
BAR-REPRESENTABLE VISIBILITY GRAPHS

and a

RELATED NETWORK FLOW PROBLEM

by

STEPHEN KENNETH WISMATH

B.Sc.(Hons.,Mathematics), Queen's University, 1975
B.Ed., Queen's University, 1976
M.Sc, Queen's University, 1980

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

THE FACULTY OF GRADUATE STUDIES
DEPARTMENT OF COMPUTER SCIENCE

We accept this thesis as conforming
to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA
August 1989

. © Stephen Kenneth Wismath, 1989

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

Department

The University of British Columbia
1956 Main Mall
Vancouver, Canada
V6T 1Y3

r»c cf>iat\

Abstract

A bar layout is a set of vertically oriented non-intersecting line segments in the plane

called bars. The visibility graph associated with a layout is defined as the graph whose

vertices correspond to the bars and whose edges represent the horizontal visibilities between

pairs of bars.

This dissertation is concerned with the characterization of bar-representable graphs:

those graphs which are the visibility graphs of some bar layout. A polynomial time algo

rithm for determining if a given graph is bar-representable, and the subsequent construction

of an associated layout are provided. Weighted and directed versions of the problem are

also formulated and solved; in particular, polynomial time algorithms for the layout of such

graphs are developed.

The Planar Full Flow problem is to determine a plane embedding and an (acyclic)

orientation of an undirected planar network that admits a feasible flow, that uses all arcs

(except those incident upon the source or sink) to full capacity and maintains planarity.

The connection of this flow problem to bar-representable graphs is exploited to solve the

weighted case of the latter. As evidence that both the acyclicity and planarity constraints

are necessary to obtain a polynomial algorithm for this problem, two natural variants of

the Full Flow problem are shown to be strongly NP-Complete.

ii

Contents

Abstract ii

List of Figures vi

Acknowledgments ix

1 Introduction 1

1.1 The Flow Existence Problems 5

1.1.1 The Planar Flow Existence Problem 6

1.1.2 The Undirected Planar Flow Problems 7

1.2 Thesis Outline 7

1.3 Previous Work and Motivation 9

1.4 Algorithmic Issues 13

1.5 Notation 14

2 Polarized, and Measured Polarized Bar-Representable Graphs 16

2.1 Introduction 16

iii

2.2 Measured Polarized Graphs 18

2.2.1 Embedded Measured Polarized Graphs 18

2.2.2 Measured Polarized Graphs (Unordered) 21

2.3 Polarized Graphs 23

2.3.1 Embedded Polarized Graphs 24

2.3.2 Polarized Graphs (Unordered) 29

2.4 Reformulation as a Flow Existence Problem 30

2.4.1 Ordered Directed Weighted Graphs 30

2.4.2 Directed Weighted Graphs 31

2.4.3 Ordered Directed Graphs 32

2.4.4 Directed Graphs 33

3 Bar-Representable Graphs 35

3.1 Introduction 35

3.2 Embedded Bar-Representable Graphs 37

3.3 Bar-Representable Graphs (Unordered) 41

3.4 The Undirected Planar Positive Flow Reformulation 46

3.4.1 Ordered Graphs 46

3.4.2 Unordered Graphs 47

4 Measured Graphs 48

4.1 Introduction 48

iv

4.2 Flow Existence Formulation 50

4.3 Ordered Graphs 51

4.3.1 Extreme Edges and Their Weights Specified 52

4.3.2 Algorithm to Orient the Edges of a Network With Extreme Edges

and Weights Specified 54

4.3.3 Extreme Edges of N(G) With Positive Demands Specified 55

4.3.4 Algorithm to Orient the Edges of a Network with Positively-Weighted

Extreme Edges Specified 74

4.3.5 Extreme Edges of N(G) Specified 75

4.4 The Unordered Case 80

4.4.1 Algorithm to Determine a Full Flow for an Unordered Graph 102

5 NP-Complete Full Flow Versions 104

5.1 Introduction 104

5.2 The Non-Planar Full Flow Problem 105

5.3 The Undirected Planar Cyclic Full Flow Problem 112

6 New Directions and Related Results 116

6.1 Multiple Lines-of-Sight 119

6.2 Optimization Problems 122

7 Conclusions and Contributions 123

v

List of Figures

1.1 Bar Layout and Associated Graph 3

1.2 Non Bar-Representable Graph 4

2.1 A Graph H and its Directed Weighted Bar Layout 17

2.2 NW(H) 23

2.3 Blockable Visibility 26

2.4 Strong vs. e-Visibility 27

2.5 Violation of The In-Out Property 28

3.1 a) An s-t Numbered Graph, b) Embedded Into Sections, and c) a realization. 38

3.2 G+ of a Non Bar-Representable Graph 43

4.1 A Non-Measured Graph 50

4.2 Form of Af(G) and M(G)~V 53

4.3 Corresponding Edges 59

4.4 Corresponding Bundle Weights are Equal 60

4.5 Bundle Order 61

vi

4.6 Partitioning Non-Extreme Vertices 62

4.7 Forced Bundles on Extreme Vertices 63

4.8 Examples of the Four Cases 65

4.9 Nets - Forced and Induced 67

4.10 Proper Intersection of M and N 68

4.11 Case 1 69

4.12 Case 2 69

4.13 Case 3 70

4.14 Case 4 70

4.15 Preferred Cycles 72

4.16 No Forced Bundles 76

4.17 Forced Balanced Vertex 77

4.18 Pseudo-arc 77

4.19 Case 5: Form of I 78

4.20 Case 6: Form of 1 79

4.21 Polynomial Number of Exterior Faces 81

4.22 Exponential Number of Exterior Faces 82

4.23 T and G - r 83

4.24 The Two Degenerate Cases 86

4.25 Case 2.i 86

vii

4.26 Case 2.U 87

4.27 Case 2.iii 88

4.28 Case 3 88

4.29 Case 4 89

4.30 Five Chunks 90

4.31 Redirection of Chord < v,u > 91

4.32 The Three Forms of the Inside Path of r 93

4.33 Invalid Split on p 94

4.34 G" 98

4.35 Out Flow Type 99

4.36 G'" 101

5.1 G{B) 107

5.2 Component 108

5.3 N(B) 110

5.4 Variable Pair I l l

5.5 Edge Crossing: Same Weights 113

5.6 Substitute Component 114

6.1 Kg- 2-Line-of-Sight Representation 121

6.2 Layout of a Graph of Thickness A: 121

viii

Acknowledgments

There are many people to thank.

At the University of Lethbridge, my colleagues in the Department of Mathematical

Sciences and three Deans of Arts and Science have shown great patience and much encour

agement over the past 6 years. Their support is gratefully acknowledged.

At U.B.C, the faculty, staff and graduate students helped to create an exciting and

enjoyable working environment. Special thanks to: Barry Brachman for his technical help,

wit and friendship; Lisa, Norm and Theresa for their collegiality; Carol for her tennis; and

Marc, Rick, Jim, et al for their commiseration and craziness.

My supervisory and examining committee members had the disadvantage of working

with an off-campus graduate student. Thank you for your patience and efforts.

David Kirkpatrick was my supervisor - perhaps mentor better describes the level of

his involvement. Thank you for sharing your time, energy, experience and also for many

pleasant runs.

Finally, this thesis is dedicated to my family: my wife Shelly (who started after and

finished before), and my daughter Alice (who waited until after).

ix

Chapter 1

Introduction

Many problems in computer science may be formulated in terms of the visibility among

objects in a given domain. Frequently, the existence of these visibilities has been taken for

granted, and only recently have the computational issues and the underlying structure been

investigated. One of the earliest results in the area is due to Chvatal [4] and is known as

the Art Gallery Problem 1 . Visibility problems typically have arisen in VLSI wire routing,

printed circuit board layout, graphics, motion planning, and also in less applied areas such

as combinatorial mathematics and computational geometry.

O'Rourke [17] suggests that

... some of the fundamental unsolved problems involving visibility in computa

tional geometry will not be solved until the combinatorial structure of visibility

is more fully understood. Perhaps the purest condensation of this structure is

a visibility graph.

In general, the nodes of a visibility graph correspond to objects and the edges rep

resent a visibility relation among the objects. Two objects are defined as visible if a line

1 Determine the minimum number of guards sufficient to view the interior of an n-wall art gallery.

1

segment could be drawn between them intersecting no other object. Attempts at char

acterizing visibility graphs have for the most part been unsuccessful even for problems

of a fairly restricted nature. Several types of objects have been investigated, including

"boxes", non-intersecting curves [10],[30], line segments [23],[5],[16],[20],[21], and the sides

of a polygon [11],[17]. Various notions of visibility have also been considered. The direction

or directions of visibility (known as the line-of-sight) may be specified and the amount

of visibility between objects may be of concern. Perhaps the most constrained version

(and the one investigated here) involves parallel line segments as the objects which are

visible along a single fixed line-of-sight. This appears to be a natural starting point for the

understanding of the more general versions.

A layout is defined as a set of vertically oriented non-intersecting line segments (called

bars) in the plane. A visibility relation exists between pairs of bars: two bars v and w are

visible if a non-degenerate rectangle R can be drawn with two opposite sides consisting

entirely of portions of v~ and W and such that the interior of R contains no portion of any

bar. For a pair of visible bars, the vertical width of the visibility rectangle of maximum

area is used as a measure of the amount of visibility between the bars along the horizontal

line-of-sight 2 .

Such a layout has an associated visibility graph whose vertices correspond to the bars

and whose edges represent the visibility relation. Figure 1.1 shows a bar layout and its

associated graph.

Remark: The restriction to vertical line segments also covers the case when the objects

are horizontally convex (no horizontal line intersects the boundary of the object more than

2 To avoid the introduction of multiple edges, the bars are assumed to be displaced vertically so that
there is at most one visibility rectangle between any pair of bars. See section 1.4 for a discussion of this
issue.

2

c

a

Figure 1.1: Bar Layout and Associated Graph

twice).

This thesis succeeds in characterizing those graphs that correspond to some bar layout -

the bar-representable graphs - and in providing efficient algorithms for recognizing such

graphs and constructing an associated layout.

Bar-representable graphs are certainly planar; since the rectangles representing the

visibilities of a layout do not intersect, the edges of the corresponding graph need not

intersect, as pointed out by Johnson [30]. (In fact, this planarity argument holds for curves

other than bars too). Not all planar graphs, however, are bar-representable. Figure 1.2

shows a planar non bar-representable graph - the smallest such graph in terms of the

number of edges. Certain classes of planar graphs, for example, trees, outerplanar graphs,

Hamiltonian, and biconnected graphs, can be shown to be bar-representable [29].

As defined, the visibility relation is symmetric, but the bars of a layout exhibit a natural

partial ordering, namely a left-to-right order. If bars ¥ and ¥ are visible, then one is further

3

Figure 1.2: Non Bar-Representable Graph

to the left than the other. Arcs (directed edges) in the graph will be used to capture this

notion of ordering. A directed graph G is a polarized bar-representable graph, if there

exists an associated layout L(G) consistent with the orientations of the arcs - namely that

bar u is left of and visible to v in L(G) iff < u, v > is an arc of G (directed from u to v) 3.

The amount of visibility between bars (i.e. the vertical width of the maximum visibility

rectangle) may also be represented in the associated graph, by the addition of weights to

the edges. (Hereafter, "weighted" will mean "edge-weighted"). A weighted graph G is a

measured bar-representable graph, if there exists an associated layout whose visibilities

between bars are commensurate with the weights of the corresponding edges of G. If, in

addition, G is a directed graph and a polarized bar-representable graph, then G is called a

polarized measured bar-representable graph.

Note however, that a particular layout corresponds more precisely to a graph in which

the cyclic ordering about each vertex is fixed, corresponding to the ordering of visible
3 Section 1.5 outlines the notation used in the thesis.

4

neighbours about each bar. In addition, in any layout, there is a set of bars visible to the

"exterior" - bars with some unblocked visibility to the left or right. A graph will be called

ordered if in addition to the vertex adjacency information, both the (counter-clockwise)

cyclic ordering about each vertex and a set of vertices to appear on the exterior face are

specified. If an ordered graph G can be embedded in the plane with no edge crossings,

preserving the cyclic ordering of the vertices and with the set of specified vertices on the

exterior face, then G will be called an embeddable graph. Thus, any particular plane

embedding is a concrete realization of an ordering and this ordering may be specified

in linear time. Conversely, given an ordering G of a graph, the problem of determining

whether G has a plane embedding is solvable in linear time, as is the actual construction

of the embedding as shown by Kirkpatrick [14].

Bar-representability questions can be extended to include weighted, directed and or

dered graphs; the eight cases that arise as a result, form the framework of the investigation

in the thesis. The general form for each case is: given a graph G, either directed or undi

rected, either weighted or unweighted, and either ordered or unordered, determine if G is

a (polarized), (measured), (embeddable) bar-representable graph.

1.1 The Flow Existence Problems

All of the bar-representable cases may be reformulated as versions of the following two flow

problems. Informally, the first problem is, given a directed acyclic capacitated network,

find a feasible flow such that the edges with non-zero flow form a planar graph. The second

problem is, given an undirected graph, determine an orientation of the arcs that creates a

directed acyclic network for which the first problem is solvable.

5

1.1.1 The Planar Flow Existence Problem

A directed graph is called capacitated, if associated with each arc a, there is a weight

c(a), representing the maximum capacity of the arc a.

A source (respectively sink) of a directed graph is defined as a vertex with no incoming

(respectively outgoing) arcs incident upon it.

A network N is defined as a (possibly non-planar) directed capacitated acyclic graph

with unique source s and unique sink t joined by the arc < s,t > with associated capacity

of 1.

A feasible flow / of a network N, is a function mapping A(N) —• §c, such that:

• for all arcs a, 0 < /(a) < c(o).

• for all vertices v ^ s,t, v->w >) = Z)u/(< u > u >)•

A feasible flow in which f(a) is strictly greater than 0, for all arcs a, will be called a

positive flow.

Define as the directed graph with vertex set V(N) and arc set A(N^) given by

< u,v > is a member of A(N^) iff /(< u, v >) > 0. The arcs < s,u > and < v,t > of

N* for which / > 0 will be referred to as the extreme arcs. Arcs not incident upon s or

t will be referred to as internal arcs.

If a flow is feasible and also uses all internal arcs to full capacity (i.e. f(a) = c(a)),

then the flow will be called full.

The Planar Positive Flow (PPF) problem can now be stated as, given a network

N, determine if there exists a positive flow / such that is planar. (The flow / will then

also be called planar).

6

The Planar Full Flow (PFF) problem is to determine if there exists a full flow / on

network N, such that N* is planar.

1.1.2 The Undirected Planar Flow Problems

Define an orientation of an undirected capacitated graph M with specified vertices s and

t as an imposed direction on each edge of M, thus creating a directed graph. This function

mapping edges to arcs (directed edges) will be denoted by g, and the resulting directed

capacitated graph will be denoted by g(M).

The function g will be called network creating if in the resulting graph, g(M):

• there is no directed cycle, and •

• s and t appear as the unique source and sink respectively.

The Undirected Planar Positive Flow (UPPF) problem is, given an undirected

graph M with specified vertices s and t, to determine if there exists a network creating

orientation g, such that there is a positive flow / and g(M)* is planar.

The Undirected' Planar Full Flow (UPFF) problem is to determine such an ori

entation which also admits a planar full flow.

1.2 Thesis Outline

In general, the solutions to the unordered cases rely heavily on the solutions to the ordered

cases and hence these two are paired together in each chapter. In chapter 2 the directed case

is solved, namely under what conditions is a directed graph a polarized bar-representable

graph? Characterizations for both the directed weighted and the directed unweighted

7

cases are presented. These graph-theoretic characterizations for polarized and measured-

polarized bar-representable graphs lead to linear time algorithms for their detection and

for the construction of an associated layout.

Determining if an unweighted undirected graph is bar-representable was the original

motivation of this thesis. Its solution (a linear time characterization and layout algorithm)

is described in chapter 3. The construction of the layout is based upon a modification of

an 5-r-numbering of a graph.

The problem of determining whether a weighted, undirected graph is a measured bar-

representable graph is solved in chapter 4 by reformulating it in terms of the full flow

existence problem. A sequence of successively less constrained subproblems leads to the

final algorithm. The algorithms in this chapter for both the ordered and unordered cases

are fairly involved but their time complexities are shown to be polynomially bounded.

As circumstantial evidence that the problems in chapter 4 are inherently difficult, chap

ter 5 contains proofs that two variants of the undirected flow existence problem are NP-

Complete. The problem of finding an acyclic orientation of an undirected capacitated

network for which a (possibly) non-planar full flow exists, is shown to be NP-Complete.

The second NP-Complete variant is to determine an orientation of a capacitated undirected

graph for which a planar full flow exists but with directed cycles permitted in the network.

Chapter 6 outlines some related visibility results and open problems; in particular,

multiple lines-of-sight and curves other than bars are discussed.

In conclusion, in chapter 7, the main contributions of the thesis are summarized.

8

1.3 Previous Work and Motivation

A few authors have considered visibility problems involving line segments, but the notion

of visibility is denned in various ways throughout the literature. Perhaps the most com

prehensive treatment of visibility is by Tamassia and Tollis [23], who distinguish between:

• strong-visibility, in which a pair of bars is visible if a horizontal line segment can

be drawn between them that intersects no other bar and

• e-visibility, in which a horizontal rectangle of non-zero width not properly intersect

ing other bars is required between bars to be visible.

Remark: Note that e-visibility is the model of visibility assumed in this thesis and

as a consequence, in the weighted cases, edge weights are strictly greater than 0. One

justification for this choice of model is that it is not clear how edges of 0 weight would be

interpretted. It also provides a solution to the "unit-visibility" case, in which a minimum

amount of visibility between bars is specified a priori, again since 0-weighted edges are not

created. Finally, the e-visibility model produces a larger class of graphs than the strong-

visibility model, in fact, a superset. However, note that the two models are equivalent if

the bars are redefined to be interval line segments with a closed top and an open bottom.

The characterization of bar-representable graphs under the e-visibility model as de

scribed in chapter 3, and first presented in [28], was independently discovered by Tamassia

and Tollis [23] who also conjectured a characterization for strong-visibility bar-representable

graphs. A similar result relating to blocking relations was independently presented by Rival

and Urrutia [19].

Schlag et al [21] present linear time algorithms for computing all visibility pairs (and

hence the visibility graph) of bars in a given layout, employing a strong visibility model,

9

if the bars are presorted by X-coordinate, top Y-coordinate, or bottom Y-coordinate. The

application to VLSI layout compaction is also discussed.

Luccio et al [16], use the strong-visibility model, however the layout of bars is severely

constrained in their work and under their given restriction, the two models of visibility are

equivalent. The Y-coordinates of all endpoints of bars are assumed to be different. As a

consequence, all the interior faces of the associated planar ordered visibility multi-graph

are triangular (bounded by 3-cycles). The authors characterize the visibility graphs that

arise under this model as ipo-triangular (transformable into a triangular multi-graph

by successive duplications of existing edges). Their constructive proof provides a layout

scheme for a given visibility multi-graph M. This algorithm appears to be linear in the

number of edges of M. (For triangular multi-graphs, the number of edges is also linear

in the number of vertices). However, the complexity of determining whether a graph is

ipo-triangular, is not addressed.

Several authors have investigated graphs and their layouts under a weak-visibility 4

model. A graph G is a weak visibility graph if there exists a layout of bars corresponding

to the vertices of G such that, if (u, v) is an edge of G then the corresponding bars u and

v, are visible (rather than iff). Thus every weak-visibility graph is a subgraph of some

strong-visibility graph. This notion of weak-visibility graphs is motivated by practical

VLSI routing concerns in which every pair of adjacent vertices in a specified graph must

have a "channel" or route available in the layout and the associated bars are physically

joined along these visibility channels. Extra visibilities between bars are ignored by not

physically connecting them.

4 using the notation of Tamassia and Tollis

10

Duchet et al [5], showed that every planar graph is a weak-visibility graph (or equiv-

alently that every planar graph is a subgraph of some strong-visibility graph). Tamassia

and Tollis [23], presented an 0(|V|) algorithm to create a weak-visibility layout.

Rosenstiehl and Tarjan [20], also employ the weak-visibility model and assume the given

graph is biconnected. (If it is not, edges may be added and ignored in the final layout). A

notion equivalent to an s-t numbering (see chapter 3) is that of a bipolar orientation,

in which the edges are directed to form an acyclic directed graph with unique source (no

incoming arcs) and unique sink (no outgoing arcs). The construction of an associated

layout of a biconnected graph in chapter 3 is similar but not identical to theirs. They note

that the dual graph may be laid out perpendicularly and "interlocked". The area of the

layout is of particular concern and they conjecture that finding a bipolar orientation that

minimizes the layout area is NP-Hard. A technique for generating the bipolar orientations

(there may be an exponential number of them) is provided.

Garey, Johnson and So [10], proposed an elegant method of testing printed circuit

boards for the existence of short circuits based on colouring the associated line-of-sight

graph. A net is denned as a tree of vertical and horizontal line segments (representing a

conductor path on a printed circuit board). The problem is, given a set of n non-intersecting

nets, to test if some pair of nets contains a short circuit. The brute force method tests all

pairs of nets by applying an electrical signal to one net and checking if it propagates to the

other net. Under various assumptions about the form of the short circuits, they note that

not all (2) nets need be tested. They show that if all short circuits were known to occur

along a vertical or horizontal line-of-sight for example, then the resulting line-of-sight graph

could be coloured with at most 12 colours. The nets of each colour are then connected

to form 12 supernets and the (\2) pairwise tests of the supernets reveal the existence of a

11

short circuit. In addition to this 2-line-of-sight version, they investigate a 1-line-of-sight

case and the case when the lines-of-sight are of bounded length. In [30], Johnson notes

that a 2-line-of-sight graph must have thickness 5 at most two and poses the problem of

determining if all graphs of thickness two have a 2-line-of-sight layout.

In an orthogonal polygon, all sides are vertical or horizontal. A natural visibility prob

lem is to consider the two graphs that arise from using a vertical line-of-sight with the

horizontal sides and a horizontal line-of-sight with the vertical sides. Booth and O'Rourke

[17] noted that these edge visibility graphs must be trees and investigated which pairs of

trees "mesh" together to represent polygons. In particular, they show that a subclass of

trees, called caterpillars, mesh with any tree to form an orthogonal polygon. The complete

characterization however, remains an open problem.

El Gindy [7] considered the visibilities among the corners of polygons with the lines-of-

sight not fixed and discovered some classes of these vertex visibility graphs. For example,

every maximal outerplanar graph is a vertex visibility graph. Again, the complete char

acterization is still an open question. (A good exposition is contained in [17].) Ghosh

[11], has proven three necessary conditions for a graph to be a vertex visibility graph and

conjectured that the conditions are sufficient for simple polygons.

A significantly different definition of a visibility graph Gs for a set S of n fine segments,

requires that the vertices of Gs correspond to the In endpoints of the line segments. Vertices

are adjacent if the fine segment joining the associated endpoints intersects no other line

segment of S. Such a graph need not be planar. The lower and upper bounds on the

number of edges are 5n — 4 and 2n2 — n. (See Shen and Edelsbrunner [22]). Welzl [26]

provides an 0(n2) time and space algorithm for constructing the visibility graph. These

5 Graph G has thickness k if there exists a decomposition of G into Jfc planar subgraphs and k is minimum.

12

results are optimal in the worst case, however determining an output-sensitive algorithm

(i.e. one whose complexity is a function of the size of the output as well as the input),

remains an open problem. These endpoint visibility graphs have been used extensively in

some shortest path obstacle avoidance problems - see for example [15].

Rival and Urrutia [19] consider a separation problem on convex figures in the plane.

The problem is to remove one at a time the figures from the collection by translation

along an assigned direction without collision. In particular, they solve a one-directional

version in which all figures are assigned the identical direction of translation. They define

an obstructing relation between pairs of objects: "For figures A and B we say that B

obstructs A if there is a line joining a point of A to B which follows the direction assigned

to B." A binary "blocking" relation is defined between a pair of objects if there exists

a sequence of obstructing objects between them. Their characterization of this blocking

relation involves truncated planar lattices. A lattice is an ordered set in which every pair of

elements has a least upper bound and a greatest lower bound; it is planar if its "diagram"

(graph representation in the plane) can be drawn without crossings. A truncated planar

lattice is obtained by deleting the (unique) maximum and minimum elements. They prove

that there is a one-to-one correspondence between the class of all (one-directional) blocking

relations and the class of truncated planar lattices. This characterization is equivalent to

the characterization of embedded bar-representable graphs in chapter 3 and indicates a

useful relationship between visibility problems and ordered sets.

1.4 Algorithmic Issues

The underlying model of computation assumed for the formulation and analysis of algo

rithms is a random access machine (RAM). Only the comparison, addition and multipli-

13

cation 6 of input values are allowed as operations on real numbers, with a uniform cost

measure; see [18], for example, for a discussion of these issues. A worst case asymptotic

complexity analysis will be used as the measure of the running time of the algorithms.

Strictly speaking, a visibility graph corresponding to a layout could include multiple

edges. There could exist more than one maximal width visibility rectangle between a pair of

bars; however, these rectangles will be assumed to have been merged by vertically displacing

intervening bars as far as possible without disturbing the visibilities. The resulting layout

then corresponds to a simple planar graph. Recall, that for simple, planar graphs, the

number of vertices, | V | , the number of edges, and the number of faces, \F\, are all

linearly related (a consequence of Euler's Theorem) and hence the time complexity of a

graph algorithm may be presented as a function of the number of vertices.

Graphs are assumed to be represented in doubly-connected-edge-list form (DCEL), (see

[18]). As a consequence, all of the algorithms have a space bound that is a linear function

in the size of the input.

1.5 N o t a t i o n

Standard graph theoretic terminology will be used throughout; see, for example, Harary

[12]. Graphs are assumed to be connected, simple, and finite. The set of vertices of graph

G will be denoted by V(G) and the edge set as E(G). If G is directed, the arc set is

A(G). Edges will be denoted in parentheses (ex. (u,v)), and arcs (directed edges) in angle

brackets (for example, the arc from u to v as: < « , « >) . A plane embedding of graph

G will be written as: Q. The existence of weights or directions on edges or topological

information describing a specific ordering must be determined from context. The weight

6 In fact, a slightly weaker model of computation not requiring multiplication could be used.

14

of an edge or arc e, will be denoted by weight(e). For a vertex in a directed graph,

inweight(v) is VJU g v weight(< u,v >) and outweight(v) is J2W € V weight(< v,w >).

If the inweight(v) is equal to the outweight(v), then v is balanced.

The bar corresponding to vertex v will be denoted by V.

Since it is necessary to specify the layout of bars explicitly, the layout is assumed to be

constructed in a 2-dimensional coordinate system. Each bar v will be defined by specifying

X(v), TOP(v), and |TT|. (The x and y coordinates of the top of v and the length of v.)

Let BOTTOM (TJ) be TOP(v) -

15

Chapter 2

Polarized, and Measured
Polarized Bar-Representable
Graphs

2.1 Introduction

Four of the eight bar-representable cases are solved in this chapter, namely all variations

of the directed case: when edges are weighted or unweighted, and the graph is ordered or

unordered. The most constrained bar-representable problem is, given an ordered weighted

directed graph, determine if it is an embeddable measured polarized bar-representable

graph. Theorem 1 characterizes such graphs and its constructive proof provides an asso

ciated layout in linear time. The layout procedures for all of the subsequent cases rely on

this layout scheme. Each of these less constrained cases, in effect reduce to this case by

special techniques.

Figure 2.1 shows an example of a directed weighted graph H, and an associated layout.

Therefore, H is a measured polarized graph.

16

2.2 Measured Polarized Graphs

2.2.1 Embedded Measured Polarized Graphs

Before characterizing embedded measured polarized graphs, a few properties of bar layouts

should be noted.

Firstly, bars with equal amounts of left and right visibility correspond to balanced

vertices - those with equal inweight and outweight.

Unbalanced vertices come in two types: those with insufficient inweight and those

with insufficient outweight. Such vertices will now be shown to correspond to bars on

the "outside" of the layout. Define a bar u~ as exterior in layout L if it is possible

to draw an unbounded horizontal half line intersecting H and no other bar of L. (For

example, a, 6 and h, I'm figure 2.1). Exterior bars are further classified as having unblocked

visibility to the right or to the left depending on the direction of the unbounded horizontal

half line. The vertices corresponding to bars not totally blocked to the left (respectively

right), have inweight < outweight (respectively inweight > outweight). Such unbalanced

vertices certainly must appear on the exterior face of the ordering. Furthermore, their cyclic

ordering about the exterior face must not be mixed - all vertices with insufficient inweight

appear cyclicly together and all vertices with insufficient outweight appear cyclicly together.

A particularly effective way to express this is to imagine two "super" bars bounding the

layout - a leftmost bar ^ and a rightmost bar T. The bottoms of each of these two bars

will be the bottom of the lowest bar of the layout and the tops will be one unit higher than

the top of the highest bar in the layout. In the resulting associated supergraph, there are

exactly two unbalanced vertices: S and T. The two sets of previously unbalanced vertices

are attached to S and T.

18

Define two sets of vertices Vi, Vi on the exterior face of an ordering as separable if it

is possible to introduce two new vertices v[, v'2 into the exterior face and join each member

of V\ to v[and each member of V2 to v'2 preserving planarity.

Theorem 1 Ordered weighted digraph G is an embedded measured polarized bar-representable

graph iff G corresponds to a planar embedding Q with the following properties:

• G contains no directed cycle, and

• the vertices with insufficient inweight and the vertices with insufficient outweight of

Q are on the exterior face and separable.

Proof:

The necessity of the above conditions is evident from the properties of layouts; their

sufficiency can be demonstrated by constructing a bar layout from such a graph. The

directions impose a partial ordering on the vertices which may be exploited to construct

the associated layout. Embed Q crossing free in the plane with the specified exterior

face. Introduce two extra vertices in the exterior face: S and T. Vertices with insufficient

inweight (respectively outweight) are joined to S (respectively T), thus balancing the in-

and out- weights of all vertices (except S and T). The embedding is then modified; the

vertices are arranged in discrete vertical "columns" with all arcs oriented left-to-right. The

layout is formed by deforming the vertices carefully into bars as follows.

Deform the embedding of Q with S and T attached so that the vertices lie in k vertical

sections:

• 5 is in section 1

19

• V v ^ S, v is in section i iff all left neighbours of v are in sections < i — 1 and at

least one left neighbour is in section i — 1.

Note that no two vertices of the same section are adjacent.

On each arc a passing through a section, subdivide the arc by introducing a "pseudo-

vertex" , thus creating a new plane embedding Q'. The two arcs created by the split each

inherit the weight of arc a.

The vertices in a section will be indexed from top to bottom. Let v,- j denote the jth

vertex (real or pseudo) in section i. Construct an associated layout as follows.

Let \S\ = £\veight(< g,v >), X(5) = 1, and TOP(S) be arbitrarily chosen. Then

the length and the top of each bar U ^ W will be a function of the length and top of its

neighbours in the previous section.

\v i j \ = Y^k weight(vt'-i,fc> vi j) (i-e- the s u m °f the weights of all back edges).

TOP{v n) = TO PCS)

TOP(vij) = BOTTOM(v i, j-i) ,V j > 1

X(v ij) = i

The construction assures that

(vi j , Vi + it k) € E(Q') iff v i j sees v ,• + i , jt for the specified width.

Note that all vertices have at least one neighbour in the previous section and therefore

the length of all bars is greater than 0.

Removal of the bars corresponding to pseudo-vertices and S and T yields a layout

corresponding to G.

•

20

Remark: Note that the construction is linear in the number of vertices and edges of

the embedding Q'. The number of pseudo-vertices introduced in the algorithm may be

0(rc2), however, the construction need not actually create (and later delete) them, they

are used here merely to simplify the description of the algorithm. The length and top of

bars corresponding to real vertices may be computed by considering the only the original

arcs of G and thus the algorithm is linear in the size of G.

As an aside, note that Q' can be viewed as a network in which the edge weights describe

a flow from S to T. Specifically, a "preservation of flow" property holds, namely that in

any vertical cut across the arcs, between two sections, the sum of the weights of the edges

is constant. At each vertex, the sum of the weights of the back edges is equal to the sum

of the weights of the forward edges.

Finally, note that the structure of an embedded measured polarized graph is so highly

constrained that its layout as constructed above, is in fact, unique.

2.2.2 Measured Polarized Graphs (Unordered)

The unordered version hinges on the ordered case in the sense that G is a measured polar

ized bar-representable graph if there exists an ordering of G with the properties described

in the previous subsection. Although there are potentially an exponential number of or-

derings, the existence of an appropriate ordering may be determined in linear time. The

characterization is based on the following supergraph of G which includes two new vertices,

S and T, connected to the vertices with excess outweight and inweight respectively.

21

2 Define NW(G) as:

V(NW(G)) = V(G)U{S,T)

A(NW(G)) = A(G) U

{<S,v> \v£ V(G) and inweight(v) < outweight(u)} U

{< v,T > \ve V(G) and inweight(v) > outweight(v)} U

{<S,T>}.

Weight(< S,T>) = 1

Weight(< u,v >) = weight(< u,v >), for all arcs <u,v>£ A(G)

Weight(< S, v >) = outweight(v) — inweight(t;)

Weight(< v, T >) = inweight(t;) — outweight(v)

Figure 2.2 shows NW(H) for the graph H of figure 2.1.

Theorem 2 A weighted digraph G is a measured polarized bar-representable graph iff

NW(G) is planar and contains no directed cycle.

Proof:

(«=)

The construction of NW(G) ensures that S and T are the only two vertices with insuffi

cient in- and out-weights. Thus, a plane embedding of NW(G) with S and T on the exterior

face represents an ordering for which NW(G) is an embedded measured polarized graph and

the layout scheme of theorem 1 may be applied. Since iT and T are extreme bars, their

removal creates no new visibilities among bars and the resulting layout corresponds to G.

(=>)

22

g

Figure 2.2: NW(H)

Given a layout for G, adding extreme bars ^ and T yields an embedding of NW(G).

•

Remark: Construction of NW(G) can be clearly performed in linear time. There are

well known linear time algorithms for both detecting cycles in directed graphs and for

planarity testing - see [1], for example.

The graph NW(G) is unique and highly structured. The number of layouts of G is

exactly the number of planar orderings of NW(G) with S and T on the exterior face.

2.3 Polarized Graphs

If the amount of visibility is not specified, the characterization is similar to the measured

polarized case. Vertices with 0 indegree or 0 outdegree effect the role of the unbalanced

vertices in the previous case and appropriate weights may be assigned to the arcs by the

algorithm as the layout is constructed. The length of a bar is known when the amount

23

of visibility provided by its left neighbours is established. This length may be shared

arbitrarily among its right neighbours. Thus, a single left-to-right sweep suffices.

2.3.1 Embedded Polarized Graphs

Theorem 3 Ordered digraph G is an embedded polarized bar-representable graph iff G

corresponds to a planar embedding Q with the following properties:

• G contains no directed cycle and

• all vertices with 0 indegree or 0 outdegree appear on the exterior face and are sepa

rable.

Proof:

(=»)

In a layout of G, the bars with no left (respectively right) neighbours correspond to

vertices with 0 indegree (respectively 0 outdegree). Such bars are clearly extreme and cycli

cally orderable and hence their associated vertices are on the exterior face and separable.

(«=)

Given a plane embedding Q, of G, add vertices S and T in the exterior face, and attach

S to the vertices with 0 indegree and T to the vertices of 0 outdegree. Since Q is embeddable

and these sets of vertices are separable, the resulting graph is planar. Appropriate weights

for the arcs must be determined.

For each arc < Vt_i,fc, V{ j >, choose the weight J/̂ j"̂ ' *̂ , where d*(v) is the forward

degree of vertex v. Then \v ,• j | = 22 weight(wt-_itfc, V{ j) (i.e. the sum of the weights of

all back edges).

24

Let \S\ = 1, X(S) = 1 and TOP(S) be arbitrarily chosen.

Since all vertices other than S and T now have balanced in- and out-weights, the layout

scheme described in the proof of theorem 1 provides an associated layout for Q.

•

The sufficiency of these conditions is perhaps somewhat surprising, as in a layout,

there may exist a bar b adjacent to 1? that does not have indegree(fr) = 0, for example.

Such a bar could be blocked from !> by increasing the weight of one of its left neighbours

appropriately. The above construction leads to the following corollary which shows the

existence of a canonical layout of ordered digraph G.

Corollary 1 Every embedded polarized graph has an associated layout in which all and

only the bars corresponding to vertices of 0 indegree and 0 outdegree are on the exterior.

Proof:

Let u be a bar in a layout with ~S and T added and visible to S (without loss of

generality) with indegree(u) > 0. Consider a maximal visibility rectangle involving ~S~ and

u. In the associated graph, the cyclic ordering about u must be S,v,... ,w, S and one of

v or w (or both) must be a left neighbour of u and the corresponding bar, say V, may be

lengthened for the width of the visibility between ^ and V. See figure 2.3.

Note that v may also have indegree(t;) strictly greater than 0, however, the above

process may be applied to v and repeated application of the process will ultimately result

in the visibility rectangle being blocked by a bar with no left neighbours.

•

25

w

V

Figure 2.3: Blockable Visibility

Remark: This ability to block a visibility between a pair of bars without introducing a

new visibility nicely demonstrates the difference between strong- and e-visibility. In figure

2.4, under an e-visibility model, the visibility between u and x may be blocked by a pair of

bars v and w that abut without seeing each other. However, with a strong-visibility model,

either u and fort? and w are visible under any minor perturbation of the ends of v and w.

Tamassia and Tollis [23] strengthen the undirected version of this informal argument to

show that the class of strong visibility graphs is a proper subset of the class of e-visibility

graphs.

The following crucial lemma will be exploited in later sections and will be referred to

as the "consecutive-in-out-flow property" x .

1Both Rosenstiehl and Tarjan [20] and Tamassia and Tollis [23] also note and prove this property.

26

u

C

Figure 2.4: Strong vs. e-Visibility

27

Figure 2.5: Violation of The In-Out Property

The bars of a layout are partially ordered by their left-to-right visibility relation. Thus,

in the associated directed graph, there must be no directed cycle. An important conse

quence of this acyclic requirement is that the in and out arcs about each vertex in any

embedding are consecutively ordered.

Lemma 1 For each vertex v of ordered directed bar-representable graph G, the in-arcs

(respectively out-arcs) are arranged consecutively about v.

Proof:

Consider an embedding of G with S and T included as created in the previous proof,

and in which some vertex v has at least two in and two out arcs arranged as in figure 2.5.

The two in-arcs must be a part of a path from S, creating a Jordan curve, with one of the

two out-arcs at v on the inside and the other on the outside. Since these two arcs must

each form a path to T, one of these two paths must intersect the Jordan curve, creating a

directed cycle.

•

28

Note that the converse of Lemma 1 is not true. If all vertices satisfy this property,

acyclicity is not guaranteed. (As a simple counter-example consider a unit-weighted di

rected ring of vertices.)

2.3.2 Polarized Graphs (Unordered)

As in the measured polarized case, the unordered version of the polarized case hinges on

the existence of some ordering with the required properties. As before, an appropriate

ordering can be found without resorting to enumeration of all orderings. In fact, a layout

is constructible in linear-time by considering a supergraph of G, M(G), defined as follows:

V(M(G)) = V(G)U{S,T}

A(M(G)) = A(G) U {< S,v > \ v € V(G) and indegree(u) = 0} U

{< v,T > | v € V(G) and outdegree(v) = 0} U {< S,T >}.

Theorem 4 Digraph G is a polarized bar-representable graph iff M(G) is planar and con

tains no directed cycle.

Proof:

(=>)

By Corollary 1, there exists a canonical layout for G in which the only bars on the

exterior have indegree of 0 or outdegree of 0. Insertion of a leftmost bar S and a rightmost

bar T, each with bottom defined by the lowest bar and top defined as 1 + top of the highest

bar, yields a layout corresponding to M(G).

(<=)

If M(G) is planar, then there exists an embedding in the plane with S and T on the

exterior face. Since S and T are the only two vertices with 0 indegree and 0 outdegree

29

respectively, they are separable. Finally, M(G) is acyclic, and therefore all of the conditions

of theorem 3 are satisfied and the construction described in the proof may be applied.

•

2.4 Reformulation as a Flow Existence Problem

Construction of a layout for all four of the directed cases examined in this chapter may

be formulated in terms of finding a planar feasible flow in a directed acyclic network. The

network is defined slightly differently for each case.

2.4.1 Ordered Directed Weighted Graphs

Given an ordered directed weighted acyclic graph G, define N(G) as the network obtained

by:

• introducing two new vertices s and t,

• associating the capacity weight(< u, v >) with each arc < u, v > of G,

• joining s and t to all vertices on the exterior face of G, with associated capacity oo,

• joining s to t with capacity 1.

Recall that the Planar Full Flow problem requests a feasible flow function / ' such that

N^'(G) is planar and full. (There may of course, exist no such flow).

Corollary 2 N(G) has a planar full flow iff G is an embedded measured polarized graph.

Proof:

(<=) This follows directly from Theorem 4.

30

(=•)

Since the capacities of all arcs of G are specified, determining a full flow function / ' ,

amounts to selecting which arcs < s,u > and < v,t > are non-zero and selecting an

appropriate flow through each such arc. If some vertex not joined to s or t has inweight

not equal to outweight, then clearly there exists no feasible flow function. Vertices with

insufficient inweight (respectively outweight) must receive from s (respectively t) an amount

of flow sufficient to satisfy the balancing condition. Satisfying the planarity requirement

for N*' implies that the two groups of unbalanced vertices are separable.

•

Thus, the results of section 2.2.1 solve both the problem of characterizing the ordered

directed weighted graphs for which the planar flow existence question is answered in the

affirmative, and the problem of providing the feasible flow.

2.4.2 Directed Weighted Graphs

If the ordering of a directed weighted acyclic graph G is not specified, N(G) is defined as

above except s and t are joined to all vertices of G with associated capacity oo.

Corollary 3 N(G) has a planar full flow iff G is a measured polarized graph.

Proof:

Recall the graph NW(G) defined in section 2.2.2. Graph G was shown to be a measured

polarized bar-representable graph iff NW(G) is planar and acyclic (Theorem 2). Network

NW(G) is identical to the graph N*'(G) for feasible flow / ' since the same attachments

and weights to s and t are required and both graphs are required to be planar and acyclic.

Thus, determining these attachments and weights is equivalent to construction of NW(G).

31

•

As a consequence of the above two equivalences, for both the ordered and unordered

versions of the measured polarized case, the planar full flow through G is unique if it exists.

2.4.3 Ordered Directed Graphs

If the weights of ordered directed acyclic graph G are not specified, then it is the Planar

Positive Flow problem that remains to be solved. For this case, the corresponding Planar

Positive Flow formulation defines N(G) as the network with:

• capacity oo associated with each arc of G,

• s and t joined to all vertices on the exterior face oiQ with associated capacity oo,

• arc < s, t > with associated capacity 1.

Corollary 4 Network N(G) has a positive planar flow iff G is an embedded polarized

bar-representable graph.

Proof:

The outweight (respectively inweight) of vertices with 0 indegree (respectively 0 outde

gree) is unknown but strictly greater than 0 in any positive flow. Therefore, all such vertices

must be attached to s (respectively t) and hence appear on the exterior face of G separa

bly. Furthermore, a positive flow is acyclic since N(G) is an acyclic network. Theorem 3

requires exactly the same conditions for G to be an embedded polarized bar-representable

graph.

The weighted graph corresponding to a layout of G with super bars 7> and T corresponds

to a planar acyclic weighted graph which is equivalent to N^'(G) for some positive flow / ' .

32

•

Recall that Corollary 1 ensured the existence of a canonical layout of G for embedded

polarized graphs. In flow terms, the interpretation of this corollary is the existence of a

feasible flow in which only the vertices of 0 indegree and 0 outdegree receive non-zero flow

from s and t respectively.

2.4.4 Directed Graphs

The situation for unordered unweighted directed graph G is similar to that for the ordered

case. Define N(G) as in the previous case except s and t are joined to all vertices of G

with associated capacity oo.

Corollary 5 Network N(G) has a planar positive flow iffG is a polarized bar-representable

graph.

Proof:

Theorem 4 characterized the polarized bar-representable graphs in terms of the un

weighted supergraph M(G). A layout for M(G) was implicitly constructed via the tech

nique described in the proof of Theorem 3. The resulting weighted digraph exhibits the

same properties as N^'(G), for a particular positive planar flow / ' , since in any positive

flow, the vertices with 0 indegree require non-zero flow assistance from s and those with 0

outdegree must issue non-zero flow to t.

Let / ' be a planar positive flow. The weighted graph JV^'(G) is planar and acyclic.

Removal of the s and t connections yields a weighted version of digraph G. Theorem 2

may be used to show that G is a measured polarized bar-representable graph since the

supergraph NW(G) is identical to NJ'(G).

33

•

34

Chapter 3

Bar-Representable Graphs
3.1 Introduction

If neither the weights nor directions for G are specified, the problem of determining a lay

out of bars may be reformulated as making suitable selections for each edge. However, it is

the structure of the graph that is the critical factor in bar-representability. This structural

requirement has been inherent but somewhat hidden in the results of the previous chap

ter. The undirected unweighted characterization more explicitly displays the fundamental

nature of bar-representability.

When constructing a layout for graph G, the difficulty is not so much in adjusting

bars to achieve visibility, but rather to deny visibility between non-consenting bars. (In

weak-visibility models, this denial is not an issue. Recall for example, the results of Duchet

et al [5] who showed that all planar graphs have a layout under the weak-visibility model.)

Biconnected components are the "building blocks" of bar layouts and it is the manner

of their connection that determines bar-representability. G is biconnected if it contains

no articulation vertex1. Note that it is neither the existence nor the number of articulation
1 A vertex is an articulation vertex if its removal would disconnect the graph.

35

vertices that is significant. For example, all trees are bar-representable, yet all non-leaf

vertices of trees are articulation vertices. Nonetheless, the first crucial step in charac

terizing the class of bar-representable graphs is to prove that all biconnected graphs are

bar-representable. Any bar-representable graph will then be shown to have a biconnected

planar "completion".

The intuition for the characterization may be informally described as follows. Consider

an embedding of a bar-representable graph consisting of several biconnected blocks. Each

block must have a leftmost and rightmost bar in any layout. If there exists an articulation

vertex not on the exterior face of the embedding, then some biconnected block is contained

in an interior face and can be shown to have an extreme bar that must have access to

the outside (i.e. be unblocked in one direction), which leads to a contradiction. It is not

sufficient to have only all the articulation vertices on the exterior face in the embedded case;

each biconnected block must be embedded in the exterior face also. For the unembedded

case, it does suffice to check that all articulation vertices are embeddable on the exterior

face, as the biconnected blocks may then also be safely embedded. The characterization for

the unembedded version is expressed in a slightly more elegant (but perhaps less intuitive)

form.

The layout for biconnected graphs is the first important step.

An alternate definition of biconnectedness is that G must be s-t-numberable. An s-t-

numbering of graph G with distinguished edge (s,t), is a one-to-one function A : V —*

{1, 2, |V|} such that for all vertices v ^ s, t, there exist vertices u, w adjacent to v

with X(u) < X(v) < X(w). A(s) = 1, A(t) =

Even and Tarjan showed [8] that an s-t-numbering of a biconnected graph may be

computed in linear time. An s-t-numbering of G has a natural and useful relationship to

36

a bar layout of G. In bar terms, the s-t-numbering asserts that every bar must have a left

neighbour and a right neighbour - except for a leftmost and rightmost bar. As shall be

demonstrated, with a little care a layout for a biconnected graph can be generated from

its s-t-numbering.

Lemma 2 All planar biconnected graphs are bar-representable.

Proof:

Choose any edge as the distinguished edge (s,t) and compute an s-t numbering for

biconnected planar graph G. Create a directed acyclic graph G' by orienting each edge

(w, v) from u to v, if A(u) < X(v) in the s-t numbering of G. If G' can be shown to be a

polarized graph, then G is bar-representable. Consider N(G') as defined in section 2.3.2.

Since s and t are the only vertices with respectively 0 indegree and 0 outdegree, the only

additional arcs in N(G') are < S,s >, < t,T > and < S,T > and these arcs create no

directed cycle in N(G'). Since there is a plane embedding of G' with s and t on the exterior

face, therefore N(G') is planar. These are the conditions required by Corollary 4 for G'

to be a polarized bar-representable digraph and the layout scheme of the previous section

provides a layout for G' and therefore also for G, showing that G is bar-representable.

•

Figure 3.1 exhibits the three stages of the algorithm for this case.

3.2 Embedded Bar-Representable Graphs

If an ordering of G is specified, then the associated embedding must be "potentially bicon-

nectable", in the sense that the edge connections to super vertices S and T must create

a planar biconnected graph. The actual vertices chosen to be joined to S and T are not

37

A)

Figure 3.1: a) An s-t Numbered Graph, b) Embedded Into Sections, and c) a realization.

38

as clearly imposed as for the polarized cases. This flexibility reflects the fact that there

are many more possible layouts when the edges are undirected. However, note that not

any planar biconnected supergraph of G is sufficient; the bars corresponding to any newly

added vertices must be removable without creating visibilities that are not edges in G.

Since S and T will appear in the super layout as extreme bars, their removal creates no

new visibilities.

An end-block of a graph G is defined as a biconnected block containing exactly one

articulation vertex of G. It has been shown, [2], that if a graph G has at least one articu

lation vertex, then G has at least two end-blocks. These end-blocks play a crucial role in

the layout of bar-representable graphs.

Theorem 5 Ordered graph G is an embedded bar-representable graph iff G has a plane

embedding Q in which all biconnected components appear in the specified exterior face.

Proof:

(=•)

(by contradiction) Suppose there exists a layout corresponding to an ordered graph G

in which not all biconnected blocks appear on the exterior face. Let B' be a maximal con

nected collection of biconnected components of G in an interior face of a plane embedding

Q. Let a be the unique articulation vertex that connects B' to Q. Any layout for B' must

contain at least one leftmost and one rightmost bar, at most one of which may correspond

to a. Suppose, without loss of generality, that c is a rightmost bar of B' and c ^ a. Since

B' is interior, so is c and hence, c has no unblocked visibility to the right. But if c is a

rightmost bar of B', then c must be visible to some bar of G — B', which contradicts the

assumption that a was an articulation vertex. Hence, no such layout for G exists.

39

(<=)

If all biconnected blocks are on the exterior face of some embedding of Q, then the

end-blocks of Q certainly are. Let Ei,E2,...,Ek be the endblocks of Q with associated

articulation vertices «ti, a2,..., a*,. Define G' as the ordered graph obtained by:

• inserting vertices S and T in the exterior face of G,

• joining S by an edge to a vertex v 6 £1 on the exterior face of Q other than a\,

• joining T to each of the end-blocks E2, E3,.. .,Ek with an edge («,-, T), v, 6 Ei, u, ^

a,-, for 2 < i < k and v,- is on the exterior face of G,

• adding the edge (5, T).

G' is planar since {vi} and {v2,... are separable.

Furthermore, G' is biconnected as shall now be shown. Suppose G' is not biconnected.

Then there exists an articulation vertex v whose removal disconnects G'. Since G' is a

supergraph of Q, the only candidates for v are: S, T, and the articulation vertices of Q.

• v ^ S. By construction, G'— S is the graph Q with T attached to all but one of

the endblocks of Q, and hence G'— S is not disconnected.

• v ^ T. G'— T consists of the graph Q with S attached and hence G' — T is not

disconnected.

Therefore, v must be an articulation vertex of Q whose removal disconnects Q into

connected components Q\, Q2,..., Qm. Each Qi either:

• is biconnected, in which case it was an end-block of Q and hence connected to S or

T in G', or

40

• contains an articulation vertex and hence at least one of the endblocks of was an

end-block of Q and hence connected to S or T in G'.

Since S and T are connected, all the Gi are, in fact, connected in G'. Hence G' contains

no articulation vertex.

Since G' is planar and biconnected, by Lemma 2 there is a layout for G' with (S, T) as

the distinguished edge used for the s — t numbering in the construction in the proof. The

bars ~S~ and T can be removed without introducing new visibilities since they are on the

exterior, to obtain a layout for Q.

•

3.3 Bar-Representable Graphs (Unordered)

Given an unordered graph, checking for bar-representability is equivalent to determin

ing if there exists an ordering with all biconnected blocks on the exterior face,. Again,

enumeration of all orderings is computationally intractable. Two characterizations of bar-

representability will be presented. The first is primarily constructive and the second is

more graph-theoretic in nature; each leads to linear-time algorithms for determining the

bar-representability of a graph.

The following modification of s-t numberings allows unordered bar-representable graphs

to be characterized exactly.

Firstly, for a numbering scheme, A, of the vertices of a graph, a local A-max (respec

tively A-min) is defined as a vertex which has no higher (respectively lower) A-numbered

neighbour.

A planar graph G has an s-t* numbering if there exists a plane embedding of G and a

41

one-to-one function A : V —• {1,2,...,|V|} such that all local A-max and local A-min vertices

are on the same face and separable.

Lemma 3 G is bar-representable iff G is (planar and) has an s-t* numbering.

Proof:

(<=) Introduce two new vertices S and T into the exterior face of the plane embedding

of G, and join all local A-max (respectively A-min) vertices crossing free to S (respectively

T), and join S to T, to form a graph which is clearly S-T numberable and therefore by

Lemma 2 has a bar layout L in which the S and T bars are the left-most and right-most

bars. Removal of the S and T bars, yields a layout representing G.

(=>) Define a standard form layout as one in which all bars are embedded (without

overlapping) on the fines X(v) = 1,2,... k and all bars are as far to the left as possible.

A layout can be converted to standard form by a sequence of horizontal translations

without affecting the visibility relations.

If the bars of a layout in standard form are numbered from left to right and top to

bottom, then all bars with no left neighbour appear on the fine X = 1. In the associated

ordered graph G, the vertices corresponding to these bars are local A-minima. Since these

A-min vertices appear together on the exterior face, the two groups of local A- min and A-

max vertices are separable and hence the numbering is, in fact, an s-t* numbering of the

associated ordered graph G.

•

The following lemma shows an equivalent characterization of the bar-representable

graphs.

42

Figure 3.2: G+ of a Non Bar-Representable Graph

Define as the one vertex extension of G:

V(G+) = V(G) U {x}

E(G~^~) = E(G) U {(x,v) I v is an articulation vertex of G}.

Figure 3.2 shows the graph H+ corresponding to the non bar-representable graph H of

figure 1.2.

Lemma 4 Graph G+ is planar iff G is planar and has an s-t* numbering.

Proof:

Note that G+ is planar iff G can be embedded in such a way that all articulation vertices

appear on the exterior face.

(<=) (By contradiction).

Let G be s-t* numberable with Q as the plane embedding realizing the numbering.

Suppose that Q contains an articulation vertex c not on the exterior face. Then c is

43

contained within some circuit of Q. Let F be the innermost circuit with c on the inside.

Since c is an articulation vertex, there is a component entirely inside F which must contain

a local A-max or A-min not on the exterior face and hence Q does not realize an s-t*

numbering.

(=>) Let Q be an embedding of G with all articulation vertices s}- and biconnected

components B{ on the exterior face. The blocks of Q, will be s-t* numbered in a depth-first

manner. Modify the s-t numbering algorithm of Even and Tarjan, [8]:

STNUMBER(s, t, B,beg) will s-t number biconnected block B with distinguished edge (s, t)

without labelling s, and numbering other vertices starting with beg. Note that A(f) = beg

+ \B\ - 1.

Procedure STSTAR(s,srart)

for all unnumbered blocks 5, containing articulation vertex s do:

• choose an unmarked vertex t adjacent to s

on the exterior face in B{

• S T N U M B E R (. s , Bi,start)

• start := start + 1.0,1 - 1

• for all articulation vertices Sj in 5, do

S T S T A R (S J , start)

return.

Then the following call s-t* numbers G.

A(*i) := 1

44

STSTAR(5l,2)

Note that the numbering assures that articulation vertex si is the only local A-min

value, and all A-max values (l) are on the exterior face (and therefore the two sets are

separable) and hence G is s-t* numbered.

•

Determining the articulation vertices, biconnected blocks and s-t numberings are linear

operations ([8]), and hence the STSTAR algorithm also requires only linear time.

Finally,

Theorem 6 Graph G is bar-representable iff G+ is planar.

Proof:

Directly from the previous lemma and Lemma 3.

•

Corollary 6 Both determining if a graph G is bar-representable and providing a bar layout

of G can be performed in linear time.

Proof:

Although Theorem 6 does not directly indicate how a layout for G may be obtained,

it does provide a means for checking for bar-representability in linear time via planarity

testing.

Note that the proof of Lemma 3 does provide the means for orienting the edges of G

and as a consequence, for obtaining a layout for G in linear time.

45

•

3.4 The Undirected Planar Positive Flow Reformulation

3.4.1 Ordered Graphs

For an ordered undirected unweighted graph G, M(G) is denned as the capacitated graph

obtained by:

• assigning capacity oo to each edge,

• adding vertices s and t in the exterior face of G, joined to all vertices on the exterior

face of G with associated capacity oo.

Corollary 7 Ordered graph G is an embedded bar-representable graph iff the Undirected

Planar Positive Flow problem is solvable for M(G).

Proof:

An s-t*-numbering of G induces a network-creating orientation on M(G), and the proof

of Lemma 3 provides a layout for G. The set of visibility widths between bars in this layout

corresponds to the range of a positive flow function for M(G).

Given a positive flow / ' for an orientation of M(G), weight and direct G by the flow

values of / ' under the given orientation. The resulting graph is an embedded measured

polarized bar-representable graph as shown in Corollary 2, and thus G is an embedded

bar-representable graph.

•

46

3.4.2 Unordered Graphs

In the least constrained version of the Flow reformulation, G is an unordered, unweighted,

undirected graph. The network M(G) is defined as above with the exception that s and t

are each joined to all vertices with associated capacity of oo.

Corollary 8 Graph G is a bar-representable graph iff the Undirected Planar Positive Flow

problem is solvable for M(G).

Proof:

The proof of the previous corollary may be used together with the result of corollary 3.

•

47

Chapter 4

Measured Graphs

4.1 Introduction

When the given graph is weighted but not directed, the problem of determining whether

a given graph is a measured bar-representable graph becomes significantly more difficult,

for both the ordered and unordered versions. The previous two chapters have solved both

the more constrained (directions imposed), and the less constrained (weights unspecified)

cases.

In the previous two unweighted cases, the balancing conditions at interior vertices were

of little real concern - suitable weights could always be chosen. In the two directed cases,

the consecutive-in-out property severely constrained the topology of the layout.

When the weights are fixed and the directions are unspecified, the problems reduce to

a partitioning-type problem about each interior vertex since the inweight and outweight

of such vertices must be balanced. The problem of partitioning a set of weights into two

subsets of equal weight is known to be NP-Complete (in the weak sense [9]). However, the

partitions about the interior vertices are not independent and furthermore, vertices which

have no exactly balanced partition must appear on the exterior face. As shall be shown,

48

the structure of the graph induces sufficient dependency among the partitionings for the

entire problem to be solvable in polynomial time.

Assuring that each interior vertex is balanced, requires that the edges incident upon

each such vertex be partitioned into two groups of equal weight. While there may exist

many valid partitions of the edges about each vertex, the decisions on how to balance

the vertex depend not only on the local possibilities, but also on the global structure.

In the ordered case, the consecutive-in-out-flow property helps to limit the choices. The

necessary absence of directed cycles further reduces the number of possible partitions.

It is the exploitation of these two properties that in effect drives the algorithms for this

weighted undirected case. The existence of an algorithm with a polynomially bounded time

complexity for this problem is somewhat surprising, in light of the NP-Completeness of the

partitioning problem and the NP-Hardness results in the following chapter. The degrees of

the polynomials in the analyses of the algorithms for the two cases are not small. However,

the efficiency of the algorithms can almost certainly be improved at the expense of clarity.

Figure 4.1 shows a weighted graph H that is not a measured bar-representable graph

but that is bar-representable in its unweighted form. That H is not a measured bar-

representable graph can be proven by checking all possible orientations of the edges and

then applying the results obtained on measured polarized graphs. However, this procedure

is clearly not computationally viable in general, as it involves an overhead factor of 2\E\.

For both the ordered and unordered versions of the measured bar-representable case,

it is the undirected planar full flow formulation of the problem that will be solved.

49

1 1

Figure 4.1: A Non-Measured Graph

4.2 Flow Existence Formulation

The embedded measured bar-representable problem may be formulated as a flow problem

as follows. Given an ordered weighted graph G, define N(G) as the capacitated graph

obtained by:

• associating the capacity w with each edge of G of weight w,

• adding vertices s and t into the exterior face and joining 5 and t to all vertices on

the exterior face of G with associated capacity oo,

• joining s to t with associated capacity of 1.

The problem then is to determine a network-creating orientation g, of the edges such that

g(N(G)) has a planar full flow.

The unordered formulation defines N(G) as above with the exception that s and t are

joined to all vertices of G, with associated capacity of oo.

50

In the previous chapters, the attachments of the s and t vertices did not really play a

major role. There was either little flexibility (the directed case) or almost all attachments

successfully led to a layout (the undirected unweighted case). The current case however is

solved by considering a sequence of subcases, successively relaxing the specifications of the

s and t attachments. There are two parameters:

• the specification of the vertices to which s and t are to be adjacent in the final flow.

That is, the edges carrying non-zero flow in the full flow (called the extreme edges)

are specified.

• whether the weights on these extreme arcs are also specified.

A useful notation in this regard is the introduction of O-weight extreme edges. The

interpretation of weight(s, v) being 0 under some planar feasible flow / , is that the addition

of edge (s, v) into would not introduce a non-planarity.

4.3 Ordered Graphs

Given an ordered weighted undirected graph G, determining if G is an embedded measured

bar-representable graph, is equivalent to solving the undirected planar full flow problem

on N(G), where N(G) is created by joining s and t to all vertices of G on the exterior

face with associated capacity of 00, as defined in the previous section. The solution to this

problem is based upon the case when the extreme edges of N(G) are specified (i.e. 5 and

t are adjacent only to two separable subsets of the exterior vertices of G). This problem

is in turn based upon the case when the extreme edges of N(G) with non-zero flow are

specified. Finally, the solution to this case depends upon the case in which the extreme

edges with non-zero flow together with their flow values are specified.

51

4.3.1 Extreme Edges and Their Weights Specified

If the non-zero s and t attachments and weights are specified, then a fairly straightforward

greedy algorithm solves the undirected planar full flow problem. The technique is similar

to topological sorting ([1]), as it relies on the property that all acyclic digraphs contain a

vertex with no incoming arcs.

Lemma 5 If N(G) has a planar full flow, then there exists a vertex v such that weight(s,v)

= Y^w^aweight(v,w).

Proof:

Let g' be an acyclic orientation of N(G) and let / ' be a planar full flow of g'(N(G)).

Then g'(N(G)) is an acyclic digraph with a single source s. Removal of the vertex s creates

an acyclic digraph which must also contain at least one vertex v with no incoming arcs.

Vertex v has the required property under the flow / ' since it must have balanced in- and

out-weights.

•

The algorithm will sequentially remove the vertices provided by lemma 5. The order

of removal of the vertices determines an orientation for the edges of G and a flow for the

resulting ordered digraph may be found with the results of chapter 2.

Define Af(Q)~v as the embedded graph obtained by deleting s-adjacent vertex v from

M(G) and replacing each edge incident upon v by one from s, with the same weight. See

figure 4.2 for an illustration.

Lemma 6 If there exists a vertex v adjacent to s such that weight(s,v) = Yl w^s weight(v,w)

and M{G)~V has a planar full flow, then N~(G) has a planar full flow.

52

Figure 4.2: Form of N{G) and M{G)~V

Proof:

Let v be a vertex with the required property adjacent to s, U\, u2,..., un in clockwise

order and with associated weights x, w\, w2,..., wn. If u\ and un are visible to s, then let

their weights be w0 and wn+1. Then N"(G) and N(G)~V have the form as in figure 4.2.

Suppose there exists a planar full flow for Af(G)~v- Then s supplies weight u>t- to each

vertex tt,-. A corresponding flow for N(G) may be obtained by supplying the weight u?,- to

Ui via v. (i.e. all edges are directed from v to «,-.) Thus, the outflow(u) is

weight(v,u,). By assumption, weighty,u) is equal to this amount and hence v is balanced

in such a flow. No directed cycle is introduced in this flow for Af(G), since a directed cycle

would necessarily involve s or D and s is maintained as source and v has only a single

incoming arc, from s. •

53

4.3.2 Algorithm to Orient the Edges of a Network With Extreme Edges
and Weights Specified

Given a planar ordering N(G) with s and t arcs and demands specified, the following

algorithm orients the edges to create an acyclic directed network. Determining a planar

full flow for the resulting network may then be achieved by appealing to the result in

Chapter 2 on directed weighted networks.

For i := 1 to n do

• Choose a vertex v ^ s,t such that u âweight(u>,t;) = weight(s,u). (If no such vertex

exists, HALT there is no layout)

• label(u) := i

• For all vertices w adjacent to t; do

{Collapse M(Q) to Af(G)-v:}

— delete edge (v,w) and add arc < s, w > (with initial weight of 0), if not present.

- weight(s,u>) := weight(s,u;) + weight(u,u;).

• Delete vertex v.

Orient the edges (u,v) of N(G) so that label(u) < label(u) iff arc < u,v > € N(G).

Determine a planar full flow for N(G) with the algorithm for directed weighted graphs (chapter

2). 1

54

4.3.3 Extreme Edges of N(G) With Positive Demands Specified

Assumptions: Two simplifying assumptions will be made for this section.

• Assume that no articulation vertex of G is adjacent to both s and t in N(G). (Such

a graph may be split into its biconnected components. The flow for the components

may be computed independently and then merged upon completion of the algorithm).

• Assume that there does exist an orientation of N(G) for which there is a planar

full flow. (The algorithm will not make this assumption, it is made simply to avoid

awkwardness in expressing the following lemmas).

A somewhat involved algorithm with time complexity of 0(n4) is developed for the

conditions of this section. One critical observation is that knowledge of the direction of

any edge in the graph has consequences that propagate throughout the graph. Edges are

divided into equivalence classes called nets so that knowing the direction of any edge in

the net forces a direction on all others in that net. Consider, for example, figure 4.9 b. If

edge (v, w) were known to be directed from v to w then edge (w, x) must be directed out

to balance the flow at vertex v. In figure 4.9a, vertex v is adjacent to s and since some

non-zero flow is accepted from s, (v, w) must be directed from v to w. (Otherwise, either

a directed cycle is produced or v is not balanced). Suppose (v,w) is oriented from v to w,

then the direction of some "corresponding" edges is also known (see 4.9b). The flow in a

net propagates its way through the network in this manner.

All the edges of the network are initially partitioned into nets. It will be shown that

there is a single net whose direction is fixed and 0{n) mirror pairs of unfixed nets. The

algorithm then consists of a four stage process:

• Unfixed nets may be forced by the manner of their intersection with the fixed net.

55

• Pairs of unfixed nets may intersect in such a way that forces their direction.

• Unfixed nets may intersect the new fixed net in a manner that forces them.

• The remaining unfixed nets are merged into the fixed net.

The resulting weighted directing of the graph may then be laid out with the techniques of

chapter 2.

Each edge (u,v) has potentially two possible directions, namely, the arcs < u, v > and

< v,u >.

Define a relation forces between pairs of directions of edges:

< u, v > forces < w, x > if

for all acyclic orientations g for which there exists a planar full flow

g((u, v)) = < u,v > iff g((w,x)) = < w,x >.

As a consequence, < u,v > forces < w,x > iff < v,u > forces < x,w >.

The relation is reflexive, symmetric and transitive and therefore creates a set of equiv

alence classes of directions of edges called nets. Each edge appears in exactly two nets

which necessarily form a pair of mirror images of sets of directions of edges.

The problem initially could be viewed as one of choosing one of the two possible di

rections for each edge of N(G), but once these nets have been constructed, the problem

reduces to choosing one net from each pair of mirror nets. Once a direction for an edge

has been established, an entire net of arcs is determined. Consider, for example, an edge

of the form (s, v); there is only one valid direction for such an edge, namely < s, v >, since

56

s must be the source in any flow. Thus, the entire net containing < s,v > must be chosen

in any flow.

It is the construction of the nets that is computationally involved. The algorithm

determines a single net whose orientation is fixed by the topology of the network, and

many pairs of mirror nets that are "unfixed". Nets are built from dependent subnets

which are initially constructed by considering local information at each vertex, and then

subsequently merged based upon global relationships.

Two nets will be called disjoint if they have no edge (in either direction) in common.

Define an extreme vertex as one adjacent to s or t in N(G).

The local properties of subnets (from the fixed net or unfixed nets) about a single vertex

will first be investigated. Informally, the following lemmas show that for non-extreme vertex

v:

• A net N incident upon v "passes through" v. (And as a consequence, nets terminate

only at extreme vertices.)

• The two sets of edges of net N, the in-directed edges and the out-directed edges,

incident on v are each consecutively ordered.

• The inweight of net N at v is equal to the outweight of N at v.

• The cyclic ordering of any pair of disjoint nets on v has a fixed form.

Next, properties of the single fixed net F will be considered. It will be shown that:

• F passes through every extreme vertex.

Lemma 7 For all non-extreme vertices v, if < u,v > is a direction of an edge of net N,

then there exists some corresponding directed edge < v,w > of N, forced by < u,v >.

57

Proof:

Let the incident weights about t; be in clockwise order, WQ, W\,..., wn, (ra > 1) on edges

eo, ei , . . . ,e n with eo representing arc < u,v >. Let T = \J2iz=owi a Q d let wn+i = WQ,

for notational convenience.

Determine two groups of consecutively ordered edges from eo clockwise and counter

clockwise whose weights sum to no more than T. Let k be the subscript of the edge which

is maxk J2i=o wi < T,

and let / be the subscript of the edge which is min/ Y^=i~ wi < T.

Then, YA=Q w i + w i ̂ 2 T ' (by t h e definition of T) and therefore,

E?=oW,- + «>o-E!cI + 1 ^<2T.

But Yl?=owi = 2T and hence,

£ ' = l + i w i > wo-

Finally, the weights «;,-, are all assumed to be greater than 0 and therefore k + 1 is less

than or equal to / — 1.

Thus, for vertex v to be balanced in some flow, there must be at least one edge between

et and e/ which is (locally) forced by €Q.

•

For constructing the nets, it is necessary to note that if Wo is strictly less than yj'=jt+i wi

in the above proof, then the edges e k + i , . . . ,e/_i may be conceptually collapsed into a

single edge and the lemma applied again, relabelling the new edge as the known edge eo,

but directed out of v. The set of edges forced by the new (collapsed) edge will include the

previous eo and at least one other edge.

58

Figure 4.3: Corresponding Edges

This lemma may be interpreted as asserting that a net "passes through" vertex v. A

natural question then is to ask at which vertices do nets terminate (i.e. not pass through).

Nets that are not part of the fixed net, have their endpoints at the extreme vertices. The

fixed net shall be shown to terminate at s and t and, in fact, that is why its direction is

determined, and also why there is only a single fixed net.

Another consequence of the previous lemma is that at any non-extreme vertex v, the

relation "forces", locally partitions the directed edges of net N at v into two corresponding

subsets, called bundles: those forced into v and those forced out oft; by any planar acyclic

orientation g'. A different planar acyclic orientation may force the mirror net, however,

the mirror net must contain the same bundles, only in the opposite direction. The two

bundles associated with net N, at non-extreme vertex v will be denoted as AN<V and A'NV,

respectively, the in-directed edges and the out-directed edges of N at v. The subscripts

will be dropped if the specification of the particular net and vertex is clear or not relevant.

Define for a set X of edges, weight(X) as 5Ze6 ^weight(e).

Lemma 8 Weight(A^V) = weight(A'NV), for all nets N and all non-extreme vertices v.

59

A

A"

Figure 4.4: Corresponding Bundle Weights are Equal

Proof:

If bundle A "weighs more" than A' then collapse the edges of A into a single edge

eo with weight equal to the sum of the weights of bundle A . By Lemma 7, there exists

some sequence of edges efc+ 1,..., ej_! in the corresponding bundle (and thus in A') whose

weights sum to at least too, contradicting the initial assumption.

•

Lemma 9 Let M and N be two disjoint nets that intersect at non-extreme vertex v, with

bundles AM,V, A ' M v and BNIV, B ' N v . Then, either the clockwise or the counter-clockwise

order about v is ABA'B'.

Proof:

Assume the clockwise order is AA'B'B. Let g be any acyclic orientation that directs

A into v and A' out of v. Then g must not direct B out of v and B' into v, since then

a directed cycle would be created. (Recall the "consecutive-in-out" lemma, 1). Thus, A

forces B, contradicting the assumption that A and B were bundles from different nets.

•

60

D

Figure 4.5: Bundle Order

Lemma 10 For any non-extreme vertex v, when any two consecutive oppositely directed

arcs incident on v are known, the entire partition about v can be determined.
J

Proof:

Let a and b' be two such arcs with corresponding bundles A' and B. By the previous

lemma, the clockwise order is a,b',A'B. Since there are no arcs between a and b', there

are none between A' and B. Any edges between b' and A' must be oriented in the same

direction as 6 ' , to preserve the "consecutive in-out property". Similarly, for edges between

B and a. Again, the previous lemma assures that such edges form corresponding bundles.

•

The following lemma establishes the existence of an initial fixed subnet.

Lemma 11 For each extreme vertex v, there exists a directed bundle (forced out of v, if

v is s-extreme and forced into v if v is t-extreme), under any acyclic orientation with a

planar full flow.

Proof:

61

Figure 4.6: Partitioning Non-Extreme Vertices

Assume t; is adjacent to s and not to t with weight(s,t?) = e, e > 0). If there is only

a single edge other than (s, v), then the lemma is trivial, therefore assume there are at

least two such edges. Label the edges clockwise from (s,v) as 6 1 , 6 2 , . . . , en with weights

w\, W2,..., wn. For notational convenience, introduce two fictitious edges eo and en+i with

weights of 0.

Define

/,• = £j=i ^j? (the "forward sum" to i)

bi = y j j = T w i i (the "backward sum" from n)

d,- = I fi; — 6; I, (the absolute difference)

(See figure 4.7).

Consider any edge e; with the property that

1) fi > bi+i and

2) 6,- > / .- .j .

62

b i+1
i+1

Figure 4.7: Forced Bundles on Extreme Vertices

Such an edge must go out since if it came in, either ei,...,e,-_i come in (but then

fi + e > b{+i and the fiow-in flow-out property fails) or e,-+i,..., en come in (and again

this property fails).

It remains to be shown that such an edge must exist.

Note that the fi are monotonely increasing and the bi are monotonely decreasing. There

are two cases to consider based on whether

Case 1: There exists an edge e, such that /,• = 6,.

Then, /,• > (since = 6,- — «;,•).

Hence, = /,• >

Thus e,- satisfies the two required properties and therefore must be directed out.

Case 2: There does not exist an edge e,- with /,• = &,-. Consider the edge e,- with the

largest subscript such that /,• < &,. Then either €,• or e,+i (or both) must be directed

out, as shall now be shown. This case is further subdivided based upon the relationship

between fi and namely whether /,• > &,+i, or /,• < or /,• = 6,+i.

63

Case 2a: / ; <

Then, f i + i > bi+i > 6,+ 2.

But these are exactly the conditions 1 and 2 for edge e,+i. Therefore e,+i is directed

out.

Case 2b: fi > 6,+i.

Then, > /,• >

Hence by conditions 1 and 2, e,- is directed out.

Case 2c: /,• = 6,+i.

Substituting equality for inequality in the previous two cases demonstrates that both

e, and e,+i are directed out.

Figure 4.8 shows examples of these four cases.

•

For edge (u,v), define bundle(u,t;) as:

• the set of edges computed by Lemma 7, if t; is not extreme.

• the set of edges computed by Lemma 11, if u = s or t.

• {(s,v)} or {(v,t)}, if (u,v) € bundle(s,t;) or bundle(i,t;) respectively.

• (f>, otherwise

The previous lemmas indicate a strategy for the preliminary computation of the fixed

and unfixed pairs of subnets:

Compute the bundling information for each edge and merge, via set union, the subnets

induced by the lemmas, yielding a single fixed net and a set of mirror pairs of induced

64

f=l,b=4 f=l,b=3

f=b=3

f=4,b=l

A)

f=3,b=2

B)

f=2,b=3

f=3,b=l

f=lbb=4

f=2,b=3

f=4,b=2

C) D)

Figure 4.8: Examples of the Four Cases

65

subnets.

Note that these induced subnets may not be independent; they may intersect in a man

ner which implies they must be merged either to each other or to the fixed net. Fortunately,

these intersections may be detected efficiently. The algorithm treats two cases typified by

the following examples. See figure 4.9.

• Case 1: In 4.9c induced subnet I intersects the fixed subnet F twice, in effect forcing

I to flow in the direction from u to v. (Otherwise a directed cycle is created.)

• Case 2: Induced subnets may also be forced by the nature of their intertwining. In

4.9d, neither I nor J is forced when considered individually, however their intersection

forces them. Again only one pair of orientations from the mirror pairs, (I "down"

and J "up") does not introduce a cycle.

The testing for forcedness for a given pair of subnets may be achieved by determining if

a directed graph contains a directed cycle - a linear time operation (via topological sorting)

[1]. Still, there may exist 0(n) induced pairs of subnets. To check all subsets of subnets for

interdependent forcedness would be prohibitively expensive. Fortunately, not all subsets

of subnets need be checked, a crucial lemma shows that checking disjoint pairs suffices.

The induced subnets remaining at this stage reflect the fact that there may exist many

layouts for N(G).

Once a direction for each edge has been established (i.e. an acyclic orientation), the

algorithm for laying out weighted, directed, ordered graphs will complete the procedure.

The details of implementing the above overview will now be supplied.

Let Ao be the initial fixed subnet of maximal size obtainable by lemmas 7, and 11.

66

W V

a) v on exterior face

w

b) w an interior vertex

c) I flows u to v d) I and J are forced

Figure 4.9: Nets - Forced and Induced

67

M

N N
V

M

Figure 4.10: Proper Intersection of M and N

The direction of the fixed net is forced under all planar acyclic orientations, however,

either subnet from each mirror pair may appear in different orientations. The next step is

to consider the effect of choosing one of the induced subnets from a mirror pair of subnets

- a process called forcing.

If directed net M intersects directed net N at vertex v, then M is said to intersect

N properly, if the inarcs (respectively outarcs) of M appear clockwise of the inarcs (re

spectively outarcs) of N at v; and M intersects N counter-properly if N intersects M

properly.

(Informally, M intersects N properly if TV flows left to right iff M flows top to bottom.)

i

Lemma 12 If induced subnet I intersects the fixed net F at two vertices Vi,V2, once prop

erly and once counter-properly, then I is forced.

There is one case to consider and three further cases which will be shown to reduce to

the first.

Proof:

68

I

Figure 4.11: Case 1

Figure 4.12: Case 2

Case 1: There exists a directed path in I and one in F between v\ and v2. Then I is

forced to flow from vi to v2, otherwise a directed cycle would be introduced.

Case 2: There exists a directed path in I from v\ to v2 and not in F. Vertices v\ and

v2 must have a common ancestor or descendent in F. Suppose t?i and v2 have a common

ancestor x in F. Net I must cross the (x,v2) path properly or the (x,vi) path counter-

properly. Hence case 1 applies for some pair of vertices on I.

Case 3: There exists a directed path in F from v\ to v2 and not in I. Then vertices

v\ and v2 must have a common ancestor or descendent in I. Suppose v\ and v2 have a

common ancestor x in I. Again, case 1 applies as either path (x,V\) or (1,^2) crosses F a

69

Figure 4.13: Case 3

Figure 4.14: Case 4

second time.

Case 4: There is no directed path in F and no directed path in / from v\ to v%.

Vertices v\ and must have a common ancestor or descendent in I. Suppose v\ and v-i

have a common descendent x in /. Then they have some descendent y that is adjacent to

t. If F intersects path (x, y), then case 1 applies. Otherwise, y has a forced path P from s

by Lemma 11. Path P must cross F or / and hence case 1 applies for some pair of vertices

on /.

•

70

Induced subnets of the form in the above lemma can be merged into the fixed network

N0 yielding a fixed net N\, and the mirror subnet discarded. For each remaining unforced

mirror pair of subnets, label as I the subnet forming a preferred orientation, namely

the one in which the net intersects JVi properly at all vertices. Since each net contains at

least two extreme vertices each of which is also in N\, there are at least two intersections.

The mirror subnet of I (which flows in counter-preferred orientation) will be denoted by 7.

The dependencies among the induced subnets themselves can now be determined by

checking the pairwise union of disjoint subnets (in preferred orientation) for cycles. In the

algorithm, if a pair of induced disjoint subnets A and B in preferred direction contains a

cycle, then the directions for A and B will be determined by checking for cycles in A U B

U N\ and B U A U N\, at most one of which will be cycle free. (Note that ~A U ~B U Ni is

not a candidate since it must also contain a cycle if A U B does.)

It is necessary to check all pairs of induced intersecting disjoint subnets and to merge

them appropriately with the fixed net Ni if they would create a cycle in preferred orienta

tion.

The following lemma proves that checking pairs of subnets is sufficient; not all subsets

need be considered.

Lemma 13 If the union of k f> 3) induced subnets with preferred orientation contains a

directed cycle, then some pair of them also creates a cycle.

Proof:

It suffices to prove that if the hypothesis is true, then some / (< k) of the nets also

create a directed cycle.

71

F 2

Figure 4.15: Preferred Cycles

Let C be a directed cycle involving k nets in preferred orientation. Assume C is directed

clockwise and consists of m (> k) maximal net paths c\, c2,..., cm. Note that none of the

c, may be part of the fixed net, since then one of the (adjacent) induced nets would cross

it counter-properly; such counter-proper intersections have been removed in the previous

stage. Furthermore, F does not pass through C since again one of the induced nets would

then cross it improperly. See figure 4.15.

Define Tail(c,) as the subset of the net containing c,- that precedes c,- (in preferred

direction), and Head(c,) as the subset of the net containing c,- that follows c,- (in preferred

direction).

Let x be the vertex of intersection of c m and C\. Let y be the vertex of intersection of

ci and C2. Let v\ be an arbitrary extreme vertex on Tail(ci) and t\ (e Tail(ci)) be a path

from v\ to x. Let v2 be an arbitrary extreme vertex on Tail(c2) and t2 (G Tail(c2)) be a

72

path from v2 to y. Since v\ and v2 are extreme vertices, they are also on the forced net.

Let h be an arbitrary path in Head(cm) from x to an extreme vertex. Then h enters a

region bounded by t\,c\, t2 and F. Since h must not cross F improperly, it must first cross

one of:

• t\ : Then t\ U h creates a directed cycle and the two associated nets create a cycle.

• t2: Then there exists a cycle with m-1 paths from nets (namely without ci)

• c\: If h enters the cycle, it must cross one of the c; (t > 1) creating a cycle with fewer

than m paths (at least ci may be omitted)

In the two later cases, the cycle discovered may still involve k nets, however repeated

applications of the argument must produce a directed cycle with fewer nets as m is strictly

decreasing.

•

There is one final stage required. Let N2 be the fixed net resulting from merging these

forced pairs of induced nets into N\. An induced (unforced) subnet I may now intersect

N2 both properly and improperly since N2 is a superset of N\. Such subnets are forced

and it is therefore necessary to check each of the remaining induced subnets once again for

forcedness with N2, and choose either subnet I or I accordingly. 0

73

4.3.4 Algorithm to Orient the Edges of a Network with Positively-Weighted
Extreme Edges Specified

Compute an initial approximation F of the fixed net and a set of induced subnets I\,h, ••••,1k

with mirror subnets Ii,l2, • • • ,Ik via the bundling information.

In the following, whenever a subnet is chosen, its mirror subnet is discarded.

Repeat until no change to F:

• for all unforced subnets I do

- if / U F contains a cycle then F := F Ul

- if 7 U F contains a cycle then F := F I) I

{all remaining subnets intersect F consistently)

Relabel all remaining pairs of induced subnets so that / flows in the preferred direction.

For all induced disjoint pairs of subnets A, B do

• If A U B U F contains a cycle then

- if A U B U F contains a cycle then F := F u i u l

else F := F U A U B

{Induced nets must be checked once again individually for forcedness}

Repeat until no change to F:

• for all unforced subnets / do

- if J U F contains a cycle then F := F U 7

- if 7 U F contains a cycle then F := F U I

74

{all remaining nets intersect F consistently}

Merge the remaining induced nets into F (in preferred direction).

If F contains a cycle, then N(G) has no planar feasible flow.

Analysis: The FOR loop involving pairs of subnets determines the complexity of the

algorithm. There may be 0(n) subnets and hence 0(n2) calls to the first cycle detection

procedure, which requires a second call to the cycle detector. Since cycles in directed

graphs may be detected in linear time, the overall complexity of the algorithm is 0(n4).

4.3.5 Extreme Edges of N(G) Specified

Note that the previous algorithm depended rather heavily on the knowledge of the non-zero

extreme edges of N(G). Given the ordering G without the s and t adjacencies specified,

there are 0(2) ways to separate the vertices on the exterior face into two groups: "poten

tially s-adjacent" and "potentially t>adjacent". However, each vertex on the exterior face

may be attached (weight > 0) or not attached (weight = 0). This would incur an 0(2")

overhead if the previous algorithm were used in a straight-forward manner. The overhead

may be contained to 0{n2) if the previous algorithm can be modified to handle the case

where the s and t attachments are specified but may equal 0.

Lemma 11 is the first lemma that appears to fail to hold for the current case; s may

not force a directed bundle on an extreme vertex v. See figure 4.16 for example.

Using the notation of lemma 11, if there exists a pair of consecutive edges e,- and e,+j

such that /,• = then no bundle may be forced. This corresponds to case 2c in the

proof. An examination of the other 3 cases shows that a forced bundle can be determined if

no such pair of edges exists. Call an extreme vertex v balanced if such a pair of edges can

be determined. This pair of edges will be denoted by and e"+1, although the superscript

75

s

Figure 4.16: No Forced Bundles

will be omitted if the vertex v is unambiguous.

The following lemma shows that even for balanced vertices, one of the edges e,- or e,-+i

is part of the fixed net; however, it is not possible to compute which one at this stage.

Lemma 14 If v is balanced and s-adjacent (respectively t-adjacent) then one of e,- or e, +i

must be directed out (respectively in).

Proof:

Suppose that v is s-adjacent.

Suppose ej and e,+i are both forced in to v. If e,- = e\ or e 1 + i = en, then the inflow(v)

> outnow(u), so assume i > 1 and n > i + 1. There exists some path p from

s to v involving e,-. The cycle p,(v,s) must contain in its interior either ei,e2, ...,e,-_i or

e ,+i , . . . ,e„ . See figure 4.17.

Case 1: Suppose the former. Then ei,e2, ...,e,_j must be directed in to v else a directed

cycle would occur as the path to t would cross p. But then the inflow(t;) > outflow(t;),

yielding a contradiction.

76

n

Figure 4.17: Forced Balanced Vertex

e i+1
n

Figure 4.18: Pseudo-arc

Case 2: Suppose the latter. Then at least one edge from e,+2, •••,en must be directed out

to balance v. But this edge must intersect p, creating a cycle and the required contradiction.

•

Since it is not possible to determine a priori which of the two edges of a balanced vertex

v is forced, insert an unweighted pseudo-arc p between e,- and e,+i - out if v is s-adjacent,

in if v is r-adjacent. See figure 4.18

Although < s,v >,p is not itself a true forced net, it may be treated as such since one

77

Figure 4.19: Case 5: Form of I

of e,- or e, +i must be part of a directed net.

Lemma 11 now holds with p as the forced bundle. To show that lemma 12 holds

requires the following extra cases involving the intersection of an induced net with a forced

pseudo-net. Note that the notions of proper and counter-proper intersections still hold for

pseudo-nets.

Proof: (of lemma 12 continued)

Induced net / intersects two pseudo-nets at v\ and v (once properly and once counter-

properly). Note that v\ and v must be extreme vertices. Hence there are two cases:

Case 5: v\ and v are both s-adjacent. Then I is of the form (or symmetric to) figure

4.19.

Suppose lis directed from vi to v. Consider the edges e\ and ev

i+l that define p (e"+1

could be an edge on i). Lemma 14 shows e" or e +̂1 is directed out. If e"+1 is an edge of I

then e\ is forced out. In any case, there exists an edge contained entirely within the closed

78

Figure 4.20: Case 6: Form of /

simple curve defined by (s, V i) , / , (v, s) that is out-forced. The induced net associated with

this edge must cross / forming a directed cycle. Therefore / is forced to flow from v to v\

(and no such directed cycle occurs). The case when V\ and v are f-adjacent is similar.

Case 6: vx is s-adjacent and is J-adjacent. Then I is of the form (or symmetric to)

figure 4.20.

The pseudo-nets pi and P2 have defining edges e", e"+1 and e"2, respectively.

Suppose lis directed from «2 to V\. Then there exists at least one edge e[out of v\ and

one edge e2 into v? by lemma 14. The nets induced by them must then lead to t and from

s respectively. Furthermore, they must either intersect each other or /and form a directed

cycle. Thus / must be forced from Vi to v2.

The above arguments may also be applied if I intersects a forced net once and a pseudo-

net once.

Thus lemma 12 holds when pseudo-nets are included as part of the fixed net.

•

79

The remaining lemmas are unaffected by the pseudo-nets.

The following modification to the algorithm is required:

Step 1: When computing the bundling information, create a pseudo-edge p,- for each

balanced extreme vertex v,-.

i.e. bundle(s, «,•) = {p;} , bundle(v,-,p,) = <j>, if Vi is adjacent to s, or

bundle(v,, t) = {p,} , bundle(p,-, v,) = <f>, if u, is adjacent to t.

The complexity analysis of the algorithm is unchanged.

This 0-weighted version is the final link required to show that the general ordered case

has a polynomial time solution. Given an ordering G, running the previous algorithm for

each of the 0(n2) s- and t- adjacent choices for creation of N(G), determines in polynomial

time, an orientation which has a planar full flow, if one exists.

4.4 The Unordered Case

Let G be a weighted (undirected) graph, and let N(G) be the graph with s and t attached to

all vertices, with associated capacity oo, as specified in the undirected full flow formulation.

The planar full flow problem requests an orientation of the edges of N(G) such that

the resulting network is acyclic and contains a planar full flow. In any such successful

planar flow, s and t will be attached only to vertices that form an exterior face of G in

some ordering. Considering all orderings of G is in general not computationally feasible,

however, it may yet be possible to check if G is a measured bar-representable graph from

the results of the ordered cases. If G comes from a class of graphs which has only a

polynomial number of distinct orderings, then each ordering may be checked with the

80

Figure 4.21: Polynomial Number of Exterior Faces

previous algorithm. Triconnected graphs, 1 for example, have only a linear number of

planar orderings, as each of the 0(|Vj) faces may be chosen as the exterior face. (This is

a consequence of a result due to Whitney [27].)

The number of orderings alone however is not the crucial factor. The outline of the

graph in figure 4.21 has n triconnected components and is itself biconnected but not tri

connected. It is a representative of a class of graphs which has 0(n\) orderings but only

0(2) possible exterior faces and hence the algorithm of subsection 4.1.3 may be applied.

Each biconnected component of G must be embedded in the exterior face by Theorem

5, and hence as argued in the previous section, G may be decomposed into its biconnected

blocks. These blocks may be merged upon completion of the algorithm.

Assume G is biconnected and not triconnected. Then G has at least one cutpair of

vertices whose removal would disconnect G. A naive algorithm would check each possible

1G is triconnected if there is no pair of vertices whose removal would disconnect G.

81

Figure 4.22: Exponential Number of Exterior Faces

exterior face, but again, this may be prohibitively expensive. Consider for example, a

class of graphs in which there are 0{n) triconnected components arranged as in figure

4.22. Then there are 0(2n) possible exterior faces, as each triconnected component may

be flipped about its cutpair.

Triconnected subgraphs are the key to solving this undirected unordered weighted case.

Their structure is sufficiently fixed that the number of acyclic orientations is limited, and

since they are attached to the rest of the graph on exactly two vertices, their interaction

with the remainder is somewhat predictable. Note that G may be decomposed into its

triconnected components in linear time and furthermore, these components are unique

(see Hopcroft and Tarjan [13]).

The algorithm consists of several stages in which the triconnected components of G are

successively collapsed until a sufficiently small graph is obtained. Initially, the triconnected

components of G are identified and classified by type. Triconnected components of the

82

G - T
Figure 4.23: r and G — r

simplest type are collapsed (recursively) into weighted edges. In the resulting graph, the

remaining uncollapsible triconnected components must all appear on the exterior face, but,

as in figure 4.22, both sides of each component apparently must be checked. To avoid this

exponential overhead, a canonical form (called a chunk) is chosen for each triconnected

component and these chunks are carefully merged until a graph of constant size is created.

A layout for this final graph can be converted into a layout for the original graph by

substituting the layouts for the collapsed triconnected components, in reverse order.

Let T be a triconnected component of G with cutpair a,b. Since T is triconnected, there

exists a unique face F, containing both a and b. Let r represent the (unique) ordering of T

with a and b on the exterior face. Note that a and fe divide the exterior face of r into two

chains. The remainder of G will be denoted by G — r (see figure 4.23 for a sketch). Let G

be an ordering which admits a bar layout and let M(G) be the embedding of the associated

network with s and t attached. Then either s and t belong to face F, or to some interior

face of T.

Suppose T appears as r in Af(G). Then there are two possible forms:

1. The flow through r is entirely via a and 6 and no other vertex of r is adjacent to

83

s or t. (In bar terms, all bars of r lie entirely between a and 6). r is said to be

collapsible.

2. Some of the vertices on one of the two chains of r are adjacent to s or t.

The "third" form in which vertices on both chains of r are visible to 5 or t may occur

only in the trivial case when G is in fact triconnected. Note that triconnected components

of the first type act effectively like "super edges", in the sense that the flow through r

is strictly from a to b or from b to a. If r is collapsible then there exists a full flow for

r in which the vertices on both chains are not visible to s or t. Assume without loss of

generality that the flow is into a and out of 6. Then the flow through r is J2ver weight(a, v)

or equivalently Ylucr weight(u,b). Call this value wr and denote by G/T the graph G with

r replaced by an edge (a, b) of weight wT. (If (a, b) is already an edge of G then the two

edges are merged with the weights summed). Clearly, if there exists a full flow for G/T then

there exists a full flow for G: the flow for r may simply be substituted for the associated

edge of G/T. The following crucial theorem confirms the converse.

First, it is worth noting the interpretation of the following theorem in terms of the

associated bar layout. Component r, and G — r are not visible to each other except via

bars a and Z>. Given a bar layout in which r does not appear entirely between a and b, the

theorem insures that 5" or F can be modified to permit such a layout of r without disturbing

the layout of G — T. There are many possible arrangements of r and G — r about a and

6, but since a and b are not visible, they can be classified as one of only two basic forms:

• a and b overlap but are blocked by r or G — r, or

• the top of one bar abuts with the bottom of the other.

84

Lemma 15 Ifris collapsible and there exists a full flow for G with T embedded as T, then

there exists a full flow for G/T.

Proof:

[As an aid in checking that all cases are considered, the bar interpretation of each case

will be indicated in square parentheses.]

Let T be a full flow for G in which r receives assistance from s ox t. A modified full

flow, T'', for G/T will be exhibited that behaves on G — r like T.

Note that either r consists of a single vertex v and a and b (the degenerate case) or r

receives the assistance on one path referred to as the outside path of r, and the inside

path of T has no s or t adjacencies.

Case 1: (Degenerate Case):

Suppose r consists solely of a, b and one vertex v. There are only two subcases as

illustrated in figure 4.24. In A, the full flow for G will appear as a full flow in G/T as in B.

The full flow for C, will appear as one of the two flows in D (one may create a cycle since

the flow in G — T may contain a directed path between a and b).

Case 2: [a" and b abut] Suppose there is no directed path from a to b in Jr, in either r

or G — T. Then there are three subcases:

Case 2.i: [r is entirely on one side of a and 6] Component r is adjacent to s and the

flow to a in r is in and the flow to b in r is in as in figure 4.25 A. Neither of the two flows

in 4.25 B creates a cycle with G — r and either represents a valid flow in G/T.

Case 2.ii: [r wraps around one bar] Component r is adjacent to s and to t in T (without

loss of generality).

85

86

- - - - - G - T
G - T

A B

Figure 4.26: Case 2.ii
Then the full flow T has the general form as in 4.26 A. The full flow for G/T as shown

in 4.26 B substitutes for r in T without affecting the flow in G — r.

Case 2.iii: [r wraps around both bars (or equivalently, G — r is entirely on one side)]

T is adjacent to t, to s and to t on the outside path as in figure 4.27 A.

As a consequence, G — T may only be adjacent to t and thus G — r must receive all

of its flow via a and b. Either of the flows for G/T in figure 4.27 B can supply the identical

assistance to G — r, introduces no directed cycle and satisfies the s and t adjacency

requirements.

Case 3: [Part of r blocks a and b~]: There exists a path in r from a to b (without loss

of generality).

Substituting the flow in 4.28 B does not interfere with G — r and thus G/T has a full

flow.

Case 4: [Part of G — r blocks a and 6", and r does not] There is a path in G — r from

a to b and there is no such path in r.

87

88

G - T
G - T

A B

Figure 4.29: Case 4

The flow represented in figure 4.29 B for G/T is a valid modification of T as shown in

figure 4.29 A since one of a or b can absorb any extra flow without disturbing G — T.

•

If T does not appear as r in M{Q) then s and t are embedded in some interior face of T

and G — T is entirely contained in a (different) interior face of N(G) without direct access

to s or t. Hence, all other triconnected components of G (and in fact G — T itself) must

have form 1 above.

The first stage of the algorithm identifies all triconnected components of G (a linear time

operation [13]) and classifies them. Collapsible triconnected components are recursively

replaced by suitably weighted edges.

The resulting graph, G', is either triconnected (in which case the number of embeddings

is linear and the algorithm for the embedded case may be used) or consists of edges and

triconnected components requiring assistance from s or t (i.e. non-collapsible components).

Hence, if this graph does not have an embedding with all triconnected components on

89

top

chunk

chunk

chunk

bottom

Figure 4.30: Five Chunks

chunk

chunk

the exterior face, then there does not exist a full flow. Therefore, assume G' is partially

embedded with all triconnected components on the exterior face in a ring. See for example,

figure 4.30.

The embedding is not however fixed - the appropriate "side" of each component must

yet be chosen (either of the two "exterior" paths of r may potentially be chosen as exterior

for Q). There may still be 0(n) components.

A second degree of freedom involves the "direction" for each component. There are po

tentially three choices: the flow is generally from a to 6, from b to a, or the flow splits. Stage

2 of the algorithm avoids the seemingly exponential ambiguity of the partial "embedding",

by exploiting the structure of chains of triconnected components.

90

Figure 4.31: Redirection of Chord < v,u >

Some pair of triconnected components must appear in the flow as potentially visible to

both s and t. Call these the top and bottom components. The algorithm will try all pairs

of triconnected components for top and bottom. There are at most 0(2) pairs and two

sides for each of these components. Once a pair has been chosen for top and bottom, those

components visible only to s and those only to t are known; they form adjacent partial

rings on either side of the top and bottom, referred to as the s-side and the f-side. The

"interior face" of G' consists of edges between vertices of the set of cutpairs.

Define a chord as an edge with endpoints on both the s-side and the t-side. A full flow

might require chords directed from the J-side to the s-side. However, many such chords

may be safely redirected in a flow from the 5-side to the t-side, without disturbing the rest

of the flow. Figure 4.31 shows how the chord may be redirected maintaining the balance

at u and v.

This redirection might create a directed cycle; the following lemma describes a sufficient

91

condition for redirecting a batch of such chords avoiding the creation of a directed cycle.

Label the chords from top to bottom as ci,C2,... ,c* and let the interior paths of the

top and bottom components be considered honourary chords CQ and Ck+i.

Lemma 16 Let T be a full flow in which chords ct- and Cj are directed from the s-side to

the t-side and c,+i,..., C j _ i are directed from the t-side to the s-side. Then there exists a

full flow T' in which all chords between ct- and CJ are directed from the s-side to the t-side.

Proof:

The balancing conditions may easily be conserved as in the figure. Suppose a directed

cycle is introduced involving (i < k < j) , directed from the s-side to the t-side. Since

none of the chords c,-,...,Cj are directed from the t-side to the s-side, the cycle involves a

chord ci (I < i or j < I) in this direction. Assume without loss of generality that j < I.

Then there must exist a directed cycle in flow T involving Cj and c\ - a contradiction since

is a full flow. Hence, no cycle may arise by redirecting c,+i,..., Cj-\.

•

A consequence of this lemma is that if there is a flow for G', then there is one in which

the chords may be considered as partitioned into three sets of adjacent chords: those from

the t-side to the s-side (co,... ,c,_i), those from the s-side to the t-side (c,-,... , C j) , and

those from the t-side to the s-side (c J + i , . . . , Cfc+i).

There are (fe

2

+2) ways to partition the chords into these three consecutive groups. Since

k may be 0(n), this contributes an 0(n2) overhead to the algorithm, as each partition will

be generated and examined.

92

a a a

b b b

down up split

Figure 4.32: The Three Forms of the Inside Path of r

The next several lemmas involve a (non-collapsible) triconnected component r on the

5-side with cutpair a, 6. The corresponding lemmas for f-sided components are similar and

are omitted.

For whichever side of r is chosen as the inside (call it p), the flow may only take one of

three possible forms (see figure 4.32):

• directed from a to 6 (called down)

• directed from & to a (called up)

• split at a vertex c (called split) with the two paths directed from c to b and c to a

(oppositely for t-sided components).

These three forms are a necessary consequence of the following lemma.

Lemma 17 In any flow T, no pair of arcs of p meet head to head.

93

Figure 4.33: Invalid Split on p

Proof:

Suppose such a pair of arcs meets at a vertex v on p as in figure 4.33. Since r is

s-adjacent, there must exist a directed path from v to a or from v to b to balance v. This

path must intersect one of the two paths from s to v creating a directed cycle.

•

For collapsible triconnected components, the sums of the incident weights in r at a and

at b were equal. For non-collapsible components, these sums may not be the same. Define

H a a s Eu6T w eight(u,a), and VJj as £ u e Tweight(u,6). (The r superscript will be dropped

if the triconnected component is clear).

In a particular flow T, the amounts of inflow at a and b in r may not be respec

tively Y7a

 a n d Define for cutpair a,b of triconnected component r, inflow(a,r, F)

as E uer,< u,a>er weight(< u,a >) and inflow(6,r,T) as E u e r ,< u ,6>€^ weight(< u,b>).

(Again, the r and T will be omitted if the context is clear).

94

Define outflow as yj — inflow.

First, it is important to investigate the relation between the inflows at a and b and the

possible forms of r in T. These relations will allow the creation of canonical forms for the

non-collapsible triconnected components, which may then be collapsed.

Lemma 18 If the flow in r is up (respectively down) then inflow (a, r) = yj£ (respectively
inflow(b, r) = Yl)• V ̂ e flow t n T splits, then both conditions hold.

Proof:

i) (up) Suppose inflow(a,r) ^ Yil- Then there is an arc out of a in r, whose flow must

escape either through a or b since r is s-sided, creating a directed cycle.

ii) (down) Similarly.

iii) (split) Suppose inflow(6,r) / Ylb- Then there is a directed path q from b that must

flow to t via a. Let < c, b > be the arc on p incident to b. There exists a flow from s to c

which necessarily intersects q creating a directed cycle.

•

If the flow in r is up (respectively down), then the inflow(ft) (respectively inflow(a)) is

still unknown. In fact, these values will generally differ from flow to flow. Fortunately, it

is possible to choose one value for each form that is sufficiently flexible to encode all valid

flows of that form.

Let T' be the flow that maximizes outflow(a, r, T) over all flows T that have the

property inflow(6, r, J") = Y2b •

Define A£ as outflow(a,r, T') — inflow(a,r, T'), and define A£ similarly. Then A£

represents the maximum amount of flow absorbable by r from the component above r if

95

r's flow is down.

It is not immediately clear how the A T can be computed efficiently since this appears

to involve a flow optimization. Note that the possible inflows to a are discrete and the

number of inflows is linear in the degree of a in r. The embedded flow algorithm will be

called for each valid partition of the edges adjacent to a in r. Denote the two sides of r

by pi and pi and label the edges adjacent to a in r in order as e\, e2,..., ejt with e\ on p\

and ek on pi. Let Nj(a,r) be the network: r with s joined to a with weight of J2i=j+i
weight(e,) — J2l=i weight(e,), t joined to b with weight of VJj > and s joined to all vertices

on pi (except 6) with weight unknown (> 0).

Let Nj(a,T) be the network: r with s joined to a with weight of £<=i weight(e,-) —

Z)i=i weight(ejfe_,), t joined to b with weight of VJ£, and s joined to all vertices on P2

(except b) with weight unknown (> 0).

Now, A£ can be computed in polynomial time, by considering the embedded flows of

the Nj(a,r). It is the maximum over all j of the two differences above. Note that only j

values that result in non-negative values of these differences need be considered.

In any flow in which r is directed down, for example, the amount of flow absorbed by

r from above is maximized by the flow in r achieving A„ without altering the amount of

flow passed on by r to the component below. Thus, if the flow type were known a priori, T

could be "collapsed" in a manner similar to the previous stage. The algorithm postpones

the committment to a particular flow type by storing all three flow types and the VJ and

A values as an abstract triconnected component called a chunk. A pair of adjacent chunks

will be selectively and recursively merged to form a higher order chunk that interacts with

G' like a triconnected component in the sense that exactly two of its vertices communicate

with G' and furthermore its flow is either up, down, or splits. Define a chunk inductively

96

as either:

• a triconnected component with cutpair a,b together with the four-tuple < y j a > £ t i

A£, Af> and the triple of boolean values < Up, Down, Split > indicating the valid

flow types for r OR

• the merge of two chunks OR

• the absorption of a chunk and an s-chord.

Let Ti and T2 be a pair of adjacent chunks with cutpairs ax,bi and 02,62 respectively,

(61 is equivalent to 02) such that 61 has no chord incident upon it. The merge of T\ and

Ti has cutpair ai,b?, and the four tuple: < E£J> Ei*' <̂*i' ^•bl>- ^he flow type booleans

are set according to the following rules:

Down := Downi A Down2 A (A^ > J2l\)

Up := Upi A *7p2 A (A £ > £ £)

Split := Upi A Down2.

(These conditions simply require that the r; have the appropriate flow type and that

the "receiving" chunk is capable of accepting the flow from its neighbour).

If there is an 5-chord with weight w incident upon the cutpair of a chunk r, the flow

in T has only two possible forms, since it can not be split along the s-chord. The 5-chord

will be absorbed into the chunk as follows. The split value must be set to false and the

flow values of r incremented by w to reflect the extra capacity of the chunk.

If chunks are merged and s-chords absorbed until no further reductions are possible,

the resulting graph, G" consists entirely of chunks separated by chords as in figure 4.34,

for example.

97

Figure 4.34: G"

Note that the order of merging is of no consequence. Since the merge of two chunks

retains the flow values of the extreme cutpair, and since the flow type validity checks

involve only comparisons between flow values of two chunks at their shared vertex, exactly

the same tests are performed in any ordering of merges.

The final stage of the algorithm merges adjacent pairs of chunks sharing a chord into c-

chunks. These c-chunks are merged until no further collapsing is possible, yielding a graph

G'" consisting of a top and bottom component, at most four c-chunks on the s side, and at

most four c-chunks on the t side. This final graph has a constant number of embeddings

and may thus be laid out by checking all embeddings.

A c-chunk has intercourse with its two adjacent neighbours (on the same side) and

possibly via a chord with a c-chunk on the other side. There are four flow types for a

c-chunk. By choosing a canonical form for each of these types, sufficient information can

be exported to the merged c-chunks that a full flow for the final graph implies a full flow for

98

a

s 0
b

c

Figure 4.35: Out Flow Type

G" which can be efficiently computed by unwinding the recursion. The critical observation

is that a merged c-chunk also has only one of four possible flow types (not sixteen) thus

avoiding a potentially exponential blowup in the merging step.

Define a c-chunk r as a generalized chunk with:

• cut pair a, b

• boolean four-tuple < Up, Down, Split,Out > indicating the valid flow types of r.

(The new flow type Out has the form in figure 4.35).

• interior chord value cT. (This value will be positive for chords directed from the s-side

to the t-side, and negative otherwise).

These c-chunks are created by merging either two chunks or two c-chunks. The merge

of a c-chunk and a chunk may also be required but the conditions are sufficiently similar

to be omitted. Not all adjacent chunks may be combined. Define a chunk as mergeable if

all the chords incident upon it are consistently directed. Note that there are at most four

non-mergeable chunks as a consequence of lemma 16.

flow value four-tuple < £ £ , £ £ , A £ , A £ , > .

99

Let Ti and r 2 be two adjacent mergeable chunks whose shared vertex 61 (=a2) has

incident chords whose weights sum to c. Then the merge of T I and r 2 has cutpair a i ,6 2 ,

flow values <Ya\iH^'^ai>A^,>, and chord value c. The valid flow types are determined

by the following checks:

Down := (Downx A Down2 A < c + A£) V

(TJotom A Split2 A c > £ £ + £ £) •

£/p := (f / p ! A r / p 2 A < A£ + c) V

(Splih A Up2 A c > J2H+ ££).

Sp/if. := (Sp/i*i A 5pf« 2 A c V

(f/pi A Down2 A c > 0) V

(tfpi A Splih A £ £ < A£ + c) V

(Sp/iii A TJo^na A £ £ < A£ + c).

Out := (Downi A Up2 A c > £g + ££).

As in the previous merging, these conditions require that the flow be absorbable for

each type and that the r, be of the appropriate type.

A pair of adjacent mergeable c-chunks Ti and T2 is merged in a similar fashion. The

resulting c-chunk has cutpair a\,b2, chord value c + ci + c2, and flow values

<J2l\ ^2ll^a\ i&bl>- The flow type checks listed for the previous merging are augmented

as follows:

Down := ... V (Outi A Down2) V

(Ouh A Split2 A A£ + c > £ £)

100

top

bottom

Figure 4.36: G'"

Up := ... V (Splitx A Out2 A A £ + c > E£) V

(t7pi A Out 2).

Ou* := . . . V (Ouh A r/pj A A £ + c > Eol) V

(Dotunx A Out.2 A A £ + c > E^) V

(Outi A 0^ 2) .

Mergeable chunks and c-chunks are collapsed as much as possible, yielding a graph G'",

which has no more than four c-chunks on each side, a top and a bottom component; a

sketch of such a graph is given in figure 4.36.

There are at most four flow types for each of the c-chunks and hence a constant number

of calls to the embedded flow algorithm are required for a given choice of top and bottom

orientations. (The inside and outside path of the top and bottom components must also

1 0 1

be chosen).

The complete algorithm will now be presented.

4.4.1 Algorithm to Determine a Full Flow for an Unordered Graph

Procedure fflow(G)

{ returns a full flow for G or false.}

If G is triconnected then test each of the C?(|T|) embeddings Gi,G2, • • • ,Gt with the em

bedded flow algorithm and return false if all fail.

else If there exists a triconnected component T of G with cutpair a,b such that T is collapsible

then if G — T is collapsible (on a, 6) then { check with G — t first }

• Let Gi be G with G-T collapsed.

• For each face of T as exterior face, check embeddedflow(Cyi) and return the flow for G\

with G — T substituted, if successful.

Let T be the unique embedding of T with a,b on the exterior face. Return ff\ow(G/r) with the

collapsing of T substituted

else {there is no collapsible triconnected component}

Determine an embedding G' with all triconnected components on the exterior face. (If no such

embedding exists - there is no full flow for G - return false.)

For all pairs of triconnected components chosen as top and bottom do:

For all partitions of the chords into three adjacent oppositely-directed sets do:

• For each triconnected component, determine the valid flow types and flow values.

102

• Absorb all s-chords and merge all adjacent pairs of triconnected components and chunks

that do not share a chord, yielding graph G".

• Merge adjacent pairs of mergeable chunks and c-chunks to obtain G'".

• Determine a full flow for G'" via the embedded flow algorithm. If there exists a flow,

then

— In reverse order of merging, backtrack, substituting the known flow.

- Halt done.

Return false.

Finally, note that although the algorithm runs in polynomial time, it is certainly not

a low order polynomial. The next chapter confirms that some variants of the Full Flow

Existence problem are indeed NP-Complete, as may have been suspected.

103

Chapter 5

NP-Complete Full Flow Versions
5 .1 Introduction

It is perhaps not surprising that some variants of the undirected weighted case (as expressed

in the flow formulation), would be NP-Complete - there are several degrees of freedom that

may be manipulated to provide a suitable environment. Three fairly natural forms of the

problem can be shown to be NP-Complete. Note that two of these problems are NP-

Complete in the strong sense - even if the values of the weights are bounded, the problems

remain NP-Complete.

Define a network JV as replete if the source s and sink t are joined to every vertex

of the network with capacity oo. Recall that the Undirected Full Flow problem requests,

for a given undirected network JV, an orientation g such that g(N) has a planar full flow.

The algorithms of chapter 4 prove the Undirected Full Flow problem has a polynomial

time solution if either the network N(G) is initially planar (section 4.2) or if N(G) is

replete (section 4.3). If however, N(G) is initially non-planar but not replete, then the

Undirected Full Flow problem is weakly NP-Complete 1 . (See [9] for a discussion of strong

1 such problems may have polynomial time solutions only if the weights involved are bounded by a
constant (and assuming that P ^ NP).

104

vs. weak NP-Completeness). The proof of this claim is a straightforward reduction from

the Partition problem and is omitted.

A non-planar version of the problem may also be formulated and is interesting in

its own right, however the connection to issues of bar-representability is tenuous. The

Undirected Non-Planar Full Flow problem will request a (not necessarily planar) full flow

for a given network. The problem has a trivial polynomial time solution if the network N

is replete - any acyclic orientation provides a full flow since every vertex is balanceable via

its connection to s or t. The problem is however strongly NP-Complete2 if the network is

not replete as shall be shown in the following section.

Finally, this result will be used to show the strong NP-Completeness of a cyclic version

of the problem: Given an undirected planar network JV, determine a directing of the edges

which admits a full flow with directed cycles permitted. Note that this stands in bold

contrast to the polynomial solution of section 4.2.

5.2 The Non-Planar Full Flow Problem

Define the Undirected Non-Planar Full Flow problem as follows. Given an undirected

capacitated network N, with specified source s and sink t, does there exist an orientation,

g, of the edges, such that g(N) contains no directed cycle and there exists a full flow / , for

g(N)1 (Note that the full flow defined by / is not restricted to be planar.)

Theorem 7 The Undirected Non-Planar Full Flow problem is NP-Complete.

Proof:
2 and thus NP-Complete even if the weights are bounded

105

a) the problem is in NP as it is possible to verify in 0(|J3|) time if a proposed flow for

a given instance is in fact a solution. (The flow on each edge must be checked to be valid

and each vertex must have balanced inflow and outflow).

b) The following lemma proves a known NP-Complete problem reduces to the Undi

rected Non-Planar Full Flow Problem.

•

Dyer and Frieze have shown [6], that Planar 1-3 SAT is NP-Complete.

P L A N A R 1-3 SAT

Instance:

Two sets of boolean variables U = {u\, u2,... ,un} and U = {u~i, u2,...,un} and a

collection of clauses C = { c i , C 2 , . . . , c m } of clauses over U and U such that

1. V c G C, \c\ = 3,

2. G(B) is planar, where B = c\ A c2 A ... A c m and G(B) is defined as below.

Question:

Is there a truth assignment for U U U such that each clause in C has exactly one true

literal?

Where G(B) is the graph (V,E):

V= {ci | c,GC*}U {ui \ Ui e V} Ll {Hi | Hi G 77}

E = {(ci,Uj) | UjGc,} U {(ci,Uj) | Uj G c,} U {(u,-,u,) | 1 < i < n)

Figure 5.1 shows G(B) for B = (a V6 Vc) A (b Vb~ yd) A (a V6 yd).

106

Figure 5.1: G(B)

107

Figure 5.2: Component

Lemma 19 PLANAR 1-3 SAT reduces to the Undirected Non-Planar Full Flow Problem.

Proof:Given an instance of PLANAR 1-3 SAT, convert G(B) to a network N(B) as follows.

Let dUi represent the number of times variable U{ occurs in B. Replace each occurrence of

(ui,uj) by the component in figure 5.2. Where

weight(u,-,U7) := 1

weight(«,•',«,•) := weight(u,",u,') := dUi + 1

weight(tZ7/,u7) := weight(«7",u7/) := djf- + 1

For each edge of the form (c,-,Uj), set the weight as

weight(c,-,Wj) := weight(c,-,Ej) := 1

For each clause c,-, introduce a vertex c/ and edge (c,-,c,') with weight 1. Introduce two

new vertices s and t. Edge (*,c,') is defined to be a member of E(G(B)), with an associated

weight of 1, for all c,'.

108

Join s to u" with associated weight dUi, for all u". Join s to 3Z7" with associated weight

c%r, for all TZT".

Join u{ to t with capacity 2du<+2, for all uJ. Join tZT/ to t with capacity 2<%r+2, for all

Figure 5.3 shows N(S) for the previous example. Note that N(B) is "almost" planar in

the sense that N(B) — {s,t} is planar. It is now necessary to show that there exists a 1-3

truth assignment for B iff N(B) has a full flow. First note the following facts about N(B):

1. Since s is the source, (s,c,') is an arc < s,c,'>, and hence, so is < c,',c >.

2. Since each ct- has degree 4 and since < c,', a > is an incoming arc, c, is balanced iff

exactly one of its other three edges is incoming and the other two are outgoing.

3. Since s is the source, (s,u,") is an arc <s,u,">. See figure 5.4.

4. Consider a vertex u,-. If (TTi,Ui) is directed from ^7 to u,- then the only balancing

scheme is: <Cfc,u,-> V Ck and <u,-,u,'>. Then weight(<u,-',r>) must be exactly 2dUi

+ 2 implying that arc <U7,CJ > V Cj is directed from u7 to Cj and arc <TZT/,U7> is

directed from w7/ to u7. This implies that the weight(<u7,£>) is 0.

(=>) Now given a 1-3 SAT truth assignment for B, the construction of the corresponding

full flow in N(B) is clear. For each variable pair (u,-,u7), if is true then direct the edge

from Ui to uiw. <Ui,uT>, forcing the balancing scheme of 4. Consider a vertex c,. Each

true literal in its corresponding clause creates a net influx of 1 and each false literal, a net

drain of 1. If clause c,- contains exactly one true literal, then vertex c,- is balanced. Thus

all vertices of N(B) are balanced. It remains to show that no directed cycle occurs in the

directed version of N(B).

109

s

a=b=c=d=false

Figure 5 .3 : N(B)

110

Figure 5.4: Variable Pair

By construction, a directed cycle TJ must involve some pair of variables, say <E7,u,->,

which by fact 4 implies there does not exist an arc from u,- to any clause Cj and hence

<«,-,u/> and <tii',t> are part of the cycle, which is a contradiction since t has no outgoing

arcs.

(•$=) Given a full flow for N(B), fact 4 may be used to show that exactly one of

and Ui is true in the associated truth assignment. Fact 2 shows each clause is satisfiable

by exactly one literal. Hence the associated assignment of the full flow is a valid truth

assignment for B.

•

111

5.3 The Undirected Planar Cyclic Full Flow Problem

It is also possible to investigate the role of the acyclicity constraint in the flow existence

problem. Define the Undirected Planar Cyclic Full Flow problem as, given an undi

rected capacitated (planar) network N with specified source s and t, determine an orien

tation, g, of the edges such that the resulting graph g(N) is a directed capacitated graph

for which there exists a planar full flow. (Note that g(N) is not restricted to be acyclic).

At first it may seem surprising that this seemingly minor change to the definition of the

Planar Full Flow problem, results in an NP-Complete problem; consider the polynomial

algorithm for the planar full flow problem of the previous chapter, for example. But in fact,

some other problems involving directed graphs exhibit a similar behaviour. The Hamilton

Path Problem 3 is NP-Complete for directed planar graphs but may be solved in polynomial

time if the graph is also restricted to be acyclic ([9]) .

The proof that the Undirected Planar Cyclic Flow problem is NP-Complete is obtained

by making the graph N(B) in the previous reduction, planar by substituting crossover

components. For each edge crossing in N(B), it is possible to substitute a planar component

that enforces the same flow. Call the resulting graph N'(B). Note however, that the "full

flow" in N'(B) in general contains directed cycles.

Theorem 8 The Undirected Planar Cyclic Full Flow problem is NP-Complete.

Proof:

a) The problem is clearly in NP as a proposed solution may be checked in polynomial

time. Checking the capacity and balancing conditions and planarity may be done in linear

time.
3 Find a (directed) path through each vertex exactly once.

112

©

X x

o- •o •o
y y y

X

©

Figure 5.5: Edge Crossing: Same Weights

b) The following lemma shows PLANAR 1-3 SAT reduces to the Undirected Planar

Cyclic Full Flow problem. •

Lemma 20 PLANAR 1-3 SAT reduces to Undirected Planar Cyclic Full Flow.

Proof:

Given an instance of PLANAR 1-3 SAT, construct N(B) as described in Lemma 19.

Note that in N(B), the weights of all edges are specified except for those involving t. Create

a new graph N'(B) as follows:

For each edge crossing in N(B):

1) If the two weights are known and different then introduce a new vertex v at the

crossing and split the two edges into four, maintaining the weights (see figure 5.5).

2) If the edge weights are known and the same, substitute the component in figure 5.6.

3) Crossings involving edges incident upon t can be handled as above since the weights

on such edges are in fact effectively known a priori, namely,

113

Figure 5.6: Substitute Component

weight(<Ui',r>) = 0 or 2dm + 2- However, this substitution may introduce non-extreme

edges of unspecified weight.

The two substitute components are designed to assure that any flow through N(B) can

be maintained in a flow in N(B)'. (Note that the weights created in the second substitute

component may not be integral, but all weights in N(B)' could be multiplied by 2 to

preserve integrality.)

The number of vertices in N'(B) is increased by at most a factor of 4d, where d is the

number of edge crossings. The crossing number of a complete graph Kn is known to be no

more than ^(n)(n - l)(n - 2)(n - 3). Thus the crossing number of N(B) is 0(nA) and

hence only a polynomial number of extra vertices need be added to obtain N'(B). Thus,

the reduction is polynomial.

It is clear that if N(B) has a non-planar full flow then N'(B) has a planar cyclic full

flow. To show the converse it is sufficient to observe that in type 2 crossings, if <a,a'>

(respectively <a',a>) € Flow, then <a',b'> (respectively <b',a'>) € Flow and <&',&> (re

spectively < b,b'>) e Flow. Hence, <a,b> (respectively <b,a>) is part of a flow in N(B).

114

And if <u,u'> (respectively <u',u>) G Flow, then <u',cr/> and <u',6/> (respectively

<a',u> and <6',u>) £ Flow, implying that <a',t/> and <6',t/> (respectively <t/,a> and

<t/,6'>) G Flow, in turn implying that <t/,u> (respectively <v,i/>) G Flow, and hence

<u,u> (respectively <u,u>) is part of a valid flow in N(B). Thus, N'(B) has a planar

cyclic full flow iff there exists a truth assignment for B in which each clause contains exactly

one true literal.

•

115

Chapter 6

New Directions and Related
Results

There are two natural directions to extend the notions of bar-representability. Curves other

than bars may be considered, or multiple lines-of-sight may be added.

As suggested in chapter 1, the restriction to bars for curves includes horizontally convex

objects. If this convexity is relaxed even slightly, to circles or to "U"-shaped curves for

example, then any planar graph may be laid out.

In fact, only the articulation vertices on an interior face of a plane embedding need

to be circles: their interior components may be sheltered from the exterior world in the

interior.

Permitting arbitrary non-intersecting curves does not result in a larger class of graphs

being representable.

Define a graph as O-representable if it is the visibility graph of a layout of non-

intersecting bars and circles using an e-visibility model and a single horizontal line-of-sight.

A circle in such a layout is said to circumscribe the bars and circles in its interior. A graph

G will be called circumscribable in v if there exists a layout of G with v corresponding

116

to the outermost circle.

Lemma 21 All planar biconnected graphs are circumscribable with an arbitrary vertex as

the outer circle.

Proof:

In chapter 3 it was shown that any biconnected planar graph G is bar-representable.

The construction produces a bar layout, based on an s — t numbering of G, in which the

left-most and right-most bars (S~ and T) are of length one and all other bars lie within the

rectangle denned by s and t. Since s and t are adjacent vertices of G, transforming into a

circle containing all other bars yields an O-layout of G. Since any pair of adjacent vertices

may be chosen as s and t in the s — /-numbering, an arbitrary vertex may be chosen as the

circumscribing vertex.

•

Theorem 9 G is O-representable iff G is planar.

Proof:

Let Q be a plane embedding of G in which all components with articulation vertices on

the exterior face are embedded in the exterior face.

All bar-representable graphs are O-representable by definition; therefore assume Q con

tains articulation vertices Co, c\,..., c n not on the exterior face. Such articulation vertices

will be called interior.

Define the level of an interior articulation vertex c as the minimum number of interior

articulation vertices on a path from c to a vertex on the exterior face of Q.

117

For an arbitrary interior articulation vertex c, Q may be divided into subgraphs: max

imal connected components in which all vertices are connected by a path not containing

c. Each subgraph is assumed to also contain c. There are two types of such components:

a single exterior component containing vertices on the exterior face and a set of interior

components.

For all interior, level 0 articulation vertices, the exterior component € is a unique

subgraph of Q. Since S contains no interior articulation vertices, it admits a bar layout.

For each bar c, corresponding to a level 0 articulation vertex c, substitute a circle c° with

diameter of |c|. The interior components of c will be laid out inside c°.

Let the interior components of c be I\, I2,... ,ijt. Layout the Ij in k disjoint horizontal

bands inside c°, as follows:

• If / is biconnected, then it may be laid out with bars circumscribed by c, by the

previous lemma.

• Otherwise, I contains at least one level 1 articulation vertex. If the interior com

ponents of the level 1 articulation vertices are ignored, then J is biconnected and

can be laid out with bars circumscribed by c. Substituting circles for the level 1

articulation vertices and iteratively embedding their interior components inside the

circles, completes the procedure.

The number of iterations is bounded by the maximum level of the articulation vertices.

•

118

6.1 Multiple Lines-of-Sight

Given two lines-of-sight, horizontal and vertical, and solid rectangular "boxes" as objects,

define a graph G as 2-b ox-represent able if there exists a layout of boxes whose visibility

graph is G. It can be shown that all planar graphs have such a layout. Note that boxes

may not be laid out in the interior of other boxes.

Theorem 10 All planar graphs are 2-box-representable.

Proof:

By the previous theorem, all planar graphs have a (1-line-of-sight) O-representation.

The crucial step in the previous proof was to circumscribe a biconnected component by its

articulation vertex. Given an O-representation, a 2-box-representation can be created by:

1. Displacing all bars and circles so that no two are in the same vertical section (with

the exception of objects within their circumscribing circle).

2. Iteratively laying out components within a circle above their circumscribing circle,

horizontally independent of other components, using the vertical line-of-sight to ex

press the relationship.

Step 2 is well-defined since each component is either biconnected (and hence bar-

representable in the vertical line-of-sight), or contains an articulation vertex circle.

Substituting solid squares for circles and rectangles for bars is easily accomplished and

completes the procedure.

•

119

Johnson [30] has argued that given k lines-of-sight and arbitrary (non-intersecting)

curves, the thickness 1 of the associated graph is < k.

Let C = {Ci, C2 , . . . ,C n } be a set of non-intersecting curves in the plane. Let

S = {Si, 52,...,5fc}, k > 1 be a set of non-parallel directions: the lines-of-sight.

Two curves C,- and Cj see each other if there exists a non-degenerate rectangle oriented

parallel to one of the k lines-of-sight whose interior contains portions of C,- and Cj and no

other curves of C. The line-of-sight graph Gk(C) has C as a vertex set and an edge between

vertices if the corresponding curves can see each other.

Gjt(C) has thickness < k since its edge set, Ek(C), can be partitioned into A: sets of

"parallel" (i.e. crossing-free) layers. This prompts the following question (generalized from

[30]).

For any graph G of thickness A;, do there exist C and S such that Gk(C) = G1

For example, figure 6.1 shows that K% has a 2-line-of-sight representation with horizon

tal and vertical lines-of-sight. (Kg is the smallest graph with thickness 3).

The following theorem shows that A: thickness is at least achievable with k lines-of-sight.

Theorem 11 For all k > 1, there exists C and S such that thickness(Gk(C)) = k.

Proof:

Consider the line-of-sight graph G of the following set of curves. G contains the bipartite

graph K2k,4k2 as a subgraph and hence has thickness > k. (A'2r+i,4r2-2r+i has thickness

r + 1 [12]).
1 Graph G has thickness k if there exists a decomposition of G into k planar subgraphs and k is minimum.

120

Figure 6.1: K%: 2-Line-of-Sight Representation

Figure 6.2: Layout of a Graph of Thickness k

121

In figure 6.2, C is a collection of (2k)2 segments (C2fc+i, • • • »C2Jt+(2Jt) 2)
 m t n e intersec

tion of the k lines-of-sight, which are defined as the lines (C,-, C2fc_,+i), for i = 1,2,..., k.

•

6.2 Optimization Problems

It is not difficult to formulate optimization versions of layout problems. For weighted

unordered graphs, determining the minimum width layout is at least as hard as the problem

of partitioning a set of numbers into two subsets of equal weight. This Partition problem

is NP-Complete ([9]) if the weights are not bounded by the size of the input.

Rosenstiehl and Tarjan conjecture [20] that minimizing the layout area of an undirected

unweighted graph is NP-Hard. Note that their visibility relation is weaker however, and

their layout includes the dual graph perpendicularly interlocked.

One final open problem is to interpret the weight of an edge not as the amount of

visibility between a pair of bars, but as their (horizontal) distance apart.

122

Chapter 7

Conclusions and Contributions

The focus of this dissertation has been to characterize various types of bar-representable

graphs and to determine the computational complexity of their recognition and layout.

The main contributions have been the following:

• linear time algorithms for recognizing and laying out measured polarized

bar-representable, (unmeasured) polarized bar-representable, and (unmeasured un-

polarized) bar-representable graphs.

• a polynomial time layout algorithm for measured bar-representable graphs.

• to establish connections between these problems and natural constrained network

flow problems.

• NP-Hardness results for the Undirected Non-Planar Full Flow problem, and the Undi

rected Cyclic Planar Full Flow problems.

For the directed cases, both weighted and unweighted, of the bar-representable problem,

the characterization amounts to checking whether the vertices of insufficient indegree (or

inweight) and insufficient outdegree (or outweight) are (planarly) separable into two groups

123

on the exterior face of some embedding. This test can be performed in linear time by testing

the planarity of a supergraph of the given graph.

For an undirected, unweighted graph to be bar-representable, it has been shown that

there must be a planar embedding of the graph in which all the articulation vertices appear

on the exterior face. This condition may also be verified in linear time by examining a

supergraph of the given graph.

The weighted undirected case appears to be computationally more involved. This case

was reformulated as a network flow problem requiring an orientation of the edges satisfying

certain balancing conditions. In the ordered case, the flow was determined by exploiting

both local and global properties based on the topology of the ordering of the graph. The

resulting full flow provided an orientation of the edges for which a bar layout could be

constructed via the previous results. For the unordered case, the triconnected components

of the graph were the critical building blocks and a collapsing process reduced the graph

to a sufficiently small size to be solved with the aid of the ordered version.

The Undirected Non-Planar Full Flow problem and the Cyclic Planar Full Flow prob

lems were shown to be NP-Hard by reduction from Planar 1-3 SAT. These two results

indicate the important role that the planarity and acyclicity requirements play in the for

mulation of the Full Flow problem.

There are several areas within the field of visibility that may benefit from these results

obtained in the thesis and from the techniques used to solve them. The formulation of the

problem(s) in terms of network flows has been particularly fruitful and may be applicable

in other visibility domains.

124

References

[1] A. Aho, J . Hopcroft, J. Ullman, The Design and Analysis of Algorithms, Addison-

Wesley Pubhshing Co., 1974.

[2] M . Behzad, G. Chartrand, L. Lesniak-Foster, Graphs and Digraphs, Wadsworth Inc.,

1979.

[3] C. Berge, Graphs and Hypergraphs, North Holland Pub., 1973.

[4] V. Chvatal, A combinatorial theorem in plane geometry, J. Combin. Theory Ser. B,

18 (1975), 39-41.

[5] P. Duchet, Y. Hamidoune, M. Las Vergnas, and H. Meyniel, Representing a planar

graph by vertical lines joining different levels, Discrete Math. 4 6 (1983), 319-321.

[6] M. Dyer, A. Frieze, Planar 3DM is NP-Complete, Journal of Algorithms, 7 (1986),

174-184.

[7] El Gindy, Hierarchical decomposition of polygons with applications, Ph.D. thesis,

McGill University (1985).

[8] S. Even, R. Tarjan, Computing an s-t Numbering, Theoretical Computing Science. 2

(1976) 339-344.

125

[9] M. Garey, D. Johnson, Computers and Intractability: A Guide to the Theory of NP-

Completeness, W. H. Freeman and Co., 1979.

[10] M. Garey, D. Johnson, H. So, An Application of Graph Coloring to Printed Circuit

Testing, 1975 FOCS.

[11] S. Ghosh, On Recognizing and characterizing visibility graphs of simple polygons, The

Johns Hopkins University/EECS Technical Report 86/14, 1986.

[12] F. Harary, Graph Theory, Holt, Reinhart and Winston, 1967.

[13] J. Hopcroft, R. Tarjan, Dividing a Graph into Triconnected Components, SIAM J.

Computing, Vol. 2, No. 3, (1973) 135-158.

[14] D.G. Kirkpatrick, Establishing Order in Planar Subdivisions, J. of Discrete and Com

putational Geometry 3 (1988), 267-280.

[15] T. Lozano-Perez, M. Wesley, An algorithm for planning collision-free paths among

polyhedral obstacles, Communications of the ACM22 (1979), 560-570.

[16] F. Luccio, S. Mazzone, C. K. Wong, A Note on Visibility Graphs, Discrete Mathemat

ics, 64, (1987), 209-219.

[17] J. O'Rourke, Art Gallery Theorems and Algorithms, Oxford University Press (1987).

[18] F. Preparata, M.I. Shamos, Computational Geometry: An Introduction, Springer-

Verlag (1985).

[19] I. Rival, J. Urrutia, Representing Orders on the Plane by Translating Convex Figures,

Order 4 (1988), 319-339.

126

[20] P. Rosenstiehl, R. Tarjan, Rectilinear Planar Layouts and Bipolar Orientations of

Planar Graphs, Discrete and Computational Geometry, 1 (1986), 343-353.

[21] M. Schlag, F. Luccio, P. Maestrini, D.T. Lee, C.K. Wong, A Visibility Problem in

VLSI Layout Compaction, Advances in Computing Research, Vol. 2, 259-282.

[22] X . Shen, H. Edelsbrunner, A Tight Lower Bound on the Size of Visibility Graphs,

Information Processing Letters 26(1987/88) 61-64.

[23] R. Tamassia, I. Tollis, A Unified Approach to Visibility Representations of Planar

Graphs, Discrete and Computational Geometry, 1 (1986), 321-341.

[24] C. Thomassen, Interval Representations of Planar Graphs, Journal of Combinatorial

Theory, series B 40 (1986), 9-20.

[25] G. Toussaint, Shortest path solves edge-to-edge visibility in a polygon, Pattern Recog

nition Letters, 4 (1986), 165-170.

[26] E. Welzl, Constructing the Visibility Graph for n-Line Segments in 0(n 2) Time, In

formation Processing Letters 20 (1985), 167-171.

[27] H. Whitney, Congruent Graphs and the Connectivity of Graphs, American J. of Math

ematics, LIV (1932), 150-168.

[28] S. K. Wismath, Characterizing Bar Line-of-Sight Graphs, Proc. 1st ACM Symposium

on Computational Geometry, Baltimore (1985), 147-152.

[29] S. K. Wismath, Issues in Embeddings, unpublished Thesis Proposal, U.B.C. (1983).

[30] Algorithmic Aspects of Combinatorics, Annals of Discrete Math. 2 (1978), North Hol

land Publishing Co., 243.

127

