
TESTGEN, An Environment for Protocol Test Sequence Generation,
and Its Application to the FDDI MAC Protocol

By

YING LU

B.Sc. Tsinghua University, China, 1985
M.Sc. Peking Union Medical College, China, 1988

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
T H E REQUIREMENTS FOR T H E DEGREE OF

MASTER OF SCIENCE

in

T H E FACULTY OF GRADUATE STUDIES
(DEPARTMENT OF COMPUTER SCIENCE)

We accept this thesis as conforming
to the required standard

T H E UNIVERSITY OF BRITISH COLUMBIA

August 1991
©Ying Lu, 1991

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

Department

The University of British Columbia
Vancouver, Canada

DE-6 (2/88)

Abstract

Test suite generation and selection form important aspects of conformance testing. The test

suite generation process is usually tedious and time-consuming. The selection of appropriate

test cases with certain fault coverage requires intensive analysis of the protocol. It is difficult to

manually generate test suites without errors. The test suite generation process must therefore

be automated.

This thesis addresses the issues of design and development of the front end of an automatic

test suite generation and selection environment named TESTGEN. TESTGEN generates TTCN

test suites from the formal specification of protocols. TESTGEN adopts a new test suite

generation method based on a combination of the extended transition system (ETS) and ASN.l

representation of protocols. The new test generation method integrates the testing of both

control part and data part of protocols. The test suites generated by TESTGEN are expected

to provide better fault coverage than other existing test generation methods.

An Estelle-like intermediate language called Estelle.Y is defined for the ETS-based formal

description of protocols in TESTGEN. In order to test the data part, the control part of

protocols and the protocol timers more thoroughly, we introduce ASN.l and explicit timer

constructs into Estelle.Y. In addition, we design a protocol data structure (PDS) as the internal

representations of protocols based on the ETS/ASN.l formalism. A parser is then designed

and developed to translate the Estelle.Y/ASN.l specification of protocols into the PDS. We

test the parser and verify the correctness of the generated PDS by applying a set of consistency

checking functions to PDS. The correctness of PDS can also be verified by printing out the

protocol information represented in PDS using a set of printing functions.

In order to verify the viability of the TESTGEN environment, as well as to gain experience

of conformance testing of high speed network protocols, we specify a specific protocol, the FDDI

MAC protocol in Estelle.Y/ASN.l. The formal specification of the FDDI protocol in Estelle.Y

and our experience with test sequence generation using TESTGEN are then presented.

ii

Contents

Abstract "

Contents iii

List of Figures vi

Acknowledgement vii

1 Introduction 1
1.1 Background 1

1.1.1 OSI conformance testing 1
1.1.2 Automatic test generation 3
1.1.3 FDDI 3

1.2 Related works 4
1.2.1 Test generation method 5
1.2.2 Test generation tools 6

1.3 Thesis objectives and contributions 8
1.4 Thesis outline 9

2 T E S T G E N 11
2.1 Methodology 11

2.1.1 Extended Transition System + ASN.l Formalism 12
2.1.2 Test generation method 15
2.1.3 Test generation constraints 16
2.1.4 Test suite generation engine 17

2.2 TESTGEN components 18

3 Estelle.Y and Protocol Data Structure (PDS) 20
3.1 motivation 21
3.2 Estelle.Y 22

3.2.1 EsteUe and ASN.l 22
3.2.2 Design issues 23

iii

3.2.3 Estelle.Y definition 24
3.2.4 Estelle.Y versus Estelle 28

3.3 Protocol data structure 30
3.3.1 Representation of protocol descriptors 30
3.3.2 Protocol descriptor access 31
3.3.3 PDS data structure definition 33
3.3.4 ASN.l type tree 39

3.4 Summary 43

4 T E S T G E N parser 45
4.1 Design considerations 45

4.1.1 ASN.l parser 46
4.1.2 Lex/Yacc tools 47
4.1.3 Abstract syntax tree 48

4.2 Implementation 50
4.2.1 Declaration part 50
4.2.2 Initialization part 52
4.2.3 State-transition part 52

4.3 Testing 53
4.3.1 Printing PDS 53
4.3.2 Consistency checking of PDS 54

5 Test generation for the FDDI M A C protocol 56
5.1 FDDI MAC sublayer 57

5.1.1 Services 57
5.1.2 Facilities 58
5.1.3 Operation 59
5.1.4 Structure 60

5.2 The formal specification of FDDI MAC protocol 60
5.2.1 Data part in ASN.l 62
5.2.2 Control part in Estelle.Y 62

5.3 Generating test suite using TESTGEN 67
5.3.1 PDS of FDDI MAC protocol 67
5.3.2 Tuning constraints for FDDI MAC protocol 67
5.3.3 Test generation 68

5.4 Summary 69

6 Conclusions 70
6.1 TESTGEN features 70
6.2 TSG for FDDI using TESTGEN 71
6.3 Future works 72

iv

A Estelle.Y B N F definition 79

B A S N . l specification of F D D I M A C SPs and PDUs 86

C Excerpt of Estelle.Y Specification of F D D I M A C protocol 93

D T E S T G E N menus H I

E Consistency Requirements of P D S 124

v

List of Figures

1.1 FDDI relationships to OSI model 4

2.1 Test Suite Generation Process 18

3.1 Example of the declaration part 26
3.2 Example of the initialization part 26
3.3 Example of a transition declaration in the state-transition part 27
3.4 Example of ASN.l definition of protocol SPs 29
3.5 The main data structure of PDS 31
3.6 C structure definition of PDS 32
3.7 STATE definition 35
3.8 TRANS definition 36
3.9 VAR and CONST definitions 37
3.10 TIMER definition 37
3.11 The relation diagram of the PDS components 38
3.12 The data structure of template ENODE 40
3.13 ASN.l type example 41
3.14 ASN.l type tree of PduType 41
3.15 ISP definition 42
3.16 SPPARM definition 43

4.1 TESTGEN parser configuration 47
4.2 TESTGEN Parser generation 48
4.3 Examples of syntax trees 49
4.4 IFSTMT definition 49
4.5 EXPR definition 50

5.1 FDDI MAC service primitives 58
5.2 Format of MAC Protocol Data Units 59
5.3 Testing of FDDI MAC layer 61
5.4 FDDI MAC protocol state machine 67

vi

Acknowledgements

First of all, I would like to express my sincere thanks to Dr. Son T. Vuong, my supervisor,

for his guidance, commitment and understanding throughout my research work.

I would also like to thank Dr. Samuel Chanson for his helpful comments and careful reading

of the final draft.

Special thanks are also due to Holger Janssen for his originating the research project and

always finding time to help me when I needed it.

I would like to thank Mike Sample for his ASN.l parser and helpful suggestions.

The financial support from the Department of Computer Science at the University of British

Columbia and from the Japan Tobacco Company and INDE Electronics, Inc. in the form of an

Research Assistantship is gratefully acknowledged.

Last but not least, a heartfelt thanks to my parents for their endless love and to Geng Lin

for being my wonderful husband.

vii

Chapter 1

Introduction

This thesis addresses issues in the development of an automatic protocol test generation and

selection environment named TESTGEN and its applications. TESTGEN can automatically

derive T T C N test suites from the formal description of protocols. TESTGEN generates test

suites using a new test suite generation (TSG) method that integrates both the control flow

testing and the data flow testing. This thesis presents the design and development of the

TESTGEN front end and the application of TESTGEN to a high-speed network protocol, the

FDDI MAC protocol. A formal specification of the FDDI MAC protocol is produced and

problems with the formal specification for testing the FDDI MAC protocol are discussed. A

T T C N test suite will be derived for the FDDI MAC protocol from the formal specification of

the protocol by using TESTGEN.

1.1 Background

This section gives the general background for the thesis.

1.1.1 OSI conformance tes t ing

As the OSI protocol standards become stable and their implementations proliferated, ISO

focused its attention on the problem of interoperability of different protocol implementations.

Consequencely the Conformance Testing Methodology and Framework [ISO-9646] standard is

developed.

1

CHAPTER 1. INTRODUCTION 2

A protocol implementation can be submitted to conformance testing in order to increase

confidence in its conformance to the protocol standard. The ISO 9646 standard states:

"The purpose of Conformance Testing is to increase the probability that different implemen­

tations are able to interwork".

In the conformance testing methodology, an Implementation Under Test (IUT) consists

of the implementation of one or more layers of the OSI reference model. An IUT is said to

conform to the OSI protocol standards if it fulfills the conformance requirements defined in

the ISO 9646 standard.

The ISO test methods are based on the black-box test principle. Although aspects of both

internal and external behavior are described in OSI protocol standards, only the external behav­

iors of the IUT is considered for conformance testing. The external behaviors of an (N)-entity

are defined in terms of (N) Abstract Service Primitives ((N)-ASPs), (N-l) Abstract Service

Primitives ((N-l)-ASPs) and (N) Protocol Data Units (PDUs).

The Points of Control and Observation (PCO) are where the test events (ASPs or PDUs)

of an IUT can be observed and controlled within the test environment.

The ISO 9646 standard defines four test methods which can be distinguished by the location

of the PCOs and the degree of control available at those PCOs as well as by the nature of the

coordination between events exchanged at the PCOs (test coordination procedure).

Conformance testing is carried out by using test suites. A (conformance) test suite is the

complete set of test cases that are needed to perform dynamic conformance testing for one or

more OSI protocols. The ISO 9646 standard defines a hierarchical structure for description of

test suites. The key level of a test suite is test case. The lowest level of the structure consists

of test events. The test events are the transfer of a single PDU or ASP to or from the IUT.

The Tabular and Tree Combined Notation (TTCN) [ISO-TTCN] is defined to specify abstract

test suites. Abstract test suites are specific to a test method but test system independent.

CHAPTER 1. INTRODUCTION 3

1.1.2 Automatic test generation

The generation and selection of an appropriate test suite is an essential aspect of conformance

testing. Communication protocols are extraordinarily complex. The selection and generation

of test cases are challenging and tedious tasks for several reasons. Firstly, for a given protocol,

a comprehensive test suite may contain from hundreds to thousands of test cases, where each

test case may require hours to design and minutes to execute [PTJH-88]. It is very difficult,

if not impossible, to manually generate a test suite without errors [Wvong-90]. Secondly, the

selection of appropriate test cases with certain fault coverage requires intensive analysis of

a protocol. A promising solution for the problems is to develop an automated selective test

generation environment. Automatic test suite generation has many advantages over the manual

approach. It is easy to adapt to changes in protocol specifications and T T C N . More complete

and consistent test cases can be generated. More flexibilities can be provided for the user to

generate test suites for their particular testing purpose. Finally, certain fault coverage measure

can be incorporated to allow user to control the fault coverage of generated test suites. For

these reasons, the automatic generation of test suite from the formal descriptions of protocols

is drawing more attentions.

1.1.3 FDDI

The Fiber Distributed Data Interface (FDDI) is a high speed local area network (LAN) standard

developed by ANSI. FDDI is a general purpose multi-station network designed for efficient

operations with a peak data rate of 100 megabits per second. It uses a Token Ring architecture

with optical fibers as transmission medium [ANSI-1987] [ANSI-1989].

Although it is not an OSI standard, the FDDI standard has been developed in conformance

with the the OSI reference model and the OSI management framework and layer management

guidelines. The set of four components of the FDDI standard provides the Physical Layer and

the lower sublayer of the Data Link Layer of the OSI reference model as depicted in Figure 1.1.

The FDDI Media Access Control (MAC) layer is the lower sublayer of the Data Link Layer.

It is the most important component of the FDDI standard among the four (MAC, PHY, PMD

CHAPTER 1. INTRODUCTION 4

Data Link

layer

M A C

(Media Access Control)

SMT
Physical
layer

PHY

(Physical Protocol)
SMT SMT

PMD
(Physical Medium

Dependent)

SMT

Figure 1.1: F D D I relationships to OSI model

and SMT) . M A C standard is the core part of the F D D I standard that distinguishes FDDI from

other I E E E L A N standards.

^DDI M A C protocol is developed based on the concepts of Token Ring Access Method de­

fined in A N S I / I E E E 802.5-1985 while the original concepts have been modified to accommodate

the higher F D D I speeds. [ROSS-86] [ROSS-90] give excellent introductions to FDDI .

High speed network is becoming an active research area recently. Major work has been

done on the design of high speed (or high performance) protocols. FDDI has been widely

accepted as the next generation of L A N standard. The F D D I network and its protocols are

studied intensively [ROSS-86] [ROSS-90]. We are focusing our attention on the testing of FDDI

implementations. The development of FDDI protocols are complicated due to its 100 Mb/s data

rate, more rigorous timing requirements and the use of fiber optics techniques. It is important

to test the F D D I products provided by different vendors for their conformance to the FDDI

standard. Testing such complex protocols is a challenging problem.

1.2 Related works

A great deal of efforts have been made in development of feasible test generation method for

.automating the test generation process. In this section, we discusses the well known methods

CHAPTER 1. INTRODUCTION 5

and the tools developed based on those TSG methods.

1.2.1 Tes t generat ion m e t h o d

Most of the well known protocol test generation methods assume the Finite State Machine

(FSM) model for protocol specifications. T-method [Naito-81], U-method [Sabn-88], D-method

[Gone-70] and W-method [Chow-78] are four well-known formal techniques for protocol testing

based on the concept of Transition Tour and Characterizing Input/Output Sequence. See

[Sidhu-89] for a detailed survey on FSM-based test sequence generation methods. However,

these methods address the control part of protocols only. These formal methods were improved

and optimized [Chan-89] [Vuong-89].

Recently, several test generation methods which test both of the control and data aspects

of protocols have seen proposed. Sarikaya et al. [Sari-87] proposed a methodology that applies

the concept of functional program testing to the generation of test sequences for testing data

part of protocols. This method requires considerable manual efforts to identify functions and

their relationships in the case of complex protocol specifications.

Another well known data flow coverage methods is proposed by Ural et al. [Ural-87-1]

[Ural-87-2]. The method is based on the principles of data flow analysis techniques [Fosd-76].

The method traces the flow of data through the associations between assignments of values to

variables (i.e. definitions) and the usage of these variables (i.e. uses) in either assigning values

to other variables or determining the outcome of conditional branching. This method generates

a set of test sequences to cover all definition and use pairs satisfying certain constraints. The

resulting set of test sequences provides the capability of determining whether an IUT estab­

lishes the desired flow of data expressed in a given specification. The method is improved in

[Ural-88] to derive test sequences with better fault coverage. The refined method is based on

the identification of all inputs that influence each output in a given protocol specification. The

flow of both control and data specified in the specification are modeled by a flowgraph. All

associations between definitions and usages of variables employed in the specification are ex­

plicitly identified from the flowgraph. Associations between each output and those inputs that

CHAPTER 1. INTRODUCTION 6

influence the output are then identified. In fact, these associations represent the input-output

relations through which protocol functions are defined. Finally test sequence are selected to

cover each of such association at least once.

A new test generation method is presented in [EBE-89-2] [EBE-89-1]. An External Be­

havior Expression (EBE) is defined to specify only the external behaviors of a protocol. Test

sequences are derived from the EBE specification of the protocols. The external behaviors of a

protocol are described in terms of the input/output sequences and their logical (function and

predicate) relations. The EBE specification of protocols can be obtained from formal protocol

specifications in either Estelle or LOTOS.

It is pointed out [Vuong-91-1] that some side effects due to implementation errors may re­

main undetected by those existing methods [Sari-87] [Ural-87-1] [Ural-87-2] [Ural-88] [EBE-89-2]

[EBE-89-1]. For example, in Ural's method [Ural-88] the conditions and effects on the variables

are to be tested along only a single selected path between the definition-usage pairs, thus errors

occurring in alternate paths are unlikely to be detected. The fault coverage and effective­

ness of the test case will be increased if all known protocol conditions are verified along the

definition-usage path of variables.

Another new approach is proposed in [Vuong-91-1] which is expected to produce test suite

with a better fault coverage than those existing methods. The proposed test suite generation

method verifies all specified conditions on the external behavior of a protocol implementation

for a selected set of subtours of the protocol graph. A set of so-called test suite generation

constraints are used to guide the subtour identification and test suite generation. A detailed

description of this new approach can be found in Chapter 2 of this thesis.

1.2.2 Test generat ion tools

There are technical difficulties in deriving test sequences directly from the protocol specification

in ISO FDTs, namely Estelle [ISO-9074], SDL and LOTOS [ISO-8807]. The first three methods

which test both control and data parts of protocols assume that protocol specifications are given

in Estelle as single module specifications (also called Normal Form Specifications). The EBE

CHAPTER 1. INTRODUCTION 7

approach, assumes that protocol specifications are given in EBE.

A formal specification based test generation tool named CONTEST-ESTL is presented

in [Sari-89]. It is a realization of the functional formal specification based on test genera­

tion method [Sari-87]. CONTEST-ESTL takes an Estelle specification as input and semi-

automatically generate test sequences for the input specification. In CONTEST-ESTL, the

normalization (transformation of an Estelle protocol specification into a specification in Es­

telle Normal Form) and the construction of control flow and data flow graphs required for test

sequence generation are automated. The test sequence identification is, however, only semi-

automated. The users are required to identify functions by merging so-called blocks of data flow

graph and then incorporate the effects of the enabling conditions of the normalized transitions

into the sequences identified from the control flow graph and data flow graph to generate test

sequences that cover data flow.

In this thesis, we develop a software testing environment, TESTGEN, which automatically

generates T T C N test suites from the formal specification of protocols, using the test generation

method in [Vuong-91-1]. We assume protocols are specified in Estelle.Y. Estelle.Y is basically

a single module Estelle enhanced by introducing explicit timers constructs and ASN.l subset.

A Protocol Data Structure (PDS) is designed as the internal protocol representation from

which all the possible subtours are identified by using the proposed test generation method. In

order to generate test suite covering both control part and data part of protocols, the complete

protocol information expressed in the Estelle.Y/ASN.l specification must be represented by the

PDS.

The test suite generation using TESTGEN is totally automated. Experienced users may

use constraint editor to tune the default test suite generation constraints set by TESTGEN so

that the generated test suite can better satisfy their particular testing purposes.

CHAPTER 1. INTRODUCTION 8

1.3 Thesis objectives and contributions

In this thesis, the research objectives are: 1) to design and develop the front end of the testing

environment TESTGEN, and 2) to demonstrate the usefulness of the tool by applying it to a

real world protocol and generate test suite for the protocol.

The front end of the testing environment is the most important part of the whole testing

environment. It is responsible for providing internal representation of protocols in which the

external behaviors of a protocol are precisely and completely described. The internal represen­

tation of protocols must be accessible to the subtour identification process which is the first

step of the test generation process.

The design and development of TESTGEN front end involve several aspects. Firstly, an

intermediate formalism is necessary for the precise and complete description of external behav­

iors of a protocol for conformance testing using TESTGEN. Secondly, a description language

based on the defined intermediate formalism is required for formal specification of protocols.

Thirdly, an internal representation of protocols is needed to allow the protocol knowledge de­

scribed in the specification to be accessible to the subtour identification process which is an

implementation of the test sequence generation algorithm. Finally a parser should be developed

to transform the protocol specifications into their internal representations.

To demonstrate the viability of TESTGEN, we produce a formal specification of a real world

protocol, the FDDI MAC protocol. The specification is then fed into TESTGEN. Constraints

are tuned via a constraint editor. A test suite of the FDDI MAC protocol is to be generated.

The main contributions of this thesis include the following:

1. The refinement of the intermediate ETS/ASN.l formalism for the representation of pro­

tocols in TESTGEN.

2. The definition of an intermediate formal description language Estelle.Y to allow commu­

nication protocols to be formally specified based on ETS/ASN.l formalism representation

and to allow both the control part and data part of protocols to be tested.

CHAPTER 1. INTRODUCTION 9

3. The design of a Protocol Data Structure (PDS) to internally represent communication

protocols specified in Estelle.Y/ASN.l. PDS is defined as a machine accessible form of

the ETS/ASN.l formalism representation particularly for TESTGEN. It can also be used

for other applications.

4. The design and implementation of a parser to translate the ETS/ASN.l specifications of

protocols into the PDS to allow the protocol knowledge in the Estelle.Y/ASN.l specifi­

cation to be accessed by the test sequence generation process in TESTGEN. We tested

the parser through a set of consistency checking functions and through a set of printing

functions, by checking items stored in the PDS.

5. The formal specification of a high-speed network protocol, the FDDI MAC protocol, in

Estelle.Y/ASN.l to which TESTGEN is to be applied to generate a test suite for the

protocol.

6. A method of combining two extended transition systems into a single one equivalent

behaviors. In fact, the method is easily extended to combine arbitrary number of extended

transition systems.

1.4 Thesis outline

The rest of the thesis is organized as follows.

Chapter 2 gives an overview of TESTGEN. An introduction to the test generation method­

ology being used by TESTGEN and the architecture of the TESTGEN are presented.

Chapter 3 and chapter 4 discuss the design and implementation of the front end of the

TESTGEN tool. The definition of a formal language Estelle.Y and the data structure ver­

sion of the internal representation of protocols are described in Chapter 3. The design and

implementation of the TESTGEN parser are presented in Chapter 4.

Chapter 5 discusses the issues of the test suite generation for FDDI mac protocol using

TESTGEN. A review of the FDDI mac protocol is given first. The protocol is specified in

CHAPTER 1. INTRODUCTION 10

Estelle.Y and the problems with the formal specification are discussed. In this chapter, we
present a method to combine two extended transition systems into a single one with equivalent
behaviors. The issues of tuning default constraints for TSG of FDDI mac protocol are are
presented.

Chapter 6 summarizes the important results and offers suggestions for future works.

Chapter 2

T E S T G E N

The generation of T T C N test suite is a tedious and repetitious process. Test suites must often be

updated or rewritten because both the specification of the protocol to be tested and the T T C N

standard are subject to periodic modifications. The test suite generation process must therefore

be automated. TESTGEN is a test generation and selection environment for the conformance

testing of communication protocols proposed by Holger Janssen [Vuong-91-1] at UBC. It is a

TSG automation tool which can derive T T C N test suites from formal specifications of protocols.

It directly supports ASN.l and Estelle.Y, a variation of Estelle that will be presented in Chapter

3.

It is designed as an automation tool for the testing of OSI protocols and services based on

the OSI conformance testing methodology and framework [ISO-9646].

2.1 Methodology

This section presents the definition of the Extended Transition System + ASN.l Formalism

used in TESTGEN. The test generation method used in TESTGEN are also described.

11

CHAPTER 2. TESTGEN 12

2.1.1 Extended Transition System + ASN.l Formalism

Motivation

In order to automatically generate a test suite, the protocol knowledge defined in the protocol

specification must be formalized and accessible to the test generation engine.

The test suite generation is complicated by two factors: choices in the protocol specification

account for protocol implementations with different but correct behavior and nondeterminism

of the protocol accounts for unpredictable behavior of one implementation.

In order to preserve the complete protocol knowledge, an appropriate intermediate protocol

representation formalism and its internal representation are necessary. The conceptual model

is very crucial in that the test generation method and the architecture of the tool are both

based on that model. We use a pragmatic representation based on extended Transition System

(ETS) and ASN.l which can represent nondeterminism 1 and implementation choices2 as well

as syntactical information such as type definition of service primitives and parameters.

This ETS+ASN.l knowledge is stored in our Protocol Data Structure (PDS) for use of the

test suite generation engine or other protocol engineering applications.

E T S + A S N . l Formalism

The Extended Transition System (ETS) defined for TESTGEN environment provides a theo­

retical foundation for formal description of protocols to be tested by TESTGEN. A transition

system is a model for formal description of processes in a distributed system. Recently, the tran­

sition system and its variations are popularly employed to model the behavior of communication

protocols in protocol specification, verification and conformance testing.

Definition 2.1 A transition system is a quadruple T —< Q,E.^,init > where

e Q is a set, the states of T

* E is a set, the events of T,
1 Nondeterminism in the protocol specification accounts for unpredictable IUT behavior.
2 Choices in the protocol specification accounts for implementation with different correct behavior.

CHAPTER 2. TESTGEN 13

• —*CQxExQisa relation, the transitions of T,

• init € Q is the initial state ofT.

For simplicity, q —> q' will be used to represent < q, e,q* >€—*•.

An alternative definition of the transition system, so-called labeled transition system, is

given in [Kel-76] by refining the notation of state and transition. The state set is represented as

a set product of the set of control states and the set of data states. A transition —>• is represented

by a pair < Pt,Ft >, where P< is a predicate on Q and Ft is a partial function such that Ft(q)

is defined whenever Pt(q) is true. Pt is called enabling predicate and Ft an action function.

We define an extended transition system by further refining the notation of state, transition,

event and initial state of the basic transition system. Such an extended transition system can

be particularly used to model the observable behaviors of a protocol for conformance testing

based on the 9646 standard.

Definition 2.2 An Extended Transition System (ETS) is a quadruple ETS = (Q,E,—>,qinit)

•where

• Q is a set, the states of ETS,

• E is a set, the events of ETS,

• —>CQxExQ is a relation, the transitions of ETS,

• Qinit G Q is the initial state of ETS.

Q = STATE x VAR X C X TIMER, where STATE is the set of control states, VAR is

the set of data states also called variables, C is a set of degenerated variables used to represent

protocol characteristics that are invariant to the protocol execution and TIMER is a set of

time constructs introduced to indicate time in the protocol representation.

qinit is defined by the initial control state and the initial values of all variables and timers.

E = ISP xOSPx PDU, where ISP is a set of Input Service Primitives (ISPs) accepted at

the protocol's Service Access Points (SAPs), OSP is a set of Output Service Primitives (OSPs)

CHAPTER 2. TESTGEN 14

offered at the protocol's SAPs and PDU is a set of Protocol Data Units (PDUs) which may be

embedded in ISPs or OSPs.

A transition —> is represented by a pair < Pt,Ft >, where Pt is the condition predicate on

the set product Q x E and Ft is the action function on the set product Q x E.

A transition is enabled if and only if the ISP and PDU associated with the transition (if any)

are received and if the enabling predicate is true. When a transition is executed the associated

action function is executed atomically: variables and timers are set, OSP(s) and PDU(s) are

assembled (their parameters are set) and sent. The protocol changes from the current control

state into the next control state.

Furthermore, ASN.l abstract syntax is introduced to specify the structure and type of the

elements in E, namely the ISPs, OSPs and PDUs and the parameters. There are several reasons

for choosing ASN.l:

• ASN.l is a standardized abstract syntax notation supported by ISO.

• Some higher level protocols are specified in ASN.l.

• ASN.l is supported in T T C N .

• There are ASN.l tools available.

A subset3 of the basic ASN.l abstract type notation defined in Section 1 and Section 2

of [ISO-8824] is used to specify the data part of the protocol, namely the structure and type

of ISPs, OSPs and PDUs and their parameters. In our Extended Transition System (ETS),

service primitive and protocol data unit parameters would be referenced by enabling predicates

and action functions. We introduced an intuitive dot notation similar to the PASCAL or C

structured type reference mechanism to allow the references to the parameters of ISPs, OSPs

and PDUs. Thus the SP or PDU parameters described in the ASN.l part of the protocol spec­

ification can be referenced by enabling predicates and action functions as follows:

3Other ASN.l features such as ASN.l value descriptions, selection types and macros are not currently sup­
ported by our tools (they are not necessary for the ETS representation of a communication protocol).

CHAPTER 2. TESTGEN 15

< SPname > {. < parametername >}+

or < PDUname > {. < parametername >}+

A detailed description of ETS/ASN. l formalism is given in [Vuong-91-1]

2.1.2 Test generat ion m e t h o d

The test generation method adopted in the TESTGEN integrates both the control flow testing

and the data flow testing with parameter variation. Furthermore, test generation and selec­

tion are integrated and guided by user-defined test suite generation constraints and parameter

variation constraints.

Well known hardware and software test generation methods have been applied to confor­

mance testing with various degrees of success. Most of them are based on the state transition

model. The Transition Tour and characterizing Sequences based T [Nai-81], U [Sab-88], D

[Gon-70] and W-methods [Cho-78] were improved and optimized [Cha-89] [Vuo-89] but still

have two major shortcomings. First, they are weak in discovering errors due to additional

states or transitions in the implementation. Second, they only address the control part of

protocols.

The data flow analysis based test suite generation method defined in [Ura-87], [EBE-89-1]

and the flow coverage method defined in [Sar-87] address both the control flow part and the

data part of protocols but are unlikely to detect errors due to side effects [Vuong-91-1]. As

those errors are unpredictable, the only way to ensure their detection is to verify if all relevant

conditions on the external behavior of the IUT are fulfilled along all branches of the tree

representation of the protocol.

The strategy adopted by TESTGEN is to verify as many conditions as possible on as many

different protocol subtours as possible. The Test Suite Generation (TSG) method used in

TESTGEN integrates both the control flow testing and the data flow testing with parameter

variation and can produce test cases to cover any path defined by the service primitives that an

CHAPTER 2. TESTGEN 16

IUT is allowed to exchange with its environment (peer entity or test system). Furthermore, it

integrates the generation and selection of test suites by providing a menu driven environment

where various TSG- and parameter variation constraints4 can be interactively defined by the

user to control the amount and the distribution5 of test cases.

2.1.3 Test generation constraints

Since communication protocols are recursive, some protocol subtours can be of infinite length.

Parameter variation on the exchanged service primitives leads to a practically infinite number of

parameter value combinations. The TSG constraints mechanism enables the user to select the

subtours for which test cases are to be generated. The flexibility offered by the TSG constraints

mechanism allows us to compare and evaluate different approaches to the test suite generation

problem.

The TSG-constraints define an upper and a lower bound on the number of times an ETS

element is reached or used in one subtour. For example, to test the data part of a protocol

implementation the user could specify the following constraints: the data transmission state

can be reached between 2 and 10 times and the send.data and receive_data service primitives

can be used used for at most 5 times.

The TSG-constraints are set to default values when a PDS is created. A user-interactive

constraint editor allows to edit and change the complete set of TSG constraints. The interested

readers may refer to Appendix D for the menu-driven TSG-constraint editor.

The parameter variation constraints define a set of values for each parameter of each ISP

or PDU that can be sent to the IUT thus define the ISPs and PDUs that will be used to test

the IUT.

The current version of TESTGEN supports three SP or PDU parameter types: boolean,

integer and character-string. The default parameter variation constraints are defined as follows:

TRUE, FALSE for boolean,

4 I t should be noted that the term "constraint" is used in a different context than the one used in T T C N .

° T h e density of test cases can be increased for important or error prone protocol parts.

CHAPTER 2. TESTGEN 17

0, 99 for integer and

"test-stringl" for character strings.

As an example, the default parameter constraint scheme would define twelve (3 X 2 X 2 X

1) different instances of a service primitive containing one integer parameter, two boolean

parameters and one character string parameter. Each of those ISPs will be sent to the IUT in

all subtours that fulfill all the TSG and parameter variation constraints.

The ASP parameter-editor allows to edit and change the parameter variation constraints

within the limits defined by the ASN.l definition of the parameter types.

2.1.4 Test suite generation engine

Given the PDS representation of a communication protocol and a set of constraints for this

PDS, the test suite generation engine identifies and stores all the subtours and derives a T T C N

test case for each subtour.

The subtour identification function performs an exhaustive search by means of a backtrack­

ing depth first search over the tree representation of the protocol to be tested. A test-branch

of this tree is said to be valid if and only if the subtour associated with this branch fulfills all

the TSG constraints.

For each ETS elements, e.g. states, transitions, there are two associated global pa­

rameters, "MAXUSE" and "MINUSE". "MAXUSE" limits the value range of the max.reached

and maxjased constraints. These constraints limit the length of each valid test-branch to be <

MAXUSE x#states. In each state only a finite number of transitions can be applied (according

to the protocol definition). The parameter variation constraints on the parameter of the service

primitives exchanged in each transition limits the number of different instances of the service

primitive in that transition. Thus the length and the number of different valid test-branches are

kept finite so that the backtracking algorithm is guaranteed to terminate. "MINUSE" limits

the value range of the mirureached and min.used constraints. The default value for "MAXUSE"

constraints is 99. For "MINUSE" constraints the default value is 0.

Elaborate constraints may be necessary to reduce the number of test cases that can be

CHAPTER 2. TESTGEN 18

generated for a complex protocol (e.g. for the FDDI MAC protocol). Adequate constraints are

likely to be determined in a trial and error process.

2.2 TESTGEN components

The major components of TESTGEN are depicted in Figure 2.1.

Abstract TTCN Test Suite

c TTCN Tool (^^Test Tooi~~^^

1
Formated TTCN output Excutable Test Suite

Legend: File () Data Structure

Dynamic Module ~ ~ ~ ~ External Module

Figure 2.1: Test Suite Generation Process

The parser accepts the formal Estelle.Y/ASN.l protocol description and translates the

CHAPTER 2. TESTGEN 19

protocol specification into a Protocol Data Structure (PDS) which serves as an internal rep­

resentation of the combined extended transition system (ETS) and ASN.l formalism. The

Test Suite Generation (TSG) and parameter variation constraints are set to default values by

TESTGEN automatically. The default constraints can be modified by the user interactively

through the constraints editor. Based on the PDS representation of a protocol and the TSG

constraints the test suite generation engine identifies all the subtours of the combined ex­

tended transition system and ASN.l formalism representation of the protocol that fulfill the

TSG Constraints and generates an abstract T T C N test case for each of the subtours identified.

A T T C N tool is used to edit and print the generated test suites and any T T C N supporting

test tool can translate the abstract T T C N test suites to executable test suites in order to run

them. Appropriate existing T T C N and test tools can be interfaced or incorporated to our

environment to serve those purposes.

TESTGEN tool is menu-driven. The parser, constraint editor and the test suite generation

engine are three major functions. Through the main menu the user can load a Estelle.Y/ASN.l

protocol specification into the system and call the parser to generate PDS from the protocol

specification. A set of default constraints are set for the protocol and stored in the generated

PDS automatically. Then the user can look at any of the items stored in the PDS through

the PDS verification menu to check if the protocol information is properly represented in the

PDS. The constraint editor is implemented as a menu-driven function. The user can set more

TSG and SP parameter constraints or modify the existing TSG and SP parameter constraints

through the constraint menu. Finally the user can call the test suite generation function to

generate T T C N test cases through TSG menu. The user can view all the subtours identified

by the subtour identification process or all the T T C N test cases generated from the identified

subtours. The complete TESTGEN menu can be found in Appendix D.

The generation of PDS is a key step for test suite generation using TESTGEN. The design

of the PDS is of particular importance since all subsequent steps make use of this PDS.

Chapter 3

Estelle.Y and Protocol Data
Structure (PDS)

Since protocol specifications described in natural language often contain ambiguities, protocol

implementations based on such specifications are likely to be incompatible. The interoperability

of two implementations based on the same protocol standard is thus not guaranteed. On the

other hand, the process of deriving test suites directly from informal specifications does not seem

possible. The test suites generated automatically must be derived from the formal specification

of protocols. A formal language that can fully describe the external behaviors of a protocol

based on the ETS + ASN.l formalism is therefore necessary for TESTGEN.

As there is no standardized formal protocol description for most standardized protocols,

the choice of which Formal Description Technique (FDT) to be supported was open. After

consideration of LOTOS [ISO-8807], Estelle [ISO-9074], SDL [SDL-88], CRS [CRS-89] and

EBE [EBE-89-2] and EsteUe Normal Form Specification (NFS) [Sari-87] we decided to use

an Estelle-like formal language because Estelle is based on a conceptual model similar to the

ETS+ASN.l formalism. Furthermore, Estelle is supported by ISO and is more "user-friendly"

than LOTOS. Also many protocol specifications in Estelle are available.

20

CHAPTER 3. ESTELLE.Y AND PROTOCOL DATA STRUCTURE (PDS) 21

3.1 motivation

There are technical difficulties to derive test cases directly from the ISO FDTs such as LOTOS

[ISO-8807], Estelle [ISO-9074] or SDL [SDL-88]. The existing test generation methods which

generate test suite covering both control part and data part of protocols are mostly based on

the Estelle Normal Form Specification (NFS) of protocols. EBE is another intermediate formal

description mechanism which is dedicated to describe only the external behaviors of protocols.

Estelle.Y is defined for a similar reason. We are not intended to define a new FDT. How­

ever, we need an intermediate formal specification of protocols based on ETS/ASN.l formalism

representation of protocols. Estelle.Y is defined to be directly used with ASN.l. This is moti­

vated by two facts. First, ASN.l has been widely used to specify the protocol data types for

higher layer protocols. The protocol data types of some other protocols such as the FDDI SMT

protocol are specified in ASN.l in the protocol standard as well. Second, ASN.l is supported

in TTCN. Since TESTGEN generates T T C N test suites, ASN.l can be consistently used to

specify the structure and data types of ISPs, OSPs and PDUs throughout the TSG process.

Furthermore, protocol timers are important for conformance testing in that they have non-

trivial impact on the observable behaviors of a protocol. Timers must therefore be tested.

To facilitate the testing of protocol timers, we provide explicit mechanism for specification of

timers in Estelle.Y.

The specification of protocols in Estelle, SDL or CRS will be easily transformed to Estelle.Y

specifications.

NFS and EBE are not suitable for TESTGEN because they are not defined to be used

directly with ASN.l and they do not explicitly support timers. Furthermore, NFS is not de­

signed to be directly used to specify complex protocols. An NFS representation of a complex

protocol is unreadable. Compared to NFS, Estelle.Y is more flexible since it supports more Pas­

cal statements such as the conditional statements and loop statements. The Estelle.Y/ASN.l

specification tends to be more concise and readable than that in NFS.

In order to generate a test suite automatically, the syntactical and semantical information

CHAPTER 3. ESTELLE.Y AND PROTOCOL DATA STRUCTURE (PDS) 22

of a protocol defined in the protocol specification must be accessible to the test generation

engine. The Protocol Data Structure (PDS) is designed to be the machine accessible form of

the ETS/ASN. l based formal protocol specification. It holds both the control part and the

data part of a protocol specification. The following sections introduce the definition of an

intermediate formal description language Estelle.Y and the PDS for TESTGEN.

3.2 Estelle.Y

Estelle.Y is a formal language defined to specify protocols for automatic test suite generation.

It is designed to be used with ASN.l, since the ETS+ASN.l formalism is being used by TEST­

GEN. An Estelle.Y specification is a modified, single module Estelle specification enhanced by

introducing explicit language support for timers and for structure references to SPs and PDUs

and references to their parameters.

The structure of SPs and PDUs and the data type of their parameters are specified in

ASN.l. The ASN.l specification of SPs and PDUs is provided in a separate file along with the

protocol specification. ASN.l specifications are parsed to the ASN.l type tree by the ASN.l

parser. The Estelle.Y specifications are parsed to the PDS by the TESTGEN parser. Also the

TESTGEN parser incorporates the ASN.l type tree into the PDS.

3.2.1 Estelle and A S N . l

Estelle is a formal description technique (FDT) standard developed by ISO. It is a formal spec­

ification language designed for the specification of communication protocols and services. It is

based on the Extended Finite State Machine (EFSM) model. An Estelle specification describes

a protocol and the services as a hierarchically structured system of non-deterministic sequential

components (instance of modules) interchanging messages (called interactions) through bidi­

rectional links between their ports (called interaction points) [ISO-9074]. It may be considered

as an EFSM based extension of Pascal language. Estelle is implementation-oriented in that it

is designed to specify both the internal and external behaviors of a protocol. Although it is

designed to specify ISO protocols particularly, protocols standardized by other organizations

CHAPTER 3. ESTELLE.Y AND PROTOCOL DATA STRUCTURE (PDS) 23

may also be specified in Estelle.

Abstract Syntax Notation One (ASN.l) is a notation or language for the definition of com­

plicated data types and their values without determining the way and instance of this type

is to be represented during transfer. ASN.l is standardized by ISO [ISO-8824]. The ASN.l

language is described using Backus Naur Form (BNF). The ASN.l definition of data structures

or data types are very similar to those in the programming languages like Pascal or C. ASN.l's

notation is similar to most programming languages in that it contains a set of simple built-in

types, a set of rules for constructing programmer defined types and a mechanism to set the

values of these types. ASN.l has been widely accepted as a formal language to specify the data

structure for higher level OSI protocols.

ASN.l is also used in TTCN to define data structures of protocol service primitives and

protocol data units.

3.2.2 Design issues

Estelle.Y is designed to formally specify the protocols and services for automatic test suite

generation based on the ETS + ASN.l formalism. As a formal intermediate notation for

conformance testing, it should be able to describe the external behaviors of protocols precisely,

completely and unambiguously but should not complicate the parser.

Estelle contains some features which are not necessary for the conformance testing based

on the ETS+ASN.l formalism. TESTGEN generates test suites for protocols based on a

single extended finite state machine representation of protocols. Estelle.Y is then defined as an

Estelle variation to support only one module. The Estelle language constructs for specifying

interactions between different modules and the mechanism for creating instances for the modules

are not supported by Estelle.Y.

In an Estelle specification, the data types of protocol variables and constants as well as SPs

and PDUs are specified in Pascal.

We use Pascal to describe the data types of protocol variables and constants in Estelle.Y

specification. The data structure and the data type of the SPs and PDUs and their parameters

CHAPTER 3. ESTELLE.Y AND PROTOCOL DATA STRUCTURE (PDS) 24

are defined in ASN.l . The SP parameters or PDU fields defined in ASN.l may be referenced in

Estelle.Y specification through a dot notation mechanism similar to that a structure or record

field is referenced in programming languages C or Pascal.

We consider timers as an important part of a protocol. Timers are also key issues for

the conformance testing. Estelle does not provide explicit language support to specify timers.

Estelle.Y supports timers explicitly.

3.2.3 Estelle.Y definition

The conceptual model

The ETS+ASN.l formalism defined in section 2.1 is the conceptual model which defines the

semantics of an Estelle.Y specification. The syntax of an Estelle.Y specification is similar to

that of an Estelle specification of the single module.

The set of state Q is represented by control states, data states, constants and timers. Control

states are a set of control values associated with the special identifier STATE. The data states

are represented by values of variables, constants and the status of timers. These ETS elements

are declared in the declaration part. qinu is defined in the initialization part. The observable

behaviors of modules specified in terms of the set of events E are the effect of the module

activity as described within an module body definition. The set of transition —• is specified in

the state — transition part. Each transition is syntactically composed of two parts: a clause

group and a transition block. A clause group defines the enabling predicate of a transition.

The clauses also define the control state from which a transition may take place and specify the

next control state following the transition's execution. The events associated with a transition

are also defined by the clauses. The transition block defines the action function to be executed

by the transition.

Syntax and semantics

The syntax of Estelle.Y is defined in Backus-Naur Form (BNF) notation. The complete BNF

definition of Estelle.Y is in appendix A. In its present stage, an Estelle.Y specification is a single

CHAPTER 3. ESTELLE.Y AND PROTOCOL DATA STRUCTURE (PDS) 25

module definition. It contains three major parts: the declaration part, initialization part and

the state-transition part. The protocol state machine is initialized in the initialization part.

The state-transition part is to define the transitions of the protocol state machine.

• Declaration part

The syntax of Estelle.Y variable and constant declarations are similar to those in Pascal.

EsteUe.Y supports three data types for the variables and constants: integer, boolean and

character string. Timeout values are declared for Timers. PCOs are declared for ISPs

and OSPs, and PDUs in case no embedding SPs are declared for PDUs. Embedding SPs

or PCOs are declared for PDUs. Figure 3.1 is an example of the declaration part.

• Initialization part

The initial states of the module are specified by the initialization part. The variables and

timers may be assigned their initial values in this part. They will be assigned default

values if not explicitly initialized.

• State-transition definition part

The transitions are specified in this part. Figure 3.3 gives an example of a transition

declaration. The clause group (FROM, To, WHEN, PROVIDED, etc) specify the present

state and the next state of a transition, sending and receiving of the SPs, the priority

and the enabling predicate. The enabling predicate is specified in Pascal as a boolean

expression.

The action function is specified as a group of Pascal statements. Four Pascal statements

are supported. They are the assignment statement, if statement, while statement and

compound statement. Moreover a set of timer statements are supported to specify the

operations on timers.

A transition is firable if the enabling predicate is satisfied, an ISP, in which PDU may be

embedded, is received and the protocol is in the right control state. A transition can fire

only if it is firable and it has the highest priority among the firable transitions.

CHAPTER 3. ESTELLE.Y AND PROTOCOL DATA STRUCTURE (PDS) 26

Specification FDDI_l_mac;

CONST
yes = true: boolean;
high = 20: int;
NULL.STR = "": char.str;

VAR
Ring.Operational: boolean;
Token_class: i n t ;
frame.INFO: char_str;

ISP
PhUnitDatalndication mac.phy;

OSP
PhUnitDataRequest mac.phy;

PDU
Frame sent.in PhUnitDataRequest,

recv_in PhUnitDatalndication;
TIMER

TVX 2350;
STATE

Rx.data, Ck.frame;

Figure 3.1: Example of the declaration part

INITIALIZATION

To Rx.data
begin

Ring_Operational := true;
Token_class := 1;
frame.INFO := "";

end;

Figure 3.2: Example of the initialization part

CHAPTER 3. ESTELLE.Y AND PROTOCOL DATA STRUCTURE (PDS) 27

TRANS

FROM Rx.data
TO Rx.data
WHEN PhUnitDatalndication
PROVIDED (PhUnitDatalndication.phlndication = I)

and (not Reset(TVX))
PRIORITY high
OUTPUT PhUnitDataRequest
BEGIN

Reset(TVX);
Start(TVX);
PhUnitDataRequest.phRequest := I;

END;

Figure 3.3: Example of a transition declaration in the state-transition part

Language extension for timers

Estelle.Y provides explicit language supports for the specification of timers. Timer expressions

reflecting the current status of a timer are also supported. The timer expressions are:

• RESET(timer-name),

• STARTED(timer-name),

• STOPPED(timer-name) and

• READ(timer-name).

The first three are boolean expressions. The last one gives the current value of a timer. Four

timer statements are supported to specify the operations on timers. They are

• RESET(timer-name),

• START(timer-name),

CHAPTER 3. ESTELLE. Y AND PROTOCOL DATA STRUCTURE (PDS) 28

• STOP(timer-name) and

• SET(timer-name, expression).

A value may be assigned to a timer through SET statement.

ASN.l subset

We adopt a subset of the ASN.l notation defined in [ISO-8824] to specify the data structures

of the protocol service primitives, protocol data units and their parameters. The basic ASN.l

type notation defined in Section 1 and Section 2 of [ISO-8824] is chosen as the ASN.l subset for

TESTGEN. The SPs, PDUs and parameters of a protocol are specified in ASN.l in a separate

file but they may be referenced by the Estelle.Y specification of the protocol.

The SP and PDU parameters are represented by dot notation mechanism in an Estelle.Y

specification as the following:

< SPname > {. < parametername >}+

or < PDUname > {. < parametername >}+.

The parameters may be referenced in an enabling predicate or in some statements of an action

function where the protocol variables may be referenced. Figure 3.4 is an excerpt of the ASN.l

specification of SPs of FDDI MAC protocol.

3.2.4 Estelle.Y versus Estelle

Estelle.Y is basically a single module Estelle. The process of transforming an Estelle specifica­

tion to an Estelle.Y specification is similar to the normalization process in [Sari-89] and hence

is feasible.

Two major transformations are required. The multiple modules in Estelle specification

must be integrated into a single module and some of the statements e.g., case statement, delay

statement must be replaced. The SPs and PDUs are specified in Pascal in an Estelle specification

and must be specified in ASN.l in the Estelle.Y/ASN.l specification. This transformation is

CHAPTER 3. ESTELLE.Y AND PROTOCOL DATA STRUCTURE (PDS) 29

FDDIMac DEFINITIONS ::=

BEGIN

PhyToMacAsp ::= CHOICE
{
PhUnitDataRequest,
PhUnit Dat alndicat ion,
PhUnitDataStatusIndication,
Phlnvalidlndication
>

PhUnitDataRequest ::= SEQUENCE
{

phRequest Symbol
>

Figure 3.4: Example of ASN.l definition of protocol SPs

CHAPTER 3. ESTELLE. Y AND PROTOCOL DATA STRUCTURE (PDS) 30

straightforward since ASN.l describe abstract data types in a way similar to Pascal.

3.3 Protocol data structure

In order to generate T T C N test suites automatically from the formal specification of protocols,

the information specified in the formal specification must be accessible to the test generation

engine. The protocol data structure (PDS) is designed to represent the formal protocol speci­

fications based on ETS+ASN.l formalism in a machine accessible form.

The protocol information saved in the PDS will be directly used for the subtour identification

process which is the key process of the automatic test suite generation. In other words, the

TSG is completely based on the protocol information in the PDS. Therefore it is very important

to ensure that the PDS correctly represents the information of the protocol specifications so

that test suites can be generated correctly. It is also important that the PDS is easy to be

accessed by the test generation engine. To facilitate the identification of subtours, the protocol

information in the PDS is organized as an internal representation of the protocol state machine

graph. Although the PDS is particularly designed for TESTGEN, it may also be used for other

applications such as protocol validation tools.

A protocol data structure representing a complete, real world communication protocol could

be very large and complex. To make the accessing and management easier, we organize the

protocol information in a way similar to that the database uses to organize the data.

3.3.1 Representation of protocol descriptors

Based on the ETS+ASN.l formalism, a protocol is formally described in terms of several sets of

components, i.e. states, transitions, variables, constants, input service primitives, output service

primitives, protocol data units and timers. We call these components protocol descriptors. In

an Estelle.Y specification, some sets of the protocol descriptors are further described in terms

of other sets of protocol descriptors. For instance, transitions may be described in terms of

action functions, enabling predicates, expressions, statements, SP and PDU parameters etc.

In the PDS, a structure (or type) is defined for each set of protocol descriptors in the PDS.

CHAPTER 3. ESTELLE. Y AND PROTOCOL DATA STRUCTURE (PDS) 31

Each of the protocol descriptors specified in the specification is then represented as an instance

of a specific structure. For example, a state is an instance of structure STATE defined for

states. The definition of the structures are given in the following subsections.

3.3,2 Protocol descriptor access

The main part of the PDS consists of pointer arrays. The pointers of each array point to a

certain type of protocol descriptors. Each descriptor can then be accessed with its type (array

name) and its key (array subscript) being known through the main structure.

Figure 3.5 illustrates the main data structure of the PDS.

PPDS
PDS

pstate[]

ptrans[]

ptstmt[]

states

transitions

statements

Figure 3.5: The main data structure of PDS

The C structure definition of the main structure of PDS is shown in figure 3.6.

CHAPTER 3. ESTELLE.Y AND PROTOCOL DATA STRUCTURE (PDS) 32

typedef struct {

int i n i t _ s t a t e ;

int nb_of.states;
PSTATE pstate[MAXSTATES - 1] ;
int nb_of.transitions;
PTRANS ptrans[MAXTRANSITIONS - 1] ;
int nb_of.variables;
PVAR pvar[MAXVARIABLES - 1] ;
int nb_of.constants;
PCONST pconst[MAXCONSTANTS - 1] ;
int nb.of_isps;
PISP pispCMAXISPS - 1] ;
int nb.of_osps;
POSP posp[MAXOSPS - 1] ;
int nb.of_pdus;
PPDU ppdu[HAXPDUS - 1] ;
int nb.of.timers;
PTIMER ptimer[HAXTIMERS - 1] ;
int nb.of_efns;
PEFN pefn[MAXEFNS - 1] ;
int nb.of.spparms;
PSPPARM pspparmCMAXSPPARMS - 1] ;

> PDS, *PPDS;

>

Figure 3.6: C structure definition of PDS

CHAPTER 3. ESTELLE.Y AND PROTOCOL DATA STRUCTURE (PDS) 33

The field initstate is the key to the initial control state of the protocol. PSTATE, PTRANS,

PVAR, PCONST, PISP, POSP, PTIMER, PEFN, PSPPARM, ... are pointers to the structure

STATE, TRANS, VAR, CONST, ISP, OSP, TIMER, AFN, SPPARM, respectively.

The number of protocol descriptors used to describe a specific protocol is not known at the

compile time. The C type definition of the PDS requires a fixed length of the pointer arrays. So

a set of MAX... constants has to be introduced to indicate the maximal number of descriptors

allowed. The n6_o/_... fields indicate the actual total number of protocol descriptors of each set

for a specific protocol.

The pointer arrays pointing to variables, constants and the SP and PDU parameters may

be considered as some kinds of symbol tables as often used in the compiler constructions.

The relations between different descriptors are normally represented by links between the

descriptors. Two possible approaches are considered. The first is that protocol descriptors may

simply be linked directly by a pointer from one to another. The second is that the descriptors

are indirectly linked together via the main data structure. In this way, a protocol descriptor

indirectly "points" to other descriptors by remembering the types and keys of those descriptors

and looking for physical pointers to them through the main data structure. Consider the

complexity of a real-life protocol, the advantage of the latter is evident. Each set of protocol

descriptors has its own index stored in the main structure so that the descriptors are easy to

be accessed. The information of a protocol in the PDS is well-organized and therefore is easy

to be accessed for TSG and the other applications.

If a set of protocol descriptors is specified in ASN.l it stores a pointer to the data structure

that used to represent the ASN.l specification.

3.3.3 PDS data structure definition

The two major components of an ETS based protocol specification are states and transitions.

The PDS is organized as a Finite State Machine (FSM) that has been extended to accommodate

the following protocol descriptors other than states and transitions:

• ISPs and OSPs

CHAPTER 3. ESTELLE. Y AND PROTOCOL DATA STRUCTURE (PDS) 34

• PDUs

• Protocol variables and constants

9 Protocol Timers

• Enabling conditions of transitions

• Actions associated with transitions

The structure S T A T E , T R A N S , ISP, OSP, P D U , V A R , C O N S T , T I M E R , E X P R (for en­

abling conditions) and A F N are defined for the corresponding sets of protocol descriptors. The

definitions of S T A T E , T R A N S , V A R , C O N S T and T I M E R are given in this subsection; ISP,

OSP and P D U as well as S P P A R M are defined in next subsection. The definition of E X P R

and A F N are left for Chapter 4.

S T A T E as illustrated in Figure 3.7 is defined to represent the control states of a protocol.

• key field is a subscript of the pstate array. The pointer to this state is stored in pstate[key}.

• name is the state's name.

• numb.of.trans indicates the total number of transitions applicable to this state.

• trans.key array stores the keys to the transitions that are applicable to this state.

Consequently, one will be able to access all the transitions applicable to a given state by

looking up the pointer to a transition correspondent to the transition key stored in the trans.key

array of applicable transitions. The purpose of storing this information in states is to facilitate

the subtour identification process.

The key and name fields are also contained in the structure definitions of all other sets of

protocol descriptors and also used in the similar way. They will be referred to without further

explains later on.

T R A N S is defined as depicted in Figure 3.8 to represent transitions.

CHAPTER 3. ESTELLE.Y AND PROTOCOL DATA STRUCTURE (PDS) 35

• fromstate and to.state are keys to the present state and the next state of a transition.

• isp, ipdu, osp, osp2, opdu and opdu2 are keys to ISPs, OSPs or PDUs associated with a

transition.

Estelle.Y allows two output SPs or PDUs within a single transition. (This is why osp2

and opdu2 are included.)

• epred and afn are keys to the enabling predicate and the action function associated with

a transition.

• priority field indicates the priority of a transition.

STATE

key

name

numb_of_trans

irans_key[0]

trans_key[MAXTRANS - 1]

! Constraints !
i i

Figure 3.7: STATE definition

VAR and C O N S T are defined as shown in Figure 3.9. The type field indicates the data

type of a variable or constant. Three supported data types are boolean, integer and character

string. Boolean has two possible values, true and false; integer type is a four-byte integer; and

character string is the same as defined in C. Fields int-value, booLvalue and charstr store the

value of a constant.

An enabling predicate (EPRED) is a boolean expression so that the epred field of a tran­

sition actually stores the key to an expression. EXPR is defined to represent expressions as

well as enabling predicates.

Both an action function (A F N) and a compound statement (C S T M T) consist of a group

of statements. The definitions of AFN and CSTMT are exactly the same. However, they are

int

char *

int

int

CHAPTER 3. ESTELLE. Y AND PROTOCOL DATA STRUCTURE (PDS) 36

TRANS

int key

char * name

int from_sute

int to_state

int Up

int osp

int osp2

int ipdu

int opdu

int opdu2

int epred

int efn

int priority

t constraints

Figure 3.8: T R A N S definition

CHAPTER 3. ESTELLE.Y AND PROTOCOL DATA STRUCTURE (PDS) 37

VAR

int key

char * name

TYPE type

Constraints

CONST

key

name

type

int_value

boolean_value

char_str

i Constraints !
i i

Figure 3.9: VAR and CONST definitions

defined as two independent types since they are conceptually different.

Figure 3.10 is the TIMER structure for the representation of timers. timeouLvalue is

the time-out value of the timer. The TIME_UNIT is of integer type and the time unit is
microsecond.

TIMER

key

timeout_value

i Constraints !
i i

Figure 3.10: TIMER definition

int

char *

TYPE

int

BOOLEAN

char *

int

char *

TIME_UNIT

The lower level structures of expressions (EXPR) and statements (IFSTMT, CSTMT, AFN,

...) are defined in Chapter 4 because they are closely related to the design of the TESTGEN

parser.

CHAPTER 3. ESTELLE.Y AND PROTOCOL DATA STRUCTURE (PDS) 38

Figure 3.11 illustrates the relations between all the components of the PDS. Note that some

sets of descriptors are recursively defined by the same type of descriptors, e.g. an expression may

be defined by a set of subexpressions. An enabling predicate (EPRED) is a boolean expression

and the field of a transition actually stores the key to an expression. In figure 3.11 the dotted

arrows from EPRED to EXPR indicates this type of relation.

STATE

TRANS

Figure 3.11: The relation diagram of the PDS components

CHAPTER 3. ESTELLE. Y AND PROTOCOL DATA STRUCTURE (PDS) 39

Finally, some test generation and parameter variation constraints may be imposed on some

sets of the descriptors. The "constraints" fields are included in the structure definitions of those

sets to store the constraints. The reader may refer to [TR-90-x] for more detailed description

of the PDS.

3.3.4 A S N . l t y p e tree

A set of data types defined in ASN.l for a particular application is called an abstract syntax.

Following this definition, the ASN.l specification of SPs and PDUs of a specific protocol is an

abstract syntax. The ASN.l type tree [Sample-90] is an internal data structure that contains

all the structuring and naming information of an ASN.l abstract syntax.

The structure of input service primitives, output service primitives and protocol data units

are required to be specified in ASN.l. To allow the ASN.l information to be accessed from

the PDS, these protocol descriptors have pointers to the ASN.l type tree in which the ASN.l

information is stored.

We use ASN.l type tree as the internal representation of the the input service primitives,

output service primitives and protocol data units and parameters in ASN.l part specification.

The ASN.l type tree created by the ASN.l parser is a tree of template ENODEs (T_ENODEs).

Figure 3.12 is the C structure definition of a template enode. Each T.ENODE represents one

layer of the structure/typing of ASN.l types. Each TJENODE holds information that describes

an ASN.l type. The components of a type definition (also called children of the type definition)

are linked as a list. The pointer child of the type definition node points to the head node of

the list of its children. The pointer next of the type definition points to one of its siblings. The

siblings and the type definition itself are children of a higher layer type definition.

A simple example of an ASN.l type definition and its type tree is illustrated in Figure 3.13

and Figure 3.14. Readers may refer to [Sample-90] for more details.

ISP structure is defined as in Figure 3.15.

« PCO is the name of the Point of Control and Observation at which the SP or PDU is

exchanged by te IUT [ISO-9646].

CHAPTER 3. ESTELLE.Y AND PROTOCOL DATA STRUCTURE (PDS) 40

typedef struct T.ENODE
{

TAG univTag;
V_EN0DE_PTR tag;
SUBTYPE.PTR subtypes;
T.ENODE.PTR next;

/ * univ type tag (i f not extra tag) * /
/ * actual tag to use for enc/decode * /
/ * any subtyping info for t h i s type * /
/ * next e l t pts to s i b l i n g * /

V.ENODE.PTR
union
•c

T_EN0DE_PTR
T_EN0DE_PTR
T_EN0DE_PTR

} a;

namedElmts; / * named num/bits I enumerated defs * /
/ * save some space with a union on mutually excl elmts * /

c h i l d ; / * c h i l d elmts i f constructed * /
choiceElmts; / * elements of a choice type * /
selectionType; / * type se lect ion is from * /

short typeFlags;

BYTE sysFlags;

V.ENODE.PTR defau l tVal ;

IMPORT.ELMT.PTR importRef;

char* name;

char* typeName;

/ * type a t t r i b f lags: 2 bytes * /

/ * note: V.ENODE's use some of these * /
* ie chi ldren part of other type def * /

/ * i f not n u l l , imported type def ref* /

/ * f i e l d name i f component else*/
/ * or ig defined type name i f redefined*/
/ * defined type name * /

} T.ENODE;

Figure 3.12: The data structure of template ENODE

CHAPTER 3. ESTELLE. Y AND PROTOCOL DATA STRUCTURE (PDS) 41

PDUDEFINrnONS::=
BEGIN — a simple type defined in ASN.l for the use as an example

PduType ::= SEQUENCE

{

infoLength INTEGER,

info Characters tring OPTIONAL,

status BOOLEAN

END

Figure 3.13: ASN.l type example

SEQUENCE
IK PAiTjrpc

type:
typem
field mane:
»<: UNIVERSAL 16
•milni—:

type: INTEGER
type Dime;
fieldname: infoLength
U | : UNIVERSAL 2
innbulBt:
libuing: •

4 -

type: Chine tcr Str
type name:
field name: info
lag: UNIVERSAL 19
attributes: OPTIONAL
nbiling: -
componenra:

typo: BOOLEAN
type name:
fieldname: status
tag: UNIVERSAL 1
attributes:
sibiHng: -

Figure 3.14: ASN.l type tree of PduType

CHAPTER 3. ESTELLE.Y AND PROTOCOL DATA STRUCTURE (PDS) 42

ISP

key

name

PCO

isp_typetree_ptr

nb_ofj>du»

pdu_key[0]

pdu_key[nb_of_pdus -1]

| Constraints !
! I

Figure 3.15: ISP definition

• ispjypetree-ptr is the pointer to an ASN.l type tree that holds the ASN.l definition of

this ISP. The description of ASN.l type tree is given in next subsection.

• nb.of-pdus is the number of different types of PDUs that can be encoded in an ISP.

• pdu^key is an array of keys to the PDUs that can be encoded in this input service primitive.

OSP is the same as ISP except that in OSP the pointer to ASN.l type subtree is named
ospJLypetreejptr instead of ispj,ypetreejptr.

PDU is defined to have following fields:

• key and name

• sentJn and recvJn are the keys to the service primitives in which the PDU can be sent
or received.

• pdu-typetree-ptr is a pointer to the ASN.l type tree which holds the ASN.l specification

of the PDU.

SPPARM structure shown in Figure 3.16 is designed to represent the SP or PDU pa­

rameters. The parameters can be referenced or used just like a variable so that we treat the

parameters as protocol descriptors and represent them in a way similar to that a variable is

int

char *

char *

T_ENODE_PTR

int

int

CHAPTER 3. ESTELLE. Y AND PROTOCOL DATA STRUCTURE (PDS) 43

represented in the PDS. On the other hand, for test suite generation, the TSG constraints are
imposed on each of the parameters so that SPPARM structure is also necessary for storing of
the constraints.

SPPARM

int key

char * name

SPTYPE 'P'yp*

int "Pkey

T_ENODE_PTR t_enode_ptr

i i
i i
i i

Figure 3.16: SPPARM definition

3.4 Summary

An Estelle.Y specification is more concise and more readable than an Estelle Normal Form
specification [Sari-89] in that Estelle.Y supports conditional statement and loop statement
(extra transitions are created due to the lack of conditional statements and loop statements in
Estelle Normal Form). In addition, Estelle.Y supports timers explicitly to facilitate the testing
of timers and supports ASN.l directly. Estelle.Y is shown to be a good intermediate formal
specification mechanism for automatic test generation or protocol validations.

The PDS can be easily extended to accommodate the protocol specifications with multiple
modules. The current design of PDS can be used as a basic component of a composite PDS
which is a higher level data structure that represents the hierarchical structure of multiple
modules.

The major deficiency of PDS is due to the fact that the memory space is statically allocated
for its main structure. The number of protocol descriptors varies with different protocols while
the set of MAX... constants are fixed. When the specification of a specific protocol is being
parsed, the number of protocol descriptors generated by the parser may exceed the MAX...

CHAPTER 3. ESTELLE. Y AND PROTOCOL DATA STRUCTURE (PDS) 44

limit, even though we can define the MAX... constants large enough such that in normal cases
the limit may not be exceeded. In case of limits being exceeded, users are asked to modify the
set of MAX... constants defined some of the C source files. To avoid this deficiency, we can
make use of a dynamic main data structure for PDS in which we use a dynamically allocated
pointer list instead of the static pointer array. However, this dynamic data structure would be
more complex and could require more accessing time. The current limits are set as follows:

MAXSTATES = 40 MAXTRANSITIONS = 150

MAXVARIABLES = 100 MAXC0NSTANTS = 100

MAXISPS = 20 MAX0SPS = 20

MAXPDUS = 20 MAXTIMERS = 20

MAXTEXPRESSIONS = 100 MAXEXPRESSIONS = 1200

MAXSPPARMS = 100 MAXSTMTS = 100

MAXIFSTMTS = 100 MAXWSTMTS = 100

MAXASTMTS = 400 MAXTSTMTS = 100

MAXCSTMTS 100 MAXAFNS = 150

Chapter 4

T E S T G E N parser

In order to run the test suite generation applications, the formal Estelle.Y/ASN.l specifica­
tion must be translated into PDS. The internal PDS representation of the ETS+ASN.l of a
communication protocol is generally so complex that the manually generation (hard wired C
code) of the PDS for each specific protocol would be too error prone and too labor intensive.
On the other hand, the subtour identification and TTCN test suite generation processes of the
TESTGEN are totally based on the protocol information saved in the PDS. In order to generate
test suites properly, we must ensure the PDS to be generated correctly from the specification.
A parser which can generate PDS from formal specifications is therefore required.

We developed the TESTGEN parser to parse the Estelle.Y/ASN.l specifications to the
PDS. The parser is developed in C on SUN workstations with about 8000 lines of C code.

This chapter discusses the issues of design and development of the TESTGEN parser. Sec­
tion 1 is about the design issues. The implementation is discussed in Section 2. The testing of
the TESTGEN parser is presented in the last section.

4.1 Design considerations

There are several possible approaches we can use to develop the TESTGEN parser. One way is

to develop a parser that can recognize both Estelle.Y and ASN.l languages. Such a parser can

parse and translate the Estelle.Y/ASN.l specification of protocols into PDS. However, a more

45

CHAPTER 4. TESTGEN PARSER 46

efficient way is to make use of the existing Estelle and ASN.l tools.
A considerable amount of work has been done in the development of Estelle and ASN.l

tools [Neu-90] [Sample-90]. The available tools such as Estelle-C compiler [Vuong-88] and
ASN.l-C compiler [Neu-90] generate C codes from an Estelle or ASN.l specification. These
compiler tools are not suitable for test suite generation because protocol choices information
and nondeterminisms are lost during compilation [Vuong-91-1] so that they can not be used for
development of TESTGEN.

An ASN.l parser is presented in [Sample-90]. It can parse an ASN.l specification to an
internal data structure that holds the syntactic and semantic information of the ASN.l specifi­
cation. It is designed for conformance testing of application layer protocols. The ASN.l parser
generates an internal data structure, the ASN.l type tree, from the ASN.l specifications.

We develop a parser, the TESTGEN parser, to parse the Estelle.Y/ASN.l specification of
protocols into the PDS. The ASN.l parser of [Sample-90] is then used to parse the ASN.l specifi­
cation to ASN.l type tree. The generated ASN.l type tree is linked to the PDS by TESTGEN
parser when the Estelle.Y specification is being parsed. As the result, a PDS that includes
both Estelle.Y and ASN.l protocol information can be generated from an Estelle.Y/ASN.l
specification.

4.1.1 A S N . l parser

The ASN.l parser is designed for testing of OSI application layer protocols. It is developed by
using UNIX Lex/Yacc tools. It produces the ASN.l type tree from ASN.l specifications. The
ASN.l type tree is written to a file as an relinkable block after it is generated. The main use of
this tool is to build loadable ASN.l type trees offline, which can subsequently be loaded during
the execution of the protocol tester [Sample-90]. The ASN.l parser provides a subroutine which
can reload the ASN.l type tree written in a file.

The reloadability of the ASN.l type tree provided by the ASN.l parser facilitates the in­

corporation of ASN.l type tree into PDS generated by TESTGEN parser.

An intuitive way of the incorporation is to generate two data structures both on line and

CHAPTER 4. TESTGEN PARSER 47

then integrate them. However, considerable difficulties exist. The two parsers are developed

independently and the naming conflicts of the subroutines and symbolic constants between the

two parsers are difficult to be resolved, especially when they are developed by using Lex/Yacc

tools and some machine-generated codes are used. On the other hand, we do not need to handle

the naming conflicts of subroutines between two parsers if one of the data structure is generated

off line.

Figure 4.1 illustrates the configuration of TESTGEN parser.

EsteUcY

Protocol Specification

ASN.l

SPs and PDUs Spedficatiion

Figure 4.1: TESTGEN parser configuration

4.1.2 Lex/Yacc tools

The TESTGEN parser is implemented in C under the UNFX operating system. UNIX lex/yacc

tools are designed to facilitate the construction of the front end compilers, i.e. the parser. We

make use of these tools to implement the lexical analyzer and the TESTGEN parser itself.

Yacc input is produced based on the BNF rules of Estelle.Y. Figure 4.2 depicts the process

of TESTGEN parser generation.

CHAPTER 4. TESTGEN PARSER 48

Estelle.Y
LEX/YACC source code

Figure 4.2: TESTGEN Parser generation

4.1.3 Abstract syntax tree

The parse tree is a popular intermediate representation form of source programs used for con­

struction of many compilers. Given the BNF definition of a grammar, lex/yacc tools can

construct the parse trees of source programs easily. In our application, lex/yacc tools are used

to construct syntax trees, which are similar to parse trees and store the syntactical information

of the Pascal statements and expressions in Estelle.Y/ASN.l specification.

In a syntax tree, the control constructs of statements are represented as tree nodes. Figure

4.3a — c provides three examples of the syntax trees for statements. An assignment statement

is depicted in Figure 4.3a. v could be a variable or a parameter which is the left-hand side

operant of the assignment statement. The subtree e describes the expression of the assignment

statement. Figure 4.36 illustrates an if statement. The subtree e represents the condition of the

if statement. The subtree si and s2 describe the statements to be executed if e is true and false,

respectively. Figure 4.3c illustrates a while loop. The loop control structure is represented by

a single node. The subtree e describes the boolean expression of the loop and the subtree 5

represents the body of the loop.

IFSTMT, WSTMT and ASTMT are defined accordingly to represent the three Pascal

statements supported by TESTGEN. The definition of IFSTMT for if statements as shown in

Figure 4.4. They are actually the definition of the node structures of syntax trees.

Similarly, the expressions are also represented by syntax trees. EXPR (also as EPRED)
is defined as in Figure 4.5.

CHAPTER 4. TESTGEN PARSER 49

si s2

(b) if e then si else s2;

WHILE

(c) while e do s;

Figure 4.3: Examples of syntax trees

IFSTMT

int key

char • name

int bool_expr

STKIND stmtjrind

int stmt

STKIND else_stmt_kind

int else_stmt

Constraints

Figure 4.4: IFSTMT definition

CHAPTER 4. TESTGEN PARSER 50

PEXPR

"1 EXPR

key

lcftjrind

left

operator

rightjdnd

right

! Constraints ! i i

Figure 4.5: EXPR definition

4.2 Implementation

A protocol to be tested is specified in Estelle.Y. The ISPs, OSPs and PDUs and their parameters
of a protocol are defined in ASN.l. The ASN.l specification is parsed to ASN.l type tree by
the ASN.l parser. Moreover, the ISPs, OSPs and PDUs must be declared in the Estelle.Y
specification of the protocol. The parameters may be referenced in the Estelle.Y specification
as well.

The TESTGEN parser first reloads the ASN.l type tree; then calls the parsing function to
parse the Estelle.Y specification of the protocol to the PDS. In the mean time, the ASN.l type
tree is linked to PDS. The TESTGEN parser set pointers to the ASN.l type tree when the
ISPs, OSPs and PDUs and parameters are created in the PDS.

Protocol variables and constants, ISPs, OSPs, PDUs, timers and states must be declared in
the declaration part of the Estelle.Y specification. The TESTGEN parser creates appropriate
types of protocol descriptors in the PDS when the declaration part is analyzed.

4.2.1 Declaration part

As mentioned before, an Estelle.Y specification consists of three parts: declaration part, ini­

tialization part and state-transition part. The declaration part is parsed first. The TESTGEN

parser creats all declared variables, constants, ISPs, OSPs, PDUs, timers and states in the PDS

int

char*

KIND

int

OPERATOR

KIND

Int

CHAPTER 4. TESTGEN PARSER 51

when the declaration part is parsed. The transJsey\] field of the states is empty at this stage
and will be filled when the state-transition part of the specification is parsed. The appropriate
default initial values are stored in VAR instances and TIMER instances created.

ISPs, OSPs and PDUs

When an input service primitive declaration is recognized, the parser creats an instance of ISP

structure for it. Moreover, the TESTGEN parser looks for its ASN.l definition in the ASN.l

type tree. If the definition is found, the pointer to the subtree holding that definition will be

saved in the ...Jypetree.ptr field of the created ISP instance. The OSP and PDU declarations

are treated similarly.

SP and PDU parameters

The SP or PDU parameters are not declared in an Estelle.Y specification. However, the param­
eters may be referenced and be used like a variable. Even though some of the parameters may
not be referenced at all, some of the test suite generation constraints imposed on them must
still be saved for TSG process. A instance of SPPARM must therefore be created for each of
the ISP, OSP or PDU parameters when the ISP, OSP or PDU declaration is being parsed. The
TESTGEN parser searches for the ASN.l type tree for the definitions of each of the parameters
. The pointers to the T_ENODEs of the ASN.l type tree which store the type information of
the parameters will be saved in a created parameter instance. Names of the parameters are
formed based on dot notation.

Timers

All timers must be declared and there are instances of TIMER in the PDS created for each of

them. The declared time-out values are stored in the corresponding instances.

Timer statements and timer expressions are treated as ordinary Pascal statements and

expressions. They are represented as instances of TSTMT and TEXPR respectively. Timer

CHAPTER 4. TESTGEN PARSER 52

expressions have boolean values and can be evaluated as boolean expressions.

4.2.2 Initialization part

The TESTGEN parser sets default initial values for all variables, parameters and timers created

in the PDS if they are not explicitly initialized. The default value is 0 for those of integer type,

false for those boolean type and empty string for those of character string type. If these protocol

descriptors are explicitly initialized in this part, the default initial values are ignored. The initial

state may be assigned in this part. The state pointed by pstate[0] is assumed as the initial state

otherwise.

4.2.3 State-transition part

The state-transition part consists of a group of transition definitions. The keys of transitions
applicable to a state are stored in the transJzeyW field of that state when transitions are created
in the PDS. The TESTGEN parser creates a transition in the PDS when a transition definition
is recognized.

A transition is specified in terms of states, ISPs, OSPs, PDUs, EPREDs and AFN. The
referenced states, ISP, OSP(s) and PDU(s) must have been created in the PDS since they
must be declared in the declaration part. Other components such as the AFN and EPRED
and their components such as expressions and statements are created when an action function
or an enabling predicate is being parsed. The links to the referenced protocol descriptors are
established by storing the types and keys to them.

The syntax trees of the action function (a set of Pascal or Timer statements) and the enabling
predicate (a boolean expression) will be constructed. Whenever and the basic components such
as variables, constants, parameters are referenced, their types and keys are stored by others.
The timer expressions and timer statements are also created if they appear in an action function.
The leaf nodes of a syntax tree may be variables, constants, parameters and timer constructs.

CHAPTER 4. TESTGEN PARSER 53

4.3 Testing

As mentioned before, the correctness of the PDS is very crucial to test suite generation using
TESTGEN. The TESTGEN parser itself is designed carefully to prevent inconsistent infor­
mation from being stored in the PDS. The nb.of.... fields in the main structure of the PDS
record the number of protocol descriptors of each set. The values of these fields can only be
changed through a subroutine. These fields are initialized to be Os. For example, when a state
is created, a key is assigned to it through the subroutine. The key is equal to the current value
of the nb-of„states field and the value of that field increments immediately after the key is as­
signed. Finally, the pointer pstatefkeyj points to the created state. In addition, two verification
mechanisms are developed to verify the correctness of a PDS generated.

4.3.1 Printing PDS

The PDS of a real life protocol could be very large and complex. Since TESTGEN is an
interactive TSG tool, sometimes people may want to check a particular part (e.g. a particular
state) of the PDS generated by the parser. It is more convenient to allow the user check
information displayed on the screen than look for the information in the source specification
file. A set of printing functions are provided for users to check the information stored in the PDS
and make sure the PDS is consistent with the original specification. For example, users may
use these printing functions to check if each protocol descriptors are correctly linked to other
protocol descriptors by looking at the keys and types stored in these descriptors; or to check if
the syntax tree is properly constructed by looking at the expression or statement information
stored in the tree.

In order to verify the correctness of protocol information stored in the PDS, we can randomly
pick up some protocol descriptors such as transitions and print them out using a set of printing
functions. The printed protocol descriptors are then compared to those specified in the protocol
specification.

CHAPTER 4. TESTGEN PARSER 54

4.3.2 Consistency checking of P D S

In addition to the printing functions, a set of consistency checking functions are developed to
check the consistency of the PDS after it is generated. The consistency requirements on which
the consistency checking functions are designed are as follow.

• For each set of protocol descriptors, the value of its n6j»/_... field should not be greater

than the corresponding MAX... constant. For example:

ppds -f nb.ofMates < MAX STATES

ppds -f nb-ofJransitions < MAXTRANSITIONS

• For each protocol descriptor, the key stored in the key field must be equal to the index

of the pointer to that descriptor. Therefore,

Vi, 0 < i < ppds —> nbjojstates =>• ppds —> pstate[i] —• key = i

Vi,0 < i < ppds —• nb-of' ̂ transitions => ppds —> ptrans[i] —+ key = i

• Keys of any set of descriptors stored in any field of a protocol descriptor should not be
greater than the number of descriptors of the set, namely

Vi, 0 < i < ppds —> nb.ofJrans

1) 0 < ppds —>• ptrans[i] -* from^st < ppds —• nb^ofstates, and

2) 0 < ppds —* ptrans[i] —*• tost < ppds —+ nb^of states, and

3) 0 < ppds —• ptrans[i] —»isp < ppds— > nb-ofjsps, and ...

• The type field of any constants or variables can only be the defined data types.

Vi, 0 < i < ppds —r nb-of .variables =>:

1) ppds -»• pvar[i] -> type = BOOLJTYP, or

2) ppds -> pvar[i] -* type = INT.TYP, or

3) ppds pvar[i] -> type = CHARJSTR.TYP,

where BOOLITYP, INT STY P and CHARJSTRSTYP are the three legal types.

CHAPTER 4. TESTGEN PARSER 55

• The timeout values of a timer must be a non-negative integer.

• The leftJcind and right Jzind field and the operator field of an expression should store

only those defined kinds and operators, i.e.

Vi,0 < i < ppds —*• nb.ofjexprs =>:

1) ppds —• pexpr[i] —* right Jzind = VAR., or

2) ppds —• pexpr[i] —• right Jcind = CONST., or

3) ppds —»• pexpr[i] —> right Jzind = TEX PR., or

4) ppcfa —• pexpr[i] —• rightJtind = PARM_, or

b)ppds —> pexpr[i] —• right Jcind = NONE.,

where VAE_,COiVST_,r/i;XPiE_,PA/iM_ and NONE, are legal kinds.

• The stmt Jtind field of action functions should contain only those Pascal statements sup­

ported by TESTGEN.

The complete set of consistency requirements can be found in Appendix E.

Using TESTGEN parser, we parsed FDDI MAC protocol and its services, TPO and LAPB

and generated their corresponding PDSs. The consistencies of these PDSs are subsequently

checked by the consistency checking functions.

Chapter 5

Test generation for the FDDI M A C
protocol

To verify the viability of the TESTGEN and to study the feasibility of applying the concepts of
OSI conformance testing to a high-speed network protocol, we apply TESTGEN to the FDDI
MAC protocol to generate a test suite for it.

We developed a formal specification of the FDDI MAC protocol in Estelle.Y and ASN.l.
The PDS is generated from the formal protocol specification by the parser. A test suite is then
generated for the protocol without any human interventions by use of a set of default TSG
constraints. However, in order to generate a more comprehensive test suite with reasonable
size and fault coverage, we have to tune the default constraints for each specific protocol. An
appropriate set of constraints are set through the constraint editor. Finally a test suite will be
generated based on the PDS and the TSG constraints.

In this chapter, firstly a brief review of the FDDI MAC protocol is presented. The problems
with the formal specification of FDDI MAC protocol and the services in Estelle.Y and ASN.l
are then discussed. The major problem with the specification is how to produce a single ETS
representation of the FDDI MAC protocol. In this chapter, we also show how to combine two
extended transition systems into to one with equivalent behaviors. Finally we discuss the issues
of tuning TSG constraints and the test suite generation.

56

CHAPTER 5. TEST GENERATION FOR THE FDDI MAC PROTOCOL 57

5.1 F D D I M A C sublayer

The FDDI Media Access Control (MAC) layer is the lower sublayer of the Data Link Layer. It
is the most important component of the FDDI standard among the four (MAC, PHY, PMD
and SMT). MAC standard is the core of the FDDI standard. It distinguishes FDDI from other
IEEE LAN standards.

FDDI MAC protocol is developed based on the concepts of Token Ring Access Method de­
fined in ANSI/IEEE 802.5-1985 while the original concepts have been modified to accommodate
the higher FDDI speeds. The protocol is designed to be effective at 100 Mb/s data transmission
rate using the Token Ring architecture. The ring monitoring functions of the protocol are fully
distributed.

The protocol is considered as one of the most complicated media access control schemes
[SKO-89]. A brief review of the three major parts of the MAC protocol standard (ANSI X3.139
- 1987) is given in following subsections.

5.1.1 Services

Section 3 of the MAC standard specifies the services provided by MAC and the services required
by MAC. Three sets of service primitives are defined. For each service primitive, the semantics,
the time when it is generated and the effect of being received are specified.

Table 1 is a list of the service primitives specified in MAC standard. FDDI MAC provides
MAC-to-LLC services for LLC's data transmission via MAC to LLC service primitives.

FDDI MAC layer is designed to be compatible with IEEE 802.2 LLC so that it can be used
as the super service provider of LLC. As the result, the MAC to LLC services of FDDI are very
similar to those of the IEEE 802.5 Token Ring standard.

MAC to PHY services provided by PHY layer are used for MAC data transmission. MAC

provides services for the SMT's data transmission as well. Through the MAC to SMT services,

SMT controls the operation of MAC for purposes of the station management.

CHAPTER 5. TEST GENERATION FOR THE FDDI MAC PROTOCOL 58

MAC to LLC:
MA.UNITDATA.request
MA.UNITDATA.indJcation
MAJJNrTDATAJSTATUS.indecation
MA_TOKEN.request

MAC to PHY:
PH.UNITDATA.request
PH.UNITDATA.indication
PHJJNITDATAJSTATUS.indication
PHJNVALID .indication

MAC to SMT:
SMJvIAJNITIALIZEJROTOCOLj-equest
SMJVUJNITIALIZEJROTOCOL.corinrm
SM_MA_CONTROL.request
SM_MA_STATUSandication
SM_MA_UNITDATA.request
SMJvlAJJNITDATA.indication
SM31A.UNrTDATA_STATUS.indication
SM_MA-TOKEN.request

Figure 5.1: FDDI MAC service primitives

5.1.2 Facilities

This section of the MAC standard specifies the MAC protocol data units, timers and frame

counts.

Protocol data units

The MAC layer processes both PHY layer protocol data units and MAC layer protocol data

units. The PHY protocol data unit contains 4 bits of binary data, called a data symbol. Symbols

are passed across the MAC to PHY interface via the service primitives. Figure 5.2 illustrates

the formats of the two MAC PDUs: Tokens and Frames.

Timers

Timers are critical parts of the FDDI MAC Timed-Token protocol. MAC uses three timers. The

Token-Holding Timer (THT) controls how long the station may transmit asynchronous frames.

The Valid-Transmission Timer (TVX) is used to recover from transient ring error situations.

The Token-Rotation Timer (TRT) is used to control ring scheduling during normal operation

CHAPTER 5. TEST GENERATION FOR THE FDDI MAC PROTOCOL 59

TOKEN

PA SD FC ED

>=16 2 2 2
FRAME

PA SD FC DA SA INFO PCS ED FS
»16 2 2 4 or 12 4 or 12 2n 8 1 >=3

PA • Preamble SA - Source Addrou ED - Endinj Dolimitel
PC • Prime Control INFO s Information pes „ Prime Check Sequence
DA = Detonation Address SD = Starting Delimiter FS = Frame Stuui

Figure 5.2: Format of MAC Protocol Data Units

and to detect and to recover from serious ring error situations.

5.1.3 Operation

The operation of mac protocol is described as several phases in the FDDI mac standard.

Frame transmission Upon a request for SDU transmission from LLC, MAC constructs a
frame from the SDU by placing the SDU in the INFO field of the frame. The frame (encoded
SDU) then remains queued awaiting the receipt of a token that may be used to transmit it.
Upon the capture of an appropriate token, the station begins transmitting its queued frame(s)
in accordance with the rules of token holding. In response to each data transmission request of
LLC, a confirmation will be sent to the LLC after the SDU is transmitted.

Token transmission The station releases the token immediately after the transmission of
the frame(s) is (are) completed.

Frame Stripping Each transmitting station will be responsible for removing from the ring
the frames that it originated after being acknowledged by the destination station.

Ring scheduling Transmission of normal PDUs on the ring is controlled by a Timed Token
Rotation protocol based on the Target Token Rotation Time which is negotiated by all of the
stations attached to the ring during the ring initialization process.

MAC provides two asynchronous transmission modes by using two kinds of Tokens, nonre-

stricted and restricted Token.

Ring monitoring The MAC monitoring functions are distributed among all stations on

CHAPTER 5. TEST GENERATION FOR THE FDDI MAC PROTOCOL 60

the ring. Claim token process allows all stations to bid for the right to initiate the token and

negotiate the target token rotation time. When Claim token process is successfully completed,

a station begins initialization process. Beacon process is used to signal all remaining stations

that a significant logical break has occurred and to provide diagnosis or other assistance to the

restoration process (via SMT).

5.1.4 Structure

MAC consists of two cooperating processes, the MAC receiver and the MAC transmitter. The
two processes are specified both with text and state diagrams. The MAC receiver receives and
validates information from the ring and detects ring errors and failures. The major triggering
event to the receiver is the arrival of a symbol via a PH_UNITDATA.indication primitive. The
MAC transmitter repeats information from the other stations on the ring, inserts information
from its own station into the ring, and cooperates with other stations to coordinate priorities
for use of the ring. The major triggering event to the transmitter is the the arrival of a symbol
together with any event signals from the receiver. The event signals from the receiver could be
the receipt of a token or a frame and others.

5.2 The formal specification of FDDI M A C protocol

This subsection discusses the Estelle.Y specification of the FDDI MAC layer protocol defined in
the ANSI X3.139-1987 standard. A protocol standard specifies both the observable (external)
and non-observable (internal) behaviors of a protocol. Since the ISO test methodology and its
black-box test principle are chosen for TESTGEN, only the information relevant to the external
behaviors of the FDDI MAC entity are needed to be specified.

Test method

MAC layer is relatively low-level compared to other layers of OSI reference model. The mac

protocol has to deal with symbols passed across the MAC-to-PHY interface via MAC to PHY

service primitives.

CHAPTER 5. TEST GENERATION FOR THE FDDI MAC PROTOCOL 61

The behaviors of the mac protocol are described in terms of the exchange of MAC PDUs,
the MAC to LLC service primitives as well as the MAC to PHY service primitives.

However, the abstract properties of the protocol, such as the data transmission, ring schedul­
ing and ring monitoring functions are described in terms of the exchange of MAC PDUs and
the MAC to LLC service primitives, although MAC PDUs are not exchanged directly with
the peer entities but via MAC to PHY service primitives. The protocol behaviors involving
MAC to PHY services are mostly internal. The observable behaviors of FDDI mac protocol
are determined by the abstract properties of the protocol.

If control and observation are specified in terms of ASPs, it will include control and obser­
vation of the PDUs carried by those ASPs; but if it is specified solely in terms of PDUs (at
layer N) then the underlying ASPs are not considered to be controlled or observed [ISO-9646].

We are not interested in controlling or observing MAC to PHY service primitives since
protocol behaviors involving MAC to PHY services are trivial. Also the specification of these
protocol behaviors is very tedious.

Figure 5.3 depicts the test method that is used to test FDDI MAC. It is conformed to the
9646 standard.

Lower Tester

PDU decoder/encoder

Upper Tester

Lower Tester

PDU decoder/encoder

Lower Tester

PDU decoder/encoder

MAC PDUs
MAC

•

Lower Tester

PDU decoder/encoder
•

PHY Service Provider

Figure 5.3: Testing of FDDI MAC layer

CHAPTER 5. TEST GENERATION FOR THE FDDI MAC PROTOCOL 62

We specify only the abstract properties of the FDDI MAC protocol, namely the exchange

of frames and tokens between peer MAC entities without concerning the interactions at MAC

to PHY interface.

5.2.1 Data part in A S N . l

MAC to LLC service primitives, a subset of MAC to SMT service primitives and MAC Protocol

Data Units and the data type of their parameters are specified in ASN.l in a separated file.

Although ASN.l itself allows more complicated data types, only those supported by TESTGEN

should be used to specify the MAC service primitives and PDUs.

The specification is straightforward. Normally a service primitive is specified as a SE­

QUENCE. The parameters are the components of the SEQUENCE and have data types such

as INTEGER, BOOLEAN etc.

There are two problems with the data part specification. One problem is that a

MAJJNITDATA.request may contains a set of subrequests. Each subrequest has its own set

of parameters including the service data unit (SDU) parameter. To serve the request, MAC

constructs a set of frames for each subrequest for their SDUs. There exists technical difficulties

for TESTGEN to handle this kind of nested service primitives. We solve the problem by

assuming that a data request may contain only one subrequest. Same problem exists when

specifying SMJVIA.UNITDATA.request.

Another difficult point is in the specification of symbols. Some of the MAC PDU fields

are defined in terms of symbols in the FDDI MAC standard. There are two kinds of symbols

passed across MAC to PHY interface. A data symbol contains 4 bits of binary data, and a

control symbol contains 5 code bits. We temporarily use INTEGER type to define both control

symbols and data symbols since no bit string type is supported by TESTGEN currently.

5.2.2 Control part in Estelle.Y

As mentioned in previous sections, an Estelle.Y specification is basically a single module Estelle

specification modeled by an EFSM (or more precisely, a single ETS). In order to specify a pro-

CHAPTER 5. TEST GENERATION FOR THE FDDI MAC PROTOCOL 63

tocol in Estelle.Y, we first need to represent the protocol as a single EFSM. For the conformance
testing purpose, we also need to decide which aspects of a protocol need to be tested and thus
need to be specified.

Data transmission

The data transmission process of the MAC protocol is characterized by the Token Ring access
method. A LLC data request may be received by MAC any time but the data may not be sent
out immediately. MAC must wait for the arrival of a special PDU, ie. a token to transmit data.
As a consequence, there may be several outstanding data requests queued by MAC before the
token is captured. The effect of receiving these data requests (service primitives) can not be
observed unless a token (PDU) is captured. The frames constructed from the data requests will
be sent out in their received order and data confirmations will be sent to LLC in response to
each LLC data request.

The existence of outstanding data requests can only be represented by data states (namely
Estelle.Y variables in the Estelle.Y specification) in the ETS-based representation of the FDDI
MAC protocol.

It is natural to use a queue data structure to describe these data states. Unfortunately, a
queue data structure is not currently supported by TESTGEN. We therefore simulate queues
of limited lengths by using sets of simple variables.

Facilities

Since Estelle.Y provides explicit language constructs for specifying timers, in both of the decla­

ration part and the transition part, the specification of FDDI MAC timers is straightforward.

MAC structure

As being required by TESTGEN, the FDDI MAC protocol must be represented as a single

extended transition system (ETS) and specified as a single module in Estelle.Y.

CHAPTER 5. TEST GENERATION FOR THE FDDI MAC PROTOCOL 64

As mentioned in the previous section, MAC consists of two cooperating processes, the MAC

receiver and the MAC transmitter. The two processes are specified both with text and state

diagrams which can be naturally represented as two individual ETSs.

Based on the information specified in the services section and operation section of the

MAC standard, we construct an extended transition system which represents all aspects of the

protocol behaviors that we intend to specify in Estelle.Y/ASN.l.

Before we present the construction of this ETS for MAC, we show how to combine two

arbitrary extended transition systems into a single one with equivalent behavior.

Definition 5.1 Given two extended transition systems ETS\ = (Qx,Ei,T\,qlnit) and ETS2 =

(Q.2,E2,T2,q?nit). An extended transition system ETS = (Q,E,T,qinit) simulates ETS\ and

ETS2) if there exists a relation R C Qi x Q2 x Q such that < q}niti<ltnitiQinit >G R and

V < 9i><?2>9 >€ R> < >G T\ implies that there exists a q' € Q such that < q,e,q* >€ T

and < q[,q2,q' >€ R, or < q2,e,q'2 >€ T2 implies that there exists a q' 6 Q such that

< q,e,q' >G T and < quq'^q1 >6 R.

Definition 5.2 Given two extended transition systems ETS\ = (Q\,E\,T\,q}nit) and ETS2 =

(Q2,E2,T2,qfnit). An extended transition system ETS = (Q,E,T,qinit) is simulated by ETS\

and ETS2, if there exists a relation R C Qx x Q2 x Q such that < q}nit,<linit>Qinit >€ R and

V < 9i,92>9 >6 R, < q,e,q' >6 T implies that there exists a q[G Q\ such that < gi,e,gi >G T\

and < q'i,q2,q> >€ R or there exists a q'2 € Q2 such that < q2,e,q'2 >€ T2 and < qi,q2,ql >G R.

Definition 5.3 Given two extended transition systems ETS\ and ETS2. An extended transi­

tion system ETS is equivalent to ETS\ and ETS2, if ETS simulates and is simulated by ETS\

and ETS2.

Definition 5.4 Given two extended transition systems ETS\ = (Q\,E\,T\,q\nit) and ETS2 =

(Q2,E2,T2,q2

nit), the product of ETSX and ETS2 (written as ETSX ® ETS2) is an extended

transition system ETS = {Q,E,T,qinit), where Q = Qi x Q2, E = Ex U E2, T = {«

9i,92 >,e,< gi,92 >> I < 9i ,e ,9i >€ T\ and q2 = q'2 or < q2,e,q'2 >€ T2andqx = q[} and
1 2

Qinit =< QinitiVinit

CHAPTER 5. TEST GENERATION FOR THE FDDI MAC PROTOCOL 65

T h e o r e m 1 Given two extended transition systems ETSi andETS2. ETSi®ETS2 is equivalent
to ETSi and ETS2.

Proof. Let ETSi = (Qi,Ei,Tuqjnit) and ETS2 = (Q2,E2,T2,qfnit). By Definition 5.4,

ETS = ETSi ® ETS2 = (Q, E,T,qinit) where Q = Qx x Q2, E = Ex U E2, T = {<< gi,g2 >

,e,< gi,^ >> | < qi,e,q[>€ 7i and q2 = q'2 or < q2,e,q'2 >e T2 and qx = q[} and qinit =<

ihivllnit >• Define relation i2 C Qa x Q 2 X Q as follow. Initially, i2 = {< q}nit,q2

nivqinit >

} = {< Qinitfliniv < Qtnin Qinit » } • Repeat the following procedure until R is not growing.

For any < gi,g2,< qi,q? » e R, if < qi,e,q[>€ Ti, R *- RU < g(,g2,< gi,?2 >>; if

< ?2»e,g2 >€ T 2, R <— RU < qi,q'2, < qi,q'2 >>. It is clear that elements in R are all of the

form < qx,qy,< qx,qy » .

We now prove that ETSi ® ETS2 simulates ETSi and ETS2. It is obvious that <

Qinit>QinivQimt >=< «L.»8?ni.» < Qinit>Qinit >>€ Consider any < gi,g2,g >G By
the above procedure, it must be that q =< qi,q2 >.

Case 1. If < gi,e,gi >e T\, then let g' =< gi,g2 >. Thus by Definition 5.4 << gi,g2 >,e,<

QiiQi >>€ ETSi ® ETS2, and by the above procedure generating R, < q[,g2,g' >=< gi, g2, <

gi,g2 >>€ R.

Case 2. If < g2,e,g2 >e T2, then let g' =< gi,g2 >. Thus by Definition 5.4 << gi,g2 >,e, <

gi>g2 >>€ ETSi ® ETS2, and by the above procedure generating i2, < qi,q2,q' > = < gi,^, <

gi,g2 » € ii.

Thus in either case, we see R satisfy the condition in Definition 5.1. Therefore, ETSi ® ETS2

simulates ETSi and ETS2.

We now proceed to prove that ETSi®ETS2 is simulated by ETSi and ETS2. It is obvious

that < q}nit,qinit,qinit >=< < ffL.• 9?n.t >>e Consider any < gi,g2,g >€ R. q

must be < gi,g2 >. If < g,e,g' >€ T, it must be i) q' =< gi,g2 > and < qi,e,q[>€ Ti or ii)

g' =< g i ^ > and < g2,e,g2 >€ T2. It is clear that, by the above procedure generating R, in

case i) < gi,g2,g' >G R, and in case ii) < g^g^g7 >€ R. Thus in either case, we see R satisfy

the condition in Definition 5.2. Therefore, ETSi®ETS2 is simulated by ETSi and ETS2. A

Hence ETSi ® ETS2 is equivalent to J S r S i and ETS2.

CHAPTER 5. TEST GENERATION FOR THE FDDI MAC PROTOCOL 66

We now proceed to describe the FDDI MAC protocol based on the extended transition
system model.

Before the MAC receiver and transmitter are combined, some revisions to the original
state diagrams are necessary. We have mentioned that the data transmission via the MAC to
PHY service primitives are not intended to be controlled or observed. Currently, the process of
combining two ETSs is not automated. It is very tedious to combine the original state diagrams
into one manually. This is another reason for using the test method mentioned in Section 5.2.

The major triggering event of the MAC receiver is the occurrences of PHY_UNITDATA_indication
which is a MAC to PHY service primitive. As the result of this kind of events being eliminated,
the receiver state diagram is reduced to have two states. For the same reason, two of the
six states of the original transmitter state diagram are combined into one state in the revised
transmitter state machine.

We convert the two revised state diagrams, the MAC receiver and transmitter, into two
individual extended transition systems ETSi and ETS2- We then generate the product of
ETSi and ETS2 (ETSi ® ETS2). The rules or the algorithm of generating ETS\ ® ETS2 is
in fact provided in Definition 5.4. The correctness of ETSi ® ETS2 is guaranteed by Theorem
1.

We noticed that the two state diagram provided by the MAC standard do not actually
represent the complete knowledge of the behaviors of MAC. For example, the interactions
through the MAC to LLC interface via MAC to LLC SPs are not specified in the state diagrams.
We revise the resulting single ETS to accommodate all interested knowledge of the external
behavior of the FDDI MAC protocol including those aspects missing in the original two state
diagrams.

Figure 5.4 illustrates the simplified single ETS representation of FDDI MAC protocol. In
Figure 5.4, each arc between two nodes (representing two states of the ETS) may represent
several transitions associated with different events.

A complete ASN.l specification and an excerpt of the Estelle.Y specification of FDDI MAC

protocol are provided in Appendix B and C for reader reference.

CHAPTER 5. TEST GENERATION FOR THE FDDI MAC PROTOCOL 67

Figure 5.4: FDDI MAC protocol state machine

5.3 Generating test suite using TESTGEN

This section presents the test suite generation and selection of FDDI MAC protocol with TEST­

GEN.

5.3.1 PDS of FDDI M A C protocol

The Estelle.Y specification of FDDI MAC protocol is first parsed and the PDS is generated
from the specification. The generated PDS contains about 1000 expressions (namely about
1000 instances of EXPR structure) and about 350 assignment statement (instances of ASTMT
structure). The number of instances of other defined structures are less than 100.

5.3.2 Tuning constraints for FDDI M A C protocol

A test suite can be generated for the FDDI MAC protocol by using the set of default constraints.
In order to generate a test suite with reasonable size and better fault coverage for a specific

protocol, we have to tune the constraints, namely reset or change the constraints through the

constraint editor according to the characteristics of the protocol to be tested.

As mentioned in Chapter 2, the TSG-constraints define an upper and a lower bound on the

CHAPTER 5. TEST GENERATION FOR THE FDDI MAC PROTOCOL 68

number of times an ETS element can be reached or used in one subtour.
The maximal number of times SPs and PDUs can be used within a subtour is set to 1 by

default. It means that any transition having a SP or PDU associated with it can be used at
most once in a subtour. We need to change the max — used value imposed on one of the MAC
PDUs, Frame, into a value more than 1 to allow the case of when several frames are sent due
to the capture of a token to be tested.

The maximal number of times a state can be reached within a subtour is set to 99 by default.
This will cause excessive subtours being generated. For example, if there is a transition which
starts from a state and ends at the same state and no SPs or PDUs are associated with the
transition, 99 different subtours will be identified with the state being reached for 1 to 99 times.

The parameter variation constraints define a set of values for each parameter of each ISP
or PDU that can be sent to the IUT. The instances of ISPs and PDUs that will be used to
test the IUT are thus defined. The default parameter variation constraints on three supported
parameter type are:

TRUE, FALSE for boolean,
0, 99 for integer and

"test-stringl" for character strings.
These default values are likely not suitable for testing the ISPs and PDUs of a specific proto­
col. For example, the frame control field of Frame, one of the FDDI MAC PDUs, is used to
distinguish different types of frames. There are about 10 different types of frames defined in
the FDDI MAC protocol standard. To test all of them, we need a set of specific values, namely
default parameter variation constraints to the frame control field of Frame.

5.3.3 Test generation

The test suite generation engine identifies subtours based on the PDS representation of a

protocol generated by the parser as well as a set of constraints set through the constraint

editor. The test suite generation engine is being developed. A comprehensive test suite can be

successfully generated by using TESTGEN with an appropriate set of constraints after the test

CHAPTER 5. TEST GENERATION FOR THE FDDI MAC PROTOCOL 69

suite generation engine is implemented.
Our purpose of applying TESTGEN to real life protocols is mainly to demonstrate the

viability of the TESTGEN tool and obtain some experience in specifying and testing of high­
speed network protocols. So the constraints set by us may not satisfy special testing purposes
in a testing center or in the industry. However, by our experience, TESTGEN is a flexible and
productive and easy to use. In fact, users are easy to control the size of the generated test suite
and to generate test cases with required fault coverage according to their own testing purposes.

5.4 Summary

In this chapter, we discussed the issues of test suite generation for FDDI MAC protocol with
emphasis on the formal specification of the protocol. In order to produce the formal specifica­
tion, we combined the MAC receiver and transmitter. We presented a method of combining
two ETSs into a single one with equivalent behavior. In fact, this method is easily improved
to combine arbitrary number of ETSs into one with equivalent behavior. This shows that our
ETS-based Estelle.Y/ASN.l can be used to specify any protocols.

Chapter 6

Conclusions

This thesis presents and discusses the design and implementation of the front end of TESTGEN,

a software environment for test suite generation and selection for conformance testing as well

as its application to a specific protocol, FDDI MAC protocol.

6.1 TESTGEN features

TESTGEN adopts the TSG-constraints based test suite generation method which integrates
the generation and selection of abstract TTCN test suites from formal specification of commu­
nication protocols. The generated test cases cover both the control and the data flow part of
the protocol.

TESTGEN supports consistent end-to-end use of ASN.l in the given formal protocol spec­
ification. The ASN.l support is incorporated in the generated PDS as well as in the TSG
constraints mechanism, which leads to coherent ASN.l TTCN constraints. Moreover, the TSG
constraints approach in TESTGEN offers a flexible mechanism for generating conformance test
suites and special purpose test suites for real life protocols. TESTGEN thus serves as a useful
test-bed for experimenting with protocol test generation and selection in addition to being a
useful productive system.

The design and implementation of the TESTGEN front end is crucial to the development of

the TESTGEN. The ETS/ASN.l formalism is a well-defined intermediate representation form

70

CHAPTER 6. CONCLUSIONS 71

which can represent complete protocol knowledge including both control and data parts pre­
cisely. Despite the fact that the ETS/ASN.l formalism and its data structure representation
(the PDS) are designed for automatic test generation using the TESTGEN tool, they may be
used for other applications such as the development of other ETS based test generation tools.
Furthermore, such intermediate representations and their internal data structure representa­
tions of protocols are useful for many other applications such as protocol validation tools and
conformance testing tools based on trace analysis methodology.

To compare TESTGEN with other existing test sequence generation tools, we consider those
proposed in [Ural-88], [EBE-89-1] and CONTEST_ESTL by [Sari-89].

The similarities between TESTGEN, CONTEST_ESTL and Ural's proposal are that they
all generate TTCN test suites based on protocol specification in Estelle (or Estelle variants).
The TSG method proposed in [EBE-89-1], on the other hand, derives test sequences based on
EBE. The test generation method used in TESTGEN detects errors that are not detected by
CONTEST-ESTL, Ural's method or EBE based method. TESTGEN is expected to provide
better fault coverage by using a more elaborate test sequence generation algorithm. Moreover,
TESTGEN completely automates the TSG process by using default setting of TSG constraints,
as contrast to CONTEST_ESTL, in which the test sequence generation procedure is just semi-
automated. On the other hand, CONTEST-ESTL provides graphical displaying of the control
and data flow graphs of the specification as well as generating the test sequences [Sari-89], which
is not available in TESTGEN. In addition, TESTGEN provides users with much flexibility
through the interactive setting of constraints on each of ETS elements. Moreover, it supports
ASN.l directly. Estelle.Y can be served as either an intermediate or direct formal description
language.

6.2 TSG for FDDI using TESTGEN

As we mentioned before, FDDI is not an ISO standard. However it is developed in conformance

with the OSI reference model and other ISO guidelines. As a consequence, the ISO conformance

CHAPTER 6. CONCLUSIONS 72

testing methodology and frame work [ISO-9646] can be applied to the testing of FDDI MAC
protocol without much difficulties. As stated in the ISO 9646 standard, the defined methodology
and framework can not be used for testing of the Physical Layer. The FDDI MAC layer protocol
is the only component of FDDI that can be tested using the methodology and framework defined
in the ISO 9646 standard.

Given the fact that the FDDI MAC protocol are specified in terms of two concurrent pro­
cesses, efforts has been made to produce an ETS-based formal specification of the FDDI MAC
protocol.

Although a test suite can be generated by TESTGEN for FDDI MAC protocol using a set of
default constraints without any human interventions, in order to better satisfy testing purposes
for a specific protocol, the user must tune the default constraints to allow some specific aspects
of the protocol to be covered by the generated test suite.

Some knowledge about the behaviors of a protocol are described in the ETS/ASN.l for­
malism is required for tuning constraints for the test generation, including the identification of
major behaviors of the protocol. However, it is much easier for a user to understand the be­
haviors of a protocol specified in the ETS/ASN.l formalism based specification than to provide
the interventions required by CONTEST.ESTL [Ural-88].

6.3 Future works

The TESTGEN front end has been developed in a way to allow the enhancements to be done
easily.

Many complex communication protocols are defined as multiple logical entities (e.g. the
FDDI transmitter and receiver processes) in order to employ the parallelism and allow concur­
rency in a communication system. The multiple entities can not be naturally represented by a
single module Estelle specification.

Furthermore, communication protocols are rarely tested in a stand-alone mode (local test

method), but are combined with a service provider when using the distributed test method or a

CHAPTER 6. CONCLUSIONS 73

Ferry Clip approach. In this case multiple modules are involved, including the service provider
module as well as the IUT module in the test suite generation process.

A natural extension of TESTGEN will allow multiple-module Estelle specifications to be
parsed into a composite protocol data structure. An enhanced test suite generation engine
(TSG method and tool) will be able to identify the subtour combinations which cover also the
observable service primitive exchange at the external gates(PCOs).

Only three data types allowed for variables and constants by the current version of TEST­
GEN. The three data types supported by the current version of TESTGEN are proved not
enough to specify FDDI MAC protocol. Most of the fields of a PDU in Data link layer of OSI
model are normally bit strings. The value of some of the fields determines the PDU's type.
For example, the frame control field of FDDI MAC PDU distinguishes different types of PDUs.
The MAC protocol examines some bits to identify the type of a received PDU, such as a token
or a frame, and then take different actions based on the PDU's type.

To specify the behaviors of the FDDI MAC protocol precisely and naturally, bit type, bit
string type and associated operations are necessary. For similar reasons, data structures such
as queue and array are also required.

There are two possible approaches to support the needed data structures. One is to enhance
the Pascal subset supported by TESTGEN. We need to know theoretically how complete a
Pascal subset should be included in Estelle.Y for description of external behaviors of a protocol.
Another possibility is to make use of ASN.l for type definitions of variables (data states) and
constants. For example, the ASN.l SEQUENCEOF type which is similar to the array in
Pascal can be used to define arrays of variables or constants by enhancing the internal data
structure representation of protocols, namely the ASN.l type tree and the PDS. Pointer type
are necessary for queues of unlimited length. Pointer type can be supported by changing VAR
structure slightly.

Finally a useful enhancement of TESTGEN is to incorporate a fault coverage measure into

TESTGEN, based on the ongoing test coverage metric research conducted in [Vuong-91-2],

into TESTGEN. The inclusion of this coverage measure will allow the user to compare and

CHAPTER 6. CONCLUSIONS 74

evaluate the generated test suites with an objective measure and to tune the test suite generation

constraints for the best results.

Bibliography

[ANSI-1987] American National Standard, FDDI Token Ring Media Accesss Control (MAC),
ANSI X3.139-1987.

[ANSI-1989] Draft proposed American National Standard, FDDI Token Ring Station Manage­
ment (SMT), ASC X3T9.5, Rev. 6, May 1989.

[BOCH-90] Gregor v. Bochmann, Protocol Specification for OSI, Computer Networks & ISDN
Systems 18 (1989/1990).

[Chan-89] W. Y. L. Chan, S. T. Vuong and M. R. Ito, An improved Protocol Test Genera­
tion Procedure Based on UIOs, Proceedings of the ACM SIGCOMM '89 Symposium on
Communication Architectures and Protocols, September 1989.

[Chow-78] T. S. Chow, Testing Software Design Modeled by Finite State Machines, IEEE Trans­
actions on Computer, March 1978, Vol. 4, No. 3, pages 178-187.

[CRS-89] L . Mackert, J. Schneider, I. Neumeier-Mackert and R. Velthuys, Executing Protocol
knowledge, European network Center IBM, Technical Report 43.8907, 1989

[EBE-89-1] J. P. Wu, S. T. Chanson, A new Approach to Test Sequence Derivation based on
External Behavior Expression (EBE), Technical Report 89-3, Department of Computer
Science, University of British Columbia, Jan 1989. 1976, pp:305-330.

[EBE-89-2] J.P. Wu and S. T. Chanson, Test Sequence Derivation Based on External Behav­
ior Expression (EBE), 2nd International Workshop on Protocol Test Systems, Berlin,
Germany, Oct. 1989.

[Fosd-76] L.D. Fosdick and L. J. Osterweil, Data flow analysis in software reliability, ACM
Computing Serveys, Vol. 8, No.3,

[Gone-70] G. Gonenc, A Method for the Design of Fault Detection Experiments, IEEE Trans­
actions on Computers, Vol. 19, No. 6, June 1970.

[ISO-8807] Information Processing System - Open System Interconnection - LOTOS -A Formal
Description Technique based on the Temporal Ordering of Observational Behavior, ISO
8807, September 1987.

75

BIBLIOGRAPHY 76

[ISO-8824] Information Processing System - Open System Interconnection - Specification of
Abstract Syntax Notation One, ISO 8824, 1987.

[ISO-9074] Information Processing System - Open System Interconnection - Estelle - A Formal
Description Technique Based on an Extended State Transition Model, IS 9074, 1989.

[ISO-9646] Information Technology - OSI Conformance Testing Methodology and Framework,
Draft International Standard, ISO/IEC DIS 9646 (5 Parts).

[ISO-TTCN] Information Technology - OSI Conformance Testing Methodology and Frame­
work, Part 3:The Tree and Tabular Combined Notation, ISO/IEC DIS 9646-3, 1990.

[Kel-76] R. M. Keller, Formal Verification of Parallel programs, Communication of the ACM
19, pp371-384, 1976.

[LIN-90] Richard J. Linn, Jr., Conformance Testing for OSI Protocols, Computer Networks &
ISDN Systems 18 (1989/1990).

[Naito-81] S. Naito and M. Tsunoyama, Fault Detection for Sequential Machines by Transition
Tours, Proceedings of the 11th IEEE Fault-Tolerant Computing Symposium, pp.138-243,
June 1981.

[Neu-90] G. W. Neufeld and Y. Yang, The design and Implementation of an ASN.l Compiler,
IEEE Transactions on Software Engineering, Vol.16, No. 10, Oct. 1990.

[PG-90] Marc Phalippou, Roland Groz, From Estelle specifications to industrial test suites,
using an empirical approach, FORTE '90

[PUH-88] R. L. Probert, H. Ural and M. W. A. Hornbeek, An Integrated Software Environment
For Developing & Validating Standardized Conformance Tests, Protocol Specification,
Testing, and Verification VIII, S. Aggarwal and K. Sabnani (Editors), Elsevier Science
Publishers B. V. (North-Holland).

[RAY-87] D. RAYNER, OSI Conformance Testing, Computer Networks & ISDN Systems 14
(1987).

[ROSS-86] Floyd E. Ross, FDDI - A Tutorial, IEEE Communications Magazine, May 1986 -
Vol.24, No.5

[ROSS-90] Floyd E. Ross, James R. Hamstra and Robert L. Fink, FDDI - A LAN Among
MANs, ACM Computer Communication Review, Vol. 20, No.3, July 1990

[Sabn-88] K.K. Sabnani and A. T. Dahbura, A Protocol Test Generation Procedure, Computer
Networks and ISDN Systems, Vol. 15, No. 4, pp. 285-297, September 1988.

BIBLIOGRAPHY 77

[Sample-90] M. Sample and G. Neufeld, Support for ASN.l within a Protocol Testing Environ­
ment, The Third International Conference on Formal Description Techniques (FORTE
'90), Madrid Spain, November 1990.

[Sari-87] B. Sarikaya, G. v. Bochman, and E. Cerny, A Test Design Methodology for Protocol
Testing, IEEE Transactions on Software Engineering. Vol. 13, No. 5, pp. 518- 531, May
1987.

[Sari-89] Behcet Sarikaya, Srinivas Eswara, Vassilios Koukoulidis, A Formal Specification Based
Test Generation Tool, ? Apr 1989

[SDL-88] CCITT Recommendation: Specification and Description Language SDL, CCITT
Z.100, blue book, 1988

[Sidhu-89] D.P. Sidhu and T. -K. Leung, Formal Methods for Protocol Testing: A Detailed
Study, IEEE Transactions on Software Engineering, Vol. 15, No. 4, pp. 413-426, April
1989.

[SKO-89] Morten Skov, Implementation of physical and media access protocols for high-speed
networks, IEEE Communications Magazine, 1989.

[TR-90-x] H. Janssen, Y. Lu and P. Zhou, Definition of a Protocol Data Structure Representa­
tion for Communication Protocols, UBC Technical Report, planned for summer 1991.

[TR-90-y] Y. Lu and H. Janssen, Integrating Estelle and ASN.l for the generation of PDS,
UBC Technical Report, planned for summer 1991

[TR-90-z] P. Zhou and H. Janssen, TSG constraints for PDS based test suite generation, UBC
Technical Report, planned for summer 1991

[Ural-87-1] H. Ural, A Test Derivation Method for Protocol Conformance Testing, University
of Ottawa, Technical Report - TR-87-04, Jan. 87.

[Ural-87-2] H. Ural, Test Sequence Selection Based on static data flow analysis, Computer
Communications, Vol. 10, No. 5, 1987, pp: 234-242.

[Ural-88] H. Ural, B. Yang, R. L. Probert, A Test Sequence Selection Method for Protocols Spec­
ified in Estelle, Technical Report TR-88-18, Department of Computer Science, University
of Ottawa, June 1988.

[Vuong-88] S. T. Vuong, Allen C. Lau and R. Issac Chan, Semiautomatic Implementation of
Protocols Using an Estelle-C Compiler, IEEE Transactions on Software Engineering, Vol.
14, No.3, March 1988.

[Vuong-89] S. T. Vuong, W. Y. L. Chan, and M. R. Ito, The UIOv-Method for Protocol Test
Sequence Generation, Proceedings of the Second International Workshop on Protocol Test
Systems, October 1989.

BIBLIOGRAPHY 78

[Vuong-91-1] S. T. Vuong, H. Janssen and Y. Lu, TESTGEN: An Environment for Test Suite
Generation and Selection, submitted to FORTE '91.

[Vuong-91-2] S. T. Vuong and J. Alilovic-Curgus, A Metric Characterization of Infinite Com­
putations in LOTOS, submitted for publication, June 1991.

[KFNT-90] Kotaro Katsuyama,e£ al. OSI Testing Environment Based on Standardized For­
malisms, FORTE '90

[Wvong-90] Russil Wvong, A New Methodology for OSI Conformance Testing Based on Trace
Analysis, Master thesis, Department of Computer Science, UBC Oct 1990.

Appendix A

Estelle.Y B N F definition

s p e c i f i c a t i o n ::=

"spe c i f i c a t i o n " IDENTIFIER ";

body.definition

body.definition ::=

declaration.part

i n i t i a l i z a t i o n . p a r t

state_trans_part .

declaration_part ::=

constant.definition.part

variable_declaration_part

isp_declaration_part

osp_declaration_part

pdu_declaration_part

timer_declaration_part

state_definition.part .

'end."

79

APPENDIX A. ESTELLE.Y BNF DEFINITION 80

constant.definition.part ::= ["CONST" constant.definition.group] .

constant.definition.group ::= +{ constant.definition ";"} .

constant.definition ::= IDENTIFIER "=" constant .

constant ::=

INTEGER |

CHARACTER.STRING |

"true" I

" f a l s e " .

variable_declaration_part ::= ["VAR" variable_declaration_group] .

variable_declaration_group ::= +{ variable.declaration ";"} .

variable.declaration ::= i d e n t i f i e r . l i s t ":" type_denotor .

i d e n t i f i e r . l i s t ::= IDENTIFIER {"," IDENTIFIER} .

type_denotor ::=

"INT" |

"BOOLEAN" |

"CHAR.STR" .

isp_declaration_part ::= "ISP" isp_declaration_group .

isp_declaration_group ::= +{ isp.declaration > .

isp.declaration ::= isp.name pco.name ";" .

isp.name ::= IDENTIFIER,

pco.name ::= IDENTIFIER.

osp_declaration_part ::= "OSP" osp_declaration_group .

osp_declaration_group ::= +{ osp_declaration > .

osp.declaration osp.name pco.name ";" .

APPENDIX A. ESTELLE.Y BNF DEFINITION 81

osp.name ::= IDENTIFIER .

pdu_declaration_part ::= "PDU" pdu_declaration_group .

pdu_declaration_group : := +{ pdu.declaration } .

pdu_declaration ::=

pdu.name send_recv_list ";" I

pdu_name pco.name ";" .

send_recv_list ::= send.recv sp.name { "," send_recv sp_name } .

pdu.name ::= IDENTIFIER .

sp.name ::= IDENTIFIER .

send.recv ::= "sent.in" I "recv.in" .

timer_declaration_part ::= "TIMER" timer_declaration_group .

timer_declaration_group ::= +{ timer_declaration }.

timer_declaration ::= timer_name timeout_value ";" .

timeout.value ::= INTEGER .

timer.name ::= IDENTIFIER .

i n i t i a l i z a t i o n . p a r t ::= "INITIALIZATION" clause.group trans.block ";" .

state.definition.part ::= "STATE" i d e n t i f i e r . l i s t ";" .

state_trans_part ::= +{ state_trans_declaration } •

s ta t9_trans_declaration ::= "TRANS" transition_group .

transition.group ::= +{ trans_declaration } .

trans_declaration ::= from.clause trans_declaration_group .

from.clause ::= "FROM" state.name .

APPENDIX A. ESTELLE.Y BNF DEFINITION 82

trans_declaration_group ::= +{ trans_body_definition }.

trans_body_dafinition ::= clause_group trans.block ";" .

clause_group ::=

to.clause

when.clause

provided.clause

priority_clause

output.clause

trans.name .

to.clause ::= "TO" state.name .

state.name ::= IDENTIFIER .

when.clause ::= { "WHEN" isp_or_pdu } .

isp.or.pdu ::= IDENTIFIER .

provided.clause ::= { "PROVIDED" bool.expression } .

bool.expression ::= expression .

priority.clause ::= { "PRIORITY" INTEGER I "PRIORITY" IDENTIFIER } .

output.clause ::= { "OUTPUT" osp_opdu_list } .

osp_opdu_list ::= i d e n t i f i e r . l i s t .

trans.name ::= { IDENTIFIER } .

trans.block ::= statement.part .

statement.part ::= { compound.statement } .

compound.statement ::=

"BEGIN" statement.sequence "END" I

"BEGIN" statement.sequence ";" "END" .

statement.sequence ::= simple.statement { ";" simple.statement } .

simple.statement ::=

assignment.statement |

APPENDIX A. ESTELLE.Y BNF DEFINITION 83

if.statement |

while.statement |

timer.statement .

assignment.statement ::= variable.access ":=" expression .

variable.access ::= IDENTIFIER { ".11 IDENTIFIER } .

if.statement ::=

i f . p r e f i x statement

i f . p r e f i x statement else.part .

i f . p r e f i x ::= "IF" bool.expression "THEN" .

else.part ::= "ELSE" statement .

statement ::= simple.statement I compound.statement .

while.statement ::= "WHILE" bool.expression "DO" statement .

timer.statement ::=

timer.operator " (" timer.name ") "

"SET" " (" timer.name "," expression ") " .

timer.operator ::= "RESET" I "START" I "STOP" .

expression ::=

expression "+" expression

expression "-" expression

expression multop expression

expression boolop expression

expression relop expression

APPENDIX A. ESTELLE.Y BNF DEFINITION 84

"-" p r i m a r y I

"NOT" p r i m a r y I

p r i m a r y 1

"NOT" e x p r e s s i o n I

" (" e x p r e s s i o n ") " .

p r i m a r y ::=

c o n s t a n t . p r i m a r y I

v a r i a b l e . a c c e s s I

t i m e r . e x p r e s s i o n .

c o n s t a n t _ p r i m a r y ::= c o n s t a n t .

m u l t o p ::= "*" I "/" I "MOD" .

b o o l o p ::= "AND" | "OR" .

r e l o p ::= "=" I "<=" I "<" I ">=" I ">" I "<>" .

t i m e r _ e x p r e s s i o n ::= t i m e r . s t a t u s " (" t i m e r . n a m e ") " .

t i m e r . s t a t u s ::= "TIMEOUT" I "STARTED" I "STOPPED" I "RESET" | "READ

Metalanguage Symbols

Meta-symbol Meaning

::= sh a l l be defined to be

I alternatively

end of d e f i n i t i o n

[x] 0 or 1 instance of x

•Cx} 0 or more instances of x

+{x} 1 or more instances of x

APPENDIX A. ESTELLE.Y BNF DEFINITION 85

"xyz"

meta-identifier

the terminal symbol xyz

a nonterminal symbol

Appendix B

A S N . l specification of F D D I M A C
SPs and P D U s

FDDIMac DEFINITIONS ::=

BEGIN

MacToLlcAsp ::= CHOICE

•C

MaUnitDataRequest,

MaUnitDatalndication,

MaUnitDataStatusIndication,

MaTokenRequest

}

MaUnitDataRequest ::= SEQUENCE

{

fcValue DataSymbolPair,

destinationAddress Address,

mSDU OCTET STRING,

requestedServiceClass INTEGER {synchronous(0), asynchronous(1)},

86

APPENDIX B. ASN.l SPECIFICATION OF FDDI MAC SPS AND PDUS 87

stream BOOLEAN DEFAULT FALSE,

tokenClass INTEGER

}

MaUnitDatalndication ::= SEQUENCE

•C

fcValue DataSymbolPair,

destinationAddress Address,

sourceAddress Address,

mSDU OCTET STRING,

receptionStatus BOOLEAN

>

MaUnitDataStatusIndication ::= SEQUENCE

{

numberOfSDUs INTEGER,

transmissionStatus OCTET STRING, — implementer defined

providedServiceClass INTEGER -[synchronous(0), asynchronous(1)}

}

MaTokenRequest ::= SEQUENCE

{

requestedTokenClass INTEGER - C r e s t r i c t e d (O) , nonrestricted(i)}

}

PhyToMacAsp ::= CHOICE

-C

PhUnitDataRequest,

PhUnitDatalndication,

PhUnitDataStatusIndication,

Phlnvalidlndication

APPENDIX B. ASN.l SPECIFICATION OF FDDI MAC SPS AND PDUS 88

PhUnitDataRequest ::= SEQUENCE

•C

phRequest Symbol

}

PhUnitDatalndication ::= SEQUENCE

{

phlndication Symbol

>
PhUnitDataStatusIndication ::= SEQUENCE

transmissionStatus BOOLEAN

>

Phlnvalidlndication ::= SEQUENCE

•C
phlnvalid INTEGER ~ th i s tpye i s not defined i n the standard

}

MacPdu ::= CHOICE

{

Frame,

Token

}

Token ::= SEQUENCE

•C

pA OCTET STRING, - 16 or more symbols

APPENDIX B. ASN.l SPECIFICATION OF FDDI MAC SPS AND PDUS 89

sD SD,

fC DataSymbolPair,

eD ControlSymbolPair

}

Frame ::= SEQUENCE

•C

pA OCTET STRING, — 16 or more symbols

sD SD,

fC DataSymbolPair,

dA Address,

sA Address,

info InfoType, — 0 or more data symbol pairs

fCS OCTET STRING (SIZE(4..4)), ~ 8 data symbols

eD TSymbol,

fS FSType — 3 or more data symbols

>

SD ::= SEQUENCE

•C

j JSymbol,

k KSymbol

}

FSType ::= SEQUENCE

•C

a DataSymbol,

c DataSymbol,

e DataSymbol

}

APPENDIX B. ASN.l SPECIFICATION OF FDDI MAC SPS AND PDUS 90

InfoType ::= SEQUENCE

{

f irs t4Byte OCTET STRING (SIZE(4 . .4)) ,

res t lnfo OCTET STRING

>

MacToSmtAsps ::= CHOICE

{

SmMalnitProtocolReq,

SmMalnitProtocolcfm,

SmMaCtrlReq,

SmMaStatusIndication

>

SmMalnitProtocolReq ::= SEQUENCE

{

indivMACaddrS OCTET STRING (SIZE(2 . .2)) ,

indivMACaddrL OCTET STRING (SIZE(6 . .6)) ,

groupMACaddrs OCTET STRING,

tMin INTEGER,

tMax INTEGER,

tvx INTEGER,

tReq INTEGER,

tNeg INTEGER,

tNeg INTEGER,

t P r i INTEGER,

indForOwnFr BOOLEAN,

indForRcvOnlyGoodFr BOOLEAN

APPENDIX B. ASN.l SPECIFICATION OF FDDI MAC SPS AND PDUS 91

SmMalnitProtocolcfm ::= SEQUENCE

{

status BOOLEAN

}

SmMaCtrlReq ::= SEQUENCE

•C

c t r l A c t i o n INTEGER -CmacReset(O), beacon(l) , presentStatus(2),

resetCounters(3), interruptUponCond(4),

sendBadFCS(5)},

beaconlnfo OCTET STRING,

requestedStatus MacStatus,

requestedCond INTEGER {tkCaptured(O) , f rRece ived(l) , tkPassed(2)}

>

MacStatus ::= SEQUENCE

{

counterValue INTEGER, — there are several C t ' s

currentTHTValue INTEGER,

currentTVXValue INTEGER,

currentTRTValue INTEGER,

rF lag INTEGER,

currentRxState INTEGER,

currentTxState INTEGER

SmMaStatusIndication ::= SEQUENCE

•C

statusReport INTEGER

APPENDIX B. ASN.l SPECIFICATION OF FDDI MAC SPS AND PDUS 92

>

Address ::= CHOICE

{

longAddress INTEGER, — should be 48-bit BIT STRING

shortAddress INTEGER — should be 16-bit BIT STRING

}

JSymbol

KSymbol

TSymbol

= ControlSymbol

= ControlSymbol

= ControlSymbol

Symbol ::= INTEGER — control symbol or data symbol

ControlSymbol ::= INTEGER — 5-bit BIT STRING

DataSymbol ::= INTEGER — 4-bit BIT STRING

DataSymbolPair ::= INTEGER — 8-bit BIT STRING

ControlSymbolPair ::= INTEGER — 10-bit BIT STRING

END

Appendix C

Excerpt of Estelle.Y Specification
F D D I M A C protocol

Specification f d d i . l ;

CONST

I = 31: i n t ;

J = 24: i n t ;

K = 17: i n t ;

R = 7: i n t ;

S = 25: i n t ;

T = 13: i n t ;

Restricted = 1: i n t ;

Nonrestricted = 0: i n t ;

Void = 0: i n t ;

Implementer = 1: i n t ;

Claim.FR =0: i n t ;

Beacon.FR = 1: i n t ;

S.Addrs = 0: i n t ;

93

APPENDIX C. EXCERPT OF ESTELLE. Y SPECIFICATION OF FDDI MAC PROTOCOLS

L.Addrs = 0: i n t ;

zero = 0: i n t ;

one = 1: i n t ;

Yes = true: boolean;

No = f a l s e : boolean;

high = 10: i n t ;

medium = 5: i n t ;

low = 0: i n t ;

Mac.Reset = 0: i n t ;

Beacon = 1: i n t ;

NULL.STR = "": c h a r . s t r ;

succ = 0: i n t ;

f a i l = 1: i n t ;

VAR

MSA: i n t ;

MLA: i n t ;

n: i n t ;

T_0pr, T_Bid_Rc, T_Bid_Tx, T.Neg, T_Req, T_Max: i n t ;

Ring_Operational: boolean;

Token.c lass: i n t ;

frame_Token_class: in t ;

A . F l a g , C . F l a g , E . F l a g , M.Flag, N .F lag , H . F l a g , L . F l a g , R .F lag: i n t ;

APPENDIX C. EXCERPT OF ESTELLE. Y SPECIFICATION OF FDDI MAC PROTOCOLS

Frame.Ct, Error.Ct, Lost.Ct, Late.Ct: i n t ;

My.Claim, Lower.Claim, Higher.Claim, My.beacon, Other.beacon: boolean;

Usable, FR.strip, FR.copied, nomoredata: boolean;

Valid_Data_Length, Valid_FCS_Rc, Valid_Copy: boolean;

Claim_FR_rec, Beacon_FR_rec: boolean;

FCrlsToken, FCrEqNSA: boolean;

Buffer_sD_J, Buffer_sD_K, Buffer.fC, Buffer_dA_L, Buffer_sA_L,

Buffer_dA_S, Buffer_sA_S: i n t ;

Buffer.pA, Buffer.info, Buffer.fCS: char.str;

Buffer.eD, Buffer_fS_a, Buffer_fS_c, Buffer_fS_e: i n t ;

frame.FC, frame_FC_Lr: i n t ;

frame.INFO, frame.FCS: char_str;

frame.SA, frame_DA_L, frame_DA_S, frame.ED: i n t ;

req_service_class: i n t ;

Ex, Ax, Cx: i n t ;

num_of.frames, trans_status: i n t ;

Lr: i n t ;

ISP

MaUnitDataRequest llc_mac;

MaTokenRequest llc_mac;

PhUnitDatalndication mac.phy;

PhUnitDataSt atusIndi c at ion mac_phy;

Phlnvalidlndication mac.phy;

APPENDIX C. EXCERPT OF ESTELLE. Y SPECIFICATION OF FDDI MAC PROTOCOLS

OSP

SmMalnitProtocolReq smt_mac;

SmMaCtrlReq smt_mac;

MaUnitDatalndication llc.mac;

MaUnitDataStatusIndication llc.mac;

PhUnitDataRequest mac_phy;

SmMalnitProtocolcfm

SmHaStatusIndication

smt.mac;

smt.mac;

PDU

Frame sent_in PhUnitDataRequest,

recv.in PhUnitDatalndication;

Token sent.in PhUnitDataRequest,

recv.in PhUnitDatalndication;

TIMER

TVX

THT

TRT

2350;

0;

165000;

STATE

Rx.data, Ck.frame, Tx.data, Issue.TK, Claim.TK, Tx.beacon;

INITIALIZATION

APPENDIX C. EXCERPT OF ESTELLE. Y SPECIFICATION OF FDDI MAC PROTOCOLS

TO Rx.data

BEGIN

Ring.Operational := true;

nomoredata := true;

FR_copied := fa l s e ;

FR.strip := false;

END;

TRANS

FROM Rx.data

TO Rx.data

WHEN PhUnitDatalndication

PROVIDED (PhUnitDatalndication.phlndication = I)

and (not Reset(TVX))

PRIORITY high

OUTPUT PhUnitDataRequest

BEGIN

Reset(TVX);

Start(TVX);

PhUnitDataRequest.phRequest := I;

END;

TO Rx.data

WHEN SmMaCtrlReq

PROVIDED (SmMaCtrlReq.ctrlAction = Mac.Reset)

PRIORITY high

BEGIN

APPENDIX C. EXCERPT OF ESTELLE. Y SPECIFICATION OF FDDI MAC PROTOCOLS

T.Neg := T.Max;

END;

TO Rx.data

WHEN MaUnitDataRequest

BEGIN

frame.FC := MaUnitDataRequest.fcValue;

frame.FC.Lr := (frame_FC/64) mod 2;

i f (frame.FC.Lr = one)

then

frame.DA.L := MaUnitDataRequest.destinationAddress.longAddress

else

frame.DA.S := MaUnitDataRequest.destinationAddress.shortAddress;

frame.INFO := MaUnitDataRequest.mSDU;

frame.SA := MSA;

req.service.class := MaUnitDataRequest.requestedServiceClass;

frame.Token.class := MaUnitDataRequest.tokenClass;

nomoredata := No;

END;

TO Ck.frame

WHEN Frame

BEGIN

A.Flag := zero;

C.Flag := zero;

E.Flag := zero;

N.Flag := zero;

H.Flag := zero;

APPENDIX C. EXCERPT OF ESTELLE. Y SPECIFICATION OF FDDI MAC PROTOCOLS

L_Flag := zero;

H.Flag := zero;

i f (Frame.fC = 15) or (Frame.fC = 79)

then N_Flag := one;

Lr := (Frame.fC/64) mod 2;

i f (Frame.fC <> Void)

then

i f (Lr = zero and Frame.dA.shortAddress = S.Addrs) or

(Lr = one and Frame.dA.longAddress = L.Addrs)

then

begin

A_Flag := one;

Buffer_pA := Frame.pA;

Buffer_sD_J := Frame.sD.j;

Buffer.sD.K := Frame.sD.k;

Buffer.fC := Frame.fC;

Buffer_dA_S := Frame.dA.shortAddress;

Buffer_sA_S := Frame.sA.shortAddress;

Buffer_dA_L := Frame.dA.longAddress;

Buffer_sA_L := Frame.sA.longAddress;

Buffer.info := Frame.info;

Buffer.fCS := Frame.fCS;

Buffer_eD := Frame.eD;

Buffer_fS_a := Frame.fS.a;

Buffer_fS_c := S;

Buffer_fS_e := Frame.fS.e;

APPENDIX C. EXCERPT OF ESTELLE. Y SPECIFICATION OF FDDI MAC PROTOCOL100

FR.copied := Yes;

end;

i f (Lr = zero and Frame.sA.shortAddress = MSA and MSA > zero) or

(Lr = one and Frame.sA.longAddress = MLA and MLA > zero)

then

begin

M.Flag := one;

FR.strip := Yes;

end

else

i f (Lr = zero and Frame.sA.shortAddress > MSA and MLA = zero) or

(Lr = one and Frame.sA.longAddress > MLA)

then H_Flag := one

else

i f (Frame.sA.shortAddress > zero) or (Frame.sA.longAddress > zero)

then L_Flag := one;

T_Bid_Rc := Frame.info;

i f (Frame.fC = Claim.FR)

then

begin

i f (T_Bid_Rc <> T.Req)

then

i f L_Flag = one

then

begin

APPENDIX C. EXCERPT OF ESTELLE. Y SPECIFICATION OF FDDI MAC PROTOCOL101

H.Flag := one;

L_Flag := zero;

end

else

i f H_Flag = one

then

begin

L_Flag := one;

H_Flag := zero;

end;

i f (L.Flag = one) then FR.strip := Yes;

Claim_FR_rec := Yes;

end;

Frame.Ct := Frame.Ct + one;

i f (Valid_Data_Length and (Valid_FCS_Rc or (Frame.fC = Void or

Frame.fC = Implementer)))

then

begin

Reset(TVX);

Start(TVX);

i f A_Flag and Valid_Copy

then C_Flag := one;

end

else

begin

E_Flag := one;

A_Flag := zero;

APPENDIX C. EXCERPT OF ESTELLE. Y SPECIFICATION OF FDDI MAC PROTOCOLS

H.Flag := zero;

M_Flag := zero;

L_Flag := zero;

end;

i f (Frame.fS.a = R) then

i f E.Flag = one then Ex

i f A_Flag = one then Ax

i f C.Flag = one then Cx

N.Flag := zero;

= S else Ex := Frame.fS.e;

= S else Ax := Frame.fS.a;

= S else Cx := Frame.fS.c;

i f (Frame.fS.c = S) and (M.Flag = one)

then trans.status := succ

else trans.status := f a i l ;

i f (Frame.fC = Claim.FR and A.Flag = 1 and M.Flag =

then

begin

T.Neg := T.Bid.Rc;

My_Claim := Yes;

R_Flag := zero;

Claim_FR_rec := Yes;

end

else i f (Frame.fC = Claim.FR and H.Flag = one)

then

begin

T_Neg := T_Bid_Rc;

Higher.Claim := Yes;

R.Flag := zero;

APPENDIX C. EXCERPT OF ESTELLE. Y SPECIFICATION OF FDDI MAC PROTOCOL103

Claim_FR_rec := Yes;

end

else i f (Frame.fC = Claim.FR and L.Flag = one)

then

begin

Lower.Claim := Yes;

R_Flag := zero;

Claim_FR_rec := Yes;

end

else i f (Frame.fC = Beacon.FR and M.Flag = 1)

then

begin

T.Neg := T.Max;

My.beacon := Yes;

R.Flag := zero;

Beacon.FR.rec := Yes;

end

else i f (Frame.fC = Beacon.FR and (M.Flag - 0 and E.Flag = 1))

then

begin

T.Neg := T.Max;

Other.beacon := Yes;

R.Flag := zero;

Beacon.FR.rec := Yes;

end

else i f (E.Flag = 1) and (Frame.fS.e <> S)

then Error.Ct := Error.Ct + one;

APPENDIX C. EXCERPT OF ESTELLE. Y SPECIFICATION OF FDDI MAC PROTOCOLS

END;

TO Tx.data

WHEN Token

PROVIDED (Usable)

OUTPUT Frame

BEGIN

Token.class := (Token.fC/64) mod 2;

i f (Token.class = Restricted)

then

i f (R.Flag = zero)

then

begin

R.Flag := one;

SmMaStatusIndication.statusReport := 11;

end

else

begin

Reset(TVX);

Start(TVX);

R.Flag := zero;

end;

Stop(THT);

i f Late.Ct = zero

then

begin

Set(THT, Read(TRT));

APPENDIX C. EXCERPT OF ESTELLE. Y SPECIFICATION OF FDDI MAC PROTOCOL105

SetCTRT, T_Opr);

Start(TRT);

end

else

begin

Set(THT, Timeout(THT));

Late_Ct := zero;

end;

Frame.pA := zero;

Frame.sD.j := J;

Frame.sD.k := K;

Frame.fC := frame_FC;

i f (frame_FC_Lr = 1)

then

Frame.dA.longAddress := frame_DA_L

else

Frame.dA.shortAddress := frame_DA_S;

Frame.sA.longAddress := frame.SA;

Frame.sA.shortAddress := frame_SA;

Frame.info

Frame.fCS

Frame.eD

Frame.fS.a

Frame.fS.c

Frame.fS.e

= frame.INFO;

= frame.FCS;

= frame_ED;

= R;

= R

= R

nomoredata:= Yes;

APPENDIX C. EXCERPT OF ESTELLE. Y SPECIFICATION OF FDDI MAC PROTOCOLS

END;

TO Claim.TK

PROVIDED (Timeout(TVX) or (Timeout(TRT) and Late.Ct > zero) or

(Ring.Operational and T_0pr < T.Req))

BEGIN

T.Opr := T.Max;

Set(TRT, T.Opr);

Start(TRT);

Ring.Operational := No;

END;

TO Tx.beacon

WHEN SmMaCtrlReq

PROVIDED (SmMaCtrlReq.ctrlAction = Beacon)

BEGIN

Set(TRT, T.Opr);

Start(TRT);

END;

TRANS

FROM Tx.data

TO Tx.data
PROVIDED (not nomoredata)

APPENDIX C. EXCERPT OF ESTELLE. Y SPECIFICATION OF FDDI MAC PROTOCOL107

OUTPUT Frame

BEGIN

Frame.sD.j := J;

Frame.sD.k := K;

Frame.fC := frame.FC;

Frame.sA.shortAddress := frame_SA;

Frame.sA.longAddress := frame.SA;

Frame.dA.shortAddress := frame_DA_S;

Frame.dA.longAddress := frame_DA_L;

Frame.info := frame.INFO;

Frame.eD := T;

Frame.fS.e

Frame.fS.a

Frame.fS.c

END;

= R;

= R;

= R;

TO Tx.data

WHEN MaUnitDataRequest

BEGIN

frame.FC := MaUnitDataRequest.fcValue;

frame.FC.Lr := (frame_FC/64) mod 2;

i f (frame.FC.Lr = one)

then

frame.DA.L := MaUnitDataRequest.destinationAddress.longAddress

else

frame.DA.S := MaUnitDataRequest.destinationAddress.shortAddress;

frame.INFO := MaUnitDataRequest.mSDU;

APPENDIX C. EXCERPT OF ESTELLE. Y SPECIFICATION OF FDDI MAC PROTOCOLS

frame.SA := S.Addrs;

req_service_class := MaUnitDataRequest.requestedServiceClass;

frame_Token_class := MaUnitDataRequest.tokenClass;

nomoredata := No;

END;

TO Rx.data

WHEN SmMaCtrlReq

PROVIDED (SmMaCtrlReq.ctrlAction = Mac_Reset)

BEGIN

T.Opr := T.Max;

i f (Ring.Operational or Late.Ct = zero)

then

begin

Set(TRT, T.Opr);

Start(TRT);

Late.Ct := one;

Ring.Operational := No;

end;

END;

TO Claim.TK

PROVIDED (Timeout(TVX) or (Timeout(TRT) and Late.Ct > zero) or

(Ring.Operational and T.Opr < T.Req))

BEGIN

T.Opr := T.Max;

Set(TRT, T.Opr);

Start(TRT);

APPENDIX C. EXCERPT OF ESTELLE. Y SPECIFICATION OF FDDI MAC PROTOCOL!^

Ring.Operational := No;

END;

TRANS

FROM Issue.TK

TO Rx.data

OUTPUT Token

I

TO Issue.TK

WHEN Frame

TO Rx.data

WHEN SmMaCtrlReq

PROVIDED (SmMaCtrlReq.ctrlAction = Mac.Reset) or

(SmMaCtrlReq.ctrlAction = Beacon)

BEGIN

T.Opr := T.Max;

i f (Ring.Operational or Late.Ct = zero)

then

begin

Set(TRT, T.Opr);

Start(TRT);

Late.Ct := one;

Ring.Operational := No;

end;

APPENDIX C. EXCERPT OF ESTELLE. Y SPECIFICATION OF FDDI MAC PROTOCOL110

END;

TO Claim.TK

PROVIDED (Timeout(TVX) or (Timeout(TRT) and Late.Ct > 0) or

(Ring.Operational and T.Opr < T.Req))

BEGIN

T.Opr := T.Max;

Set(TRT, T.Opr);

Start(TRT);

Ring.Operational := No;

END;

TRANS

FROM Ck.frame

TO Rx.data

PROVIDED (FR.strip and not Claim.FR.rec and not Beacon.FR.rec)

PRIORITY high

OUTPUT MaUnitDataStatusIndication

BEGIN

MaUnitDataStatusIndication.numberOfSDUs := 1;

MaUnitDataStatusIndication.transmissionStatus := trans.status;

MaUnitDataStatusIndication.providedServiceClass := 1;

END;

end.

Appendix D

T E S T G E N menus

Test Suite Generation - Prototype V.2 #
######################################«#####

= #

TSG Main Menu #
============= #

Enter: #
p to access the parser menu, #
v to access the PDS v e r i f i c a t i o n menu, #
c to set or modify the TSG and SPP constraints, #
g to access the test case generation menu. #

- to return to previous menu, #
h for help, #
e to exit TSG. #
#===#

111

APPENDIX D. TESTGEN MENUS 112

#===#
TSG Estelle/ASH.1 parser #
======================== #

Ready to create PDS: #
- loading: asnl.tt #
- parsing: spec.txt #
Enter: #
1 to create the PDS as specified, #
2 to specify another ASN.l f i l e to load, #
3 to specify another specification f i l e to parse. » #

#===#
-:previous, h:help, m:main, p:parser, c:constraints, g:gen...e:exit #
#===#

#===#
TSG PDS v e r i f i c a t i o n #
===================== #

These functions allow to verif y the parsed PDS. Enter: #
0 to check the consistency of the parsed PDS, #

1 to display STATES, #
2 to display TRANSITIONS, #
3 to display ISPs (Input Service Primitives) #
4 to display OSPs (Output Service Primitives) #
5 to display PDUs (Protocol Data Units) #
6 to display Parameter of Service Primitive #
7 to display CONSTANTS, #
8 to display VARIABLES, #
9 to display TIMER, #

1 to access the lower level PDS v e r i f i c a t i o n menu. #
#===#
-:previous, h:help, m:main, psparser, c:constraints, g:gen...e:exit #
#============== === = = = = === = = = = = = = = = = = = = = = =^

APPENDIX D. TESTGEN MENUS 113

#===#
TSG low l e v e l PDS v e r i f i c a t i o n #
=============================== #

These functions allow to ver i f y the parsed PDS. Enter: #
1 to display Compound statements #
2 to display If statements #
3 to display Assignment statements #
4 to display Timer statements #
5 to display Timer expressions #
6 to display Expressions #
9 to display Efect Functions, #
*
v for high l e v e l PDS v e r i f i c a t i o n , #
#===#
-:previous, h:help, m:main, p:parser, c:constraints, g:gen...e:exit #
#===#

#= _ #

Default setting of TSG Constraints «

STATES: min-use = 0 max-use = 99 #
TRANSITIONS: min-use - 0 max-use = 99 #
ISP: min-use = 0 max-use = 1 #
OSP: min-use = 0 max-use = 1 #
PDU: min-use = 0 max-use = 1 #
CONSTANTS: min-use = 0 max-use = 99 #
VARIABLES: min-use = 0 max-use = 99 #

min-assigned = 0 max assigned = 99 #
TIMER Operations: min-start = 0 max-start = 99 #
min-stop = 0 max-stop = 99 • #
min-set = 0 max-set = 99 #
min-reset = 0 max-reset = 99 #
TIMER Condition checks: #
min-read = 0 min-read = 99 #
min-check -reseted = 0 min-check-reseted = 99 ' #
min-check -started = 0 min-check-started = 99
min-check -stopped = 0 min-check-stopped = 99 #
min-check -timed-out = 0 min-check-timed_out = 99 #

#= ====#

APPENDIX D. TESTGEN MENUS 114

#==================================̂
Default setting of ISP Parameter #
================================ #

ISP: MaUnitDataRequest #
+ + + #

| Type | recognized ISP parameter name I #
+ + - - + #
I int | MaUnitDataRequest.requestedServiceClass I #
| bool I MaUnitDataRequest.stream I #
I ... | . . . I #
+ + + #
«

ISP: MaTokenRequest #
+ + — + #
| Type I recognized ISP parameter name I #
+ + - — — — + #
| int | MaTokenRequest.requestedTokenClass I #
+ + - + #

ISP: SmMalnitProtocolReq #
+ + - — + #
| Type I recognized ISP parameter name I #
+ + - + #
| char*| SmMalnitProtocolReq.indivMACaddrS I #
| bool | SmMalnitProtocolReq.indForRcvOnlyGoodFr I #
I ... | . . . I #
+ + — - - + #
. . . #

PDU: Frame #
+ + - + #
| Type | recognized PDU parameter name I #
+ + + #
| char*| Frame.pA I #
I int | Frame.sD.j I #

I ... I . . . I #
+ + + #
. . . #

NOTE: Constraints are only defined for the parameters l i s t e d above. #
Booleans (bool) parameters are constraint to: TRUE, FALSE #
Interger (int) parameters are constraint to: 0, 1, 999 #
Cstrings (char*) parameters are constraint to: 'parm.vall' #
#===#

APPENDIX D. TESTGEN MENUS 115

#===̂ ^
Default setting of PDU Parameter #
================================ #

PDU: Frame #
+ + - —+ #
| Type | recognized PDU parameter name I #
+ + + #
I char*I Frame.pA I #
I int I Frame.sD.j I #
I int | Frame.sD.k I #
I ... | . . . I #
+ + - + #

PDU: Token #
+ + + #

| Type | recognized PDU parameter name I #
+ +-- + #
| char*I Token.pA I #
I int | Token.sD.j I #
| int I Token.sD.k I #
I ... I . . . I #
+ + + #

NOTE: Constraints are only defined f o r the parameters l i s t e d above. #
Booleans (bool) parameters are constraint to: TRUE, FALSE #
Interger (int) parameters are constraint to: 0, 1, 999 #
Cstrings (char*) parameters are constraint to: 'parm.vall' #
#===#

APPENDIX D. TESTGEN MENUS 116

#=====================================̂
Interactive Constraint Definition #
================================= #

The Test Suite Generation (TSG) allow to control the subtour #
selection mechanism. Enter: #
1 to reset the TSG constraints to default values, #
t to c a l l the TSG constraint editor. #

The Service Primitive Parameter (SPP) constraints and the Protocol #
Data Unit Parameter (PDUP) constraints define the values of #
parameters of the service primitives sent to the IUT. Enter: #
2 to reset the SPP constraints to default values, #
s to c a l l the SPP constraint editor, #

The Service Primitive Parameter (SPP) constraints and the Protocol #
Data Unit Parameter (PDUP) constraints define the values of #
parameters of the service primitives sent to the IUT. Enter: #
3 to reset the PDUP constraints to default values, #
u to c a l l the PDUP constraint editor. #

#===#
-:previous, h:help, m:main, p:parser, c:constraints, g:gen...e:exit #
#===#

#===#
Interactive Constraint Definition #
================================= #

These functions allow to view and specify constraints on the #
the following Primitives. Enter: #
1 to specify STATES constraints, #
2 to specify TRANSITIONS constraints, #
3 to specify ISPs (Input Service Primitives) constraints, #
4 to specify OSPs (Output Service Primitives) constraints, #
5 to specify PDUs (Protocol Data Units) constraints, #
6 to specify CONSTANTS constraints, #
7 to specify VARIABLES constraints, #
8 to specify TIMER constraints, #

#===#

-:previous, h:help, m:main, p:parser, c:constraints, g:gen...e:exit #
#===#

APPENDIX D. TESTGEN MENUS 117

TSG Constraints Editor (STATE) #
================================ #
(a) (b) #
+ + + + + #

| key | Name I min-use I max-use I #
+ + + +_— + #

1 0 I Rx.data I 0 I 99 I #
I 1 I Ck.frame I 0 I 99 I #
1 2 | Tx.data I 0 | 99 I #

I ... I . . . I I ! I #
+ + + - + — T + #

; #
Enter #
'key' [ab] 'value' :to change the value of a state constraint. #
(ex: '2a3' w i l l set the min-use (a) of state 2 (key) to 3 (value)) #

t to return to the main TSG constraint editor menu | #
#===#
-:previous, h:help, m:main, p:parser, c:constraints, g:gen...e:exit #
#===#

#===#
TSG Constraints Editor (TRANSITION) #
===================================== #
(a) (b) #
+ + + + + + + #

| key | Name I ISP name I OSP name I min-use I max-use I #

+ + + + + +—. + #
I 0 | - | PhUnitData | PhUnitData I 0 I 99 I #
I 1 I - | SmMaCtrlRe | - | 0 I 99 I #
I 2 | - | MaUnitData I - I 0 I 99 I #
| 3 | — | - | - | 0 I 99 |#
| 4 | — | - | - | 0 | 99 |#
| 5 | - | - | - | 0 | 99 |#
I 6 | - I- | - | 0 I 99 |#
| 7 | - | SmMaCtrlRe I - I 0 I 99 I #

I ... I . . . I I I I I #
+ + + + + + #

Enter #
'key' [ab] 'value' :to change the value of a trans constraint. #
(ex: '2a3' w i l l set the min-use (a) of trans 2 (key) to 3 (value)) #

t to return to the main TSG constraint editor menu #
#============== ======================^
-:previous, h:help, m:main, p:parser, c:constraints, g:gen...e:exit #

I

APPENDIX D. TESTGEN MENUS 118

TSG Constraints Editor (ISP) #
============================== #
(a) (b) #
+ + + + + #

| key I Name I min-use I max-use I #
+ + — — + + — + #
| 0 | MaUnitDataRequest I 0 I 1 I #
| 1 | MaTokenRequest I 0 I 1 I #
| 2 I PhUnitDatalndication I 0 I 1 I #
+ + + + + #

Enter #
'key' [ab] 'value' :to change the value of a ISP constraint. #
(ex: '2a3' w i l l set the min-use (a) of isp 2 (key) to 3 (value)) #

t to return to the main TSG constraint editor menu #
. = . . = T ===#
-:previous, h:help, m:main, p:parser, c:constraints, g:gen.:.e:exit #
#===#

TSG Constraints Editor (OSP) #
============================== #

(a) (b) #
+ + - — + — -+- + #

I key I Name I min-use I max-use I #
+ + - - — -+— + -+ #
| 0 I MaUnitDatalndication I 0 I 1! I #
I 1 | MaUnitDataStatusIndication I 0 I 1 I #
| 2 I PhUnitDataRequest I 0 I 1 I #
+ + + + + #

Enter #
'key' [ab] 'value' :to change the value of a OSP constraint. #
(ex: '2a3' w i l l set the min-use (a) of osp 2 (key) to 3 (value)) #

t to return to the main TSG constraint editor menu #
#===#
-:previous, h:help, m:main, p:parser, c:constraints, g:gen...e:exit #
#===#

APPENDIX D. TESTGEN MENUS 119

#===#
TSG Constraints Editor (PDU) #
============================== #

(a) (b) #
+ + + +— + #
| key | Name I min-use I max-use I #
+ + + + + #

1 0 I Frame I 0 I 1 I #
1 1 | Token I 0 I 1 I #
+ + _ + + + #

! #

Enter #
'key' [ab] 'value' :to change the value of a PDU constraint. #
(ex: '2a3' w i l l set the min-use (a) of pdu 2 (key) to 3 (value)) #

t to return to the main TSG constraint editor menu #
#===#
-:previous, h:help, m:main, p:parser, c:constraints, g:gen...e:exit #
#===#

#===#
TSG Constraints Editor (CONSTANTS) #
==================================== #

(a) (b) #
+ + + + + #

I key | Name I min-use I max-use I #
+ + + +--• + #
| 0 | I 10 | 99 I #
I 1 I J | 0 | 99 I #
| 2 | K | 0 | 99 I #
| 3 I R | 0 | 99 | #
I 4 I S 10 | 99 I #
I 5 I T 10 | 99 I #
+ + + + + #

Enter #
'key' [ab] 'value' :to change the value of a const constraint. #
(ex: '2a3' w i l l set the min-use (a) of const 2 (key) to 3 (value)) #

t to return to the main TSG constraint editor menu #
#===#
-:previous, h:help, m:main, p:parser, c:constraints, g:gen...e:exit #
#===#

APPENDIX D. TESTGEN MENUS 120

#===#
TSG Constraints Editor (VARIABLES) '< #
==================================== #

(a) (b) (c) (d) #
£ + + + + + + + #

I key I Name I I I min- I max- I #
| key | Name I min.use I raax.use I assigned I assigned I #
+ + + + + + — . + #

| 0 | MSA 10 I 99 10 | 99 I #
I 1 I MLA 10 I 99 10 | 99 I #
| 2 | n | 0 | 99 10 | 99 I #
1 3 | T.Opr 10 I 99 I 0 | 99 I #
1 4 I T.Bid.Rc I 0 I 99 I 0 I 99 I #
1 5 | T.Bid.Tx I 0 I 99 I 0 I 99 I #
+ + + + + + 1 + #

Enter #

i
'key' Cab] 'value' :to change the value of a VARIABLE constraint. #
(ex: '2a3' w i l l set the min-use (a) of var 2 (key) to 3 (value)) #

t to return to the main TSG constraint editor menu j #
#===#
-:previous, h:help, m:main, p:parser, c:constraints, g:gen...e:exit #
#===#

APPENDIX D. TESTGEN MENUS 121

#================================^
TSG Constraints Editor (TIMER) #
================================ #

Timer actions I (a) (b) (c) (d) (e) (f) (g) (h) #
+ + + + + + + + + + + #
| | | min | max I min I max I min I max I min I max I #
| key I Name I start I start I stop I stop I set I set I r e s e t I r e s e t I #
+ + + + + + + + + + + #
1 0 | TVX | 0 | 99 | 0 | 99 | 0 I 99 I 0 I 99 I #
1 1 | THT 1 0 I 99 | 0 I 99 I 0 I 99 I 0 I 99 I #
1 2 I TRT 1 0 | 99 | 0 I 99 I 0 I 99 I 0 I 99 I #
+ + + + + + + + + + + #

Timer conditions I (i) (j) (k) (1) (m) (n) (o) '(p) (q) (r)
+ + + + + + + + + + + + +

1 1 I min I max I min I max I min I max I min I max I min I max I
| key | Name I check read I check reset I check start I check stopdlcheck timotl
+ + + + + + + + + + + + +

1 0 I TVX | 0 | 99 | 0 I 99 I 0 I 99 I 0 I 99 I 0 I 99 I
| 1 I THT 1 0 | 99 I 0 I 99 | 0 | 99 | 0 I 99 I 0 I 99 I
| 2 | TRT | 0 | 99 | 0 | 99 | 0 I 99 I 0 | 99 I 0 I 99 I
+ + + + + + + + + + + + +

Enter #
'key' [ab] 'value' :to change the value of a timer constraint. #
(ex: '2a3' w i l l set the min-use (a) of timer 2 (key) to 3 (value)) #

t to return to the main TSG constraint editor menu #
#===#
-:previous, h:help, m:main, p:parser, c:constraints, g:gen...e:exit #
= #

APPENDIX D. TESTGEN MENUS 122

#===#
Interactive Service Primitive Parameter De f i n i t i o n #
== #

+ + + + + #

I key | Input Service Primitive name | # parm. I # inst. I #
+ + — + + + #

I 0 | MaUnitDataRequest I 7 I 64 I #
I 1 | MaTokenRequest I 1 I 2 I #
I 2 | PhUnitDatalndication I 1 I 2 I #
I 3 1 PhUnitDataStatusIndication I 1 I 2 I #
I 4 | Phlnvalidlndication I 1 I 2 I #
I 5 | SmMalnitProtocolReq I 11 I 256 I #
I 6 | SmMaCtrlReq I 10 I 512 I #
+ + + + + #

Enter #
'key' to define the parameter of the corresponding ISP, #
#===#
-:previous, h:help, m:main, p:parser, c:constraints, g:gen...e:exit #
#===#

#===#
Interactive Protocol Data Unit Parameter Definition #
=== *

+ + + + + #

| key | Protocol Data Unit name I # parm. I # inst . I #
+ + +___ + + #
I 0 | Frame I 14 I 2048 I #
I 1 | Token I 5 I 16 I #
+ + + + + #

Enter #
'key' to define the parameter of the corresponding PDU, #
#===#
-:previous, h:help, m:main, p:parser, c:constraints, g:gen...e:exit #
#===#

APPENDIX D. TESTGEN MENUS 123

#===
Test Suite Generation #
===================== #

Enter: #
1 to estimate the number of subtours, #
2 to identify and store the subtours, #
3 to store and print the i d e n t i f i e d subtours, #

5 to generate test cases f o r a l l subtours. #
*
#===#
-:previous, h:help, m:main, p:parser, c:constraints, g:gen...erexit #
#===#

Appendix E

Consistency Requirements of PDS

Following are consistency requirements that must be satisfied by a protocol data structure.

The defined conditions reflect the properties of the Protocol Data Structure. The conditions

are used to verify the consistency of a protocol data structure.

General conditions on the Protocol Data Structure:

General conditions i s examplified with STATE structure. Similar conditions

apply to TRANS, ISP, OSP, PDU, SPPARM, CONST, VAR, TIMER, EXPR,

TEXPR, AFN, ASTMT, IFSTMT, WSTMT and TSTMT.

ppds->nb_of_states <= MAXSTATES

ppds->nb_of.states == # (instances of STATE)

fo r a l l 0 < i < ppds->nb_of.states

ppds->pstate[i]->key = i

for a l l i >= nb.of.states

ppds->pstate[i] == NULL pointer

f o r a l l STATE instances

ppds->pstate[i]->key = i

124

APPENDIX E. CONSISTENCY REQUIREMENTS OF PDS 125

where ppds i s the pointer to main data structure of a PDS.

STATE:

fo r a l l instances of STATE (i . e . states),

f o r a l l 0 < i < nb_of_tr

ppds->pstate[tr_key[i]]->form_state = key;

fo r a l l i >= nb_of_tr

tr_key[i] == NULL pointer;

TRANSITION:

fo r a l l instances of TRANS (i . e . t r a n s i t i o n s) ,

there exists an i so that: ppds->pstate[from_st]->tr_key[i] == key;

from_st < ppds->nb_of.states

to_st < ppds->nb_of.states

isp < ppds->nb_of_isps

osp < ppds->nb_of_osps

osp2 < ppds->nb_of_osps

ipdu < ppds->nb_of_pdus

opdu < ppds->nb_of_pdus

opdu2 < ppds->nb_of_pdus

epred < ppds->nb_of_exprs

afn < ppds->nb_of_afns

ISP:

f o r a l l input service primitives,

nb_of_pdus < ppds->nb..of_pdus;

APPENDIX E. CONSISTENCY REQUIREMENTS OF PDS 126

for a l l 0 < i < nb_of_pdus;

ppds->ppdu[pdu_key[i]]->sent_in == key;

for a l l i >= nb_of_pdus;

pdu_key[i] == NULL pointer;

OSP:

for a l l output service primitives,

nb_of_pdus < ppds->nb_of_pdus;

for a l l 0 < i < nb_of_pdus;

ppds->ppdu[pdu_key[i]]->recv_in == key;

for a l l i >= nb_of_pdus;

pdu_key[i] == NULL pointer;

PDU:

for a l l protocol data units,

(sent.in != NONE) OR (recv.in != NONE) OR (pco != NONE);

i f (sent.in != NONE) there exists an i so that:

ppds->pisp[sent_in]->pdu_key[i] == key;

i f (recv_in != NONE) there exists an i so that:

ppds->posp[recv_in]->pdu_key[i] == key;

CONSTANT:

for a l l constants,

type must be a member of set {BOOLEAN.TYPE, INTEGER.TYPE, CHAR.STRING.TYPE}

i f (type == BOOLEAN.TYPE)

{ int_value == 0;

char_ptr == NULL pointer;

APPENDIX E. CONSISTENCY REQUIREMENTS OF PDS 127

}

i f (type == INTEGER.TYPE)

{ boolean.value == 0;

char.ptr == NULL pointer;

>

i f (type == CHAR_STRING_TYPE)

{ int.value == 0;

boolean.value == 0;

}

VARIABLE:

for a l l variables,

type must be a member of set {BOOLEAN.TYPE, INTEGER.TYPE, CHAR_STRING_TYPE}

TIMER:

timeout.value > 0;

Help function:

_result_type(x.kind, x, check.type)

•c

i f (x.kind == VAR)

pds->pvar[right]->type == check.type;

i f (x.kind == CONSTANT)

pds->pconst[right]->type == check.type;

i f (x.kind == EXPR)

_result_type(pds->pexpr [right]) == check.type;

APPENDIX E. CONSISTENCY REQUIREMENTS OF PDS 128

>

EXPRESSION:

for a l l expressions,

i f (operator == not)

{ le f t . k i n d ~ NONE;

right.kind != NONE;

.result.type(right.type, r i g h t , BOOLEAN.TYPE)

>

i f ((operator == and) or (operator == or))

•C l e f t . k i n d != NONE;

right.kind != NONE;

.result.type(left.type, l e f t , BOOLEAN.TYPE)

.result.type(right.type, r i g h t , BOOLEAN.TYPE)

>

i f (operator i s one of {+, -, *, div, mod})

{ l e f t . k i n d != NONE;

right.kind != NONE;

.result.type(left.type, l e f t , INTEGER.TYPE)

.result.type(right.type, r i g h t , INTEGER.TYPE)

}

i f (operator i s one of {=, <, >, >=, <=, !=})

{ le f t . k i n d != NONE;

right.kind != NONE;

.result.type(left.type, l e f t , INTEGER.TYPE)

APPENDIX E. CONSISTENCY REQUIREMENTS OF PDS 129

_result_type(right.type, r i g h t , INTEGER.TYPE)

>

Timer EXPRession:

status i s one of {RESET, STARTED, STOPPED, TIMED.OUT}

ACTION FUNCTION:

fo r a l l i < nb.of.statements

{ stmt_kind[i] i s one of { ASTMT, IFSTMT, TSTMT }

i f (stmt_kind[i] == ASTMT) stmt_key[i] < MAXASTMT;

i f (stmt_kind[i] == IFSTMT) stmt_key[i] < MAXIFSTMT;

i f (stmt.kind[i] == TSTMT) stmt.key[i] < MAXTSTMT;

}

IF Statement:

_result_type(expr, bool.expr, BOOLEAN.TYPE)

stmt.kind i s one of { ASTMT, IFSTMT, TSTMT }

else.stmt.kind i s one of { ASTMT, IFSTMT, TSTMT }

Assignment Statement:

The type of l e f t kind must be the same as the type of right expression.

Timer Statements:

timer.operator i s one of {START, RESET, STOP}

