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Abstract 

Adhering to the principles of logic programming results in greater expressiveness 
than is obtained by using the many non-logical features which have been grafted 
onto current logic programming languages such as Prolog. This report describes 
an alternative approach to high performance logic programming in which the 
language and its implementation were designed together. Prolog's non-logical 
features are discarded and new logical ones are added. Extended pure Prolog 

(xpProlog) is a superset of conventional Prolog; it is sufficient in itself, without 
any need for "impure" non-logical predicates. This gives both greater 
expressiveness and better performance than conventional Prologs. 

XpProlog programs have the following advantages over conventional Prolog 
programs: 

• They are often easier to understand because their meaning does not rely on 
the underlying computational mechanism. 
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• Coroutining, automatic delaying and sound negation are available. 
• As technology improves, better implementations and optimization techniques 

can be used without affecting existing programs. 

This report covers: 

• The proper use of logic programming. 
• How Prolog must be changed to become a good logic programming language 

(xpProlog). 

• Sound negation and coroutining. 
• An efficient abstract machine (xpPAM) which can be efficiently emulated on 

conventional machines, translated to conventional machine code, or 
implemented in special purpose hardware. 

• How to compile extended Prolog and functional (applicative) languages to 
the abstract machine or to conventional machine code. 

• Discussion of alternative Prolog abstract machine designs. 

The xpProlog Abstract Machine's design allows: 

• Performance similar to the Warren Abstract Machine (WAM) for sequential 
programs. 

• Tail recursion optimization (TRO). 
• Parallelism and coroutining with full backtracking. 
• Dynamic optimization of clause order. 
• Efficient if-then-else ("shallow" backtracking). 
• Simple, regular instruction set for easily optimized compilation. 
• Efficient memory utilization. 
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• Integrated object-oriented virtual memory. 
• Predicates as first-class objects. 
• Simple extension to functional programming. 

C.R. categories: 1.2.5: Prolog; D.1.3: concurrent programming; D.3.2: very high 
level languages; D.3.3: language constructs: coroutines, backtracking; D.3.4: 1 

interpreters.; 1.2.3: logic programming. 
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Preface 

He had explained this to Pooh and Christopher Robin once 

before, and had been waiting ever since, for a chance to do it. 

again, because it is a thing which you can easily explain twice 

before anybody knows what you are talking about. 

— A . A . Milne, Winnie the Pooh 

Je n'aifait celle-ci. plus tongue que parce que je n'ai 

pas eu Ie loisir de la (aire plus courte. 

(I have made this letter longer than usual, only 

because I have. not. had the time to make it shorter.) 

— Blaise Pascal, Lettres Provinciates (1656-1657) 

This report is the result of several year's investigation into logic programming 
and its most popular realization: Prolog. I started by wanting to design a 
typesetting system, implemented in Prolog but the Prologs that were available 
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then were too slow and lacked some necessary features such as coroutining and 
sound negation. I therefore decided to investigate logic programming and 
implement an interpreter. 

Implementing a compiler and interpreter is not a task to be undertaken lightly. 
I have worked part time on this for three years and I have not produced a 
production quality implementation. However, I have succeeded in 
demonstrating the possibilities of logic programming. Three or four people 
should be able to produce a production quality implementation of this in about 
a year. 

... when you are a Bear of Very Little Brain, and you 

think of things, you find that sometimes that a Thing 

which seemed very Thingish inside you is quite 

different when it gets into the open and has other 

people looking at it. 

— A. A. Milne, Winnie the Pooh 

This report contains two themes: pure logic programming and an abstract 
machine for implementing pure logic programming. These themes affect each 
other because I want to show that pure logic programming can have an efficient 
implementation. I wish to put forward my abstract machine design as a viable 
alternative to the popular Warren Abstract Machine (WAM) [Warren 1983], so 
I have described the implementation first and the language second. 

This work describes practical issues which have been sufficiently implemented to 
give an existence proof of their efficacy. Some ideas in this report have come 
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from analysis of the implementation and have not yet found their way into the 
implementation. Most of the abstract machine ideas have been implemented 
but some of the language ideas have not. 

There are no benchmark data in this report. The usual benchmark (naive 
reverse) is probably not a very good predictor of over-all execution speed. My 
implementation has achieved competitive speed for this simple benchmark, 
compared against published figures for the fastest commercial Prolog 
implementations. However, proper speed evaluation would take many months 
of hard work and is beyond the scope of this report.1 

Acknowledgments 

To spend too much time in studies is sloth. 

— Francis Bacon, Of Studies 

This research has been partially funded by a Shared University Grant from 
IBM Canada Ltd. 

I thank Harvey Abramson and Douglas Teeple for suggesting that I become 
involved in logic programming (Harvey also let me use his extensive collection of 
papers and provided the introductory material for the chapter on compiling a 
functional language); Block Bros. Data Centre which let allowed me the 

The interested reader might obtain the E C R C benchmarks, published on Usenet. Other 

benchmarks exist, for example, Evan Tick's translation of the LISP benchmarks described in 

[Gabriel 1985]. 

xiv 



necessary flexibility in my work schedule; Lee Naish, Tom Rushworth, Paul 
Voda and Marc Gillet for listening, criticizing and suggesting; Romas Aleliunas 
for extensive editing suggestions; and my wife, Kikuyo, for letting me leave 
many household chores undone while I worked on this project. 

XV 



Pure logic programming 

Art, it seems to me, should simplify. That, indeed, is very 

nearly the whole of the higher artistic process; finding what 

conventions of form and what detail one can do without and 

yet preserve the spirit of the whole — so that all that one has 

suppressed and cut away is there to the reader's consciousness 

as much as if it were in type on the page. 

— Willa Gather, On the Art of Fiction 

1.1 What is wrong with impure logic programming 

A typical attitude to non-logical features in logic programming is [Cohen and 
Feigenbaum 1982, p. 123]: 

To a certain extent, the development of logic programming has followed 
the pattern of LISP. Both languages are founded on clear, mathematically 
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motivated foundations. Both languages have a side-effect-free kernel and 
a procedural interpretation that can be defined in a simple and elegant 
fashion. Yet both language families have yielded to the practical needs of 
their user communities and have incorporated numerous features that 
detract from their underlying elegance in favor of improved convenience 
and efficiency. In a sense, the fact that logic programming has progressed 
to the point of incorporating such features attests to its practicality and 
growing popularity. 

This author admits that non-logical features are wrong, yet he defends them 
because of their "improved convenience and efficiency." This brings to mind 
the "go to considered harmful" [Dijkstra 1968] controversy. Many letters were 
written by people, claiming that go tos were needed because of their convenience 
and efficiency. We now know that programs written in a disciplined style, 
without go tos, are usually clearer and just as efficient (if not more so) than go 

fo-filled spaghetti code. Similar results are now being published for cut [Debray 
1986] [O'Keefe 1985]. 

This report describes the implementation of a pure logic programming language. 
The language's features remove any excuses for writing bad, non-logical 
programs. The vision expressed in "Algorithm = Logic + Control" [Kowalski 
1979b] is possible. And programs written with such a pure logic programming 
language will run as fast as programs written in conventional Prolog -
sometimes faster. 
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1.2 On good design of a logic programming language 

Simplicity requires much thought; complexity merely requires much work. But 
many computer language and machine designers refuse to see the advantages of 
simplicity — they correct perceived defects by adding new "features," thereby 
burying a simple design under a mass of graceless and cumbersome accretions. 
Eventually, the whole ungainly mess must be replaced by something new. 

A programmer's major tool is her programming language. She uses it every day; 
its quality continually affects her. No programming language can stop a bad 
programmer from writing bad programs; but a bad programming language can 
prevent a good programmer from producing good programs. 

Logic programming is a simple idea which is already in danger of being buried 
under a myriad of new "illogical" features. Prolog is already encumbered this 
way — the result is less powerful than a simple design based strictly on the 
original concepts. 

Programming language designers must strive to give the highest quality product 
possible, with every part carefully considered as to how it will help good 
programmers to produce good programs. The language designer must never 
succumb to doing "what is 'reasonable' even when it isn't any good" [Pirsig 
1974] - his motto should be: "Only the good; never the expedient." 

A simple design is not necessarily easy to implement. The small number of 
basic principles must fit together well without duplication. Any careless side 
effects will prevent some pieces Fitting together. The designer needs much 
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discipline to not deviate from the basic principles by introducing special cases 
and restrictions. This discipline results in a product which is easy to use and 
easy to extend. 

1.3 Principles of logic programming and pure Prolog 

Louis XVI: C'est une grande revoke. 

Le Rochefoucauld-Liancourt: Non, Sire, c'est une. grande revolution. 

The central ideas of logic programming are: 

• The most interesting thing about a program is what it does, not the exact 
sequence of computations. 

• The best way of describing a program is by writing specifications using a 
subset of mathematical logic. 

• When the logical specifications are stated using Horn clauses, they can be 
executed efficiently. 

• There is no concept of time or sequence in the meaning of a logic program 
(execution may, of course, be sequential). 

The programmer does not need to write a program, only the specifications. This 
is "declarative programming." Logic programming offers a solution to one of 
the problems of software engineering: precise problem specification. Control 
information may be added to a logic program, as suggested by "Algorithm = 

Logic + Control" [Kowalski 1979b]. This additional control information does 
not affect a program's meaning; it just improves execution speed. 
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Logic programming is new to many computer scientists and programmers. A 
new way of thinking is required to write good logic programs. Without a new 
way of thinking, programmers produce programs which are full of non-logical 
features such as cut ("!") or var — these are really disguised conventional 
programs which have been hacked to look like logic programs. These 
non-logical features are not necessary. See [Walker, McCord, Sowa and Wilson 
1987, Chapter 3] for methods of avoiding or localizing non-logical features. 

Early implementers of Prolog "solved"its space-and time-inefficiencies, by 
adding poorly conceived "non-logical" features. For a discussion of non-logical 
constructs and their inconsistent implementations, see [Moss 1986]. Instead of 
patching existing implementations, extended pure, Prolog (xpProlog) generalizes 
the original concept. Syntactically, it is similar to Prolog, but: 

• Extended: with control rules which add flexibility to Prolog's strict 
left-to-right depth-first computation rule, allowing natural specification of a 
larger set of programs than ordinary Prolog. Control can be specified 
separately from predicate definitions. 

• Pure: without (and not needing) non-logical predicates such as cut ("!"), var, 

etc.. 

Although xpProlog's syntax is similar to Prolog's syntax, some xpProlog 

programs will not work on a conventional Prolog implementation - they will 
either go into infinite loops or run very slowly. XpProlog programs can be given 
an obvious declarative reading in first-order logic — this is not true of many 
conventional Prolog programs. XpProlog programs' behaviour do not depend on 
execution order, although efficiency will depend on execution order. XpProlog's 
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greater expressive power costs almost nothing in efficiency; sometimes it greatly 
increases efficiency. 

Prolog is based on the Horn clause subset of first order logic. Negation, first 
and second order logic and set theory can be added [Lloyd and Topor 1984] 
[Voda 1986]. These are implemented unsoundly in conventional Prolog, using 
non-logical predicates such as cut ("!") and var. Sound implementations are no 
more difficult than unsound implementations, as will be shown. 

Warren's pioneering design for implementing logic programming (the "Warren 
Abstract Machine" or WAM) [Warren 1977] [Warren 1983] [Gabriel, 
Linkholm, Lusk and Overbeek 1985] proves that logic programming languages 
can be executed as efficiently as other symbol-oriented languages (see [Tick 
1986] for a comparison with LISP). WAM allows efficient execution on both 
conventional and special purpose hardware (for example [Dobry, Patt and 
Despain 1984] [Tick and Warren 1984] [Dobry 1987]). The xpProlog Abstract 
Machine (xpPAM) is a significant modification of WAM, to support the flexible 
execution order needed for coroutining and sound negation. Prolog code can be 
compiled to xpPAM more easily than to WAM; execution performance is similar 
for both machines. 

This paper, then, explores some extensions to Prolog — Extended pure Prolog — 

which remove restrictions from conventional designs. XpProlog often allows 
more compact, understandable and efficient programs than conventional Prolog 
allows. 
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I will start by discussing the implementation xpProlog and its abstract machine 
xpPAM. The abstract machine can support conventional Prolog, xpProlog and 
functional languages - I will focus mainly on its support of xpProlog. But the 
reader should be careful do distinguish between what is imposed by the abstract 
machine, what is imposed by the compiler and what is part of the language 
design. 

Efficient implementation of xpProlog, like efficient implementation of 
conventional Prolog, requires a good compiler. The techniques for such a 
compiler will also be discussed. 

1.4 Background 

If I have seen further it is by standing on the shoulders of giants. 

— Sir Isaac Newton, Letter to Robert Hooke 

I assume that the reader has some basic knowledge of mathematical logic, logic 
programming and conventional Prolog. [Kowalski 1979] is probably the best 
place to start because he concentrates on logic and avoids being constrained to 
one particular implementation. Texts on conventional Prolog include [Walker, 
McCord, Sowa and Wilson 1987], [Sterling and Shapiro 1986], [Bratko 1986], 
[Kluzniak and Szpowiez 1985], [Clark and McCabe 1984] and [Clocksin and 
Mellish 1981]. Mathematical logic is covered in [Quine 1941], [Kleene 1967] 
and [Hodges 1977]. 

A glossary is provided at the end of this report. 
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I do not assume any knowledge of the Warren Abstract Machine (WAM). The 
papers which describe the WAM often gloss over some of the more subtle design 
details which contribute crucially to its speed. Many of these details also exist 
in my design and I will try to explain them fully. 

My ideas about the control rules for unrestricted pure Prolog derive from 
[Naish 1985b]. The control rules are sound [Lloyd 1984, pp. 45-47]. The 
implementation techniques derive from the Warren Abstract Machine [Warren 
1983]. I have made some small changes and extensions to Naish's ideas and 
significant changes to Warren's. I recommend reading [Naish 1985b] although 
I will present many of his ideas, but in a slightly different form. 

1.5 Delay notation 

XpProlog is pure Prolog, extended for delays. In xpProlog, any variable may be 
suffixed by a question mark ("?"). This will cause the predicate to delay until 
the variable becomes instantiated. This instantiation is required only at the 
"top level"; for example, if the variable became instantiated to a list element 
("cons cell"), the head and tail would not necessarily need to be instantiated for 
execution to resume. 

The "?" is propagated outward from a compound term. "X?.Y" is the same as 
"(X?.Y)?" - the parameter must be instantiated to a list element, the head 
must also be instantiated, but the tail of the list element need not be 
instantiated. XpProlog's "?" differs from the "?" in Concurrent Prolog [Shapiro 
1983]. For example: 
pred(X?.Rest, Y) :- t e s t l ( X ) , t e s t 2 ( Y ? ) , t e s t 3 ( X , Y). 
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will delay until the first parameter is instantiated to a list element with its head 
(X) also instantiated. Once these have become instantiated, t e s t l will be tried. 
If t e s t l succeeds, pred will delay until Y becomes instantiated, after which 
t e s t 2 and t e s t 3 are tried. 

A delayed predicate acts as if it had succeeded. When the required variables 
become instantiated, the delayed predicate's execution is resumed. Using the 
above example of pred with the query 
?- pred(A, B), A = (H.T), H = a, Y = b. 

execution will proceed: 
pred(A, B) pred delays on A 
A = (H.T) instantiates A 
pred(H.T, B) pred resumes and delays on H 
H = a instantiates H 
pred(a.T, B) pred resumes 
t e s t l ( a ) (succeeds) 
test2(B) pred delays on B; t e s t 2 is not tried 
Y = b instantiates Y 
t e s t 2 ( b ) pred resumes; tries t e s t (succeeds) 
t e s t 3 ( a , b) (succeeds) 

Instead of marking predicates with "?"s, separate proceed declarations may be 
used. Thus,2 

2 Here, the "x," " r e s t " and " r e s u l t " are comments. " P r o c e e d " acts like an ordinary 

predicate which tries to match question marks. It is an error to call p r o c e e d with any 
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?- proceed predx ( x ? . r e s t , r e s u l t ) . /* "x", " r e s t " , " r e s u l t " are comments */ 
predx([], [ ] ) . 
predx(X.Rest, R e s u l t ) :- ... 

is the same as 

p r e d x ( [ ] ? 5 [ ] ) . 
predx(X? .Rest, R e s u l t ) :- ... 

The main advantage of proceed declarations is that they are separate from the 
clauses. They can also be used when a predicate must delay until any one of 
several variables become instantiated. Multiple proceed declarations are or-ed. 
An example of this is append when used to implement append3 for combining 
(or splitting) three lists: 

?- proceed append(a?, b, c ) . 
?- proceed append(a, b, c ? ) . 
append([], X, X). 
append(X.A, B, X.C) :- append(A, B, C). 
append3(A, B, C, D) :- append(A, B, Z), 

append(Z, C, D). 

Append will proceed (not delay) only if the first argument or if the third 
argument is instantiated; otherwise it will delay. Proceed declarations are not 
needed for append3 because all the delaying is done within append. 

Without the proceed declarations, this would go into an infinite loop for the 
query 

uninstantiated variables because these will incorrectly unify with question marks. The 
declaration could be given ?-proceed predx(?.-, - ) . 
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?- append3(l.W, X, Y, 2.Z). 

and there is no way to re-order the clauses of append to prevent the infinite 
loop. 

The effect of the proceed declarations for append is given by the following 
pseudo-code (which is not supported by xpProlog): 

append(Pl, P2, P3) :-
i f v a r PI then 

i f v a r P3 then o r D e l a y ( P l , P3) 
el s e a ( P l , P2, P3) 

el s e a ( P l , P2, P3). 

a ( [ ] , X, X). 
a(X.A, B, X.C) :- append(A, B, C). /* Note: c a l l s "append", not "a" */ 

The pseudo-control structure ifvar tests the variable for being instantiated. The 
pseudo-control predicate delay suspends the predicate until any one of its 
arguments becomes instantiated - execution then resumes at the beginning of 
the predicate. The ifvar pseudo-control structure is similar to conventional 
Prolog's var predicate. It can be used correctly only if it is used only with other 
var predicates or with delay. XpProlog's proceed declarations are more readable 
and safer than ifvar and delay, so only proceed declarations are provided in the 
language. 

Examples of using delays are given in sections 9.2, "Coroutining example" on 
page 187, section 9.3, "Test and generate" on page 191 and section 
9.4, "Pseudo-parallelism" on page 194. 
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1.6 Organization of the Report 

The rest of this report consists of two sections: 

• the abstract machine (xpPAM) and its implementation 
• the extended Prolog language xpProlog and examples of its use. 

The two sections are almost independent of each other. The common theme is 
delaying which allows predicates to be tried in a different order from 
conventional Prolog's strict left-to-right top-down order. The "?" operator and 
proceed declarations (which mark delays) are explained in section 1.5, "Delay 
notation" on page 8. 
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The abstract machine 

The extended Prolog abstract machine (xpPAM) can be used to implement 
conventional Prolog, extended pure Prolog (xpProlog) or pure functional 
programming languages. This report will concentrate on xpProlog 
implementation. 

The extended Prolog language (xpProlog) is similar to conventional Prolog, 
except for: 

• No "impure" non-logical predicates. 
• Delay notation (described in section 1.5, "Delay notation" on page 8). 
• More control structures such as if-then-else. 

• Meta-variables for all-solutions predicates. 
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XpPAM has superficial similarities with the Warren Abstract Machine (WAM) 
[Warren 1983]. Programs can run on xpPAM about as quickly as they can run 
on WAM. However, xpPAM is much simpler than WAM. 

XpPAM can be thought of either as the design for a logic programming engine 
(implemented as an interpreter or in hardware) or as an intermediate code for 
producing machine code on conventional hardware. 

The description is divided into sections: 

• Section 2.0, "Fast append on a conventional machine" on page 15 uses the 
append predicate as an example of how Prolog can be compiled to very 
efficient machine code on a conventional machine using C and IBM/370 
assembler. 

• Section 3.0, "The basic sequential inference engine" on page 28 describes 
the basic machine and lists all its instructions, skipping over the 
non-deterministic features. 

• Section 4.0, "Backtracking and delaying" on page 66 describes how the 
basic sequential engine is extended to allow backtracking and delaying. 

• Section 5.0, "Compiling Prolog" on page 85 describes a compiler for 
producing good abstract machine code. 

• Section 6.0, "Compiling a functional language to the logic engine" on 
page 116 describes how functional languages can be compiled to efficient 
xpPAM code. 

• Section 7.0, "Design decisions" on page 138 discusses some of the design 
trade-offs in xpPAM. 
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2.0 Fast append on a conventional machine 

You must lie upon the daisies and discourse in novel phrases of your complicated 

state of mind, 

The meaning doesn't matter if it's only idle chatter of a transcendental kind. 

And everyone will say, 

As you walk your mystic way, 

"If this young man expresses himself in terms too deep for me, 

Why, what a very singularly deep young man this deep young man must be!" 

— Sir William S. Gilbert, Patience, act I 

I do loathe explanations. 

— J. M. Barrie, My Lady Nicotine 

To illustrate what a Prolog implementation should do on a conventional 
machine, I will translate deterministic append into C. The xpPAM abstract 
machine and backtracking will be introduced in a later chapter. 

append([], X, X). 
append(X.A, B, X.C) :- append(A, B, C). 
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A good Prolog optimizing compiler should detect common patterns of code and 
translate them into special sequences. The append predicate is typical of a more 
general sequence: 

P(U> [ ] ) • /* terminate at n i l */ 
p(A.X, A2.X2) :- q(A, A2), /* perform some operation on A, g i v i n g A2 */ 

p(X, X2). /* continue w i t h the r e s t of the l i s t */ 

This is often deterministic and can therefore be handled well by conventional 
machines. On an IBM/370, the append inner loop can be reduced to 8 machine 
instructions, compared to 2 instructions for xpPAM abstract machine (7 for 
WAM3). For mostly deterministic predicates, a conventional machine can 
therefore be as fast as special purpose hardware. 

The xpPAM code is given later in this chapter. The WAM code is: 

append/3: switchonterm ... []=>L1, list=>L2, var=>L0 
L I : g e t _ n i l 1 

get_value 2,3 
proceed 

L2: g e t l i s t 1 
u n i f y _ v a r 4 
u n i f y _ v a r 1 
g e t l i s t 3 
u n i f y _ v a l 4 
u n i f y _ v a r 3 
execute append/3 

LO: t r y LI 
t r u s t L2 

This has 8 instructions in the inner loop, 
execute by the first switchonterm. 

It can be reduced to 7 by replacing the last 
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I will describe the Prolog equivalent of the LISP function 

(defun append(A B) 
(cond ( ( n i l A) B) 

(T (cons (car A) (append (cdr A) B ) ) ) ) ) 

However, there is an important difference: the Prolog version is tail-recursive 
but the LISP version is not (the recursive call to LISP's append is inside a call to 
cons). To produce the iterative code given below, the LISP code requires a more 
complex transformation than does the Prolog code. 

2.1 Data structures 

First, the data types to define a value cell (slightly simplified from the actual 
implementation):4 

Many implementations save space by using variable size value cells and by coding 

information directly when possible. Variable size cells do not change the accessing code but 

they do complicate the heap manager. However, more savings can be had by avoiding 

pointers. For example, the list [1,2] could be fit into one list element if a list element 

contained two value cells instead of two pointers: the values 1 and 2 could be of type "short 

integer" which fits inside a word. Such a scheme complicates accessing elements; I have 

chosen implementation simplicity and speed over memory usage (although this scheme could 

be worked into my design). Other list compaction schemes such as "cdr-coding" could also 

be used but they also complicate the implementation, particularly unification. 
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0 / / / / / / ( / / / / / / / n i l 

1 p t r p t r l i s t e lem 

2 v a l u e nun i n t e g e r 

3 p t r nun i n d i r e c t r e f e r e n c e 

4 age mm u n i n s t a n t i a t e d v a r i a b l e 

In C, this would be expressed: 

/ * v a l u e c e l l t a g s : * / 

„ enura t g E = { t g N i l = 0 , t g L l s t E l e m = l , t g l n t e g e r = 2 , t g R e f e r e n c e = 3 , 

t g V a r i a b l e = 4 , / * u n i n s t a n t i a t e d v a r i a b l e * / 

t g U n a l l o c = 5 }; / * u n a l l o c a t e d : on f r e e l i s t * / 

u n i o n c e l l U n i o n { 

i n t a s I n t e g e r ; 

i n t v a r A g e ; / * " a g e " o f t h e v a r i a b l e * / 

s t r u c t c e l l * a s R e f e r e n c e ; 

s t r u c t { s t r u c t c e l l * h e a d , * t a i l ; } a s L i s t E l e m ; 

}; 
s t r u c t c e l l [ 

enum t g E t a g ; / * t g N i l , t g L i s t E l e m , t g V a r i a b l e * / 

u n i o n c e l l U n i o n u ; 

}; 

The contents of a value cell depends on the t a g . A list is made up of list 
elements (tag t g L i s t E l e m ) each of which contains a head and a tail. The last 
element is nil (tag t g N i l ) . A "reference" cell contains a pointer to another value 
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cell - it is invisible to the user because it is always dereferenced whenever it is 
used. An uninstantiated variable (tag t g V a r i a b l e ) is a cell which has not yet 
been assigned a value. When the value is determined, the tag is changed and 
the new value filled in. The "age" of a variable is used to determine whether or 
not information must be saved when the variable becomes instantiated, to allow 
backtracking (this corresponds to the Warren Abstract Machine method of 
determining the variable's age by a comparing stack positions). 

2.2 C code for append function 

Here is the most efficient version of append possible with the above value cell 
definitions. It assumes that there are no "reference" cells and that the third 
argument is always the output (that is, append is not used to split a list) — these 
extra complications will be dealt with later. 

The append function takes two value cell pointers (pi, p2) and a pointer to a 
value cell pointer (p3) to return the new list (in a language like Pascal, p3 would 
be a var parameter; C requires declaring it as a pointer). The algorithm is: 

while pi points at a list element cell { 
allocate a new list element cell; assign it to what p3 points at 
make pi point to the next input list cell (or nil if at end of list) 
make p3 point to the tail of the new list cell 

} 
if pi points at nil, assign p2 to what p3 points at 

otherwise raise error condition 
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Note that for speed, the tail of each new list element is not filled in; however, p3 

points at it and the next iteration fills it in. Here is the C code. The 
aliocListElem(Head,Tail) procedure is used to allocate new list cells.5 The 
dummyCell is strictly a place holder for allocListElem; its contents do not matter 
at all. 

v o i d append(pl, p2, p3) 
s t r u c t c e l l * p l , *p2, **p3; /* p3: var c e l l P t r */ 
{ wh i l e (pl->tag = tgListElem) [ 

*p3 = allocListElem(pl->u.asListElem.head, &dummyCell); 
p i = p l - > u . a s L i s t E l e m . t a i l ; 
p3 = & ( ( * p 3 ) - > u . a s L i s t E l e m . t a i l ) ; 

} 
i f (pl->tag = t g N i l ) { * P 3 = p2; } 

el s e { e r r o r ( ) ; } 
} 

The query 
?- append([l,2], [3,4], L3). 

is coded: 

s t r u c t c e l l * p l , *p2, *p3; 
p i = a l l o c L i s t E l e m ( a l l o c I n t e g e r ( 1 ) , 

a l l o c L i s t E l e m ( a l l o c I n t e g e r ( 2 ) , S m i l C e l l ) ) ) ; 
p2 = a l l o c L i s t E l e m ( a l l o c I n t e g e r ( 3 ) , 

a l l o c L i s t E l e m ( a l l o d n t e g e r ( 4 ) , & n i l C e l l ) ) ; 
/* p3 does not need to be i n i t i a l i z e d */ 
append(pl, p2, &p3); 

and results in (note that p3 is shown between pi and p2): 

In the actual program, this statement is written slightly differently, using a macro. 
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p i — > 1—>
 

1—>
 

V 

2 1 / / / 2 2 / / / 

p3 > -> 1 

/// / / / 

p2 

2 3 /// 2 4 /// 

Optimization to this level is only possible if the compiler knows that there are no 
"reference" cells. If there are reference cells, they must be dereferenced each 
time they are used by: 
while (pl->tag = tgReference) { p i = pl->u.asReference; } 

This will never go into an infinite loop because the unification algorithm 
guarantees that a reference cell will never point to itself. 

2.3 C code for deterministic append predicate 

The above C code in effect implements a function which returns a value in p3. 

If p3 is allowed to be any kind of value, the following code will do the job. For 
brevity, only code for pi as (a reference to) nil or a list cell and for p3 as a 
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reference cell or uninstantiated variable is shown; the other cases generate calls 
to error. The full implementation has code for handling backtracking when pi 

is an uninstantiated variable - this is discussed in section 4.0, "Backtracking 
and delaying" on page 66. 

v o i d append(pl, p2, p3) /* append using t g V a r i a b l e , tgReference */ 
s t r u c t c e l l * p l , *p2, *p3; 
1 
s t a r t : 

s w i t ch (pl->tag) [ 
case tgReference: 

p i = pl->u.asReference; 
goto s t a r t ; 

case t g N i l : 
w h i l e (p3->tag = tgReference) 

{ p3 = p3->u.asReference; } /* deref p3 */ 
i f (p3->tag = t g V a r i a b l e ) { 

pushOnResetStack(p3); 
p3->tag = tgReference; 
p3->u.asReference = p2; 

} e l s e ( e r r o r ( ) ; } 
break; 

case t g L i s t E l e m : 
while (p3->tag == tgReference) 

{ p3 = p3->u.asReference; } /* deref p3 */ 
i f (p3->tag = t g V a r i a b l e ) { 

push0nResetStack(p3); 
p3->tag = tgReference; 
p3->u.asReference = allocListElem(pl->u.asListElem.head, 

a l l o c V a r i a b l e ( ) ) ; 
/* t a i l r e c u r s i v e c a l l . . . */ 
p i = p l - > u . a s L i s t E l e m . t a i l ; 
p3 = p3->u.asReference->u.asListElem.tail; 
goto s t a r t ; /* t a i l r e c u r s i o n o p t i m i s a t i o n */ 

} e l s e { e r r o r ( ) ; ) 
break; 

d e f a u l t : 
e r r o r ( ) ; 
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3 

Explanation. The first case of append dereferences pi by guaranteeing that it is 
not a reference cell. Once pi is fully dereferenced, one of the other cases is 
executed. If pi is nil, p2 and p3 are unified (the above code does only the 
situation where p3 is an uninstantiated variable). If pi is a list element, p3 is 
instantiated to be a list cell and the code iterates on the tail of the list element. 
The procedure call to push0nResetStack(p3) is actually a macro which expands 
into a test which decides whether or not the instantiation of p3 should be 
recorded so that it can be undone on backtracking (described in section 
4.0, "Backtracking and delaying" on page 66). 

This code implements a deterministic Prolog predicate which can either return a 
result (if the third argument is fully or partially uninstantiated) or test that the 
third argument is the correct answer, so the query must be slightly different: p3 

is initialized here to be an uninstantiated variable. 

/* ?- append([l,2], [4,5], L3). */ 

s t r u c t c e l l * p l , *p2, *p3; 
p i = a l l o c L l s t E l e m ( a l l o c I n t e g e r ( 1 ) , 

a l l o c L i s t E l e m ( a l l o c I n t e g e r ( 2 ) , & n i l C e l l ) ; 
p2 = a l l o c L i s t E l e m ( a l l o c I n t e g e r ( 3 ) , 

a l l o c L i s t E l e m ( a l l o c I n t e g e r ( 4 ) , & n i l C e l l ) ; 
p3 = a l l o c V a r i a b l e O ; 
append(pl, p2, p3); 

However, the result is different: 
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p i 1 1 

/ / / / / / 

p3 —> 3 1 1 3 1 1 *> 3 1 3 i 1 3 i 1 3 i 

P2 1 1 / / / / / / 

2 3 /// 2 4 /// 

Not only is this second version slower, but it also produces extra "reference" 
cells.6 Therefore, the compiler should recognize situations similar to append 

(which occur frequently) and optimize them as described above (this can be-
considered as a kind of peephole optimization on the abstract machine). 

In fairness to the Warren Abstract Machine (WAM), this only happens if my scheme if 

individual value cells is used; if uninstantiated variables were stored within the heads and tails 

of list cells (instead of requiring separate cells), then no extra "reference" cells would be 

required, in this case. However, execution would still be slower because a check still must be 

made on each iteration for whether the third parameter is an uninstantiated variable, 

something which is already known (this avoids general unification and testing for whether the 

instantiation must be recorded on the reset stack). 

24 



2.4 Machine code for deterministic append predicate 

Appendix A, "Sample machine code" on page 280 has sample machine code 
which translates the above C code to IBM/370 code. These transformations 
cannot easily be done by a C compiler, because certain values must be kept 
globally in registers for ultimate performance. 

The best performance can be attained if the abstract machine status registers 
and the argument registers can be mapped into the target machine's registers. 
The xpPAM registers contain pointers to objects, so they translate in a natural 
way to IBM/370 registers (see section 3.0, "The basic sequential inference 
engine" on page 28 for the xpPAM status registers). Additional speed is possible, 
if the target machine allows some kind of object access, dereferencing and tag 
handling in parallel. 

The inner loop of the second (slower) version is 19 or 23 machine instructions, 
depending on whether heap overflow is detected in-line or by an exception. 

The inner loop of the first (faster) version is 8 or 10 machine instructions, 
depending on whether heap overflow is detected in-line or by an exception. On 
a "1 MIPS" machine, the above loop will run at over 100 KLIPS (thousands of 
Logical Inferences Per Second). 
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The inner loop has the same instruction count, for either allocating from a heap 
or for allocating from a stack. For reference counting, three extra instructions 
are needed (load, add one, store).7 

2.5 Abstract machine code for deterministic append predicate 

Skipping ahead a bit, here is the code used by the abstract machine (xpPAM) for 
a purely deterministic predicate. This abstract machine code can be used to 
directly generate the C or assembler code given above (a slightly different 
version of this, with delays, is in section 4.4, "Delays" on page 75): 

swXVNL fO, n3, nO % LI = X . A 
b u i l t i n 3 % on f a i l u r e : e r r o r 
goto var 70 var 
goto n i l % [ ] 

1st: % _._ 
e q l s t f 2 , f 3 , n2 % L3 = X . C 

% argO: A (already there) 
% a r g l : B (already there) 
% arg2: c (already there) 

I C a l l S e l f % append(A, L2, C) 
n i l : 

eq f l , f2 % L2 = L3 
re t u r n 

var: % from here on, set up f o r back t r a c k i n g 
pushB vO 
pushB v l 
pushB v2 

For this particular example, it appears as if reference counting is significantly slower than a 

marking garbage collector. However, a marking garbage collector must eventually scan the 

list and it probably will take more than three instructions to mark a cell. See section 

7.12, "Reference counts and garbage collection" on page 153. 
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mkCh mkch2 
e q l s t fO, n3, nO % LI = X . A 
goto 1st 

mkch2: 
popB n2 
popB n l 
popB nO 
eq fO, [] % LI = [] 
goto n i l 

The inner loop is three abstract instructions (swXVNL, e q l s t , I C a l l S e l f ) which 
can be reduced to two if the I C a l l S e l f is replaced by the swXVNL. 
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3.0 The basic sequential inference engine 

Total grandeur of a total edifice, 

Chosen by an inquisitor of structures 

For himself. He stopsupon this threshold 

As if the design of all his words takes form 

And frame from thinking and. is realized. 

— Wallace Stevens, To an Old Philosopher in Rome. 

Brevis esse laborio, 

Obscurus fio. 

(I strive to be. brief, and I become obscure.) 

— Horace, Ars Poetica 

XpPAM consists of a basic sequential part which can be described almost 
completely independently of the features which allow backtracking and delaying. 

The machine has 32 general registers, three stacks (execution, reset and 
backtrack) and a heap. The general registers are used for passing arguments. 
The execution stack is used to save status and registers across calls. The reset 
and backtrack stacks are used for backtracking and are described in section 
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4.0, "Backtracking and delaying" on page 66. The heap is used for allocating 
all objects. 

3.1 Objects 

All objects are stored the heap: the object table (oTab) and the extension area 
(xArea). All objects are first class citizens and are tagged. For simplicity, 
arrays and I/O objects (stream or direct) are not described here. Their 
implementation can easily be inferred from section 11.0, "Arrays and I/O done 
logically and efficiently" on page 222) . Any number of types can be added to 
the machine with no loss of efficiency (they are just extra cases in branch 
tables). The following are discussed: 

type description 
uninstantiated (or not ground) logical variable. 
reference (pointer) to another object which is automatically dereferenced 

whenever it is accessed, 
number integer or floating point. The implementation has only floating 

point numbers.8 

string commonly called an atom. 

nil denoted"!]". 
list element containing pointers to two objects, denoted "Head.Tail" or 

"[Head|Tail]". 

This is based on two considerations: it makes implementation easier and some modern 

machines can do floating point arithmetic nearly as fast as integer arithmetic. 
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paged out object with pointer to backing store. Data in backing store never 
point to data in primary store. See section 3.15, "Virtual memory" 
on page 61 for details. Paged out objects are automatically paged 
in when accessed. 

code segment contains abstract machine code (section 3.6, "Code segments" on 
page 36). 

thunk code pointer with environment [Ingerman 1961] (section 
6.4, "Thunks, lazy evaluation and higher order functions" on 
page 127). 

cut point information for handling a cut. 
unallocated on the free list (only used for heap overflow testing). 

XpPAM uses structure copying because its implementation is simpler than 
structure sharing and it has similar space and time efficiency [Mcllish 1982]. 
There is, however, nothing in xpPAM's design which prevents using structure 
sharing instead of structure copying. 

Each object is identified solely by its address within the object table (oTab). 

The address remains constant throughout the object's lifetime. Each object fits 
in a fixed size cell (about 12 bytes, depending on the base machine) containing: 

• tag (determines the object's type) 
• flags (meaning depends on the object's type) 
• reference count (or garbage collector marking bits) 
• data, consisting of one of: 

- one pointer 
- two pointers 
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- a numeric value 
- pointer into the extension area (xArea) plus additional information (such 

as a hash bucket pointer for strings) 
- "age" and delay information for uninstantiated variables 

All objects are kept in one heap (oTab) with an extension area (xArea) for large 
objects (strings and code). All objects are subject to garbage collection — cells 
within oTab are simply added to the free list and corresponding space within 
xArea is compacted as needed. I implemented a reference counting garbage 
collector because it allows reclaiming memory as soon as possible. A marking 
garbage collector could easily have been used instead (see section 
7.12, "Reference counts and garbage collection" on page 153). 

Numbers, nils and list elements fit entirely within these cells. Strings, code 
segment cells and thunks contain pointers into a separate area which is divided 
into segments and is compacted like Smalltalk-80's LOOM (see section 
3.15, "Virtual memory" on page 61). 

Although new strings can be created by the concatenate or substring operations, 
most strings are constants which are known when the code is loaded. The 
loader ensures that only one copy is kept of each such constant string (fast 
lookup at load time uses hash values). Two constant strings are equal if and 
only if they are at the same address. Dynamically created strings require full 
character by character comparison. Constant strings and dynamically created 
strings are distinguished by a flag bit. 
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For simplicity, xpPAM treats functors as lists (as in micro-Prolog [Clark and 
McCabe 1984]) so that, for example, f ( a , b ) ~ [ f , a , b ] . Functors and lists are 
distinguished by a flag in the head element so that a list element cannot unify 
with a functor element (however, F ( A ) = f ( l ) results in F=f, A=l) . See section 
7.10, "Functor and list storage" on page 151 for a fuller discussion of 
alternative representations. 

3.2 General registers 

The machine has 32 general registers. The number of registers is somewhat 
arbitrary and does not affect the overall design. [Auslander and Hopkins 1982] 
note that on a RISC with 16 registers, about half the programs need register 
spill code; with 32, fewer than 5% need spill code. This statistic, however, may 
not apply to an inference engine. 

Each of the registers contains either an object address or is flagged as being 
empty. A hardware implementation could keep a shadow cache of the objects 
referenced by the registers (that is, a register would contain the object's address 
and the shadow cache associated with the register would contain the 12 or so 
bytes of the object's value cell). 

The general registers are used primarily for passing arguments to predicates. 
An rc-place predicate will receive the addresses of its arguments in registers 0 
through n - 1. 

If a predicate has more than 30 parameters, it must be transformed by the 
compiler to code the last n-30 into a structure. The limit is 30 rather than 32 
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because some instructions require up to two extra registers (for example, 
splitting a list element into its head and tail may require two additional registers 
to hold the head and tail). 
p(..., P30, P31, P32, Pn) 

is transformed to 
p(... , (P30 . P31 . P32 . ... . Pn)) 

3.3 Allocating and freeing object cells 

New cells are allocated from a single free list. As all objects are the same size, 
this list never needs compacting (see section 7.3, "Global and local stacks" on 
page 142 for comparison with other methods). 

"Freeing a register" simply means flagging the register as empty. If reference 
counting is used, the reference count is decremented and, if it becomes zero, the 
cell is returned to the free list, possibly causing other cells to be freed. If a 
marking garbage collector is used, the register must still be flagged as empty so 
that the marking algorithm knows where to start and so that fail and delay 
work properly. 

3.4 Status registers 

In addition to the 32 "general purpose" registers which are mainly used for 
passing arguments, special registers keep the machine's status. Some of these 
are needed only for backtracking or delaying and are described more fully in the 
next chapter. 
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pc program counter: contains the code segment and offset of the next 
instruction. 

cpc continuation program counter: contains the code segment and offset of 
the next instruction to be executed after a return instruction, 

toes top of execution stack. 
ptoes protection for (top of) execution stack: toes value in the top frame on the 

backtrack stack. 
linkr link register: used by l i n k , c a l l and u n l i n k instructions to save the toes 

(needed for backtracking), 
tobs top of backtrack stack, 
tors top of reset stack. 
popbkr pop backtrack register: a flag and pointer into the choice stack which is 

set by a popBKeep instruction (it is set off whenever failure occurs). If this 
flag is on, a mkCh or mkChAt instruction will restore the choice stack point 
to what it was when the failure happened; that is, effectively pushing 
everything back onto the choice stack. 

orwaitr or-wait register: keeps the last "or wait" entry. It is null if no waitOr 
instruction has been done since the last wait instruction. 

3.5 Execution stack 

The execution stack looks like this (growing from the top to the bottom of the 
page). Section 4.1, "Stacks for backtracking" on page 66 has a diagram 
showing all the stacks. 
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execution 
( c a l l ) 
stack 

x x x l 

l i n k r 

cpc 

xxx2 

xxx3 

l i n k r 

cpc 

xxx4 

xxx5 

toes-

bottom of stacks 

top of stacks 

The "frames" contain information put there by the push (shown as x x x l through 
xxx5 above) and c a l l instructions (shown as l i n k r and cpc above). Each entry 
on the execution stack is one of: 

• a value put there by a push instruction; or 
• a call stack frame: 

- cpc in two slots (code segment first, followed by offset), 
- value used by the u n l i n k instruction to reset the stack frame after 

returning from the call; or 
• a preemption entry (described in section 4.4, "Delays" on page 75). 
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The back pointers are not needed if strictly deterministic computation is done. 
They are needed to allow backtracking to "protect" parts of the stack. 

3.6 Code segments 

XpPAM instructions are kept within code segments. Each code segment 
corresponds to a single compiled predicate. It contains: 

• object address of the predicate's name. 
• number of parameters. 
• size of the constants' vector. 
• size of the code vector. 
• debugging information. 
• pointer to source (for debugging). 
• constants and code. (The constants' vector contains object pointers for all 

the constants used within the code. The code follows immediately after.) 

The constants' vector contains pointers to objects. The loader always handles 
pointers to code segments by inserting an indirection via a reference cell; this 
allows replacing a code segment dynamically. 

3.7 Machine instruction format 

A xpPAM machine instruction fits within 4 bytes. The three operands take 18 
bits (6 bits each) and the opcode plus flags can be encoded within the remaining 
14 bits (the exact encoding is not important and will not be discussed here). In 
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the emulator, a looser packing is used for efficient extraction: the opcode is 1 
byte, the flags are in 2 bytes and the three operands take 3 bytes (1 byte each). 
Some instructions could be packed tighter but such packing is not worth the 
extra time needed to extract fields. 

The two formats are: 

• three operands: Opl, op2 and op3 are each a register number or a constant 
number; the meaning is determined by the flag values. For some 
instructions, only one or two of the operands are used. 

opcode f l a g s o p l op2 op 3 

• one operand and offset: Opl is a register number or a constant number; the 
meaning is determined by the flag values. For some instructions, opl is not 
used. 

opcode f l a g s o p l 1 
o f f s e t 

i 

A "register number" is a 1-byte quantity with a value from 0 through 31. A 
"constant number" is an index into the constants' vector for the code segment 
with a value from 0 through 63. 

In instructions, each register is annotated: 

v contains a value. 
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n empty, possibly requiring the allocation of a new object, 
f contains a value which is emptied after use. 
x is empty and the value is unneeded (n+f). This could be used, for example, 
when a head or tail value is not needed (the anonymous variable "_" in 
" _ . T a i l " ) . 

c constant (index into the code segment's constants' vector), 
s (for the e q l s t or swXVNL instructions' first operands only) means structure 

head rather than list element. 

V, n and c are mutually exclusive. The flags can be encoded by combining them 
with the opcodes — most instructions have only one or two possible flag 
combinations, so this would be the fastest possibility, at the expense of having 
many opcodes (the software emulator uses a slower method, by separately 
decoding the flags). 

F annotations mark where reference counts are decremented (if a marking 
garbage collector is not used). Whether or not reference counting is used, 
registers must still be flagged as empty to minimize the amount of information 
stored when choice points or "thunks" are created. 

Each code segment has a vector of up to 64 constant objects' addresses. Most 
instructions allow c annotations to indicate that the operand is the index of an 
entry in the constants' vector. 
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3.8 Net effect of calls 

When an «-ary predicate is called, the caller must save its registers on the 
execution stack and put the arguments in registers 0 through n-\. The called 
predicate must ensure that on return all registers are empty — the caller then 
pops the stack to restore the saved registers. That is, on entry to an /2-ary 

predicate only the first n registers are non-empty. On return, all the registers 
must be empty - the called predicate must explicitly free them. 

3.9 Tail recursion optimization (TRO) 

The pc and cpc are used to allow tail recursion optimization. The cpc contains a 
return address. A call must 

• Push the active registers onto the stack. 
• Push cpc onto the stack. 
• Copy pc into cpc. 

• Set pc to be the first instruction of the called predicate. 

A return must do the reverse: 

• Copy cpc into pc. 
• Pop the stack into cpc. 
• Pop the saved registers from the stack. 
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In a call immediately followed by a return there is no need to do this push/pop 
sequence. A last call instruction acts just like a go to. The cpc is left alone so 
that the called predicate will return to where the calling predicate would have 
returned. 

Tail recursion optimization works only because parameters are passed in 
registers and not on the execution stack. If the last call is to the same predicate, 
the TRO works like iteration, with all the values' addresses in registers. 

3.10 Unification 

Unification is one of the fundamental concepts in logic programming. The 
abstract machine has several instructions which implement this. The essence of 
unification is: 

• If either operand is a reference cell, it is repeatedly dereferenced. 
• If both operands are atomic (numbers, strings or nil), they are compared for 

equality (which may fail). If the strings were known at load time (not 
created dynamically), they are compared by comparing their addresses (the 
loader ensures uniqueness). 

• If both operands are uninstantiated variables, the newest one is changed into 
a reference cell which points to the other operand (and possibly recorded on 
the reset stack). The "age" information is used for this (see section 
4.1, "Stacks for backtracking" on page 66 for more details). 

• If one operand is an uninstantiated variable, it is changed into a reference 
cell which points to the other operand (this instantiation is recorded on the 
reset stack if the variable is older than the latest choice point). 
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• If both operands are list elements or functor elements, unification is done 
recursively on the heads and tails of the operands. 

• Otherwise, unification fails. 

Note that the above definition guarantees that a reference cell is always newer 
than the cell it points at, so there can never be any dangling pointers. 

Unification does not do the occurs check (see section 10.6, "The occurs check" 
on page 217). There is no separate push-down stack for unification and 
deallocation because the Deutsch-Schorr-Waite algorithm is used [Knuth 1973] 
to traverse lists by reversing pointers using special tags which are not normally 
visible. These special tags are also used to terminate an infinite unification. 

3.11 Instructions 

Some instructions may fail or delay. These concepts are described in the next 
chapter. 

The assembler notation is a symbolic opcode followed by up to three operands. 
Each operand is a single letter (its annotation: v, n,f, x, c, s) followed by the 
register number or constant number.9 

Just to confuse you, the assembler has the single letter after the register number so that " e q 

n l , f 2 " is input " e q ( 1. n , 2. f ) " 
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The instructions are given with pseudo-code for interpreting them. There are 
five steps in interpreting: 

• Decode the opcode. 
• Pre-process the operands into internal registers rl, r2 and r3. 

• Increment the program counter (pc = pc + l). 
• Execute the instruction. 

• Post-process the operands in the actual registers. 

As mentioned above, every operand is one of: 

• A register number 
• A constant number 
• An offset value 

For the first two cases, a value is developed in one of the internal registers rl, r2 

or r3, corresponding to operands 1, 2 or 3, according to the annotation: 

Annotation Action 

v, f, s Internal register receives the appropriate register's contents, then 
dereferences it if necessary, 

n, x Internal register receives the address of a new uninstantiated 
variable cell. 

c Internal register receives the address of the appropriate constant (by 
indexing into the code segment's constants' vector). 
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For most instructions, the internal register values are repeatedly dereferenced 
until a non-reference object is reached (the unification algorithm guarantees that 
there is never an infinite cycle of references). Exceptions include the push 

instructions. 

After the instruction, the operands are processed according their annotation: 

Annotation Action 

v, n, s Do nothing (the results are already in the general register), 
f, x Decrement the object's reference count and mark the general 

register as being empty (this is not done for some cases of some 
instructions, such as swXVNL). 

c Do nothing (it's not a register). 

The internal registers are necessary to allow certain "overlapping" register 
combinations. For example, it is often convenient to have a list element (object 
pointer) in register 0 and then replace register 0 by the list element's head (the 
tail goes to another register). This can be accomplished by a single instruction 
(e.g., e q l s t f 0 , n 0 , n 5 ) . 

The internal registers can not be blindly copied back to the operand registers 
because the internal registers may have been dereferenced - a future 
unification may need to point to the un-dereferenced object. Therefore, the 
instructions must operate directly on the general registers, using the values in 
the internal registers for input. Instructions must also increment reference 
counts as necessary. 
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The annotations c, v and n are mutually exclusive. The pseudo-code does hot 
show any test for this error - the assembler assures against invalid annotations. 

The pseudo-code is not necessarily optimal. For example, the pseudo code for 
eq nl,v2 has the sequence: 

• Allocate a new cell for an uninstantiated variable and put its address in 
register 1. 

• Unify the objects pointed by registers 1 and 2. 
• Decrement the reference count of the object pointed by register 2 and mark 

register 2 as empty. 

But the implementation simply copies the contents of register 2 into register 1. 

Failure handling is described in section 4.2, "Backtracking instructions" on 
page 70. In the pseudo-code, failure is handled by calling d o F a i l ( ) . 

Pseudo-code does not show pushing instantiations onto the reset stack (discussed 
in the next chapter) nor does it show adjusting reference counts. 

3.11.1 Unification and testing instructions 

eq op I, op2 

Unifies the two operands (which may fail). The operands can be constants 
or registers. Eq can be used to unify values or to move or copy registers. 
Examples: 
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eq n l , f 2 moves register 2 into register 1, 
eq n 3 , v 4 puts a copy of register 4 into register 3. 
eq n 5 , c 3 loads register 5 with the address of the 3rd constant in the code 

segment. 
eq v l , f 2 unifies register the object pointed by register 1 with the object 

pointed by register 2, then frees register 2. 

Pseudo-code: 

i f (! u n i f y ( r l , r2)) 
d o F a i l ( ) 

eqskip opl, op2 

Like eq except that it skips the following instruction if the unification (usually 
an equality test) succeeds (eq fails to the most recent choice point -
described in the next chapter). If the equality test fails, any / annotations are 
ignored. Failure does not undo instantiations caused by unification so there 
will usually be some tests before e q s k i p to ensure that the operands are not 
variables. This instruction always appears to succeed (never "fails"). 

Pseudo-code: 

i f ( u n i f y ( r l , r2)) 
p c = p c + 1 / * p c a l r e a d y p o i n t s a t n e x t i n s t r u c t i o n * / 

testskip opl, op2 

Tests if the two operands are equal. T e s t s k i p is the same as e q s k i p except 
that it will not instantiate anything; if instantiation would occur, t e s t s k i p 
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does a delay for the uninstantiated variable (section 4.4, "Delays" on 
page 75). 

eqlst opl, opHd, opTl 

Unifies the first operands to a list element composed of the second and third 
operands. May fail. 
Examples: 

E q l s t f I,n2,n3 tests for register 1 containing (the address of) a list element 
(or, if it is a logical variable, instantiates it to a list element) with the 
head being put in register 2 and the tail in register 3. Register 1 is then 
emptied. 

E q l s t fO,nO,nl replaces register 0 by the list element's head (the tail goes 
into register 1). 

Pseudo-code: 

i f ( r l p o i n t s to a l i s t element) { 
i f (! un.ify(rl->head, r 2)) { 

d o F a i l ( ) 
j e l s e i f (! u n i f y ( r l - > t a i l , r 3 ) ) ( 

d o F a i l ( ) 
} 

} e l s e i f ( r l p o i n t s to an u n i n s t a n t i a t e d v a r i a b l e ) { 
rx = new l i s t element c e l l w i t h head = r2, t a i l = r3 
rl - > t a g = reference /* r l points at */ 
r l - > p t r = rx /* new l i s t element */ 

} e l s e [ 
d o F a i l ( ) 

} 
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3.11.2 Control instructions 

swXVNL opl, opHd, opTl 

Jumps to one of the following four instructions that immediately follow it, 
according to the type of the first operand: 

Atom (none of the following). The second and third operands are completely 
ignored (including/annotations). 

Variable. The first operand is not freed even if it has/annotation. The 
second and third operands are completely ignored (including/ 
annotations). 

Nil. The second and third operands are completely ignored (including/ 
annotations). 

List element. The second and third operands are unified with the head and 
tail of the list element. If during unification, some uninstantiated 
variables become instantiated but the entire unification fails, the 
variables are not reset to uninstantiated. 

Normally, this instruction is used to split a list element, the second and third 
operands having n annotation. The four instructions following the swXVNL 
instruction are usually gotos or b u i l t i n 3 ("error"), except for the last one. 
Other switch instructions are possible for multi-way branching on strings or 
numbers; they can be emulated by sequences of eqskips. 

The first operand must have the annotation v or /(n is not allowed). N 

annotations for the second and third operands are treated like v annotations 
if the first operand is a variable or atom. 
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The first operand must have the annotation s if it is to handle a structure 
element. 

Pseudo-code: 

i f ( r l p o i n t s to a u n i n s t a n t i a t e d v a r i a b l e ) { 
pc = pc + 2; /* case var: don't f r e e */ 

} e l s e i f ( r l p o i n t s to a l i s t element) [ 
i f ( u n i f y ( r l - > h e a d , r2) && u n i f y ( r l - > t a i l , r 3 )) 

then pc = pc + 1; /* " f a i l " without undoing any i n s t a n t i a t i o n s 
e l s e { pc = pc + 4; 

copy r2, r3 i n t o r e g i s t e r s ; 
f r e e r e g i s t e r s as needed 

3 
} e l s e i f ( r l p o i n t s to n i l ) { 

pc = pc + 3; /* case [ ] : don't free r2, r3 */ 
} e l s e { 

pc = pc + 1; /* case d e f a u l t : don't free */ 
} 

caseGoto op/, number 

This is a generalization of swXVNL. The number is the number of cases which 
follow (it is encoded like an offset). CaseGoto dereferences the operand. In 
the next instruction space are two offsets: 

1. where to go if the operand is an uninstantiated variable. 
2. where to go if none of the other cases match (default case). 

Following are the cases. Each consists of an object pointer and an offset. If 
the constant in a case matches the operand given by the caseGoto, execution 
continues at the indicated offset within the current code segment. If more 
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than one case matches, it is unspecified which one is taken (this allows 
hashing or other non-sequential selection). 

goto offset 

Unconditionally goes to the offset within the code segment if the first 
operand is an uninstantiated variable. 

Pseudo-code: 

p c = o f f s e t 

varGoto opl, offset 

Goes to the offset within the current code segment if the first operand is an 
uninstantiated variable. 

Pseudo-code: 

i f ( r l p o i n t s t o an u n i n s t a n t i a t e d v a r i a b l e ) 

pc = o f f s e t 

nonvarGoto opl, offset 

Goes to the offset within the current code segment if the first operand is not 
an uninstantiated variable. 

Pseudo-code: 

i f ( r l does n o t p o i n t t o an u n i n s t a n t i a t e d v a r i a b l e ) 

p c = o f f s e t 
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3.11.3 Call / return instructions 

push opl 

Pushes the operand onto the execution stack. This instruction is normally 
after a l i n k and before a c a l l . The operand is not dereferenced before 
pushing. 

Pseudo-code: 

*toes++ = r l / * copy r l t o t o p o f s t a c k ; i n c r e m e n t s t a c k p o i n t e r * / 

pop opl 

Pops the operand from the execution stack. This instruction is normally after 
a c a l l and before an u n l i n k . The operand must be a register with the n 

annotation. 

Pseudo-code: 

r l = * - - t o e s / * copy t o p o f s t a c k t o r l ; decrement s t a c k p o i n t e r * / 

gete opl,offset 

Gets the operand from a specified offset within the execution stack. This 
instruction is normally used for register spill code. The operand must be a 
register with the n annotation. 

Pseudo-code: 

r l = t o e s [ 0 - o f f s e t ] 
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link 
Saves toes in linkr. If the ptoes (protection execution stack) value is above 
the toes value, toes is set to the protection value. 

Pseudo-code: 

l i n k r = t o e s 

i f ( t o e s < p t o e s ) 

t o e s = p t o e s 

unlink 
Restores toes from linkr. 

Pseudo-code: 

t o e s = l i n k r ; 

return 
Restores the machine registers to their state when the c a l l was executed (see 
description under c a l l ) . 

Pseudo-code: 

x = * t o e s - - ; / * pop t o p e l e m e n t o f e x e c u t i o n s t a c k i n t o " x " * / 

i f (x p o i n t s t o code) { 

pc = c p c ; 

pc = * t o e s - - ; / * (pop 2 e l e m e n t s ) * / 

l i n k r = * t o e s - - ; / * pop l i n k r e g i s t e r * / 

} e l s e { 

do s p e c i a l preempt o r d e l a y r e t u r n ( d e s c r i b e d i n n e x t c h a p t e r ) 

} 
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call opl 

calls (tries) a predicate. There are two varieties: 

• c a l l cC: call a known code segment whose address is given by the 
constant C. The argument registers are assumed to be already loaded. 
Note that the constant is usually a reference to a code segment (this is 
what the assembler generates). 

• c a l l fR; dynamic call - R points to either 
— The argument list of which the name is the first element. The name is 

looked up and the registers are loaded with the elements of the list. 
- A thunk. The thunk specifies the first m of an rc-ary predicate. The 

first (n - m) registers are shifted right in places and the first m 

registers are loaded from the thunk. The register should have/ 
annotation to ensure that it is freed before the registers are loaded 
with the arguments. 

Cpc and linkr are pushed onto the execution stack, pc is copied into cpc and 
pc is set to the first instruction in the code segment. Return does the inverse 
by copying cpc into pc and popping the execution stack into cpc and linkr (all 
the registers must be empty when a return is done). Using cpc this way 
allows the last call ( I C a l l ) instruction for tail recursion optimization. 

Pseudo-code: 
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*++toes = l i n k r ; /* push l i n k r */ 
*++toes = cpc; /* push cpc (two elements) */ 
cpc = pc; /* cpc = next i n s t r u c t i o n */ 
i f ( r l does not poi n t to code segment) { 

i f ( r l p o i n t s to an atom) { name = r l ; n = 0; } 
e l s e i f ( r l p o i n t s to a l i s t element or s t r u c t u r e element) { 

name = rl->head; 
n = number of elements i n r l ' s l i s t ; 

} e l s e e r r o r ; 
search f o r code f o r name/n p r e d i c a t e 

and f i l l the r e g i s t e r s 0 to n-1 w i t h the arguments 
pc = f i r s t i n s t r u c t i o n i n thunk's code segment; 

} 
pc = f i r s t i n s t r u c t i o n i n code segment; 

When a predicate is searched for, and it has not been created, a new 
predicate is created which calls "<undef>." The <undef> predicate can be 
tailored to the user's needs, for example, to just fail (as in conventional 
Prolog), to output an error message ("undefined predicate") or to prompt for 
a definition (a "query the user" facility). 

The operand for a dynamic call may be a functor or a list. XpProlog allows 
call([Name,Arg]) instead of Name(Arg) (avoiding the need for univ ("=..") 

for constructing a functor from a list. 

callSelf 
Like c a l l except that there is no need to switch code segments (a slight 
optimization). 

ICall opl 

Last (tail recursive) call. This is the same as c a l l except that it pushes 
nothing onto the stack. 
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ICallSelf 
Last (tail recursive) call to self. This is the same as g o t o 0. It is included to 
help in debugging. 

Pseudo-code: 

pc = 0 

3.11.4 Allocation / deallocation instructions 

free opl 

Frees the operand. The operand must be a register with /annotation. The 
reference count of the object pointed at by the operand is decremented and 
the register is marked as free. This instruction is seldom needed because/ 
annotation in other instructions can free registers. 

new opl 

Allocates an uninstantiated variable in the operand (the register must be 
empty). The operand must be a register with/annotation. This instruction 
is used mainly for setting up arguments which return values from predicates; 
however, the p u s h is usually used instead with n annotation. 

3.11.5 Miscellaneous instructions 

builtin number 

The number is coded as an offset operand which identifies the built-in. This 
is used to extend the machine's instruction set with "foreign" instructions 
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such as arithmetic, string manipulation, i/o, etc. The various built-in 
instructions are somewhat idiosyncratic in how they use registers. They are 
described in an appendix. A built-in may fail or delay. 

stop 

Stops the top level interpreter, 

label 

a pseudo-instruction for the assembler, 

comment 

a pseudo-instruction for the assembler - ignored. 

3.12 Code example 

The (not very useful) example: 

p(N, [])• 
p(a.Rst, x.OutRst) :- p(Rst, OutRst), q(a, Rst), 
p(b.Rst, y.OutRst) :- p(Rst, OutRst). 

is compiled to: 
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swXVNL f 0 , n 2 , n 0 % s w i t c h on parmO: Hd=>reg2, Rst=>regO 

f a i l % i n v a l i d parm 

g o t o v a r % v a r i a b l e 

g o t o n i l % parmO^f] 

1 s t : % parmO=Hd.Rst 

% Hd i s now i n r e g 2 ( f r o m swXVNL) 

% R s t i s now i n r e g 0 

e q s k i p f 2 , V % t e s t Hd = ' a ' 

g o t o e l s e % f a i l t e s t . . go t o " e l s e " 

e q l s t f 1, X , n l % ' x ' . O u t R s t 

l i n k 

p u s h vO % s a v e R s t 

c a l l P / 2 % p ( R s t , O u t R s t ) 

pop n l % r e s t o r e R s t i n t o r e q u i r e d r e g 

u n l i n k 

eq nO, V % 
% 

f i r s t a r g f o r q /2 

s e c o n d a r g a l r e a d y i n r e g 1 

I C a l l q /2 % q ( a , O u t R s t ) 

s e : 

e q s k i p f 2 , ' b * Jo t e s t Hd = ' b ' 

f a i l Jo e l s e : i n v a l i d parm 

e q l s t f i> y , n l Jo V . O u t R s t 
I C a l l S e l f . Jo p ( R s t , O u t R s t ) 

n i l : 

eq f l , 1 [ ] 1 Jo r e s u l t := [ ] 

r e t u r n 

v a r : 

... code l e f t o u t f o r now 

Note: The notation e q s k i p f 2 , ' a ' is not supported by the assembler.10 

Instead, the program would have to explicitly list out. the constants: a, x, b, y, [ 

1 0 T o allow the assembler to easily handle labels, a slightly different notation is used: the register 

number is given first, followed by the annotation. For example, eq n l , c2 would be coded 

e q ( l . n , 2 . c ) . 
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and c a l l ( p , 2 ) . n Using this, e q s k i p f 2 , ' a ' would be presented to the 
assembler as e q s k i p ( 2 . f ,o.c) (the constant " a " is the Oth constant) and 
" c a l l p / 2 " would be presented as c a l l ( 5 . c ) . 

The code for handling a variable for the first parameter has been left out. The 
above code implements a deterministic predicate - if backtracking code were 
added, it would not affect the efficiency of the deterministic code. Backtracking 
code is described in section 4.0, "Backtracking and delaying" on page 66 and 
section 5.1, "Unoptimized compiling of a predicate" on page 88. 

If this were marked as a "never fail" predicate, failure should give an error 
indication. To do this, the f a i l instructions could be replaced by b u i l t i n 3 

("error") instructions. 

The I C a l l S e l f instruction has the same meaning as g o t o 0 (the different opcode 
helps in debugging). This is a tail recursive call - recursion has been turned 
into iteration. 

1 1 c a l l ( p , 2) is used by the assembler and loader to look up the 2-arity " p " predicate. A 

reference to the predicate's code segment is created. If the predicate p / 2 has not yet been 

defined, it is created, calling the built-in undef which can use information from the registers to 

print out an error message or prompt for more input, before failing. 
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3.13 User defined unification 

The current implementation implements simple syntactic unification. It does 
not require a local stack because pointer reversing (the Deutsch-Schorr-Waite 
algorithm) can encode the stack in the pointers (this algorithm has another 
advantage: because it changes tags on its way "down," infinite loops can be 
detected). Another possible implementation is to have the unification 
instructions handle only atomic values and to invoke a separate eqxx predicate 
for compound values (that is, list elements). This is defined: 
eqXX(X, Y) :- atomic(X), X=Y. 

eqXX(Hl.Tl, H2.T2) :- eqXX(Hl,H2), eqXX(Tl,T2). 

which is compiled into 

swXVNL f0,n0,n2 
goto atomic % atomic 
goto atomic % var 
goto atomic % [] 

1st: % _._ 
e q l s t f l , n l , n 3 
l i n k 
push 
push f3 

f2 % save T l 
% save T2 
% 1st arg already i n rO 
% 2nd arg already i n r l 

c a l l S e l f 
pop n l 
pop nO 
u n l i n k 

% T2 
% T l 

I C a l l S e l f 
atomic: 

eq 
r e t u r n 

f O , f l % guaranteed atomic/var 1st operand 
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A similar predicate would be needed for the t e s t s k i p instruction, being careful 
to not cause any unifications. This simplifies the abstract machine because 
unification is much simpler, possibly speeding up execution. Most unifications 
are for very simple cases, so this eqXX is seldom called. The intriguing thing 
about this design is that allows easily changing the unification to implement any 
kind of equality. In this way, functional programming could be easily added to 
a logic programming language. Also, new user data types can be added and 
integrated into the standard unification mechanism. 

3.14 Other object data types 

[Mukai and Yasukawa 1985] propose complex indeterminates. These have 
many similarities with arrays, records and "frames" except that they are of 
indeterminate size. Here is a sample complex indeterminate: 

<fl/X, f2/abc, f 3 / [ a , b ] > ' 

This has three fields: fil, f2 and f3 with associated data (X, abc and [a,b], 

respectively). Field names must be strings; they may be given in any order. 
Here are some sample unifications: 

<fl/X, f2/abc> = <f2/abc, f 1/Y> = > X = Y 
<fl/X, f2/abc> = <f2/X> = > X = abc 
A=<fl/X>, B=<f2/abc>, A=B = > A = B = <fl/X, f2/abc> 

A new field can be "added" to a complex indeterminate, as shown by the last 
example. Complex indeterminates are very useful for keeping associative 
information, such as symbol tables, syntax parts of a sentence or frames (for Al 
problem solving). 
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Complex indeterminates have not been implemented in xpPAM. I will probably 
be implement them as binary trees. Of course, they do not need to be built into 
xpProlog; the user could explicitly unify them. But it is nicer to have them 
built-in. If they are not built-in, user-defined unification can achieve the same 
affect. 

New built-in object data types such as complex indeterminates can easily be 
added to xpPAM. Three changes must be made: 

• The storage allocator/deallocator must be modified. This is very simple, 
consisting mainly of code to compute the size needed in the extension area 
xArea. 

• The unification algorithm must be modified. This consists mainly of adding 
new cases. Thus, new object data types do not slow anything down. 

• New unification instructions (for example, similar to e q l s t or new switch 
instructions) to handle the extra data types. 

To alleviate the work required to add new object data types, xpPAM could be 
modified to have more general forms for some instructions. For example, 
instead of swXVNL, there could be a more general switch statement which is 
simply followed by a list of tags and branch offsets. 
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3.15 Virtual memory 

The virtual memory system is similar to Smalltalk's LOOM (Large 
Object-Oriented Memory) [Goldberg 1983]. As in most Smalltalk 
implementations, I have used reference counting (see section 7.12, "Reference 
counts and garbage collection" on page 153). 

The heap uses an object table called oTab which is a vector of fixed size entries, 
each containing the type flag, reference count and a variant part depending on 
the type. Numbers, nil, list elements, uninstantiated variables and references 
can all be contained entirely within a single oTab entry's variant part. For 
strings and code, the variant part is a pointer to a variable size second part 
which is allocated in an extension object area xArea. 

Functors could be stored as separate structures in the extension area (xArea). 

See section 7.10, "Functor and list storage" on page 151. 

Every object is referred to only by its index in oTab which is called an 
"address." For efficiency, the xArea part of an object may be locked for a short 
time to prevent its being moved by the memory manager (this is normally only 
for code segments) but normally the memory manager may reorganize the items 
in xArea at any time so long as it updates the pointers from oTab into xArea. 

Because register contain only object addresses (pointers into oTab), the extension 
data for an object (in xArea) can be moved at any time, provided the pointer 
from the object is updated. 
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The xArea area is divided into fixed size segments. Whenever a new object 
cannot be allocated in the current segment, the next segment is compacted and 
the object is allocated in that segment. Because most objects have short lives, 
compaction usually moves only a few items - objects with long lives sink to the 
bottom of the segments and tend not to be moved. There is no noticeable delay 
when a segment is compacted because segments are relatively small. 

To aid in compacting xArea, each object in xArea has a pointer back to the 
object in oTab which needs it. Compaction is done by stepping through the 
objects in a xArea segment, skipping over any objects with null back pointers 
(freeing an object sets the back pointer to null, in addition to returning its oTab 

cell to the free list). If there is a locked object in the segment, compaction starts 
after it (the implementation allows only one locked object at a time). 

The unallocated objects are kept in a free list within oTab with new objects 
being allocated from the front of this list. All value cells except strings and code 
can be allocated entirely within single oTab entries. Code is fairly static and 
strings are only allocated and deallocated by explicit string operations like 
"concatenate" and "substring," so allocating and deallocating in xpPAM's heap is 
as efficient as pushing and popping a stack because the xArea area will seldom 
need compacting (see section 7.3, "Global and local stacks" on page 142). 

3.16 Object paged virtual memory 

Full virtual memory design can be implemented similar to that in [Goldberg 
1983]. Objects rather than fixed size pages are moved on demand between 
main memory and secondary memory. Objects in secondary memory may have 
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a different representation than objects in primary memory - for example, 
pointers could be larger in secondary memory, or functors could be kept as 
records instead of as linked elements (similar to "cdr-coding"). 

Objects in secondary memory never point to objects in primary memory. 
Objects in primary memory may point to objects in secondary memory. If an 
object in primary memory has an image in secondary memory, the primary 
image has a pointer to secondary memory - when an object is paged out, it 
goes to its original place in secondary memory. 

When an object containing an address (for example, a list element or a reference 
object) is moved into primary memory, the addresses within it are set to point at 
special "in secondary memory" objects which contain the secondary memory 
addresses. Whenever such an object is used, xpPAM brings the object in from 
secondary memory. It is possible that an object in secondary memory is already 
in primary memory. To aid in finding this, oTab entries have an additional 
field which is the secondary memory address (null if the object is only in 
primary memory). The oTab entry for an "in secondary memory" object is 
picked by hashing the secondary memory address (this requires that the free list 
be forward and backward chained so that objects can be allocated from the 
middle of the list). In this way, an object can be brought in from secondary 
storage and efficiently transformed into its internal form. 

A special "in secondary memory" object is used to reduce the number of entries 
in oTab. There is only one instance of this object. Whenever it is referenced, 
xpPAM cannot directly tell which secondary memory object is needed - it must 
fetch a fresh copy of the secondary memory object which points at this object, 
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and use the secondary memory pointers contained there. This process can be 
optimized - the details are explained in [Krasncr 1983]. 

Reference counts are slightly different for paged memory. Each object in 
secondary memory has its own reference count. The reference count in primary 
memory is the number of primary memory references to the object. In addition, 
a delta reference count is needed to record the conversions between secondary 
memory pointers to primary pointers. The actual reference count for an object 
is the sum of these three numbers (again, for details, see [Krasner 1983]). 

To allow paging out unused objects, each oTab entry has a "recently used" bit. 
Whenever objects must be paged out, those with this bit set off are copied out 
and all the bits are set off. This is a primitive version of "least recently used." 
Clearly, hardware assist would improve the efficiency of this operation. 

I have gone to the trouble of designing a separate virtual memory system 
because small machines do not provide virtual memory and I want xpPAM to run 
well on them, too. [Krasner 1983] points out that implementation which rely 
on a large heap in a standard paged virtual memory tend to degenerate to poor 
locality of reference so that eventually almost every memory reference produces 
a page fault and slows execution. However, there is a cost to this virtual 
memory scheme: oTab entries must be larger to contain the secondary memory 
information and there will be about a 10% overall execution overhead. 

Even when gigabyte real memories become reality, some form of virtual paged 
memory is still likely to be needed. The above techniques are merely suggestions 
about how object paged virtual memory can be added to xpPAM without affecting 
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its design very much. Anyone who wishes to implement large address spaces 
should review the literature - research is progressing rapidly. 
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4.0 Backtracking and delaying 

O! call back yesterday, bid time return. 

— William Shakespeare, Richard 11, act 3 

The deterministic inference machine is easily extended to allow backtracking by 
adding the backtrack (choice point) stack and reset stack ("trail"). 

4.1 Stacks for backtracking 

The three stacks look like this (growing from the top to the bottom of the page): 
reset 
stack 
( t r a i l ) 

backtrack 
(choice) 
stack 

t o b s — > 

< t o r s 

ptoes-

execution 
( c a l l ) 
stack 

/ / / / 
/ / / / 

/ / / / 
/ / / / 

bottom of stacks 
<-, < — i 

<-, 

V 

top of stacks 
toes > 
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Execution frames marked "////" are frames which are "protected" by the 
backtrack stack (using ptoes). In a stack machine for a conventional language 
like Pascal, these would have been reclaimed on procedure returns; with xpPAM, 

these are reclaimed only if the ptoes doesn't protect them, (described later in 
this section). The back pointers on the execution stack are used to skip over 
these protected pieces on return from predicates. Such back pointers are 
common on conventional machines although they can be avoided - for 
backtracking, they are essential. 

The contents of the reset stack are put there by 

• unification, when a variable becomes instantiated: 
— object's age (pushed last) 
— object address 

• delaying and resuming predicates: 
— special value to indicate a delay (pushed last) 
— object address 

When an uninstantiated variable cell is created (by a new instruction or by n 

annotation), its "age" is recorded. This age decides whether or not information 
will be pushed onto the reset stack when the cell becomes instantiated. The 
"age" is the depth of the backtrack stack when the cell was created. When 
unification instantiates a value cell which is older than the top choice frame, the 
cell's address is put on the reset stack. If the cell is newer, backtracking will free 
it anyway, so there is no need to record its instantiation. Deterministic 
predicates do not create reset stack entries because such predicates do not create 
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choice points. Any new variables created within a deterministic predicate are 
newer than the last choice point. 

For non-deterministic predicate, choice points must be created on the backtrack 
stack using the mkCh ("make choice point") instruction. Each choice point frame 
contains sufficient information to reset the machine to the state it was in when 
the mkCh was executed:12 

• where to go on failure (code segment pointer and offset) (pushed last), 
• cpc, 

• depth of reset stack, 
• execution stack protection point, 
• execution stack depth, 
• non-empty registers (put there by pushB instructions). 
• "age" of the previous backtrack entry (so that cut instructions leave the ages 

of uninstantiated variables correct). 

If a choice point or continuation point is pushed onto a stack, the code pointer 
is always pushed on last. This is so that debugging and tracing can determine 
what is going on (there is no guarantee that, for example, code offsets and object 
pointers have disjoint ranges). Choice point frames are of variable size, 
depending on the number of pushB instructions used to save registers. 

12 Actually, the "age" of the previous choice point must also be recorded if cuts are allowed, so 

that instantiations are properly recorded on the reset stack. Cuts can remove entries on the 

backtrack stack, so the "virtual choice depth" must be saved in backtrack entries. 
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When failure occurs, by a unification failing or by an explicit fail instruction, all 
registers are emptied and the top choice point frame is used to fill the registers. 
The reset and execution stacks are popped to what they were when the choice 
point was created. As the reset stack is popped, its entries are used to reset 
objects to uninstantiated (the age is recovered from the reset stack).'3 Execution 
then resumes at the failure instruction address. 

When backtracking occurs, the execution stack must be restored to what it was 
when the choice entry was made. This means that a return instruction may not 
pop the execution stack if a choice entry needs it - the choice entry "protects" 
the entry in the execution stack [Gabriel et al 1985]. The top of execution stack 
value in the top choice point frame is used to determine whether the execution 
stack can be popped. Each frame in the execution stack has a back pointer to 
the previous frame, skipping frames which are protected by the choice stack. If 
only deterministic predicates are executed, nothing is put onto the choice stack 
and the execution stack grows and shrinks just like the execution stack in a 
conventional machine (Algol, Pascal, etc.). 

The backtrack stack could be embedded in either the execution or the reset 
stack. The WAM combines the backtrack stack with the execution stack by 
threading its entries among the execution entries - I would prefer to combine it 
with the reset stack because both stacks handle information which is only used 

1 3 Destructive assignments can be handled by keeping a pointer to the previous value instead of 

just keeping the object's age. This can be useful for implementing compound objects such as 

arrays (see section 11.0, "Arrays and I/O done logically and efficiently" on page 222) in 

which changes are recorded on the reset stack. 

69 



on backtracking. For clarity of explanation and simplicity of implementation, 
the stack are kept separate. 

Simple instructions improve performance, even for interpreters. Therefore, a 
"call" is several instructions: 

Similarly, "make choice point" is coded: 

pushB ... % one pushB f o r each non-empty r e g i s t e r 
mkCh l a b e l % push the f a i l u r e address, toes, t o r s 

l a b e l : 
popB ... % one popB f o r each saved r e g i s t e r 

For implementing if-then-else, the mkChAt instruction saves the fobs value in the 
indicated register. A later cutAt ("hard cut") pops the choice stack (and reset 
stack) back to the designated choice point; a rmChAt ("soft cut") changes the 
failure address to point to a fail instruction (if the choice point is at the top of 
the backtrack stack, the choice point is removed instead). 

l i n k 
push 
c a l l 

% toes s k i p s over protected frames 
% one push f o r each saved value 

pop 
u n l i n k 

% one pop f o r each saved value 
% reset toes below pro t e c t e d frames 

4.2 Backtracking instructions 

Some men a forward motion love, 

But 1 by backward steps would move. 

- Henry Vaughan, The Retreat, I. 29 
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pushB opl 

Pushes the operand onto the backtrack stack. The operand usually has v 
annotation (in which case the reference count is incremented) or/annotation. 

Pseudo-code: 

*tobs++ = r l /* copy r l to top of stack; increment stack p o i n t e r */ 

popB opl 

Pops the operand from the backtrack stack. The operand must be a register 
with the n annotation. 

Pseudo-code: 

r l = *--tobs /* copy top of stack to r l ; decrement stack p o i n t e r */ 

popBKeep opl 

Pops the operand from the backtrack stack and sets a flag so that a 
subsequent mkCh or mkChAt instruction will reset fobs to the value it had when 
the last failure occurred (failure causes this value to be saved). The operand 
must be a register with the n annotation. 

Pseudo-code: 

r l = *--tobs; /* pop backtrack stack */ 
popbkr->flag = t r u e ; /* set popBKeep happened f l a g on */ 
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mkCh offset 

Makes a choice point so that backtracking will continue at the instruction 
specified by the offset. Pushes toes, ptoes, tors, cont and offset onto the 
backtrack stack. If ptoes is below toes, it gets set to toes. 

Pseudo-code: 

i f (popbkr->flag) [ /* was there a popBKeep i n s t r ? */ 
t o b s , = popbkr->ptr; /* r e s t o r e value put there by f a i l */ 
popbkr->flag = f a l s e ; /* t u r n o f f f l a g */ 

} 
*tobs++ = toes; 
*tobs++ = ptoes; 
*tobs++ = t o r s ; 
*tobs++ = cpc; /* two s l o t s */ 
*tobs++ = pc; /* two s l o t s */ 
i f (ptoes < toes) 

toes = ptoes; 

mkChAt opl, offset 

Makes a choice point and saves information for a subsequent rmChAt or 
cut At. Same as mkCh but additionally creates a cut-point entry containing the 
tobs value which is put into opl (which must be a register with n annotation). 

rmChAt opl, offset 

Removes a specified choice point. Opl must be a register containing a 
cut-point entry (from mkChAt); the stack frame on the backtrack stack has its 
continuation point changed to that given by offset - usually, this is a series 
of popB instructions followed by a f a i l instruction. This instruction is used 
for "soft cuts." 
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cut At opl 

Cuts the choice stack back to a specified choice point. Opl must be a register 
containing a cut-point entry; the backtrack stack is popped to this point (as if 
a series falls were done). This instruction is used for "hard cuts." 

chopBack 
Removes all unnecessary backtrack points from the top of the backtrack 
stack. Each backtrack "frame" whose reset stack pointer is above the top of 
the reset stack can be removed because the choice point did not instantiate 
anything, so no new information will be produced on backtracking. 

fail 
Causes an unconditional failure. All registers are freed and the backtrack 
point is popped — the reset stack and execution stacks are popped to the 
points recorded on the backtrack stack (entries on the reset stack are used to 
un-instantiate variables or to put delay entries back onto the delay queue), 
the registers are loaded from the information in the backtrack stack, and 
execution proceeds at the place stored in the backtrack frame. 

Pseudo-code: 
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f r e e a l l r e g i s t e r s ; 

p C = * - - t o b s ; / * two s l o t s * / 

c p c = * - - t o b s ; / * two s l o t s * / 

t o r s - * - - t o b s ; 

p t o e s = * - - t o b s ; 

t o e s = * - - t o b s ; 

u n i n s t a n t i a t e o r r e t u r n t o d e l a y queue f rom r e s e t s t a c k b a c k t o " t o r s " 

(2 s l o t s e a c h : one f o r o b j e c t , one f o r o b j e c t ' s a g e ) ; 

f r e e e n t r i e s on e x e c u t i o n s t a c k b a c k t o " t o e s " ; 

p o p b k r - > f l a g = f a l s e ; 

p o p b k r - > p t r = t o b s ; / * remember b a c k t r a c k s t a c k p o s i t i o n * / 

4.3 Cost of backtracking 

Deterministic predicates run slightly slower on the full backtracking machine 
than on a purely deterministic machine. There are four overheads: 

• making choice points rather than just branching to a failure address for 
if-then-else. 

• l i n k and u n l i n k instructions, which are not needed for deterministic 
execution (nor are the execution frame back pointers). 

• testing whether an instantiation should push an entry onto the reset stack 
(for deterministic execution, nothing will ever be pushed); similarly for 
recording delay information on the reset stack. 

The first two items can be avoided by a smart compiler, using the switch 
instructions or by using knowledge of such predicates as " = ," " <," not, 

etc. When backtracking is needed for if-then-else, some optimizations of p u s h 

and pushB instructions are possible. The chopBack can also be used before 
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r e t u r n or I C a l l instructions to remove unnecessary choice points (those which 
did not instantiate anything, so they do not need to be retried) [Sahlin 1986]. 

Another possibility is to be able to switch the machine to deterministic mode. 
This would require using a different c a l l instruction (which does not assume 
link and unlink). In this way, xpPAM would function much like a conventional 
machine. 

4.4 Delays 

A delay is handled by using an instruction such as swXVNL or varGoto to detect 
that a value is uninstantiated - a delay r,offset instruction then suspends the 
predicate by saving a thunk (with all the non-empty registers) on the delay list 
associated with the variable and executes a return. 

The calling predicate continues execution until it instantiates a variable which 
caused a delay. The executing predicate is suspended and the delayed predicate 
is resumed. The resumed predicate will eventually return, so information about 
the newly suspended predicate is pushed onto the call stack - the r e t u r n 
instruction will use that information to resume it. The net effect is as if the 
instruction which woke up the delayed predicate had been replaced by link, 
c a l l delayed predicate, u n l i n k and the delayed predicate's r e t u r n had returned 
to the u n l i n k instruction. 

There may be more than one predicate delayed on a variable, so the oldest such 
predicate is resumed and all others are pushed onto the execution stack after the 
suspended predicate. When the delayed predicate returns, the next delayed 
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predicate is resumed and so on until the suspended predicate is reached and 
resumed. This all happens automatically with the r e t u r n instruction. 

When a predicate delays it must also be recorded on the reset stack so that it 
can be removed from the delay list on backtracking - when a delayed predicate 
is woken, it is recorded a second time on the reset stack so that backtracking 
can put it back on the delay list. An optimization similar to tail recursion 
optimization is performed: if no choice point has been created since the original 
delay entry was created, both entries are removed from the reset stack (shuffling 
the stack down if necessary). 

Putting all this together, let us trace 

f ( b ) . 
f ( c ) . 
?- X * a , X * b , f(X) , X + d. 

which is compiled to (X is in register 0): 

% reg 0 = X 
1 eq n l , a % reg 1 = a 
2 l i n k 
3 push vO % save X 
4 c a l l V / 2 % c a l l not-equal(X, 
5 pop nO Jo r e s t o r e X 
6 u n l i n k 

% reg 0 = X 
7 eq n l , ' b ' % reg 1 = 'b' 
8 l i n k 
9 push vO % save X 

10 c a l l V / 2 % c a l l not-equal(X, 
11 pop nO % r e s t o r e X 
12 u n l i n k 
13 l i n k 
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14 p u s h vO % s a v e X 

15 c a l l f / 2 % c a l l f ( X ) 

16 pop nO % r e s t o r e X 

17 u n l i n k 

18 I C a l l V / 2 % l a s t c a l l n o t - e q u a l ( X , ' d ' ) 

V / 2 must be a separate predicate. If it were expanded in-line, it would cause 
a delay in the entire predicate, rather than just in the inequality.14 

21 t e s t s k i p f O , f l % d e l a y s i f n e c e s s a r y 

22 f a i l % r e v e r s e s u c c e s s / f a i l u r e 

23 r e t u r n 

f / 2 i s 1 5 

31 pushB vO 70 s a v e 1s t a r g 

32 mkCh e l s e % make c h o i c e p o i n t 

33 eq f O , ' b ' 

34 r e t u r n 

35 e l s e : popB nO 

36 eq f 0 , 1 c ' 

37 r e t u r n 

When the first 'V is executed, it delays because its first argument (X in register 
0) is uninstantiated. A delay object is built, containing the values of the 
registers (X and ' a ' ) and set to redo the t e s t s k i p instruction (#21). X points to 
this object. A return is simulated. Execution continues to X?tb which also delays 

1 4 The current implementation has a built-in for ' /2 which delays as necessary. Experience 

with this built-in lead to the definition of testskip which has not equals as a special case. 

1 5 This is not very optimized; a test should be first done for the parameter being instantiated, 

thereby avoiding the creation of choice point. 



- the delay object is added to the list pointed from x. Finally, f (X) is executed 
which creates a choice point and instantiates X=b. At this point, we have the 
following situation for the stacks and x. 

reset <- backtrack execution 

=>35 =>16 

V V 
X >(=>21, (X,B)) >(=>21, (X,c)) 

Note that the simulated returns have popped the execution stack from the two 
calls to ±. We haven't reached the r e t u r n instruction, so the return information 
hasn't been popped (even if the r e t u r n had been reached, it still would not be 
popped because the choice point "protects" it). The notation =>2l means that 
there is a code pointer to instruction 21. 

At this point, the first delay entry pointed from x is tried (it is removed from the 
list pointed from x but left on the reset stack, marked as having been re-started). 
It succeeds. The next delay entry is tried but it fails. Backtracking rebuilds the 
delay entries for X and then jumps to instruction #35. The popB restores the 
saved register environment (just one register in this case) so that the machine is 
now in the same state as when the choice point was created (including delay 
entries). From here on, execution is deterministic because there is no choice 
point left on the backtrack stack (the reset stack entries will also disappear as 
the ' V's are resumed). 
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To allow or-delays, one or more delayOr instructions may precede a delay 
instruction. They add information to the delay list entry which is finished by 
the delay instruction. When the delay instruction is executed, it places the 
delayed predicate on the delay lists for all the variables which can cause it to 
resume. 

As another example, consider append The code is: 

% ?- proceed append(A?, B, C). 
% ?- proceed append(A, B, C?). 
% append(X.A, B, X.C) :- append(A, B, C). 
% append([], X, X). 

code(append, 3, [ 
/* 0 */ c o n s t ( [ ] ) ] , 

[swXVNL(0.f, 3.n, O.n), % LI = X . A 
b u i l t i n ( 3 ) , /* on f a i l u r e : e r r o r / 3 */ 
g o t o ( H V a r ) , /* var */ 
g o t o ( H N i l ) , /* [] */ 

l a b e l ( H L s t E l ) , /* _._ */ 
e q l s t ( 2 . f , 3.f, 2.n), % L3 = X . C 

% argO: A (already there) 
% a r g l : B (already there) 
% arg2: c (already there) 

I C a l l S e l f , % append(A, L2, C) 
l a b e l ( l l N i l ) , 

e q ( l . f , 2 . f ) , % L2 = L3 
re t u r n , 

l a b e l ( H V a r ) , 
nonvarGoto(2, mkchl), 
delayOr(0, 0), % delay(L0, 
delay(2, 0), % L2) 

lab e l ( m k c h l ) , 
pushB(O.v), pushB(l.v), pushB(2.v), 
mkCh(mkch2), 
e q l s t ( 0 . f , 3.n, O.n), % LI = X . A 
g o t o ( l l L s t E l ) , 

label(mkch2), 
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popB(2.n), popB(l.n), popB(O.n), 
eq(0.f, O.c), % LI = [] 
g o t o ( l l N i l ) ] ) . 

The code from l a b e l ( H V a r ) on handles delays. The delay restarts at the 
beginning so that the swXVNL instruction will be re-tried. The code from 
label(mkchi) on sets up for backtracking. Each choice point instantiates the 
first argument to one of the possibilities (a list element or nil) then jumps to the 
deterministic code for that case. 

4.5 Cost of delaying 

The current implementation has a slight cost when instantiating a variable: it 
checks to see if the variable has caused a delay. This can be changed by making 
a new object type: "uninstantiated variable which caused a delay." As 
mentioned earlier, adding new object types causes no slowdown because it 
results in just adding extra cases to a branch table. 

Currently, when unification instantiates a variable, a flag is set to indicate that 
a delayed predicate is eligible for waking up. This means that every xpPAM 
instruction must check to see if it should be preempted. This is potentially 
expensive. There are three possibilities: 

• Only check for woken predicates at expensive instructions, such as call or 
return. 

• Allow instructions to be halted in the middle and later resumed. This adds 
significantly to the abstract machine's complexity. 
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• Do complex unifications by a user-defined "eq" predicate (see section 
3.13, "User defined unification" on page 58.). This is probably the best 
solution because it turns unification into a non-atomic operations which can 
be delayed at any time by already existing mechanisms. 

The overhead for providing delays is quite low: about 1%. Because delays can 
speed up some predicates by an order of magnitude or so, the cost is 
worthwhile. 

4.6 Weak delays: dynamic reordering of clauses 

The ancestor predicate is inefficient if the first argument is uninstantiated: 

ancestor(Ancestor, Descendent) :-
parent(Ancestor, Descendent). 

ancestor(Ancestor, Descendent) :-
parent(Ancestor, Z), 
ancestor(Z, Descendent). 

?- ancestor(X, george). 

In the second clause, parent with two uninstantiated variables will repeatedly 
generate all parent relations by backtracking. Changing parent to delay until 
both parameters are instantiated would prevent this and give efficient execution, 
but would also cause ancestor to delay permanently if it is called with two 
uninstantiated variables, for example when computing ancestors beyond 
grandparent. To handle this, xpPAM allows an associating a "cost," 
proportionate to the size of the predicate's solution space, with each delay 
instruction. For example, if there are 100 parent-child relationships, an average 
of 2 parents per child and 3 children per parent, the code would be: 
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varGoto rO, LI 
varGoto r l , L2 

LO: ... code f o r both rO and r l i n s t a n t i a t e d . 
r e t u r n 

L I : varGoto r l , L3 
delayCost 2 % delay parmO, cost=2 
delay rO, L l a % resume at next i n s t r 

L l a : notvarGoto rO, LO % parmO p o s s i b l y var 
... code f o r rO u n i n s t a n t i a t e d and r l i n s t a n t i a t e d . 

L2: delayCost 3 % delay parml, cost=3 
delay r l , L2a 

L2a: notvarGoto r l , LO 
... code f o r rO i n s t a n t i a t e d and r l u n i n s t a n t i a t e d . 

L3: delayCost 100 % delay parml, 
delayOr r l % or parm2, cost=100 
delay rO, L3a 

L3a: varGoto rO, L2 
notvarGoto r l , LO 

... code f o r r l u n i n s t a n t i a t e d and r l u n i n s t a n t i a t e d . 

As before, the machine resumes clauses when their arguments are sufficiently 
instantiated. If all predicates are blocked, the least expensive one is resumed. 
The machine thereby dynamically decides the least expensive way to continue a 
non-deterministic computation. 

Ordinary delays could also be treated something like weak delays with extremely 
high costs. Usually, when computation halts with some predicates still delayed, 
the answer is not "yes" or "no" but "don't know." Instead, the delayed 
predicates could be allowed to resume, to try to get to a definite answer. 
Unfortunately, this will often lead to infinite loops. 
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4.7 Delay instructions 

delay opl, offset 

The object pointed by opl is flagged as having caused a delay (the object 
must be an uninstantiated variable). A delay object is created (pointed to by 
the opl object) with sufficient information to restart the predicate at offset. 

If a delayOr instruction had been executed, its delay object is linked in. 
Finally, a r e t u r n is simulated. 

delayOr opl, offset 

The object pointed by opl is flagged as having caused a delay. A delay 
object is created (pointed to by the opl object) with sufficient information to 
restart the predicate at offset. A flag is set so that a subsequent delay 
instruction will link in this delay object. Execution continues at the next 
instruction. 

delayRec opl, offset 

Like delay except that a delay is made if an uninstantiated variable is found 
anywhere within the operand. The delay test is recursive on compound 
objects (list elements, etc.). 

delay Cost opl, cost 

Like delay but with an associated cost. See section 4.6, "Weak delays: 
dynamic reordering of clauses" on page 81) 
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mkThunk opl, opl, ftregs 

Creates a thunk in opl from opl The operand may be either a constant (a 
code segment) or a thunk. The thunk is constructed from the first jf-regs 

registers plus any registers specified by the operand (if it is a thunk). For 
more details, see section 6.4, "Thunks, lazy evaluation and higher order 
functions" on page 127. 

84 



5.0 Compiling Prolog 

There are only two qualities in the world: 

efficiency and inefficiency ... 

— George Bernard Shaw, John Bull's Other Island, act 4 

XpPAM is designed to make compilation easy. My simple compiler from Prolog to 
xpPAM is about 600 lines of Prolog code - a full compiler from xpProlog to 
xpPAM is about twice that, to take care of delays, if-then-else, etc. Optimization 
requires considerably more analysis which is essentially independent of the 
target machine (5000 or so lines of Prolog16). 

Compiling from Prolog to xpPAM is somewhat different from compiling to WAM. 
In particular, allocating "local" and "global" variables - is a problem which 
does not exist with xpPAM. Some approaches to compiling Prolog to WAM are 
given in [Debray 1985], [Debray and Warren 1986] and [Van Roy 1984]. 

1 6 This number is derived from the compiler which is described later in this section. About 

2000 lines of Prolog did most of the optimizations described here; I estimate that the full 

compiler would be about twice as large, for the same reason that the full x p P r o l o g compiler 

is about twice as large as the simple Prolog compiler. 
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Three types of optimization are possible for logic programs: 

Clause optimizations include common expression elimination and removing 
unnecessary register copying. These are fairly straightforward — they are 
similar to "peephole" optimizations in conventional compilers. 

Predicate optimizations mainly consist of detecting determinism and common 
sequences of goals among clauses; in effect, turning clauses into if-then-else 

form where possible. To do a good job, these must have knowledge of 
predicates such as equals and not equals. 

Global optimization include flow analysis, mode inferencing, delay inferencing 
and combining predicates (to avoid the overhead of calling "helper" 
predicates). These can become quite involved, although they are 
considerably simpler than similar techniques for conventional programming 
languages because of the lack of destructive assignment. 

The programmer can help the optimizer. As predicate optimization consists 
partly of turning clauses into if-then-else form, the programmer can, if he 
wishes, use if-then-elses from the beginning. However, the programmer's style 
may use conventional clause form without penalty. 

Although some Prolog predicates can be run "backwards" (such as append for 
splitting lists), many cannot. The programmer may indicate this to the 
compiler. In the absence of full global type inferencing, the compiler must still 
generate code for dynamically detecting uninstantiated variables but it can save 
considerably on the amount of code generated and help debugging by generating 
calls to error instead of backtracking and failing. 
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There is almost no limit to the amount of optimization that can be done. For 
example, l i n k and u n l i n k instructions can be left out if global analysis 
determines that the predicate is never called in the context of a choice point. 
However, such a level of optimization is probably not desirable because these 
instructions are not very expensive and because such optimizations require 
substantial checking whenever a new predicate is added. 

In the following discussion, clause, predicate and global optimizations are 
described as separate processes. However, they may often be combined. 

The compiler is written entirely in Prolog. The raw code for a predicate is 
stored in an internal form which is either compiled right away or compiled on 
first use. For example, 

pred(n, A, B.C) :- z o t ( A ) . 
pred(a, [ ] , [ ] ) . 

is stored internally as: 

[[[const.pred, c o n s t . [ ] , name.'A', list.(name.'B').(name.'C')], 
[const.zot, name.'A']], 

[[const.pred, const, a, c o n s t . [ ] , c o n s t . [ ] ] ] ] 

The entire predicate is turned into something like the following, where 
predClauses is the internal form of the clauses (described in the previous 
paragraph): 
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p r e d ( P l , P 2 , . . . , P n ) : -

c o m p i l e f p r e d C l a u s e s . Name, N A r g s , C o n s t L i s t , C o d e ) , 

/ * c o m p i l e i n s t a n t i a t e s Name, N A r g s , C o n s t L i s t , Code * / 

r e p l a c e P r e d ( p r e d ( P l , P 2 , . . . , P n ) , Name, N A r g s , C o n s t L i s t , Code) 

r e p l a c e P r e d ( P r e d , Code) : -

addCode(Name, N A r g s , C o n s t L i s t , C o d e ) , 

c a l l ( P r e d ) . % c a l l s c o m p i l e d v e r s i o n o f P r e d 

Note that the call to replacePred is tail recursive. AddCode replaces the body of 
pred with the newly compiled code. ReplacePred then tail recursively calls that 
code. This extra step is necessary because otherwise the machine would be 
attempting to execute code while it was being replaced. 

5.1 Unoptimized compiling of a predicate 

For simplicity, I will consider only clauses without any imbedded "or"s or 
if-then-elses. Predicates containing "or"s can always be transformed by 
producing auxiliary predicates. For example: 
p ( A , B) : - q ( A , Z ) , ( r ( A , B) ; s ( Z ) ) , t ( A ) . 

can be transformed to 

p ( A , B) : - q ( A , Z ) , p 2 ( A , B , Z ) , t ( A ) . 

p 2 ( A , B , _ Z ) : - r ( A , B ) . / * _ Z i s u n u s e d * / 

p 2 ( _ A , _ B , Z) : - s ( Z ) . / * _ A , _ B , a r e u n u s e d * / 

If-then-elses are generated as an optimization and are treated later. 

The general form of a compiled predicate is: 
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make choice point 
first clause 

modify choice point 
second clause 

modify choice point 
third clause 

remove choice point 
last clause 

If there is only one clause, choice points are not required. If there are two 
clauses, there are only "make choice point" and "remove choice point" 
instructions (no "modify choice poinf's). 

The general compiled form of a clause is 

unify arguments in head 
build arguments for first goal 
call first goal 
build arguments for second goal 
call second goal 

build arguments for last goal 
call last goal tail recursively 
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If there are no goals, a "return", instruction is generated after the arguments in 
the head are unified. If the last goal is to itself, a last-call-self (in effect, goto) 

instruction is used. 

5.2 Basic compiling of a clause 

At the beginning of a clause, the first n registers are occupied by the n 

arguments to the predicate. All other registers are assumed to be empty. As 
described in section 3.2, "General registers" on page 32, if there are more 
arguments than machine registers, the extra arguments must be combined into a 
structure in the last argument. 

Each argument which is a simple variable name is assigned to the appropriate 
register, except when the name is used elsewhere in the head (this prevents some 
pathological cases for trace analysis; see section 5.5, "Optimized compiling of a 
predicate" on page 98). All other names are assigned sequentially from the 
unused registers. For example, in 
p(abc, A, Z, B, X.Y, B, X) :- q(xyz, X, X, A.C), r ( Z , C). 

the following register assignments are produced from the head (_rn is a 
temporary name for register n): 

Register Variable Comment 
0 _r0 abc is treated as an expression 
1 A 
2 Z 
3 _r3 B is also used in another argument 
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Register Variable Comment 
4 _r4 
5 _r5 
6 _r6 
7 B 
8 X 
9 Y 

These register assignments will change as the goals are processed. C is not used 
in the head and therefore has no initial register assignment. 

The clause is transformed into a series of equalities, for A=(B.c). 

p(_rO, _ r l , _ r 2 , _ r 3 , _ r 4 , _ r 5 , _r6) :-
_r0 = abc 
_ r l = _ r l /* A */ 
_r2 = _r2 /* Z */ 
_ r 3 = _r7 /* B */ 
_r4 = _r8 . _r9 /* X.Y */ 
_r5 = _r7 /* B */ 
_r6 = _r8 /* X */ 
/* r e g i s t e r assignments from here have not yet been determined */ 
s t a r t C a l l ( 4 ) /* q has 4 parameters */ 
_r0 = xyz 
_ r l = X 
_r2 = X 
_r3 = A . C /* _ r c = A.C */ 
c a l l q/4 
s t a r t L a s t C a l l ( 2 ) 
_r0 = Z 
_ r l = C 
l a s t C a l l ( r / 2 ) 
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More complex expressions are broken down into individual unification steps 
(this is sometimes called "partial evaluation." For example, [A, (B.C),D] is 
handled by 

_templ = (A._temp2) 
_temp2 = (_temp3 . _temp4) 
_temp3 = (B.C) 
_temp4 = (D.[]) 

where the temporaries are also registers. For calls, the order is reversed to build 
up an argument: 

_templ = (B.C) 
_temp2 =.(D.[]) 
_temp3 = (_templ . _temp2) 
_temp4 = A._temp3 

Once everything has been assigned, the list is scanned from beginning to end, 
adding n (new) every time a variable name is met for the first time; it is then 
scanned from end to beginning, adding/(free) every time a variable is met for 
the last time. Each startCall or startLastCall clears all the "new" indicators but 
not the "free" indicators — it gets a list of all the variables needed after it 
(created during the backward scan and pruned during the forward scan). It is 
possible to have both "new" and "free" for the same variable; typically this 
happens when an anonymous variable ("_") is used. (This step is actually 
combined with the following step, for efficiency.) Variables with neither/nor n 

already have a value which is needed later. 

p(_rO, _ r l , _ r 2 , _ r 3 , _ r 4 , _ r 5 , _r6) :-
f._rO = abc 
f . _ r l = _ r l /* A */ 
f._r2 = _r2 /* Z */ 
f._ r 3 = n._r7 /* B */ 
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f._r4 = (n._r8) . (n._r9) 
f. _ r 5 = f._r7 
f._r 6 = _r8 
s t a r t C a l l ( 4 , [ f . Z , n.C]) 
n._rO = xyz 
n . _ r l = X 
n._r2 = f.X 
n._r3 = (f.A) . (f.C) 
c a l l ( q / 4 ) 
s t a r t L a s t C a l l ( 2 ) 
n._rO = f.Z 
n._rO = f.C 
l a s t C a l l ( r / 2 ) . 

/* X.Y */ 
/* B */ 
/* X */ 

/* w i t h l i s t of v a r i a b l e s to save */ 

/* A.C (C was "new" at s t a r t C a l l ) */ 

The variables used within calls can now be assigned registers. A call is 
transformed into a series of pushs, followed by the c a l l , followed by pops into 
the appropriate registers for the following call. Sometimes, registers must be 
moved to make room for the parameters for a call. Some equalities can be 
eliminated or turned into f r e e or new instructions. The example now becomes: 

p(_rO, _ r l , _ r 2 , _ r 3 , _ r 4 , _ r 5 , _r6) :-
f._rO = abc 
/* _ r l = _ r l */ /* A */ 
/* _r2 = _r2 */ /* Z *./ 
f._ r 3 = n._r7 /* B */ 
f._r4 = (n._r8) . (n. _r9) /* X.Y */ 
f._r 5 = f._r7 /* B */ 
f._r6 = _r8 /* X */ 
l i n k /* s t a r t C a l l ( 4 , [f.Z,n.C]) 
push(f._r2) /* Z: not used i n c a l l */ 
push(n._r4) /* C (new) */ 
n._rO = xyz 
n._r5 = f . _ r l /* get A out of the way *•/ 
n . _ r l = _r8 /* X */ 
n._r2 = f._r8 /* X */ 
n._r3 = ( f . _ r 5 ) . ( f . _r4) /* A.C */ 
c a l l ( q / 4 ) 
u n l i n k 
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p o p ( n . _ r l ) / * C * / 

p o p ( n . _ r O ) /* Z * / 

/ * s t a r t L a s t C a l l ( 2 ) * / 

/ * n . _ r O = f . _ r O * / / * Z : a l r e a d y i n r e g 0 * / 

/ * n . _ r l = f . _ r l * / / * C : a l r e a d y i n r e g 1 * / 

l a s t C a l l ( r / 2 ) . 

Note how the pops get the arguments for a call into the correct registers. The 
only time that registers must be moved is for the first call in a predicate (for 
example, A had to moved in the above code). In all cases, pushes and pops will 
produce the correct effect. 

The final stage transforms this into the form used by the built-in code predicate 
by collecting the constants (note that the code predicate reverses the order of the 
register number and its annotation - there is no good reason for this, beyond 
making the program for processing code a little simpler): 

c o d e ( P , 7, / * p / 7 * / 

/ * c o n s t a n t 0 * / [ c o n s t ( a b c ) , 

/ * c o n s t a n t 1 * / c o n s t ( x y z ) , 

/ * c o n s t a n t 2 * / c a l l ( q , 4 ) , 

/ * c o n s t a n t 3 * / c a l l ( r , 2 ) ] , 

e q ( 0 . f , O . c ) , /* abc * / 

/* A * / 

/* Z * / 

e q ( 3 . f , 7 . n ) , /* B * / 

e q l s t ( 4 . f , 8 . n , 9 . n ) , /* X . Y * / 

e q ( 5 . f , l.f), /* B * / 

e q ( 6 . f , 8 . v ) , /* X * / 

l i n k , 

p u s h ( 2 . f ) /* Z : n o t u s e d i n c a l l * / 

p u s h ( 4 . n ) , /* C (new) * / 

e q ( 0 . n , l . c ) , /* a r g 0 = x y z * / 

e q ( 5 . n , l . f ) , /* g e t A o u t o f t h e way * / 

e q ( l . n , 8 . v ) , /* a r g 1 = X * / 
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e q ( 2 . n , 8 . f ) , 

e q l s t ( 3 . n , 5 . f , 4 . f ) , 

c a l l ( 2 . c ) , 

p o p ( l . n ) 

p o p ( O . n ) , 

u n l i n k , 

/ * X * / 

/ * A . C * / 

/ * q / 4 * / 
/ * C * / 

/ * Z * / 

l C a l l ( 3 . c ) 

/ * Z : a l r e a d y i n r e g 0 * / 

/ * C : a l r e a d y i n r e g 1 . * / 

/* r/2 */ 

If any delay annotation exists (either by "?"s or from proceeds), they can be 
easily incorporated by adding v a r g o t o , n o n v a r g o t o and d e l a y o instructions, as 
appropriate. These will be discussed in more detail below. 

5.3 Optimized compiling of a clause 

The above method of compiling a clause can produce some inefficiencies: 

• Values may be moved unnecessarily between registers. Above, there was no 
need to move B from register 3 to register 7 when unifying the head of the 
clause. As another example, 
fo.o(A) : - A=B, C=x, B=C. 

can be optimized to just f o o ( x ) (which is actually handled as 
f o o ( _ r O ) : - _rO=x). 

• Common expressions are not noticed. For example, 
o r d e r e d ( A . B . C ) : - A =< B, o r d e r e d ( B . C) is transformed to 
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ordered(_rO) :- _rO = (A._templ), 
_templ = (B.C), 
A =< B, 
_temp2 = (B.C), 
ordered(_temp2). 

But _temp2 is the same as _templ and can be eliminated. The compiler code 
for detecting these common expressions uses uninstantiated variables in an 
interesting manner. Each expression is replaced by an uninstantiated 
variable. If that expression is found later, it is replaced by a new temporary 
and _temp=expr is added to the body; if the expression is not found later, the 
uninstantiated variable is replaced by its original value. It should be noted 
that the expressions are always very simple because everything has already 
been broken down to either simple "equals" or "equals list element" form. 

• The sequence of instructions 

new(_rn), 

eq(_rn,X) 

can have the "new" removed and the "eq" replaced by "eq(_rn.n,x)." 

• Some goto or last call instructions can be replaced by their target 
instruction(s). 

These optimizations can be done in a straightforward way although they are not 
all trivial. Sometimes, they can be combined with the other steps, to avoid extra 
passes over the clause. 
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5.4 Spilling registers within a clause 

The previous sections have assumed that there are enough registers in xpPAM to 
hold all the variables in a clause. Although 30 is a rather large number for 
predicates written by humans, it is possible that machine-generated predicates 
could contain many more. 

The push and pop instructions can be used to save and restore registers using the 
execution stack. The code generation scheme above makes the l i n k and push 
instructions for a call as late as possible. If register spilling is needed, the l i n k 

must be made earlier (if there is a l i n k ) and pushes must also be made earlier. 
In this way, some registers may become free and assignable to other variables. 

If there are still not enough registers, more drastic action must be taken. 
Consider compiling 
p(A.B, C D ) :- q(A.C), r(A.B.C.D). 

on a machine with only four registers. The code would be: 
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e q l s t f0,n2,n3 /* arg 0 = A.B */ 
l i n k 
push f3 /* save B */ 
e q l s t fI,n3,n0 /* arg 1 = C D */ 
push v2 /* save A */ 
push v3 /* save C */ 
push fO /* save D */ 
e q l s t n0,f2,f3 /* arg 0 = A.C */ 
c a l l q/1 /* q(A.C) */ 
pop n3 /* r e s t o r e D */ 
pop n2 /* r e s t o r e C */ 
e q l s t n0,f2,f3 /* rO = C D */ 
pop n2 /* r e s t o r e A */ 
pop n3 /* r e s t o r e B */ 
e q l s t n0,f0,f3 /* rO = B.CD */ 
e q l s t n0,f0,£2 /* rO = A.B.CD */ 
un l i n k 
I C a l l r/1 

Clearly, the pushing and popping on the execution stack can become quite 
complicated. To simplify this, an arbitrary element on the stack can be accessed 
by the gete instruction. Using gete the execution stack can be treated much 
like a stack frame with local variables in a conventional stack machine. 
Unneeded entries on the stack can be removed by pop x 3 l which pops the value 
and discards it. 

5.5 Optimized compiling of a predicate 

One of the most important optimizations is to detect potentially deterministic 
situations and transforming them into if-then-elses. If this is not done, 
unnecessary choice points are created. Not only are these expensive to create 
and delete but they also result in unnecessary computations on backtracking. 
Optimization should produce code without any choice points when a predicate is 
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called with all arguments sufficiently instantiated - in such situations, no new 
information is produced by re-trying the predicate (it would simply succeed 
again, or fail if there were no other way to succeed). 

Detecting if-then-else situations requires first putting the clauses into "standard 
form" and then computing "traces." A trace is a "most general form" for the 
parameters of a clause - it is used for finding potentially deterministic parts. 
For example, consider 

(1) tn( [ ] , M, M ) . 

(2) m(M, •[], M ) . 

(3) m ( X . A , Y . B , X .M) : - X=< Y, m(A, Y . B , M ) . 

(4) m ( X . A , Y . B , Y . M ) : - X > Y , m ( X . A , B, M) 

The traces are: 

(1) [ ] , _ 
(2) _ , [ ] , [] 

(3) _ . 

(4) _ . 

The traces can be partitioned on the first argument: 

[] ( l ) 
(2) 

_ . _ ( 3 ) , (4) 

Clause 2 can match anything, including [ ] and so it must be placed in an 
alternate which is a non-deterministic choice. The other clauses can be placed in 
a switch which is deterministic if the switch value is instantiated. This results in 
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a l t e r n a t e 
s w i tch _rO 

case [ ] : 
clause 1 

case X.A: 
a l t e r n a t e 

clause 3 
e l s e 

clause4 
end-alternate 

end-switch 
e l s e 

clause 2 
end-alternate 

This can only be done if the compiler can re-arrange the order of the clauses 
(valid in a pure logic programming language). 

We can make m deterministic by changing clause 2: 

(1) m([], M, M). 
(2) m(X.A, [ ] , X.A). 
(3) m(X.A, Y.B, X.M) :- X=< Y, m(A, Y.B, M). 
(4) m(X.A, Y.B, Y.M) :- X > Y, m(X.A, B, M) 

The partitioning on the first argument is: 

[] ( l ) 
(2) , ( 3 ) , (4) 

The second set can be further partitioned by the second parameter: 

[] (1) 
(3) , (4) 
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Clauses 3 and 4 can be partitioned because "=<" and ">" are disjoint. This 
results in 

switch _r0 
case [ ] : 
case X.A: 

/* CD */ 
/* ( 2 ) , ( 3 ) , (4) */ 

switch _ r l 
case [ ] : 
case Y.B: 

/* (2) */ 
/* O), (4) */ 

i f X =< Y 
clause 3 

e l s e 
clause 4 

end-switch 
end-switch 

Some care must be taken in analyzing traces. A case may not contain a variable 
which was "bound" by a earlier case. For example, na'ive analysis of 

foo(X.A, X.B) :- g o a l l ( X ) . 
foo(X.A, Y.A) :- goal2(X,Y). 

would produce 

switch _ r 0 
case X.A: 

switch _ r l 
case X.B: 

a l t e r n a t e 
g o a l l ( X ) 

e l s e 
goal2(X,X) /* wrong! */ 

end-alternate 
end-switch 

end-switch 

instead of 
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s w i t c h _ r O 

c a s e X . A : 

s w i t c h _ r l 

c a s e _ t l . B : 

a l t e r n a t e 

_ t l = X , g o a l l ( _ t l ) 

e l s e 

g o a l 2 ( X , _ t l ) 

e n d - a l t e r n a t e 

e n d - s w i t c h 

e n d - s w i t c h 

This could be taken care of by an analysis of "bound" variables when 
generating the cases, but the analysis is rather complicated. Instead, the 
compiler relies on the clause compiler guaranteeing that each variable appears in 
at most one functor. This can result in some unnecessary register moving. In 
practice,, the unnecessary moves (which are cheap) do not happen very often; 
they can be removed by a second pass of the peephole optimizer. 

The traces are used to turn the predicate into a tree of alternates 

(non-deterministic) and switches (deterministic). This is done repetitively, one 
layer of the parameter at a time (for example, A . B . C has three layers, so the 
process could be repeated up to three times). At each stage, the parameter 
which produces the largest number of partitions is chosen — if there are any 
delay ("?") notations then only the parameters so marked are considered 
because all other parameters are assumed to be called with uninstantiated 
variables. 

Once the predicate is transformed entirely into a tree of alternates and switches, 

it is optimized so that alternates with only one choice (no else) are replaced by 
their single choice. 
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The final stage transforms the tree of alternates, switches and tests into xpPAM 

machine code. Alternate is transformed to 

mkCh l a b e l 1 

pushB 0 

pushB n 

... f i r s t c h o i c e ... 

l a b e l 1 : popBKeep n 

popBKeep 0 

mkCh l a b e l 2 

l a b e l 2 : ... s e c o n d c h o i c e ... 

l a b e l n : popB n 

popB 0 

... l a s t c h o i c e ... 

A switch is a bit more complex than an alternate because it must provide for 
both a deterministic and a nondeterministic case. It uses the swXVNL and e q s k i p 

instruction. For example 

s w i t c h _ r 0 

c a s e [ ] : c l a u s e 1 

c a s e ' a 1 : c l a u s e 2 

c a s e 1 b ' : c l a u s e 3 

c a s e ' c ' : c l a u s e 4 

e n d - s w i t c h 

becomes 
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swXVNL 0 
goto atom /* i t ' s not a l i s t element, n i l or v a r i a b l e */ 
goto var /* i t ' s a v a r i a b l e */ 
goto n i l /* i t ' s [] */ 
f a i l /* i t ' s a _._ */ 

n i l : 
c lause 1 /* t h i s w i l l c o n t a i n a " r e t u r n " or " l a s t c a l l " */ 

atom: 
caseGoto 0 
c a s e ( f a i l ) /* not [ ] , V , V or 'c' */ 

case 'a',c2 
case 'b',c3 
case 'c',c4 

case-end 
c l : clause2 /* each clause ends w i t h a " r e t u r n " or " l a s t c a l l " */ 
c2: clause3 
c3: clause4 

/* n o n - d e t e r m i n i s t i c case ... */ 
var: 

make choice a l t l 
eq 0,[] 
goto n i l 

a l t l : 
modify choice a l t 3 
eq 0,'b* 
goto c2 

a l t 2 : 
modify choice a l t 3 
eq 0,'b' 
goto c3 

a l t 3 : 
remove choice 
eq 0,'c' 
goto c4' 

where make choice, modify choice and remove choice are the code sequences as 
given for alternate above. An alternative to the above code would be 
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caseGoto 0 
case(var) 
c a s e ( f a i l ) /* not [ ] , V , ' b ' or V * / 

case [ ] , n i l 
case 1 a',c2 
case 'b 1,c3 
case 'c',c4 

case-end 

The first form would be preferred if "[ ]" were more common; the second form 
if less common. (Incidentally, the caseGoto could have been synthesized from 
eqskipS.) 

5.6 Shallow backtracking 

The above compilation of if-then-else will execute slower than similar code on a 
conventional machine. Better if-then-else code is: 

• Test for uninstantiated variables. 
• Push all active registers onto the backtrack stack. 
• Push machine state and "else" address onto the backtrack stack. 
• Create choice point. 
• Call the test predicate 
• On success: remove the backtrack entries and cut the backtrack stack using 

rmChCut. 

• On failure: pop the backtrack stack entries. 
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Note that no registers are pushed onto the execution stack: the backtrack stack 
is used for them. Thus, the only overhead in an if-then-else is in testing for 
uninstantiated variables and in creating the choice point. 

The test for uninstantiated variables can be removed if we know that the test 
will not instantiate anything (this can be detected by a method similar to that 
which automatically generates proceed annotations). The test predicate itself 
can also be transformed to have its own delays. 

5.7 Global optimizations 

Very often a number of predicates are used together as a module. For example, 
quick-sort typically has a partition predicate which is used only by quick-sort. 

When the compiler knows exactly how a predicate is called, further 
optimizations are possible: 

• If the helper predicate is not recursive, it can be substituted into the body of 
the calling predicate (this is especially useful for built-in predicates such as 
arithmetic and comparison). For example: 

p ( A , B) : - q ( B , X ) , r ( X , A ) . 

q ( X l , X2) : - s ( X l ) , t ( X 2 ) . 

can be replaced by: 

p ( A , B) : - s ( B ) , t ( X ) , r ( X , A ) . 
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However, some care must be taken. If q has any delays in it, this 
substitution can not be done because the delay would take effect for 
predicate p instead of just q. 

• The assignment of registers to the helper predicates can be changed to be 
more efficient for the calling predicate. For example, in: 

p(A, B, C, D) :- q(a, A, B, C, D). 

the arguments to q can be passed in registers 4, 0, 1, 2, 3 so that there is no 
need to move A from register 0 to register 1, B from register 1 to register 2, 
etc. 

• Delays can be propagated outwards. For example, in: 

p(X, Y, Z) :- X < Y, q(Z). 
p(X, Y, Z) :- X >= Y, r ( Z ) . 

Delay tests could be done at the beginning of p (indicated by ?-proceed 
p(?>?>-)) so that a special non-delaying version of the inequality tests could 
be used. In some cases, this also allows removing tests for uninstantiated 
variables from if-then-elses. However, care must be taken so that possible 
solutions are not eliminated - in this example, the optimization could only 
be done if predicates q and r do not cause their argument to become 
instantiated. 

• Some cases of garbage collection can be done explicitly. See [Kluzniak 1987] 
and [Bruynooghe 1986]. 
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5.8 Compiling a predicate with delays 

Predicates with delays only slightly complicate the compiler. As mentioned 
above, the delay annotations are used to restrict which parameters are used for 
computing traces. The delay annotations can be carried through to the final 
code generation stage. At this point, they can occur in the following situations: 

• As part of an eq, e q s k i p , e q l s t or c a s e G o t o instruction. N o n v a r G o t o and 
d e l a y instructions are added. For example e q l s t v 0 ? , v l ? , n 2 would become 

n o n v a r G o t o v O , l a b e l 1 
d e l a y v O , l a b e l l 

l a b e l l : n o n v a r G o t o v l , l a b e l 2 

d e l a y v l , l a b e l 2 

l a b e l 2 : e q l s t f O , n l , n2 

• As part of a swXVNL instruction. If it is the first operand, the uninstantiated 
variable situation is already detected. Thus, swXVNL f 0 ? , n i , n 2 would 
become 

s w i t c h : swXVNL f O , n l , n2 

g o t o atom 

g o t o v a r 

g o t o n i l 

g o t o 1st 
v a r : d e l a y v O , s w i t c h 

Or-delays make things a bit more complicated. Consider append: 

?- p r o c e e d a p p e n d ( a ? , b , c ) . 

?- p r o c e e d a p p e n d ( a , b , c ? ) . 

a p p e n d ( [ ] , X , X ) . 
a p p e n d ( X . A , B , X . C ) : - a p p e n d ( A , B, C ) . 
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If only the first proceed declaration were given, this would be 

switch _r0? 
case [ ] : 

_ r l = _r2 
case X.A: 

_r2 = X.C, append(A, _ r l , C) 
end-switch 

However, if the first argument is uninstantiated, execution may still proceed if 
the third argument is instantiated. To show this, switch may have a var case: 

switch _r0 
case [ ] : 

_ r l = _ r l 
case X.A: 

_r2 = X.C, append(A, _ r l , C) 
var: 

a l t e r n a t e _r2? : delay-or _r0, _r2 
_r0 = [ ] , _ r l = _r2 

e l s e 
_r0 = X.A, _r2 = X.C, append(A, _ r l , C) 

end-alternate 
end-switch 

The delay-or means that if none of the designated values are uninstantiated, 
delayOrs must be generated. The code is 

/* r e g i s t e r 2 i s already known to poi n t at an 
u n i n s t a n t i a t e d v a r i a b l e . */ 

nonvarGoto v2, l a b e l l 
delayOr vO, 0 
delay v2, 0 

l a b e l l : ... 
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This causes append to delay until either what is in register 0 or what is in 
register 2 becomes instantiated. Execution will re-start at the beginning (offset 
0) because when append is resumed, there is no way of knowing which variable 
became instantiated and caused append to resume. 

5.9 Optimized compiling to conventional machine code 

The x p P A M code can be interpreted or it can be translated to conventional 
machine code. The simplest translation would simply use the separate cases in 
the interpreter as code templates, removing the interpreter loop. This typically 
gives an execution speed-up of 2 —3 times at the cost of increasing the code size 
by a factor of 10 or more. 

Significant execution speed-ups are possible by using machine code (assembler) 
instead of a higher level language such as C or Pascal. This is because 
assembler provides more possibilities of exploiting the machine's registers. The 
machine registers can be used for: 

• pointer to top of execution stack. 
• pointer to next free object. 
• the first n registers of x p P A M . 

This can easily double the speed of the generated code. Note that registers are 
not used to hold information that is used only on backtracking; x p P A M is 
optimized for deterministic computations. 
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Assigning the xpPAM registers to machine registers has an additional advantage. 
When xpPAM is interpreted, the operands must be used as indexes into the vector 
of "registers." Machine code references these directly, even if they have to be 
kept in slower main storage because of insufficient hardware registers. To give a 
feel for the speed-ups possible, I changed the implementation to store an offset 
into the register vector instead of an index. This avoided some shift 
instructions, giving about 10% speed-up on an MC68000. 

Some other optimizations are possible when compiling to machine code. These 
are typical of optimizers for conventional languages, such as "peephole" 
optimizations for removing redundant load/stores. Some additional operand 
annotation, such as r to indicate that de-referencing is not needed, can help 
optimize the code. 

Careful tuning of the machine code can produce dramatic speed-ups. In an 
experiment, the following were observed for naive reverse: 

1.4 KLIPS with a simple clause interpreter. 
5 KLIPS with a simple abstract machine interpreter. 
10-20 KLIPS with more sophisticated abstract machine interpreters. 
20-40 KLIPS with translation to C. 
over 100 KLIPS with translation to native code. 

The generated machine code must be position independent because it resides in 
the xArea extension area and may be moved around by the compactor. Some 
machines have separate instruction and data spaces; for these, separate xAreas 
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would have to be provided (these areas could still require compaction, because 
of incremental re-compilation). 

The design of special purpose computers for logic programming is discussed 
elsewhere, for example [Tick and Warren 1984] and [Mills 1986]. Such 
machines could probably directly execute x p P A M code significantly faster than 
could conventional machines, using the same technology. Major speed-ups are: 

• Parallel execution of parts of instructions (e.g., tag decoding). 
• Maintaining shadow registers and caches which are better oriented to xpPAM's 

referencing style. 

5.10 Speeding up deterministic predicates - modes and types 

A type can be considered to be a predicate which is evaluated at compile time 
and whose failure causes a compilation error rather than a run-time error (or, 
worse, an unexpected failure in a predicate which should always succeed). Such 
a predicate either checks an already instantiated variable or imposes a 
constraint on an uninstantiated variable. This can be implemented in one of 
three ways: 

• The type predicate simply delays until the argument becomes sufficiently 
instantiated. 

• A type flag is set for the variable so that unification will fail if an attempt is 
made to unify the variable with something of the wrong type. 

• Compile-time analysis can propagate the type information outward and 
eliminate tests. For example, in the following, type propagation could 
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discover that both the argument for q and Hd in p must be integers, so no 
test is needed if p is called with a list of integers: 

P(U). 
p ( H d . T l ) : - q ( H d ) , p ( T l ) . 

q ( X ) : - i n t e g e r ( X ) , ... 

Typing predicates are useful debugging tools. Instead of just failing with the 
wrong type argument, they cause a run-time or compile-time error. Typing 
predicates can be extended to work for more complex types. For example, lists 
can be handled by:17 

/ * g e n e r a l l i s t s : * / 

listen). 
l i s t ( H d . T l ) : - l i s t ( T l ) . 

/ * l i s t o f a s p e c i f i c t y p e : * / 

l i s t ( T y p e , [ ] ) . 

l i s t ( T y p e , H d . T l ) : - T y p e ( H d ) , l i s t ( T y p e , T l ) . 

These predicates are included in the program just like ordinary predicates. The 
compiler can be told which predicates are for typing - they are executed at 
compile time and used for type inferencing. The basic built-in types include 
integer, number and string. 

1 7 Note the use of x p P r o l o g ' s notation in Type(Hd). In most Prologs, this would be written: 

T e s t = . . [ T y p e , Hd] , c a l l ( T e s t ) 

(where c a l l ( T e s t ) could be replaced by T e s t ) . 
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As an example, here is intMember which is like member but which only works 
on lists of integers: 

?- mode intMember(X, L i s t ) :- i n t e g e r ( X ) , l i s t O f ( i n t e g e r , L i s t ) . 
intMember(X, X._). 
intMember(X, _.Rest) :- intMember(Rest). 

This can be considered as an abbreviation of 

intMember(X, L i s t ) :- i n t e g e r ( X ) , l i s t O f ( i n t e g e r , L i s t ) , 
intMember2(X, L i s t ) . 

intMember2(X, X.Rest). 

intMember2(X, Y.Rest) :- intMember(X, Rest). 

The optimizer could transform this to 
intMember(X, L i s t ) :- i n t e g e r ( X ) , intMember2(X, L i s t ) . 
intMember2(X, Y.Rest) :- /* i n t e g e r ( Y ) , */ X=Y, l i s t O f ( i n t e g e r , R e s t ) . 
intMember2(X, Y.Rest) :- /* i n t e g e r ( Y ) , */ intMember2(X, Rest). 

Here, using type predicates is less efficient than leaving them out. Inferring the 
types of many predicates is not very difficult - the algorithm is similar to the 
algorithm for detecting where delays should be added to code (as given in 
[Naish 1985b]). Thus, the mode of member can be inferred as 
?- mode member(X,List) :- l i s t ( L i s t ) . 

There is no way to infer that it should be 
?- mode member(X,List) :- typeOf(X,Type), l i s t O f ( T y p e , L i s t ) 

In fact, this would be over-specifying the type because it would disallow the 
query member(l, [ l , a ] ) . Nevertheless, there may be advantages in specifying 
the stronger type declaration of member because more efficient machine code 
might be generated if a more complex abstract machine model were used which 
allowed both tagged and untagged objects - in xpPAM, when testing for equality, 
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the tags are first compared, then the values; comparing only the values would be 
more efficient. 

Increases in efficiency could also be produced by input-output mode 
declarations and inferences. These are in many ways similar to type predicates. 
Significant speed-ups are possible, as shown by the example in section 
2.0, "Fast append on a conventional machine" on page 15. 

Besides increasing efficiency, mode and type declarations and inferences help to 
show the correctness of xpProlog programs. Conventional Prolog is much like 
the C language where type mismatches produce wrong results (Prolog produces 
unexpected failures); xpProlog could be more like Pascal where such errors are 
detected at compile time. 
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6.0 Compiling a functional language to the logic engine 

... the Form remains, the Function never dies. 

— William Wordsworth, The River Duddon 

XpPAM can be easily adapted as an efficient target for a functional programming 
language. The delay mechanism, which allows coroutining and sound negation, 
is sufficient for all common functional programming constructs such as lazy 
evaluation and handling functions as first class objects. The resulting machine 
is about as efficient as a machine designed solely for functional programming. 

6.1 Introduction 

Much has been written about combining functional programming and logic 
programming. I will only briefly discuss how the two paradigms of logic 
programming and functional programming should be combined; the reader 
should see [DeGroot and Lindstrom 1986] which also has extensive 
bibliographies. Instead, I will concentrate on how xpPAM can efficiently 
implement functional programming constructs.' 

The proposals for combining the two paradigms have been roughly classified in 
[Bosco and Giovanetti 1986]: 
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functional plus logic: invertibility, nondeterminism and unification are added to 
a higher order functional language 

logic plus functional: first-order functions are added to a first-order logic with an 
equality theory 

Which is best is a matter of debate. Since a logic machine already deals with 
unification, nondeterminism and invertibility, I have taken the logic plus 
functional approach. XpPAM can be used to answer one of the open problems 
cited by [Bosco and Giovanetti 1986]: the kind of computational mechanism 
necessary to execute functional and logical programming constructs. 

6.2 Functional Programming background 

For illustrative purposes, I will use some of the syntax of SASL and HASL 
[Turner, 1979] [Abramson 1984]. 

In this discussion, I will assume functional programming with no side affects. 
That is, when I use the term "LISP," I really mean "pure LISP," not using 
features such as RPLACD. 

The m clauses of an n-ary function /are defined: 

/ «n fli2 •••
 a)n = exPri 

f a21 a22 ... a2n = expr2 

f am\ am2 — amn = exPrm 
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Expressions may be written as: 
expr where { definitions } 

The definitions may include function definitions, as well as definitions of the 
form: 

x=l:x /* [1, 1, 1, ...] - ":" is the "cons" operator */ 
[fl,M = [1,2,3] 

etc. 

A definition such as: sf g x = / x (g x) can be thought of as a "syntactically 
sugared" version of the lambda expression: 5 = Xf. Xg. Xx.f x(gx) . 

Some functional programming languages have only single argument functions. 
The single argument and single result, however, may themselves be single 
argument functions. That is, if/is defined as an n-ary function, it is 
implemented in such a way that in an evaluation of 

/ argi arg2 ... argn 

the implicit evaluation is 
(...(/ argt) arg2) ... arg„) 

where the result of {f argx) is a function of a single argument, which can then be 
applied to arg2, etc. SASL and HASL treat /?-ary functions this way; LISP and 
Scheme do not. 
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6.2.1 Normal and applicative order evaluation 

Normal order applies the leftmost reduction (evaluation) repeatedly until the 
normal form (or sometimes just head normal form) of the expression is 
produced. This means that an argument will never be evaluated if it is not 
needed within a function body. For example, if JC+1 is passed as an argument, 
it will not be evaluated until it occurs in the context of an operator which 
requires its value, such as an equality test. On Turner's combinator machine, 
the J C + 1 is replaced by its value so that any subsequent use of the argument 
obtains the value directly. 

Applicative order evaluates the arguments before evaluating the function body. 
This is the usual way with LISP and Scheme, although they may delay 
evaluation by having the caller package arguments in lambda expressions (and, 
in the case of LISP, the called function must be prepared for such arguments). 

Both applicative and normal order evaluation produce the same answers if they 
terminate. However, it is possible that applicative order may do unnecessary 
computations which may go into an infinite loop. A compromise between the 
two is "evaluation by need" where arguments are not evaluated until their 
values are needed - that is, a conventional machine architecture is used but 
argument evaluation is delayed as late as possible. In evaluation by need, the 
value of an argument is saved so that it is not re-evaluated if it is used later in 
the function. 
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6.2.2 Lazy and eager evaluation. 

Lazy evaluation delays evaluations until they are needed, whereas eager 
evaluation proceeds even though values might not be needed. One effect of lazy 
evaluation is to permit programming with "infinite" structures such as: 
x = 1 : x 

(an infinite list of l's: [1, 1, 1, ...]). With lazy evaluation, an expression such as 
"hd x" yields the value 1, the tail of the list not being evaluated. SASL and 
HASL provide lazy evaluation; LISP, generally, does not, but permits the 
construction of mechanisms for lazy evaluation. 

6.2.3 Lexical and dynamic scoping (deep and shallow binding) 

In a language where functions are first class objects, a function must be applied 
in the correct environment, binding free variables in the function body. The 
data structure consisting of the function body and an environment is called a 
closure or a thunk [Ingerman 1961]. In pure functional programming 
languages, the closure is formed at definition time: this is called lexical scoping 
or deep binding. Other less pure functional languages form a closure at 
evaluation time: this is known as dynamic scoping or shallow binding. Pure 
functional programming requires lexical scoping and is used in such languages 
as SASL, HASL and Scheme. Many varieties of LISP, however, use dynamic 
scoping which leads to serious semantic problems, chiefly a kind of destructive 
assignment. 
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6.2.4 Mechanical evaluation of functional programming constructs 

The earliest programming language with a strongly functional flavour was 
McCarthy's LISP. An evaluator (interpreter) for a functional subset of LISP 
was defined in LISP. LISP, however, was not purely functional, allowing 
destructive assignment, go tos, etc. Several years after LISP was introduced, 
[Landin 1966] described an interpreter for Church's lambda notation. The 
SECD machine adopts the strategy of applying functions to evaluated 
arguments and is suitable for programming languages using applicative order. 
Some lambda expressions, however, can be evaluated only with normal order 
evaluation; applicative order would result in non-terminating computations. 

The "procrastinating" SECD machine, a modification of the original SECD 
machine, allows the postponement of evaluation of arguments until their values 
become necessary. In a purely functional setting, this is equivalent to normal 
order evaluation. The evaluation of an expression can be carried out once, and 
this value saved if the value of the expression is needed again - the 
above-mentioned evaluation by need (see [Burge 1975]). 

Another major technique for evaluating functional programming constructs was 
introduced by Turner in an implementation of SASL. The primitive operations 
of SASL are application of a function to a single argument, and the pairing or 
construction of lists. In this technique, variables are removed from lambda 
expressions yielding expressions containing only combinators and global names 
referring either to library or user-defined functions (from which variables of 
course have been removed). Evaluation of an expression then is accomplished 
by a combinator machine: a machine whose instructions correspond to the three 
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fundamental combinators S, K and / and additional combinators which are not 
strictly necessary but are introduced to reduce the size of the generated 
combinator machine code. The leftmost possible reduction is performed to yield 
an expression's head normal form. Normal order evaluation and "lazy" 
evaluation of lists fall out from this and the definition of the combinator 
expressions. Furthermore, SASL introduced a limited kind of unification, 
extended later in Abramson's HASL. 

6.2.5 Functional programming via logic programming. 

Functional programming languages may be evaluated by logic programs either 
by interpretation of functional expressions or by compilation of functional 
programs to logic program goals to be solved. The former technique was used 
by [Abramson 1984] to specify HASL (an extension of Turner's SASL) in 
Prolog; the latter technique was used by [Bosco and Giovanetti 1986] to show 
how various functional programming constructs could be represented as Prolog 
goals to be solved. Other aspects of the implementation of functional 
programming extensions of logic programming may be found in [DeGroot and 
Lindstrom 1986]. 

Since functional programming constructs can be compiled to Prolog, and since 
Prolog itself may be compiled, it is possible to stop at this stage and consider the 
problem of implementing functional programming constructs in a logic 
programming language as being solved. However, more efficient handling of 
functional programming constructs is still possible if one compiles them not into 
Prolog but directly into code for a logic engine. In the remainder of this section 
we discuss this, in the process gaining about the same efficiency as would be 
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possible by compiling functional programming constructs to an abstract machine 
designed specifically for functional program evaluations. 

The xpPAM's design is a better target for a functional language than is the 
Warren Abstract Machine (WAM). The principal differences between xpPAM 

and WAM are: 

• Registers contain only pointers to objects, not the objects themselves. 

• All objects are kept on the heap (like WAM's "global" stack, but not popped 
on backtracking). 

• The unification instructions are simpler (for example, there is no distinction 
between "local" and "global" variables). 

• The execution stack (WAM's "local" stack) contains only call/return 
information. 

• There is no "environment" for a predicate - push and pop instructions are 
used to save values across calls. 

6.3 Sample code 
Here is how a function p which produces a new list by applying the function q 

to each element of a list may be written in SASL or HASL: 
P U = U 
p (Hd:Tl) = (q Hd) : (p Tl) 
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In Prolog, this is: 

P ( [ ] , H) :-
p(Hd.Tl, HdX.TlX) :-

q(Hd, HdX), !, p ( T l , T1X). 

The cuts ("!") are necessary to make this deterministic (xpProlog's if-then-else 

could be used to eliminate these). In general, an rc-ary function can be turned 
into an (rc+l)-ary predicate by adding one parameter to hold the result. This 
extra parameter must always be initialized as an uninstantiated logical variable 
before a call and the called predicate must always instantiate it before returning. 

Here is xpPAM code (comparable WAM code is in section 7.1, "Comparison with 
the Warren Abstract Machine instructions" on page 138): 

swXVNL f0,n0,n2 % switch on parmO 
b u i l t I n t t IT 

e r r o r % i n v a l i d parm 
b u i l t i n I I II 

e r r o r % can't be v a r i a b l e 
goto n i l % parmO=[] 
i t : % parmO=Hd.Tl 
e q l s t f l , n l , n 3 % parml:=HdX.TlX (can't f a i l ) 
l i n k 
push f2 % save T l 
push f3 % save T1X 
c a l l q/2 % q(Hd,HdX): regs 0, 1 

pop 
pop 
u n l i n k 
I C a l l S e l f 

nO 
n l 

% 

% 

are already set 
argl:=restore T1X 
argO:=restore T l 

P(TI.TIX) 
n i l : 

eq 
r e t u r n 

f l , U % r e s u l t : = [ ] 
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The I C a l l S e l f instruction has the same meaning as goto o (the different opcode 
helps in debugging). This is a tail recursive call - recursion has been turned 
into iteration. 

For comparison, here is the pure function version of the function /; which 
applies q to each element of a list. The result is returned in register 1 which is 
not pre-initialized to be a logical variable (actually, register 0 should be used to 
make higher order functions easier to implement - doing this would require 
more machine instructions for moving values into the correct registers). The 
l i n k and u n l i n k instructions are not needed for purely deterministic 
computations (if used with a slightly different call instruction). 

swXVNL 
b u i l t i n 
b u i l t i n 
goto 

1st: 
l i n k 
push 

c a l l 
pop 
u n l i n k 
l i n k 
push 
c a l l 
pop 
u n l i n k 
e q l s t 
r e t u r n 

n i l : 
eq 

r e t u r n 

f0,n0,n2 % switch on parmO 
" e r r o r " % i n v a l i d parm 
" e r r o r " % can#t be v a r i a b l e 
n i l % parmO=[] 

% parmO=Hd.Tl 

f 2 

q / i 
nO 

f l 
P / l 
n2 

% save T l 
% argO: already set 
% regl:=q(Hd) 
% r e s t o r e T l 

% save q(Hd) 
% r l : = p ( T l ) 
% r e s t o r e q(Hd) 

n 0 , f 2 , f l Jo result:=q(Hd).p(Tl) (can't f a i l ) 

n l , [ ] Jo result:=[ ] 
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This code is one instruction longer than the code which uses logical variables 
(because of the return instruction). Also, the functional code is not tail recursive 
because of the "cons," so much more stack is needed. The functional version 
builds the return value more efficiently using e q l s t n 0 , f 2 , f l - the predicate 
version does it by e q l s t f l , n l , n 3 and then filling in the head and tail. Thus, 
the tail recursion optimization in the predicate has a price: slightly slower 
construction of the result and one extra level of indirection (using "reference" 
objects). It also violates the xpPAM convention that all registers are empty when 
a r e t u r n is executed because it leaves one register containing a value. 

Typically, using predicates instead of functions results in about the same 
number of machine instructions. The slight amount of extra execution time 
required by using logical variables is more than compensated by the better 
opportunities for detecting tail recursion optimization (TRO). Without loss of 
generality, we can use deterministic predicates instead of functions. When we 
say that a predicate returns a value we mean that the last parameter gets 
instantiated to the value returned by the equivalent function. 

So far, we have treated functions as if they were compiled into Prolog. This can 
introduce large inefficiencies because of the more general nature of unification 
and the possibility of backtracking. The e q s k i p instruction is used to avoid 
creating choice points. For example: 

/>• = [] 
p ('a' : rst) = 'x' : (p rst) 

p ('b' : rst) = '/ : (p rst) 

is compiled to: 
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swXVNL f0,n2,n0 % switch on parmO 
b u i l t i n it it 

e r r o r Jo i n v a l i d parm 
b u i l t i n e r r o r % caa^t be v a r i a b l e 
goto n i l Jo parmO=[] 

1st: Jo parmO=hd.rst 
eqskip f 2 , V Jo t e s t hd = 'a' 
goto e l s e 
e q l s t f 1 , ' x ' , n l Jo r e s u l t := x : 
I C a l l S e l f Jo p ( r s t ) 

e l s e : 
eqskip f2,'b' Jo t e s t hd = V 
b u i l t i n II II 

e r r o r Jo e l s e : i n v a l i d parm 
e q l s t f l , ' y ' . n l % 1 , I I 

r e s u l t := y : 
I C a l l S e l f % p ( r s t ) 

n i l : 
eq f l , [ ] % r e s u l t := [] 
re t u r n 

A boolean function returns either true or false, so calling a boolean function and 
testing the result can be done in a similar fashion — there is no need to create 
choice points. 

6.4 Thunks, lazy evaluation and higher order functions 

A thunk contains the address of an n-ary predicate and the values of the first m 

arguments (m<.n). The thunk can be considered as an (n— m)-ary predicate. 
When the thunk is called, the first n — m registers are moved into registers m 

through n- 1 and registers 0 through (n-m) — 1 are loaded with the values in 
the thunk. 

In applicative order, the code for p l u s ( l , 2 , z ) is 
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eq nO,'l' 
eq n l , ' 2 ' 
l i n k 
push n2 % Z 
c a l l 'plus/3' 
pop nZ % Z 
un l i n k 

In normal order, the code is transformed to compute 

z where { 

*=P1(2). 

pi =pluss( 1), 

pluss = Ax Ay {x+y } } 

Plus 1 2 is reduced to pi 2 (with pl(x) = Ax{x+1}) and finally to 3. 

On xpPAM, we compile the functional expression 
z=pl(2) where pi =pluss( 1) 

to the predicate calls 
?- p l u s s ( l , P l ) , P1(2,Z). 

which then becomes: 
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eq f O . ' l 1 

l i n k 
push n l 
c a l l ' p l u s s / 2 ' 
pop n2 
u n l i n k 

% PI 

% argument 

% PI 

eq n 0 , ' 2 ' 
l i n k 
push n l 
callThunk ' f 2 / 2 ' 
pop nZ 
u n l i n k 

% Z 
% c a l l P1(2,Z) 
% Z 

% argument 

Pluss is a 1-ary function (2-ary predicate): 

pluss(X,Z) :- thunk(plus(X ) / 2,Z). 

which is compiled to: 

mkThunk f l , p l u s / 2 , 1 % Z:=thunk(...) 
r e t u r n 

MkThunk f l , p l u s / 2 , 1 means that register 1 is unified to a thunk pointing to 
plus/2, the first argument already having been set in register 0. MkThunk is like 
a c a l l , so it frees all the arguments (here, register 0 is marked as empty after its 
value is saved in the thunk). The third operand to mkThunk may be a register so 
that we can make a thunk from a thunk. MkThunk turns atomic objects into 
thunks by using the "=" predicate (defined "X=X"). 

Whenever an instruction has a thunk as an argument and it requires the value, 
the thunk is "woken up" and evaluated. The non-empty registers are put into a 
new thunk (pointing to the current instruction) which is pushed onto the 
execution stack. This suspends the currently executing predicate (unification is 
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repeatable, so we do not need to store any other information to aid in restarting 
the suspended instruction). The registers are then loaded from the woken thunk 
and execution proceeds within it until its last return instruction is reached. 
Normally, when a return is executed, the top element on the stack is a code 
segment but in this case, it is a thunk so the registers are restored from the 
thunk (recall that all the registers must be empty before a return) and execution 
resumes where it was earlier suspended. This is very similar to how coroutining 
predicates are suspended and resumed. 

When a thunk is evaluated, its result may be another thunk. Therefore, 
equality instructions may repeatedly wake up thunks until they finally get a 
value. This is handled automatically because when a thunk returns, it restarts 
the equality instruction (no state information about the instruction needs to be 
saved). 

Because a thunk saves the registers, pure normal order execution does not need 
to push and pop registers on the execution stack. But the mkThunk and 
c a l l T h u n k instructions are quite expensive, so using thunks and normal order 
evaluation is less efficient than applicative order evaluation. 

A simple example of delayed evaluation is: 

in tsFrom mi = m : (int s From (m+i) i) 

which returns a list of every rth integer starting at m. 

We can sum all the even integers up to n by: 
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sumLim (x : r) n = if x > n 

then 0 

else x + (sumLim r n) 

sumEven n = sumLim (intsFrom 2 2) n 

At each step of sumLim, a new list element (x:r) is required. This wakes up the 
intsFrom thunk which makes a list element containing the next number and a 
thunk for generating the next list element. Eventually sumLim reaches the limit 
n and no more elements are needed. 

A naive translation to producer-consumer coroutines is: 

intsFrom(M, I, M.L) :- M2 i s M + I, 
intsFrom (M2, I, L ) . 

sumLim(X?.R, N, 0) :- X > N. 
sumLim(X?.R, N, S) :- sumLim(R, N, S2) , 

S i s X + S. 
sumEven(N, S) :- sutnLim(L, N, S), 

intsFrom ( 2 , 2, L ) . 

where the "?" notations mark where the predicate must delay until the value is 
instantiated. A delay is implemented by using a swXVNL or varGoto instruction 
to detect that a value is uninstantiated - a delay instruction suspends the 
predicate by saving a thunk (with all the non-empty registers) on the delay list 
associated with the variable and then executing a return. When the variable 
becomes instantiated, all associated delayed predicates are made eligible for 
resumption (the current predicate is suspended and all the delayed predicates 
are pushed onto the execution stack except for the oldest which is resumed). 
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6.4.1 Lazy thunks vs. delayed predicates 

The above program has a subtle error. SumLim is started and immediately delays 
on L. intsFrom is then entered - it instantiates the first element of L. This 
wakens sumLim (and suspends intsFrom) which calls itself and then delays on the 
next element of L. Eventually, sumLim terminates but intsFrom continues 
generating elements in the list even though they are not needed. Here is a 
correct version which uses intsBetween to generate a finite list: 

intsBetween(M, N, I, M.L) :- M < N, 
M2 i s M + I, 
intsBetween(M2, N, I , L ) . 

intsBetween(M, N, I , [ ] ) : - M > N. 
sum([]?, 0). 
sum(X?.R, S) :- sum(R S2), S i s X + S. 
sumEven(N, S) :- sum(L, S), 

intsBetween(2, N, 2, L ) . 

This should not be taken to mean that functionalthunks are more powerful 
than delayed predicates. Sometimes, delayed predicates are easier to use 
because.they allow more than one predicate to delay on a single variable. 
Predicates also can backtrack. 

The main difference between the two concepts is in how they handle an 
"infinite" list. For the computation to terminate, the list must be made finite. 
Thunks do this by eventually leaving the tail uncomputed; delayed predicates 
eventually instantiate the tail to nil. In both cases, the list need not actually 
exist (it is, after all, just a communication channel) - reference counting (if 
used) ensures that only the current element exists, all other elements being 
deallocated as soon as they are finished with. 
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6.5 Equality: "is" and " = " 

Standard Prolog has a simple syntactic equality theory given by the predicate 
" = " (defined "x=x"). Another kind of equality is provided by the built-in 
predicate " i s " (":=" in Waterloo and IBM Prologs). This can be considered to 
be defined: 

X i s Y :- atomic(X), X=Y. 
X i s F :- F =.. Fname.FArgs, 

isArgs(FArgs, FAx), /* evaluate the args */ 
append(Fname.FAx,[X] ,FL2) , 
F 2 = . . F L 2 , 

c a l l ( F 2 ) . 
i s A r g s ( [ ] , [ ] ) . 
isArgs(H.T, H 2 . T 2 ) : - H2 i s H, 

isArgs(T, T 2 ) . 
+(X,Y,Z) :- {Z:=X+Y}. % b u i l t - i n p r e d i c a t e 
-(X,Y,Z) :- {Z:=X-Y}. 

The predicates " i s , " "+," etc. delay if any of their parameters are not 
sufficiently instantiated. 

The first clause is a slight extension of the conventional definition (removing the 
"only numbers" restriction). The second clause expects the right-hand 
parameter to be of the form F{AU A2,... , A„) : it evaluates arguments Ax through 
A„ (recursively using " i s " ) to produce 5 , through B„, then computes X by calling 
F{Bi, B2,..., B„) . If we assume that " c a l l , " "=.." "+" etc. are defined by an 
infinite number of rules, " i s " is definable in first-order logic. 
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This definition of " i s " gives a kind of semantic equality. The more convenient 
notation p ( { F j ) means Fv i s F, p(Fv) ({F} is pronounced "evaluate F"). 
Using this for factorial: 

f(o, 1). 
f(N, (N * f ( { N - l } ) } . 

which is an abbreviation for: 

f(o, l ) . 
f ( N , NF) :- NF i s N*F, Nsub i s N - l , 

f(Nsub, F ) . 

This definition depends on arithmetic predicates delaying when their arguments 
are insufficiently instantiated. Although tail recursive, it is much less efficient 
than the non-tail recursive version because of the overhead of processing the 
delays. 

6.6 Combirtators 

The implementation described so far corresponds to a lazy SECD machine 
[Henderson 1980]. But it can also be used for a combinator machine [Turner 
1979]. Thunks and code segments, being "first class" objects, can be passed as 
arguments and be returned as values. All the equality and call opcodes can take 
thunks as operands, evaluating them when needed as described above. 

A thunk is evaluated only when required. When a thunk is evaluated, it may 
return a structure containing another thunk which itself requires evaluation 
when its value is needed. 
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The traditional combinators can be restated as predicates. Given the 
definitions: 
I = Xx.x 

K = /ix ^y.x 

S = Af Ag ix.(.f x ) ( g x) 

we get the following predicate definitions (using thunk/2 as described earlier): 

comb_I(F,F) . 
comb_K(F,Z) :- thunk(comb_kk(F)/2, Z) . 
comb_S(F,Z) :- thunk(comb_ss(F)/3,Z). 

with the auxiliary predicates: 

comb_kk(X,Y,X). 
comb_ss(F,G,Z) :- thunk(comb_sss(F,G)/4,Z). 
comb_sss(F,G,X) :- F(X,Z1), G(X,Z2), Z1(Z2,Z). 

Here is a computation using pluss (1-ary addition) and succ (successor). 
a = 5 plus succ 3 

is compiled to the predicate definitions and calls 

pluss(X,Z) :- thunk(plus(X)/2, Z). 
succ(X,Z) :- Z i s X+l. 

?- comb_s(pluss,Al), Al(succ,A2), A2(3,A). 

resulting in: 

A l = thunk comb_ss {parmO= pluss] 

A2 = thunk combjsss {parmO = pluss, parml —succ} 

A = Z where ( p l u s s ( 3 , Z l ) , succ(3,Z2), Z1(Z2,Z)} 
leading to: 
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Z l = thunk plus {parm0 = 3} 

Z2 = 4 
and finally (when evaluation of Z is forced all the way): 

z = A = 7 

When code is written using the combinators S, K and /, the predicate calls to 
pred_S, pred_K and p r e d _ l look, just like normal predicate calls. When they are 
executed, their returned values are thunks which can be handled like any other 
objects. They will be evaluated only when needed and only as much as needed, 
possibly returning structures containing other thunks. 

This definition of combinators requires that thunks be created only for the basic 
combinators S, K and / and of course for any other combinators (B, C, etc.) 
which are introduced to control the size of the compiled code (from which 
variables have been removed). All other definitions are done without reference 
to thunks. 

The combinator machine uses a subset of the inference machine's instructions in 
a small number of ways, so some optimizations are possible. Call instructions 
invariably have two arguments (single argument and result), so the "load 
arguments, push new variable for result, call, pop result" sequence could be 
optimized into one instruction. By adding these optimizations to the machine, 
the programmer is given the flexibility of efficiently using either the lambda 
machine or the combinator machine models of functional computation - or 
mixing them — as the problem requires. 
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In Turner's combinator machine, combinator reduction occurs in-place. Turner 
observed that when an expression occurs within a function, it will only be 
evaluated once, the first time it is needed. Because logical variables share, we 
get the same effect with our predicate translations of combinators. In the 
combinator machine, values do not actually get replaced — rather, new values 
are computed and the old values are abandoned (and eventually garbage 
collected). 
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7.0 Design decisions 

Quieta movere magna merces videbatur. 

(Just to stir things up seemed a great reward in itself.) 

— Sallust, Catiline, 21 

Some design decisions are done for a good reason; others are simply arbitrary 
decisions and some are done just to simplify the implementation. 
Unfortunately, it is often not obvious to the reader which category a particular 
decision falls into. 

The main design decision was to create an alternative abstract machine to the 
Warren Abstract Machine (WAM). Most implementations of Prolog use WAM 
with a few minor changes, typically adding some new instructions. However, I 
felt that the WAM was already too complicated and that it would be further 
complicated by adding delaying features. 

7.1 Comparison with the Warren Abstract Machine instructions 

In Prolog, here is a typical predicate which applies the predicate q to each 
element of a list: 
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p ( [ ] , [ ] ) • 
p(Hd.Tl, HdX.TlX) :-

q(Hd, HdX), p ( T l , T1X). 

Here is xpPAM code: 

swXVNL f0,n0,n2 
f a i l % none of the 3 below 
goto var % parmO i s var 
goto n i l % parmO=[] 

Jo continue to 1st case 
1st: % parmO=Hd.Tl 

e q l s t f l . n l , n 3 % partnl=HdX.T1X 
l i n k 
push f2 Jo save T l 
push f3 Jo save T1X 
c a l l q/2 Jo q(Hd,HdX): regs 0 and 

Jo 1 are already set 
pop n l Jo r e s t o r e T1X 
pop nO Jo r e s t o r e T l 
u n l i n k 
I C a l l S e l f Jo p ( T l , T l X ) 

n i l : 
eq f l , [ ] 
r e t u r n 

var: 
pushB vO J, make the choice 
pushB v l J, p o i n t by saving 
pushV v2 J, a l l a c t i v e regs 
mkCh e l s e 
eq fO, [ ] J, parmO=[ ] 
goto n i l 

e l s e : 
popB n2 Jo r e s t o r e the 
popB n l J, a c t i v e regs 
popB nO J, on f a i l u r e 
e q l s t f0,n0,n2 % parmO=Hd.Tl 
goto 1st 
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And the equivalent WAM code (courtesy of Saumya Debray): 

switch_term var, n i l , 1st 
var: 

try_me_else e l s e 
n i l : 

g e t _ n i l 1 
proceed 

e l s e : 
t r u s t _ m e _ e l s e _ f a i l 

1st: 
a l l o c a t e % create an environment. 
g e t _ l i s t 1 % arg 1, i n reg 1, i s a l i s t . 
u n i f y _ t v a r 1 % 

% 
Hd i s a temporary, put i t i n r e g i s t e r 1; i t ' l l 
be needed there f o r the c a l l to q/2. 

unif y _ p v a r 2 % 
Jo 

T l i s a permanent, save i t at 
displacement 2 i n environment. 

g e t _ l i s t 2 Jo arg 2, i n reg 2, i s a l i s t . 
u n i f y _ t v a r 2 Jo same comment as f o r Hd. 
unify_pvar 3 Jo 

Jo 
T1X i s a permanent, save i t 
at displacement 3 i n environment. 

c a l l q/2 Jo n o t i c e args are i n proper p o s i t i o n s 
put_pval 2, 1 Jo move T l i n t o r e g i s t e r 1 
put_pval 3, 2 Jo move T1X i n t o r e g i s t e r 2 
de a l l o c a t e Jo get r i d of environment 
execute p/2 Jo l a s t c a l l 

Even though the WAM instructions are more complex than mine, more of them 
are required in the inner loop (10 vs. 13); for deterministic append, the 
difference is even more dramatic: xpPAM has just 3 instructions in the inner loop 
against 8 for WAM (these can be optimized to 2 and 7, respectively). Both have 
about the same number of memory and register references (in addition to call 
frame allocation and deallocation, xpPAM has 2 references to the heap and 4 to 
the execution stack; WAM has 9 memory references [Tick86]). It is difficult to 
draw any general conclusions from this example; WAM and xpPAM design 
appear to have similar efficiency. 
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7.2 Environments on the execution stack 

Warren observed that passing arguments in registers rather than in stack frames 
has two advantages: tail recursion optimization can be easily performed and 
stack frames do not need to be created for unit clauses. However, his design 
keeps local variables in the stack. I have chosen to keep pointers to local 
variables in registers and to copy them to the execution stack only when they 
must be preserved across calls. 

At first glance, my design appears less efficient. Although there are certainly 
cases where one or the other design is better, I believe that for "typical" 
programs [Matsumoto 1985], the two designs are similar in efficiency. In 
practice, only a few registers need to be saved around a call. In WAM code 
these registers would have to be loaded from the local or global stack anyway, 
so the number of executed instructions and stack references are about the same. 

The push/pop around a call in my design does not only save values over 
predicate calls; it also puts values into the correct registers. This simplifies 
compiler design because register allocation need only consider where the registers 
are needed between two adjacent calls - the compiler (exclusive of code for 
handling delays and for detecting deterministic predicates) is about 600 lines of 
Prolog (which took a week to write and debug). The compiler seldom has to 
move the contents of one register to another; in WAM, instructions like put_pval 

appear quite often. 

On a conventional machine, there is an interesting advantage to extending the 
heap or stack one cell at a time. If the next address can be made invalid, an 
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addressing exception will happen when there is no more room on the heap or 
stack. However, an environment requires extending the stack a number of cells 
at a time and the environment cells must be contiguous, so every time an 
environment is built, there must be a test for stack overflow. Thus, xpPAM's 
allocating from a free list can be more efficient than allocating from a stack. 

7.3 Global and local stacks 

WAM has two execution stacks: "local" and "global." In the local stack, 
pointers are always from newer to older. Any pointers which cannot stick to 
this discipline are put onto the global stack (everything on the global stack is 
considered to be older than the local stack). 

WAM's local stack is pushed and popped like a conventional execution stack 
(subject to frames being "protected" by backtrack information). The global 
stack is popped only on backtracking. However, the global stack can contain 
unused cells - for deterministic computations, the global stack must be garbage 
collected (some people use repeat, fail loops to get this effect - see section 
8.7, "Cut" on page 173). That is, the WAM global stack is not really a stack 
- it is a global heap which can automatically remove some entries only on 
backtracking. 

WAM's use of the global stack allows for very good speed figures for queries 
such as deterministic append (the "standard" LIPS figures use na'ive reverse, 
whose inner loop is deterministic append). WAM does not need to garbage 
collect the resulting list because the stacks will be popped after the query. 
Because XpPAM allocates everything in a heap, it suffers a speed penalty for such 
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queries. It is not clear how much better WAM is than XpPAM for more "typical" 
programs - if garbage collection is needed, both should be about the same. If 
there are delayed predicates, XpPAM is superior because there is no need to 
"globalize" variables. 

XpPAM's design is intended for maximum speed for deterministic predicates. 
"Shallow backtracking" is a special case, which is handled by if-then-elses. Full 
backtracking is considered as an unusual situation - if some backtracking 
efficiency must be given up to gain deterministic efficiency, I consider that to be 
a good trade. I therefore see no advantage in WAM's ability to chop the global 
stack on backtracking. 

Whenever two uninstantiated variables are unified, the newer points to the 
older. In WAM, age comparison is done by comparing stack addresses - the 
global stack is always older than the local stack. Therefore, there are never any 
pointers from the global stack to the local stack. Variables are recorded on the 
"trail" (backtrack stack) when they are older than the current choice point. The 
net result is similar to xpPAM's which keeps an "age" within each uninstantiated 
variable. 

Compilers for WAM must do some analysis to determine which variables are 
local and which are global. There is no need for this with xpPAM. The 
local/global analysis also depends on the order of goals. In the presence of 
delays, this does not work, so a delay must "globalize" all the local variables, 
giving worse performance than xpPAM. 
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XpPAM's design allows treating predicates as first class objects. This is somewhat 
trickier in WAM because of the need to preserve and restore the state of the 
current stack frame ("environment"). Also, xpPAM can delay and resume a 
predicate at any instruction whereas WAM is more difficult to delay after an 
environment (stack frame) has been allocated. 

XpPAM does not distinguish between "local" and "global" variables as in WAM. 
In WAM code, about half to three-quarters of all memory references are to the 
global stack (extrapolated from [Tick 1986] and [Matsumoto 1985]). Because 
xpPAM keeps pointers to local variables entirely in registers, it can get similar 
performance without the complication of stack shadow registers (a hardware 
implementation for xpPAM would probably cache the cells pointed by the 
registers, instead). 

7.4 Saving environments (WAM) 

The WAM creates an environment on the execution stack whenever a predicate 
has more than one goal. The environment is used to keep information across 
goal calls — it corresponds to the registers which are pushed and popped across 
a call for xpPAM. In addition, WAM instructions must be able to access either 
registers or offsets within the environment. This complicates WAM's unification 
instruction set, compared to xpPAM's instruction set which always works with 
registers. 

There are two cases when a WAM environment must be saved: when delaying a 
predicate and when creating a "thunk." For a WAM-based design, all local 

144 



variables would have to be "globalized" first, to guarantee that there are no 
dangling pointers. 

With the xpPAM design, there are no environments and hence nothing special 
needs to be done when a predicate delays or when a "thunk." is created. 

7.5 Allocating from a list or from a stack 

Because all the xpPAM object cells are the same size, allocating and deallocating 
on a linked list is as efficient as allocating and deallocating on a stack. Linked 
lists are easier to use when storage must be reclaimed (garbage collected). Here 
is allocation code (in C) for the two methods: 

Stack Free list 

i f ( stack > top) i f ( l i s t - > t a g != free) 
e r r o r ( ) ; e r r o r Q ; 

new = *stack; new = next; 
stack++; next = n e x t - > t l ; 

As mentioned earlier, the ( l i s t - > t a g != free)test can be removed if an 
addressing exception will occur when there is nothing left on the free list (that is, 
the last element of the free list points at an invalid address; when it is used, an 
addressing exception occurs). The test for stack overflow is trickier because an 
addressing exception will only occur when the stack element is first used, which 
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may be somewhat later. However, hardware can do stack overflow checking in 
parallel, so the two methods may have the same speed with special hardware18 

Lists have the advantage that additional memory can be allocated as needed. 
However, a segmented stack architecture is possible - instead of initially 
allocating one large stack, a smaller stack can be allocated and new stack 
segments can be added as needed (all segments are chained together). For the 
WAM, care must be taken because the "ages" of variables are compared by 
comparing their addresses. 

7.6 Cut 

The original WAM design did not handle cut. WAM implementers have 
handled this by adding new cut opcodes and doing some source level 
transformation. For example, 
p ( X ) : - q ( X ) , ! , r ( X ) . 

is transformed to something like 
p ( X ) : - c u t P o i n t ( Z ) , p 2 ( X , Z ) . 

p 2 ( X , Z ) : - q ( X ) , c u t T o ( Z ) , r ( X ) . 

where the cutPoint and cutTo predicates translate directly to the new cut 

opcodes. 

1 8 O n a conventional machine, if a page can be marked as invalid (that is, it will cause an 

addressing exception when read of written), stack overflow can be detected with a single 

instruction which simply attempts to read from the top end of the frame (this only works if 

the frame is less than half a page in size, unless multiple pages are marked as invalid). 
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If xpPAM allowed cut, such a technique would also work. However, it is not 
necessary. "Shallow backtracking" situations allow if-then-elses which can be 
handled by the switch, skip and goto instructions. In some cases, choice points 
must be created. The mkChAt instruction records the cut point information. A 
later rmChAt or cutAt does a "soft" or "hard" cut, respectively. Such 
instructions could also implement "remote fail" or "deep bail out" situations -
these are definitely non-logical but are not prevented by xpPAM. 

7.7 Code indexing 

In deterministic predicates, considerable speed-ups are possible if code indexing 
can be done. These are similar to switch instructions in C. The WAM has 
special instructions for this which work only on the first parameter. 

XpPAM has generalized the WAM indexing instructions so that it can be used 
with any parameter. As shown by the example in section 5.5, "Optimized 
compiling of a predicate" on page 98, this allows taking advantage of all 
possible if-then-else situations, thereby minimizing the number of "create choice 
point" instructions. 

The WAM switch instruction simply does a branch based on the object tag of 
the first parameter. Usually, the next instruction is a list element unify which 
must check the tag again. xpPAM combines these two functions so that its switch 

instruction is a generalization of the unify list element instruction. Similar 
generalizations are possible for structures and atoms. 
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7.8 RISCs, CISCs and in between 

Because xpPAM uses only registers for operands, it is a little more RISC-ish than 
WAM which allows either registers or environment slots for operands. On the 
other hand, some of xpPAM's instructions are more complex, such as swXVNL 
which combines two of WAM's instructions (switch_on_term and unifyJist) into 
one. There is little point in making claims about degree of RISC-ness; what 
counts is performance and both designs seem to promise similar performance (of 
course, I think that my design is better). 

Both WAM and xpPAM may benefit from "reduced instruction set" (RISC) 
design (see [Mills 1986] for an example). XpPAM has used this philosophy in a 
few places. Sometimes simpler instructions are better; in other places, complex 
instructions are better. 

• The separate l i n k , push, c a l l and pop instructions are used to do calls; a 
more CISC-ish design (as in the VAX design for conventional computers) 
would combine these into one or two instructions (say, a call with a list of 
registers to be saved and restored19). The reasons for this decision are: 
- It is faster to use the separate instructions, even for an interpreter (the 

interpreter loop is faster than a /or-loop for indexing over the registers to 
be saved). 

- It allows more flexibility in the compiler, so that a register can be pushed 
as soon as possible, to allow it to be re-used. In some cases, values can 
be saved on the backtrack stack instead. 

19 The interpreter loop turned out to be faster than a /w- loop over the operands! 
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• The mkCh; pushB; pushB; ... sequence is faster than a make choice instruction 
which encodes the registers to be pushed onto the stack. An additional 
advantage is in compiling if-then-else code (see section 5.6, "Shallow 
backtracking" on page 105) where the backtrack stack is used to save values 
across a call, saving one set of pushes. 

• Earlier version of the implementation had separate add reference, new free, 

etc. instructions and no v, n or/annotation. This complicated the compiler 
and produced unification instructions that were less efficient. For example, 
the sequence new 1; eq 1,2 was used to copy register 2 into register 1, 
requiring a general unification. To fix this, copy instructions were created -
but they were just special cases of the xpPAM "eq" instruction. 

• Earlier versions had a separate setFail instruction which put a failure 
address into a status register; whenever a unification instruction failed, the 
machine jumped to the failure address. The code at the failure address 
undid all the unifications and then executed a much simpler fail instruction. 
The advantage of a setFail instruction was that it simplified the fail 

instruction and it cut clown on the number of opcodes (for example, eqSkip 
can be handled by a setFail plus eq). However, setFail was removed because 
it resulted in longer instruction sequences and because it greatly complicated 
the compiler. 

A possible optimization to xpPAM is to add a variant of the v and/operand 
annotations to indicate that the register cannot point to a reference cell. This 
can speed up unification, although I do not know by how much. In WAM, 
such an optimization could be added by defining new instructions - the 
speed-up for WAM is likely to be better than that for xpPAM because it would 
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speed up the unify list element instruction which immediately follows a switch 

instruction. 

7.9 Instruction format 

Both WAM and xpPAM are deliberately vague on the exact format of 
instructions. This is to be expected, because they are abstract machine designs. 
The instruction layout will depend on the underlying architecture of the 
implementation. As with most computer designs, there is some trade-off among 
simplicity, speed and compactness. 

Both WAM and xpPAM have a fairly small number of instructions, supplemented 
by "foreign" instructions ("builtin" in xpPAM). This makes an interpreter fairly 
easy to write (a few thousand lines of code, plus memory management). XpPAM 
also has n, v and /annotation on its operands. Decoding these takes 
considerable time. Instead, the flags could be combined with the opcodes, 
resulting in perhaps 300 instructions (many flag combinations are impossible for 
most instructions). Of course, this makes the interpreter much larger but a 
doubling of execution speed is possible. 

Some other tricks are possible for interpreted abstract machine code. Instead of 
storing register numbers, register offsets (into the register vector) can be used to 
save shifts; pointers to the registers can produce greater savings, at the cost of 
larger code size. Similarly, opcodes can be replaced by pointers to the actual 
interpreter code. As more of these techniques are applied, the result approaches 
threaded code. Unfortunately, threaded code interpreters are not very machine 
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independent - if a portable implementation is desired, some significant 
performance degradation must be expected. 

7.10 Functor and list storage 

For simplicity, my implementation of xpPAM stores functors like lists. The only 
difference is a flag in the first element which distinguishes the two. The 
advantage of this technique is that constructs such as " F(A ) = g(x)" are allowed 
(unification is the same as in "[F,A]=[g,x]"). The disadvantage is that more 
storage is used. If pointers are 4 bytes (12 byte object table entries) and that the 
machine requires 4-byte alignment of objects in xArea (to handle the 
back-pointers), the string " f " requires 20 bytes (12 byte object table entry, 4 
byte back-pointer, 2 byte string (null-terminated as in C), 2 byte padding). 
Space for nil is not shown as it is pointed at by many list elements. 

# args Functor bytes List bytes Functor List 
0 40 32 f ( ) [] 
1 64 64 f ( a ) [ f , a ] 

2 88 96 f ( a , b ) [ f , a , b ] 

3 112 132 f ( a , b , c ) [ f , a , b , c ] 

As can be seen, there seems to be little advantage of storing functors in xArea 

unless they have many arguments. Data in xArea must be compacted because 
they are of various sizes whereas data in oTab do not require compacting 
because they are all of the same size - the somewhat greater storage efficiency 
of storing functors as records is balanced by the greater increased time spent 
compacting xArea and by the greater complexity of unification. 
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Some additional thoughts on this are given in [Campbell and Hardy 1984]. I 
believe that xpProlog provides the best of both: notational flexibility and 
compactness plus simple implementation. However, there is nothing stopping an 
implementation of xpPAM from using the more traditional record-oriented method 
for functors. The next section discusses some other aspects of this issue. 

7.11 Object cell size 

My design is somewhat wasteful of memory because it allows only one object 
cell size. Some objects (such as nil and reference) have wasted space and other 
objects (such as strings and code segments) require an extra pointer into the 
extension area (xArea). Furthermore, I do not take advantage of putting objects 
within list cells and I do not provide compact list allocation such as encoding. 

The main reason for my scheme is to simplify implementation and to speed up 
unification. Suppose that a list cell could contain an uninstantiated variable 
object (instead of only a pointer to an uninstantiated variable object's cell). The 
action on unifying with a short integer would be to replace the object; unifying 
with a long integer or a string would require allocating a new cell and pointing 
at it. As most uninstantiated variables do eventually become instantiated, the 
only advantage of the more complex scheme is when dealing with lists which 
contain mainly short integers - but a lot of logic programming deals with 
strings which do not present any advantage in the more complex scheme. It 
should also be noted that the wasted space within an uninstantiated variable cell 
often gets fully used when the object becomes instantiated. 
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As the cost of increasing the complexity of unifying list elements more complex, 
cdr-coding could be used for storing list elements. Instead of allocating from a 
single free list, multiple free lists would be needed for the most common sizes; 
uncommon sizes would be kept in xArea (a similar technique could be used for 
strings). Functors would then appear like cdr-coded lists. 

7.12 Reference counts and garbage collection 

Garbage collection and reference counting are still somewhat contentious issues. 

My implementation of xpPAM uses reference counting because reference counting 
frees unused memory as soon as possible. Reference counting also adds 
confidence to the correctness of the xpPAM implementation - errors in reference 
counts show up very quickly. As [Knuth 1973] notes: 

Some of the greatest mysteries in the history of computer program 
debugging have been caused by the fact that garbage collection suddenly 
took place at an unexpected time during the running of programs that had 
worked many times before. 

A common implementation strategy for Prolog uses local and global stacks. 
XpProlog uses registers and the call save stack instead of the local stack and a 
heap instead of the global stack. Stack-like operations are as efficient on this 
heap as they would be on a stack. Using the heap allows freeing value cells 
which would become "trapped" within a stack [Bruynooghe 1982] and 
simplifies the implementation of delay which would otherwise require a 
branching stack. 
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Free annotation in xpPAM allows freeing objects as soon as they are no longer 
needed. These instructions are easily generated automatically at compile time. 
For example: 

qsort(Unsorted, Sorted) :- qsortx(Unsorted, Sorted, [ ] ) . 
q s o r t x ( [ ] , Sorted, Sorted). 
qsortx(H.T, Sorted, Sofar) :-

s p l i t ( H , T, Lo, H i ) , 
qsortx(Lo, Sorted, H.SortHi), 
q s o r t x ( H i , S o r t H i , S o f a r ) . 

In the last clause, H and T and the first parameter [H.T) can be freed after 
split; Lo and H can be freed after the first qsortx. Qsort is deterministic if the 
first parameter is fully instantiated and split is deterministic. 

Reference counting also helps in implementing arrays. For example, the built-in 
predicate chElem(A,I,V,A2) takes an input array A, an index /, a new value V 

and replaces that element to produce the new array A2. If A has a reference 
count of 1, chElem can produce A2 by modifying A in place rather than copying 
the entire array. 

Reference counting and marking garbage collection seem to have about the same 
overhead [Krasner 1983] (about 15% if care is taken to avoid unneeded 
incrementing and decrementing the reference counts - this number has been 
verified for some simple examples with my implementation of xpPAM). Reference 
counting does not work well with circular lists but Prolog programs will not 
generate these, at least if they have unification with occurs check [Plaisted 
1984]. A marking garbage collector could be used with xpPAM but care would 
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have to be taken to ensure that the marking phase does not cause noticeable 
pauses - the pauses in xpPAM when the xArea is compacted are unnoticeable. 

Considerable research is still being done on garbage collection. Two interesting 
possibilities are scavenging garbage collectors and incremental garbage 
collection. Both of these remove the pauses which garbage collections normally 
impose. Furthermore, they allow garbage collecting in parallel, if special 
purpose hardware is used. However, on conventional machines, these 
techniques do not seem to offer better performance than other storage 
reclamation techniques - parallel garbage collection would be disastrous on a 
time-shared machine. 

Another possibility is to use some kind of hybrid scheme. A cell's reference 
count might be replaced with a flag which indicates that the cell is possibly 
referenced by more than one pointer (this is all that the optimized array 
predicate chElem requires). A general marking garbage collector would be 
needed to remove circular lists and to handle cells referenced by more than one 
pointer. However, such cells would tend to be more permanent, so the garbage 
collector would not be needed nearly so often and it would have less garbage to 
scan than if the simplified reference counting were not used. Combined with 
Bruynooghe's and Kluzniak's schemes for static analysis, this hybrid scheme 
may reduce heap management overhead to a very low number. 
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Extended pure Prolog 

Conventional Prolog is inadequate for good logic programming. Some people 
have described it as the "Fortran of logic programming." When I think of 
Fortran, I am impressed by how advanced it was for its time and I am 
depressed because it has continued to be widely used, even though far superior 
languages have been invented later. Fortran was once a great advance in 
computer technology; it has become a hindrance. 

It would be sad if Prolog were to become like Fortran. Until someone invents 
the Algol or Pascal of logic programming, we should consider some extensions to 
conventional Prolog which make it into a purely logical language: 

• Adding flexibility to the execution order, including if-then-else, sound 
negation and coroutining (the delay notation for these is described in section 
1.5, "Delay notation" on page 8). 

• Extensions to Horn logic, including all solution predicates (setof and bagof). 
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Logical arrays and logical input/output. 
No "impure," non-logical predicates. 

e description is divided into sections: 

Section 8.0, "Execution order" on page 158 discusses how Prolog's top-down 
left-to-right execution strategy can be replaced by a more flexible strategy 
which xpPAM implements as efficiently as conventional Prolog's execution 
strategy. 
Section 9.0, "Coroutining, pseudo-parallelism and parallelism" on page 185 
discusses how coroutining can be added to Prolog, including some examples 
which show the greater expressive power and efficiency that can be obtained. 
Extensions of coroutining to parallelism is also discussed. 
Section 10.0, "Extensions to Horn logic" on page 206 discusses negation, 
if-then-else, all-solution predicates, higher order predicates and 
meta-programming which contribute to making logic programming more 
expressive and practical. These extensions can be "purely" logical. 
Section 11.0, "Arrays and I/O done logically and efficiently" on page 222 
discusses how arrays and I/O can be correctly incorporated into a logic 
programming language so that there is no need for predicates with side 
effects. 
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8.0 Execution order 

Good order is the foundation of all good things. 

— Edmund Burke, Reflections on the Revolution in France 

8.1 Language issues 

Conventional Prolog uses a strict top-down left-to-right execution strategy. A 
detailed description is given in [van Emden 1982]. This execution order has a 
number of undesirable affects: 

• Some programs depend on the execution order to terminate successfully. 
These are inherently non-logical, typically using cut ("!") or var. 

• Some programs terminate correctly, not depending on the execution order, 
but use non-logical I/O predicates which do depend on execution order. 

Because of such programs, some optimizations cannot be applied. The situation 
is similar to conventional programming languages where an optimizer is 
prevented from transforming f (x )+f (x) to 2*f (x) because of possible side 
effects inside f ( x ) (if you don't think this is a problem, just try this optimization 
on a program containing r a n d ( ) + r a n d ( ) ) . 
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XpProlog solves these problems by providing more expressive and safer control 
constructs than cut ("!") and var. XpProlog also provides logical I/O (see section 
11.8, "Sequential Input/Output" on page 241). 

Furthermore, more flexible execution order allows programming with coroutines. 
These are discussed in the next chapter. 

8.2 Conventional Prolog's execution order 

Conceptually, a Prolog program is a database of clauses which are processed in 
a rigid order. A clause is an expression of the form H: — Gu G2, ... , G„ where 
H is the clause head and C, through G„ make up the clause body, composed of 
goals. A unit clause or fact has no goal in its body (the is omitted); a rule 

clause has at least one goal in its body. Waterloo and subsequent IBM Prologs 
use " <-" instead of and "&"s instead of the commas separating goals.20 

The clause's head and goals are all atomic formulas of the form p(tu t2,... , tn) 

where p is an n-place predicate symbol and tx through t„ are terms. Terms are of 
the form f[tu t2,... , t„) where /is an n-place functor symbol and t] through t„ are 
variables or terms. 0-place functors are atomic, that is names (strings) or 
numbers. 

2 0 Doth notations arose at about the same time, causing the original Marseilles notation (the 

head of a clause is marked with a "+" and the goals are marked with "—"s) to disappear. 

From a parsing point of view, the IBM notation is easier to handle, although it still 

overloads the dot ("."). 
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A query is of the same form as a clause body. Conventional Prolog computes 
the solution to a query by trying the goals from left to right: 

Try a goal: The database is searched from the beginning for a matching clause 
head: 
Found: The database position is remembered and variables are instantiated 

by unification (matching is often implemented by attempting a 
unification and undoing instantiations if the unification fails). If the 
clause body contains any goals, the goals are recursively tried from left 
to right. Once all the body's goals have been tried successfully, the goal 
has succeeded. 

Not found: The goal has failed. Computation backtracks to the previous 
goal which is re-tried. 

Re-try a goal: Any variables which had become instantiated by unification are 
uninstantiated. The database is searched from the remembered position and 
execution continues as for "try a goal" (either "found" or "not found." 

Trying a goal is very similar to calling a subroutine in a conventional 
programming language. Prolog can be efficiently implemented with a call stack 
which is slightly modified to allow for backtracking. As variables become 
instantiated, they are recorded so that they can be uninstantiated on 
backtracking. 

This execution strategy can be improved in several ways: 

• The clauses for a predicate can be grouped together so that only a small part 
of the database is searched when trying a goal. The clauses can be compiled 
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to an abstract machine code (only for predicates whose clauses are not 
dynamically added to the database). Abstract machine code may be 
implemented directly in hardware, interpreted, or translated to machine 
instructions on conventional computers. Conventional wisdom states that 
interpreting abstract machine code is 10-20 times faster than processing the 
raw clauses. If the abstract machine code is transformed to machine 
instructions, a further 2 — 6 times speed-up is common. Hardware 
implementations allow cost reductions of one or two orders of magnitude. 

• When a clause head matches and no other clause heads for the predicate can 
possibly match, some book-keeping information does not need to be kept 
("choice points" for backtracking do not need to be created). 

• When a variable which is newer than the last backtrack point becomes 
instantiated, it does not need to be recorded because it will automatically be 
deallocated when backtracking unwinds the stacks. 

• When a predicate is called with all its parameters fully instantiated (no 
variables anywhere within its parameters), there is no need to ever re-try it 
— if it were to succeed again, it would provide no new information. 

• When a predicate never instantiates anything within its parameters or does 
not instantiate a variable which is used by a later goal, there is no need to 
ever re-try it (this is a more general case of the previous case). 

• When the last goal of a clause is tried, some book-keeping information is not 
needed on the call stack (tail recursion optimization (TRO)). If the goal is 
also in the last clause of a predicate, additional savings are possible. 

These optimizations do not affect the order of execution; they simply speed 
execution and reduce stack usage. Details of some of them are given in section 
5.0, "Compiling Prolog" on page 85. 
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Although easy to implement (at least, without the above optimizations), 
conventional Prolog's left-to-right execution strategy is inflexible. 

• Unnecessary goals may be tried on backtracking. Sometimes this is merely 
very inefficient; in other cases, backtracking goes into an infinite loop. 

• Excessive stack may be used. Tail recursion optimization can often prevent 
this. 

• Negative goals can be executed correctly only in a restricted form which is 
not usually detected in conventional Prologs. Similarly, predicates such as 
bagof and setof must be restricted. 

• Problems which can be naturally expressed as coroutines must be coded in 
an unnatural way. That is, xpProlog allows writing some programs in a 
natural way but conventional Prolog requires changing predicates into an 
unnatural form. 

A subtle defect in conventional Prolog's execution strategy is that many 
programmers write predicates which depend on the execution order. Not only is 
this poor programming style, contrary to the spirit of logic programming, but it 
also inhibits some automatic program optimizations. Most predicates which do 
not depend on the execution order are penalized by the minority which do. A 
similar situation exists for conventional programming languages which allow 
side-effects inside functions which prevents optimizing f ( y ) + f ( y ) to 2 * f ( y ) . . 
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8.3 Example of conventional execution order 
The conventional execution order, described above, has the flavour of a 
conventional machine with backtracking thrown in. Execution proceeds 
sequentially, goal by goal. When a goal cannot be satisfied (it fails because no 
matching clause can be found), the machine is restored to an earlier state and 
an attempt is made to try an alternative clause. For example, suppose the 
following clauses exist: 

a :- b l , b2, b3. 
a :- b4. 
b l :- c l , c2. 
b2 :- d l . 
/* no clause f o r b3. */ 
b4. /* u n i t clause: no goals */ 
c l . /* u n i t clause: no goals */ 
c2. /* u n i t clause: no goals */ 
/* no clause f o r d l . */ 

We can transform this into a table: 

Clause # Head Goal 1 Goal 2 Goal 3 
1 a bl b2 b3 
2 a b4 
3 bl cl c2 
4 b2 dl 
5 b4 
6 cl 
7 c2 

We can treat the query "?-a" as clause 0 with the single goal "a." 
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1. Goal a has two alternatives: cl ause 1 (a: -bi,b2,b3) or clause 2 (a: -b4). The 
first alternative is taken. 

2. Clause 1 (a: -bl,b2,b3) tries its first goal (bl). 
3. Clause 3 ( b l : -cl,c2) matches and in turn tries goal c l . 

4. Clause 6 ( c l ) matches. It is a unit clause and succeeds. The next goal in 
clause 3 is c2 

5. Clause 7 (c2) matches. It is a unit clause and succeeds. This causes goal b l 
to succeed. 

The next goal is b2 in clause 1. At this point the call stack is as follows (in a 
clause, the "•" is after the goal being tried). Effects of tail recursion 
optimization (TRO) are not shown. 

Clause # Goal # Alternative clause # 
?- a. • 0 I -
a :- b l , • b2, b3. I I 2 
b l :- c l , c2. • 3 2 -
c l . • 6 - -
a :- b l , b2, • b3. 1 2 -
b2 :- d l . • 4 1 -

c2. • 7 - -

Nothing matches the goal d l , so it fails. There are no alternatives for c2 and b2, 
so they also fail. Clause 2 (a: -b4) is tried. This tries clause 4 (b4) and there is 
nothing else left to try, so the query succeeds: 
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Clause # Goal # Alternative clause # 
?- a. • 0 1 -

a :- b4. • 2 1 -

b4. • 4 - -

As far as the correctness of the solution is concerned, the machine could have 
tried the clauses and goals in any order. The goals in clause 1 could have been 
tried in the order b3, b2, b l (which would have failed more quickly) or clause 2 
could have been tried before clause 1 (which would have succeeded without any 
backtracking). 

8.4 A more flexible execution strategy 

Instead of viewing the computation as using a stack, we could think of it as a 
series of goal re-writings, much like a Markov algorithm. The above 
computation could be given as the series of states (in each line, the "•" is to the 
left of the goal which is about to be tried): 

Apply clause State 
a • 

a :- b l , b2, b3. • b l , b2, b3 
b l :- c l , c2. • c l , c2, b2, b3 
c l . c l , » c2, b2, b3 
c2. c l , c2, • b2, b3 

which gets to a failure point. Backtracking to clause 2 gives the alternative 
series: 
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Apply clause State 
a • 

a :- b4. b4 • 

This succeeds because all the goals are unit clauses (here there is only one such 
goal: b4). 

In goal re-writing, any untried goal may be picked for re-writing. If it succeeds, 
it is replaced by all the goals of the matching clause - if there is none (a unit 
clause), the goal is removed from the set of goals which are candidates for 
re-writing. If it fails, the computation must backtrack to an earlier state and try 
different goals. 

The easiest goal re-writing strategy to implement is one which proceeds strictly 
from left to right. The machine keeps a position marker within the re-write 
goals — everything to the left of the pointer has already succeeded by matching 
a unit clause and everything to right of the pointer has not yet been tried. The 
entire computation succeeds when there is nothing left to try. This is 
conventional Prolog's left-to-right, top-down strategy. 

XpProlog uses an extended strategy which allows some goals to be delayed. 

Delayed goals are removed from the re-write goals until something causes them 
lo be resumed. A resumed goal is put into the re-write goals immediately to the 
right of the pointer. In this way, every goal is tried, but possibly in a different 
order from what conventional Prolog would do. 
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In the above example, assume that goal c l must delay until goal c2 instantiates 
something. Then the computation would be: 

Apply clause State 
- a|| 

a :- b l , b2, b3. • b l , b2, b3 || 
b l :- c l , c2. • c l , c2, b2, b3 || 
delay c l 
c2. { c l } , • c2, b2, b3, || c l 
resume c l c2, • c l , b2, b3 || 
c l . c2, c l , • b2, b3 || 

The "||" is used to mark goals which have been delayed and {...} marks where 
they were originally. 

The delayed execution has now reached a failure point. Backtracking will cause 
execution to continue as for the non-delaying execution (above) because clause 
cl has no other alternatives. 

In this example, the delay computation adds steps because goal c l must first be 
delayed and then resumed. However, some problems can be sped up 
significantly by delays (see section 9.3, "Test and generate" on page 191). 

With goal re-writing, backtracking always restores the machine to an earlier 
state. The pointer is moved left one goal and all the goals to the right of the 
pointer are thrown away. The machine then tries a different clause match for 
the next goal. If this fails, backtracking will throw away that goal and move the 
pointer left one more goal. The entire query will fail if the pointer is moved all 
the way to the left. 
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When backtracking occurs, delayed goals must also be removed. This strategy 
- a left-to-right with delays - will get to every successful state that a 
sequential left-to-right computation would produce, although possibly in 
different order. 

If execution tries to go past the "||," the answer is not "yes" or "no" but "maybe 
(insufficient information)." 

8.5 Negation 

Horn clauses contain only positive literals. Simple not equals can be considered 
as a convenient abbreviation for the infinite list of clauses: 

a ^ b . 

b ± a. 
a + c. 
1 i= 2. 
[ ] * [ x ] . 

This definition is sound, even if one or both of the arguments are 
uninstantiated. The goal X^a will generate the solutions X=b, X=c, X=l, etc. on 
backtracking - a rather inefficient situation. 

Many other useful predicates such as less than (<), c a l l , name and univ (=..) are 
similar way to not equals. Such built-in predicates can also be thought of as 
containing an infinite number of rules like: 
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c a l l ( p ( Q ) ) :- p ( Q ) . 
c a l l ( q ( A , B , C ) ) :- q(A,B,C). 
f(A,B) =.. [ f , A, B] 
g(A,B,C) =.. [g,A,B,C]. 

Conventional Prolog implements negation unsoundly; the not predicate ("\") is 
an attempt to implement negation as failure: 

not(Test) :- c a l l ( T e s t ) , !, f a i l . /* f a i l s i f Test succeeds */ 
n o t ( T e s t ) . /* succeeds i f Test f a i l s */ 

Negation as failure [Clark 1978] requires that the terms be fully ground (do not 
contain any uninstantiated variables). If Test is completely ground, the above 
definition of not is sound - it is equivalent to the definition given earlier with 
the "infinite" list of clauses. However, if Test contains any uninstantiated 
variables, this definition of not may produce a wrong answer. Consider the list 
membership predicate: 

member(X, X._). 

member(X, _.Rst) :- member(X, R s t ) . 

The query 
?- Z=4, not member(Z, [1,2,3]). 
correctly succeeds (all the terms are fully ground) but the logically equivalent 
?- not member(Z, [1,2,3]), Z=4. 

fails because the call to not contains an uninstantiated variable. Here is the 
conventional, incorrect, execution sequence: 

1. The not predicate tries member(Z, [1,2,3]). Member's first clause succeeds, 
instantiating Z=l. 
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2. The cut ("!") in n o t removes all other choices for member. 

3. Z=4 is tried. Because Z is already instantiated to the value l, this fails. 
4. Execution backtracks. The cut ("!") in n o t has already removed the other 

choices for member, so the entire query fails. 

This can be remedied if not delays until its arguments are sufficiently 
instantiated. That is, not should act as if it had succeeded and be retried later 
when the variable which caused the delay becomes instantiated. Using the more 
flexible execution strategy given earlier, here is a correct execution sequence: 

1. The n o t predicate delays trying member(Z, [ 1 , 2 , 3 ] ) because of the 
uninstantiated variable z. 

2. Z=4 is tried, instantiating z to the value 4. 

3. The n o t predicate is resumed by Z becoming instantiated. It now tries 
member(Z, [ 1 , 2 , 3 ] ) . Because Z already has the value 4, this is equivalent to 
trying member(4, [ 1 , 2 , 3 ] ) which fails, causing n o t to succeed. 

4. The entire query succeeds. 

The above method of handling negation by delaying is not the only one possible. 
For example, [Voda 1986b] describes a more active approach in which 
environment can be propagated in a negative context. 

8.6 Single solutions 

For efficiency, the programmer may want member to succeed only once so that 
unnecessary backtracking is avoided - that is, the goal is "find the first X such 
that Here is an attempted solution using cut. This technique is also often 
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used to minimize stack usage. This poor programming practice is unnecessary if 
the Prolog implementation has tail recursion optimization (TRO). XpProlog 

has TRO. 

memberl(X, X._) :- !. /* succeed only w i t h f i r s t match */ 
memberl(X, Y.Rst) :- memberl(X, R s t ) . 

The query 
?- Z=2, memberl(Z, [1,2,3]). 

correctly succeeds but the logically equivalent 
?- memberKZ, [1,2,3]), Z=2. 

incorrectly fails because the cut ("!") removes too many backtrack points. 
Memberl executes wrongly when Z is a variable. This can be made explicit, 
although rather clumsily, using var. 

memberla(X, L i s t ) :- nonvar(X), !, memberlb(X, L i s t ) , 
memberla(X, L i s t ) :- v a r ( X ) , !, member(X, L i s t ) . 
memberlb(X, Y.Rst) 
memberlb(X, Y.Rst) 
memberlb(X, _.Rst) 

- nonvar(Y), X = Y, ! 
v a r ( Y ) , X = Y. 

- memberlb(X, R s t ) . 

But this is Still not sufficient. ?- member( [A,B], [ [ 1 , 2 ] , [ 3 , 4 ] ] ) , A=3, B=4. 

executes incorrectly. Instead, the var_anywhere predicate must replace the var to 
check for uninstantiated variables anywhere within the term, with increased 
computational cost. 

A solution is to use an if-then-else which delays until the test is sufficiently 
instantiated: 
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meraberlc(X, Y.Rst) :-
i f X=Y then t r u e 

e l s e memberlc(X, Rst) end i f . 
?- memberlc(Z, [1,2,3]), Z=2 

("true" is a predicate which always succeeds.) 

The call to memberlc provisionally succeeds with the test Z=l delayed until Z 
becomes instantiated (Z=2). The resumed test (Z=l) fails and execution 
backtracks to the else. This tail recursively calls memberlc which again 
provisionally succeeds with the test z=2 delayed until z becomes instantiated. 
The next goal z=2 instantiates z and the entire query succeeds. Backtracking 
will not re-do this computation because then removes the backtrack point for the 
else (this can be done safely because the test is fully instantiated and will 
therefore not produce any more information if it is retried). 

If-then-else is a convenient abbreviation for a combination of equals and not 

equals: 

memberld(X, Y.Rst) :- X = Y. 
memberld(X, Y.Rst) :- X # Y, memberld(X, R s t ) . 

An optimizer can transform this into the if-then-else form. The optimizer can 
also notice that the equality/inequality test must not cause any variables to 
become instantiated: different unification instructions are used in this case. The 
computational cost of this member/ predicate is linear with the size of the list, 
even with full checking for delay situations. 
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8.7 Cut 

[O'Keefe 1985] and [Debray 1986] describe the uses of cut. The common uses 
are: 

• Committing a clause. 
• Forcing computations to be functions (that is, deterministic). 
• Breaking out of failure-driven (repeat/fait) loops. 

All of these can be eliminated from Prolog programs by if-then-else. An 
optimizing compiler can detect these situations in xpProlog programs and put 
cuts into the generated xpPAM code when they can be justified by maintaining the 
meaning of the original, purely logical, predicate. 

Because xpProlog allows predicates to delay, the meaning of cut is very difficult 
to give. Consider 
?- g o a l l , goal2, !, goal3. 

where g o a l l has delayed and goa!2 has succeeded. The next goal is cut ("!") 

which removes all the alternatives within g o a l l and goal2. Goal3 causes g o a l l 

to wake up by instantiating a variable that g o a l l is waiting on. If g o a l l then 
fails, everything will fail because there are no alternatives. However, an 
alternative in goal3 might produce a different value which would cause g o a l l to 
succeed. The problem is that g o a l l did not really succeed — it only 
provisionally succeeded, pending more information (from goal3 in this case). 
The implementation of cut must be very complex to handle such cases properly 
- they can be handled much more cleanly by if-then-else. 
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Tail recursion optimization removes the need for special repeat loops. In 
xpProlog, repeat is written 
repeat(P) :- P, repeat(P). 

which never consumes more stack than that required by P if P is deterministic. 
If it is not deterministic, the following is required: 
repeat(P) :- i f e x i s t s P suchthat P then repeat(P) endif. 

where the if-then-else removes backtrack points. This is still logical but only the 
first solution for each invocation of P will be found. 

Strictly speaking, repeat is not logical (if P has no side effects, it will always give 
the same result, so repeat(P) will either fail or loop forever. Typically, repeat is 
used to handle a read-execute-write loop. As xpProlog provides logical I/O with 
streams, repeat and P can be automatically transformed as described in section 
11.8, "Sequential Input/Output" on page 241: 

repeat(P, S t d l n , StdOutRest, Stdln2, StdOut) :-
P(StdIn, Std0ut2, Stdln2, StdOut), 
repeat(P, S t d l n , StdOutRest, Stdln2, Std0ut2). 

?- stream('<terminal>', input, I n ) , /* input stream from t e r m i n a l */ 
stream( 1<terminal> 1, output, Out), /* output stream to t e r m i n a l */ 
repeat(P, In, Out, In2, [ ] ) • /* In2 i s remaining input */ 

where Stdln and StdOut are the input and output streams (the other Std 

variables are used to avoid calls to append). 

Because many implementations lack tail recursion optimization and proper heap 
management, some programmers write the following for "infinite" loop 
programs (such as the top level of a read — eval interpreter): 
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repeat. 
repeat :- repeat. 
?- repeat, 

..., 
f a i l . 

Here, the f a i l chops the backtrack stack down and allows the execution stack to 
be freed. Because xpPAM fully supports tail recursion optimization and also 
garbage collects the global heap, there is no need to write in such a style. 

The predicate 

p r e d ( [ ] , R) :- p l ( R ) . 
p r e d ( a . T l , R) :- p 2 ( T l , R). 
pred(b . T l , R) :- p 3 ( T l , R). 

can be written using if-then-else as 

p r e d ( P l , R) :-
i f PI = [] then p l ( R ) 
e l s e i f PI = Hd.Tl then 

i f Hd = a then p 2 ( T l , R) 
e l s e i f Hd = b then p 3 ( T l , R) 
end i f 

e n d if. 

The programmer may use either form; the optimizer generates the same code for 
both forms. 

If-then-else delays the predicate if there is a variable anywhere in the test, not 
just at the top level. This can be explicitly changed by adding " e x i s t s 
variable-list suchthat." For example: 
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lookup(Name, Value, FoundV, NameList, NewNameList) :-
I f e x i s t s FoundV suchthat member(Name-FoundV, NameList) 

then NewNameList = NameList 
e l s e NewNameList = (Name-Value).NameList, FoundV = Value 

endif. 

Here, member is used to try to find the Name-FoundV pair within NameList. If it 
is found, the name list remains the same; if it is not found, the new Name-Value 

pair is added to the name list. In both cases, FoundV gets the value associated 
with the name. 

If-then-else can be used to make a general first solution predicate: 
f i r s t ( P ) :- i f e x i s t s P suchthat P then t r u e e l s e f a l s e endif. 
There is no delaying within P. Once it succeeds, no other alternative is tried. 
Member! should be coded differently: 
memberl(X,List) :- i f e x i s t s X suchthat member(X,List) 

then true e l s e f a l s e endif. 

which is less efficient than memberIc because List must be scanned to ensure it 
has no uninstantiated variables. 

8.8 Clause order 

If a program uses only logical predicates, the order of clauses has no effect on 
the meaning of a predicate. However, the order can affect efficiency and, 
sometimes, whether or not it will terminate. Clause and goal order in xpProlog 
can be considered as strong hints to the compiler. XpProlog's optimizer is 
allowed to change the order of clauses in a predicate (an example is given in 
section 5.5, "Optimized compiling of a predicate" on page 98). Usually, the 
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order will not be changed because the optimizer assumes that the most common 
cases have been put first. 

If a predicate is deterministic, then only one clause will be tried; the order of 
clauses does not matter. If the clause is not deterministic, the clauses will be 
tried in the order that they are given, although the optimizer may be able to 
skip over some. 

To allow compatibility with conventional Prolog, a predicate can be marked as 
requiring conventional ordered evaluation. For example this non-logical Prolog 
program 

p ( a , X ) : - ! , q ( X ) . 

p ( b , X ) : - ! , r ( X ) . 

P ( _ , X ) : - s ( X ) . / * A * a , A # b * / 

is better written in x p P r o l o g using the special else predicate as: 

p ( a , X ) : - q ( X ) . 

p ( b , X ) : - r ( X ) . 

p ( A , X ) : - e l s e ( A ) , s ( X ) . / * A * a , A + b * / 

which does not have any cuts. The x p P r o l o g version does not depend on clause 
order for correct execution of the query ? - p ( Z , i ) — on backtracking, it could 
generate z=a, Z=b and Z=_ 2 1 but the Prolog version would only generate z=a. 

21 Strictly speaking, the solution Z= should be the constraints Z#a, Z^b. 
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The programmer might prefer an if-then-else construct instead of the else 

predicate. The compiler would generate exactly the same code if the p predicate 
were written: 

p(A,X) :- i f A suchthat A=a then q(X) 
e l s e i f A suchthat A=b then r(X) 

e l s e s(X) 
end i f . 

If the suchthats were left out, the predicate would delay until A became 
instantiated — a similar effect could be produced by adding 

?- proceed p(a?, x ) . 

8.9 AH solutions predicates 

The problem.of uninstantiated variables extends to second-order predicates such 
as bagof and setof. The meaning of conventional implementations of bagof and 
setof changes according to how the variables are instantiated when they are 
invoked, giving different meanings to programs according to the computation 
order (see section 10.3, "Setof, bagof on page 211 for the definition). 

The usual (unsound) implementation is something like:22 

2 2 This bagof (and x p P r o l o g ' s bagof) returns nil ([ ]) if nothing is found. Some people prefer 

predicates which fail if nothing is found. This can be easily defined: 

b a g o f _ f a i l ( P r o t o , P r e d , R e s u l t ) : - b a g o f ( P r o t o , P r e d , R e s u l t ) , 

R e s u l t # [] 
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bagof(Proto, Pred, L i s t ) :- (bagofAsserts(Proto, Pred) ; t r u e ) , !, 
( b a g o f R e t r a c t s ( L i s t ) ; t r u e ) , 

bagofAsserts(Proto, Pred) :- Pred, 
a s s e r t ( b a g o f ( P r o t o ) ) , 
f a i l . /* t r y another s o l u t i o n of Pred */ 

bagofRetracts(X.Rest) :- clause(bagof(X)), /* f a i l s when no more */ 
r e t r a c t ( b a g o f ( X ) ) , 
bagofRetracts(Rest). 

s e t o f ( P r o t o , Pred, L i s t ) :- bagof(Proto, Pred, L i s t l ) , 
s o r t B a g ( L i s t l , L i s t ) . 

The bagof Asserts first tries Pred and then asserts the prototype Proto. A f a i l 

causes backtracking to try the next possibility of Pred (backtracking over a s s e r t 
does not undo anything). The bagofRetracts simply picks up all the entries 
which have been added to the database, removing them as it goes. This 
definition will return [ ] if Pred fails. 

There are several problems with this approach: 

• It does not always have a declarative reading. 
• The a s s e r t and r e t r a c t predicates are quite expensive. This can be solved 

by using special purpose internal database predicates. 
• The entire solution set must be generated, even if it is not needed. For 

example, if not is defined by bagof (_,Pred, []), all the solutions to Pred are 
generated and then bagofRetracts fails as soon as the first element is found 
in the database. This also leaves un-retracted entries in the database, so not 

should actually be defined bagof(_,Pred,L),L?t[ ] . (Setof must still generate 
all the solutions because it must remove duplicates, usually by some kind of 
sorting.) 
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The sound implementation (using xpPAM) is very similar to that given above 
except that, when coded in abstract machine code, the solutions list can be 
generated directly. There is no need to enter and delete entries in a database. 
The xpPAM code is a little tricky and is not shown here. It is basically (see 
section 4.0, "Backtracking and delaying" on page 66 for a description of the 
instructions): 

delay as necessary 
make choice point (failOne) 

make fresh copy of Proto 
call Pred 
modify choice point (failTwo) 

append new list element with fresh copy of Proto 
fail /* doesn't remove copy of Proto on backtracking */ 

failOne: 

remove choice point 
unify [] with (tail of) L i s t 

return 
failTwo: 

fail /* the "add new list element" failed */ 

"Make fresh copy of Proto" means that a brand new copy is made, with no 
references to any free variables in Proto (see the meta and unmeta predicates in 
section 10.4, "Meta-variables" on page 212). As these variables are newer than 
the top choice point, they will left alone on backtracking; however, the "append 
new list element" must not be recorded on the reset stack so that it will not be 
undone when the f a i l causes backtracking to the choice point within Pred. 
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When there is no more choice in Pred, the choice point is used to go to label 
fallOne which terminates the solution list with nil. 

[Naish 1985c] advocates a notation which gives purely declarative readings to 
all solutions predicates. His design requires an implementation which can delay 
predicates until their arguments become sufficiently instantiated. XpProlog's 
meta-variables are a generalization of Naish's design. An all solutions predicate 
must delay until all non-local variables are ground. For example, in 
s e t o f ( [ X , Y ] , pred(Y,Z), Ans) 

the setof will delay until Z becomes ground. If this is written 
e x i s t s Z suchthat setof([X,Y] pred(Y,Z), Ans) 

there will be no delay. X and Y are "local" to the setof expression. 

The problems with not and member 1 can be considered as special cases of the 
problems with bagof and setof because not and member 1 can be defined 

not(Test) :- bagof(X, Test, [ ] ) . /* nothing succeeded */ 
memberl(X, L i s t ) :-

bagof(X, member(X, L i s t ) , X._). /* f i r s t s o l u t i o n only */ 

8.10 Non-strict execution order: delays 
Most of the time, top-down left-to-right execution order is adequate for 
executing a Prolog program. But sometimes a more flexible execution order is 
needed. 

Some conventional Prologs allow deviation from strict top-down left-to-right 
execution order by the freeze predicate. Using this, member 1 can be written: 
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memberle (X , Y . _ ) : - f r e e z e ( X , f r e e z e ( Y , (X=Y, ! ) ) ) . 

m e m b e r l e ( X , Y . R s t ) : - memberle (X , R s t ) . 

This only works if the scope of the cut is the entire memberld clause, not just the 
f r e e z e . 

Actually, two kinds of freeze are needed: one which delays until the argument is 
sufficiently instantiated ( f r e e z e ) and one which delays until the argument is 
completely instantiated ( f r e e z e _ a l l ) . Using this, we can produce one more 
definition: 
m e m b e r l f ( X , L i s t ) : - f r e e z e _ a l l ( X , f r e e z e _ a l l ( L i s t , memberl (X , L i s t ) ) , 

which is less efficient than memberld because it traverses the list an extra time, to 
detect uninstantiated variables. Also, memberlf may delay unnecessarily on a 
variable, for example, for memberlf ( 1 , [ 1 , X ] ) . Memberlc , which uses if-then-else, 

is the most efficient and the easiest to understand. 

Delays are the general mechanism for sound negation, single solutions, 
if-then-else and declarative all solutions predicates. Delays also allow the 
extensions to Prolog, including first-order quantifiers, described in [Lloyd and 
Topor 1984] and they allow coroutining with backtracking. The result is a very 
flexible design which permits a variety of programming styles. Delays are 
covered in section 9.2, "Coroutining example" on page 187. To take full 
advantage of the design, Prolog's syntax must be extended slightly - these 
extensions will be introduced as they are needed. 
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8.11 Input/Output 

Input/output is a notoriously non-logical part of conventional Prolog. The most 
common design follows BCPL [Richards and Whitby-Stevens 1979]: input or 
output is always to the current stream and this stream can be changed at any 
time to be connected to a specified physical file. Predicates such as display and 
read manipulate the input/output streams using side-effects. Most Prolog texts 
give examples where the unwary programmer can be caught by I/O's illogical 
behaviour. 

The main problems with conventional Prolog's I/O are 

• Backtracking does not undo an I/O operation. 
• If predicates delay, the order of I/O may not be what the programmer 

intended. 
• The conventional I/O predicates work by side-effects, preventing some 

optimizations. 

These problems can be solved by following a model similar to that in [Cheng 
1986]. Input/output are still handled by streams but these streams are 
syntactically identical to lists. Meta-predicates associate these streams with 
physical files (section 11.8, "Sequential Input/Output" on page 241). 

For debugging, it is often helpful to add output statements to predicates. 
X p P r o l o g has retained this feature (which is non-logical) but its use is 
discouraged, except in debugging. 
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8.12 Efficiency 

In my implementation of xpProlog (described by the xpPAM abstract machine), 
deterministic predicates are not slowed significantly by the delaying and 
backtracking features.23 Depending on the problem, the machine is well suited 
to purely deterministic predicates and to complex generate-and-test predicates 
using coroutines and backtracking. 

These implementation features are synergistic. For example, if determinism is 
recognized, then unnecessary choice points are not created. This speeds 
execution, allows tail recursion to take place, reduces stack and memory usage 
and decreases page faults. 

2 3 The current implementation does have an overhead of a few percent because each unification 

which instantiates something must check if a predicate has been delayed, depending on that 

variable. A better implementation would use a different tag for such variables and there 

would be no run-time overhead - they would just become another case in the jump-table 

used by the unification routine. 
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9.0 Coroutining, pseudo-parallelism and parallelism 

Time present and time past 

Are both perhaps present in time future, 

And time future contained in time past. 

— T. S. Eliot, Four Quartets: Burnt Norton, J 

Coroutining has been widely written about, but very few programming 
languages provide facilities for coroutining. 

This chapter provides some examples of coroutining, to show how they lead to 
more natural programs than can be provided by purely procedural languages. 
In addition, coroutining follows naturally from logic programming's philosophy 
in that the order of execution does not affect the correctness of the solution. 
Thus, almost nothing must be added to the language to provide coroutining, 
although the implementation must change. 

Coroutining can be considered as a special case of parallelism. Section 
9.6, "Parallelism" on page 198 has a short discussion of the two paradigms. 

185 



Coroutining is not a new notion for logic programming. It is discussed in 
[Kowalski 1979]. Some other coroutining proposals are discussed at the end of 
this chapter. 

9.1 Notation 

Coroutining can be explicitly indicated by the "?" notation introduced in section 
1.5, "Delay notation" on page 8 The "?" notation does not change the logical 
meaning of a programming except that the same program without "?"s may 
either fail to terminate or may run much slower. 

Coroutining can be deterministic or non-deterministic. The deterministic case is 
similar to what is provided in conventional languages such as Simula-67. The 
non-deterministic case exists only for logic programming languages; its main use 
is in speeding up generate-and-test programs. 

The "?" notation can be used within predicates or as separate proceed 

declarations (also described in section 1.5, "Delay notation" on page 8). 
Proceed declarations have the advantage that they can be written separately 
from a predicate's declarations. 

[Naish 1985a] shows how similar declarations (wait declarations for 
MU-Prolog) can be generated automatically. The algorithm is surprisingly 
simple and can be implemented in a few hundred lines of Prolog. Of course, 
such an algorithm cannot generate delay declarations for all predicates (which 
would solve the halting problem) but it works for most cases encountered in 
practice. 
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9.2 Coroutining example 

Here is a short, artificial example program to demonstrate coroutining. It is 
typical of a large class of programs which have a natural representation as 
cooperating parallel processes or coroutines. Such programs often are much 
harder to understand if they are transformed into a strictly sequential style. 
[Kowalski 1979 pp. 114-118] has other examples. [Dahl, Dijkstra and Hoare 
1972] has more general comments on why coroutines are desirable, and many 
more examples. 

The problem is to generate a list containing 1 and all numbers divisible only by 
2 and 3, in ascending order with no duplicates: [1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 
...]. This is similar to an exercise attributed to R. W. Hamming for which a 
sequential, less understandable, solution is given in [Dijkstra 1976]. 
[Henderson 1980 chapter 8] gives a functional lazy execution solution to this 
problem. I have restated his solution with predicates, giving an elegant solution 
using coroutines (degenerate parallelism). 

The problem can be re-stated: 

• 1 is in List. 

• if TV is in List, so are IN and 3/V. 

• no other values are in List. 

• if List contains [..., A, B, ...] then A <B (no duplicates, in ascending order). 

Pictorially, the flow of data through the program is: 
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t i m e s L i s t 2 
Twos 

t i m e s L i s t 3 
Threes 

>-
Merge23 L i s t 

ordMerge 

>-
Merge23 L i s t 

ordMerge 

The predicate t i m e s L i s t generates a list of multiples in the third argument. For 
example: 
t i m e s L i s t ( 2 , [1,3,4], [2,6,8]). 

The predicate ordMerge does an ordered merge of two ordered lists, removing 
duplicates. For example: 
ordMerge([1,3,4], [2,4,5], [1,2,3,4,5]). 

This program can be coded in xpProlog: 

hamming(List) :- L i s t = 1 . Merge23, 
ordMerge(Twos, Threes, Merge23), 
t i m e s L i s t ( 2 , L i s t , Twos), 
t i m e s L i s t ( 3 , L i s t , Threes). 

ordMerge([], M, M). 
ordMerge(M, [ ] , M). 
ordMerge(A.X, A.Y, M) :- ordMerge(X, A.Y, M). /* remove dup's */ 
ordMerge(A.X, B.Y, A.M) :- A < B, ordMerge(X, B.Y, M). 
ordMerge(A.X, B.Y, B.M) :- A > B, ordMerge(A.X, Y, M). 
t i m e s L i s t ( _ , [ ] , [ ] ) . 
t i m e s L i s t ( N , A.X, An.Xn) :- An i s N*A, t i m e s L i s t ( N , X, Xn). 

This solves a set of simultaneous equations on List with Twos, Threes and 
Merge23 as temporaries. Each of the timesList processes produces a list of 2 or 
3 times its input list. The ordMerge process merges them (in order) and the 
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resulting list is then fed back into the timesList processes. The duplicate 
removal is not completely general (it assumes that each of the input lists is in 
strictly ascending order) but is adequate for this problem. [Henderson 1980] 
outlines a proof that the above computation is well-defined. 

Delays are necessary for ordMerge and timesList. OrdMerge must delay until 
its arguments are sufficiently instantiated for the ordering test (or until an 
argument is nil); timesList must delay until the arithmetic "N*A" is possible: 

?- proceed ordMerge(a?.x, b?.y, m). 
?- proceed t i m e s L i s t ( n ? , a?.x, l i s t ) . 

The program is very easily extended to deal with any number of t i m e s L i s t s by 
just adding more ordMerge stages - modifying the sequential solution is more 
complex. 

Programmers who are used to sequential programs often have difficulty with the 
notion of predicates delaying and then restarting as their arguments become 
instantiated. Tracing the sequential execution of these predicates is very tricky. 
If these are thought of as parallel processes, some of the difficulty goes away — 
coroutines are just special cases of parallel processing where each process runs 
until it cannot proceed or until is provides a value which is needed by a 
suspended process. 

With this in mind, here is how execution proceeds: 

1. ordMerge delays on Twos and Threes. 
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2. the two t i m e s L i s t predicates produce their first elements: [2, ...] and [3, ...]. 
They then delay. 

3. ordMerge wakes up and produces its first output: [2, ...]. It can proceed no 
further. 

4. the two t i m e s L i s t predicates produce their next elements: [2, 4, ...] and [3, 
6, ...]. They then delay. 

5. ordMerge wakes up and produces its next output: [2, 3, ...]. It can proceed 
no further. 

6. the two t i m e s L i s t predicates produce their next elements: [2, 4, 6, ...] and 
[3, 6, 9, ...]. They then delay. 

7. ordMerge wakes up and produces its next output: [2, 3, 4, ...]. It can 
proceed no further. 

And so on. In actual coroutining, the switching back and forth is done more 
frequently (as soon as a t i m e s L i s t predicate produces another element, 
ordMerge is resumed) but the net effect is the same. 

The notion of delaying on variables is very similar to the concept of monitors 

[Hoare 1985]. Each variable which has caused a delay (by being marked using 
"?" or proceed notation) is like a monitor which suspends execution until 
sufficient information is available. The concept of critical region, however, is 
slightly different because there is no destructive assignment in logic 
programming. 

These proceed declarations were generated automatically by using the method in 
[Naish 1984] from the original program. The proceed declarations are purely 
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control information, separate from the logic of the program. However, they are 
necessary to ensure that the computation terminates. 

9.3 Test and generate 
Not only does coroutining allow for easier to understand programs, it can 
produce significant speed-ups. Generate and test programs typically are written 
?- generate( [ a i , &2> a 3 > ••• ]> S o l u t i o n ) , t e s t ( S o l u t i o n ) . 

where generate generates all potential solutions by permuting the problem's 
variables. The computational cost of this explodes factorially. Using coroutines, 
this can be written: 
?- t e s t ( S o l u t i o n ) , generate([a^, &2> 8 3 , ... ], S o l u t i o n ) . 

The test predicate typically contains a series of inequalities and arithmetic 
predicates which have very large solution spaces. These are delayed. Generate 

then produces the first potential solution. It instantiates Solution sequentially 
from the first element. As the elements become available, the delayed tests are 
tried. If a test fails, it automatically removes all other potential solutions with 
that particular initial sequence - far fewer permutations are tried. 

An example of this technique solves the arithmetic logic puzzle 

SEND 9567 
+ MORE + 1085 

====> 
MONEY 10652 
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(s, E, N, D, M, 0, R and Y are all different; M and S are not 0): Here is the program 
(adapted from [Colmerauer 1982]). The solution has no delay annotation 
because all the delaying is done by the 'V predicates. 

money(S, E, N, D, M, 0, R, Y) :-
d i f f e r e n t ( [ S , E, N, D, M, 0, R, Y ] ) , 
M ± 0, S * 0, 
sum(Cl, 0, 0, 0, M), 
sum(C2, S, M, C l , 0 ) , 
sum(C3, E, 0, C2, N), 
sum(C4, N, R, C3, E ) , 
sum(0, D, E, C4, Y). 

/* sum w i t h carry: C + X + Y = 10*C1 + Z */ 
sum(C, X, Y, C l , Z) :-

goodCarry(C), d i g i t ( X ) , d i g i t ( Y ) , 
T i s X + Y + C, 
s p l i t ( T , C l , Z). 

/* compute 2 - d i g i t number i n t o i t s two d i g i t s : N = 10*C + X */ 
s p l i t ( N , C, X) :- C i s N / 10, 

X i s N mod 10. 

/* enumerate the d i g i t s : */ 
d i g i t ( O ) . d i g i t ( l ) . d i g i t ( 2 ) . d i g i t ( 3 ) . d i g i t ( 4 ) . 
d i g i t ( 5 ) . d i g i t ( 5 ) . d i g i t ( 7 ) . d i g i t ( 8 ) . d i g i t ( 9 ) . 

/* For a d d i t i o n , the only p o s s i b l e c a r r i e s are 0 and 1: */ 
goodCarry(O). goodCarry(1). 

/* Ensure that a l l elements i n a l i s t are d i f f e r e n t : */ 
d i f f e r e n t ( [ ] ) . 
d i f f e r e n t ( X . L ) :- notMember(X, L ) , 

d i f f e r e n t ( L ) . 

notMember(X, [ ] ) . 
notMember(X, A.L) :- X # A, 

notMember(X, L ) . 
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The different predicate sets up the delayed tests S#E, S^N, S#D, E#N, R#Y. 

The sum predicate generates possible sums and carries for D+E=Y, N+R=E, etc. by 
backtracking through the possibilities produced by digit and goodCarry. As the 
values of S, E, Y become instantiated, the inequalities are woken up. For 
example, the first sum generates an initial answer ci=o, M=o. This is 
immediately rejected by the constraint M^o, so the other sum goals are never 
tried with those values for C l and M. This drastically reduces the search space 
over what would be tried using conventional Prolog (by about 100 times). 

The conventional Prolog solution would first have to re-arrange the goal so that 
the test predicates are after the generate predicates. 

money(S, E, N, D, M, 0, R, Y) : -
sum(Cl, 0, 0, 0, M), 
sum(C2, S, M, C l , 0 ) , 
sum(C3, E, 0, C2, N), 
sura(C4, N, R, C3, E ) , 
sum(0, D, E, C4, Y), 
M * 0, S it 0, 
d i f f e r e n t ( [ S , E, N, D, M, 0, R, Y ] ) . 

All the possibilities produced by the sum predicates will be tried. Greater 
efficiency can be gained by interleaving parts of the d i f f e r e n t predicate with 
the sum predicates in the goal - but this obscures the program and is still not 
as efficient as the delaying solution. 

Using such techniques can speed up programs by two or three orders of 
magnitude. I have observed programs dropping from an hour to a minute or 
even a second. 
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Even better speed-ups are possible by using constraints because integer 
arithmetic is complete (at least, Pressburger arithmetic is complete). Using 
constraints, the problem could be solved by: 

money(S, E, N, D, M, 0, R, Y) :-
d i f f e r e n t ( [ S , E, N, D, M, 0, R, Y]), 
M * 0, S * 0, 

0 i s (S*1000 + E*100 + N*10 + D 
+ M*1000 + 0*100 + R*10 + E) 

- (M*10000 + 0*1000 + N*100 + E*10 + Y). 

where different is as above. The xpPAM implementation cannot currently handle 
such constraints; it would need a generator for the values of S, E, Y, such as 
the digit predicate given earlier. 

9.4 Pseudo-parallelism 

The structure of a typical parallel program is: 

Requester 

send request 

wait for reply 

process reply 

Server 

initialize 
loop 
wait for message 
process message 
send reply 

endloop 

This is a producer-consumer coroutine, with message passing instead of 
coroutine calls. No matter how much parallelism is available, the speed of the 
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two processes is limited by the slower of the two. 
coroutining process is: 

Using xpProlog, the 

coroutine(C, P) :- consume(L, C), produce(L, P). 
produce(Hd.Tl, P) :- makeOneMsg(Hd, P), 

produce(Tl, P). 
produce([], P) :- not e x i s t s Hd suchthat makeOneMsg(Hd, P). 

/* end of produced l i s t */ 
consume(Hd?.Tl, C) :- /* delay u n t i l l i s t element and Hd i n s t a n t i a t e d */ 

processOneMsg(Hd, C), 
consume(Tl, C). 

consume([]?, C). % stop at end of l i s t 

The parameters C and P represent information which is used to control the 
consumption and production. 

Consume immediately delays on L. Produce starts and continues with 
makeOneMsg which instantiates Hd, wakens consume and suspends 
makeOneMsg. ProcessOneMsg then executes. Consume repeats and delays on 
the uninstantiated tail of the list - this returns to the suspended produce and 
the cycle continues. The coroutine halts when makeOneMsg fails to produce a 
new element. Many kinds of control can be used; here, C and P are used to 
represent such control. 

This program has one slight inefficiency. Produce will wake up consume as soon 
as it constructs a list element but consume will then immediately delay on the 
head. More efficient, but logically equivalent: 

p r o d u c e ( L i s t , P) :- makeOneMsg(Hd, P), 
L i s t = Hd.Tl, 
produce(Tl, P). 
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The order of the consume and produce goals in coroutine is important for the 
interleaved execution; it is not important for the actual meaning of the program 
(we could have produce generate the entire list L first, then have consume 

process it - but this would use up enormous amounts of memory if the list 
were very large). The list L needs to exist just one element at a time because it 
is used solely as a communication channel. If reference counting is used, the list 
cells are freed as soon as they are accessed and so the entire list never exists, just 
the current element. 

The produce and consume predicates are both deterministic and tail recursive, so 
the compiler can easily turn them into iterations. If makeOneMsg and 
processOneMsg are also deterministic, then the execution stack is bounded. 

9.5 Correctness and completeness 

The order of goal selection does not affect the correctness of the computation 
[Lloyd 1984 ] . However, it may affect the completeness. The programmer will 
want to be assured that any program which correctly terminates for 
conventional Prolog will also correctly terminate with x p P r o l o g . 

As long as there are no delays, x p P r o l o g chooses goals in exactly the same way 
as conventional Prolog. For such programs, both languages have the same 
partial completeness. 

Consider the simple query: 

?- x < Y , x = l , x = 2. 
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Depending on the Prolog implementation, this will either generate a run-time 
error (because " <" can only work with ground arguments) or it will fail 
(because " <" requires numbers as its arguments and uninstantiated variables 
are not numbers). Putting this query to x p P r o l o g results in successful 
completion. Thus, x p P r o l o g is "more complete" than conventional Prolog, if the 
delays are used properly. 

Unfortunately, the programmer can take a working conventional Prolog 
program and add delay annotations so that it will not work in x p P r o l o g : 

• The delays may be too strict so that execution halts with some predicates still 
delayed. A trivial example, the query 

?- x = l . 

will succeed but the query 

?- x? = l . 

will delay indefinitely. 

• The delays may cause an infinite loop. A trivial example is the query 

?- X < Y , i n f ( A ) , X = 1, Y = 2. 

where inf is a predicate which does not terminate (for example, 
" i n f ( A ) : - i n f ( A ) " ) . This query will fail, as described earlier, for 
conventional Prolog but will go into an infinite loop with x p P r o l o g because 
the "X<Y" will delay, allowing the inf predicate go start execution. 

197 



To summarize, any pure Prolog program will produce the same results in 
xpProlog. Some pure Prolog programs will terminate correctly only in xpProlog 
— they will either produce wrong answers or will fail to terminate in 
conventional Prolog. However, the programmer must be careful in adding 
delays to programs - it is possible to cause an over-constrained program to 
deliver a "don't know" answer with a list of goals which cannot be computed: 

• the goal(s) might succeed. 
• the goal(s) might fail, allowing alternative goals to be tried (resulting in 

success, failure or a further "don't know"). 

9.6 Parallelism 

Many problems which appear to be good candidates for parallelism and are 
written using parallel constructs are really disguised coroutines because critical 
sections must execute sequentially. A digital telephone switch has many 
thousands of processes (telephone calls) running concurrently. Most of these are 
suspended, waiting for an event such as someone picking up or putting down 
the telephone. The few active processes must all pass through one bottleneck: 
the circuit assignment process. Circuit assignment must be done sequentially 
and the capacity of the switch is determined by the speed of the circuit 
assignment algorithm. 

This does not mean that some specialized problems cannot benefit from massive 
parallelism. Examples are equation solving by using relaxation techniques or 
searching large databases. These problems are characterized by needing only 
localized communication among processes: 
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Or-parallelism: the problem results in a large set of simple solutions which can 
all be tested independently. An example of this is a dictionary search for 
synonyms; another example is parsing with an ambiguous grammar. 
Generate and tests are not good candidates for or-parallelism because of 
their enormous search spaces; coroutining offers much greater speed-ups 
because it automatically prunes the search space. 

And-parallelism: the problem can be broken down into two sub-problems which 
are completely independent. The overhead of detecting independent 
and-parallelism is about 10% [Hermenegildo and Nasr 1986], so parallelism 
results in significant speed-ups. 

In fact, the telephone switch does gain some speed by using parallelism: 
peripheral processors can do some autonomous event processing. When the 
peripherals communicate the central call-processing CPU, they actually become 
part of a large coroutining system. For the central CPU, the advantages of 
parallel processing are not speed, but clarity. 

Some parallel designs have retained standard Prolog with full backtracking 
[Hermenegildo and Nasr 1986]. Their intent is to retain the semantics of 
conventional Prolog, speeding execution when parallelism can be exploited. As 
xpProlog provides full pure Prolog with coroutining, it can easily be used in 
such a parallel machine — the coroutining predicates could transparently be 
executed on a fully parallel machine. 

In contrast, guarded Horn clause languages (such as GHC [Ueda 1985], 
Concurrent Prolog [Shapiro 1983] and Parlog [Clark and Gregory 1984]) have 
abolished backtracking. Flat GHC has even discriminated against user 
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predicates by not allowing them in guards. Standard Prolog can be 
implemented in such languages - but that can be said of even Fortran. Rather 
(attribution uncertain): 

flat, safe, concurrent guarded Horn clauses = Occam + logical variable. 

I believe that the indeterminacy of the guards - which has caused much 
semantic difficulty - is not a very valuable feature because the guards are 
usually mutually exclusive and can be transformed into an equally fast (or 
faster!) sequence of if-then-elses. The valuable feature of these languages is their 
ability to execute predicates in parallel, communicating via shared logical 
variables — a feature which can be exploited in any logic programming 
language which does not depend on execution order. 

XpProlog's design for coroutining does not rule out parallelism. Because 
xpProlog allows only purely logical constructs, goals can be executed in any 
order and a coroutining program can be executed on parallel hardware with no 
changes. It may run faster - very often it will run slower because the cost of 
creating and destroying processes is greater than the saving producing by 
running in parallel. 

9.7 Comparison with other designs for delaying. 

MU-Prolog &refNaish 1985d] has a slightly less general form of delaying - it 
can delay only on entire arguments, not on the individual parts of them. In 
xpProlog's notation, MU-Prolog can do (Hd.Tl)? but not Hd?.Tl (this is fixed in 
the successor, NU-Prolog). [Naish 1984] describes how to automatically 
generate wait declarations which are similar to but weaker than proceed 
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declarations. His algorithm detects situations where backtracking would 
produce infinite solution spaces and then generates wait declarations to prevent 
them. The hamming program given earlier was originally tested in MU-Prolog; 
it will not run deterministically in MU-Prolog, even if some rather strange tricks 
are tried (supplied to me by Naish), because MU-Prolog has only the equivalent 
of simple top-level "?" annotations (because the A and B in ordMerge may be 
uninstantiated, the less-than predicate simply delays, allowing ordMerge to be 
called again - when A and B become instantiated, the less-than may fail, 
causing backtracking). 

Prolog-II [Colmerauer 1982] uses a different method of delaying: the freeze 

(geler) predicate. This delays calling a goal until a particular variable has 
become instantiated. The test for delaying is thereby associated with the calling 
predicate instead of with the called goal. XpProlog's method has the advantage 
of requiring the delay declarations in only one place; the extra flexibility of 
Prolog-II's method is not needed in practice. If desired, freeze can be defined in 

freeze(X?, Pred) :- Pred. /* wait until X becomes instantiated, then call Pred 

Prolog-II can delay until one of several variables becomes instantiated 
("or-delay") by a somewhat awkward - and not obvious - construct: 

orFreeze(X, Y, Pred) :- freeze(X, C o n t r o l = c ) , 

xpProlog: 

*/ 

freeze(Y, 
freeze(C, 

C o n t r o l = c ) , 
Pred). 
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The first freeze delays until X becomes instantiated; the second freeze delays 
until Y becomes instantiated. As soon as either of these variables becomes 
instantiated, the goal Control=c is executed which wakes up the freeze for Pred. 

Unfortunately, this leaves unevaluated predicates lying around, so that we 
cannot distinguish between a program which is "hung" or permanently delayed 
and a program where some computational alternatives are not needed. 
XpProlog can do a cleaner or-freeze: 

?- proceed orFreeze(x?, y, pred). 
?- proceed orFreeze(x, y?, p r e d ) v 

orFreeze(X, Y, Pred) :- Pred. 

Freeze is very unwieldy for the ordMerge predicate given earlier. Using freeze, 

every call to ordMerge(X,Y,M) is replaced by 

freeze(X, freeze(Y, ordM(X, Y, M))). 

where ordM is defined by: 

ordMQ], Y, Y). 
ordM(X, [ ] , X). 
ordM(X.A, Y.B, M) :- freeze(X, freeze(Y, ordMerge(X, Y, M))). 

IC-Prolog [Clark, McCabe and Gregory 1982] has similar facilities as ours, 
adding unsynchronized parallel evaluation and parallelism with directed 
communication. Most practical parallel programs can be easily simulated with 
coroutines (see section 9.4, "Pseudo-parallelism" on page 194) so I do not 
consider my design to be deficient in this respect. There is no need for xpProlog 
to be implemented by coroutining - full parallel processing could be used. 
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IC-Prolog requires duplicating the bodies of predicates which can delay in more 
than one way like append or ancestor. It uses a variety of control annotations in 
the code (-, //,!,?, [, ]) whereas xpProlog has a single separate control 
annotation (proceed). But these are not sufficient to handle the 
test-and-generate solution for eight queens (below). [Kluzniak 1981] has an 
interesting variant which seems to be more powerful than IC-Prolog's. He 
defines three control predicates: 

spawn Call inserts a new process, in suspended state, immediate before the 
current process. 

wait Variable delays until the variable becomes instantiated. The suspended 
process before the current process is activated. 

yield suspends the current process and passes control to the next process. 

Using this, the eight queens program is written (with "X?" being an 
abbreviation for walt(X)): 
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queens(X) :- spawn perm([1,2,3,4,5,6,7,8], X), safe(X?) 

perm([], [ ] ) . 

perm(X.Y, U.V) :- del(U, X.Y, Z), y i e l d , perm(Z, V). 

del(A, A.L, L ) . 

del ( X , A.L, A.R) :- del(X, L, R). 

s a f e ( [ ] ? ) . 

safe(X?.Y?) :- spawn nodiag(X, 1, Y), sa f e ( Y ) . 

nodiag(_, _, [ ] ? ) . 
nodiag(B?, D?, (N.L)?) :- B =\= N-B, D =\= B-N, D l i s D+l, y i e l d , 

nodiag(B, D l , L ) . 
Kluzniak's wait is the same as xpProlog's ? The spawn is not needed in 
xpProlog because any predicate is potentially suspendable. XpProlog would 
write the queens predicate's goals in the order safe, perm (that is, the safe test is 
implicitly spawned because it immediately delays, waiting for the first element of 
the permutation to be generated). XpProlog does not require the yields. As soon 
as a predicate instantiates a variable which has caused another predicate to 
delay (by a wait), the delayed predicate is activated. Kluzniak's design permits 
greater control but at the cost of requiring the programmer to know that the 
code will be used for coroutining (for example, perm must have a yield added to 
it for coroutining). Kluzniak also notes that coroutining between non-adjacent 
goals is difficult and he is unsure of appropriate backtracking behaviour (the 
details of xpProlog's backtracking are in section 4.0, "Backtracking and 
delaying" on page 66). 

The xpProlog solution to eight queens requires putting the safe goal before the 
perm goal, removing all the "?"s, spawns and yields and adding the following 
(which were generated automatically, using Naish's program): 
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?- p r o c e e d p e r m ( ? , - ) . ?- p r o c e e d p e r m ( - , ? ) . 

?- p r o c e e d d e l ( - , ?, - ) . ?- p r o c e e d d e l ( - , - , ? ) . 

?- p r o c e e d s a f e ( ? ) . 

?- p r o c e e d n o d i a g ( - , - , ? ) . 

These declarations make sure that the testing predicates {safe and nodiag) will 
not attempt to construct the solution list and the generating predicates {perm 

and del) will not go into an infinite loop on backtracking, generating longer and 
longer lists. The X=\ = expr predicate is an abbreviation for X2 i s expr, X # 

X2 — it will delay until its arguments are instantiated. Incidentally, nodiag 

should not be "optimized" to delay until /V becomes instantiated. With the 
proceed declaration above, nodiag will spawn a series of inequalities - the 
optimization would prevent these from being spawned. In predicates which 
produce something (such as ordMerge) should have the delays propagated to the 
head but those which test should not. 

In summary, xpProlog's "?" and proceed can do everything and more that the 
other delaying designs can do, but with simpler notation. 
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10.0 Extensions to Horn logic 

... but exhaust the realm of the possible. 

— Pinder, Pythian Odes, III. 109 

Although Horn clauses are sufficient to handle any first order logic, they are not 
very convenient for some programming situations. In particular, the following 
have proven useful: 

• Negation and if-then-else. 

• All-solution predicates {setof and bagof). 

• "Higher order" predicates. 
• "Infinite" structures. 
• Dynamic creation of predicates (meta-programming). 

Negation and all-solution predicates are treated incorrectly by most Prolog 
implementations. .Sections 8.9, "All solutions predicates" on page 178 and 
10.4, "Meta-variables" on page 212 describe language extensions for handling 
these properly. 

Coroutining (discussed in section 9.0, "Coroutining, pseudo-parallelism and 
parallelism" on page 185) is not an extension to the logic but an extension to 
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the control strategy. Arrays and logical I/O (discussed in section 11.0, "Arrays 
and I/O done logically and efficiently" on page 222) are conservative, extensions 
to the logic in that they can be implemented using the existing mechanisms of 
the language. Mode and type declarations and equality theories (discussed in 
sections 5.10, "Speeding up deterministic predicates - modes and types" on 
page 112 and 6.5, "Equality: "is" and " = "" on page 133) can also be treated 
as special predicates which are treated in a special way by the compiler. 

10.1 Negation 

Horn clause logic does not contain negation. But negation is very useful in 
practical programming. This section will discuss how negation can be handled 
properly in a logic programming language. Some of the material overlaps the 
section on execution order (see section 8.0, "Execution order" on page 158). 

Consider the member predicate: 

member(X, X._). 
member(X, Y.Rest) :- member(X, Rest). 

There are three ways that not member(X,List) can be processed: 

1. Delay until everything in X and List are ground; call member; invert 
member's success or failure. 

2. Execute member, in a special "negation" mode, with a list of variables which 
must not become instantiated (the predicate will delay rather than instantiate 
one of these variables). 

3. Transform member to a new notMember and call that. 
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There is one disadvantage in the first approach: the query not 
memberd, [o, l,X]) will delay unnecessarily. Furthermore, the delay is detected 
by recursively traversing all the arguments to member - this requires overhead 
similar to that required by the occurs check. The second approach adds 
significant complexity to the abstract machine. Transforming member gets 
around the problem. 

Here is a transformation of member to its negative equivalent notMember. For 
any X and List, exactly one of member or notMember is true. 

notMember(X, T a i l ) :- T a i l ¥= (_._). /* or T a i l = [ ] */ 
notMember(X, Y.Rest) :- X * Y, notMember(X, Rest). 

Here, the not equals ('V) predicate does item by item delaying. When 
notMember(l, [o, 1,X]) is tried, the first clause fails (because the second 
argument is a list), so the second clause is tried. This succeeds, resulting in 
trying notMemberd, [ l,x]). Again, the first clause fails. The second clause also 
fails, so the entire query fails, which is what we wanted. In contrast, using 
general not would have delayed until X became instantiated, resulting in 
unnecessary computation, or even never being tried if X never becomes 
instantiated. 

This transformation can be done automatically. The method is: 

1. Transform the predicate to an if-and-only-if form (using the completion 

[Clark 1978]). 
2. Put in all universal and existential quantifiers. 
3. Negate the predicate. 
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4. Work all the negations through to the innermost level so that not appears 
only in front of single predicates. 

5. Transform the predicate back to Horn clause form. 

Here is the transformation for member. 

1. member(X,List) iff 

List= Y.Rest & (X= Y \ member(X,List)) 

2. forA\l(X,List): member(X,List) iff 

exists(Y,Rest): List- Y.Rest & (X=Y\ member(X,List)) 

3. torAVL(X,List): notMember(X,List) iff 

not exists^Y.Rest): List- Y.Rest & (X= Y | member(X,List)) 

4. for A\l(X,List): notMember(X,List) iff 

forA\\(A,B): X ^ A.B 

| existsf Y,Rest): List= Y.Rest & X * Y & notMember(X.Rest) 

5. notMember(X, L i s t ) :- L i s t # (_._). 

notMember(X, Y.Rest) :- X ̂  Y, notMember(X, Rest). 

In a typed system, a further transformation is possible because " L i s t ^ _ . _ " is 
the same as "List=[ ]" However, there is a subtle difference between the two 
because the inequality will delay if it encounters an uninstantiated variable but 
the equality will instantiate a variable to nil. 
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Such transformations can be done at run time. XpPAM allows a "compile on first 
use" so that a predicate is stored in some external form until it is first tried. At 
that point, it is compiled (the external form is kept). Similarly, if the predicate 
is tried in a negative context, it can be transformed and then compiled. 

Another situation where negation arises is when there is an either-or situation. 
For example, let us suppose that a fungus is always either a mushroom or a 
toadstool and never both. In sequent calculus (that is, Horn logic allowing 
multiple "goals" on the left hand side), this can be stated: 

mushroom(X), toadstool(X) :- fungus(X). 

From this we can derive two extended Horn predicates which state the situation, 
although without quite as much computational power because of the lack of 
general resolution: 

mushroom(X) :- fungus(X), not t o a d s t o o l ( X ) . 
t o adstool(X) :- fungus(X), not mushroom(X). 

10.2 Closed predicates 

The transformation of a negated predicate requires using the closure of the 
predicate [Clark 1978]. The assumption is that the programmer has written the 
program using ifs (":-" or " <-") but has really meant if-and-only-ifs. The 
if-and-only-if form is produced by simply or-ing the clauses for the predicate 
(step 1 in the previous section). 
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The negation transformation cannot be done in the presence of assert or retract 

on the predicate. To indicate this, xpProlog has a closed meta-predicate which 
states that the predicate will not be subject to any more changes (by assert or 
retract). An attempt to negate a non-closed predicate results in a run-time 
error. 

Similar to closed predicates are cannot fail predicates. For such a predicate, not 

should always fail. When xpProlog compiles a cannot fail predicate, it adds one 
more "catch-all" clause which generates an error message. Many predicates 
have this cannot fail property — failure for these predicates indicates a 
programming mistake. 

10.3 Setof, bagof 
All solution predicates are often needed in practical logic programming. They 
are clearly second-order constructs outside of Horn clause logic and should not 
be simulated by using non-logical predicates such as assert and retract. All 
solutions predicates should be built into the logic programming language. 

All solution predicates are general cases of negation and single solution 
predicates. For example, not could be defined as succeeding when the solution 
list is empty: 

not(Test) :- bagof(X, Test, [ ] ) . /* nothing succeeded */ 

Similarly, predicate memberl which succeeds only once, for the first match can 
be defined: 
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memberl(X, L i s t ) :-
bagof(X, member(X, L i s t ) , X._). /* f i r s t s o l u t i o n only */ 

Because all solutions predicates are second order, they require special second 
order variables. [Naish 1985c] describes a notation which gives purely 
declarative readings to all solutions predicates. The notation is similar to 
xpProlog's exists notation for if-then-else. He treats the problem as a control 
issue, indicating that execution should delays until certain variables become 
instantiated (or execution may proceed in spite of certain variables not being 
instantiated). XpProlog treats introduces second order variables to handle the 
situation. The next section discusses these meta-variables. 

Section 8.9, "All solutions predicates" on page 178 describes a sound 
implementation of all solution predicates. 

10.4 Meta-variables 

Conventional implementations of bagof and setof misuse Prolog's logical 
variables. In the goal bagof(Proto, Pred, R e s u l t ) , the variables in "Proto" 
(prototype) and "Pred" (predicate) are different from regular Prolog variables. 
They are really place holders: each time the predicate is evaluated, they are 
filled in with new logical variables. Such variables are common in higher-order 
predicates — I call them meta-variables. Meta-variables are limited in scope to 
the formulas in which they occur. They are place holders in formulas. 

In the expression 
s e t o f ( X , p(X), L I ) , s e t o f ( X , q(X), L2), ... 
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the two "X"s are distinct. The scope is obvious in all-solutions predicates, but 
there are other cases where the scope must be explicitly given. 

Meta-variables also occur when predicates or formulas are manipulated. For 
example, a natural language query system takes sentence and transforms them 
into logical formulas (which look like predicates). At some later time, these 
formulas may be executed by filling in the variables. The input 
All men like Mary. 

might be transformed to the formula 
a l l ( X , man(X) -> l i k e s ( X , 'Mary')) 

which can be tested by the query 
?- i f e x i s t s X suchthat man(X) & not l i k e s ( X , 'Mary') then f a i l endif. 

by using the transformations in [Lloyd and Topor 1984]. 

When the logical form was produced, it got a new uninstantiated variable for 
"X." However, this was not quite what was wanted: a new meta-variable should 
have been used. XpProlog uses the meta predicate to create formulas containing 
meta-variables and unmeta to create predicates from formulas. For example, 
the following creates a logical formula in Form, turns it. into a predicate and 
then executes it: 

meta([X], a l l ( X , man(X) -> l i k e s ( X , 'Mary')), a l l ( N e t a V a r , Form)), 
unmeta([MetaVar], Form, [Var], Pred), 
i f e x i s t s Var suchthat c a l l ( P r e d ) then f a i l endif. 

Meta looks like a predicate but it must be handled specially by the xpProlog 
compiler. The arguments are: 

1. the list of meta-variables. 
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2. the formula (using meta-variables). 

3. the resulting formula. 

Unmeta's arguments are: 

1. the list of meta-variables. 
2. the formula (containing meta-variables). 
3. the resulting list of newly created variables. 
4. the predicate with new logical variables substituted for the meta-variables in 

the formula. 

Meta-variables are a generalization of Naish's notation for all solution 
predicates. They clear up ambiguities with logical forms and get rid of all need 
for var or "=" predicates. 

Meta-variables must be marked. For example, it is reasonable to ask for the set 
of all [/4,Aj" such that pred(X) — there is no need to have A instantiated before 
producing the set; A is not a meta-variable here but X is. 

The notion of two kinds of variables (ordinary variables and meta-variables) 
opens up many issues in the design-of xpProlog such as nice ways of marking 
them, scoping rules and automatically detecting them. These issues are beyond 
the scope of this report. I have taken the simple view that a variable is an 
ordinary variables unless: 

• it is defined by a meta or unmeta predicate; or 
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• it appears in the prototype part of an all-solutions predicate and it has not 
been marked by an exists. 

Thus, to get the set of all \_A,X] such that pred(X), one must write: 

e x i s t s A suchthat s e t o f ( [ A , X ] , Pred(X)). 

which the compiler transforms to: 

meta([X], pred(X), MetaPred), 
e x i s t s A suchthat s e t o f ( [ A , X ] , MetaPred). 

To ease the compiler's job, it is illegal to use a meta-variable twice within a 
clause: 

s e t o f ( X , P 1(X), R l ) , s e t o f ( X , P 2(X), R 2 ) . 

would have to be written, substituting Y for the second X: 

s e t o f ( X , P 1(X), R l ) , s e t o f ( Y , P 2(Y), R 2 ) . 

10.5 Constraints vs. delays 

Delays are passive. For example, 
i n t e g e r ( X ) , 3 < X, X < 5. 

will simply delay until X becomes instantiated. However, these goals could be 
used to deduce that X=4. Alternatively, some delayed goals can be inconsistent. 
For example, X > 3 & X < 5 can never be satisfied. Yet xpPAM will simply 
delay in these situation, only able to test whatever value that X might be given. 
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Delayed predicates can be considered as constraints in that they constrain the 
range of values which an uninstantiated variable can be unified with. If we use 
set notation, the first example gives X being the set 
{Z | integer(Z) & 3 < Z & Z < 5}; the second example gives 
{Z | X > 3 & X < 5}. XpPAM keeps a list of all delayed predicates waiting 
for a variable in a list pointed from the variable - this can be considered as 
being very similar to the description of the set, but in a purely passive manner. 
That is, xpProlog merely tests for set membership instead of trying to built the 
set. 

Constraints are easy to handle when finite sets are involved. When infinite sets 
are involved (such as the examples above), direct manipulation is impossible; the 
sets must be manipulated by their intensional meanings rather than by their 
extensional representations. This requires knowing additional theorems about 
the constraining predicates. 

Multi-variable constraints are somewhat trickier to handle. For some 
predicates, these can still be processed. For example, X7+ Y2 = 25 & integer(X) 

& X>0 & Y>0 has the two solutions X = 3, Y = 4 and X = 4, Y = 3. 

Handling constraints is beyond the scope of this report. Constraints are very 
useful for solving certain kinds of puzzles which have arithmetic constraints 
(these puzzles may have practical uses, for example in helping compilers 
generate least cost code). It would be nice if a general mechanism could be 
found to allow specifying the theorems which pertain to constraining predicates. 
See [Jaffar and Lassez 1987] and [Voda 1986b] for further work on constraint 
programming. 
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Some problems are better solved by constraints and others are better solved by 
delays. Generally speaking, constraints are best for problems where a decision 
procedure can combine two or more constraints to produce a new constraint, 
such as solving inequalities (simplex programming, Diophantine equations, etc.). 
Delaying must be used for problems which cannot be handled this way. Also, 
delaying is useful for coroutining, which is a powerful program structuring tool 
but which can always be avoided by making more complex sequential programs. 

10.6 The occurs check 

Most Prologs do not implement the "occurs" check. The reason is simple 
efficiency: the occurs check requires a complete traversal of both structures 
being unified, raising the cost of unification from O(N) to 0(N2). [Plaisted 
1984] gives some methods of detecting when the occurs check can be safely 
avoided, by doing global analysis of the predicates. 

The occurs check is necessary for unification to work correctly. The simplest 
situation is "X=f (X ) " which has no possible solution (if X is required to be 
finite). For example, consider append for difference lists: 
appendDiff(A-Z, Z-B, A-B). 

The difference list can be turned into a regular list by a simple predicate, 
allowing appendD to be defined 

d i f f T o L i s t ( A - [ ] A). /* t u r n t a i l p o i n t e r i n t o [] */ 
appendD(A,B,C) :- appendDiff(A, B, Z), d i f f T o L i s t ( Z , C). 

This produces the following results: 
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appendD(l.A-A, 2.3.B-B, C) => C = [1,2,3]. 
appendD(A-A, X, X) ==> X = [] 
appendD(1.2.A-A, X, X) => X = [1,2,1,2,1, ...] 

Yet the last result is obviously wrong: it implies (by comparison with the second 
result) that [ ]=1.2. 

Often, the occurs check is quite cheap because most unifications can be 
transformed into simple assignments, equality tests, splitting up list elements or 
creating new list elements. The occurs check is needed when general structures 
are unified, for example the difference lists above. 

The cost of unification without the occurs check is O(N) whereas with the 
occurs check it is 0(N2). It should be noted that the occurs check makes the 
difference list append work in the same time as the ordinary append. Checking 
for delays in not or setof also multiplies the cost by O(N) — it is desirable to 
eliminate all such costs. The occurs check can be left out because in practice 
very few predicates require it; the cost of delaying with negation can be made 
acceptable by the technique discussed earlier (section 10.1, "Negation" on 
page 207). 

Prolog-II takes a different approach to the occurs check by allowing "infinite" 
structures called "rational tree": 

x=f(X) => x=f(f(...(...)...)) 
X=1.X = > X=[ 1,1,1,...] 

This neatly removes the need for the occurs check, at the expense of changing 
the logic (the Herbrand universe is defined over finite structures). But there 
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seems to be no reason to rule them out, especially as we are adding second order 
predicates (setof and bagof) and we can also handle potentially infinite list by 
the delaying mechanism. Indeed, infinite lists are useful for some kinds of 
grammar notation. However, they do complicate the implementation: output 
predicates must check for infinite structures and reference counting may not be 
able to collect all garbage. 

10.7 Assert and retract 

There are two main uses for assert and retract: 

• To create new predicates "on the fly." 
• To provide a database facility. 

The first use is quite reasonable. For example, logic grammars (DCGs, etc.) are 
usually handled by being passed to a predicate which transforms the grammar 
notation to standard Prolog clauses, which are then added to the clause 
database. Such a use of assert is safe if it does not modify any predicate which 
is executing. 

Assert can be used for meta-programming. As a simple example, logic 
grammars can be processed by a translator (a logic program, of course) to 
produce a new logic program. This is completely safe if the translator simply 
outputs the new logic program which is subsequently read in and executed, 
independent of the translator. But this is inconvenient, so xpProlog imposes no 
such restrictions; the user must be careful that an executing predicate is not 
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modified.24 And retract is provided so that a predicate can be removed before 
being replaced using asserts. 

XpProlog implements assert by a "compile on first use" strategy. Whenever a 
clause is added to (or removed from) a predicate, the compiled code for the 
predicate is thrown away and replaced by code which invokes the compiler. 
The next time the predicate is called, the compiler is invoked - the resulting 
code is then kept and executed. 

The second use of assert and retract is poor. For one, thing, the clause database 
is usually inefficient for general purpose database manipulations. Secondly, the 
predicates which do such operations rely on the side effects of the assert and 
retract "predicates" — that is, such predicates are not declarative. 

A correct logical treatment of databases is briefly discussed in section 
11.7, "Databases" on page 240 which gives a completely logical use of 
databases in which backtracking will remove any changes to the database . 
This does not mean that a database cannot change with time - after a query is 
completed, any changes to the databases (and other files) are made permanent. 

XpPAM also provides a simple kind of associative table, defined by the predicates 
tableAssign, tableFind and tableDelete (the details are given in section 
Appendix D, "Built-in predicates" on page 300). These can have a declarative 

24 In fact, the abstract machine is likely to go wildly wrong if an executing predicate is modified 

because it assumes that a predicate will not change while it is executing. 
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reading such that changes are undone on backtracking. Associative tables 
efficient internal databases. 
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11.0 Arrays and I/O done logically and efficiently 

The simplest and most natural way to keep a linear list inside 

a computer is to put the list items in sequential locations, one 

node after the other. ... This technique for representing a 

linear list is so obvious and well-known that there seems to be 

no need to dwell on it at any length. ... It is important to 

understand the limitations as well as the power of the use of 

sequential allocation. 

- [Knuth 1973] 

This chapter can be read as a separate essay. It describes how arrays can be 
added to a logic programming language using only logical constructs and how 
this can be done efficiently. The discussion of arrays is as an example of how, 
by applying a little thought, a language designer can both please the purists and 
the pragmatists. The purists want constructs which are purely logical; the 
pragmatists want constructs which are expressive and efficient. 
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11.1 Introduction 

Some logic programmers believe in using "pure" logic programming regardless 
of its efficiency; some others believe in efficiency regardless of its affect on the 
declarative reading of programs. Efficiency should not be an over-riding 
concern when writing programs, especially in a "very high level language"; nor 
can efficiency be completely ignored. XpProlog walks a middle path, allowing 
the programmer to pick appropriate data structures without having niggling 
worries about the efficiency of the resulting program. The idea is similar to that 
of the SETL project [Schwartz 1975] in which the programmer picks logical 
data structures which are natural for the problem and the compiler optimizes 
the data structures into particular implementations - the declarative reading of 
programs is retained while attaining acceptable efficiency. 

Poorly thought out attempts to increase the efficiency of logic programs can 
actually backfire. Some programs can be sped up by a factor of 100 or more if 
a more flexible execution order is allowed (section 9.2, "Coroutining example" 
on page 187). Such optimizations can be used only if the programs are written 
in a purely logical (or declarative) style. When non-logical constructs are added 
to logic programs, these optimizations are not possible — the difficulties are 
similar to those encountered by optimizers for conventional programming 
languages when confronted with aliases caused by unrestrained use of pointers. 

In logic programming, the problem specification is the program. Clarity of 
specification is important but efficiency must not be forgotten. Conventional 
programs often attain efficiency by using arrays and destructive assignments. 
These facilities are not generally available in logic programming languages -
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destructive assignments are impossible within the declarative style of logic 
programming. 

Some Prolog programs emulate arrays using lists or trees (see, for example, 
[Kluzniak and Szpakowiez 1985, pp. 113-120]). At best, these provide 
0( log /V) access to arbitrary elements (/V is the number of elements in the 
simulated array) whereas true arrays provide constant time (0(1)) access.25 

However, arrays cannot always emulate lists. Arrays always have a known 
length but lists may be of indeterminate length if the tail of the last element is 
not instantiated. 

I will present some array manipulation predicates which have obvious 
declarative meaning. These predicates can be implemented efficiently. 
Automatic transformations can take advantage of situations where destructive 
assignment can be used. 

In most current logic programming languages, I/O is implemented by highly 
non-logical predicates. Many people have suggested that cut can be eliminated 
from logic programming languages. If var and "==" are also eliminated (by 
some form of delay mechanism or by meta-variables), the only remaining 
non-logical predicates are those which do I/O. The logical treatment of arrays 
can be extended to files and databases, removing the need for any non-logical 
predicates. The only difference between arrays and files is where the data are 

2 5 This approach may not be entirely invalid: [Wise 1987] provides an argument that for certain 

numerical problems, trees are adequate. However, arrays have uses beyond matrix algebra 

and for these, constant time access appears to be crucial. 
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stored. Techniques which give efficient implementation of arrays also give 
efficient implementation of I/O. 

With a rich choice of data structures and a syntax which supports them, 
programs can be written clearly, concisely and logically. 

11.2 Array Operations 
I will show the operations only for 1-dimensional arrays (vectors); extension to 
multidimensional arrays are "left as an exercise for the reader." 

The elements of an array do not all need to be the same and uninstantiated 
variables are allowed inside arrays. Space and time efficiency can be improved 
if the compiler knows that all the elements will be the same, without any 
uninstantiated variables. 

One particularly useful form of array is a string. A string is just an array of 
single characters. The operations which can be applied to a string are the same 
as those for an array. The typing predicate s t r i n g ( S ) has no effect on the 
logical reading of a program; it merely increases efficiency by guaranteeing that 
all elements of the array are single characters (sec section 5.10, "Speeding up 
deterministic predicates - modes and types" on page 112). Putting an 
uninstantiated variable into a string causes a delay and putting in anything else 
causes a run-time error. 

First, the basic operations: 
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bounds(A, L , H ) The array typing predicate. L is the low bound of A and H is 
the high bound. This predicate can either get the bounds of an array 
or create an array of the given size (with all uninstantiated elements). 
The high bound of an empty array is one less than the low bound -
this follows from the definition of length (predicate len below) which is 
high-bound—low-bounds 1. 

eIem(A, I, X) Extract one element: X is the Ith element of A. That is, X is A[I]. 
chElem(A, I, X, A2) Change one element. A2 is the same as A except that the 

Ith element has been set toX, as if A2 := A, A2[l] := X. 

These are sufficient to define all other array predicates. 

For notational compactness, expressions may exist inside predicate calls. An 
expression is enclosed in [ ... } which is read "evaluate."26 The expression is 
evaluated by using the " i s " predicate (":=" in Waterloo or IBM Prolog). Thus 
f a c t o r i a l ( N , {N .* F}) :- f a c t o r i a l ( { N - 1}, F ) . 

has the same meaning as 

f a c t o r i a l ( N , NF) :- N2 i s N - 1, 
f a c t o r i a l ( N 2 , F ) , 
NF i s N * F. 

Some array operators can be used in " i s " expressions:27 

2 6 There is no ambiguity with grammar notation's use of curly brackets — expressions can 

occur only within goals whereas grammar rule curly brackets can occur only around goals. 

2? These are just extensions to the "built-in" arithmetic operations which could be defined 
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L i s l o b A : - b o u n d s ( A , L , _ ) . / * low bound * / 

H i s h i b A : - b o u n d s ( A , _ , H ) . / * h i g h bound * / 

0 i s l e n [ ] . 

L i s l e n A : - l e n ( A , L ) . / * " l e n " d e f i n e d l a t e r * / 

X i s A [ I ] : - e l e m ( A , I , X ) . 

X i s f i r s t A : - e l e m ( A , ( l o b A} , X ) . 

X i s l a s t A : - e l e m ( A , [ h i b A ) , X ) . 

A2 i s A rangeFrom I : - r a n g e F r o m ( A , I , A 2 ) . / * " r a n g e F r o m " : be low * / 

A2 i s A r a n g e T o I : - r a n g e T o ( A , I , A 2 ) . / * " r a n g e T o " : be low * / 

A2 i s r a n g e F r o m S e c o n d A : - r a n g e F r o m ( A , [ l o b A + 1}, A 2 ) . 

Following are some standard array predicates. These are built-in for efficiency, 
but they can all be implemented with just bounds , e lem and c h E l e m Many other 
array predicates are possible. I have restricted myself to a list similar to those in 
[Dijkstra 1976]. 

swapElem(A, I, J, A2) Swap two elements. A2 is the same as A except that the 
Ith and Jth elements have been swapped: 
A2 := A , A 2 [ I ] := A [ J ] , A 2 [ J ] := A [ I ] 

or, using c h E l e m : 

c h E l e m ( A , I , [ A [ J ] } , A l ) , c h E l e m ( A l , J , [ A [ I ] } , A2) 

X i s X? : - a t o m i c ( X ) . 

X i s A+B : - A2 i s A , B2 i s B , a r i t h ( + , A 2 ? , B2? , X 2 ) , X=X2. 

X i s - A : - A2 i s A , a r i t h ( - , A 2 ? , X 2 ) , X=X2. 

etc. where arilh is a low-level predicate which expects all its arguments except the last to be 

instantiated. Note the usage of "?"s within arilh which delay the entire clause until 

everything is sufficiently instantiated. 
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concat(Al, A2, A) Concatenate two arrays. A is the concatenation of. Aland 
A2. After this operation: 
bounds(A, { l o b ( A l ) } , { h i b ( A l ) l e n ( A 2 ) } ) . 

Concat can be used with the first two parameters uninstantiated, in 
which case it generates sub-arrays (or sub-strings) by backtracking. 

subrange(A, L , H , A2) Extract a subrange of an array. A2 contains the 
subrange of A delimited by L and H . If H is less than L , then A2 is 
unified with an empty array. 

IoEx(X, A, A2) Low extend an array. A2 is the same as A except that the low 
bound has been decreased by one and the new element is X. After this 
operation: 

{lob A 2 ) = {lob A - 1 } , 

{hib A 2 ] = {hlb A}, 
subrange ( A 2 , {lob A}, {hlb A j , A), 
{ A 2[lob A 2 ] } = X 

hiEx(A, X, A2) High extend an array. A2 is the same as A except that the high 
bound has been increased by one and the new element is X. After this 
operation: 

{lob A2} = {lob A}, 
{hib A 2 ] = {hib A + 1 } , 

subrange ( A 2 , {lob A}, {hib A}, A), 
{ A 2[hib A 2 ] } = X 

reshape(A, L , H , A2) Reshape an array with new bounds. A2 contains the same 
elements as A but with different bounds defined by L and H . An error 
occurs (and the predicate fails) if A and A2 have different numbers of 
elements. 
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For convenience, the following are defined: 

low bound lob(A, L) :- bounds(A, L, _ ) . 

high bound hib(A, H) :- bounds(A, _, H). 
length len(A, {hib A - lob A + 1}). 

range from rangeFrom(A, L, A2) :- subrange(A, L, {hib A}, A2). 

range to rangeTo(A, H, A2) :- subrange(A, {lob A}, A2). 

low remove one element loRem(A, {A[lob A]}, {A rangefrom lob A + 1 j ). 

high remove one element hiRem(A, {Afhib A]}, {A rangeTo h i b A - 1}). 

shift s h i f t ( A , N, A2) :- reshape(A, {lob A + N}, {hib A + N}, A2). 

An array predicate fails if an index falls outside the range of the bounds. A 
run-time error may be preferable to simply failing because an out of bounds 
condition usually suggests an error in program logic. 

Array constants are defined by specifying either the lower or the upper bound, 
plus a list of all the elements (because they are declarative, these predicates also 
convert arrays to lists): 

arrayFrom(A, L, [XI, X2, XN]) /* array "A" wi t h low bound "L" */ 
arrayTo (A, H, [XI, X2, XN]) /* array "A" with high bound "H" */ 

These predicates can be thought of as extensions of the standard "name" and 
"=.." (univ) predicates. 

The empty array is denoted [ ]. 
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11.3 Transformation to allow destructive assignment 

As a simple example, consider a predicate which increments each element in a 
list:28 

i n c r L i s t ( [ ] , [ ] ) . 
i n c r L i s t ( A . R s t , A2.Rst2) :- A2 i s A + 1, 

i n c r L i s t ( R s t , Rst2). 

For arrays, this is: 

i n c r A r r a y ( A , A2) :- bounds(A2, {lob A}, {hib A}), 
/* A2 has same shape as A */ 
incrArray2(A, {lob A}, A2). 

incrArray2(A, I, A2) :- I > {hib A}. 
incrArray2(A, I, A2) :- I =< {hib A}, 

elem(A2, I, {A[I] + 1}), /* A2[I] = A[I]+1 */ 
incrArray2(A, {1+1}, A2). 

A general incr predicate is transformed to something like: 

i n c r ( I n p u t , Output) :-
i f ground_array(Input) then i n c r A r r a y ( P r e d , Input, Output) 

e l s e i n c r L i s t ( P r e d , Input, Output). 

2 8 This is a special case of the following Prolog idiom (which is much like the mapcar function 

in LISP): 

map(Pred, [ ] , [ ] ) . 
map(Pred, X.Rest, Y.Rest2) :- Pred(X, Y), 

map(Pred, Rest, Rest2). 

If Pred is deterministic when its first argument is ground, the transformations in this section 

can be applied. 
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The compiler can now generate the following Pascal-like code for the case when 
A is a ground array, by destructively modifying A: 

procedure i n c r A r r a y ( A : array, var A2 : array) begin 
i n t I; 
f o r I := lob A to h i b A do 

A[I] := A[I] + 1; 
A2 := p t r A; /* A2 p o i n t s to (modified) A */ 

end procedure 

Destructive assignment can only be used if A is not needed after incrArray is 
called. Destructive assignment could not be used in the goal 

?- i n c r ( A , A2), p(A, A2). 

because A is used by p. Instead, this must be transformed to (copy is defined 
later): 

?- copy(A, Ax), i n c r ( A x , A2), p(A, A2). 

Destructive assignment is slightly more complex than in Pascal because of the 
possibility of backtracking. The Prolog abstract machine can record information 
for undoing the instantiation on the backtrack stack (called "trail" in the 
Warren Abstract Machine [Warren 1983]). If the value being instantiated (or, 
in this case, modified) is newer than the latest choice point, then nothing need 
be saved. If backtracking information must be recorded, the entire array A is 
not saved - only a pointer to A2 and the changed value. Backtracking can 
then restore the single changed value. 
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11.4 Efficient implementation of array operations 

There is an extensive literature on methods for storing data in arrays (see, for 
example, [Knuth 1973]). Although any of these storage methods can be used, I 
will assume that an array is kept as a triple, containing the low bound, high 
bound and a pointer to the data. The data are kept in a contiguous vector. 
The elements are all pointers to other objects (including uninstantiated 
variables). Thus, any element can be reached by an ordinary array indexing 
operation in constant time. 

The following predicates access elements of arrays and are very cheap: 
bounds(A, L, H) (also lob(A, L), hib(A, H) and len(A, L)) 

elem(A, I, X) 

The following subrange predicates produce a new array which is some part of 
another array. They are also very cheap because they merely require creating a 
new object with different bounds, pointing to somewhere within the original 
array. 
subrange(A, L, H, A2) (also rangeFrom(A, L, A2) and rangeTo(A, H, 
A2)) 
loRem(A, X, A2) 
hiRem(A, X, A2) 

reshape(A, L, H, A2) (also s h i f t ( A , - N, A2)) 

The following require changing array elements to create a new array: 
chElem(A, I, X, A2) 
swapElem(A, I , J , A2) 
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c o n c a t ( A l , A2, A) 
loEx(X, A, A2) 
hiEx(A, X, A2) 

These operations are cheap if they are done in-place (destructively) but can be 
expensive if they require array copying. LoEx usually requires an array copy but 
it is not a common operation because arrays are usually built using hiEx or 
concat. HiEx and concat can be efficiently implemented (as in the XPL 
language [McKeeman, Horning and Wortman 1970]) by simply adding the new 
element(s) to the array if the heap space following the array has not been 
allocated. This is frequently the case because usually only one array is built up 
at a time. Thus, using hiEx to build an array is as efficient as pre-allocating the 
array (using bounds) and filling in the elements (using elem). 

Array copying can be implemented: 

copy(A, A2) :- bounds(A2, (lob A}, {hib A}), 
copy2(A, {lob A}, A2). 

copy2(A, I, A2) :- I > [hib A}. 
copy2(A, I, A2) :- I =< {hib A j , 

elem(A2, I, { A [ I ] ) S 

copy2(A, {1+1}, A2). 

This is nothing more than a statement of what it means for two arrays to be 
equal; that is, A = A2 if the bounds are identical and the corresponding elements 
are identical. 

Array copying should be avoided. But destructive assignment cannot be used 
everywhere because it can make programs non-declarative. For example, in 
Pascal: 
A [ l ] := 'a*; A [ l ] := *b*; 
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is not the same as 
A [ l ] := V ; A [ l ] := ' a ' ; 

as might be expected by a naive translation to Prolog (the "," ("and") operator 
in pure Prolog is semantically commutative). However, c h E l e m is declarative:. 
c h E l e m ( A , 1, a, A 2 ) , c h E l e m ( A 2 , 1, b, A3) 

is clearly the same as 
c h E l e m ( A 2 , 1, b, A 3 ) , c h E l e m ( A , 1, a, A2) 

if the Prolog implementation allows delaying goals ( c h E l e m ( A 2 , l,b ,A3) must be 
initially delayed because A2 is as not yet instantiated). 

The goals 
c h E l e m ( A , 1, a, A 2 ) , p ( A 2 ) 

can be replaced by destructive assignment 
A [ l ] := a , p ( A ) ' 

because the original array A is not used after it is modified.29 If the original 
array were needed later, a copy would be needed: 
c o p y ( A , A 2 ) , A 2 [ l ] := a , p ( A 2 ) , q ( A ) . 

which is clearly equivalent to 
c h E l e m ( A , 1, a , A 2 ) , p ( A 2 ) , q ( A ) . 

It is also logically correct because c o p y ( A , A2) has the same meaning as A = A2. 

Destructive assignment does not affect backtracking. In 
p ( A ) , c h E l e m ( A , 1, a , A 2 ) , q ( A 2 ) , ... 

29 More strictly, nothing else may point at A For example, if this were preceded by B=A and B 

were used later, then A could not be modified destructively. 
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if q fails and p has alternative clauses, p will be retried with the value of A 
before the destructive assignment. This is because destructive assignments to A 
(which create A2) are recorded on the backtrack stack and undone on 
backtracking. 

In theory, it is possible to do a global analysis of all the predicates and 
determine which ones may use destructive assignments. Copy goals can then be 
inserted ahead of calls to these destructive predicates. Some of these copys may 
be unnecessary because a destructive predicate does not guarantee a destructive 
assignment, only the possibility. Moreover, the analysis is not simple because of 
subrange arrays. Some of the techniques of alias detection for conventional 
programming languages may be applicable. See [Bruynooghe 1986] and 
[Kluzniak 1987] for some preliminary work in this direction. 

Another method of avoiding array copying is to associate a reference count with 
each array and make a copy only if the reference count is greater than one. The 
reference count must also include the counts of all subrange arrays. This 
technique ensures that array copying is done only if necessary. Some studies in 
[Krasner 1983] suggest that optimized reference counting has about the same 
overall cost as marking garbage collectors - by eliminating unnecessary array 
copying, reference counting may actually be more efficient than marking 
garbage collecting. 
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11.5 An example: Quick-sort 

One of the favourite examples of logic programming is quick-sort for sorting a 
list: 

qsort(Unsorted, Sorted) :- qsortx(Unsorted, Sorted, [ ] ) . 

q s o r t x ( [ ] , Sorted, Sorted). 
q s o r t x ( P i v o t . R e s t , Sorted, SoFar) :- /* The "SoFar" parameter i s */ 

s p l i t ( P i v o t , Rest, Lo, H i ) , /* used to avoid c a l l i n g */ 
qsortx(Lo, Sorted, P i v o t . S o r t H i ) , /* "append". */ 
q s o r t x ( H i , S o r t H i , SoFar). 

s p l i t ( P i v o t , [ ] , [ ] , [ ] ) . 
s p l i t ( P i v o t , X.Rest, X.Lo, Hi) :- X =< P i v o t , 

s p l i t ( P i v o t , Rest, Lo, H i ) . 
s p l i t ( P i v o t , X.Rest, Lo, X.Hi) :- X > P i v o t , 

s p l i t ( P i v o t , Rest, Lo, H i ) . 

These predicates are all deterministic if their parameters are sufficiently 
instantiated. With the tail recursion optimization (TRO [Warren 1986]), s p l i t 

can be transformed into iterative form. Yet, the resulting code is still far from 
what a "conventional" programmer would produce because he (or she) would 
sort not a list but an array and the sorting would be done in-place. Lists should 
be sorted using other techniques such as merge sort (in fact, if the keys are 
expensive to compare, merge sort may be better even for arrays). 

Here is quick-sort as it would be written for arrays. 

qsort(Unsorted, Sorted) :-
qsortx(Unsorted, (lob Unsortedj, {hib Unsorted}, Sorted). 

q s o r t x ( S o r t e d , Lo, H i , Sorted) :- Lo >= H i . 
qsortx(Unsorted, Lo, H i , Sorted) :- Lo < H i , 

P i v o t = {Unsorted[Lo]}, 
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spl±t(Unsorted, Lo, H i , P i v o t , PI, S p l i t ) , 
q s o r t x 2 ( S p l i t , Lo, H i , Lo, P I , Sorted). 

q s o r t x 2 ( S p l i t , Lo, H i , PIO, P I , Sorted) :- PI > H i , 
/* P i v o t value i s >= everything; put at end and reduce range */ 
swapElera(Split, PIO, H i , S p l i t 2 ) , 
q s o r t x ( S p l i t 2 , Lo, {Hi-1}, Sorted). 

q s o r t x 2 ( S p l i t , Lo, H i , PIO, P I , Sorted) :- PI =< H i , 
q s o r t x ( S p l i t , Lo, {PI-1}, S o r t 2 ) , 
q s o r t x ( S o r t 2 , P I , H i , Sorted). 

s p l i t ( U n s o r t e d , Lo, H i , P i v o t , Lo, Unsorted) :- Lo > H i . 
s p l i t ( U n s o r t e d , Lo, H i , P i v o t , P I , S p l i t ) :-

Lo =< H i , [Unsorted[Lo]} =< P i v o t , 
s p l i t ( U n s o r t e d , {Lo+1}, H i , P i v o t , PI, S p l i t ) . 

s p l i t ( U n s o r t e d , Lo, H i , P i v o t , PI, S p l i t ) :-
Lo =< H i , {Unsorted[Lo] > P i v o t , 
s p l i t 2 ( U n s o r t e d , Lo, H i , P i v o t , PI, S p l i t ) . 

s p l i t 2 ( U n s o r t e d , Lo, H i , P i v o t , Lo, Unsorted) :- Lo > H i . 
s p l i t 2 ( U n s o r t e d , Lo, H i , P i v o t , P I , S p l i t ) :-

Lo =< H i , {UnsortedfHi]} > P i v o t , 
s p l i t 2 ( U n s o r t e d , Lo, {Hi-1}, P i v o t , PI, S p l i t ) . 

s p l i t 2 ( U n s o r t e d , Lo, H i , P i v o t , PI, S p l i t ) :-
Lo =< H i , {UnsortedfLo]} =< H i , 
swapElem(Unsorted, Lo, H i , Unsorted2), 
s p l i t ( U n s o r t e d 2 , Lo, H i , P i v o t , PI, S p l i t ) . 

This is a little longer than the algorithm for lists. It also implements a slightly 
different algorithm for s p l i t - the resulting split sub-arrays may have their 
elements in different orders than the sub-lists. 

The array version can be easily modified to run more efficiently. A different 
method of choosing the pivot could pick a random member in constant time 
rather than the 0( log /V) time required for a list. Array lengths are always 
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known, so a different, more efficient sorting method can be used when the 
number of elements in a sub-array becomes small. 

It is too much to expect an optimizing compiler to transform the list formulation 
of quick-sort into the array formulation, especially as the two algorithms are 
slightly different. However, the compiler can easily determine that s p l i t is 
deterministic if the first parameter is instantiated, resulting in: 

s p l i t ( U n s o r t e d , Lo, H i , P i v o t , Lo, S p l i t ) :-
i f Lo > H i then S p l i t = Unsorted 
e l s e i f (Unsorted[Lo]} =< P i v o t 

then s p l i t ( U n s o r t e d , {Lo+1}, H i , P i v o t , PI, S p l i t ) . 
e l s e s p l i t 2 ( U n s o r t e d , Lo, H i , P i v o t , PI, S p l i t ) , 

endif. 

s p l i t 2 ( U n s o r t e d , Lo, H i , P i v o t , Lo, S p l i t ) :-
i f Lo > H i then S p l i t = Unsorted 
e l s e i f {Unsorted[Hi]} > P i v o t 

then s p l i t 2 ( U n s o r t e d , Lo, {Hi-1}, P i v o t , PI, S p l i t ) 
e l s e 

swapElem(Unsorted, Lo, H i , Unsorted2), 
s p l i t ( U n s o r t e d 2 , Lo, H i , P i v o t , PI, S p l i t ) 

endif. 

which can then be transformed by the tail recursion optimization into the more 
conventional iterative form. 
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11.6 Direct access I/O 

Some conventional programming languages treat direct access files like arrays. 
For example, XPL has the built-in pseudo-variable f i l e ( i , j) which maps to 
the jth record of the i t h file. X := f i l e ( i , j) results in a record being read 
into x; f i l e ( i , j ) := X results in a record being written from X. 

The meaning of a program stays the same, regardless of whether the it uses 
direct access files or arrays; the sole difference is where the data are stored. A 
meta-predicate is used to associate a file with an array name and no change is 
required to the program. Copying files is even more expensive than copying 
arrays, so 
?- d e s t r u c t i v e ( A , A 2 ) , p(A), ... 

always results in a run-time error when A is accessed within p. This is not a 
desirable situation. However, all implementations have limitations (for example, 
available memory or stack depth). This restriction preserves the correctness of 
programs — if they succeed or fail, they will do so exactly the same as programs 
without the restriction but sometimes they will neither succeed nor fail but will 
halt with an implementation restriction error indication. 

Undoing changes to a direct access file on backtracking is relatively cheap; the 
mechanism is similar to the method used to undo changes to arrays. 

The implementation of direct access files may impose other restrictions on their 
use. For example, there may be a requirement that all elements in a file be of 
the same type (this restriction can be relaxed with databases — see below). 
Also, files usually do not handle the concept of uninstantiated variables. These 
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can be handled by keeping a separate list of output uninstantiated variables 
which get written when they become instantiated; a run-time error occurs if the 
program terminates with outstanding entries in this list. 

11.7 Databases 

A physical part of a database can be thought of as an array with non-integer 
indexes. The predicates which manipulate arrays can easily be extended to 
allow arbitrary indexes. Subrange predicates only make sense if the underlying 
index type can be ordered. Some additional predicates may be added, such as: 

• find all elements based on some search criteria 
• delete elements 
• update elements 
• sort 

Using these predicates, a query language such as SQL can be easily 
implemented, if care is taken in avoiding the non-logical aspects of SQL. 

Databases are related to associative table, as direct I/O is related to arrays. 
Databases usually contain some notion of "commit" processing. The changes to 
the database become permanent only when a specific "commit" transaction 
makes them permanent — up to that point, the changes can be "backed out." 
This fits very closely with Prolog's execution strategy. When there is the 
possibility of backtracking, "commit" can not be done. As soon as there are no 
backtrack possibilities for the predicate which modified the database 
(conceptually, produced a "new" database), "commit" can be done. 
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Conventional Prolog confuses the notion of databases by using the assert and 
retract predicates for both maintaining databases and for defining (or removing) 
predicates. Databases can be implemented - inefficiently - by ordinary lists 
or functors; the definition of predicates lies outside the scope of logical inference 
(see also section 10.7, "Assert and retract" on page 219). 

11.8 Sequential Input/Output 

[Cheng 1986] has observed that sequential I/O streams act just like lists (related 
ideas are given in [Wilson 1985]) Both must be processed element by element 
and both are of indeterminate length. Programs which do sequential I/O are 
written just as if they are manipulating ordinary lists. To make a program 
process stream files instead of lists, a meta-predicate is used to associate a file 
with a list. For input, whenever the unifier needs the head of this stream-list, it 
issues a file read. For output, whenever the unifier creates a new element in the 
list, it issues a file write. 

Pascal uses a similar technique. A stream file is treated as a vector with a 
pointer to the current element. For logic programming, the stream pointer can 
be manipulated with loRem (to get individual elements from the beginning of an 
input stream) and hiEx (to add elements at the end of an output stream). The 
high bound of a stream is unavailable - any predicate requesting the high 
bound or length of a stream delays until end-of-file is reached. 

Again, there is no difference between programs which do I/O and those which 
manipulate list. A meta-predicate declares that a particular list is associated 
with a file. For example: 
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?- i n s t r e a m ( 1 i n f i l e 1 , I n ) , 
o u t s t r e a m ( ' o u t f i l e 1 , Out), 
q s o r t ( I n , Out). 

will sort file "infile" into file "outfile" (this requires the list version of quick-sort 

rather than the array version). 

For convenience, the various standard files can be automatically added to 
predicates. 

p(A, B) :- put('A = ' ) , d i s p l a y ( A ) , 
q(A, B), 
pu t ( ' => ' ) , d i s p l a y ( B ) , n l . 

q(A, B) :- put('<qqq>'), B i s A + 1. 
?- P ( l , 2 ) . 

would be transformed to 

p(A, B, S t d l n , StdOutRest, Stdln2, StdOut) :-
StdOut = ('A = 1 . A . Std0ut2), 
q(A, B, S t d l n , StdOut3, Stdln2, StdOut2), 
stdOut3 = ( ' = > ' . B . '\n' . StdOutRest). 

q(A, B, S t d l n , StdOut, S t d l n , Std0ut2) :-
StdOut2 = ('<qqq>' . StdOut), 
B i s A + 1 

?- instream('<terminal> 1, I n ) , outstream('<terminal> 1, Out), 
p ( l , 2 , In, Out, In2, [ ] ) . 

This is similar to techniques used to transform grammar rules to Prolog. 

As with direct access files, I/O streams may impose some extra restrictions over 
lists. Because output may be to a non-erasable medium like a printer, an output 
stream has a buffer associated with it; backtracking can only undo values which 
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are still in the buffer. The f l u s h meta-predicate flushes everything in the buffer 
to the output device - a run-time error occurs if an attempt is made to flush an 
uninstantiated variable. F l u s h does not change the meaning of a program, nor 
the final contents of a file, but it may cause a run-time error to occur in an 
otherwise correct program. 

Input and output with streams is very similar to lazy evaluation. An input file 
is read only as far as needed and is automatically closed when the program 
terminates. An output file is closed by instantiating it to [ ]. When a program 
ends, all stream files are closed and the buffers flushed. 

The following program will copy i n f l l e to o u t f i l e : 

?- i n s t r e a m ( ' i n f l i e ' , I n ) , 

i n s t r e a m ( ' o u t f i l e 1 , O u t ) , 

I n = O u t . 

Two input files are compared by: 

?- i n s t r e a m ( 1 i n f i l e l ' , I n l ) , 

i n s t r e a m ( ' i n f i l e 2 ' , I n 2 ) , 

I n l = I n 2 . 

In both these examples, the "=" can be done away with: 

?- i n s t r e a m ( 1 i n f i l e , ' C o p y F i l e ) , 

i n s t r e a m ( ' o u t f i l e ' , C o p y F i l e ) . 

?- i n s t r e a m ( ' i n f i l e l ' , C o m p a r e F i l e ) , 

i n s t r e a m ( ' i n f i l e 2 * , C o m p a r e F i l e ) . 
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It should be noted that streams can be added to a logic programming language 
which implements delays. For example, the query 
?- outstream('file2', Out), query(In, Out), i n s t r e a m ( ' f i l e l 1 , I n ) , 

reads in f i l e l and passes it through query to write out file2. The order of the 
goals are important to ensure lazy evaluation - the order does not affect the 
meaning of the query. The stream predicates can be written: 

i n s t r e a m ( F i l e , X.Rest) :- r e a d F i l e ( F i l e , X), inStream(Rest). 
i n s t r e a m ( F i l e , [ ] ) :- r e a c h e d E o f ( F i l e ) . 

o u t s t r e a m ( F i l e , X?.Rest) :- w r i t e F i l e ( F i l e , X), outStream(Rest). 
o u t s t r e a m ( F i l e , [ ] ) :- c l o s e O u t p u t ( F i l e ) . 

where r e a d F i l e , reachedEof, w r i t e F i l e and closeOutput are non-logical I/O 
predicates as in most Prologs. However, streams should be integrated into the 
unification mechanism or treated as lazy functions (see section 6.4.1, "Lazy 
thunks vs. delayed predicates" on page 132). 

Many varieties of the stream meta-predicate are possible. For example, we 
might want streams which pass single characters or strings (delimited by white 
space or delimiters) or even general purpose pattern matching, like that provided 
by the C library routine scanf. 

11.9 Implementation of many object types 

The above discussion has proposed adding some new objects to a logic 
programming implementation, including 

• arrays 
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• arrays with reference count of 1 

• strings 
• strings with reference count of 1 

• sub-arrays (and sub-strings) 
• direct-access files 
• databases 
• I/O streams 

All these objects have a similar appearance within programs but have markedly 
different implementations. Their various internal representations are invisible to 
the Prolog programmer. 

Many logic programming implementations provide some form of clause 
indexing. For example, the WAM provides a switch-on-term which causes a 
jump to one of a number instructions depending on whether the object is a 
variable, nil, list element, atom or structure (WAM restricts this to the first 
parameter of a predicate although there is no need for that restriction (see 
3.0, "The basic sequential inference engine" on page 28)). This instruction can 
be easily extended to include any number of other object types. 

For arrays, the list expression A = Hd.Tl can be. interpreted as {len(A)} > 0, 

loRem(A, Hd, T l ) . For termination, [] unifies with a 0-lengh array. The 
Prolog code 

P([], ID-
p(Hd.Tl, Hd2.T12) :- q(Hd, Hd2), 

P(T1, T12). 
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can also be interpreted as 

p(A, A2) :- (len(A)} = 0, 
bounds(A2, 0, -1). /* n i l array */ 

p(A, A2) :- (len(A)} > 0, 
loRem(A, Hd, T l ) , 
q(Hd, Hd2), 
p ( T l , T12), 
hiEx(Hd2, T12, A2). 

resulting in code something like this (in pseudo-C): 

pCparml, parm2) [ /* general case f o r any types of parms */ 
again: 
switch (typeTag(parml)) { 
case t y p e N i l : 

unifyWithNil(parm2); 
break; 

case typeListElement: 
u n i f y L i s t E l e m e n t ( p a r m l , hd, t l ) ; 
unifyListElement(parm2, hd2, t l 2 ) ; 
q(hd, hd2); 
parml = t l ; parm2 = t l 2 ; 
goto again; /* t a i l r e c u r s i o n => i t e r a t i o n */ 

case typeStream: 
readFromStream(parml, hd, t l ) ; 
/* ... continue as f o r typeListElement ... */ 
goto again; /* t a i l r e c u r s i o n => i t e r a t i o n */ 

case typeArray: 
i f (refCount(parml)) > 1) { 

a = copyArray(parml); 
pArray(a); /* d e t e r m i n i s t i c update (code i s below) */ 
u n i f y ( a , parm2); 

} e l s e [ 
pArray(parml); 
u n i f y ( p a r m l , parm2); 

} 
break; 

... cases f o r other types ... 
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d e f a u l t : 
error(...); 

} 

} 

v o i d pArray(a) { /* d e s t r u c t i v e updating v e r s i o n f o r arrays */ 
f o r ( i = l o b ( a ) ; i < h i b ( a ) ; i++) { 

q ( a [ i ] , ax); 
a [ i ] = ax; 

} 

J 

Any number of new internal types can be added to this skeleton. Of course, the 
amount of generated code will increase but execution speed will remain the 
same. If the logic programming language has a good optimizer, some of the 
cases in the above code can be determined at compile time. 

11.10 Expressiveness 

Many logic programs suffer from the "if you have a hammer, everything looks 
like a nail" syndrome. The main tool for structuring repetitive data is the list, 
so programs are written using lists, whether they are appropriate or not. A 
similar problem often arises in Fortran — structures are smashed into arrays 
because they are the only structuring tools in the language. For a partial 
discussion of one aspect of this problem, comparing records (functors) versus 
lists and selector functions, see [Wadler, 1987]. 
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Consider a predicate which looks up a name N in a table T and returns its index 
Index (starting from 1). If the name is not in the table, it is added to the end, 
giving the new table NewT. 

l o o k u p ( N , T , NewT, Index) : - l o o k u p 2 ( N , T , 1, NewT, I n d e x ) . 

l o o k u p 2 ( N , [ ] , I n d e x , [ N ] , I n d e x ) . 

l o o k u p 2 ( N , N . R e s t , I n d e x , N . R e s t , I n d e x ) . 

l o o k u p 2 ( N , N 2 . R e s t , I , N 2 . R e s t 2 , Index) : - N * N2, 

l o o k u p 2 ( N , R e s t , {I + 1}, R e s t 2 , I n d e x ) . 

Here is array based code: 

l o o k u p ( N , T , NewT, Index) : - l o o k u p 2 ( N , T , 1, NewT, I n d e x ) . 

l o o k u p 2 ( N , T , I n d e x , NewT, Index) : - Index > {hib T} , 

h i E x ( T , N , NewT). / * NewT = T || N * / 

I o o k u p 2 ( N , T , I n d e x , T , Index) : - Index =< {hib T} , 

{T[Index]} = N . 

l o o k u p 2 ( N , T , I , NewT, Index) : - Index =< {hib T} , 

{T[I]} * N , 

l o o k u P 2 ( N , T , {I + 1}, NewT, I n d e x ) . 

Even though it is slightly longer, the array version is clearer because it says 
directly that the Indexth element of T is N - this must be deduced by an 
inductive proof for the list version. Furthermore, the array version creates a 
new table only if the name N is not already in the old table (which can often be 
done by destructive assignment to the old table). If the list version were 
modified to create a new list only when the name is not in the old list, it would 
be longer and much less clear than the array version.30 If greater efficiency is 
desired, the list version can be transformed to use a binary tree. But the 

30 Some Prolog textbooks have truly horrible examples, using a list with an uninstantiated 

variable as the tail, then using var to determine whether or not the name is in the list. This 
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greatest efficiency is attained with a hash table which is efficient only because 
all elements are in an array and are accessible in constant time. 

Arrays allow symmetric access to elements. An algorithm can as easily be 
written to process from the end of an array as from the beginning. Lists are 
best handled only from the beginning to the end. Some people would claim that 
logic programmers do not write algorithms, just specifications. But there is 
some concern for efficiency, otherwise we could just write:31 

s o r t ( U n s o r t e d , S o r t e d ) : - p e r m u t a t i o n ( U n s o r t e d , S o r t e d ) , 

o r d e r e d ( S o r t e d ) . 

Especially in "very high level" languages, programs often do not deal with lists 
or arrays but with sets or multi-sets, mappings and similar mathematical 
objects. These can be realized as lists or arrays but often they are better 
handled as abstract types. For example, the array handling predicates could be 
extended to work with lists (although, in this case, very inefficiently): 

var technique does not work for more complex problems, such as are encountered by register 

allocation algorithms. 

31 Although with all the clauses for o r d e r e d and p e r m u t a t i o n , this is actually longer than 

quick-sort. 
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e l e m ( L , I , E ) : - i s l i s t ( L ) , e l e m O f L i s t ( L , 0, I , E ) . 

/ * t r e a t a l i s t as a 0 - o r i g i n a r r a y : * / 

e l e m O f L i s t ( E . R e s t , I , I , E ) . 

e l e m O f L i s t ( E . R e s t , L o , I , E ) : - Lo < I , 

e l e m O f L i s t ( R e s t , {Lo+1}, I , E ) . 

c h E l e m ( L , I , E , L O u t ) : - i s L i s t ( L ) , c h E l e m O f L i s t ( L , 0, I , E , L O u t ) . 

c h E l e m O f L i s t ( X . R e s t , I , I , E , E . R e s t ) . 

c h E l e m O f L i s t ( X . R e s t , L o , I , E , X . R e s t O u t ) : - Lo < I , 

c h E l e m O f L i s t ( R e s t , {Lo+l} , I , E , R e s t O u t ) . 

swapElem(A, I , J , AOut) <- i s L i s t ( A ) , 

e l e m O f L i s t ( A , I , A l ) & 

e l e m O f L i s t ( A , J , A J ) & 

c h E l e m O f L i s t ( A , I , A J , A2) & 

c h E l e m 0 f L i s t ( A 2 , J , A l , A O u t ) . 

No one would want to use such predicates for quick-sort but they will do the job 
correctly. It is not unreasonable to build knowledge of such predicates into a 
Prolog compiler, so that the appropriate data conversions are done when 
needed. Thus, if the programmer entered 
? - q s o r t ( L i s t , O u t p u t L i s t ) , q ( O u t p u t L i s t ) . 

where List and OutputList are lists, the compiler would convert this to: 
? - l i s t T o A r r a y ( L i s t , A r r a y ) , q s o r t ( A r r a y , A r r a y 2 ) , 

a r r a y T o L i s t ( A r r a y 2 , O u t p u t L i s t ) , q ( O u t p u t L i s t ) . 

by noticing that qsort's preferred data type is an array. Such data 
transformations have been investigated for a long time, for example in 
[Schwartz 1975]. Pure logic programming allows such a style of programming 
with optimizations being applied by a combination of automatic type inferencing 
and dialogue with the programmer. 
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FP [Backus 1978] and APL treat arrays as simple objects. Implementing these 
arrays requires optimizations similar to those given above. 

FP depends heavily on functions which manipulate other functions. In logic 
programs, we can easily have predicates which manipulate other predicates (see 
6.4, "Thunks, lazy evaluation and higher order functions" on page 127). 
Although predicates can be treated as "first class objects," they cannot be 
unified in the same way as other objects - there is no way to tell if arbitrary 
recursive predicates are the same. 

Assert and r e t r a c t 3 2 have two uses: to dynamically add new clauses and to 
implement data bases. The former use can be problematic if the logic program 
is compiled; the latter use can be handled better by the array or database 
predicates described above. 

Non-logical I/O is much less expressive than logical I/O. It requires that goals 
be in a particular order (contrary to the commutative nature of and (",")). 

Non-logical I/O does not easily support backtracking. 

3 2 addax and d e l a x in Watedoo and I B M Prologs. 
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Conclusion 

Logic programming is still in its infancy. Just as Fortran was superseded by 
Algol, PL/I, Pascal, Ada and many others, Prolog will surely be superseded. 
Prolog is a first attempt at a new style of programming. As such, we should not 
criticize its defects, but applaud its boldness. We can only hope that its defects 
do not linger on, as do Fortran's. Innovations are needed. 

Logic Programming is now well-established as a practical method of building 
computer systems. My own experience, and that of many others, is that logic 
programming can give programmer productivity increases of 10-20 times. The 
challenge is to make logic programs run as fast as those produced by 
conventional means, and to provide tools for building large logic programs. 

I have explored a variation on the popular WAM implementation of a logic 
engine (xpPAM) which retains WAM's efficiency, yet implements a more powerful 
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language than conventional Prolog, providing sound negation and coroutining. 
This design is also suitable for functional programming. 

I have implemented the logic engine (except for virtual memory), including an 
prototype optimizing compiler, and have attained performance comparable to 
WAM implementations. The compiler is short and simple because the abstract 
logic engine's instructions lend themselves to easy compilation. Suitable 
language constructs - such as delays, if-then-else and meta variables - both 
help the compiler and allow programmers to write clearer code. 

Logic programming is a superior paradigm for many problems, compared to 
conventional programming techniques, because it improves programmer 
productivity, allows rapid prototyping and encourages writing provably correct 
programs. My work shows that logic programs can run as fast as conventional 
programs, without any need to introduce "impure" non-logical features. 

Logic programming is a superior paradigm for many problems, compared to 
conventional programming techniques - it improves programmer productivity, 
allows rapid prototyping and encourages writing provably correct programs. 
My work shows that pure logic programs can be executed efficiently, with any 
need to introduce "impure" non-logical features. 

Continued work on techniques for compiling logic programs, such as those in 
this report, will give pure logic programs the efficiency of conventional 
programs. 

" If anybody wants to clap," said Eeyore when he 
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had read this, "now is the time to do it." 

They all clapped. 

"Thank you," said Eeyore. "Unexpected and 

gratifying if a little lacking in Smack." 

— A. A. Milne, Winnie the Pooh 
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Glossary and Index 

address The index into memory of an object. See also "pointer," 
section3.1, "Objects" on page 29 . 

algorithm A method of computing a proof. Kowalski's definition is: 
algorithm = logic + control. 

all-solutions predicate A second-order predicate which computes all the solutions 
for a predicate. These are usually called bagof and setof. Bagoff 

is in computed order and may contain duplicates; setof is ordered 
and contains no duplicates. In some implementations, no solution 
results in nil; in other implementations, the all-solutions predicate 
fails. See section 8.9, "All solutions predicates" on page 178. 

argument A value passed to a goal. See also "parameter." 
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atom A simple value, typically a name (string) or a number. See also 
"compound term." 

axiom A predicate or clause. 

backtrack To reset the machine to an earlier state and pick an alternate 
clause to resume computation. See also "non-deterministic," 
section 4.0, "Backtracking and delaying" on page 66. 

backtrack stack A stack which records information necessary to reset the 
machine to an earlier state. Also called "choice stack" or "choice 
point stack" See section 4.0, "Backtracking and delaying" on 
page 66. 

call Attempt to compute a goal (also, "try" a goal). 

choice point A collection of information in the backtrack stack which contains 
information about an alternative clause to take on backtracking. 
See section 4.0, "Backtracking and delaying" on page 66. 

clause One alternative in a predicate. It consists of a "head" and zero or 
more "goals" which must all be satisfied if the clause is to be 
satisfied. See section 8.2, "Conventional Prolog's execution 
order" on page 159. 
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closed (completed) predicate A predicate which has all its alternatives given. Its 
negative can therefore be computed with the "closed world" 
technique. See section 10.1, "Negation" on page 207. 

code segment In xpPAM, the abstract machine instructions, plus constants for one 
predicate. A code segment may also contain instructions for 
predicates which are strictly internal to it. See section 3.6, "Code 
segments" on page 36. 

complete Describing a proof procedure which will always terminate 
successfully if the goal is provable. See also "sound." 

complex indeterminate A compound term which contains field (slot) names and 
associated values. Has possibilities for implementing frames (q.v., 
second meaning). See section 3.14, "Other object data types" on 
page 59. 

compound term A term of the former,, t2,... Q where each t{ may be either an 
atom or a compound term. Also called a "functor." Some 
compound terms have special forms. For example, a list element 
is notated "A.B" "[A\B]n or ".(A,B)" - in all cases, the functor 
name is "." and the arguments are A and B. 

computation A series of steps that a machine takes in attempting to prove a 
query. See also "proof procedure." 
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coroutine A predicate which may suspend before its computation is 
complete. Typically, one or more predicates cooperate by 
suspending and resuming. Coroutining may be considered as a 
form of parallelism. See section 9.0, "Coroutining, 
pseudo-parallelism and parallelism" on page 185. 

cut ("!") An "impure" predicate in conventional Prolog which "cuts" the 
solution space. Its declarative reading is "true" but it can change 
the generated solutions. Cuts can be avoided by use of suitable 
constructs (such as if-then-else) or by proper implementation (tail 
recursion optimization, etc.). 

declarative reading The logical reading of a Prolog predicate. If the predicate 
contains only purely logical predicates, the declarative reading can 
be produced by "or"-ing the clauses, replacing commas by "and"s 
and adding existential and universal quantifiers. If the predicate 
contains non-logical predicates (var, cut ("!"), I/O, etc.), a 
declarative reading is much more difficult. 

delay Postpone evaluation of a predicate until one or more arguments 
become sufficiently instantiated. See sections 1.5, "Delay 
notation" on page 8 and 8.10, "Non-strict execution order: 
delays" on page 181. 

deterministic A computation which can only proceed in on sequence of steps, 
producing a single answer. 
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deterministic append A predicate which appends two lists to make a third list. 
This is the inner loop of "naive reverse." Append can also be 
non-deterministic, in which case it is used to split a list into two. 

a p p e n d ( [ ] , X , X ) . 

a p p e n d ( X . A , B , X . C ) : - a p p e n d ( A , B , C ) . 

execution stack A stack which keeps information across calls. Also called "call 
stack." See section3.5, "Execution stack" on page 34 . 

fact A clause (or predicate) which contains no goals and completely 
grounds its arguments. See also "rule." 

fail In a computation, if a predicate does not succeed, it is said to fail. 
If a goal fails and the computation is sound, then there is no 
possible proof for the goal. 

frame Two meanings: 

• A collection of related information on the execution or 
backtrack stack. 

• A collection of information associated with an object (used for 
Al or object-oriented programming). Typically, the frame 
slots are values or procedures for computing the values. See 
also "complex indeterminates." 
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free list A list of cells which are not yet allocated to objects. See also 
section 7.5, "Allocating from a list or from a stack" on page 145. 

freeze (or geler) The predicate in Colmerauer's Prolog-II which implements 
"delay." See also section9.7, "Comparison with other designs for 
delaying." on page 200 . 

function A mapping from one set of objects to another. An -̂argument 
function can be transformed to an (n + /J-argument deterministic 
predicate by "returning" the answer in the (n + l)th argument. 

functor A compound term. 

fully instantiated (or ground) Has a value with no uninstantiated variables. See 
"instantiated" and "sufficiently instantiated." 

functor element cell If a functor is represented internally as a list of cells, this is 
like a list element cell but with a special flag so that it will print 
out in functor notation and will only unify with another functor. 
See also "list element cell," sections 3.1, "Objects" on page 29, 
7.10, "Functor and list storage" on page 151. 

goal One of the terms on the right hand side of a clause which must be 
satisfied if the clause is to be satisfied. See section 
8.2, "Conventional Prolog's execution order" on page 159. 

260 



ground Has a value. See "instantiated." 

head The name and parameters of a clause. 

heap An area of memory within which objects may be allocated and 
freed in any order. See also "stack," section 7.5, "Allocating 
from a list or from a stack" on page 145. 

Horn clause A clause containing a head and zero or more goals. The more 
general form (from Gentzen's sequent calculus) allows more than 
one term in the head. 

KLIPS Thousand LIPS. 

if-then-else A control construct which can be defined: 

p :- i f t then q e l s e r. 

is the same as: 

P t , q. 
p :- not t , q. 

See section 8.6, "Single solutions" on page 170. 

impure predicate A predicate which cannot easily be given a logical or 
declarative meaning. For example, cut ("!") and var require 
knowledge of the computational mechanism; I/O predicates 
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require transformations (with extra arguments) to be given 
declarative meanings. 

instantiate To cause an uninstantiated variable object to receive a value. 
This normally happens during unification. See section 
3.10, "Unification" on page 40. 

instantiated Has a value. Also called "ground." When an object is created 
during computation, it is initially uninstantiated; it may become 
instantiated during unification. Once instantiated, an object 
cannot change its value; backtracking may cause it to become 
uninstantiated again. 

LIPS Logical inferences per second. Usually computed with the "naive 
reverse" benchmark which typically gives speeds about three 
times faster than "typical" predicates. There are rumours that 
some implementations have a built-in "naive reverse" instruction 
(or deterministic append instruction) to give high LIPS figures. 
See section 5.9, "Optimized compiling to conventional machine 
code" on page 110. 

list element cell An object containing a "head" and a "tail" (corresponding to 
LISP's car and cdr). For example, the list contains two 
list element cells: the first's head is A, the first's tail points at the 
second cell; the second's head is B and the second's tail contains 
nil. See also "functor," sections 3.1, "Objects" on page 29, 
7.10, "Functor and list storage" on page 151. 
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logical predicate A "pure" predicate which can easily be given a logical or 
declarative meaning in first (or second) order predicate calculus. 

meta-predicate A predicate which has no effect on correctness of a computation 
but which may control some aspect of the representation or of the 
order of computation. For example, a meta-predicate may supply 
delaying information or it may associate an input list with a file. 
Sometimes, "second order" predicates (such as call are called 
meta-predicates. See section 11.8, "Sequential Input/Output" on 
page 241 for examples. 

meta-variable A variable which is used as a "place holder" within a predicate 
skeleton. This is typically used for all-solutions predicates or for 
knowledge representation which uses predicate forms. See section 
10.4, "Meta-variables" on page 212. 

MIPS Million instructions per second (also called "meaningless indicator 
of processor speed"). 

MLIPS Million LIPS. 

naive reverse A predicate which reverses a list using a rather simple-minded 
algorithm which mainly consists of calls to deterministic append. 
Naive reverse is often used to give LIPS figures. 

n a i v e _ r e v e r s e ( [ ] , [ ] ) . 

n a i v e _ r e v e r s e ( X . A , R) : - n a i v e _ r e v e r s e ( A , A2), 

append(A2, [ X ] , R ) . 
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negation The contra-positive of a predicate. That is, if a predicate 
evaluates to "true," its negation evaluates to "false." Some logic 
systems allow making negative statements; others, such as Horn 
clause logic allow only making positive statements. There are a 
number of kinds of negation, including: 

classical negation which requires full resolution in the general 
case (for example, given "all politicians exaggerate" and 
"John does not exaggerate," this could derive "John is 
not a politician"). 

closed world negation which will only correctly negate full ground 
predicates by checking if they are not in the database of 
clauses. It is simple to compute but less complete that 
classical negation 

See sections 10.1, "Negation" on page 207, 8.5, "Negation" on 
page 168. 

non-deterministic A computation in which the order is not known ahead of time. 
There are two main kinds of non-determinism: order of clause 
selection and multiple answers. 

non-logical Not capable of being given an simple first or second order 
predicate calculus meaning. See "impure predicate." 
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nonvar An "impure" predicate in conventional Prolog which succeeds if 
its argument is instantiated. It has no possible declarative 
reading. Nonvar can be avoided by use of suitable control 
constructs (such as "delay"). 

object A piece of allocated memory with a tag indicating its type. See 
section 3.1, "Objects" on page 29. 

parallel computation A computation in which more than one predicate are 
computed in parallel. There are two main forms: 

and-parallelism requires all the parallel predicates to succeed; it 
waits until the last predicate succeeds and is typically 
used for divide-and-conquer algorithms. 

or-parallelism requires one of the parallel predicates to succeed; 
it is typically used for database searches. 

parameter A value passed into a clause. See also "argument." 

pointer An object which contains the address of an object. See also 
"address," section3.1, "Objects" on page 29 . 

predicate A term of the form p{f\,f2, ••• ,f„) which is supposed to have a 
value of "true" or "false" for each instantiated substitution for its 
variables. A predicate may be (recursively) computed, so some 
substitutions may not be computable. 
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Prolog "Programming in Logic": a logic programming language, 
originating from the work of Colmerauer and Kowalski. It has a 
number of dialects, of which the most popular is Edinburgh 
(DEC-10) Prolog and its derivatives (C-Prolog, etc.). IBM Prolog 
uses a somewhat different syntax which can (usually) be 
mechanically transformed to Edinburgh Prolog. Most of the 
differences among Prolog dialects are minor, usually in details of 
built-in predicates, especially "impure" predicates. 

proof procedure A mechanical method of proving a goal. Sometimes called a 
computational method. A proof procedure typically selects some 
path through the tree of all possible proofs. See section 
8.3, "Example of conventional execution order" on page 163. 

Containing only logical predicates. "Pure Prolog" is sometimes, 
mistakenly, referred to as a subset of Prolog. 

A goal or conjunction of goals which the machine will attempt to 
prove (in the original theory, a query is a single negated goal and 
the computation attempts to find a substitution which results in a 
contradiction; this corresponds to finding a substitution which 
satisfies the axioms and original goal). 

In xpPAM, a special piece of memory containing the address of an 
object. A register may be empty, in which case its contents are 
meaningless. See section 3.2, "General registers" on page 32. 

pure 

query 

register 
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The status of the machine is kept in special status registers, see 
section 3.4, "Status registers" on page 33. 

register annotation One of the letters v, n,f, x or s which gives information 
about the contents of a register and what is to be done with it in 
an instruction. The annotation c indicates that the operand is not 
a register but an index into the constants' vector. See section 
3.7, "Machine instruction format" on page 36. 

reset stack A stack which contains information about variables which have 
become instantiated and which require being "un-instantiated" on 
backtracking. Also called "trail." See section 4.0, "Backtracking 
and delaying" on page 66. 

resolution A method discovered by Robinson based on Gentzen's cut rule 
which provides a single rule for doing a proof. Full general 
resolution can have exponential cost. 

resume To continue execution of a predicate where is was earlier 
suspended. See also "suspend," "coroutine." 

rule Sometimes used to mean "clause" or "predicate." A rule normally 
has at least one goal. See' also "fact." 

satisfy To try a goal and succeed or to find a substitution during a 
unification. 
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sequent calculus A method of proving first order predicate calculus goals, using 
an alternate notation which was invented by Gentzen. Horn logic 
is a subset of sequent calculus. 

sound Describing a proof procedure which always gives a correct answer 
(success or failure corresponding to provable or unprovable). See 
also "complete." 

stack An area of memory from which objects may be allocated and 
freed in strict LIFO order. See also "heap," section 
7.5, "Allocating from a list or from a stack" on page 145. 

string Zero or more characters. If the string starts with a lower case 
letter and contains only printable non-space characters, it can be 
written without enclosing quotes, like an atom. Otherwise the 
quotes are not needed: " a b c = ' a b c \ " 

substitution A set of values which satisfy some equalities (usually, computed 
by unification). 

succeed Of a predicate, to be proved. See also "fail." 

suspend To cease execution of a predicate and start or resume execution of 
another before the current predicate has terminated with either 
success or failure. See also "resume," "coroutine." 
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tail recursion optimization An optimization which turns the call to the last goal 
in a clause into a kind of go to. Also called "TRO." TRO is 
used to transform recursion into iteration. See section 3.9, "Tail 
recursion optimization (TRO)" on page 39 and the "last call" 
instructions. 

term-rewriting A general proof procedure (used, for example, by sequent 
calculus) in which an arbitrary goal is chosen and its right hand 
side is substituted for it. See section 8.4, "A more flexible 
execution strategy" on page 165. Similar to Markov algorithm. 
If the left-most goal is always chosen, term-rewriting is the same 
as conventional Prolog's depth-first left-to-right computation rule. 

TRO Tail recursion optimization. 

try Attempt to compute a goal (also, "call" a goal). 

thunk An object which contains a predicate name and some or all of the 
arguments for it. If all the arguments are present, it is very 
similar to a suspended predicate. See section 6.4, "Thunks, lazy 
evaluation and higher order functions" on page 127. 

trail WAM terminology for the reset stack. 
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sufficiently instantiated (or ground) Has enough of a value for computation to 
proceed. For example, the computation may require that an 
object be instantiated to a list element, but the head or tail may 
still be uninstantiated. See also "instantiated" and "delay." 

unification The process whereby two terms (possibly containing 
uninstantiated variables) are made "equal." Unification may fail.* 
Unification may cause variables to become instantiated, always to 
the "most general unifier." For example, "X=Y,Y=a" results in X=a 
and Y=a; "X=Y,Y=Z" results in X=Y, X=z and Y=z (the most general 
unifier) even though x=Y=Z=a will satisfy the equation. See section 
3.10, "Unification" on page 40. 

var An "impure" predicate in conventional Prolog which succeeds if 
its argument is uninstantiated. It has no possible declarative 
reading. Var can be avoided by use of suitable control constructs 
(such as "delay"). 

variable Two meanings: 

• a name in a predicate, usually starting with a capital letter. 
• an uninstantiated variable during the course of a computation. 

WAM Warren Abstract Machine. 
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Warren Abstract Machine A design by D. H. D. Warren for an abstract 
machine which has proven to be very efficient. It is the basis of 
most recent hardware and software implementations of Prolog. 
See section 7.1, "Comparison with the Warren Abstract Machine 
instructions" on page 138. 

weak delay A delay which has an associated "cost." Unlike a regular delay, a 
weak delay may resume without its argument(s) being 
instantiated, but the computation is likely to be expensive (the 
cost gives an indication of the expense). See section 4.6, "Weak 
delays: dynamic reordering of clauses" on page 81. 

xpPAM The xpProlog abstract machine. An abstract machine design 
suitable for implementing conventional Prolog, xpProlog or 
functional languages. It has some similarities with WAM but is 
both more simple and more flexible, while retaining WAM's 
efficiency. XpPAM can be interpreted on conventional machines, 
used an intermediate language when compiling to conventional 
machines, or xpPAM could be implemented in hardware. See 
sections 3.0, "The basic sequential inference engine" on page 28. 
and 4.0, "Backtracking and delaying" on page 66. 

xpProlog Extended pure Prolog. The pure "subset" of Prolog, extended 
with constructs (such as if-then-else, meta-variables, delays, etc.) 
which make "impure" predicates unnecessary. 
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Appendix A. Sample machine code 

The code in section 2.3, "C code for deterministic append predicate" on 
page 21 can be transformed to machine code, for ultimate speed. These 
transformations cannot easily be done by a C compiler, because certain values 
must be kept globally in registers for ultimate performance. 

A . l Machine code for deterministic append predicate 

The C code for append can be translated directly to machine code. Here is 
sample IBM/370 code.33 The parameters are in general purpose registers 1, 2 
and 3. The next free object cell's address is in register RFREE. Register RBACK 
points to the top of the backtrack stack (used for determining a variable's age). 
RZERO always has zeroes in the high three bytes, to avoid clearing it before 
loading a character (the IBM/370 does not clear the high bytes when loading a 
character). RTEMP is a temporary register. For efficiency, the object tags are 0, 
4, 8, etc. instead of 0, 1, 2, etc., to avoid a shift instruction. 

33 This code is offered more as an example than as a definite method (Warning: the code has 

not been tested). 
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I w i l l use a number of macros, "SWITCH reg,Ai,A2,...,An" jumps to one of a list 

of addresses depending on a tag; it expands to something like (it is assumed that 

RZERO always has the high 3 bytes zero): 

IC RZERO,TAG(,reg) load tag 
L RTEMP,SWITCH1(,RZERO) switch on type 
BR RTEMP 

SWITCH1 DC A(A1) branch 
DC A(A2) t a b l e 

DC A(An) 

"ALLOC newtag" gets a new cell from the free list; it expands to something like 

(the first two instructions can be eliminated if the last unallocated cell can point 

to an invalid address, thereby raising an addressing exception when there is no 
more space left): 

CLI TAG(RFREE),4*TGUNALL0C next c e l l free? 
BNE OVERFLOW 

MVI TAG(RFREE),4*newtag set tag f o r new c e l l 

The code for the second (slower) version is: 
START SWITCH R1,NIL1,LISTEL1,ERROR,REF1,VAR1 switch on type of p i 
NIL1 ... code omitted f o r b r e v i t y 
REF1 L Rl,ASREF(,R1) p i = pl->u.asReference 

B START goto s t a r t 
LISTEL1 SWITCH R3,NIL2,LISTEL2,ERROR,REF2,VAR2 switch on type of p3 
REF2 L R3,ASREF(,R3) p3 = p3->u.asReference 

B LISTEL1 back to switch 
VAR2 C RBACK,VARAGE(,R3) i s p3 newer than l a s t 

BNH NEWER choice point? yes: s k i p 
... code omitted: push p3's i n f o onto reset stack 

NEWER MVI TAG(R3),4*TGREF p3->tag = tgReference 
ALLOC TGLISTEL RFREE = <new> ( l i s t elem) 
LR RTEMP,RFREE <new> = RFREE 

281 



p o i n t to next free c e l l 
p3->u.asReference = <new> 
<new>.asListElem.head = p i 
<new>.asListElem.tail = <new2> 
p i = p l - > a s L i s t E l e m . t a i l 
RFREE = <new2> ( v a r i a b l e ) 

RBACK,VARAGE(,RFREE) <new2>.varAge = choice po i n t age 
RFREE,NEXT(,RFREE) p o i n t to next free c e l l 

L RFREE,NEXT(,RFREE) 
ST RTEMP,ASREF(,R3) 
ST R1,HEAD(,RTEMP) 
ST RFREE,TAIL(,RTEMP) 

NEWTAIL L R1,TAIL(,R1) 
ALLOC TGVAR 
ST 
L 
SWITCH R1,NIL1,LISTEL1,INT1,REF1,VAR1 switch on type of p i 

The inner loop is 19 or 23 instructions, depending on whether heap overflow is 
detected in-line or by an exception. 

A.2 Machine code for append function 

The above machine code is not optimal. As soon as a variable is found for the 
third argument, a variant of the loop in the first example C program can be 
used. The code from NEWTAIL on is replaced by: 

inner: 
s witch (p->tag) { 
case t g L i s t E l e m : 

*p3 = allocListElem(pl->u.asListElem.head, &dummyCell); 
p i = p l - > u . a s L i s t E l e m . t a i l ; 
p3 = &( ( * p 3 ) - > u . a s L i s t E l e m . t a i l ) ; 
goto inner; 

case t g N i l : 
*p3 = P 2 ; 
break; 

case tgReference: 
p i = pl->u.asReference; 
goto inner; 

d e f a u l t : 
e r r o r ( ) ; 

} 

282 



which in assembler is: 

NEWTAIL LA R3,TAIL(,RTEMP) 
B INNER2 

INNER ALLOC TGLISTEL 

p3 = & <new>.tail 
branch to t e s t at end of loop 
RFREE = <new> ( l i s t elem) 

ST RFREE,0(,R3) *p3 = <new> 
MVC HEAD(RFREE),HEAD(Rl) 1 <new>.u.asListElem.head = 

* pl->u.asListElem.head 
LA R3,TAIL(,RFREE) p3 = &((*p3)->u.asListElem. 
L RFREE,NEXT(,RFREE) poin t to next f r e e c e l l 

INNER2 L R1,TAIL(,R1) p i = p l - > u . a s L i s t E l e m . t a i l 
CLI TAG(Rl),4*TGLISTEL w h i l e pl->tag = t g L i s t E l e m 
BE INNER 
CLI TAG(R1),4*RGREF or pl->tag == tgReference 
BNE DONE 
L R1,ASREF(,R1) deref p 
B INNER2 and t r y again 

DONE CLI TAG(Rl),4*TGNIL i f (pl->tag != t g N i l ) 
BNE ERROR e r r o r ( ) 
ST R2,0(,R3) *p3 = p2 

This inner loop from the INNER label to the BE INNER instruction is just 8 or 10 
instructions, depending on whether heap overflow is detected in-line or by an 
exception. On a "1 MIPS" machine, the above loop will run at over 100 KLIPS 
(thousands of Logical Inferences Per Second). 

The inner loop has the same instruction count, for either allocating from a heap 
or for allocating from a stack. For reference counting, three extra instructions 
are needed (load, add one, store). 

For this particular example, it appears as if reference counting is significantly 
slower than a marking garbage collector. However, a marking garbage collector 
must eventually scan the list and it probably will take more than three 
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instructions to mark a cell. See section 7.12, "Reference counts and garbage 
collection" on page 153. 

However, the Warren Abstract Machine has a very fast way of releasing storage 
once a query is finished - it simply pops the global heap to its initial position 
(some people force this using a repeat, fail loop). However, in the general case, 
where intermediate structures are created, the Warren Abstract Machine must 
also garbage collect its global heap. 
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Appendix B. Details of xpProlog syntax 
XpProlog is syntactically very similar to conventional Edinburgh syntax [Periera, 
Warren, Byrd and Pereira 1984]. The exact syntax is not very important; to 
follow micro-Prolog's or Waterloo (IBM) Prolog's syntax would require very 
little work. I will describe xpProlog's extensions to conventional Prolog's syntax 
with examples.34 

B.l Functors and lists 
Functor and lists are treated in similar ways.35 That is, the name of a predicate 
may also be a variable where conventional Prolog requires that it be a name 
(string). XpProlog allows "pred(F(Args)) :- ..." where conventional Prolog 

3 4 A confession: not everything described here has been implemented — I ran out of time. The 

main thrust of my work was to show that pure Prolog can be implemented efficiently; I 

considered the exact syntax of the resulting language to be less important. 

3 5 I prefer the infix notation " H d . T l " rather than " [ Hd|Tl ]." C-Prolog can be persuaded to 

accept this by the command : - o p ( 6 0 0 , x f y , ( ' . ' ) ) . 
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would require "pred(FArgs) :- FArgs =.. (F.Args), ,..."36 In other words, we 
can define univ by: 
FfjArgs) =.. (F.Args). /* F(|Args) =. . [F|Args]. */ 

which also works if there are no arguments (in which case, Args is unified with 
[ ]). Also, s() = s but [S] * s. 

In a clause, if a goal is a functor or a list, it is called. There is no need to use 
univ before calling, nor to explicitly use the c a l l meta-predicate. That is: 
pred(F, Args) :- (F.Args), ... 

is the same as 
pred(F, Args) :- F(Arg s ) , ... 

which would have to be written like this in conventional Prolog: 
pred(F, Args) :- C a l l =. . F.Args, c a l l ( C a l l ) , ... 

(Some Prologs allow leaving out the " c a l l " ) . 

B.2 Lexical and syntactic details 

This is a brief attempt to explain some of the intricacies of the rules for parsing 
Prolog. The explanation in [Clocksin and Mellish 1984] leaves a few things 
somewhat unexplained. Also, my method is slightly different from that used in 
C-Prolog [Periera, Warren, Byrd and Pereira 1983] (it is "cleaner," I think).37 

3 6 The parentheses around "F.Args" are necessary because the period could otherwise be 
interpreted as the end of the clause. 

37 Prolog syntax is currently being standardized by the British Standards Institute (BSI). The 
process is not yet finished. It will almost certainly differ somewhat from xpProlog. 
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The details of Prolog syntax are not very Important; many of these details can 
be changed by simply changing some lexical tables. 

First, the basic lexical items: 

string Also called "name," "atom" or sometimes "id." This is a lower-case 
letter followed by any number of letters and digits. Any other 
characters can be included if the entire item is surrounded by single 
quotes ('""). Unprintable characters and single quotes can be 
included if they are preceded by a backslash ("\"), following C 
syntax (for example, '\\\'a\'\n' which, when output, produces a 
single backslash, a beep, a quote and a new-line). 

variable name An upper-case letter or underscore followed by any number of 
letters, digits or underscores. A single underscore is an anonymous 
variable, unique from all other variable names in the clause. 

quoted string A string surrounded by double quotes ("""). Again, C syntax 
conventions are followed for unprintable characters and double 
quotes. "Abc" is equivalent to [ 'A', 'b', 'c' ]. 

number A sequence of digits, optionally preceded by a negative sign ("-") 
and optionally containing a decimal point. 

However, there will be little difficulty in modifying x p P r o l o g to conform to the new 

standard. 
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delimiters Most other characters are considered as delimiters ("!@#$%-'&*()-" 
etc.)- Except for the bracketing symbols ("()[]{}"), delimiters are 
treated like strings. When an operator is defined (by the op built-in 
predicate) and the operator's name is made up entirely of delimiters, 
then the entire string is treated as a single item (for example, "-->" 
or ":-"). 

white space Ignored between lexical items - includes blanks, tabs, new lines and 
comments. Comments may either be bracketed by "/* ... */" or 
marked by "%" which causes everything up to the end of line to be 
ignored. 

statement terminator A period ("."). Unfortunately, it can also be used as a 
decimal point in numbers and as the "cons" operator for lists. 
Therefore, "p(X):-x=a.b." must be written " P(X):-x=(a.b)." to 
avoid ambiguity (the former phrase would be interpreted as two 
clauses: "p(X):-x=a." and "b."). 

An operator is defined by the op built-in predicate: 
:- o p ( P r i o r i t y , A s s o c i a t i v i t y , OpName). 

The operator name ("OpName") must be enclosed in single quotes if it contains 
any delimiter characters. The operator name is then added to a lexical table so 
that it will be subsequently treated as a single item. 
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Unlike "normal" compilers, higher priorities binds looser.38 Here are the usual 
arithmetic operators: 

- op( 500, y f x , +) 
- op( 500, y f x , -) 
- op( 500, f x , +) 
- op( 500, f x , -) 

% unary ( p r e f i x ) 
% unary ( p r e f i x ) 

:- op( 400, y f x , * ) . 
:- op( 400, y f x , / ) . 
:- op( 400, y f x , / ) . 

The associativity is of the forms:39 

x f x x f y y f x y f y (for infix operators) 
f x f y (for prefix operators) 

x f y f (for postfix operators) 

If there are no parentheses, a y means that the argument can contain operators 
of the same or lower precedence (same or tighter binding) while x means that 
the argument can contain operators of strictly lower precedence (tighter 
binding). Thus, y f x is left-to-right and x f y is right to left. Some operators 
(such as comparisons) are defined xfx. This prohibits, for example, a < b < c 
although (a < b) < c would be legitimate (but meaningless). 

3 8 The BSI committee is proposing to change this. 

3 9 In I B M (or Waterloo) Prolog, the associativity is one of p r e f i x , s u f f i x , l r or r l which 

doesn't allow quite the same degree of control as does C-Prolog's values. O n the other hand, 

I B M Prolog is more readable. 
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Some ambiguities are still possible. An x f y operator next to a y f x operator can 
be parsed in two ways if they have the same priority. Such cases are flagged as 
errors by the parser ("ambiguous operator juxtaposition"). 

Note that monadic (prefix and postfix) operators also have priorities. For 
example, ?- X i s 1+2. is parsed ?- (X i s (1+2)). whereas -a+b is parsed 
(-a)+b. 

An operator is treated as such only if it is in a position which allows it to be an 
operator.40 For example, in "a opx + b," the opx can potentially be either a 
postfix operator or an infix operator. If opx is a prefix operator, then the "+" 
must be an infix operator ("(a opx) + b"); if opx is an infix operator, then the 
"+" must be a prefix operator ("a opx (+b)"). The decision is done left-to-right 
with no backtracking. 

C-Prolog distinguishes between operators and functor names. It considers 
"not x" and " n o t ( x ) " to be distinct. XpProlog does not make this distinction. 
Furthermore, there is an ambiguity with prefix operators and comma operators 
(recall that ?-op(iooo,xfy, 1,') - that is, comma is a right-to-left infix 
operator). If "+" is a prefix operator, then +(l,2) can be parsed as either thê  
binary operator + applied to the two operands l and 2 or it could be the unary 
operator applied to the single operand which is itself a binary operand applied 
to the two operands 1 and 2. XpProlog takes the former meaning; if the latter is 
desired, it should be written "+((1,2))." (C-Prolog distinguishes between the 

40 Some Prologs, including the draft BSI standard insists that an operator cannot be enclosed 

within quotes. I have not implemented this, although it could easily be done. 
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cases by looking for a blank after the "+"; I (and the BSI standard) consider 
this to be a kludge). 

Note that operators may be enclosed in parentheses to have them considered as 
ordinary strings. For example, ( + )*(:-) = (*)( + , :-). 4 1 

Lists may be entered either in bracket form or dotted form. Here are some 
examples (IBM and Waterloo Prologs use "!" instead of "|" and also allow curly 
brackets ("{}") instead of square brackets ("[ ]")): 

[ a | b ] = a . b 

[a ] = [ a | [ ] ] = a . [] 

[ a , b] = [ a , b | [ ] ] = a . b . [ ] = a . ( b . [ ] ) 

Curly brackets are also allowed, for grammar rule notation. Note that here 
comma is used as an operator rather than a separator. 

{a} = * U ' ( a ) 

[ a , b} = 'n '((a,b)) = ' H ' C V C a . b ) ) 

B.3 Critique of Prolog's syntax 

Prolog's syntax badly overloads several characters, particularly 

"." (period): 
• end of clause 
• "cons" for lists 

41 With the BSI convention, ' * ' ( 1 + 1 , ' : - ' ) achieves the same affect. 
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• decimal point in a number 
"," (comma): 

• argument separator inside predicates, functors and lists 
• and-operator, separating the goals of a predicate 
• ordinary operator, for example inside "[}" 

Period is especially troublesome. For example, "1.2.3." can be interpreted as 
"[ 1,2,(3]" or "[l|2.3]" or "[1.2|3]." 

Some other nasty surprises are possible because most "syntactic sugar" is done 
using monadic and diadic operators. Many programmers have been 
unpleasantly surprised by what happens with "p->q,r;s,t" (the 
"... - > ... ; ..." notation is used for if-then-else). 

I propose the following solution: 

a y> 

• Use only as a decimal point 
• "cons" is represented by the colon ":" (I consider the "[ A|B]" to be hard 

to read). 
• end of clause can normally be inferred (as in BCPL [Richards and 

Whitby-Stevens 1979]); in the few places where it cannot be inferred, an 
explicit "end" is used (alternatively, ";" could be used; "or" probably 
should use the more obvious "|" symbol instead). 
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it » 

• Used only as an argument separator. 
• "And" ("&") is used as a goal separator. This "&" can also be an 

operator. 
• "{a,b}" is interpreted as "'{}'(a,b)" - this can easily be handled in a 

processor for grammar rules because " 1 {}' (|Args)" will put all the 
arguments into "Args." 

Prolog's method of entering predicates by listing out the clauses makes things a 
little difficult for a compiler, because the compiler cannot know when a 
predicate has been completely defined. Normally, all the clauses for a predicate 
are kept together; in fact, separated clauses usually indicate an error in typing 
the predicate. Therefore, xpProlog enforces that all the clauses for a predicate 
appear together. 

B.4 Debugging extensions 

Misspelling a variable name or predicate name is a very common error. 
XpProlog gives an warning message if a variable name is used only once within a 
clause (this message can be suppressed by prefixing the name by an underscore). 

At run-time, if an undefined predicate is tried, an error message is output and 
the user is prompted for a definition of the predicate ("query the user").42 This 

42 This has not yet been implemented; currently the user is prompted only for a simple success 

or failure. For a full discussion of "query the user," see [Scrgot 1983]. 
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can be suppressed by defining the predicate as always failing (using the built-in 
predicate "fail"). 

One other troublesome point in Prolog is what happens if a predicate is tried 
with the wrong type of argument. Most such cases can be caught if the 
programmer indicates that a predicate should always succeed. If the 
programmer writes "?-neverfall(pred(_,_))," then when "pred/2" fails, an 
error message is produced. This is done by automatically adding an extra 
catch-all clause to "pred/2" which produces the error message. 

Type inferencing can help in detecting undefined predicates and wrong types to 
predicates. It is discussed in section 5.10, "Speeding up deterministic predicates 

o 
- modes and types" on page 112. 
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Appendix C. Implementation status 

An interpreter for the xpPAM has been completed. It includes a simple assembler 
and loader. 

The implementation is incomplete in the following ways:43 

• Some opcodes are implemented inefficiently. The opcodes should be 
combined with the operand types to allow faster decoding (as mentioned in 
section 3.7, "Machine instruction format" on page 36). This would increase 
the number of cases in the interpreter by a factor of three or four, while 
approximately doubling its speed. 

• The implementation of delays is inefficient. Currently, a variable which 
caused a delay has a flag set; when such a variable becomes instantiated, it 
causes a search for a predicate which can be resumed. A much more 
efficient way would be to have "uninstantiated variable which caused a 
delay" to get a separate tag and to have the cell point at a list of predicates 
which depend on it (as described in section 4.4, "Delays" on page 75). 

43 I simply ran out of time and concentrated on writing this report; the remaining work will 

probably take a few months to finish. 
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Some opcodes have not been implemented: 

— t e s t s k i p 

— gete 

— caseGoto 

— cutAt 

— chopBack 

— delayCost 

— mkTHunk 

— delayRec 

Only some built-ins have been implemented. A complete list of the existing 
built-ins is given in Appendix D, "Built-in predicates" on page 300 together 
with their implementation, to indicate how more built-ins can be easily 
added. 

The "virtual choice depth" is not recorded on the backtrack stack (it can 
easily be added). 

The implementation uses three stacks. This could be changed to two by 
combining either the execution and backtrack stacks (the WAM choice) or 
the reset and backtrack stacks (more preference). Note that combining the 
reset and backtrack stacks requires saving the "virtual choice depth." 

User defined unification and complex indeterminates have not been 
implemented. 
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The unification algorithm is recursive, not using the Deutsch-Schorr-Waite 
algorithm (recursive unification is detected as described in section 
3.10, "Unification" on page 40). However, freeing memory does use the 
D-S-W algorithm. 

An optimizing compiler exists only for an earlier version of the abstract 
machine. Some re-writing is necessary for the present abstract machine. 

An un-optimizing compiler has been written. It generates xpPAM assembler. 
It has not yet been integrated (bootstrapped) with the interpreter. 
Consequently, predicates must be first run through the compiler, then 
processed by the interpreter. A fully integrated compiler will implement the 
compile on first use strategy described in the thesis: a predicate's text is 
compiled when the first attempt is made to execute it and the compiled code 
replaces the text. 

The compilers only produce abstract machine code; they do not compile 
directly to machine code (as in the chapter 2.0, "Fast append on a 
conventional machine" on page 15). It is not clear how translation to actual 
machine code should be done: by using abstract machine instructions as 
templates and then doing "peephole" optimizations to recognize special cases; 
or by compiling directly to machine code, using the abstract machine 
instructions as a guide to the algorithm. 

The compilers do not handle "?" notation nor proceed declarations; they 
must be added by hand to the generated assembler. 
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• The "closed predicate" notion has not been implemented, nor has negation 
transformation (section 10.1, "Negation" on page 207). 

• The parser contains code to properly handle Prolog style operators (albeit 
with slightly different rules than conventional Prolog - see 
Appendix B, "Details of xpProlog syntax" on page 285.). However, the 
compilers do not yet handle the if-then-else constructs. 

• The array and I/O predicates described in section 11.0, "Arrays and I/O 
done logically and efficiently" on page 222 have not been implemented. 

• The compilers do not handle explicit if-then-else. The optimizing compiler 
can detect if-then-else situations and generate appropriate code. The 
compilers also do not handle the special else predicate nor the suchthat 

notation. 

• Meta-variables have not been implemented. 

• Object paged virtual memory has not been implemented; the compacting 
scheme in section 3.15, "Virtual memory" on page 61 has been 
implemented. 

To test the speed of the final interpreter, a number of test programs have been 
written to test the speed of deterministic append (the inner loop of the naive 
reverse benchmark). These try the optimized abstract machine (with opcodes 
and operand types combined) and also directly generated machine code 
(effectively, removing the interpreter loop and directly executing the code for the 
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various abstract instructions). These have given results in the speed range 
which has been advertised for some of the better commercial implementations 
(about 20KLIPS on a 1 MIPS machine), without any attempts to optimize for 
the particular machine. In addition, the reference counting mechanism has been 
experimentally turned off, giving approximately 15% speed-up, as suggested by 
the Smalltalk papers (see section 7.12, "Reference counts and garbage 
collection" on page 153). 
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Appendix D . Built-in predicates 

Here is a list of the built-in predicates which have been implemented. The final 
list will be much larger. These built-ins can be considered as extensions to the 
basic xpPAM. The following gives definitions of the built-ins, plus their xpPAM 
code. 

Some of these built-ins are non-logical. They exist for compatibility with 
conventional Prolog, and also as building blocks for logical predicates. 

call(X) X must be instantiated to a term which can be interpreted as a goal. 
The c a l l ( X ) goal succeeds by attempting to satisfy X. X may be an 
atom, a functor or a list. 

c o d e ( c a l l , 1, [ ] , [ % c a l l ( X ) :- X. 
l C a l l ( O . f ) ] ) . 

X,Y The same as c a l l ( X ) , c a l l ( Y ) . 

c o d e ( V , 2, [ ] , [ % (X, Y) : - c a l l ( X ) , c a l l ( Y ) . 
l i n k , 
push(1.f) , 
c a l l ( O . f ) , 
pop(O), 
u n l i n k , 
l C a l l ( O . f ) ] ) . 

300 



X & Y The same as c a l l ( X ) , c a l l ( Y ) . The definition is identical to "," 
(above). 

X ; Y Can be defined by 

(X;Y) :- c a l l ( X ) . 
(X;Y) :- c a l l ( Y ) 

code('; f, 2, [ ] , [ % (X ; Y) :- X. (X ; Y) :- Y. 
p u s h B ( l . f ) , 
mkCh(cl2), 
l C a l l ( O . f ) , 

l a b e l ( c l 2 ) , 
popB(O), 
l C a l l ( O . f ) ] ) . 

/<goal> / This is an internal predicate which is used to handle top-level 
queries. It is used as template which is modified. 

The top level of the interpreter produces two structures: one with all 
the variable names replaced by uninstantiated variables and the 
other showing the bindings. For example: 
foo(A,B,A), bar(A). 

generates something like this (note that "," is the "and" predicate 
given above); the more and nornore built-ins are described later): 
(foo(_5,_7,_5), b a r ( _ 5 ) ) , '<more>*(['A1._5, 'B'._7]). 

This is compiled to: 
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/* constant 0: top l e v e l goal to c a l l : 
foo(A,B,A), bar(A). */ 

/* constant 1: l i s t of v a r i a b l e names ( f o r <more>): 
['A' i 5, * B\_7] */ 

mkChAt l , f i n Jo must have a choice p o i n t on 
eq nO, cO % get goal i n t o reg 0 
l i n k 
push f l Jo remember choice p o i n t 
c a l l fO Jo c a l l the goal 
pop n l Jo get choice p o i n t i n t o reg 1 
u n l i n k 
eq nO, c l Jo arg f o r <more> 
b u i l t i n II it 

more fr e e fO 
f r e e f l 
stop 

f i n : 
b u i l t i n "noMore" % always succeeds 
stop 

X = Y unifies X and Y. 

code((=), 2, [ ], [ Jo X = X. 
eq(0.f, l . f ) , 
r e t u r n ] ) . 

true always succeeds. 

code(true, 0, [ ] , [ % true, 
r e t u r n ] ) . 

fail always fails 

c o d e ( f a l l , 0, [ ] , [ % f a i l :- <fail>. 
f a i l ] ) . 
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X is Y Y must be instantiated to a structure that can be interpreted as an 
arithmetic expression. X is then unified with the result. All 
arithmetic is done double precision floating point (note that this 
gives perfectly accurate results for integers up to a few billion). I am 
investigating further enhancements to is. For example, we may add 
more constants (by adding to the associative memory) or allow 
calling user-defined predicates. Is delays if anything in the structure 
is uninstantiated. 

c o d e ( i s , 2, [ ] , [ % L e f t i s Right 
b u i l t i n ( 4 ) , % e v a l : r2 := e v a l ( r l ) 
f r e e ( l ) , 
e q ( 0 . f , 2 . f ) , 
r e t u r n ] ) . 

The "eval" built-in opcodes expects register 1 to contain a structure 
to be evaluated; the result is put into register 2 which must be empty 
(on failure, register 2 is left alone). If there is an uninstantiated 
variable to be evaluated, the built-in delays (this is slightly inefficient 
if the expression is complex; the method of defining is as given in 
section 6.5, "Equality: "is" and "="" on page 133 would be 
preferable). 

Here are some further examples of using the "eval" built-in opcode. 
They implement plus which works if any argument is uninstantiated 
(delaying if two or more are uninstantiated and doing addition or 
subtraction otherwise); and less-than: 
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code(plus, 3, % rO+rl = r2 
/*0*/ [ c o n s t ( [ ] ) , 
/*!*/ c o n s t ( ' + l ) , 
/*2*/ c o n s t ( ' - ' ) ] , 

[eq(3.n,2.f), % move r2 i n t o r 3 , 
l a b e l ( r e s t a r t ) , % f r e e i n g r2 

varGoto(0, varO), 
v a r G o t o ( l , v a r l ) , 

% from here, only r3 i s p o s s i b l y u n i n s t a n t i a t e d 
e q l s t ( 4 . n , l . f , O.c), % r4 = r l . [] 
e q l s t ( 5 . n , O.f, 4 . f ) , % r5 = rO . r4 

% = rO . r l . [] 
e q l s t ( l . n s , l . c , 5 . f ) , % r l = '+' . r5 

% = ,+'(r0, r l ) 
b u i l t i n ( 4 ) , % e v a l : r2 := e v a l ( r l ) 
f r e e ( l ) , 
eq(2.f, 3 . f ) , 
r e t u r n , 

l a b e l ( v a r O ) , 
v a r G o t o ( l , d e l a y ) , 
varGoto(3, d e l a y ) , 

% from here, only rO i s p o s s i b l y u n i n s t a n t i a t e d 
e q l s t ( 4 . n , l . f , O.c), % r4 = r l . [] 

l a b e l ( v l ) , 
e q l s t ( 5 . n , 3.f, 4 . f ) , % r5 = r3 . r4 

% = r3 . r l . [] 
e q l s t ( l . n s , 2.c, 5 . f ) , % r l = '-' . r5 

% = ' - ' ( r 3 , r l ) 
b u i l t i n ( 4 ) , % e v a l : r2 := e v a l ( r l ) 
f r e e ( l ) , 
eq(2.f, O.f), 
r e t u r n , 

l a b e l ( v a r l ) , 
varGoto(3, d e l a y ) , 

% from here, only r l i s p o s s i b l y u n i n s t a n t i a t e d 
e q l s t ( 4 . n , O.f, O.c), % r4 = rO . [] 
eq(0.n, l . f ) , 
g o t o ( v l ) , 
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l a b e l ( d e l a y ) , 
nonvarGoto(0, delayO), 
delay(0, r e s t a r t ) , 

l a b e l ( d e l a y O ) , 
nonvarGoto(1,delayl) , 
d e l a y ( 1 , r e s t a r t ) , 

l a b e l ( d e l a y l ) , 
nonvarGoto(3, delay3), 
delay(3, r e s t a r t ) , 

l a b e l ( d e l a y 3 ) , 
b u i l t i n ( 3 ) ] ) . % error/3 

% (shouldn't happen) 

code((<), 2, % A < B :- 1 i s (A < B) 
[ c o n s t ( [ ] ) , c o n s t ( l ) , const(<)], 
[ e q l s t ( 3 . n , l . f , O.c), % r3 = B . [] 
e q l s t ( 2 . n , O.f, 3 . f ) , % r2 = A . r3 

% = A . B . [ ] 
e q l s t ( l . n s , 2.c, 2 . f ) , % r l = '<' . r2 

% = '<'(A,B) 
b u i l t i n ( 4 ) , % e v a l : r2 := e v a l ( r l ) 
f r e e ( l ) , 
eq(2.f, l . c ) , % r2 = 1 ? 
r e t u r n ] ) . 

X \ = Y Succeeds if X and Y cannot be unified. It delays if either argument 
is insufficiently instantiated. 

code((\=), 2, [ ] , [ % noteq: rO \= r l 
b u i l t i n ( 5 ) , % noteq 
free(O), f r e e ( l ) , 
r e t u r n ] ) . 

This is an old form which should be replaced by: 
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code((\=), 2, [ ] , [ 
t e s t s k i p ( 0 . f , l . f ) , % delays i f necessary 
f a i l % success becomes f a i l u r e 
r e t u r n ] ) . % f a i l u r e becomes success 

Note that not equal must be inside a predicate. The testskip (or 
builtin(5)) will cause its enclosing predicate to delay, which gives the 
appearance of replacing the opcode by a return. Thus, if the not 

equal were in-line, it would cause execution to not consider any of 
the following goals until the not equal had been resumed. 

name(A,L) The characters for the atom A are the list L. For example, 
name(ab, [a,b]) or name(ab,"ab"). Note that this is different from 
C-Prolog which puts the ASCII codes into the list but xpProlog puts 
the individual characters in. 

code(name, 2, [ ] , [ % name(String, L i s t ) 
varGoto(0, varO), 
b u i l t i n ( 6 ) , % r2 := s t r T o L i s t ( r l ) 
free(O), 
e q ( l . f , 2 . f ) , 
r e t u r n , 

l a b e l ( v a r O ) , 
v a r G o t o ( l , v a r O l ) , 
b u i l t i n ( 7 ) , % r2 := l i s t T o S t r ( r O ) 
f r e e ( l ) , ^ 
eq ( 0 . f , 2 . f ) , 
r e t u r n , 

l a b e l ( v a r O l ) , 
delayOr(0,0), 
d e l a y ( l . O ) ] ) . 
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The built-in opcode "strToList" turns a string into a list. It expects 
a string in register 0 and assigns the list expansion of the string to 
register 2. 

The built-in opcode "HstToStr" turns a list into a string. It expects a 
list in register 1 and assigns the string value to register 2. 

include F switches input to be the file F. This will probably change to the 
C-Prolog "consult." 

audit audits the memory to look for wrong reference counts, etc. (This is 
not a true predicate right now.) 

code(N,NP,C,M) defines the name N with NP parameters by the code defined 
by the constant list C and the machine code list M. The format is 
given in an appendix. The old definition, if any, is replaced. Note 
that the code segment constants always have one level of indirection 
so that replacing a predicate automatically changes it everywhere it 
is used. If a predicate is used which hasn't yet been defined, the 
predicate is automatically defined to produce a warning message 
("Undefined predicate") and then fail. A "query the user" facility 
can be added by simply replacing the default "undefined" predicate. 

code(code, 4, [ ] , [ % code(Name, A r i t y , C o n s t L i s t , 
% MachCodeList) 

b u i l t i n ( 8 ) , % code(rO,rl,r2,r3) 
f r e e ( P ) , f r e e ( l ) , f r e e ( 2 ) , f r e e ( 3 ) , 
r e t u r n ] ) . 
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delcode(N,NP) removes the definition of the name N with NP parameters. 
Again, because code segments are always handled with one level of 
indirection, this removes the definition everywhere (it is actually 
replaced by the "Undefined predicate" warning). 

code(delcode, 2 , [ ] , [ % delcode(Name, A r i t y ) 
b u l l t i n ( 9 ) , % d e l c o d e ( r O , r l ) 
free(O), f r e e ( l ) , 
r e t u r n ] ) . 

dbgFlag(X) turns off debugging flag " X " ("-dx" in the command line can set 
this on initially). "dbgFlag(' ')" turns on the general debug flag. 
About the only other useful thing is dbgFlag(t) and sometimes 
dbgFlag(i) to do tracing. 

code(dbgFlag, 1, [ ] , [ % dbgFlag(Char) 
b u i l t i n ( l O ) , % dbgFlag(rO) 
free(O), 
r e t u r n ] ) . 

nodbgFlag(X) turns on debugging flag "X." 

code(nodbgFlag, 1, [ ] , [ % nodbgFlag(Char) 
b u i l t l n ( l l ) , 1 nodbgFlag(rO) 
free(O), 
r e t u r n ] ) . 

op(P,A,0) defines operator O with priority P and associativity A (see section 
B.2, "Lexical and syntactic details" on page 286 for parsing and the 
standard operators). 
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code(op, 3, [ ] , [ % op(Prio,Assoc,Name) 
b u i l t i n ( 1 2 ) , % o p ( r 0 , r l , r 2 ) 
free(O), f r e e ( l ) , f r e e ( 2 ) , 
r e t u r n ] ) . 

tableAssign(T,I,V) assigns value V to the associative table T at index I. V can be 
anything at all (it should be instantiated or else strange things will 
happen); T and I must be strings (atoms). 

code(tableAssign, 3, [ ] , [ % assign(Table,Item,Val) 
b u i l t i n ( 1 3 ) , % a s s i g n ( r O , r l , r 2 ) 
free(O), f r e e ( l ) , f r e e ( 2 ) , 
r e t u r n ] ) . 

tableFind(T,I,V) finds value V in the associative table T at index I. T and I must 
be strings (atoms). 

code(tableFind, 3, [ ] , [ % tableFind(Table,Item,Val) 
b u i l t i n ( 1 4 ) , % e v a l : r3 := f i n d ( r O , r l ) 
free(O), f r e e ( l ) , 
e q ( 2 . f , 3 . f ) , 
r e t u r n ] ) . 

tableDelete(T,I) deletes the associative table T at index I. T and 1 must be 
strings (atoms). 

code(tableDelete, 3, [ ] , [ % tableDelete(Table,Item) 
b u i l t i n ( 1 5 ) , % d e l e t e ( r O , r l ) 
free(O), f r e e ( l ) , 
r e t u r n ] ) . 

Incidentally, a backtracking version of tableAssign would be: 
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tableAssignB(T,I,V) :-
i f e x i s t s VOld suchthat tableFind(T,I,V01d) then 

( t a b l e A s s i g n ( T , I , V ) ; tableAssign(T,I,VOld)) 
e l s e 

( t a b l e A s s i g n ( T , I , V ) ; t a b l e D e l e t e ( T , I ) ) 
endif. 

The semi-colon (";") is an or. The first time in, the 
t a b l e A s s i g n ( T , l , V ) is executed. On backtracking, the 
tableAssign(T,I,Void) or t a b l e D e l e t e ( T , I ) is executed to undo the 
affect of the original tableAssign. 

put(Item) output one item on the output "stream." No quote marks are added 
( d i s p l a y adds quote marks). 

code(put, 1, [ ] , [ % put(Item) 
b u i l t i n ( 1 6 ) , % put(rO) 
free(O), 
r e t u r n ] ) . 

nl output a new line. 

code(nl, 0, [ c o n s t ( ' \ n ' ) , c a l l ( p u t , 1 ) ] , [ % n l ( ) 
eq(0.n,0.c), 
l C a l l ( l . c ) ] ) . % put('\n') 

display(Item) display an item, in such a way that it can be read back in (that is, 
with quote marks added as necessary). 

code(display, 1, [ ] , [ % display(Item) 
b u i l t i n ( 1 7 ) , % d i s p l a y ( r O ) 
free(O), 
r e t u r n ] ) . 
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D . l Built-in opcodes. 

A built-in opcode is not normally used directly; rather it is embedded inside a 
"shell" predicate which sets up the registers for it. After each built-in is given 
the shell predicate (often with the same name) which set it up. 

The built-in opcode is used to extend the instruction set of the basic inference 
machine. A built-in may succeed, fail or delay, not necessarily in the same way 
as its "shell" predicate. 

Most of the built-in opcodes have been given above. 

Undef: an undefined predicate gets set to the following code: 

b u i l t - i n "under" 
f a i l % always does t h i s 

The undef builtm uses information from the current code segment to 
display information about the predicate. The built-in always 
succeeds and frees all the registers that were set up for the call 
(again, by using information from the current code segment). The 
instruction following the built-in is a fail, so the predicate fails (the 
built-in was made to succeed so that it could also be used for a 
query-the-user facility). 

More is used with '<goal>' to prompt the user for more solutions. More 

expects register 0 to contain a list of variables (in the form 
[namel.valuel,name2.value2 , ...]) and register 1 to contain the 
original choice point. More displays the values. 
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• If the list of variables is empty, it succeeds. 
• If the backtrack stack is empty (no other solutions possible), it 

succeeds. 
• If input is from the terminal, it waits for the user to type in either 

a semi-colon (";") or just < return > . In the former case, -
'<more>' fails to cause backtracking; in the latter case, it succeeds 
so that no more solutions are produced. The initial choice point 
must have been created by '<goal>' so that a final backtrack has 
somewhere to go to. 

• If input is from an included file, it either succeeds of fails 
depending on the value of a user-settable flag — if the flag is on, 
backtracking will generate all possible answers. 

NoMore takes no registers. It displays "No (more) solutions." and succeeds. 
It should always be followed by a stop instruction. 

Error uses information from the current code segment to display 
information about the predicate. This built-in is used directly in user 
code; typically for a case from a swXVNL instruction for an invalid 
argument. This built-in always fails. 
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The end 

This page intentionally left blank, to indicate the end of the thesis. 
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