
COMMUNICATION PROTOCOL CHANNEL

UTILIZATION AND T H E DESIGN OF T H E MAX2 DATA

LINK PROTOCOL

by

KENNETH LEE

B.Sc, The University of British Columbia, 1985

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF MASTER

OF SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

(Department of Computer Science)

We accept this thesis as conforming to the required standard.

THE UNIVERSITY OF BRITISH COLUMBIA

September 1991

© Kenneth Lee, 1991

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia/ I agree that the Library shall make it

freely available for reference arid study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives, it is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

Department of 6U)Mpu.Tr>(l (t-\Ui^

The University of British Columbia
Vancouver, Canada

Date $Ej)T£-M6F-ft. 1 9 0 1

DE-6 (2/88)

ABSTRACT

In this thesis, we first surveyed and analyzed the Kermit, XMODEM, YMODEM, and

ZMODEM file transfer protocols. A number of theoretical channel utilization equations were

then developed that would predict the effective utilization, and hence effective throughput, of

stop and wait protocols and streaming protocols. A series of experiments were performed

that measured the effective throughput of the protocols at various baud rates and error rates

and showed the utilization equations to be within ±5% of the measured values. Based upon

these results, a full-streaming communications protocol, MAX2, was designed. A subset of

the MAX2 protocol was then implemented and tested at different baud rates and error rates.

These results were within ±1.5% of the theoretical values and showed that the MAX2

protocol to be more efficient than the Kermit, XMODEM, YMODEM, and ZMODEM

protocols at all baud rates and error rates when using comparable maximum packet sizes .

These results also indicated that in order to achieve maximum effective throughput, the

packet size must change as the communication channel's error rate changes.

ii

TABLE OF CONTENTS

Abstract • 1 1

List Of Tables v i

List Of Figures v i i

List Of Graphs vm

Acknowledgement x

1. Introduction 1

1.1 Motivation and Objectives 1
1.2 Outline 2

2. Protocol Survey 4

2.1 Introduction 4

2.2 Kermit 4

2.2.1 Introduction - 4

2.2.2 Classic Kermit 5

2.2.3 Extended Length Packet Extension 8
2.2.4 Sliding Window Extension .9

2.3 XMODEM 10
2.3.1 Introduction 10
2.3.2 XMODEM (Original) 10
2.3.3 XMODEM-CRC H
2.3.4 XMODEM-1K 12

2.4 YMODEM 12
2.5 ZMODEM 13
2.6 Summary 15
2.7 Conclusion 18

3. Protocol Channel Utilization 19
3.1 Introduction 19
3.2 Analysis 19

3.2.1 Uniform Deterministic Error Distribution 20
3.2.2 Poisson Error Distribution 21

3.3 Channel Utilization Equation For Stop and Wait Protocols .22
3.4 Channel Utilization Equation For Streaming Protocols 25

3.4.1 Selective Retransmission 26
3.4.2 Go Back N 28

3.5 Equation Verification 31
3.5.1 Experiment Description 32
3.5.2 Uniform Byte Error Distribution Experiments 34
3.5.3 Random Bit Error Distribution (BLACK30) Experiments 36

3.6 Summary 37
3.7 Conclusion 39

iii

4. MAX2 Protocol 40
4.1 Introduction 40
4.2 Specification 41

4.2.1 Encoding Algorithms 41
4.2.1.1 Hex Encoding 41
4.2.1.2 Network Control Character Encoding 42
4.2.1.3 Full Control Character Encoding .42
4.2.1.4 Eighth Bit Character Encoding .42

4.2.2 Checksum Types 42
4.2.3 Packet Format .43

4.2.3.1 SOH Field 44
4.2.3.2 SEQ Field 44
4.2.3.3 TYPE Field 44
4.2.3.4 LEN Field 44
4.2.3.5 DATA Field 45
4.2.3.6 CHECK Field .45

4.2.4 Packet Types 45
4.2.4.1 ABORT Packet 46
4.2.4.2 ABORT-A Packet 47
4.2.4.3 ACK Packet 47
4.2.4.4 ACK-C Packet 47
4.2.4.5 CHANNEL Packet 47
4.2.4.6 CONNECT Packet .48
4.2.4.6.1 PSIZE Field 49
4.2.4.6.2 BSIZE Field 49
4.2.4.6.3 SSIZE Field 50
4.2.4.6.4 CHECK Field 50
4.2.4.6.5 ENCODE Field 50
4.2.4.6.6 CTL Field 51
4.2.4.6.7 8TH Field 51
4.2.4.6.8 DUPLEX Field 52
4.2.4.7 DATA-BLOCK Packet 52
4.2.4.8 DATA-REPLY Packet 53
4.2.4.9 DATA-STREAM Packet 53
4.2.4.10 DISCONNECTED Packet 53
4.2.4.11 DISCONNECTING Packet 53
4.2.4.12 FEEDBACK Packet 54
4.2.4.13 NAK Packet 54
4.2.4.14 NAK-A Packet 54
4.2.4.15 NAK-C Packet 55
4.2.4.16 PAUSE Packet 55
4.2.4.17 PROBE Packet 55
4.2.4.18 RESUME Packet 55
4.2.4.19 TIMEOUT Packet 56

4.2.5 Protocol Description 56
4.2.5.1 CONNECT Phase 57
4.2.5.2 DATA Transfer Phase 58
4.2.5.3 DISCONNECT Phase 60

iv

4.3 Implementation .61
4.4 Throughput Experiments 62

4.4.1 Random Bit Error Distribution (BLACK30) Experiments 62
4.5 Summary 64
4.6 Conclusion 67

5. Conclusion 68

6. Bibliography 71

APPENDIX 1. Theoretical Utilization Graphs, Uniform Error Distribution 73

APPENDIX 2. Theoretical Throughput Graphs, Uniform Error Distribution 78

APPENDED 3. Measured Throughput Graphs, Uniform Error Distribution 83

APPENDIX 4. Percentage Difference Graphs, Uniform Error Distribution 91

APPENDED 5. Theoretical Utilization Graphs, Random Error Distribution 99

APPENDIX 6. Theoretical Throughput Graphs, Random Error Distribution 108

APPENDK 7. Measured Throughput Graphs, Random Error Distribution 117

APPENDED 8. Percentage Difference Graphs, Random Error Distribution 120

v

LIST OF TABLES

Table 1. Protocol Survey Feature Summary 17

Table 2. Percentage Difference of Measured Utilization Relative to Theoretical Utilization
For Uniform Byte Error Distributions Produced By BLACK10 34

Table 3. Percentage Difference of Measured Utilization Relative to Theoretical Utilization
For Random Bit Error Distributions Produced by BLACK30 37

Table 4. MAX2 Checksum Types and Field Values 43

Table 5. MAX2 Packet Types .46

Table 6. MAX2 CONNECT Packet Data Field Types 49

Table 7. MAX2 ENCODE Field Values 51

Table 8. MAX2 Packet Types Recognized By MAX2SEND and MAX2RECV . 61

Table 9. MAX2 Percentage Difference of Measured Utilization Relative to Theoretical
Utilization For Random Bit Error Distributions Produced by BLACK30 63

Table 10. MAX2 Average Measured Throughput Comparison At Random Bit Error Rates

Produced by BLACK30 .64

Table 11. MAX2 Protocol Feature Summary 66

Table 12. Protocol Overhead Summary 68

vi

LIST OF FIGURES

Figure 1. Kermit Repeat Encoding Algorithm 6

Figure 2. Kermit Eighth Bit Encoding Algorithm 6

Figure 3. Kermit Control Prefix Encoding Algorithm 7

Figure 4. Classic Kermit Packet Format 7

Figure 5. Extended Length Kermit Packet Format 9

Figure 6. XMODEM DATA Packet Format 11

Figure 7. XMODEM-CRC DATA-CRC Packet Format 11

Figure 8. XMODEM-1K DATA-IK Packet Format 12

Figure 9. ZMODEM Data Packet Format .14

Figure 10. ZMODEM Control Packet Data Field 15

Figure 11. ZMODEM Control Packet Formats 15

Figure 12. Utilization Equation For Stop and Wait Protocols 24

Figure 13. Utilization Equation For Half-Duplex Streaming Protocols (Selective
Retransmission) 27

Figure 14. Utilization Equation For Full-Duplex Streaming Protocols (Selective

Retransmission) , 27

Figure 15. Utilization Equation For Half-Duplex Streaming Protocols (Go Back N) 30

Figure 16. Channel Utilization For Full-Duplex Streaming Protocols (Go Back N) 30

Figure 17. Throughput Test Computer Configuration 31

Figure 18. BLACK30 Random Number Generator .36

Figure 19. Example of MAX2 Hex Encoding 41

Figure 20. MAX2 Packet Format 44

Figure 21. MAX2 CONNECT Packet Data Field Format 48

Figure 22. MAX2 RESUME Packet Data Field Format 56

vii

LIST OF GRAPHS

Graph 1. Theoretical Utilization At 2400 Baud And Uniform Error Distribution 74

Graph 2. Theoretical Utilization At 4800 Baud And Uniform Error Distribution 75

Graph 3. Theoretical Utilization At 9600 Baud And Uniform Error Distribution 76

Graph 4. Theoretical Utilization At 19200 Baud And Uniform Error Distribution 77

Graph 5. Theoretical Throughput At 2400 Baud And Uniform Error Distribution 79

Graph 6. Theoretical Throughput At 4800 Baud And Uniform Error Distribution 80

Graph 7. Theoretical Throughput At 9600 Baud And Uniform Error Distribution 81

Graph 8. Theoretical Throughput At 19200 Baud And Uniform Error Distribution 82

Graph 9. Measured Throughput At 2400 Baud And Uniform Error Distribution 84

Graph 10. Measured Throughput At 4800 Baud (#1) Uniform Error Distribution 85

Graph 11. Measured Throughput At 4800 Baud (#2) Uniform Error Distribution 86

Graph 12. Measured Throughput At 9600 Baud (#1) Uniform Error Distribution 87

Graph 13. Measured Throughput At 9600 Baud (#2) Uniform Error Distribution 88

Graph 14. Measured Throughput At 19200 Baud (#1) Uniform Error Distribution 89

Graph 15. Measured Throughput At 19200 Baud (#2) Uniform Error Distribution 90

Graph 16. Percentage Difference At 2400 Baud Uniform Error Distribution 92

Graph 17. Percentage Difference At 4800 Baud (#1) Uniform Error Distribution 93

Graph 18. Percentage Difference At 4800 Baud (#2) Uniform Error Distribution 94

Graph 19. Percentage Difference At 9600 Baud (#1) Uniform Error Distribution 95

Graph 20. Percentage Difference At 9600 Baud (#2) Uniform Error Distribution 96

Graph 21. Percentage Difference At 19200 Baud (#1) Uniform Error Distribution .97

Graph 22. Percentage Difference At 19200 Baud (#2) Uniform Error Distribution .98

Graph 23. Theoretical Utilization At 2400 Baud And Random Error Distribution 100

viii

Graph 24. Theoretical Utilization At 4800 Baud And Random Error Distribution 101

Graph 25. Theoretical Utilization At 9600 Baud And Random Error Distribution 102

Graph 26. Theoretical Utilization At 19200 Baud And Random Error Distribution 103

Graph 27. Theoretical Utilization (Streaming Protocols) At 2400 Baud And Random Error
Distribution 104

Graph 28. Theoretical Utilization (Streaming Protocols) At 4800 Baud And Random Error
Distribution 105

Graph 29. Theoretical Utilization (Streaming Protocols) At 9600 Baud And Random Error
Distribution 106

Graph 30. Theoretical Utilization (Streaming Protocols) At 19200 Baud And Random Error
Distribution 107

Graph 31. Theoretical Throughput At 2400 Baud And Random Error Distribution 109

Graph 32. Theoretical Throughput At 4800 Baud And Random Error Distribution 110

Graph 33. Theoretical Throughput At 9600 Baud And Random Error Distribution I l l

Graph 34. Theoretical Throughput At 19200 Baud And Random Error Distribution112

Graph 35. Theoretical Throughput (Streaming Protocols) At 2400 Baud And Random Error
Distribution 113

Graph 36. Theoretical Throughput (Streaming Protocols) At 4800 Baud And Random Error
Distribution 114

Graph 37. Theoretical Throughput (Streaming Protocols) At 9600 Baud And Random Error
Distribution 115

Graph 38. Theoretical Throughput (Streaming Protocols) At 19200 Baud And Random Error
Distribution 116

Graph 39. Measured Throughput At 4800 Baud And Random Error Distribution 118

Graph 40. Measured Throughput At 9600 Baud And Random Error Distribution 119

Graph 41. Percentage Difference At 4800 Baud And Random Error Distribution 121

Graph 42. Percentage Difference At 9600 Baud And Random Error Distribution 122

ix

1

ACKNOWLEDGEMENT

The work in this thesis was funded in part by the National Research Council of

Canada under IRAP Grant #9-8275-H-19. The equipment used in the experiments was

provided by IPC Systems (3D Micro) and Telimax Software Corporation. Thanks must also

be given to Dr. Sam Chanson who provided valuable guidance during the derivation of the

throughput equations and the design of the throughput experiments.

x

1. INTRODUCTION

1.1 MOTIVATION AND OBJECTIVES

There are a large variety of protocols that can be used to transfer a file between two

computer systems. Although many of these protocols are proprietary, there are several that

are in the public domain and suitable for use on microcomputers. Protocols such as the

Kermit, XMODEM, YMODEM, and ZMODEM protocols are in the public domain and are

designed to perform end-to-end file transfers. The Kermit, XMODEM, and YMODEM are

stop and wait protocols while the ZMODEM protocol is a streaming protocol with go back N

retransmission.

Each of these protocols have different capabilities and characteristics that determine

its channel utilization under various communication channel conditions. After examining

these protocols, it was felt that none of the protocols make optimal use of the

communications channel under all conditions and that a better protocol could be designed.

This can be confirmed experimentally or by using mathematical equations that analyze the

channel utilization of these and other similar protocols under different communication

channel error rates, error distributions, and transmission speeds.

Work performed by Zacharov [16] and Field [3] showed that a protocol's packet size

affects the channel utilization. As a packet's size increases, the chance that it is corrupted

by transmission errors increases and the cost of recovering from a corrupted packet also

increases. However, for a given communication channel error rate and distribution, there is

a packet size that will allow for maximum channel utilization. Unfortunately, neither Field

nor Zacharov considered the effect of a protocol's timeout period on the channel utilization of

stop and wait protocols.

1

Miller [11], however, analyzed the throughput of several link level protocols as a

function of the communication channel's bit error rate. The protocols examined used either a

selective or nonselective retransmission scheme. As a result of his research, Miller,

concluded that there is little performance difference between different retransmission

strategies with a reliable communications channel. However, Miller's analysis did not take

into account the possibility that a reply packet could be corrupted.

A set of simple channel utilization equations for stop and wait protocols and sliding

window protocols have been derived by Stallings [13]. However, the equations assume that

reply packets are always transmitted correctly. In addition, the channel utilization

equations do not consider the effect that timeouts and reply packet sizes may have on a

protocol's channel utilization. A more accurate set of channel utilization equations have been

derived by Tanenbaum [16]. Although these equations take more factors into consideration,

they do not differentiate between the possibilities that a packet can be lost or corrupted.

1.2 OUTLINE

A summary of the public domain file transfer protocols, Kermit, XMODEM,

YMODEM, and ZMODEM is presented in Chapter 2. The packet sizes, packet formats, and

encoding algorithm of each of the protocols and their variants are described. In addition, the

capabilities and strengths of these protocols were compared.

In Chapter 3, a number of mathematical models are derived that analyzes the

channel utilization of stop and wait protocols, streaming protocols with selective

retransmission, and streaming protocols with go back N retransmission. These models show

the effect that a protocol's data packet size, reply packet size, timeout period, and data

encoding algorithm and the communication channel's error rate, error distribution, and

2

transmission speed have on a protocol's effective channel utilization. Once a protocol's

effective channel utilization has been determined, the protocol's effective data throughput

can be calculated by taking the product of the communication channel's transmission speed

and the protocol's channel utilization. The validity of these mathematical models were

verified by measuring the throughput of the Kermit, XMODEM, YMODEM, and ZMODEM

protocols under different communication channel transmission speeds, error rates, and error

distributions.

A new data link protocol, MAX2, is presented in Chapter 4. Using the information

obtained from the work performed in Chapter 3, the MAX2 protocol is designed to be a

powerful, versatile protocol that provides better channel utilization than the protocols

described in Chapter 2. A prototype of the MAX2 protocol was implemented and its effective

data throughput measured under different communication channel transmission speeds and

error rates. These results were used to validate the channel utilization model for streaming

protocols with selective retransmission and to show that it offers better channel utilization

than the public domain file transfer protocols described in Chapter 2.

3

2. PROTOCOL SURVEY

2.1 INTRODUCTION

There are many protocols that can be used to transfer information over serial

telecommunication lines. Several of these protocols have been placed in the public domain

and are used by many users to transfer files between machines of possibly different

architectures and operating systems.

This section summarizes the capabilities, strengths, and weaknesses of the following

public domain file transfer protocols: Kermit, XMODEM, YMODEM, and ZMODEM.

Although these protocols do not contain all seven layers of the OSI Model*, they contain

aspects of the application and data link layers. However, since each of these protocols are

fully described in their respective protocol documents, only those aspects of the protocols that

have a direct bearing on the channel utilization are described here.

2.2 KERMIT

2.2.1 Introduction

In 1981, a new file transfer protocol, Kermit, was developed at Columbia University

by Bill Catchings and Frank da Cruz [3] to allow the exchange of data between a diverse

mixture of computer systems. Unlike existing protocols, Kermit could be implemented on

any computer system capable of transparently transmitting ASCII characters over seven bit

serial lines. In addition to placing the Kermit protocol and its implementations in the public

1. Data and Computer Communications [13], page 389

4

domain, Columbia University also took on the task of coordinating the maintenance and

distribution of the Kermit protocol and its implementations.

2.2.2 Classic Kermit

The original Kermit protocol, Classic Kermit, was a simple stop and wait protocol

with selective retransmission. To ensure that communications between extremely dissimilar

systems and possibly over seven bit serial lines will be successful, the Kermit protocol

packets contain only seven bit printable ASCII characters, values 32 to 126.

In order to do so, the Kermit protocol applied two encoding algorithms to its packets.

The first algorithm, "tochar", converted one byte unsigned integer field values into one byte

encoded ASCII values by adding the value 32 to them. Consequently, Kermit integer field

values were restricted to the values 0 to 94.

The second encoding algorithm, prefix encoding, is applied to the user data. It was a

three pass algorithm that performs, in order, repeat encoding (optional), eighth bit encoding,

and control encoding. These algorithms are shown in Figures 1, 2, and 3, respectively.

5

BEGIN Repeat Encoding Algorithm
count = 1;
WHILE (more data) AND (value = next value) AND (count < 94) DO

count = count + 1
value = next value

END WHILE
IF (count > REPEAT_THRESHOLD) THEN

IF (tochar (count) = REPEAT_PREFIX_CHAR) THEN
encoded count = REPEAT_PREFIX_CHAR, REPEAT_PREFIX_CHAR

ELSE
encoded count = tochar (count))

END IF
IF (value = REP EAT_P REFIX_CHAR) THEN

RETURN (encoded count, value, value)
ELSE

RETURN (encoded count, value)
END IF

ELSE
WHILE (count > 0) DO

encoded value = encoded value, value
IF (value = REPEAT_PREFIX_CHAR) THEN

encoded value = encoded value, value
END IF
count = count - 1

END WHILE
END IF

END Repeat Encoding Algorithm ,

Figure 1. Kermit Repeat Encoding Algorithm

BEGIN Eighth B i t P r e f i x Encoding
IF (value = EIGHTH_BIT_PREFIX_CHAR) THEN

RETURN (EIGHTH_BIT_PREFIX_CHAR, EIGHTH_BIT_PREFIX_CHAR)
ELSE IF (value > 7Fh) AND (7 b i t communications) THEN

RETURN (EIGHTH_BIT_PREFIX_CHAR, value & 80h)
ELSE

RETURN (value)
END IF

END Eighth B i t P r e f i x Encoding

Figure 2. Kermit Eighth Bit Encoding Algorithm

6

BEGIN Control P r e f i x Encoding
IF (value == CONTROL_PREFIX_CHAR) THEN

RETURN (CONTROL_PREFIX_CHAR, CONTROL_PREFIX_CHAR)
ELSE IF (32 <= (value AND 7Fh) <= 12 6) THEN

RETURN (value)
ELSE

RETURN (CONTROL_PREFIX_CH AR, value XOR 40h)
END IF

END Control P r e f i x Encoding

Figure 3. Kermit Control Prefix Encoding Algorithm

Once the data has been encoded, it is partitioned and inserted into the DATA field of

packets, whose format is shown in Figure 4, such that the value of each packet's LEN field

does not exceed 94 and no encoded sequence is split across two packets. If Kermit's

CRC-CCITT checksum is used, each data packet could contain a maximum of 89 bytes of

encoded data.

1 LEN bytes j

MARK LEN SEQ TYPE DATA CHECK EOL

1 CHECKsummed 1

i n d i c a t e s s t a r t of packet, u s u a l l y CTL-A
length of remainder of packet - 1 <= 94
sequence number MOD 64
packet type
0 to 91 bytes of encoded user data
1 to 3 byte checksum

end of l i n e character, usually carriage return

Figure 4. Classic Kermit Packet Format

The Kermit protocol's error mechanism is very simple. After sending a data packet,

the sender waits for the receiver to send an acknowledgement. Since all needed information

MARK
LEN
SEQ
TYPE
DATA
CHECK -
EOL

7

is contained within the reply packet's header, the DATA field is empty. If the reply is a

positive acknowledgement, the next data packet is sent; otherwise, the current data packet is

retransmitted. However, if the sender does not receive a reply within a preset timeout

period, it resends the current data packet. Conversely, if the receiver does not receive a data

packet within its preset timeout period, it either resends its last reply or sends a negative

acknowledgement for the expected data packet.

2.2.3 Extended Length Packet Extension

In 1986, extended length packets were added to the Kermit protocol. This extension

was fully backwards compatible with the original protocol and provided a greater effective

data throughput by allowing larger data packets to be used. The format of this extended

length Kermit packet is shown in Figure 5.

8

(95 * LEN1 + LEN2) bytes

MARK LEN SEQ TYPE LEN1 LEN2 HCHECK DATA CHECK EOL

HCHECKsummed
; CHECKsummed

MARK - i n d i c a t e s s t a r t of packet, u s u a l l y CTL-A
LEN - set to 0
SEQ - sequence number MOD 64
TYPE - packet type
LEN1 - 0 to 94
LEN2 - 0 to 94
HCHECK - one byte arithmetic checksum of SEQ, TYPE, LEN1,

and LEN2 f i e l d s
DATA - 0 to 9023 bytes of p r e f i x encoded user data
CHECK - 1 to 3 byte checksum
EOL - end of l i n e character, u s u a l l y carriage return

Figure 5. Extended Length Kermit Packet Format

Although the use of extended length packets must be agreed upon by both the sender

and receiver during the connection phase, both standard and extended length packets may

be intermixed within the negotiated session. If the LEN field of a packet is greater than

three, the packet is a standard length packet; otherwise, if the LEN field is zero, the packet

is an extended length packet. Consequently, both extended length data packets and

standard length reply packets can and are used during the data transfer phase.

2.2.4 Sliding Window Extension

In 1985, an extension was added to the original Kermit protocol that would allow

sliding windows to be used with the existing Kermit packets. When the sliding windows

extension is being used, the sender is allowed to send successive data packets without

9

waiting for their replies as long as the window is not full. The receiver simply sends

acknowledgements for each data packet received. In addition, negative acknowledgements

are sent to the sender for any missing packets that are detected by the receiver.

2.3 XMODEM

2.3.1 Introduction

The original version of the XMODEM protocol was developed by Ward Christensen in

1977 [4]. It is also referred to as "MODEM", "MODEM7", and the "Christensen Protocol".

Since then, a number of modifications have been made that have produced XMODEM-CRC

and XMODEM-1K. However, each of these modified XMODEM protocols, like the original,

require an asynchronous transmission medium that is capable of providing 8 data bits, no

parity bit, and one stop bit.

2.3.2 XMODEM (Original)

The XMODEM protocol is a simple stop and wait protocol. It is comprised of only

two types of packets: control and data packets. The control packets, ACK, NAK, CAN, and

EOT, are simple one byte packets. Meanwhile, data packets, shown in Figure 6, are 132

bytes long. Furthermore, the XMODEM protocol does not perform any encoding.

10

SOH BLOCK # 255 - BLOCK # DATA CHECKSUM

SOH
BLOCK
255 -
DATA

BLOCK # -

01H, i n d i c a t e s s t a r t of packet
sequence number MOD 256
ones complement of sequence number
128 bytes of user data

CHECKSUM - bytewise checksum
Figure 6. XMODEM DATA Packet Format

After the sender has sent a DATA packet, it waits for a reply from the receiver. If

the reply is an ACK, the next DATA packet is sent; otherwise, if the reply is an NAK, the

DATA packet is resent. However, if the reply is a CAN, the transfer is aborted. If the sender

does not receive a reply before its timeout period expires, it resends the current DATA

packet. Conversely, if the receiver times out, it sends an NAK

2.3.3 XMODEM-CRC

The XMODEM-CRC protocol is a simple extension of the XMODEM protocol to

provide CRC-16 checksums. During the connection phase, if the receiver sends the C packet,

a new control packet, instead of the NAK packet, the sender uses the DATA-CRC packets

shown in Figure 7 instead of the normal DATA packets.

SOH BLOCK # 255 - BLOCK # DATA CRC-16

SOH - 01H, i n d i c a t e s s t a r t of packet
BLOCK # - sequence number MOD 25 6
255 - BLOCK # - ones complement of sequence number
DATA - 128 bytes of user data
CRC-16 - 16 b i t CRC

Figure 7. XMODEM-CRC DATA-CRC Packet Format

11

2.3.4 XMODEM-1K

In 1982, Chuck Forsberg improved the throughput of XMODEM and XMODEM-CRC

by extending the size of the DATA packets and created the XMODEM-1K protocol [4]. This

protocol required a simple modification to the XMODEM-CRC protocol and the addition of a

DATA-IK packet shown in Figure 8.

STX BLOCK # 255 - BLOCK # DATA CHECKSUM

STX
BLOCK
255 -

BLOCK # -

02H, i n d i c a t e s s t a r t of packet
sequence number MOD 256
ones complement of sequence number

DATA - 1024 bytes of user data
CHECKSUM - CRC16 (st r o n g l y recommended) or

bytewise a r i t h m e t i c checksum
Figure 8. XMODEM-1K DATA-IK Packet Format

The checksum used in the DATA-IK packets is determined by the receiver. Like the

XMODEM-CRC protocol, if the receiver sends the C packet at start up, the sender uses a

CRC-16 checksum in its data packets; otherwise, a bytewise arithmetic checksum is used.

Like the other XMODEM packets, DATA-IK packets are fixed length and its contents are

not encoded.

2.4 YMODEM

The YMODEM protocol is a modified XMODEM-1K protocol developed by

Chuck Forsberg that allows multiple files to be transferred after a connection has been

established [4]. When the sender receives a C packet, it sends a DATA packet containing the

name (and possibly size) of the file about to be transferred. Upon receiving this DATA

12

packet, the receiver acknowledges it appropriately. When the file information has been

received correctly, if it is possible to receive and store the specified file, another C packet is

sent; otherwise, a CAN packet is sent to abort the transfer of the specified file.

Once the sender receives the second C packet, the file transfer begins and is identical

to the XMODEM-1K protocol. When the file transfer is complete, the receiver sends a C

packet to request information on the next file to be transferred. If there is no file to be

transferred, the sender responds with a DATA packet containing a blank file name. Once

this packet is successfully ACKed the connection is terminated.

A variant of the YMODEM protocol, YMODEM-g, is a streaming version of

YMODEM with error detection but no error recovery. It is initiated by the receiver sending a

G packet instead of the C or NAK packet at start up. In this mode, the sender simply sends

data packets as fast as the transfer medium will accept them. If the receiver detects a

transmission error in any data packet, it aborts the transfer.

2.5 ZMODEM

In 1986, Telenet, a Public Data Network, funded a project to develop a public domain

file transfer protocol. The purpose of this new protocol was to provide Telenet customers

with a protocol capable of greater throughput than what was possible with existing protocols

such as XMODEM, YMODEM, and Kermit. This new protocol, ZMODEM, was designed by

Chuck Forsberg [5].

The ZMODEM protocol is a streaming protocol with a "go back N" error recovery

mechanism. During the data phase, the sender sends a ZDATA control packet followed by

data packets. If the receiver detects a transmission error, it sends a ZRPOS control packet to

request retransmission of file data beginning at the position specified. If the ZRPOS packet

13

was received by the sender correctly, it responds with a ZDATA packet and then data

packets containing the requested information.

Although a ZMODEM data packet, shown in Figure 9, is always "binary" encoded, a

control packet, shown in Figures 10 and 11 can be "binary" or "hex" encoded.

DATA ZDLE TYPE CRC

0 - 1024 bytes o f user data
i n d i c a t e s end of user data
i n d i c a t e s data packet type
e i t h e r a 16 or 32 b i t CRC, same
as p r e c e d i n g packet

Figure 9. ZMODEM Data Packet Format

Although the binary encoding algorithm is similar to Kermit's control encoding

algorithm, ZMODEM's algorithm only prefix encodes the following control values: 16,17,19,

24, 127,144,145,147, and 255. In addition, each character in the Telnet command string,

"CR-@-CR", is prefix encoded. The operator may also request that all control values be prefix

encoded. If the control packet is "hex" encoded, each byte is represented by a two character

ASCII (lower case) string which corresponds its hexadecimal value. In either case, the

checksum of the packets shown in Figure 11 is also similarly encoded.

DATA -
ZDLE -
TYPE -
CRC -

14

TYPE DO DI D2 D3

TYPE - packet type
DO - p o s i t i o n byte 0 (PO) or f l a g byte 3 (F3)
DI - p o s i t i o n byte 1 (PI) or f l a g byte 2 (F2)
D2 - p o s i t i o n byte 2 <P2) or f l a g byte 1 (FI)
D3 - p o s i t i o n byte 3 <P3) or f l a g byte 0 (FO)

Figure 10. ZMODEM Control Packet Data Field

ZPAD ZDLE ZBIN DATA CRC-16
16 b i t CRC Binary Encoding

ZPAD ZDLE ZBIN32 DATA CRC-32
32 b i t CRC Binary Encoding

ZPAD ZPAD ZDLE ZHEX DATA CRC-16 CR LF XON
16 b i t CRC HEX Encoding

LF - ASCII v a l u e 10 (^J)
CR - ASCII v a l u e 13 (A M)
XON - ASCII v a l u e 17 (^Q)
ZDLE - ASCII v a l u e 24 PX)
ZPAD - ASCII v a l u e 42 (*)

ZBIN - ASCII v a l u e 65 (A)
ZHEX - ASCII v a l u e 66 (B)
ZBIN32 - ASCII v a l u e 67 (C)
DATA - ZMODEM C o n t r o l Packet

Figure 11. ZMODEM Control Packet Formats

2.6 SUMMARY

The protocols surveyed each offer their own unique combination of features. This

often makes one protocol more suitable than others under different conditions. These

features are summarized in Table 1.

The strength of the Kermit protocol is its ability to reliably transfer data between

widely dissimilar systems. However, in order to do so, the Kermit protocol used packets

15

consisting of only printable ASCII characters. Unfortunately, this resulted in a high protocol

overhead and ultimately low effective channel utilization.

The XMODEM and YMODEM protocols and their variants, on the other hand, do not

perform any encoding. However, although these protocols offer a high effective channel

utilization, they require eight bit data communication channels that allow all eight values to

pass through transparently. Unfortunately, these protocols are not very reliable since their

single byte acknowledgement packets are unprotected.

While the other protocols surveyed are stop and wait protocols, the ZMODEM

protocol is a streaming protocol with a "go back N" error recovery mechanism. This protocol

offers control character encoding and protected acknowledgements like Kermit but with a

protocol overhead comparable to that of the XMODEM and YMODEM protocols.

Consequently, it can offer reliable data transfers and a high effective channel utilization.

16

Kermit Kermit XMODEM
FEATURE C l a s s i c Extended CRC YMODEM ZMODEM

FLOW CONTROL:
• Stop and Wait • • • • o
• S l i d i n g Windows o o X X o
• Streaming X X X o •

ERROR DETECTION:
• 1 byte sum • • • • X
• 2 byte sum • • X X X
• 16 b i t CRC • • • • •
• 32 b i t CRC X X X X •

ERROR RECOVERY:
• s e l e c t i v e

retransmission • • • • X
• go back N X X X X •

PACKET SIZES 1:
• Data Packet (Min) 8 8 133 1029 3
• Data Packet (Max) 97 1033 2 133 1029 1027
• Reply Packet 8 8 1 1 21
• Max. Data F i e l d 89 1024 128 1024 1024

OVERHEAD:
• Bytes Encoded^ 70 70 0 0 9
• Encoding Factor 1.273 1.273 1.000 1.000 1.035
• Raw Data / Packet 70.0 804.1 128.0 1024.0 989.2
• Overhead To Send
One Data Packet 4 50.0% 29.5% 4.7% 0 . 6% 3.8%

\/ - supported
0 - supported but not normally used
X - not supported
1 - based on 16 b i t CRC checksum
2 - f o r data f i e l d of 1024 bytes
-* - assuming minimum encoding on stream of 0 to 255
4 - 1 - (Data Packet + ACK Packet) / Raw Data

Table 1. Protocol Survey Feature Summary

17

2.7 CONCLUSION

Of the protocols surveyed, ZMODEM has become the protocol of choice whenever it is

available. It offers the reliability of the Kermit protocol, efficiency comparable to YMODEM,

and the ability to resume an incomplete file transfer.

However, despite Kermit's low efficiency, it is often the protocol used to transfer data

between dissimilar systems. In many cases, it is the only protocol implemented on both

systems. In addition, because of its aggressive encoding which uses only printable ASCII

characters, its packets often make it through communication channels successfully where

other protocols fail.

18

3. PROTOCOL CHANNEL UTILIZATION

3.1 INTRODUCTION

When several communication protocols are available and each capable of successfully

transferring data between two systems, it is often not clear which protocol is the most

appropriate. Some protocols offer a higher effective data throughput over an error free

communications channel but degrade rapidly as the error rate increases. However, since a

protocol's behaviour and characteristics can be represented mathematically, we set out to

derive a set of equations that would calculate a protocol's effective data throughput or

channel utilization under different mathematically representable conditions.

The equations that were developed ignored the overhead of the connection

establishment and the disconnect phases of the protocols. The equations also assumed that

an unreliable communications channel only corrupts data and its behaviour can represented

by its error rate and distribution. However, although no data is lost, a packet may be missed

due to the corruption of the packet's header byte or byte sequence. The equations also take

the turnaround time and propagation delay into account. If a protocol's theoretical

throughput is desired, it can be computed by simply taking the product of the channel's

transmission speed and the protocol's theoretical channel utilization.

3.2 ANALYSIS

The operation of a protocol can be broken down into six basic events. When a data

packet is transmitted, it is either received correctly (Data OK), received with transmission

errors (Data BAD), or lost (Data LOST) due to header corruption. The probability of these

events occurring is determined by the error rate and distribution of the communications

19

channel and the size of the packet. Similarly, a reply packet can be received correctly

(Reply OK), received incorrectly (Reply BAD), or lost (Reply LOST).

Channel utilization equations will be derived for stop and wait protocols, streaming

protocols with selective retransmission, and streaming protocols that "go back N" for

uniformly distributed byte errors and randomly distributed bit errors. Each of these

equations will be expressed as a function of the probability of the six basic events occurring.

This allows the utilization equations to handle any error distribution provided probabilities

can be assigned to each of the basic events.

3.2.1 Uniform Deterministic Error Distribution

Although not realistic, one of the error distributions examined is uniform and

deterministic. In this distribution, it is assumed that an error occurs every K bytes that are

placed on the communications channel. Consequently, if P is the number of bytes in a

packet, the probability that it is received correctly is

P (Packet OK) = 1 - P / K Eq. 1

However, if we assume that a packet has a header byte which must be received

correctly in order for the receiver to not miss the packet, then the probability that a packet is

lost is

P (Packet LOST) = 1 / K Eq. 2

Therefore, the probability that a packet is received with transmission errors is

20

P(Packet BAD) = 1 - P(Packet OK) - P(Packet LOST)
= 1 - (1 - P / K) - 1 / K
= (P - 1) / K

Eq. 3

Although these equations offer a very simplistic model of the packet error

distribution, it should be sufficient provided the size of the data packet is many times greater

than the reply packet. Under these constraints, transmission errors will occur primarily in

the data packets.

3.2.2 Poisson Error Distribution

A more realistic error distribution is the poisson distribution. In this distribution,

each bit placed on the communications channel has an equally likely probability Q that it

will be corrupted. Thus, if a packet has P bytes and each byte contains W bits (including the

start and stop bits if necessary), then the probability that a packet is received correctly is

P (Packet OK) = (1 - Q) (p * w) Eq. 4

Again, if we assume that a packet has a header byte which must be received correctly

so as to not be missed by the receiver, then the probability that a packet is lost is

P (Packet LOST) = 1 - (1 - Q) w Eq. 5

Consequently, the probability that a packet is received with transmission errors is

21

P(Packet BAD) = 1 - P(Packet OK) - P(Packet LOST)
= (1 - Q) w - (1 - Q) <p * W)

Eq. 6

3.3 CHANNEL UTILIZATION EQUATION FOR STOP AND WAIT PROTOCOLS

With stop and wait protocols, in order for the sender to consider a data packet

successfully received, the receiver must have received it correctly and the positive

acknowledgement must be received correctly by the sender. Thus, the probability of a data

packet being successfully received is

P (Success) = P(Data OK) * P (Reply OK) Eq. 7

The data packet may also be resent immediately by the sender upon receipt of the

receiver's reply. If the reply is negative, the data packet is resent. However, if the reply is

corrupted, it is assumed that the sender resends the data packet immediately since this is

more efficient than waiting for the timeout period to expire. Thus the probability that a data

packet is resent upon receipt of a reply, P(Resend), is the sum of three products.

P(Resend) = P (Data OK) * P (Reply BAD) + Eq. 8
P(Data BAD) * P(Reply OK) +
P(Data BAD) * P(Reply BAD)

If either the data or reply packet is lost, the data packet is resent after the timeout

period expires. The probability that a timeout will occur is

22

P(Timeout) = P(Data OK) * P(Reply LOST) +
P(Data BAD) * P(Reply LOST) +
P(Data LOST)

Eq. 9

After the sender has sent the data packet, there will be an elapsed time before the

receiver's reply is received. This time period, Turn, encompasses the propagation delay and

the time required by the receiving system to decode the data packet and to send the

appropriate reply. Thus, if B represents the channel speed in bytes per second, the channel

bandwidth required to send a data packet of D bytes and receive a reply packet of R bytes is

D + R + Turn * B Eq. 10

Similarly, if Time is the timeout period in seconds, the bandwidth occupied by a

timeout is

D + Time * B Eq. 11

Since the probability of sending a data packet correctly and receiving the positive

acknowledgement correctly is P(Success), the expected number of trials before a success is

T r i a l s = 1 / P (Success) Eq. 12
= 1 / (P (Data OK) * p(Reply OK))

The encoding overhead of the protocol is calculated as a ratio of the number of bytes

needed to represent the byte stream of values from 0 to 255 versus the number of raw bytes,

256. This ratio, E, is greater than or equal to 1. Using this figure, the amount of raw data

that is in a data packet containing DF bytes of encoded data is simply

23

Raw Data = DF / E Eq.13

With the above figures and equations, the bandwidth required to successfully

transfer a data packet can be calculated as

T o t a l Bandwidth (P(Success) * (D + R + Turn * B) +
P(Retry) * (D + R + Turn * B) +
P(Timeout) * (D + Time * B)) * T r i a l s

= ((1 - P(Timeout)) * (D + R + Turn * B) +
P(Timeout) * (D + Time * B)) * T r i a l s

(1 - P(Timeout)) * (D + R + Turn * B)
+ P(Timeout) * (D + Time * B)

P(Data OK) * P(Reply OK)

where P(Success) + P(Retry) = 1 - P(Timeout)
and T r i a l s i s g iven by Equation 12

Consequently, the theoretical channel utilization, U, is

Raw Data
U =

T o t a l Bandwidth

(DF / E) * P (Data OK) * P(Reply OK)

Eq. 14

Eq.15

[(1 - P(Data LOST)) * (1 - P(Reply LOST))] *
(D + R + Turn * B) +

[(1 - P(Data LOST) * P(Reply LOST) +
P (Data LOST)] * (D + Time * B)

Figure 12. Utilization Equation For Stop and Wait Protocols

24

3.4 CHANNEL UTILIZATION EQUATION FOR STREAMING PROTOCOLS

With many streaming protocols, when a data packet is received with no detectable

transmission errors, no positive acknowledgement is required. However, there are some

streaming protocols that require a positive acknowledgement to be sent for some or all

correctly received data packets before the data packet is considered to be received

successfully. Thus, if AR represents the percentage of data packets that need to be positively

acknowledged, the probability that a data packet is successfully received is

P (Success) = P(Data OK) * P (ACK OK) * AR + Eq. 16
P(Data OK) * (1 - AR)

However, if a data packet is corrupted, a negative acknowledgement is sent back to

the sender. If it is received correctly, the sender resends the corresponding data packet. A

negative acknowledgement is also sent when the receiver detects a lost data packet. The

probability of this occurring is

P(Resend) = P (Data BAD) * P (NAK OK) + Eq. 17
P(Data LOST) * P(NAK OK)

= (1 - P(Data OK)) * P(NAK OK)

In order to handle the case when the receiver only sends negative

acknowledgements, we will assume that only the receiver will timeout. This occurs when it

does not receive the data packet requested before its timeout period expires. Thus, the

probability of a timeout occurring is

25

P(Timeout) = P(Data OK) * P(ACK BAD) * AR + Eq. 18
P(Data OK) * P(ACK LOST) * AR +
P(Data BAD) * P(NAK BAD) +
P (Data BAD) * P(NAK LOST) +
P(Data LOST) * P(NAK BAD) +
P(Data LOST) * P(NAK LOST)

= P(Data OK) * (1 - P(ACK OK)) * AR +
(1 - P(Data OK)) * (1 - P(NAK OK))

Like stop and wait protocols, the number of trials needed to send a data packet

successfully is given by Equation 12 and the amount of raw data in a data packet is given by

Equation 13.

Unlike stop and wait protocols, there is more than one error recovery mechanism

used by streaming protocols. If the receiver keeps the correct packets received after the

detected error, the sender only retransmits the packet in question. This error recovery

mechanism is referred to as selective retransmission. Conversely, with a "go back N" error

recovery mechanism, the receiver discards all packets received since the detected error and

the sender retransmits the packet in question and all packets that were subsequently

transmitted. Unfortunately, a channel utilization equation must be derived for each error

recovery mechanism.

3.4.1 Selective Retransmission

If data and reply packets are exchanged in half-duplex mode, then the channel

bandwidth required to send a data packet and receive its reply is simply the sum of the

packet sizes. However, if the data packet is lost, there is no corresponding reply packet.

Thus, if D, A, and N represent the size of the data, positive acknowledgement, and negative

acknowledgement packets, respectively, the total bandwidth required to successfully transfer

a data packet is

26

T o t a l Bandwidth = [P (Data OK) * (D + A * AR) + Eq. 19
P(Data BAD) * (D + N) +
P(Data LOST) * (D + N)] * T r i a l s

[P(Data OK) * (D + A * AR) +
P(Data BAD) * (D + N) +
P(Data LOST) * (D + N)]

P(Data OK) * P(Reply OK)

where T r i a l s i s given by Equation 12

Thus the channel utilization of a half-duplex streaming protocol using selective

retransmission is

Raw Data
U =

Eq. 20

T o t a l Bandwidth

(DF / E) * P(Data OK) * P(ACK OK)

- P(Data OK) * (D + A * AR) +
P(Data BAD) * (D + N) +

- P (Data LOST) * (D + N)

Figure 13. Utilization Equation For Half-Duplex Streaming Protocols (Selective
Retransmission)

However, if data and reply packets are exchanged in full-duplex mode, the reply

packets do not occupy any channel bandwidth in the direction of the data packet transfers

and hence the channel utilization equation, Equation 20, reduces to

U (DF / E) * P(Data OK) * P(ACK OK) / D Eq. 21

Figure 14. Utilization Equation For Full-Duplex Streaming Protocols (Selective
Retransmission)

27

3.4.2 Go Back N

With a go back N error recovery mechanism, it is sufficient for the receiver to send

only negative acknowledgements. Knowing which packets have been correctly received is

irrelevant when all data packets transmitted since the corrupted data packet are

retransmitted. Thus, the channel bandwidth occupied when a data packet is correctly

received is the size of the data packet while the number of trials required before a data

packet is successfully transferred is

T r i a l s = 1 / P (Data OK) Eq. 22

When a data packet is corrupted, however, a negative acknowledgement is sent to

the sender. The time, Turn, that elapses from the moment the corrupted data packet was

sent until a correct negative acknowledgement packet is received determines the number of

additional data packets that were sent. Thus, if the data packet size is D bytes, the reply is

N bytes, and the channel speed is B bytes per second, then the channel bandwidth occupied

is

D + N + D * CEILING (Turn * B / D) Eq. 23

If the negative acknowledgement is corrupted, it is discarded by the sender. Until

the receiver times out in Time seconds and the sender receives a correct reply packet, it

continues to send data packets. Hence, since 1 / P(NAK OK) is the expected number of trials

before the reply packet is correctly received, the bandwidth wasted until the sender receives

a correct reply packet is

28

D * (1 / P(NAK OK) - 1) * CEILING(Time * B / D) Eq.24

Thus, the channel bandwidth used in recovering from a corrupted data packet is

D + N + D * CEILING (Turn * B / D) + N * D * Eq. 25
(1 / P(NAK OK) - 1) * CEILING(Time * B / D)

If a data packet is lost, it is detected by the reception of the next data packet.

Consequently, the channel bandwidth needed to recover from a lost data packet is only D

greater than when the data packet is corrupted. Thus, the total bandwidth required to send

a data packet correctly can be calculated as

T o t a l Bandwidth = [P(Data OK) * D + Eq. 26
P(Data BAD) * Band BAD +
P(Data LOST) * Band LOST] * T r i a l s

= [P(Data OK) * D +
P(Data BAD) * Band BAD +
P(Data LOST) * Band LOST] / P(Data OK)

where TurnD = D * CEILING(Turn * B / D)
TimeD = D * CEILING(Time * B / D)

Bad NAKS = 1 / P(NAK OK) - 1
Band BAD = (D + N + TurnD + N * Bad NAKS * TimeD)

Band LOST = D + Band BAD
and T r i a l s i s g iven by Equation 22

Hence, the channel utilization of a half-duplex streaming protocol using a go back N

error recovery mechanism is

29

Raw Data Eq.27
u =

T o t a l Bandwidth

(DF / E) * P(Data OK)

P(Data OK) * D +
P (Data BAD) * Band BAD +
P(Data LOST) * Band LOST J

where TurnD = D * CEILING(Turn * B / D)
TimeD = D * CEILING(Time * B / D)

Bad NAKS = 1 / P(NAK OK) - 1
Band BAD = (D + N + TurnD + N * Bad NAKS * TimeD)

Band LOST = D + Band BAD

Figure 15. Utilization Equation For Half-Duplex Streaming Protocols (Go Back N)

For a full-duplex streaming protocol using a go back N error recovery mechanism, the

data bandwidth occupied by the reply packets is zero. Hence, the channel utilization

equation becomes

Raw Data Eq. 28
u

T o t a l Bandwidth

(DF / E) * P (Data OK)

P (Data OK) * D +
P(Data BAD) * Band BAD +
P(Data LOST) * Band LOST

where TurnD = D * CEILING(Turn * B / D)
TimeD = D * CEILING(Time * B / D)

Bad NAKS = 1 / P(NAK OK) - 1
Band BAD = (D + TurnD + Bad NAKS * TimeD)

Band LOST = D + Band BAD

Figure 16. Channel Utilization For Full-Duplex Streaming Protocols (Go Back N)

30

3.5 EQUATION VERIFICATION

In order to verify the correctness of the channel utilization equations derived, a

series of throughput experiments were performed. In each of the experiments, throughput

measurements were taken for the Kermit, XMODEM, YMODEM, and ZMODEM protocols

under a variety of baud rates, error rates, and error distributions. These experiments were

performed using three IBM PC compatible computers interconnected by null modem RS-232

serial cables as shown in Figure 17.

SENDER ERROR
GENERATOR

R E C E I V E R SENDER ERROR
GENERATOR

R E C E I V E R ERROR
GENERATOR

Figure 17. Throughput Test Computer Configuration

The SENDER machine, a 20 MHz 386, was used to send either the 100 kilobyte test

file or the one megabyte test file. The content of these test files was a repeated sequence of

the values 0 to 255. The RECEIVER machine, a 12 MHz 286, was used to receive the test

file. A100 kilobyte test file was selected to amortize to time required to establish a

connection and to close the connection. In addition, it would allow several errors to occur

during the transfer at low error rates. However, a one megabyte test file was used when the

error distribution was random to ensure that a representative error sample was encountered.

The ERROR GENERATOR machine, a 12 MHz 286, was equipped with two RS-232

serial ports and ran an error generator program. Three different error generator programs,

each providing a different error distribution, were written using Borland's

Turbo Assembler 1.0 and Turbo C 2.0. Each program would receive data from either serial

31

port and send it out on the other serial port. However, before the data was forwarded, it was

modified to produce the desired error rate and distribution.

3.5.1 Experiment Description

The implementation of the Kermit protocol that was used was a patched version of

the IBM PC implementation from Columbia University, Kermit-MS 2.32/A. The patch was

necessary to increase the resolution of the file transfer timer and to prevent the sender from

aborting a file transfer when an acknowledgement packet's type field was corrupted. For the

XMODEM and YMODEM protocols, both the Procomm-Plus 1.1B and the DSZ 11-14-89

implementations were used. Finally, the ZMODEM implementation that was used was

DSZ 11-14-89.

With the exception of DSZ, which reported the effective throughput after completing

a file transfer, the throughput of the various implementations of the protocols was

determined by recording the time required to transfer the test file. For the Procomm

implementation of the XMODEM and YMODEM protocols, the file transfer on the sending

system was started before the receiving system. The elapsed time was then measured by

using a Procomm script to store the start and stop time of the file transfer on the receiving

system. On the other hand, the Kermit-MS 2.32/A program on the receiving system was

started before the sending system's program. In this case, since the elapsed time of the file

transfer was recorded by the program, the throughput was calculated using the elapsed time

reported by the sending program.

For each set of conditions, an experiment was performed to determine the effective

throughput of transferring either the 100 kilobyte or one megabyte test file using a protocol.

The test file was transferred three times and the elapsed time or throughput was recorded

32

for each transfer. If the protocol offered different levels of encoding, the lowest level of

encoding was selected to minimize the protocol's overhead and increase its channel

utilization. In addition, if the protocol offered several types of checksums, the most complex

checksum was selected to minimize the probability that a transmission error would escape

detection. This was repeated for each protocol.

After calculating the average measured throughput and channel utilization for each

experiment, it was compared to the theoretical throughput and channel utilization predicted

by the corresponding channel utilization equation. The theoretical channel utilization of the

protocols examined have been plotted in Graphs 1 to 4 and Graphs 23 to 30 as a function of

the uniform byte error rate and the random bit error rate, respectively. In addition, the

theoretical throughput of the protocols have also been plotted as a function of the uniform

byte error rate and random bit error rate in Graphs 5 to 8 and Graphs 31 to 38, respectively.

The effect of the baud rate, error rate, and error distribution on the measured

throughput of the protocols was examined by plotting a series of graphs (Graphs 9 to 15 and

39 to 40) which plots the measured throughput as a function of the error rate for each

protocol at a baud rate. Finally, the percentage difference between the measured throughput

and theoretical throughput values were calculated and plotted against the error rate in

Graphs 16 to 22 and 41 to 42.

However, unlike the other parameters of Equation 15, the Turn term cannot be

measured directly. Consequently, the value of the Turn term was calculated by solving the

Turn term in Equation 15 after setting all other parameters to their appropriate values.

This was done for each protocol implementation using an error rate of 0 using the average of

the three measured throughput figures for the throughput value. Naturally, Turn terms

were calculated for each protocol at the different baud rates.

33

The analysis of the experimental data collected was performed initially using

Borland's Reflex 2.0, a "database management, graphics, and analysis" program. Although

Reflex handled the data manipulation and calculations well, the graphs that it generated

were not clearly labelled. Consequently, Reflex was replaced with Borland's Quattro Pro 3.0,

a spreadsheet program, which generated better labelled graphs.

3.5.2 Uniform Byte Error Distribution Experiments

The uniform byte error distribution was provided by the BLACK10 program. This

error generator program would simply count the bytes that it received from either serial port

and then modify every
K th

byte to produce a byte wise error rate of 1/K.

The throughput experiments were performed at 2400, 4800, 9600, and 19200 baud

and at error rates of 0,1/10000,1/7500,1/5000,1/2500, and 1/1000 errors/byte for each

implementation of the protocols. Table 2 lists the minimum, maximum, and average

percentage difference for all combinations of baud rates and error rates for each protocol and

implementation.
PROTOCOL MINIMUM MAXIMUM AVERAGE

C l a s s i c Kermit -3 .3 0.8 -1 .0
Extended K e r m i t 1 -3.3 1.8 0.2
XMODEM-CRC (Procomm) -4.0 1.4 -0.2
YMODEM (Procomm) -1.8 0.5 -0 .3
XMODEM-CRC (DSZ) -86.7 0.0 37.4
YMODEM (DSZ) -78.9 0.0 -32.1
ZMODEM (DSZ) -33.8 1.0 -13.0

11000 byte data packets.

Table 2. Percentage Difference of Measured Utilization Relative to Theoretical
Utilization For Uniform Byte Error Distributions Produced By BLACK10

34

In the first set of experiments, the effective throughput of only the MS-Kermit 2.32/A

implementation of Kermit and the DSZ 11-14-89 implementation of the XMODEM,

YMODEM, and ZMODEM protocols were measured. As shown in Table 2, the measured

throughput of the Kermit protocol using classic packets and 1000 byte extended length data

packets, was between -4% to +2% of the throughput predicted by the theoretical equations at

all tested baud rates and error rates. However, the measured throughput of the XMODEM,

YMODEM, and ZMODEM protocols decreased faster than predicted as the error rate

increased. Since the general shape of the percentage difference graphs, Graphs 16,18,

20, and 22, were similar for each of the protocols at all baud rates, it was suspected that the

DSZ implementation was adversely affecting the throughput of the protocols as the error

rate increased.

Attempts were made to locate alternate implementations of the XMODEM,

YMODEM, and ZMODEM protocols in order to confirm this supposition. One of the

alternate implementations that was tested was PCZ 2.11.89. Unfortunately, it failed to

function over a null modem cable connecting two RS-232 serial ports. A second alternative,

DGTERM, functioned in the experiment's system configuration, but aborted when an error

was detected during a file transfer.

Although Procomm-Plus 1.1B only implemented the XMODEM and YMODEM

protocols, it did function in the experimental configuration. In addition, as shown in Table 2,

the measured throughput of the XMODEM protocol was between -4% to 2% of the theoretical

value and the YMODEM protocol was within ±2% for all error rates at 4800, 9600, and 19200

baud. Thus, it was concluded that the DSZ implementation was restricting the throughput

as the error rate increased.

35

3.5.3 Random Bit Error Distribution (BLACK30) Experiments

The BLACK30 error generator program generated randomly distributed bitwise

errors. In order to ensure a random and uniform error distribution, the random number

generator used must have a period that is much greater than the required number of random

numbers needed for a single throughput test. Thus, the random number generator selected

was

Random N + 1 = (RandomN * 4, 826, 809) MOD (2 3 1 - 1) Eq. 29

Figure 18. BLACK30 Random Number Generator

This random number generator is identical to the one used by the PRAND routine

described on page 12 of "UBC Random" [12]. It has a period of 2 3 1 - 2 = 4,294,967,293 and

"all bits in the unnormalized fraction are equally random"2. Unfortunately, this generator

requires 32 bit arithmetic and without a floating point coprocessor on a 12 MHz 286, the

error generator could not process the incoming data fast enough to handle baud rates greater

than 9600 baud

A random number was generated for each bit of the received byte. If the random

number was less than the product of the generator's period and the desired bit error rate, the

bit was inverted. After all bits had been processed, the possibly modified byte was

transmitted on the serial port different from the one the original byte was received.

The throughput experiments were performed on the Kermit protocol using classic

and extended length data packets, the XMODEM-CRC protocol, and the YMODEM protocol

2. UBC Random [12], page 3

36

at 9600 and 4800 baud. The experiments were performed at error rates of 0.00E-5, 3.00E-5,

4.60E-5, 6.10E-5, 7.60E-5, 9.15E-5,1.05E-4,1.50E-4, 2.10E-4, 2.55E-4, 3.00E-4 errors/bit

using a one megabyte test file. The results of these experiments are summarized in Table 3

which lists the minimum, maximum, and average percentage difference for all combinations

of baud rates and error rates for each protocol.

P R O T O C O L M I N I M U M M A X I M U M A V E R A G E

C l a s s i c Kermit - 2 . 9 3 . 2 - 0 . 1

Extended Kermit 1 - 1 . 3 3 . 6 0 . 5

XMODEM-CRC - 2 . 4 0 . 2 - 0 . 8

YMODEM - 2 . 1 0 . 3 - 0 . 5

^OOO byte data packets.

Table 3. Percentage Difference of Measured Utilization Relative to Theoretical
Utilization For Random Bit Error Distributions Produced by BLACK30

As shown by the graphs in Appendix 8, all but two measurements were within +3% of

the theoretical throughput values. These anomalies, however, were between 3% and 4% of

the theoretical throughput values.

3.6 SUMMARY

The results of the throughput experiments indicate that the equations that were

developed are quite accurate in predicting the throughput of the stop and wait protocols that

were tested. The experiments performed using the BLACK10 and BLAGK30 error generator

programs showed that the equations were capable of predicting the throughput of the

protocols tested within +5% for uniform deterministic error distributions and random poisson

error distributions.

37

It was disheartening to discover that the widely used DSZ implementation of the

XMODEM, YMODEM and ZMODEM protocols exhibited such poor performance under error

rates greater than 1/2500 errors/byte. It was hypothesized that DSZ's internal logic was

attempting to maximize throughput by adjusting packet sizes, transmission rates, and

timing parameters when the number of detected errors exceed an internal limit.

Unfortunately, the logic may have assumed that the communication medium was a packet

switched network since that is what the ZMODEM protocol was designed for.

Upon further examination of the result graphs, it can be seen that a stop and wait

protocol's behaviour is essentially unaffected by the baud rate other than being scaled by a

constant factor. However, the relationship between the baud rate and the throughput is not

a linear function. This was expected since the throughput equations are nonlinear functions

of the baud rate.

The theoretical graphs indicate that for error rates less than 1.00E-5 errors/bit, the

YMODEM and ZMODEM protocols theoretically have the greatest throughput. However, as

the error rate increases, the XMODEM protocol has a higher throughput since its smaller

packet size increases the probability that it is transmitted correctly and if it is corrupted,

less channel bandwidth is expended on error recovery.

The throughput of the Kermit protocol using classic length packets and 1000 byte

extended length packets show that the encoding overhead, as expected, is a major factor in

determining the effective throughput. Of the protocols examined, it has the largest encoding

overhead. Consequently, although its packet sizes are comparable to those of the XMODEM

and YMODEM protocols, the throughput of the Kermit protocol using classic and 1000 byte

extended length packets is significantly less than those of the XMODEM and YMODEM

protocols, respectively.

38

3.7 CONCLUSION

The results of the throughput experiments allow several conclusions to be drawn.

The most important conclusion is that the set of equations derived to predict the channel

utilization, and hence throughput, of stop and wait protocols under random error

distributions is valid. Unfortunately, no conclusion can be drawn regarding the set of

equations derived regarding streaming protocols since there was no implementation that

could be used to verify the correctness of the equations.

Furthermore, there is no single packet size or error recovery mechanism that can

maximize channel utilization under different line conditions. If the error rate is low, a larger

packet size is desirable. However, as the error rate increases, the cost of error recovery is

reduced by using smaller packets. In addition, when the channel bandwidth occupied by the

turn around time, propagation delay or timeout period is large, streaming protocols offer a

significant throughput advantage over stop and wait protocols since no channel bandwidth is

wasted waiting for an acknowledgement packet.

39

4. MAX2 PROTOCOL

4.1 INTRODUCTION

The MAX2 protocol was designed as a data link level protocol to support a large

variety of communication channels while maximizing channel utilization under various line

conditions. It combines many of the features and capabilities that are available in public

domain protocols while adding several of its own unique capabilities.

In order to maximize the effective data throughput, the MAX2 protocol was designed

as a streaming protocol using selective retransmission. In addition, it performs no data

encoding except for SOH byte stuffing to minimize the encoding overhead. Furthermore, the

MAX2 protocol calculates its timeout value based upon measurements taken during the

connection phase to minimize the channel bandwidth wasted by an excessively long timeout

period. The MAX2 protocol also supports bidirectional data transfer over full-duplex

channels. This allows data to be transferred in both directions simultaneously.

However, a streaming protocol with large data packets at high baud rates may

require more resources than a system can provide. If this is the case, the MAX2 protocol can

also operate in a stop and wait or sliding windows mode and use data packets that are as

small as 16 bytes. Furthermore, since some communication channels do not transmit all

data values transparently, the MAX2 protocol offers several levels of data encoding. Each

successive encoding level encodes a greater set of data values at the expense of increased

protocol overhead. If the approproate level of data encoding is selected, data will be

transmitted over the communications channel transparently with minimal overhead.

40

4.2 SPECIFICATION

The MAX2 protocol offers the user a choice of many encoding and checksum

algorithms. These algorithms may be used together in any combination without altering the

packet format or protocol.

4.2.1 Encoding Algorithms

The MAX2 protocol offers several encoding algorithms that may be selected by the

operator or application. Each algorithm performs a different level of encoding. However, as

the encoding level increases, so does the overhead. Thus, in order to maximize the effective

throughput, the minimal level of encoding should be selected that will still allow data to be

successfully exchanged between two systems.

4.2.1.1 Hex Encoding

The Hex Encoding algorithm converts binary data into upper case ASCII character

representations of its hexadecimal values. Currently, this encoding algorithm is used to

convert numeric field values of selected packets into printable ASCII characters. Hex

Encoded values are transmitted in most to least significant digit order.

The fo l lowing byte sequence

Byte 1 Byte 2 Byte 3 Byte 4

17h B3h 4Fh AOh

i s Hex Encoded as "A04FB317"

Figure 19. Example of MAX2 Hex Encoding

41

4.2.1.2 Network Control Character Encoding

The Network Control Character Encoding algorithm prefix encodes a subset of

control characters. These characters, values 3, 4,16,17,19, and 127, are converted into

pairs of printable ASCII values by XOR'ing them with the value 64 and then prefixing them

with the printable control prefix character. Optionally, the values 131,132,144,145,147,

and 255, can be encoded as well.

4.2.1.3 Full Control Character Encoding

The Full Control Character Encoding algorithm prefix encodes all control characters.

These characters, values 1 to 31 and 129 to 255, are converted into pairs of printable ASCII

values by XOR'ing them with the value 64 and then prefixing them with the printable

control prefix character.

4.2.1.4 Eighth Bit Character Encoding

The Eighth Bit Character Encoding algorithm prefix encodes all characters whose

eighth bit is set. These characters are converted into pairs of seven bit ASCII values by

setting their eighth bit to zero and then prefixing them with the printable control prefix

character.

4.2.2 Checksum Types

The MAX2 protocol supports several checksum algorithms. As shown in Table 4,

there are two major classes of algorithms. Bytewise arithmetic checksums, Types 0-3, are

offered in three sizes: one byte, two bytes, and four bytes. The calculation of the checksum is

42

performed using unsigned modular arithmetic. In the case of the Type 0 checksum, it is Hex

Encoded.

TYPE VALUE SIZE ALGORITHM

0 "0" 2 Hex Encoded one byte bytewise
arithmetic sum

1 n ^ ti 1 one byte bytewise arithmetic sum
2 I I 2 » 2 two byte bytewise arithmetic sum
3 "3" 4 four byte bytewise arithmetic sum

4 I I 4 I I 2 CRC-16 checksum
5 " 5 " 4 CRC-32 checksum

NOTE 1: Algorithms are l i s t e d i n increasing order of
complexity

NOTE 2: A l l integer values are transmitted i n l e a s t to
most s i g n i f i c a n t byte order.

Table 4. MAX2 Checksum Types and Field Values

In addition to the bytewise checksums, the MAX2 protocol also supports Cyclic

Redundancy Check (CRC) checksums. Currently, the user has a choice between the two byte

CRC-16 checksum, Type 4, and the four byte CRC-32 checksum, Type 5.

4.2.3 Packet Format

The format of a MAX2 packet is shown in Figure 20.

43

SOH SEQ TYPE LEN DATA CHECK

CHECKsummed 1

encoded as s p e c i f i e d —

Figure 20. MAX2 Packet Format

4.2.3.1 SOH Field

The SOH field is a one byte value used to indicate the start of a MAX2 packet. It is

assigned the value of 01H and cannot be modified. If this value occurs elsewhere in a MAX2

packet, is represented by two SOH characters.

4.2.3.2 SEQ Field

The SEQ field contains either a one or two byte unsigned sequence number. The size

of these sequence numbers is negotiated during the connect phase. Two byte sequence

numbers are transmitted in least to most significant byte order.

4.2.3.3 TYPE Field

The TYPE field is a single byte value that uniquely identifies the purpose of the

packet. For further details, please refer to the section on packet types.

4.2.3.4 LEN Field

The LEN field is either a one or two byte unsigned integer value that specifies the

number of bytes of data in the DATA field. A two byte LEN field is used unless the

44

maximum packet size negotiated is 128 bytes or less. Two byte LEN field values are

transmitted in least to most significant byte order.

4.2.3.5 DATA Field

The DATA field is a varying length field that contains user data. The length of the

field is indicated by the LEN field of the packet. The maximum size of this field is

constrained by the maximum packet size which is determined during the connect phase.

4.2.3.6 CHECK Field

The CHECK field contains the checksum of the contents of the entire packet with the

exception of the SOH and the CHECK fields. Its length is determined by the checksum type

that is negotiated during the connect phase.

4.2.4 Packet Types

The MAX2 protocol defines eighteen (18) packet types which are listed and

summarized in Table 5. These packets can be classified as either a Control or Data packet.

Control packets are assigned sequence numbers from the control sequence number stream

and Data packets are assigned sequence numbers from the data sequence number stream.

All packets are transmitted and delivered in first in, first out order (FIFO). However,

Control packets are transmitted and delivered ahead of any Data packets in the queue.

45

TYPE
FIELD CONTAINS PACKET DELIVERY

PACKET TYPE VALUE DATA CLASS MODE

ABORT A y co n t r o l expedited
ABORT-A a y co n t r o l expedited
ACK Y n data normal
ACK-C y n c o n t r o l expedited
CHANNEL c n data normal
CONNECT C y data normal
DATA-BLOCK B y data normal
DATA-REPLY R y data normal
DATA-STREAM S y data normal
DISCONNECTED d n data normal
DISCONNECTING D n data normal
FEEDBACK F y con t r o l expedited
NAK N n data normal
NAK-A X n c o n t r o l expedited
NAK-C n n c o n t r o l expedited
PAUSE P n c o n t r o l expedited
PROBE 7 n co n t r o l expedited
RESUME r y c o n t r o l expedited
TIMEOUT T y control^ expedited

TableS. MAX2 Packet Types

When a packet's delivery is expedited, it is inserted into the send or receive queue

ahead of all normal delivery packets. However, if there are expedited delivery packets

already in the queue, it is inserted after the newest expedited delivery packet. A detailed

description of the packets and their purpose can be found in the sections that follow.

4.2.4.1 ABORT Packet

The ABORT packet is used to indicate an abnormal termination of the connection.

The sender of this packet should place a brief ASCII string in the DATA field of the packet

explaining to the operator on the remote system the reason for the abnormal termination.

Once the ABORT packet has been sent, the sending system may immediately disconnect.

46

4.2.4.2 ABORT-A Packet

The ABORT-A packet is a version of the ABORT packet that contains only printable

ASCII characters. Its LEN field is Hex Encoded, its SEQ field is set to the value 32, and it

uses a Type 0 checksum. It is intended to be used to terminate the establishment of a

connection if any of the connection parameters specified by the remote system are not

acceptable.

4.2.4.3 ACK Packet

The ACK packet is used to indicate that the Data packet sent by the remote system

was received with no detectable transmission errors. The sequence number of the ACK

packet is set to the same value as the received Data packet.

4.2.4.4 ACK-C Packet

The ACK-C packet is used to indicate that the Control packet sent by the remote

system was received with no detectable transmission errors. The sequence number of the

ACK-C packet is set to the same value as the received Control packet.

4.2.4.5 CHANNEL Packet

The CHANNEL packet is only used if the data channel is unidirectional. It is used to

determine which system is allowed to transmit data. When the sending system has no data

to send or needs data from the receiving system, it transmits the CHANNEL packet,

relinquishing control of the data channel. Once the receiving system correctly receives the

CHANNEL packet and acknowledges it, the roles of the two systems reverse and the new

sending system may begin sending.

47

4.2.4.6 CONNECT Packet

The CONNECT packet is used to negotiate the connection parameters. The

CONNECT packet, with its DATA field set to indicate the desired connection parameters, is

sent by the calling system to the remote system. Upon receiving a CONNECT packet, the

remote system replies with its own CONNECT packet to indicate to the calling system its

connection parameters. The lowest common denominator is then used for the connection.

Since the CONNECT packets are exchanged before the connection parameters have

been determined, the entire packet is comprised of only printable ASCII characters. This

ensures that the packet will be transmitted unaltered through seven bit data lines.

Consequently, the LEN and CHECK fields are Hex Encoded and stored in most to least

significant digit order. In addition, the SEQ field of these CONNECT packets is equal to the

ASCII zero character and the checksum is a Type 0 checksum.

The contents and structure of the CONNECT packet's DATA field is shown in

Figure 21 while Table 6 summarizes the function of each of the fields.

PSIZE BSIZE SSIZE CHECK ENCODE CTL 8TH DUPLEX

Figure 21. MAX2 CONNECT Packet Data Field Format

48

FIELD BYTES FUNCTION

PSIZE 4 maximum packet s i z e
BSIZE 1 maximum buf fer s i z e measured i n PSIZE

bytes
SSIZE 1 s i ze of sequence numbers
CHECK 1 checksum type
ENCODE 1 encoding a lgor i thm to use
CTL 1 c o n t r o l p r e f i x encoding character
8TH 1 e ighth b i t p r e f i x encoding character
DUPLEX 1 i n d i c a t e s h a l f or f u l l duplex
TWO-WAY 1 i n d i c a t e s i f data can flow i n both

d i r e c t i o n s s imultaneously

Table 6. MAX2 CONNECT Packet Data Field Types

4.2.4.6.1 PSIZE Field

The PSIZE field indicates the maximum packet size (<= 65535 bytes), that may be

used. The packet size is Hex Encoded and stored in most to least significant digit order. The

maximum packet size of the connection shall be the smaller of the two PSIZE values.

However, the minimum packet size must be at least equal to sixteen (16) bytes.

4.2.4.6.2 BSIZE Field

The BSIZE field indicates the amount of buffer space, PSIZE * BSIZE bytes, that is

available when receiving. If there is unlimited buffer space, this field is set to zero. The size

of the buffer space is used to determine the window size when operating in sliding window

mode. Like the PSIZE field, this field is Hex Encoded and is stored in most to least

significant digit order.

49

4.2.4.6.3 SSIZE Field

The SSIZE field indicates the size of the sequence numbers to be used. Valid values

for this field are the ASCII values "1" and "2" indicating one and two byte sequence numbers,

respectively. The size of the sequence numbers of the connection shall be the larger of the

two SSIZE values. If one of the systems is not capable of supporting the requested sequence

number size, it must ABORT the connection. Two byte sequence numbers are recommended

when running in streaming mode or sliding windows mode with a large window size.

4.2.4.6.4 CHECK Field

The CHECK field indicates the type of checksum algorithm to be used. The

algorithms that are supported and their values are listed in Table 4. The checksum

algorithm of the connection shall be the more complex of the two algorithms specified. If one

of the systems is not capable of supporting the checksum algorithm, it must ABORT the

connection.

4.2.4.6.5 ENCODE Field

The ENCODE field is used to indicate the level of encoding that is required to

transmit eight bit data over the current communications line correctly. As shown in Table 7,

there are several encoding algorithms. These encoding algorithms may be combined by

placing Hex Encoded sum of their corresponding values in the ENCODE field. If the

encoding algorithms are combined, the algorithms shall be performed in descending order

according to their values listed in Table 7. Finally, the encoding algorithm(s) used on the

connection shall be the algorithm(s) that correspond to the higher ENCODE value. If one of

50

the systems is not capable of supporting the encoding algorithm, it must ABORT the

connection.

V A L U E DESCRIPTION

0 No encoding (except SOH stuffing) is to be performed.
1 Network Control Character Prefix Encoding
2 Network Control Character Prefix Encoding (including

optional characters)
4 Full Control Character Prefix Encoding
8 Eighth Bit Character Prefix Encoding

Table 7. MAX2 ENCODE Field Values

4.2.4.6.6 CTL Field

The CTL field is used to indicate to the remote system the printable ASCII character

that should be used as the control prefix encoding character. If this character is encountered

in the data and control character prefix encoding is being performed, it shall be represented

using two such characters. In addition, this character cannot be equal to the eighth bit

prefix encoding character. The default value is ASCII 94, the caret character (A).

4.2.4.6.7 8TH Field

The 8TH field is used to indicate to the remote system the printable ASCII character

that should be used as the eighth bit prefix encoding character. If this character is

encountered in the data and eighth bit character prefix encoding is being performed, it shall

be represented using two such characters. In addition, this character cannot be equal to the

control prefix encoding character. The default value is ASCII 96, the accent grave

character C).

51

4.2.4.6.8 DUPLEX Field

The DUPLEX field is used to indicate whether the system is capable of sending and

receiving simultaneously. A value of "H" indicates that the system is only capable of

half-duplex communication; otherwise it is capable of full-duplex communication. A value of

"U" indicates that the data channel is unidirectional while a value of "B" indicates that the

channel is bidirectional. If the data channel is unidirectional, it is controlled by the sending

system. Until the sending system relinquishes control, the receiving system can only receive

data. However, with a bidirectional data channel, both systems can send data

simultaneously.

4.2.4.7 DATA-BLOCK Packet

The DATA-BLOCK packet is used to transmit data to the remote system. The local

system will then wait for the remote system to acknowledge the packet before proceeding.

However, the remote system will not send an ACK for the DATA-BLOCK packet until all

previously sent DATA packets have been received correctly. The DATA-BLOCK packet will

be retransmitted only if it was NAK'ed by the remote system. Thus, if a DATA-STREAM

packet was sent before the DATA-BLOCK packet and was NAK'ed, the remote system would

not send an ACK for the DATA-BLOCK packet until the DATA-STREAM packet was

retransmitted with no detectable transmission errors. If no communication is received from

the remote system before the timeout period expires, a PROBE packet should be sent to

determine the status of the remote system.

52

4.2.4.8 DATA-REPLY Packet

The DATA-REPLY packet is used to transmit data to the remote system. It indicates

to the remote system that a reply, ACK or NAK, is required. This would be the DATA packet

to be used in sliding window mode or in streaming mode if the transmission medium was

error prone. If no reply is received before the timeout period expires, the DATA-REPLY

packet is resent unless the application set retry limit is exceeded.

4.2.4.9 DATA-STREAM Packet

The DATA-STREAM packet is used to transmit data to the remote system. It

indicates to the remote system that if the packet was received with no detectable

transmission errors, a reply is not required. This would be the normal DATA packet used in

streaming mode.

4.2.4.10 DISCONNECTED Packet

The DISCONNECTED packet is used by the receiving system to indicate to the

sending system that it has finally received all of the data that was sent to it. This event

occurs when the sequence number of a DATA packet is one less than the sequence number of

the DISCONNECTING packet that was sent by the sending system. When the sending

system receives the DISCONNECTED packet, it sends an acknowledgement to the receiving

system and terminates the connection.

4.2.4.11 DISCONNECTING Packet

The DISCONNECTING packet is used by the sending system to indicate to the

receiving system that it has completed its transfer of data. Like any other packet, it is

53

acknowledged by the receiver. However, before the sending system can disconnect, it must

wait for the receiving system's DISCONNECTED packet. If the data channel is

unidirectional, the DISCONNECTING packet can only be sent when the system has the

CHANNEL packet.

4.2.4.12 FEEDBACK Packet

The FEEDBACK packet is used to transmit application level control data to the

remote application. Upon receiving a FEEDBACK packet, the contents of the DATA Field

are interpreted and the appropriate action taken by the application. In a file transfer

application, the FEEDBACK packet could be used to send a cancel request to the remote

system.

4.2.4.13 NAK Packet

The NAK packet is used to indicate that the Data packet sent by the remote system

was received with detectable transmission errors and must be resent by the remote system.

If the requested Data packet is not received within the timeout period, the NAK packet is

resent. The sequence number of the NAK packet will be set to the same value as the

received Data packet. There is no retry limit defined by the MAX2 protocol; it is determined

by the application.

4.2.4.14 NAK-A Packet

The NAK-A packet is a version of the NAK packet that contains only printable ASCII

characters. Its LEN field is Hex Encoded, its SEQ field is set to the value 32, and it uses a

Type 0 checksum. It is intended only to be used prior to the establishment of a connection

54

when the encoding level and checksum type have yet to be determined. There is no retry

limit defined by the MAX2 protocol; it is determined by the application.

4.2.4.15 NAK-C Packet

The NAK-C packet is used to indicate that the Control packet sent by the remote

system was received with detectable transmission errors and must be resent by the remote

system. The sequence number of the NAK-C packet will be set to the same value as the

received Control packet. There is no retry limit defined by the MAX2 protocol; it is

determined by the application.

4.2.4.16 PAUSE Packet

The PAUSE packet is used by the receiving system to ask the sending system to stop

transmitting until it receives a RESUME packet. Typically, this would be sent when the

receiving system is in danger of being overrun by the sending system in streaming mode.

4.2.4.17 PROBE Packet

The PROBE packet is used to determine whether a remote system is still alive.

Upon receiving a PROBE packet, the system immediately acknowledges it.

4.2.4.18 RESUME Packet

The RESUME packet is used by the receiving system to tell the sending system that

it may resume sending. The manner in which its DATA field is interpreted is shown in

Figure 22. Both of these fields are two byte unsigned integers that are transmitted in least

to most significant byte order.

55

L A S T S E Q M A X P A C K E T S

LAST SEQ - sequence number of l a s t DATA
packet received c o r r e c t l y

MAX PACKETS - maximum number of packets of
maximum si z e before overrun

Figure 22. MAX2 RESUME Packet Data Field Format

When the sending system receives the RESUME packet, it begins transmitting again

starting with the packet whose sequence number is equal to "LAST SEQ + 1". The other

parameter, "MAX PACKETS", can be used by the sending system to moderate the amount of

data that is transmitted before it pauses to give the receiving system a chance to catch up.

This reduces the amount of bandwidth wasted due to lost DATA packets and the

transmission of the RESUME packet.

4.2.4.19 TIMEOUT Packet

The TIMEOUT packet is used to indicate to the receiver of the packet the timeout

value chosen by the sender. This value is a one byte unsigned integer in the DATA field. It

indicates the number of seconds that the sender will wait for a reply before it retransmits a

packet; This packet allows the MAX2 protocol to determine a suitable timeout period to use

to minimize the channel bandwidth wasted due premature timeouts and idle periods waiting

for the timeout period to expire in stop and wait mode.

4.2.5 Protocol Description

Although the MAX2 protocol was designed with full-duplex bidirection transmission

capabilities, the description of the protocol will be given in one direction only. In the

56

description that follows, it is assumed that the calling system, the CALLER, wishes to

transfer data to the called system, the CALLEE.

4.2.5.1 CONNECT Phase

The first step in the CONNECT phase is for the CALLER to establish a physical

connection (i.e. telephone connection) to the remote system. Once the physical connection

has been established, the MAX2 protocol starts with the CALLER sending a CONNECT

packet, with its fields set appropriately, to the CALLEE. Until the CALLER receives a

CONNECT packet from the CALLEE or the application determined retry limit is exceeded, it

continues to transmit CONNECT packets at 5 second intervals.

If the CALLEE detects a transmission error in the CALLER's CONNECT packet, it

can simply wait for the CALLER to retransmit the CONNECT packet. However, to speed up

the error recovery process, the CALLEE can send a NAK-A packet to the CALLER.

If the CALLEE is capable of supporting the connection parameters specified in the

CONNECT packet, it responds with its own packet to the CALLER. Its CONNECT packet

specifies connection parameters that do not exceed the requirements of the CALLER's.

However, if the CALLER's CONNECT packet specifies a requirement that the CALLEE is

not capable of supporting (eg. eighth bit prefix encoding), it responds with an ABORT-A

packet containing a short ASCII string explaining to the CALLER's system operator why the

CONNECT request was declined.

The CALLER shall also record the elapsed time in seconds between the transmission

of the last byte of a CONNECT packet and the reception of the first byte of a reply. This

interval shall be referred to as T and is used to calculate the timeout interval when waiting

57

for a reply to a packet. The timeout interval calculated is placed in a TIMEOUT packet and

sent to the CALLEE.

The timeout interval should be sufficient to allow the largest data packet to be sent

and for the reply to be received by the sender. This timeout interval should also take into

account the time required by the receiver to process the data packet and to generate the

appropriate reply as well as the propagation delay. A simple calculation of the timeout

interval can be performed using the following equation

Timeout I n t e r v a l = P / B + T Eq. 30

where P = maximum data packet s i z e i n bytes
B = transmiss ion speed i n bytes /second

Similarly the CALLEE measures the elapsed time between sending the last byte of

its CONNECT packet and receiving the first byte of the CALLER's TIMEOUT packet. After

calculating its timeout period, it sends its timeout period to the CALLER in a TIMEOUT

packet. Once the CALLER acknowledges this packet, the connect phase is complete. If the

data channel is unidirectional, it is controlled by the CALLER.

4.2.5.2 DATA Transfer Phase

During the data transfer phase, any of the three DATA packets may be transmitted.

If the data channel is bidirectional, the CALLER and CALLEE may transmit DATA packets

simultaneously. However, acknowledgements are not piggy-backed. This makes the

implementation of the MAX2 protocol much simpler. If the data channel is unidirectional,

the DATA packets can only be sent by the system holding the CHANNEL packet.

58

A sliding window mode of operation can be achieved by using DATA-REPLY packets

in conjunction with the BSIZE field of the CONNECT packet or the MAX PACKETS field of

a RESUME packet. If a RESUME packet has been received, the window size shall be the

smaller of BSIZE*PSIZE and MAX PACKETS*PSIZE. The sending system simply transmits

DATA-REPLY packets as long the packets can be inserted into the window. When the the

oldest packet in the window is acknowledged, it is removed.

In the normal streaming mode, DATA-STREAM packets are continuously

transmitted. If the receiving system detects a transmission error, a NAK packet is sent to

the sending system, requesting that the corrupted DATA-STREAM packet be retransmitted.

However, if the sending system has overrun the receiving system, the receiving

system can send a PAUSE packet to temporarily halt the sending system's flood of DATA

packets. Once the receiving system has freed enough of its buffers to accept DATA packets

again, it sends a RESUME packet to the sending system, indicating the sequence number of

the last packet that it correctly received. Naturally, NAK packets will be sent for any

packets that were received with transmission errors.

If the sending system repeatedly overruns the receiving system, a large amount of

bandwidth may be wasted on overrun packets. Bandwidth would also be wasted while the

sending system is waiting for the RESUME packet before resuming transmission. The

sending system may be able to increase the channel utilization by changing to sliding

window mode or adjusting the size of the window based upon the MAX PACKETS field of the

RESUME packet.

In addition, if the sending system has been PAUSE'd and has not received any

communication from the receiving system for a period greater than or equal to its timeout

period, it should send a PROBE packet to the receiving system. If the receiving system fails

59

to reply to the PROBE within the timeout period, the PROBE is resent. If the retry limit set

by the application is exceeded, the sending system should assume the receiving system has

become hung and it should ABORT the connection.

At times, it may be necessary for both systems to become fully synchronized. This

may be achieved by sending a DATA-BLOCK packet. Upon receiving this packet, a positive

acknowledgement for this packet will not be sent to the sending system until all outstanding

DATA packets have been received correctly. The sending system shall resend a

DATA-BLOCK only if it receives a negative acknowledgement for the packet.

During the exchange of DATA packets and acknowledgements, if either system

deems it necessary to modify its timeout parameter, it may do so. However, it must notify

the remote system of its new timeout value by using the TIMEOUT packet. Moreover, either

system may also choose to send less than the maximum amount of data per DATA packet to

minimize the cost of error recovery.

4.2.5.3 DISCONNECT Phase

Once the CALLER has sent all of its data, it sends a DISCONNECTING packet.

However, the CALLEE should not reply with a DISCONNECTED packet unless it has

received all data packets whose sequence number is less than the sequence number of the

CALLER'S DISCONNECTING packet. As soon as the CALLER receives a DISCONNECTED

packet from the CALLEE, the connection is terminated. This disconnect sequence must be

performed in both directions before the physical link is terminated.

If the data channel is unidirectional, the CALLER sends the CHANNEL packet to

the CALLEE immediately after the DISCONNECTING packet. This allows the CALLEE to

begin sending data or to initiate its own disconnect sequence

60

4.3 IMPLEMENTATION

In order to measure the performance of the MAX2 protocol, two programs were

written in ANSI C and compiled using Borland's Turbo C++ compiler. The MAX2SEND

program would use a subset of the MAX2 protocol to send a file, while the MAX2RECV

program would receive the file sent. Both programs assume a full-duplex channel, a

unidirectional data channel, use CRC-16 packet checksums, use two byte sequence numbers,

and perform no data encoding. Consequently, the theoretical channel utilization is given by

Equation 20. In addition, since only a subset of the protocol's features are required, the

prototype only recognizes the packets listed in Table 8.

ABORT ABORT-A ACK A C K - C
CONNECT DATA-STREAM DISCONNECTED DISCONNECTING
NAK N A K - A N A K - C TIMEOUT

Table 8. MAX2 Packet Types Recognized By MAX2SEND and MAX2RECV

Since the two programs transmit a file in streaming mode, a mechanism was needed

to limit the system resources consumed as the error rate increased. Both programs maintain

a retry counter for each packet sent. When a packet is added to the program's send queue, it

is inserted in front of all packets whose retry counter is lower but is inserted after any

packets whose retry counter is greater than or equal to its retry counter. This allows older

packets to be resent before newer ones and hence minimizes the memory requirements of

both programs.

Both the MAX2RECV and MAX2SEND programs accept command line parameters.

These parameters allow the user to optionally specify the baud rate, communications port,

retry limit, and maximum data packet size for the file transfer. In addition, the MAX2RECV

61

program requires the user specify the name of the file to be received and the MAX2SEND

program requires the user specify the name of the file to be sent.

Upon completion of the file transfer, both programs display the number of bytes sent

and received, packets sent and received, NAKs sent and received, errors detected, timeouts,

the size of the file transferred, and the elapsed time of the file transfer. The programs also

compute and display the effective throughput and the channel utilization.

The robustness of the programs developed was tested by sending various file types

through the BLACK30 error generator at an error rate of O.OOE-0 and 3.00E-4 errors/bit.

Upon completion of the file transfer, a checksum was computed for the received file and

compared to the checksum of the original file. After successfully transferring the one

megabyte test file, the program executable files, and the program source files, the programs

were considered error free and robust enough for throughput testing.

4.4 THROUGHPUT EXPERIMENTS

A decision was made to test the MAX2 protocol under only random error distribution

conditions using the BLACK30 error generator since the theoretical equations were so

accurate for the protocols that were tested under uniform error distributions. Futhermore,

experiences with communication over telephone lines have shown that a uniform error

distribution is not realistic.

4.4.1 Random Bit Error Distribution (BLACK30) Experiments

The throughput of the MAX2 protocol prototype implementation was tested using the

BLACK30 program as the error generator. Throughput experiments were performed using

62

the one megabyte test file at 9600 and 4800 baud using 1024 byte data packets at error rates

of 0.00E-5, 3.00E-5, 4.60E-5, 6.10E-5, 7.60E-5, 9.15E-5,1.05E-4, and 1.50E-4, errors/bit.

Experiments were also performed using 128 byte data packets at the same error

rates as the 1024 byte data packets and at error rates of 2.10E-4, 2.55E-4, 3.00E-4 errors/bit.

The results of these experiments are summarized in Table 10 which lists the minimum,

maximum, and average percentage difference for all error rates for each data packet size.

PROTOCOL MINIMUM MAXIMUM AVERAGE

128 byte packets
1024 byte packets

-0.6
-1.4

0.2
0.3

-0.2
-0.4

Table 9. MAX2 Percentage Difference of Measured Utilization Relative to
Theoretical Utilization For Random Bit Error Distributions Produced by BLACK30

The average measured throughput of all protocols tested at random bit error rates of

0.00E-0, 4.50E-5, 9.15E-5, and 3.00E-4 is listed in Table 10. The throughput numbers in this

table show that when using comparable data packet sizes, the MAX2 protocol achieves a

higher effective data throughput than the Kermit, XMODEM, and YMODEM protocols.

However, as the error rate increases to 4.50E-5 errors/bit, protocols such as XMODEM with

a low encoding overhead and 133 byte data packets, provide a higher throughput than the

MAX2 protocol using a 1024 byte data packet. A complete view of the throughput

measurements taken is provided by Graphs 39 and 40.

63

0.00E+0 4.50E-5 9.15E-5 3.00E-4
PROTOCOL e r r o r s / b i t e r r o r s / b i t e r r o r s / b i t e r r o r s / b i t

At 4800 Baud:
C l a s s i c Kermit 298 .5 272.5 249.3 181.0
MAX2 (128 bytes) 451.5 431.7 410 .5 330.5
XMODEM (Procomm) 2 440.4 412.6 388 .3 289.8
Extended Kermit 1 354.9 245.6 171.6 N/A
MAX2 (1024 bytes) 473.9 324.9 222 .5 N/A
YMODEM (Procomm) 466.7 317.5 219.6 N/A

At 9600 Baud:
C l a s s i c Kermit 580.6 532.4 470.4 281.6
MAX2 (128 bytes) 903.0 860.7 821.3 665.3
XMODEM (Procomm)2 850.2 789.4 733.4 525.0
Extended Kermit 1 698.6 483.7 339.8 N/A
MAX2 (1024 bytes) 947 .7 949.4 447.2 N/A
YMODEM (Procomm) 913.9 621.0 420 .2 N/A

1000 byte data packets.
CRC checksum

Table 10. MAX2 Average Measured Throughput Comparison At Random Bit Error
Rates Produced by BLACK30

As shown by Graphs 41 and 42, the MAX2 protocol's measured throughput is within

±1.5% of the theoretical throughput for both data packet sizes and at all error rates. This is

by far the best correlation between the measured throughput and the theoretical throughput

predicted by the derived equations.

4.5 SUMMARY

The MAX2 protocol is a powerful, versatile, and configurable communications

protocol. As summarized in Table 11, the MAX2 protocol offers several levels of data

encoding, error detection mechanisms, flow control methods, and low packet overhead.

However, Table 11 does not show MAX2's ability to dynamically adjust its timeout period

64

and packet size (within the negotiated maximum packet size), that it has a maximum packet

size of 64 kilobytes, and its ability to support data transfer in both directions simultaneously.

The MAX2 protocol also allows the user or application to select the features that would be

used during a communications session.

As with any streaming protocol using a selective retransmission mechanism for error

correction, the MAX2 protocol could conceivably consume vast amounts of memory buffering

data packets while waiting for corrupted data packets to be retransmitted correctly.

However, the priority send queue and transmission mechanism used by the prototype

implementation kept the MAX2RECV program's packet buffer requirements to within four

data packets during the throughput experiments.

65

MAX2 MAX2 MAX2 MAX2
FEATURE (128) (25S) (512) (1024)

FLOW CONTROL:
• Stop and Wait o o o - o
• S l i d i n g Windows o o o o
• Streaming • • • •

ERROR DETECTION:
• 1 byte sum • • • •
• 2 byte sum • • • •
• 16 b i t CRC • • • •
• 32 b i t CRC • • • •

ERROR RECOVERY:
• s e l e c t i v e

re transmiss ion • • • •
• go back N X X X X

PACKET SIZES 1:
• Data Packet (Min) 7 7 8 8
• Data Packet (Max) 128 256 512 1024
• Reply Packet 7 7 8 8
• Max. Data F i e l d 121 249 504 1016

OVERHEAD:
• Bytes Encoded 2 1 1 1 1
• Encoding Factor 1.004 1.004 1.004 1.004
• Raw Data / Packet 120.5 248.0 510.0 1012 .0
• Overhead To Send

One Data Packe t 3 6.2% 3.2% 2.0% 1.2%

l / - supported
0 - supported but not normally used
X - not supported
1 - based on 16 b i t CRC checksum
? . . .

- assuming minimum encoding on stream of 0 to 255
3 - 1 - (Data Packet) / Raw Data

Table 11. MAX2 Protocol Feature Summary

The throughput experiments with the MAX2 prototype have shown that the protocol

is robust and its performance degrades gracefully as the communication channel's error rate

66

increases. Furthermore, as shown by the graphs in Appendix 6, the MAX2 protocol provides

higher effective throughputs at all error rates than the Kermit, XMODEM, YMODEM, and

ZMODEM protocols.

4.6 CONCLUSION

The prototype implementation of the MAX2 protocol has shown that the protocol is

feasible, robust, and more efficient than the Kermit, XMODEM, YMODEM, and ZMODEM

protocols. In addition, the throughput experiments have validated the channel utilization

equation for full-duplex streaming protocols using selective retransmission error correction.

The results of the throughput experiments and the channel utilization equation have

shown that as the error rate increases, the data packet size should be decreased to minimize

the error recovery cost and hence increase the throughput. Since the MAX2 protocol allows

variable length data packets within the negotiated maximum packet size, an implementation

of the MAX2 protocol could maximize its effective throughput by monitoring the error rate of

the communications channel and making the appropriate adjustments to the size of the data

packet.

67

5. CONCLUSION

A number of public domain file transfer protocols were surveyed. An analysis of

these protocols showed that the Kermit protocol using classic packets had the highest

overhead of 50.0% while the YMODEM protocol had the lowest overhead of 0.6%. The

overhead and packet sizes of these protocols as well as the MAX2 protocol is listed in

Table 12.

DATA REPLY
PACKET PACKET PROTOCOL

PROTOCOL SIZE SIZE OVERHEAD(%)

C l a s s i c K e r m i t 97 8 5 0 . 0

E x t e n d e d K e r m i t 1033 8 2 9 . 5
X M O D E M - C R C 133 1 4 . 7
YMODEM 1 0 2 9 1 0 . 6
ZMODEM 1 0 2 7 21 3 . 8
MAX2 (1 0 2 4) 1 0 2 4 8 1 . 2
MAX2 (512) 512 8 2 . 0
MAX2 (256) 2 5 6 7 3 . 2
MAX2 (128) 128 7 6 . 2

Table 12. Protocol Overhead Summary

A number of equations were derived to calculate the effective channel utilization, and

hence the effective data throughput, of stop and wait protocols and streaming protocols for

any given transmission speed and error rate. These utilization equations are expressed in

terms of the probabilities of the six basic events. These probabilities are determined by the

packet sizes and the error distribution. Currently, equations have been derived for uniform

byte error and random bit error distributions.

However, no utilization equation was derived for sliding window protocols since the

initial work that was performed indicated that it would be difficult to derive an equation that

68

would accurately model the behaviour of all sliding window protocols. Furthermore, before

an equation can be derived for sliding window protocols, an implementation of a well

documented sliding window protocol is needed in order to verify the validity of the equation.

The validity of the derived utilization equations was proven by performing a series of

experiments that measured the effective data throughput of the Kermit, MAX2, XMODEM,

and YMODEM protocols under different baud rates, error rates, and error distributions

(uniform byte error and random bit error). The results of these experiments showed that the

equations were within ±5% of the measured values. In addition, these experiments showed

that the effective throughput of the DSZ implementation of the XMODEM, YMODEM, and

ZMODEM protocols degrade rapidly as the error rate increases.

The utilization equations have shown that protocols with larger packets have higher

channel utilization when the error rate is low. However, as the error rate increases, the

channel utilization of protocols with smaller packets degrade at a slower rate and at some

point offer better utilization than protocols with larger packets. In addition, the equations

indicate that stop and wait protocols with fixed timeout intervals needlessly waste channel

bandwidth as the transmission speed increases. Thus, in order to maximize channel

utilization, a protocol should decrease its packet size as the error rate increases and decrease

its timeout period at higher transmission speeds.

The protocol that was designed, MAX2, is a full-duplex streaming protocol that can

also run in stop and wait or sliding windows mode. The MAX2 protocol also allows the user

or application to select the level of data encoding, the checksum method, the maximum

packet size, and the sequence number size. In addition, the MAX2 protocol determines the

appropriate timeout value to use as part of its connection phase. Furthermore, unlike the

69

public domain file transfer protocols examined, MAX2 allows data to be transmitted in both

directions simultaneously over a full-duplex communications channel.

However, the MAX2 prototype only implements a subset of the protocol.

Nonetheless, the throughput experiments using the prototype implementation showed that

the MAX2 protocol was robust and makes better utilization of the channel than any of the

protocols examined. It also proved that the channel utilization equation derived for

full-duplex streaming protocols using selective retransmission error correction was valid.

Since the prototype implementation was designed to transfer a file using a subset of

the MAX2 protocol, the next step would be to develop a general purpose MAX2 protocol

driver that can be used by any application to exchange information with a remote

application. This would require that a set of services be defined that can be invoked by an

application to establish a connection, to disconnect, to send data, and to receive data.

Currently, the MAX2 protocol has an error recovery problem shared by the Kermit,

XMODEM, and YMODEM protocols. Namely, if the error rate increases to a level such that

the probability that P(Success) approaches zero, these protocols will probably fail due to

excessive retries before the data packet is successfully transmitted. In order to recover from

this situation, the MAX2 protocol must provide a mechanism to partition or segment the

packet such that each partition or segment has a reasonable chance of being transmitted

successfully. An intelligent implementation of the MAX2 protocol would monitor the packet

retry rate and increase the data packet size when the packet retry rate decreases and

conversely, decrease the data packet size when the packet retry rate increases.

70

6. BIBLIOGRAPHY

[I] Uyless D. Black, Data Communications, Networks, and Distributed Processing,
Reston Publishing Company, Inc., Reston, Virginia, 1983

[2] Frank da Cruz, Kermit Protocol Manual, Sixth Edition, Columbia University Centre
for Computing Activities, New York, New York, Jun 1986

[3] J . A Field, Efficient Computer-Computer Communication, Proceedings of the IEE,
Volume 123, Number 8, August 1976, pages 756-760

[4] Chuck Forsberg, XMODEM/YMODEM Protocol Reference, Omen Technology Inc.,
Portland, Oregon, Feb 1988

[5] Chuck Forsberg, The ZMODEM Inter Application File Transfer Protocol, Omen
Technology Inc., Portland, Oregon, Oct 1988

[6] Peter Grogono, Programming in PASCAL, Revised Edition, Addison-Wesley
Publishing Company, Inc., Don Mills, Ontario, 1980

[7] Donald E. Knuth, The Art of Computer Programming, Volume 1: Fundamental
Algorithms, Addison-Wesley Publishing Company, Reading, Massachusetts, 1968

[81 Donald E. Knuth, The Art of Computer Programming, Volume 2: Seminumerical
Algorithms, Second Edition, Addison-Wesley Publishing Company, Reading,
Massachusetts, 1981

[9] Richard J. Larsen and Morris L. Marx, An Introduction to Mathematical Statistics
and Its Applications, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1981

[10] Herbert Maisel and Giuliano Gnugnoli, Simulation of Discrete Stochastic Systems,
Science Research Associates, Inc., USA, 1972

[II] Leslie Jill Miller, An Analysis of Link Level Protocols For Error Prone Links,
Proceedings, Seventh Data Communications Symposium, 1981

[12] Tom Nicol, UBC Random, Computing Centre, The University of British Columbia,
Vancouver, B.C., May 1986

[13] William Stallings, Data and Computer Communications, Second Edition, Macmillan
Publishing Company, New York, New York, 1988

[14] George W. Struble, Assembler Language Programming: the IBM System 1360 and
370, Second Edition, Addison-Wesley Publishing Company, Reading, Massachusetts,
1975

71

Andrew S. Tanenbaum, Computer Networks, Second Edition, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1988

B. Zacharov, Transmission Strategy and Optimal Block Size in High-speed Data
Communication, Proceedings of the IEE, Volume 120, Number 8, August 1973,
pages 846-851

72

APPENDIX 1. Theoretical Utilization Graphs, Uniform Error Distribution

When examining the graphs in this appendix, please keep the
following in mind:

DATA REPLY
PACKET PACKET

PROTOCOL SIZE SIZE

C l a s s i c Kermit 97 8
Extended Kermit 1033 8
XMODEM-CRC 133 1
YMODEM 1029 1
ZMODEM 1027 21

73

APPENDIX 2. Theoretical Throughput Graphs, Uniform Error Distribution

When examining the graphs in this appendix, please keep the
following in mind:

DATA REPLY
PACKET PACKET

PROTOCOL SIZE SIZE

C l a s s i c Kermit 97 8
Extended Kermit 1033 8
XMODEM-CRC 133 1
YMODEM 1029 1
ZMODEM 1027 21

78

THEORETICAL THROUGHPUT @ 19200 BAUD
Uniform Error Distribution

APPENDIX 3. Measured Throughput Graphs, Uniform Error Distribution

When examining the graphs in this appendix, please keep the
following in mind:

DATA REPLY
PACKET PACKET

PROTOCOL SIZE SIZE

C l a s s i c Kermit 97 8
Extended Kermit 1033 8
XMODEM-CRC 133 1
YMODEM 1029 1
ZMODEM 1027 21

83

MEASURED THROUGHPUT @ 2400 BAUD
Uniform Error Distribution (BLACK10)

Classic Kermit
--+-.
Extended Kermit

XMODEM (DSZ)
-Q--
YMODEM (DSZ)
-X-
ZMODEM (DSZ)

E+OO 2.0CE-O4 4.0CJ&O4 6.<XiE-04 8.0CJE-04 1.00E-03
1.00E-O4 3.00E-04 5.00E-04 7.00E-04 9.00E-04

Error Rate (Errors / Byte)

MEASURED THROUGHPUT @ 4800 BAUD (#1)
Uniform Error Distribution (BLACK10)

Classic Kermit
••+--
Extended Kermit

XMODEM (Procomm)
-E3--
YMODEM (Procomm)

5E+00 2.00E-04 ' 4.00E-04 ' 6.0ct-O4 ' 8.00E-O4 1.00t-03
1.00E-04 3.00E-04 5.00E-04 7.00E-O4 9.00E-O4

Error Rate (Errors / Byte)

MEASURED THROUGHPUT @ 4800 BAUD (#2)
Uniform Error Distribution (BLACK10)

•1-

- 5 5

E+oo 2.oofe-c4 ' 4.ook-04 ' 6.00̂ -04 aotfE-cw LOOt-CO
1.00E-04 3.00E-O4 5.0OE-O4 7.00E-04 9.0OE-O4

XMODEM (DSZ)
-B--
YMODEM (DSZ)
-X-
ZMODEM (DSZ)

Error Rate (Errors / Byte)

M E A S U R E D T H R O U G H P U T <5> 9 6 0 0 B A U D (#1)

Uniform Error Distribution (BLACK10)
100O

CI
900-

800-

700-*,

600-

500- -•

400-

300-

200-

100-

Extended Kermit

XMODEM (Procomm)
-E3--

"^ik YMODEM (Procomm)

O.OOE+00 ' 2.00E-O4 ' 4.00E-O4 ' 6.00E-O4 1 8.00E-04 ^ 100^-03
1.00E-04 3.00E-04 5.00E-04 7.00E-04 9.00E-04

Classic Kermit

Error Rate (Errors / Byte)

MEASURED THROUGHPUT @ 9600 BAUD (#2)
Uniform Error Distribution (BLACK10)

100C-

XMODEM(DSZ)
-E>-
YMODEM (DSZ)
-X-
ZMODEM (DSZ)

O.OOE+00 2.0tfE-04 4.0OE-O4 6.00E-04 8.00E-04 1.0dE-O3
1.00E-04 3.00E-04 5.0OE-O4 7.00E-04 9.00E-04

Error Rate (Errors / Byte)

MEASURED THROUGHPUT @ 19200 BAUD (#1)
Uniform Error Distribution (BLACK10)

20CO

1800r3>

1600-•

1400-

600- ••

400-

200-

O.OOE+00 2.00̂ 04 ' 4.(X)'E-04 6.00E-04 8.00E-O4 1.00E-03
1.00E-04 3.00E-04 5.00E-04 7.00E-04 9.00E-04

e.ook-(B.<xk<

Classic Kermit
••+--
Extended Kermit
-yu--
XMODEM (Procomm)
-E3--
YMODEM (Procomm)

Error Rate (Errors / Byte)

MEASURED THROUGHPUT @ 19200 BAUD (#2)
Uniform Error Distribution (BLACK10)

200O

O.OOE+00 2.00E-O4 4.00E-04 6.00̂ 04 " 8.00E-04 ' 1.00t-03
1.00E-O4 3.00E-04 5.00E-04 7.00E-O4 9.00E-04

ii

XMODEM (DSZ)

-B--

YMODEM (DSZ)

-X-
ZMODEM (DSZ)

Error Rate (Errors / Byte)

APPENDIX 4. Percentage Difference Graphs, Uniform Error Distribution

When examining the graphs in this appendix, please keep the
following in mind:

DATA REPLY
PACKET PACKET

PROTOCOL SIZE SIZE

C l a s s i c Kermit 97 8
Extended Kermit 1033 8
XMODEM-CRC 133 1
YMODEM 1029 1
ZMODEM 1027 21

91

-10-

8 -15-
c
&

a -204

8

-30-

-35-

-40-

PERCENTAGE DIFFERENCE @ 2400 BAUD
Uniform Error Distribution (BLACK10)

............Jl L)

V
i U l Z l ^ J s

V
: •

V 0

m \ \ \
a

Vii

^^^^

>»

E+O0 2.00E-04 4.00^04 6.00E-04 8.00E-04 1.00E-03
1.00E-04 3.00E-04 5.00E-04 7.00E-04 9.00E-04

6.00E-<

Classic Kermit
••+-.
Extended Kermit

XMODEM (DSZ)
-ED-
YMODEM (DSZ)
-X-
ZMODEM(DSZ)

Error Rate (Errors / Byte)

PERCENTAGE DIFFERENCE @ 4800 BAUD (#1)
Uniform Error Distribution (BLACK10)

10

<D
S>
ro
c
&

-10-
0.00

i 4-

E+00 2.00E-O4 4.00E-04 6.00E-04 8.0OE-O4 1.00E-03
1.00E-04 3.00E-04 5.0OE-O4 7.00E-04 9.00E-04

Classic Kermit
••+-
Extended Kermit
-x-
XMODEM (Procomm)
-E3--
YMODEM (Procomm)

Error Rate (Errors / Byte)

PERCENTAGE DIFFERENCE @ 4800 BAUD (#2)
Uniform Error Distribution (BLACK10)

10

-10-

-7? -20-

8
c
i Q
(D
S>
co

CD

CL

-30-

-40-

-50-

-60-

-70-

-80-
0.00

\
\

\
\
\

\
\

\

i fi

i

I C

^

r —<.

;+00 ' 2.00E-04 - 4.00E 0̂4 6.00E-04 8.00E-04 1.00E-03
1.00E-04 3.00E-04 5.00E-04 7.00E-04 9.00E-O4

B.00E-(

XMODEM (DSZ)
-E3--
YMODEM (DSZ)
-H-
ZMODEM (DSZ)

Error Rate (Errors / Byte)

PERCENTAGE DIFFERENCE @ 9600 BAUD (#1)
Uniform Error Distribution (BLACK10)

0.00 :+00 2.00E-04
1.00E-04 3.00E-04

i-04 6.00E-O4 8.0tiE-04 1.00E-03
5.00E-04 7.00E-04 9.00E-04

B.00E-<

si

Classic Kermit

Extended Kermit

XMODEM (Procomm)
-E3--
YMODEM (Procomm)

Error Rate (Errors / Byte)

CD

65
>d tr
to ©

»
CD

9
ts o

CD

CO
cn o o
td
»
CL
to

U
t-<»
cn
rf-

cr
rt-
o
ts

PERCENTAGE DIFFERENCE @ 9600 BAUD (#2)
Uniform Error Distribution (BLACK10)

it>

-10-

-20-

8
£ -30-

a>

c

8

-40-

-50-

-60-

-70-

-80-

\ \ _
%
% >

\\
\>
rt
\ »
V * . W
W

t
i

. . . j j l x

W
W

t
i

. . . j j l x
N \
\ \
\ \

£
i
x.X

t

O.OOE-tOO 2.0OE-O4 4.00lE-04 ' 6.00E-04 ' 8.00E-04 " 1.0OE-O3
1.00E-04 3.00E-04 5.00E-04 7.00E-O4 9.00E-04

ok

- j -—_

XMODEM (DSZ)
-E3--
YMODEM (DSZ)
-X-
ZMODEM (DSZ)

Error Rate (Errors / Byte)

PERCENTAGE DIFFERENCE @ 19200 BAUD (#1)
Uniform Error Distribution (BLACK10)

— ^

0.00 -t- -t- -r-I+OO 2.00E-O4 ' 4.00E-04 ' 6.00E-04 ' 8.00E-04 1.00E-03
1.00E-04 3.00E-O4 5.00E-04 7.00E-04 9.00E-04

Classic Kermit
-•+-•
Extended Kermit

XMODEM (Procomm)
-E3--
YMODEM (Procomm)

Error Rate (Errors / Byte)

PERCENTAGE DIFFERENCE @ 19200 BAUD (#2)
Uniform Error Distribution (BLACK10)

XMODEM (DSZ)

1.00E-04 3.00E-O4 5.00E-O4 7.00E-04 9.0OE-O4

Error Rate (Errors / Byte)

APPENDIX 5. Theoretical Utilization Graphs, Random Error Distribution

When examining the graphs in this appendix, please keep the
following in mind:

DATA REPLY
PACKET PACKET

PROTOCOL SIZE SIZE

C l a s s i c K e r m i t 97 8
E x t e n d e d K e r m i t 1 0 3 3 8
X M O D E M - C R C 133 1
YMODEM 1 0 2 9 1
ZMODEM 1 0 2 7 21
MAX2 (1024) 1 0 2 4 8
MAX2 (512) 512 8
MAX2 (256) 2 5 6 7
MAX2 (128) 128 7

99

THEORETICAL UTILIZATION @ 2400 BAUD
Random Error Distribution

5.00E-05 1.50E-O4 2.50E-04

Error Rate (Errors / Bit)

THEORETICAL UTILIZATION @ 4800 BAUD
Random Error Distribution

THEORETICAL UTILIZATION @ 9600 BAUD
Random Error Distribution

THEORETICAL UTILIZATION @ 19200 BAUD
Random Error Distribution

THEORETICAL UTILIZATION @ 4800 BAUD
Random Error Distribution

THEORETICAL UTILIZATION @ 9600 BAUD
Random Error Distribution

THEORETICAL UTILIZATION @ 19200 BAUD
Random Error Distribution

Error Rate (Errors/Bit)

APPENDIX 6. Theoretical Throughput Graphs, Random Error Distribution

When examining the graphs in this appendix, please keep the
following in mind:

DATA REPLY
PACKET PACKET

PROTOCOL SIZE SIZE

C l a s s i c Kermit 97 8
Extended Kermit 1033 8
XMODEM-CRC 133 1
YMODEM 1029 1
ZMODEM 1027 21
MAX2 (1024) 1024 8
MAX2 (512) 512 8
MAX2 (256) 256 7
MAX2 (128) 128 7

108

THEORETICAL THROUGHPUT @ 2400 BAUD
Random Error Distribution

THEORETICAL THROUGHPUT @ 4800 BAUD
Random Error Distribution

THEORETICAL THROUGHPUT @ 9600 BAUD
Random Error Distribution

1000-

5.00E-05 1.50E-04 2.50E-04

Error Rate (Errors / Bit)

THEORETICAL THROUGHPUT @ 19200 BAUD
Random Error Distribution

2000-

5.00E-05 1.50E-04 2.50E-04

Error Rate (Errors / Bit)

APPENDIX 7. Measured Throughput Graphs, Random Error Distribution

When examining the graphs in this appendix, please keep the
following in mind:

DATA REPLY
PACKET PACKET

PROTOCOL SIZE SIZE

C l a s s i c Kermit 97 8
Extended Kermit 1033 8
XMODEM-CRC 133 1
YMODEM 1029 1
MAX2 (128) 128 7
MAX2 (1024) 1024 8

117

MEASURED THROUGHPUT @ 4800 BAUD
Random Error Distribution (BLACK30)

Classic Kermit
• -+--
Extended Kermit

MAX2 (128 bytes)
-E>-
MAX2 (1024 bytes)
-X-

XMODEM (Procomm)

YMODEM (Procomm)

3.00E-04
5.O0E-05 1.50E-O4

Error Rate (Errors / Bit)
2.50E-04

MEASURED THROUGHPUT @ 9600 BAUD
Random Error Distribution (BLACK30)

100O

m

Q_
JZ
O)
3
O

Classic Kermit
••+••
Extended Kermit
-yg--
MAX2 (128 bytes)
-E3--
MAX2 (1024 bytes)

XMODEM (Procomm)

YMODEM (Procomm)

3.00E-04
5.00E-05 1.50E-04

Error Rate (Errors / Bit)
2.50E-04

APPENDIX 8. Percentage Difference Graphs, Random Error Distribution

When examining the graphs in this appendix, please keep the
following in mind:

DATA REPLY
PACKET PACKET

PROTOCOL SIZE SIZE

C l a s s i c Kermit 97 8
Extended Kermit 1033 8
XMODEM-CRC 133 1
YMODEM 1029 1
MAX2 (128) 128 7
MAX2 (1024) 1024 8

120

PERCENTAGE DIFFERENCE @ 4800 BAUD
Random Error Distribution (BLACK30)

Classic Kermit
••+--
Extended Kermit

MAX2 (128 bytes)
-E3--
MAX2 (1024 bytes)
-X-

XMODEM (Procomm)

YMDDEM (Procomm)

3.00E-04
5.00E-05 1.50E-04

Error Rate (Errors / Bit)
2.50E-O4

PERCENTAGE DIFFERENCE @ 9600 BAUD
Random Error Distribution (BLACK30)

Classic Kermit

Extended Kermit
->e
MAX2 (128 bytes)
-E3--
MAX2 (1024 bytes)
- * -

XMODEM (Procomm)

YMODEM (Procomm)

2.00E-04 3.00E-04
5.00E-05 1.50E-04

Error Rate (Errors / Bit)
2.50E-04

