

packets do not occupy any channel bandwidth in the direction of the data packet transfers 

and hence the channel utilization equation, Equation 20, reduces to 

U (DF / E) * P(Data OK) * P(ACK OK) / D Eq. 21 

Figure 14. Utilization Equation For Full-Duplex Streaming Protocols (Selective 
Retransmission) 
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3.4.2 Go Back N 

With a go back N error recovery mechanism, it is sufficient for the receiver to send 

only negative acknowledgements. Knowing which packets have been correctly received is 

irrelevant when all data packets transmitted since the corrupted data packet are 

retransmitted. Thus, the channel bandwidth occupied when a data packet is correctly 

received is the size of the data packet while the number of trials required before a data 

packet is successfully transferred is 

T r i a l s = 1 / P (Data OK) Eq. 22 

When a data packet is corrupted, however, a negative acknowledgement is sent to 

the sender. The time, Turn, that elapses from the moment the corrupted data packet was 

sent until a correct negative acknowledgement packet is received determines the number of 

additional data packets that were sent. Thus, if the data packet size is D bytes, the reply is 

N bytes, and the channel speed is B bytes per second, then the channel bandwidth occupied 

is 

D + N + D * CEILING (Turn * B / D) Eq. 23 

If the negative acknowledgement is corrupted, it is discarded by the sender. Until 

the receiver times out in Time seconds and the sender receives a correct reply packet, it 

continues to send data packets. Hence, since 1 / P(NAK OK) is the expected number of trials 

before the reply packet is correctly received, the bandwidth wasted until the sender receives 

a correct reply packet is 
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D * (1 / P(NAK OK) - 1) * CEILING(Time * B / D) Eq.24 

Thus, the channel bandwidth used in recovering from a corrupted data packet is 

D + N + D * CEILING (Turn * B / D ) + N * D * Eq. 25 
(1 / P(NAK OK) - 1) * CEILING(Time * B / D) 

If a data packet is lost, it is detected by the reception of the next data packet. 

Consequently, the channel bandwidth needed to recover from a lost data packet is only D 

greater than when the data packet is corrupted. Thus, the total bandwidth required to send 

a data packet correctly can be calculated as 

T o t a l Bandwidth = [P(Data OK) * D + Eq. 26 
P(Data BAD) * Band BAD + 
P(Data LOST) * Band LOST] * T r i a l s 

= [P(Data OK) * D + 
P(Data BAD) * Band BAD + 
P(Data LOST) * Band LOST] / P(Data OK) 

where TurnD = D * CEILING(Turn * B / D) 
TimeD = D * CEILING(Time * B / D) 

Bad NAKS = 1 / P(NAK OK) - 1 
Band BAD = (D + N + TurnD + N * Bad NAKS * TimeD) 

Band LOST = D + Band BAD 
and T r i a l s i s g iven by Equation 22 

Hence, the channel utilization of a half-duplex streaming protocol using a go back N 

error recovery mechanism is 
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Raw Data Eq.27 
u = 

T o t a l Bandwidth 

(DF / E) * P(Data OK) 

P(Data OK) * D + 
P (Data BAD) * Band BAD + 
P(Data LOST) * Band LOST J 

where TurnD = D * CEILING(Turn * B / D) 
TimeD = D * CEILING(Time * B / D) 

Bad NAKS = 1 / P(NAK OK) - 1 
Band BAD = (D + N + TurnD + N * Bad NAKS * TimeD) 

Band LOST = D + Band BAD 

Figure 15. Utilization Equation For Half-Duplex Streaming Protocols (Go Back N) 

For a full-duplex streaming protocol using a go back N error recovery mechanism, the 

data bandwidth occupied by the reply packets is zero. Hence, the channel utilization 

equation becomes 

Raw Data Eq. 28 
u 

T o t a l Bandwidth 

(DF / E) * P (Data OK) 

P (Data OK) * D + 
P(Data BAD) * Band BAD + 
P(Data LOST) * Band LOST 

where TurnD = D * CEILING(Turn * B / D) 
TimeD = D * CEILING(Time * B / D) 

Bad NAKS = 1 / P(NAK OK) - 1 
Band BAD = (D + TurnD + Bad NAKS * TimeD) 

Band LOST = D + Band BAD 

Figure 16. Channel Utilization For Full-Duplex Streaming Protocols (Go Back N) 
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3.5 EQUATION VERIFICATION 

In order to verify the correctness of the channel utilization equations derived, a 

series of throughput experiments were performed. In each of the experiments, throughput 

measurements were taken for the Kermit, XMODEM, YMODEM, and ZMODEM protocols 

under a variety of baud rates, error rates, and error distributions. These experiments were 

performed using three IBM PC compatible computers interconnected by null modem RS-232 

serial cables as shown in Figure 17. 

SENDER ERROR 
GENERATOR 

R E C E I V E R SENDER ERROR 
GENERATOR 

R E C E I V E R ERROR 
GENERATOR 

Figure 17. Throughput Test Computer Configuration 

The SENDER machine, a 20 MHz 386, was used to send either the 100 kilobyte test 

file or the one megabyte test file. The content of these test files was a repeated sequence of 

the values 0 to 255. The RECEIVER machine, a 12 MHz 286, was used to receive the test 

file. A100 kilobyte test file was selected to amortize to time required to establish a 

connection and to close the connection. In addition, it would allow several errors to occur 

during the transfer at low error rates. However, a one megabyte test file was used when the 

error distribution was random to ensure that a representative error sample was encountered. 

The ERROR GENERATOR machine, a 12 MHz 286, was equipped with two RS-232 

serial ports and ran an error generator program. Three different error generator programs, 

each providing a different error distribution, were written using Borland's 

Turbo Assembler 1.0 and Turbo C 2.0. Each program would receive data from either serial 
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port and send it out on the other serial port. However, before the data was forwarded, it was 

modified to produce the desired error rate and distribution. 

3.5.1 Experiment Description 

The implementation of the Kermit protocol that was used was a patched version of 

the IBM PC implementation from Columbia University, Kermit-MS 2.32/A. The patch was 

necessary to increase the resolution of the file transfer timer and to prevent the sender from 

aborting a file transfer when an acknowledgement packet's type field was corrupted. For the 

XMODEM and YMODEM protocols, both the Procomm-Plus 1.1B and the DSZ 11-14-89 

implementations were used. Finally, the ZMODEM implementation that was used was 

DSZ 11-14-89. 

With the exception of DSZ, which reported the effective throughput after completing 

a file transfer, the throughput of the various implementations of the protocols was 

determined by recording the time required to transfer the test file. For the Procomm 

implementation of the XMODEM and YMODEM protocols, the file transfer on the sending 

system was started before the receiving system. The elapsed time was then measured by 

using a Procomm script to store the start and stop time of the file transfer on the receiving 

system. On the other hand, the Kermit-MS 2.32/A program on the receiving system was 

started before the sending system's program. In this case, since the elapsed time of the file 

transfer was recorded by the program, the throughput was calculated using the elapsed time 

reported by the sending program. 

For each set of conditions, an experiment was performed to determine the effective 

throughput of transferring either the 100 kilobyte or one megabyte test file using a protocol. 

The test file was transferred three times and the elapsed time or throughput was recorded 
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for each transfer. If the protocol offered different levels of encoding, the lowest level of 

encoding was selected to minimize the protocol's overhead and increase its channel 

utilization. In addition, if the protocol offered several types of checksums, the most complex 

checksum was selected to minimize the probability that a transmission error would escape 

detection. This was repeated for each protocol. 

After calculating the average measured throughput and channel utilization for each 

experiment, it was compared to the theoretical throughput and channel utilization predicted 

by the corresponding channel utilization equation. The theoretical channel utilization of the 

protocols examined have been plotted in Graphs 1 to 4 and Graphs 23 to 30 as a function of 

the uniform byte error rate and the random bit error rate, respectively. In addition, the 

theoretical throughput of the protocols have also been plotted as a function of the uniform 

byte error rate and random bit error rate in Graphs 5 to 8 and Graphs 31 to 38, respectively. 

The effect of the baud rate, error rate, and error distribution on the measured 

throughput of the protocols was examined by plotting a series of graphs (Graphs 9 to 15 and 

39 to 40) which plots the measured throughput as a function of the error rate for each 

protocol at a baud rate. Finally, the percentage difference between the measured throughput 

and theoretical throughput values were calculated and plotted against the error rate in 

Graphs 16 to 22 and 41 to 42. 

However, unlike the other parameters of Equation 15, the Turn term cannot be 

measured directly. Consequently, the value of the Turn term was calculated by solving the 

Turn term in Equation 15 after setting all other parameters to their appropriate values. 

This was done for each protocol implementation using an error rate of 0 using the average of 

the three measured throughput figures for the throughput value. Naturally, Turn terms 

were calculated for each protocol at the different baud rates. 
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The analysis of the experimental data collected was performed initially using 

Borland's Reflex 2.0, a "database management, graphics, and analysis" program. Although 

Reflex handled the data manipulation and calculations well, the graphs that it generated 

were not clearly labelled. Consequently, Reflex was replaced with Borland's Quattro Pro 3.0, 

a spreadsheet program, which generated better labelled graphs. 

3.5.2 Uniform Byte Error Distribution Experiments 

The uniform byte error distribution was provided by the BLACK10 program. This 

error generator program would simply count the bytes that it received from either serial port 

and then modify every 
K th 

byte to produce a byte wise error rate of 1/K. 

The throughput experiments were performed at 2400, 4800, 9600, and 19200 baud 

and at error rates of 0,1/10000,1/7500,1/5000,1/2500, and 1/1000 errors/byte for each 

implementation of the protocols. Table 2 lists the minimum, maximum, and average 

percentage difference for all combinations of baud rates and error rates for each protocol and 

implementation. 
PROTOCOL MINIMUM MAXIMUM AVERAGE 

C l a s s i c Kermit -3 .3 0.8 -1 .0 
Extended K e r m i t 1 -3.3 1.8 0.2 
XMODEM-CRC (Procomm) -4.0 1.4 -0.2 
YMODEM (Procomm) -1.8 0.5 -0 .3 
XMODEM-CRC (DSZ) -86.7 0.0 37.4 
YMODEM (DSZ) -78.9 0.0 -32.1 
ZMODEM (DSZ) -33.8 1.0 -13.0 

11000 byte data packets. 

Table 2. Percentage Difference of Measured Utilization Relative to Theoretical 
Utilization For Uniform Byte Error Distributions Produced By BLACK10 
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In the first set of experiments, the effective throughput of only the MS-Kermit 2.32/A 

implementation of Kermit and the DSZ 11-14-89 implementation of the XMODEM, 

YMODEM, and ZMODEM protocols were measured. As shown in Table 2, the measured 

throughput of the Kermit protocol using classic packets and 1000 byte extended length data 

packets, was between -4% to +2% of the throughput predicted by the theoretical equations at 

all tested baud rates and error rates. However, the measured throughput of the XMODEM, 

YMODEM, and ZMODEM protocols decreased faster than predicted as the error rate 

increased. Since the general shape of the percentage difference graphs, Graphs 16,18, 

20, and 22, were similar for each of the protocols at all baud rates, it was suspected that the 

DSZ implementation was adversely affecting the throughput of the protocols as the error 

rate increased. 

Attempts were made to locate alternate implementations of the XMODEM, 

YMODEM, and ZMODEM protocols in order to confirm this supposition. One of the 

alternate implementations that was tested was PCZ 2.11.89. Unfortunately, it failed to 

function over a null modem cable connecting two RS-232 serial ports. A second alternative, 

DGTERM, functioned in the experiment's system configuration, but aborted when an error 

was detected during a file transfer. 

Although Procomm-Plus 1.1B only implemented the XMODEM and YMODEM 

protocols, it did function in the experimental configuration. In addition, as shown in Table 2, 

the measured throughput of the XMODEM protocol was between -4% to 2% of the theoretical 

value and the YMODEM protocol was within ±2% for all error rates at 4800, 9600, and 19200 

baud. Thus, it was concluded that the DSZ implementation was restricting the throughput 

as the error rate increased. 
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3.5.3 Random Bit Error Distribution (BLACK30) Experiments 

The BLACK30 error generator program generated randomly distributed bitwise 

errors. In order to ensure a random and uniform error distribution, the random number 

generator used must have a period that is much greater than the required number of random 

numbers needed for a single throughput test. Thus, the random number generator selected 

was 

Random N + 1 = (RandomN * 4, 826, 809) MOD ( 2 3 1 - 1) Eq. 29 

Figure 18. BLACK30 Random Number Generator 

This random number generator is identical to the one used by the PRAND routine 

described on page 12 of "UBC Random" [12]. It has a period of 2 3 1 - 2 = 4,294,967,293 and 

"all bits in the unnormalized fraction are equally random"2. Unfortunately, this generator 

requires 32 bit arithmetic and without a floating point coprocessor on a 12 MHz 286, the 

error generator could not process the incoming data fast enough to handle baud rates greater 

than 9600 baud 

A random number was generated for each bit of the received byte. If the random 

number was less than the product of the generator's period and the desired bit error rate, the 

bit was inverted. After all bits had been processed, the possibly modified byte was 

transmitted on the serial port different from the one the original byte was received. 

The throughput experiments were performed on the Kermit protocol using classic 

and extended length data packets, the XMODEM-CRC protocol, and the YMODEM protocol 

2. UBC Random [12], page 3 
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at 9600 and 4800 baud. The experiments were performed at error rates of 0.00E-5, 3.00E-5, 

4.60E-5, 6.10E-5, 7.60E-5, 9.15E-5,1.05E-4,1.50E-4, 2.10E-4, 2.55E-4, 3.00E-4 errors/bit 

using a one megabyte test file. The results of these experiments are summarized in Table 3 

which lists the minimum, maximum, and average percentage difference for all combinations 

of baud rates and error rates for each protocol. 

P R O T O C O L M I N I M U M M A X I M U M A V E R A G E 

C l a s s i c Kermit - 2 . 9 3 . 2 - 0 . 1 

Extended Kermit 1 - 1 . 3 3 . 6 0 . 5 

XMODEM-CRC - 2 . 4 0 . 2 - 0 . 8 

YMODEM - 2 . 1 0 . 3 - 0 . 5 

^OOO byte data packets. 

Table 3. Percentage Difference of Measured Utilization Relative to Theoretical 
Utilization For Random Bit Error Distributions Produced by BLACK30 

As shown by the graphs in Appendix 8, all but two measurements were within +3% of 

the theoretical throughput values. These anomalies, however, were between 3% and 4% of 

the theoretical throughput values. 

3.6 SUMMARY 

The results of the throughput experiments indicate that the equations that were 

developed are quite accurate in predicting the throughput of the stop and wait protocols that 

were tested. The experiments performed using the BLACK10 and BLAGK30 error generator 

programs showed that the equations were capable of predicting the throughput of the 

protocols tested within +5% for uniform deterministic error distributions and random poisson 

error distributions. 
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It was disheartening to discover that the widely used DSZ implementation of the 

XMODEM, YMODEM and ZMODEM protocols exhibited such poor performance under error 

rates greater than 1/2500 errors/byte. It was hypothesized that DSZ's internal logic was 

attempting to maximize throughput by adjusting packet sizes, transmission rates, and 

timing parameters when the number of detected errors exceed an internal limit. 

Unfortunately, the logic may have assumed that the communication medium was a packet 

switched network since that is what the ZMODEM protocol was designed for. 

Upon further examination of the result graphs, it can be seen that a stop and wait 

protocol's behaviour is essentially unaffected by the baud rate other than being scaled by a 

constant factor. However, the relationship between the baud rate and the throughput is not 

a linear function. This was expected since the throughput equations are nonlinear functions 

of the baud rate. 

The theoretical graphs indicate that for error rates less than 1.00E-5 errors/bit, the 

YMODEM and ZMODEM protocols theoretically have the greatest throughput. However, as 

the error rate increases, the XMODEM protocol has a higher throughput since its smaller 

packet size increases the probability that it is transmitted correctly and if it is corrupted, 

less channel bandwidth is expended on error recovery. 

The throughput of the Kermit protocol using classic length packets and 1000 byte 

extended length packets show that the encoding overhead, as expected, is a major factor in 

determining the effective throughput. Of the protocols examined, it has the largest encoding 

overhead. Consequently, although its packet sizes are comparable to those of the XMODEM 

and YMODEM protocols, the throughput of the Kermit protocol using classic and 1000 byte 

extended length packets is significantly less than those of the XMODEM and YMODEM 

protocols, respectively. 
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3.7 CONCLUSION 

The results of the throughput experiments allow several conclusions to be drawn. 

The most important conclusion is that the set of equations derived to predict the channel 

utilization, and hence throughput, of stop and wait protocols under random error 

distributions is valid. Unfortunately, no conclusion can be drawn regarding the set of 

equations derived regarding streaming protocols since there was no implementation that 

could be used to verify the correctness of the equations. 

Furthermore, there is no single packet size or error recovery mechanism that can 

maximize channel utilization under different line conditions. If the error rate is low, a larger 

packet size is desirable. However, as the error rate increases, the cost of error recovery is 

reduced by using smaller packets. In addition, when the channel bandwidth occupied by the 

turn around time, propagation delay or timeout period is large, streaming protocols offer a 

significant throughput advantage over stop and wait protocols since no channel bandwidth is 

wasted waiting for an acknowledgement packet. 
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4. MAX2 PROTOCOL 

4.1 INTRODUCTION 

The MAX2 protocol was designed as a data link level protocol to support a large 

variety of communication channels while maximizing channel utilization under various line 

conditions. It combines many of the features and capabilities that are available in public 

domain protocols while adding several of its own unique capabilities. 

In order to maximize the effective data throughput, the MAX2 protocol was designed 

as a streaming protocol using selective retransmission. In addition, it performs no data 

encoding except for SOH byte stuffing to minimize the encoding overhead. Furthermore, the 

MAX2 protocol calculates its timeout value based upon measurements taken during the 

connection phase to minimize the channel bandwidth wasted by an excessively long timeout 

period. The MAX2 protocol also supports bidirectional data transfer over full-duplex 

channels. This allows data to be transferred in both directions simultaneously. 

However, a streaming protocol with large data packets at high baud rates may 

require more resources than a system can provide. If this is the case, the MAX2 protocol can 

also operate in a stop and wait or sliding windows mode and use data packets that are as 

small as 16 bytes. Furthermore, since some communication channels do not transmit all 

data values transparently, the MAX2 protocol offers several levels of data encoding. Each 

successive encoding level encodes a greater set of data values at the expense of increased 

protocol overhead. If the approproate level of data encoding is selected, data will be 

transmitted over the communications channel transparently with minimal overhead. 
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4.2 SPECIFICATION 

The MAX2 protocol offers the user a choice of many encoding and checksum 

algorithms. These algorithms may be used together in any combination without altering the 

packet format or protocol. 

4.2.1 Encoding Algorithms 

The MAX2 protocol offers several encoding algorithms that may be selected by the 

operator or application. Each algorithm performs a different level of encoding. However, as 

the encoding level increases, so does the overhead. Thus, in order to maximize the effective 

throughput, the minimal level of encoding should be selected that will still allow data to be 

successfully exchanged between two systems. 

4.2.1.1 Hex Encoding 

The Hex Encoding algorithm converts binary data into upper case ASCII character 

representations of its hexadecimal values. Currently, this encoding algorithm is used to 

convert numeric field values of selected packets into printable ASCII characters. Hex 

Encoded values are transmitted in most to least significant digit order. 

The fo l lowing byte sequence 

Byte 1 Byte 2 Byte 3 Byte 4 

17h B3h 4Fh AOh 

i s Hex Encoded as "A04FB317" 

Figure 19. Example of MAX2 Hex Encoding 
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4.2.1.2 Network Control Character Encoding 

The Network Control Character Encoding algorithm prefix encodes a subset of 

control characters. These characters, values 3, 4,16,17,19, and 127, are converted into 

pairs of printable ASCII values by XOR'ing them with the value 64 and then prefixing them 

with the printable control prefix character. Optionally, the values 131,132,144,145,147, 

and 255, can be encoded as well. 

4.2.1.3 Full Control Character Encoding 

The Full Control Character Encoding algorithm prefix encodes all control characters. 

These characters, values 1 to 31 and 129 to 255, are converted into pairs of printable ASCII 

values by XOR'ing them with the value 64 and then prefixing them with the printable 

control prefix character. 

4.2.1.4 Eighth Bit Character Encoding 

The Eighth Bit Character Encoding algorithm prefix encodes all characters whose 

eighth bit is set. These characters are converted into pairs of seven bit ASCII values by 

setting their eighth bit to zero and then prefixing them with the printable control prefix 

character. 

4.2.2 Checksum Types 

The MAX2 protocol supports several checksum algorithms. As shown in Table 4, 

there are two major classes of algorithms. Bytewise arithmetic checksums, Types 0-3, are 

offered in three sizes: one byte, two bytes, and four bytes. The calculation of the checksum is 
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performed using unsigned modular arithmetic. In the case of the Type 0 checksum, it is Hex 

Encoded. 

TYPE VALUE SIZE ALGORITHM 

0 "0" 2 Hex Encoded one byte bytewise 
arithmetic sum 

1 n ^ ti 1 one byte bytewise arithmetic sum 
2 I I 2 » 2 two byte bytewise arithmetic sum 
3 "3" 4 four byte bytewise arithmetic sum 

4 I I 4 I I 2 CRC-16 checksum 
5 " 5 " 4 CRC-32 checksum 

NOTE 1: Algorithms are l i s t e d i n increasing order of 
complexity 

NOTE 2: A l l integer values are transmitted i n l e a s t to 
most s i g n i f i c a n t byte order. 

Table 4. MAX2 Checksum Types and Field Values 

In addition to the bytewise checksums, the MAX2 protocol also supports Cyclic 

Redundancy Check (CRC) checksums. Currently, the user has a choice between the two byte 

CRC-16 checksum, Type 4, and the four byte CRC-32 checksum, Type 5. 

4.2.3 Packet Format 

The format of a MAX2 packet is shown in Figure 20. 
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SOH SEQ TYPE LEN DATA CHECK 

CHECKsummed 1 

encoded as s p e c i f i e d — 

Figure 20. MAX2 Packet Format 

4.2.3.1 SOH Field 

The SOH field is a one byte value used to indicate the start of a MAX2 packet. It is 

assigned the value of 01H and cannot be modified. If this value occurs elsewhere in a MAX2 

packet, is represented by two SOH characters. 

4.2.3.2 SEQ Field 

The SEQ field contains either a one or two byte unsigned sequence number. The size 

of these sequence numbers is negotiated during the connect phase. Two byte sequence 

numbers are transmitted in least to most significant byte order. 

4.2.3.3 TYPE Field 

The TYPE field is a single byte value that uniquely identifies the purpose of the 

packet. For further details, please refer to the section on packet types. 

4.2.3.4 LEN Field 

The LEN field is either a one or two byte unsigned integer value that specifies the 

number of bytes of data in the DATA field. A two byte LEN field is used unless the 
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maximum packet size negotiated is 128 bytes or less. Two byte LEN field values are 

transmitted in least to most significant byte order. 

4.2.3.5 DATA Field 

The DATA field is a varying length field that contains user data. The length of the 

field is indicated by the LEN field of the packet. The maximum size of this field is 

constrained by the maximum packet size which is determined during the connect phase. 

4.2.3.6 CHECK Field 

The CHECK field contains the checksum of the contents of the entire packet with the 

exception of the SOH and the CHECK fields. Its length is determined by the checksum type 

that is negotiated during the connect phase. 

4.2.4 Packet Types 

The MAX2 protocol defines eighteen (18) packet types which are listed and 

summarized in Table 5. These packets can be classified as either a Control or Data packet. 

Control packets are assigned sequence numbers from the control sequence number stream 

and Data packets are assigned sequence numbers from the data sequence number stream. 

All packets are transmitted and delivered in first in, first out order (FIFO). However, 

Control packets are transmitted and delivered ahead of any Data packets in the queue. 
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TYPE 
FIELD CONTAINS PACKET DELIVERY 

PACKET TYPE VALUE DATA CLASS MODE 

ABORT A y co n t r o l expedited 
ABORT-A a y co n t r o l expedited 
ACK Y n data normal 
ACK-C y n c o n t r o l expedited 
CHANNEL c n data normal 
CONNECT C y data normal 
DATA-BLOCK B y data normal 
DATA-REPLY R y data normal 
DATA-STREAM S y data normal 
DISCONNECTED d n data normal 
DISCONNECTING D n data normal 
FEEDBACK F y con t r o l expedited 
NAK N n data normal 
NAK-A X n c o n t r o l expedited 
NAK-C n n c o n t r o l expedited 
PAUSE P n c o n t r o l expedited 
PROBE 7 n co n t r o l expedited 
RESUME r y c o n t r o l expedited 
TIMEOUT T y control^ expedited 

TableS. MAX2 Packet Types 

When a packet's delivery is expedited, it is inserted into the send or receive queue 

ahead of all normal delivery packets. However, if there are expedited delivery packets 

already in the queue, it is inserted after the newest expedited delivery packet. A detailed 

description of the packets and their purpose can be found in the sections that follow. 

4.2.4.1 ABORT Packet 

The ABORT packet is used to indicate an abnormal termination of the connection. 

The sender of this packet should place a brief ASCII string in the DATA field of the packet 

explaining to the operator on the remote system the reason for the abnormal termination. 

Once the ABORT packet has been sent, the sending system may immediately disconnect. 
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4.2.4.2 ABORT-A Packet 

The ABORT-A packet is a version of the ABORT packet that contains only printable 

ASCII characters. Its LEN field is Hex Encoded, its SEQ field is set to the value 32, and it 

uses a Type 0 checksum. It is intended to be used to terminate the establishment of a 

connection if any of the connection parameters specified by the remote system are not 

acceptable. 

4.2.4.3 ACK Packet 

The ACK packet is used to indicate that the Data packet sent by the remote system 

was received with no detectable transmission errors. The sequence number of the ACK 

packet is set to the same value as the received Data packet. 

4.2.4.4 ACK-C Packet 

The ACK-C packet is used to indicate that the Control packet sent by the remote 

system was received with no detectable transmission errors. The sequence number of the 

ACK-C packet is set to the same value as the received Control packet. 

4.2.4.5 CHANNEL Packet 

The CHANNEL packet is only used if the data channel is unidirectional. It is used to 

determine which system is allowed to transmit data. When the sending system has no data 

to send or needs data from the receiving system, it transmits the CHANNEL packet, 

relinquishing control of the data channel. Once the receiving system correctly receives the 

CHANNEL packet and acknowledges it, the roles of the two systems reverse and the new 

sending system may begin sending. 
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4.2.4.6 CONNECT Packet 

The CONNECT packet is used to negotiate the connection parameters. The 

CONNECT packet, with its DATA field set to indicate the desired connection parameters, is 

sent by the calling system to the remote system. Upon receiving a CONNECT packet, the 

remote system replies with its own CONNECT packet to indicate to the calling system its 

connection parameters. The lowest common denominator is then used for the connection. 

Since the CONNECT packets are exchanged before the connection parameters have 

been determined, the entire packet is comprised of only printable ASCII characters. This 

ensures that the packet will be transmitted unaltered through seven bit data lines. 

Consequently, the LEN and CHECK fields are Hex Encoded and stored in most to least 

significant digit order. In addition, the SEQ field of these CONNECT packets is equal to the 

ASCII zero character and the checksum is a Type 0 checksum. 

The contents and structure of the CONNECT packet's DATA field is shown in 

Figure 21 while Table 6 summarizes the function of each of the fields. 

PSIZE BSIZE SSIZE CHECK ENCODE CTL 8TH DUPLEX 

Figure 21. MAX2 CONNECT Packet Data Field Format 
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FIELD BYTES FUNCTION 

PSIZE 4 maximum packet s i z e 
BSIZE 1 maximum buf fer s i z e measured i n PSIZE 

bytes 
SSIZE 1 s i ze of sequence numbers 
CHECK 1 checksum type 
ENCODE 1 encoding a lgor i thm to use 
CTL 1 c o n t r o l p r e f i x encoding character 
8TH 1 e ighth b i t p r e f i x encoding character 
DUPLEX 1 i n d i c a t e s h a l f or f u l l duplex 
TWO-WAY 1 i n d i c a t e s i f data can flow i n both 

d i r e c t i o n s s imultaneously 

Table 6. MAX2 CONNECT Packet Data Field Types 

4.2.4.6.1 PSIZE Field 

The PSIZE field indicates the maximum packet size (<= 65535 bytes), that may be 

used. The packet size is Hex Encoded and stored in most to least significant digit order. The 

maximum packet size of the connection shall be the smaller of the two PSIZE values. 

However, the minimum packet size must be at least equal to sixteen (16) bytes. 

4.2.4.6.2 BSIZE Field 

The BSIZE field indicates the amount of buffer space, PSIZE * BSIZE bytes, that is 

available when receiving. If there is unlimited buffer space, this field is set to zero. The size 

of the buffer space is used to determine the window size when operating in sliding window 

mode. Like the PSIZE field, this field is Hex Encoded and is stored in most to least 

significant digit order. 
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4.2.4.6.3 SSIZE Field 

The SSIZE field indicates the size of the sequence numbers to be used. Valid values 

for this field are the ASCII values "1" and "2" indicating one and two byte sequence numbers, 

respectively. The size of the sequence numbers of the connection shall be the larger of the 

two SSIZE values. If one of the systems is not capable of supporting the requested sequence 

number size, it must ABORT the connection. Two byte sequence numbers are recommended 

when running in streaming mode or sliding windows mode with a large window size. 

4.2.4.6.4 CHECK Field 

The CHECK field indicates the type of checksum algorithm to be used. The 

algorithms that are supported and their values are listed in Table 4. The checksum 

algorithm of the connection shall be the more complex of the two algorithms specified. If one 

of the systems is not capable of supporting the checksum algorithm, it must ABORT the 

connection. 

4.2.4.6.5 ENCODE Field 

The ENCODE field is used to indicate the level of encoding that is required to 

transmit eight bit data over the current communications line correctly. As shown in Table 7, 

there are several encoding algorithms. These encoding algorithms may be combined by 

placing Hex Encoded sum of their corresponding values in the ENCODE field. If the 

encoding algorithms are combined, the algorithms shall be performed in descending order 

according to their values listed in Table 7. Finally, the encoding algorithm(s) used on the 

connection shall be the algorithm(s) that correspond to the higher ENCODE value. If one of 
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the systems is not capable of supporting the encoding algorithm, it must ABORT the 

connection. 

V A L U E DESCRIPTION 

0 No encoding (except SOH stuffing) is to be performed. 
1 Network Control Character Prefix Encoding 
2 Network Control Character Prefix Encoding (including 

optional characters) 
4 Full Control Character Prefix Encoding 
8 Eighth Bit Character Prefix Encoding 

Table 7. MAX2 ENCODE Field Values 

4.2.4.6.6 CTL Field 

The CTL field is used to indicate to the remote system the printable ASCII character 

that should be used as the control prefix encoding character. If this character is encountered 

in the data and control character prefix encoding is being performed, it shall be represented 

using two such characters. In addition, this character cannot be equal to the eighth bit 

prefix encoding character. The default value is ASCII 94, the caret character (A). 

4.2.4.6.7 8TH Field 

The 8TH field is used to indicate to the remote system the printable ASCII character 

that should be used as the eighth bit prefix encoding character. If this character is 

encountered in the data and eighth bit character prefix encoding is being performed, it shall 

be represented using two such characters. In addition, this character cannot be equal to the 

control prefix encoding character. The default value is ASCII 96, the accent grave 

character C). 
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4.2.4.6.8 DUPLEX Field 

The DUPLEX field is used to indicate whether the system is capable of sending and 

receiving simultaneously. A value of "H" indicates that the system is only capable of 

half-duplex communication; otherwise it is capable of full-duplex communication. A value of 

"U" indicates that the data channel is unidirectional while a value of "B" indicates that the 

channel is bidirectional. If the data channel is unidirectional, it is controlled by the sending 

system. Until the sending system relinquishes control, the receiving system can only receive 

data. However, with a bidirectional data channel, both systems can send data 

simultaneously. 

4.2.4.7 DATA-BLOCK Packet 

The DATA-BLOCK packet is used to transmit data to the remote system. The local 

system will then wait for the remote system to acknowledge the packet before proceeding. 

However, the remote system will not send an ACK for the DATA-BLOCK packet until all 

previously sent DATA packets have been received correctly. The DATA-BLOCK packet will 

be retransmitted only if it was NAK'ed by the remote system. Thus, if a DATA-STREAM 

packet was sent before the DATA-BLOCK packet and was NAK'ed, the remote system would 

not send an ACK for the DATA-BLOCK packet until the DATA-STREAM packet was 

retransmitted with no detectable transmission errors. If no communication is received from 

the remote system before the timeout period expires, a PROBE packet should be sent to 

determine the status of the remote system. 
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4.2.4.8 DATA-REPLY Packet 

The DATA-REPLY packet is used to transmit data to the remote system. It indicates 

to the remote system that a reply, ACK or NAK, is required. This would be the DATA packet 

to be used in sliding window mode or in streaming mode if the transmission medium was 

error prone. If no reply is received before the timeout period expires, the DATA-REPLY 

packet is resent unless the application set retry limit is exceeded. 

4.2.4.9 DATA-STREAM Packet 

The DATA-STREAM packet is used to transmit data to the remote system. It 

indicates to the remote system that if the packet was received with no detectable 

transmission errors, a reply is not required. This would be the normal DATA packet used in 

streaming mode. 

4.2.4.10 DISCONNECTED Packet 

The DISCONNECTED packet is used by the receiving system to indicate to the 

sending system that it has finally received all of the data that was sent to it. This event 

occurs when the sequence number of a DATA packet is one less than the sequence number of 

the DISCONNECTING packet that was sent by the sending system. When the sending 

system receives the DISCONNECTED packet, it sends an acknowledgement to the receiving 

system and terminates the connection. 

4.2.4.11 DISCONNECTING Packet 

The DISCONNECTING packet is used by the sending system to indicate to the 

receiving system that it has completed its transfer of data. Like any other packet, it is 
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acknowledged by the receiver. However, before the sending system can disconnect, it must 

wait for the receiving system's DISCONNECTED packet. If the data channel is 

unidirectional, the DISCONNECTING packet can only be sent when the system has the 

CHANNEL packet. 

4.2.4.12 FEEDBACK Packet 

The FEEDBACK packet is used to transmit application level control data to the 

remote application. Upon receiving a FEEDBACK packet, the contents of the DATA Field 

are interpreted and the appropriate action taken by the application. In a file transfer 

application, the FEEDBACK packet could be used to send a cancel request to the remote 

system. 

4.2.4.13 NAK Packet 

The NAK packet is used to indicate that the Data packet sent by the remote system 

was received with detectable transmission errors and must be resent by the remote system. 

If the requested Data packet is not received within the timeout period, the NAK packet is 

resent. The sequence number of the NAK packet will be set to the same value as the 

received Data packet. There is no retry limit defined by the MAX2 protocol; it is determined 

by the application. 

4.2.4.14 NAK-A Packet 

The NAK-A packet is a version of the NAK packet that contains only printable ASCII 

characters. Its LEN field is Hex Encoded, its SEQ field is set to the value 32, and it uses a 

Type 0 checksum. It is intended only to be used prior to the establishment of a connection 
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when the encoding level and checksum type have yet to be determined. There is no retry 

limit defined by the MAX2 protocol; it is determined by the application. 

4.2.4.15 NAK-C Packet 

The NAK-C packet is used to indicate that the Control packet sent by the remote 

system was received with detectable transmission errors and must be resent by the remote 

system. The sequence number of the NAK-C packet will be set to the same value as the 

received Control packet. There is no retry limit defined by the MAX2 protocol; it is 

determined by the application. 

4.2.4.16 PAUSE Packet 

The PAUSE packet is used by the receiving system to ask the sending system to stop 

transmitting until it receives a RESUME packet. Typically, this would be sent when the 

receiving system is in danger of being overrun by the sending system in streaming mode. 

4.2.4.17 PROBE Packet 

The PROBE packet is used to determine whether a remote system is still alive. 

Upon receiving a PROBE packet, the system immediately acknowledges it. 

4.2.4.18 RESUME Packet 

The RESUME packet is used by the receiving system to tell the sending system that 

it may resume sending. The manner in which its DATA field is interpreted is shown in 

Figure 22. Both of these fields are two byte unsigned integers that are transmitted in least 

to most significant byte order. 
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L A S T S E Q M A X P A C K E T S 

LAST SEQ - sequence number of l a s t DATA 
packet received c o r r e c t l y 

MAX PACKETS - maximum number of packets of 
maximum si z e before overrun 

Figure 22. MAX2 RESUME Packet Data Field Format 

When the sending system receives the RESUME packet, it begins transmitting again 

starting with the packet whose sequence number is equal to "LAST SEQ + 1". The other 

parameter, "MAX PACKETS", can be used by the sending system to moderate the amount of 

data that is transmitted before it pauses to give the receiving system a chance to catch up. 

This reduces the amount of bandwidth wasted due to lost DATA packets and the 

transmission of the RESUME packet. 

4.2.4.19 TIMEOUT Packet 

The TIMEOUT packet is used to indicate to the receiver of the packet the timeout 

value chosen by the sender. This value is a one byte unsigned integer in the DATA field. It 

indicates the number of seconds that the sender will wait for a reply before it retransmits a 

packet; This packet allows the MAX2 protocol to determine a suitable timeout period to use 

to minimize the channel bandwidth wasted due premature timeouts and idle periods waiting 

for the timeout period to expire in stop and wait mode. 

4.2.5 Protocol Description 

Although the MAX2 protocol was designed with full-duplex bidirection transmission 

capabilities, the description of the protocol will be given in one direction only. In the 
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description that follows, it is assumed that the calling system, the CALLER, wishes to 

transfer data to the called system, the CALLEE. 

4.2.5.1 CONNECT Phase 

The first step in the CONNECT phase is for the CALLER to establish a physical 

connection (i.e. telephone connection) to the remote system. Once the physical connection 

has been established, the MAX2 protocol starts with the CALLER sending a CONNECT 

packet, with its fields set appropriately, to the CALLEE. Until the CALLER receives a 

CONNECT packet from the CALLEE or the application determined retry limit is exceeded, it 

continues to transmit CONNECT packets at 5 second intervals. 

If the CALLEE detects a transmission error in the CALLER's CONNECT packet, it 

can simply wait for the CALLER to retransmit the CONNECT packet. However, to speed up 

the error recovery process, the CALLEE can send a NAK-A packet to the CALLER. 

If the CALLEE is capable of supporting the connection parameters specified in the 

CONNECT packet, it responds with its own packet to the CALLER. Its CONNECT packet 

specifies connection parameters that do not exceed the requirements of the CALLER's. 

However, if the CALLER's CONNECT packet specifies a requirement that the CALLEE is 

not capable of supporting (eg. eighth bit prefix encoding), it responds with an ABORT-A 

packet containing a short ASCII string explaining to the CALLER's system operator why the 

CONNECT request was declined. 

The CALLER shall also record the elapsed time in seconds between the transmission 

of the last byte of a CONNECT packet and the reception of the first byte of a reply. This 

interval shall be referred to as T and is used to calculate the timeout interval when waiting 

57 



for a reply to a packet. The timeout interval calculated is placed in a TIMEOUT packet and 

sent to the CALLEE. 

The timeout interval should be sufficient to allow the largest data packet to be sent 

and for the reply to be received by the sender. This timeout interval should also take into 

account the time required by the receiver to process the data packet and to generate the 

appropriate reply as well as the propagation delay. A simple calculation of the timeout 

interval can be performed using the following equation 

Timeout I n t e r v a l = P / B + T Eq. 30 

where P = maximum data packet s i z e i n bytes 
B = transmiss ion speed i n bytes /second 

Similarly the CALLEE measures the elapsed time between sending the last byte of 

its CONNECT packet and receiving the first byte of the CALLER's TIMEOUT packet. After 

calculating its timeout period, it sends its timeout period to the CALLER in a TIMEOUT 

packet. Once the CALLER acknowledges this packet, the connect phase is complete. If the 

data channel is unidirectional, it is controlled by the CALLER. 

4.2.5.2 DATA Transfer Phase 

During the data transfer phase, any of the three DATA packets may be transmitted. 

If the data channel is bidirectional, the CALLER and CALLEE may transmit DATA packets 

simultaneously. However, acknowledgements are not piggy-backed. This makes the 

implementation of the MAX2 protocol much simpler. If the data channel is unidirectional, 

the DATA packets can only be sent by the system holding the CHANNEL packet. 
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A sliding window mode of operation can be achieved by using DATA-REPLY packets 

in conjunction with the BSIZE field of the CONNECT packet or the MAX PACKETS field of 

a RESUME packet. If a RESUME packet has been received, the window size shall be the 

smaller of BSIZE*PSIZE and MAX PACKETS*PSIZE. The sending system simply transmits 

DATA-REPLY packets as long the packets can be inserted into the window. When the the 

oldest packet in the window is acknowledged, it is removed. 

In the normal streaming mode, DATA-STREAM packets are continuously 

transmitted. If the receiving system detects a transmission error, a NAK packet is sent to 

the sending system, requesting that the corrupted DATA-STREAM packet be retransmitted. 

However, if the sending system has overrun the receiving system, the receiving 

system can send a PAUSE packet to temporarily halt the sending system's flood of DATA 

packets. Once the receiving system has freed enough of its buffers to accept DATA packets 

again, it sends a RESUME packet to the sending system, indicating the sequence number of 

the last packet that it correctly received. Naturally, NAK packets will be sent for any 

packets that were received with transmission errors. 

If the sending system repeatedly overruns the receiving system, a large amount of 

bandwidth may be wasted on overrun packets. Bandwidth would also be wasted while the 

sending system is waiting for the RESUME packet before resuming transmission. The 

sending system may be able to increase the channel utilization by changing to sliding 

window mode or adjusting the size of the window based upon the MAX PACKETS field of the 

RESUME packet. 

In addition, if the sending system has been PAUSE'd and has not received any 

communication from the receiving system for a period greater than or equal to its timeout 

period, it should send a PROBE packet to the receiving system. If the receiving system fails 
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to reply to the PROBE within the timeout period, the PROBE is resent. If the retry limit set 

by the application is exceeded, the sending system should assume the receiving system has 

become hung and it should ABORT the connection. 

At times, it may be necessary for both systems to become fully synchronized. This 

may be achieved by sending a DATA-BLOCK packet. Upon receiving this packet, a positive 

acknowledgement for this packet will not be sent to the sending system until all outstanding 

DATA packets have been received correctly. The sending system shall resend a 

DATA-BLOCK only if it receives a negative acknowledgement for the packet. 

During the exchange of DATA packets and acknowledgements, if either system 

deems it necessary to modify its timeout parameter, it may do so. However, it must notify 

the remote system of its new timeout value by using the TIMEOUT packet. Moreover, either 

system may also choose to send less than the maximum amount of data per DATA packet to 

minimize the cost of error recovery. 

4.2.5.3 DISCONNECT Phase 

Once the CALLER has sent all of its data, it sends a DISCONNECTING packet. 

However, the CALLEE should not reply with a DISCONNECTED packet unless it has 

received all data packets whose sequence number is less than the sequence number of the 

CALLER'S DISCONNECTING packet. As soon as the CALLER receives a DISCONNECTED 

packet from the CALLEE, the connection is terminated. This disconnect sequence must be 

performed in both directions before the physical link is terminated. 

If the data channel is unidirectional, the CALLER sends the CHANNEL packet to 

the CALLEE immediately after the DISCONNECTING packet. This allows the CALLEE to 

begin sending data or to initiate its own disconnect sequence 
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4.3 IMPLEMENTATION 

In order to measure the performance of the MAX2 protocol, two programs were 

written in ANSI C and compiled using Borland's Turbo C++ compiler. The MAX2SEND 

program would use a subset of the MAX2 protocol to send a file, while the MAX2RECV 

program would receive the file sent. Both programs assume a full-duplex channel, a 

unidirectional data channel, use CRC-16 packet checksums, use two byte sequence numbers, 

and perform no data encoding. Consequently, the theoretical channel utilization is given by 

Equation 20. In addition, since only a subset of the protocol's features are required, the 

prototype only recognizes the packets listed in Table 8. 

ABORT ABORT-A ACK A C K - C 
CONNECT DATA-STREAM DISCONNECTED DISCONNECTING 
NAK N A K - A N A K - C TIMEOUT 

Table 8. MAX2 Packet Types Recognized By MAX2SEND and MAX2RECV 

Since the two programs transmit a file in streaming mode, a mechanism was needed 

to limit the system resources consumed as the error rate increased. Both programs maintain 

a retry counter for each packet sent. When a packet is added to the program's send queue, it 

is inserted in front of all packets whose retry counter is lower but is inserted after any 

packets whose retry counter is greater than or equal to its retry counter. This allows older 

packets to be resent before newer ones and hence minimizes the memory requirements of 

both programs. 

Both the MAX2RECV and MAX2SEND programs accept command line parameters. 

These parameters allow the user to optionally specify the baud rate, communications port, 

retry limit, and maximum data packet size for the file transfer. In addition, the MAX2RECV 
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program requires the user specify the name of the file to be received and the MAX2SEND 

program requires the user specify the name of the file to be sent. 

Upon completion of the file transfer, both programs display the number of bytes sent 

and received, packets sent and received, NAKs sent and received, errors detected, timeouts, 

the size of the file transferred, and the elapsed time of the file transfer. The programs also 

compute and display the effective throughput and the channel utilization. 

The robustness of the programs developed was tested by sending various file types 

through the BLACK30 error generator at an error rate of O.OOE-0 and 3.00E-4 errors/bit. 

Upon completion of the file transfer, a checksum was computed for the received file and 

compared to the checksum of the original file. After successfully transferring the one 

megabyte test file, the program executable files, and the program source files, the programs 

were considered error free and robust enough for throughput testing. 

4.4 THROUGHPUT EXPERIMENTS 

A decision was made to test the MAX2 protocol under only random error distribution 

conditions using the BLACK30 error generator since the theoretical equations were so 

accurate for the protocols that were tested under uniform error distributions. Futhermore, 

experiences with communication over telephone lines have shown that a uniform error 

distribution is not realistic. 

4.4.1 Random Bit Error Distribution (BLACK30) Experiments 

The throughput of the MAX2 protocol prototype implementation was tested using the 

BLACK30 program as the error generator. Throughput experiments were performed using 
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the one megabyte test file at 9600 and 4800 baud using 1024 byte data packets at error rates 

of 0.00E-5, 3.00E-5, 4.60E-5, 6.10E-5, 7.60E-5, 9.15E-5,1.05E-4, and 1.50E-4, errors/bit. 

Experiments were also performed using 128 byte data packets at the same error 

rates as the 1024 byte data packets and at error rates of 2.10E-4, 2.55E-4, 3.00E-4 errors/bit. 

The results of these experiments are summarized in Table 10 which lists the minimum, 

maximum, and average percentage difference for all error rates for each data packet size. 

PROTOCOL MINIMUM MAXIMUM AVERAGE 

128 byte packets 
1024 byte packets 

-0.6 
-1.4 

0.2 
0.3 

-0.2 
-0.4 

Table 9. MAX2 Percentage Difference of Measured Utilization Relative to 
Theoretical Utilization For Random Bit Error Distributions Produced by BLACK30 

The average measured throughput of all protocols tested at random bit error rates of 

0.00E-0, 4.50E-5, 9.15E-5, and 3.00E-4 is listed in Table 10. The throughput numbers in this 

table show that when using comparable data packet sizes, the MAX2 protocol achieves a 

higher effective data throughput than the Kermit, XMODEM, and YMODEM protocols. 

However, as the error rate increases to 4.50E-5 errors/bit, protocols such as XMODEM with 

a low encoding overhead and 133 byte data packets, provide a higher throughput than the 

MAX2 protocol using a 1024 byte data packet. A complete view of the throughput 

measurements taken is provided by Graphs 39 and 40. 
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0.00E+0 4.50E-5 9.15E-5 3.00E-4 
PROTOCOL e r r o r s / b i t e r r o r s / b i t e r r o r s / b i t e r r o r s / b i t 

At 4800 Baud: 
C l a s s i c Kermit 298 .5 272.5 249.3 181.0 
MAX2 (128 bytes) 451.5 431.7 410 .5 330.5 
XMODEM (Procomm) 2 440.4 412.6 388 .3 289.8 
Extended Kermit 1 354.9 245.6 171.6 N/A 
MAX2 (1024 bytes) 473.9 324.9 222 .5 N/A 
YMODEM (Procomm) 466.7 317.5 219.6 N/A 

At 9600 Baud: 
C l a s s i c Kermit 580.6 532.4 470.4 281.6 
MAX2 (128 bytes) 903.0 860.7 821.3 665.3 
XMODEM (Procomm)2 850.2 789.4 733.4 525.0 
Extended Kermit 1 698.6 483.7 339.8 N/A 
MAX2 (1024 bytes) 947 .7 949.4 447.2 N/A 
YMODEM (Procomm) 913.9 621.0 420 .2 N/A 

1000 byte data packets. 
CRC checksum 

Table 10. MAX2 Average Measured Throughput Comparison At Random Bit Error 
Rates Produced by BLACK30 

As shown by Graphs 41 and 42, the MAX2 protocol's measured throughput is within 

±1.5% of the theoretical throughput for both data packet sizes and at all error rates. This is 

by far the best correlation between the measured throughput and the theoretical throughput 

predicted by the derived equations. 

4.5 SUMMARY 

The MAX2 protocol is a powerful, versatile, and configurable communications 

protocol. As summarized in Table 11, the MAX2 protocol offers several levels of data 

encoding, error detection mechanisms, flow control methods, and low packet overhead. 

However, Table 11 does not show MAX2's ability to dynamically adjust its timeout period 
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and packet size (within the negotiated maximum packet size), that it has a maximum packet 

size of 64 kilobytes, and its ability to support data transfer in both directions simultaneously. 

The MAX2 protocol also allows the user or application to select the features that would be 

used during a communications session. 

As with any streaming protocol using a selective retransmission mechanism for error 

correction, the MAX2 protocol could conceivably consume vast amounts of memory buffering 

data packets while waiting for corrupted data packets to be retransmitted correctly. 

However, the priority send queue and transmission mechanism used by the prototype 

implementation kept the MAX2RECV program's packet buffer requirements to within four 

data packets during the throughput experiments. 
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MAX2 MAX2 MAX2 MAX2 
FEATURE (128) (25S) (512) (1024) 

FLOW CONTROL: 
• Stop and Wait o o o - o 
• S l i d i n g Windows o o o o 
• Streaming • • • • 

ERROR DETECTION: 
• 1 byte sum • • • • 
• 2 byte sum • • • • 
• 16 b i t CRC • • • • 
• 32 b i t CRC • • • • 

ERROR RECOVERY: 
• s e l e c t i v e 

re transmiss ion • • • • 
• go back N X X X X 

PACKET SIZES 1: 
• Data Packet (Min) 7 7 8 8 
• Data Packet (Max) 128 256 512 1024 
• Reply Packet 7 7 8 8 
• Max. Data F i e l d 121 249 504 1016 

OVERHEAD: 
• Bytes Encoded 2 1 1 1 1 
• Encoding Factor 1.004 1.004 1.004 1.004 
• Raw Data / Packet 120.5 248.0 510.0 1012 .0 
• Overhead To Send 

One Data Packe t 3 6.2% 3.2% 2.0% 1.2% 

l / - supported 
0 - supported but not normally used 
X - not supported 
1 - based on 16 b i t CRC checksum 
? . . . 

- assuming minimum encoding on stream of 0 to 255 
3 - 1 - (Data Packet) / Raw Data 

Table 11. MAX2 Protocol Feature Summary 

The throughput experiments with the MAX2 prototype have shown that the protocol 

is robust and its performance degrades gracefully as the communication channel's error rate 
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increases. Furthermore, as shown by the graphs in Appendix 6, the MAX2 protocol provides 

higher effective throughputs at all error rates than the Kermit, XMODEM, YMODEM, and 

ZMODEM protocols. 

4.6 CONCLUSION 

The prototype implementation of the MAX2 protocol has shown that the protocol is 

feasible, robust, and more efficient than the Kermit, XMODEM, YMODEM, and ZMODEM 

protocols. In addition, the throughput experiments have validated the channel utilization 

equation for full-duplex streaming protocols using selective retransmission error correction. 

The results of the throughput experiments and the channel utilization equation have 

shown that as the error rate increases, the data packet size should be decreased to minimize 

the error recovery cost and hence increase the throughput. Since the MAX2 protocol allows 

variable length data packets within the negotiated maximum packet size, an implementation 

of the MAX2 protocol could maximize its effective throughput by monitoring the error rate of 

the communications channel and making the appropriate adjustments to the size of the data 

packet. 
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5. CONCLUSION 

A number of public domain file transfer protocols were surveyed. An analysis of 

these protocols showed that the Kermit protocol using classic packets had the highest 

overhead of 50.0% while the YMODEM protocol had the lowest overhead of 0.6%. The 

overhead and packet sizes of these protocols as well as the MAX2 protocol is listed in 

Table 12. 

DATA REPLY 
PACKET PACKET PROTOCOL 

PROTOCOL SIZE SIZE OVERHEAD(%) 

C l a s s i c K e r m i t 97 8 5 0 . 0 

E x t e n d e d K e r m i t 1033 8 2 9 . 5 
X M O D E M - C R C 133 1 4 . 7 
YMODEM 1 0 2 9 1 0 . 6 
ZMODEM 1 0 2 7 21 3 . 8 
MAX2 ( 1 0 2 4 ) 1 0 2 4 8 1 . 2 
MAX2 (512 ) 512 8 2 . 0 
MAX2 (256 ) 2 5 6 7 3 . 2 
MAX2 (128) 128 7 6 . 2 

Table 12. Protocol Overhead Summary 

A number of equations were derived to calculate the effective channel utilization, and 

hence the effective data throughput, of stop and wait protocols and streaming protocols for 

any given transmission speed and error rate. These utilization equations are expressed in 

terms of the probabilities of the six basic events. These probabilities are determined by the 

packet sizes and the error distribution. Currently, equations have been derived for uniform 

byte error and random bit error distributions. 

However, no utilization equation was derived for sliding window protocols since the 

initial work that was performed indicated that it would be difficult to derive an equation that 
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would accurately model the behaviour of all sliding window protocols. Furthermore, before 

an equation can be derived for sliding window protocols, an implementation of a well 

documented sliding window protocol is needed in order to verify the validity of the equation. 

The validity of the derived utilization equations was proven by performing a series of 

experiments that measured the effective data throughput of the Kermit, MAX2, XMODEM, 

and YMODEM protocols under different baud rates, error rates, and error distributions 

(uniform byte error and random bit error). The results of these experiments showed that the 

equations were within ±5% of the measured values. In addition, these experiments showed 

that the effective throughput of the DSZ implementation of the XMODEM, YMODEM, and 

ZMODEM protocols degrade rapidly as the error rate increases. 

The utilization equations have shown that protocols with larger packets have higher 

channel utilization when the error rate is low. However, as the error rate increases, the 

channel utilization of protocols with smaller packets degrade at a slower rate and at some 

point offer better utilization than protocols with larger packets. In addition, the equations 

indicate that stop and wait protocols with fixed timeout intervals needlessly waste channel 

bandwidth as the transmission speed increases. Thus, in order to maximize channel 

utilization, a protocol should decrease its packet size as the error rate increases and decrease 

its timeout period at higher transmission speeds. 

The protocol that was designed, MAX2, is a full-duplex streaming protocol that can 

also run in stop and wait or sliding windows mode. The MAX2 protocol also allows the user 

or application to select the level of data encoding, the checksum method, the maximum 

packet size, and the sequence number size. In addition, the MAX2 protocol determines the 

appropriate timeout value to use as part of its connection phase. Furthermore, unlike the 
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public domain file transfer protocols examined, MAX2 allows data to be transmitted in both 

directions simultaneously over a full-duplex communications channel. 

However, the MAX2 prototype only implements a subset of the protocol. 

Nonetheless, the throughput experiments using the prototype implementation showed that 

the MAX2 protocol was robust and makes better utilization of the channel than any of the 

protocols examined. It also proved that the channel utilization equation derived for 

full-duplex streaming protocols using selective retransmission error correction was valid. 

Since the prototype implementation was designed to transfer a file using a subset of 

the MAX2 protocol, the next step would be to develop a general purpose MAX2 protocol 

driver that can be used by any application to exchange information with a remote 

application. This would require that a set of services be defined that can be invoked by an 

application to establish a connection, to disconnect, to send data, and to receive data. 

Currently, the MAX2 protocol has an error recovery problem shared by the Kermit, 

XMODEM, and YMODEM protocols. Namely, if the error rate increases to a level such that 

the probability that P(Success) approaches zero, these protocols will probably fail due to 

excessive retries before the data packet is successfully transmitted. In order to recover from 

this situation, the MAX2 protocol must provide a mechanism to partition or segment the 

packet such that each partition or segment has a reasonable chance of being transmitted 

successfully. An intelligent implementation of the MAX2 protocol would monitor the packet 

retry rate and increase the data packet size when the packet retry rate decreases and 

conversely, decrease the data packet size when the packet retry rate increases. 
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APPENDIX 1. Theoretical Utilization Graphs, Uniform Error Distribution 

When examining the graphs in this appendix, please keep the 
following in mind: 

DATA REPLY 
PACKET PACKET 

PROTOCOL SIZE SIZE 

C l a s s i c Kermit 97 8 
Extended Kermit 1033 8 
XMODEM-CRC 133 1 
YMODEM 1029 1 
ZMODEM 1027 21 
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APPENDIX 2. Theoretical Throughput Graphs, Uniform Error Distribution 

When examining the graphs in this appendix, please keep the 
following in mind: 

DATA REPLY 
PACKET PACKET 

PROTOCOL SIZE SIZE 

C l a s s i c Kermit 97 8 
Extended Kermit 1033 8 
XMODEM-CRC 133 1 
YMODEM 1029 1 
ZMODEM 1027 21 
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APPENDIX 3. Measured Throughput Graphs, Uniform Error Distribution 

When examining the graphs in this appendix, please keep the 
following in mind: 

DATA REPLY 
PACKET PACKET 

PROTOCOL SIZE SIZE 

C l a s s i c Kermit 97 8 
Extended Kermit 1033 8 
XMODEM-CRC 133 1 
YMODEM 1029 1 
ZMODEM 1027 21 
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APPENDIX 4. Percentage Difference Graphs, Uniform Error Distribution 

When examining the graphs in this appendix, please keep the 
following in mind: 

DATA REPLY 
PACKET PACKET 

PROTOCOL SIZE SIZE 

C l a s s i c Kermit 97 8 
Extended Kermit 1033 8 
XMODEM-CRC 133 1 
YMODEM 1029 1 
ZMODEM 1027 21 
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APPENDIX 5. Theoretical Utilization Graphs, Random Error Distribution 

When examining the graphs in this appendix, please keep the 
following in mind: 

DATA REPLY 
PACKET PACKET 

PROTOCOL SIZE SIZE 

C l a s s i c K e r m i t 97 8 
E x t e n d e d K e r m i t 1 0 3 3 8 
X M O D E M - C R C 133 1 
YMODEM 1 0 2 9 1 
ZMODEM 1 0 2 7 21 
MAX2 (1024 ) 1 0 2 4 8 
MAX2 (512) 512 8 
MAX2 (256 ) 2 5 6 7 
MAX2 (128) 128 7 
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APPENDIX 6. Theoretical Throughput Graphs, Random Error Distribution 

When examining the graphs in this appendix, please keep the 
following in mind: 

DATA REPLY 
PACKET PACKET 

PROTOCOL SIZE SIZE 

C l a s s i c Kermit 97 8 
Extended Kermit 1033 8 
XMODEM-CRC 133 1 
YMODEM 1029 1 
ZMODEM 1027 21 
MAX2 (1024) 1024 8 
MAX2 (512) 512 8 
MAX2 (256) 256 7 
MAX2 (128) 128 7 
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THEORETICAL THROUGHPUT @ 2400 BAUD 
Random Error Distribution 
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APPENDIX 7. Measured Throughput Graphs, Random Error Distribution 

When examining the graphs in this appendix, please keep the 
following in mind: 

DATA REPLY 
PACKET PACKET 

PROTOCOL SIZE SIZE 

C l a s s i c Kermit 97 8 
Extended Kermit 1033 8 
XMODEM-CRC 133 1 
YMODEM 1029 1 
MAX2 (128) 128 7 
MAX2 (1024) 1024 8 
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MEASURED THROUGHPUT @ 4800 BAUD 
Random Error Distribution (BLACK30) 
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APPENDIX 8. Percentage Difference Graphs, Random Error Distribution 

When examining the graphs in this appendix, please keep the 
following in mind: 

DATA REPLY 
PACKET PACKET 

PROTOCOL SIZE SIZE 

C l a s s i c Kermit 97 8 
Extended Kermit 1033 8 
XMODEM-CRC 133 1 
YMODEM 1029 1 
MAX2 (128) 128 7 
MAX2 (1024) 1024 8 
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