
A G R A P H I C A L E X T E N S I O N F O R P A S C A L

B A S E D O N T H E G R A P H I C A L K E R N E L S Y S T E M

By

C Y N T H I A LOUISE S T A R R

B.S., University of Kentucky, 1975

A THESIS S U B M I T T E D IN P A R T I A L F U L F I L L M E N T O F

T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F

M A S T E R O F S C I E N C E

in

T H E F A C U L T Y O F G R A D U A T E STUDIES

(D E P A R T M E N T O F C O M P U T E R SCIENCE)

We accept this thesis as conforming

to the required standard

T H E U N I V E R S I T Y O F BRITISH C O L U M B I A

December 1987

© C Y N T H I A L . STARR, 1987

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

Department of Computer Science

The University of British Columbia
1956 Main Mall
Vancouver, Canada
V6T 1Y3

ii

Abstract

The Graphical Kernel System (GKS), the first international standard in the area of

computer graphics, was adopted by the International Standards Organization in

1985. The United Kingdom, France, Germany and the United States have also

adopted GKS as a national standard. This thesis examines the feasibility of

developing a high-level graphical extension to a general-purpose programming

language based on the GKS standard.

Because GKS was designed as a subroutine system, programming with it is

awkward. The subroutine call provides a low-level mechanism for accessing the

graphical capabilities standardized by GKS.

EZ/GKS is a high-level graphical extension to the Pascal/VS language

implementing the functionality found in GKS level 2A. The level of abstraction

for graphics programming is elevated in EZ/GKS through the use of abstract

graphical data types. Operations on graphical data types are provided by

structured graphical assignments, high-level graphical statements, graphical

expressions and system-defined functions. Complex user-defined data types may

be constructed from any of the predefined graphical data types in the usual

manner provided by Pascal.

No major syntactic or semantic difficulties were encountered during the design

and implementation of EZ/GKS. Thus, it appears that the GKS standard can indeed

be elevated successfully to a high-level graphical extension of a general-purpose

programming language.

iii

Table of Contents

Abstract ii

List of Figures v

Acknowledgment vii

Chapter 1 Introduction 1

1.1 The Problem 1

1.2 Goals 4

1.3 Contributions 6

1.3.1 GPL/I 7

1.3.2 MIRA 8

1.3.3 HL/GKS 10

1.4 Organization 11

Chapter 2 Language Design 12

2.1 Contributions and Constraints of GKS 13

2.2 Contributions and Constraints of Pascal 16

Chapter 3 Abstract Graphical Data Types 18

3.1 Individual Graphical Types 20

3.2 Compound Graphical Types 24

3.3 Summary 27

Chapter 4 Operations on Graphical Data Types 29

4.1 Structured Graphical Assignments 29

4.2 Graphical Statement Types 33

4.2.1 Graphical Commands 34

4.2.2 Graphical State Changes 37

4.2.3 High-Level References to Workstation Tables 40

4.3 Graphical Expressions 43

4.4 System Defined Functions 45

4.5 Summary 45

iv

Chapter 5 Implementation 47

5.1 Development of the Pre-Compiler 47

5.2 Translation Techniques 51

5.2.1 Simple Translation 51

5.2.2 Run-Time Library and Inquiry Functions 54

5.2.3 Translation of Attribute Values 55

5.2.4 Workstation Table Management 56

Chapter 6 Conclusion 59

References 61

Appendix A - Syntax Specification for EZ/GKS 63

Appendix B - Attribute Data Types and Values 80

Appendix C - System Defined Functions 83

Appendix D - Example Programs 84

V

List of Figures

Figure 1 The Role of GKS 2

Figure 2 Layer Model of GKS Incorporating EZ/GKS 4

Figure 3 Example of Graphical Data Types in GPL/I with Related Operations 7

Figure 4 Example of Standard Procedures, Standard Functions and

Standard Figure Types in MTRA 9

Figure 5 Translation of an EZ/GKS Program 12

Figure 6 Conceptual Access to Graphical Capabilities 13

Figure 7 Outline of the Concepts in GKS 16

Figure 8 Abstract Data Types in EZ/GKS 20

Figure 9 Colour Specification in EZ/GKS compared to the ACNS 23

Figure 10 Example of the Graphical Value Assignment 26

Figure 11 Output Primitive Types and their Compatible Bundle Attributes 27

Figure 12 Examples of Structured POINT Assignments 31

Figure 13 Examples of Structured NORMXFORM Assignments 32

Figure 14 Example of a Structured BUNDLE Assignment 32

Figure 15 Example of a Structured PATTERN Assignment 33

Figure 16 High-level Statements to Manipulate WKSTN and SEGMENT

Variables 35

Figure 17 Example of Nested OUTPUT Commands 36

Figure 18 Examples of the TRANSFORM Statement 38

Figure 19 Example of me ASF, ATTRIBUTES and BUNDLE Statements 40

Figure 20 Examples of the SEND Statement 42

Figure 21 Examples of Graphical Expressions 44

v i

Figure 22 Factor Types for Segment Transformations 45

Figure 23 Simple Translation of an EZ/GKS Statement 52

Figure 24 Translation Generated by References to Workstation

and Segment Sets 53

Figure 25 Translation Generated to Set an Attribute Value 55

vii

Acknowledgment

I express my appreciation to Dr. G. F. Schrack for his unfailing guidance and
encouragement throughout the course of this project. Thanks also to Dr. R.
Woodham for his careful reading of this document.

I thank Tektronics for their donation to the University of Plot-10 GKS. Their
contribution allowed work on the GKS Pascal Binding to begin.

I am grateful to the Computer Science Department for their financial support.

I thank Sandra Litchfield, Reeta Tyagi and the staff of Discovery Day Care for
their excellent child care. Without their help, this work would never have been
completed.

I give special thanks to my husband, Alec Hoon, for patiently waiting more than
three years for me to complete this work. I also express my appreciation to Alec
for his help proof-reading the numerous draft versions of this thesis.

1

Chapter 1

Introduction

1.1 The Problem

The Graphical Kernel System (GKS), the first international standard in the area of

computer graphics, was adopted by the International Standards Organization (ISO)

in 1985 [IS085a]. The United Kingdom, France, Germany and the United States

have also adopted GKS as a national standard. This thesis examines the feasibility

of developing a high-level graphical extension to the Pascal/VS language based

on the GKS standard.

A system to support graphics programming may be developed by designing a new

language or by enhancing the facilities of an existing host language. Developing

a new language allows unlimited creative freedom in the language design. The

development of an extensive compiler is necessary, however, resulting in a

significant lead time for implementation. The non-geometric and arithmetic

capabilities provided by a new language usually are not sufficient to support

customary programming tasks. In addition, high training costs are incurred in a

production environment educating programmers in the use of the language.

When a graphics programming language is based on an existing host language,

many of the preceding problems are avoided. Although the language design of

the graphical extension is restricted by the characteristics of the host language

chosen, significantly less time and effort are required for implementation. All

non-geometric and arithmetic functions are automatically inherited from the

2

host language. The t ra ining costs are l imi ted to the costs o f teaching experienced

programmers the speci f ics o f the graphica l extension.

A graphics sys tem based on a host language may be des igned ei ther as a

subroutine system or as a language extension. W i t h a subroutine system, routines

p r o v i d i n g g raph ica l capabi l i t ies are added to the run t ime l ib ra ry , a l l o w i n g the

system to be eas i ly extended or t ransported. N o separate p r e - c o m p i l a t i o n is

requi red o f g raph ica l app l i ca t ion programs. M o s t p r o g r a m m i n g errors however

can on ly be detected at run time, result ing i n a longer lead time necessary for the

deve lopmen t o f g r a p h i c a l a p p l i c a t i o n programs due to the ex tens ive tes t ing

required. In pract ice , subroutine systems are d i f f i cu l t to use and place a large

burden o n the programmer .

T h e G K S graphics standard serves both as a gu ide l ine for mig ra t ing graphical

functions into hardware and also as a standardized, device independent means for

access ing these g raph ica l capab i l i t i e s through software (F igure 1). G K S was

designed as a subroutine system. Al though G K S is easily extended and very

Graphical Graphical
Applications Devices

Figure 1 - The Role of GKS

3

portable, programming with it can be awkward. The subroutine calls with their

parameter lists are difficult to remember. The resulting code is hard to

understand and maintain. The standard subroutine call provides a low-level

mechanism for accessing the graphical capabilities standardized by GKS.

An alternative method by which a host language may be extended is by "the

definition of additional data types, expressions and statements not . . . found in the

original host language." [GiEn72]. Implementation of a graphical extension

requires the development of a pre-compiler or compiler extension. A

pre-compilation or extra compilation time is necessary during the development of

a graphical application program. Many programming errors can be detected

during the pre-compilation phase, however, reducing the testing required for

application programs.

The most significant benefit of a language extension is its ease of use. Given a

clean and intuitive language syntax, the graphical extension to a standard

programming language can increase the productivity of graphics programmers

while reducing training costs. The lead time necessary for application program

development is thereby reduced. The readable source code generated by using a

high level graphical extension can also cut the cost of maintenance for

application programs running in a production environment.

Pascal was selected as the host language for this high-level graphical extension

based on wide acceptance in the academic community and on characteristics of

the language itself. Pascal is an excellent language on which to base a graphical

extension. The strong typing of Pascal aids in error detection while allowing the

programmer to define new and more complex graphical data types. The use of a

4

block structure clearly depicts the scope of commands. The dynamic storage

allocation mechanism allows data structures to expand as needed throughout

program execution. All of these capabilities assisted with the design and

implementation of EZ/GKS.

1.2 Goals

EZ/GKS is a high-level graphical extension to Pascal which provides access to the

GKS subroutine system via graphical data types and high-level graphical

statements embedded within an ordinary Pascal program. The major goal of

EZ/GKS is to provide a high-level language support for graphics programming,

easing the burden imposed on the programmer by the GKS subroutine system. To

achieve this goal, the Pascal language has been extended by adding graphical data

types and high-level graphical statements not originally found in the host

language (Figure 2). The graphical extension provides support for both

individual application programs and for the application-oriented layer. The

application-oriented layer may provide modeling, charting or windowing

Application Program

Application Oriented Layer (modeling)

EZ/GKS High -level Language Extension

J La ng uage De pe nde nt La ye r (Pascal)

i Graphical Kernel System

Operating System

Other Resources Graphical Resources

Figure 2 - Layer Model of GKS Incorporating EZ/GKS

5

sub-systems specifically useful to certain application programs. As in GKS, all

application specific functions have been excluded from EZ/GKS, resulting in a

general purpose graphical extension.

EZ/GKS is a graphical extension to the Pascal/VS language implementing the

functionality found in level 2a of GKS. Level 2a includes basic segmentation with

full output and Workstation Independent Segment Storage (WISS), but excludes all

forms of graphical input. The language design provides easy-to-use graphical

statements integrated with ordinary Pascal statements. Much of the syntax of the

graphical statements is consistent with that of the regular Pascal language,

allowing a natural representation familiar to Pascal programmers. Many

concepts from Pascal are applied in the context of graphical operations,

including records, arrays, linked lists, sets and assignment statements. Due to

time restrictions, the inquiry, error and metafile functions have been excluded

from the scope of this project.

The seven major goals of the EZ/GKS language design are to:

1. Elevate the GKS subroutine system to a high-level extension of the

Pascal/VS language in order to simplify graphics programming using

GKS.

2. Provide high-level language statements useful in graphical applications,

allowing the programmer to focus on concepts relating to the application

rather than on the details of graphics programming.

3. Maintain complete compatibility with the concepts of GKS.

6

4. Maintain the full functionality of GKS by clearly defining the

relationships between EZ/GKS and the GKS subroutine system, allowing

both to be mixed compatibly within the same application program.

5. Assist the graphics programmer in gradually learning the concepts of

GKS, lowering training costs for graphics programmers.

6. Assist programmers in producing successful graphics programs,

reducing the lead time necessary to implement graphical applications.

7. Produce clear graphics programs which are easy to read, understand and

maintain.

These goals provided the basis for the decisions which governed the design of the

EZ/GKS graphical extension.

1.3 Contributions

The benefits derived from the use of high-level programming languages are no

longer disputed. High-level languages such as Fortran, Cobol, Pascal and PL/1

have become the norm for developing non-graphical application programs. The

utility of a graphical extension to a general purpose programming language was

recognized in 1968 when David Smith began the design for GPL/I [Smit71]. Since

then many researchers have studied the use of high-level graphical extensions

to general purpose programming languages [McLe78]. Of these contributions, the

GPL/I, MIRA and HL/GKS graphical extensions have been selected for further

discussion in the following sections.

7

1.3.1 GPL/I

GPL/I was designed as a graphical extension to the PL/I programming language.

The design of the language was machine and device independent, defining

graphical output conceptually rather than in hardware specific commands. To

accomplish this goal, GPL/I proposed the use of graphical data types to assist with

the manipulation of graphical data. Operations were provided on each data type

in the form of function calls (Figure 3).

The four graphical data types provided by GPL/I were VECTOR, IMAGE, INTERRUPT

and GRAPHIC. A variable of data type VECTOR described a line radiating from the

origin and was represented by a two-dimensional or three-dimensional point.

The IMAGE data type contained a combination of pictorial and attribute values

which were derived from VECTOR variables, text and the result of IMAGE

functions. An IMAGE variable, which could be any of PL/I's storage classes, was

either structured or sequential. Although the internal structure of an IMAGE

variable could be quite complex, all details of the structure were hidden from the

VECTOR Data Type IMAGE Data Type

magnitude incl u3ion
vector product connection
scalar product positioning
addition scaling
subtraction rotation

Figure 3 - Example of Graphical Data Types in GPL/I
v i th Related Operations

8

user. The INTERRUPT data type was provided to control interrupts for graphical

input. Finally, the GRAPHIC data type allowed three types of graphical files to be

declared: DISPLAY, DESIGN and STORAGE.

Variables of these data types could be defined and manipulated by name in

assignment statements and expressions. A number of PL/I statements, such as the

OPEN, ON, SIGNAL and PUT, were extended to handle the graphical options

permitted by the language extension. Additional high-level statement types

included in GPL/I were the TAKE, ERASE and ANIMATE statements. Although the

use of graphical data types in GPL/I was visionary, the high-level statement types

provided for graphical manipulation were minimal.

1.3.2 MIRA

MIRA, a graphical extension to the Pascal language, also provided the use of data

types and high-level statements to assist with graphics programming [MaTh81].

MIRA provided two predefined graphical data types similar to the ones in GPL/I.

In addition, facilities in MIRA permitted the programmer to construct

hierarchical, user-defined graphical data types.

As with GPL/I, MIRA provided a VECTOR data type and a vector arithmetic for

operating on variables of the VECTOR type. The graphical statement CONNECT was

provided for connecting multiple VECTOR variables.

A structured data type FIGURE was also introduced. The syntax for the declaration

of a FIGURE type was similar to that of a Pascal procedure, including in the

definition an identifier name, parameters, local declarations and instructions.

9

The graphical statement INCLUDE permitted the inclusion of other FIGURE types

within the declaration of a complex figure, allowing simple FIGURE types to be

used to build more complex data types in a hierarchical fashion.

Declaring variables to be of a particular FIGURE type did not create the graphical

variable in MIRA. The high-level CREATE statement dynamically created a new

FIGURE variable while the DELETE statement destroyed it. The DRAW statement

output the FIGURE variable to a graphical device.

As in GPL/I, MIRA provided standard procedures and functions to operate on the

graphical variables (Figure 4A & 4B). Several standard FIGURE types which were

also provided by the system could be included in more complex FIGURE type

declarations (Figure 4C).

The designers of GPL/I and MIRA were at a disadvantage, for the basic graphical

programming functions were not standardized until 1985 when the GKS system

was adopted by the ISO. The GKS standard defined a common terminology and a

A. Standard
Procedures B. Standard

Functions
C. Standard

Figure Type3

symmetry
translation
rotation
homothety
union

angle
intersection
centre
distance

segment
line
circle
square
triangle

Figure 4 - Example of Standard Procedures, Standard Functions and
Standard Figure Type3 in MIRA

10

methodological framework for computer graphics programming.

1.3.3 HL/GKS

GKS was used as the foundation for a graphical extension to the Fortran-77 in

HL/GKS [Sun86]. The HL/GKS language extension adopted many of the concepts of

GKS, including workstations, segments and transformations. These concepts were

represented as graphical data types in the graphical extension. A VECTOR data

type was also provided.

Graphical variables could be defined as either individual variables or as single

dimensional arrays. High-level graphical statements such as SEND, DISPLAY,

MESSAGE, REDRAW and ERASE provided operations on the graphical variables.

HL/GKS made many of the details of GKS transparent to the user, including

opening, closing, activating and deactivating workstations. Facilities were

provided for updating and partial deletion of segments after closing. Explicit

specification of attributes, transformations and output replaced the modal default

provided by GKS.

The major disadvantage of HL/GKS is the inflexibility of the host language. The

capability for defining structures of non-homogeneous elements is notably

absent from Fortran-77, as are the block structure and dynamic storage allocation

mechanisms found in most modern programming languages. The host language

selected restricts the utility of the HL/GKS graphical extension.

11

1.4 Organization

Chapter 2 begins by examining the design constraints on the language that

distinguish this work from that of its predecessors. The constraints include those

imposed by the graphics subroutine system, GKS, and those imposed by the host

language, Pascal. The advantages derived from GKS and Pascal are also discussed.

Chapter 3 describes the graphical data types provided by the EZ/GKS language.

The distinction between individual and compound graphical data types is

explained.

Chapter 4 presents the operations which characterize the graphical data types

presented in Chapter 3. Operations include structured graphical assignments,

graphical statements, graphical expressions and system-defined functions.

Chapter 5 discusses the development of the EZ/GKS pre-compiler and the

translation techniques it utilizes. First, a simple translation is examined where a

high-level EZ/GKS statement is directly translated into a GKS subroutine call. The

use of the run time library and inquiry functions are described. Finally, methods

for handling attribute values and high-level references to workstation tables are

explained.

The appendices contain details of the language syntax, data types of attribute

values and system-defined functions. Example programs are also provided

written in EZ/GKS and GKS, producing identical output.

12

Chapter 2

Language Design

The goal of EZ/GKS is to provide access to the GKS subroutine system via graphical

data types and high-level graphical statements integrated in an ordinary Pascal

program. The input to the EZ/GKS pre-processor is a program containing

predefined graphical data types and high-level graphical statements (Figure 5). A

Pascal program containing the necessary GKS subroutine calls is generated. In

this manner, the EZ/GKS language extension conceptually allows access to the

facilities of GKS through the use of high-level graphical statements (Figure 6).

The use of a mixture of high-level statements and GKS subroutine calls within the

same application program is not precluded, thereby allowing an EZ/GKS program

access to the full functionality of GKS.

The following sections examine how the language design is constrained by both

the subroutine system whose procedures it must access and by the host language

in which i t is imbedded. Finally, the benefits derived from the host language are

program
!with graphical /

statements

EZ/GKS

Pre-processor

/ program
-^/with GKS sub­

rout ine calls

Figure 5 - Translation of an EZ/GKS Program

13

A. Access provided by GKS

Pascal
program

(
subroutine call

\ /
GKS subroutine

system

B. Access provided by EZ/GKS

Pascal program

• EZ/GKS:
state­
ments subroutine call

GKS subroutine
sustem

inej

Figure 6 - Conceptual Access to Graphical Capabilities

discussed.

2.1 Contributions and Constraints of G K S

The benefits of a standard for computer graphics were recognized a decade before

G K S was adopted by the ISO as an international standard. In 1974, the

In ternat ional Federa t ion for Informat ion P rocess ing (IFIP) Graph ics

Subcommittee W . G . 5.2 organized a committee to investigate standardization in the

field of computer graphics [BoEn82]. As a result, a workshop entitled

"Methodology in Computer Graphics" was held in Seillac, France in May of 1976 to

investigate the underlying concepts used in computer graphics. The principles

formulated at the Seillac workshop provided a foundation for the graphics

standards subsequently developed.

Two underlying principles defined at the Seillac workshop were the concept of

portability and the differentiation between modeling and viewing functions

14

[Ende85]. The concept of portability referred to the mobility of graphical

application programs, graphical data and graphics programmers between

different installations, operating systems, and changing hardware

configurations. Providing standardized interfaces to both application programs

and to device drivers enhanced portability. Modeling was defined as the process

of building a picture from component parts while viewing treated the picture as a

whole. The participants at the Seillac workshop decided that only viewing

functions were application independent. They determined that modeling

functions were application dependent and therefore should be excluded from any

graphics standardization efforts.

GKS was chosen as the foundation for the high-level graphical extension to

Pascal/VS because of its acceptance as the international standard for computer

graphics programming. Designed as a kernel system, it provides the minimal set

of functions necessary to access the capabilities of a wide range of graphical

devices in a device independent fashion [IS085a]. Consistent with the principles

formulated at the Seillac workshop, GKS includes only the fundamental graphical

operations which are application independent. All but the most rudimentary

aspects of modeling are excluded. The set of functions defined by GKS provided a

foundation for graphics programming which has proved to be sufficient for the

majority of graphical applications.

The design of EZ/GKS is compatible with the philosophy of GKS. Unlike most of its

predecessors, EZ/GKS excludes all but the basic aspects of modeling. The

philosophy behind the design of EZ/GKS is similar to that of GKS: to include only

those aspects of graphics programming that are application independent. The

designer believes that any application dependent facilities should be added to the

15

Application-Oriented Layer (Figure 2), not to the language extension. Exclusion

of all application dependent features is necessary to produce a general purpose

graphical extension.

Instead of expanding the basic modeling facilities provided by GKS, EZ/GKS

provides language constructs to assist with the design and implementation of

application-oriented graphical software. The graphical data types discussed in

Section 3.1 simplify the temporary storage of graphical data while high-level

graphical statements assist with manipulation of the data. Compound data types

such as the WKSTNSET and SEGMENTSET discussed in Section 3.2 assist with

manipulating sets of workstations and segments in an intuitive manner. For

example, the SEGMENTSET primitive data type could be utilized to implement

concepts such as the inclusion filter and exclusion filter defined in PHIGS

[Brow85].

The decision to base the design of a graphical extension on a preexisting

subroutine system constrains the design of the language extension twofold. First,

the preexisting subroutine system defines the minimal graphical facilities which

must be provided by the high-level language. The functions available are

specified in detail by the subroutine system, but the methods for providing them

are left to the discretion of the language designer. Second, the subroutine system

implicitly defines concepts which are an integral part of its philosophy (Figure

7). The underlying concepts and philosophy of the subroutine system must be

reflected in the design of the high-level language based upon it.

16

1. Workstations
1.1 Control Functions
1.2 Modal Settings

3. Output Primitives
3.1 Workstation I ndependent Attri butes
3.2 Workstation Dependent Attributes

2. Segments
2.1 Manipulation
2.2 Attributes
2.3 Transformations

4. Transformations
4.1 Normalization Transformations
4.2 Workstation Transformations

Figure 7 - Outline of the Concepts in GKS

2.2 Contributions and Constraints of Pascal

The host language chosen for a graphical extension delineates the syntactic

framework within which the language extension must function. The syntactic

framework defines the manner in which the features provided by the host

language are specified by the user. The syntax design for a language extension

should be orthogonal to the host language. The style should be internally

consistent with that of the host, allowing programmers proficient in the host

language to easily extend their knowledge to encompass the new capabilities

added by the language extension.

The host language also restricts the language extension by its basic structure,

philosophy and design. For example in Pascal/VS, modules to be compiled

separately must be defined in segments. Communication between Pascal segments

and the main program is restricted to parameters passed to the procedures and

functions declared therein and to variables defined as DEF or REF. All variables

are restricted to the static scoping and strong typing rules of the host language.

17

Executable statements exist within a block structured environment that provides

the foundation for Pascal programs.

Pascal/VS provides a rich set of abstract data types that are inherited by any

extension to the language. ENUMERATION and SUBRANGE data types provide the

security of range checking on the base type INTEGER. RECORDS of

nonhomogeneous data types can be declared and used as elements in

multidimensional arrays or in linked lists. Typed pointers along with Pascal's

dynamic storage allocation statements provide security over list processing. The

SET data type, representing a combination of values from any scalar base type, is

provided along with mathematical set operations such as union, intersection and

difference. All of these features are inherited when Pascal is selected as the host

language for a graphical extension.

Pascal/VS provides the syntactic base for the design of the EZ/GKS graphical

extension. Complex data types can be built from the predefined graphical types,

Pascal types and user-defined types in the usual manner provided by Pascal,

allowing graphical types to be elements in multidimensional arrays, record

structures or linked lists. Declaration of graphical variables is compatible with

the declaration of other Pascal types, allowing them to be declared as VAR, STATIC,

DEF or REF. The scope of EZ/GKS statements is comparable to that of statements in

Pascal, requiring the BEGIN END block notation when encompassing more than a

single statement. The syntactic structure of Pascal provides a sound foundation

on which to base EZ/GKS graphical extension.

18

Chapter 3

Abstract Graphical Data Types

The solution to a problem may become apparent when examining the problem

from an appropriate level of abstraction [Pres82]. At the lowest level of

abstraction, all of the procedural details are evident. At higher levels, the focus

shifts to the essential elements of the problem; irrelevant low level details are

disregarded. Viewing the problem from an appropriate level of abstraction

permits alternative solutions to be examined in terms that are meaningful to the

problem environment [Dyme84]. Regarding solutions in meaningful terms can

assist in determining the best one for the problem.

Early graphics programming systems viewed graphical concepts at a very low

level of abstraction. Graphical output was generated by numerous MOVE-TO,

PEN-UP and PEN-DOWN commands. All attributes were specified individually in a

device-dependent manner.

During the past decade, research in computer graphics has elevated the level of

abstraction by introducing such concepts as output primitives, workstations,

segments and attribute bundles. Graphics programming, however, still requires

attending to tedious detail at a much lower level of abstraction. For example,

while the language bindings for GKS define a multitude of data types describing

the parameters passed in GKS subroutine calls, no operations on the data types are

provided. Therefore, the only operations available are the low-level operations

for the general purpose data types provided by the host language, directing the

focus on the internal representation of the graphical types rather than on their

conceptual use. The following two chapters describe methods by which the

19

EZ/GKS graphical extension elevates the level of abstraction for graphics

programming, thereby easing the burden of developing application and

application-oriented graphical software. The graphical data types provided by

the EZ/GKS language are described in the remainder of this chapter. Chapter 4

provides details of the operations available for the graphical data types.

Abstract data types have long been recognized as a useful construct for

organizing and manipulating graphical data. An abstract data type represents a

class of abstract objects and explicitly defines all operations possible on members

of the class. Accessing a member of the class by any other means is not permitted.

Mallgren defined the term abstract data type as [Mall82]:

... a data type that provide(s) a particular well-defined level of
abstraction: The semantics of the operations are considered
characteristic, and objects are taken as atomic; the implementation of
the operations and the representation of the objects are considered
irrelevant.

An abstract graphical data type in EZ/GKS may be classified as either an

individual or a compound type. Unlike many previously developed graphical

languages, a data type in EZ/GKS does not represent a geometric shape such as a

circle, square or triangle. Instead, an individual graphical type is an atomic

element representing a well-defined concept useful in graphics programming,

such as a segment, window or colour (Figure 8A). A compound graphical type

represents either a set or a sequence of individual graphical elements which can

be referenced and manipulated as a unit (Figure 8B).

With the exception of the workstation constant, complex user-defined data types

may be constructed from any of the predefined graphical data types, in the usual

20

A. Individual Data Types B. Compound Data Types

POINT POLYPOINT
WKSTN WKSTNSET
SEGMENT SEGMENTSET
WINDOW NORMXFORM
COLOUR PATTERN
SEGXFORM BUNDLE

Figure 8 - Abstract Data Types i n EZ/GKS

manner provided by Pascal. Graphical types may be elements of

multidimensional arrays, record structures or linked lists. The atomic graphical

elements within a complex structure may be addressed by using the standard

Pascal path notation. The characteristics of the individual and compound

graphical data types of the EZ/GKS system are portrayed in the following sections.

3.1 Individual Graphical Types

The individual data types provided by EZ/GKS are the POINT, workstation (WKSTN),

SEGMENT, WINDOW, COLOUR and segment transformation (SEGXFORM). Several of

these data types have proved useful in previous graphical language extensions.

For example, many high-level graphical languages have a representation for a

point or vector [Smit71] [MaTh81]. In addition to the vector type, HL/GKS

represented the GKS concepts of workstation and segment as graphical data types

[Sun86]. Colour was proposed as an abstract data type by Mallgren [Mall82]. The

individual data types provided by EZ/GKS incorporate these concepts as well as

several others.

21

The point, a graphical element that identifies a location, is the basis for defining

the shape of graphical output primitives. Points in EZ/GKS may be represented by

a pair of numeric expressions, or by a point expression. The variable of data type

POINT represents a location in the two-dimensional plane. A POINT variable is

characterized by its absolute position with respect to the X and Y axes.

The graphical data type WKSTN represents the concept of an abstract graphical

workstation as defined by GKS. The GKS workstation is device independent,

providing a "logical interface through which the application program controls

physical devices" [IS085a]. Unlike all other graphical data types defined in

EZ/GKS, workstations are defined as Pascal structured constants. Each one is

associated with a particular file and device type which may not be altered during

the execution of the program.

A segment in GKS represents "a collection of display elements that can be

manipulated as a unit" [IS085a]. EZ/GKS maintains compatibility with the segment

concept defined in GKS. Thus, SEGMENT variables are handled as autonomous

units. A segment is created by defining a sequence of output primitives within

the body of the high-level C R E A T E statement. Once created, the internal

representation can not be altered with operations that add or delete primitives

from the original segment. The appearance of the graphical output, however,

may be changed geometrically by applying segment transformations or visibly

by altering the segment's attributes.

The WINDOW data type represents a generalized two-dimensional rectangle

aligned with the coordinate axes. A window variable may represent either a

window, viewport, workstation window or workstation viewport in EZ/GKS. Which

22

of these the variable represents is determined by its context within a high-level

graphical statement. Window variables representing a window are defined in

World Coordinates (WC), while those representing a viewport or workstation

window are described in Normalized Device Coordinates (NDC). Window variables

representing a workstation viewport are defined by the user in Device

Coordinates (DC).

Normalization and workstation transformations describe a mapping between the

different coordinate spaces (eg., WC -> NDC -> DC). In EZ/GKS these

transformations are described by a mapping between a pair of window variables,

each of which defines a rectangular region in a different coordinate space

(Section 4.2.2).

In GKS colour values are defined in terms of the RGB colour model. GKS

subroutine calls are issued to store the necessary colour values in the workstation

colour table of each workstation. The colour attribute of output primitives is

specified by the integer index referencing the entry of the workstation colour

table containing the desired colour value. Hence, the programmer must

remember the current status of all workstation colour tables in order to select the

desired index.

EZ/GKS provides the data type COLOUR to elevate the method by which colour

attributes are managed by the application programmer. The COLOUR data type

represents what the name implies. A limited number of system constants of data

type COLOUR are predefined by the EZ/GKS system (Figure 9A). Incorporation of a

system such as the Artist's Colour Naming System (ACNS) would be a useful

addition to EZ/GKS, as it provides a natural representation for a much broader

23

A. EZ/GKS Colour Constants B. Example of ACNS Colours

RED YELLOW

GREEN MAGENTA

BLUE CYAN

BLACK WHITE

BRILLIANT ORANGE-YELLOW
PALE BLUISH-GREEN
BLACKISH BLUE
DEEP PURPLE -RED
VERY LIGHT GREY
DARK GREYISH ORANGE
MEDIUM RED
VIVID GREENISH-YELLOW

Figure 9 - Colour Specif icat ion i n EZ/GKS compared to the ACNS

range of colour constants [Kauf86] (Figure 9B). User-defined values for variables

of data type COLOUR may also be computed from colour constants and colour

variables using a graphical colour expression (Section 4.3). High-level

referencing to workstation tables elevates the manner in which workstation

tables are initialized and altered by the programmer (Section 4.2.3). Colour

variables may then be referenced by name in graphical statements to define the

colour attribute for output primitives.

The shape of a graphical object defined by a series of points may be changed by

applying a geometric transformation to each point defining the object. Geometric

transformations are defined in [HeBa86] as:

. . . procedures for calculating new coordinate positions for these
points, as required by a specified change in size [.position] and
orientation for the object.

In GKS, geometric transformations may only be applied to graphical objects stored

in a segment. The SEGXFORM data type in EZ/GKS provides a means for retaining

the specification of a geometric segment transformation. Values for variables of

type SEGXFORM are computed from segment transformation factors and previously

24

defined segment transformation variables using a graphical segment expression

(Section 4.3).

3.2 Compound Graphical Types

Compound graphical data types represent multiple occurrences of an individual

graphical element. A compound graphical type may be viewed as either a set or a

sequence of individual graphical elements. The compound types representing a

set of graphical elements are the workstation set (WKSTNSET) and the segment set

(SEGMENTSET). The POLYPOINT, normalization transformation (NORMXPORM),

PATTERN and BUNDLE data types can be conceptualized as a sequence of individual

graphical elements.

The compound data types WKSTNSET and SEGMENTSET define a set of workstations

or segments respectively, representing a number of selected individual graphical

variables. A variable of type WKSTNSET contains a set of workstations to be

referenced as a unit in high-level graphical statements. Similarly, a variable of

type SEGMENTSET refers to a set of segments to be manipulated simultaneously.

Values for variables of these data types are defined by assigning variables of

their related individual graphical type (ie. WKSTN or SEGMENT, resp.) in the

standard Pascal set-constructor format. Expressions of workstation sets or

segment sets may compute a new set membership using any of the set operators

defined by the host language. The set operators union, intersection, difference,

exclusive union and all relational set operators are inherited by the WKSTNSET

and SEGMENTSET data types.

A series of points are frequently used to portray the shape of a graphical

25

primitive. The POLYPOINT data type provided by EZ/GKS serves to retain the

information about a geometric shape. A variable number of points may be stored

in a POLYPOINT variable, up to the maximum permitted by the GKS

implementation. A series of values may be assigned to a POLYPOINT variable

using the structured point assignment (Section 4.1). Individual points may be

assigned to or from a POLYPOINT variable using Pascal's usual indexed notation.

When an output primitive command references a POLYPOINT variable without

indicating a subrange, all points through the maximum initialized value are used

to generate the graphical output primitive.

The POLYPOINT value assignment allows values for POLYPOINT variables to be

initialized at compile time, assisting with the definition of non-uniform shapes

(Figure 10). The POLYPOINT value assignment, similar to ordinary value

assignments, may appear within any Pascal/VS value declaration. Variables to be

initialized at compile time must be declared as Static or Ref variables. The values

assigned in a POLYPOINT value assignment are numeric constants in the format of

a structured point assignment (Section 4.1). This declaration form provides a

concise method for initializing the geometric shapes of asymmetric graphical

objects at compile time.

A normalization transformation "maps positions in the world coordinates to

normalized device coordinates " [IS085a]. The NORMXFORM data type in EZ/GKS

retains the specification of a window-viewport mapping between the WC and NDC

coordinate spaces. The value of NORMXFORM variable is defined by describing a

mapping between two WINDOW variables, the first defining the window in WC and

the second defining the viewport in NDC. The current normalization

transformation may be set by naming a NORMXFORM variable in a high-level

26

Static
Star : POLYPOINT;

Yal ue
Star := (0.95,-0.3; 0, 1; -0.95, -0.3; 0.95, 0.3;

-0.95, 0.3; 0.95, -0.3);

Figure 10 - Example of the Graphical Value Assignment

TRANSFORM NT statement (Section 4.2.2).

A pattern's value is defined in GKS as a two-dimensional matrix of integers which

index the colour table of a workstation. The workstation pattern table is an array

of pattern values. As with colours, a pattern is defined by a GKS subroutine call

that stores the pattern's value in the pattern table of a workstation. The pattern

can later be selected by referencing the appropriate index of the workstation

pattern table.

In EZ/GKS the PATTERN data type representing a two-dimensional array of colours

may be specified by either integer indices of the workstation colour table or by

colour variables. The appearance of a pattern specified by a numeric index will

depend on the colour values stored in the colour table of the workstation in

question. A pattern specified by a colour variable will be composed of identical

colour values on each workstation on which it is displayed. The style type

attribute of the fill area output primitive may be described by referencing either

the desired PATTERN variable or the index of the pattern table entry in which it is

stored.

An output primitive attribute defines a property of a particular type of output

27

p r i m i t i v e (eg. l i ne , marker , f i l l or text). At t r ibutes may be c lass i f ied as either

geometr ic or non-geometr ic . W h i l e geometr ic attributes define propert ies w h i c h

affect the s i ze o r shape o f the ent i re p r i m i t i v e , n o n - g e o m e t r i c p r i m i t i v e

attributes on ly affect the appearance o f a d isplay element.

G K S works ta t ions ma in ta in four bundle tables, one for each type o f output

p r i m i t i v e . A n entry i n a bundle table contains values for a l l non-geometr ic

attributes associated w i t h the related p r imi t ive type.

A va r i ab le o f data type B U N D L E contains values for the set o f nongeometr ic

p r imi t ive attributes associated wi th one type o f output p r imi t ive (Figure 11). The

structured bundle assignment s imp l i f i e s the assignment o f attribute values to a

bundle var iab le . The bundle var iable may be subsequently referenced as a unit

i n h i g h - l e v e l g r aph i ca l statements.

3.3 Summary

E a c h graphical data type presented i n this chapter may be c lass i f ied as either an

ind iv idua l or compound type. A n ind iv idua l graphical type represents an atomic

LINE MARKER FILLAREA TEXT

TYPE
WIDTH
COLOUR

TYPE
SIZE
COLOUR

INTERIOR
STYLETYPE
COLOUR

FONTPRECISION
EXPANSION
SPACING
COLOUR

Figure 11 -Output Primitive Types and their Compatible Bundle Attributes

28

concept which provides an abstraction useful in graphics programming. A

compound graphical data type represents either a set or a sequence of atomic

graphical elements which can be referenced and manipulated as a unit. Chapter

4 expounds on the abstract graphical data types by describing the operations

EZ/GKS provides for variables of each graphical data type.

29

Chapter 4

Operations on Graphical Data Types

A high-level language may employ several methods to define the operations

characterizing an abstract data type. Assignment statements may alter a

variable's current value. The language syntax may be extended with additional

high-level statements to manipulate the variables in a predefined manner. The

symbols representing host language operators may be overloaded or new

operators may be defined for expressions containing variables of the new data

types. Specific characteristics of a variable may be returned to the programmer

through the use of system-defined functions.

A variety of these techniques have been incorporated into E Z / G K S to specify the

operations on variables of the abstract graphical data types. Structured graphical

assignments promote encapsulation of abstract graphical data types by defining a

structured format in which a series of values may be assigned to certain types of

graphical variables. High-level graphical statements control the generation of

graphical output by defining operations on graphical variables. Graphical

expressions provide a mechanism for computing the values for particular types of

graphical variables. System-defined functions return to the user specific

attributes of a graphical variable. These concepts are further examined in the

following sections.

4.1 Structured Graphical Assignments

A n essential element necessary for implementing an abstract data type is

encapsulation. Encapsulation restricts access to the internal representation of an

30

abstract type. Mallgren defines encapsulation in the following manner [Mall82]:

. . . the primary role of a data type specification is to make explicit
the boundary between an abstraction and its implementation. An
encapsulation "defends" this boundary by ensuring that programs
cannot access the data type representation.

Structured graphical assignments allow a sequence of values to be assigned to a

graphical variable in a single assignment statement. Structured graphical

assignments promote encapsulation by defining a format in which to specify a

series of values to be assigned to certain types of graphical variables. The use of

high-level syntax allows the programmer to initialize variables of complex

graphical data types without knowledge of the internal representation of the data

type. Encapsulation of graphical data types is enforced by the use of structured

graphical assignments. Access to individual components of a graphical data type,

except in the manner designated by the high-level language syntax, is prohibited

by the EZ/GKS pre-compiler.

Four different graphical structures are defined in the syntax of EZ/GKS: the POINT

structure, NORMXFORM structure, BUNDLE structure and PATTERN structure.

Although the format of each structure differs, the syntax for each is

representative of its related data abstraction.

Organization and manipulation of point data is a fundamental operation in

computer graphics. The POINT data type together with the point structure and

point expressions (Section 4.3) assist the programmer in manipulating point data

in an intuitive manner. A POINT structure defines a sequence of one or more

point elements. A point element may be either a point expression or a pair of

numerical Pascal expressions which define the X and Y coordinates of a point.

31

Both formats for point elements may be mixed within a point structure (Figure

12), giving the programmer a flexible construct for defining the geometric

shapes of graphical objects.

A point structure is assignment-compatible with variables of data type POINT,

WINDOW or POLYPOINT, provided that the semantically appropriate number of

point elements are present in the structure. The point structure may also

describe the shape of output primitives directly in output primitive commands

such as LINE, MARKER and FILL (Section 4.2.1).

A normalization transformation represents a mapping from a window defined in

World Coordinates (WC) to a viewport defined in Normalized Device Coordinates

(NDC). The NORMXFORM structure defines a normalization transformation by the

mapping between two WINDOW variables and may be assigned to graphical

variables of type NORMXFORM (Figure 13). The WINDOW variable referenced in

the FROM clause of a NORMXFORM structure is interpreted as a window defined in

WC, while the variable referenced in the TO clause is interpreted as a viewport

defined in NDC. If either clause is omitted, the GKS default of the unit square is

Var
Max : REAL; WCwindow : WINDOW;
UpperRight : POINT; FigureX : POLYPOINT;

Max := 12 .5 ;

UpperRight := (2 5 , Max * 2) ;

WCwindow := (ORIGIN ; UpperR ight) ;

FigureX := (1 2 . 5 , M a x ; UpperR ight ;

. 12.5 , (Max * 2) ; 25 , 12.5) ;

Figure 12 - Examples of Structured POINT Assignments

32

VAR
WCWindow, NDC Window : WINDOW;
NT1, NT2, NT3 : NORMXFORM;

NT1 := FROM WCWindow;
NT 2 := TO NDC Window;

NT3 := FROM WCWindow TO NDCWindow;

Figure 13 - Examples of Structured NORMXFORM Assignments

assumed.

A bundle structure, which may be assigned to a BUNDLE variable, provides a

high-level syntax for defining a set of nongeometric attributes related to a

specific type of output primitive. The BUNDLE structure consists of a list of

attribute specifications following a designated output primitive type (Figure 14).

Each attribute specification associates the kind of attribute (eg. type, size, spacing,

etc.) with an appropriate value. The attributes defined in the structure must be

compatible with the named output primitive type (Figure 11). The data type of an

attribute's value depends on the primitive type and the attribute kind named

(Appendix B).

Var
Li neBundle : BUNDLE;

LineBundle := LINE (TYPE is 'DASHED';
WIDTH is 2.5 ; COLOUR is RED);

Figure 1 4 - Example of a Structured BUNDLE Assignment

33

A pattern is a two-dimensional array of colours. The pattern structure allows the

value of pattern variables to be defined by syntactically representing this

intrinsic property (Figure 15). The pattern structure permits a list of rows of

colours to be assigned to a PATTERN variable. A colour may be represented by a

COLOUR variable, a COLOUR constant or by an index into the workstation colour

table. Any of these representations for a colour may be mixed within a given

pattern structure.

4.2 Graphical Statement Types

Graphical statements provide a user-friendly method for manipulating graphical

data by performing a set of well-defined operations on the graphical variables

named therein. Three categories of graphical statements are distinguished in

EZ/GKS: graphical commands, graphical state changes and high-level references

to workstation tables. Graphical commands specify how graphical data is defined

and determine where it is stored and displayed. Graphical state changes alter the

graphical environment by changing the global values that govern the final

appearance of the graphical data. High-level references to workstation tables

elevate the manner that workstation-dependent attributes, colours and patterns

are managed by the programmer. Each of these categories are described in the

following sections.

Var
Checked : PATTERN;

Checked := (BLUE, BLUE, 2, 2; BLUE, BLUE, 2, 2;
2, 2, BLUE, BLUE; 2, 2, BLUE, BLUE);

Figure 15 - Example of Structured PATTERN Assignment

34

4.2.1 Graphical Commands

Graphical commands generate output primitives and manipulate graphical

variables representing workstations and segments. Output primitive commands

define the geometric properties of graphical output primitives and generate each

primitive in its distinctive manner. Workstation commands control the graphical

display on selected output surfaces, while segment commands provide for the

creation, deletion, storage and display of graphical segments.

Output primitive commands provide a simple method of generating the output

primitives of GKS. The commands LINE, MARKER and FILL generate the GKS

Polyline, Polymarker and Fill Area primitives, respectively, the shape of which is

defined by a polypoint variable or a point structure. The subrange specification

may be used to restrict output to a subset of the points provided. The TEXT

command defines a high-level syntax within which the location and content of

textual output may be described.

High-level graphical statements provide an intuitive mechanism for

manipulating variables of type WKSTN and SEGMENT. Workstation commands

provide control over display surfaces (Figure 16A). A high-level graphical

statement which operates on WKSTN variables may also manipulate variables

containing sets of workstation elements. When referencing a variable of type

WKSTNSET, the action specified is performed on each workstation in the set.

Segment commands permit the definition of a segment and provide a means for

manipulating a segment or set of segments. Of the segment statement types

(Figure 16B), the DELETE, SAVE and DISPLAY may also reference variables defined

35

A. WKSTN Statement Types B. SEGMENT Statement Type3

OUTPUT CREATE
MESSAGE DELETE
CLEAR RENAME
REDRAW SAVE
UPDATE DISPLAY

INSERT

Figure 16 - High- leve l Statements to Manipulate
WKSTN and SEGMENT Var iables

as segment sets. As with workstation sets, the requested operation referencing a

segment set variable is performed once for each segment in the set. Implicit

regeneration is temporarily disabled during a segment set operation, preventing

the display surface from being redrawn until the set operation is completed.

Graphical output may be generated either modally or explicitly. Modal output

causes display on all active workstations as the graphical primitives are being

defined. Explicit output displays a graphical segment after it has been defined.

GKS defaults to modal output. In GKS the programmer is responsible for opening,

activating, deactivating and closing workstations at the required time in order to

generate the desired output on each display surface.

Graphical commands in EZ/GKS provide a simple manner for requesting either

modal or explicit output. In addition, the responsibility for opening, activating,

deactivating and closing workstations is assumed by the pre-compiler of EZ/GKS,

thereby easing the burden on the graphics programmer.

36

Modal output in EZ/GKS is generated by the OUTPUT statement. The ONLY option

restricts the destination workstations to those named in the command. The ALSO

option generates output on those named in the command in addition to the

workstations that are currently active. The necessary workstations are

automatically activated and deactivated when an OUTPUT statement block is

entered and restored upon exiting the block. OUTPUT statements may be nested

within the compound statement of other OUTPUT statements in the usual Pascal

manner, providing a high-level mechanism for controlling output displayed on

multiple workstations (Figure 17).

Explicit output allows named segments to be displayed on specified workstations.

To provide explicit access in EZ/GKS, all segments created are automatically stored

in Workstation Independent Segment Storage (WISS) [Sun86], unless otherwise

directed by the modal OUTPUT statement. Segments or sets of segments stored in

WISS can be temporarily displayed on any workstation or set of workstations

using a DISPLAY command. Such segments are erased when the workstation's

display surface is regenerated. Furthermore, segments may be copied from WISS

into the local storage of a workstation, Workstation Dependent Segment Storage

Var
ClassA, Teacher A : WKSTNSET;

OUTPUT ON Clas3A ALSO
Begin

{ display the next problem) NextProblem (ProblemNbr); { display the next problem)
OUTPUT ON TeacherA ONLY

NextAnswer (ProblemNbr) { display the related answer }
End;

Figure 17 - Example of Nested OUTPUT Commands
i

37

(WDSS), using a SAVE command. All visible segments saved in a workstation's

WDSS are permanently displayed on the its output surface and are redrawn each

time the display surface is regenerated. The DELETE statement allows the named

segment(s) to be removed from a workstation's WDSS. The DISPLAY and SAVE

commands provide explicit output by naming the segment(s) to be displayed and

the workstation(s) on which they are to be shown.

4.2.2 Graphical State Changes

Graphical state changes alter the graphical environment by changing the global

state of GKS or by altering the state of individual workstations or segments. The

state of GKS, workstations and segments in turn determine the manner in which

graphical output is displayed by defining transformations, attributes and other

settings that govern its final appearance.

A unique state change operator has been created to distinguish graphical state

changes from ordinary Pascal and EZ/GKS commands. The operator's symbol is

"<-" and can be read as "is set to". Statements using the state change operator set

transformations, attributes and miscellaneous other global graphical variables

used by GKS.

Three kinds of transformations alter the final appearance of graphical output:

the normalization transformation, workstation transformation and segment

transformation. All three kinds are set using the TRANSFORM statement (Figure

18).

The reserved word NT is an abbreviated reference to the current Normalization

38

Transformation in EZ/GKS. A TRANSFORM NT statement sets the current window

and viewport by naming a NORMXFORM variable which is initialized to the desired

window-viewport mapping (Figure 18A). A simple method is thus provided for

setting the current normalization transformation by selecting one of possibly

several normalization transformation variables defined in an application

program.

The TRANSFORM statement referencing a workstation or workstation set variable

defines a new workstation window and workstation viewport for the respective

device(s) using syntax similar to the NORMXFORM structure (Figure 18B). The

window variable identified in the FROM clause is the workstation window

specified in NDC. The variable identified in the TO clause is the workstation

viewport in device coordinates (DC).

Finally, the TRANSFORM statement referencing a segment or segment set variable

applies a segment transformation to the segment(s) named (Figure 18C). When a

segment set variable is referenced, implicit regeneration is disabled until the set

VAR
NT1 : NORMXFORM; F loorP lan : SEGMENTSET;
PlanSize : SEGXFORM; Planners : WKSTNSET;
Zoom, Show : WINDOW;

A. Normal izat ion Transformat ion

TRANSFORM NT <- NT1;

B. Workstat ion Transformat ion
TRANSFORM Planners <- FROM Zoom TO Show;

C. Seg me nt T ra nsfo r mati o n

TRANSFORM FloorP lan <- PlanSize;

Figure 18 - Examples of the TRANSFORM Statement

39

operation is complete, allowing all segments to be transformed before the display

surface is regenerated.

GKS maintains a set of thirteen aspect source flags (ASF's), one for each kind of

nongeometric primitive attribute. At the time an output primitive is generated,

the ASF determines the source from which the value for each attribute will be

obtained. If the ASF indicates INDIVIDUAL, the value is obtained from the

individual attribute stored in the GKS state list. Individual attributes appear as

similar as possible on all workstations. If the ASF indicates BUNDLED, the value is

obtained from a bundle table entry in the workstation. The appearance of a

bundled attribute may differ from workstation to workstation.

In GKS, the ASF's are maintained in a single array and are set by a single

subroutine call. In EZ/GKS, the aspect source flags relating to a primitive type

may be set using the ASF statement (Figure 19A). An optional EXCEPT clause allows

specific attribute types to be excluded, implicitly setting their ASF opposite to the

value named. ASF's for other primitive types, not named in the statement remain

unchanged.

The ATTRIBUTES statement defines segment attributes as well as individual

primitive attributes (Figure 19B). Segment attributes are altered by referencing

a segment or segment set variable in an ATTRIBUTES statement followed by a list

of segment attribute kinds, each with its related value. Individual primitive

attributes may be specified in two ways: by referencing a bundle variable

containing the desired attribute values or by listing the attribute values in a

format similar to a BUNDLE structure. Unlike the BUNDLE structure, however, the

attribute types listed in an ATTRIBUTES statement may be either geometric or

40

A. ASF Statement

ASF of Line <- indiv idual EXCEPT Colour;

B. ATTRIBUTES Statement

ATTRIBUTES of Line <- (Type IS "DOTTED"; Width IS 2 . 0) ;

C. BUNDLE Statement

BUNDLE of Line <- 2;

Figure 19 - Example of the ASF, ATTRIBUTES and BUNDLE Statements

nongeometric.

When the ASF of an output primitive attribute is BUNDLED, the appearance of the

attribute for a primitive subsequently defined is workstation dependent. The

value for the attribute is obtained from the appropriate workstation bundle table.

The current index designating the bundle table entry to be used is obtained from

the GKS state list. In EZ/GKS, the entry of the workstation bundle table is selected

by the BUNDLE statement (Figure 19C). The high-level FIND statement assists the

programmer in locating the desired bundle index (Section 4.2.3).

Other miscellaneous high-level statements defining graphical state changes set

the value for the segment priority, deferral mode and clipping.

4.2.3 High-Level References to Workstation Tables

In each GKS workstation capable of output, six tables retain the values of

workstation-dependent attributes. The colour table is an array of RGB colour

values. The pattern table is an array of pattern values, each of which is

41

represented by a two-dimensional array of indices referencing entries in the

workstation colour table. The other four tables are bundle tables, one for each

type of output primitive, containing bundles of nongeometric attributes. In the

bundle tables, colours are also represented by an index into the workstation

colour table.

Although a GKS installation may predefine a limited number of values in the

workstation tables, extending the number of values or customizing the tables for a

particular application program requires considerable effort. Every table entry to

be referenced must be defined by a GKS subroutine call. Also, in order to select

the appropriate table index, the programmer must remember the current status of

all workstation tables.

EZ/GKS elevates the manner by which workstation tables are managed utilizing

graphical variables and high-level graphical statements. The graphical

variables COLOUR, PATTERN and BUNDLE retain complex attribute values

initialized by structured graphical assignments. The high-level statements STORE,

CHANGE, FIND and RELEASE assist with manipulating and referencing the

workstation tables in a more friendly manner.

The STORE statement stores the value of COLOUR, PATTERN or BUNDLE variables in

the appropriate workstation table(s). Two forms of the STORE statement are

provided: one names a list of variables to be sent to a single workstation set

(Figure 20A) while the other defines a variable to be sent to each of several

workstation sets (Figure 20B). If a single workstation set is named, each variable's

value is stored in the same table entry in all workstations in the set. Subsequent

reference to the variable's name will be interpreted by the pre-compiler to

42

CONST
Wk3tn1 = (f i l eA , J u p i t e r 7) ;
Wk3tn2 = (f i l e B , T e k 4 0 2 7) ;

A. SEND Red, B lue ,Green TO Wks tn2 ;

B. SEND (Red TO W k s t n l ; Blue TO Wks t n2) ;

Figure 20 - Examples of the SEND Statement

reference the appropriate workstation table index.

The second format associates a different variable with each workstation set

named. A workstation table index free on all workstations is selected. The value

stored in this table entry in each workstation is determined by its associated

graphical variable. Hence, all the variables named in a SEND statement of this

form may be associated with only one type of workstation table. In addition, the

workstation sets named within a SEND statement may not intersect.

The FIND statement assists with finding a particular index for a workstation table

entry, permitting the programmer to recall the current status of the workstation

tables. For example, the statement "FIND index FOR red ON Wkstnl; blue ON

Wkstn2" would set the variable named "index" to the colour table entry having

RED in Wkstn2 and BLUE in Wkstn2. If the requested combination of values is not

located in the named workstations, the value of zero is returned.

After one or more SEND statements have been issued to store a graphical variable

in workstation tables, a CHANGE statement may be used to change the values

43

stored. The CHANGE statement provides a high-level mechanism for changing the

values in workstation tables that were initialized by a SEND statement. When a

CHANGE statement defines a new value for a graphical variable, its value is

changed in all workstation tables to which the graphical variable had been sent.

The CHANGE statement provides a concise method for altering the values in

workstation tables.

The RELEASE statement frees the variable named from the indicated group of

workstations. When a variable is freed, the association between the variable and

the workstation table entries is broken. The variable name then no longer may

be used to reference the workstation table entries to which it had been sent. The

value in the workstation table remains unchanged until it is selected by the

system for use in a subsequent SEND statement. When this index is selected for use

in another SEND statement, the old value in the table entry is replaced by the new

one defined.

The SEND, CHANGE, FIND and RELEASE statements elevate the workstation table

manipulation methods defined by GKS, assisting the programmer with

initializing, altering and referencing workstation tables.

4.3 Graphical Expressions

Expressions provide a means for calculating the value of a variable. The values

for variables of the graphical data types POINT, COLOUR and SEGXFORM may be

computed using graphical expressions.

Factors in a POINT expression are variables of data type POINT (Figure 21 A). The

44

Pascal operators "+" and "-" have been overloaded to permit addition and

subtraction of point variables. The default order of evaluation is the same as

Pascal: from left to right. Like Pascal, any pair of factors may be parenthesized to

alter the order of evaluation.

The colour expression permits new colour values to be derived by conceptually

mixing ratios of colour constants and previously defined COLOUR variables

(Figure 21B). The ratio of colours to mix is specified using a "part" notation. A

specification as "3 PARTS GREEN + 2 PARTS BLUE" defines a new colour value

created by mixing the colours green and blue in a ratio of 3:2. The colour

expression provides the programmer with a simple mechanism for defining new

colour values.

The segment transformation expression accumulates the composite value of a

segment transformation by combining previously defined SEGXFORM variables

and segment transformation factors (Figure 21C). Segment transformation

factors allow specification of uniform or differential scaling, rotation,

translation, shearing and reflection in an easy manner (Figure 22). Any series of

Yar
pointA, pointB, pointC : POINT;

A. Point
Expression (pointC + (pointB - pointA))

B. Colour
Expression

3 parts WHITE + 1 part RED

C. Segment
Expression

ROTATE 45 ABOUT pointC + SHIFT (5,7)

Figure 21 - Examples of Graphical Expressions

45

SEGXFORM variables and segment transformation factors may be accumulated in a

segment transformation expression.

4.4 System-Defined Functions

System-defined functions in EZ/GKS relay information about a graphical variable

to the programmer (Appendix C). System-defined functions also defend

encapsulation of abstract data types by defining an interface through which

communication with the programmer is channeled, thereby avoiding access to

the internal representation of graphical variables. As a result, any subsequent

change in the internal representation of graphical variables can be handled

entirely within the EZ/GKS system and will require no change in graphical

application programs using the system.

4.5 Summary

In summary, the operations described on graphical variables in EZ/GKS include

structured graphical assignments, high-level graphical statements, graphical

expressions and system-defined functions. Structured graphical assignments

defend the encapsulation of abstract graphical data types by defining structured

formats in which to initialize certain types of graphical variables. High-level

graphical statements define operations on graphical variables, alter the

SCALE ROTATE SHIFT

SHEAR REFLECT IDENTITY

Figure 2 2 - Factor Types for Segment Transformations

46

graphical state and elevate the manner in which workstation tables are managed

by the programmer. Graphical expressions compute new values for certain types

of graphical variables, while system-defined functions return to the user specific

information about a graphical variable. Together, these techniques elevate the

level of abstraction necessary for graphics programming by hiding many of the

tedious details required in GKS programming.

47

Chapter 5

Implementation

5.1 Development of the EZ/GKS Pre-Compiler

The EZ/GKS pre-compiler is a portable Pascal program which generates the

appropriate GKS subroutine calls from an application program containing

high-level graphical statements. A Pascal program extended with graphical

statements defined in the EZ/GKS syntax is the input for the pre-compiler. The

output consists of a listing of two files: the original input program and a

generated Pascal program including the necessary GKS subroutine calls and

supporting code.

The EZ/GKS pre-compiler was developed with the assistance of the Top-Down

Compiler Writing System (CWS-TD) developed by Bochmann, Lecarme and Ward

[ScCh86]. The CWS-TD system generates a complete translator by analysing an

integrated description of an LL(1) language. The integrated description defines

the language syntax by production rules specified in Backus Naur Form (BNF).

Semantic actions are described by sections of Pascal code interlaced within the

BNF. CWS-TD inserts the user-defined semantic actions into the generated

translator at the designated places.

Some modifications of the CWS-TD system were necessary to facilitate the

development of the EZ/GKS translator. Minor modifications include the

generation of the input file listing. The underscore is now permitted in identifier

names.

48

All identifiers handled in the CWS-TD system are case sensitive. Since the host

language used for EZ/GKS is case insensitive, all symbols read from the input file

are changed to lower case prior to being parsed by the translator. Thus, all

reserved words and identifiers used in EZ/GKS appear to be case insensitive as

well.

When implementing a language extension, a technique must be used to

distinguish between statements of the host language and those of the graphical

extension. Graphical statements defined by the extension require translation

while statements of the host language should be copied unchanged to the file of

generated code. One method of identification is to recognize only those statements

which belong to the graphical extension, assuming that all others belong to the

host language. Graphical statements can easily be identified as such if each

statement is begun with a reserved word that is not reserved by the host

language.

Two problems arise when this method is used. One occurs when the first reserved

word in a graphical statement is mistyped. As the translator does not recognize

the mistyped word, it assumes that the statement belongs to the host language,

copying it verbatim to the file of translated code. The second problem arises

when the symbol terminating a host language statement is omitted. As the

missing terminator is not detected by the translator, more than one statement is

copied to the output file, creating errors in the translated code if the following

statement is a graphical statement in need of translation. Neither of these errors

can be detected by the translator. Hence, no error message can be issued to warn

the programmer.

49

A safer method for distinguishing statements of the host language from those of

the graphical extension is used in the language LIG [BuDi82]. In LIG, both host

statements and those of the graphical extension are positively identified by the

initial reserved word in each statement. Graphical statements are translated

while statements of the host language are copied without modification to the file

of translated code. Statements which do not belong to either the host or extension

can easily be identified as errors, thereby preventing the first problem described

above.

For assignment statements, LIG examines the first character of the assignment

operator to determine whether the statement is a Pascal assignment or a

graphical assignment. The operator ":=" distinguishes Pascal assignments while

the operators "<-" and "<=" distinguish graphical assignments. The responsibility

for deciding if an assignment statement is host or extension is thus shifted from

the translator to the application programmer.

Although this method provides more security than the one previously described,

it was not deemed adequate for the purposes of EZ/GKS. If the symbol terminating

a host statement is omitted, the second problem described above will still occur. In

addition, the author believes that the responsibility for distinguishing between

statements of the host language and graphical extension should rest with the

translator, not with the application programmer.

Because Pascal is a strongly typed language, the EZ/GKS graphical extension

benefits by being strongly typed as well. By the data type of a variable, the

translator can easily determine if an assignment statement belongs to the host

language or to the graphical extension. The data type also assists with the

50

translation of graphical statements and the generation of meaningful error

messages.

The EZ/GKS translator parses both the host language and the graphical extension.

In so doing, no statements are ever flushed to the output file, avoiding the

problem of bypassing an erroneous statement without warning the programmer.

By parsing Pascal, the translator is able to derive the data types of all variables

declared. Information on the data type of variables referenced in high-level

statements is valuable throughout the translation of EZ/GKS graphical statements.

In order to assist EZ/GKS with the task of echoing parsed host-language symbols to

the output file, a modification was made to the CWS-TD system. A global boolean

flag has been defined to control the printing of the previous symbol parsed onto

the file of generated code. When the flag is set, the previous symbol parsed is

copied to the output file. The flag is manipulated as needed within the semantic

actions of the integrated description, providing a mechanism to allow

host-language statements to pass through the translator unchanged.

The final modification to the CWS-TD system consists of the addition of three

global buffers used to accumulate groups of symbols to be referenced as a unit in

the integrated description. Variable references, factors and expressions are saved

in the buffers. Each buffer is controlled by a boolean flag which is manipulated

as needed from semantic actions within the integrated description. When a flag is

set, symbols parsed are appended to the related buffer. The buffer can

subsequently be referenced in semantic actions and inserted into the generated

code in the appropriate places.

51

5.2 Translation Techniques

The encapsulation of graphical data types is difficult to achieve when the Pascal

language is chosen as the host language. As previously noted, the Pascal

language is strongly typed. Therefore, all data types referenced in constant and

variable declarations must be fully described in the data type declarations.

Pointers are also typed. Thus, much of the implementation of graphical data types

is visible in the translated code.

The designer of EZ/GKS assumes that the application programmer does not alter

the output from the pre-processor. The pre-processor prevents programmer

access to the implementation of graphical variables from within the application's

source code. To enforce the concept of encapsulation, the only use of graphical

data types and variables permitted to the application programmer are those

expressly designated by the syntax of the EZ/GKS language.

5.2.1 Simple Translation

EZ/GKS begins translation of an application program by including the GKS

constant and type declarations together with the external procedure declarations

for the GKS subroutine calls. The declarations for predefined graphical data types

referenced in the application program are subsequently generated with the

declaration of numerous graphical variables reserved for internal use by the

translator. The external procedure declarations for routines in the EZ/GKS

run-time library are also generated.

Upon entering the main program body of an EZ/GKS program, the GKS subroutine

52

calls to open GKS, open WISS and activate WISS are automatically generated. In

addition, a call to GKS is generated to open each workstation which is declared as a

workstation constant within the program.

Subsequent calls to activate and deactivate workstations are generated throughout

the program as implied by the high-level workstation commands. For example, if

an explicit SEND statement references a workstation which is not currently

active, EZ/GKS automatically activates it. After the segments have been

transmitted, the workstation is returned to its original state.

Workstations are automatically deactivated and closed upon leaving the main

procedure. GKS is subsequently closed.

Simple translation of a high-level statement into a GKS subroutine call is achieved

using variables predefined by EZ/GKS and user-defined graphical variables as the

actual parameters for the appropriate GKS subroutine calls (Figure 23).

Frequently, assignment statements are generated to assign values to a predefined

EZ/GKS variable. For example, when an output primitive command such as LINE,

A. An EZ/GKS Statement
CONST HomeWkstn = WKSTN (8, Tek4027)
MESSAGE "** Er r o r i n Input Data * *' to HomeWkstn;

B. Generated Code
CONST HomeWk3tn = 1;
VAR GXVString : string;
GXVString:= '* * Er r o r in Input Data * *";
GMe3sageStr (HomeWkstn, length (GXVString), GXVString);

Figure 23 - Simple Translation of an EZ/GKS Statement

53

MARKER or FILL is defined by a point structure, a statement is generated to assign

each expression in the point structure to a sequential element of a predefined

EZ/GKS array variable. The array variable is subsequently passed as the actual

parameter of the GKS subroutine call generated by the translator.

The graphical data types SEGMENTSET and WKSTNSET allow the programmer to

designate an action to be performed on each member of the set(s) named.

Translation of high-level statements referencing SEGMENTSET or WKSTNSET

variables require the GKS subroutine call to be generated within a FOR loop. A

conditional statement within the loop allows execution of the GKS subroutine call

if the loop variable is a member of the designated set. Statements referencing

both a segment set and workstation set variable require the generation of two

nested FOR loops (Figure 24).

A. An EZ/GKS Statement
YAR BldgDesign: SEGMENTSET; Planners: WKSTNSET;

DISPLAY BldgDesign TO Planners;

B. Generated Code

YAR BldgDesign: SEGMENTSET; Planners: WKSTNSET;
GXYi, GXVj: INTEGER;

FOR GXVi := 0 TO GXYMaxSetSize DO
FOR GXVj := 0 TO GXCMaxSetSize DO

IF (GXYi IN Planners) &
(GXVj IN BldgDesign)

THEN GCopySegWs (GXYi , GXVj) ;

Figure 2 4 - Translat ion Generated by References to
Workstat ion and Segment Sets

54

5.2.2 The Run-Time Library and Inquiry Functions

The code generated in Figure 24B is not sufficient to accomplish the action

specified in Figure 24A. If output is requested on a workstation that is inactive,

the action would not be visible on the workstation requested. In addition, if a

workstation in the set allows implicit regeneration, its display surface may be

redrawn after the receipt of each segment.

The EZ/GKS run-time library contains procedures and functions that are useful

repeatedly throughout the translated application program. All routine identifiers

reserved for use by the translator begin with the prefix GX. In addition, the

library contains the user-accessible routines defined in Appendix C.

At run time, the library is loaded with the object code of the application program.

Procedures in the run-time library assist with translation by defining a simple

interface (ie. the subroutine call) for requesting a complex operation. The

subroutine call is generated by the translator and is inserted into the generated

code whenever the complex operation is needed. Routines in the run-time library

also serve to hide from the application programmer the data types, static variables

and implementation details of the procedures and functions used by the

translator.

Many procedures within the run-time library use GKS inquiry functions to

determine the current state of GKS and of the individual workstations. For

example, the function GXWsSet calls a GKS inquiry function to obtain a list of the

workstations currently active or open. The list is converted into a workstation set

and returned to the caller. The routine GXSuppR uses the set of active

55

workstations returned from GXWsSet and issues a GKS inquiry function to

determine the deferral state of each workstation in the set. If the deferral state is

allowed, a call is generated to temporarily suppress implicit regeneration. The

routine GXRestR restores the deferral state of each workstation suppressed by

GXSuppR to its original state. Procedures such as these in the run-time library

are called from the translated program to alter and restore the state of GKS and of

the individual workstations as needed throughout the translated application

program.

5.2.3 Translation of Attribute Values

Attribute values in the Pascal binding of GKS are specified using a variety of

enumerated data types and integers identifying different attribute styles. To

allow consistent specification of attribute values, the values for all attribute types

having enumerated set of values are defined by string constants or variables in

EZ/GKS (Appendix B). The parameter to the GKS subroutine call defining the

attribute's value is a call to a function in the run-time library returning an

integer value. The value returned by the function call is coerced into the data

type appropriate for the actual parameter being generated (Figure 25). This

technique allows the programmer to indicate attribute values using mnemonic

strings rather than integer values.

Upon initialization of an EZ/GKS program, a procedure in the run-time library is

called to read the Attribute Value File. The Attribute Value File contains a

mnemonic name, context and integer value for each valid enumerated attribute

value. Two arrays are created within the application program: the Context Limit

Array and the Attribute Value Array. The Context Limit Array defines the

56

A. An EZ/GKS Statement

ATTRIBUTES of FILL <- (INTERIOR i s SOLID');

B. Generated Code

GSetF i l l ln tSty le (GTInter ior (GXAtrVal (GXYAr ray ,
GXVL imi tAr ray [13] . m in ,
GXYL imi tAr ray [1 3] . max, 'SOLI D '))) ;

Figure 25 - Translat ion Generated to Set an Attr ibute Value
i

beginning and ending indices within which the values for a given attribute type

may be found in the Attribute Value Array. The Attribute Value Array stores the

mnemonic names representing attribute values and an associated numeric value.

When an attribute value is set by referencing a particular string, the routine

GXAtrVal in the run-time library is called to search for the string within the

appropriate context limits. If the string is found, the related value is returned.

Otherwise, a designated default value is returned.

The Attribute Value File may be extended to include additional mnemonic names

for the installation-dependent values of attributes such as line type, marker type,

font and hatch style. No change in the EZ/GKS translator is required to

accommodate additional attribute values.

5.2.4 Workstation Table Management

Workstation tables in GKS are addressed by an integer index. The programmer

must recall the current status of the tables in order to specify the index of the

57

desired colour, pattern or bundle entry.

EZ/GKS provides the high-level statements STORE, CHANGE, FIND and RELEASE to

elevate the manner in which workstation tables are referenced by the

programmer. High-level statements permit values to be specified by referencing

a colour, pattern or bundle variable. If an ambiguity arises by referencing a

graphical variable, the workstation index may be located with the help of the

FIND command.

Management of workstation tables is accomplished through the use of one Master

Workstation Array (MWA) and six Index Arrays (IA), one for each type of

workstation table. The MWA stores the union of all workstations to which a

graphical variable has been sent and references an Index List. The Index List

identifies the workstation table index used for each subset of workstations. Each

entry of an IA stores the union of the workstations for which the related index is

available. The size of an IA is the same as the maximum size for the related type of

workstation table.

The Workstation Description Table in GKS stores the allowable number of table

indices for each type of workstation. Inquiry functions in EZ/GKS access this

information in order to appropriately initialize the IAs, thereby preventing any

indices out of range from being selected in a SEND statement.

Each variable of type colour, pattern or bundle has associated with it an index into

the MWA. If the index is zero, the variable's value has not been sent to a

workstation. When a variable is first sent to a set of workstations, an unused

entry in the MWA is selected and the index value is stored in the variable. The

58

appropriate IA is searched to find the first index available on all workstations in

the set. The workstation union is updated by the workstation set to indicate that

the index is in use. The workstation set union is updated in the MWA and an Index

node is inserted in the list.

Processing for the RELEASE statement is the reverse of the SEND statement. A

node in the Index List is updated or deleted. Workstations are removed from the

workstation set union stored in the MWA and the related IA.

When the value of a graphical variable is altered in an assignment statement, the

connection to all table indices is broken. The Index List is deleted and the

associated MWA is designated as unused. The workstation set union in the IA is

updated to show the new indices available and the value of the MWA index stored

in the variable is reset to zero.

The CHANGE statement updates the values in all workstations to which a variable

has been stored. The Index List assists by identifying the index entry under

which the variable's old value had been stored. The value in each workstation in

the list is updated with the new value defined in the statement.

The FIND command searches the Index Lists associated with the specified

graphical variables to locate one index in common on all of the workstations.

When an available index is located, its is returned. An index value of zero is

returned if no index is available on all of the designated workstations.

The SEND, CHANGE, FIND and R E L E A S E statements assist the application

programmer with the management of workstation tables.

59

Chapter 6

Conclusion

This thesis has demonstrated the feasibility of elevating the functionality defined

in the GKS subroutine system to a high-level graphical extension of a

general-purpose programming language. Although the design of EZ/GKS is

dependent on the features present in Pascal/VS, the concepts presented are

essentially language independent. Equivalent functionality could be provided in

other general purpose programming languages with varying degrees of

difficulty.

The GKS subroutine system has the advantage over a high-level language

extension in being relatively language independent. The standard subroutine

call is an interface mechanism available in most general purpose programming

languages. A particular procedure defined in GKS requires little alteration from

one language to another. As a result, a programmer proficient in using GKS

through one language will have little trouble adapting this knowledge to use GKS

in a different language.

A high-level graphical extension is more dependent than a subroutine system on

the features and facilities of the host language. As a result, an implementation of

a high-level graphical extension providing similar functionality will vary more

from one host language to another. The author believes, however, that the

benefits of graphics programming using a high-level language far exceed this

disadvantage. A high-level language extension is able to hide much of the detail

required in GKS programming, making the high-level language easier to learn

and use.

60

Despite efforts to do so, the objective of making EZ/GKS compatible with the host

language has not been entirely accomplished. For example, any Pascal data type

may be used to declare either constants or variables. In EZ/GKS, the workstation

data type may only be used to declare workstation constants while all other

graphical data types may be only used to declare graphical variables. While the

ability to define certain types of graphical constants could be added to EZ/GKS, the

semantics of the graphical types prohibits complete compatibility with Pascal in

this regard. In practice, this minor variation should pose no significant

difficulty.

Three areas related to this topic have not been considered within the scope of this

project and are prime candidates for further investigation. First, the inquiry,

error and metafile functions of level 2A were excluded from the scope of this

work. While error and metafile functions are areas of small concern, finding a

user-friendly manner to handle the information accessible through the host of

inquiry functions provided by GKS is a significant issue.

Secondly, a method for handling GKS input functions associated with levels 2b and

2c has not been addressed. The ability to manage graphical input through a

high-level extension to a general purpose programming language could

revolutionize interactive graphics programming.

Finally, a method for extending this work to encompass the new GKS-3D [IS085b]

draft standard could also be considered.

61

References

[BoEn82] Bono, Peter R., Jose L. Encarnacao, F. Robert A. Hopgood and Paul J. W.
ten Hagen, "GKS - The First Graphics Standard," IEEE Computer
Graphics & Applications, Vol. 2 (July 1982): 9-23.

[Brow85] Brown, Maxine D., Understanding PHIGS, Megatek Corporation, San
Diego, CA., 1985.

[BuDi82] Burger, S., E. Dietrich and G. F. Schrack, "Development of a
Preprocessor for the Pascal-extended Graphical Language LIG/P with
the aid of Compiler/Compiler," in: W. Henhapl, Ed., GI-Fachgesprach,
Munich, (1982): 120-154.

[Dyme84] Dyment, Doug, CPSC 538B - Software Engineering Class Notes,
University of British Columbia, Fall term, 1984.

[Ende85] Enderle, Gunter, "Guest Editor's Introduction, Computer Graphics
Standards," Computers & Graphics, Vol. 9 (No. 1,1985): 1-8.

[GiEn72] Giloi, W.K., J. Encarancao and W. Kestner, "APL-G APL Extended for
Graphics," ONLINE '72 International Conference on Online
Interactive Computing, Uxbridge, England (Sept 1972): 579-599.

[HeBa86] Hearn, Donald and M. Pauline Baker, Computer Graphics, Englewood
Cliffs, NJ.: Prentice-Hall, 1986.

[IBM81] Pascal/VS Language Reference Manual 2nd Ed., IBM Corporation, 1981.

[IS085a] ISO DIS 7942, Graphical Kernel System Functional Description, Oct.
1985.

[IS085b] ISO-DP 8805, GKS-3D Functional Description, March, 1985.

[Kauf86] Kaufman, Arie, "Computer Artist's Colour Naming System," The Visual
Computer, Vol. 2 (No. 4,1986): 255-260.

[Mall82] Mallgren, William R., Formal Specification of Interactive Graphics
Programming Languages, Cambridge, MA.: MIT Press, 1982.

[MaTh81] Magnenat-Thalmann, Nadia and Daniel Thalmann, "A Graphical Pascal
Extension Based on Graphical Types," Software: Practice & Experience,
Vol. 11 (Jan., 1981): 53-61.

[McLe78] McLean, M.J., "A Survey of Interactive Graphics Software," The
Australian Computer Journal, Vol. 10 (Feb. 1978): 11-22.

Pressman, Roger S., Software Engineering: A Practitioner's Approach,
New York, NY.: McGraw Hill, 1982.

Smith, David N., "GPL/I - A PL/I Extension for Computer Graphics,"
Spring Joint Computer Conference, Atlantic City, NJ. (May 1971):
511-528.

Sun, Hanqui, A High-Level Graphics Language Based on the Graphical
Kernel System, M. A. Sc. Thesis, University of British Columbia, 1986.

Schrack, G.F, Gordon Gheng, Harold Leung and Benjamin Yu, CWS-TD
User's Manual 2nd ed., University of British Columbia, Department of
Electrical Engineering, Feb. 1986.

63

Appendix A
Syntax Specification for EZ/GKS

Outline

I. Modifications to Pascal syntax diagrams

n . Declaration of graphical data types

III. Graphical initialization

IV. Structured graphical assignments

V. High-level graphical statements

A. Graphical commands

1. Workstation commands

2. Output primitive commands

3. Segment commands

B. Graphical State Changes

1. Transformations

2. Attribute specification

3. Miscellaneous settings

C. High-level referencing to workstation tables

VI. Graphical expressions

VII. Summary of notation

I. Modifications to Pascal/VS Syntax Diagrams

1. Constant-del:

64

- • C O N S T - >{ constant expr)-
{ <workstation declaration> }- 1*

2. Type-del

•TYPE- - ^ • { id }-j-^= . - • { typ type }
graphical typo

3. Var-dcl

•VAR- A A » { i d)-r^= r ^ l t vP e 1

L— • L^f <grar
{ <graphical typo }

4. Static-del

•STATIC ^ i d ^ | • - | -»-(type } '•
{ <graphical typo } 1

5. Def-dcl

= - T - ^ { type }
'-•{ <graphical typo } 1*;

6. Value-del

•VALUE- value assignment }
(<graphical value assignment }

7. Statement

{ statement }-

-•{ <graphical statements)

8. Assignment-statement

i •{ variable)
*—• { id : function

•{ expr }
<graphical expr>)

"{ <graphical initialization> }
"{ <structured graphical assignments

II. Declaration of graphical data types:

<workstation declaration> ::= <variable*: wkstn> = WKSTN
(<integer>, <device typo)

<device typo ::= PLOTFILE
I GKSMETAOUT
I GKSMETAIN
I TEK4027
I JUPITER7
I PRINTRONIX
I QMS
I < other device type >

<graphical type> ::= POINT
I SEGMENT
I WINDOW
I BUNDLE
I COLOUR
I POLYPOINT
I SEGMENTSET
I WKSTNSET
I NORMXFORM
I PATTERN
I SEGXFORM

<graphical value assignment ::= <variable* : polypoint>
:= <constant point list>

<constant point list> ::= (<constant point> { ; <constant point> } +

<constant point> ::= <signed number> , <signed number>

<signed number> ::= { + I - I EMPTY } <unsigned number>

<unsigned number> ::= <integer> I <realnumber>

<integer> ::= <digit>

<real number> ::= <digit> . <digit>

<digit> ::= 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9

Graphical initialization:

<graphical initialization>

69

IV. Structured Graphical Assignments:

structured graphical assignment
<point structure>
<normxform structure>
<bundle structure>
<pattern structure>

<point structure> ({ <expr: point>

I <expr : numerio
, <expr : numerio

{ ; { <expr : point>
I <expr : numerio

*
, <expr : numeno

<normxform structuro { FROM <variable* : window>
{ TO <variable*: window>
I EMPTY }

I TO <variable* : window> }

<bundle structure> <primitive typo <nongeometric attribute list>

<primitive typo LINE
I FILLAREA

I MARKER
I TEXT

<nongeometric attribute list> (<nongeometric attribute>
{ ; <nongeometric attributo }

<nongeometric attribute> oiongeometric attribute typo
IS <attribute value**>

<nongeometric attribute typo T Y P E

W I D T H

C O L O U R

S I Z E

I N T E R I O R

S T Y L E T Y P E

F O N T P R E C I S I O N

E X P A N S I O N

S P A C I N G

<pattern structure> < pattern element >
{ , < pattern element > }+

< pattern element >
{ , < pattern element > }+

<pattern elements <colour>
<variable*: integer>
<integer>

<colour> <variable* : colour>
<colour constant>

<colour constants R E D I
B L U E I

M A G E N T A I
B L A C K I

G R E E N

Y E L L O W

C Y A N

W H I T E

V. High-level graphical statements:

<graphical statements <graphical command>
<graphical state changes>
<workstation table manipulation>

A. Graphical commands:

<graphical commands <workstation command>
<output primitive commands
<segment commands

1. Workstation commands:

<workstation commands <output to workstation>
<messageto workstation>
<clear workstation>
<redraw workstations
<update workstations

<output to workstations OUTPUT T O workstation group>
{ O N L Y I A L S O }

<statement >

<message to workstation> M E S S A G E { <string >
I -cvariable : string> }

T O <workstation group>

<clear workstations C L E A R <workstation group>
{ A L W A Y S
I E M P T Y }

<redraw workstation> R E D R A W <workstation group>

<update workstation UPDATE <workstation group>
{ NOW
I EMPTY }

<workstation group> { <id : wkstn>
I <variable* : wkstnseo }

2. Output primitive commands:

<output primitive command> <line primitive>
onarker primitivO
<fillarea primitive>
<text primitive>
<cell array primitive>

<line primitive> LINE <subrange> AT
{ <variable* : polypoint>
I <point structuro }

<marker primitivO MARKER <subrange> AT
{ <variable* : polypoint>
I <point structuro }

<fillarea primitivO FILL <subrange> AT
{ <variable* : polypoint>
I <point structure> }

<text pnmitivO TEXT { <string*> I <variable*: string> }
AT <point>

<cell array primitivO CELLARRAY IN <variable*:window>
OF <pattern>

<subrange> [1.. <integer value>]
I EMPTY

<point> <variable : point>
<point strucruro

3. Segment commands

<segment command> <create segmeno
<delete segments>
<rename segmeno
<save segments>
<display segments>
<insert segments

<create segmeno CREATE <variable* : segment>
<statement>

<delete segments> DELETE <segment group>
{ FROM workstation group>
I EMPTY }

<segment group> •cvariable : segmeno
I <variable : segmentseo

<rename segmeno RENAME <variable* : segmeno
TO <variable* : segmeno

<save segments> SAVE <segment group>
TO <workstation group>

<display segmentss DISPLAY { <segment group> TO
I EMPTY }

workstation group>

<insert segmeno INSERT <variable* : segmeno
{ WITH <variable* : segxforno
I EMPTY }

74

B. Graphical state changes:

<graphical state change>

1. Transformation:

<transformation>

2. Attribute specification:

<attribute specifications

<set aspect source>

<transformation>
<attribute specification>
<miscellaneous settings>

::= TRANSFORM
{ NT <- <variable*: normxform>
I <segment group>

<- <variable* : segxform>
I workstation group>

<-
{ FROM <variable* : window>

{ TO <variable* : window>
I EMPTY }

I TO <variable*: window> } }

<set aspect source>
I <set attributes>
I <select bundled attributes>

ASF OF <primitive typo
<- <attribute source>
{ EXCEPT <nongeometric attribute typo

{ , <nongeometric attribute typo }
I EMPTY }

<attribute sourco INDIVIDUAL I BUNDLED

7 5

<set attributes ATTRIBUTES OF
{ <primitive type>

<- { <variable*: bundle>
I <attribute list> }

I <segment group>
<- <segment attribute list>

<attribute list> (<attribute> { ; <attribute> })

<attribute> <nongeometric attribute>
I <geometric attributo

<geometric attributo <geometric attribute typo
IS <attribute value* *>

<geometric attribute typo PATTERNSIZE
PATTERNSTART
PATH
HEIGHT
ALIGNMENT
ANGLE

<segment group> •cvariable* : segment>
<variable* : segmentset>

<segment attribute list> (<segment attributo

{ ; <segment attributo })

<segment attributo <segment attribute type> IS <attribute value* *>

<segment attribute typo HIGHLIGHTING I VISIBILITY

<select bundled attributes BUNDLE OF <primitive type>
<- { <integer>

I <variable : integer>
I <variable*: bundlo }

3. Miscellaneous settings:

<miscellaneous settings> <set segment pnonty>
<set implicit regeneration>
<set deferral state>
<set clipping>

<set segment priority> PRIORITY O F <segment group>
<- <real value>

<set deferral>

<defer list>

D E F E R R A L O F
<- {

I

(<deferitem>

workstation group>
<defer item>
<defer list> }

{ ; <deferitem> }*

<defer item> I M P L I C I T R E D R A W IS
{ SUPPRESSED I A L L O W E D }

U P D A T E T I M E IS
{ N O W I L A T E R }

<set clippings CLIPPING <- { O N I O F F }

High-level referencing of workstation tables:

workstation table manipulations
<store in workstation tables>
<change workstation table entries>
<release from workstation tables>

<store in workstation tables> S T O R E
{ (Workstation table entry>

IN <workstation group>
{ ; workstation table entry>

IN workstation group>
workstation table list>

IN <workstation group>

77

Workstation table entry> <variable* : colour>
<variable*: patterns
•cvariable* : bundle>

<workstation table lists (workstation table entry>
{ , workstation table entry> })

<change workstation table entry>

TO <expr: colour>
CHANGE
{ <variable* : colour>
I wariable*: patterns

TO <pattern structuro
I <variable*: bundle>

TO <nongeometric attribute lists
}

<find workstation index> FIND wariable : integer>
FOR workstation table entry>

ON <workstation group>
{ ; workstation table entry>

ON workstation group> }

<release from workstation table>
RELEASE

workstation table entry>
Workstation table list>

FROM workstation group>
EMPTY

Graphical Expressions

<graphical expr>

<expr: point>

<expr: colour>

<expr: segxform>

<segxform factor> :

I

I

I

I

I

<direction> :

<expr: point>
I <expr: colour>
I <expr: segxform>

<variable : point>
{ + <variable : pomt>
I - <variable : point> }

{ <integer> I <variable* : integer> }
{ PART I PARTS } <colour>

{ + { <integer> I -cvariable* : integer> }
{ PART I PARTS } <colour> }+

{ -cvariable* : segxform>
I <segxform factor> }
{ + { <variable* : segxform>

I <segxform factor> }

} +

SCALE { <realvalue>
I <point> }

FROM <point>

ROTATE <real value>
ABOUT <point>

SHIFT <point>

SHEAR <realvalue> %

IN <direction>

REFLECT IN <direction>

IDENTITY

X I Y

7 9

VII. Summary of notation

SYMBOL DEFINITION

<x> Nonterminal symbol x

<x : y> Nonterminal x of data type y

x Terminal symbol x

::= "is defined as"

{̂ } Grouping

I Alternation

<x>+ One or more repetitions of <x>

<x> Zero or more repetitions of <x>

<x > Nonterminal x is defined by the host language
(For definition of x, see [IBM81])

**
<x > See Appendix B for details

Appendix B

B.l Nongeometric Output Primitive Attributes

Primitive Attribute Type Data Type Values

LINE TYPE STRING SOLID, DASHED, DOTTED, DASHDOT @

WIDTH REAL any >= 0

COLOUR COLOUR* any

MARKER TYPE STRING DOT, PLUS, STAR. X, 0 @

SIZE REAL any >= 0

COLOUR COLOUR* any

FILLAREA INTERIOR STRING HOLLOW, SOLID, PATTERN. HATCH

STYLETYPE PATTERN* or any
@ STRING
any
@

COLOUR COLOUR* any

TEXT FONTPRECISION
font

structure
STRING

(font ; precision)
@

precision STRING STRING, CHAR, STROKE

EXPANSION REAL any >= 0
SPACING REAL any
COLOUR COLOUR* any

NOTES: @ indicates that implementation dependent
names can be added to the values listed

* indicates that an integer index of the
workstation table may be substituted

oo o

Appendix B

B.2 Geometric Output Primitives

Primitive Attribute Type Data Type Values

FILLAREA PATTERNSIZE POINT any

PATTERNSTART POINT any

TEXT PATH STRING RIGHT, LEFT, UP, DOWN

HEIGHT REAL any > 0

ALIGNMENT
horizontal
vertical

structure
STRING
STRING

(horizontal ; vertical)
NORMAL, LEFT, CENTRE, RIGHT
NORMAL, TOP, CAP, HALF, BASE, BOTTOM

ANGLE REAL any

Appendix B

B.3 Segment Attributes

Attribute Type Data Type Values

VISIBILITY

HIGHLIGHTING

STRING

STRING

VISIBLE, INVISIBLE

NORMAL, HIGHLIGHT

Appendix C
System Defined Functions

Name Description Parameter Pata Types Result

XCoord Get X coordinate POINT REAL

YCoord Get Y coordinate POINT REAL

LoLeft Get lower left comer WINDOW POINT

LoRight Get lower right corner WINDOW POINT

UpLeft Get upper left corner WINDOW POINT

UpRight Get upper right corner WINDOW POINT

RedVal Get RED component of RGB value COLOUR REAL

GreenVal Get GREEN component of RGB value COLOUR REAL

BlueVal Get BLUE component of RGB value COLOUR REAL

MaxPts Get index value of the last initialize point POLYPOINT INTEGER

XMax Get the largest X value POLYPOINT REAL

XMin Get the smallest X value POLYPOINT REAL

YMax Get the largest Y value POLYPOINT REAL

YMin Get the smallest Y value POLYPOINT REAL

GetPt* Get a point POLYPOINT
X INTEGER POINT

GetWin Get the window NORMXFORM WINDOW

GetVP Get the viewport NORMXFORM WINDOW

RowLen Get row length PATTERN INTEGER

ColLen Get column length PATTERN INTEGER

•Synonym: GetPt(Pl,Il) is PI [II]

Appendix D
Example Programs

Program E Z G K S _ D e m o 1 ;

* *
* T h i s program d e m o n s t r a t e s the use o f the EZ/GKS p r e c o m p i l e r . *
* *
*

CONST

P r i n t e r = WKSTN (2 1 , QMS);

TYPE
N a t i o n R e c = r e c o r d

f l a g : SEGMENT;
p o s i t i o n : SEGXFORM;
E n d ;

N a t i o n = (C a n a d a , USA, E n g l a n d , C h i n a , F r a n c e , Germany,
USSR, J a p a n) ;

N a t i o n A r r a y = a r r a y [Canada . . Japan] o f N a t i o n R e c ;

VAR
A r r a y O f N a t i o n s
S t a r
P i

Nat i o n A r r a y ;
SEGMENT;
r e a l ;

PROCEDURE G e n e r a t e F 1 a g s (Var N a t n A r r : N a t i o n A r r a y) ;
{ T h i s r o u t i n e c a l l s a r o u t i n e to g e n e r a t e the g r a p h i c a l

segment f o r e a c h c o u n t r y ' s f l a g . }

Var
G r e y : G A C o l A r r a y ;
F l a g S i z e : POLYPOINT;

PROCEDURE ComputeArc (CONST c e n t e r : POINT; CONST r a d i u s , a l p h a , b e t a : r e a l
CONST C l o c k w i s e : b o o l e a n ; CONST I n i t i a 11ndex, N b r P t s
i n t e g e r ; VAR r e s u l t : POLYPOINT);

{ T h i s r o u t i n e computes an a r c c e n t e r e d a t CENTER w i t h a
r a d i u s o f RADIUS between a n g l e s ALPHA and BETA. The
d i r e c t i o n o f the a r c i s d e t e r m i n e d by C l o c k w i s e and the
d i s t a n c e between the p o i n t s i s d e t e r m i n e d by the NBRPTS
and the l e n g t h of the a r c r e q u e s t e d . The p o i n t s computed
a r e s t o r e d i n the RESULT b e g i n n i n g w i t h the INITIALINDEX. }

Var

I i n t e g e r ;
temp, 1 n c r e : r e a l
h o l d p t : POINT;

BEGIN
R e s u l t := ' ' ;
I f a l p h a >= b e t a
Then If C l o c k W i s e

Then i n c r e : =
E1se i n c r e : =

E l s e i f C l o c k w i s e
Then 1ncre :=

E l s e i n c r e :=

- (a l p h a -
(2 * P i -
(N b r P t s •

- (2 * P i
(NbrP ts

(a l p h a -

b e t a) / (NbrP ts - 1)
(a l p h a - b e t a)) /
1)

- (b e t a
- D
b e t a) /

- a l p h a)) /

(NbrP ts - 1);

F o r i := 0 to N b r P t s - 1 Do
B e g i n

temp := a l p h a + i * i n c r e ;
h o l d p t := (X c o o r d (c e n t e r) + r a d i u s * c o s (t e m p) ,

Y c o o r d (c e n t e r) + r a d i u s * s i n (t e m p)) ;
r e s u l t [i + I n i t i a l I n d e x] := h o l d p t ;

E n d ;
END; { Compute A r c >

PROCEDURE D e t e r m i n e S i z e (Name : N a t i o n ; Var O u t L i n e : POLYPOINT)
{ T h i s r o u t i n e d e t e r m i n e s the s i z e of the f l a g based on

the a s p e c t r a t i o s t o r e d . }

CONST
L e n g t h 20;

TYPE
A s p e c t A r r a y =

STATIC
A s p e c t R a t i o s

VALUE
A s p e c t R a t i os

ARRAY [Canada

: A s p e c t A r r a y ;

Japan] o f r e a l ;

a s p e c t A r r a y (0 . 5 , 0 . 5128 , 0 .5428 , 0 .67857 ,
0 . 6 4 2 8 , 0 . 6 1 2 9 , 0 .57142 , 0 . 6 4 2 8) ;

VAR
bot tom r e a 1

BEGIN
O u t L i n e
bot tom
Out 1i ne
O u t L i n e
O u t L i n e [5]

:= (- 1 0 , 10;
:= (l e n g t h *
[3] := (10,
[4] := (-10 ,

10, 10) ;
A s p e c t R a t i os[name])
b o t t o m) ;
b o t t o m) ;

- 10;

O u t L i n e [1] ; 00

END; { D e t e r m i n e S i z e }

PROCEDURE C r e a t e S t a r (C o n s t F i l l S t a r : b o o l e a n ; Var S t a r S e g : SEGMENT)
{ T h i s r o u t i n e c r e a t e s a s t a r f rom -1,-1 to 1,1 i n WC.

I f F i l l S t a r i s t r u e , a f i l l e d s t a r i s c r e a t e d . O t h e r w i s e ,
an o u t l i n e i s c r e a t e d . }

VAR
S t a r U n i t s : WINDOW;
S t a r N T : NORMXFORM;

STATIC
S t a r P o i n t s POLYPOINT;

VALUE
S t a r P o i n t s 0.95,

-0.95,
-0.95,

-0.3
-0.3
0.3

0 ,
0.95,
0.95,

BEGIN
C r e a t e S t a r S e g

Beg i n
A t t r i b u t e s of F i l l <
S t a r U n i t s := (-1, -1
StarNT := FROM S t a r U n i t s
T r a n s f o r m NT <- S t a r N T ;
I f F i l l S t a r
Then A t t r i b u t e s o f F i l l <-
E l s e A t t r i b u t e s o f F i l l <-
F i l l a t S t a r P o i n t s ;

E n d ; { c r e a t e S t a r S e g }
END; { C r e a t e S t a r >

3;
3);

(c o l o u r i s 0);
1, D;

(i n t e r i o r
(i n t e r i o r

i s
i s

' s o l i d ')
' h o i 1ow') ;

PROCEDURE DoCanada (o u t l i n e : POLYPOINT; VAR F l a g S e g
{ D e f i n e the n a t i o n a l f l a g o f Canada }

SEGMENT);

STATIC
M a p l e L e a f POLYPOINT;

VALUE
M a p l e L e a f (-o 3, -10 0 -0 3, -2 4; -3 3, -4 3;

-3 3, -3 3 -5 8, -3 3; -4 4, -1 5;
-5 8, -1 2 -4 0, 0 0; -7 9, 2 9;
-6 9, 2 7 -8 3, 4 6; -5 8, 4 6;
-6 3, 5 9 -2 0, 3 3; -2 0, 7 9;
-1 0, 7 4 0 0, 9 4)

VAR
TempPT : POINT;
TempPolyPt : POLYPOINT;

BEGIN
C r e a t e F l a g S e g

B e g i n
L i n e a t O u t L i n e ;
A t t r i b u t e s o f F i l l <- (i n t e r i o r i s ' s o l i d ') :
F i l l a t M a p l e L e a f ;
TempPt := (5 , 0) ;
TempPolyPt := (0 u t l i n e [1] ; 0 u t l i n e [1] + TempPt;

0 u t l i n e [4] + TempPt; 0 u t l i n e [4]) ;
F i l l a t TempPolyPt ;
TempPolyPt := (0 u t l i n e [2] - TempPt; 0 u t l i n e [2] ;

0 u t l i n e [3] - TempPt; 0 u t l i n e [3]) ;
F i l l a t TempPolyPt ;
Tex t ' C a n a d a ' a t (-6 , - 8) ;

E n d ;
END;

PROCEDURE DoUSA (o u t l i n e : POLYPOINT; VAR F l a g S e g : SEGMENT)
{ D e f i n e the n a t i o n a l f l a g of the U . S . A . }

VAR
1, j : i n t e g e r ;
f l a g w i d t h , s t r i p e w i d t h , Ypos : r e a l ;
S t r i p e , c a n t o n : POLYPOINT;
L o w L i m i t , P o s i t i o n , S t e p R i g h t , StepDown : POINT;
S t a r S e g : SEGMENT;
S t a r X f o r m , SaveXform : SEGXFORM;
I n s e r t S t a r : b o o l e a n ;
X i n c , Y i n c : r e a l ;

BEGIN
X i nc : = 0 . 4 ;
Y i n c := 0 . 3 0 6 5 ;
L o w L i m i t := o u t l i n e [3] ;
F l a g W i d t h := 10 + ABS (Y c o o r d (L o w L i m i t)) ;
S t r i p e W i d t h := F l a g W i d t h / 13;
Ypos := - 1 0 ;
A t t r i b u t e s o f f i l l <- (i n t e r i o r i s ' S O L I D ' ;

c o l o u r i s 1);
C r e a t e F l a g S e g

B e g i n
L i n e a t O u t L i n e ;
F o r i := 1 to 7 DO

B e g i n
S t r i p e := (- 1 0 , Y p o s ; 10, Y p o s ;

10, Ypos + S t r i p e W i d t h ;
- 1 0 , Ypos + S t r i p e W i d t h) ;

F i l l at S t r i p e ;
Ypos := Ypos + (2 * S t r i p e W i d t h) ; 00

00

E n d ;
C a n t o n ' : = (- 10,

- 1 0 ,
F i l l a t C a n t o n ;
C r e a t e S t a r (t r u e
Pos i t i on
S t a r X F o r m

10; - 1 . 2 , 10; - 1 . 2 ,
(7 * S t r i p e W i d t h)) ;

(7 * S t r i p e W i d t h) ;

S t a r S e g) ;
(-10 + X i n c , 10 - Y i n c) ;

S c a l e 0 . 3 f rom o r i g i n +
S h i f t p o s i t i o n ;

= t r u e ;
0) ;
0) ;

= (X i n c
= (Y i n c

t o 9 Do

I n s e r t S t a r
S t e p R i g h t
StepDown
F o r j := 1

Beg i n
SaveXform := S t a r X f o r m ;
F o r i := 1 to 11 Do

B e g i n
If I n s e r t S t a r
Then I n s e r t S t a r S e g w i t h S t a r X f o r m ;
I n s e r t S t a r := not I n s e r t S t a r ;
S t a r X f o r m := S t a r X f o r m +

S h i f t S t e p R i g h t ;
End;

S t a r X f o r m : = SaveXform +
S h i f t StepDown;

END;

E n d ;
T e x t ' U . S . A .

E n d ;
{ DoUSA }

a t (- 6 , - 8) ;

PROCEDURE D o F r a n c e (O u t L i n e : POLYPOINT; Var F l a g S e g : SEGMENT);
{ D e f i n e the n a t i o n a l f l a g o f F r a n c e }

VAR
S t r i p e W i d t h : r e a l ;
V e r t l n c r e , TwoByTwo : POINT;

Beg i n
TwoByTwo := (2 , 2) ;
S t r i p e W i d t h := 20 / 3;
V e r t l n c r e := (S t r i p e W i d t h , 0) ;
C r e a t e F l a g S e g

Beg i n
L i n e a t O u t l i n e ;
A t t r i b u t e s of f i l l <- (i n t e r i o r i s ' s o l i d ' ;

c o l o u r i s 1) ;
F i l l a t (0 u t 1 1 n e [1] ; 0 u t l i n e [1] + V e r t l n c r e ;

0 u t l i n e [4] + V e r t l n c r e ; 0 u t l i n e [4]) ;
A t t r i b u t e s of F i l l <- (i n t e r i o r i s ' p a t t e r n ' ;

S t y l e T y p e i s ' g r e y ' ;
P a t t e r n s t a r t i s o r i g i n ; 00

P a t t e r n S i z e i s TwoByTwo);
F i l l a t (O u t l i n e [2] ; 0 u t l i n e [3] ;

0 u t l i n e [3] - V e r t l n c r e ;
0 u t l i n e [2] - V e r t l n c r e) ;

T e x t ' F r a n c e ' a t (- 6 , - 8) ;
E n d ;

END; { D o F r a n c e }

PROCEDURE D o E n g l a n d (O u t L i n e : POLYPOINT; Var F l a g S e g : SEGMENT);
{ D e f i n e the n a t i o n a l f l a g o f E n g l a n d }
VAR

L o w L i m i t , C e n t e r , Y i n c r e l , Y 1 n c r e 2 , L e f t s i d e , R i g h t S i d e : P o i n t ;
M1dy, a n g l e : r e a 1 ;
S t r i p e , C r o s s : SEGMENT;
C r o s s X f o r m , S t r i p e X f o r m : SEGXFORM;
i : i n t e g e r ;

BEGIN
L o w L i m i t := 0 u t l i n e [4] ;
Midy := Ycoord(1 o w l i m i t) / 2;
C e n t e r := (0 , M i d y) ;
Y i n c r e l := (O, 1) ;
Y i n c r e 2 := (0 , 2) ;
L e f t S i d e := (- 1 0 , M i d Y) ;
R i g h t S i d e := (10, M i d Y) ;

C r e a t e S t r i p e
B e g i n

A t t r i b u t e s o f F i l l <- (i n t e r i o r i s ' s o l i d ' ;
c o l o u r i s 0) ;

F i l l a t (L e f t s i d e + Y i n c r e 2 ; R i g h t S i d e + Y i n c r e 2 ;
R i g h t S i d e - Y i n c r e 2 ; L e f t s i d e - Y 1 n c r e 2) ;

A t t r i b u t e s o f F i l l <- (c o l o u r i s 1) ;
F i l l a t (L e f t s i d e + Y i n c r e l ; R i g h t S i d e + Y i n c r e l ;

R i g h t S i d e - Y i n c r e l ; L e f t s i d e - Y i n c r e l) ;
E n d ;

C r e a t e C r o s s
B e g i n

F i l l a t (c e n t e r ; 0 , MidY - 0 . 5 ; - 1 0 ,
Ycoord(1 o w l i m i t) - 0 . 5 ; l o w l i m i t) ;

E n d ;

C r e a t e F l a g S e g
B e g i n

A t t r i b u t e s o f F i l l <- (i n t e r i o r i s ' s o l i d ' ;
c o l our i s 1);

L i n e a t O u t L i n e ;
A t t r i b u t e s o f F i l l <- (c o l o u r i s 0) ;
F i l l a t (0 u t l i n e [2] + Y i n c r e l ; 0 u t l i n e [2] - Y i n c r e l ;

O

0 u t l i n e [4] - Y i n c r e l ; 0 u t l i n e [4] + Y i n c r e l) ;
F i l l a t (O u t l i n e [1] + Y i n c r e l ; O u t l i n e [1] - Y i n c r e l ;

0 u t l i n e [3] - Y i n c r e l ; 0 u t l i n e [3] + Y i n c r e l) ;
C r o s s X f o r r a := ' ' ;
F o r i := 1 to 4 Do

B e g i n
I n s e r t C r o s s w i t h C r o s s X f o r m ;
A n g l e := 0 . 5 * P i ;
C r o s s X f o r m := C r o s s X f o r m + R o t a t e A n g l e

about C e n t e r ;
E n d ;

S t r ipeXform := ' ' ;
I n s e r t s t r i p e w i t h S t r i p e X f o r m ;
S t r i p e X f o r m := S t r i p e X f o r m + R o t a t e P i about C e n t e r ;
T e x t ' E n g l a n d ' a t (- 6 , - 8) ;

E n d ;
END; { D o E n g l a n d }

PROCEDURE D o C h i n a (O u t L i n e : POLYPOINT; Var F l a g S e g : SEGMENT);
{ D e f i n e the n a t i o n a l f l a g o f C h i n a }

VAR
i i n t e g e r ;
P o s i t i o n : SEGXFORM;
A n g l e , I n c r e : r e a l ;

BEGIN
A t t r i b u t e s o f F i l l <- (i n t e r i o r i s ' s o l i d ') ;
C r e a t e F l a g S e g

B e g i n
F i l l a t O u t L i n e ;
P o s i t i o n := S c a l e 2.1 f rom O r i g i n + S h i f t (- 7 , 4 . 4 2) ;
I n s e r t S t a r w i t h P o s i t i o n ;
A n g l e := 0 .25 * P i ;
I n c r e := - 0 . 1 8 7 5 * P i ;
P o s i t i o n := S c a l e 0 .53 f rom O r i g i n + S h i f t (-4 , 4 .42)

+ R o t a t e A n g l e about (- 7 , 4 . 4 2) ;
F o r 1 := 1 to 4 Do

B e g i n
I n s e r t S t a r w i t h P o s i t i o n ;
P o s i t i o n := P o s i t i o n + R o t a t e Ang le about

(- 7 , 4 . 4 2) ;
E n d ;

T e x t ' C h i n a ' a t (- 6 , - 8) ;
E n d ;

END; { D o C h i n a }

PROCEDURE DoGermany (O u t L i n e : POLYPOINT; Var F l a g S e g : SEGMENT)
{ D e f i n e the n a t i o n a l f l a g o f Germany }

VAR
F l a g W i d t h , Bandwidth : R e a l ;
L o w L i m i t , TwoByTwo : P o i n t ;

BEGIN
L o w L i m i t := 0 u t l i n e [3] ;
F l a g W i d t h := 10 + ABS (Y c o o r d (L o w L i m i t)) ;
BandWidth := F l a g W i d t h / 3;
C r e a t e F l a g S e g

B e g i n
L i ne a t Out 1i n e ;
A t t r i b u t e s o f F i l l <- (i n t e r i o r i s ' s o l i d ' ;

c o l our i s 1);
TwoByTwo := (2 , 2) ;
F i l l a t (- 10 , 10; 10, 10; 10, 10 - BandWidth;

- 1 0 , 10 - BandWid th) ;
A t t r i b u t e s o f F i l l <- (i n t e r i o r i s ' P a t t e r n ' ;

S t y l e T y p e i s ' g r e y ' ;
P a t t e r n S i z e i s TwoByTwo;
P a t t e r n S t a r t i s o r i g i n) ;

F i l l a t (- 1 0 , 10 - BandWidth; 10, 10 - BandWidth;
10, 10 - (2 * B a n d W i d t h) ;

- 1 0 , 10 - (2 * BandWidth));
T e x t 'Germany ' a t (- 6 , - 8) ;

E n d ;
END;

PROCEDURE DoUSSR (O u t L i n e : POLYPOINT; Var F l a g S e g : SEGMENT)
{ D e f i n e the n a t i o n a l f l a g o f the U . S . S . R . }

VAR
S t a r S e g : SEGMENT;
S t a r P o s i t i o n : POINT;
S t a r X f o r m : SEGXFORM;

STATIC

Hammer, C y c l e : POLYPOINT;

VALUE
Hammer := (- 7 . 5 , 6 . 5 ; - 7 . 3 , 6 . 7 ; - 8 , 7 . 4 ; - 7 . 8 , 7 . 5 ;

- 8 . 2 , 7 . 8 ; - 8 . 5 , 7 . 5 ; - 8 . 4 , 7 . 2 ; - 8 . 3 , 7 .3)
BEGIN

{ C o m p u t e C y c l e (c y c l e) ; }
C r e a t e S t a r (f a l s e , S t a r S e g) ;
S t a r P o s i t i o n := (-8 , 9) ;
S t a r X f o r m := S c a l e 0 . 5 from O r i g i n +

S h i f t S t a r P o s i t i o n ;
C r e a t e F l a g S e g to

B e g i n
A t t r i b u t e s of F i l l <- (i n t e r i o r i s ' s o l i d ' ;

c o l o u r i s 1) ;
F i l l a t O u t l i n e ;
I n s e r t S t a r S e g w i t h S t a r X f o r m ;
A t t r i b u t e s o f F i l l <- (c o l o u r i s O);
F i l l a t Hammer;
{ F i l l a t C y c l e ; }
T e x t ' U . S . S . R . ' a t (- 6 , - 8) ;

E n d ;
END; < DoUSSR >

PROCEDURE DoJapan (O u t L i n e : POLYPOINT; Var F l a g S e g : SEGMENT)
{ D e f i n e the n a t i o n a l f l a g of Japan }

VAR
C i r c l e : POLYPOINT;

BEGIN
C r e a t e c 1 a g S e g

B e g i n
L i n e a t O u t L i n e ;
ComputeArc (o r i g i n , 5, 0 , 2 * P i , t r u e , 1,

100, c i r c l e) ;
A t t r i b u t e s o f F i l l <- (i n t e r i o r i s ' s o l i d ') ;
F i l l a t C i r c l e ;
T e x t ' J a p a n ' a t (-6 , - 8) ;

E n d ;
END; { DoJapan }

BEGIN
C 1 i pp1ng <- ' o n ' ;
A t t r i b u t e s o f Tex t <- (h e i g h t i s 2 0 . 0 ; e x p a n s i o n i s 1 .5) ;
G r e y [1 , 1] := O;
G r e y [1 , 2] := 1
G r e y [2 , 1] := 1
G r e y [2 , 2] := 0
G S e t P a t t e r n R e p (P r i n t e r , 1, 2, 2 , G r e y) ;
D e t e r m i n e S i z e (Canada , F l a g s i z e) ;
DoCanada (F l a g S i z e , N a t n A r r [C a n a d a] . F l a g) ;
D e t e r m i n e S i z e (USA, F l a g s i z e) ;
DoUSA (F l a g S i z e , N a t n A r r [U S A] . F 1 a g) ;
D e t e r m i n e S i z e (E n g l a n d , F l a g s i z e) ;
D o E n g l a n d (F l a g S i z e , N a t n A r r [E n g l a n d] . F 1 a g) ;
D e t e r m i n e S i z e (C h i n a , F l a g s i z e) ;
DoCh ina (F l a g S i z e , N a t n A r r [C h i n a] . F 1 a g) ;
D e t e r m i n e S i z e (F r a n c e , F l a g s i z e) ;
D o F r a n c e (F l a g S i z e , N a t n A r r [F r a n c e] . F 1 a g) ;
D e t e r m i n e S i z e (Germany, F l a g s i z e) ;

DoGermany (F l a g S i z e , N a t n A r r [G e r m a n y] . F 1 a g) ;
D e t e r m i n e S i z e (USSR, F l a g s i z e) ;
DoUSSR (F l a g S i z e , N a t n A r r [U S S R] . F 1 a g) ;
D e t e r m i n e S i z e (J a p a n , F l a g s i z e) ;
DoJapan (F l a g S i z e , N a t n A r r [J a p a n] . F 1 a g) ;

END; { G e n e r a t e F 1 a g s }

PROCEDURE G e n e r a t e P o s i t i o n s (Var N a t n A r r : N a t i o n A r r a y) ;
{ T h i s r o u t i n e g e n e r a t e s the t r a n s f o r m a t i o n s to

l a t e r be a p p l i e d to the f l a g s p r e v i o u s l y g e n e r a t e d .
T r a n s f o r m a t i o n s a r e a l s o s t o r e d i n the N a t n A r r a l o n g
w i t h the r e l a t e d f l a g segment to which they w i l l
be a p p l i e d . }

Var
i n a t i o n ;
a n g l e , i n c r e : r e a l ;
I n i t L o c a t n : SEGXFORM;

BEGIN
I n i t L o c a t n := ROTATE - 0 . 5 ABOUT O r i g i n +

TRANSLATE (40, 0) ;
A n g l e := 0 .125 * P i ;
I n c r e := 0 .25 * P i ;
F o r 1 := Canada to Japan Do

B e g i n
I n i t L o c a t n := I n i t L o c a t n +

ROTATE A n g l e ABOUT o r i g i n ;
N a t n A r r [i] . p o s 1 t i o n := I n i t L o c a t n ;
I f i = C h i n a
Then B e g i n

A n g l e : = 0 .125 * P i ;
I n i t L o c a t n := ROTATE - 0 . 5 ABOUT O r i g i n

TRANSLATE (-40 , 0) +
ROTATE A n g l e ABOUT O r i g i n

End { 1 = 4 }
E l s e A n g l e := A n g l e + I n c r e ;

E n d ; { F o r Stmt >
END; { G e n e r a t e P o s i t i o n s }

PROCEDURE D i s p l a y E x h i b i t (N a t n A r r : N a t i o n A r r a y) ;
{ T h i s r o u t i n e g e n e r a t e s the g r a p h i c a l o u t p u t

u s i n g the segments and t r a n s f o r m a t i o n p r e v i o u s l y
d e f i n e d .)

VAR
E x h i b i tU n i t s ,
E x h i b i tNT
E x h i b i t

NDCUni ts WINDOW;
NORMXFORM;
SEGMENT;

1 nat i o n ;

BEGIN
F o r I := Canada t o Japan Do

B e g i n
D i s p l a y N a t n A r r [i] . f 1 a g to P r i n t e r ;
C l e a r P r i n t e r ;

E n d ;
E x h i b i t U n i t s := (- 100 , - 6 5 ; 100, 6 5) ;
NDCUni ts := (0 . 0 6 8 1 , 0 . 0 9 3 7 5 ;

0 . 9 3 1 8 , 0 . 8 4 2 7 5) ;
E x h i b i t N T := FROM E x h i b i t U n i t s TO N D C U n i t s ;
TRANSFORM NT <- E x h i b i t N T ;

C r e a t e E x h i b i t ;
Beg 1 n

F o r i := Canada to Japan Do
I n s e r t N a t n A r r [i] . f 1 a g w i t h

N a t n A r r [i] . p o s i t i o n ;
A t t r i b u t e s of Tex t <- (h e i g h t i s 130 .0;

e x p a n s i o n i s 2 . 0 ;
s p a c i n g i s 0 . 5) ;

T e x t ' P E A C E ' at (- 1 0 , 30) ;
T e x t ' O N ' at (- 5 , 0);
Tex t ' E A R T H ' at (- 1 0 , - 3 0) ;

E n d ; { C r e a t e Seg)
D i s p l a y E x h i b i t to P r i n t e r ; •

END; { D i s p l a y E x h i b i t }

BEGIN { main >
P i := 3 .141592 ;
G e n e r a t e F 1 a g s (A r r a y O f N a t i o n s) ;
G e n e r a t e P o s 1 1 i o n s (A r r a y O f N a t i o n s) ;
D 1 s p l a y E x h i b i t (A r r a y O f N a t i o n s) ;

END.

program ezgks_demo1 ;
{**^
{** T h i s i s t h e program t r a n s l a t e d i n t o GKS s u b r o u t i n e c a l l s . **}

% P r i n t O f f
"/ . Include GKS_BASICS
"/ . Include GKS_SEGMENTS
"/ .Print On

c o n s t
G X C M a x S e t S i z e = 31;
G X C M a x B u n d l e S e t S i z e = 10;
GXCMaxATrVal = 50;
GXCMaxAtrTypes = 26;

t y p e

G X T P r i m i t i v e = (l i n e , marker , f l l l a r e a , g r a p h i c T e x t) ;

GXTSetRange = 0 . . G X C M a x S e t S i z e ;

GXTEZSet = p a c k e d s e t of GXTSetRange;

Wkstn = GXTSetRange;

P o i n t = G R P o i n t ;

G X T P o l y P o i n t R a n g e = O . . G C M a x P o i n t ;

P o l y P o i n t = r e c o r d
p o i n t s : G A P o i n t A r r a y ;
max : G X T P o l y P o i n t R a n g e ;

E n d ;
C o l o u r = r e c o r d

m a s t e r i n d e x : G T i n t O ;
c o l o u r : G R c o l ;

E n d ;

P a t t e r n = r e c o r d
m a s t e r i n d e x : G T i n t O ;
RowLength ,
C o l u m n L e n g t h : i n t e g e r ;
P a t t e r n ; G A C o l A r r a y ;
C o l o u r S o u r c e : G A C o l A r r a y ;

{ 0 = c o l o u r t a b l e ; 1 = MWT; }
E n d ;

B u n d l e = r e c o r d
m a s t e r i n d e x G T i n t O ;
A t t r l n i t A r r a y [1 - 4] of b o o l e a n ;

C o l o u r S o u r c e : I n t e g e r ;
{0 = c o l o u r t a b l e ; 1 = MWT }

A t t r i b u t e s GRPrimRep;
E n d ;

Segment = GXTSetRange;

WkstnSet = G X T E Z S e t ;

SegmentSet = G X T E Z S e t ;

Window = r e c o r d
v a l i d P e r c e n t : b o o l e a n ;
c o r n e r : GRbound;

E n d ;

NormXform = G T i n t l ;

SegXform = G A M a t r i x ;

G X T W s O p e r a t i o n = (GXSave , G X R e s t o r e) ;

GXTTypeSave = (G X O n l y , G X A l s o) ;

GXTWkstnSetType = (GXOpenWs, G X A c t i v e W s) ;

G X T A t r V a l R e c = r e c o r d
AtrName : s t r i n g ;
A t r V a l u e : i n t e g e r ;
D e f e u l t F l a g : i n t e g e r ;
E n d ;

G X T A v A r r a y T y p e = a r r a y [1 . . G X C M a x A t r V a l] of G X T A t r V a l R e c ;

G X T C o n t e x t L i m i t = r e c o r d
M i n , Max : i n t e g e r ;

E n d ;

G X T C t x A r r a y T y p e = a r r a y [0 . .GXCMaxAt rTypes] of G X T C o n t e x t L i m i t ;

c o n s t
r e d =
g r e e n =
b l ue =
yel1ow =
magenta =
c y a n =
b l a c k =
w h i t e =
o r i g i n =
C e n t r a l S e g S t o r e

c o l o u r (0, (1 , 0 , 0))
c o l o u r (0, (0,1,0))
c o l o u r (0, (0,0,1))
c o l o u r (0, (1,1 ,0))
c o l o u r (0, (1 ,0,1))
c o l o u r (0, (0,1,1))
c o l o u r (0, (0 ,0 ,0))
c o l o u r (0, (1,1,1))
p o i n t (0.0, 0.0);
= wkstn (0);

i d e n t i t y = s e g x f o r m ((1 .0 , 0 . 0 , 0 . 0) ,
(0 . 0 , 1 .0 , 0 . 0)) ;

G X V p o i n t , GXVpo in t2 : p o i n t ;
G X V a c t i v e W k s t n s , GXVopenWkstns
G X V p o l y p o i nt

w k s t n s e t ;

G X V c o l o u r
G X V p a t t e r n
GXVbundle
GXVsegment
GXVwkstnset
GXVsegmentset
GXVwi ndow
GXVnormxform
GXVsegxform
G X V f o n t p r e c
G X V a l i g n
G X V v e c t o r
G X V s t r i n g
G X V i , GXVj
G X V M , GXVr2

: p o l y p o i n t ;
c o l o u r ;
p a t t e r n ;
b u n d l e ;
segment;
w k s t n s e t ;
s e g m e n t s e t ;
w i ndow;
normxform;
s e g x f o r m ;
G R F o n t P r e c ;
GRa l1gn ;
G A V e c t o r ;
G A s t r i n g ;
i n t e g e r ;
r e a l ;

GXVAsf
GXVAvArray
GXVLimi t A r r a y
GXVAtr

G A a s f ;
GXTAVArrayType ;
G X T C t x A r r a y T y p e ;
t e x t ;

F u n c t i o n GXSetMax (CONST NbrRange, NbrP ts : i n t e g e r)
: i n t e g e r ;

E x t e r n a l ;
P r o c e d u r e GXSetPt (CONST P t S e t : p o l y p o i n t ;

VAR Pt : p o i n t) ;
E x t e r n a l ;

P r o c e d u r e GXSetWin (CONST P t S e t : p o l y p o i n t ;
VAR Win

E x t e r n a l ;
F u n c t i o n GXNTNum : i n t e g e r ;

E x t e r n a l ;
F u n c t i o n GXSegNum : i n t e g e r ;

E x t e r n a l ;
F u n c t i o n GXAddPT (CONST P T a , PTb

E x t e r n a l ;
F u n c t i o n GXSubPT (CONST P T a , PTb

E x t e r n a l ;
F u n c t i o n GXWsSet (CONST t y p e s e t :

E x t e r n a l ;
P r o c e d u r e GXSuppR (Var changedSet : W k s t n S e t) ;

E x t e r n a l ;
P r o c e d u r e GXRestR (Const c h a n g e d s e t : W k s t n S e t) ;

E x t e r n a l ;

w i ndow);

p o i n t) : p o i n t ;

p o i n t) : p o i n t ;

GXTWkstnSetType) : wks tnse t

oo

P r o c e d u r e GXStChg (op : GXTWsOpera t ion ;
SaveMethod : GXTTypeSave; SaveSet : WkstnSet)

E x t e r n a l ;
P r o c e d u r e G X S t a t e (op : GXTWsOpera t ion ;

WkstnsNamed : W k s t n s e t ; SegSetOp : b o o l e a n) ;
E x t e r n a l ;

P r o c e d u r e GXGetASF (Var a s f F l a g s : G A A s f ;
A S F t y p e : G T a s f ; Pr imNbr : i n t e g e r) ;

E x t e r n a l ;
P r o c e d u r e G X I n i t A v (CONST maxAtr , MaxCtx : i n t e g e r ;

Var A V A r r a y : G X T A v A r r a y T y p e ;
V a r L i m i t A r r a y : G X T C t x A r r a y T y p e) ;

E x t e r n a l ;
F u n c t i o n G x A t r V a l (CONST A t r A r r a y : GXTAvAr rayType ;

CONST m i n , max; i n t e g e r ; CONST searchname : s t r i n g) :
E x t e r n a l ;

P r o c e d u r e GXColExp (CONST p r o c e s s f l a g : b o o l e a n ;
CONST N b r P a r t s : i n t e g e r ;
CONST I n C o l o u r : G R c o l ;
V a r E x p r C o l o u r : G R c o l) ;

E x t e r n a l ;
P r o c e d u r e GXAccum (VAR X f o r m l : s e g x f o r m ;

CONST Xform2 : s e g x f o r m) ;
E x t e r n a l ;

F u n c t i o n X c o o r d (CONST Pt : p o i n t) : r e a l ;
E x t e r n a l ;

F u n c t i o n Y c o o r d (CONST Pt : p o i n t) : r e a l ;
E x t e r n a l ;

F u n c t i o n L o L e f t (CONST win1 : window) : p o i n t ;
E x t e r n a l ;

F u n c t i o n L o R i g h t (CONST win1 : window) : p o i n t ;
E x t e r n a l ;

F u n c t i o n U p L e f t (CONST win1 : window) : p o 1 n t ;
E x t e r n a l ;

F u n c t i o n U p R i g h t (CONST win1 : window) : p o i n t ;
E x t e r n a l ;

F u n c t i o n RedVal (CONST Co l Rec : c o l o u r) : r e a l ;
E x t e r n a l ;

F u n c t i o n G r e e n V a l (CONST C o l R e c : c o l o u r) : r e a l ;
E x t e r n a l ;

F u n c t i o n B l u e V a l (CONST C o l R e c : c o l o u r) : r e a l ;
E x t e r n a l ;

F u n c t i o n MaxPts (CONST P o l y P t R e c : p o l y p o i n t) : i n t e g e r ;
E x t e r n a l ;

F u n c t i o n XMax (CONST P o l y P t R e c
E x t e r n a l ;

F u n c t i o n XMin (CONST P o l y P t R e c
E x t e r n a l ;

F u n c t i o n YMax (CONST P o l y P t R e c
E x t e r n a l ;

F u n c t i o n YMin (CONST P o l y P t R e c

p o l y p o i n t) : r e a l ;

p o l y p o i n t) : r e a l ;

p o l y p o i n t) : r e a l ;

p o l y p o i n t) : r e a l ;

E x t e r n a l ;
F u n c t i o n G e t P t (CONST P o l y P t R e c : p o l y p o i n t ;

CONST Index : I n t e g e r) : p o i n t ;
E x t e r n a l ;

F u n c t i o n GetWin (CONST NTNbr : normxform) : window;
E x t e r n a l ;

F u n c t i o n GetVP (CONST NTNbr : normxform) : window;
E x t e r n a l ;

F u n c t i o n RowLen (CONST P a t t R e c : p a t t e r n) : i n t e g e r ;
E x t e r n a l ;

F u n c t i o n C o l L e n (CONST P a t t R e c : p a t t e r n) : i n t e g e r ;
E x t e r n a l ;

c o n s t
p r i n t e r = wkstn (1) ;

t y p e
n a t i o n r e c = r e c o r d

f l a g : segment ;
p o s i t i o n : segx form ;
end

n a t i o n = (Canada , usa , england , c h i n a , f r a n c e , germany
u s s r , j a p a n) ;

n a t i o n a r r a y = a r r a y [Canada . ; japan] of n a t i o n r e c ;

a r r a y o f n a t i o n s : n a t i o n a r r a y ;
s t a r : segment ;
p i : r e a l ;

p r o c e d u r e g e n e r a t e f 1 a g s (v a r n a t n a r r : n a t i o n a r r a y) ;

v a r
g r e y : g a c o l a r r a y ;
f l a g s i z e : p o l y p o i n t ;

p r o c e d u r e computearc (c o n s t c e n t e r : p o i n t ; c o n s t r a d i u s
c o n s t c l o c k w i s e : b o o l e a n ; c o n s t i n i t i a l index , n b r p t s :
i n t e g e r ; v a r r e s u l t : p o l y p o i n t) ;

pha , b e t a : r e a l

i : i n t e g e r ;
temp , i n c r e : r e a l ;
h o l d p t : p o i n t ;

b e g i n
r e s u l t . m a x := 0 ;
i f a l p h a >= b e t a
t h e n i f c l o c k w i s e
t h e n i n c r e := - (a l p h a - b e t a) / (n b r p t s - 1)

e l s e i n c r e := (2 * p i - (a l p h a - b e t a)) /
(n b r p t s - 1)

e l s e i f c l o c k w i s e
t h e n i n c r e : = - (2 * p i - (b e t a - a l p h a)) /
(n b r p t s - 1)

e l s e i n c r e := (a l p h a - b e t a) / (n b r p t s - 1) ;

f o r i := 0 t o n b r p t s - 1 do

b e g i n
temp := a l p h a + i * i n c r e ;
G X V p o l y p o i n t . p o i n t s t 1] .x := x c o o r d (c e n t e r) + r a d i u s * c o s (t e m p)
G X V p o l y p o i n t . p o i n t s [1] .y := y c o o r d (c e n t e r) + r a d i u s * s i n (t e m p)
G X V p o l y p o i n t . m a x := . 1;
GXSetPT (G X V P o l y P o i n t , G X V P o i n t) ;
h o l d p t := G X V p o i n t ;
r e s u l t . p o i n t s [i + i n i t i a l i n d e x] := h o l d p t ;
I f i + 1 n i t i a l i n d e x > r e s u l t . m a x
Then r e s u l t . m a x := i + i n i t i a l i n d e x ;

end

end ;

p r o c e d u r e d e t e r m i n e s i z e (name : n a t i o n ; v a r o u t l i n e : p o l y p o i n t) ;

c o n s t
l e n g t h = 2 0 ;

t y p e

a s p e c t a r r a y = a r r a y [Canada j a p a n] o f r e a l

s t a t i c
a s p e c t r a t i o s a s p e c t a r r a y

v a l u e
a s p e c t r a t i o s := a s p e c t a r r a y (0 . 5 , 0 .5128 , 0 .5428 , 0 .67857
0 .6428 , 0 .6129 , 0 .57142 , 0 .6428)

v a r
bo t tom r e a l

b e g i n
G X V p o l y p o i n t . p o i n t s
G X V p o l y p o i n t . p o i n t s
G X V p o l y p o i n t . p o i n t s
G X V p o l y p o i n t . p o i n t s
G X V p o l y p o i n t . m a x :=
out 1i ne
bot tom
G X V p o l y p o i n t . p o i n t s
G X V p o l y p o i n t . p o i n t s
G X V p o l y p o i n t . m a x :=
o u t l i n e . p o i n t s f 3]
I f 3 > o u t l i n e . m a x
Then o u t l I n e . m a x :=
G X V p o l y p o i n t . p o i n t s
GXVpolypo i n t . p o i n t s
G X V p o l y p o i n t . m a x :=
out 1 i n e . p o i n t s [4]
I f 4 > o u t l i n e . m a x
Then o u t l i n e . m a x :=
o u t l 1 n e . p o i n t s [5]
I f 5 > o u t l i n e . m a x
Then o u t l i n e . m a x :=

[1] . x := - 10 ;
[1] . y := 10;
[2] . x := 10 ;
[2] . y := 10;

2;
= G X V p o l y p o i n t ;

(l e n g t h * a s p e c t r a t i o s [name]) -
[1] . x := 10 ;
[1] . y := bo t tom;

1 ;
= G X V p o l y p o i n t . p o i n t s [1] ;

10

3;
[1] . x
t 1] . y

1 ;
= G X V p o l y p o i n t

= - 10 ;
= bo t tom;

p o i n t s [1];

= o u t l 1 n e . p o i n t s ! 1]

5;

end ;

p r o c e d u r e c r e a t e s t a r (c o n s t f i l l s t a r : b o o l e a n ; v a r s t a r s e g : segment)

v a r
s t a r u n i t s : window
s t a r n t : normxform

O
N3

s t a t i c
s t a r p o i n t s p o l y p o i nt

v a l u e
s t a r p o i n t s := p o l y p o i n t (G A P o i n t A r r a y (
G R P o i n t (0 . 9 5 , - 0 . 3) ,
G R p o i n t (0 . 0 , 1 . 0) ,
G R p o i n t (- 0 . 9 5 , - 0 . 3) ,
G R p o i n t (0 . 9 5 , 0 . 3) ,
G R p o i n t (- 0 . 9 5 , 0 . 3) ,
G R p o i n t (0 . 9 5 , - 0 . 3) ,
G R P o i n t (0 . 0 , 0 . 0) : 94) , 6):

b e g i n
s t a r s e g := GXSegNum;
G C r e a t e S e g (s t a r s e g);

b e g i n
G S e t F i1 I C o l I n d (0) ;
G X V p o l y p o i n t . p o i n t s [1] :x := - 1 ;
G X V p o l y p o i n t . p o i n t s [1] . y := - 1;
G X V p o l y p o i n t . p o i n t s [2] . x := 1 ;
G X V p o l y p o i n t . p o i n t s j 2] . y := 1;
G X V p o l y p o i n t . m a x := 2;
GXSetWin (G X V p o l y p o i n t , GXVWindow);
s t a r u n i t s := GXVwindow;
s t a r n t := GXNTNum;
GSetWindow (s t a r n t , s t a r u n i t s . c o r n e r);
G S e l e c t N T r a n (s t a r n t) ;
i f f i l l s t a r
t h e n G S e t F i11 I n t S t y l e (G T i n t e r i o r (GXAtrVa l (GXVAVArray ,
e l s e G S e t F i11 I n t S t y l e (G T i n t e r i o r (GXAtrVa l (GXVAVArray ,
GXVi := GXSetMax (O, s t a r p o i n t s . m a x) ;
GF i l l (G X V i , s t a r p o i n t s . p o i n t s) ;

G X V L i m i t A r r a y [1 3] . m i n , G X V L i m i t A r r a y [13] .max, ' s o l i d ')))
G X V L i m i t A r r a y [1 3] . m i n , G X V L i m i t A r r a y [13] .max, ' h o l l o w ')))

end ;
G C l o s e S e g ;

end

p r o c e d u r e d o c a n a d a (o u t l i n e : p o l y p o i n t ; v a r f l a g s e g : segment)

s t a t i c
m a p l e l e a f : p o l y p o i n t ;

O

v a l ue
m a p l e l e a f
G R P o i n t
G R p o i n t
G R p o i n t
G R p o i n t
GRpoi n t
G R p o i n t
GRpoi n t
GRpoi n t
GRpoi n t
G R p o i n t
GRpoi nt
GRpoi nt
G R p o i n t
GRpoi nt
GRpoi nt
G R p o i n t
G R p o i n t
G R P o i n t

p o l y p o i n t (G A P o i n t A r r a y (
- 0 3 , - 1 0 . O)
-o 3 , - 2 . 4)
-3 3 , " 4 . 3)
-3 3 , - 3 . 3)
- 5 8 , " 3 . 3)
-4 4 , - 1 . 5)
- 5 8 , - 1 . 2)
-4 0 , 0 . 0) ,
-7 g . 2 .9) ,
- 6 9 , 2 .7) ,
-8 3 , 4 . 6) ,
- 5 8 , 4 . 6) ,
-6 3 . 5 .9) ,
-2 0 , 3 .3) ,
-2 0 , 7 .9) .
-1 0 , 7 .4) ,
0 . 0 , 9 4) ,

0 . 0 , 0 .0) 83) 17);

v a r
temppt : p o i n t ;
t e m p p o l y p t : p o l y p o i n t ;

b e g i n
f l a g s e g := GXSegNum;
G C r e a t e S e g (f l a g s e g);

b e g i n
GXVi := GXSetMax (0 , out 1 i n e . m a x) ;
G P o l y l i n e (G X V i , out 1 i n e . p o i n t s) ;
G S e t F i 1 1 I n t S t y l e (G T i n t e r i o r (GXAtrVa l (GXVAVArray , G X V L i m i t A r r a y [1 3] . m i n , G X V L i m i t A r r a y [13] .max, ' s o l i d '))) ;
GXVi := GXSetMax (0 , m a p l e l e a f . m a x) ;
G F i l l (G X V i , m a p l e l e a f . p o i n t s) ;
G X V p o l y p o i n t . p o i n t s [1] . x := 5 ;
G X V p o l y p o i n t . p o i n t s [1] . y := 0;
G X V p o l y p o i n t . m a x := 1;
GXSetPT (G X V P o l y P o i n t , G X V P o i n t) ;
temppt := G X V p o i n t ;
G X V p o l y p o i n t . p o i n t s [1] := out 1 i n e . p o i n t s [1] ;
G X V p o l y p o i n t . p o i n t s [2] := GXAddPT (out 1 i n e . p o i n t s [1] , t e m p p t) ;
G X V p o l y p o i n t . p o i n t s [3] := GXAddPT (out 1 i n e . p o i n t s [4] , t e m p p t) ;
G X V p o l y p o i n t . p o i n t s [4] := out 1 i n e . p o i n t s [4] ;
G X V p o l y p o i n t . m a x := 4;
t e m p p o l y p t := G X V P o l y P o i n t ;
GXVi := GXSetMax (0 , t e m p p o l y p t . m a x) ; O

GF i l l (GXV1, t e m p p o l y p t . p o i n t s) ;
G X V p o l y p o i n t . p o i n t s [1] := GXSubPT (out 1 1 n e . p o i n t s [2] , t e m p p t) ;
G X V p o l y p o i n t . p o i n t s [2] := out 1 i n e . p o i n t s [2] ;
G X V p o l y p o i n t . p o i n t s [3] := GXSubPT (out 1 i n e . p o i n t s [3] , t e m p p t) ;
G X V p o l y p o i n t . p o i n t s [4] := out 1 i n e . p o i n t s [3] ;
G X V p o l y p o i n t . m a x := 4;
t e m p p o l y p t := G X V P o l y P o i n t ;
GXVi := GXSetMax (0 , t e m p p o l y p t . m a x) ;
GF i l l (G X V i , t e m p p o l y p t . p o i n t s) ;
G X V s t r i n g := ' C a n a d a ' ;
G X V p o l y p o i n t . p o i n t s [1] . x := - 6 ;
G X V p o l y p o i n t . p o i n t s [1] . y := - 8;
G X V p o l y p o i n t . m a x := 1;

G T e x t S t r i n g (G X V P o l y P o i n t . p o i n t s [1] , 1 e n g t h (G X V S t r i n g) , G X V S t r i n g);

end ;

G C l o s e S e g ;

end ;

p r o c e d u r e dousa (o u t l i n e : p o l y p o i n t ; v a r f l a g s e g : segment) ;

v a r
i , j : i n t e g e r ;
f l a g w i d t h , s t r i p e w i d t h , ypos : r e a l ;
s t r i p e , c a n t o n : p o l y p o i n t ;
l o w l i m i t , p o s i t i o n , s t e p r i g h t , stepdown : p o i n t ;
s t a r s e g : segment ;
s t a r x f o r m , savex form : segxform ;
i n s e r t s t a r : b o o l e a n ;
x i n c , y i n c : r e a l ;

b e g i n
x i nc : = 0 . 4 ;
y i n c := 0 .3065 ;
l o w l i m i t := out 1 i n e . p o i n t s [3] ;
f l a g w i d t h := 10 + abs (y c o o r d (l o w l i m i t)) ;
s t r i p e w i d t h := f l a g w i d t h / 13 ;
ypos := - 10 ;
G S e t F i 1 1 I n t S t y l e (G T i n t e r i o r (G X A t r V a l (G X V A V A r r a y , G X V L i m i t A r r a y [1 3] . m i n , G X V L i m i t A r r a y [13] .max, ' S O L I D '))) ;
G S e t F i 1 I C o l I n d (1);
f l a g s e g := GXSegNum;
G C r e a t e S e g (f l a g s e g);

b e g i n
GXVi := GXSetMax (0 , out 1 i n e . m a x) ; O

G P o l y l i n e (G X V i , out 1 i n e . p o i n t s) ;
f o r i := 1 to 7 do

beg i n
G X V p o l y p o i n t p o i n t s [1] X = - 10 ;
G X V p o l y p o i n t po i n t s [1] y = y p o s ;
G X V p o l y p o i nt p o i n t s t 2] X = 10 ;
G X V p o l y p o i n t p o i n t s C 2] y = y p o s ;
G X V p o l y p o i n t p o i n t s t 3] X = 10 ;
G X V p o l y p o i n t po i n t s [3] y = y p o s + s t r i p e w i d t h ;
G X V p o l y p o i n t p o i n t s [4] X = - 10 ;
G X V p o l y p o i n t p o i n t s [4] y = y p o s + s t r i p e w i d t h ;
G X V p o l y p o i n t max : = 4;
s t r i p e := G X V p o l y p o i n t ;
GXVi := GXSetMax (0 , s t r i p e . m a x) ;
G F i l l (G X V i , s t r i p e . p o i n t s) ;
ypos := ypos + (2 * s t r i p e w i d t h) ;

end

G X V p o l y p o i nt p o i n t s [1] X = - 10 ;
G X V p o l y p o i nt p o i n t s [1] y = 10;
G X V p o l y p o i nt p o i n t s [2] X = - 1 . 2 ;
G X V p o l y p o i nt p o i n t s [2] y = 10;
G X V p o l y p o i n t p o i n t s [3] X = - 1 . 2 ;
G X V p o l y p o i n t p o i n t s t 3] y = (7 * s t r i p e w i d t h)
G X V p o l y p o i n t p o i n t s [4] X = - 10 ;
G X V p o l y p o i nt po1nts [4] y = (7 * s t r i p e w i d t h)
G X V p o l y p o i nt max : = 4;
c a n t o n := G X V p o l y p o i n t ;
GXVi := GXSetMax (0 , c a n t o n . m a x) ;
G F i l l (G X V i , c a n t o n . p o i n t s) ;
c r e a t e s t a r (t r u e , s t a r s e g) ;
G X V p o l y p o i n t . p o i n t s [1] .x := - 10+xinc ;
G X V p o l y p o i n t . p o i n t s [1] y • : = 1 0 - y i n c ;
G X V p o l y p o i n t . m a x := 1;
GXSetPT (G X V P o l y P o i n t , G X V P o i n t) ;
p o s i t i o n := G X V p o i n t ;
GXVSegXform := I d e n t i t y ;
G X V P o i n t := o r i g i n ;
G X V v e c t o r ! 1] := 0 . 3 ;
G X V v e c t o r [2] := 0 . 3 ;
GAccumTran (GXVSegxform , G X V P o i n t , o r i g i n , 0,

G X V v e c t o r , NDC, GXVSegXform);
G X V v e c t o r [1] := 1.0;
G X V v a c t o r t 2] := 1.0;
G X V P o i n t := p o s i t i o n ;
G a c c u m t r a n (GXVSegXform, O r i g i n , G X V P o i n t , 0,

G X V v e c t o r , WC, GXVSegxform);
s t a r x f o r m := GXVsegxform;
i n s e r t s t a r := t r u e ;

G X V p o l y p o i n t . p o i n t s [1] . x := x i n c ;
G X V p o l y p o i n t . p o i n t s [1] . y := 0;
G X V p o l y p o i n t . m a x := 1;
GXSetPT (G X V P o l y P o i n t , G X V P o i n t) ;
s t e p r i g h t := G X V p o i n t ;
G X V p o l y p o i n t . p o i n t s [1] . x := y i n c ;
G X V p o l y p o i n t . p o i n t s [1] . y := 0;
G X V p o l y p o i n t . m a x := 1;
GXSetPT (G X V P o l y P o i n t , G X V P o i n t) ;
s tepdown := G X V p o i n t ;
f o r j := 1 to 9 do

b e g i n
GXVSegXform := I d e n t i t y ;
GXAccum (GXVSegxform, s t a r x f o r m) ;
savex form := GXVsegxform;
f o r 1 := 1 to 11 do

b e g i n
i f i n s e r t s t a r
t h e n GXVSegXForm := s t a r x f o r m ;
G I n s e r t S e g (s t a r s e g , GXVSegXForm);
i n s e r t s t a r := not i n s e r t s t a r ;
GXVSegXform := I d e n t i t y ;
GXAccum (GXVSegxform, s t a r x f o r m) ;
G X V v e c t o r [1] := 1.0;
G X V v e c t o r [2] := 1.0;
GXVPoint := s t e p r i g h t ;
Gaccumtran (GXVSegXform, O r i g i n , G X V P o i n t , 0 ,

G X V v e c t o r , WC, GXVSegxform);
s t a r x f o r m := GXVsegxform;

end

GXVSegXform := I d e n t i t y ;
GXAccum (GXVSegxform, s a v e x f o r m) ;
G X V v e c t o r [1] := 1.0;
G X V v e c t o r [2] := 1.0;
G X V P o i n t := s tepdown;
Gaccumtran (GXVSegXform, O r i g i n , G X V P o i n t , 0,

G X V v e c t o r , WC, GXVSegxform);
s t a r x f o r m := GXVsegxform;

end

G X V s t r i n g := ' U . S . A . ' ;
G X V p o l y p o i n t . p o i n t s [1] . x := - 6 ;
G X V p o l y p o i n t . p o i n t s [1] . y := - 8;
G X V p o l y p o i n t . m a x := 1;
G T e x t S t r i n g (G X V P o l y P o i n t . p o i n t s [1] , 1 e n g t h (G X V S t r i n g) , G X V S t r i n g); i—

o

end ;

G C l o s e S e g ;

end ;

p r o c e d u r e d o f r a n c e (o u t l i n e : p o l y p o i n t ; v a r f l a g s e g : segment) ;

v a r
s t r i p e w i d t h : r e a l ;
v e r t i n c r e , twobytwo : p o i n t ;

beg i n
G X V p o l y p o i n t . p o i n t s [1] . x := 2 ;
G X V p o l y p o i n t . p o i n t s [1] . y := 2;
G X V p o l y p o i n t . m a x := 1;
GXSetPT (G X V P o l y P o i n t , G X V P o i n t) ;
twobytwo := G X V p o i n t ;
s t r i p e w i d t h := 20 / 3 ;
G X V p o l y p o i n t . p o i n t s [1] .x := s t r i p e w i d t h ;
G X V p o l y p o i n t . p o i n t s [1] . y := 0;
G X V p o l y p o i n t . m a x := 1;
GXSetPT (G X V P o l y P o i n t , G X V P o i n t) ;
v e r t i n c r e := G X V p o i n t ;
f l a g s e g := GXSegNum;
G C r e a t e S e g (f l a g s e g);

b e g i n
GXVi := GXSetMax (0 , out 1 i n e . m a x) ;
G P o l y l i n e (G X V i , out 1 i n e . p o i n t s) ;
G S e t F i 1 1 I n t S t y l e (G T i n t e r i o r (G X A t r V a l (G X V A V A r r a y , G X V L i m i t A r r a y [1 3] . m i n , G X V L i m i t A r r a y [13] .max, ' s o l i d '))) ;
G S e t F i 1 I C o l I n d (1) ;
G X V p o l y p o i n t . p o i n t s [1] := o u t l i n e . p o i n t s t 1] ;
G X V p o l y p o i n t . p o i n t s [2] := GXAddPT (out 1 i n e . p o i n t s [1] , v e r t i n c r e) ;
G X V p o l y p o i n t . p o i n t s [3] := GXAddPT (out 1 i n e . p o i n t s [4] , v e r t i n c r e) ;
G X V p o l y p o i n t . p o i n t s [4] := out 1 1 n e . p o i n t s [4] ;
G X V p o l y p o i n t . m a x := 4;
GXVi := GXSetMax (0 , 4) ;
G F i l l (G X V i , G X V p o l y p o i n t . p o i n t s) ;
G S e t F i 1 1 I n t S t y l e (G T i n t e r i o r (G X A t r V a l (G X V A V A r r a y , G X V L i m i t A r r a y [1 3] . m i n , G X V L i m i t A r r a y [13] .max, ' p a t t e r n '))) ;
G S e t F i 1 I S t y l e l n d (G X A t r V a l (G X V A V A r r a y , G X V L i m i t A r r a y [1 4] . m i n , G X V L i m i t A r r a y [14] .max, ' g r e y ')) ;
G S e t P a t t e r n R e f P o i n t (o r i g i n) ;
G X V v e c t o r [1] := twobytwo.x;
G X V v e c t o r [2] := twobytwo.y;
G S e t P a t t e r n S i z e (G X V v e c t o r) ;
G X V p o l y p o i n t . p o i n t s [1] := out 1 i n e . p o i n t s [2] ;
G X V p o l y p o i n t . p o i n t s [2] := o u t l i n e . p o i n t s t 3] ; O

00

G X V p o l y p o i n t . p o i n t s [3] := GXSubPT (out 1 i n e . p o i n t s [3] , v e r t i n c r e) ;
G X V p o l y p o i n t . p o i n t s [4] := (GXSubPT (out 1 i n e . p o i n t s [2] , v e r t i n c r e))
GXVpolypo1nt .max := 4;
GXVi := GXSetMax (0 , 4) ;
G F i l l (G X V i , G X V p o l y p o i n t . p o i n t s) ;
G X V s t r i n g := ' F r a n c e ' ;
G X V p o l y p o i n t . p o i n t s [1] . x := - 6 ;
G X V p o l y p o i n t . p o i n t s [1] . y := - 8;
G X V p o l y p o i n t . m a x := 1 ;

G T e x t S t r i n g (G X V P o l y P o i n t . p o i n t s [1] , 1 e n g t h (G X V S t r i n g) , G X V S t r i n g)

end ;
G C l o s e S e g ;

end

p r o c e d u r e d o e n g l a n d (o u t l i n e : p o l y p o i n t ; v a r f l a g s e g : segment) ;

v a r
l o w l i m i t , c e n t e r , y i n c r e l , y i n c r e 2 , l e f t s i d e , r i g h t s i d e : p o i n t ;
midy , a n g l e : r e a l ;
s t r i p e , c r o s s : segment ;
c r o s s x f o r m , s t r i p e x f o r m : segxform ;
i i n t e g e r ;

b e g i n
l o w l i m i t := out 1 i n e . p o i n t s [4] ;
midy := y c o o r d (l o w l i m i t) / 2 ;
G X V p o l y p o i n t . p o i n t s [1] . x := 0 ;
G X V p o l y p o i n t . p o i n t s [1] . y := midy;
G X V p o l y p o i n t . m a x := 1 ;
GXSetPT (G X V P o l y P o i n t , G X V P o i n t) ;
c e n t e r := G X V p o i n t ;
G X V p o l y p o i n t . p o i n t s [1] . x := 0 ;
G X V p o l y p o i n t . p o i n t s [1] . y := 1 ;
G X V p o l y p o i n t . m a x : = 1 ;
GXSetPT (G X V P o l y P o i n t , G X V P o i n t) ;
y i n c r e l := G X V p o i n t ;
G X V p o l y p o i n t . p o i n t s [1] . x := 0 ;
G X V p o l y p o i n t . p o i n t s [1] . y := 2;
G X V p o l y p o i n t . m a x := 1 ;
GXSetPT (G X V P o l y P o i n t , G X V P o i n t) ;
y i n c r e 2 := G X V p o i n t ;
G X V p o l y p o i n t . p o i n t s [1] . x := - 1 0 ;
G X V p o l y p o i n t . p o i n t s [1] . y := midy;
G X V p o l y p o i n t . m a x := 1 ;
GXSetPT (G X V P o l y P o i n t , G X V P o i n t) ;

l e f t s i d e := G X V p o i n t ;
G X V p o l y p o i n t . p o i n t s [1] . x := 10 ;
G X V p o l y p o i n t . p o i n t s [1] . y := midy;
G X V p o l y p o i n t . m a x := 1;
GXSetPT (G X V P o l y P o i n t , G X V P o i n t) ;
r i g h t s i d e := G X V p o i n t ;

s t r i p e := GXSegNum;
G C r e a t e S e g (s t r i p e) ;

b e g i n
G S e t F i 1 1 I n t S t y l e (G T i n t e r i o r (G X A t r V a l (G X V A V A r r a y , G X V L i m i t A r r a y [1 3] . m i n , G X V L i m i t A r r a y [13] .max, ' s o l i d '))) ;
G S e t F i 1 I C o l I n d (0) ;
G X V p o l y p o i n t . p o i n t s [1] := GXAddPT (l e f t s i d e , y i n c r e 2) ;
G X V p o l y p o i n t . p o i n t s [2] := GXAddPT (r i g h t s i d e , y i n c r e 2) ;
G X V p o l y p o i n t . p o i n t s [3] := GXSubPT (r i g h t s i d e , y i n c r e 2) ;
G X V p o l y p o i n t . p o i n t s [4] := (GXSubPT (l e f t s i d e , y i n c r e 2)) ;
G X V p o l y p o i n t . m a x := 4;
GXVi := GXSetMax (0 , 4) ;
G F i l l (G X V i , G X V p o l y p o i n t . p o i n t s
G S e t F i 1 I C o l I n d (1);
G X V p o l y p o i n t . p o i n t s
G X V p o l y p o 1 n t . p o i n t s
G X V p o l y p o i n t . p o i n t s
GXVpo1ypo i n t . p o 1 n t s
G X V p o l y p o i n t . m a x := 4;
GXVi := GXSetMax (0 , 4) ;
G F i l l (G X V i , G X V p o l y p o i n t . p o i n t s)

1]
2]
3]
4]

)
GXAddPT
GXAddPT
GXSubPT
(GXSubPT

(l e f t s i d e , y i n c r e l) ;
(r i g h t s i d e , y i n c r e l) ;
(r i g h t s i d e , y i n c r e l) :

(l e f t s i d e , y i n c r e l)) ;

end ;
G C l o s e S e g ;

c r o s s := GXSegNum;
G C r e a t e S e g (c r o s s) ;

b e g i n
G X V p o l y p o i nt po i n t s [1] : = c e n t e r ;
G X V p o l y p o i nt po i n t s [2] X := 0 ;
G X V p o l y p o i nt po i n t s [2] y := m i d y - 0 . 5 ;
G X V p o l y p o i n t p o i n t s [33 X := - 10 ;
G X V p o l y p o i nt p o i n t s C 3] y := ycoord(1 o w l i m11) - 0 . 5 -
G X V p o l y p o i n t po i n t s [4] : = l o w l i m i t;
G X V p o l y p o i n t . m a x := 4;
GXVi := GXSetMax (0 , 4) ;
G F i l l (G X V i , G X V p o l y p o i n t . p o i n t s) ;

end ;
G C l o s e S e g ;

f l a g s e g := GXSegNum;
G C r e a t e S e g (f l a g s e g);

b e g i n
G S e t F I l 1 I n t S t y l e
G S e t F i 1 I C o l I n d (
GXVi := GXSetMax
G P o l y l i n e (GXVi
G S e t F i 1 I C o l I n d (0) ;
G X V p o l y p o i n t . p o i n t s
G X V p o l y p o i nt
G X V p o l y p o i nt
G X V p o l y p o i n t
G X V p o l y p o i nt

(G T i n t e r i o r (G X A t r V a l (G X V A V A r r a y , G X V L i m i t A r r a y [1 3] . m i n , G X V L i m i t A r r a y [13] .max, ' s o l i d '))) ;

(0 , o u t l i n e . m a x) ;
o u t l i n e . p o i n t s) ;

.po i n t s

. p o i n t s

.po i n t s

.max :=

1]
2]
3]
4]

GXAddPT
GXSubPT
GXSubPT
(GXAddPT

(o u t l i n e . p o i n t s ! 2]
(o u t l i n e . p o i n t s ! 2]
(o u t l i n e . p o i n t s ! 4] ,

(out 1 i n e . p o i n t s [4]

GXVi
G F i l l

GXSetMax (0 , 4) ;
(G X V i , G X V p o l y p o i n t . p o i n t s)

G X V p o l y p o i n t . p o i n t s
G X V p o l y p o i n t . p o i n t s
G X V p o l y p o i n t . p o i n t s
G X V p o l y p o i n t . p o i n t s
G X V p o l y p o i n t . m a x :=
GXV1 := GXSetMax (0 ,
G F i l l (G X V i , G X V p o l y p o i n t . p o i n t s)
GXVSegXform := I d e n t i t y ;
c r o s s x f o r m : = GXVSegXform;
f o r i := 1 to 4 do

1]
[2]
[. 3]
t 4]
4;

4) ;

= GXAddPT (o u t l i n e . p o i n t s ! 1] ,
= GXSubPT (o u t l i n e . p o i n t s ! 1] ,
= GXSubPT (o u t l i n e . p o i n t s ! 3] ,
= (GXAddPT (o u t l i n e . p o i n t s ! 3]

y i n c r e l) ;
y i n c r e l) ;
y i n c r e l) ;

, y i n c r e 1)) ;

y i n c r e 1) ;
y i n c r e 1) ;
y i n c r e l) ;

, y i n c r e 1)) ;

b e g i n
GXVSegXForm := c r o s s x f o r m ;
G I n s e r t S e g (c r o s s , GXVSegXForm);
a n g l e := 0 . 5 * p i ;
GXVSegXform := I d e n t i t y ;
GXAccum (GXVSegxform, c r o s s x f o r m) ;
G X V v e c t o r ! 1] := 1.0;
G X V v e c t o r [2] := 1.0;
G X V P o i n t := c e n t e r ;
GAccumtran (GXVSegXform, G X V P o i n t , o r i g i n , a n g l e ,

G X V v e c t o r , WC, GXVSegxform);
c r o s s x f o r m := GXVsegxform;

end

GXVSegXform := I d e n t i t y ;
s t r i p e x f o r m : = GXVSegXform;
GXVSegXForm := s t r i p e x f o r m ;
G I n s e r t S e g (s t r i p e , GXVSegXForm);
GXVSegXform := I d e n t i t y ;
GXAccum (GXVSegxform, s t r i p e x f o r m) ;
G X V v e c t o r ! 1] := 1.0;
G X V v e c t o r [2] := 1.0;
G X V P o i n t := c e n t e r ;
GAccumtran (GXVSegXform, G X V P o i n t , o r i g i n , p i ,

G X V v e c t o r , WC, GXVSegxform);

s t r i p e x f o r m := GXVsegxform;
G X V S t r i n g := ' E n g l a n d ' ;
G X V p o l y p o i n t . p o i n t s [1] . x := - 6 ;
G X V p o l y p o i n t . p o i n t s [1] . y := - 8;
G X V p o l y p o i n t . m a x := 1;

G T e x t S t r i n g (G X V P o l y P o i n t . p o i n t s [1] , 1 e n g t h (G X V S t r i n g) , G X V S t r i n g) ;

end ;

G C l o s e S e g ;

end ;

p r o c e d u r e d o c h i n a (o u t l i n e : p o l y p o i n t ; var f l a g s e g : segment) ;

i i n t e g e r ;
p o s i t i o n : segxform ;
a n g l e , i n c r e : r e a l ;

b e g i n
G S e t F i 1 1 I n t S t y l e (G T i n t e r i o r (G X A t r V a l (G X V A V A r r a y , G X V L i m i t A r r a y [1 3] . m i n , G X V L i m i t A r r a y [13] .max, ' s o l i d '))) ;
f l a g s e g := GXSegNum;
G C r e a t e S e g (f l a g s e g);

b e g i n
GXVi := GXSetMax (0 , out 1 i n e . m a x) ;
G F i l l (G X V i , o u t l i n e . p o i n t s) ;
GXVSegXform := I d e n t i t y ;
G X V P o i n t := o r i g i n ;
G X V v e c t o r [1] := 2 . 1 ;
G X V v e c t o r [2] := 2 . 1 ;
GAccumTran (GXVSegxform , G X V P o i n t , o r i g i n , 0 ,

G X V v e c t o r , NDC, GXVSegXform);
G X V v e c t o r [1] := 1.0;
G X V v e c t o r [2] := 1.0;
G X V P o i n t . x := - 7 ;
G X V P o l n t . y := 4 . 4 2 ;
G a c c u m t r a n (GXVSegXform, O r i g i n , G X V P o i n t , 0,

G X V v e c t o r , WC, GXVSegxform);
p o s i t i o n := GXVsegxform;
GXVSegXForm := p o s i t i o n ;
G I n s e r t S e g (s t a r , GXVSegXForm);
a n g l e := 0 .25 * p i ;
i n c r e := - 0 .1875 * p i ;
GXVSegXform := I d e n t i t y ;
G X V P o i n t := o r i g i n ;

GXVvectorf . 1] := 0 . 5 3 ;
G X V v e c t o r [2] := 0 . 5 3 ;
GAccumTran (GXVSegxform , G X V P o i n t , o r i g i n , 0,

G X V v e c t o r , NDC, GXVSegXform);
G X V v e c t o r ! 1] := 1.0;
G X V v e c t o r [2] := 1.0;
G X V P o i n t . x := - 4 ;
G X V P o i n t . y := 4 . 4 2 ;
G a c c u m t r a n (GXVSegXform, O r i g i n , G X V P o i n t , 0,

G X V v e c t o r , WC, GXVSegxform);
G X V v e c t o r f 1] := 1.0;
G X V v e c t o r [2] := 1.0;
G X V P o i n t . x := - 7 ;
G X V P o i n t . y := 4 . 4 2 ;
GAc c u mt r a n (GXVSegXform, G X V P o i n t , o r i g i n , a n g l e ,

G X V v e c t o r , WC, GXVSegxform);
p o s i t i o n := GXVsegxform;
f o r i : = 1 to 4 do

b e g i n
GXVSegXForm := p o s i t i o n ;
G I n s e r t S e g (s t a r , GXVSegXForm);
GXVSegXform := I d e n t i t y ;
GXAccum (GXVSegxform, p o s i t i o n) ;
G X V v e c t o r f 1] := 1.0;
G X V v e c t o r [2] := 1.0;
G X V P o i n t . x := - 7 ;
G X V P o i n t . y := 4 .42 ;
GAccumtran (GXVSegXform, G X V P o i n t , o r i g i n , a n g l e ,

G X V v e c t o r , WC, GXVSegXform);
p o s i t i o n := GXVsegxform;

end

G X V s t r i n g : = ' C h i n a ' ;
G X V p o l y p o i n t . p o i n t s [1] .x := - 6 ;
G X V p o l y p o i n t . p o i n t s [1] . y := - 8;
G X V p o l y p o i n t . m a x := 1;

G T e x t S t r i n g (G X V P o l y P o i n t . p o i n t s [1] , 1 e n g t h (G X V S t r i n g) , G X V S t r i n g)

end ;

GC1oseSeg;

end ;

p r o c e d u r e dogermany (o u t l i n e : p o l y p o i n t ; v a r f l a g s e g : segment) ;

v a r

f l a g w i d t h
1 o w l i m i t

bandwidth : r e a l
twobytwo : p o i n t ;

b e g i n
l o w l i m i t := out 1 i n e . p o i n t s [3] ;
f l a g w i d t h := 10 + abs (y c o o r d (l o w l i m i t)) ;
b a n d w i d t h := f l a g w i d t h / 3 ;
f l a g s e g := GXSegNum;
G C r e a t e S e g (f l a g s e g);

(G X V A V A r r a y , G X V L i m i t A r r a y [1 3] . m i n , G X V L i m 1 t A r r a y [13] .max, ' s o l i d '))) ;

b e g i n
GXVi := GXSetMax (0 , out 1 ine .max) ;
G P o l y l i n e (G X V i , out 1 i n e . p o i n t s) ;
G S e t F i l U n t S t y l e (G T i n t e r i o r (G X A t r V a l
G S e t F i 1 I C o l I n d (1) ;
G X V p o l y p o i n t . p o i n t s [1] . x := 2 ;
G X V p o l y p o i n t . p o i n t s [1] . y := 2;
G X V p o l y p o i n t . m a x := 1;
GXSetPT (G X V P o l y P o i n t , G X V P o i n t) ;
twobytwo ;= G X V p o i n t ;
G X V p o l y p o i n t . p o i n t s [1] . x
G X V p o l y p o i n t . p o i n t s [1] . y
G X V p o l y p o i n t . p o i n t s [2] . x
G X V p o l y p o i n t . p o i n t s [2] . y
G X V p o l y p o i n t . p o i n t s [3] . x
G X V p o l y p o i n t . p o i n t s [3] . y
G X V p o l y p o i n t . p o i n t s [4] . x
G X V p o l y p o i n t . p o i n t s [4] . y
G X V p o l y p o 1 n t . m a x := 4;
GXVi := GXSetMax (0 , 4) ;
G F i l l (G X V i , G X V p o l y p o i n t . p o i n t s) ;
G S e t F i 1 1 I n t S t y l e (G T i n t e r i o r (G X A t r V a l (G X V A V A r r a y , GXVL1 m i t A r r a y [1 3] . m i n , G X V L i m i t A r r a y [13] .max,
G S e t F i 1 I S t y l e I n d (G X A t r V a l (G X V A V A r r a y , G X V L i m 1 t A r r a y [1 4] . m i n , G X V L i m i t A r r a y [14] .max, ' g r e y ')) ;
G X V v e c t o r [1] := twobytwo.x;
G X V v e c t o r [2] := twobytwo .y ;
G S e t P a t t e r n S i z e (G X V v e c t o r) ;

10 ;
10;
10 ;
10;
10 ;
10-bandwidth;

10 ;
10 -bandwidth;

' P a t t e r n '))) ;

G S e t P a t t e r n R e f P o i nt o r 1gi n) ;
G X V p o l y p o i nt po i n t s 1] X = - 10
G X V p o l y p o i n t po i n t s 1] y 10 -bandwidth;
G X V p o l y p o i nt po1nt s 2] X = 10 ;
G X V p o l y p o i nt p o i n t s 2] y = 10-bandwidth;
G X V p o l y p o i n t p o i n t s 3] X = 10 ;
G X V p o l y p o i n t p o i n t s 3] y = 10-(2*bandw1dth)
G X V p o l y p o i n t po i n t s 4] X = - 10
G X V p o l y p o i n t po i n t s 4] y = 10-(2*bandwidth)
G X V p o l y p o i n t . m a x := 4;
GXVi := GXSetMax (0 , 4) ;
G F i l l (G X V i , G X V p o l y p o i n t . p o i n t s)
G X V s t r i n g := 'Germany' ;

G X V p o l y p o i n t . p o i n t s [1] . x := - G
G X V p o l y p o i n t . p o i n t s [1] . y := - 8;
G X V p o l y p o i n t . m a x := 1;
G T e x t S t r i n g (G X V P o l y P o i n t . p o i n t s

end ;

G C l o s e S e g ;

end ;

p r o c e d u r e d o u s s r (o u t l i n e : p o l y p o i n t ;

s t a r s e g : segment ;
s t a r p o o i t i o n : p o i n t ;
s t a r x f o r m : segxform ;

s t a t i c

hammer , c y c l e : p o l y p o i n t ;

v a l u e
hammer := p o l y p o i n t (G A P o i n t A r r a y (
GRPoi nt (-7 . 5 6 5)
GRpoi nt ("7. 3 6 7)
GRpoi nt (- 8 . 0 7 4)
G R p o i n t ("7. 8 7 5)
G R p o i n t ("8 . 2 7 8)
G R p o i n t ("8. 5 7 5)
G R p o i n t ("8. 4 7 2)
G R p o i n t (- 8 . 3 7 3)
G R P o i n t (0 . 0 , 0 0)

b e g i n

c r e a t e s t a r (f a l s e , s t a r s e g) ;
G X V p o l y p o i n t . p o i n t s [1] . x := - 8 ;
G X V p o l y p o i n t . p o i n t s [1] . y := 9;
G X V p o l y p o i n t . m a x := 1;
GXSetPT (G X V P o l y P o i n t , G X V P o i n t) ;
s t a r p o s i t i o n := G X V p o i n t ;
GXVSegXform := I d e n t i t y ;
G X V P o i n t := o r i g i n ;
G X V v e c t o r [1] := 0 . 5 ;
G X V v e c t o r ! 2] := 0 . 5 ;

, l e n g t h (G X V S t r i n g) , G X V S t r i n g)

f l a g s e g : segment) ;

GAccumTran (GXVSegxform , G X V P o i n t , o r i g i n , 0 ,
G X V v e c t o r , NDC, GXVSegXform);

G X V v e c t o r [1] := 1.0;
G X V v e c t o r [2] := 1.0;
G X V P o i n t := s t a r p o s i t i o n ;
G a c c u m t r a n (GXVSegXform, O r i g i n , G X V P o i n t , 0,

G X V v e c t o r , WC, GXVSegxform);
s t a r x f o r m := GXVsegxform;
f l a g s e g := GXSegNum;
G C r e a t e S e g (f l a g s e g);

b e g i n
G S e t F i 1 1 I n t S t y l e (G T i n t e r i o r (G X A t r V a l (G X V A V A r r a y , G X V L 1 m i t A r r a y [1 3] . m i n , G X V L i m i t A r r a y [13] .max, ' s o l i d '))) ;
G S e t F i 1 I C o l I n d (1) ;
GXVi := GXSetMax (0 , out 1 i n e . m a x) ;
G F i l l (G X V i , o u t l i n e . p o i n t s) ;
GXVSegXForm := s t a r x f o r m ;
G I n s e r t S e g (s t a r s e g , GXVSegXForm);
G S e t F i 1 I C o l I n d (0) ;
GXVi := GXSetMax (0 , hammer.max);
G F i l l (G X V i , h a m m e r . p o i n t s) ;

G X V S t r i n g := ' U . S . S . R . ' ;
G X V p o l y p o i n t . p o i n t s [1] . x := - 6 ;
G X V p o l y p o i n t . p o i n t s [1] . y := - 8;
G X V p o l y p o i n t . m a x := 1;

G T e x t S t r i n g (G X V P o l y P o i n t . p o i n t s [1] , 1 e n g t h (G X V S t r 1 n g) , G X V S t r i n g);

end ;

G C l o s e S e g ;

end ;

p r o c e d u r e d o j a p a n (o u t l i n e : p o l y p o i n t ; v a r f l a g s e g : segment)

v a r
c i r c l e : p o l y p o i n t

b e g i n
f l a g s e g := GXSegNum;
G C r e a t e S e g (f l a g s e g);

b e g i n
GXVi := GXSetMax (0 , out 1 i n e . m a x) ;
G P o l y l i n e (G X V i , o u t l i n e . p o i n t s) ;
c o m p u t e a r c (o r i g i n , 5 , 0 , 2 * p i , t r u e

100 . c i r c l e) ;
G S e t F i 1 1 I n t S t y l e (G T i n t e r i o r (G X A t r V a l (G X V A V A r r a y , G X V L i m i t A r r a y [1 3] . m i n , G X V L i m i t A r r a y [13] .max, ' s o l i d '))) ;
GXVi := GXSetMax (0 , c i r c l e . m a x) ;
G F i l l (G X V i , c i r c l e . p o i n t s) ;
G X V s t r i n g := ' J a p a n ' ;
G X V p o l y p o i n t . p o i n t s [1] . x := - 6 ;
G X V p o l y p o i n t . p o i n t s [i j . y := - 8;
G X V p o l y p o i n t . m a x := 1;

G T e x t S t r i n g (G X V P o l y P o i n t . p o i n t s [1] , 1 e n g t h (G X V S t r i n g) , G X V S t r i n g);

end ;
G C l o s e S e g ;

end

b e g i n

G S e t C h a r H e i g h t (2 0 . 0) ;
G S e t C h a r E x p a n (1 . 5) ;
g r e y [1, 1] := 0;
g r e y [1, 2] := 1;
g r e y t 2, 1] := 1;
g r e y [2 , 2] := 0;
g s e t p a t t e r n r e p (p r i n t e r , 1 , 2 , 2 , g r e y) ;
d e t e r m i n e s i z e (Canada , f l a g s i z e) ;
docanada (f l a g s i z e , n a t n a r r [Canada] . f l a g) ;
d e t e r m i n e s i z e (usa , f l a g s i z e) ;
dousa (f l a g s i z e , n a t n a r r [u s a] . f l a g) ;
d e t e r m i n e s i z e (e n g l a n d , f l a g s i z e) ;
d o e n g l a n d (f l a g s i z e , n a t n a r r [e n g l a n d] . f l a g) ;
d e t e r m i n e s i z e (c h i n a , f l a g s i z e) ;
d o c h i n a (f l a g s i z e , n a t n a r r [c h i n a] . f l a g) ;
d e t e r m i n e s i z e (f r a n c e , f l a g s i z e) ;
d o f r a n e e (f l a g s i z e , n a t n a r r [f r a n c e] . f l a g) ;
d e t e r m i n e s i z e (germany , f l a g s i z e) ;
dogermany (f l a g s i z e , n a t n a r r [germany] . f l a g) ;
d e t e r m i n e s i z e (u s s r , f l a g s i z e) ;
d o u s s r (f l a g s i z e , n a t n a r r [u s s r] . f l a g) ;
d e t e r m i n e s i z e (j a p a n , f l a g s i z e) ;
d o j a p a n (f l a g s i z e , n a t n a r r [j a p a n] . f l a g) ;

end ;

p r o c e d u r e g e n e r a t e p o s i t i o n (v a r n a t n a r r : n a t i o n a r r a y)

i : n a t i o n ;
a n g l e , i n c r e : r e a l ;
i n i t l o c a t n : segxform

b e g i n
GXVSegXform := I d e n t i t y ;
G X V v e c t o r [1] := 1.0;
G X V v e c t o r [2] := 1.0;
G X V P o i n t := o r i g i n ;
GAccumtran (GXVSegXform, G X V P o i n t , o r i g i n , 0 . 5 ,

G X V v e c t o r , WC, GXVSegxform);
i n i t l o c a t n := GXVsegxform;
a n g l e := 0 .125 * p i ;
i n c r e := 0 .25 * p i ;
f o r i := c a n a d a to j a p a n do

b e g i n
GXVSegXform : = I d e n t i t y ;
GXAccum (GXVSegxform, i n i t l o c a t n) ;
G X V v e c t o r [1] := 1.0;
G X V v e c t o r [2] := 1.0;
G X V P o i n t := o r i g i n ;
GAc c u mt r a n (GXVSegXform, G X V P o i n t , o r i g i n , a n g l e ,

G X V v e c t o r , WC, GXVSegxform);
i n i t l o c a t n := GXVsegxform;
GXVSegXform := I d e n t i t y ;
GXAccum (GXVSegxform, i n i t l o c a t n) ;
n a t n a r r [i] . p o s i t i o n := GXVsegxform;
i f i = c h i n a
t h e n

beg i n
a n g l e := 0 .125 * p i ;
GXVSegXform := I d e n t i t y ;
G X V v e c t o r [1] := 1.0;
G X V v e c t o r [2] := 1.0;
G X V P o i n t := o r i g i n ;
GAccumtran (GXVSegXform, G X V P o i n t , o r i g i n , 0 . 5 ,

G X V v e c t o r , WC, GXVSegxform);
G X V v e c t o r [1] := 1.0;
G X V v e c t o r [2] := 1.0;
G X V P o i n t := o r i g i n ;
GAccumtran (GXVSegXform, G X V P o i n t , o r i g i n , a n g l e ,

G X V v e c t o r , WC, GXVSegxform);
i n i t l o c a t n := GXVsegxform;

end

e l s e a n g l e := a n g l e + i n c r e ;

end

end ;

p r o c e d u r e d i s p l a y e x h i b i t (n a t n a r r : n a t i o n a r r a y

e x h i b i t u n i t s , n d c u n i t s : window ;
e x h i b i t n t : normxform ;
e x h i b i t : segment ;
i : n a t i o n ;

b e g i n
f o r i := Canada to j a p a n do

b e g i n
G X S t a t e (GXsave , [p r i n t e r] , f a l s e) ;
GCopySegWs (p r i n t e r , n a t n a r r [i] . f 1 a g) ;
G X S t a t e (G X r e s t o r e , [p r i n t e r] , f a l s e) ;
G X S t a t e (GXsave , [p r i n t e r] , f a l s e) ;
GClearWs (p r i n t e r , C l e a r C o n d);
G X S t a t e (G X r e s t o r e , [p r i n t e r] , f a l s e) ;

end

G X V p o l y p o i n t . p o i n t s [1] . x := - 100 ;
G X V p o l y p o i n t . p o i n t s [1] . y := - 65;
G X V p o l y p o i n t . p o i n t s [2] . x := 100 ;
G X V p o l y p o i n t . p o i n t s [2] . y := 65;
G X V p o l y p o i n t . m a x := 2;
GXSetWin (G X V p o l y p o i n t , GXVWindow);
e x h i b i t u n i t s := GXVwindow;
G X V p o l y p o i n t . p o i n t s [1] . x := 0.0681 ;
G X V p o l y p o i n t . p o i n t s [1] . y := 0 .09375;
G X V p o l y p o i n t . p o i n t s [2] . x := 0 .9318 ;
G X V p o l y p o i n t . p o i n t s [2] . y := 0 .84275;
G X V p o l y p o i n t . m a x := 2;
GXSetWin (G X V p o l y p o i n t , GXVWindow);
n d c u n i t s := GXVwindow;
e x h i b i t n t := GXNTNum;
GSetWindow (e x h i b i t n t , e x h i b i t u n i t s . c o r n e r)
G S e t V i e w p o r t (e x h i b i t n t , n d c u n 1 t s . c o r n e r) ;
G S e l e c t N T r a n (e x h i b i t n t) ;

e x h i b i t := GXSegNum;
G C r e a t e S e g (e x h i b i t) ;

G C l o s e S e g ;

b e g i n
f o r i := Canada to j a p a n do

GXVSegXForm := n a t n a r r [i] . p o s i t i o n ;
G I n s e r t S e g (n a t n a r r [i] . f 1 a g , GXVSegXForm)

G S e t C h a r H e i g h t (1 3 0 . 0) ;
G S e t C h a r E x p a n (2 . 0) ;
G S e t C h a r S p a c i n g (0 . 5) ;
G X V S t r i n g := ' P E A C E ' ;
G X V p o l y p o i n t . p o i n t s [1] . x := - 10 ;
G X V p o l y p o i n t . p o i n t s [1] . y := 30;
G X V p o l y p o i n t . m a x := 1;
G T e x t S t r i n g (G X V P o l y P o i n t . p o i n t s [1] , 1 e n g t h (G X V S t r i n g) , G X V S t r i n g);
G X V S t r i n g := 'ON' ;
G X V p o l y p o i n t . p o i n t s [1] . x := - 5 ;
G X V p o l y p o i n t . p o i n t s [i j . y ' : = 0;
G X V p o l y p o i n t . m a x := 1;
G T e x t S t r i n g (G X V P o l y P o i n t . p o i n t s [1] , 1 e n g t h (G X V S t r i n g) , G X V S t r i n g);
G X V S t r i n g := ' E A R T H ' ;
G X V p o l y p o i n t . p o i n t s [1] . x := - 10 ;
G X V p o l y p o i n t . p o i n t s [1] . y := - 30;
G X V p o l y p o i n t . m a x := 1;
G T e x t S t r i n g (G X V P o l y P o i n t . p o i n t s [1] l e n g t h (G X V S t r i n g) , G X V S t r i n g);

end ;
G X S t a t e (GXsave , [p r i n t e r] , f a l s e) ;
GCopySegWs (p r i n t e r , e x h i b i t) ;
G X S t a t e (G X r e s t o r e , [p r i n t e r] , f a l s e) ;

end

b e g i n
GopenGKS (0 , 1 0 0 0) ;
GopenWs (C e n t r a l S e g S t o r e , 0, 3) ;
G A c t i v a t e W S (C e n t r a l S e g S t o r e) ;
GopenWs (1, 21 , 7370);
G X I n i t A v (G X C M a x A t r V a l , GXCMaxAtrTypes , G X V A v a r r a y , G X V L i m i t A r r a y) ;
p i := 3 .141592 ;
g e n e r a t e f 1 a g s (a r r a y o f n a t i o n s) ;
g e n e r a t e p o s i t i o n (a r r a y o f n a t i o n s) ;
d i s p l a y e x h i b i t (a r r a y o f n a t i o n s) ;

GXVopenWkstns := GXWsSet (GXopenWs);

G X V a c t i v e W k s t n s := GXWsSet (GXAct iveWs)
F o r GXVI := 0 t o GXCMaxSetS ize DO

B e g i n
I f GXVi IN G X V A c t i v e W k s t n s
Then G D e a c t i v a t e W S (G X V i) ;
I f GXVi IN GXVopenwkstns
Then Gc loseWs (G X V i) ;

E n d ;
G c l o s e G K S ;

