
TEACHING PROLOG

USING INTELLIGENT COMPUTER-ASSISTED INSTRUCTION

AND A GRAPHICAL TRACE

by

EARL FOGEL

B.Sc. U n i v e r s i t y of Saskatchewan, 1980

Bachelor of Journalism, C a r l e t o n U n i v e r s i t y , 1982

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

i n

THE FACULTY OF GRADUATE STUDIES

DEPARTMENT OF COMPUTER SCIENCE

We accept t h i s t h e s i s as conforming

to the re q u i r e d standard

THE UNIVERSITY OF BRITISH COLUMBIA

February, 1988

(c) E a r l Fogel, 1988

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

Department

The University of British Columbia
1956 Main Mall
Vancouver, Canada
V6T 1Y3

Date Afif'il 8J M M

DE-6(3/81)

A b s t r a c t

Two methods f o r improving the q u a l i t y of Computer
A s s i s t e d I n s t r u c t i o n are examined. They a r e : u s i n g
I n t e l l i g e n t Computer A s s i s t e d I n s t r u c t i o n t e c h n i q u e s to make
the CAI system more f l e x i b l e , and u s i n g g r a p h i c s t o i n c r e a s e
the e f f i c a c y of t e a c h i n g .

Two computer systems f o r t e a c h i n g the L o g i c Programming
language P r o l o g were developed.

The f i r s t i s an ICAI system which uses the p r e r e q u i s i t e
r e l a t i o n s h i p s of the course m a t e r i a l t o p l a n a c o u r s e of
s t u d y . I t d i s t i n g u i s h e s between methods of i n s t r u c t i o n and
t o p i c s of i n s t r u c t i o n , g i v i n g s t u d e n t s a g r e a t d e a l of
freedom i n choosing e i t h e r one.

The second i s an animated t r a c e which g r a p h i c a l l y
i l l u s t r a t e s the e x e c u t i o n of P r o l o g programs. I n f o r m a t i o n i s
d i s p l a y e d i n t h r e e windows — one f o r P r o l o g g o a l s , one f o r
the database, and one f o r output from the program b e i n g
t r a c e d .

R e s u l t s i n d i c a t e t h a t ICAI and g r a p h i c s can both be used
e f f e c t i v e l y i n the t e a c h i n g of programming languages,
p a r t i c u l a r l y i n c o m b i n a t i o n .

TABLE OF CONTENTS

Chapter One - In t r o d u c t i o n 1
1.1. Why Computers are Such T e r r i b l e Teachers 1
1.2. Why Computers are Such Good Teachers 2
1.3. Making Computers i n t o Better Teachers 3
1.4. Teaching Programming Languages 6
1.5. Teaching Prolog 7
1.6. T h i s Thesis 8
1.7. The Prolog ICAI System 8
1.8. The Animated Trace (Anilog) 10
1.9. Sample P r o t o c o l s 11

Chapter Two - L i t e r a t u r e Survey 16
2.1. Using More I n t e l l i g e n t Teachers 17
2.2. Broadened I n t e r a c t i o n s between Teacher,

Student and Domain 26
2.3. Summing up the L i t e r a t u r e 28

Chapter Three - Prolog ICAI System Design 31
3.1. Design Goals 31
3.2. General Design 32
3.3. Methods of I n s t r u c t i o n 34
3.4. The P r e r e q u i s i t e S t r u c t u r e 36
3.5. Choosing a Topic of I n s t r u c t i o n 38
3.6. Choosing a Method of I n s t r u c t i o n 39
3.7. Deciding Which Topics are P r e v i o u s l y Known 40
3.8. Notes on I n s t r u c t i o n a l Methodology 41
3.9. The Implementation 41

Chapter Four - Animated Trace Design 43
4.1. I n t r o d u c t i o n 43
4.2. General Design 44
4.3. The Trace 44
4.4. The Animated Display 45
4.5. The Implementation 46

Chapter F i v e - E v a l u a t i o n and Conclusions 48
5.1. Prolog ICAI System: E v a l u a t i o n Procedure 48
5.2. The Animated Trace: E v a l u a t i o n Procedure 50
5.3. Prolog ICAI System: E v a l u a t i o n Results 51
5.4. The Animated Trace: E v a l u a t i o n Results 54
5.5. Conclusions 55

B i b l i o g r a p h y 58

Appendix One - The And/Or P r e r e q u i s i t e Tree 62

Appendix Two - Prolog CAI User's Manual 64

Appendix Three - A n i l o g User's Manual 65

Appendix Four - Animated Trace Example 66

- i i i -

L i s t of F igures

F i g u r e 1: Example of an And/Or P r e r e q u i s i t e Tree 9

F i g u r e 2: The S t a r t of the Prolog ICAI Course 12

F i g u r e 3: The F i r s t Topic S e l e c t e d 13

F i g u r e 4: The F i r s t Lesson Se l e c t e d 14

F i g u r e 5: Snapshot of the Prolog Animated Trace 15

F i g u r e 6: Prolog ICAI System Design 33

F i g u r e 7: Prolog ICAI E v a l u a t i o n Questionnaire 49

- i v -

Acknowledgements

The author would l i k e t o thank everyone who t r i e d out
the two systems and gave a d v i c e d u r i n g t h e i r development.

Many of the idea s f o r t e a c h i n g P r o l o g came from the
e x c e l l e n t P r o l o g courses g i v e n by Ray R e i t e r and Harvey
Abramson a t UBC, from the Programming i n P r o l o g t e x t by
C l o c k s i n and M e l l i s h , and from the CP r o l o g Users Manual by
Fernando P e r e i r a et a l .

A l a n Mackworth, who s u p e r v i s e d t h i s r e s e a r c h ,
c o n t r i b u t e d l e a d s t o much of the ICAI l i t e r a t u r e and, w i t h
g r e a t p e r s e v e r a n c e , convinced me of the advantages of
g r a p h i c s i n t e a c h i n g programming languages.

R i c h a r d Rosenberg has o f f e r e d some v a l u a b l e a d v i c e f o r
the f i n a l d r a f t of t h i s t h e s i s , and h i s a s s i s t a n c e i s
s i n c e r e l y a p p r e c i a t e d .

F i n a n c i a l support f o r t h i s r e s e a r c h was p r o v i d e d by the
N a t u r a l S c i e n c e s and E n g i n e e r i n g Research C o u n c i l of Canada.

-v-

Chapter One

I n t r o d u c t i o n

For more than 20 years, people have been w r i t i n g

Computer Aided I n s t r u c t i o n (CAI) programs. Most of them are

not very good. H o f s t e t t e r (1981) estimates that as many as

5000 out of the 7000 hours of i n s t r u c t i o n a l software w r i t t e n

f o r P l a t o are u s e l e s s , yet P l a t o i s described as one of the

most s u c c e s s f u l CAI systems.

This chapter w i l l show why computers are such poor

teachers, and w i l l put forward some ideas about what can be

done to improve them. Two computer systems that i l l u s t r a t e

these ideas w i l l then be described.

1.1 Why Computers are Such T e r r i b l e Teachers

Consider the f o l l o w i n g locked room analogy.

Imagine you are s i t t i n g a l l alone i n a locked,
soundproof room, with nothing but a t y p e w r i t e r ,
some paper, and a book. On one w a l l of the room
are two s l o t s , l a b e l l e d In and Out.

Your job i s to teach the contents of that book
to anyone who happens to be on the other s i d e of
the w a l l , by passing notes through these s l o t s .

You can know nothing about the subject of the
book, you must give up most of your command of the
language i n which i t i s w r i t t e n (and which the
students use), and you must forget everything you
know about teaching. (After Searle 1983).

Under the circumstances, i t would be d i f f i c u l t f o r

anyone to teach e f f e c t i v e l y , yet these are p r e c i s e l y the

c o n d i t i o n s under which most CAI programs operate.

-1-

Knowing nothing about the subject they teach, they can

only present the student with p r e v i o u s l y w r i t t e n pages of

t e x t . Knowing nothing about the student, they cannot t a i l o r

t h e i r p r e s e n t a t i o n to h i s or her needs. Knowing nothing

about teaching, they are unable to vary t h e i r teaching

s t r a t e g i e s to best s u i t a p a r t i c u l a r t o p i c or a p a r t i c u l a r

student. Further, the only contact most CAI programs have

with the r e a l world i s through the t e r m i n a l screen and

keyboard. Students cannot pick up v i s u a l or voice-tone cues

from the program, nor can i t pick up such cues from them.

In summary, a t y p i c a l CAI program does not understand

what i t i s teaching, who i t i s teaching, or how to teach.

With these handicaps, i t i s no wonder computers are such poor

teachers. In f a c t , i t i s a wonder they are as good as they

are.

1.2 Why Computers are Such Good Teachers

There are good CAI programs. There are, f o r example,

about 2000 hours of P l a t o courseware (educational software)

that H o f s t e t t e r d i d not dismiss as u s e l e s s .

Some CAI programs succeed because t h e i r s u b j e c t s are

e s p e c i a l l y w e l l s u i t e d to computer i n s t r u c t i o n . A few years

ago, one study found that "95% are a r i t h m e t i c programs"

(Ragsdale 1982).

Much of CAI focuses on a r i t h m e t i c because a r i t h m e t i c i s

easy to teach with computers. I t i s easy because computers

can do a r i t h m e t i c , and students can watch them doing i t .

-2-

Indeed, a computer can help a student with a r i t h m e t i c , and

can compare the student's answers with i t s own.

Another promising subject for CAI i s computer

programming. In t h i s area too, the computer can check the

student's answers against i t s own. Looi has w r i t t e n a

program which teaches the Pascal assignment statement (Looi

1984). His system checks the syntax of simple programs

w r i t t e n by the student, runs them on predetermined t e s t

cases, and v e r i f i e s the r e s u l t s .

Other CAI programs succeed because they use s i m u l a t i o n s .

With these, the student learns about a real- w o r l d system by

experimenting with a model of that system. The models

i n c l u d e economic systems, with the student p l a y i n g the stock

market or running a T h i r d World country; or b i o l o g i c a l

systems, showing population changes i n f i s h or b a c t e r i a .

These programs a l l have one thing i n common

competence i n t h e i r domain of e x p e r t i s e . They are unable to

reason about t h e i r domain, nor can they e x p l a i n i t , but there

i s enough domain knowledge b u i l t i n t o these programs that

they can perform competently w i t h i n i t . Going back to the

locked room analogy, these programs are s u c c e s s f u l because

they know something about the subjects they are teaching.

1.3 Making Computers i n t o Better Teachers

E f f o r t s to make computers be t t e r teachers can be

c l a s s i f i e d i n t o two c a t e g o r i e s :

* Allowing a broader spectrum of i n t e r a c t i o n s with the
outs i d e world (unlocking the room).

- 3 -

* Improving t h e i r i n t e l l i g e n c e and t h e i r knowledge of the
world (putting someone i n the room who knows the
student, who knows the subject being taught, and who
knows how to teach).

1.3.1 Unlocking the Room

This i n v o l v e s breaking down the b a r r i e r s both between

the teacher and student, and between the teacher and the

subj e c t being taught.

Human teachers can t a l k , gesture, draw p i c t u r e s , show

movies and use computers to put ideas across, while students

can t a l k , groan, s c r a t c h t h e i r heads, and so on. In the most

b a s i c form of CAI, on the other hand, the only means of

communication i s t e x t , typed at the keyboard and d i s p l a y e d on

the screen. The use of l i g h t pens, touch s e n s i t i v e screens,

s l i d e p r o j e c t o r s , videotapes, speech s y n t h e s i s and g r a p h i c a l

d i s p l a y s can a l l e n r i c h t h i s i n t e r a c t i o n .

One can a l s o e n r i c h the i n t e r a c t i o n between the computer

and the subject i t teaches. A human teacher o f t e n has

perso n a l experience with the subject being taught, and can

support the lessons with r e a l world demonstrations. He or

she can turn over a l e a f , or open up the hood of a car. I t i s

e a s i e r to teach about t r e e s , f o r example, i f you know

something about t r e e s , and i f you can point to a t r e e while

you t a l k . Computers are good a r i t h m e t i c teachers because

they can show the student how to do a r i t h m e t i c , and can check

the student's work against t h e i r own.

-4-

One way to teach about a domain with which you can't

i n t e r a c t i s given by Alan Bundy's notion of " s t o r i e s " . A

s t o r y i s a model or an analogy which makes i t easy to grasp

the c e n t r a l ideas behind the subject being taught. Learning

i s much e a s i e r with a good s t o r y .

Here, Bundy writes about s t o r i e s f o r teaching

programming languages:

[I t] i s important to give a model of what the
computer w i l l do with his/her programs. The
student must be able to a n t i c i p a t e the e f f e c t of
running his/her program, otherwise he/she w i l l be
unable to design i t , debug i t , modify i t , e t c

When teaching LOGO to school c h i l d r e n , Tim
O'Shea and Ben du Boulay found the p r o v i s i o n of a
s u i t a b l e model to be c e n t r a l to the design of the
course and the language i n t e r f a c e (Bundy, 1983).

In teaching about t u r t l e graphics, one has the analogy

of l i v e t u r t l e s crawling around on the f l o o r , and one has a

computer which simulates the t u r t l e on a screen.

To summarize, one can make computers i n t o b e t t e r

teachers by improving student-computer communications, by

improving domain-computer i n t e r a c t i o n s , or by using a good

1.3.2 P u t t i n g a More I n t e l l i g e n t Teacher i n the Room

Most CAI programs lack the knowledge to teach

e f f e c t i v e l y . They don't understand students and they don't

understand what they are teaching. Making computers i n t o

b e t t e r teachers, by g i v i n g them knowledge of the r e a l world,

and t e l l i n g them how to use i t , comes under the domain of

A r t i f i c i a l I n t e l l i g e n c e .

- 5 -

Researchers who t r y to put knowledge about students,

about teaching, and about what i s being taught i n t o CAI

programs c a l l t h e i r f i e l d I n t e l l i g e n t Computer A s s i s t e d

I n s t r u c t i o n (ICAI); presumably to d i s t i n g u i s h i t from the not

so i n t e l l i g e n t kind of CAI.

There are four general areas of ICAI research:

* Increasing the computer's knowledge of students (with a
student model).

* Increasing i t s knowledge of the domain (with a domain
model).

* Increasing i t s knowledge of teaching and l e a r n i n g (with
an e d u c a t i o n a l model).

* Increasing i t s a b i l i t y to ca r r y out a n a t u r a l language
d i a l o g with students.

Each of these areas i n v o l v e s many i n t e r e s t i n g

subproblems. Within student modelling, for example, there i s

the problem of f i n d i n g out what students already know, what

they don't know, and what misconceptions they have, as w e l l

as the problem of changing the model as the student l e a r n s

(S e l f , 1974).

1.4 Teaching Programming Languages

One good domain for CAI i s computers themselves.

Computers can't do much with trees and c a r s , but they are

ready made to teach about computers. A computer can't p o i n t ,

but when i t teaches about tape d r i v e s , i t can s p i n tapes back

and f o r t h . When i t teaches computer programming, i t can

tr a c e programs, and i t can check and d i s p l a y the r e s u l t s .

-6-

Teaching programming languages i s made e s p e c i a l l y easy

because people have invented many s t o r i e s f o r programming:

things l i k e flow c h a r t s , algorithms, data flow diagrams,

modular design, and i n t e r a c t i v e trace programs.

1.5 Teaching Prolog

Prolog i s a Logic Programming language. The execution

procedure f o r a Prolog program i s . l a r g e l y embedded i n the

Prolog i n t e r p r e t e r , and not i n the program i t s e l f . Whereas

programs i n t r a d i t i o n a l programming languages have an

e x p l i c i t c o n t r o l s t r u c t u r e (with s e q u e n t i a l execution, loops,

and so on), Prolog programs are mainly d e s c r i p t i v e , based on

the i m p l i c i t proof procedure of the i n t e r p r e t e r (top down

d e p t h - f i r s t search with b a c k t r a c k i n g) .

Because i t d i f f e r s from t r a d i t i o n a l programming

languages, Prolog requires d i f f e r e n t s t o r i e s . Some Prolog

s t o r i e s are evaluated by Bundy (1983). These i n c l u d e : Or

Trees and And/Or Trees (both from Kowalski, 1979); the Byrd

Box, Arrows, the Flow of S a t i s f a c t i o n , and a Prolog t r a c e

program (a l l described i n C l o c k s i n and M e l l i s h , 1981).

A l l the b e n e f i t s of teaching programming languages hold

f o r P r o l o g . Students can write programs, which the computer

can run and t r a c e , and there are good s t o r i e s f o r teaching

P r o l o g . As w e l l , Prolog's d e c l a r a t i v e semantics make i t a

very n i c e v e h i c l e for the use of ICAI techniques. In P r o l o g ,

i t i s easy to def i n e rule-bases f o r e d u c a t i o n a l , student, and

domain models, and to use these i n d e c i s i o n making.

-7-

1 .6 T h i s T hesis

Two computer systems for teaching Prolog were developed

f o r t h i s t h e s i s .

The f i r s t i s an ICAI program that teaches P r o l o g . I t

uses knowledge of the student, the domain, and of teaching to

determine which t o p i c to teach, and how to teach i t . The

second provides an animated trace of the execution of Prolog

programs. Students can use i t to follow the execution of

t h e i r own programs, and of the programming examples provided

by the ICAI program.

Both programs were developed on a DEC VAX 11/780 running

Berkeley UNIX. The ICAI program i s w r i t t e n i n CProlog. The

t r a c e i s w r i t t e n i n CProlog and i n C, using the CURSES

windowing package, which i n turn uses the UNIX Termcap

te r m i n a l database.

1.7 The Prolog ICAI System

1.7.1 And/Or P r e r e q u i s i t e Trees

The use of And/Or Trees to represent p r e r e q u i s i t e

r e l a t i o n s f o r a CAI course i s described i n a number of papers

by Darwin Peachey and Gordon McCalla at the U n i v e r s i t y of

Saskatchewan (Peachey, 1982) (McCalla et a l , 1982).

B r i e f l y , the course to be taught i s d i v i d e d i n t o an

number of separate t o p i c s , l i n k e d together by p r e r e q u i s i t e

r e l a t i o n s h i p s . The And/Or Tree l i n k s the t o p i c s of the

course.

-8-

Some t o p i c s have no p r e r e q u i s i t e s — these may be taught

immedia te ly . The o thers have p r e r e q u i s i t e s which shou ld be

covered f i r s t .

A t o p i c may have more than one p r e r e q u i s i t e — a l l o f

which are r e q u i r e d . These are connected by AND l i n k s i n the

p r e r e q u i s i t e t r e e . A l t e r n a t i v e l y , a t o p i c may have s e v e r a l

p r e r e q u i s i t e s — only one of which i s r e q u i r e d . These are

connected by OR l i n k s .

Here i s a p a r t of the p r e r e q u i s i t e t r e e (a c t u a l l y a

d i r e c t e d graph) from the P r o l o g CAI course :

P r o l o g Syntax

OR

I n t r o d u c t i o n
to P r o l o g

A Quick
Look at
P r o l o g

I n t r o d u c t i o n
to L o g i c

Us ing
the

T u t o r i a l

F i g u r e 1: Example of And/Or P r e r e q u i s i t e Tree

In t h i s example there are two ways to s a t i s f y the

p r e r e q u i s i t e requirements for "Prolog Syntax". E i t h e r s tudy

" I n t r o d u c t i o n to P r o l o g " a long with both of i t s

p r e r e q u i s i t e s , or study " I n t r o d u c t i o n to L o g i c " and i t s

s i n g l e p r e r e q u i s i t e .

- 9 -

1.7.2 Who Hakes the Decisions?

Using AND/OR Trees l e t s the system make reasonable

choices f o r t o p i c s to be s t u d i e d , but care must be taken to

ensure that the choices made are not too a u t h o r i t a r i a n . The

system makes d e c i s i o n s based on incomplete i n f o r m a t i o n , and

students must be able to o v e r r u l e these d e c i s i o n s when they

choose.

A major c o n s i d e r a t i o n i n the current research was to

produce a system that gave the student a great deal of

freedom of choice as to what to study, how to study i t , and

when.

The Prolog CAI system chooses t o p i c s f o r the student to

study, and chooses methods for teaching those t o p i c s . These

choices act as d e f a u l t s . Each student i s f r e e to accept the

systems choices or to d i s r e g a r d them to pursue h i s or her own

i n t e r e s t s .

1.8 The Animated Trace (Anilog)

A n i l o g i s a window-oriented trace f o r Prolog programs

(the name comes from ANImation of LOGic). I t d i s p l a y s

i n f o r m a t i o n about the execution of Prolog goals, t h e i r

success, f a i l u r e , backtracking, and r e c u r s i v e c a l l s to other

g o a l s , as w e l l as showing the database clauses they use, and

any output they generate.

A l l of t h i s information i s d i s p l a y e d on the screen, i n

three windows: one f o r goals, one f o r the Prolog database,

and one f o r user output.

1.9 Sample P r o t o c o l s

The f o l l o w i n g three pages show the beginning of a

t y p i c a l s e s s i o n with the Prolog ICAI system. Following t h i s

i s a snapshot of the animated t r a c e , part-way through

s a t i s f y i n g the g o a l :

?- w r i t e (h i) , m e m b e r (e l f , [d w a r f , e l f , p i x i e]) , f a i l .

A more complete example of the animated t r a c e may be

found i n Appendix 4 .

- 1 1 -

PROLOG COURSE - TABLE OF CONTENTS

Using Thi s T u t o r i a l
A Quick Look at Prolog
I n t r o d u c t i o n to Prolog
I n t r o d u c t i o n to Logic
Syntax
Semantics
U n i f i c a t i o n
Proof Procedure
S i d e - e f f e c t s
Prolog Basics
B u i l t - i n P r e d i c a t e s
I n t r o d u c t i o n to the B u i l t i n s
A r i t h m e t i c
Input/Output
I/O B a s i c s
F i l e Access
Character I/O
Term I/O
Reading-in Programs
Convenience
Operators
C o n t r o l of Execution
The Cut
Comparison of Terms
Meta-Logical
Debugging
Sets
Program Information
Changing the Data Base
I n t e r n a l Data Base
Environmental
D e f i n i t e Clause Grammars

Type <cr> and the system w i l l choose a t o p i c for you,
(or type h f o r h e l p) .

[The user types a c a r r i a g e r e t u r n ,
so the system chooses a t o p i c]

F i g u r e 2: The s t a r t of the Prolog ICAI course

-12-

Prolog T u t o r i a l System

*** A Quick Look at Prolog ***

Options:

1 - lesson

2 - example

Please choose one of the above options (or type h f o r help)

[The user types a c a r r i a g e r e t u r n ,
so the system chooses an option]

F i g u r e 3 : The f i r s t t o p i c s e l e c t e d

-13-

Welcome to CProlog

Prolog attempts to answer questions based on the
information i t has been given (i t s data base).

A statement in Prolog i s ca l l ed a clause. Here
i s a small database, consist ing of 5 clauses. The
comments to the right indicate the intended meaning
of each clause.

greek(souvlaki) .
greek(socrates) .
human(socrates).
human(descartes)

/ * souvlaki is greek * /
/ * Socrates i s greek * /
/ * Socrates i s human * /
/ * Descartes i s human * /

philosopher(X) : - human(X) / * a l l humans are
philosophers

The symbol : - means "if", or "is implied by",
or "can be proven by", so the last clause above
can be read as:

- X i s a philosopher i f X is human.
- X i s human implies X is a philosopher.
- To prove that X is a philosopher, f i r s t

prove that X is human.

Prolog knows that socrates i s the name of a p a r t i c u l a r
object , while X can be any object because X begins with
a c a p i t a l l e t t e r . In computer programming terms, X i s a
var iab le .

A var iable i s a kind of place holder or blank space
into which Prolog t r i e s to put the names of objects .

Type <cr> to continue (or h for help) .

Figure 4: The f i r s t lesson selected

- 1 4 -

Prolog Animated Trace

Current Goal: (Level 1)
w r i t e (h i) ,
m e m b e r (e l f , [d w a r f , e l f , p i x i e]) , < — current subgoal
f a i l .

P r olog Database:

member(X,[X
member(X,[Y

L]) .
L l) - member(X,L). < — t r y to u n i f y with subgoal

User Output:

h i

F i g u r e 5: Snapshot of the Prolog Animated Trace

-15-

Chapter Two

L i t e r a t u r e Survey

This chapter surveys various attempts to improve the use

of computers i n education. More d e t a i l s on these and other

p r o j e c t s can be found i n Kearsley (1987), Jones (1986),

Yazdani (1984), Sleeman and Brown (1982), and Barr and

Feigenbaum (1982).

Our d i s c u s s i o n i s d i v i d e d i n t o the two areas d i s c u s s e d

i n Chapter One:

1) Using more i n t e l l i g e n c e . We w i l l look at four areas:

understanding students, understanding the domain of

i n s t r u c t i o n , understanding how to teach, and using

n a t u r a l language dialogue.

2) Broadening the i n t e r a c t i o n between teacher, student, and

the domain of i n s t r u c t i o n . We w i l l look at two areas:

teaching i n s u i t a b l e domains, and using graphics to

improve communication.

Of course, some systems f i t i n t o more than one category.

Guidon (Clancey 1979) f o r example, i s discussed under Domain

Understanding, but i t could e q u a l l y w e l l have been i n the

s e c t i o n on Understanding Students. S i m i l a r l y , WUSOR

(G o l d s t e i n 1979) could be discussed i n three d i f f e r e n t

p l a c e s , because i t s Genetic Graph i s student model, domain

model, and e d u c a t i o n a l theory a l l r o l l e d up i n t o one.

-16-

2.1 Using More I n t e l l i g e n t Teachers

2.1.1 Understanding Students

For teaching purposes, i t i s important to have a model

of the student's knowledge of the subject being taught. A

teacher (or ICAI system) compares what he or she b e l i e v e s the

student knows with what he or she would l i k e the student to

know.

The simplest and most common type of student model i s

simply a record of which lessons have been s t u d i e d . The next

step up i s a record of which t o p i c s have been le a r n e d .

G o l d s t e i n (1979) suggests a more complex student model

which combines knowledge of the domain of study with

knowledge of the l e a r n i n g process. He uses t h i s "Genetic

Graph" i n a program c a l l e d WUSOR, which i s a tu t o r f o r the

computer game WUMPUS.

The Genetic Graph models the e v o l u t i o n of a student's

knowledge. Nodes i n the graph represent the pro c e d u r a l

s k i l l s that a student acquires i n changing from a novice i n t o

an expert player of WUMPUS. Arcs i n the graph represent the

l e a r n i n g processes that are used to acquire these s k i l l s .

These processes i n c l u d e : analogy, s p e c i a l i z a t i o n ,

g e n e r a l i z a t i o n , p r e r e q u i s i t e and d e v i a t i o n .

A student's knowledge of the game at any given time i s

represented by a subset or p e r t u r b a t i o n of t h i s graph. The

system decides what to teach, and how to teach i t , by

f o l l o w i n g arcs from the area the student has mastered to new

-17-

areas of the graph. The new nodes (or s k i l l s) are then added

to the region representing the student's knowledge.

It i s very d i f f i c u l t to f i n d out what i s going on i n the

minds of students. It i s a l l very w e l l to say that the

student model represents what the student knows, but how can

an ICAI system f i n d out what a student does know?

"Why Your Students Write Those Crazy Programs" (Soloway

et a l . 1981) describes some of the mistakes made by students

i n a beginning Pascal c l a s s , and speculates on the reasons

f o r them. Proust (Johnson and Soloway 1987) i s a program

which f i n d s bugs i n Pascal programs. Proust f i n d s bugs by

comparing the program with a formal d e s c r i p t i o n of the

problem the program i s intended to so l v e .

Matz (1982) l i s t s some common reasons student e r r o r s i n

high school algebra problems. These include e x t r a p o l a t i n g

o l d r u l e s to f i t new s i t u a t i o n s when the o l d r u l e s do not, i n

f a c t , apply, making e r r o r s through c a r e l e s s n e s s , and not

having enough knowledge to deal with the problem.

Burton and Brown (1977) d i d something a s i m i l a r study

f o r simple a r i t h m e t i c . They l i s t e d over 100 common mistakes

c h i l d r e n make i n performing two-column s u b t r a c t i o n problems,

and there i s no reason to b e l i e v e that a l l the mistakes have

been found. Their systems, BUGGY and l a t e r DEBUGGY, are

aimed at diagnosing the problems students have; they do not

go so f a r as to plan s t r a t e g i e s f o r c o r r e c t i n g the student's

misconceptions.

-18-

Colburn (1982) i s a l s o concerned with d i a g n o s i s , t h i s

time i n the area of reading problems. She proposes an expert

system to advise a teacher or c o u n s e l l o r i n diagnosing

reading problems i n c h i l d r e n . The system uses a database of

d i a g n o s t i c r u l e s to recommend t e s t s and to analyse t h e i r

r e s u l t s . L i k e BUGGY and DEBUGGY, t h i s system diagnoses

problems, but i t does not go so f a r as to p r e s c r i b e

c o r r e c t i v e a c t i o n .

2.1.2 Understanding the Domain of I n s t r u c t i o n

A s i m u l a t i o n i s one type of domain model. I t can be

used by students to see how a real-world system r e a c t s to

d i f f e r e n t c o n d i t i o n s . For example, i t can demonstrate how an

a i r p l a n e r e a c t s to having i t s wing f l a p s r a i s e d .

ThingLab (Borning 1979) i s a general purpose s i m u l a t i o n

t o o l k i t . I t provides a language f o r d e f i n i n g s i m u l a t i o n s i n

terms of part-whole h i e r a r c h i e s and i n h e r i t a n c e s t r u c t u r e s ,

i n terms of the r e l a t i o n s h i p s between pa r t s of the model, and

i n terms of c o n s t r a i n t s on those r e l a t i o n s h i p s .

ThingLab a l s o provides a g r a p h i c a l d i s p l a y f o r

s i m u l a t i o n s . The simulated system can be modified, and

observed, by i n t e r a c t i v e l y changing parts of the d i s p l a y , and

seeing what happens. For example, a Fahrenheit to C e l s i u s

converter might be d i s p l a y e d as two inte r c o n n e c t e d

thermometers. Lowering the reading on the Fahrenheit

thermometer causes a corresponding reduction on the C e l s i u s

s c a l e , and v i c e versa.

-19-

A more d i r e c t way to use a domain model i n teaching i s

to use i t to understand what i s being taught, and to use that

understanding to provide explanations to students. These can

be summaries of p a r t i c u l a r concepts, or d e s c r i p t i o n s of the

r e l a t i o n s h i p s between concepts. To date, most systems

that use domain knowledge do not model the e n t i r e domain,

they model i t s s t r u c t u r e . Going back to the a i r p l a n e

example, such a system would know how r a i s i n g wing f l a p s

a f f e c t s a i r speed, but would not know what a wing f l a p was.

Stephens et a l . (1982) use reasoning about the s t r u c t u r e

of the domain to teach about c l i m a t e . E s s e n t i a l l y , t h e i r

domain model gives cause and e f f e c t r e l a t i o n s h i p s between

such environmental f a c t o r s as warm ocean c u r r e n t s , r a i n f a l l ,

mountains, wind d i r e c t i o n , and warm and c o l d a i r masses. The

system does not understand mountains, but i t does know how

they a f f e c t a i r c u r r e n t s .

SOPHIE (Brown et a l , 1976) teaches students how to

diagnose f a u l t s i n e l e c t r i c a l c i r c u i t s . I t con t a i n s a

simulator f o r e l e c t r o n i c c i r c u i t s , which i t uses to see how

reasonable a student's troubleshooting s t r a t e g i e s are. When

i t f i n d s things i n i t s model that the student does not seem

to understand, i t can point them out.

GUIDON (Clancey 1977) teaches d i a g n o s t i c s k i l l s to

medical students by leading them through s e l e c t e d case

s t u d i e s . It keeps track of expressed student i n t e r e s t s , and

uses them i n choosing cases to present.

-20-

Guidon's domain model i s i n t e r e s t i n g because i t i s an

e n t i r e l y independent expert system. MYCIN i s an expert

system that diagnoses c e r t a i n kinds of blood d i s o r d e r s , using

a database of d i a g n o s t i c r u l e s to make i t s d e c i s i o n s .

Guidon teaches about MYCIN 'S r u l e s . I t runs MYCIN to

ob t a i n a di a g n o s i s f o r a p a r t i c u l a r case. Then Guidon goes

through the same case with a student. I t compares the

student's d i a g n o s t i c procedures with those of MYCIN, and i t

ex p l a i n s MYCIN 'S diagnosis to the student. To do t h i s , i t

uses a database of explanations of MYCIN 'S r u l e s , and another

database of teaching r u l e s .

Guidon2 (teaching about NEOMYCIN) adds yet another

database. T h i s contains r u l e s f o r analyzing the student's

behavior (Clancey 1979) (Clancey 1987). I t attempts to

uncover the d i a g n o s t i c process the student i s using, so that

mistakes i n that process can be pointed out and c o r r e c t e d .

Kimball's symbolic i n t e g r a t i o n t u t o r (Kimball 1973) uses

s t r u c t u r a l knowledge i n a very d i f f e r e n t way. I t guides the

student through the s o l u t i o n of symbolic i n t e g r a t i o n

problems. When a s o l u t i o n i s produced, i t compares i t to a

p r e v i o u s l y s t o r e d s o l u t i o n . I f the new s o l u t i o n i s sh o r t e r

than the o l d one, i t i s deemed to be b e t t e r , and the system

adopts i t as the new standard.

Suppes (1972) suggests the use of "strands" to s t r u c t u r e

the domain of i n s t r u c t i o n . In the school system, students

o f t e n study a subject at d i f f e r e n t l e v e l s i n d i f f e r e n t

grades, and a strand corresponds to such a s u b j e c t .

-21-

Suppes' strands can be though of as towers, with simple

problems at the bottom, and more complex ones higher up. A

student can be doing problems at one l e v e l on the a r i t h m e t i c

s t r a n d , and be at q u i t e a d i f f e r e n t l e v e l on the o t h e r s .

McCalla's L i s p Course (McCalla et a l . 1982) i s a general

purpose system using the p r e r e q u i s i t e r e l a t i o n s h i p s between

concepts to guide i t s teaching. Concepts i n the L i s p Course

are l i n k e d together by an And/Or P r e r e q u i s i t e Tree. So, f o r

example, the b a s i c concept of r e c u r s i o n i s a p r e r e q u i s i t e f o r

both t a i l r e c u r s i o n and f o r i n d i r e c t r e c u r s i o n , and these i n

turn are p r e r e q u i s i t e s for a mastery of the e n t i r e r e c u r s i o n

t o p i c . The L i s p Course i s described i n more d e t a i l i n

Chapters One and Three.

The Scent automated advisor (McCalla et a l . 1986) i s

intended to a i d students i n debugging L i s p programs. Using

knowledge of L i s p , knowledge of general-purpose programming

techniques, and knowledge of the s p e c i f i c task at hand, Scent

analyses student programs i n a v a r i e t y of ways.

Scent i s organized i n t o s e v e r a l components, which

communicate through a "blackboard". Program behavior

components produce traces and c r o s s - r e f e r e n c e l i s t i n g s ;

s t r a t e g y judges attempt to determine which s o l u t i o n s t r a t e g y

i s being used; d i a g n o s t i c i a n s look f o r e r r o r s i n s t r a t e g y ;

while task experts look at how w e l l the program i s s o l v i n g

the p a r t i c u l a r task at hand.

-22-

2.1.3 Understanding How to Teach

LOGO (Papert 1980) i s based on discovery or P i a g e t i a n

l e a r n i n g (a f t e r Jean Piaget, an edu c a t i o n a l t h e o r i s t) .

Discovery l e a r n i n g i s n a t u r a l l e a r n i n g , without e f f o r t or

teaching. An example of t h i s i s the way c h i l d r e n l e a r n t h e i r

f i r s t language — by hearing i t and being i n t e r e s t e d , not by

studying i t .

The o r i g i n a l LOGO was a simple computer language which

was used to c o n t r o l a mechanical t u r t l e . The t u r t l e r o l l e d

around on the f l o o r , and i t had a pen i n i t s b e l l y , which

could be r a i s e d or lowered. LOGO commands t o l d the t u r t l e to

take so many " t u r t l e steps" forward, or to turn, and moving

with the pen down would draw a p i c t u r e .

More recent versions of LOGO propel a g r a p h i c a l t u r t l e

around a computer terminal d i s p l a y . C h i l d r e n can pl a y with

the t u r t l e , making i t draw d i f f e r e n t p i c t u r e s . They can a l s o

p l a y i n micro-worlds. In one such micro-world, a t u r t l e i n

motion tends to remain i n motion, while a t u r t l e at r e s t

tends to remain at r e s t .

Another extension to LOGO has been the i n c l u s i o n of some

of the b a s i c l i s t handling f u n c t i o n s of LISP. LOGO i s now a

popular f i r s t programming language, and i s a v a i l a b l e on many

micro-computers.

Some of the people who created LOGO are now working on a

new program c a l l e d Boxer (DiSessa 1986). Designed to make

the a c t i v i t y of programming more a c c e s s i b l e to students,

Boxer i s based on one uniform metaphor — the box. In Boxer,

- 2 3 -

programs, data, environments and s p r i t e s are a l l represented

v i s u a l l y as boxes. A program box i n s i d e another program box

represents a subroutine, while a data box which co n t a i n s

other data boxes represents a record s t r u c t u r e . One of the

design c r i t e r i a behind Boxer i s the p r i n c i p l e of "naive

r e a l i s m " : the appearance of the system should a c c u r a t e l y

r e f l e c t i t s underlying s t r u c t u r e , so that an understanding of

the appearance of the system "can be t r a n s l a t e d d i r e c t l y i n t o

an understanding of the system". Boxes (and hence programs,

data, etc.) can be a l t e r e d by d i r e c t manipulation of t h e i r

on-screen r e p r e s e n t a t i o n s .

O'Shea's (1979) Quadratic Tutor l e a r n s as i t teaches.

I t changes i t s own teaching r u l e s i n an attempt to s e l e c t the

most e f f e c t i v e teaching s t r a t e g y . I t can, f o r example, be

d i r e c t e d to optimize i t s s t r a t e g y so as to decrease the time

a student spends with the t u t o r .

2.1.4 N a t u r a l Language Dialogue

Dialogue, i n which the student and program t a l k to each

other i n n a t u r a l language, i s both one of the e a r l i e s t goals

of ICAI and one of the f u r t h e s t from achievement.

C a r b o n e l l (1970) wrote the f i r s t dialogue system, c a l l e d

SCHOLAR. SCHOLAR taught geography. I t s knowledge of the

subje c t was stored i n a semantic network, which i t used to

generate questions f o r students, to check t h e i r answers, and

to answer questions posed by students. C a r b o n e l l c a l l e d t h i s

s o r t of i n t e r a c t i o n , which was sometimes guided by the

-24-

program and sometimes by the student, a m i x e d - i n i t i a t i v e

d i a l o g u e .

A more recent attempt at dialogue has been made by

Curran (1982). He, along with students i n an A r t i f i c i a l

I n t e l l i g e n c e course, wrote a "t e a c h e r / l e a r n e r " . T h i s program

knows some things about the domain of computer s c i e n c e , and

i t wants to l e a r n more. It has "a t h i r s t f o r o b t a i n i n g

Computer Science information". Curran's program i s not

intended to teach computer science, but to teach A r t i f i c i a l

I n t e l l i g e n c e . Students study how the program works, not what

i t knows.

The program engages students i n a s i m p l i f i e d n a t u r a l

language dialogue, modelled a f t e r Weizenbaum's E l i z a program

(1965). I t "makes the machine appear more c l e v e r than i t

i s " . The program "can be temperamental and change the

su b j e c t , or respond with moody sentences r e f l e c t i n g any of

s e v e r a l emotional s t a t e s " (quotations from Curran, 1982).

The program gives more c r e d i b i l i t y to info r m a t i o n that

comes from s e v e r a l sources, and l e s s to information when i t

i s c o n t r a d i c t e d . Furthermore, i n d i v i d u a l s who f r e q u e n t l y

input b e l i e v a b l e information are deemed more trustworthy than

those who o f t e n enter c o n t r a d i c t o r y items. The program can

c o n s t r u c t general r u l e s from s p e c i f i c information (unless and

u n t i l i t f i n d s a counter example). F i n a l l y , i t " f o r g e t s "

i n f o r m a t i o n which i s not very b e l i e v a b l e , or which i s not

f r e q u e n t l y accessed by students.

-25-

2.2 Broadened I n t e r a c t i o n s among Teacher, Student and Domain

2.2.1 Teaching Programming Languages

The main b e n e f i t of teaching about a programming

language i s that the teaching program and the student can

both run sample programs, p r o v i d i n g a ready made domain

model. On the other hand, i t brings i t s own s p e c i a l problems

as w e l l , p a r t i c u l a r l y understanding programs that students

w r i t e .

The B a s i c I n s t r u c t i o n a l Program, or BIP, (Dageforde et

a l . 1978) teaches programming i n Basic through the use of

aut h o r - s u p p l i e d example problems. The student w r i t e s a

program to solve a given problem, then BIP runs i t and

compares the r e s u l t s with a p r e v i o u s l y stored s o l u t i o n .

BIP s t o r e s information about the s k i l l s needed to s o l v e

each problem i n a Curriculum Information Network. I t chooses

problems f o r a student by looking f o r ones that use one new

s k i l l , along with s e v e r a l s k i l l s the student already has.

Soloway and h i s colleagues (1983) have i n v e s t i g a t e d

program understanding i n t h e i r system MENO-II. I t analyses

student programs, and t r i e s to catch run time e r r o r s , both

those that are problem dependent, and those that are problem

independent. A s p e c i a l Problem D e s c r i p t i o n Language (PDL) i s

used both by the student f o r program development, and by MENO

fo r program understanding.

MENO compares the PDL d e s c r i p t i o n of the student's

program with a stored d e s c r i p t i o n of a bug-free v e r s i o n of

the same program, by matching corresponding program

structures (eg. loops). It can only cope with a few control

structures, s p e c i f i c a l l y straight l i n e code, branching, and

simple loops — the sort of things beginning programmers use.

Laubsch and Eisenstadt (1981) propose a similar approach

to program understanding. Their system attempts to translate

programs written by students into "plan diagram notation".

This encodes control flow and data flow information. It

detects "unreasonable code", such as unused variables and

duplicate statements. Then i t t r i e s to match the description

of the student's program with one from i t s l i b r a r y .

2.2.2 Graphics

Antics (Dionne and Mackworth 1978) was developed for a

M.Sc. Thesis at the University of B r i t i s h Columbia. It i s

used to produce animated films showing the execution of LISP

programs. Antics graphically traces the evaluation of LISP

functions, taking information about the S-expression being

traced, the flow of control, and the assignment of values to

variables, and displaying i t on different parts of the

screen.

Antics uses graphics to make programs written in a non-

graphical language (LISP) easier to understand. The natural

next step i s to abandon the o r i g i n a l language and to use the

graphical representation d i r e c t l y for programming.

This i s what Lakin proposes (Lakin 1980). LISP i s a

symbol processing language, whose symbols are strings of

text. Lakin's system Pam (for PAttern Manipulation) i s a

-27-

t e x t - g r a p h i c s processing language. Programs i n Pam are a

mixture of text and graphics, and the o b j e c t s they process

can l i k e w i s e be a mixture of the two.

2.3 Summing up the L i t e r a t u r e

The systems examined i n t h i s chapter are l a r g e l y

experimental i n nature. "Because of the s i z e and complexity

of ICAI programs, most researchers tend to concentrate t h e i r

e f f o r t s on the development of a s i n g l e part of what would

c o n s t i t u t e a f u l l y usable system" (Barr and Feigenbaum 1982).

I t i s not s u r p r i s i n g , t h e r e f o r e , to f i n d that few have found

t h e i r way out of the lab o r a t o r y and i n t o everyday use.

One aim of t h i s t h e s i s i s to develop a p r a c t i c a l ICAI

system, and i t i s with t h i s i n mind that the f o l l o w i n g

e v a l u a t i o n i s made.

There have been few p r a c t i c a l advances i n student

m o d e l l i n g . Soloway, Matz, Burton and Brown, and Colburn have

each taken some steps towards the diagnosis of student

misconceptions, but none of them has produced a complete

system which can teach as w e l l as diagnose.

G o l d s t e i n and McCalla, with l e s s ambitious student

models, have each produced working experimental ICAI

programs.

I t i s i n t e r e s t i n g to compare G o l d s t e i n ' s Genetic Graph

with McCalla's And/Or P r e r e q u i s i t e Tree. Both p l a c e the

concepts to be learned i n t o a d i r e c t e d graph. Both represent

the student's knowledge with a subset of t h i s graph, and both

-28-

represent l e a r n i n g by f o l l o w i n g arcs from the known t e r r i t o r y

to the unknown.

The main d i f f e r e n c e between the two i s that an a r c i n

the Genetic Graph represents the l e a r n i n g process that a

student i s b e l i e v e d to use i n t r a v e r s i n g i t , while an a r c i n

the And/Or Tree simply represents a p r e r e q u i s i t e

r e l a t i o n s h i p .

The Genetic Graph i s a more ambitious approach, but i t

seems to make l e s s sense for a p r a c t i c a l system. By

attempting to a n t i c i p a t e the student's l e a r n i n g processes i t

i s o v e r l y r e s t r i c t i v e (expecting a student to g e n e r a l i z e i n

one case and to use analogy i n another). The And/Or Tree

leaves the l e a r n i n g process, and the method of i n s t r u c t i o n ,

more open and more f l e x i b l e f o r i n d i v i d u a l students.

The domain models described i n t h i s chapter are of two

types. The type used i n SOPHIE to teach e l e c t r o n i c

t r o u b l e s h o o t i n g uses a r e l a t i v e l y deep knowledge of the

domain to show students the r e s u l t s of t h e i r a c t i o n s . The

other kind, used i n WUSOR and i n the L i s p Course, simply

model the s t r u c t u r e of the domain to show how d i f f e r e n t

t o p i c s are r e l a t e d .

In the long run, the greatest advances i n ICAI may come

from research i n t o new educational t h e o r i e s or from the use

of n a t u r a l language dialogue. For the present, however, the

impact of these areas on p r a c t i c a l systems remains s l i g h t .

LOGO i s the only system described i n t h i s chapter that

has come i n t o widespread use, and i t s success can perhaps be

-29-

a t t r i b u t e d to three f a c t o r s . Rather than using inadequate

student and domain models to p r e d i c t what the student should

be studying (often i n c o r r e c t l y) , Logo's d i s c o v e r y l e a r n i n g

technique l e t s the student decide. I t has an a p p r o p r i a t e

domain (computer programming and problem s o l v i n g) , which i s

la r g e enough to be worth d i s c o v e r i n g , yet t r a c t a b l e enough

that students can do much of the e x p l o r i n g on t h e i r own.

F i n a l l y , Logo uses graphics to show students what t h e i r

programs are doing.

- 3 0 -

Chapter Three

Prolog ICAI System Design

T h i s chapter d e s c r i b e s the design of the Prolog Computer

A s s i s t e d I n s t r u c t i o n program. The Animated Trace program

w i l l be d e s c r i b e d i n Chapter Four.

3.1 Design Goals

The Prolog ICAI system was intended as a p r a c t i c a l t o o l

f o r l e a r n i n g P r o l o g . As such, i t i s more important f o r i t to

be easy to use and complete, than to be i n n o v a t i v e . When

concepts from ICAI could make the system more f l e x i b l e and

u s e f u l , they have been incorporated i n t o the design. When i t

seemed they would d e t r a c t from the system's e f f e c t i v e n e s s or

i t s ease of use, such ideas were not inc o r p o r a t e d .

The system was a l s o designed to be n o n - a u t h o r i t a r i a n .

While an attempt was made to have the system make i n t e l l i g e n t

d e c i s i o n s , students o f t e n have a be t t e r idea of t h e i r own

needs than the system does, so i t i s important to l e t

students o v e r r u l e the system when they want to.

The Prolog ICAI system's design i s independent of the

sub j e c t matter of the course i t i s teaching, and i s a l s o

independent of the i n s t r u c t i o n a l methods used to teach any

i n d i v i d u a l t o p i c .

F i n a l l y , i t was hoped that the system would be

i n t e r e s t i n g . That i s , students should enjoy using i t .

-31-

3.2 General Design

At the highest l e v e l , the system's design i s very

simple. F i r s t i t chooses a t o p i c to teach. then i t chooses

a way to teach i t , and then i t teaches i t . T h i s c y c l e

repeats u n t i l the course has been completed.

To make these choices, the system c o n s u l t s a l i s t of the

course t o p i c s , a p r e r e q u i s i t e s t r u c t u r e (described below),

and a l i s t of the i n s t r u c t i o n a l methods a v a i l a b l e f o r each

t o p i c .

In order to use the system to teach some other course,

one need only change the t o p i c l i s t , the p r e r e q u i s i t e

s t r u c t u r e , and the i n s t r u c t i o n a l modules themselves.

Throughout the course, the <return> key i s used to l e t

the system make d e c i s i o n s . By c o n t i n u a l l y p r e s s i n g <return>,

a student can progress through the e n t i r e course, with the

system choosing a l l the t o p i c s to be st u d i e d , and the methods

f o r studying them. On the other hand, a student who

wants to guide h i s or her progress i s f r e e to do so. The

system's choices of t o p i c and method are only d e f a u l t s .

Students can always:

- Choose a t o p i c or a method of i n s t r u c t i o n f o r themselves.

Go i n t o CProlog to t r y out something they have le a r n e d .

Suspend the Prolog course, and resume i t l a t e r on,

e x a c t l y where they l e f t o f f .

Review a t o p i c , or review the p r e r e q u i s i t e s f o r a t o p i c .

Try a l t e r n a t e methods of i n s t r u c t i o n , or a l t e r n a t e

p r e r e q u i s i t e s f o r a t o p i c .

- 3 2 -

T h e f o l l o w i n g d i a g r a m i l l u s t r a t e s t h e d e s i g n o f t h e

P r o l o g C A I s y s t e m .

T O P I C
S E L E C T I O N

/ L E S S O N \
I BANK J

(E X A M P L E \
I BANK J

/ SUMMARY \
I BANK)

METHOD
S E L E C T I O N

3E
I T E M

P R E S E N T A T I O N

ANIMATED
TRACE

LEGEND

c o n t r o l f l o w

d a t a f l o w ^>

p r o c e d u r e I

d a t a

F i g u r e 6: P r o l o g C A I S y s t e m D e s i g n

- 3 3 -

The f i g u r e should be read from the top. A t o p i c i s

s e l e c t e d using information from the p r e r e q u i s i t e t r e e , the

student model and from student input. The student model i s

b u i l t up as the student progresses through the course, and i s

i n i t i a l l y empty.

Once a t o p i c has been s e l e c t e d , the system chooses a

method of i n s t r u c t i o n . This choice depends upon the l e s s o n s ,

examples, assignments, and summaries that are a v a i l a b l e f o r

that p a r t i c u l a r t o p i c . One or more items (l e s s o n s , examples,

etc.) w i l l be presented u n t i l the t o p i c has been

s a t i s f a c t o r i l y completed.

The student model i s then updated, and the process

repeats.

Students may use the Animated Trace to f u r t h e r

i n v e s t i g a t e many of the examples from the course.

3 . 3 M e t h o d s o f I n s t r u c t i o n

The system teaches by reference to a bank of

i n s t r u c t i o n a l m a t e r i a l s , which are d i v i d e d i n t o f i v e

c a t e g o r i e s : l e s sons, examples, assignments, summaries, and

anything e l s e .

Lessons present new m a t e r i a l on a given t o p i c . A l e s s o n

c o n s i s t s of one or more pages of t e x t . The student can

s c r o l l back and f o r t h w i t h i n a lesson, or suspend i t i n order

to go i n t o Prolog, or to look at an example.

Examples may be small Prolog programs, or merely

s y n t a c t i c a l l y c o r r e c t uses of a b u i l t - i n p r e d i c a t e . Students

-34-

can look at the examples, they can go i n t o Prolog to t r y them

out, and they can use the Animated Trace to see how they

work.

Assignments c o n s i s t of one or more short answer or

m u l t i p l e choice questions. An assignment i s complete when

a l l of i t s questions have been c o r r e c t l y answered. To

determine i f an answer i s c o r r e c t , the system compares i t

with a set of p r e v i o u s l y stored answers. It does not attempt

to evaluate the c o r r e c t n e s s of student-written programs, but

students can examine these themselves using the Animated

Trace.

Summaries are short v e r s i o n s of lessons, used fo r review

and to determine i f a student i s already f a m i l i a r with a

t o p i c .

Anything E l s e means i n s t r u c t i o n a l m a t e r i a l s that do not

f i t e a s i l y i n t o one of the other groups. In g e n e r a l , these

may c o n s i s t of an a r b i t r a r y Prolog p r e d i c a t e (f o r example, a

c a l l to a n a t u r a l language t u t o r i n g program). This category

was used f o r the o n - l i n e e v a l u a t i o n q u e s t i o n n a i r e , d i s c u s s e d

i n Chapter F i v e .

Each t o p i c may have any number of i n s t r u c t i o n a l modules

a v a i l a b l e , i n any of these groups. There may, f o r example,

be s e v e r a l examples f o r a p a r t i c u l a r t o p i c , or s e v e r a l

lessons using d i f f e r e n t teaching s t r a t e g i e s .

-35-

3 .4 The P r e r e q u i s i t e S t r u c t u r e

To teach a t o p i c , the system w i l l normally f i r s t f i n d

and teach a l l of i t s p r e r e q u i s i t e s . I t f i n d s them by l o o k i n g

at the p r e r e q u i s i t e s t r u c t u r e .

The r e p r e s e n t a t i o n used for t h i s p r e r e q u i s i t e

i n f o r m a t i o n i s the And/Or Tree (McCalla et a l . , 1982). A

diagram showing part of such a tree i s given i n Chapter One.

A t o p i c may have s e v e r a l p r e r e q u i s i t e s , a l l r e q u i r e d , or i t

may r e q u i r e only one of a group of p r e r e q u i s i t e s . T h i s i s

r e a l i z e d i n the And/Or Tree as f o l l o w s . I f a node has

s e v e r a l descendents connected by an AND a r c , then a l l are

r e q u i r e d . I f an OR arc i s used, then any one of the

p r e r e q u i s i t e s w i l l do.

A t o p i c with AND p r e r e q u i s i t e s can be taught only a f t e r

a l l of i t s p r e r e q u i s i t e s have been taught, while a t o p i c with

OR p r e r e q u i s i t e s may be taught a f t e r any one of i t s

p r e r e q u i s i t e s i s completed.

McCalla's use of the And/Or tree works q u i t e w e l l , but

i t does have one problem. To see what that i s , we w i l l have

to look more c l o s e l y at the OR node.

The meaning of an OR i s that there are s e v e r a l d i f f e r e n t

ways of s a t i s f y i n g a p r e r e q u i s i t e requirement. In what

circumstances does t h i s a c t u a l l y occur?

In the most common case, there are s e v e r a l d i f f e r e n t

methods of i n s t r u c t i o n f o r the same t o p i c (eg. analogy vs.

l e a r n i n g by doing). Any one of the methods should r e s u l t i n

the same knowledge being learned by the student.

-36 -

In the other case (much l e s s common), there are two

separate bodies of knowledge, e i t h e r one of which i s an

acceptable p r e r e q u i s i t e to some f u r t h e r concept. For

example, the p r e r e q u i s i t e to a computer languages course

might be a knowledge of any two computer languages.

In McCalla's And/Or Trees, no d i s t i n c t i o n i s made

between a l t e r n a t i v e methods of teaching a s i n g l e t o p i c , and

a l t e r n a t i v e t o p i c s which are each acceptable p r e r e q u i s i t e s to

some t h i r d t o p i c . Unfortunately, the two cases are not

i d e n t i c a l , and should be tr e a t e d d i f f e r e n t l y .

Consider the choice of method. A good teacher, or a

good CAI program, can keep track of how w e l l students cope

with d i f f e r e n t methods of i n s t r u c t i o n , and can use that

knowledge to choose the methods which are most l i k e l y to

succeed with each student.

The choice of t o p i c i s more d i f f i c u l t . I t might be done

with a s h o r t e s t path algorithm. The t o p i c chosen would be the

one with the fewest p r e r e q u i s i t e s , so as to f u l f i l the

p r e r e q u i s i t e requirements as q u i c k l y as p o s s i b l e . On the

other hand, perhaps i t should be l e f t up to the students,

s i n c e i t depends upon t h e i r p r i o r knowledge of Pro l o g , and

t h e i r i n d i v i d u a l i n t e r e s t s .

Since the choice of t o p i c d i f f e r s from the choice of

method, the two are separated i n the Prolog CAI system. An

And/Or t r e e i s used f o r the t o p i c s , and the choice of method

i s made l a t e r on.

-37-

Mixing the choice of t o p i c and the choice of method of

i n s t r u c t i o n i s not confined to McCalla's system. G o l d s t e i n ' s

Genetic Graph, f o r example, a l s o mixes the two.

3 . 5 Choosing a Topic of I n s t r u c t i o n

The system uses a r e c u r s i v e depth f i r s t search of the

p r e r e q u i s i t e t r e e to choose a t o p i c of i n s t r u c t i o n .

The search begins at the root of the t r e e (the end of

the c o u r s e) . I f t h i s node has no p r e r e q u i s i t e s , then i t can

be taught immediately. I f i t has AND p r e r e q u i s i t e s , then

each of these must be taught f i r s t , along with t h e i r

p r e r e q u i s i t e s . I f i t has OR p r e r e q u i s i t e s i n s t e a d , then only

one of these need be taught, along with i t s p r e r e q u i s i t e s .

E v e n t u a l l y , the search reaches the leaves of the t r e e

(those t o p i c s without p r e r e q u i s i t e s) . The path that the

search has taken through the tree i s one p o s s i b l e path that a

student can take through the course. Beginning with the l e a f

nodes, these t o p i c s are presented to the student, and, as

each t o p i c i s completed, the student f o l l o w s the search path

back towards the root of the t r e e .

I f the student f a i l s to l e a r n a t o p i c , the system w i l l

back up and look f o r an a l t e r n a t i v e path through the t r e e by

t r y i n g other branches at OR nodes. If no b e t t e r r e s u l t s are

achieved on any of the a l t e r n a t i v e paths, the system r e t u r n s

to the f a i l e d t o p i c (i n the hope that the student has

lea r n e d something i n the i n t e r i m , and may be able to succeed

where once he or she had f a i l e d) .

-38-

The student does not need to go along with the system's

choice of what to study. A student who i s bored with a topic

can t e l l the system to look for another one (proceeding as i f

the current topic had been successfully completed). A

student who i s having trouble with a topic can ask the system

to look for alternatives, or can review one or more of i t s

prerequisites. F i n a l l y , a student who wants to guide his or

her own studies can disregard a l l the system's choices, and

pick each topic for himself or herself.

3.6 Choosing a Method of Instruction

Associated with each topic in the course are one or more

methods of instruction (lessons, examples, assignments and

summaries). Once a topic has been chosen, the Prolog CAI

system creates a menu l i s t i n g a l l of the methods of

instruction for that topic (showing them in the same order in

which they appear in the Prolog database), and presents that

menu to the student. The student can pick any desired

method, or he or she can l e t the system choose.

The system chooses a method of instruction as follows:

Standard Order:

In general, the system w i l l present items in the order

in which they appear in the menu. Normally, lessons

appear f i r s t , followed by examples, assignments, and

summaries. This may be changed for any topic by

varying the order in which these items are l i s t e d in the

Prolog database.

- 3 9 -

Multiple Entries:

In some cases, several lessons exist for a single topic.

These are alternative methods for studying the same

topic, and so only one of them must be taught. It i s

only i f the student feels the need for another approach

that the others w i l l be taught. This would be true also

for assignments and summaries as well, but as the course

currently stands, no topic has more than one assignment

or summary.

3.7 Deciding Which Topics are Previously Known

Often, a student already knows some of the course

material, or finds i t to be so self-evident that i t might as

well be known ahead of time.

A CAI system should be able to determine quickly which

sections of the course a student already knows, and then use

that information in choosing topics for individual students

to study. At the same time, i t s belief that something i s

known might turn out to be unfounded, so that any topics that

are skipped because of i t are prime candidates for review i f

a student has trouble later on.

The Prolog CAI system leaves the decision of what to

skip up to the student. The student can ask to leave any

topic that seems unnecessary. Any such unfinished topics are

included later on i f the system i s asked to find topics to

review.

-40 -

3.8 Notes on I n s t r u c t i o n a l Methodology

There i s no one best way to teach. Human teachers have

a wide v a r i e t y of s t y l e s , and so do CAI programs. The

s t r u c t u r e of the Prolog CAI system allows for a wide range of

teaching s t y l e s to be used f o r i n d i v i d u a l t o p i c s .

The P r e r e q u i s i t e O u t l i n e , the Topic L i s t , and the l i s t

of i n s t r u c t i o n a l modules f o r each t o p i c are stored i n a r u l e -

base. T h i s makes them easy to modify during course

development, or l a t e r , during maintenance.

Lessons, examples and summaries are no more than f i l e s

of t e x t , which can be e a s i l y changed or augmented.

Assignments are l i s t s of questions, each followed by the

accepted responses, and by the a c t i o n to be taken, given each

response.

The procedures f o r changing the course (adding m a t e r i a l ,

or re-arranging or r e v i s i n g o l d ma t e r i a l) i s de s c r i b e d i n the

Appendices.

3.9 The Implementation

The Prolog ICAI program was w r i t t e n e n t i r e l y i n P r o l o g .

While t h i s made some of the program's features e s p e c i a l l y

easy to implement (such as the c r e a t i o n and t r a v e r s a l of the

p r e r e q u i s i t e t r e e) , i t posed c e r t a i n problems as w e l l .

CProlog (v e r s i o n 1.1) does not provide any g r a p h i c a l

p r e d i c a t e s , nor does i t allow a Prolog program to make system

c a l l s , nor does i t allow a Prolog program to c a l l r o u t i n e s

w r i t t e n i n other languages. The G r a p h i c a l Trace was intended

-41-

to be an i n t e g r a l part of the ICAI program, but these

d e f i c i e n c i e s of CProlog made t h i s impossible. The

a v a i l a b i l i t y of graphics from w i t h i n CProlog would a l s o have

improved the menu pr e s e n t a t i o n used i n the Prolog ICAI

program.

Another problem with the implementation turned out to be

the inadequacy of ordinary CRT d i s p l a y s f o r showing l a r g e

q u a n t i t i e s of t e x t . A number of students i n d i c a t e d that they

would rather have had the lesson t e x t s on paper than on the

screen. T h i s s i t u a t i o n w i l l be ameliorated with the use of

high r e s o l u t i o n bit-mapped workstations with windowing

systems.

- 4 2 -

Chapter Four

Animated Trace Design

4.1 I n t r o d u c t i o n

T h i s chapter describes the design of the Prolog Animated

Trace Program c a l l e d A n i l o g (f o r Animation of L o g i c) .

Most tr a c e programs are s e q u e n t i a l . T h e i r output

c o n s i s t s of l i n e a f t e r l i n e of t e x t , i n a t e r s e format that

u s u a l l y omits important information such as assignments of

values to v a r i a b l e s and the c r e a t i o n and use of data

s t r u c t u r e s . The i n c l u s i o n of t h i s a d d i t i o n a l i n f o r m a t i o n to

a s e q u e n t i a l t r a c e makes the output bulky and d i f f i c u l t to

f o l l o w .

Nevertheless, such information can be very u s e f u l i n

understanding programs, and i t i s o f t e n used by human

i n s t r u c t o r s i n the classroom, using such v i s u a l a i d s as

flow c h a r t s , p o i n t e r s to program l i s t i n g s , data s t r u c t u r e

diagrams, system o r g a n i z a t i o n charts and so on.

A n i l o g teaches Prolog i n much the same way that a human

i n s t r u c t o r might. I t shows the current g o a l , along with the

r e l e v a n t p a r t s of the Prolog database, and i t p o i n t s to

p o i n t s of i n t e r e s t as i t d e s c r i b e s what i s happening.

A n i l o g l i e s i n between Dionne's A n t i c s and Lakin's Pam.

I t i s not a f u l l - f l e d g e d programming language. One cannot,

f o r example, write over part of the d i s p l a y e d program and

have that change incorporated i n the running Prolog program.

On the other hand, i t i s an i n t e r a c t i v e t r a c e ; i t can execute

-43-

P r o l o g programs and (to some extent) i t can c o n t r o l t h e i r

e x e c u t i o n .

4.2 General Design

There are two p a r t s to A n i l o g . The f i r s t i s an

i n t e r a c t i v e P r o l o g t r a c e program, which produces voluminous

s e q u e n t i a l ou tput . The second p a r t i s a g r a p h i c a l d i s p l a y

program, which reads the output from the t r a c e and d i s p l a y s

i t i n a compact g r a p h i c a l format on the t e r m i n a l s c r e e n .

The two programs are intended to run c o n c u r r e n t l y , so

tha t a l l of the i n t e r a c t i v e t r a c e opt ions are a v a i l a b l e a long

w i t h the g r a p h i c a l d i s p l a y . When t h i s i s not p o s s i b l e (as

happened i n the implementat ion) , then the two programs can be

run i n sequence. One can run the t r a c e i n t e r a c t i v e l y , and

then g r a p h i c a l l y d i s p l a y the r e s u l t s .

The two p a r t s to A n i l o g w i l l be d e s c r i b e d s e p a r a t e l y

below.

A s h o r t sample p r o t o c o l for A n i l o g i s g iven at the end

of Chapter One, and a more complete example may be found i n

Appendix 4.

4 . 3 The Trace

The s tandard P r o l o g t r a c e programs do not produce enough

i n f o r m a t i o n about P r o l o g ' s database searches and about

b a c k t r a c k i n g .

A new t r a c e program was w r i t t e n , which does produce a l l

the necessary i n f o r m a t i o n - i n c l u d i n g such t h i n g s as the

-44 -

database clauses that Prolog t r i e s to use to u n i f y with the

c u r r e n t subgoal, and the v a r i a b l e bindings which r e s u l t .

The t r a c e i s completely i n t e r a c t i v e . The user can step

through the program, stopping at any of the entry, r e - e n t r y ,

success e x i t , and f a i l u r e e x i t p o i n t s f o r each g o a l . The

user can jump over some goals, and can r e - d i r e c t the

program's execution by f o r c i n g goals to succeed or to f a i l .

When run s e p a r a t e l y from the g r a p h i c a l d i s p l a y program,

t r a c e output i s w r i t t e n both to the terminal and to a f i l e

f o r l a t e r g r a p h i c a l d i s p l a y .

4.4 The Animated D i s p l a y

The animated trace appears on the terminal screen, with

i n f o r m a t i o n d i s p l a y e d i n three windows - one f o r the c u r r e n t

g o a l , one f o r the database, and the l a s t f o r output produced

by the program being traced.

The goal window shows the current goal and the l e v e l of

r e c u r s i o n . The p o r t i o n of the goal that Prolog i s c u r r e n t l y

working on (the current subgoal) i s h i g h l i g h t e d , and messages

are produced d e s c r i b i n g the e v a l u a t i o n of the g o a l . T h i s

window shows, for example, whether the current subgoal

succeeds or f a i l s ; i t shows backtracking; and the

i n s t a n t i a t i o n of v a r i a b l e values.

The database window shows the clauses that P r o l o g

accesses while t r y i n g to s a t i s f y the g o a l . Each clause that

P r o l o g t r i e s to u n i f y with a subgoal i s d i s p l a y e d ; the

c u r r e n t clause i s h i g h l i g h t e d ; and messages are produced to

report whether u n i f i c a t i o n succeeds or f a i l s .

The user window i s used to separate any output produced

by the program being traced from output produced by the t r a c e

program i t s e l f .

When a new l e v e l of goal i s created (due to the

s u c c e s s f u l u n i f i c a t i o n of a subgoal with the l e f t - h a n d s i d e

of an i m p l i c a t i o n c l a u s e) , a new goal window i s creat e d , and

i s overlayed on top of the previous one. When t h i s goal i s

completed, i t s window i s removed, and work resumes on the

previous g o a l , which i s now uncovered.

The d i s p l a y produced by the animated t r a c e has been

slowed down to s u i t the average user. When i t i s not

p o s s i b l e to run the animated d i s p l a y c o n c u r r e n t l y with the

i n t e r a c t i v e t r a c e , the animated d i s p l a y w i l l pause

p e r i o d i c a l l y and wait f o r the user to press <return>. The

frequency of these stops can be c o n t r o l l e d by s e t t i n g the

le a s h i n g mode (to f u l l , h a l f , or unleashed).

4 . 5 The Implementation

The i n t e r a c t i v e trace p o r t i o n of A n i l o g was w r i t t e n

using CProlog (v e r s i o n 1.1). The g r a p h i c a l d i s p l a y p o r t i o n

was w r i t t e n i n ' C , using the CURSES window graphics package,

which i n turn uses the UNIX Termcap terminal c a p a b i l i t y

database.

It was i n i t i a l l y expected that the tra c e output could be

piped to the g r a p h i c a l d i s p l a y , allowing both programs to run

co n c u r r e n t l y . However, when t h i s was t r i e d , none of the

tr a c e output was passed to the g r a p h i c a l d i s p l a y program

-46 -

u n t i l after the end of a CProlog session. Therefore, the

Animated Trace i s not properly interactive. This si t u a t i o n

would not have occurred with a more f u l l y functioned version

of Prolog. Both Quintus Prolog and MProlog, for example,

provide the user with an external language

interface, allowing the direct use from Prolog of the

necessary graphical primitives.

The Animated Trace as implemented, correctly traces and

displays the execution of a wide variety of small Prolog

programs. For some larger programs, however, problems

appeared. When the program to be traced exceeded 10 levels

of recursion, or overflowed windows, information was

occasionally written to the wrong part of the screen.

It i s not clear to what extent this was due to bugs in

the Animated Trace, and how much i t was due to problems with

CURSES, and/or with Termcap.

-47-

Chapter Five

Evaluation and Conclusions

This chapter describes the procedures used to evaluate

the Prolog CAI System and the Animated Trace, discusses the

results of this evaluation, and presents some conclusions.

5.1 Prolog ICAI System: Evaluation Procedure

Two evaluation procedures are b u i l t into the CAI system.

The f i r s t i s an on-line comments f a c i l i t y . At any time

during the course, a student can write comments on the

course. These are stored in a f i l e which can later be edited

and mailed to a system maintenance person.

The other b u i l t - i n evaluation procedure i s an on-line

questionnaire. After students have completed a few topics

they are asked to answer some questions about the course.

The questionnaire comes after the student has gained some

f a m i l i a r i t y with the way the program works, but early enough

that he or she w i l l s t i l l remember any d i f f i c u l t i e s in

learning to use any of i t s features.

Users who did not complete the questionnaire on-line

were asked to complete i t by hand.

The questionnaire i s reproduced on the following page.

In addition to the on-line evaluation procedures, I

talked informally with each of the system's users. I sat

beside some of them as they were actually using i t , in order

to see f i r s t hand the problems that came up.

- 4 8 -

P r o l o g C A I C o u r s e E v a l u a t i o n

1. How much P r o l o g d i d y o u know b e f o r e y o u s t a r t e d
t h i s c o u r s e ?

2 . W h i c h o f t h e o p t i o n s (d e s c r i b e d i n h e l p m e n u s) h a v e
y o u t r i e d ? W h i c h do y o u n e v e r u s e , a n d why?

3. How o f t e n d o y o u c h o s e t o p i c s f o r y o u r s e l f , i n s t e a d
o f l e t t i n g t h e s y s t e m c h o o s e ?

4. I s t h e m a t e r i a l i n t h e c o u r s e p r e s e n t e d a t t h e
r i g h t l e v e l f o r y o u ?

5 . H a v e y o u u s e d t h e T a b l e o f C o n t e n t s , t h e
P r e r e q u i s i t e O u t l i n e , o r b o t h ? How u s e f u l a r e
t h e y , a n d how c o u l d t h e y be i m p r o v e d ?

6 . I s t h e r e a n y t h i n g y o u w o u l d l i k e t o be a b l e t o d o ,
b u t c a n ' t ?

7 . W o u l d y o u r a t h e r n o t s e e t h e T o p i c M e n u s , a n d go
d i r e c t l y i n t o l e s s o n s , e t c . ?

8 . A r e t h e H e l p m e s s a g e s u s e f u l ?

9. How d o e s t h i s s y s t e m c o m p a r e w i t h a n y o t h e r C A I
s y s t e m s y o u h a v e u s e d , o r w i t h a P r o l o g t e x t , o r a
p r o f e s s o r ?

F i g u r e 7: P r o l o g C A I E v a l u a t i o n Q u e s t i o n n a i r e

A b o u t a d o z e n p e o p l e p a r t i c i p a t e d i n t h e e v a l u a t i o n .

F i v e o f t h e s e w e r e c o m p u t e r s c i e n c e g r a d u a t e s t u d e n t s a n d

P r o f e s s o r s ; t h e r e s t h a d l i t t l e o r no p r e v i o u s e x p e r i e n c e

w i t h c o m p u t e r s .

A l l o f t h e u s e r s w e r e t h r o w n a t t h e s y s t e m w i t h v e r y

l i t t l e p r e p a r a t i o n . T h r e e h a d p r e v i o u s e x p e r i e n c e w i t h

P r o l o g , b u t t h e r e s t knew o n l y t h a t t h e y w o u l d be t a u g h t a

l a n g u a g e c a l l e d P r o l o g . T h e y w e r e n o t g i v e n a n y a d v a n c e

d e s c r i p t i o n o f t h e s y s t e m , o r o f P r o l o g .

- 4 9 -

5.2 Animated Trace: E v a l u a t i o n Procedure

In h i s paper, "What S t o r i e s should we t e l l P r o l o g

Students", Alan Bundy (1983) considers the advantages and the

disadvantages of s i x d i f f e r e n t methods of demonstrating

Prolog's proof procedure. He l i s t s 10 i d e a l s f o r a Pr o l o g

s t o r y , and these w i l l be used to evaluate the Animated Trace.

The Ideal Prolog Story

1. The o v e r a l l search space of the c a l l would be
conveyed; i n p a r t i c u l a r , the backtracking p o i n t s
would be i n d i c a t e d , and i t would be obvious when
ul t i m a t e success has been a t t a i n e d .

2. The flow of c o n t r o l through the search space would be
i n d i c a t e d .

3. Each subgoal l i t e r a l would be d i s p l a y e d .

4. The clauses that r e s o l v e i t away would be d i s p l a y e d .

5. The u n i f i e r s produced by these r e s o l u t i o n s would be
d i s p l a y e d .

6. The remaining l i t e r a l s would be d i s p l a y e d .

7. The other clauses that could r e s o l v e with the
s e l e c t e d l i t e r a l would be d i s p l a y e d .

8. The f i n a l i n s t a n t i a t i o n of the o r i g i n a l goal would be
d i s p l a y e d .

9. D i f f e r e n t i n s t a n t i a t i o n s of a clause would be
d i s t i n g u i s h e d .

10. The e f f e c t of a cut on the search space would be
i n d i c a t e d .

In a d d i t i o n , a Prolog s t o r y should not be so c l u t t e r e d

with i n f o r m a t i o n as to be unreadable. Bundy notes that a l l

of the s t o r i e s he st u d i e d can be extended to cover the above

p o i n t s , but doing so would leave them too c l u t t e r e d to be

u s e f u l f o r a l l but the simplest of problems.

-50-

5 . 3 P r o l o g I C A I S y s t e m : E v a l u a t i o n R e s u l t s

M o s t o f t h e n a i v e u s e r s were c o n t e n t t o t y p e < r e t u r n >

a n d l e t t h e s y s t e m g u i d e t h e i r s t u d i e s . O c c a s i o n a l l y , o n e

w o u l d c h o o s e a t o p i c f r o m t h e T o p i c L i s t , b u t f o r t h e m o s t

p a r t , t h e y d i d n o t t r y o u t most o f t h e o p t i o n s a v a i l a b l e t o

t h e m .

T h e m o r e a d v a n c e d u s e r s e x p e r i m e n t e d w i t h m o r e o f t h e

o p t i o n s , a n d most f o u n d them u s e f u l . T h e o n l y t h i n g t h a t was

r e g a r d e d a s u n n e c e s s a r y was t h e P r e r e q u i s i t e O u t l i n e (w h i c h

was s e e n a s d u p l i c a t i n g t h e f a c i l i t i e s o f t h e T o p i c L i s t) .

One c o m p l a i n t was t h a t t h e r e was n o t h i n g i n t h e s y s t e m t o

g u i d e t h e u s e r s i n t h e i r c h o i c e o f t o p i c s . S i n c e t h a t i s

p r e c i s e l y t h e g o a l o f t h e P r e r e q u i s i t e O u t l i n e (s h o w i n g t h e

s t r u c t u r e o f t h e c o u r s e) , c l e a r l y i t was n o t b e i n g a s h e l p f u l

a s was i n t e n d e d .

S t u d e n t s who knew no P r o l o g t h o u g h t t h e c o u r s e m a t e r i a l

was a t a n a p p r o p r i a t e l e v e l f o r t h e m , a n d e v e r y o n e who u s e d

t h e h e l p m e s s a g e s l i k e d them (w i t h r e s e r v a t i o n s n o t e d b e l o w) .

T h e u s e o f a m i x e d - i n i t i a t i v e d i a l o g u e w o r k e d o u t

w e l l . N a i v e u s e r s t e n d e d t o l e a v e most c h o i c e s up t o t h e

s y s t e m , w h i l e more e x p e r i e n c e d u s e r s (p a r t i c u l a r l y t h o s e w i t h

some P r o l o g b a c k g r o u n d) made most d e c i s i o n s f o r t h e m s e l v e s .

T h e r e was a s e r i e s o f c o m p l a i n t s a b o u t r e a d i n g t e x t f r o m

a t e r m i n a l s c r e e n . Th e p r o g r a m ' s u s e r s s h o u l d h a v e b e e n

p r o v i d e d w i t h a h i g h e r q u a l i t y p a p e r c o p y o f a l l o f t h e

p r o g r a m ' s l e s s o n s .

- 5 1 -

Several students had trouble going back to review

s p e c i f i c points from e a r l i e r on in the course. They would

know what they wanted to review, but would not know exactly

where to find i t .

In general the system proved to be useful, but i t cannot

stand alone. Everyone who participated in the evaluation

agreed that i t was useful for learning Prolog. Most,

however, had some trouble in learning how to use the system.

Sophisticated users had the fewest problems. They were

used to learning the ins and outs of new computer systems,

and had l i t t l e trouble adjusting to this one.

Naive users, on the other hand, had a great deal of

d i f f i c u l t y learning to use the system unaided. The

particular problems varied from individual to indi v i d u a l , but

at some point each needed to be helped along.

While they liked the system's help messages, the naive

users wanted more. They would have preferred a natural

language explanation of just what was happening, and of what

was expected of them at any time. Naive users were often not

familiar with the idea that there can be several ways of

using a system (or modes), with different actions expected at

each.

They would, for example, try to address Prolog from

within the CAI system without f i r s t c a l l i n g CProlog, or they

would try to choose a Topic L i s t command, when they were in

the middle of a lesson describing the Topic L i s t .

- 5 2 -

S t u d e n t s o f t e n m i s j u d g e d t h e i r own c a p a c i t y t o a b s o r b

new m a t e r i a l . T h e y w o u l d r e a d s e v e r a l l e s s o n s i n a r o w , a n d

t h e n go i n t o P r o l o g t o t r y many t h i n g s a t o n c e . B y t h i s

t i m e , h o w e v e r , t h e y h a d f o r g o t t e n some o f t h e m a t e r i a l t h e y

h a d j u s t c o v e r e d , a n d h a d t o r e t u r n t o t h e t u t o r i a l t o t r y t o

f i n d i t a g a i n .

To f a c i l i t a t e t h i s r e v i e w p r o c e s s , t h e p r o g r a m s h o u l d

a l l o w u s e r s t o s c r o l l b a c k w a r d s t h r o u g h t h e c o u r s e , i n much

t h e same way o n e c a n f l i p b a c k t h r o u g h a b o o k . A s i t s t a n d s ,

t h e P r o l o g C A I C o u r s e l e t s t h e u s e r s c r o l l b a c k w a r d s w i t h i n a

l e s s o n , b u t n o t f r o m o n e l e s s o n o r t o p i c t o a n o t h e r .

T h e c o u r s e m a t e r i a l i t s e l f c o u l d be m o r e i n t e r e s t i n g .

T h e t h i n g s t h a t p e o p l e l i k e d m o s t w e r e t h e e x a m p l e s a n d t h e

A n i m a t e d T r a c e (s e e b e l o w) . I n p a r t i c u l a r s t u d e n t s a s k e d f o r

m o r e i n t e r a c t i v e e x a m p l e s . T h e y l i k e d h a v i n g a d a t a b a s e

w h i c h t h e y c o u l d q u e r y a n d c h a n g e , a n d t h e y l i k e d u s i n g t h e

t r a c e t o s t u d y how P r o l o g r e s p o n d e d t o t h e i r q u e r i e s a n d

c h a n g e s .

One g o a l f o r t h e P r o l o g C A I s y s t e m was t o be f l e x i b l e ,

a n d i t i s . New t o p i c s c a n be a d d e d ; o l d o n e s c a n be r e ­

a r r a n g e d . L e s s o n s , e x a m p l e s , a s s i g n m e n t s a n d s u m m a r i e s c a n

l i k e w i s e be a d d e d o r c h a n g e d .

T h e s y s t e m c o u l d e v e n be u s e d t o t e a c h t o p i c s c o m p l e t e l y

u n r e l a t e d t o P r o l o g , by u s i n g a n a p p r o p r i a t e p r e r e q u i s i t e

t r e e , a n d by w r i t i n g new i n s t r u c t i o n a l m o d u l e s . M o s t o f t h e

p r o g r a m ' s f a c i l i t i e s w o u l d c a r r y o v e r u n c h a n g e d , a l t h o u g h t h e

a b i l i t y t o e s c a p e d i r e c t l y i n t o P r o l o g w o u l d o n l y be u s e f u l

- 5 3 -

i f you were teaching about something that could be shown from

Prolog - l i k e the Prolog debug package, or a text editor that

could be call e d from Prolog.

5 . 4 The Animated Trace: Evaluation Results

The Animated Trace s a t i s f i e s most of Bundy's c r i t e r i a

for a good Prolog story.

Backtracking i s shown; i t i s obvious when ultimate

success (or failure) is reached; the flow of control i s

displayed; each subgoal l i t e r a l i s shown, along with the

clauses that resolve i t away; the u n i f i e r s produced are

shown, as are the remaining l i t e r a l s ; clauses not in the

f i n a l solution path are s t i l l shown when they are t r i e d

during a proof; the f i n a l instantiation of the o r i g i n a l goal

i s displayed; and the effect of a cut i s shown, not so much

on the search space, but on the movement of the proof

procedure through a goal.

The Animated Trace (as implemented) p a r t i a l l y f a i l s

points 7 and 9. It does not show clauses unless they are

t r i e d during a proof, and i t does not show the instantiations

of database clauses. There i s , however, no conceptual reason

why i t could not do both of these things, and indeed i t would

be a f a i r l y simple task to include them.

The main f a i l i n g of the Animated Trace relates to

showing the entire search space. It shows that portion of

the search space which i s traversed during a proof, including

blind a l l e y s , but i t has no way of showing the remainder

(things that might have been).

This means i t f a l l s short of the ideal for points 7 and

10 as well. Clauses which could resolve with the selected

l i t e r a l are shown only when they are tr i e d during a proof.

When they are not tr i e d , they are not shown. Similarly, the

effect of a cut i s only shown on that portion of the search

space which i s investigated during a proof.

When altered to cover points 7 and 9, the Animated Trace

comes nearer to the "ideal Prolog story" than do any of the

stories Bundy describes. Furthermore, i t displays i t s

information in a more concise and more easily followed format

than they do.

5 . 5 Conclusions

In this research I have t r i e d to show how Computer

Assisted Instruction can be improved through the use of

A r t i f i c i a l Intelligence techniques, and good teaching

s t o r i e s .

The Prolog ICAI program and the Prolog Animated Trace

were designed to be f l e x i b l e and easy to use. These goals

have been successfully met.

The And/Or Prerequisite Tree proved to be a natural way

to represent the structure of the domain. As added benefits,

t h i s structure was easily created and searched, and i t helped

make the course f l e x i b l e and easy to change.

The Prolog CAI program uses a very simple student model

a subset of the Prerequisite Tree. While simple, t h i s

student model proved to be entirely adequate. Other, more

-55-

authoritarian, CAI programs require highly complex student

models to reduce their chances of making bad decisions. The

Prolog CAI program can make do with a simple student model

because i t has the student's help with every decision i t

makes.

The Animated Trace worked especially well in

demonstrating Prolog's proof procedure. Students could use

i t both to study examples from the CAI course and to follow

the execution of their own programs. By using graphics i t

gives more information than t r a d i t i o n a l Prolog trace

programs, without swamping the student with d e t a i l s .

Future versions of the Animated Trace should be more

f u l l y interactive. Ideally, students should be able to

change the database, rewrite part of the goal, or a l t e r the

flow of execution while the trace i s in progress. The

problems that were encountered in this research were largely

the result of inadequate tools. CProlog version 1.1 i s

en t i r e l y lacking in access to the graphical primitives

necessary for the Animated Trace, while the poor quality of

text on the display made i t a chore for students to read

through a l l the lessons. Future users of the CAI program

should be provided with a high resolution workstation.

Aside from i t s lack of graphics, Prolog proved to be a

nice language for the implementation. The construction and

traversal of the prerequisite tree was p a r t i c u l a r l y simple in

Prolog, as was the coding of a modified Prolog interpreter

which provided information needed by the Animated Trace.

- 5 6 -

T h e P r o l o g CAI p r o g r a m ' s l e s s o n s c o v e r m o s t o f t h e

f e a t u r e s o f C P r o l o g , b u t t h e t r e a t m e n t i s a t t i m e s s p a r s e .

M o r e work n e e d s t o be d o n e t o r e v i s e a n d e x p a n d u p o n t h e

l e s s o n m a t e r i a l , a n d t o p r o v i d e more e x a m p l e s a n d s u m m a r i e s .

A s m o o t h e r m e t h o d o f p a g i n g f o r w a r d a n d b a c k t h r o u g h t h e

c o u r s e m a t e r i a l s h o u l d be i m p l e m e n t e d , a n d t h e d i s p l a y o f t h e

P r e r e q u i s i t e T r e e s h o u l d be i m p r o v e d .

O v e r a l l t h o u g h , t h e p r o g r a m s h a v e shown t h a t w e d d i n g

A r t i f i c i a l I n t e l l i g e n c e t e c h n i q u e s w i t h g o o d t e a c h i n g s t o r i e s

c a n be u s e d t o i m p r o v e C o m p u t e r A i d e d I n s t r u c t i o n .

-57-

References

[I] Barr, A. and Feigenbaum, E. eds (1982), The Handbook of
A r t i f i c i a l Intelligence, Vol. II, Heuristech Press,
Stanford C a l i f o r n i a .

[2] Borning, Alan (1979), Thinglab - A Constraint Oriented
Simulation Laboratory, Stanford Computer Science
Report, STAN-CS-79-749, Standord University,
C a l i f o r n i a .

[3] Bundy, Alan (1983), What Stories Should We T e l l Prolog
Students?, DAI working paper #156, University of
Edinburgh, Edinburgh, Scotland.

[4] Burton, R.R., Rubinstein, R. and Brown, J.S. (1976), A
Reactive Learning Environment for Computer-Assisted
Learning, Bolt, Beranek, and Neuman, BBN report #3314,
Cambridge Mass.

[5] Burton, R.R. and Brown, J.S. (1977), A Paradigmatic
Example of an AI Instructional System, F i r s t
International Conference on Applied Systems Research,
New York.

[6] Carbonell, J.S. (1970), Mixed-initiative Man-Computer
Instructional Dialogues, Bolt Beranek, and Neuman,
Technical Report.

[7] Clancey, W. (1979), Tutoring Rules for Guiding a Case
Method Dialogue, In Intelligent Tutoring Systems
(Sleeman, D. and Brown, J.S. eds), pp. 201-225,
Academic Press, London, U.K.

[8] Clancey, W. (1987), Methodology for Building an
Intelligent Tutoring System, In A r t i f i c i a l Intelligence
and Instruction (Kearsley, G. ed.), Chapter 9, Addison-
Wesley.

[9] Clocksin, W.F., and Mellish, C.S., (1981), Programming
in Prolog, Springer-Verlag, Berlin-Heidelberg-New York.

[10] Colbourn, M. (1982), An Expert System for the Diagnosis
of Reading D i f f i c u l t i e s , Proceedings of Expert Systems,
Engham, England.

[II] Curran, W.S. (1982), A Teacher/Learner, SIGCSE
B u l l e t i n , Vol. 14, No. 1, pp. 229-231.

[12] Crawford, S. (1981), A Standards Guide for the
Authoring of Instructional Software, Joint Education
Management (JEM) Research, V i c t o r i a , B r i t i s h Columbia.

-58-

[13] Dageforde, M. and Beard, M.H. (1978), The BASIC
Instructional Program Supervisor's Manual, ERIC
Educational Database, microfiche #2902.

[14] Dionne, M.S. and Mackworth, A.K. (1978), ANTICS: A
System for Animating LISP Programs, Computer Graphics
and Image Processing, Vol. 7, No. 1.

[15] diSessa, A. (1986), Principles for the Design of an
Integrated Computational Environment for Education, in
Children in an Information Age (Sendov, B. and Stanchev
1. eds.), Pergamon Press, Oxford, U.K.

[16] Fine, G. (1980), The Design of an Intelligent Lisp CAI
Tutor, M.Sc. Thesis, University of B r i t i s h Columbia,
Vancouver, B.C.

[17] Fogel, E. (1982), Computers and Education, Honours
Research Project, Carleton University, Ottawa, Ontario.

[18] Fogel, E. (1983), A Guide to Intelligent Computer
Assisted Instruction, Class essay, CPSC 522, University
of B r i t i s h Columbia, Vancouver, B.C.

[19] Forman, D. (1982), Search of the Literature, in
Instructional Use of Microcomputers, B r i t i s h Columbia
Ministry of Education, V i c t o r i a , B.C.

[20] Goldstein, I. (1979), The Genetic Graph: A
Representation for the Evolution of Proceedural
Knowledge, International Journal of Man-Machine
Studies, Vol 11, No. 1, pp. 51-77.

[21] Hofstetter, F.T. (1981), Using the PLATO System, ECCO
Newsletter, Vol. 2, No. 3, pp. 23-32, Educational
Computing Organization of Ontario, Ontario.

[22] Johnson, L. and Soloway, E. (1987) Proust, in
A r t i f i c i a l Intelligence and Instruction, (Kearsley, G.
ed), Chapter 3, Addison-Wesley.

[23] Jones, M. ed. (1986), Computational Intelligence,
Special Issue: AI Approaches to Education, Vol. 2, No.
2, National Research Council of Canada, Canada.

[24] Kearsley, G. ed. (1987), A r t i f i c i a l Intelligence and
Instruction, Addison-Wesley, 1987.

[25] Kimball, R. (1973), A Self-Improving Tutor for Symbolic
Integration, Intelligent Tutoring Systems, (Sleeman, D.
and Brown, J.S. eds), pp. 201-225, Academic Press,
London, U.K.

-59-

[26] Kowalski, R. (1979), A r t i f i c i a l Intelligence Series:
Logic for Problem Solving, North Holland.

[27] Laubsch, J. and Eisenstadt, M. (1981) Domain Spec i f i c
Debugging Aids for Novice Programmers, IJCAI-81, pp.
962-969.

[28] Lakin, F. (1980), Computing with Text-Graphic Forms,
Proceedings of the Lisp Conference at Stanford
University, Stanford, C a l i f o r n i a .

[29] London B. and Clancey, W. (1982), Plan Recognition
Strategies in Student Modelling: Prediction and
Description, Stanford University Technical Report,
STAN-CS-82-909, Stanford, C a l i f o r n i a .

[30] Looi, C. (1984), Explorations of Programming Learning
Behavior of Novices through Computer Aided Learning,
M. Sc. Thesis, University of B r i t i s h Columbia,
Vancouver, B.C.

[31] Matz, M. (1982), Towards a Process Model for High
School Algebra Errors, in Intelligent Tutoring Systems,
(Sleeman, D. and Brown, J.S. eds), pp. 201-225,
Academic Press, London, U.K.

[32] McCalla, G., Peachey, D. and Ward, B. (1982), An
Architecture for the Design of Large Scale In t e l l i g e n t
Teaching Systems, 1982.

[33] McCalla, G., Bunt, R. and Harms, J. (1986), The Design
of the Scent Automated Advisor, in Computational
Intelligence, Vol 2., No. 2, National Research Council
of Canada, Canada.

[34] O'Shea, T. (1979), Self-Improving Teaching Systems, in
Intel l i g e n t Tutoring Systems, (Sleeman, D. and Brown,
J.S. eds), pp. 201-225, Academic Press, London, U.K.

[35] Papert, S. (1980), Mindstorms: Children, Computers and
Ideas, Basic Books, New York.

[36] Peachey, D. (1982), An Architecture for Plan-Based
Computer Assisted Instruction, M.Sc. Thesis, University
of Saskatchewan, Saskatoon, Saskatchewan.

[37] Ragsdale, R. (1982), Computers in the Schools: a Guide
for Planning, Ontario Institute for Studies in
Education Press, Toronto, Ontario.

[38] Searle, J.R. (1980), Minds, Brains, and Programs, The
Behavioral and Brain Sciences, Vol. 3, pp. 417-422,
Cambridge University Press, Cambridge, England.

-60-

t

[39] Self, J. (1974), Student Models in Computer-Aided
Instruction, International Journal of Man-Machine
Studies, Vol. 6, pp. 261-276.

[40] Sleeman, D. and Brown, J.S. (1982), In t e l l i g e n t
Tutoring Systems, Academic Press, London, U.K.

[41] Soloway, E., Woolf, B., Rubin, E. and Barth, P. (1983),
MENO-II: An Intelligent Tutoring System for Novice
Programmers, IJCAI-81, pp. 975-977.

[42] Soloway, E., Woolf, B., Rubin, E., Barth, P., Bonar, J.
and E r l i c h , K. (1981), Why your Students Write Those
Crazy Programs, Proceedings of the National Educational
Computing Conference, Texas, USA.

[43] Stephens, A., C o l l i n s , A. and Goldin, S.E. (1982),
Misconceptions in Students' Understanding, in
Intelligent Tutoring Systems, (Sleeman, D. and Brown,
J.S. eds), pp. 201-225, Academic Press, London, U.K.

[44] Suppes, P. (1972), Computer Assisted Instruction, in
Display Use for Man-Machine Dialog (Handler, W. and
Weizenbaum, J. eds), Munich, West Germany.

[45] Weizenbaum, J. (1965), ELIZA-A Computer Program for the
Study of Natural Language Communication between Man and
Machine, Communications of the ACM, Vol. 9, pp. 36-45.

[46] Yazdani, M. (1984), New Horizons in Educational
Computing, John Wiley & Sons, Rexdale, Ontario.

-61-

APPENDIX 1 - T h e A n d / O r P r e r e q u i s i t e T r e e

A p o r t i o n o f t h i s t r e e i s shown g r a p h i c a l l y , t h e n t h e

i n t e r n a l r e p r e s e n t a t i o n f o r t h a t p o r t i o n o f t h e t r e e i s

g i v e n . F i n a l l y , t h e e n t i r e t r e e i s g i v e n , i n t h e same m a n n e r

t h a t i t i s shown t o s t u d e n t s u s i n g t h e c o u r s e .

A n d / O r T r e e : G r a p h i c a l R e p r e s e n t a t i o n

P r o l o g S y n t a x

OR

I n t r o d u c t i o n
t o P r o l o g

A Q u i c k
L o o k a t
P r o l o g

I n t r o d u c t i o n
t o L o g i c

U s i n g
t h e

T u t o r i a l

A n d / O r T r e e : I n t e r n a l R e p r e s e n t a t i o n

p r e r e q (' A Q u i c k L o o k a t P r o l o g ' , ' I n t r o d u c t i o n t o P r o l o g ') .
p r e r e q (' U s i n g T h i s T u t o r i a l ' , ' I n t r o d u c t i o n t o P r o l o g ') .
p r e r e q (' U s i n g T h i s T u t o r i a l ' , ' I n t r o d u c t i o n t o L o g i c ') .

o r p r e r e q (' I n t r o d u c t i o n t o P r o l o g ' , ' S y n t a x ') .
o r p r e r e q (' I n t r o d u c t i o n t o L o g i c ' , ' S y n t a x ')

- 6 2 -

A n d / O r T r e e : U s e r ' s V i e w

P r o l o g B a s i c s
P r o o f P r o c e d u r e

U n i f i c a t i o n
S e m a n t i c s
- I n t r o d u c t i o n t o P r o l o g

A Q u i c k L o o k a t P r o l o g
U s i n g T h i s T u t o r i a l

- I n t r o d u c t i o n t o L o g i c
U s i n g t h i s T u t o r i a l

S i d e - e f f e c t s
S y n t a x
- I n t r o d u c t i o n t o P r o l o g
- I n t r o d u c t i o n t o L o g i c

B u i l t - i n P r e d i c a t e s
I n p u t / O u t p u t

S i d e - e f f e c t s
F i l e A c c e s s
C h a r a c t e r I / O
T e r m I / O

R e a d i n g - i n P r o g r a m s
A r i t h m e t i c

O p e r a t o r s
S y n t a x

C o n v e n i e n c e
C o n t r o l o f E x e c u t i o n
T h e C u t

C o n t r o l o f E x e c u t i o n
C o m p a r i s o n o f T e r m s
M e t a - L o g i c a l
D e b u g g i n g
S e t s
P r o g r a m I n f o r m a t i o n
E n v i r o n m e n t
C h a n g i n g t h e D a t a B a s e
I n t e r n a l D a t a B a s e

D e f i n i t e C l a u s e Grammars
S y n t a x

E a c h t o p i c i s shown w i t h i t s p r e r e q u i s i t e s i n d e n t e d

b e n e a t h i t . ' O r ' p r e r e q u i s i t e s a r e i n d i c a t e d w i t h a

p r e c e e d i n g m i n u s s i g n . F o r c o n c i s e n e s s , a t o p i c ' s

p r e r e q u i s i t e s a r e o n l y shown o n c e , t h e f i r s t t i m e t h a t t h e

t o p i c a p p e a r s .

- 6 3 -

APPENDIX 2 - Prolog ICAI User's Manual

STARTING UP

Assuming the CAI system i s in a f i l e called ' c a i f i l e ' , type:

CProlog (Call CProlog from the shell)
[c a i f i l e] . (Load the system)
c a i . (Remember the period!)
lines(N). (where N i s the number of lines on your terminal)

If N = 60, you can skip t h i s .
If N < 40, things won't f i t on the screen.

LEAVING THE SYSTEM

Type either:

CProlog (puts you in CProlog)
save (saves what you've done, then puts you in CProlog)

LEAVING CPROLOG

Type 'cai.' to resume the t u t o r i a l ,

Type 'halt.' to quit.

Remember the P.E.R.I.O.D.S.

RESTORING SAVED STATES

Suppose the state i s in f i l e 'oldstate'. Next time you
start CProlog, type: CProlog oldstate

COMMENTS, GRIPES, ETC.

Mail them to me.
From within the system, type 'comment'. Everything that

you type from then on, u n t i l an end-of-file (tD or -rC), w i l l
be put into a f i l e called 'mailtofogel'.

You can figure out what to do with that yourself.

-64-

APPENDIX 3 - Anilog Users Manual

STARTING UP

Anilog's input i s the output from a special CProlog
trace program. If that i s in a f i l e called 'traceout':

Type: anilog traceout

USING ANILOG

At times, Anilog pauses to l e t you think about what
you are seeing. Here i s what you can type at these times,

<cr> - continue the trace
quit - abort the trace
f u l l - set leashing to f u l l (pause more often)
half - set leashing to half (pause occasionally)
unleash - turn off leashing (never pause for input)

BUGS

Anilog i s not robust, and i s not guaranteed to work on
arbitrary Prolog goals. When i t bombs, the terminal may be
in an unusual state. To get i t back to normal, type:

<linefeed> (NOT return)
reset (NOT the reset key, type the l e t t e r s r e s e t)
<linefeed>

MAKING NEW INPUT FILES

Load the f i l e ~fogel/cai/trace/trace into CProlog.
C a l l mytrace(G), where G i s the goal to be traced.

eg. ?- mytrace((write(hi), write(hi))).

Output w i l l be displayed on the terminal, and w i l l also
be written to a f i l e named 'traceout' in your current
directory.

- 6 5 -

APPENDIX 4 - Animated Trace Example

The Example Program and Query:

i _ l i k e (r i c e) .
i_like(Thing) :- has_fur(Thing).
i_like(Thing) :- can_walk(Thing),

can_talk(Thing).

has_fur(dog).

can_walk(X) :- person(X).

can_talk(radio).
can_talk(X) :- person(X).

person(marc).

?- i _ l i k e (Y) , has_fur(Y), write(Y).

- 66 -

Prolog Animated Trace

Current Goal: (Level 1)

i _ l i k e (Y) ,
has_fur(Y),
write(Y).

Prolog Database:

User Output:

- 67 -

Prolog Animated Trace

Current Goal: (Level 1)

| i _ l i k e (Y) , <— current subgoal
|has_fur(Y),
Iwrite(Y).

Prolog Database:

i _ l i k e (r i c e) . <- try to unify with subgoal

User Output:

- 68 -

Prolog Animated Trace

Current Goal: (Level 1)

| i _ l i k e (Y) , <— current subgoal
|has_fur(Y),
Iwrite(Y).

Prolog Database:

i l i k e (r i c e) . <- unified

User Output:

Prolog Animated Trace

Current Goal: (Level 1)

I i _ l i k e (r i c e) , <— s u c c e s s
| h a s _ f u r(Y),
I w r i t e (Y) .

Prolog Database:

User Output:

- 70 -

Prolog Animated Trace

Current Goal: (Level 1)

I i _ l i k e (r i c e) ,
Ihas_fur(rice), <-- current subgoal
Iwrite(Y).

Prolog Database:

has_fur(dog). <— try to unify with subgoal

User Output:

- 71 -

Prolog Animated Trace

Current Goal: (Level 1)

I i _ l i k e (r i c e) ,
I h a s _ f u r (r i c e) , <— c u r r e n t s u b g o a l
I w r i t e (Y) .

Prolog D a t a b a s e :

h a s _ f u r (d o g) . <— n o t u n i f i e d

User Output:

Prolog Animated Trace

Current Goal: (Level 1)

i _ l i k e (r i c e) ,
h a s _fur(rice), <-- f a i l e d
write(Y).

Prolog Database:

User Output:

Prolog Animated Trace

Current Goal: (Level 1)

i _ l i k e (Y) , <— redo subgoal
has_fur(Y),
write(Y).

Prolog Database:

i _ l i k e (r i c e) .
i_like(Thing) :- has_fur(Thing). <— try to unify with subgoal

User Output:

Prolog Animated Trace

Current Goal: (Level 1)

| i _ l i k e (Y) , <— redo subgoal
|has_fur(Y),
Iwrite(Y).

Prolog Database:

i _ l i k e (r i c e) .
i_like(Thing) :- has_fur(Thing). <-- unified

User Output:

Prolog Animated Trace

Current Goal: (Level 1)

I Current Goal: (Level 2)

I|has_fur(Thing). <— current subgoal

Prolog Database:

Ihas_fur(dog). <-- try to unify with subgoal

User Output:

- 76 -

Prolog Animated Trace

Current Goal: (Level 1)

Current Goal: (Level 2)

Ihas_fur(Thing). <— current subgoal

Prolog Database:

has_fur(dog). <— unified

User Output:

- 77 -

P r o l o g An imated T r a c e

C u r r e n t G o a l : (L e v e l 1.)

I C u r r e n t G o a l : (L e v e l 2) I

11 has f u r (d o g) .
1 1
1 1
1 1

G o a l s u c c e e d s I I
I I
I I
I I

P r o l o g D a t a b a s e :

U se r O u t p u t :

- 78 -

Prolog Animated Trace

Current Goal: (Level 1)

I i _ l i k e (d o g) , <— s u c c e s s
| h a s _ f u r(Y),
I w r i t e (Y) .

Prolog Database:

User Output:

P r o l o g An imated T r a c e

C u r r e n t G o a l : (L e v e l 1)

I i _ l i k e (d o g) ,
I h a s _ f u r (d o g) , <— c u r r e n t s u b g o a l
I w r i t e (Y) .

P r o l o g D a t a b a s e :

h a s _ f u r (d o g) . <— t r y t o u n i f y w i t h s u b g o a l

U se r O u t p u t :

- 80 -

Prolog Animated Trace

Current Goal: (Level 1)

I i _ l i k e (d o g) ,
Ihas_fur(dog), <— current subgoal
Iwrite(Y).

Prolog Database:

has_fur(dog). <— unified

User Output:

- 81 -

Prolog Animated Trace

Current Goal: (Level 1)

I i _ l i k e (d o g) ,
I h a s _ f u r (d o g) , <— s u c c e s s
I w r i t e (Y) .

Prolog Database:

User Output:

P r o l o g An imated T r a c e

C u r r e n t G o a l : (L e v e l 1)

I i _ l i k e (d o g) ,
I h a s _ f u r (d o g) ,
I w r i t e (d o g) . <— c u r r e n t s u b g o a l

P r o l o g D a t a b a s e :

U s e r O u t p u t :

Prolog Animated Trace

Current Goal: (Level 1)

I i_like(dog),
ihas_fur(dog),
Iwrite(dog). <— B u i l t - i n Succeeds

Prolog Database:

User Output:

dog

- 84 -

Prolog Animated Trace

Current Goal: (Level 1)

I i _ l i k e (d o g) ,
Ihas_fur(dog),
Iwrite(dog). <— Goal succeeds

Prolog Database:

User Output:

dog

