
Application of the Ferry Clip Approach
to Multi-party and Interoperability Testing

By

H E N D R A D A N Y

B.Sc, University of Toronto, Canada. 1982

A THESIS S U B M I T T E D IN PARTIAL F U L F I L L M E N T O F

T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F

M A S T E R OF SCIENCE

in

T H E F A C U L T Y O F G R A D U A T E STUDIES

(D E P A R T M E N T O F C O M P U T E R SCIENCE)

We accept this thesis as conforming

to the required standard

T H E UNIVERSITY OF BRITISH C OLU MBIA

August 1990

© Hendra Dany, 1990

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

Department of Computer Science

The University of British Columbia
Vancouver, Canada

Date August 28, 1990

DE-6 (2/88)

Abstract
A s communications protocols are becoming more complex and sophisticated, develop­

ing a test system that has the abil i ty to provide a controlled environment for comprehen­
sive protocol testing is essential to achieve a "real open system". This thesis advocates
the need for a multi-party test method as currently identified by ISO, and discusses
two important aspects of protocol testing: Conformance and Interoperability. They are
complementary to each other and are necessary to ensure the conformity and interoper­
abil i ty of a protocol implementation. The proposed ferry clip based test architecture is
presented. B o t h the concepts and design principles employed to achieve a flexible and
generalized test system and the specific components which comprise the Ferry C l i p based
Test System are described. The test system is general and flexible not only wi th respect
to the test configurations and test methods but also with respect to the protocol to be
tested, the system under test, and the underlying communication system. Applicat ions
of the ferry cl ip approach to multi-party conformance and interoperability testing are
discussed, followed by an example of M H S conformance testing which demonstrates the
applicabi l i ty of the ferry clip approach to multi-party testing.

i i

Contents

Abstract ii

Contents iii

List of Tables vi

List of Figures vii

Terms and Acronyms ix

Acknowledgement xi

1 Introduction 1
1.1 Motivation 1
1.2 The Role of Protocols 3
1.3 The Role of Protocol Testing 4
1.4 Conformance Testing versus Interoperability Testing 6
1.5 Thesis Outline 8

2 The Ferry Clip Approaches in Protocol Testing 10
2.1 The Evolution of the Ferry Clip Concept 10
2.2 Realization of the ISO Abstract Test Methods 13

2.2.1 Realization of the Local Test Method 16
2.2.2 Realization of the Distributed or Coordinated Test Methods . . . 16
2.2.3 Realization of the Remote Test Method 17
2.2.4 Test Architecture and Error Detection Capability 17

3 System Architecture Design Overview 19
3.1 Design Goals and Objectives 19
3.2 Test Architecture Overview 21

iii

3.2.1 The Ferry Control Protocol (FCP) 21
3.2.2 Passive Ferry Clip (PFC) 23
3.2.3 Active Ferry Clip (AFC) 24
3.2.4 Test Suite Processor 25
3.2.5 Test Manager 25
3.2.6 Service Provider Interface Module 25
3.2.7 A S N . l Support Module 26
3.2.8 Activity Log Module 26

3.3 The Use of A S N . l Representation 27
3.3.1 Representation of ASPs Using ASN. l 27
3.3.2 E-Node: A Data Structure for Representing ASN. l 28

3.4 Executable Test Suites Design Overview 31
3.4.1 Executable Test Suite Behavior 32
3.4.2 Executable Test Suite Constraints 33
3.4.3 Derivation of the Executable Test Suite 33

4 Implementation 35
4.1 The OSI-PTE Environment 35
4.2 Overview of the Implementation 38
4.3 The Active Ferry Clip 38

4.3.1 The Active Ferry F S M 39
4.3.2 The Active Ferry L M A P and F T M P 41
4.3.3 The Active Ferry SIA 41

4.4 The Passive Ferry Clip 43
4.4.1 The Passive Ferry FSM 43
4.4.2 The Passive Ferry L M A P 44
4.4.3 The Passive Ferry SIA 45

4.5 ASN. l Support Tools 47
4.6 Derivation of Executable Test Suite 48

5 The Ferry Clip Approach to Multi-party Conformance Testing 50
5.1 Issues and Requirements of Multi-party Conformance Testing 50
5.2 Application of the Ferry Clip Approach to Multi-party Conformance Testing 53
5.3 Multi-party Conformance Testing of a MHS Implementation 56

5.3.1 Overview of MHS Model 57
5.3.2 Characteristics of MHS 59
5.3.3 Test Results 60
5.3.4 Issues and Experiences 60

iv

6 The Ferry Clip Approach to Multi-party Interoperability Testing 63
6.1 Differences between Conformance and Interoperability Test Approaches . 63
6.2 The Complementary Role of Interoperability Testing 64
6.3 Application of the Ferry Clip Approach to Multi-party Interoperability

Testing 66
6.4 Related Work 68

7 Conclusions and Future Work 72
7.1 Conclusions 72

7.2 Future Work and Research Directions 73

Bibliography 75

A Ferry Clip Services and Ferry PDUs 80

B The E-node Data Structure 85

C ASN1. Representation of ASPs and PDUs 87

D Data Structure for Executable Test Suite 88

E Derivation of Executable Test Suite 92

v

List of Tables

A . l Ferry C l i p Service Primit ives 80
A . 2 Mapp ing of F T - A S P s to Transport and Network Services 81
A . 3 Act ive Ferry C l i p State Transi t ion Table 82
A . 4 Passive Ferry C l i p State Transi t ion Table 83

v i

List of Figures

1.1 The development life cycle of a protocol implementation 4

2.1 A Ferry Clip Test Configuration 12
2.2 ISO Abstract Test Methods for Conformance Testing 14
2.3 Overview of the Ferry Clip based Test Architecture 15

3.1 The usage of ferry clip services 22

4.1 Event Interfaces for an OSI-PTE Protocol Entity 37
4.2 Configuration of the Active Ferry Clip in the OSI-PTE environment . . . 39
4.3 Event Interfaces for the Active Ferry F S M Entity 40
4.4 Event Interfaces for the Active Ferry L M A P Entity 42
4.5 Structure of the Active Ferry Service Interface Adapter 42
4.6 Configuration of the Passive Ferry Clip in the OSI-PTE environment . . 44
4.7 Event Interfaces for the Passive Ferry F S M Entity 45
4.8 Event Interfaces for the Passive Ferry L M A P Entity 45
4.9 Structure of the Passive Ferry Service Interface Adapter 46

5.1 Multi-party Test Configuration. Multiple parallel lower tester communi­
cating with a single IUT 51

5.2 General test configuration for message transfer layer of MHS 54
5.3 The Model of the Message Handling System 57
5.4 X.400 protocol architecture 58

6.1 Ferry clip based test configuration for interoperability testing using two
IUTs 67

6.2 OSIRIDE-Interest test architecture for X.400 interoperability test 69
6.3 IBM OSI-X.400 Interoperation Verification Service 71

A . l F Y - D A T A PDU format 84
A.2 F Y - C N T L PDU format 84

vii

C . l The A S N . l definition of ORName and its corresponding E-node tree rep­
resentation 87

E . l An example of X.403 test case specified in T T C N 93
E.2 An executable test tree representation of a T T C N test case 94
E.3 A sample conformance log produced by the ferry clip based test system . 95

viii

Terms and Acronyms
ASN. l Abstract Syntax Notation One

ASP Abstract Service Primitive

A F C Active Ferry Clip

B E R Basic Encoding Rules

C C I T T International Telegraph and Telephone Consulative Committee

FCP Ferry Control Protocol

FCTS Ferry Clip based Test System

FSM Finite State Machine

F T M P Ferry Transfer Medium Protocol

F Y - C N T L Ferry Control

F Y - D A T A Ferry Data

IPC Interprocess Communication

ISDN Integrated Services Digital Network

ISO International Organization for Standardization

IUT Implementation Under Test

L A P B Link Access Procedure B

L M A P Lower Mapping Module

L T Lower Tester

MHS Message Handling System

M P T M Multi-party Test Method

M T A E Message Transfer Agent Entity

OSI Open Systems Interconnection

P C O Points of Control and Observation

P D U Protocol Data Unit

P F C Passive Ferry Clip

PLP X.25 Packet Layer Protocol

P T E Protocol Testing Environment

SAP Service Access Point

SIA Service Interface Adapter

I X

SUT System Under Test

T C P / I P Transmission Control Protocol/Internet Protocol

T M Test Manager

T M P Test Management Protocol

T P Transaction Processing Protocol

T T C N Tree and Tabular Combined Notation

U B C - I D A C O M University of British Columbia-IDACOM Electronics

U A E User Agent Entity

U T Upper Tester

X.25 Packet-switching protocol and standard (CCITT)

X.400 Message Handling Systems (CCITT)

x

Acknowledgement

First of all, I would like to express my sincere thanks to my thesis supervisors, Dr.

Samuel T . Chanson and Dr. Son Vuong, for their guidance, commitment, and support

throughout the course of my research.

I am indebted to a number of people whom I have consulted on many occasions during

my research work. Especially, I would like to thank Helen see, Bernard Lee, Brian Smith,

Dennis Lo, Viola Lee and Mike Sample for always finding the time to help me when I

most needed it.

I would also like to extend my gratitude to my best friend, Carson Woo, who is always

willing to listen and offer his constructive opinion. I hope I will continue to benefit from

his friendship and wisdom.

I gratefully acknowledge the financial assistance and computing facilities provided by

the I D A C O M Electronics and Department of Computer Science, University of British

Columbia during my graduate studies.

Last but not least, a heartfelt thanks to my parents for their love and support, and

for always giving me the freedom to pursue my own goals and interests.

xi

Chapter 1

Introduction

This chapter presents the motivation of the research reported in this thesis. An introduc­

tion to the role of protocols and the role of protocol testing help set the the discussion in

the appropriate context. The importance of the two different aspects of protocol testing

is discussed, followed by the thesis outline.

1.1 M o t i v a t i o n

As Open Systems Interconnection (OSI) protocol standards mature, many new imple­

mentations based on these standards are being developed and appear in the industry.

Therefore, facilities to test these protocol implementations must be provided in order to

evaluate whether they conform to the industry-standard specifications, pass appropriate

conformance tests, and are able to interoperate effectively in a multi-vendor environment.

Protocol testing plays a key role in this process of evaluation for it helps to enhances

interoperability between systems from multiple vendors and service providers. To meet

the user requirements that products are able to interwork effectively, ISO and C C I T T are

jointly developing conformance testing standards with the aim that OSI protocols would

be consistently tested worldwide. The current testing standards [ISO-1] focus primarily

on single-party testing, and it was only recently that the need for a multi-party test

method [ISO-2] has been identified and investigated by ISO.

1

Chapter 1. Introduction 2

The need for a multi-party testing arises in the situations where an action (or an

instance of communication) of the protocol entity to be tested causes subsequent actions

at other protocol entities to take place. The protocol entities which are influenced by the

action may be distributed across the network involving multiple independent parties. In

addition, protocol implementation of this type usually does not offer a directly usable

service; that is there are no explicit points of control and observation within or above

the protocol implementations. Under these circumstances, the results of the action may

only be observed and reported by third parties. Hence, the requirement of testing such

a protocol suggests the need for a test method which may involve multiple peer entities

distributed among several systems, each communicating with the Implementation Under

Test (IUT) through a unique association or connection, i.e., the IUT concurrently uti­

lizes more than one association or connection for communicating with its peer entities.

This also implies that the test method may require both direct and indirect control and

observation in order to carry out test control and management functions, i.e., to achieve

test co-ordination procedures and observation of the IUT. Implementations of Message

Handling System (MHS), Routing Protocol, ISDN, Distributed Transaction Processing

and Directory Services are typical examples which require multi-party testing capability.

Testing OSI protocol implementations before being deployed to production fields pro­

vides a measure of confidence in them. A protocol implementation is said to conform to

the relevant standards if conformance testing yields a positive verdict. This, however,

does not necessary guarantee it is able to interwork properly when deployed as part of a

complete working system. Due to the complexity of protocols, rigorous conformance test­

ing is faced with practical limits on both technical and economical grounds. In addition,

there is a growing demand from the marketplace to have products that are interoperable

in a multi-vendor environment. Thus, interoperability testing is receiving attention in

the field of protocol testing as it is a direct and pragmatic test approach to assess the

interoperability of the products users install [BON89].

The Ferry Clip [ZENG88a, ZENG88b, ZENG89] concept was recently introduced as

a technique for realizing all the ISO defined abstract test methods. Due to its recent

introduction, little work has been done to study the applicability of adopting the ferry

Chapter 1. Introduction 3

clip test approach to multi-party testing. The purpose of this research is investigate

how the ferry cl ip test approach can be extended for new area of protocol testing, i.e.,

multi-party conformance testing and multi-party interoperability testing; and explore the

possible benefits wi th this approach. To accomplish the purpose of this research, one of

the most important goals is to design and implement a flexible and generalized Ferry C l i p

based Test System which provides a controlled environment for comprehensive protocol

testing. Th i s leads us to examine the design issues and the architectural principles that

are required to guide the test system design and implementation.

1.2 T h e R o l e o f P r o t o c o l s

A s computer and communication networks are becoming more sophisticated and more

pervasive. Users are increasingly demanding to have equipment and software from differ­

ent vendors interconnected forming seamless networks of diverse components that work

reliably and efficiently. They want to manage their networks easily and most importantly,

add new components and replace existing ones without making their previous investment

obsolete [AHO90].

To satisfy these user requirements, products from a single vendor must be able to com­

municate wi th products manufactured by other vendors. It is no longer acceptable to

have proprietary products that can only communicate amongst themselves. The transla­

t ion of these user requirements to products is realized through communication protocols.

A protocol is a set of rules or conventions by which two components or entities within a

network communicates wi th one another.

Communicat ion protocols play a major role in fostering the era of open systems as it

provides the means to interconnect disparate software systems and it also allows migra­

tion from predominantly hierarchical (mainframe-centered) computer communications

to nonhierarchical (client/server centered), peer-to-peer communications. The protocols

w i l l make possible a more graceful, predictable migration to tomorrow's world of com­

munication [BERN90] .

Chapter 1. Introduction 4

1.3 T h e R o l e o f P r o t o c o l T e s t i n g

To describe the role of protocol testing in the appropriate context, it is useful to examine

the system development life cycle of a protocol implementation (e.g., ,X.25, MHS) which

evolves from system requirement analysis phase to maintenance testing.

Requirements
Analysis

Specification
Verification

Developemt

Conformance
Testing

Interoperability
Testing

deployment to
Production Held

Maintenance •
Testing

Figure 1.1: The development life cycle of a protocol implementation

As shown in Figure 1.1[BERN90], the first phase is system requirement analysis.

In this phase, the overall behaviors and features of a protocol are specified informally in

high-level representation. This phase is followed by a Specification and Verification phase

which involves developing a complete functional specification (i.e., Service and Protocol

specifications) of the protocol. The service specification defines the communication ser­

vices provided to the user entities residing in the layer above. The protocol specification

Chapter 1. Introduction 5

defines the protocol entity's behavior which is required to provide the communication
services defined in the service specification.

Before a protocol is implemented, the specifications must be subject to verification to
ensure that they provide the expected services and that it is free of logical and functional
errors. In the simplest case, verification ensures that the protocol has the desired safety

and liveness properties. The safety properties of a protocol address the detection of
deadlocks and functional errors in its design; while the liveness properties address the
detection of livelocks, that is no progress toward providing the desired services will take
place. In other words, safety assures that bad things (e.g., deadlocks) will not happen,

and liveness assures that good things (e.g., connection will be established) will happen.

Recent research also deals with the verification of the semantic correctness of a protocol
specification. These protocol specifications are then used to guide the development of
protocol implementations.

In Conformance testing, the protocol to be tested is referred to as the implementation

under test (IUT), which is viewed as a black box whose behavior is characterized by a set
of observable actions that are generated by applying a set of externally controllable test
inputs. The task of conformance testing is to verify whether the external behavior of
the IUT complies with the requirements as defined in its specifications. Its purpose is to
increase the probability that different implementations are able to interwork in an open
communication architecture. However, conformance testing does not guarantee that the
implementation fully conforms to its specifications as it detects errors rather than their
absence, aspects that are not specified will generally not be tested.

Interoperability testing supplements conformance testing and provides another level
of assurance that the implementation will be able to interoperate in a multi-vendor en­
vironment. Its task is to verify the end-to-end behavior of a protocol implementation
by determining whether different vendors' implementations interoperate under the con­
ditions simulated in a specified test configuration. This tests assumes that each vendor's
implementation has passed the conformance tests as described above.

Even after the protocol implementation has passed both the conformance and in-

Chapter 1. Introduction 6

teroperability tests, there is no guarantee that no errors will be encountered when it
is deployed to the actual production field. Errors may arise due to untested configu­
rations, or any incompatibilities between the implementation and the local operating
environment. Thus, maintenance testing may still be needed to troubleshoot and resolve
any protocol and functional errors while installing new services or equipment, upgrading
software, etc [BERT90].

Through the process of protocol verification, conformance testing, and interoperabil­
ity testing, reliable communication products that satisfy user demands can be achieved.
Without reliable, efficient, and interoperable products, users cannot embrace open stan­
dards. Consequently, the ultimate goal of OSI - global connectivity - will not be achieved
as users are forced to depend on proprietary solutions [AHO90].

1.4 C o n f o r m a n c e T e s t i n g v e r s u s I n t e r o p e r a b i l i t y T e s t ­
i n g

To achieve the goal of a truly "open system interconnection", two different aspects of
protocol testing are necessary:

• Conformance Testing: As stated in [ISO-1], conformance testing verifies whether
the external behavior of a protocol implementation complies with the relevant OSI
protocol standards. The purpose of this testing is to increase the "probability" that
different implementations are able to interwork.

• Interoperability Testing: This testing verifies the end-to-end behavior of a protocol
implementation. It enhances confidence that the tested protocol implementation
will interwork with different implementations of the same protocol assuming that
they comply to the same protocol standards. While conformance testing may be
done on a single layer basis, interoperability testing is always done with stacks of
protocol layers representing actual interconnections between two or more different
implementations.

Chapter 1. Introduction 7

Although it is generally agreed that conformance testing facilitates interworking, this

does not necessarily imply that conformance guarantees interoperability. Similarly, inter­

operability does not necessarily guarantee conformance [BON89]. This raises the issue of

cost-benefit relationship between conformance testing and interoperability testing, which

requires further investigations. However, the need for different aspects of protocol test­

ing are largely driven by the growing demand from the marketplace to have products

not only conform to the standards but are also able to interoperate in a multi-vendor

environment. To meet this demand, conformance testing or interoperability testing alone

is insufficient for several reasons. First, due to the complexity of protocols and the fact

that these protocols are usually not formally specified, they are likely to contain am­

biguities and are subject to misinterpretations. Thus, it is possible for two different

implementations of the same protocol that conform to the standards but are not able

to interoperate; likewise, it is possible for two implementations to be interoperable but

do not conform to the standards. Second, protocol specifications usually define only

the functional requirements and may not address the end-to-end behavior in a complex

configuration [BERT90]. Third, each protocol usually provides a range of options that

the protocol is able to support. These options may result in incompatibility between

different implementations. Interoperability testing helps to ensure that a common subset

of options are supported by the communicating entities, thereby eliminating the mutual

incompatibility. Thus, conformance and interoperability testing are both necessary and

complementary if OSI standards are to be embraced by the users. However, it should be

pointed out that there is no absolute guarantee for an implementation that has passed

both conformance and interoperability testing not to encounter any problem after be­

ing deployed to the real operating environment. This is possible due to the fact that

interoperability testing is conducted in a simulated end-to-end testing environment, any

untested configurations, unexpected conditions, or local peculiarities about the actual

operating environment may introduce unforeseen errors.

Chapter 1. Introduction 8

1.5 T h e s i s O u t l i n e

This thesis first identifies the need for a multi-party test method and describes the re­

search objectives. A brief introduction to the role of protocol and protocol testing is

presented to set the discussion in this thesis in the appropriate context. This is followed

by a discussion on conformance testing versus interoperability testing. The importance

of having the two different aspects of protocol testing is emphasized as they help ensure

interoperability.

Chapter 2 describes the evolution of the ferry clip concept and characterizes the ferry

clip test architecture. The application of the ferry clip to realize the ISO abstract test

methods are discussed. The error detection power of the ferry clip test architecture is

compared to that of the conventional test approaches.

Chapter 3 presents the design goals and architectural principles that are used to guide

the implementation of a generalized ferry clip based test system. The major components

which comprise the ferry clip based test system are described. The use of ASN. l for rep­

resenting the information exchanged between the test system and the SUT is presented,

followed by a discussion on the derivation of executable test cases based on the dynamic

behavior of a T T C N abstract test suite.

Chapter 4 describes the implementation of the proposed ferry clip based test system in

the OSI-PTE environment. The scheme for structuring the ferry clip components within

the OSI-PTE, and the implementation of the ASN. l support tools and the derivation of

executable test suite based on a T T C N abstract test suite are described.

Chapter 5 addresses the general issues and requirements of multi-party conformance

testing. The remainder of this chapter presents an overview of the Message Handling

System (MHS), identifies the testing requirements, and illustrates how the proposed ferry

clip based test architecture can be configured to meet these requirements and achieve

the purpose of multi-party conformance testing within the scope of OSI. The experiences

gained and results obtained from the conformance testing of a MHS implementation are

presented.

Chapter 1. Introduction 9

Chapter 6 addresses issues that are related to interoperability testing, and highlights

why interoperability testing enhances the confidence that different protocol implementa­

tions will interwork. The remainder of this chapter presents how the ferry clip based test

architecture can be extended to perform multi-party interoperability testing for a single-

or multi-layer IUT.

Chapter 7 summarizes the thesis and highlights some of the areas that remain open

for further research.

An attempt has been made to present the content of this thesis in a reasonably self-

contained fashion, but familiarity with the basic concepts of protocol testing is assumed.

In particular, an understanding of the OSI Reference Model, ASN. l abstract syntax and

its associated encoding/decoding rules, and the concepts of Message Handling System

(MHS) would be useful.

C h a p t e r 2

T h e F e r r y C l i p A p p r o a c h e s i n
P r o t o c o l T e s t i n g

This chapter describes the evolution of the ferry cl ip concept and clarifies some of the

terminologies used in this thesis. The application of the ferry clip to realization of the ISO

abstract test methods are discussed and the advantages of the ferry clip over conventional

test approaches are highlighted. The error detection capability provided by the ferry cl ip

test approaches is examined and compared to that of the conventional realization test

approaches.

2.1 T h e E v o l u t i o n o f t h e F e r r y C l i p C o n c e p t

The jerry principle was originally introduced by Zeng [ZENG86] in 1985 wi th the aims

to reduce the amount of test software to be included in the S U T , and to simplify and

enhance synchronization between the upper tester (U T) and lower tester (LT) . The in i t ia l

application of the ferry principle was to transfer test data over a ferry channel between

the U T and the I U T . This allowed the U T to be moved from the system under test (SUT)

into the same machine where the lower tester (L T) resides, thereby reducing the amount

of test software i n the S U T , and simplifying the synchronization problem between the

U T and L T . The original ferry model has a l imi ta t ion, that is the point of control and

observation (P C O) at the lower service interface of the I U T is obtained indirectly through

10

Chapter 2. The Ferry Clip Approach in Protocol Testing 11

the service provider at the test system; therefore, application of the ferry principle has

been extended so that it is possible to remotely access both the upper and lower service

interfaces of the IUT. This new application has been termed the ferry clip [ZENG88a].

The term "ferry" was borrowed from real life to express the concept of transparently

shipping test data between a remote tester and an IUT via "ferryboats" [ZENG86]. The

term "ferry principle" is used to describe the employment of a bidirectional data transfer

channel to deliver test data between a remote tester and an IUT; while the "ferry clip" is

used as a generic term for all applications of the ferry principle. Hence, all test approaches

that apply the ferry principle for the realization of the ISO abstract test methods will

hereafter be referred to as ferry clip test approaches. The name "ferry clip" comes from

the fact that a ferry clip has two arms that clamp on an IUT like a "clip", and these two

arms can be utilized to access the upper and/or the lower service interfaces of an IUT.

With this classification, the original application of the ferry principle in a distributed

test system can be viewed as an extension of the ferry clip application where the ferry

clip is only used to access the upper service interface of an IUT (see Figure 2.1).

To test an IUT, two ferry clips are required: the active ferry clip (AFC) in the test

system, and the passive ferry clip (PFC) in the SUT. The arms of the passive ferry clip

are attached to the upper and lower service interfaces (if they are both accessible) of the

IUT to allow the testers to have remote control and observation of each service interface.

The arms of the active ferry clip are attached to the U T and L T in the test system.

Figure 2.1 illustrates an application of the ferry clip approach to realize the distributed

or coordinated test methods. In this test configuration, the passive clip is used only for

remote access to the upper service interface of the IUT. The ferry clips uses the ferry

control protocol (FCP) [ZENG89] to provide a transparent data transfer between their

users (i.e., the IUT and UT) . To allow the exchange of ferry control protocol data units

between the two ferry clips, a Ferry Transfer Service (FTP) [ZENG89] is needed. This

service can utilize any existing reliable data transfer services (e.g., X.25), which shall

hereafter be referred to as ferry transfer medium protocol (FTMP), available in the test

system and SUT.

Chapter 2. The Ferry Clip Approach in Protocol Testing 12

Test System

XT
ter

1
x, T e S t Manager

Lov
Tes

ver
ter

(N)'-ASPs

Act ive
Fen y Clip

Ser
Inte
Ad;

/ice
rface:
ipter

Act
FP

ive
M

Ferry
Control
Protocol

X
test data

System Under Test

Pass ive Ferr Clip

Serv
Inter
Ada

face
iter

Pas
FP

«ve
M

ferryboat

Ferry Transfer Medium Protocol
(independent of the IUT)

IUT

(N)-ASPs

(N-l) Service Provider

Figure 2.1: A Ferry C l i p Test Configuration

Since the representation of abstract service primitives (ASPs) is I U T dependent, i.e.,

different I U T implementations may represent A S P s in different ways, a ferry Service

Interface Adapter is needed to convert I U T service primitives between IUT-dependent

and tester dependent formats. The problem of mapping A S P s to specific IUT-dependent

format is not unique to the ferry clip test approaches; it is common to a l l test approaches

whenever direct access to a service interface is needed. For example, a service interface

converter is required for the astride test responder in the conventional distributed test

approach [ZENG89].

The ferry clip test approaches offer many advantages as compared to conventional

realizations of the ISO abstract test methods. It is more powerful, more flexible and

simpler to implement. These characteristics are discussed in detail in [ZENG89]. The

local test method has been considered the most powerful abstract test method identified

by the ISO. This test method is preferred if both service interfaces of the I U T are ac-

Chapter 2. The Ferry Clip Approach in Protocol Testing 13

cessible, but it has never been considered a practical approach because of the difficulties

associated with implementing the U T and L T in the SUT. With the application of ferry

clip, this method has been made viable for third-party conformance testing as well as

in-house diagnostic testing as illustrated in [PAR89].

2.2 R e a l i z a t i o n o f t h e I S O A b s t r a c t T e s t M e t h o d s

There are four abstract test methods defined by ISO [ISO-1], namely the Local, Dis­

tributed, Coordinated and Remote test methods. For each test method, there exists three

variant forms: single-layer, multi-layer and embedded. These test methods fall into two

main classes, Local and External, with respect to the Points of Control and Observation

(PCOs) above and/or below the service boundary of the IUT. Furthermore, the three

types of external test methods, i.e., Distributed, Coordinated and Remote, vary accord­

ing to their ability to express test coordination procedures between the lower tester (LT)

and upper tester (UT). Figure 2.2 [ISO-1] shows the conventional test architectures for

the realization of these four abstract test methods.

The purpose for the standardization of these test methods is to enable test suite

designers to use the most appropriate method depending on the circumstances such as

the accessibility of the IUT interfaces, rather than to restrict them to a few inappropriate

test methods. However, the distinctive difference of each test method together with the

possible misinterpretation of the OSI standards may lead a test system designer to believe

that there would have to be a different type of test system, one for each distinct test

method, in order to perform tests in accordance with the OSI regulations.

The existence of different test methods does not necessarily imply that a different test

tool is required for the realization of each abstract test method. Instead, it is desirable

in practice that a test tool should not restrict, but rather should provide the flexibility

of selecting a most appropriate test method within a single test tool for the purpose

of conformance testing. An applicable test method could be determined based on the

availability of abstract test suites and the accessibility of IUT interfaces.

Chapter 2. The Ferry Clip Approach in Protocol Testing 14

Test
Coordination
Procedure I

Upper Tester
(UT)

ASP»

Implementation
Under
Test

(IUT)

ASPs

Lower Tester
(LT)

(a) Local Test Methods

LT

Test Coordination
Procedure I

PDUs

ASPs

UT

ASPs

IUT

Service Provider

(b) Distributed Test Methods (external)

L T

Teat Coordination
Procedure!

PDUs

ASPs

UT

IUT

L T

Service Provider

Ten Coordination
Procedures UT

PDUs

ASPs

IUT

Service Provider

(c) Coordinated Test Methods (external) (d) Remote Test Methods (external)

Figure 2.2: ISO Abstract Test Methods for Conformance Testing

For the realization of OSI abstract test methods wi thin a single test tool, a Ferry C l i p

based test architecture is proposed as shown in Figure 2.3. Compared wi th conventional

realizations of the ISO abstract test methods, the use of the ferry clip approach is consid­

ered to be superior in that it is more powerful, more flexible, and simpler to implement.

These advantages are discussed in detail in [ZENG89] .

The following subsections present the approaches to realize the ISO abstract test

methods using the ferry clip based test architecture. Each test method can be realized

by configuring the ferry clip to achieve different types of access to the upper and lower

I U T service interfaces without the loss of desired functionality on the system under test

Chapter 2. The Ferry Clip Approach in Protocol Testing 15

Active Ferry Clip

1
Active Ferry Service Interface Adapter

User

Activity
Log

UTS
Behavior

&
Constraints
Libraries

I
Test Manager

Activity ASN.l
. Log Support
Module Module

Test Suite
Processor

Service Provider
Interface

I

Passive Ferry Clip

Active
FSM

I

FCP Passive
FSM

Active Ferry
LMAP

I
Passive Ferry

LMAP

Ferry Transfer Medium Protocol

(N-l) Service Provider

Passive Ferry Service
Interface Adapter

IUT

Figure 2.3: Overview of the Ferry C l i p based Test Architecture

Chapter 2. The Ferry Clip Approach in Protocol Testing 16

(SUT).

2 . 2 . 1 Realization of the Local Test Method

The local test method is the most powerful abstract test method of the four identified by

the ISO for diagnostic testing purposes. Since the tester has access to both the upper and

lower service interfaces of the IUT, this test architecture offers a complete error detection

capability. With the passive ferry clip (PFC) residing in the SUT, and the active ferry

clip (AFC), L T and U T located in the test system, the U T and L T can remotely control

and observe both the upper and the lower service interfaces of the IUT.

2 . 2 . 2 Realization of the Distributed or Coordinated Test Meth­
ods

To realize the distributed or the coordinated test method, the ferry clip test approach

only makes use of the passive ferry clip to control and observe the upper IUT service

interface. Access to the lower IUT service interface is achieved indirectly through the

underlying communication service provider.

The difference between the distributed and coordinated test methods is in the level

of standardization imposed upon the synchronization procedures between the upper and

lower testers, and in the requirements on the access to the service interface above the

IUT. The coordinated test method uses a set of test management protocols (TMP) to

achieve coordination between the upper and lower testers; whereas the upper tester in

the distributed method directly accesses the upper service interface of the IUT. One

noticeable drawback of the coordinated test method is that separate TMPs must be

defined for each protocol layer to be tested.

If ferry clip test approach is used in the realization of these test methods, the difference

between the distributed and coordinated test methods is only visible within the test

system, but is transparent to the SUT.

Chapter 2. The Ferry Clip Approach in Protocol Testing 17

2.2.3 Realization of the Remote Test Method

In the realization of the remote test method, the ferry clip test approach only makes use

of the passive ferry clip to control and observe the lower service interface of the I U T .

Since this approach has direct access to the lower I U T service interface, it is possible

to provoke errors by sending test events which cannot be handled by the conventional

realization of the remote test method. Therefore, the ferry clip approach is regarded to

be more powerful than its conventional counterpart.

Thus, the use of ferry clip test approach for the realization of the ISO abstract test

methods renders a uniform platform to a l l aspects of OSI protocol testing.

2.2.4 Test Architecture and Error Detection Capability

In any protocol testing activity, it is assumed that the tester is able to determine whether

a given input /output interaction sequence observed from the I U T is val id or not. Error(s)

are said to occur in an I U T i f the observed sequence is not valid, i.e., it does not conform

to the protocol specification. The error detection capability of protocol testers depends

on the test architecture, test suite applied, and the design of the testers [SARI89]. In

this section, we discuss the error detection capability of the local and external test archi­

tectures as compared to the ferry clip based test architecture, without addressing issues

that are related to the selection of test cases. Al though the selection of test cases is

an important problem since the applied test inputs determine to a large extent whether

and what type of errors can be detected, the test case selection problem can be treated

separately from the problem of deciding whether the I U T exhibits behavior conforming

to the specification for a particular test case [BOCH89].

In the local test architecture, the tester has a global view of the interactions performed

by the I U T . Thus, a l l possible erroneous behavior can be detected in principle, as long

as the applied test input selected leads the I U T to exhibit these behavior.

In the conventional external test architectures, however, the upper and lower testers

of, say, a distributed test architecture only have a partial view of the interactions per-

Chapter 2. The Ferry Clip Approach in Protocol Testing 18

formed by the I U T . Since each tester only observes the interactions at one of the in­

terfaces, the error detection power is l imi ted. It has been shown that local observers,

observing only the interactions at one of the interfaces of the I U T , do not detect al l

errors [BOCH89] . It is conceivable that an I U T which exhibits a faulty behavior, may go

undetected by a local observer since the sequence of interactions observed by this local

observer may simply conform to its reference specification. The error detection power of

local observers in most test systems can be improved by using a so-called global analyzer

which bases its error detection diagnosis solely on information received from the local

observers [BOCH89] .

In the ferry clip test architecture shown in Figure 2.3, the tester controls a l l test in­

put to the I U T and observes a l l behavior exhibited by the I U T . Thus, it provides greater

error detection power as compared wi th the conventional realization of external test ar­

chitectures. However, one potential disadvantage of the ferry clip approach is that the

relative order of interactions at the upper and the lower interfaces of the I U T may not be

known to the tester because of the communication delays between the remote tester and

the S U T . One way to reduce the t iming uncertainty is to obtain more precise t iming in­

formation about the interactions occurring wi th in the S U T by using a t imestamp derived

from the local clock wi th in the S U T . The clocks in the S U T and the test system must be

well synchronized so that certain errors related to the relative t iming between interac­

tions at the upper and lower interfaces can be detected. However, clock synchronization

in a distributed environment is a well-known nontrivial problem [L A M P 7 8] .

Chapter 3

System Architecture Design
Overview

A n architecture for test systems consists of a style of implementation based on carefully

chosen design principles, techniques for applying these principles to test systems, and

tools that support those techniques. This chapter identifies the design goals and objec­

tives, and describes the design principles that are used to guide the development of a

generalized ferry cl ip based test system. The overall test system architecture is presented

wi th high level description on the major components that comprise the ferry cl ip based

test system.

3.1 D e s i g n G o a l s a n d O b j e c t i v e s

From past experience, reliability and flexibility of a test system are found to be of utmost

importance [LINN85, L INN86 , S T O L 8 9 , V E L 8 9] . Using these criteria as the basis for

the development of a generalized conformance test system, the following objectives are

identified:

• Integrated Test Environment

The ma in objective is to achieve an integrated and automated test system that

supports the overall process of derivation of executable test suites, test execution

19

Chapter 3. System Architecture Design Overview 20

and result analysis.

• Compliance with OSI Testing Methodology

The OSI Conformance Testing Methodology as defined in [ISO-1] should be applied

as closely as possible with the objective of achieving a uniform approach to al l

aspects of OSI protocol testing.

• Protocol Independence

A test system should not be restricted to testing a specific protocol, but rather

should allow the testing of any protocol layer and any I U T implementation in

general. The test architecture should enforce a clear separation and encapsulation

of the protocol dependent components. These components should be separated into

modules which are easily customizable for the purpose of testing different protocol

layers and different protocol implementations.

• Test Configuration Independence

A test system should not be tuned to a single test configuration so as to realize a

particular test method. Instead, it is highly desirable in practice that a test system

offers mechanisms for adapting to different test configurations depending on the

availability of standardized test suites and the accessibility of I U T interfaces. For

example, i f both interfaces are accessible, then the realization of local test method

can be used, otherwise the distributed or remote test methods can be employed.

• Communication System and System Under Test (SUT) Independence

Due to the heterogeneous nature of open testing environment, ideally a test system

should be independent of the system which embeds the protocol implementation

to be tested and should also allow easy interfacing wi th various underlying com­

munication systems. This independence would help enhance the portabili ty of the

software components to be included in the S U T and relax the restrictive assump­

tions about the local operating system.

Chapter 3. System Architecture Design Overview 21

3.2 T e s t A r c h i t e c t u r e O v e r v i e w

To meet the design goals outlined above, the overall test architecture enforces a clear

separation and encapsulation of protocol dependency, test suite dependency and commu­

nication system dependency.

Figure 2.3 shows the proposed ferry clip based test architecture which is configured

for the realization of the distributed test method. The following describes the major

components of the ferry clip based test architecture, and highlights how the design goals

described above can be achieved. Further details on certain components can be obtained

from [CHANS89, ZENG89].

3.2.1 The Ferry Control Protocol (FCP)

The protocol that is used for the interactions between the active and passive ferry clips

is known as the Ferry Control Protocol (FCP). The FCP is responsible for coordinating

data transfer between the active and passive ferry clips using the reliable data transfer

services provided by the Ferry Transfer Medium Protocol (FTMP). The Ferry Control

Protocol is implemented within each ferry clip, and it can be defined in terms of the ferry

clip services and the ferry control protocol data units as described below.

Ferry Clip Services

There are three types of ferry clip services [ZENG89], namely, ferry data service, ferry

management service, and ferry transfer service. The abstract service primitives (ASPs)

of these ferry clip services are shown in Table A . l in Appendix A. Figure 3.1 illustrates

the usage of the ferry clip services in the ferry clip based test architecture.

1. Ferry Data Service: The Ferry Data Service is used by the Passive and Active Ferry

Service Interface Adapters (SIAs) within each ferry clip to send and receive test

data. Any units of test data sent by one of the ferry service interface adapters to

its associated ferry finite state machine will be delivered in the same format to the

Chapter 3. System Architecture Design Overview 22

Active Ferry C l i p

FM-ASPs

Passive Ferry C l i p

FD-ASPs f
Active Ferry

SIA

Active Ferry
FSM

FY-PDU

FT-ASPs

Test Engine

Active Ferry
LMAP

Passive Ferry

FSM

FD-ASPs

1
FT-ASPs

Passive Ferry
LMAP

Passive Ferry
SIA

FTMP
IUT

(N-l) Service Provider

Figure 3.1: The usage of ferry clip services

other ferry service interface adapter.

2. Ferry Management Service: The Ferry Management Service is designed to provide

the test system with the abi l i ty to control the connection between the active and

passive ferry clips (e.g., set up or abort ferry channel connection). Th i s service is

provided by the active ferry c l ip .

3. Ferry Transfer Service: The Ferry Transfer Service is used by the ferry finite state

machines wi thin each ferry c l ip for the exchange of ferry control protocol data units

wi th its peer.

Ferry Control Protocol Data Units (FY-PDUs)

There are two types of ferry control protocol data units: F Y - D A T A P D U and F Y - C N T L

P D U . The format of these two P D U s are shown in Figure A . l and A . 2 respectively in

Append ix A . Bo th of these P D U s are transferred between the active and passive ferry

clips using the ferry data transfer service (i.e., F T - D A T A A S P s) .

Chapter 3. System Architecture Design Overview 23

3.2.2 Passive Ferry Clip (PFC)

The main goal in designing a Passive Ferry C l i p (P F C) is to keep it small , compact and

portable so that it can reside in a S U T wi th l imited memory, and usable in a variety

of environments. The P F C is structured into the following modules to facilitate the

replacement of both the I U T and the Ferry Transfer Medium Protocol (F T M P) (see

Figure 2.3).

1. Passive Ferry Finite State Machine (FSM)
The main function of this module is to implement the Passive Ferry's protocol state

machine. It contains a l l the functions of the Passive Ferry that are independent

of the I U T and the F T M P being used. It interacts wi th F T M P v ia a set of Ferry

Transfer Service Primitives (F T - A S P s) and wi th the Service Interface Adapter v ia

the Ferry D a t a Service Primitives (F D - A S P s) as described in [ZENG89].

2. Passive Ferry Lower Mapping Module (LMAP)
Thi s module maps the Passive Ferry transfer service primitives (F T - A S P s) onto

the A S P s that are specific to the F T M P being used, e.g., the ISO Transport or

X . 2 5 Network services. The functions contained in this module are specific to a

particular F T M P , but independent of the I U T . Hence, this is the only module that

needs to be modified if a different F T M P is used.

3. Passive Ferry Service Interface Adapter (SIA)
The Passive Ferry Service Interface Adapter (SIA) interacts with the I U T through

its upper and/or lower S A P s . It converts test input received in a ferry P D U s into a

format that is specific to the I U T being tested, and converts observed output into

a format that the tester understands. In order to enhance protocol independence

and software portabili ty of the passive c l ip , a uniform representation of the I U T ' s

A S P s is achieved through the use of A S N . l [ISO-8824, ISO-8825].

The passive ferry SIA is further decomposed into two submodules: the E-node

encoder/decoder and A S P converter modules. The E-node encoder transforms an

E-node tree representation of A S N . l specification into external stream-oriented

Chapter 3. System Architecture Design Overview 24

data for transmission and the decoder does the reverse. This is achieved through

the A S N . l Support Module which is described in more detail in Section 3.2.7.

The A S P converter converts an E-node tree into the I U T ' s A S P s and vice versa.

Since different implementations of the same protocol might represent the same A S P

differently, only the A S P converter needs to be replaced if a different I U T is to be

tested.

3.2.3 Active Ferry Clip (AFC)

The functions performed by the Active Ferry C l i p (A F C) , to a large extent, are very

similar to those of the P F C . The A F C is also structured into three modules so as to

minimize the changes necessary when a different F T M P is used.

1. Active Ferry Finite State Machine (FSM)
The ma in function of this module is to implement the Act ive Ferry's protocol state

machine. It contains a l l the functions that are independent of the I U T and the

F T M P being used. It interacts with the Test Manager, F T M P and Act ive Ferry

Service Interface Adapter by means of ferry A S P s , i.e., F M - A S P s , F T - A S P s , and

F D - A S P s respectively [ZENG89].

2. Active Ferry Lower Mapping Module (LMAP)
This module maps the Act ive Ferry A S P s (F T - A S P s) onto the A S P s that are spe­

cific to the F T M P being used. B y localizing the code specific to the F T M P in this

module, it is possible to set up a library of Lower Mapping Modules corresponding

to different F T M P s . Thus, the effort of configuring the Act ive Ferry to use a partic­

ular F T M P supported by the S U T is just a simple task of selecting an appropriate

Lower M a p p i n g Module from the library.

3. Active Ferry Service Interface Adapter (SIA)
The active ferry SIA provides interface to the Test Manager and Active Ferry Fini te

State Machine. Because it is I U T dependent, this module is further decomposed

into two submodules to facilitate its replacement for testing a different I U T : the

Chapter 3. System Architecture Design Overview 25

E-nodes encoder/decoder and ASP converter. The functions of these modules are

similar to those described in the Passive Ferry Service Interface Adapter. Hence,

only the ASP converter needs to be replaced if a different IUT is to be tested.

3.2.4 Test Suite Processor

The Test Suite Processor (TPS) contains all the logic necessary to process a test case.

It is designed to communicate with a peer IUT under the direction of a test case,

generate valid and invalid PDUs, verify test data received, and provide indication of

pass/fail/inconclusive for a particular test case. Thus, the design of TPS is IUT inde­

pendent as it simulates the protocol entity behavior by interpreting test cases. The TPS

is different from a reference implementation test engine in that the TPS is capable of

simulating both valid and invalid protocol behavior, and injecting semantically invalid

but correctly coded PDUs. Thus, an IUT can be tested for its ability to recover from

errors.

3.2.5 Test Manager

The Test Manager (TM) is the root of a hierarchy of modules that compose the ferry

clip based test system (FCTS). It is responsible for synchronizing the actions of all its

children modules. These actions include ferry management services, start or abort a test

execution, and interface between the user and the test system. The T M communicates

with the Active Ferry FSM via a set of FM-ASPs (see Table A . l in Appendix A).

3.2.6 Service Provider Interface Module

The role of this module is to convert the service primitives from the Test Suite Pro­

cessor into the ASPs specific to the underlying service provider. Similarly, it converts

ASPs/PDUs received from the service provider before forwarding them to the Test Suite

Processor. By localizing the service provider dependent code in this module, it is possible

to set up a library of service provider interface modules corresponding to different service

Chapter 3. System Architecture Design Overview 26

providers. Thus, the task of customizing this module for interfacing with a particular

service provider is reduced to selecting an appropriate interface module from the library.

3.2.7 A S N . l Support Module

Protocol independence and software portability is achieved by enforcing a uniform rep­

resentation of all relevant data structures (i.e., IUT's ASPs and PDUs, ferry control

PDUs) through the use of the Abstract Syntax Notation One (ASN.l) [ISO-8824]. We

adopt a data structure called E-node to represent the abstract syntax. The E-node,

originally developed for the E A N mail system [NEU86], is a tree-like data structure for

representing A S N . l data (e.g., ASPs/PDUs) based on the Basic Encoding Rules (BER)

[ISO-8825]. The use of E-nodes allows several data manipulation functions to remain

protocol independent:

• Coding and Decoding

Since the E-node is used to represent any B E R based data, two protocol indepen­

dent routines, namely encoder and decoder are required. The encoder transforms

an internal tree representation (E-node) into an external stream-oriented (BER)

data for transmission; whereas the decoder transforms a received B E R data into

an E-node tree.

• Verification of ASPs and PDUs

This function is specifically developed to support the automatic test execution

subsystem. By representing the constraint specification of ASPs and PDUs in

an E-node format, it allows the test execution subsystem to inspect the observed

ASPs/PDUs to determine whether they satisfy the constraints as specified in the

test case.

3.2.8 Activity Log Module

Since testing does not always produce a simple pass or fail verdict, in order to properly

evaluate the conformance of an IUT, it is important for a test system to produce a

Chapter 3. System Architecture Design Overview 27

detailed log which helps to determine whether: (1) the I U T fails, or (2) the protocol

specifications contain ambiguities which lead to different interpretations, or (3) other

errors which are caused by the underlying communication services or test system. The

role of this module is to produce two test log files wi th an easy-to-read structure that

can be used for further results analysis after the test execution. The first log file, called

conformance log, contains the basic information such as the test cases selected, time of

init iat ions, test events executed and test completion results. The second log file, called

event traced log, contains a detailed trace of a l l events observed by the test system.

The parameter values of A S P s / P D U s exchanged between the test system and the I U T ,

indications of protocol violations, etc. are logged in this file.

3 .3 T h e U s e o f A S N . l R e p r e s e n t a t i o n

3.3.1 Representation of ASPs Using A S N . l

A s pointed out by Bochmann in [BOCH88] , the adaptation of abstract service primitives

(A S P s) to the real service interface of an I U T is a major issue for both the portabil i ty and

protocol independence of the testing software. Th i s is important as the software should be

usable for testing different protocol implementations which may operate wi th in different

S U T s . The adaptation problem arises due to the fact that the format of A S P s is not

standardized, and as such they are realized in different ways wi thin different protocol

implementations to be tested, and wi th in different test systems. Th i s problem is also

faced in the design of the Ferry C l i p based Test System.

In the case of the ferry clip based test architecture, test input to the I U T (i.e.,

information representing the service primitives to be input to the I U T) and the observed

output of the I U T (i.e., information representing the the service primitives init iated by

the I U T) must be transferred between the active and passive ferry clips through the ferry

channel. Therefore, the representation of the service primitives in the test system, at the

interface between the test system and the I U T , and at the interface between the test

system and the underlying communication service provider are of prime importance to

Chapter 3. System Architecture Design Overview 28

the design of the test system. To enhance protocol independence of the test system as

well as the portability of the testing software (i.e., passive ferry clip) to be included in

the SUT, it is imperative to have a uniform and consistent representation of information

exchanged between the test system and the SUT. The use of Abstract Syntax Notation

One (ASN.l) [ISO-8824] and its associated Basic Encoding Rules (BER) [ISO-8825] is

proposed for this purpose.

The use of A S N . l for representing the information exchanged between the test system

and the SUT offers many advantages, the notable ones are as follows:

• Different machine have different representation for basic data types, and ASN. l

provides a mechanism to formally describe data types and values without specify­

ing any particular representation for the data being described. This ensures data

compatibility between the test system and SUT.

• Since A S N . l has been designed to be independent of any programming language or

operating system, its use as a representation for the ASPs is particularly useful in

those cases where the interface representation must be independent of the program

structure of the interfacing software/hardware modules [BOCH88].

• A S N . l allows complex data structures to be defined using simple data types (e.g.,

Integer, Boolean, Bitstring, Octetstring, etc). Furthermore, it has been used ex­

tensively in existing OSI application protocols as well as many new applications.

The use of ASN. l for the representation of ASPs is particularly well suited for

the testing of OSI Application layer protocols, since the data exchanged at the

internal interfaces of protocol implementation between different protocol sublayers

(e.g., interactions between MTAEs and UAEs within X.400) are encoded in ASN. l

format.

3.3.2 E-Node: A Data Structure for Representing A S N . l

All relevant data'structures, i.e., ASPs, PDUs, ferry PDUs, etc. are represented in a

unified form internally using an adaptation of E-nodes, which was originally developed

Chapter 3. System Architecture Design Overview 29

for the EAN [NEU86] mail system at the University of British Columbia. The E-node

is a tree-like data structure that is capable of representing any abstract syntax that are

defined in ASN.l. Two forms of extended E-node data structures have been derived to

support the use of ASN.l within a protocol testing environment:

Template E-nodes

The Template E-nodes are used to represent the ASN.l definitions of ASPs and PDUs as

specified in the protocol standards. The Template E-node largely preserves the structure

of the ASN.l types, and as such, each node of a Template E-node tree corresponds to an

ASN.l type. Structured (or Constructor) types such as SETs, SEQUENCES, CHOICEs

are represented as trees, and the node which corresponds to a structured type is called

the parent node; the components (or children) of the type are represented as leaf nodes,

which are linked together in a sibling list, thereby preserving the order of the components

of the ASN.l definition. Each node in a Template E-node tree contains the following

information:

• E-node id: ASN.l tag, i.e., class, primitive/constructor, and tag number

• Type: ASN.l defined type, e.g., BOOLEAN, INTEGER, etc.

• Field name: the field name specified in ASN.l definition, e.g., CountryName

• Attribute: attribute flag used to indicate OPTIONAL, CHOICE, SET OF, etc.

• Content pointer: points to an E-node subtree representing the components of a
construct if type is SET, SEQUENCE, etc.

• Next pointer: points to a list of alternatives of a CHOICE, a list members of a
SET, or elements of a SEQUENCE

Value E-nodes

The Value E-nodes are used to represent data instances of an ASN.l definition. In order

to incorporate the constraints of ASPs/PDUs specified in the constraints part of a TTCN

Chapter 3. System Architecture Design Overview 30

test suite, the Value E-node structure has been extended to allow for the specification

of value constraints as well as the actual data values. The following are the types of

constraints which are most useful towards the development of an automatic test system

as they facilitate the process of verifying the data instances of A S P s / P D U s received

during test execution:

O M I T ("-") specifies the parameter must be absent

A N Y ("?") specifies the parameter can be any single value

ANY_OR_OMIT ("*") specifies the parameter can be any value or absent

Bitstring bitmasks for setting or resetting bits can be specified

Integer upper and lower bounds can be specified

Octetstring pattern or wildcards may be specified

Similar to Template E-node, each structured (or Constructor) A S N . l type corresponds

to a parent node in a Value E-node tree, and its children nodes are linked together in a

sibling list. However, these children (or leaf) nodes store the actual data values of types

defined in the corresponding Template E-node tree. The Value E-ndoes are stored on

disk and are identified by their unique tree names. To enhance reusability and reduce

disk storage, a tree attachment mechanism is provided for a Value E-node; i.e., a Value

E-node tree can reference one or more Value E-node trees. A n entire Value E-node tree

can thus be built by recursively expanding the attached E-nodes. This allows a Value

E-node tree to contain an arbitrary number of elements (or nodes) on the condition that

no loop may exist. Each node in an Value E-node tree contains the following information:

• E-node id: A S N . l tag, i.e., class, primitive/constructor, and tag number

• Length: length of contents

• Constraint type: flag to indicate the type of constraint, e.g., A N Y (element can be
any value), Integer constraint (upper and lower bound can be specified), etc.

• Bitstring constraint: bitmask and value bitstring can be specified

• Integer constraint: upper and lower bounds can be specified for integer value

S E Q U E N C E

S E T

special constraints (e.g., "*") can be specified

special constraints (e.g., "*") can be specified

Chapter 3. System Architecture Design Overview 31

• Attached tree name: reference an external Value E-node tree, the attached tree can
be dynamically expanded during run time

• Content pointer: points to an E-node subtree representing the components of a
construct if type is SET, SEQUENCE, SET OF, etc.

• Next pointer: points to a list of members of a SET, elements of a SEQUENCE

Since the Value E-node can be used to represent data instances of any ASN.l definition

in a unified form as trees, it allows several data operations to be protocol independent.

This facilitates the development of a set of "generic" ASN.l support tools as described

in Section 4.5. The separation between Template and Value E-nodes provides efficiency

both in space and time required for processing, since only a single copy of Template

E-node tree is needed to remain in memory, allowing it to be referenced by an arbitrary

number of Value E-node trees.

3.4 E x e c u t a b l e T e s t S u i t e s D e s i g n O v e r v i e w

Experience has shown that one of the key decisions in designing a test system is whether

to develop a complex test language versus a complex test engine [LINN85, ESWA90,

MAT88]. Since there are technical merits for either approach, the underlying question is

where to represent the residual complexity of a communication protocol that remains in

the test system. If the complexity of a protocol is represented in a complex test language,

a protocol-independent test engine can be built. The test engine simply interprets and

executes under the direction of complex test cases. The complex test engine approach

(e.g., using reference implementation) leads to simple test cases to be represented in a

simple, but protocol-dependent test language and test engine.

We have adopted the complex test language approach in the design of our test ar­

chitecture. There are several reasons for choosing this approach. First, the detailed

knowledge of the protocol implementation is encapsulated in the complex test cases,

and is hidden from the test architecture designer. This enhances both the protocol-

independency and reusability of the test system. In addition, maintenance on the test

Chapter 3. System Architecture Design Overview 32

system may be totally eliminated if there are any subsequent updates on the protocol

implementation due to revisions in the protocol specifications. Second, unlike the use of

reference implementation method, the complex test language approach provides greater

degree of flexibility. For example, a test system may need to generate alternative correct

behavior which deviate from a conforming reference implementation, inject semantically

invalid but correctly coded PDUs, etc.

The complex test language approach starts from abstract test suites which are speci­

fied in a notation called Tree and Tabular Combined Notation (TTCN) [ISO-1]. To test

a protocol implementation based on abstract test suites that are specified in T T C N , it is

essential to define a comprehensive executable test language (or notation) that is capable

of capturing both the dynamic behavior and constraints parts of a T T C N abstract test

suite. The following subsections describe the major components of an Executable Test

Suite (ETS) and their derivations based on a standard T T C N abstract test suite.

3.4.1 Executable Test Suite Behavior

The executable test suite behavior (or ETS behavior) is the realization of the dynamic

behavior of a T T C N abstract test suite. The behavior is represented internally in a

unified form as trees. Each node of an executable test tree represents an encoding of a

single test action {e.g., sending or receiving test event in T T C N) , and each test step in

a T T C N test case is represented by an executable test tree which is uniquely identified

by its tree name. Thus, a single T T C N test case may be represented by one or more

executable test trees with each tree referencing the others by storing their tree names. An

entire executable test tree can therefore be built by recursively expanding the attached

trees.

There are many advantages of using tree representation for the dynamic behavior of a

T T C N test case. First, since T T C N itself is expressed in a tree notation, representation

of T T C N in tree form naturally preserves the basic structure and the dynamic behavior

of a T T C N test case; i.e., execution is to progress from left to right (sequence) and

from top to bottom (alternatives). Second, trees can be easily implemented in any

Chapter 3. System Architecture Design Overview 33

programming language by using dynamic memory allocation and pointers. Third, the use

of tree representation provides efficiency both in time and space required for processing

a test case, since each test case can be dynamically loaded into the memory during test

execution and removed from the memory at the end the test execution. The algorithm

required for processing a test case is also simplified since each node contains information

about a test action, execution of a test case is therefore similar to traversing a tree from

node to node. Fourth, tree representation of test cases fits well into the architecture

of an event driven test system (e.g., test system developed within OSI-PTE) since the

transition from one node to another provides an excellent break point for returning control

to the test system [LEE89].

3.4.2 Executable Test Suite Constraints

The executable test suite constraints (or ETS constraints) are the realizations of the con­

straints part of a T T C N abstract test suite. The constraints of test ASPs and PDUs (both

send and receive) are represented using a Value E-node data structure (see Section 3.3.2).

These ASPs/PDUs constraints are stored as separate files in a ETS Constraints library,

and can be dynamically linked to an executable test tree during test execution. Since

the dynamic behavior of a T T C N test case is represented separately and independently

from its associated test ASPs/PDUs constraints, changes on the dynamic behavior of

the T T C N test case will not result in any modification to the ETS constraints; similarly,

modification of the ETS behavior will not be required should changes be made to the the

test ASPs/PDUs constraints specifications.

3.4.3 Derivation of the Executable Test Suite

The derivation process from the "abstract" test cases to the "executable" test events can

be divided into the following three phases:

1. Pre-processing phase: An abstract test case specified in T T C N must undergo a

series of transformation in order to render them executable. First, the ASN.l

Chapter 3. System Architecture Design Overview 34

constraints specification of test ASPs and PDUs defined in the constraints part

of a T T C N test suite are transformed into an internal E-node tree representation

and stored in the "Executable Test Suites (ETS) constraints library". Second,

the dynamic behavior of the T T C N test suites are transformed into an internal

executable tree notations which are stored in the "ETS behavior library". Each

node of the executable test tree represents a single test event which is defined in

the dynamic behavior of a T T C N test case. The above transformation process can

be automated with the aids of a compiler/parser to avoid human errors and to ease

maintenance.

2. Actualization phase: When a test session is initiated, the Test Suite Processor

dynamically loads the desired test case from the ETS behavior library into a pre-

allocated block of memory. In this phase, the referenced ASPs/PDUs constraints

and test suite parameters are dynamically loaded from the ETS constraints library

and linked to the ETS behavior tree. The Test Suite Processor then checks the

executable test event for syntax and static semantic errors after actualizing the

test events with the data values pre-encoded in the E-node trees.

3. Execution phase: The execution of a single test event is performed by various test

system components under the direction of the Test Suite Processor. The Test

Suite Processor provides the information on the selected service primitives and the

parameter values, this enables the test system to transform a single test event into

test action, for example, sending an A S P / P D U to the IUT.

Chapter 4

Implementation

This chapter describe the implementation of the proposed ferry clip based test system

based on the design requirements outlined in Chapter 3. The chapter begins with an

introduction to the implementation environment, i.e., O S I - P T E , followed by a detailed

description of the individual components of the ferry cl ip based test system. The functions

of the A S N . l support tools and the derivation of executable test suites are described and

illustrated using some examples.

4.1 The OSI-PTE Environment

We have applied the principles described in Chapter 3 to our implementation of the

proposed ferry c l ip based test system as shown in Figure 2.3. The test system was

developed wi th in the Open Systems Interconnections - Protocol Testing Environment

(O S I - P T E) [C H A N 8 9 , SMITH89] which runs on U N I X 1 4 .3BSD (S U N / O S 4.0) 2 . To

enhance system independence, the entire test environment was implemented using the C

programming language. The O S I - P T E is a realization of the OSI Reference Model (OSI-

R M) [CCITT-4] wi th in a single operating system process for protocol testing purposes.

Besides providing an operating environment which is close to the O S I - R M , it also allows

^ N I X is a trademark of AT&T Bell Laboratories
2Sun is a trademark of Sun Microsystems, Inc.

35

Chapter 4. Implementation 36

for the incorporation of a test manager into the test system to support all the test
methods defined by ISO as well as passive monitoring, logging and analysis capabilities.

In essence, the OSI-PTE is an event-driven system as entities communicate with each
other by posting events. An entity is a basic execution unit in the OSI-PTE. Basically,
there are two types of entities: protocol entities and test entities. Protocol entities are
analogous to OSI-RM entities, they are implementations of supported protocols in exe­
cution. A protocol entity provides services to protocol entities at the layer above, and
utilizes services provided by protocol entities at the layer below. The only means of
communication between protocol entities at adjacent layers is by ASPs through SAPs.
Each protocol entity defined in the OSI-PTE is uniquely identified by an entity identifier

(NID). Test entities are user programs which utilizes the protocol entities to control and
observe the IUT. They may observe, alter, or intercept events that are posted between
protocol entities, or generate events and posts them to a protocol entity.

The design of OSI-PTE enforces a clear separation between the data areas and code
areas of an protocol entity. All global variables used by the protocol entities are placed in
control blocks, and all subroutines using these global variables take a pointer to a control
block as one of their parameters. This separation between data and code allow multiple
instances of a protocol entity to be created.

When an entity establishes a connection with its adjacent protocol entities, a separate
Connection Control Block (CCB) is created and maintained by the entity. This CCB is
used to contain information that is specific to the connection, it is associated with the
connection identifier (CID) that is assigned to the connection.

Communication between protocol entities achieved by means of an event-posting
scheme whereby one protocol entity posts an event to another for processing. To meet the
requirements of protocol testing, seven types of events are defined in the OSI-PTE: ASP
events, PDU events, timer events, state change events and protocol error events. Each
event type is assigned an event type identifier (SID), and is accommodated by defining
an event interface for a protocol entity. Figure 4.1 shows the seven event interfaces for
an OSI-PTE protocol entity. Each event posted to an entity is represented by an event

Chapter 4. Implementation 37

identifier (EID) and an associated Event Parameter Area (EPA). An EPA is a control

block which contains parameters, such as those specified in a service specification docu­

ment, to be passed between two entities during an interaction. The receiving entity uses

the event identifier to determine the structure of the EPA and the action necessary to

process the event.

(N) ASP Down

(N) PDU Down;
(N) PDU Up j

(N) ASP Up

(N) ENTITY

(N-l) ASP Down

(N) Timer In
(N) State Out
(N) Error Out

(N-l) ASP Up

Figure 4.1: Event Interfaces for an OSI-PTE Protocol Entity

Thus, when an entity posts an event, it uses the PostEvent service, which requires

the following five parameters:

PostEvent (nid, cid, sid, eid, epa)
where nid : identifier of the entity which the event is posted to,

cid : identifier of the connection,
sid : event interface type, e.g., ASP-UP,
eid : event identifier, e.g., N-CONNreq
epa : event parameter area pointer.

Since the OSI-PTE is an event-driven system, processing within the OSI-PTE is

driven by the external events, such as frame arrival, time out and external service request.

Thus, a dispatcher is introduced to translate external events into internal events. When

an internal event is dispatched by the dispatcher, the entity invoked by the dispatcher

may in turn invoke other entities, via events posting, to carry on the processing. The

dispatcher will not regain control until all the internal events, that are caused to be

generated by the initial external event, have been completely processed by t:ie entities

involved.

Chapter 4. Implementation 38

4 .2 O v e r v i e w o f t h e I m p l e m e n t a t i o n

Our goal is to develop the proposed multi-party ferry clip based test system (see Fig­

ure 2.3) that would allow us to conformance test a protocol (e.g., MHS) in the OSI-PTE

environment. The entire testing environment, which includes the ferry clip based test sys­

tem and a set of protocol implementations, has been implemented in the C programming

language and runs on UNIX 4.3BSD (SUN/OS 4.0).

Communication between the SUT and test system is achieved through the use of

UNIX stream sockets in the Internet domain (TCP/IP) [SECH86]. This type of socket

domain has been chosen as the underlying communication service because it provides a

reliable end-to-end delivery of test data. The Message Handling System (MHS), recently

developed by the U B C - I D A C O M project group, is used as the IUT which will be tested for

conformity using the ferry clip based test system. To accomplish this task, a stack of OSI

protocol implementations must be used on both the SUT and the test system to provide

the required underlying OSI services. The stack comprises the following OSI protocol

implementations: L A P B (Data Link layer), X.25 PLP (Network layer), Transport layer,

and Session layer. Each protocol contained in the stack has been individually tested to

ensure that it has met the relevant ISO or C C I T T protocol specifications.

One of the challenges faced in this implementation is to develop a highly flexible and

generalized test tool that meet the design requirements as outlined in Section 3.1. The

following sections describe the implementation of the major components which comprise

the multi-party ferry clip based test system.

4 . 3 T h e A c t i v e F e r r y C l i p

The Active Ferry Clip (AFC) is structured into three main modules, namely the Active

Ferry FSM, Active Ferry L M A P , and the Active Ferry SIA as shown in Figure 3.1. These

modules interact with each other using the ferry clip services - Ferry Data Service, Ferry

Management Service, and Ferry Transfer Service - as shown in Table A . l in Appendix A

(see [ZENG89] for detailed description of these services). To facilitate the implementation

Chapter 4. Implementation 39

of the A F C within the OSI-PTE environment, the Active Ferry FSM, Active Ferry LMAP,

and the Active Ferry SIA are configured as a separate OSI-PTE entities as shown in

Figure 4.2. The entities communicate with one another using the events posting scheme

provided by the OSI-PTE.

ASP-DOWN ASP-DOWN
ASP-DOWN ASP-DOWN

Active Ferry
SIA

Active Ferry
FSM

ASP-UP ' ASP-UP ASP-DOWN

ASP-DOWN
Active Ferry

LMAP

Test Engine

Active Ferry
LMAP

Test Engine
ASP-UP (ASP-DOWN

Test Engine

FTMP

Figure 4.2: Configuration of the Active Ferry Clip in the OSI-PTE environment

4.3.1 The Active Ferry F S M

The Active Ferry FMS is configured as a single OSI-PTE protocol entity. The Ferry

Control Protocol (FCP) is implemented within this entity as a simple finite state machine

with three states: idle, connecting, and connected. The Active Ferry FSM entity will

perform an appropriate action depending on its current state and the ferry event received

based on the state transition rules defined in Table A.3 as shown in Appendix A. It

communicates with its adjacent entities (i.e., Active Ferry SIA, Test Engine) using the

OSI-PTE events posting scheme.

Figure 4.3 shows the event interfaces for the Active Ferry FSM entity. These events

are classified based on the services into the following types:

Chapter 4. Implementation 40

ASP-DOWN ASP-DOWN
Active Ferry

FSM

A
ASP-UP ASP-DOWN

FM-ASPs
(from Test Engine)

FM-ASPs FT-ASPs FT-ASPs
(lo Test Engine) (from Active Ferry LMAP) (to Active Ferry LMAP)

FD-ASPs FD-ASPs
(from Active Ferry SIA) (to Active Ferry SIA)

Figure 4.3: Event Interfaces for the Active Ferry FSM Entity

1. Ferry Data Service Event

The Active Ferry SIA entity uses the Ferry Data Service provided by the Active

Ferry F S M to send and receive test data. This is achieved through the use of

PostEvent service (see Section 4.1) provided by the OSI-PTE system. For example,

to send test data to the Active Ferry FSM, the Active Ferry SIA entity posts a FD-

DATA request event to the ASP-DOWN event interface of the Active Ferry FSM

entity.

2. Ferry Management Service Event

The Test Engine entity uses the FM-ASPs to set up, maintain, and control the

connection between the active and passive ferry clips. This is done by posting an

appropriate FM-ASPs (e.g., F M - C O N N E C T request) event to the ASP-DOWN

event interface of the Active Ferry FSM entity, which will then take an appropri­

ate action based on the transition rules defined in the the active ferry clip state

transition table (see Table A.3 in Appendix A).

3. Ferry Transfer Service Event

The Ferry Transfer Service is designed to provide the means by which the active and

passive ferry clips exchange the ferry PDUs (i.e., control or data PDUs). When a

Chapter 4. Implementation 41

3. Ferry Transfer Service Event

The Ferry Transfer Service is designed to provide the means by which the active and
passive ferry clips exchange the ferry PDUs (i.e., control or data PDUs). When a
ferry PDUs is to be sent to the passive ferry clip, the Active Ferry FSM entity posts
an appropriate FT-ASPs (e.g., FT-CONNECT request) event to the ASP-DOWN
event interface of the Active Ferry LMAP entity, which will then map the FT-
ASPs onto a specific FTMP transfer service (e.g., FT-CONNreq will be mapped to
N-CONNreq if X.25 is used as the FTMP).

4.3.2 The Active Ferry L M A P and F T M P

The Active Ferry LMAP module is configured as a separate OSI-PTE entity with event
interfaces as shown in Figure 4.4. It acts as an interface adapter between the Active Ferry
FSM and the FTMP, its function is to map the ferry transfer service primitives (FT-
ASPs) to the ASPs that are specific to the FTMP being used. In this implementation,
X.25 PLP has been used as the FTMP for several reasons. First, it provides a reliable
transfer of ferry PDUs between the active and passive ferry clips; second, it is the most
popular and widely available data transfer service which supports channel multiplexing
facility. The mapping of FT-ASPs to X.25 Network layer services is shown in Table A.2
in Appendix A.

4.3.3 The Active Ferry SIA

The Active Ferry SIA is configured as a single OSI-PTE protocol entity which interacts
with its two adjacent entities, the Active Ferry FSM and the Test Engine, using the post
event service provided by the OSI-PTE system. Its main function is to convert data sent
by the Test Engine in the E-node tree format into a linear BER octet stream, which will
then be packed into FY-DATA PDUs (see Appendix A) and forwarded to the Active
Ferry FSM for transmission to the passive ferry clip. On the reverse side, it converts
data received from the Active Ferry FSM in ASN.l byte stream format into an E-node
tree before forwarding it to the Test Engine.

Chapter 4. Implementation 42

FT-ASPs FT-ASPs

A S P - U P
(to Active Ferry FSM) t 1 A S P - D O W N

(from Active Ferry FSM)

Active Ferry
LMAP

A S P - U P
(from Active Ferry L M A P) t T A S P - D O W N

(to Active Ferry L M A P)

X.25 PLP ASPs X.25 PLP ASPs

Figure 4.4: Event Interfaces for the Active Ferry L M A P Ent i ty

A B E R
octet stream

Encoder/
Decoder

A

Active
Ferry
SIA

E-Nodes

ASP-DOWN
(to tnd from Active Ferry FSM)

ASP-UP
(from Test Engine

ASP-DOWN
(to Test Engine)

FD-ASPs r r
IUT ASPs

Figure 4.5: Structure of the Act ive Ferry Service Interface Adapter

The structure of the Active Ferry S I A is shown in Figure 4.5. To achieve protocol

independence and software portabil i ty requirements, a uniform representation of infor­

mat ion exchange between the active and passive ferry clips is enforced through the use

of A S N . l . T w o "generic" routines have been developed to convert data instances of any

A S N . l abstract specification between E-node tree and B E R [ISO-8825] octet stream for­

mats. The encoder encodes an E-node tree, which is a tree structure representation of

A S N . l [ISO-8824] data values in transfer syntax, into a linear B E R octet stream; con­

versely, the decoder decodes B E R octet stream into an E-node tree. The functions of the

Chapter 4. Implementation 43

encoder/decoder w i l l be described in more detail later in this chapter.

For generality and reasons that are dictated by the O S I - P T E environment, the Act ive

Ferry S I A makes two F D - D A T A r e q calls to the Ac t ive Ferry F S M to transfer an I U T

A S P s event. T h e first F D - D A T A r e q contains an A S P event identifier, and a boolean

indicator which denotes the presence or absence of the associated event parameter area

(E P A) . The second F D - D A T A r e q contains the associated A S P event parameters and/or

the service da ta unit i f either one is present, otherwise this call wi l l not be made.

One of the requirements of multi-party testing is to test the capability of the I U T for

handling several test connections in parallel, this is achieved by multiplexing multiple

logical test connections onto a single ferry channel, thereby allowing multiple entities

to communicate over the ferry channel between the S U T and test system. To handle

this mul t ip lexing capability, a minor change in the F Y - D A T A P D U ' s header format is

required. A n addi t ional "connection-id" byte has been added to the header of F Y - D A T A

P D U as shown in Figure A . l in Appendix A .

4 .4 T h e P a s s i v e F e r r y C l i p
The Passive Ferry Clip (P F C) , mirrors the Ac t ive Ferry C l i p , is structured into three

main modules, namely the Passive Ferry F S M , Passive Ferry L M A P , and the Passive

Ferry S I A as shown in Figure 3.1. These modules interact with each other using the

ferry clip services (see Table A . l in Appendix A) . To facilitate the implementation of the

P F C wi th in the O S I - P T E environment, the Passive Ferry F S M , Passive Ferry L M A P ,

and the Passive Ferry SIA are configured as a separate O S I - P T E entities as shown in

Figure 4.6. These entities communicate among wi th one another through the use of the

event posting scheme provided by the O S I - P T E .

4.4.1 The Passive Ferry F S M

The Passive Ferry F S M is configured as a single O S I - P T E protocol entity wi th event

interfaces as shown in Figure 4.7. Functionally, the Passive Ferry F S M is very similar to

Chapter 4. Implementation 44

ASP-DOWN

Passive Ferry
FSM

ASP-UP ASP-DOWN

Passive Ferry
LMAP

ASP-UP ASP-DOWN

FTMP

ASP-DOWN

ASP-UP ASP-DOWN

Figure 4.6: Configuration of the Passive Ferry Clip in the OSI-PTE environment

the Active Ferry F S M with the following exceptions:

• The Passive Ferry Clip's protocol state machine implemented within this entity has

only two states: idle, and connected. The state transition rules defined for the PFC

is shown in Table A.4 in Appendix A.

• It communicates with its adjacent entities using two of the ferry clip services:

Ferry Data Service (FD-ASPs) and Ferry Transfer Service (FT-ASPs). No Ferry

Management Service (FM-ASPs) is used within this entity, as it is not responsible

for managing the ferry connection between the active and passive ferry clips - this

is why it is termed "passive".

4.4.2 The Passive Ferry L M A P

The Passive Ferry L M A P is configured as a single OSI-PTE entity with event interfaces

as shown in Figure 4.8. It has the same function as the Active Ferry LMAP, that is to

Chapter 4. Implementation 45

I

Passive Ferry
FSM

ASP-UP

ASP-DOWN ASP-DOWN
(from Passive Ferry SlAIIo PAssive Ferry SIA)

ASP-nsawN

FT-ASPs FT-ASPs FD-ASPs
(from Passive Ferry LMAP) (to Passive Ferry LMAP)

FD-ASPs

Figure 4.7: Event Interfaces for the Passive Ferry F S M Entity

FT-ASPs FT-ASPs

A S P - U P
(to Passive Ferry FSM) 1 1 A S P - D O W N

(from Passive Ferry FSM)

Passive Ferry
LMAP

A S P - U P
(from Passive Ferry L M A P)

A S P - D O W N
(to Passive Ferry L M A P)

X.25 PLP ASPs X.25 PLP ASPs

Figure 4.8: Event Interfaces for the Passive Ferry L M A P Entity

4.4.3 The Passive Ferry SIA

The Passive Ferry SIA is configured as a single OSI-PTE entity whose main function is to

convert IUT service primitives between IUT-dependent and tester-dependent formats. To

isolate protocol dependency, the Passive Ferry SIA is structured as shown in Figure 4.9.
The Encoder/Decoder module contains two protocol independent routines - encoder and

decoder - which convert data received in E-node tree format to B E R octet stream and

vice versa. The ASP Converter module, which is IUT dependent, converts data received

in E-node tree to IUT service primitive format and vice versa. Hence, only the ASP

Chapter 4. Implementation 46

decoder - which convert data received in E-node tree format to BER octet stream and
vice versa. The ASP Converter module, which is IUT dependent, converts data received
in E-node tree to IUT service primitive format and vice versa. Hence, only the ASP
Converter module needs to be replaced or modified when a different IUT is to be tested.

A S P - D O W N
(to and from Paisive Ferry FSM)

T i BER octet stream

Encoder /
Decoder

I Passive
E-Nodes F e r r y

SIA
„ ASP_ Converter

FD-ASPs
A y
f * A S P - l

I I " (tol
A S P - U P T V A S P - D O W N

(from IUT) I ' (to IUT)
I U T A S P s

Figure 4.9: Structure of the Passive Ferry Service Interface Adapter

To support several test connections in parallel between the SUT and test system, some
mechanisms must be provided for the Passive Ferry SIA to multiplex multiple logical test
connections onto a single ferry channel. One simple solution is to add a "connection-id"'
byte to the header of a FY-DATA PDU as shown in Figure A . l in Appendix A. The need
for this additional connection-id field was first proposed in [PAR89]. This connection-id
field specifies the connection which the test data is to be sent to or received from. This
enables the Passive Ferry SIA to identify which connection of the IUT the test data,
which is sent to the passive ferry clip via the ferry channel, is to be sent to. Similarly,
data received from a particular connection of the IUT requires an identification of the
test connection to be associated with the test data which is to be sent to the active ferry
clip via the ferry channel.

Chapter 4. Implementation 47

4 . 5 A S N . l S u p p o r t T o o l s

A set of A S N . l support tools have been developed to facilitate protocol testing within

the O S I - P T E environment. These support tools are developed based on the following

processing requirements:

• Encoding and Decoding Routines
Since E-node is a linked tree data structure which is capable of representing any

abstract syntax definition, this allows us to develop two "generic" routines - encoder

and decoder - that provide the transformation between the internal B E R value tree

representation and the external linear B E R octet stream. The encoder routine

encodes an E-node tree into a linear B E R octet stream which can be used for

external transmission of A S P s / P D U s ; whereas the decoder routine decodes a linear

B E R octet stream into an E-node tree representation which can be used for data

instance verification. The decoder builds an E-node tree incrementally as it decodes

a received P D U in B E R octet stream. A complete E-node tree is created i f no error

is encountered. Hence, the decoding procedure also verifies the transfer syntax of

the received P D U .

• Automatic Verification of A S P / P D U Data Instances
In communicat ion protocols, A S P / P D U may often take on a range of values. To

manage this in protocol testing, we have extended the E-node data structure to

allow for the specification of value constraints as well as the actual data values.

The constraints specification of A S P s / P D U s is the realization of the constraints

section of a T T C N abstract test suite, and as such, they are incorporated into

the executable test scenarios. Th i s enables the test system to perform automatic

verification of a received A S P / P D U to determine whether it satisfies the constraints

as specified in the E-node tree.

• Service Primitives Conversion Routines
A set of routines have been developed to assist the transformation between the two

different formats for representing the A S P s :

Chapter 4. Implementation 48

- E-nodes to Protocol-dependent format: There is a need to convert ASPs rep­

resented in E-node tree structure into the format required by protocol-specific

service primitives. Such need arises at the interfaces between the test sys­

tem and the underlying communication service provider, and between the test

system and the IUT. These routines require an ASP's event parameter area

(EPA) (see Section 4.1) offset table as a parameter. This table contains the

offsets of each EPA field from the start of the EPA structure and its corre­

sponding field type. The table entries are arranged in depth-first order; i.e.,

the order of recursive traversal of an enode tree.

- Protocol-dependent format to E-nodes: An entire E-node tree representation of

ASP is built incrementally by constructing each field in an EPA. Since ASPs

are realized in different ways by different protocol implementations, a separate

procedure is written for each specific ASPs being used. A node in the E-node

tree can be constructed by calling the appropriate procedure which in turn

invokes the ASN. l support routines to convert the field value from an internal

representation into a transfer syntax format based on the Basic Encoding

Rules (BER) [ISO-8825].

As an illustration, the Value E-node data structure specified in the C programming

language is shown in Appendix B. Figure C . l in Appendix C shows an excerpt of a PI

PDU (i.e., ORName) defined in ASN. l and its corresponding data instance in E-node

tree representation.

4.6 D e r i v a t i o n o f E x e c u t a b l e T e s t S u i t e

A set of utility routines have been developed to facilitate the translation of T T C N ab­

stract test cases into internal executable test notations. These executable test notations

are represented using a tree-like data structure. Appendix D shows the definitions of the

executable test notations specified in the C programming language.

The translation of the dynamic behavior of a T T C N test case into an executable test

Chapter 4. Implementation 49

tree notation can best be illustrated using the example shown in Appendix E . Figure E . l

is a X.403 test case specified in T T C N , the corresponding executable test tree represen­

tation is shown in Figure E.2. It is noted that the executable test tree preserves the

basic structure of the dynamic behavior of a T T C N test case. The test case is used to

test whether the IUT is able to behave as relay and a recipient. The tester LT_1 sends

a U M P D U (User Message Protocol Data Unit) for two recipients, one residing on the

IUT and the other requires the IUT to relay the U M P D U to it. The test is passed if

the IUT delivers the U M P D U to its U A E and makes a copy which is relayed to tester

LT-2. The copy should have no "recipient-info" parameter concerning the IUT or that

its responsibility flag is not set.

A specific Test Suite Processor has been developed to process the executable test tree.

The Test Suite Processor implemented is capable of supporting the following T T C N test

events and operations as defined in ISO standards [ISO-1]: (1) Sending and Receiving

events, (2) Timeout event, (3) Otherwise event, (4) Tree Attachment operation, (5) Timer

Start operation, (6) Timer Cancel operation, (7) Read Timer operation, and (8) Goto

operation. The implementation of the Test Suite Processor contains about 160 lines of

C code.

Chapter 5

The Ferry Clip Approach to
Multi-party Conformance Testing

This chapter starts with a discussion of the general issues and requirements of a multi­
party conformance testing. This is followed by an overview of the Message Handling
System (MHS), together with its the testing requirements. The chapter proceeds to
illustrate how the proposed ferry clip based test architecture can be configured to meet
these requirements and achieve the purpose of multi-party conformance testing within
the scope of OSI. An example using the test system to test an implementation of MHS
is presented. The chapter ends with a discussion of the results and experiences obtained
from the testing performed.

5.1 Issues and Requirements of Multi-party Con­
formance Testing

There are several issues which must be addressed during the design of a multi-party test
system. The first issue concerns the structure of a multi-party configuration. The ISO
has identified three multi-party configurations [ISO-2] as determined by the manner in
which the IUT or IUTs are associated with its multiple peers, specifically:

• a single IUT in SUT A communicating with multiple entities in a single system B;

50

Chapter 5. The Ferry Clip Approach to Multi-party Conformance Testing 51

• a single IUT in SUT A communicating with multiple entities in different systems
(one or more entities per system);

• multiple IUTs in SUT A communicating with multiple entities in a single system
B.

To simplify our discussion, Figure 5.1 depicts an example of a multi-party test ar­

chitecture modelled after the ISO distributed test method (see [ISO-2] for details). In

this model, a set of lower testers execute in parallel (parallel lower testers or PLTs) and

behave as a set of peer entities to the IUT. The activities of the PLTs are coordinated

by the master lower tester (MLT). The role of the upper tester is to coordinate with its

peers to achieve the test purposes.

Master Lower Tester ~I
Coordination

P L T n

PLT2

Parallel
Lower
Tester

1

PCO

PCO

(N-l)'-ASP

PCO

• - • TCP

T C P - - '

TCP , -

TCP, - -

(N)-PDUs

(N)-PDUs

(N)-PDUs

(N-l) Service Provider

(N)-ASPs

Figure 5.1: Multi-party Test Configuration. Multiple parallel lower tester communicating
with a single IUT

In a multi-party environment the IUT is composed of all the components necessary

to activate the protocol, and as such these components must be conformance tested.

Testing of such a protocol may require direct and indirect observation because the action

of this protocol may cause subsequent actions at other protocol entities involved in the

network (e.g., routing protocol and MHS). Under this situation, the results of these

o

Chapter 5. The Ferry Clip Approach to Multi-party Conformance Testing 52

actions may only be observed and reported by third parties. Hence, there is a need
for a test method which involve multiple peers with indirect observation and control in
order to observe the behavior of the IUT and synchronize the generation of inputs and
observations of responses among the components of the test system. This brings up
many issues concerning the Points of Control and Observation (PCOs), synchronization
problem and the relationship between the upper and lower testers.

The second issue is related to the Points of Control and Observation (PCOs). One
of the requirements in multi-party testing is to test the IUT whether it is capable of
concurrently handling more than one connection or association for communicating with
its peers. Each peer entity can be uniquely identified by the connection or association
established. In the ISO distributed test method, the PCOs are between the lower tester
and the (N-l) service provider and between the upper tester and the IUT. A PCO may
represent a service access point, a connection end point, or both. It is the point at
which a group of related interactions occur between the test system and the IUT (i.e.,

directly) or via the underlying service provider (i.e., indirectly). In a multi-party test
environment, there may be one or more PCOs per lower tester. Each PCO represents a
logical connection or association with its peer protocol entity within the IUT. It allows
the lower tester to have remote control and observation of the ASPs and PDUs sent to
or received from the IUT. Since a PCO in the ISO external test methods has the same
functional characteristics as that in the multi-party test environment, it is therefore
possible to extend the current ISO external test methods for multi-party testing.

The third issue relates to the classification of the system under test and the test
method employed. In defining an appropriate test method for a multi-party test system,
one important factor which must be considered is whether the classification of the SUT is
an end-system (7-layer open or partial (N)-open system for layers 1 to N , where N is less
than 7), or intermediate system (Network relay-system with layers 1 to 3, or Application
relay-system with layers 1 to 7). In testing an intermediate system, for instance the
routing protocol [ISO-3], there are no PCOs for control and observation above the IUT
to allow for test coordination between a lower tester and an upper tester if the ISO's
coordinated or distributed test method were employed. In fact, the only PCOs that can

Chapter 5. The Ferry Clip Approach to Multi-party Conformance Testing 53

be used to achieve test coordination and observation of the IUT are in third parties. This
suggests a need for an extension to the existing external test methods in order to fulfill
the test purposes. What is needed is a test method where there are multiple observers
which behave as a set of peer entities to the IUT, and each uses a test management
protocol to report observations to a single site.

The fourth issue is that the relationships between the lower testers (LTs) and upper
testers (UTs), the LTs and IUT, and the UTs and IUT are dependent on the protocol
to be tested and the test purposes of the test cases. For example, in testing the message
transfer layer of MHS, three lower testers and one upper tester may be required to test
whether the IUT can behave both as a relay and a recipient. In this case, the upper
tester acts as a user agent, one lower tester acts as the originator and the other two act
as the recipients. No upper tester, however, is required in testing the routing protocol.

In summary, the requirements of testing certain protocols indicate the need for a
multi-party testing methodology which has not been addressed in Parts 1 and 2 of the
OSI Conformance Testing Methodology and Framework [ISO-1]. The following section
presents a case study about the extended ferry clip test approach for multi-party testing
using MHS as an example.

5.2 A p p l i c a t i o n o f t h e F e r r y C l i p A p p r o a c h t o M u l t i ­
p a r t y C o n f o r m a n c e T e s t i n g

To perform conformance testing on a MHS implementation, single-party test methods
are hardly adequate due to the testing requirement for the following MHS functionalities:

• IUT as Relay (Relay Testing)
Test the ability of the IUT to make use of its routing tables for relaying a message
to two (or more) different management domains (i.e., multi-destination delivery).

- Lower Tester 1
- Lower Tester 2
- Lower Tester 3

originator
recipient 1
recipient 2

Chapter 5. The Ferry Clip Approach to Multi-pasty Conformance Testing 54

• IUT as Relay and Recipient
Test the ability of the IUT to behave as a relay and a recipient. The IUT receives
a message for two recipients, one on the IUT and the other requires the IUT to
create a second copy and relay it to another management domain.

- Lower Tester 1 originator
- Upper Tester 1 recipient 1
- Lower Tester 2 recipient 2

• IUT as Originator and Recipient
Test the ability of the IUT to behave as an originator and a recipient. This test
requires the IUT to send a copy of the message to its local recipient and another
copy to the tester.

- Upper Tester 1 originator
- Upper Tester 2 recipient 1
- Lower Tester 1 recipient 2

UT 1 UT2

UAE I

U A E : User Agent Entity

M T A E : Message Transfer Agent Entity

RTS : Reliable Transfer Server

UAEJ

•SAP-J

Lower
Tester 1 MTAE

Lower
Tester 2

Lower
Tester 3

SAP-1 '
«

SAP-2 SAP-3

: RTS
A j A A

Figure 5.2: General test configuration for message transfer layer of MHS

Figure 5.2 depicts the logical view of a multi-party test configuration which can be

used to fulfill the requirements for testing the message transfer layer of MHS. Any test

Chapter 5. The Ferry Clip Approach to Multi-party Conformance Testing 55

system that is used for testing the message transfer layer of MHS should be configurable
to provide the functionalities depicted in the figure. With this general test configuration,
there are many ways to perform multi-party conformance testing. It is therefore impor­
tant to identify the basic mechanisms which must be supported by a test system. It is
essential for a test system to:

• provide a method with indirect observation and control in order to observe the
behavior of the IUT and synchronize the test execution between the components
of the test system;

• support various configurations and topologies, i.e., be able to simulate the change
of physical topology by logically enabling or disabling the desired connections or
entities within the test system;

• avoid dependency on the IUT for transmission of test management and coordi­
nation PDUs, and reporting of results observed, thereby achieving a reliable and
controllable test environment.

The ferry clip based test architecture shown in Figure 2.3 is proposed for the realiza­
tion of multi-party testing. In order to fulfill the requirement of multi-party testing, it
is essential for the test system to support the communications between multiple entities
on the SUT and the test system via the use of several test connections in parallel. The
following components are involved in the support of multiple test connections in the ferry
clip based test system: (1) Service Provider Interface Module, and (2) Service Interface
Adapter. Multiple connections between the SUT and the test system can be achieved
through the use of virtual circuit connection and multiplexing facility provided by the
underlying communication service. Since each PCO represents a logical connection es­
tablished by the IUT to communicate with a unique peer entity, this requires the Service
Provider Module to associate each PCO with a unique identifier which is modelled as a
peer entity to the IUT. Similarly, by applying downward multiplexing strategy, multiple
test connections between the IUT and the Service Interface Adapter are mapped onto a

Chapter 5. The Ferry Clip Approach to Multi-party Conformance Testing 56

single ferry channel. Thus, an additional byte is introduced in the ferry PDU header to
identify the connection the test data is associated with.

With this test architecture, a set of multi-peer entities can be simulated within the test
system. The test system may simultaneously simulate several management domains as
required by the test cases. For example, in testing the relay functionality of the IUT, one
of the PLTs in the test system can behave as an originator in one of the simulated domains
by sending a message via one of the test connections to the IUT. Another PLT in the test
system simulates the behavior of the recipient in another domain waiting for the message
to arrive via another test connection. Since the test system has overall control over the
communication behavior of the IUT, simulation of the change of network topology can
easily be achieved without any modification to the real testing environment. Since the
test system has access to the service interfaces of its multiple peers, it can remotely
control and observe the behavior of the IUT. Simulation of invalid peer behavior can also
be achieved by injecting invalid test data under the direction of the test cases. Hence,
the central control mechanism, inherited in the ferry clip based test architecture, enables
the test system to remotely conduct, monitor and synchronize test components with
great flexibility. Furthermore, the lower and upper testers, which are required in the
conventional distributed test method, are being merged into a single tester which resides
in the test system, thereby eliminating the problem of synchronization between testers
residing on different machines.

5.3 M u l t i - p a r t y C o n f o r m a n c e Tes t ing of a M H S I m ­
p l e m e n t a t i o n

This section illustrates how the ferry clip approach can be extended to perform multi­
party testing, an example using the test system to test an implementation of MHS serves
to demonstrate the power, generality and flexibility of the design concept described in
Chapter 3. Conformance testing of a protocol implementation such as MHS is by nature
too complex to be fully presented in this thesis, we therefore focus our attention on issues
that are related to the testing aspects of the Message Transfer Layer.

Chapter 5. The Ferry Clip Approach to Multi-party Conformance Testing 57

5.3.1 Overview of MHS Model

The Message Handling System (MHS) model denned in X.400 (1984) series recommenda­

tion [CCITT-1] is shown in Figure 5.3. The lowest level in the MHS model is the Message

Transfer System (MTS) where the Message Transfer Agents (MTA) are responsible for

accepting messages from the originator (i.e., User Agents), relaying the messages from

M T A to M T A , and delivering them to the recipients (UAs).

Message Handling Environment
User

User U A User U A

User U A User U A

M H S

Denotes an interaction

U A

M T S
M T A

M T A M T A M T A M T A

M T A M T A U A User M T A M T A U A User

MHS = Message Handling System
MTS = Message Transfer System

MTA = Message Transfer Agent
UA = User Agent

Figure 5.3: The Model of the Message Handling System

The next level, the Message Handling System (MHS), contains the User Agents (UAs)

which interact directly with their users. The UAs assist the user in constructing and

submitting messages to an M T A for transmission to the destination(s). In addition,

the UAs also support other message functions such as filing, replying, retrieving, and

forwarding.

A message that is transferred by the MTS is composed of an envelope and a con­

tent. The envelope part contains the originator and recipient addresses as well as other

Chapter 5. The Ferry Clip Approach to Multi-party Conformance Testing 58

necessary information that influence the transfer of the message. The content part of

a message is completely transparent to the MTS except in the case where the content

conversion service is requested (e.g., text to facsimile).

The message handling facility is primarily an application-layer service. As such, it

must rely on lower-layer entities to provide a complete communications capabilities. The

architecture which incorporates the X.400 service is illustrated in Figure 5.4 [STAL89].

The application layer is divided into two sublayers: the Message Transfer Layer (MTL)

and the User Agent Layer (UAL). Based on the functional model, three types of systems

can be distinguished: system that contains only U A functions, system that contains only

M T A functions and system that contains both UA and M T A functions.

User
UAE
SPE

X.409

Session

Transport

Network

Data link

Physical

SI Network S2 Network S3

PROTOCOLS ENTITIES SYSTEMS

P1: Message Transfer U A E : User Agent Entity S1: Contains only U A functions
P2: Interpersonal Messaging M T A E : Message Transfer Agent Entity S2: Contains only M T A functions
P3: Submission and Delivery SDE : Submission and Delivery Entity S3: Contains both U A and M T A functions

Figure 5.4: X.400 protocol architecture

The User Agent Layer contains user agent entities (UAEs). A U A E embodies the

protocol-related functions of a single UA. UAEs cooperate with one another to support

the services of the U A L known as interpersonal messaging services (IPMS). The protocol

Agent
Layer

Message
Transfer
Layer

UAE UAE
MTAE PI MTAE PI

X.409 X.409

Session Session

Transport Transport

Network Network

Data link Data link

Physical Physical

P2
MTAE

Presentation

Session

Transport

Network

Data link

Physical

P3

Chapter 5. The Ferry Clip Approach to Multi-party Conformance Testing 59

that is used for interactions between UAEs is known as the interpersonal messaging

protocol (P2). The P2 protocol essentially consists of protocol elements and rules that a
UAE must follow in providing the interpersonal messaging services.

The Message Transfer Layer contains two kinds of entities: message transfer agent

entities (MTAEs) and submission and delivery entities (SDEs). An MTAE embodies the
functionality of a single MTA. MTAEs cooperate with one another to support the services
of the MTL. If an MTAE presents in a system that contains only the MTA functions (see
Figure 5.4), it acts solely as a relay. The protocol that is used for interactions between
MTAEs is known as the message transfer protocol (PI). Basically, PI defines the relaying
of messages between MTAs and other interactions necessary to provide the MTL services.

The submission and delivery entity (SDE) makes the services of the message transfer
layer available to its UAE. The SDE does not itself provide the message transfer services
but rather interacts with its peer MTAE to allow the UAE to remotely invoke the services
of the MTAE. The protocol that is used for interactions between MTAEs and SDEs is
known as the submission and delivery protocol (P3). This protocol, however, achieves no
significance, and hence has never been implemented in practice [SCH89].

5.3.2 Characteristics of MHS

Testing of MHS implementations, or OSI Application layer protocols in general, has
certain characteristics that are not encountered in testing the OSI lower layer protocols
[BOCH86, SARJ89]. These characteristics are:

(a) Basically there is a one-to-one correspondence between the application PDUs and
the service primitives. In addition, the rules for determining the order in which
the PDUs are executed are largely independent of the rules for selecting the PDU
parameter values. The same independence property also applies to the service
primitives and the order of their execution. The one-to-one correspondence between
the PDUs and service primitives implies that the protocol has a simple control flow,
and the synchronization problem during testing is also simplified [SARI84] since the
order of their (i.e., ASPs/PDUs) execution are independent.

Chapter 5. The Ferry Clip Approach to Multi-party Conformance Testing 60

(b) In contrast to the rules for determining the order of execution for PDUs and service

primitives, the rules concerning the selection of appropriate parameter values for

PDUs are relatively complex. Together with the property (a) above, it is important

to point out that the main concern to the test system is the structure of the PDUs,

not the correlation of PDUs.

(c) ASN. l and its associated encoding rules are used extensively within the OSI ap­

plication layer protocols since the PDUs, coded in transfer syntax format, are ex­

changed over the boundary between different protocol sublayers. This results in

the development of various ASN. l support tools to assist and simplify the imple­

mentation and testing of application layer protocols. Hence, the proposed ferry

clip based test system which uses ASN. l for the representation of information (i.e.,

ASPs) exchanged between the SUT and test system is well suited for testing OSI

application layer protocols.

5.3.3 Test Results

The MHS implementation, based on the 1984 X.400 series of recommendations, has been

successfully tested using the proposed ferry clip based test system. Most of the problems

encountered were due to: (1) incompatibility in the encoding of ORNames which are

used to uniquely identify the MTAs and users within an M T A ; and (2) misinterpretation

of the optional and default fields as defined in the ASN. l specifications for P1/P2 PDUs.

All these errors were rectified by analyzing the detailed trace log produced by the test

system. A sample executable test case and the corresponding conformance log are shown

in Figures E.2 and E.3 respectively in Appendix E.

5.3.4 Issues and Experiences

A number of issues have been identified from our experience in the conformance testing

of a MHS implementation using the ferry clip based test system. Although many of these

are recognized in the literature, they are summarized here as a result of our experiences.

Chapter 5. The Ferry Clip Approach to Multi-party Conformance Testing 61

• Testing with respect to MHS
Based on the X.403 conformance testing specification manuals [CCITT-2], three
functional groupings of services in MHS have to be tested: (1) the Interpersonal
Messaging Service (Pi), (2) the Message Transfer Service (P2), and (3) the Reliable
Transfer Service (RTS). Properties (a) and (b) described in Section 5.3.2 are valid
with respect to testing PI and P2 protocols. The dynamic behavior of the test
cases for PI and P2 are less complex compared to that of the RTS. This means
that the test system must be able to support the generation of all possible PDU
structures, the detection of both syntax and semantic errors in the received PDUs.

The main function of RTS is to provide a reliable message transfer service to its
MTA. It utilizes services provided by the Session layer to maintain a "virtual as­
sociation" with its peer entity and carry out the reliable transfer of application
protocol data units (APDU). Thus, testing of RTS is different in several aspects
from the testing of P1/P2 as well as other lower layer protocols. The main issue in
RTS testing is its reliability, i.e., the RTS must be tested for its ability to recover
from various exception situations (e.g., resume at some checkpoint after interrup­
tion or session abort). This requires the test system to have direct access to the
internal behavior of the RTS implementation. There are several X.403 test cases
which actually require such access in order to fulfill the testing purposes. This
brings up the non-observability issue which is addressed below.

• Non-observability
There are certain features of protocols which are not observable, and hence they
are not testable. Such features can be classified into two categories: pragmatically
non-observable and theoretically non-observable [MAT87].

Pragmatically non-observable features are those which have a high cost associated
with their testing. One example is testing the action of FTAM when a file server
crashes.

Theoretically non-observable features are those which are not directly testable by
definition. Since conformance testing can be viewed as a black box testing, it should

Chapter 5. The Ferry Clip Approach to Multi-party Conformance Testing 62

not impose any requirement on the protocol behavior which cannot be triggered

through some legal event at the exposed service interface of the IUT. One example is

in testing the recovery mechanism of RTS, an access to the internal implementation

of RTS is needed to trigger the RTS to invoke a session user abort request.

• Misinterpretation of Protocol Specifications
Due to the complexity of protocols, protocols that are specified informally are likely

to contain ambiguities and may lead to misinterpretations and inordinate amount

of effort required to develop test cases. This implies that discrepancies between

abstract test cases and the relevant protocol standards are not uncommon. For

example, one discrepancy that has been identified, during the course of testing

the RTS implementation based on the X.403 test case, is the checkpointSize
parameter value specified during the RTS negotiation phase. It is stated in the

X.400 series of recommendation that "a value of zero from the sending RTS invites

the receiving RTS to select checkpointsize. A value of zero from the receiving RTS

indicates that checkpointing will not be used. The value supplied by the receiving

RTS becomes the agreed maximum value and governs both directions of transfer".

However, it was assumed in the X.403 test cases that "a value of zero from the

sending RTS indicates that no checkpointing will be done"; therefore, any value

returned by the receiving RTS would be ignored and not used in the subsequent

steps of those test cases.

The use of formal specification techniques will likely lead to solutions in resolving

specification dilemmas. As more and more protocols are specified using formal

specification languages such as L O T O S or Estelle, test cases could be systematically

derived (with the aids of automatic generation tool) from the specification. This

reduces the probability of introducing errors into the test cases.

C h a p t e r 6

T h e F e r r y C l i p A p p r o a c h t o
M u l t i - p a r t y I n t e r o p e r a b i l i t y T e s t i n g

A s mentioned i n Section 1.4, conformance testing alone is not a sufficient condition to

guarantee interoperabili ty of a protocol implementation. To further increase the probabil­

ity that different implementations are able to interwork, interoperability testing can thus

be considered the next pragmatic step. This chapter addresses the differences between

conformance and interoperability testing in general, and describes the complementary

characteristics of interoperability testing with highlights on why interoperability testing

enhances confidence that different protocol implementations w i l l interwork. The remain­

der of this chapter illustrates how the proposed ferry cl ip based test architecture can be

extended to perform multi-party interoperability testing for a single- or multi-layer I U T .

6.1 D i f f e r e n c e s b e t w e e n C o n f o r m a n c e a n d I n t e r o p ­
e r a b i l i t y T e s t A p p r o a c h e s

There are several aspects in which interoperability testing differs from conformance test­

ing. The first notable difference is that interoperability testing usually involves multiple

interconnected systems and networks that are functionally distinct and unique, but they

provide common interfaces to allow an end-to-end connection to be established between

an I U T and the involved systems. This connectivity test must be successfully completed

63

Chapter 6. The Ferry Clip Approach to Multi-party Interoperability Testing 64

before full interoperability testing can be conducted. Second, one of the implementations

involved is supposed to be the IUT, and the remaining participating systems are assumed

to be conforming implementations which implement the same OSI protocol standards or

subset of these standards. Another set up is to have the test system actively testing and

monitoring the interactions between two IUTs purporting to support the same set of pro­

tocol standards. The test configuration must model as closely as possible to the actual

operating environment, if testing on the users actual operation environment is considered

to be infeasible. Third, as interoperability testing verifies the user-level functionalities

in an end-to-end configuration, test cases required for interoperability testing are differ­

ent from those which are applicable to conformance testing a particular protocol. It is

therefore difficult or even impossible to expose the IUT to invalid behavior of its peers

by injecting invalid test PDUs.

6.2 T h e C o m p l e m e n t a r y R o l e o f I n t e r o p e r a b i l i t y
T e s t i n g

This section examines the complementary characteristics of interoperability testing to

conformance testing and highlights why interoperability testing enhances confidence that

different protocol implementations will be able to interwork. Due to its intrinsic charac­

teristics, interoperability testing addresses several issues which might not be covered in

conformance testing.

1. End-to-End Behavior and Applications

The protocol specification is developed based on the communication service to

be provided by the protocol. Thus by its nature, it addresses only the required

functionality between the two systems, and may not cover the end-to-end behavior

and applications in complex configurations [BERT90]. In such cases, conformance

testing of individual systems is insufficient to guarantee interoperability.

2. Options in a Protocol Specification

There is often a tradeoff between the degree of flexibility and the tightness with

Chapter 6. The Ferry Clip Approach to Multi-party Interoperability Testing 65

which a protocol is defined. An overly flexible protocol will result in mutual incom­

patibility among two or more implementations developed by independent vendors.

This problem is further compounded by the complexity of protocols which makes it

likely for implementers to introduce errors in the implementations, and that most

protocols are not formally specified and may contain ambiguities. This results in

diminishing chances of interoperability among independent implementations. Con­

versely, a protocol that is too tightly defined may impose unnecessary restrictions

and reduce the flexibilities of a protocol architecture. Thus, a pragmatic approach

is to define a range of options which the protocol is required to support. However,

protocol options may result in incompatibility among independent implementa­

tions. Interoperability testing helps ensure that "mutual compatible" options have

been selected from among the permissible ranges of choice.

3. Timing and Synchronization

There is usually a set of timers associated with a protocol. Some of the timers are

essential to ensure correct protocol operation; others, such as time-out intervals for

retransmission, are used for the purpose of achieving optimum performance with

respect to the given network characteristics. Usually a range of timer values is

specified to take into account for differences such as propagation delay and error

characteristics of the medium. There is usually a synchronization pattern during

the initialization of a protocol process, this synchronization pattern has an ad­

justable duration. Thus, two communicating entities relying on the pattern must

select a synchronization duration that is agreeable by both communicating ends.

Interoperability testing ensures the timer values and the duration of synchroniza­

tion patterns (if any) are tested for integrity in a simulated end-to-end testing

environment before being deployed to the real operating environments.

4. Performance Characteristics

Another benefit of interoperability testing is that it provides a measure of perfor­

mance characteristics of the implementation(s) being tested, such as its throughput

and responsiveness under various conditions. Such a measure of performance char-

Chapter 6. The Ferry Clip Approach to Multi-party Interoperability Testing 66

acteristics gives an estimate within a statistical bound of confidence. Such estimate

has proved useful in assessing and ranking the performance among different imple­

mentations of the protocol.

6 .3 A p p l i c a t i o n o f t h e F e r r y C l i p A p p r o a c h t o M u l t i ­
p a r t y I n t e r o p e r a b i l i t y T e s t i n g

This section presents an approach to realization of multi-party interoperability testing

using the ferry clip. Figure 6.1 illustrates how the proposed ferry clip based test archi­

tecture can be extended to allow for interoperability testing of a single- or multi-layer

IUT. Using this architecture, no modification to the passive ferry clip (on the SUT site) is

required. Changes to the test system site depend on the number of SUTs involved. If two

SUTs are used as shown in Figure 6.1, two active ferry clips are needed with each A F C

communicating with its corresponding passive ferry clip over the ferry channel. Hence,

there is a one-to-one relationship between the A F C and PFC.

With this test architecture, the test system has control over the communication ac­

tivities between the SUTs involved. The major advantage of adopting the ferry clip

test approach is the centralized and synchronized control and management of a set of

distributed observers (i.e., passive ferry clips) which report observations to the central

point of control. The central control mechanism provides the test system with the abil­

ity to control the distributed observers flexibly, collect observations from all the SUTs

involved, analyze test results and produce test verdicts. This also allows a single test

case to describe all activities required between the SUTs involved. All these activities

can be automatically executed within the test system under the direction of executable

test scenarios, thereby eliminating the need for operator intervention as required in other

test methods where the ferry clip test approach is not used.

To enhance the error detection capability, it is possible to introduce a monitor ana­

lyzer, called arbiter [BOCH89], as shown in Figure 6.1, which observes the exchange of

PDUs between the two protocol implementations. The use of an arbiter is to realize only

Chapter 6. The Ferry Clip Approach to Multi-party Interoperability Testing 67

SUT 1 Test System SUT 2

Underlying Communication Service

5

Analysis
Module

1

Analysis
Module

2

Arbiter

Trace
File

Figure 6.1: Ferry clip based test configuration for interoperability testing using two IUTs

Chapter 6. The Ferry Clip Approach to Multi-party Interoperability Testing 68

the trace analysis function with the purpose of detecting error(s) which are not visible at

the upper service interfaces of the implementations. Since only the PDUs exchanged and

not the interactions at the upper service interfaces of the implementations are observed,

the error detection power of the arbiter is equal to that of the remote test architecture.

If two IUTs are involved as shown in the figure, the arbiter contains two trace analysis

modules, one for each observed IUT. Each trace analysis module checks whether the

observed trace is in contradiction to the specification of its corresponding IUT. The ob­

served trace of PDUs is recorded in a trace file for later processing. A highly detailed log

information can be produced for test results analysis, this is achieved by combining the

test results captured by the ferry clip based test system together with the traces of PDUs

taken by the arbiter. This is particularly useful in the case where a conclusion cannot

be drawn based solely on the test interactions observed at the upper service interfaces of

the implementations.

6.4 R e l a t e d W o r k

As mentioned above, conformance testing alone does not yield a full guarantee of proper

interworking, and users are demanding for an immediate and pragmatic approach to

assess the interoperability of the products available in the marketplace. As such, a number

of testing and research centers are starting to offer interoperability testing services. One

example is the OSIRIDE-Interest initiative1 [DIL089] which was promoted by the Italian

National Research Council. Its objective is to investigate the interworking capabilities of

products which implement the OSI and C C I T T standards and recommendations, and are

supplied by the OSIRIDE vendors (i.e., Bull Digital, Hewlett-Packard, IBM, Olivetti and

Unisys). This test approach assumes that each OSIRIDE vendor has already conformance

tested his own products, and thus no reference testing center exists in this initiative.

Figure 6.2 depicts a conceptual model of the OSIRIDE-Interest test architecture with

two SUTs (for illustrative purpose) involved. The Scenario Generator is in charge of

OSIRIDE stands for "OSI su Rete Italian Dati Eterogenea" or "OSI on the Italian heterogeneous
data networks"

Chapter 6. The Ferry Clip Approach to Multi-party Interoperability Testing 69

SUT 1 SUT 2

1 1 Scenario
Generator

Scenario
Files

Scenario
Generator

Scenario
Files

Scenario
Files Scenario

Interpreter

Scenario
Files Scenario

Interpreter

Scenario
Generator

Scenario
Files

Scenario
Generator

Scenario
Files

Scenario
Files Scenario

Interpreter

Scenario
Files Scenario

Interpreter

Scenario
Files

Underlying Communication Service

Figure 6.2: OSIRIDE-Interest test architecture for X.400 interoperability test

generating Scenarios (i.e., files containing executable Test Sequences). This generation

is performed off-line with respect to the Scenarios execution. The Scenario Interpreter

takes as input the Scenario file and maps every Scenario service request into one (or

more) specific service request(s) to the IUT being tested, the related parameters values

given in symbolic form are also mapped into corresponding values required by the specific

IUT. The interactions observed at the service boundary of the IUT are logged in a file

which will be used for result analysis upon completion of each Scenario file processing. A

result analysis is performed off-line by a tool named Test Result Analyzer, which rebuilds

the sequences of service primitives observed and compares them with the expected ones.

One major disadvantage of the OSIRIDE-Interest test approach is that it does not

have the central control mechanism which provides the ability to control communication

activities between the SUTs, collect observed interactions at the related service interfaces

of the IUTs from the distributed observers, analyze test results, and produce test verdicts

within a single test system. Furthermore, base on the reconciled sequences of service

primitives observed at each SUT, it is difficult and sometimes impossible to determine

which IUT exhibits a deviation from the protocol specification. One possible solution

Chapter 6. The Ferry Clip Approach to Multi-party Interoperability Testing 70

to this is to introduce a passive monitor (as described in the previous section), which

observes the exchange of PDUs between the IUTs.

Many manufacturers, in addition to the national testing body described above, also

seize any opportunity available to demonstrate to customers the interconnection capa­

bility of their products. One typical example is the interoperation verification services

offered by IBM in Europe [BON89]. These services allow customers, vendors and other

participants to verify the interoperability of their OSI implementations with the IBM

licensed OSI products implementing the same OSI standards subset.

Figure 6.3 [BON89] shows the test configuration of IBM OSI-X.400 Interoperation

Verification Service. The users operate and has full control over the verification process

from the service terminal installed in their premises. The test cases needed for the verifi­

cation service are provided by IBM. The users select those they wish to run according to

the capabilities of their implementations or certain functionalities they wish to highlight.

The connection between the user's and IBM's OSI implementation is achieved through

the existing public telecommunications X.25 service. Traces of incoming and outgoing

PDUs that flow between the user's OSI and IBM's OSI systems are taken. These traced

PDUs are formatted upon completion of each test run to provide the users with an

efficient problem analysis mechanism.

As indicated in [BON89], practical experience has shown that these services are ex­

tremely beneficial to the standards efforts in general, and the participants in particular

as they are assured of their investment made in OSI products. As such, interoperability

testing services will remain an invaluable tool in the development of open, multi-vendor

systems.

Chapter 6. The Ferry Clip Approach to Multi-party Interoperability Testing 71

IBM Information
Network

IBM X.400 Interoperation
Verification Service

X.400
MHS '
User

DISOSS or
PROFS

DISOSS
or

PROFS
Connect

X.400 Message
Transfer Facility

Open Systems
Transport and
Session Support

Open Systems
Network Support

X.25 Support

~ ~ i —

Service
Terminal

User

PDUs

PDUs

PDUs

Results
Problem
Analysis

User Mail
Terminal

UA
X.400
MHS
User

User's X.400 MTA
Implementation
User's X.400 MTA
Implementation

User's Layers

1 to 5
Implementations

User's Layers

1 to 5
Implementations

User's Layers

1 to 5
Implementations

Public Telecommunication X.25 Services

Figure 6.3: I B M OSI-X.400 Interoperation Verification Service

Chapter 7

Conclusions and Future Work

7.1 C o n c l u s i o n s
In this thesis we have described the concept of multi-party testing and recognized the
need for a multi-party testing methodology. In order to achieve a truly "open systems
interconnection" in a multi-vendor environment, there are two different phases of proto­
col testing that need to be addressed: multi-party conformance testing and multi-party
interoperability testing. Conformance testing verifies that the external behavior of a
protocol implementation complies with the specification; while interoperability testing
verifies that different implementations of the same protocol (assume they comply to the
same standard) do interwork. Thus, both conformance and interoperability testing are
necessary and are supplementary to each other. This calls for the design of a general
test architecture that can be configured as required to meet the purpose of multi-party
conformance testing and interoperability testing. The proposed ferry clip based test
architecture meet this requirement.

The ferry clip based test architecture employs a set of carefully chosen design princi­
ples to achieve the goal of a generalized and flexible test tool. It is general and flexible
with respect to the protocol to be tested, the test configuration and the test method to be
realized, the system under test, and the underlying communication system. In addition,
by adopting an ASN.l representation of service primitives and ferry data that are to be

72

Chapter 7. Conclusions and Future Work 73

exchanged between the active ferry clip (in test system) and the passive ferry clip (in

SUT) enhances the portability of the testing software.

The use of test system to test a MHS implementation serves to illustrate the applica­

bility of the ferry clip test approach to multi-party conformance testing. The ferry clip

test approach also offers many benefits in terms of the amount of effort saved and the

cost of resources required to achieve a highly controlled test environment.

7.2 F u t u r e W o r k a n d R e s e a r c h D i r e c t i o n s

Though we have implemented the ferry clip based test system for multi-party testing,

the proposed extension for multi-party interoperability testing has not been implemented

and tested. This would provide an interesting area for future study.

One of the objectives that has been identified in this thesis is to achieve an integrated

and automated test environment where the process of deriving executable test cases,

test execution and test results analysis can be automated using a set of support tools.

There are several areas that remain open for future research. First, we have proposed

the representation of T T C N test cases in an executable test tree notations. This allows a

protocol-independent test engine to carry out the protocol testing function. The process

of translating the dynamic behavior of T T C N test cases into executable test trees is done

manually to a large extent, although a small set of support routines have been developed

to assist the translation. The process of translation can, however, be automated with

the aids of a T T C N parser. The input to the T T C N parser is a T T C N - M P (Machine

Processable) source file containing the declarations, constraints specification and dynamic

behavior of a test suite.

Second, the constraints of test ASPs/PDUs of a T T C N test suite are represented

internally using an adaptation of E-nodes. The process of generating the E-node repre­

sentation of ASPs/PDUs specified in A S N . l - M M (Modular Method) can be done auto­

matically using a set of ASN. l support tools. The development of a useful and complete

set of ASN. l support tools is a major undertaking, it poses an interesting area for future

Chapter 7. Conclusions and Future Work 74

work. This A S N . l tools set shall consist of the following major components: parser,

editor, encoder/decoder, and analyzer. The function of a parser is to analyze the ASN. l

specifications of ASPs/PDUs and generates the corresponding template E-node trees.

The editor serves to create and manipulate the data instances for any given template

E-node tree. To ease the task of editing, it would be ideal for the editor to provide a full­

screen menu-driven user interface. Besides providing editing facilities for value E-node

trees, it should provide mechanisms to override the structure and encoding information

of a value E-node tree. These capabilities are extremely useful in protocol testing as they

allow test suite designers to create semantically or syntactically invalid ASPs and PDUs

for robustness testing. The generic encoder/decoder (which have been implemented and

incorporated in our ferry clip based test system) basically transforms a value E-node tree

into a sequence of octet stream and vice versa. The analyzer is capable of checking the

syntax and semantic for a given stream of octets which is encoded based on the BER.

Checking the syntax includes both the transfer syntax and the ASN. l abstract syntax.

To check for correct semantic, the ASN. l support tool must allow the specification of

constraints for a given template E-node tree by means of the editor. The constraints

specification is used by the analyzer to determine the semantic correctness of the value

E-node. The functions of the analyzer is particularly useful for the development of an

automatic test system in which the verification of the parameter values of ASPs/PDUs

can be done automatically.

The third area concerns the specification of constraints for ASPs/PDUs. Our current

implementation is only capable of handling constraints that are described in the ASN. l

Modular Method of the ISO T T C N . There is still a large class of constraints which cannot

be fully expressed in the current version of ASN. l ; they are only stated in text part of

the standards. As such, an extension of ASN. l called "Attributed ASN.l" [BUR89] has

been proposed in which constraints on instances of basic ASN. l can be stated in a more

precise and general manner. Because the extension is based on a well known formalism in

language theory called " attribute grammars", it is feasible to incorporate this feature in

the ASN. l support tools. Such tools are of great help in the automatic implementation

of test cases as well as the automatic execution of test cases.

Bibliography

[AHO90] A . V . Aho, B.S. Bosik, and S.J. Griesmer, "Protocol Testing and Verification
within A T & T " , AT&T Technical Journal, Vol. 69, No. 1, 1990.

[BERN90] L. Bernstein, "Protocols: Key to the Future of Computer Communication",
AT&T Technical Journal, Vol. 69, No. 1, 1990.

[BERT90] H.V. Bertine et. al., "Overview of Protocol Testing Programs, Methodologies,
and Standards", AT&T Technical Journal, Vol. 69, No. 1, 1990.

[BOCH86] G. v. Bochmann, M . Deslauriers and S. Bessette, "Application Layer Testing
and A S N . l Support Tools", in: Proceedings of the GLOBECOM 86, 1986.

[BOCH88] G.v. Bochmann, C.S He, "Ferry Approaches to Protocol Testing and Service
Interface", Proceedings of the 2nd International Symposium on Interoperable
Information Systems, Tokyo, Japan, Nov. 1988.

[BOCH89] G.v. Bochmann, R. Dssouli, J.R. Zhao, "Trace Analysis for Conformance and
Arbitration Testing", IEEE Transactions on Software Engineering, Vol.15, No.
11, Nov. 1989.

[BON89] G. Bonnes, "OSI-X.400 Inter-operation Verification Services", Proceedings of
the 2nd International Workshop on Protocol Test System, Berlin (west), Ger­
many, 1989.

[BUR89] S.P. van de Burgt, P.A.J. Tilanus, "Attributed ASN. l" , Proceedings of the 2nd
Formal Description Techniques for Distributed Systems and Communications
Protocols (FORTE'89), Vancouver, Canada, Dec. 1989.

[CCITT-1] CCITT Recommendations, Volume VIII - Fascicle VIII. 7 (Red Book): Mes­
sage Handling Systems, 1984.
X.400 - MHS: System Model and Service elements
X.401 - MHS: Basic Service Elements and Optional user Facilities

75

BIBLIOGRAPHY 76

X.408 - MHS: Encoded Information Type Conversion Rules
X.409 - MHS: Presentation Transfer Syntax and Notation
X.410 - MHS: Remote Operations and Reliable Transfer Server
X.411 - MHS: Message Transfer Layer
X.420 - MHS: Interpersonal Message User Agent Layer
X.430 - MHS: Access Protocol for Teletex terminals

[CCITT-2] C C I T T Recommendations X.403, SG VII, "X.403 Message Handling Sys­
tems: Conformance Testing",
"MHS - Conformance Testing Specification Manual for IPMS(P2)", Nov. 1987
"MHS - Conformance Testing Specification Manual for MTS(Pl)", Nov. 1987.
"MHS - Conformance Testing Specification Manual for RTS", Jan. 1988.

[CCITT-3] C C I T T Recommendation X.400, Series Implementor's Guide (Version 3),
1986.

[CCITT-4] C C I T T Recommendation X.200, "Reference Model of Open Systems Inter­
connection for C C I T T Applications", 1988.

[CHAN89] R.I. Chan et. al., "A Software Environment for OSI Protocol Testing Sys­
tems" , Proceedings of the 9th IFIP Symposium on Protocol Specification, Test­
ing, and Verification, Enschede, Netherlands, Jun. 1989.

[CHANS89] S.T. Chanson, B.P. Lee, N.J. Parakh and H.X. Zeng, "Design and Implemen­
tation of a Ferry Clip Test System", Proceedings of the 9th IFIP Symposium on
Protocol Specification, Testing, and Verification, Enschede, Netherlands, Jun.
1989.

[DIL089] F. Dilonardoet. al., "Experiences in the OSIRIDE-Interest Initiative: architec­
ture and tools for X.400 interoperability tests", Proceedings of the 2nd Inter­
national Workshop on Protocol Test Systems, Berlin (West), Germany, 1989.

[ESWA90] S. Eswara, et. al., "Towards Execution of T T C N Test Cases", Proceedings of
the 10th IFIP Symposium on Protocol Specification, Testing, and Verification,
Ottawa, Canada, Jun. 1990.

[FAV89] J. Favreau, R.J. Linn, and S. Nightingale, "A Formal Multi-Layer Test
Methodology and its Applications to OSI", Proceedings of the 2nd Formal De­
scription Techniques for Distributed Systems and Communications Protocols
(FORTE'89), Vancouver, Canada, Dec. 1989.

BIBLIOGRAPHY 77

[ISO-1] ISO TC97/SC21, DIS 9646, "OSI Conformance Testing Methodology and
Framework", Part 1: General Concepts, Part 2: Abstract Test Suites Spec­
ification, Part 3: The Tree and Tabular Combined Notation (TTCN), Nov.
1989.

[ISO-2] ISO/IEC JTC1/SC21/WG1, "OSI Architecture - Working Draft for Multi­
party Test Methods", Florence Meeting, Nov. 1989.

[ISO-3] ISO/IEC/JTC1 /SC26, End System to Intermediate System Routing Exchange
Protocol for use in Conjunction with the Protocol for the Provision of the
Connectionless-mode Network Service, DP 9542, Jun. 1987.
Intermediate System to Intermediate System Inter-domain Routing Exchange
Protocol, Working Document, Oct. 1987.
Intermediate System to Intermediate System Intra-domain Routing Exchange
Protocol, N4494, OCt. 1987.

[ISO-8824] OSI - Specification of Abstract Syntax Notation One (ASN.l), OSI DIS 8824,
1987.

[ISO-8825] OSI - Specification of Basic Encoding Rules for Abstract Syntax One (ASN.l),
OSI DIS 8825, 1987.

[LAMP78] L . Lamport, "Time, clocks and the ordering of events in a distributed system",
Communication ACM, Vol. 21, No. 4, Dec. 1978, 315-323.

[LEE89] B.P Lee, "Issues on Design and Implementation of Protocol Test System",
M.Sc. thesis, Department of Computer Science, University of British Columbia,
1989.

[LINN85] R.J . Linn, "An Evaluation of the ICST Test Architecture after Testing Clas
4 Transport", Protocol Specification, Testing, and Verification, IV, North-
Holland, 1985.

[LINN86] R.J . Linn, "Testing to Assure Interworking of Implementation of ISO/OSI
Protocols", Computer Networks and ISDN Systems, 11 (1986) 277-286.

[MAT87] R.S. Matthews, K . H . Muralidhar, M . K . Schumacher, "Conformance Testing:
Operational Aspects, Tools, and Experiences", Protocol Specification, Testing,
and Verification, VI, North-Holland, 1987.

[MAT88] R.S. Matthews, K . H . Muralidhar, S. Sparks, "MAP 2.1 Conformance Testing
Tools", IEEE Transactions on Software Engineering, Vol. 14, No. 3, Mar. 1988.

BIBLIOGRAPHY 78

[NEU86] G. Neufeld, J. Demco, B. Hilpert, R. Sample, " E A N : An X.400 Message
System", Proceedings of IFIP Computer Message System '85, Elsevier Science
Publishers, North-Holland, 1986.

[PAR89] N.J. Parakh, "Design and Implementation of a Ferry Clip Test System", M.Sc.
thesis, Department of Computer Science, Univerity of British Columbia, 1989.

[RAY87] D. Rayner, "OSI Conformance Testing", Computer Networks and ISDN Sys­
tems, 14 (1987) 79-98.

[SARI84] B. Sarikaya, G.v. Bochmann, "Synchronization and Specification in Protocol
Testing", IEEE Transactions on Communications, Vol. COM-32, No. 4, Apr.
1984.

[SARI89] B. Sarikaya, "Conformance Testing: Architectures and Test Sequences", Com­
puter Networks and ISDN Systems, 17 (1989) 111-126.

[SCH89] P. Schiker, "Message Handling System, X.400", Message Handling Systems
and Distributed Applications, E . Stefferud, O.J. Jacobsen, P. Schiker (Editors),
IFIP, 1989.

[SECH86] S. Sechrest, "An Introductory 4.3BSD Interprocess Communication Tutorial",
M T XINU Manual, 4.3BSD with NFS, Programmer's Supplementary Docu­
ments, Vol. 1, PS1, 1986.

[SMITH89] B. Smith, "OSI Protocol Testing Environment Manual", Version 2.0, UBC-
IDACOM Project Documentation, Mar. 1989.

[STAL89] W. Stallings, "Data and Computer Communications", Macmillan Publishing
Company, New York, 1989.

[STOL89] W. Stoll, " K A T E - A Test System for OSI Protocols", Proceedings of the 2nd
International Workshop on Protocol Test Systems, Berlin (West), Germany,
1989.

[VEL89] R.J. Velthuys, J. Schneider, L . F . Mackert, "Protocol Conformance Testing
with Communicating Rule Systems", Proceedings of the 2nd International
Workshop on Protocol Test Systems, Berlin (West), Germany, 1989.

[ZENG86] H.X. Zeng, D. Rayner, "The Impact of the Ferry Concept on Protocol Test­
ing", in: M . Diaz, Protocol Specification, Testing, and Verification, V, North-
Holland, 1986.

BIBLIOGRAPHY 79

[ZENG88a] H.X. Zeng, X . F . Du, C.S. He, "Promoting the Local Test Method with the
New Concept Ferry Clip", Proceedings of the 8th IFIP Symposium on Protocol
Specification, Testing and Verification, Atlantic City, Jun. 1988.

[ZENG88b] H.X. Zeng, Q. L i , X . F . Du, and C.S. He, "New Advances in Ferry Testing
Approaches", Journal of Computer Networks and ISDN Systems, 15, 1988.

[ZENG89] H.X. Zeng, S.T. Chanson, B.R. Smith, "On Ferry Clip Approaches in Protocol
Testing", Computer Networks and ISDN Systems, 17, 1989.

Appendix A

Ferry Clip Services and Ferry PDUs

Ferry Data Service Primitives (FD-ASPs)

FD-DATA request (FD-DATAreq)

FD-DATA indication (FD-DATAind)

Ferry Management Service Primitives (FM-ASPs)

FM-CONNECT request (FM-CONNreq)

FM-CONNECT confirm (FM-CONNcnf)

FM-DISCONNECT request (FM-DISCreq)

FM-DISCONNECT indication (FM-DISCind)

FM-CONTROL request (FM-CNTLreq)

FM-CONTROL confirm (FM-CNTLcnf)

Ferry Transfer Service Primitives (FT-ASPs)

FT-CONNECT request (FT-CONNreq) [test system only]

FT-CONNECT indication (FT-CONNind) [SUT only]

FT-CONNECT response (FT-CONNrsp) [SUT only]

FT-CONNECT confirm (FT-CONNcnf) [test system only]

FT-DISCONNECT request (FT-DISCreq)

FT-DISCONNECT indication (FT-DISCind)

FT-DATA request (FT-DATAreq)

FT-DATA indication (FT-DATAind)

FT-ERROR indication (FT-ERRORind)

Table A . l : Ferry C l i p Service Primitives

80

Appendix A. Ferry Clip Services and Ferry PDUs

Ferry Transfer Service Transport Service Network Service

FT-CONN rcq T-CONN req N-CONN req

FT-CONN ind T-CONN ind N-CONN ind

FT-CONN rsp T-CONN rsp N-CONN rsp
FT-CONNcnf T-CONN cnf N-CONN cnf

FT-DISC req T-DISCreq N-DISC req
FT-DISC ind T-DISC ind N-DISC ind
FT-DATA req T-DATA req N-DATA req
FT-DATA ind T-DATA ind N-DATA ind

FT-ERRORind
T-EXPEDITED DATA ind < N-EXPIDITED DATA ind

N-DATA ACK ind
N-RESET ind
N-RESET cnf

Table A .2: Mapp ing of F T - A S P s to Transport and Network Services

Appendix A. Ferry Clip Services and Ferry PDUs 82

State Simulating Event Resulting Action Next State

FM-CONN req
FM-DISC req

FT-CONN req
none

connecting
idle

idle FM-CNTLreq
FD-DATA req

FM-DISC ind
FM-DISC ind

idle
idle.

FT-DISC ind
FT-ERRORind

none
FT-DISC req

idle
idle

FM-DISC req FT-DISC req idle

connecting FT-CONN cnf
FT-DISC ind
FT-ERROR ind

FM-CONN cnf
FM-DISC ind
EXCEPTION

connected
idle
idle

FM-DISC req FT-DISC req idle

connected

FM-CNTLreq
FD-DATA req

FT-DATA req (FY-CNTL)
FT-DATA req (FY-DATA)

connected
connected

connected
FT-DATA req PI: FD-DATA ind

P2: control actions
connected
connected

FT-DISC ind
FT-ERROR ind

FM-DISC ind
EXCEPTION

idle
idle

Notes:
. In any state, the action and transition taken for events not listed in the table are the asroe as those listed for the F T - E R R O R ind

event, e.g. i f an F M - C N T L req is received in the connecting state, the E X C E P T I O N action should be taken and the state should

change to idle.
. E X C E P T I O N indicates the dual actions FT-DISC req and F M - D I S C ind.

. PI (predicate 1) - the F T - D A T A received is an F Y - D A T A P D U .

. P2 (predicate 2) - the F T - D A T A received is an F Y - C N T L P D U ; action is to process F Y - C N T L flag bits and generate
F M - C N T L cnf.

Table A.3: Active Ferry Clip State Transition Table

Appendix A. Ferry Clip Services and Ferry PDUs 83

State Simulating Event Resulting Action Next State

FT-CONN ind PI: FT-CONN rsp
P2: FT-DISC req

connected
idle

idle FT-DISC ind
FT-ERROR ind

none
FT-DISC req

idle
idle

FD-DATA req none idle

FT-DISC ind
FT-ERROR ind

none
FT-DISC req

idle
idle

connected FT-DATA ind
P3: FT-DATA req (loop back)
P4: FD-DATA ind
P5: control actions

connected
connected
connected

FD-DATA req P6: FT-DATA req (FY-DATA)
P3: none

connected
connected

Notes:

. In any state, the action and transition taken for events not listed in the table are the same as those listed for the FT-ERROR ind

event.

. PI (predicate 1) — the incoming FT-CONN ind is acceptable.

. P2 - the incoming FT-CONN ind is unacceptable

. P3 - the passive ferry clip is in loop-back mode.

. P4 - received data is FY-DATA PDU and the passive ferry clip is not in loop-back mode.

. PS — received data is FY-CNTL PDU and the passive ferry clip is not in loop-back mode. Perform appropriate actions and

generate FY-CNTL (using FT-DATA req) back to active ferry clip.

. P6 — the passive ferry clip is not in loop-back mode.

Table A.4: Passive Ferry Clip State Transition Table

Appendix A. Ferry Clip Services and Ferry PDUs

• control field (1 byte) -
F Y - P D U header (4 bytes)

« 1 byte ' 2 bytes

byte stream

U/L M connection-id length test data

U / L -

M -

FY-PDU Type.
T = 0 for FY-DATA PDUs.

IUT Identifier.
Identifies IUT / layer / sub-layer to which test data applies.

Upper / Lower Interface Bit.
0 => test data to/from lower service interface of IUT.
1 => test data to/from upper service interface of IUT.

More Segments.
0 => test data is not segmented or is last of a series of segments.
1 => at least one segment follows this one.

connection-id - Test Connection Identifier.

length- Number of bytes of test data within the FY-DATA PDU.

Figure A.l: FY-DATA PDU format

FY-PDU header (4 bytes)
control field (1 byter" 1 byte extra control field

(2 bytes)

I I T
connection-id

T -

F -

L - -

FY-PDU Type.
T = 1 for FY-CNTL PDUs.

Flow Control Bit.

0 => flow control off, 1 => flow control on.

Loop-Back Bit
0 => set passive ferry into normal (non loop-back) mode.
1 => set passive ferry into loop-back mode.

connection-id - Test Connection Identifier.

* - Reserved.

Figure A.2: FY-CNTL PDU format

Appendix B

The E-node Data Structure

Data Structure for the Value E-node
/*
* Value Enode - used for both sending and receiving ASPs/PDUs
*/

typedef struct Enode
<

Eid id; /* class + cons/prim + type/tag */
elen length; /* length of contents */
unsigned char ctype; /* constraint type (if it is constraint Enode) */

define C.NORMAL 0x00 /* normal absolute value */
define C_ANYSEQ 0x01 /* ANY_0R_0MIT (*), element can be any value */

/* or absent */
define C.ANY 0x02 /* ANY (?), element can be any value */
define C.NONEXIST 0x03 /* OMIT (-), element must be absent */
define C.WILDCARD 0x04 /* character string contains wilcard char */
define C_INTEGER 0x05 /• E.INTEGER constraint */
define C_BITSTRING 0x06 /* E_BIT_STRING constraint */
define C_B00LEAN 0x07 /* E.BQ0LEAN constraint */
define C.RANGE 0x08 /* scalar range */
define C_TSP 0x09 /• test suite parameter */
define C_ATTACH OxOA /* attached constraint enode name */
define C.OPTIONAL 0x80 /* OPTIONAL if highest order bit = 1, */
define C_MANDATORY 0x00 /* MANDATORY if it is = 0. Use '1' operation */

/* to incorporate with the above types */

struct Enode* next; /• next elt (if part of constructor) */
unsigned char cpar_flag_a; /* constraint param no., if union a is one */
unsigned char cpar_flag_b; /* constraint param no., if union b is one */

/* First pointer field: data type depends on constraint type */
union

85

Appendix B. The E-node Data Structure

char* primitive; /* Normal Enodes: ptr to primitive */
char* tsp.name; /* Constraint Test Suite param: name */

char* bit.value; /* Constraint Bitstring: value string */
int range.lo; /* Constraint Range: lower limit */
int param_no; /* Constraint param: parameter # */

/* abbreviations for fields in this union */
define Prim
define tspname
define bitval
define rangelo
define parnum

a.primitive
a.tsp_name
a.bit.value
a.range_lo
a.param_no

union
•C

struct Enode* constructor;
char* bit_mask;
long range_hi;

/* Normal Enodes: constructor tree */
/* Constraint Bitstring: mask string
/* Constraint Range: upper limit */

/* abbreviations for fields in this union */
define Cons b.constructor
define bitmask b.bit.mask
define rangehi b.range_hi

} b;
} Enode;

Appendix C

ASN1. Representation of ASPs and
PDUs

ORName::» [APPLICATION 0] IMPLICIT SEQUENCE |
SlandaidAttribiiieLut,
Dc^nainDenneAltribiiteLiM OPTIONAL)

STANDARDATTRIBUTEL 1ST ::= SEQUENCE (
CountryName OPTIONAL
AdminutraxxiDomainName OPTIONAL,
[0] IMPLICIT X121 Address OPTIONAL,
[1] IMPLICIT TerminallD OPTIONAL,
[2] PrivateDornainName OPTIONAL,
[3] t M P U C I T OrganizationName OPTIONAL,
[4] IMPLICIT UniqueUAldentifier OPTIONAL,
[5] IMPLICIT PersonalName OPTIONAL,
[6] IMPLICIT SEQUENCE OF OrganizationUnit OPTIONAL)

CountryName ::= [APPLICATION 1] CHOICE!
NumericS tring,
PrintaUeString)

A&niiustrationDomainName ::= [APPLICATION 2] CHOICE (
NumericS tring,
PrintaUeString)

Contents of ORName enode:

41 [Appl 01 (CONS)

39

8

6

8

6

10

5

[Univ 16] (SEQ)

[Appl U(CONS)

'• [Univ 19] (P R I N T A B L E _ S T R) = "Canada"

[Appl 2] (CONS)

; [Univ 19] (P R I N T A B L E _ S T R) = " B C . T E L "
A

[Cntx 3] = " U B C - I D A C O M "

[Cntx4] = "Smith"

Size of enode tree = 43 bytes

Figure C l : The A S N . l definition of ORName and its corresponding E-node tree repre­
sentation

87

Appendix D

Data Structure for Executable Test
Suite

Data structure used for representing the
T T C N based Executable Test Suite

* P R O G R A M :

* MODULE :
*
* AUTHOR :
* DATE
*
*/

Executable Test Suite.
Data structure of executable test tree (ts.tree.h)

Hendra Dany
Nov 16, 1989

typedef char
typedef short

struct Send.Node {
PCOID pcoid;
EID asp_pdu_id;
char *consref;
PROCID proc;

};

struct Receive_Node {
PCOID pcoid;
EID asp_pdu_id;
char *consref;
PROCID proc;

};

PCOID;
PROCID;

/* PCO identifier */
/* ASP or PDU identifier */
/* constraints reference id */
/* procedure identifier */

/* PCO identifier */
/* ASP or PDU identifier */
/* constraints reference id */
/* procedure identifier */

88

Appendix D. Data Structure for Executable Test Suite

struct Attach_Node {
char *tree_id; /* attached tree identifier */
PCOID pco[MAX_PCO_LIST]; /* list of pco ids */
PROCID proc;

>;
/* procedure identifier */

struct Timeout_Node {
TID tid;
PROCID proc;

};

/* timer identifier */
/* procedure identifier */

struct Start_Node {
TID tid;
PCOID proc;

>;

/* timer identifier */
/* procedure identifier */

struct Cancel.Node {
TID tid;

};
/* timer identifier */

struct Read_Node {
TID tid;
PROCID proc;

};

/* timer identifier */
/* procedure identifier */

struct Otherwise_Node {
PCOID pcoid;
PROCID proc;

};

/* PCO identifier */
/* procedure identifier */

struct Goto_Node {
short label;

};

/* event node label */

struct Proc_Node {
PROCID proc;

>;
/* procedure identifier */

typedef struct Tree_Header {
char tree_id[TREE_ID_LEN];
char type;

define ROOTTREE 'R'
define SUBTREE 'S'
define DEFAULTS 'D'

/* test tree name or identifier */
/* tree type */

char
char

hdrstart; / pointer to Tree.Header starting addr */
•nodestart; /* pointer to test suite starting node addr

Appendix D. Data Structure for Executable Test Suite 90

short numVisit; /* number of times this tree being traversed */
short numNodes; /* number of nodes of this test tree */
short numLevel; /* number of levels of this test tree */
PCOID pco[MAX.PCO.LIST]; /* list of pco for this tree */
PROCID proc; /* procedure identifier */
char defaults[TREE_ID_LEN]; /* pointer to name of default tree */
PCOID defpco[MAX_PC0_LIST]; /* list of pco for default tree */
PROCID defproc; /* default tree procedure identifier */

} Tree_Header;

typedef struct Tree.Node {
u_char node; /* Test Suite tree node tag */

define T_SEND 0x01
define T.RECEIVE 0x02
define T.ATTACH 0x03
define T_START 0x04
define T.CANCEL 0x05
define T.READ 0x06
define T.TIMEOUT 0x08
define T.G0T0 0x09
define T.OTHERWISE OxOA
define T.PR0C OxOB

struct Tree_Node *sibling;
struct Tree_Node *next;
short tag;
short level;
short label;

/* pointer to sibling node */
/* pointer to sucessor node */
/* Test Suite node tag */
/* level of this Test Suite node */
/* event node label */

char ver_type;
define FINAL 'V
define PRELIM ,p>
char verdict;

def ine PASS >p>
define FAIL 'F'
define INC0NC 'I'
define NONE

/* verdict tag */

/* verdict or preliminary result */

union {
struct Send.Node send;
struct Receive_Node recv;
struct Attach_Node attach;
struct Start.Node start;
struct Cancel_Node cancel;
struct Read.Node read;
struct Timeout_Node timeout
struct Goto.Node Goto;

Appendix D. Data Structure for Executable Test Suite

struct Otherwise_Node other;
struct Proc_Node proc;
/* abbreviation for fields in this union */

define Tsend a.send
* define Trecv a.recv
define Tattach a.attach
define Tstart a.start
define Tcancel a.cancel
define Tread a.read
define Tout a.timeout
define Tgoto a.Goto
define Tother a.other
define Tproc a.proc
> a;

} Tree_Node;

Appendix E

Derivation of Executable Test Suite

92

Appendix E. Derivation of Executable Test Suite

Test Identifier 316.4.1.1
Summary: This test checks that the IUT can behave as a relay and a recipient

The tester LT_1 sends a UMPDU for two recipients, one on the IUT and one which
requires the IUT to relay the UMPDU to it

DYNAMIC BEHAVIOUR

DEFAULTS: LIB_General

BEHAVIOUR DESCRIPTION LABEL
CONSTRAINTS
REFERENCE COMMENTS RESULTS

+Lm_Tester_open_TWA[]
LT_1! R_XFERreq TRNreq_10 1

+LIB_Tester_ack[]
LT_2 ? R_XFERind TRNind_20 2

UT1 ? MT.DELind DELind_7 3 Pass
LT_2 ? R.XFERind TRNind_21 4

UT1 ? MT_DELind DELind_7 3 Pass
UT1 ? MT_DELind DELind_7 3

LT_2 ? R_XFERind TRNind_20 2 Pass
LT_2 ? R_XFERind TRNind_21 4 Pass

UT1 ? MT_DELind DELind_7 3
+LIB_Tester_ack[]

LT_2 ? R_XFERind TRNind_20 2 Pass
LT_2 ? R.XFERind TRNind_21 4 Pass

Comments:
1. UMPDU_1_20 for 2 recipients (UA & tester)
2. UMPDU_0_16 with 1 recipient
3. message for UAE
4. UMPDU_0_17 with 2 recipients

Figure E . l : A n example of X.403 test case specified in T T C N

Appendix E. Derivation of Executable Test Suite

Contents of test case 'P1 316.4.1.1'
Test Id
Tree Type
Num of nodes
DEAFULTS

Pl_316.4.1.1[]
ROOT TREE
14

LLB_General[]
Num of levels : 5

+LIB_Tester_open_TWA[] (Tag: 1, Level: 0)
LT_1 ! R_XFER_REQ_EID TRNreq_10 (Tag: 2, Level: 1)

+LIB_Tester_ack[] (Tag: 3, Level: 2)
LT_2 ? R_XFER_IND_EID TRNind_20 (Tag: 4, Level: 3)

j UT_1 ? MT.DELIVERJND DELind_7 [PASS] (Tag: 5, Level: 4)
LT_2 ? R_XFER_IND_EID TRNind_21 (Tag: 6, Level: 3)
; UT_1 ? MT_DELIVER_IND DELind_7 [PASS] (Tag: 7, Level: 4)
UT_1 ? MT_DELIVER_IND DELind_7 (Tag: 8, Level: 3)
| LT_2 ? R_XFER_DSTD_EID TRNind_20 [PASS] (Tag: 9, Level: 4)
! LT_2 ? R_XFER_DND_EID TRNind_21 [PASS] (Tag: 10, Level: 4)

UT_1 ? MT_DELTVER_IND DELind_7 (Tag: 11, Level: 2)
+LIB_Tester_ack[] (Tag: 12, Level: 3)
| LT_2 ? R_XFER_IND_EID TRNind_20 [PASS] (Tag: 13, Level: 4)
! LT_2 ? R_XFERJND_EID TRNind_21 [PASS] (Tag: 14, Level: 4)

Figure E.2: An executable test tree representation of a T T C N test case

Appendix E. Derivation of Executable Test Suite 95

Thu Jun 21 19:56:18 1990

Execution of test case 'Pl_316.4.1.1'
Test Id : Pl_316.4.1.1[]
Tree Type : ROOT TREE
Num of nodes: 14 Num of levels: 5
DEFAULTS : LIB_General[]

19:56:18 +LIB_Tester_open_TWA[] (Tag:l, Level:0) <SUCCESS>
19:56:18 LT_1 ! R_0PEN_REQ_EID OPENreq.l (Tag:l, Level:0) <SUCCESS>
19:56:21 LT_1 ? R_0PEN_CFM_EID OPENcfm.l (Tag:2, Level:l) <SUCCESS>
19:56:21 LT_1 ! R_XFER_REQ_EID TRNreq.10 (Tag:8, Level:7) <SUCCESS>
19:56:27 +LIB_Tester_ack[] (Tag:3, Level:2) <SUCCESS>
19:56:27 LT_2 ? R_OPEN_IND_EID OPENind.l (Tag:l, Level:0)
*** PCO mismatch: test case pcoid=LT_2, observed pcoid=UT_l <FAILURE>
*** Observed Event: UT_1 ? MT_DELIVER_IND_EID
19:56:27 UT_1 ? MT_DELIVER_IND_EID DELind_7 (Tag:11, Level:2) <SUCCESS>
19:56:33 +LIB_Tester_ack[] (Tag:12, Level:3) <SUCCESS>
19:56:33 LT_2 ? R_OPEN_IND_EID OPENind.l (Tag:l, Level:0) <SUCCESS>
19:56:33 LT_2 ! R_OPEN_RSP_EID OPENrsp.l (Tag:2, Level:l) <SUCCESS>
19:56:38 LT_2 ? R_XFER_IND_EID TRNind_20 [PASS] (Tag:14, Level:4) <SUCCESS>

«<*** Verdict for Test Case Pl.316.4.1.1: [PASS] ***»>

Figure E.3: A sample conformance log produced by the ferry clip based test system

