
A M e t h o d o l o g y f o r D a t a b a s e M a n a g e m e n t o f

T i m e - V a r i a n t E n c o d i n g s a n d / o r M i s s i n g I n f o r m a t i o n

by

William John Threlfall

B.Sc, The University of British Columbia, 1981

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Science
in

T H E FACULTY OF GRADUATE STUDIES

Department of Computer Science

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

March 1988

© William John Threlfall, 1988

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the

University of British Columbia, I agree that the Library shall make it freely available for refer­

ence and study. I further agree that permission for extensive copying of this thesis for scholarly

purposes may be granted by the head of my department or by his or her representatives. It

is understood that copying or publication of this thesis for financial gain shall not be allowed

without my written permission.

Department of Computer Science

The University of British Columbia
1956 Main Mall
Vancouver, B.C., Canada
V6T 1Y3

Date: A d z C Z.O /1 % 3

Abstract

A Methodology for Database Management of

Time-Variant Encodings a n d / o r Miss ing Information

The problem presented is how to handle encoded data for which the encodings or decodings

change with respect to time, and which contains codes indicating that certain data is unknown,

invalid, or not applicable with respect to certain entities during certain time periods.

It is desirable to build a database management system that is capable of knowing about and

being able to handle the changes in encodings and the missing information codes by embedding

such knowledge in the data definition structure, in order to remove the necessity of having

applications programmers and users constantly worrying about how the data is encoded.

The experimental database management language DEFINE is utilized to achieve the desired

result, and a database structure is created for a real-life example of data which contains many

examples of time-variant encodings and missing information.

ii

Contents

Abstract ii

Acknowledgements ix

1 Introduction 1

1.1 "Problem" Data 1

1.2 An Unsatisfactory "Solution" 3

1.3 The DBMS Connection 3

1.4 Organization 4

2 Description of Problem 5

2.1 Encoding 5

2.2 Changing of Encoding Schemes 6

2.3 Missing Information 7

2.4 Justification for DEFINE 10

3 The Example Database DVS-Ext 12

3.1 General Description 12

3.2 The Year of Death Field 13

iii

3.3 The Gender Field 13

3.4 The Age Unit and Age Code Fields 14

3.5 The Place of Birth Field 15

3.6 The Marital Status Field 16

3.7 The Residence — Census Division Field 16

3.8 The Residence — Regional District Field 18

3.9 The Residence — Municipality Field 20

3.10 The Residence — Census Tract Field 21

3.11 The Residence — School District Field 21

3.12 The Occupation — Job Field 23

3.13 The Occupation — Industry Field 24

3.14 The Cause of Death — Primary Field 25

3.15 The Cause of Death — Secondary Field 27

3.16 The Ethnic or Racial Origin Field 27

3.17 The Native Indian Status Field 27

3.18 The Year of Birth Field 28

4 Solution of Problem using D E F I N E 29

4.1 Brief Description of D E F I N E 29

4.2 Elementary Syntax and Semantics of D E F I N E 30

4.3 The D E F I N E Data Definition of DVS-Ext 31

4.4 Structural Declarations 34

4.5 Simple Subsets 36

4.6 Handling Missing Information with D E F I N E 37

iv

4.7 Examples of D E F I N E Set Declarations for D V S - E x t 40

4.8 Further Considerations 46

5 C o n c l u s i o n s 48

5.1 Accomplishments 48

5.2 Remaining Work 50

5.3 F ina l Comments 52

B i b l i o g r a p h y 53

A N e w S y n t a x o f D E F I N E 57

B E n c o d i n g S c h e m a f o r t h e V O R I G I N Set 58

C E n c o d i n g S c h e m a f o r t h e V M U N I C B ? Set 60

D G r o u p i n g s o f O c c u p a t i o n C o d e s 62

E G r o u p i n g s o f C a u s e o f D e a t h C o d e s 70

v

List of Tables

3.1 Data Format of DVS-Ext 13

3.2 Time-Variant Encoding Scheme of Gender 14

3.3 Time-Variant Encoding Scheme of Age 14

3.4 Correspondence of Pre-1957 and Post-1956 Census Subdivisions 16

3.5 Regional Districts and their correspondence with School Districts 20

3.6 Encoding of the Residence — School District Field 23

3.7 Historical Reconciliation of School Districts in B.C 24

3.8 Assignment of School District from other information 25

3.9 Time-Variant Encoding Schema of Native Indian Status 28

4.1 Declared Set Table for DVS-Ext 33

vi

L i s t o f F i g u r e s

3.1 Census Divisions — 1957 - 1971 17

3.2 Regional Districts — 1972 - 1984 19

3.3 School Districts — 1979 - 1984 22

4.1 General form of a DEFINE declaration 30

4.2 The primitive entity set DECEASED 35

4.3 An example of a value set declaration 35

4.4 A typical declaration of an attribute association 35

4.5 A subset of DECEASED from a year range 36

4.6 The logical set of all female decedents 36

4.7 A simple UNK set 38

4.8 A logical subset of long-lived decedents 40

4.9 A logical subset of short-lived decedents 41

4.10 An example of how to define ethnic groups 41

4.11 A "retroactive" Regional District subset 42

4.12 An inferred "retroactive" School District subset 43

4.13 Creating validity from missing information 44

4.14 A complicated Cause of Death group 45

vii

.15 Creating a logical set from two attributes.

viii

Acknowledgements

Most of all, I would like to express extreme gratitude to my supervisor, Professor Paul C.

Gilmore for his support and for his extraordinary patience in dealing with a married part-time

student with a full-time job, a newly-purchased older house and two small children.

Next I would like to profusely thank Dr. Pierre Band, head of the Division of Epidemiology,

Biometry, and Occupational Oncology of the Cancer Control Agency of B.C., for his support

and understanding, without which the completion of my degree would have been impossible.

I also thank Mr. Richard Gallagher, head of the Epidemiology Section of our Division, for

providing the opportunity, and Mr. Harvey Hersom, Director of the Division of Vital Statistics

of the B.C. Ministry of Health, for providing the data and partial descriptions of the encoding

schemes and changes to such over the years.

Lastly, I thank my wife Laurie for her support and understanding, and for putting up with

many lonely days and nights while I was working on this thesis.

ix

Chapter 1

Introduction

Most recent research into database management has been focussed on entities, sets, relation­

ships, associations (the entity-relationship model), or joins, tables, anomalies and relations (the

relational model). There has been much work on model design and describing the overall struc­

ture of databases, continuing up to meta-level languages and kernels of database management.

There has also been work on low-level concerns such as hashing, efficient data structures, and

algorithms to perform various tasks.

Very little emphasis has been placed on the actual bytes of information (the data) that are

stored inside the memory of the computer. The reason is presumably because the actual data is

usually a trivial detail of application, to be input perfectly into the final computerized database

management system (DBMS).

This thesis will explore some methods for handling "problem" data, where the data pre­

exists before applying a database management structure for ease of manipulation.

1.1 "Problem" Data

The "problem" data presented consists of the following three cases:

1. A time-variant encoding is when a given field in the database contains two or more

different encoded data values at different points in time, but the meaning intended by the

1

CHAPTER 1. INTRODUCTION 2

different data values (their semantic content) is identical.

2. A time-variant decoding is when a given single encoded data value in a given field in the

database changes its semantic content at one or more points in time.

3. Missing information is when some encoded data values in a field of the database represent

the fact that certain information is unknown, not applicable, or invalid (inconsistent with

other information, or outside the domain of the attribute) with regard to certain entities

during certain time periods.

Time-variant encodings or decodings usually arise because of some bureaucratic change or

administrative reorganization. The changes are usually necessary and beyond the control of

data management personnel.

Missing information of the type value at present unknown is a result of imperfect and

incomplete knowledge of the real world, and is only partially controllable by a database ad­

ministrator. Sometimes, despite the best efforts of data collection personnel, it is simply not

possible to obtain all the information that one would like to know.

A database administrator is usually aware of attributes that might result in missing infor­

mation of the type attribute does not apply to entity, but it is not always possible to avoid their

occurrence, so it is desirable to develop methods of handling the data values representing this

type of missing information.

Missing information of the type value is inconsistent or invalid is the most controllable

type of problem data. With all-encompassing error-checking data entry software, this type of

missing information could be prevented from entering the database. However, such software

has not been popular because the time necessary to perform all the cross-checks slows down

the speed of data entry to unacceptable levels. Rudimentary type, format or domain checks are

sometimes used, but invalid or inconsistent data can still be accidentally entered.

Examples of all the various types of problem data will be drawn from an example database

that really exists, a detailed description of which is given in Chapter 3. The example database

CHAPTER 1. INTRODUCTION 3

is called DVS-Ext.

1.2 An Unsatisfactory "Solution"

One might assume that the problem of having two different data values in the same field which

contain the same information when decoded, and the reverse problem of having a single data

value in a field with two different time-dependent meanings, can be solved by receding the entire

data set so that there is a one-to-one correspondence between data values in a particular field

and the meanings of the decoded data values from that field. However, a detailed explanation in

Chapter 3 of an example taken from DVS-Ext will show that such a recoding is not appropriate

for DVS-Ext, and therefore would not be universally acceptable. Also, since DVS-Ext is a

subset of data acquired from another source, recoding the data would make it incompatible

and not comparable with the original full data set.

1.3 The D B M S Connection

The problems involved in responding to database queries, especially queries which ask for

negative information such as "display all persons who have never been married", have not

yet been adequately solved when missing information is involved. Database operations (such

as relational joins) and computed functions (such as averages) have not as yet been able to

adequately handle missing information. Also, the author is not aware of any proposals for

database management of time-variant encodings/decodings.

It seems reasonable to attempt to solve the problems inherent in time-variant encodings

and missing information using DBMS techniques. The goal is to have well-defined, detailed

instructions on how to use the problem data built into the DBMS, so that neither the end

users nor the applications programmers need to constantly refer to complicated interpretation

specifications.

This thesis will show that when the changes over time and the mechanics of how missing

CHAPTER 1. INTRODUCTION 4

information is recorded are well-defined, database manipulation of problem data can occur with

few problems and complications for both users and applications programmers.

1.4 Organization

The remainder of this thesis is organized as follows. Chapter 2 contains more detail on the

reasons for encoding data, and the problems of time-variant encodings/decodings and missing

information, as well as a review and discussion of relevant literature and a justification for the

use of the language DEFINE to solve the problem presented. Chapter 3 contains a detailed

description of the attributes (fields) of the example database DVS-Ext, including full explana­

tion of all time-variant encodings/decodings, missing information, and other quirks that require

special processing. Chapter 4 contains a brief syntactical and semantical explanation of the

language DEFINE, and then proceeds to explain, for each field (attribute) of DVS-Ext, how

to handle the various quirks of the data recorded in that field. Chapter 5 contains a discus­

sion of what has or has not been accomplished in this thesis, what future work remains, and

some conclusions derived from the experience of trying to deal with incredibly quirky data in

a consistent, meaningful way using DBMS techniques.

This thesis is deliberately non-mathematical in nature. It is intended as an exploration

of practical issues involved in database management of problem data rather than a detailed

theoretical thesis on mathematical formalisms. Refer to Chapter 2 for more explanation.

Chapter 2

D e s c r i p t i o n o f P r o b l e m

2 . 1 Encoding

Most of the data stored for medical information or research purposes is encoded, meaning that

a few numeric digits or a short character string are recorded in the database. The encoded data

then has a meaning (its semantic content) when one refers to the appropriate source, which is

usually a printed reference manual or book.

The meanings of the encoded data could be stored in the computer, but that would defeat

one of the major reasons for encoding, which is to use less storage space inside the computer.

Another reason for encoding is to standardize the data. If all data were recorded using char­

acter strings containing all relevant information, the problem would exist of different human

beings recording the same information using quite different wordings. Encoding forces the data

into a fixed format with a fixed decoding schema for relatively easy storage and retrieval of

information.

For example, the fact that a person is female may by recorded in a certain field in the

database, encoded as the letter F or as the digit 2.

The database administrators would keep records showing how the fields are encoded, and

which fields contain which information. Despite careful management, problems which affect

the possible use of a DBMS to manipulate the data can easily occur in a database for which

5

CHAPTER 2. DESCRIPTION OF PROBLEM 6

information is gathered over a long period of time.

2.2 Changing of Encoding Schemes

A reasonable question to ask is why the database administrators would suddenly change the

encoding scheme for a certain piece of information. One explanation is given for the example

database DVS-Ext in Section 4.3, where the changes are external, caused by other persons and

factors over which the database administrators have no control.

There are other examples of changes which were totally under the control of DVS, and asking

why those changes were made is a very good question. The answer is only speculation, but over

many years and several changes in government, various political pressures, bureaucratic rules,

and personal preferences can cause changes in encoding schemes. Perhaps someone simply

decided that the previous encoding scheme was "poorly designed", so they created a new

encoding scheme that "made more sense".

For example, a data manager may decide to encode the gender of persons using the digit 1

for males and the digit 2 for females. A few years later, a new data manager may be offended

that males appear to have a "higher priority" than females, and may decide to change the

encoding to the letter M for males and the letter F for females. This is an example of an actual

change that occurred in the example database DVS-Ext, and a conjectured reasoning for the

change.

Despite an intensive literature search, the author has been unable to locate any references

relating to database management of time-variant encodings/decodings. It is possible that the

concepts involved can be forced into the framework of so-called historical [Clifford 83] or tem­

poral [Ariav 86] databases, but the notion of time-variance presented in this thesis is quite

different in nature to the notion of time-variance in historical or temporal databases. Historical

and temporal databases attempt to model the changes in reality over time, in order to "keep

track" of attribute values that were recorded in the past and changed by updates, deletes, and

insertions. For example, a temporal model would store the changes over time to an attribute

CHAPTER 2. DESCRIPTION OF PROBLEM 7

such as the salary of an employee. The type of database that this thesis is concerned with is a

static database, where only the current value of each attribute is of interest. In fact, the exam­

ple database DVS-Ext is such that the data does not change (except for possible corrections of

errors) after it is entered.

There is another area of research which is referred to as either database translation or

database conversion. See [Fry 78] for an overview. Database translation (conversion) is con­

cerned with translating (converting) one database to another, or changing the logical or physical

structure of the database. Translation of individual encoded data values is included, but with

a different perspective than that presented in this thesis. The translation of data values is con­

cerned with one-to-one mappings from one structure or format to another, not many-to-many

mappings within one attribute domain of one database.

2.3 Missing Information

Aside from encoding changes, another major source of problems is missing information. Missing

information can be one of three possibilities; either "unknown" (Type 1), "not applicable" (Type

2), or "invalid" (Type 3). An encoded data value whose semantic content is "value at present

unknown" refers to the fact that some data value in the domain of the attribute must exist

for a particular entity in a particular field, but that value is currently unknown. An encoded

data value whose semantic content is "attribute does not apply to entity" refers to the fact that

recording a value from the domain of the attribute in a particular field for a particular entity

would not make sense. An encoded data value whose semantic content is "value inconsistent

or invalid" refers to the fact that the code recorded is impossible in real life, or does not exist

according to the encoding manual (is outside the domain of that attribute).

For example, every resident of British Columbia resides in one of the 75 administrative

divisions of the province known as "School Districts". If it is known that a person does reside

in the province of B.C., but not exactly which school district that person resides in, the value

"unknown" must be recorded in the School District field in the database. For a person who does

CHAPTER 2. DESCRIPTION OF PROBLEM 8

not reside in the province of British Columbia, the value "not applicable" would be recorded in

the School District field in the database, since none of the 75 possible values make sense when

applied to a non-resident of B.C. The coding schema for School Districts does not specify the

value 95 as having any meaning, so any person recorded as residing in School District 95 would

have an "invalid" School District code.

This particular example also serves to illustrate another aspect of missing information. The

School District field of the database as described herein contains "hidden" information as to

whether or not a person is a resident of B.C. If such knowledge is not available, then another,

different "unknown" value is needed to convey the information that it is unknown whether or

not the person is a B.C. resident.

Several authors have presented theoretical research attempting to deal with missing infor­

mation in databases. Most research has been restricted to the relational model [Codd 70] and

Type 1 ("value at present unknown") missing information.

Codd introduced a three-valued logic (true, false, unknown) for his relational model (for

Type 1 missing information) in [Codd 75] and follows up on some of the mechanics of database

operations (joins, etc.) using the three-valued logic in [Codd 79]. Codd's approach is the

simplest of the methods proposed for dealing with Type 1 missing information in the relational

model, and could probably be implemented without too many adverse consequences.

In addition, Codd's work has been modified and expanded by several authors. Grant pointed

out a case where Codd's original proposal would give an incorrect result to a query [Grant 77],

and also gave a brief but sensible suggestion for handling Type 2 missing information within

Codd's framework. In [Lien 79] rules are given for handling database operations and multivalued

dependencies involving Type 1 missing information, also for the relational model. The work

started in [Codd 79] was substantially expanded upon in [Biskup 83], in which nine questions

left unanswered by Codd are answered by Biskup.

The main problem with the approach started by Codd and expanded by Biskup are (aside

from being restricted to Type 1 missing information and the relational model) that so-called

CHAPTER 2. DESCRIPTION OF PROBLEM 9

"maybe-results" are introduced into the database. Maybe-results are tuples of a relation (at­

tributes of entities) for which the answer to a query is "possibly satisfies", in the sense that,

because of missing information, one cannot rule out the possibility that the entity described

by the maybe-result tuple satisfies the query. Consider a query as defining a subset of entities.

When using the approach of Codd/Biskup, two subsets could result from any given query, one

subset of entities that definitely satisfy the query (the "true-result"), and another subset of

entities that possibly satisfy the query (the "maybe-result"). The maybe-results clutter up the

database unnecessarily, and then need to be dealt with in further queries or other processing.

The more general problem of partial information has been tackled by Lipski in [Lipski 79]

and [Lipski 81]. The problem of Type 1 missing information is a subset of the problem of partial

information. Rather than having a single encoded value whose semantic content is "value at

present unknown", partial information substitutes a set (or range) of possible values that a

particular attribute could take on. To take an example from DVS-Ext, a person may be known

to have died at "over age 100", but the exact age at death is unknown. Thus the single Type

1 null value corresponds to the set of possible values being the entire domain of the attribute,

when nothing is known that could restrict the set of possible values of which the value of the

attribute could be a member.

Lipski's work is very elegant and attractive from a formal, theoretical point of view, but

as pointed out in [Biskup 83], the complexity of processing required is too high for practical

implementation. Lipski's "inner limit" corresponds to Codd's "true-result", and Lipski's "outer

limit" corresponds to the union of Codd's "true-result" and "maybe-result", so there is some

degree of overlap between Lipski's formalisms and Codd's work. In [Grant 79] an indication

is given of how partial information might be handled within Codd's framework. Partial in­

formation is dealt with in some degree in this thesis, since aggregation of ranges of values of

the age at death attribute is used to create a subset of persons whose age at death is specified

only as "over age 100". However, this thesis is concerned with the case where the value of an

attribute could be any value from the domain (rather than belonging to a specific subset of the

domain), so nothing further will be said about the general problem of partial information until

CHAPTER 2. DESCRIPTION OF PROBLEM 10

the concluding remarks in Chapter 5.

Another approach is outlined in [Vassiliou 79], and followed up in [Vassiliou 80], which is

similar to that taken by Codd and Biskup. Vassiliou's treatment uses denotational semantics,

and handles Type 2 as well as Type 1 missing information, but also introduces maybe-results

into the database. The idea is to treat the possible domain values as a partially ordered lattice,

where the result of a query (subset of attributes for a subset of entities) contains either not

enough information (Type 1 null), all the information (no nulls), or too much information (Type

2 null). The approach is interesting, but like Lipski's work has too high a complexity to be

practically implemented.

Wong introduced statistics to database management of missing information in [Wong 80],

and some of his results are tied to Lipski's. Wong's approach involves too much overhead with

a priori knowledge, and not only includes maybe-results, but also probabilistic results in which

every answer to a query may be accompanied by a probability of being correct. This would

add too much uncertainty to database management and query processing.

It seems more practical to stick to a stricter interpretation of null values by default, while

allowing the user or applications programmer to directly manipulate the null values if he or

she wishes. By default, a strict closed world assumption [Reiter 78] would be in effect, and the

so-called "maybe-results" would be ignored completely, since one is usually interested in the

true-results. Therefore, the approach taken herein is to declare the database structure in such a

way as to exclude missing information from any and all query results by default, while allowing

specific reference to the encoded values representing the three types of missing information if

required.

2.4 Justification for D E F I N E

There are many different models for database management in the literature. The most widely

known models are ones for which commercial applications have been developed. These include

the hierarchical model [McGee 77], network model [CODASYL 71], and, of course, Codd's

CHAPTER 2. DESCRIPTION OF PROBLEM 11

relational model [Codd 70]. Quite a few models were proposed in the early 1980's, including

an object-oriented model [Baroody 81], functional model [Shipman 81], and "semantic data"

model [Hammer 81]. More recent developments have incorporated the concept of abstract data

types into the relational model [Osborn 86], or used first-order logic [Rybinski 87] or logical

deduction [Spyratos 87] as the formal basis for database processing.

The trend in the literature seems to be a move from models concerned with easy implemen­

tation and well-defined data structures towards models concerned with flexibility of design and

manipulation of abstract data types. Traditional mathematical formalisms such as first-order

logic, logical deduction, and set theory seem to be the formal basis for the new wave of database

models.

The reason for mentioning the above models and formalisms is that the database dec­

laration/manipulation language DEFINE [Gilmore 87b] incorporates first-order logic and set

theory, and has its original formal basis in natural deductive logic [Gilmore 86]. Formal mathe­

matics and proofs are presented in detail in the two references and so will not be duplicated in

this thesis. DEFINE is extremely powerful and flexible, in that the specification of the database

structure can mimic all of the models mentioned above. In fact, the example database DVS-Ext

is declared in DEFINE as a relational database for simplicity and because such a design makes

sense given the logical structure of DVS-Ext. See Chapter 4 for a brief description of the syntax

and semantics of DEFINE.

Chapter 3

T h e E x a m p l e D a t a b a s e D V S - E x t

3.1 General Description

The example database used in this thesis consists of subset of fields extracted from a data set

collected, coded, and kept by the Division of Vital Statistics of the Ministry of Health of the

Province of British Columbia (DVS). Nosologists employed by DVS encode the information

contained on B.C. Death Certificates, and the encoded data is kept on tape for administrative

and research purposes.

The DVS data contains all the information recorded on Death Registrations for all persons

dying in the Province of British Columbia, beginning in 1950. The author is currently in

possession of the extracted data for each year up to and including 1984. The example database

is referred to as "DVS-Ext", an abbreviation of "Division of Vital Statistics - Extracted Death

Information". Table 3.1 shows the format of each of the data fields of DVS-Ext.

Descriptions of the encoding schemes used for the various fields, as well as the changes in

the encoding of the information over the years are detailed in the following sections.

12

CHAPTER 3. THE EXAMPLE DATABASE DVS-EXT 13

INFORMATION FORMAT COMMENTS
Year of Death STRING(2)
Gender STRING(l)
Age Unit and Age Code STRING (3)
Place of Birth STRING (2)
Marital Status STRING(l)
Residence - Census Division STRING (3) N/A after 1971
Residence - Regional District STRING(3) N / A before 1972
Residence - Municipality STRING (3)
Residence - Census Tract STRING (2)
Residence - School District STRING (3)
Occupation - Job STRING (3)
Occupation - Industry STRING (3)
Cause of Death - Primary STRING (4)
Cause of Death - Secondary STRING (4)
Ethnic or Racial Origin STRING (2) N / A after 1973
Native Indian Status STRING(l) N /A before 1974
Year of Birth STRING (2)
Name of Deceased STRING (25)

Table 3.1: Data Format of DVS-Ext

3 . 2 T h e Year of Death F i e l d

The year of death field is simply the last two digits of the actual calendar year in which a person

died. The year of death field determines which encoding schema should be used to interpret

the other fields of the death record for a particular deceased person, and is utilized in DEFINE

to refer to machine-determined logical subsets of DVS-Ext for that purpose. It should be noted

that if a data set does not include a field containing values via which it is possible to determine

which encoding schema is used for other fields, then building a DBMS capable of handling

time-variant encoding schemas would be much more difficult.

3 . 3 T h e Gender F i e l d

Table 3.2 shows the encoding schema used to record the gender (sex) of decedents over the

years.

According to DVS records, the nosologists were instructed to stop encoding females using

CHAPTER 3. THE EXAMPLE DATABASE DVS-EXT 14

1950 - 1958 1959 - 1960 1961 - 1976 1977 - 1984
1 = male
K = female

0 = unknown

1 = male
K = female
2 = female
0 = unknown

1 = male
2 = female

0 = unknown

M = male
F = female

Table 3.2: Time-Variant Encoding Scheme of Gender

the letter K as of January 1, 1960. However, it appears that in reality, some of the nosologists

started encoding females using the digit 2 before January 1, 1960, and other nosologists kept

encoding females using the letter K after January 1,1960. Thus there are two different encodings

for females during the registration years 1959 and 1960. Apparently, there are no death records

with unknown gender after 1964. The precise reason is unknown, but is presumably due to

improved forensic techniques and better investigation of deaths.

3.4 The Age Unit and Age Code Fields

The first character (age unit) indicates the units of the last 2 digits (age code). The meaning

of the age unit and implied meanings for age code are as indicated below in Table 3.3.

Character 1950 - 1964 1965 - 1976 1977 - 1984
0 invalid code invalid code years
1 age not stated years years over 100
2 years months months
3 months invalid code invalid code
4 weeks days days
5 days hours hours
6 hours minutes minutes
7 minutes invalid code invalid code
- invalid character over 99 years invalid character

Table 3.3: Time-Variant Encoding Scheme of Age

For 1950 - 1964, if the first digit is a one (1), then it means that the age at death was

unknown, indeterminate or not stated by the physician filing the death registration. The last

two digits in this case are always two zeroes (00). Also, an indeterminate number of months,

weeks, etc. would be encoded as 300, 400, etc.

CHAPTER 3. THE EXAMPLE DATABASE DVS-EXT 15

For 1965 - 1976, if the age at death was over 99, it was encoded as a dash (-) followed by

the number of years over 100. (eg. -03 would mean 103). For 1965 only, any age at death over

99 was encoded as "one dash blank" (1-u)- For 1965 - 1976, if the last two digits are unknown,

they are encoded as ampersands (&&) (eg. 1&& means an unknown number of years).

For 1977 - 1984, if the age of the decedent at death was unknown, it was estimated as

closely as possible, or was set at 25 years if no reasonable estimate was possible. The year of

birth field is encoded as "unknown" in such cases.

3.5 T h e Place of Birth F i e l d

The place of birth field was encoded according to a standard schema of two-digit codes for

various countries or regions of origin. The same schema was also used for recording ethnic

or racial origin, with special codes for certain ethnic or racial groups. See Appendix B for a

full description of the meanings of individual two-digit codes. The place of birth field did not

involve any changes in encoding during the time span 1950 - 1984, except for the encoding of

unknown place of birth and unknown ethnic or racial origin.

Unknown place of birth was encoded as the number 99, but only prior to 1965. After 1964,

unknown birthplace was encoded as ampersands (&&).

Unknown ethnic or racial origin was encoded as two zeroes (00) or two ampersands (&&).

DVS stopped recording ethnic or racial origin of deceased persons on December 31, 1973. For

database management purposes, either all decedents after 1973 must be regarded as having

"not applicable" as an ethnic or racial origin, or the database must somehow be aware that the

ethnic or racial origin attribute applies only to records with a year of death attribute (when

regarded as an integer) which is less than the number 74.

CHAPTER 3. THE EXAMPLE DATABASE DVS-EXT 16

Pre-1957 AND School District IMPLIES PosM956
subdivision Code is subdivision

041 032,033 041
041 036,037,043 044
041 034,035,042,075,076 045
042 038,039,040,041 043
042 any 042
056 any 056
055 any 054
054 any 055
053 any 053
052 any 051
051 061,062,063,064 051
051 065,066 052
051 067,068 053

Table 3.4: Correspondence of Pre-1957 and Post-1956 Census Subdivisions

3.6 T h e Marital Status F i e l d

The marital status field was encoded according to a very simple schema (1 = single, 2 = married,

3 = widowed, 4 = divorced, 5 = separated), which did not change during the years 1950 - 1984,

except for the encoding of unknown marital status.

Unknown marital status was encoded as zero (0) prior to 1965 and ampersand (&) from

1965 - 1984.

3.7 T h e Residence — Census Division F i e l d

The Census Divisions of British Columbia existed only prior to 1971. There were 10 major

divisions, subdivided into 2 to 7 subdivisions labelled with the letters "a" through "g". For

encoding purposes, the letters "a" through "g" were translated to the alphabetic digits 1 through

7 (eg. census subdivision 10c would be encoded as the character string 103). The census

subdivisions of the Lower Mainland of British Columbia and Vancouver Island were reorganized

after 1956. It is possible to determine which post-1956 census subdivision a person resided in

from the pre-1957 census subdivision and the School District code, if it exists. See Table 3.4

CHAPTER 3. THE EXAMPLE DATABASE DVS-EXT 17

C E N S U S D I V I S I O N S 4 A N D 5 (D E T A I L)

Figure 3.1: Census Divisions — 1957 - 1971

CHAPTER 3. THE EXAMPLE DATABASE DVS-EXT 18

for the implied correspondence between the pre-1957 and post-1956 census subdivisions.

Codes 000, 999, and blanks (uuu) mean unknown census division. The Census Divisions of

B.C. were phased out and replaced by Regional Districts after 1971. See Figure 3.1 for a map

indicating the geographical distribution of Census Divisions in B.C. during the time period 1957

- 1971. Due to the totally different boundaries chosen for Regional Districts, it is impossible

to find any direct or indirect correspondence between Census Divisions and Regional Districts.

There is also no logical correspondence between Census Divisions and School Districts. Thus

it is not possible to approximate pre-1971 Census Divisions by referring to Regional Districts

or School Districts.

Since Census Divisions ceased to exist after 1971, the Census Division field is "not applica­

ble" to decedents with a year of death greater than the integer 71.

3 . 8 T h e Residence — Regional District F ie ld

The Regional Districts of B.C. were set up on January 1, 1971 for the gathering census popu­

lation figures for Statistics Canada. The Regional Districts completely replaced the old Census

Divisions. There is a good correspondence between Regional Districts and certain groups of

School Districts, so that it is possible to approximate Regional Districts prior to 1971 by group­

ing together School Districts as indicated in Table 3.5.

Non-residents of B.C. are recorded as whatever code applied to their particular place of

permanent residence at the time of death. The only way to tell which deaths are of non­

residents of B.C. is by noticing that the Regional District code is not in the range 001 - 029,

or alternatively by noticing that the School District code is 099.

Unknown Regional District is encoded as 000, 999, blanks (uuu), or ampersands (&&&).

See Figure 3.2 for the geographical distribution of Regional Districts in B.C.

Figure 3.2: Regional Districts — 1972 - 1984

CHAPTER 3. THE EXAMPLE DATABASE DVS-EXT 20

Regional District IS COMPOSED OF School Districts
070

002 - Bulkley-Nechako 054,055,056
061,062,063,064

004 - Cariboo 027,028
005 - Central Fraser Valley 034,035

007,009,010,086
007 — Central Okanagan 023

018,019,089
071,072,084
065,066
042,075

012 - East Kootenay 001,002,003,004
032,033,076
057
036,037,38,039,040,041,043,044,045

016 — Kitimat-Stikine 080,088
011,012,013
085
068,069
021,022

021 - Central Coast (Ocean Falls) 049
014,015,016,017,077

023 - Peace River-Liard 059,060,081
024 - Powell River 047

050,052
029,048

027 - Stikine 087
046

029 - Thompson-Nicola 024,026,030,031

Table 3.5: Regional Districts and their correspondence with School Districts

3 . 9 T h e Residence — Municipality F ie ld

Municipality was encoded according to a standard schema, as detailed in Appendix C. There

are many thousands of deceased persons who did not reside within any municipality, and are

encoded as 000 or blanks (uuu) prior to 1965, and to "dash blank blank" (-uu) after 1964.

These records have "not applicable" as their municipality code.

CHAPTER 3. THE EXAMPLE DATABASE DVS-EXT 21

3 . 1 0 T h e Residence — Census Tract F i e l d

Unknown census tract is coded as 00 prior to 1965, and to ampersands (&&) after 1964. There

are tens of thousands of records with Residence — Census Tract encoded as blanks (uu), which

indicates that census tract is "not applicable" for those deaths. Census tracts are small divisions

within large municipalities, and thus it is neither possible nor relevant to attach any specific

meaning to the individual encoded numbers.

3 . 1 1 T h e Residence — School District F i e l d

The school districts as they have existed since 1979 are as shown in Table 3.6. See Figure 3.3

for the geographical distribution of School Districts in B.C. as of 1979.

DVS continues to encode deaths as occuring in School District 05 (Creston) or 06 (Kaslo)

even though those two districts were merged by the Ministry of Education to become School

District 86 (Creston-Kaslo) in 1966. DVS also encodes deaths occuring in School District 92

(Nishga) to School District 88 (Terrace) even though Nishga was made a separate school district

in 1978.

Unknowns are encoded as "dash blank blank" (-uu), "dash dash blank" (—u), or three

blanks (uuu)- There have been several changes to school district boundaries during the years

1950 to 1975. Sometimes two districts were merged together, and sometimes a district was

split into two. In order to reconcile historical school districts with those now in existance, the

reclassifications shown in Table 3.7 have been made, sometimes using the municipality code, if

it exists.

It is also possible to obtain a valid current School District code from records whose actual

value in the Residence — School District field is "not applicable" (during 1950 - 1975 there

were areas of B.C. that were not part of any official School District) by using the Municipality,

Census Division, or Regional District codes, as shown in Table 3.8.

CHAPTER S. THE EXAMPLE DATABASE DVS-EXT

Figure 3.3: School Districts — 1979 - 1984

CHAPTER 3. THE EXAMPLE DATABASE DVS-EXT 23

01 = Fernie 31 = Merritt 59 = Peace River South
02 = Cranbrook 32 = Hope 60 = Peace River North
03 = Kimberley 33 = Chilliwack 61 = Greater Victoria
04 = Windermere 34 = Abbotsford 62 Sooke
07 = Nelson 35 = Langley 63 = Saanich
09 = Castlegar 36 = Surrey 64 = Gulf Islands
10 = Arrow Lakes 37 = Delta 65 = Cowichan
11 = Trail 38 = Richmond 66 = Lake Cowichan
12 = Grand Forks 39 = Vancouver 68 Nanaimo
13 Kettle Valley 40 = New Westminster 69 = Qualicum
14 = South Okanagan 41 = Burnaby 70 = Alberni
15 = Penticton 42 = Maple Ridge 71 = Courtenay
16 = Keremeos 43 = Coquitlam 72 = Campbell River
17 = Princeton 44 = North Vancouver 75 = Mission
18 = Golden 45 West Vancouver 76 - Agassiz-Harrison
19 = Revelstoke 46 Sunshine Coast 77 Summerland
21 = Armstrong-Spallumcheen 47 = Powell River 80 = Kitimat
22 — Vernon 48 = Howe Sound 81 = Fort Nelson
23 Central Okanagan 49 = Central Coast 84 — Vancouver Island West
24 = Kamloops 50 — Queen Charlotte 85 — Vancouver Island North
26 = North Thompson 52 = Prince Rupert 86 - Creston-Kaslo
27 Cariboo-Chilcotin 54 = Smithers 87 = Stikine
28 Quesnel 55 — Burns Lake 88 = Terrace
29 — Lillooet 56 = Nechako 89 -— Shuswap
30 South Cariboo 57 = Prince George 92 = Nishga

Table 3.6: Encoding of the Residence — School District Field

3 . 1 2 T h e Occupation — Job F i e l d

The Occupation — Job field contains the occupational job code, which is a three-digit number

from 000 to 999 with unknowns encoded as 999 or "dash blank blank" (~uu) prior to 1965 and

to 999 or three blanks (uuu) after 1964. There are several hundred "invalid" job codes (codes

that do not exist in the manual in use during the applicable time period) in the data.

Two different encoding schemas were used. The 1951 Canadian Occupational Manual

(COM) [DBS 51] was used from 1950 - 1964, and the 1961 Canadian Occupational Manual

[DBS 61] was used from 1965 - 1984.

In most cases it is possible to directly translate the 1951 encoding schema to the 1961

schema. However, there are a large number of occupations for which there was no separate

CHAPTER 3. THE EXAMPLE DATABASE DVS-EXT 24

Historical
School District
Code

AND Municipality
Code is

IMPLIES
Present

School District
Code

005
020
051
073
025
058
079
082
083
067
067
008
008

1950,1984), 006 (1950,1984)
1950,1968), 078 (1950,1968)
1950,1967), 053 (1950,1968)
1950,1964), 074 (1950,1964)
1950.1970)
1950.1971)
1950,1970)
1956.1972)
1963.1972)
1950.1973)
1950,1973)
1950,1970)
1950,1970)

any
any
any
any
any
any
any
any
any

086
089
088
085
024
057
070
027
060

015 068 (54%)
053 065 (46%)
029 007 (72%)
077,080 010 (28%)

The year ranges show the first and last years that DVS used each code.

Table 3.7: Historical Reconciliation of School Districts in B.C.

code in the 1951 manual. There are also a few occupations in the 1961 manual that did not

exist in 1951. Thus it is not completely possible to directly translate from the earlier coding

schema to the more recent schema. Translating from the 1961 codes to the 1951 codes would

be easier, but less useful, meaningful, and current.

Therefore, it is more useful to group both sets of codes to another, less cumbersome set

of encodings which comprise 206 of the most meaningful broad occupational groups in B.C.

See Appendix D for the correspondence between the two official encoding schemas and the 206

groups, some of which are combinations of others.

3 . 1 3 T h e Occupation — Industry F i e l d

The Occupation — Industry field contains the occupational industry code, which is a three-

digit number from 000 to 999 with "unknown" encoded as 999 throughout the entire time span

1950 - 1984, and "not applicable" being encoded as "dash blank blank" (-uu) prior to 1965,

and to three blanks (uuu) after 1964. Two different encoding schemas were used, the 1948

Standard Industrial Classification Manual from 1950 - 1964 [DBS 48], and the 1960 version of

CHAPTER 3. THE EXAMPLE DATABASE DVS-EXT 25

School District Present
code = unknown IMPLIES School

AND District
Municipality = 131 039
Municipality = 178 084
Municipality = 084 070
Municipality = 069 080
Census Division = 095 080
Census Division = 054,055 070
Census Division = 056 085
Census Division = 091,092 087
Census Division = 071 049
Census Division =101 081
Census Division = 087,102 056
Census Division = 072,073 072
Census Division = 064 027
Census Division = 062 024
Census Division = 042,043 039
Census Division = 094 052
Census Division = 053 068
Census Division = 083 027
Census Division = 086 & Municipality = 071 055
Census Division = 086 & Municipality = 085 056
Regional District = 004 027

Table 3.8: Assignment of School District from other information

the same manual [DBS 60] from 1965 - 1984. The author has not yet attempted to find any

correspondence between the two encoding schemas, nor has any attempt been made to translate

both sets of codes to a third set of more relevant groupings.

3 . 1 4 T h e Cause of Death — Primary F i e l d

The Cause of Death — Primary field has been encoded according to the International Classi­

fication of Diseases (ICD), versions 6, 7, 8 and 9. ICD-6 [WHO 48] and ICD-7 [WHO 57] are

virtually identical, so it is possible to ignore the extremely few differences between them, and

it is normal to consider ICD-6 and ICD-7 to be a single "version". ICD-6 and ICD-7 were used

from 1950 - 1968, ICD-8 [NCHS 68] from 1969 - 1978, and ICD-9 [NCHS 78] from 1979 - 1984.

CHAPTER 3. THE EXAMPLE DATABASE DVS-EXT 26

There are a small number of records with an "invalid" primary cause of death, in the sense

that either the recorded code does not exist in the ICD manual used during the applicable time

period, or the recorded cause of death contradicts the gender or age of the decedent (assuming

that the gender and age information is correct). For example, a female person cannot die from

cancer of the prostate gland, nor can an 85-year-old person die of complications of pregnancy

or childbirth.

The ICD codes are three- or four-digit numbers recorded in an alpha-numeric format. The

fourth digit is more precise than just three digits, but the physician completing the death cer­

tificate does not always specify the cause of death with enough precision to allow the nosologist

to encode the fourth digit. In these cases, the fourth "digit" is recorded instead as a blank (u),

or a dash (-). The actual ICD codes as shown in the references have decimal points between

the third and fourth digits, but for recording purposes DVS has simply ignored the decimal

points.

Due to major revisions of the ICD stemming from increased knowledge of particular medical

specialties, it is not possible to directly translate between the different versions of the ICD. A

large percentage of the alpha-numeric codes from any one of the versions do have a direct

correspondence with codes from the other two versions. However, some of the remaining codes

are so vastly different in meaning that no correspondence is possible at the level of individual

codes.

Since it is not possible to directly translate between the different versions of the ICD, and

since dealing with eleven thousand different codes is unwieldy, it is useful to group the three

different encoding schemas into another, less cumbersome set of codes. Using broad groupings

of major causes of death of interest, it is possible to translate the three versions of the ICD into

165 of the most relevant groupings of causes of death. See Appendix E for the correspondence

between the three versions of the ICD and the 165 groups, some of which are combinations of

others.

CHAPTER 3. THE EXAMPLE DATABASE DVS-EXT 27

3 . 1 5 T h e Cause of Death — Secondary F i e l d

The Cause of Death — Secondary field has been coded similarly to the Cause of Death —

Primary field. The difference between the encoding schemas for primary and secondary causes

of death is an entirely different meaning to the codes having 8 and 9 as their first digit. These

ranges of codes specify death from accidents, poisoning, and injuries. The primary cause of

death indicates the external cause, and the secondary cause of death indicates the internal

cause, (eg. the external cause may be "car accident" while the internal cause is "cerebral

haemorrhage").

3 . 1 6 T h e Ethnic or Racial Origin F i e l d

The Ethnic or Racial Origin field has been encoded according to the same schema as the

encoding schema used to record the place of birth (see Appendix B), with differences for race

as noted. The code for racial origin can be used to identify Registered Native Indians prior to

1974, who are encoded using the character string 15. Due to pressure from minority groups,

DVS stopped collecting and encoding ethnic or racial origin on December 31, 1973. Therefore,

records with year of death (when regarded as an integer) greater than 73 have "not applicable"

as an ethnic or racial origin.

3 . 1 7 T h e Native Indian Status F i e l d

The Native Indian Status field has been used to identify Registered Native Indians after 1973

(see Table 3.9).

There are several thousand "status not stated" records during the years 1974 - 1976. In

consultation with DVS, the Native Indian status of these records is regarded as being "not

Native Indian". The reason is that the nosologists were encoding strictly by what was recorded

on the death certificate, but physicians were leaving the question about Native Indian status

CHAPTER 3. THE EXAMPLE DATABASE DVS-EXT 28

Character 1974 - 1976 1975 - 1984
blank invalid code not Native Indian

0 not Native Indian invalid code
1 Native Indian invalid code
2 invalid code Native Indian
& status not stated invalid character

Table 3.9: Time-Variant Encoding Schema of Native Indian Status

blank instead of filling in the word "NO" when the decedent was not a Registered Native Indian.

After ceasing to record ethnic or racial origin, the government was still interested in keeping

statistics on the number and causes of deaths among Registered Native Indians for the federal

government Department of Indian Affairs. Therefore, the new field of Native Indian Status

began to be recorded only after 1973. Prior to 1974, the information supplied by the Native

Indian Status field can be inferred from the Ethnic or Racial Origin field.

3 . 1 8 T h e Year of Birth F i e l d

The year of birth field contains the last two digits of the year of birth of the decedent. Unknowns

are coded 00 prior to 1958, and to two blanks (uu) after 1958. During 1958, both 00 and u u were

used to mean "unknown". Sometimes 00 is a valid code prior to 1959, meaning the person was

born in the year 1900. The only way to tell if a code 00 is valid or not is to cross-reference the

year of death, the age at death, and the year of birth. Sometimes even the cross-reference does

not yield a definite answer, in which case the year of birth must be regarded as "unknown".

C h a p t e r 4

S o l u t i o n o f P r o b l e m u s i n g D E F I N E

4 . 1 B r i e f D e s c r i p t i o n o f D E F I N E

DEFINE is an experimental language for the declaration, manipulation and querying of data­

bases (a DBMS), conceived and under development by Professor P.C. Gilmore of the University

of British Columbia [Gilmore 87b].

The key to DEFINE is that it is based on set theory. One declares (defines) sets of entities

with common properties, sets of constants to describe those properties, and sets of pairs (or

tuples) of entities to describe an association between two (or more) entities from different sets

(for example, to describe the fact that entity a from set A has a property described by constant

b from set B).

The purpose in developing DEFINE is to provide a single, powerful database language with

which it is possible to completely declare the structure of the database (as determined by an

information needs analysis), and with which it is also possible to manipulate and query the

database. DEFINE provides a precise and easily understandable syntax (based on first-order

logic) to accomplish these goals.

The power of DEFINE is that by defining the sets in an appropriate manner, it is possible

to handle time-variant encodings and missing information in a straightforward and even simple

way. By embedding the interpretation specifications for the problem data into the DEFINE

29

CHAPTER 4. SOLUTION OF PROBLEM USING DEFINE 30

declarations of the sets, we achieve the desired result of being able to remove the chore of

interpretation from the minds of users and applications programmers.

A complete description of the theory, syntax, and semantics of DEFINE can be found in

the reference. In order to understand the examples and specifications given in this thesis, it is

only necessary to provide a brief summary description of the syntax, and some of the semantics

of DEFINE.

4 . 2 E l e m e n t a r y S y n t a x a n d S e m a n t i c s o f D E F I N E

The general syntax1 of DEFINE is given by Figure 4.1 below, where the square brackets indicate

optional syntax.

Declare: SETNAME
Select: x:DOMAIN(SETNAME)
Where: [Define: INTENSION(SETNAME)] [(comment)]

[Degrees: <LL, LU>, <RL, RU>]

Figure 4.1: General form of a DEFINE declaration

Semantically, the syntax of the formula given in Figure 4.1 defines the set SETNAME to

be the set of all x which are members of the domain of SETNAME such that the INTENSION

of SETNAME is satisfied.

The variable x can represent a single entity variable, or it can represent a tuple of the form

< xi,X2, .--Xn >. DOMAIN(SETNAME) can be a single setname (if x is a tuple consisting

of only one element) or a tuple of the form <SETNAMEi,SETNAME 2 , . . . SETNAME„ >

specifying the names of the sets of which x\,x-i, ...xn are members.

If SETNAME represents a set of fundamental entities of interest, DOMAIN(SETNAME) is

simply SETNAME. These sets are referred to as primitive sets.

'Dr. Gilmore has recently altered the syntax of DEFINE. The semantics remain unchanged. See Appendix A
for a brief description of the new, less cumbersome syntax.

CHAPTER 4. SOLUTION OF PROBLEM USING DEFINE 31

The syntax INTENSION(SETNAME) specifies which members of domain are included as

members of SETNAME. In the case of sets for which membership can only be determined by

a human being, only the comment is necessary. These sets are referred to as base sets, which

include primitive sets.

In all other cases, the intension is written in a modified first-order logic which is machine-

interpretable. The first-order logic includes set terms like that in the Select clause in Figure 4.1,

the usual Boolean connectives and, or, and not, and the universal and existential quantifiers

[For some {set term}] and [for all {set term}]. The usual arithmetic comparison operators

are allowed (">" (greater than), "<" (less than), "=" (equals), "-<" (not), etc.).

The degrees specify integrity constraints on associations, which are sets where a; is a pair

< u,v > and DOMAIN(SETNAME) is a pair <SETNAMEi, SETNAME 2 >. The degrees are

<left lower, left upper>, <right lower, right upper>, where "left" and "right" refer, respectively,

to SETNAMEi or SETNAME 2 . The adjectives "lower" and "upper" specify, respectively, the

minimum and maximum number of members from one set that can be associated with a member

of the other set. It is only necessary to know whether the lower degrees are 0 (zero) or 1 (one),

and whether the upper degrees are 1 (one) or * (asterisk, meaning one or more). If the left

lower degree of the association is 0, then SETNAMEi is partial on S E T N A M E 2 , meaning that

not every member of SETNAMEi has a corresponding member of S E T N A M E 2 associated with

it. If the left lower degree is 1, then SETNAMEi is total on S E T N A M E 2 , meaning that every

member of SETNAMEi 1 3 associated with at least one member of S E T N A M E 2 . A left upper

degree of 1 means that the association is single-valued, and a left upper degree of * means that

the association is multi-valued. An association that is both total and single-valued is functional.

An attribute is an association whose left set is a value set.

4 . 3 T h e D E F I N E D a t a D e f i n i t i o n o f D V S - E x t

If one were to start from before any data were collected, the data declarations for DVS-Ext

would undoubtedly treat occupations, causes of death, school districts, etc. as separate entity

CHAPTER 4. SOLUTION OF PROBLEM USING DEFINE 32

sets with attributes of their own (such as the name and code for each school district or cause of

death). Then the database would contain (for example) the entire ICD-7 manual. This would

mean the the causes of death would be explicitly defined by ICD-7, and the future change to

ICD-8 would necessitate major changes to the database structure.

The changes to the encoding schemas over the years were largely beyond the control of

DVS. The ICD codes (for example) are revised every ten years by an international committee

of prominent and expert physicians. The definition of Census Divisions, and the change from

Census Divisions to Regional Districts was the responsibility of the federal government. Even

changes that were under the control of the provincial government, such as School District

definitions, were done in a way that made sense bureaucratically and administratively to the

Ministry of Education. The Ministry of Education could not worry about what effect their

changes might have to the collecting of death registration data.

The exact format of death registration data was of very little importance in comparison to

other government priorities. As long as the data were recorded and DVS was able to produce

the required statistics in some way, the government was unconcerned about the difficulty in

dealing with encoding changes. The mandate of DVS is to provide statistics about subsets

of deceased persons (eg. persons employed as welders, dying of lung cancer, residing in the

Prince George School District, etc.). DVS is not particularly interested in (for example) School

Districts as entities, but only as a way of describing a subset of death registrations.

Since it was not the responsibility of DVS to keep track of ICD codes or School District

definitions, but only to record death registrations, it makes sense to treat each of the fields

of Table 3.1 as simple attributes of the single entity set DECEASED (referring to persons),

recording only the codes. Then the School Districts, causes of death, etc. can be declared

implicitly (as defined sets) in a logical manner from the codes. When future changes in encoding

or physical definitions of geographic subdivisions of B.C. occur, only the implicit declarations

need be changed, and not the actual structure of the database. Also, this method declares (for

example) School Districts as subsets of DECEASED, which is exactly the way in which DVS

is interested in School Districts.

CHAPTER 4. SOLUTION OF PROBLEM USING DEFINE 33

DECEASED DECEASED People who died in B.C.
VYR STRING(2) Define: (value set for year codes)
DTHYR DECEASED X VYR A person had one year of death
VREGNO STRING(6) Define: (value set for death reg. number)
REGNO DECEASED X VREGNO A person had one death registration number
VGENDER STRING(l) Define: (value set for gender codes)
GENDER DECEASED X VGENDER A person had one gender
VAGUNIT STRING (1) Define: (value set for units of age code)
AGEUNIT DECEASED X VAGUNIT A person had one age unit
VAGEDTH STRING(2) Define: (value set for age at death code)
AGEDTH DECEASED X VAGEDTH A person had one age at death
VORIGIN STRING (2) Define: (value set for place of birth and/or

ethnic/racial origin codes)

POB DECEASED X VORIGIN A person had one place of birth
VMARST STRING (1) Define: (value set for marital status)
MARST DECEASED X VMARST A person had one marital status
VCENDIV STRING (3) Define: (value set for Census Division codes)
CENDIV DECEASED X VCENDIV A person resided in one Census Division
VREGDIS STRING (3) Define: (value set for Regional District codes)
REGDIS DECEASED X VREGDIS A person resided in one Regional District
VMUNIC STRING (3) Define: (value set for Municipality codes)
MUNICIP DECEASED X VMUNIC A person resided in one Municipality
V C T R A C T STRING(2) Define: (value set for Census Tract codes)
C T R A C T DECEASED X V C T R A C T A person resided in one Census Tract
VSCHDIS STRING (3) Define: (value set for School District codes)
SCHDIS DECEASED X VSCHDIS A person resided in one School District
VJOB STRING (3) Define: (value set for COM job codes)
JOB DECEASED X VJOB A person had one usual lifetime job
VINDUST STRING (3) Define: (value set for COM industry codes)
INDUST DECEASED X VINDUST A person had one usual lifetime industry
VCAUSE STRING (4) Define: (value set for ICD codes)
PRIMCOD DECEASED X VCAUSE A person had one primary cause of death
SECOCOD DECEASED X VCAUSE A person had one secondary cause of death
E T H R A C E DECEASED X VORIGIN A person had one ethnic/racial origin
VNIS STRING(l) Define: (value set for Native Indian status)
NATIVE DECEASED X VNIS A person had one Native Indian status
BRTHYR DECEASED X VYR A person had one year of birth
VNAME STRING (25) Define: (value set for names of people)
NAME DECEASED X VNAME A person had one name

Table 4.1: Declared Set Table for DVS-Ext

CHAPTER 4. SOLUTION OF PROBLEM USING DEFINE 34

The entity set DECEASED and all its attributes are given in Table 4.1. Normally a De­

clared Set Table would be accompanied by an Association Table showing the degrees of the

associations, but in the case of DVS-Ext, all associations (attributes are associations between

entity sets and value sets) have been made total, adding "not applicable" values if necessary.

Note that by having a single entity set with only total attributes, the relational database model

(with a single relation) has been mimicked by DEFINE.

Some of the attributes of DVS-Ext (eg. occupations, causes of death, school districts, etc.)

could be declared as entity sets. Then it would be possible to restrict the associations between

those sets and the set DECEASED to only those entities to which an association applies,

thereby eliminating some of the "not applicable" values necessitated by the declaration of a

single entity set with total attributes. One of the objectives of this thesis, however, is to process

"not applicable" null values. Also, the declaration of a single entity set with all total attributes

is sensible with respect to DVS-Ext, and shows how DEFINE can mimic the relational model.

This thesis will therefore proceed with the declaration of DVS-Ext as a single entity set with

all total attributes (a single relation), and other possible methods of declaring DVS-Ext will

not be considered.

4 . 4 S t r u c t u r a l D e c l a r a t i o n s

Only three types of sets are necessary for the structural declaration of DVS-Ext as shown in

table 4.1. One example of each type of declaration will be given. The remaining declarations

are quite simple alterations of the examples, and will be left as an exercise for the reader.

The only primitive set is the set DECEASED, which would be declared very simply, as

shown in Figure 4.2.

All of the value sets are strings of various lengths, so a typical example would be the value

set VNAME, declared as in Figure 4.3.

In the intension of VNAME, the construct variablei:ASSOC:variable2 is an alternative to

CHAPTER 4. SOLUTION OF PROBLEM USING DEFINE 35

Declare: DECEASED
Select: x:DECEASED
Where: (All persons who died in British Columbia).

Figure 4.2: The primitive entity set DECEASED.

Declare: VNAME
Select: z:STRING
Where: Define: {x:L:} < 25

(A value set for names).

Figure 4.3: An example of a value set declaration.

the construct < variablei, variablei >:ASSOC for the association ASSOC between the sets

represented by variablei and variable2- The construct {vortoWe:ASSOC:} is an example of

a parameterized set name (see [Gilmore 87b] for full details). It is sufficient to state that the

intension of VNAME is a restriction of the value set to strings of length (the L in the example

is a built-in length function, an association between a string and an integer giving its length)

less than or equal to 25 characters.

A typical attribute association is NAME, which associates an entity from the set DE­

CEASED with a value from the set VNAME. The declaration as shown in Figure 4.4 has an

alternative Select clause, namely z.DECEASED, y.VNAME.

Declare: NAME
Select: < x, y >:<DECEASED,VNAME>
Where: (A person x had one name y)

Degrees: < 1,1 >,<(),*>.

Figure 4.4: A typical declaration of an attribute association.

In the declaration of NAME, the lower degrees indicate that the association is total and

single-valued. The upper degrees indicate that the domain of names is not exhausted by the

entity set, and any number of people may have had the same name.

CHAPTER 4. SOLUTION OF PROBLEM USING DEFINE 36

4 . 5 S i m p l e S u b s e t s

Some subsets of DECEASED are very simply specified by direct reference to the actual code

recorded in the field. For example, Figure 4.5 shows how the set consisting of all persons dying

during the time span 1950 - 1960 can be specified.

Declare: DTHS50-60
Select: z:DECEASED
Where: Define: < x,y >:DTHYR and y > '50' and y < '60'

(All deaths between 1950 and 1960, inclusive).

Figure 4.5: A subset of DECEASED from a year range.

Any logical subset consisting of year ranges can be declared in a similar manner, by simply

changing a few numbers in the declaration. Assume that declared subsets of DECEASED exist

for any year range that might be desired, the name of the set being DTHS??-?? with the

question marks replaced by the year range of interest. The logical declaration of subsets via

the codes from the attributes of DECEASED simplifies the handling of time-variant encoding

schemas. For example, Figure 4.6 shows how the subset of DECEASED consisting of all females

would be specified in DEFINE, by referring to the appropriate code during the appropriate time

period. By declaring logical sets using time-variant encodings, logical consistency is produced

from physical inconsistency.

Declare: F E M A L E
Select: z:DECEASED
Where: Define: < x,y >:GENDER and ((x:DTHS50-76 and

(y = 'K' or y = '2')) or (x:DTHS77-84 and y = 'F'))
(All female decedents).

Figure 4.6: The logical set of all female decedents.

The subset of DECEASED consisting of all males would be specified simply by replacing the

fragment (y = 'K' or y = '2') with y = '1' and the fragment y = 'F' with y = 'M' in Figure 4.6.

CHAPTER 4. SOLUTION OF PROBLEM USING DEFINE 37

With regard to missing information in the GENDER field, there is no such thing as a person

for whom gender is not applicable, but there are some decedents with unknown gender. Those

decedents with unknown gender would count as both (not FEMALE) and (not MALE) by

default, unless some specific reference is made to the "unknown" (Type 1) null code, which

happens to be the digital character zero ('0') for the domain of the gender attribute. The next

section indicates how such default or other special processing might occur.

4 . 6 H a n d l i n g M i s s i n g I n f o r m a t i o n w i t h D E F I N E

DEFINE is still in the design stage, and has not yet been implemented. No specific formal

method of handling missing information has been included. However, because of the flexibility

and power of DEFINE, it is capable of dealing with missing information in a logical manner

as is. Let UNK(SETNAME) be the set of all entities with "unknown" values for SETNAME,

where UNK is valid only for attributes. Similarly, let INV(SETNAME) be the set of all entities

with "invalid" values for SETNAME, and N/A(SETNAME) be the set of all entities with "not

applicable" values for SETNAME, where INV and N/A are valid only for attributes. When

DEFINE is implemented, the intensions of all queries would be checked for value sets for which

one or more of an UNK set, an INV set, or an N/A set are declared. The intension would then

be expanded (by default) to include those of the fragments

. . . (and not vor:UNK(SETNAME)) . . . or

. . . (and not «ar:INV(SETNAME)) . . . or

. . . (and not «or:N/A(SETNAME)) . . .

that are relevant (where var is the variable associated with the set SETNAME).

The processing of database operations (such as joins) would also exclude all entities be­

longing in any of the three missing information sets by default. Similarly, the computation of

functions (such as averages) would exclude entities with declared missing information.

CHAPTER 4. SOLUTION OF PROBLEM USING DEFINE 38

The treatment of missing information described above has no higher complexity than any

set declaration. For a given query, it is only necessary to decide whether each entity satisfies

the first-order logic assertion. If an assertion contains a reference to an attribute for which

one or more of the three missing information sets has been declared, only up to three more

checks need be made. In contrast, the approaches given in [Lipski 81] and [Vassiliou 79] require

complicated processing of the query into various special forms, and/or comparisons against or

substitutions from the entire attribute domain. Proofs are given in [Gilmore 87b] to show that

the first-order logic of DEFINE is decidable with a short sequence of expansions.

If a user or applications programmer wished to treat any of the three types of missing

information in another way, it can be easily done by referring to the sets UNK, INV, or N/A.

Direct reference to the individual codes whose semantic content are one of the three types of

missing information is also possible.

For example, the DEFINE specification of DVS-Ext could include a declaration similar to

that shown in Figure 4.7 to specify the subset of DECEASED with Type 1 ("unknown") null

values in the gender field.

Declare: UNK(GENDER)
Select: i :DECEASED
Where: Define: < x,y >:GENDER and x:DTHS50-76 and y = '0'

(Decedents with unknown gender).

Figure 4.7: A simple UNK set.

Then, if the intension of some set includes the fragment

. . . and not x:FEMALE . . .

then the expanded intension would include the additional fragment

. . . (and not x:UNK(GENDER))

With this use of DEFINE, it is possible to decide, for each declared set, application, or

query, whether to include or exclude missing information. If the set UNK(GENDER) were not

CHAPTER 4. SOLUTION OF PROBLEM USING DEFINE 39

declared, then the set (not x:FEMALE) would include decedents with unknown gender, and

if UNK(GENDER) were declared, then the set (not x:FEMALE) would not include decedents

with unknown gender. Suppose UNK(GENDER) were not declared. Then it is possible to

declare an attribute GENDER.DEFINITE, the set UNK(GENDER.DEFINITE) and the set

FEMALE.DEFINITE so that decedents of unknown gender would be included in the set (not

x:FEMALE) but not in the set (not x:FEMALE.DEFINITE).

Declaring DEFINITE sets for every attribute would mean declaring a substantial number

of sets. Normally, though, one would always want to exclude UNK values, INV values and N/A

values from negations. One obvious exception for DVS-Ext would be in the case of the NATIVE

attribute, where those decedents with "unknown" Native Indian status during the time span

1974 - 1976 should be considered as not being Registered Native Indians. Other exceptional

handling of missing information would include the cases of those decedents with "invalid" job

codes, which have been grouped into a separate category among the 206 occupational groups,

as descibed in Appendix D, and the assignment of a valid School District code from other

information when the actual School District code is "unknown", as described in Section 3.11.

These latter two anomalies along with other special handling of missing information, will be

discussed in later sections.

The example above of treating decedents with "unknown" Native Indian status as not being

Native Indians is an instance of attribution by default. Attribution by default occurs when an

assumption is desired to be made to associate a certain attribute value to a certain entity under

certain circumstances. In the case of all three types of missing information, attribution by

default could occur if it is reasonable to assume a valid attribute value when there is a lack

of information to the contrary. A formal presentation of attribution by default is available

in [Gilmore 87a], where a method of declaration is shown that results in intuitively "proper"

treatment of queries, most notably those asking for negative information. The method involves

comparison with each valid value from the domain, so the complexity would be unacceptably

high for large domains. In the following section, attribution by default will only be mentioned

in cases where its use is reasonable in terms of size of domain and semantic interpretation.

CHAPTER 4. SOLUTION OF PROBLEM USING DEFINE 40

For the declarations of DVS-Ext, assume that all attributes have UNK, INV and/or N/A

sets declared in some form, using the "unknown", "invalid" and "not applicable" values and

relevant year ranges as detailed in Chapter 3. The sets UNK, INV, and N / A would be de­

clared analogously to the declaration of UNK(GENDER) above, so that missing information

is by default not included in any negations. Any special or different treatment of the codes

representing any of the three types of missing information will be specified in the appropriate

places in the following section.

4 . 7 E x a m p l e s o f D E F I N E S e t D e c l a r a t i o n s f o r D V S - E x t

Logical subsets for values of GENDER and ranges of values of DTHYR were declared earlier

in this chapter. Logical subsets for the values of MARST, or any range of values of BRTHYR

would be simple to declare. One example of more complicated subsets would be to declare age

group subsets. If the exact age at death were recorded prior to 1977 when the person was over

age 99, it would be possible to compute a new attribute that would be the exact age at death,

and would avoid the complicated encoding changes involved in the age unit and age code fields

of DVS-Ext. Since such detail is unavailable, the best that can be done is to declare deaths

with age at death 99 or over in separate group, as indicated in Figure 4.8.

Declare: 99&UP
Select: x:DECEASED
Where: Define: < x,y >:AGEUNIT and < x,z >:AGEDTH and

((x:DTHS50-64 and y = '2' and z = '99') or
(i:DTHS65-65 and y = '1' and z = '-u') or
(z:DTHS66-76 and (y = '-' or (y = '1' and z = '99'))) or
(i:DTHS77-84 and (y = '1' or (y = '0' and z = '99'))))
(Decedents who died at age 99 or over).

Figure 4.8: A logical subset of long-lived decedents.

Most other age groups can be easily declared as required, with the only other "special" age

group being infant deaths (see Figure 4.9), ie. those whose age at death is less than one year.

CHAPTER 4. SOLUTION OF PROBLEM USING DEFINE 41

Declare: INFANT
Select: x:DECEASED
Where: Define: < x,y >:AGEUNIT and

((i:DTHS50-64 and y > '3' and y < '7') or
(x:DTHS65-84 and y > '2' and y < '6'))
(Decedents with age at death less than one year).

Figure 4.9: A logical subset of short-lived decedents.

Those decedents with any of the various time-variant encodings whose semantic content

is "age at death unknown" would be included in one or both of the sets UNK(AGEUNIT) or

UNK(AGEDTH), so that those decedents would be excluded from any query-result set produced

by a query mentioning age at death.

Similar treatment of unknown, not applicable, or invalid null values apply to most attributes,

and so it is not necessary to repeat the information contained in the previous paragraph for

each attribute. Assume that all three types of missing information are declared, if appropriate,

according to the specifications in Chapter 3.

For the POB attribute, one could quite easily declare subsets for any group of codes. For

example, the set of all decedents born in Europe (using the DVS expanded definition of Europe)

would be as shown in Figure 4.10.

Declare: EUROPEAN
Select: a;:DECEASED
Where: Define: < x,y >:POB and ((y > '21' and y < '27') or (y > '51' and y < '76'))

(Decedents born in Europe).

Figure 4.10: An example of how to define ethnic groups.

Similar groups could be declared for the ETHRACE attribute, with a difference being that

E T H R A C E is "not applicable" to all decedents after 1973.

Declaring subsets of CENDIV would be a bit more complicated, since one would need to

deal with the changes after 1956 (as detailed in Table 3.4), which also involves School Districts.

CHAPTER 4. SOLUTION OF PROBLEM USING DEFINE 42

Therefore, it is necessary to declare logical School Districts first. Census Divisions have not

existed since 1970, and cannot be logically approximated by other attributes, so they are not

of much current interest.

With properly declared UNK(REGDIS), INV(REGDIS) and N/A(REGDIS) sets, one could

very easily not bother declaring subsets of REGDIS. Since there are no encoding changes to

deal with, the values 001 through 029 uniquely describe the 29 Regional Districts, and thus

decedents residing in (eg.) Regional District 13 can be referred to with the fragment

... (< x,y >:REGDIS and y = '013')

However, if one wanted to make use of the correspondence between Regional Districts and

certain groups of School Districts as shown in Table 3.5, it is relatively simple to declare logical

subsets of DECEASED for each of the 29 Regional Districts. The intension would simply use

the actual value from VREGDIS for the years 1971 - 1984 together with the logical School

District groups for the years 1950 - 1970. In this way it is possible to refer to decedents

residing in Regional District 13 even in 1950. Of course, the logical School Districts must be

previously declared. Assuming that the necessary logical School Districts have been declared,

a "retroactive" declaration of Regional District 13 would look like that given in Figure 4.11.

Declare: RD13
Select: i :DECEASED
Where: Define: (< x,y >:REGDIS and y = '013') or x:SD32 or x:SD33 or x:SD76

(Decedents residing within the boundaries of Regional District 13).

Figure 4.11: A "retroactive" Regional District subset.

If there were some special reason to be interested in groups of Municipalities or Census

Tracts, such declarations would be simple enough to make. The N / A sets for the MUNICIP

and C T R A C T sets would take care of all the decedents with "not applicable" values recorded

for the Residence — Municipality and Residence — Census Tract fields of DVS-Ext.

There is no alternative to declaring logical School Districts, because of the several deletions

(mergers) and additions (splits) done by the Ministry of Education in the past. In order to make

CHAPTER 4. SOLUTION OF PROBLEM USING DEFINE 43

the best use of the information available, it would most likely be best to use both Table 3.7 and

Table 3.8 to declare "retroactive" logical School District subsets of DECEASED. Such subsets

would consist of all decedents residing within the current School District boundaries, regardless

of whether or not some of the School Districts officially existed (according to the Ministry of

Education) at the time the decedent died. For example, the "retroactive" School District 85

could be declared as in Figure 4.12.

Declare: SD85
Select: z:DECEASED
Where: Define: (< x,y >:SCHDIS and y = '085') or

(z:DTHS50-64 and (y = '073' or y = '074')) or
((y = SJLI' or y = '—u' or y = ' u u u ') and x:CD56)
(Decedents residing within the boundaries of School District 85).

Figure 4.12: An inferred "retroactive" School District subset.

Notice that the fragment

(y - SJU ' or y = '—-u' or y = 'uuu')

would normally be the major part of the intension of UNK(SCHDIS). Since these otherwise

"invalid" codes are being used for the purpose of assigning decedents to valid School Districts

(along with other information), the set UNK(SCHDIS) should be declared after all the logical

"retroactive" School Districts have been declared. The UNK(SCHDIS) set would then consist

of those decedents which still had not been included in any logical School District set even

after using all the information from Tables 3.7 and 3.8. The intension of UNK(SCHDIS) would

consist mainly of the fragment

not (z:SD01 or . . . or z:SD89)

with the ellipsis expanded to include the rest of the logical School District sets.

Occupations would usually not be of much interest until a person has reached a reasonable

"working age", so the set N/A(JOB) could be declared to include all decedents with an age

at death less than age 20. There would be no UNK(JOB) or INV(JOB) sets, since all the

CHAPTER 4. SOLUTION OF PROBLEM USING DEFINE 44

"unknown" and "invalid" job codes are grouped together in Occupational Groups 193 and 194

(see Appendix D) and treated as separate "valid" occupations. Group 194 would be declared

last with the declaration as shown in Figure 4.13, with the ellipsis expanded appropriately.

Declare: OCC 194
Select: x:DECEASED
Where: Define: (< x,y >:JOB and ((x:DTHS50-64 and y = '-uu') or

(x:DTHS65-84 and y = 'uuu'))) or
not (x:OCC001 or . . . or x:OCC193)
(Decedents with invalid or miscoded job)

Figure 4.13: Creating validity from missing information.

Notice that the set OCC194 would exclude members of N/A(JOB) according to the rules

described in the previous section.

A reconciliation of the two different encoding schemas used for the Occupation — Industry

field has not been done as yet. However, it would at least be necessary to deal with missing

information. The fact that members of Occupational Groups 189 to 192 have a "not applicable"

industry (by definition) must be treated differently from the N/A(INDUST) set (decedents

under age 20). It would probably be best to declare separate Industry Groups to correspond

to Occupational Groups 189 to 192. This could be done using attribution by default (as

explained in the previous section), but the domain of VINDUST is rather large, so it would

probably be more efficient to declare these new Industry Groups explicitly by directly referring

to membership in Occupational Groups 189 to 192.

For the declaration of the Cause of Death Groups, let the notation x[l,3] be an arbitrary

shorthand for the substring operation of considering the characters 1 through 3 of the string

represented by the variable x. Then (choosing a relatively complicated example consisting of

single 3-digit codes, code ranges, 4-digit codes and exclusions), the declaration of Cause of

Death Group 75 would be as indicated in Figure 4.14.

CHAPTER 4. SOLUTION OF PROBLEM USING DEFINE 45

Declare: COD75
Select: x:DECEASED
Where: Define: < x,y >:PRIMCOD and ((x:DTHS50-68 and y[l,3] = '325' and

y ± '3254') or (x:DTHS69-78 and (y[l,3] > '310' and
y[l,3] < '315' or y = '3330') and y[4,4] ^ '5') or
(x:DTHS79-84 and (y[l,3] > '317' and y[l,3] < '319' or
y = '3301')))
(Primary Cause of Death category "Mental Retardation").

Figure 4.14: A complicated Cause of Death group.

The intension of INV(PRIMCOD) would be quite lengthy, in order to specify all the con­

tradictions that could be contained in the data, but it could be done. Similar groups could be

declared for the SECOCOD attribute, depending on need.

The last example is the declaration of a logical set consisting of all Registered Native Indians,

in Figure 4.15.

Declare: INDIAN
Select: z:DECEASED
Where: Define: (< x,y >:ETHRACE and x:DTHS50-73 and y = '15') or

(< z,z >:NATIVE and (x:DTHS74-76 and y = '1') or
(x:DTHS77-84 and y = '2'))
(Decedents with Registered Native Indian status).

Figure 4.15: Creating a logical set from two attributes.

The native indian status attribute is probably the best example of a good use of attribution

by default. One could make the necessary declarations to ensure that decedents are by default

considered to be not Registered Native Indians, as in the example given in [Gilmore 87a]. In

this case, however, membership in the set INDIAN depends upon a time-dependent reference

to the set ETHRACE, which has a fairly large domain of values from the VORIGIN set. It

could be better to explicitly declare the set NONINDIAN whose intension would be simply

x:DECEASED and not x:INDIAN.

CHAPTER 4. SOLUTION OF PROBLEM USING DEFINE 46

4 . 8 F u r t h e r C o n s i d e r a t i o n s

Declaring so many logical sets from the raw data may seem unwieldy, but once the task is

complete, the sets are available to be referred to by applications programmers and users alike.

The major advantage is that once the encoding changes and missing information codes have

been properly specified internally, there would be little further need for every person utilizing

the database to know all the details described in Chapter 3. Of course, every person utilizing

the database would still need to know most of the pre-defined logical sets and of what their

membership consists, but users must know something about the database they are using in

order to accomplish anything. Some kind of user's reference manual would still be required,

but it would be relatively simple and straightforward instead of incredibly complicated and

confusing.

The majority of the logical sets which would be declared are because of the Occupational

and Cause of Death Groups. Those groups are actually used for specific applications and are

included in this thesis for the following reasons:

1. It is necessary to group the Occupations and Causes of Death in some way, since it is not

possible to adequately handle the encoding changes at the level of individual codes.

2. Grouping reduces the 1000 different Occupation codes and the 11,000 different Cause of

Death codes down to more manageable numbers of groups.

3. The groups chosen are representative and serve as good examples of how a data manager

might use DEFINE to declare arbitrary sets, even when those sets involve complicated

encoding changes and complicated missing information specifications.

A data manager creating a database from DVS-Ext could choose to create "bare minimum"

groupings (grouping together only those codes that cannot be handled individually). Such

groupings would give applications programmers and users more flexibility to declare sets as

required, rather than being stuck with the 206 Occupational Groups and 165 Cause of Death

Groups detailed in Appendices D and E. It would make sense to be as broad as possible in

CHAPTER 4. SOLUTION OF PROBLEM USING DEFINE 47

declaring sets in the actual database specification, to avoid the need to refer to the encoding

changes and missing information specifications for some unforseen application.

C h a p t e r 5

C o n c l u s i o n s

Chapter 1 gave an introduction to the topic of handling "dirty" data with a database manage­

ment system, and a motivation for why one would want to do so. Chapter 2 provided definitions

and examples of the types of problem data considered, namely time-variant encodings and de-

codings, "unknown" null values, "not applicable" null values, and "invalid" null values. Chap­

ter 2 also gave a review of previous attempts to include processing of problem data in database

management systems, and indications of why the approaches were not completely satisfactory.

Chapter 3 gave detailed descriptions of the intricacies that would be involved in declaring and

processing an example data set called DVS-Ext. The example data set is one that really exists,

and has incredibly complicated specifications for interpretation of the encoded data values.

Chapter 4 introduced the database declaration/manipulation/query language called DEFINE.

Chapter 4 then showed (briefly) how one might declare the database version of DVS-Ext in

order to include the interpretation specifications for each field (attribute) in the structure of

the database itself. The result is to remove most of the worry and fuss about the specifications

from the minds of users and applications programmers.

5 . 1 A c c o m p l i s h m e n t s

The set theory and first-order logic of DEFINE allow quite straightforward handling of time-

variant encodings or decodings. Simply declare logical sets from the actual codes, specifying

48

CHAPTER 5. CONCLUSIONS 49

(for example) that males are defined by code "1" during the time period 1950 - 1976 and

code "M" during the time period 1977 - 1984. With this method, the actual code stored in

the memory of the computer remains unchanged, while at the same time a "logical recoding"

has taken place. Different codes can be treated as identical, or the same code can be treated

differently, depending on the how the encodings have been altered over time. Since the actual

data remains unchanged, it can still be referred to if necessary, and in the case of DVS-Ext,

it can be easily merged with or compared to the original full death registration file. Once the

logical sets have been declared, there should be very little need to refer back to the original time-

variant encoding specifications. In that sense, the problem of handling time-variant encodings

has been solved.

Assuming none of the three types of missing information can be totally avoided, dealing

with such values is more complicated than dealing with time-variant encodings. If different

applications need to treat each of the three types of missing information in two different ways,

it could be necessary to declare as many as six different versions of the same logical set. It

could be quite confusing when one wants to know which interpretation of missing information

to use. It seems reasonable that most of the time only one interpretation of missing values is

necessary, usually the default (exclude entities associated with those null values from all query

results, database operations, and function calculations). When special treatment is required,

it is normally only one type of special treatment. The method proposed is to declare UNK,

N/A, and INV sets for each attribute for which each of those types of missing information

exist. Then the intension of any query would be expanded (by default, except where those

sets are not declared) to exclude entities with attribute values belonging to any of the three

sets UNK, N/A, or INV. For cases where it is reasonable to assume a certain value for an

attribute when there is a lack of contradictory data, the method of attribution by default can

be used when the domain is relatively small. The problem of handling missing information in

a database management system is solved in the sense that with careful declaration of logical

sets, it is possible to treat each type of missing information in any way one wishes. When the

declarations are complete, even queries asking for negative information are answered in a way

CHAPTER 5. CONCLUSIONS 50

that makes intuitive sense. The user or applications programmer need not worry or fuss about

all the different missing information specifications unless some treatment is required that has

not already been provided for.

5 . 2 R e m a i n i n g W o r k

The major difficulty that has yet to be overcome is actual implementation of DEFINE. Some

success has been accomplished, but there are several implementation problems that have defied

satisfactory solution. Only more research and hard work can resolve the problems and bring

implementation of DEFINE closer to realization. Encouragingly, the obstacles do not seem to

be insurmountable.

It is not possible to forsee all desired future user views and different applications in advance,

so it is likely that someone at some time will need to review the details of the time-variant en­

codings and missing information for some task. However, with a proper survey of user needs, it

should be possible to declare enough logical sets of different types (for example, treating missing

information in different ways) to satisfy the vast majority of future applications. The need to

refer to all the quirks of the DVS-Ext database (for example) cannot be completely eliminated,

but most users and applications programmers would not rarely require such reference. Each

instance of problem data that can be handled by the database management system itself results

in freeing users and applications programmers from dealing with that particular difficulty, most

of the time.

One possible objection to the methods described in this thesis is that it could be necessary

to declare many different logical sets. As indicated in the previous section, it could even be

necessary to declare several different versions of the "same" set, each with a different treatment

of one of the types of missing information. Most of the logical sets are defined sets, though,

meaning that membership in those sets is determined by the system rather than being physically

stored in memory. Except for possible confusion over the semantics of each of the defined logical

sets, the number of such sets is therefore unimportant.

CHAPTER 5. CONCLUSIONS 51

The approach to missing information in this thesis could be considered a curse as well as a

blessing. Flexibility in the way missing information is handled has been substituted for rigid

formal treatment of missing information. This methodology allows almost any treatment of null

values that a user or applications programmer can think of, but also leaves open the possibility

of accidentally declaring an inappropriate treatment of nulls. Perhaps more research could be

done on how to prevent users or applications programmers from declaring unsensible treatments

of each of the three types of missing information.

One area of work that has not been included is a treatment of the general problem of

partial information, as described in Chapter 2. Since DEFINE is based on set theory, and

partial information replaces a single value for an attribute with a set of possible values, it

seems possible to include some kind of processing of partial information in DEFINE. Such

methods for handling partial information is left to future research.

Just as the previous work on null values has been restricted to the relational model, so

the methods described herein are currently only supported within the set model. Perhaps

the treatment of time-variant encodings can be included in some of the more recent research

involving use of abstract data types within the relational model context. As described in

Chapter 2, there has been some success in handling both Type 1 and Type 2 missing information

within the relational framework. For Type 3 missing information, recoding the "invalid" values

to the "unknown" null value seems to be a reasonable approach (except for compatibility with

the original data). A value that is not valid may give some clue to the correct value (i.e. a keying

error where one digit is wrong), but the correct value is still unknown. With this recoding,

Type 3 missing information can be treated identically to Type 1 missing information. The

proposed formalisms for dealing with missing information within the relational model are still

too inflexible. However, a combination of using abstract data types and first-order logic in the

relational model may permit enough flexibility to use the approach detailed in this thesis.

CHAPTER 5. CONCLUSIONS 52

5 . 3 F i n a l C o m m e n t s

The topic of handling problem data within a database management system has been advanced

in the following ways:

1. A method of dealing with time-variant encodings and decodings has been provided,

whereas no mention of time-variant encodings or decodings was found during an intensive

literature search. Therefore, this thesis has introduced, discussed, and solved the problem

of handling a data inconsistency which has not been dealt with previously.

2. Three distinct types of missing information have been defined, and a method of processing

all three types has been given. The focus of most of the literature has been on Type

1 missing information only, with some reference to Type 2 missing information. The

literature has seemed to ignore the possible existence of Type 3 missing information.

Most importantly, the proposed method of handling missing information is extremely

flexible, in contrast to the rigid treatments described in the literature.

3. The original desired outcome of having the database management system itself handle all

of the quirks of "dirty" data (such as that of DVS-Ext) has been largely realized. Given

that it is impossible to forsee all future needs, a data declaration that encompasses most

future needs is quite acceptable.

B i b l i o g r a p h y

[Ariav 86] Ariav G., A Temporally Oriented Data Model, A C M Trans. Database Syst.,

Vol. 11, #4, Dec. 1986, pp 499-527.

[Baroody 81] Baroody A.J.Jr., DeWitt D.J., An Object-Oriented Approach to Database

System Implementation, A C M Trans. Database Syst., Vol. 6, #4, Dec. 1981,

pp 576-601.

[Biskup 81] Biskup J. , A Formal Approach to Null Values in Database Relations, in

Advances in Data Base Theory (eds. Gallaire H., Minker J. , Nicolas J.M.),

Plenum NY, 1981.

[Biskup 83] Biskup J. , A Foundation of Codd's Relational Maybe-Operations, A C M Trans.

Database Syst., Vol. 8, #4, Dec. 1983, pp 608-636.

[Clifford 83] Clifford J. , Warren D.S., Formal Semantics for Time in Databases, A C M Trans.

Database Syst., Vol. 8, #2, Jun. 1983, pp 214-254.

[CODAS YL 71] Data Base Task Group Report (ed. CODAS YL), A C M NY, 1971.

[Codd 70] Codd E.F. , A Relational Model of Data for Large Shared Data Banks, Com-

mun. A C M , Vol. 13, #6, Jun. 1970, pp 377-387.

[Codd 75] Codd E.F. , Understanding Relations (Installment 7), FDT Bulletin of

ACM/SIGMOD 7, Vol. 3-4 (1975), pp 23-28.

[Codd 79] Codd E.F. , Extending the Database Relational Model to Capture More Mean­

ing, A C M Trans. Database Syst., Vol. 4, #4, Dec. 1979, pp 397̂ 434.

53

BIBLIOGRAPHY 54

[DBS 48] Standard Industrial Classification Manual, Catalogue 12-501B, Dominion Bu­

reau of Statistics, Ottawa, 1948.

[DBS 51] Classification of Occupations, Ninth Census of Canada, Dominion Bureau of

Statistics, Ottawa, 1951.

[DBS 60] Standard Industrial Classification Manual, Catalogue 12-501, Dominion Bu­

reau of Statistics, Ottawa, 1960.

[DBS 61] Occupational Classification Manual, 1961 Census of Canada, Dominion Bureau

of Statistics, Ottawa, 1961.

[Fry 78] Fry J.P., Birss E. , et. al., An Assessment of the Technology for Data- and

Program-Related Conversion, Proc. AFIPS National Computer Conf., 1978,

pp 887-907.

[Gilmore 86] Gilmore P . C , Natural Deduction Based Set Theories: A New Resolution of

the Old Paradoxes, J. Symbolic Logic, Vol. 51, #4, May 1986, pp 393-411.

[Gilmore 87a] Gilmore P . C , Formalizing Attribution by Default, Tech. Rep. 87-26, Univ. Brit.

Col., Jul. 1987.

[Gilmore 87b] Gilmore P . C , Concepts and Methods for Database Design, Tech. Rep. 87-31,

Univ. Brit. Col., Aug. 1987.

[Grant 77] Grant J . , Null Values in a Relational Database, Inform. Processing Letters,

Vol. 6, #5, Oct. 1977, pp 156-157.

[Grant 79] Grant J. , Partial Values in a Tabular Database Model, Inform. Processing

Letters, Vol. 9, #2, Aug. 1979, pp 97-99.

[Hammer 81] Hammer M . , McLeod D., Database Description with SDM: A Semantic

Database Model, A C M Trans. Database Syst., Vol. 6, #3, Sept. 1981, pp

351-386.

BIBLIOGRAPHY 55

[Lien 79] Lien Y .E . , Multivalued Dependencies with Null Values in Relational

Databases, Proc. Fifth Inter nat. Conf. on Very Large Databases, Oct. 1979,

pp 61-66.

[Lipski 79] Lipski W.Jr., On Semantic Issues Connected with Incomplete Information

Databases, A C M Trans. Database Syst., Vol. 4, #3, Sept. 1979, pp 262-296.

[Lipski 81] Lipski W., On Databases with Incomplete Information, J. A C M , Vol. 28, #1,

Jan. 1981, pp 41-70.

[McGee 77] McGee W.C., The Information Management System IMS/VS, IBM Syst. J. ,

Vol. 16, #2, Jun. 1977, pp 84-168.

[NCHS 68] International Classification of Diseases, Injuries and Causes of Death,

Adapted 8th Revision, U.S. Dept. H.E.W., Public Health Service, National

Center for Health Statistics, Washington D . C , 1968.

[NCHS 78] International Classification of Diseases, 9th Revision, Clinical Modification,

U.S. Dept. H.E.W., Public Health Service, National Center for Health Statis­

tics, Washington D . C , 1978.

[Osborn 86] Osborn S.L., Heaven T.E . , The Design of a Relational Database System with

Abstract Data Types for Domains, A C M Trans. Database Syst., Vol. 11, #3,

Sept. 1986, pp 357-374.

[Reiter 78] Reiter R., On Closed World Data Bases, in Logic & Data Bases (eds. Gallaire

H., Minker J.), Plenum NY, 1978.

[Rybinski 87] Rybinski H., On First-Order Logic Databases, A C M Trans. Database Syst.,

Vol. 12, #3, Sept. 1987, pp 325-349.

[Shipman 81] Shipman D.W., The Functional Data Model and the Data Language DAPLEX,

A C M Trans. Database Syst., Vol. 6, #1, Mar. 1981, pp 140-173.

BIBLIOGRAPHY 56

[Spyratos 87] Spyratos N., The Partition Model: A Deductive Database Model, A C M Trans.

Database Syst., Vol. 12, #1, Mar. 1987, pp 1-37.

[WHO 48] Manual of the International Statistical Classification of Diseases, Injuries and

Causes of Death, 6th Revision, World Health Organization, Geneva, 1948.

[WHO 57] International Classification of Diseases, 7th Revision, World Health Organi­

zation, Geneva, 1957.

[Wong 80] Wong E. , A Statistical Approach to Incomplete Information in Database Sys­

tems, A C M Trans. Database Syst., Vol. 7, #3, Sept. 1982, pp 470-488.

[Vassiliou 79] Vassiliou Y., Null Values in Database Management: A Denotational Seman­

tics Approach, Proc. ACM/SIGMOD Internat. Symposium on Management of

Data, May 1979, pp 162-169.

[Vassiliou 80] Vassiliou Y., Functional Dependencies and Incomplete Information, Proc.

Sixth Internat. Conf. on Very Large Databases, Oct. 1980, pp 260-269.

Appendix A

New Syntax of DEFINE

Dr. Gilmore has recently improved the syntax of DEFINE declarations, to make them more

compact and less wordy. Refer to Figure 4.1 and the remainder of Section 4.2 in order to relate

the new syntax to the original syntax.

The new syntax for declaration of base sets is

S E T N A M E for {DOMAIN(SETNAME) | degrees | comment}.

D O M A I N (S E T N A M E) is as previously described, and if left blank, the set is primitive. The

degrees are <LL,LU>, <RL,RU> as described in Section 4.2. The degrees are not specified

(left blank) for primitive sets. The comment is unchanged from the old syntax.

The new syntax for declaration of defined sets is

S E T N A M E for {domain + variable declaration | INTENSION(SETNAME) | comment}.

The "domain + variable declaration" part takes the form

vorto6/e:DOMAIN(SETNAME)

with the same semantics as the Select clause from the old syntax. INTENSION(SETNAME)

is the same as described in Section 4.2. The comment is unchanged from the old syntax.

57

Appendix B

Encoding Schema for the VORIGIN Set

Codes for racial or ethnic origin are shown in parentheses, if different from the code for place
of birth (country of origin).

00 = Unknown

01 = Prince Edward Island

02 = Nova Scotia

03 = New Brunswick

04 = Quebec

05 = Ontario

06 = Manitoba

13 = Barbados or West Indies

18 = Other British Possessions in America

(British West Indian race = 37)

(Eskimo or Inuit race = 14)

(Ward Indian race = 15)

07 = Saskatchewan

08 = Alberta

09 = British Columbia

10 = Yukon Territory

11 = Northwest Territories

12 = Newfoundland

17 = Canada, province not stated

(Non-ward Indian race = 16)

(Halfbreed = 17)

21 = England

22 = Northern Ireland (Irish race = 23)

23 = Irish Free State

24 = Scotland

25 = Wales

26 = Lesser Isles

27 = British NOS

31 = Australia and Mandates (race = 37)

32 = New Zealand and Mandates (race = 37)

33 = South and South West Africa (race = 37)

34 = Other British Possessions in Africa (race = 37)

35 = India or Pakistan (race = 86)

58

APPENDIX B. ENCODING SCHEMA FOR THE VORIGIN SET

36 = Other British Possessions in Asia (race = 37)

37 = Other British Possessions

41 = United States of America

42 = Mexico (race = 72)

43 = Other North American Countries (race = 72)

(Cuban, Dominican, Puerto Rican race = 72)

44 = Central American Countries (race = 72)

45 = South American Countries (race = 72)

(Brazilian race = 70, Haitian race = 92)

51 = Albania 61 = Greece 71 = Romania

52 • Austria 62 = Holland/Netherlands 72 = Spain

53 = Belgium 63 = Hungary 73 — Sweden

54 = Bulgaria 64 = Iceland 74 = Switzerland

55 = Czechoslovakia 65 = Italy 75 = Yugoslavia

56 = Denmark 66 = Latvia 76 = Other European

57 = Estonia 67 = Lithuania 77 = U.S.S.R.

58 = Finland 68 = Norway (Russian race = 79)

59 France 69 = Poland (Ukranian race = 97)

60 = German 70 = Portugal (Mennonite race = 78)

82 China 86 = Indian, Pakistan, Burma

83 = Japan or Korea 87 = Laos, Thailand, Cambodia, Vietnam

84 = Syria 88 = Indonesia, Malaysia, Philippines

85 — Turkey 89 = Other Asiatic, Fiji

91 = African Countries, not British (Black NOS = 92)

93 Other Countries (Caucasian NOS = 94) (Oriental NOS = 95)

96 — Palestine, Israel (Jewish or Hebrew race = 96)

98 — At Sea 99 = Unkown

A p p e n d i x C

E n c o d i n g S c h e m a f o r t h e V M U N I C I P S e t

001 = Alberni 051 = Matsqui 126 = Cache Creek

002 = Armstrong 052 = Mission Mun. 131 = UBC Endow. Lands

003 = Chilliwack City 053 = North Cowichan 140 = Powell River

004 Courtenay 054 = N. Vancouver Mun. 141 — Port Alice

005 — Cranbrook 055 — Oak Bay 142 — North Saanich

006 Cumberland 056 = Peachland 143 = Gold River

007 ~ Duncan 057 = Penticton 144 — Hudson Hope

008 = Enderby 058 = Pitt Meadows 145 - - Sparwood

009 — Fernie 059 = Richmond 146 - - Port Hardy

010 = Grand Forks 060 = Saanich 147 Mackenzie

Oil Greenwood 061 Salmon Arm Dist. 170 = Fort St. John

012 — Kamloops 062 Spallumcheen 171 — Squamish

013 = Kaslo 063 = Sumas 172 — Kinnaird

014 = Kelowna 064 — Summerland 173 — Marysville

015 Ladysmith 065 = Surrey 174 = Harrison Hot Springs

016 = Merritt 066 = Tadanac 175 - Invermere

017 = Nanaimo 067 = West Vancouver 176 = Ucluelet

018 = Nelson 068 = Central Saanich 177 = Ashcroft

019 New Westminster 069 = Kitimat 178 = Zeballos

020 — North Vancouver City 070 Abbotsford 179 = Sidney

021 Port Alberni 071 = Burns Lake 180 = Telkwa

022 — Port Coquitlam 072 = Creston 181 = Warfield

023 = Port Moody 073 = Gibsons Landing 182 Princeton

024 = Prince George 074 Hope 183 = Fruitvale

025 — Prince Rupert 075 = McBride 184 = Fort St. James

026 Revelstoke 076 = Mission City 185 = Lumby

60

APPENDIX C. ENCODING SCHEMA FOR THE VMUNICIP SET

027 = Rossi and 077 = New Denver 186 — Hazelton

028 Salmon Arm Village 078 = Pouce Coupe 187 = Sechelt

029 — Slocan 079 = Quesnel 188 = Montrose

030 — Trail 080 = Silverton 189 = Pemberton

031 = Vancouver 081 = Smithers 190 — Keremeos

032 = Vernon 082 = Stewart 191 — Houston

033 = Victoria 083 = Terrace 192 = Golden

034 = Kimberley 084 = Tofino 193 = Taylor

035 = Lytton 085 = Vanderhoof 194 Masset

036 = North Kamloops 086 = Williams Lake 196 — Aennofield

037 = Castlegar 087 = Dawson Creek 197 = Chetwynd

038 = Salmo 088 — Chapman Camp 198 = Valemount

039 = Lillooet 090 = Qualicum Beach 199 = Clinton

040 = Burnaby 092 — Lake Cowichan 201 — Nakusp

041 = Chilliwhack Municip. 093 = Parksville 202 = 100 Mile House

042 Coldstream 094 Oliver 203 - Port McNeill

043 - - Coquitlam 095 — Alert Bay 204 Port Edward

044 = Delta (Ladner) 096 = Comox 205 Fraser Lake

045 — Esquimalt 097 = Osoyoos 206 — Midway

046 Fraser Mills 099 = Campbell River 208 = Sayward

048 = Kent 101 — Langley City 209 Chase

049 = Langley Municip. 102 = White Rock

050 — Maple Ridge 125 = Guisachan

A p p e n d i x D

G r o u p i n g s o f O c c u p a t i o n C o d e s

Group 1951 Codes 1961 Codes Occupational Title

001 056 001,002 Advertising & Credit Managers

002 041,049 004,005 Sales Managers

003 333 008 Purchasing Agents & Buyers

004 001,011,020,040, 006,007,010 Owners & Managers N.E.S., & Government

046,047,050,052, Officials
053,054,058,059,
369

005 073 101 Civil Engineers

006 076 102,104 Mechanical Engineers

007 075 105 Electrical Engineers

008 072 108 Chemical Engineers

009 078 107,109 Other Engineers

010 066 111,147 Chemists (including Pharmacists)

011 099 112,114,119,121, Scientists (Geologists, Physicists, Biologists,

144,145,149,186, Optometrists & Other)

198,199
012 098 124 Veterinarians
013 061 129 Agricultural Professionals

014 090 131 Professors & College Principals

015 095 135 School Teachers

016 096 139 Other Teachers & Instructors

017 089 140 Physicians & Surgeons

018 069 141 Dentists

62

APPENDIX D. GROUPINGS OF OCCUPATION CODES 63

Group 1951 Codes 1961 Codes Occupational Title
019 086,087 142,143 Nurses
020 088 146 Osteopaths ic Chiropractors

021 080,880 148 Medical ic Dental Technicians
020 088 146 Osteopaths ic Chiropractors

021 080,880 148 Medical ic Dental Technicians
022 079 151 Judges ic Magistrates

023 081 153 Lawyers

024 068,085,091 161,163,169 Religious

025 063,064 171,172 Artists
026 065 174 Journalists
027 084 176 Musicians
028 062 181 Architects
029 070 182 Draughtsmen / women

030 074 183 Surveyors

031 092,097 184 Statisticians ic Actuaries
032 N/A 187 Computer Analysts ic Programmers

033 060 188 Accountants
034 067 191 Dieticians
035 094 192 Social Workers
036 082 194 Librarians
037 343 195 Interior Decorators
038 093,886 196,915 Photographers ic Photo Processing Workers

039 110 201 Bookkeepers ic Cashiers

040 113 203 Office Machine Operators

041 117 214 Shipping ic Receiving Clerks

042 205,209 221,223 Baggage Checkers ic Ticket Agents

043 119 232,234 Secretaries
044 115,312,321 212,249 Other Clerical Workers
045 111 241 Office Assistants to Doctor or Dentist
046 301,336 301,325 Retail Sales Clerks
047 304 303 Auctioneers
048 309,317 307,312,339 Door-to-Door Salesmen/women ic Pedlars

049 315 314 Commercial Travellers
050 324 316 News Vendors

APPENDIX D. GROUPINGS OF OCCUPATION CODES 64

Group 1951 Codes 1961 Codes Occupational Title

051 339 323 Service Station Attendants
052 302 327 Advertising Salesmen/women ic Agents

053 362 331 Insurance Agents

054 364 334 Real Estate Agents

055 306,366 336,338 Brokers ic Financial Salesmen/women

056 473 401 Firefighters

057 477 403 Police
058 474,479 405 Guards ic Watchmen/women

059 475,476 407,408 Members of Armed Forces
060 425 411 Boarding House ic Hotel Keepers

061 458 412 Stewards / Stewardesses

062 452 413 Cooks
063 443 414,415 Bartenders ic Waiters/Waitresses

064 429 416 Nursing Aides

065 432 417 Porters
066 456 418,419 Domestics
067 492 431,433 Entertainers ic Athletes
068 402 451 Barbers ic Hairdressers
069 414 452 Launderers ic Dry Cleaners

070 416 453 Elevator Operators

071 409,422 454 Janitors
072 435 455 Funeral Directors
073 418 456 Guides
074 403,449,497,499 457,459 Recreation Attendants
075 201,203,223 510 Transport Inspectors ic Supervisors

076 207 520 Aircraft Pilots

077 231,233 531,532 Locomotive Engineers ic Fire-Stokers

078 211,219,245 534,535,537 Locomotive Conductors, Brake Workers &

Switchers
079 215 541 Deck Officers on Ship

080 225 543 Engineering Officers on Ship

081 241 545 Deck Ratings

082 227 547 Engine Room Ratings

APPENDIX D. GROUPINGS OF OCCUPATION CODES 65

Group 1951 Codes 1961 Codes Occupational Title

083 213,239 551,561 Bus Drivers
084 217 552 Taxi Drivers
085 247,249 554,556,563 Truck Drivers
086 229,251 569 Other Transport Workers N.E.S.

087 261,265 570 Communications Inspectors ii Supervisors

088 274,278 581,582 Radio ii Television Announcers ii
Technicians

089 281,288 584,585 Telephone Operators

090 271 587 Postal Workers
091 237 588 Messengers

092 500,501 601,603 Farmers ii Farm Managers

093 504 605 Farm Labourers
094 506,509 607,609 Gardeners ii Nursery Workers

095 561,564,568 611,613,615 Loggers ii Forest Rangers

096 550 631 Fishermen / women

097 554 633 Trappers ii Hunters

098 601 651 Mine ii Quarry Supervisors

099 609 652 Prospectors

100 603,607,615 653,654,657 Miners ii Mine Labourers
101 605 655 Mine Mill Workers
102 610 656 Gas ii Oil Well Drillers
103 619 659 Quarry ii Related Workers

104 707 701 Millers of Flour ii Grain
105 701 702 Bakers
106 703 703 Meat Cutters
107 706 704 Meat Canners, Curers ii Packers

108 705 705 Fish Canners ii Packers
109 704,709,710 706,707,708,709 Other Food Processing Workers

110 731,733,737,739 711,713,719,768 Tire Builders, Vulcanizers ii Other Rubber
Workers

111 752 721 Leather Cutters
112 755,756 722,724 Shoemakers
113 757 916 Tanners

APPENDIX D. GROUPINGS OF OCCUPATION CODES 66

Group 1951 Codes 1961 Codes Occupational Title

114 753,754,759 729 Other Leather Workers

115 760,761,762,763, 731,732,733,734, Textile Workers
764,765,767,768, 735,736,737,738,
769 739

116 772,774,775,782, 741,742,745,746, Tailors, Dressmakers ic Other Fabric

785,789 749 Workers
117 743 743 Furriers
118 777,780 744 Milliners
119 796 747 Upholsterers

120 915 751 Carpenters

121 792 752 Cabinet ic Furniture Makers
122 795 754 Sawyers

123 797 756 Wookworking Machine Operators

124 790 758 Graders ic Scalers
125 791,793,794,799 759 Woodworking Occupations N.E.S.

126 872 761 Oil Refinery Operators

127 805,809,877 763,765,766 Pulp Preparers

128 876,879 769 Chemical ic Related Workers
129 814 771 Typesetters

130 817 772 Printing Press Operators

131 819 779 Printing Occupations N.E.S.

132 815 773,775 Photo-Engravers ic Lithographers

133 812,813 776,778 Bookbinders
134 831 781 Metal Furnace Workers
135 832,854 782,783 Metal Heat TVeaters ic Rolling Mill

Operators

136 822 784 Blacksmiths
137 845,846 786,787 Moulders ic Coremakers
138 847,851,858,859 788,789,819,912 Other Metal Mill Workers
139 826,834 791,793 Jewellers, Watchmakers ic Metal Engravers

140 856 801 Tool ic Die Makers
141 836 802 Machinists
142 827 803 Filers ic Grinders
143 844 805 Millwrights

APPENDIX D. GROUPINGS OF OCCUPATION CODES 67

Group 1951 Codes 1961 Codes Occupational Title

144 828,855 806,811 Sheet Metal Workers
145 835 808 Metalworking Machine Operators

146 934 810 Plumbers
147 853 812 Riveters
148 824,935 813 Boilermakers ic Structural Iron Workers
149 825 815 Electroplaters ic Dip Platers

150 857 817 Welders
151 850 818 Polishers ic Buffers
152 820 917 Metal Inspectors ic Supervisors

153 837 821 Aircraft Mechanics
154 838 822 Auto Mechanics
155 840 825 Railroad Mechanics
156 841 824,829 Office Machine ic Other Machine Repairers

157 924 831 Electricians
158 895 833 Power Station Operators

159 267,299 838 Telephone Servicemen/women ic Line

Workers
160 821,852 832,835,839 Electric ic Electronic Assemblers ic Repairers

161 494 836 Projectionists

162 927 841,843 Painters ic Glaziers
163 910 851 Construction Supervisors

164 911 852 Construction Inspectors

165 913 854 Bricklayers ic Tilesetters

166 917 855 Cement Finishers
167 932 856 Plasterers
168 939 857,859 Other Construction Workers (including

Insulators)

169 885 861 Lens Grinders ic Opticians

170 864 762,862 Glass ic Ceramic Furnace Workers

171 867 864 Stone Cutters

172 860,869 869 Clay, Glass ic Stone Workers

173 890,897 871,872 Stationary Engineers

174 892 873 Motormen / women

APPENDIX D. GROUPINGS OF OCCUPATION CODES 68

Group 1951 Codes 1961 Codes Occupational Title

175 894 874 Crane ic Derrick Operators

176 899 875 Riggers ic Cable Splicers

177 922 876,877 Heavy Equipment Operators

178 896 878 Oilers ic Greasers
179 235 881 Longshoremen / women

180 243 890 Railway Track Workers

181 700 900 Supervisors ic Foremen/women N.E.S.

182 720 911 Tobacco Workers
183 328,883 913 Bottlers, Wrappers ic Labelers

184 800 914 Paper Product Makers

185 920 883 Warehouse Workers
186 322,349 918 Inspectors ic Graders N.E.S.

187 798,889 919 Production Process Workers N.E.S.

188 950 920 Labourers N.E.S.
189 960 960 Permanently Disabled

190 961 961 Occupation coded as "Retired"

191 962 962 Students ic Mentally Handicapped

192 963 963 Homemakers
193 999 980,999 Prisoners, Unemployed, or Occupation Not

Stated
194 Blank, Dash, or Blank, Dash, or Invalid or Miscoded Occupations

Invalid Invalid
195 001,011,020,040, 001,002,004,005, All Owners ic Managers

041,046,047,049, 006,007,008,010
050,052,053,054,
056,058,059,333,
369

196 072,073,075,076, 101,102,104,105, All Professional Engineers

078 107,108,109

197 086,087,429 142,143,416 All Nurses

198 215,225,227,241 541,543,545,547 All Sailors

199 601,603,605,607, 651,652,653,654, All Mine, Quarry & Related Workers

609,610,615,619 655,656,657,659

APPENDIX D. GROUPINGS OF OCCUPATION CODES 69

Group 1951 Codes 1961 Codes Occupational Title

200 752,753,754,755, 721,722,724,729, All Leather Workers
756,757,759 916

201 790,791,792,793, 751,752,754,756, All Woodworkers
794,795,797,799, 758,759
915

202 814,817,819 771,772,779 All Printers
203 820,822,831,832, 781,782,783,784, All Metal Mill Workers

845,846,847,851, 786,787,788,789,
854,858,859 819,912,917

204 961 ,Blank,Dash, 961,Blank,Dash, Occupation Unknown

Invalid Invalid
205 960,962,963,999 960,962,963,980, Disabled, Students, Homemakers &

999 Unemployed

206 001 to 999 001 to 999 All Occupations

A p p e n d i x E

G r o u p i n g s o f C a u s e o f D e a t h C o d e s

Note: 3-digit codes include any 4th digit (or character), except those 4-digit codes
which are specifically excluded (to be included elsewhere). A dash indicates
a range of consecutive codes.

Group ICD-7 ICD-8 ICD-9 Cause of Death Title
001 001 010 0114 Silico-Tuberculosis
002 002-008, 011-019 010-018, Tuberculosis

010-019 137
(ex. 0114)

003 040-064, 000-009, 001-009, Bacterial Diseases
764 020-025, 020-025,

0261,027, 0261,027,
030-039 030-038,

040,041
004 080,081, 040-046, 045-057, Viral Diseases

0821, 050-057, 060,061,
084-091, 060,061, 065,066,
093, 067,068, 072-079,

095,096, 072-079 138,1391,
696,697 7711 (ex.

0498,0499)
005 082,083 062-066 0498,0499, Encephalitis

(ex. 0821) 062-064,
1390

006 092 070 070 Hepatitis

70

APPENDIX E. GROUPINGS OF CAUSE OF DEATH CODES 71

Group ICD-7 ICD-8 ICD-9 Cause of Death Title

007 094 071 071 Rabies
008 071, 080-088 080-087 Rickettsial Diseases

100-108,
110-117,
120,121

009 020-029 090-097 090-097 Syphilis

010 030-039 098,099 098,099 Other Venereal Diseases
Oil 070, 026, 026, Other Spirochaetal Diseases

072-074 100-104 100-104
(ex. 0261) (ex. 0261)

012 131-134 110-117 039, Mycoses

110-112,
114-118

013 122-130, 089, 088, Parasitic Diseases
135-138 120-136 120-136,

139 (ex.
1390,1391)

014 140 140 140 Cancer: Lip

015 141-144 141-145 141-145 Cancer: Mouth
016 145 146 146 Cancer: Oropharynx

017 146 147 147 Cancer: Nasopharynx

018 147 148 148 Cancer: Hypopharynx

019 148 149 149 Cancer: Pharynx Unspecified

020 150 150 150 Cancer: Esophagus

021 151 151 151 Cancer: Stomach
022 152 152 152 Cancer: Small Intestine
023 153 153 153 Cancer: Colon
024 154 154 154 Cancer: Rectum
025 155 155 155 Cancer: Liver

(ex. 1551) (ex. 1552)

026 1551 156 156 Cancer: Gallbladder
027 157 157 157 Cancer: Pancreas

028 158,159 158,159 158,159 Cancer: Other Digestive Organs

029 160 160 160 Cancer: Nose & Nasal Sinus

APPENDIX E. GROUPINGS OF CAUSE OF DEATH CODES 72

Group ICD-7 ICD-8 ICD-9 Cause of Death Title

030 161 161 161 Cancer: Larynx

031 162,163 162 162 Cancer: Lung

(ex. 1622)
032 1622 1630 163 Cancer: Pleural Cavity

033 164 163 164,165 Cancer: Mediastinum
(ex. 1630) (ex. 1640,

1641)
034 196 170 170 Cancer: Bone
035 197 171 1641,171 Cancer: Soft Tissue
036 190 172 172 Cancer: Melanoma

(ex. 1725)
037 191 173 173,1877 Cancer: Other (Non-Melanoma) Skin

(ex. 1735)
038 170 174 174,175 Cancer: Breast
039 171 180 180 Cancer: Cervix
040 173 181 181 Cancer: Chorionepithelioma

041 172,174 182 179,182 Cancer: Endometrium
042 175 183 183 Cancer: Ovary

043 176 184 184 Cancer: Other Female Genital
044 177 185 185 Cancer: Prostate
045 178 186 186 Cancer: Testis
046 179 1725,1735, 187 Cancer: Other Male Genital

187 (ex. 1877)
047 181 188 188 Cancer: Bladder

(ex. 1817)
048 180 189 189 (ex. Cancer: Kidney

(ex. 1899) 1893,1894,
1898,1899)

049 1817 1899 1893,1894, Cancer: Other Urinary Organs

1898,1899
050 192 190 190 Cancer: Eye

051 193 191,192 191,192 Cancer: Brain & Central Nervous System

052 194 193 193 Cancer: Thyroid

053 195 194 1640,194 Cancer: Other Endocrine Glands

APPENDIX E. GROUPINGS OF CAUSE OF DEATH CODES 73

Group ICD-7 ICD-8 ICD-9 Cause of Death Title

054 156,165, 195-199 1552, Cancer: Other & Unspecified

198,199 195-199
206,207

055 200 200 200 (ex. Cancer: Lymphosarcoma

(ex. 2002) 2002,2008)
056 201 201 201 Cancer: Hodgkin's Disease

057 2002,202 202 2002,2008, Cancer: Other Lymphoma

(ex. 2021) 202,2053,
2290
(ex. 2021)

058 205 2021 2021 Cancer: Mycosis Fungoides

059 203 203 203 Cancer: (Multiple) Myeloma

060 204 204-207 204-208 Cancer: Leukemia

(ex. 2053,
2071)

061 294 208,2890 2071,2384, Cancer: Polycythaemia

2890
062 2923 209,2858 2858,2898 Myelofibrosis

063 223 224,225 224,225 Benign Neoplasm of Brain & Central

Nervous System

064 210-220, 210-228, 210-229 All Benign Neoplasms

222-229 7571 (ex. 2117,
2290)

065 237 238,7434 2340, Unspecified Neoplasm of Brain & Central

2375,2376, Nervous System

2377,2379,
2396,2397

066 230-239 230-239, 230-239 All Unspecified Neoplasms

7434 (ex. 2384)
067 250-254 240-246 240-246, Diseases of Thyroid

3762
068 260 250 250 Diabetes

APPENDIX E. GROUPINGS OF CAUSE OF DEATH CODES 74

Group ICD-7 ICD-8 ICD-9 Cause of Death Title

069 270-277 251-258 2117, Diseases of Other Endocrine Glands

251-259
070 280-289 260-274, 260-272, Metabolic Deficiency States

276-279 274,275,
277-279,
579

071 2924 284 284 Aplastic Anaemia

072 290-293 280-285 280-285 All Anaemias
(ex. 2923) (ex. 2858) (ex. 2858)

073 295-299 275, 273, Other Diseases of Blood ic Blood Forming

286-289 286-289 Organs

(ex. 2890) (ex. 2890,
2898)

074 300-324, 290-309 290-316 Psychoses ic Neuroses

326,6881
075 325 310-315, 317-319, Mental Retardation

(ex. 3254) 3330 (ex. 3301
3105,3115,
3125,3135,
3145,3155)

076 340-344 320-324 320-326 Meningitis ic Encephalitis

077 345 340 340 Multiple Sclerosis

078 350-352, 330-333, 330-336, Other Central Nervous System Diseases

355-357, 341-344, 341-344,
7440,7818 347-349, 347-349,

7330,7817 3561,358,
(ex. 3330) 359

(ex. 3301)
079 353 345 345 Epilepsy

080 354 346 346 Migraine

081 360-369 350-358 337, Diseases of Facial Nerves
350-357,
7292
(ex. 3561)

APPENDIX E. GROUPINGS OF CAUSE OF DEATH CODES 75

Group ICD-7 ICD-8 ICD-9 Cause of Death Title

082 370-398, 360-389, 360-367, Eye ic Ear Diseases

7813 7813 3680,3685,
3686,
369-389
(ex. 3762,
3763,3765,
3795)

083 400-402, 390-398 390-398 Rheumatic Heart Disease

410-416 (ex. 3949,
3959,3969)

084 420 410-414 410-414 Acute Heart Disease
085 420-422 3949,3959, 410-414, Arteriosclerotic Heart Disease

3969, 424,4290,
410-414, 4291
424,428

086 440-447 400-404 401-405 Hypertension with or without Other Heart
Disease

087 430-434, 420-423, 415-417, Other Diseases of Heart
7824 425-427, 420-423,

429,7824 425-429
(ex. 4151,
4253,4290,
4291)

088 330-334 430-438 430-438 Cerebral Haemorrhage

089 450-456, 440-448, 4151, Diseases of Circulatory System

460-468 450,451, 440-444,
453-458 446-448,

451,
453-459,
7854

090 470-475, 460-466 460-466 Acute Upper Respiratory Infections

500
091 480-483 470-474 487 Influenza

092 490-493 480-486 480-486 Pneumonia

093 501,502, 490-492 490-492 Bronchitis ic Emphysema

5271

APPENDIX E. GROUPINGS OF CAUSE OF DEATH CODES 76

Group ICD-7 ICD-8 ICD-9 Cause of Death Title

094 241-243, 493,507, 477,493, Asthma ic Allergies

245 708 708
095 240, 500-506, 470-476, Other Infectious Respiratory Diseases

510-517 508 478
096 518 510 510 Empyema

097 519 511 511 Pleurisy

098 520 512 512 Pneumothorax
099 521 513 513 Abscess on Lung

100 522 514 514 Hypostasis of Lung

101 5230 5150 502 Silicosis
102 5232 5152 501 Asbestosis
103 001,523, 010,515, 0114,495, All Occupational Lung Disease

524 516 500-508
104 525-527 517-519 494,496, Other Chronic Lung Disease

(ex. 5271) 515-519
105 530-538 520-529 520-529 Diseases of Mouth ic Dentition
106 539 530 530 Diseases of Esophagus

107 540-542 531-534 531-534 Intestinal Ulcer
108 543-545, 535-537, 535-537 Other Disorders of Stomach & Duodenum

7842 7842
109 550-553 540-543 540-543 Appendicitis

110 560-561 550-553 550-553 Hernia
111 570,571 560,561 558,560 Intestinal Obstruction
112 572 562,563 555,556, Ulcerative Colitis

562
113 573-578, 564-569, 557, Peritonitis ic Other Intestinal Diseases

7845,7858 7845,7857 564-569,
578

114 580,581 570,571 570,571 Cirrhosis of Liver
115 582,583 452,572, 452,572, Other Diseases of Liver

573 573
116 584-586 574-576 574-576 Diseases of Gallbladder

117 587 577 577 Diseases of Pancreas

APPENDIX E. GROUPINGS OF CAUSE OF DEATH CODES 77

Group ICD-7 ICD-8 ICD-9 Cause of Death Title

118 590-594, 580-584, 580-594 Nephritis ii Other Kidney Diseases

600-604, 590-594,
792 792

119 605-609, 595-599, 595-599 Infections of Bladder ii Urethra
7892,7894 7891,7893

120 610-612 600-602 600-602 Prostatitis

121 613-617, 603-607, 603-608 Orchitis ii Other Male Genital Diseases
7866 7866

122 620,621 610,611 610,611 Cystic Breast Disease

123 622-626, 612-616, 614-629 Diseases of Ovaries ii Uterus
630-637 620-629 (ex. 6250,

6251,6256)
124 640-652, 630-645, 630-648, Pregnancy ii Complications of Pregnancy

660, 650-662, 650-676
670-678, 670-678
680-689
(ex. 6881)

125 221,244, 680-686, 680-686, Skin Diseases
690-695, 690-698, 690-698,
698, 700-707, 700-707,
700-716 709 709,7293
(ex. 7054,
7100,7102)

126 720-727, 710-715, 711-716, Arthritis ii Rheumatism
7875 717,718, 7193,720,

7287 7217,7219,
7235,7242,
7245,7260,
7262,7269,
7282,7290,
7291

127 730 720 730 Osteomyelitis

128 7054,7100, 716, 710, Diseases of Bones, Joints, Tendons ii Fascia

731-738, 721-738, 717-719,
740-747, 787 721-729,

APPENDIX E. GROUPINGS OF CAUSE OF DEATH CODES 78

Group ICD-7 ICD-8 ICD-9 Cause of Death Title

749,787 (ex. 7287, 731-739
(ex. 7440, 7330,7876) (ex. 7193,
7875) 7217,7219,

7235,7242,
7245,7260,
7262,7269,
7282,7290,
7291,7292,
7293)

129 3254,7102, 3105,3115, 4253, Congenital Anomalies

748, 3125,3135, 740-759,
750-759 3145,3155, 7786

740-759
(ex. 7434,
7571)

130 760-763, 760-779 760-779 Perinatal Conditions
765-776 (ex. 7711,

7786)
131 780-786, 780-786, 276,368, Symptoms & Ill-Defined Conditions

7877, 7876, 3763,3765, (including Senility)

788-791, 788-791, 3795,6250,
793-795 793-796 6251,6256,
(ex. 7813, (ex. 7813, 780-799
7818,7824, 7817,7824, (ex. 3680,
7842,7845, 7842,7845, 3685,3686,
7858,7866, 7857,7866, 7854)
7892,7894) 7891,7893)

132 800-302 800-807 800-807 Accident: Railway

133 810-825, 810-823, 810-829 Accident: Motor Vehicle or Road
830-S35, 825-827
840-845

134 850-858 830-838 830-838 Accident: Water Transport

135 860-366 840-845 840-845 Accident: Aircraft
136 870-S80 850-860, 850-858, Accident: Poison: Foods, Drugs, or Alcohol

868 860,865

APPENDIX E. GROUPINGS OF CAUSE OF DEATH CODES 79

Group ICD-7 ICD-8 ICD-9 Cause of Death Title
137 881-888 861-867, 861-864, Accident: Poison: Chemicals, Metals, or

869 866 Solvents
138 890-395 870-877 867-869 Accident: Poison: Gases or Vapours

139 900-904 880-887 880-888 Accident: Falls
140 916 890-899, 890-899, Accident: Burns

9230,9232, 9230,9232,
9239 9239

141 926-928, 900-902, 900-902, Accident: Due to Environmental Factors
930-935 904-909 904-909

142 929 910 910 Accident: Drowning

143 921,922, 911-913 911-913 Accident: Suffocation
924,925

144 920,923 914,915 914,915 Accident: Caused by Foreign Body

145 910 916 916 Accident: Struck by Falling Object

146 913 920 920 Accident: Caused by Cutting or Piercing

Object

147 911,912 927,928 846-848, Accident: Other Industrial
919

148 915,919 921-923 921-923 Accident: Explosion or Shot with Projectile

(ex. 9230, (ex. 9230,
9232,9239) 9232,9239)

149 917 924 924 Accident: Caused by Hot or Corrosive

Substance
150 914 925 925 Accident: Electrocution
151 918 926 926 Accident: Due to (Ionizing) Radiation

152 940-946, 930-936, 870-876, Deaths due to Medical Treatment or Late
950-962 940-949 878,879, Effects

929-949
153 963, 950-959 950-959 Suicide

970-579
154 964, 960-969 960-969 Homicide

980-983
155 984,985 970-978 970-978 Legal Intervention

APPENDIX E. GROUPINGS OF CAUSE OF DEATH CODES

Group ICD-7 ICD-8 ICD-9 Cause of Death Title

156 936 903, 903,917, Accident: Other ic Unspecified

917-919, 918,927,
929, 928,
980-989 980-989

157 965, 990-999 990-999 War Deaths
990-999

158 800-802, 800-807, 800-807, Accident: All Accidents

810-825, 810-823, 810-838,
830-335, 825-827, 840-848,
840-345, 830-838, 850-858,
850-858, 840-845, 860-869,
860-866, 850-877, 880-888,
870-888, 880-887, 890-928,
890-895, 890-929, 980-989
900-904, 980-989
910-936

159 145-148 146-149 146-149 Cancer: All Pharynx

160 140-148 140-149 140-149 Cancer: All Pharynx ic Buccal Cavity

161 150-155, 150-159 150-159 Cancer: All Digestive Organs

157-159
162 200,202, 200,202 200,202, Cancer: All Non-Hodgkin's Lymphomas

205 2053,2290
163 140-148, 140-163, 140-165, Cancer: All Cancers

150-165, 170-174, 170-175,
170-181, 180-208, 179-208,
190-207, 2890 2290,2384,
294 2890

164 193,223, 191,192, 191,192, All Tumours of Brain ic Central Nervous

237 224,225, 224,225, System

238,7434 2340,2375,
2376,2377,
2379,2396,
2397

165 001-999 000-999 001-999 All Causes of Death

