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Abstract

Two methods for improving the quality of Computer
Assisted Instruction are examined. They are: using
Intelligent Computer Assisted Instruction techniques to make .
the CAI system more flexible, and using graphics to increase
the efficacy of teaching.

Two computer systems for teaching the Logic Programming
language Prolog were developed.

The first is an ICAI system which uses the prerequisite
relationships of the course material to plan a course of
study. It distinguishes between methods of instruction and
topics of instruction, giving students a great deal of
freedom in choosing either one.

The second 1is an animated trace which graphically
illustrates the execution of Prolog programs. Information is
displayed in three windows -- one for Prolog goals, one for
the database, and one for output from the program being
traced.

Results indicate that ICAI and graphics can both be used

effectively in the teaching of programming languages,
particularly in combination.
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Chapter' One

Introduction

For more than 20 years, people have been writing
Computer Aided Instruction (CAI) programs. Most of them are
not very good. Hofstetter (198l) estimates that as many as
5000 out of the 7000 hours of instructional software written
for Plato are useless, yet Plato is described as one of the
most successful CAI systems.

This chapter will show why computers are such poor
teachers, and will put forward some ideas about what can be
done to improve them. Two computer systems that illustrate

these ideas will then be described.

1.1 Why Computers are Such Terrible Teachers
Consider the following locked room analogy.

Imagine you are sitting all alone in a locked,
soundproof room, with nothing but a typewriter,
some paper, and a book. On one wall of the room
are two slots, labelled In and Out.

Your job is to teach the contents of that book
to anyone who happens to be on the other side of
the wall, by passing notes through these slots.

You can know nothing about the subject of the
book, you must give up most of your command of the
language in which it is written (and which the
students use), and you must forget everything you
know about teaching. (After Searle 1983).

Under the circumstances, it would be difficult for
anyone to teach effectively, yet these are precisely the

conditions under which most CAI programs operate.



Knowing nothing about the subject they teach, they can
only present the student with previously written pages of
text. Knowing nothing about the student, they cannot tailor
their presentation to his or her needs. Knowing nothing
about teaching, they are wunable to vary their teaching
strategies to best suit a particular topic or a particular
student. Further, the only contact most CAI programs have
with the real world is through the terminal screen and
keyboard. Students cannot pick up visual or voice-tone cues
from the program, nor can it pick up such cues from them.

In summary, a typical CAI program dces not understand
what it is teaching, who it is teaching, or how to teach.
With these handicaps, it is no wonder computers are such poor
teachers. In fact, it is a wonder they are as good as they

are.

1.2 Why Computers are Such Good Teachers

There are good CAI programs. There are, for example,
about 2000 hours of Plato courseware (educational software)
that Hofstetter did not dismiss as useless.

Some CAI programs succeed because their subjects are
especially well suited to computer instruction. A few years
ago, one study found that "95% are arithmetic programs"
(Ragsdale 1982).

Much of CAI focuses on arithmetic because arithmetic is
easy to teach with computers. It is easy because computers

can do arithmetic, and students can watch them doing it.



.Indeed, a computer can -help a student with arithmetic, and
can compare the student's answers with its own.

Another promising subject for CAI is computer
programming. In this area too, the computer can check the
student's answers against its own. Looi has written a
program which teaches the Pascal assignment statement (Looi
1984). His system checks the syntax of simple programs
written by the student, runs them on predetermined test
cases, and verifies the results.

Other CAI programs succeed because they use simulations.
With these, the student learns about a real-world system by
experimenting with a model of that system. The models
iﬁclude economic systems, with the student playing the stock
market or running a Third World country; or biological
systems, showing population changes in fish or bacteria.

These programs all have one thing in common --
competence in their domain of expertise. They are unable to
reason about their domain, nor can they explain it, but there
is enough domain knowledge built into these programs that
they can perform competently within it. Going back to the
locked room analogy, these programs are successful because

they know something about the subjects they are teaching.

1.3 Making Computers into Better Teachers
Efforts to make computers better teachers can be
classified into two categories:

* Allowing a broader spectrum of interactions with the
outside world (unlocking the room).



* .Improving their intelligence and their knowledge of the
world (putting someone in the room who knows the
student, who knows the subject being taught, and who
knows how to teach).

>l.3.1 Unlocking the Room

This involves breaking down the barriers both between
the teacher and student, and between the teacher and the
subject being taught.

Human teachers can talk, gesture, draw pictures, show
movies and use computers to put ideas across, while students
can talk, groan, scratch their heads, and so on. In the most
basic form of CAI, on the other hand, the only means of
communication is text, typed at the keyboard and displayed on
the screen. The use of light pens, touch sensitive screens,
slide projectors, videotapes, speech synthesis and graphical
displays can all enrich this interaction.

One can also enrich the interaction between the computer
and the subject it teaches. A human teacher often has
personal experience with the subject being taught, and can
support the lessons with real world demonstrations. He or
she can turn over a leaf, or open up the hood of a car. It is
easier to teach about trees, for example, if you know
something about trees, and if you can point to a tree while
you talk. Computers are good arithmetic teachers because
they can show the student how to do arithmetic, and can check

the student's work against their own.



-One- way to teach about-a ‘domain with which you <can't
interact 1is given by Alan Bundy's notion of ‘“stories". A
story is a model or an analogy which makes it easy to grasp
the central ideas behind the subject being taught. Learning
is much easier with a good story.

Here, Bundy writes about stories for teaching
programming languages:

[It] is important to give a model of what the
computer will do with his/her programs. The
student must be able to anticipate the effect of
running his/her program, otherwise he/she will be
unable to design it, debug it, modify it, etc. ...

When teaching LOGO to school children, Tim
O'Shea and Ben du Boulay found the provision of a
suitable model to be central to the design of the
course and the language interface (Bundy, 1983).

In teaching about turtle graphics, one has the analogy
of live turtles crawling around on the floor, and one has a
computer which simulates the turtle on a screen.

To summarize, one can make computers into better
teachers by improving student-computer communications, by

improving domain-computer interactions, or by using a good

story.

1.3.2 Putting a More Intelligent Teacher in the Room

Most CAI programs lack the knowledge to teach
effectively. They don't understand students and they don't
understand what they are teaching. Making computers into
better teachers, by giving them knowledge of the real world,
and telling them how to use it, comes under the domain of

Artificial Intelligence.



Researchers who try to put knowledge about students,
about teaching, and about what is being taught into CAI
programs call their field Intelligent Computer Assisted
Instruction (ICAI); presumably to distinguish it from the not
so intelligent kind of CAI.

There are four general areas of ICAI research:

* Increasing the computer's knowledge of students (with a
student model).

* Increasing 1its knowledge of the domain (with a domain
model).

* Increasing its knowledge of teaching and learning (with
an educational model).

* Increasing 1its ability to carry out a natural language
dialog with students.

Each of these areas involves many interesting
subproblems. Within student modelling, for example, there is
the problem of finding out what students already know, what
they don't know, and what misconceptions they have, as well

as the problem of changing the model as the student 1learns

(Self, 1974).

1.4 Teaching Programming Languages

One good domain for CAI is computers themselves.
Computers can't do much with trees and cars, but they are
ready made to teach about computers. A computer can't point,
but when it teaches about tape drives, it can spin tapes back
and forth. When it teaches computer programming, it can

trace programs, and it can check and display the results.
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Teaching programming languages is made especially easy
because people have invented many stories for programming:
things 1like flow charts, algorithms, data £flow diagrams,

modular design, and interactive trace programs.

1.5 Teaching Prolog

Prolog is a Logic Programming language. The execution
procedure for a Prolog program is.largely embedded in the
Prolog interpreter, -and not in the program itself, Whereas
programs in traditional programming languages have an
explicit control structure (with sequential execution, loops,
and so on), Prolog programs are mainly descriptive, based on
the 1implicit proof procedure of the interpreter (top down
depth-first search with backtracking).

Because it differs from traditional programming
languages, Prolog requires different stories. Some Prolog
stories are evaluated by Bundy (1983). These include: Or
Trees and And/Or Trees (both from Kowalski, 1979); the Byrd
Box, Arrows, the Flow of Satisfaction, and a Prolog trace
program (all described in Clocksin and Mellish, 1981).

All the benefits of teaching programming languages hold
for Prolog. Students can write programs, which the computer
can run and trace, and there are good stories for teaching
Prolog. As well, Prolog's declarative semantics make it a
very nice vehicle for the use of ICAI techniques. 1In Prolog,
it is easy to define rule-bases for educational, student, and

domain models, and to use these in decision making.



1.6 This Thesis

Two computer systems for teaching Prolog were developed
for this thesis.

The first is an ICAI program that teaches Prolog. It
uses knowledge of the student, the domain, and of teaching to
determine which topic to teach, and how to teach it. The
second provides an animated trace of the execution of Prolog
programs. Students can use it to follow the execution of
their own programs, and of the programming examples provided
by the ICAI program.

Both programs were developed on a DEC VAX 11/780 running
Berkeley UNIX. The ICAI program is written in CProlog. The
trace 1is written 1in CProlog and in C, wusing the CURSES
windowing package, which in turn uses the UNIX Termcap

terminal database.

1.7 The Prolog ICAI System

1.7.1 And/Or Prerequisite Trees

The use of And/Or Trees to represent prerequisite
relations for a CAI course is described in a number of papers
by Darwin Peachey and Gordon McCalla at the University of
Saskatchewan (Peachey, 1982) (McCalla et al, 1982).

Briefly, the <course to be taught is divided 1into an
number of separate topics, linked together by prerequisite
relationships. The And/Or Tree links the topics of the

course.



Some topics have no prerequisites -- these may be taught
immediately. The others have prerequisites which should be
covered first.

A topic may have more than one prerequisite -- all of
which are required. These are connected by AND links in the
prerequisite tree. Alternatively, a topic may have several
prerequisites -- only one of which is required. These are
connected by OR links.

Here is a part of the prerequisite tree (actually a

directed graph) from the Prolog CAI course:

Prolog Syntax

N

Introduction Introduction
to Prqlog to Logic
A
A Quick Using
Look at the
Prolog Tutorial

Fiqure 1: Example of And/Or Prerequisite Tree

Iﬁ this example there are two ways to satisfy the
prerequisite requirements for "Prolog Syntax". Either study
"Introduction to Prolog" along with both of its
prerequisites, or study "Introduction to Logic" and 'its

single prerequisite.



1.7.2 wWho Makes the Decisions?

Using AND/OR Trees lets the sysfem make reasonable
choices for topics to be studied, but care must be taken to
ensure that the choices made are not too authoritarian. The
system makes decisions based on incomplete information, and
students must be able to overrule these decisions when they
choose.

A major consideration in the current research was to
produce a system that gave the student a great deal of
freedom of choice as to what to study, how to study it, and
when.

The Prolog CAI system chooses topics for the student to
study, and chooses methods for teaching those topics. These
choices act as defaulfs. Each student is free to accept the
systems choices or to disregard them to pursue his or her own

interests.

1.8 The Animated Trace (Anilogq)

Anilog 1is a window-oriented trace for Prolog programs
(the name comes from ANImation of LOGic). It displays
information about the execution of Prolog goals, their
success, failure, backtracking, and recursive calls to other
goals, as well as showing the database clauses they use, and
any output they generate.

All of this information is displayed on the screen, 1in
three windows: one for goals, one for the Prolog database,

and one for user output.
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1.9 Sample Protocols

The following three pages show the beginning of a
typical session with the Prolog ICAI system. Following this
is a snapshot of the animated trace, part-way through

satisfying the goal:
?- write(hi), member(elf,[dwarf,elf,pixiel), fail.

A more complete example of the animated trace may be

found in Appendix 4.
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PROLOG COURSE - TABLE OF CONTENTS

Using This Tutorial

A Quick Look at Prolog
Introduction to Prolog
Introduction to Logic
Syntax

Semantics

Unification

Proof Procedure
Side-effects

Prolog Basics

Built-in Predicates
Introduction to the Builtins
Arithmetic
Input/Output

I/0 Basics

File Access

Character 1/0

Term 1I/0

Reading-in Programs
Convenience

Operators

Control of Execution
The Cut

Comparison of Terms
Meta-Logical

Debugging

Sets

Program Information
Changing the Data Base
Internal Data Base
Environmental

Definite Clause Grammars

Type <cr> and the system will choose a topic for you,
(or type h for help).

K
[The user types a carriage return,
so the system chooses a topic]

Figure 2: The start of the Prolog ICAI course

_12_



Prolog Tutorial System

k** A Quick Look at Prolog ***
Options:
1l - lesson

2 - example

Please choose one of the above options (or type h for

[The user types a carriage return,
so the system chooses an option]

Figure 3: The first topic selected

-13-
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Welcome to CProlog

Prolog attempts to answer questions based on the
information it has been given (its data base).

A statement in Prolog is called a clause. Here
is a small database, consisting of 5 clauses. The
comments to the right indicate the intended meaning
of each clause.

greek(souvlaki}). /* souvlaki is greek */
greek(socrates). /* Socrates is greek */
human({socrates). /* Socrates is human *x/
human(descartes). /* Descartes is human */

philosopher(X) :- human(X). /* all humans are
philosophers */

The symbol :- means "if", or "is implied by",
or "can be proven by", so the last clause above
can be read as:

-~ X is a philosopher if X is human.

- X is human implies X is a philosopher.

- To prove that X is a philosopher, first
prove that X is human.

Prolog knows that socrates is the name of a particular
object, while X can be any object because X begins with
a capital letter. In computer programming terms, X is a
variable.

A variable is a kind of place holder or blank space
into which Prolog tries to put the names of objects.

Type <cr> to continue (or h for'help).

Figure 4: The first lesson selected

-14-~



Prolog Animated Trace

Current Goal: (Level 1)

write(hi),
member (elf, (dwarf,elf,pixie]), <-- current subgoal
fail. ’

Prolog Database:

member (X, [X|L]).
member (X, [Y[L]) :- member(X,L). <-- try to unify with subgoal

User Output:

hi

Figure 5: Snapshot of the Prolog Animated Trace

_15_



Chapter Two

Literature Survey

This chapter surveys various attempts to improve the use
of computers in education. More details on these and other
projects can be found in Kearsley (1987), Jones (1986),
Yazdani (1984), Sleeman and Brown (1982), and Barr and
Feigenbaum (1982).

Our discussion is divided into the two areas discussed

in Chapter One:

1) Using more intelligence. We will look at four areas:
understanding students, understanding the domain of
instruction, understanding how to teach, and using

natural language dialogue.

2) Broadening the interaction between teacher, student, and
the domain of instruction. We will look at two areas:
teaching in suitable domains, and using graphics to

improve communication.

Of course, some systems fit into more than one category.
Guidon (Clancey 1979) for example, is discussed under Domain
Understanding, but it could equally well have been in the
section on Understanding Students. Similarly, WUSOR
(Goldstein 1979) could be discussed in three different
places, because its Genetic Graph is student model, domain

model, and educational theory all rolled up into one.

_16_



2.1 Using More Intelligent Teachers

2.1.1 OUnderstanding Students

For teaching purposes, it is important to have a model
of the student's knowledge of the subject being taught. A
teacher (or ICAI system) compares what he or she believes the
student knows with what he or she would like the student to
know.

The simplest and most common‘type of student model is
simply a record of which lessons have been studied. The next
step up is a record of which topics have been learned.

Goldstein (1979) suggests a more complex student model
which combines knowledge of the domain of study with
knowledge of the learning process. He uses this "Genetic
Graph" in a program called WUSOR, which is a tutor for the
computer game WUMPUS.

The Genetic Graph models the evolution of a student's
knowledge. Nodes 1in the graph represent the procedural
skills that a student acquires in changing from a novice into
an expert player of WUMPUS. Arcs in the graph represent the
learning processes that are used to acquire these skills.
These processes include: analogy, specialization,
generalization, prerequisite and deviation.

A student's knowledge of the game at any given time is
represented by a subset or perturbation of this graph. The
system decides what to teach, and how to teach 1it, by

following arcs from the area the student has mastered to new

_17_



areas of the graph. The new nodes (or skills) are then added
to the region representing the student's knowledge.

It is very difficult to find out what is going on in the
minds of students. It is all very well to say that the
student model represents what the student knows, but how can
an ICAI system find out what a student does know?

"Why Your Students Write Those Crazy Programs" (Soloway
et al. 1981) describes some of the mistakes made by students
in a beginning Pascal class, and speculates on the reasons
for them. Proust (Johnson and Soloway 1987) is a program
which finds bugs in Pascal programs. Proust finds bugs by
comparing the program with a formal description of the
problem the program is intended to solve.

Matz (1982) lists some common reasons student errors in
high school algebra problems. These include extrapolating
old rules to fit new situations when the old rules do not, in
fact, apply, making errors through carelessness, and not
having enough knowledge to deal with the problem.

Burton and Brown (1977) did something a similar study
for simple arithmetic. They listed over 100 common mistakes
children make in performing two-column subtraction problems,
and there is no reason to believe that all the mistakes have
been £found. Their systems, BUGGY and later DEBUGGY, are
aimed at diagnosing the problems students have; they do not
go so far as to plan strategies for correcting the student’'s

misconceptions.
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Colburn (1982) is also concerned with diagnosis, this
time in the area of reading problems. She proposes an expert
system to advise a teacher or counsellor in diagnosing
reading problems in children. The system uses a database of
diagnostic rules to recommend tests and to analyse their
results. Like BUGGY and DEBUGGY, this system diagnoses
problems, but it does not go so far as to prescribe

corrective action.

2.,1.2 Understanding the Domain of Instruction

A simulation is one type of domain model. It can be
used by students to see how a real-world sysfem reacts to
different conditions. For example, it can demonstrate how an
airplane reacts to having its wing flaps raised.

ThingLab (Borning 1979) is a general purpose simulation
toolkit. It provides a language for defining simulations in
terms of part-whole hierarchies and inheritance structures,
in terms of the relationships between parts of the model, and
in terms of constraints on those relationships.

ThingLab also provides a graphical display for
simulations. The simulated system can be modified, and
observed, by interactively changing parts of the display, and
seeing what happens. For example, a Fahrenheit to Celsius
converter might be displayed as two interconnected
thermometers. Lowering the reading on the Fahrenheit
thermometer causes a corresponding reduction on the Celsius

scale, and vice versa.
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A .more direct way to use a domain model in teaching is
to use it to understand what is being taught, and to use that
understanding to provide explanations to students. These can
be summaries of particular concepts, or descriptions of the
relationships between concepts. To date, most systems
that wuse domain knowledge do not model the entire domain,
they model 1its structure. Going back to the airplane
example, such a system would know how raising wing flaps
affects air speed, but would not know what a wing flap was.

Stephens et al. (1982) use reasoning about the structure
of the domain to teach about climate. Essentially, their
domain model gives cause and effect relationships between
such environmental factors as warm ocean currents, rainfall,
mountains, wind direction, and warm and cold air masses. The
system does not understand mountains, but it does know how
they affect air currents.

SOPHIE (Brown et al, 1976) teaches students how to
diagnose faults in electrical «circuits. It contains a
simulator for electronic circuits, which it uses to see how
reasonable a student's troubleshooting strategies are. When
it finds things in its model that the student does not seem
to understand, it can point them out.

GUIDON (Clancey 1977) teaches diagnostic skills to
medical students by 1leading them through selected case
studies. It keeps track of expressed student interests, and

uses them in choosing cases to present.
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‘Guidon's domain model is interesting because it is an
entirely independent expert system. MYCIN 1is an expert
system that diagnoses certain kinds of blood disorders, using
a database of diagnostic rules to make its decisions.

Guidon teaches about MYCIN's rules. It runs MYCIN to
obtain a diagnosis for a particular case. Then Guidon goes
through the same case with a student. It compares the
student's diagnostic procedures with those of MYCIN, and it
explains MYCIN's diagnosis to the student. To do this, it
uses a database of explanations of MYCIN's rules, and another
database of teaching rules.

Guidon2 (teaching about NEOMYCIN) adds yet another
database. This contains rules for analyzing the student's
behavior (Clancey 1979) (Clancey 1987). It attempts to
uncover the diagnostic process the student is using, so that
mistakes in that process can be pointed out and corrected.

Kimball's symbolic integration tutor (Kimball 1973) uses
structural knowledge in a very different way. It guides the
student through the solution of symbolic integration
problems. When a solution is produced, it compares it to a
previously stored solution. If the new solution is shorter
than the o0ld one, it is deemed to be better, and the system
adopts it as the new standard.

Suppes (1972) suggests the use of "strands" to structure
the domain of instruction. In the school system; students
often study a subject at different 1levels 1in different

grades, and a strand corresponds to such a subject.
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" Suppes' strands can be though of as towers, with simple
problems at the bottom, and more complex ones higher up. A
student can be doing problems at one 1level on the arithmetic
strand, and be at quite a different level on the others.

McCalla's Lisp Course (McCalla et al. 1982) is a general
purpose system using the prerequisite relationships between
concepts to guide its teaching. Concepts in the Lisp Course
are linked together by an And/Or Prerequisite Tree. So, for
example, the basic concept of recursion is a prerequisite for
both tail recursion and for indirect recursion, and these in
turn are prerequisites for a mastery of the entire recursion
topic. The Lisp Course 1is described in more detail in
Chapters One and Three.

The Scent automated advisor (McCalla et al. 1986) is
intended to aid students in debugging Lisp programs. Using
knowledge of Lisp, knowledge of general-purpose programming
techniques, and knowledge of the specific task at hand, Scent
analyses student programs in a variety of ways.

Scent 1is organized into several components, which
communicate through a "blackboard”. Program behavior
components produce traces and cross-reference listings;
strategy judges attempt to determine which solution strategy
is being used; diagnosticians look for errors in strategy;
while task experts look at how well the program 1is solving

the particular task at hand.
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2.1.3 Understanding How to Teach

LOGO (Papert 1980) is based on discovery or Piagetian
learning (after Jean Piaget, an educational theorist).
Discovery learning is natural learning, without effort or
teaching. An example of this is the way children learn their
first language -- by hearing it and being interested, not by
studying it.

The original LOGO was a simple computer language which
was used to control a mechanical turtle. The turtle rolled
around on the floor, and it had a pen in its belly, which
could be raised or lowered. LOGO commands told the turtle to
take so many "turtle steps" forward, or to turn, and moving
with the pen down would draw a picture.

More recent versions of LOGO propel a graphical turtle
around a computer terminal display. Children can play with
the turtle, making it draw different pictures. They can also
play in micro-worlds. In one such micro-world, a turtle in
motion tends to remain in motion, while a turtle at rest
tends to remain at rest.

Another extension to LOGO has been the inclusion of some
of the basic list handling functions of LISP. LOGO is now a
popular first programming language, and is available on many
micro-computers.

Some of the people who created LOGO are now working on a
new program called Boxer (DiSessa 1986). Designed to make
the activity of programming more accessible to students,

Boxer is based on one uniform metaphor -- the box. In Boxer,
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programs, data, environments and sprites are all represented
visually as boxes. A program box inside another program box
represents a subroutine, while a data box which contains
other data boxes represents a record structure. One of the
design criteria behind Boxer is the principle of "naive
realism": the appearance of the system should accurately
reflect its underlying structure, so that an understanding of
the appearance of the system "can be translated directly into
an understanding of the system". Boxes (and hence programs,
data, etc.) can be altered by direct manipulation of their
on-screen representations.

O'Shea's (1979) Quadratic Tutor learns as it teaches.
It changes its own teaching rules in an attempt to select the
most effective teaching strategy. It can, for example, be
directed to optimize its strategy so as to decrease the time

a student spends with the tutor.

2.1.4 Natural Language Dialogue

Dialogue, in which the student and program talk to each
other in natural language, 1is both one of the earliest goals
of ICAI and one of the furthest from achievement.

Carbonell (1970) wrote the first dialogue system, called
SCHOLAR. SCHOLAR taught geography. Its knowledge of the
subject was stored in a semantic network, which it used to
generate questions for students, to check their answers, and
to answer questions posed by students. Carbonell called this

sort of interaction, which was sometimes guided by the
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program and sometimes by the student, a mixed-initiative
dialogue.

A more recent attempt at dialogue has been made by
Curran (1982). He, along with students in an Artificial
Intelligence course, wrote a "teacher/learner". This program
knows some things about the domain of computer science, and
it wants to learn more. It has "a thirst for obtaining
Computer Science information". Curran's program is not
intended to teach computer science, but to teach Artificial
Intelligence. Students study how the program works, not what
it knows.

The program engages students in a simplified natural
language dialogue, modelled after Weizenbaum's Eliza program
(1965). It "makes the machine appear more clever than it
is". The program "can be temperamental and change the
subject, or respond with moody sentences reflecting any of
several emotional states" (quotations from Curran, 1982).

The program gives more credibility to information that
comes from several sources, and less to information when it
is contradicted. Furthermore, 1individuals who frequently
input believable information are deemed more trustworthy than
those who often enter contradictory items. The program can
construct general rules from specific information (unless and
until it finds a counter example). Finally, it ‘"forgets"
information which is not very believable, or which 1is not

frequently accessed by students.
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2.2 -Broadened Interactions among Teacher, Student and Domain

2.2.1 Teaching Programming Languages

The main benefit of teaching about a programming
language is that the teaching program and the student can
both run sample programs, providing a ready made domain
model. On the other hand, it brings its own special problems
as well, particularly\understanding programs that students
write.

The Basic Instructional Program, or BIP, (Dageforde et
al. 1978) teaches programming in Basic through the use of
author-supplied example problems. The student writes a
program to solve a given problem, then BIP runs it and
compares the results with a previously stored solution.

BIP stores information about the skills needed to solve
each problem in a Curriculum Information Network. It chooses
problems for a student by looking for ones that use one new
skill, along with several skills the student already has.

Soloway and his colleagues (1983) have investigated
program understanding in their system MENO-II. It analyses
student programs, and tries to catch run time errors, both
those that are problem dependent, and those that are problem
independent. A special Problem Description Language (PDL) is
used both by the student for program development, and by MENO
for program understanding.

MENO compares the PDL description of the student's
program with a stored description of a bug-free version of

the same program, by matching corresponding program
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structures (eg. 1loops). It can only cope with a few control
structures, specifically straight line code, branching, and
simple loops -- the sort of things beginning programmers use.

Laubsch and Eisenstadt (1981) propose a similar approach
to program understanding. Their system attempts to translate
programs written by students into "plan diagram nétation".
This encodes control flow and data flow information. It
detects '"unreasonable code", such as unused variables and
duplicate statements. Then it tries to match the description

of the student's program with one from its library.

2.2.2 Graphics

Antics (Dionne and Mackworth 1978) was developed for a
M.Sc. Thesis at the University of British Columbia. It is
used to produce animated films showing the execution of LISP
programs. Antics graphically traces the evaluation of LISP
functions, taking information about the S-expression being
traced, the flow of control, and the assignment of values to
variables, and displaying it on different parts of the
screen.

Antics uses graphics to make programs written in a non-
graphical language (LISP) easier to understand. The natural
next step is to abandon the original language and to use the
graphical representation directly for programming.

This 1is what Lakin proposes (Lakin 1980). LISP 1is a
symbol processing language, whose symbols are strings of

text. Lakin's system Pam (for PAttern Manipulation) 1is a
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text-graphics processing language. Programs in Pam are a
mixture of text and graphics, and the objects they process

can likewise be a mixture of the two.

2.3 Summing up the Literature

The systems examined in this chapter are largely
experimental in nature. "Because of the size and complexity
of ICAI programs, most researchers tend to concentrate their
efforts on the development of a single part of what would
constitute a fully usable system" (Barr and Feigenbaum 1982).
It is not surprising, therefore, to find that few have found
their way out of the laboratory and into everyday use.

One aim of this thesis is to develop a practical ICAI
system, and it 1is with this in mind that the following
evaluation is made.

There have been few practical advances in student
modelling. Soloway, Matz, Burton and Brown, and Colburn have
each taken some steps towards the diagnosis of student
misconceptions, but none of them has produced a complete
system which can teach as well as diagnose.

Goldstein and McCallé, with less ambitious student
models, have each produced working experimental ICATI
programs.

It 1is interesting to compare Goldstein's Genetic Graph
with McCalla's And/Or Prerequisite Tree. Both place the
concepts to be learned into a directed graph. Both represent

the student's knowledge with a subset of this graph, and both
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represent learning by following arcs from the known territory
to the unknown.

The main difference between the two is that an arc in
the Genetic Graph represents the learning process that a
student is believed to use in traversing it, while an arc in
the And/Or Tree simply represents a prerequisite
relationship.

The Genetic Graph is a more ambitious approach, but it
seems to make less sense for a practical system. By
attempting to anticipate the student's learning processes it
is overly restrictive (expecting a student to generalize in
one case and to use analogy in another). The And/Or Tree
leaves the learning process, and the method of instruction,
more open and more flexible for individual students.

The domain models described in this chapter are of two

types. The type wused in SOPHIE to teach electronic
troubleshooting uses a relatively deep knowledge of the
domain to show students the results of their actions. The
other kind, wused in WUSOR and in the Lisp Course, simply
model the structure of the domain to show how different
topics are related.

In the long run, the greatest advances in ICAI may come

from research into new educational theories or from the use

of natural language dialogue. For the present, however, the

impact of these areas on practical systems remains slight.
LOGO 1is the only system described in this chapter that

has come into widespread use, and its success can perhaps be
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attributed to three factors. Rather than using inadequate
student and domain models to predict what the student should
be studying (often incorrectly), Logo's discovery learning

technique 1lets the student decide. It has an appropriate

domain (computer programming and problem solving), which is
large enough to be worth discovering, yet tractable enough
that students can do much of the exploring on their own.
Finally, Logo uses graphics to show students what their

programs are doing.
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Chapter Three

Prolog ICAI System Design

This chapter describes the design of the Prolog Computer
Assisted Instruction program. The Animated Trace program

will be described in Chapter Four.

3.1 Design Goals

The Prolog ICAI system was intended as a practical tool
for learning Prolog. As such, it is more important for it to
be easy to use and complete, than to be innovative. When
concepts from ICAI could make the system more flexible and
useful, they have been incorporated into the design. When it
seemed they would detract from the system's effectiveness or
its ease of use, such ideas were not incorporated.

The system was also designed to be non-authoritarian.
While an attempt was made to have the system make intelligent
decisions, students often have a better idea of their own
needs than the system does, so it 1is important to let
students overrule the system when they want to.

The Prolog ICAI system's design is independent of the
subject matter of the course it is teaching, and 1is also
independent of the instructional methods used to teach any
individual topic.

Finally, it was hoped that the system would be

interesting. That is, students should enjoy using it.
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3.2 General Design

At the highest 1level, the system's design 1is very
simple. First it chooses a topic to teach. then it chooses
a way to teach it, and then it teaches it. This cycle
repeats until the course has been completed.

To make these choices, the system consults a list of the
course topics, a prerequisite structure (described below),
and a list of the instructional methods available for each
topic.

In order to use the system to teach some other course,
one need only change the topic 1list, the prerequisite
structure, and the instructional modules themselves.

Throughout the course, the <return> key is used to let
the system make decisions. By continually pressing <return>,
a student can progress through the entire course, with the
system choosing all the topics to be studied, and the methods
for studying them. On the other hand, a student who
wants to guide his or her progress is free to do so. The
system's choices of topic and method are only defaults.

Students can always:

— Choose a topic or a method of instruction for themselves.

- Go into CProlog to try out something they have learned.

- Suspend the Prolog course, and resume it later on,
exactly where they left off.

-~ Review a topic, or review the prerequisites for a topic.

- Try alternate methods of instruction, or alternate

prerequisites for a topic.
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The “figure should be read from the top. A topic is
selected wusing information from the prerequisite tree, the
student model and from student input. The student model is
built up as the student progresses through the course, and is
initially empty.

Once a topic has been selected, the system chooses a
method of instruction. This choice depends upon the lessons,
examples, assignments, and summaries that aré available for
that particular topic. One or more items (lessons, examples,
etc.) will be presented until the topic has been
satisfactorily completed.

The student model is then updated, and the process
repeats.

Students may use the Animated Trace to further

investigate many of the examples from the course.

3.3 Methods of Instruction

The system teaches by reference to a bank of
instructional materials, which are divided into five
categories: lessons, examples, assignments, summaries, and
anything else.

Lessons present new material on a given topic. A lesson
consists of one or more pages of text. The student can
scroll back and forth within a lesson, or suspend it in order
to go into Prolog, or to look at an example.

Examples may be small Prolog programs, or merely

syntactically correct uses of a built-in predicate. Students
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can look at the examples, they can go into Prolog to try them
out, and they can use the Animated Trace to see how they
work.

Assignments consist of one or more short answer or
multiple choice questions. An assignment is complete when
all of 1its questions have been correctly answered. To
determine if an answer is correct, the system compares it
with a set of previously stored answers. It does not attempt
to evaluate the correctness of student-written programs, but
students can examine these themselves wusing the Animated
Trace.

Summaries are short versions of lessons, used for review
and to determine if a student is already familiar with a
topic. J

Anything Else means instructional materials that do not
fit easily into one of the other groups. In general, these
may consist of an arbitrary Prolog predicate (for example, a
call to a natural language tutoring program). This category
was used for the on-line evaluation gquestionnaire, discussed
in Chapter Five.

Each topic may have any number of instructional modules
available, in any of these groups. There may, for example,
be several examples for a particular topic, or several

lessons using different teaching strategies.
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3.4 The Prerequisite Structure

To teach a topic, the system will normally first £ind
and teach all of its prerequisites. It finds them by looking
at the prerequisite structure.

The representation used for this prerequisite
information 1is the And/Or Tree (McCalla et al., 1982). A
diagram showing part of such a tree is given in Chapter One.
A topic may have several prerequisites, all required, or it
may require only one of a group of prerequisites. This is
realized in the And/Or Tree as follows. If a node has
several descendents connected by an AND arc, then all are
required. If an OR arc is used, then any one of the
prerequisites will do.

A topic with AND prerequisites can be taught only after
all of its prerequisites have been taught, while a topic with
OR prerequisites may be taught after any one of its
prerequisites is completed.

McCalla's use of the And/Or tree works quite well, but
it does have one problem. To see what that is, we will have
to look more closely at the OR node.

The meaning of an OR is that there are several different
ways of satisfying a prerequisite requirement. In what
circumstances does this actually occur?

In the most common case, there are several different
methods of instruction for the same topic (eg. analogy vs.
learning by doing). Any one of the methods should result in

the same knowledge being learned by the student.
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“In ~the :.other case (much less common), -there are two
separate bodies of knowledge, either one of which 1is an
acceptable prerequisite to some further concept. For
example, the prerequisite to a computer languages course
might be a knowledge of any two computer languages.

In McCalla's And/Or Trees, no distinction is made
between alternative methods of teaching a single topic, and
alternative topics which are each acceptable prerequisites to
some third topic. Unfortunately, the two cases are not
identical, and should be treated differently.

Consider the choice of method. A good teacher, or a
good CAI program, can keep track of how well students cope
with different methods of instruction, and can use that
knowledge to choose the methods which are most 1likely to
succeed with each student.

The choice of topic is more difficult. It might be done
with a shortest path algorithm. The topic chosen would be the
one with the fewest prerequisites, so as to fulfil the
prerequisite requirements as quickly as possible. On the
other hand, perhaps it should be left up to the students,
since it depends upon their prior kﬁowledge of Prolog, and
their individual interests.

Since the choice of topic differs from the choice of
method, the two are separated in the Prolog CAI system. An
And/Or tree is used for the topics, and the choice of method

is made later on.
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Mixing the choice of topic and the choice of method of
instruction is not confined to McCalla's system. Goldstein's

Genetic Graph, for example, also mixes the two.

3.5 Choosing a Topic of Instruction

The system uses a recursive depth first search of the
prerequisite tree to choose a topic of instruction.

The search begins at the root of the tree (the end of
the course). If this node has no prerequisites, then it can
be taught immediately. If it has AND prerequisites, then
each of these must be taught first, along with their
prerequisites. If it has OR prerequisites instead, then only
one of these need be taught, along with its prerequisites.

Eventually, the search reaches the leaves df the tree
(those topics without prerequisites). The path that the
search has taken through the tree is one possible path that a
student can take through the course. Beginning with the leaf
nodes, these topics are presented to the student, and, as
each topic is completed, the student follows the search path
back towards the root of the tree.

If the student fails to learn a topic, the system will
back up and look for an alternative path through the tree by
trying other branches at OR nodes. If no better results are
achieved on any of the alternative paths, the system returns
to the failed topic (in the hope that the student has
learned something in the interim, and may be able to succeed

where once he or she had failed).
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The student.does. not need to.go along with the system's
choice of what to study. A student who is bored with a topic
can tell the system to look for another one (proceeding as if
the current topic had been successfully completed). A
student who is having trouble with a topic can ask the system
to 1look for alternatives, or can review one or more of 1its
prerequisites. Finally, a student who wants to guide his or
her own studies can disregard all the system's choices, and

pick each topic for himself or herself.

3.6 Choosing a Method of Instruction

Associated with each topic in the course are one or more
methods of instruction (lessons, examples, assignments and
summaries). Once a topic has been chosen, the Prolog CAI
system creates a menu 1listing all of the methods of
instruction for that topic (showing them in the same order in
which they appear in the Prolog database), and presents that
menu to the student. The student can pick any desired
method, or he or she can let the system choose.

The system chooses a method of instruction as follows:

Standard Order:
In general, the system will present items in the order
in which they appear in the menu. Normally, lessons
appear first, followed by examples, assignments, and
summaries. This may be changed for any topic by
varying the order in which these items are listed in the

Prolog database.
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Multiple Entries:
In some cases, several lessons exist for a single topic.
These are alternative methods for studying the same
topic, and so only one of them must be taught. It is
only if the student feels the need for another approach
that the others will be taught. This would be true also
for assignments and summaries as well, but as the course
currently stands, no topic has more than one assignment

Oor summary.

3.7 Deciding Which Topics are Previously Known

Often, a student already knows some of the course
material, or finds it to be so self-evident that it might as
well be known ahead of time.

A CAI system should be able to determine quickly which
sectioné of the course a student already knows, and then use
that information in choosing topics for individual students
to study. At the same time, its belief that something is
known might turn out to be unfounded, so that any topics that
are skipped because of it are prime candidates for review if
a student has trouble later on.

The Prolog CAI system leaves the decision of what to
skip up to the student. The student can ask to leave any
topic that seems unnecessary. Any such unfinished topics are
included later on if the system is asked to find topics to

review.
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3.8 Notes on Instructional Methodology

There is no one best way to teach. Human teachers have
a wide variety of styles, and so do CAI programs. The
structure of the Prolog CAI system allows for a wide range of
teaching styles to be used for individual topics.

The Prerequisite Outline, the Topic List, and the list
of instructional modules for each topic are sfored in a rule-
base. This makes them easy to modify during course
development, or later, during maintenance.

Lessons, examples and summaries are no more than files
of text, which can be -easily changed or augmented.
Assignments are 1lists of questions, each followed by the
accepted responses, and by the action to be taken, given each
response.

The procedures for changing the course (adding material,
or re-arranging or revising old material) is described in the

Appendices.

3.9 The Implementation

The Prolog ICAI program was written entirely in Prolog.
While this made some of the program's features especially
easy to implement (such as the creation and traversal of the
prerequisite tree), it posed certain problems as well.

CProlog (version 1.1) does not provide any graphical
predicates, nor does it allow a Prolog program to make system
calls, nor does it allow a Prolog program to call routines

written in other languages. The Graphical Trace was intended
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to be an integral part of the ICAI program, but these
deficiencies of CProlog made this impossible. The
availability of graphics from within CProlog would also have
improved the menu presentation used 1in the Prolog ICAI
program.

Another problem with the implementation turned out to be
the inadequacy of ordinary CRT displays for showing 1large
quantities of text. A number of students indicated that they
would rather have had the lesson texts on paper than on the
screen. This situation will be ameliorated with the use of
high resolution bit-mapped workstations with windowing

systems.
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Chapter Four
Animated Trace Design

4.1 Introduction

This chapter describes the design of the Prolog Animated
Trace Program called Anilog (for Animation of Logic).

Most trace programs are sequential, Their output
consists of line after line of text, 1in a terse format that
usually omits important information such as assignments of
values to variables and the creation and use of data
structures. The inclusion of this additional information to
a sequential trace makes the output bulky and difficult to
follow.

Nevertheless, such information can be very useful in
understanding programs, and it 1is often used by human
instructors in the classroom, using such wvisual aids as
flow charts, pointers to program listings, data structure
diagrams, system organization charts and so on.

Anilog teaches Prolog in much the same way that a human
instructor might. It shows the current goal, along with the
relevant parts of the Prolog database, and it points to
points of interest as it describes what is happening.

Anilog lies in between Dionne's Antics and Lakin's Pam.
It is not a full-fledged programming language. One cannot,
for example, write over part of the displayed program and
have that change incorporated in the running Prolog program.

On the other hand, it is an interactive trace; it can execute
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Prolog programs and (to some extent) it -can control their

execution.

4.2 General Design

There are two parts to Anilog. The first is an
interactive Prolog trace program, which produces voluminous
sequential output. The second part is a graphical display
program, which reads the output from the trace and displays
it in a compact graphical format on the terminal screen.

The two programs are intended to run concurrently, so
that all of the interactive trace options are available along
with the graphical display. When this is not possible (as
happened in the implementation), then the two programs can be
run in sequence. One can run the trace interactively, and
then graphically display the results.

The two parts to Anilog will be described separately
below.

A short sample protocol for Anilog is given at the end
of Chapter One, and a more complete example may be found in

Appendix 4.

4.3 The Trace

The standard Prolog trace programs do not produce enough
information about Prolog's database searches and about
backtracking.

A new trace program was written, which does produce all

the necessary information - including such things as the
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database clauses that Prolog tries to use to unify with the
current subgoal, and the variable bindings which result.

The trace is completely interactive. The user can step
through the program, stopping at any of the entry, re-entry,
success exit, and failure exit points for each goal. The
user can jump over some goals, and can re-direct the
program's execution by forcing goals to succeed or to fail.

When run separately from the graphical display program,
trace output is written both to the terminal and to a file

for later graphical display.

4.4 The Animated Display

The animated trace appears on the terminal screen, with
information displayed in three windows - one for the current
goal, one for the database, and the last for output produced
by the program being traced.

The goal window shows the current goal and the level of

recursion. The portion of the goal that Prolog is currently
working on (the current subgoal) is highlighted, and messages
are produced describing the evaluation of the goal. This
window shows, for example, whether the current subgoal
succeeds or fails; it shows backtracking; and the
instantiation of variable values.

The database window shows the «c¢lauses that Prolog

accesses while trying to satisfy the goal. Each clause that
Prolog tries to unify with a subgoal 1is displayed; the
current clause is highlighted; and messages are produced to

report whether unification succeeds or fails.

_45_



The user window is used to separate any output produced

by the program being traced from output produced by the trace
program itself.

When a new level of goal 1is created (due to the
successful wunification of a subgoal with the left-hand side
of an implication clause), a new goal window is created, and
is overlayed on top of the previous one. When this goal is
completed, 1its window is removed, and work resumes on the
previous goal, which is now uncovered.

The display produced by the animated trace has been
slowed down to suit the average user. When it 1is not
possible to run the animated display concurrently with the
interactive trace, the animated display will pause
periodically and wait for the user to press <return>. The
frequency of these stops can be controlled by setting the

leashing mode (to full, half, or unleashed).

4.5 The Implementation

The interactive trace portion of Anilog was written
using CProlog (version 1l.1). The graphical display portion
was written in 'C', using the CURSES window graphics package,
which in turn uses the UNIX Termcap terminal capability
database.

It was initially expected that the trace output could be
piped to the graphical display, allowing both programs to run
concurrently. However, when this was tried, none of the

trace output was passed to the graphical display program
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~until after the end of a CProlog session. Therefore, the
Animated Trace is not properly interactive. This situation
would not have occurred with a more fully functioned version
of Prolog. Both Quintus Prolog and MProlog, £for example,
provide the user with an external language
interface, allowing the direct wuse from Prolog of the
necessary graphical primitives.

The Animated Trace as implemented, correctly traces and
displays the execution of a wide variety of small Prolog
programs. For some larger programs, however, problems
appeared. When the program to be traced exceeded 10 1levels
of recursion, or overflowed windows, information was
occasionally written to the wrong part of the screen.

It 1is not clear to what extent this was due to bugs in
the Animated Trace, and how much it was due to problems with

CURSES, and/or with Termcap.
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Chapter- Five
Evaluation and Conclusions

This chapter describes the procedures used to evaluate
the Prolog CAI System and the Animated Trace, discusses the

results of this evaluation, and presents some conclusions.

5.1 Prolog ICAI System: Evaluation Procedure

Two evaluation procedures are built into the CAI system.

The first is an on-line comments facility. At any time
during the course, a student can write comments on the
course. These are stored in a file which can later be edited
and mailed to a system maintenance person.

The other built-in evaluation procedure is an on-line
questionnaire. After students have completed a few topics
they are asked to answer some questions about the course.
The questionnaire comes after the student has gained some
familiarity with the way the program works, but early enough
that he or she will still remember any difficulties in
learning to use any of its features. h

Users who did not complete the questionnaire on-line
were asked to complete it by hand.

The questionnaire is reproduced on the following page.

In addition to the on-line evaluation procedures, I
talked informally with each of the system's users. I sat
beside some of them as they were actually using it, in order

to see first hand the problems that came up.
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-Prolog CAI Course Evaluation

1. How much Prolog did you know before you started
this course?

2, Which of the options (described in help menus) have
you tried? Which do you never use, and why?

3. How often do you chose topics for yourself, instead
of letting the system choose?

4, Is the material in the course presented at the
right level for you?

5. Have you used the Table of Contents, the
Prerequisite Outline, or both? How useful are
they, and how could they be improved?

6. Is there anything you would like to be able to do,
but can't?

7. Would you rather not see the Topic Menus, and go
directly into lessons, etc.?

8. Are the Help messages useful?
9. How does this system compare with any other CAI

systems you have used, or with a Prolog text, or a
professor?

Figure 7: Prolog CAI Evaluation Questionnaire

About a dozen people participated in the evaluation.
Five of these were computer science graduate students and
Professors; the rest had little or no previous experience
with computers.

All of the users were thrown at the system with very
little preparation. Three had previous experience with
Prolog, but the rest knew only that they would be taught a
language called Prolog. They were not given any advance

description of the system, or of Prolog.

_49_



'V5.2‘~Animated Trace: - -Evaluation Procedure

In his paper, "What Stories should we tell Prolog
Students", Alan Bundy (1983) considers the advantages and the
disadvantages of six different methods of demonstrating
Prolog's proof procedure. He lists 10 ideals for a Prolog

story, and these will be used to evaluate the Animated Trace.

The Ideal Prolog Story

1. The overall search space of the call would be
conveyed; in particular, the backtracking points
would be indicated, and it would be obvious when
ultimate success has been attained.

2. The flow of control through the search space would be
indicated.

3. Each subgoal literal would be displayed.
4. The clauses that resolve it away would be displayed.

5. The unifiers produced by these resolutions would be
displayed.

6; The remaining literals would be displayed.

7. The other clauses that could resolve with the
selected literal would be displayed.

8. The final instantiation of the original goal would be
displayed.

9., Different instantiations of a clause would be
distinguished.

10. The effect of a cut on the search space would be
indicated.

In addition, a Prolog story should not be so cluttered
with information as to be unreadable. Bundy notes that all
of the stories he studied can be extended to cover the above
points, but doing so would leave them too cluttered to be

useful for all but the simplest of problems.
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5.3 Prolog ICAI System: Evaluation Results

Most of the naive users were content to type <return>
and let the system guide their studies. Occasionally, one
would choose a topic from the Topic List, but for the most
part, they did not try out mosf of the options available to
them.

The more advanced users experimented with more of the
options, and most found them useful. The only thing that was
regarded as unnecessary was the Prerequisite Outline (which
was seen as duplicating the facilities of the Topic List).
One complaint was that there was nothing in the system to
guide the users in their choice of topics. Since that is
precisely the goal of the Prerequisite Outline (showing the
structure of the course), clearly it was not being as helpful
as was intended.

Students who knew no Prolog thought the course material
was at an appropriate level for them, and everyone who used
the help messages liked them (with reservations noted below).

The use of a mixed-initiative dialogue worked out
well., Naive users tended to leave most choices up to the
systém, while more experienced users (particularly those with
some Prolog background) made most decisions for themselves.

There was a series of complaints about reading text from
a terminal screen. The program's users should have been
provided with a higher quality paper copy of all of the

program's lessons.
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Several students had trouble going back to review
specific points from earlier on in the course. They would
know what they wanted to review, but would not know exactly
where to find it.

In general the system proved to be useful, but it cannot
stand alone. Everyone who participated in the evaluation
agreed that it was wuseful for learning Prolog. Most,
however, had some trouble in learning how to use the system.

Sophisticated users had the fewest problems. They were
used to learning the ins and outs of new computer systems,
and had little trouble adjusting to this one.

Naive wusers, on the other hand, had a great deal of
difficulty learning to wuse the system unaided. The
particular problems varied from individual to individual, but
at some point each needed to be helped along.

While they liked the system's help messages, the naive
users wanted more. They would have preferred a natural
language explanation of just what was happening, and of what
was expected of them at any time. Naive users were often not
familiar with the idea that there can be several ways of
using a system (or modes), with different actions expected at
each.

They would, for example, try to address Prolog from
within the CAI system without first calling CProlog, or they
would try to choose a Topic List command, when they were in

the middle of a lesson describing the Topic List.
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-~ -Students - often -misjudged their own capacity to absorb
new material. They would read several lessons in a row, and
then go into Prolog to try many things at once. By this
time, however, they had forgotten some of the material they
had just covered, and had to return to the tutorial to try to
find it again. |

To facilitate this review process, the program should
allow users to scroll backwards through the course, 1in much
the same way one can flip back through a book. As it stands,
the Prolog CAI Course lets the user scroll backwards within a
lesson, but not from one lesson or topic to another.

The course material itself could be more interesting.
The things that people liked most were the examples and the
Animated Trace (see below). In particular students asked for
more interactive examples. They liked having a databaée
which they could query and change, and they liked using the
trace to study how Prolog responded to their queries and
changes.

One goal for the Prolog CAI system was to be flexible,
and it is. New topics can be added; old ones can be re-
arranged. Lessons, examples, assignments and summaries can
likewise be added or changed.

The system could even be used to teach topics completely
unrelated to Prolog, by using an appropriate prerequisite
tree, and by writing new instructional modules. Most of the
program's facilities would carry over unchanged, although the

ability to escape directly into Prolog would only be useful
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-if-you were-teaching about something that.- could -be shown from
Prolog - like the Prolog debug package, or a text editor that

could be called from Prolog.

5.4 The Animated Trace: Evaluation Results

The Animated Trace satisfies most of Bundy's criteria
for a good Prolog story.

Backtracking is shown; it is obvious when ultimate
success (or failure) is reached; the flow of control |is
displayed; each subgoal literal is shown, along with the
clauses that resolve it away; the wunifiers produced aré
shown, as are the remaining literals; clauses not in the'
final solution path are still shown when they are tried
during a proof; the final instantiation of the original goal
is displayed; and the effect of a cut is shown, not so much
on the search space, but on the movement of the proof
procedure through a goal.

The Animated Trace (as implemented) partially fails
points 7 and 9. It does not show clauses unless they are
tried during a proof, and it does not show the instantiations
of database clauses. There is, however, no conceptual reason
why it could not do both of these things, and indeed it would
be a fairly simple task to include them.

The main failing of the Animated Trace relates to
showing the entire search space. It shows that portion of
the search épace which is traversed during a proof, including
blind alleys, but it has no way of showing the remainder

{things that might have been).
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This means it falls short of the ideal for points 7 and
10 as well. Clauses which could resolve with the selected
literal are shown only when they are tried during a proof.
When they are not tried, they are not shown. Similarly, the
effect of a cut is only shown on that portion of the search
space which is investigated during a proof.

When altered to cover points 7 and 9, the Animated Trace
comes nearer to the "ideal Prolog story" than do any of the
stories Bundy describes. Furthermore, it displays its
information in a more concise and more easily followed format

than they do.

5.5 Conclusions

In this research I have tried to show how Computer
Assisted Instruction can be improved through the use of
Artificial Intelligence techniques, and good teaching
stories.

The Prolog ICAI program and the Prolog Animated Trace
were designed to be flexible and easy to use. These goals
have been successfully met.

The And/Or Prerequisite Tree proved to be a natural way
to represent the structure of the domain. As added benefits,
this structure was easily created and searched, and it helped
make the course flexible and easy to change.

The Prolog CAI program uses a very simple student model
-- a subset of the Prerequisite Tree. While simple, this

student model proved to be entirely adequate. Other, more
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- authoritarian, CAI programs require highly complex student
models to reduce their chances of making bad decisions. The
Prolog CAI program can make do with a simple student model
because it has the student's help with every decision it
makes.

The Animated Trace worked | especially well in
demonstrating Prolog's proof procedure. Students‘could use
it both to study examples from the CAI course and to follow
the execution of their own programs. By using graphics it
gives more information than traditional Prolog trace
programs, without swamping the student with details.

Future versions of the Animated Trace should be more
fully interactive. Ideally, students should be able to
change the database, rewrite part of the goal, or alter the
flow of execution while the trace is in progress. The
problems that were encountered in this research were 1largely
the result of inadequate tools. CProlog version 1.1 is
entirely lacking in access to the graphical primitives
necessary for the Animated Trace, while the poor quality of
text on the display made it a chore for students to read
through all the lessons. Future users of the CAI program
should be provided with a high resolution workstation.

Aside from its lack of graphics, Prolog proved to be a
nice language for the implementation. The construction and
traversal of the prerequisite tree was particularly simple in
Prolog, as was the coding of a modified Prolog interpreter

which provided information needed by the Animated Trace.
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"The - Prolog - CAI -program's lessons cover most of the
features of CProlog, but the treatment is at times sparse.
More work needs to be done to revise and expand upon the
lesson material, and to provide more examples and summaries.
A smoother method of paging forward and back through the
course material should be implemented, and the display of the
Prerequisite Tree should be improved.

Overall though, the programs have shown that wedding
Artificial Intelligence techniques with good teaching stories

can be used to improve Computer Aided Instruction.
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. APPENDIX 1 --The -And/Or Prerequisite Tree
A portion of this tree is shown graphically, then the
internal representation for that portion of the tree is

given. Finally, the entire tree is given, in the same manner

that it is shown to students using the course.

And/Or Tree: Graphical Representation

Prdlog Syntax

OR
Introduction Introduction
to Prqlog to Logic
AND
A Quick Using
Look at the
Prolog Tutorial

And/Or Tree: Internal Representation

prereq('A Quick Look at Prolog', 'Introduction to Prolog').
prereq('Using This Tutorial', 'Introduction to Prolog').
prereq('Using This Tutorial', 'Introduction to Logic').

orprereq('Introduction to Prolog', 'Syntax').
orprereq('Introduction to Logic', 'Syntax')
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And/Or Tree: User's View

Prolog Basics
Proof Procedure
Unification
Semantics
- Introduction to Prolog
A Quick Look at Prolog
Using This Tutorial
- Introduction to Logic
Using this Tutorial
Side-effects
Syntax
- Introduction to Prolog
- Introduction to Logic
Built-in Predicates
Input/Output
Side-effects
File Access
Character I/0
Term I/0
Reading-in Programs
Arithmetic
Operators
Syntax
Convenience
Control of Execution
The Cut
Control of Execution
Comparison of Terms
Meta-Logical
Debugging
Sets
Program Information
Environment
Changing the Data Base
Internal Data Base
Definite Clause Grammars
Syntax

Each topic 1is shown with 1its prerequisites indented
beneath it. 'Or' prerequisites are indicated with a
preceeding minus sign. For conciseness, a topic's
prerequisites are only shown once, the first time that the

topic appears.
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APPENDIX 2 - Prolog ICAI User's Manual

STARTING UP

Assuming the CAI system is in a file called 'caifile', type:

CProlog (Call CProlog from the shell)

[caifile]. (Load the system)

cai. (Remember the period!)

lines(N). (where N is the number of lines on your terminal)

If N = 60, you can skip this.
If N < 40, things won't fit on the screen.

LEAVING THE SYSTEM
Type either:

CProlog (puts you in CProlog)
save (saves what you've done, then puts you in CProlog)

LEAVING CPROLOG
Type 'cai.' to resume the tutorial.
Type 'halt.’' to quit.

Remember the P.E.R.I.O.D.S.

RESTORING SAVED STATES

Suppose the state is in file 'oldstate'. Next time you
start CProlog, type: CProlog oldstate

COMMENTS, GRIPES, ETC.

Mail them to me.

From within the system, type 'comment'. Everything that
you type from then on, until an end-of-file (4D or +C), will
be put into a file called 'mailtofogel’.

You can figure out what to do with that yourself.
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APPENDIX -3 - Anilog . Users Manual

STARTING UP

Anilog's input 1is the output from a special CProlog
trace program. If that is in a file called 'traceout':

Type: anilog traceout

USING ANILOG

At times, Anilog pauses to let you think about what
you are seeing. Here is what you can type at these times.

<cr> - continue the trace

quit ~ abort the trace

full - set leashing to full (pause more often)

half - set leashing to half (pause occasionally)

unleash - turn off leashing (never pause for input)
BUGS

Anilog is not robust, and is not guaranteed to work on
arbitrary Prolog goals. When it bombs, the terminal may be
in an unusual state. To get it back to normal, type:

<linefeed> (NOT return)

reset (NOT the reset key, type the letters r e s e t)
<linefeed>

MAKING NEW INPUT FILES

Load the file “fogel/cai/trace/trace into CProlog.
Call mytrace(G), where G is the goal to be traced.

eqg. ?- mytrace( (write(hi), write(hi)) ).
Output will be displayed on the terminal, and will also

be written to a file named ‘'traceout' in your current
directory.
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APPENDIX 4 - Animated Trace Example

The Example Program and Query:

i_like(rice).

i_like(Thing) :- has_fur(Thing).

i_like(Thing) :- can_walk(Thing),
' can_talk(Thing).

has_fur(dog).

can_talk(radio).
can_talk(X) :~ person(X).

|

|

|

|

l

|

I

. can_walk(X) :- person(X). I
|

I

|

l

person(marc). |
|

|

|

?7- i_like(Y), has_fur(Y), write(Y).
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Prolog Animated Trace

Current Goal: (Level 1)

li_like(Y), |
has_fur(Y), |
Iwrite(Y). |
|
|
|

e e > " M . n  — — — ——— — — — 4n N R S e S e - - -

> -y
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Prolog Animated Trace

Current Goal: (Level 1)

fi like(Y), <-- current subgoal I
|has_fur(Y), I
|write(Y). |
|
|
|
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Prolog Animated Trace

Current Goal: (Level 1)

i like(Y), <-- current subgoal l
lhas_fur(Y), l
lwrite(Y). |
|
|
l

e - 4 = e — - - - - - = - - — - - -
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Prolog Animated Trace

Current Goal: (Level 1)

li_like(rice), <-- success
Ihas_fur(Y),
jwrite(Y).



Prolog Animated Trace

Current Goal: (Level 1)

li_like(rice), I
lhas_fur(rice), - <-- current subgoal |
lwrite(Y). |
| l
|
|

has_fur(dog). {~- try to unify with subgoal
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Prolog Animated Trace

Current Goal: (Level 1)

[i_like(rice),
thas_fur(rice), <-- current subgoal
lwrite(Y).

has_fur(dog). {-- not unified

—— v - ———— = 4m . = e S = . T % = e = - = = W e e . — -

———— " " — - " n . " T G = G . - - - M = . — . - ——



Prolog Animated Trace

Current Goal: (Level 1)

[i_like(rice), I
[has_fur(rice), <-- failed !
Iwrite(Y). I
|
|
|
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Prolog Animated Trace

Current Goal: (Level 1)

i like(Y), <=-- redo subgoal |
lhas fur(Y), |
lwrite(Y). f
|
|
!

li_like(rice).
li_like(Thing) :- has_fur(Thing). <-- try to unify with subgoal



Prolog Animated Trace

Current Goal: (Level 1)

li_like(Y), <-- redo subgoal I
Ihas_fur(Y), (
fwrite(Y). |
l
I
|

[i_like(rice). -
ti_like(Thing) :- has_fur(Thing). <-- unified



Prolog Animated Trace

Current Goal: (Level 1)

has_fur(dog). {-- try to unify with subgoal



Prolog Animated Trace

Current Goal: (Level 1)

has_fur(dog). <-- unified



Prolog Animated Trace

Current Goal: (Level 1)
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Prolog Animated Trace

Current Goal: (Level 1)

i like(dog), <-- success
lhas_fur(Y),
[write(Y).

—— . - = = A = - - A - - - - -



Prolog Animated Trace

Current Goal: (Level 1)

li_like(dog},
lhas_fur(dog), {-- current subgoal
jwrite(Y).

. ———— = = D b e = A M M e = 4B M S TR e - e M = - ——
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Prolog Animated Trace

Current Goal: (Level 1)

i like(dog), l
lhas_fur(dog), (-- current subgoal |
Iwrite(Y). |
|
I
!

has_fur(dog). <{-- unified
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Prolog Animated Trace

Current Goal: (Level 1)

li_like(dog),
|has_fur(dog), {~- success
lwrite(Y).
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Prolog Animated Trace

Current Goal: (Level 1)

|i_like(dog),
“ |has_fur(dog),
|write(dog). <(-- current subgoal



Prolog Animated Trace

Current Goal: (Level 1)

li_like(dog), |

Ihas_fur(dog), ' |
fwrite(dog). {-- Built-in Succeeds

: l

|

|
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Prolog Animated Trace

Current Goal: (Level 1)

li_like(dog), |
lhas_fur(dog), |
lwrite(dog). <(-- Goal succeeds |
|
|
l



