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Abstract 
Paral lel architectures, like the transputer-based multicomputer network, offer poten

tially enormous computational power at modest cost. However, writ ing programs on a 
multicomputer to exploit parallelism is very difficult due to the lack of tools to help users 
understand the run-time behavior of the parallel system and detect performance bottle
necks in their programs. This thesis examines the performance characteristics of parallel 
programs in a multicomputer network, and describes the design and implementation of 
a real-time performance monitoring tool on transputers. 

We started wi th a simple graph theoretical model in which a parallel computation 
is represented as a weighted directed acyclic graph, called the execution graph. This 
model allows us to easily derive a variety of performance metrics for parallel programs, 
such as program execution time, speedup, efficiency, etc. From this model, we also 
developed a new analysis method called weighted critical path analysts ( W C P A ) , which 
incorporates the notion of parallelism into crit ical path analysis and helps users identify 
the program activities which have the most impact on performance. Based on these ideas, 
the design of a real-time performance monitoring tool was proposed and implemented on 
a 74-node transputer-based multicomputer. Major problems in parallel and distributed 
monitoring addressed in this thesis are: global state and global clock, minimization of 
monitoring overhead, and the presentation of meaningful data. New techniques and novel 
approaches to these problems have been investigated and implemented in our tool. Lastly, 
benchmarks are used to measure the accuracy and the overhead of our monitoring tool. 
We also demonstrate how this tool was used to improve the performance of an actual 
parallel application by more than 50%. 
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Chapter 1 

Introduction 

The transputer-based multicomputer network is a new and promising class of highly 

parallel computer system because it not only offers potentially enormous computational 

power at modest cost, but also serves as testbeds for research experiments in the field 

of parallel processing. The focus of this thesis is instrumentation, modelling and perfor

mance analysis of parallel programs in multicomputer networks. New instrumentation 

techniques are explored, and the design and implementation of a real-time performance 

monitoring tool is presented. 

1.1 T h e P r o b l e m s 

Monitoring a computer system relies on dynamically extracting information about 

the execution of a program at run-time, storing it and presenting it to the user in a 

useful format. The information collected by the monitor depends on what the user 

wants to know about the behavior of his program. Two traditional areas of studying the 

execution of a program are debugging and performance analysis [Miller84]. Debugging is 

concerned with the correctness of a program, while performance analysis chiefly addresses 
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CHAPTER 1. INTRODUCTION 2 

the efficiency of the program. Performance analysis includes performance measurement 

and performance tuning. Performance tools are invaluable to the application programmer 

since they not only provide performance measurement results but also help users optimize 

the performance of the program. The underlying instrumentation mechanisms used in 

debugging and performance analysis are similar. The major distinction is that debugging 

can control the execution of the program, while a performance monitor simply observes 

rather than participates in the computation. For the purpose of measuring the efficiency 

of a program, monitoring a computation without attempting to control its execution 

offers the best opportunity to understand its behavior. The emphasis of this thesis is 

in the performance aspect of understanding the execution of a program, though the 

methods and tools we have developed are also useful in uncovering bugs in seemingly 

correct programs. 

Performance monitoring in uniprocessor computer systems has been studied exten

sively over the past 20 years and is well-understood; however, research in developing 

methods and tools for monitoring, debugging, and measuring parallel systems lags behind 

the technological advances in parallel architectures, distributed operating systems and 

parallel programming languages. Uniprocessor instrumentation techniques do not gener

alize to a parallel and distributed environment. Mult icomputer networks feature asyn

chronous concurrent activities, nondeterministic and nonreproducible behaviors caused 

by unpredictable communication delays, and the lack of central control and accurate 

global t ime [HaWy90]. A l l these complicate the task of measuring and monitoring pro

grams in parallel and distributed systems. 

1.1.1 Global State and Global Clock 

A multicomputer network consists of a large number of computing nodes which run 
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asynchronously and interact with one another by passing messages. In order to obtain 

precise global states of the entire system, the measurement tasks have to be performed 

simultaneously on different nodes. Results however must be collected at a central work

station for analysis and display. Unpredictable communication delays and the lack of a 

central control mechanism make it difficult to guarantee that the measurement of tasks 

are performed at the same time and the information collected from the different nodes 

reflects a consistent global view of the system. A related problem is the difficulty in ob

taining global clock i n the multicomputer network where each node has its own physical 

clock and the drift between them is unpredictable. In parallel monitoring, an accurate 

global clock is not only useful for ordering asynchronous events on different nodes but 

is essential for measuring the elapsed time of message transmission. The logical clock 

approach [Lamport78] has been widely used for ordering events in asynchronous envi

ronments. However, it is difficult to derive absolute elapsed time using logical clocks 

since the differences of logical timestamps are not comparable to each other. Therefore, 

the logical clock approach is inadequate and inefficient to measure the performance of 

parallel programs in multicomputer networks. 

The solution used in this thesis is a global interrupt approach in which a master node 

interrupts a l l other nodes in the multicomputer networks to perform the measurement 

tasks almost simultaneously, giving us an accurate snapshot of the system. Only minimal 

hardware support was needed to implement this scheme on the transputer network and 

it can be easily extended to other closely coupled multicomputer architectures. 

1.1.2 Nonintrusive Monitoring 

One of the most desirable properties of any monitoring tool is that it should incur 

minimal overhead and cause minimum interference to a monitored application. In parallel 
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systems, stopping or slowing down a process may alter the behavior of the entire system 

and even produce different results. Unlike monitoring a centralized system, the presence 

of the monitor in a multicomputer network may not only cause severe degradation in the 

performance of the monitored application, but also distort the execution of the program 

yielding invalid results. It is impossible for any software monitoring tools to be totally 

nonintrusive since the monitoring software has to share the system resources with the 

application. Hardware monitors can be designed to have little or no effect on the host 

system, but they only provide limited, low level information about the activities of the 

host system. It is also difficult to map low level events to the source level program. The 

installation of extra hardware device requires skill and thorough knowledge of the host 

system, and can affect the hardware design and its expected performance. In addition, 

hardware instrumentation is expensive and impractical in most cases. On the contrary, 

software monitors can present information in an application-oriented manner and are 

easy to install. But if the performance results are to accurately reflect the behavior 

of the unmonitored application, the monitoring overhead must be within an acceptable 

range. [Reed89] suggests that a less than 15% performance penalty is acceptable for a 

software monitor. 

The overhead introduced by a software monitor comes from the following sources: 

• CPU time to run the monitoring software; 

• memory space to store the monitoring data; 

• communication bandwidth to report monitoring results to the host; 

• extra context switches between monitoring processes and user processes. 

In a multicomputer network where local memory available on each node is very lim

ited, it is impossible to store all information collected by the monitor locally until the ap-
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plication computation terminates. Experimental results show that when the frequency of 

reporting is high, up to 80% of the slowdown of the monitored application is attributable 

to the communication overhead of the parallel monitor. Therefore, an important issue is 

how to minimize the interference of the monitoring messages to normal communications 

of the application program. Most existing systems fail to address this problem. See 

Chapter 2. 

The approach investigated i n this thesis is an adaptive reporting scheme in which 

the monitor tries to avoid jamming the network traffic by sending out monitoring data 

only when the network is l ightly loaded. A pre-defined threshold function based on 

empirical data is used to determine whether the node is currently overloaded and whether 

the monitoring data should be sent. Limitat ions of this approach are also discussed in 

Chapter 4. 

1.1.3 Automatic Performance Tuning 

A performance tool is useful only if it can help to tune the performance of an appli

cation. It is a matter of how to present the performance data collected by the monitor 

to the user. Since the amount of trace data collected from all nodes in a multicomputer 

network is very large, it is important to present the information in a meaningful format so 

that the user w i l l not be overwhelmed. Ideally the performance tool should supply users 

wi th solutions to a performance problem rather than statistical numbers. It is necessary 

to define a few simple metrics which can characterize the performance of the parallel 

program. Unfortunately, there is no generally agreed upon model for parallel computa

tion, nor a model for the performance of these systems. Uniprocessor analysis techniques 

cannot handle the drastically increased number of parameters in parallel systems. New 

methods for analyzing the performance of parallel programs are at best underdeveloped. 
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Most existing systems only supply users with statistical summaries of the execution of 

their programs. 

In this thesis, we have developed a new performance analysis method for the mult i

computer network, called weighted critical path analysis(\W CPA). It is based on a simple 

parallel computation model in which the computation is formalized as an execution graph 

constructed using a minimal set of process events. Common performance metrics like pro

gram execution time, speedup, efficiency and granularity can be easily measured using 

the proposed method. B y incorporating parallelism into the crit ical path analysis tech

nique, W C P A helps users identify the program activities which have the most impact on 

the performance of their applications. 

1.2 M o t i v a t i o n 

The chief motivation of this thesis is the lack of tools to help users understand the run

time behavior of the parallel system and detect performance bottlenecks in their applica

tions. Though progress has been made in developing parallel operating systems [Burns88] 

[Parasoft88] and parallel programming languages [Inmos83] [Zenith90] on transputers, 

most existing systems do not provide adequate support for users to measure and analyze 

the performance of their applications. It is not unusual for the application programmer 

to write special code and insert it into the application in order to obtain even the sim

plest time measurements of the program. It is almost impossible to trace the execution 

of a parallel program on the transputers by print ing diagnosis messages from various 

places wi th in the program, as most people usually do to their sequential programs. In 

a parallel system like the transputer-based multicomputer where most nodes in the net

work do not have direct access to external devices, diagnosis messages have to be routed 

through intermediate nodes to reach the host in order to appear on the user's terminal. 
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Moreover, messages from different nodes will appear in some arbitrary order. Therefore 

it is highly desirable to provide support in the underlying operating system to capture 

these interesting events, collect and reorder them, and present to the user in a meaningful 

format. 

Experimental results show that initial implementation of a parallel program typi

cally yields disappointing performance [AnLa89]. The effort required to tune a parallel 

program, and the level of performance improvement that is eventually achieved depend 

heavily on the quality of the instrumentation that is available to the programmer. Since 

a parallel program typically consists of many components running concurrently on asyn

chronous nodes, and the interaction among different components of the parallel program 

can be quantitatively overwhelming and qualitatively complicated, it is difficult for the 

programmer to identify which part of the program contributes most to the performance 

of the entire program. It is desirable to provide analysis tools to appropriately direct the 

attention of the programmer by efficiently measuring those factors that characterize the 

performance of the entire program. 

The successful development of performance monitoring tools relies on a good under

standing of the performance characterization of the target system. Existing monitoring 

tools on transputers only provide simple statistical measures such as processor and link 

utilization on individual nodes during the execution of the whole program (see Sec

tion 2.2). There is a pressing need for new monitoring tools which can measure the 

overall performance of parallel applications and help users tune the performance of their 

programs. Previous work has concentrated on instrumentation techniques or implemen

tation tricks on the transputer rather than performance modelling itself. We feel that 

to build effective performance tools on the transputer, the first step is to define a simple 

model which can capture the performance behavior of parallel programs on multicom

puter networks. This model is described in the first part of this thesis (Chapter 3. The 
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second part of the thesis is dedicated to the designing a parallel performance monitor on 

transputers based on the model we define. 

1.3 O b j e c t i v e s a n d G o a l s 

In designing a performance monitoring tool, the following are the primary goals we 

want to achieve: 

• Functionality: The tool should provide users wi th enough information for perfor

mance studies of their program. In addition to measuring resource util ization in 

the system, it should have the ability to trace system and user-defined events. 

• Extensibility: The instrumentation should not require substantial changes to the 

host system, both in hardware and software. Also , the monitoring system should 

be flexible and allow a wide range of user interfaces and analysis packages to be in

corporated into the tool. This requires a separation of data collection and selection 

from data display and analysis and a well-defined interface between them. 

• Transparency: the instrumentation should be transparent to the application pro

grammer. T h e user should not be required to modify his program in order to 

monitor i t . The only exception to this is the case of user-defmed events, which may 

be application dependent. 

• Efficiency: The overhead introduced by the monitor should be wi thin an acceptable 

range. 

• Accuracy: The performance results reported by the monitor should reflect the 

behavior of the unmonitored application. The behavior of the program should be 

the same when running with or without the monitor. 
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• User-friendliness: The monitor should be easy to use and the resulting data should 

be easy to read. A graphical interface is necessary to display the data in a user-

friendly manner. The monitoring tool should be flexible so that it can be turned 

ON and OFF interactively, either by the user from the host, or from within the 

program running on a multicomputer node. 

There are other secondary goals. We would like the tools to be applicable to a wide 

range of systems rather than the instrumentation of a specific hardware architecture (the 

transputer) or a specific target operating system. The approaches suggested in this thesis 

should be generally applicable to other closely-coupled multicomputer architectures. 

1.4 T h e s i s O u t l i n e 

This section gives a brief description of the contents of the following chapters. 

Chapter 2 is a literature survey of previous work in areas related to parallel and 

distributed monitoring. Key ideas which contributed to this thesis are identified. 

Chapter 3 presents a performance model for parallel programs on the multicomputer 

network. We give a definition of a multicomputer network and then give a simple model 

of computation on the multicomputer network. Based on this computation model, we 

derive a set of performance metrics used to characterize the performance behavior of 

a parallel program. Finally, we propose a new method for measuring and analyzing 

the performance of parallel programs on the multicomputer network. Applicability and 

limitations of this method is also discussed in Chapter 3. 

Chapter 4 describes the design and implementation of a parallel performance mon

itor on the transputers. It begins with a brief overview of the hardware and software 

instrumentation environment, followed by the description of the design of the monitor-
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ing system. Various techniques applied in the parallel monitor are described in detail, 

with new approaches to the problems discussed in section 1.1 and their implementation 

highlighted. The design of the graphical user interface is briefly described at the end of 

chapter 4. 

Chapter 5 presents the testing and verification results. The accuracy of the resource 

utilization results measured by the monitor is validated by comparing against artificial 

load programs. Measurement of monitoring overhead is discussed, and a comparison is 

made between our clock synchronization technique with other reported software clock 

synchronization algorithms for transputers. 

Chapter 6 shows an example of how the performance monitoring tool is used to tune 

the performance of a real parallel application. It demonstrates how it helps to discover 

a serious bug in a seemingly correct parallel program. 

Chapter 7 concludes the thesis by summarizing key ideas presented in the previous 

chapters and suggests future enhancements of the monitoring tool. 

Appendix A is a detailed description of the architecture of the transputer-based mul

ticomputer network. Appendix B contains a list of changes made to the target software 

system, namely the Trollius Operating System. An up-to-date bibliography on parallel 

and distributed monitoring is included at the end of the thesis. 



Chapter 2 

Related Work 

The problem of monitoring the execution of a program in a parallel and distributed 

system has attracted much attention among researchers in recent years. Prototypes of 

monitoring tools have been developed on a wide range of parallel architectures, wi th 

emphasis on either debugging or performance analysis [Joyce87]. These systems apply 

different techniques and achieve different degree of success in dealing wi th the problems 

presented i n Section 1.1. In this chapter, we first make a general survey of tools developed 

in other distributed and parallel environment. Second we give a brief review of existing 

monitoring tools on transputers. Since the body of literature on parallel and distributed 

monitoring is large, we only present works that are of particular interest to performance 

studies and have had the most influence to the design of our tools. We also identify ideas 

that have contributed to this thesis and point out deficiencies in the model or design of 

existing systems. 

2.1 P a r a l l e l P e r f o r m a n c e M o n i t o r i n g 

A m o n g the existing tools to monitor the performance of distributed and parallel 

11 
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programs, the following systems have the most influence to the design of our tool. 

IPS [MiYa87][Miller90] is a performance measurement system for parallel and dis

tributed programs developed at the University of Wisconsin-Madison. IPS is based on 

the ideas proposed in Mil ler ' s P h . D thesis [Miller84] and its predecessor D P M [Miller88]. 

IPS uses a hierarchical model as the framework for performance measurement. The be

havior of a program is described at multiple levels of abstraction. Program level is the 

top level of the hierarchy and it describes the general behavior of the whole program, 

such as program execution time and speedup. The next level below is the machine 

level, which records summary information for each node and the interaction between 

them, such memory and C P U utilization of each machine. The process level ignores the 

machine boundary and views the distributed computation as a single group of communi

cating processes. A t procedure level, a distributed program is represented as a collection 

of sequentially executed procedure call chain for each process. The lowest level of the 

hierarchy is the primitive activities level, which is a collection of primit ive activities that 

are detected to support upper level measurement. Performance metrics are defined for 

each level in the hierarchy and allow the the behavior of the program to be viewed at 

different level of detail. IPS applies different techniques to measure events at different 

level. Da ta for process, machine and program level are collected using event tracing, 

while data for procedure and primitive activities level are collected using periodic sam

pling. IPS is designed for loosely-coupled, message-based distributed environment and 

has been implemented under the Charlotte Distr ibuted Operating System as well as the 

4.3BSD U n i x systems. The ini t ia l version of IPS [MiYa87] only supplies a simple textual 

user interface. T h e second generation of the tool, IPS-2 [Miller90], extends the old sys

tem with an interactive graphical user interface, which allows the programmer to display 

metric in tabular or graphical form and use the analysis tools interactively. IPS uses the 

instrumentation strategy of modifying the run-time library provided by the underlying 
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operating system. Hooks are automatically inserted into the application by selecting a 

compiler option. 

IPS provides automatic guidance techniques for performance tuning. The most im

portant tool it provides is to find the path that consumes the most time through a graph 

of the program execution history, known as critical path analysis (CP A). In this thesis, 

we develop a new variation of this which we call weighted cr i t ical path ana lys i s (WCPA). 

W C P A incorporates the notion of parallelism into C P A , i n order to precisely reflect the 

relative importance of program elements to performance.(See Section 3.4) A n analysis 

technique called phase behavior analysis which tries to automatically detect different 

phases in the parallel computation, is being investigated in IPS-2. 

IPS does not address the problem of global state and global clock. It assumes that 

the clocks supplied by the underlying operating system are already synchronized among 

different machines. Also it does not address nonintrusive monitoring, especially the 

overhead of transferring large amount of trace data over the network. The overhead of 

IPS-2 [\liller90] ranges from 10-45%. Another disadvantage is that IPS is a post-mortem 

tool. Performance results cannot be viewed by the user i n real-time, which makes it 

inappropriate for long computations. 

Quartz [AnLa89], developed at the University of Washington, is a tool for tuning 

parallel program performance on a shared memory multiprocessor. The principle metric 

used by Quartz is the total processor time spent in each section of code along with 

the number of other processors that are concurrently busy when the section of code 

is being executed. W h e n tied to the logical structure of the program, this correlation 

provides a "smoking gun" pointing at those areas of the program most likely responsible 

for poor performance. Quartz is implemented on the shared memory Sequent Symmetry 

Multiprocessor. Nonintrusiveness is achieved in Quartz by using a dedicated processor 

statistically checkpointing to shared memory the number of busy processors and the state 

file:///liller90
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of each processor. Each procedure in the application is assigned a weight as the total 

processor time of each procedure divided by the number of concurrently busy processors 

during the execution of the procedure. To focus the programmer's attention on the 

program segments that have the greatest impact on performance, Quartz presents a list 

of procedures sorted by its weight plus the weight of work done on its behalf. The 

W C P A method proposed in this thesis was inspired by Quartz. However, while Quartz 

incorporates the notion of parallelism into the sequential U N I X tool gprof, we incorporate 

the notion of parallelism into our own cri t ical path analysis. 

Another interesting tool is the T M P monitoring system developed by Haban and 

Wybranie tz for the I N C A S experimental multicomputer environment [HaWy90]. T M P 

is a hybrid monitor which is designed to benefit from the advantage of both hardware 

and software monitors while overcoming their deficiencies. A special hardware support, 

which consists of a test and measurement processor(TMP), is designed and attached to 

each node in the multicomputer. T M P s are used to collect and process event trace data 

generated by the instrumented application. A l l T M P s are connected v ia a separate net

work to a central station, thereby avoiding any interference of transferring trace data to 

the host system. Since monitoring data are collected, processed and transferred using ex

tra hardware devices, the operations of T M P s are completely transparent. The overhead 

introduced by the monitor is min imal (less than 0.1%). Moreover, since events are gener

ated by software, using the semantic information about the program structure provided 

by the compiler, the monitoring software is able to present data in an application-oriented 

manner. In T M P , probes to trigger events are placed in the operating system kernel so 

that it is not necessary to recompile the user's program. The probe routines write a 

trace entry to a special memory location which is then read by the T M P hardware. 

T M P also provides a graphical user interface to display performance results. Although 

T M P achieves a very attractive degree of transparency, the degree of hardware support it 
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requires makes it expensive and unportable to most multicomputer systems. The global 

interrupt approach proposed in this thesis is partly inspired by T M P . We follow the 

principle of using minimal , affordable hardware support to achieve performance beyond 

the scope of any pure software monitoring tools. Several different approaches have been 

investigated in T M P to solve the problem of global state and global clock. 

1. A k ind of logical clock algorithm [Lamport78] has been implemented to preserve 

the causality relationship of events which occur on different nodes. 

2. A software solution similar to the T E M P O algorithm [GuLa84] has been imple

mented to synchronize the clocks on different machines. 

3. The T M P hardware offers the use of a central physical clock which triggers the 

local time counter on each T M P . 

The current implementation of T M P only supports (1) and (2) and is able to synchronize 

the clocks i n the order of lOOusec. 

In summary the major drawback of their system is the need for extensive hardware 

support and the lack of advanced tools for analyzing the performance data. 

2.2 T r a n s p u t e r M o n i t o r i n g T o o l s 

The research and development of monitoring tools on transputers dates back to Capon 

and West's program transformation technique to monitor channel communications in Oc

cam programs [CaWe88]. In their system, efforts are made to insert monitoring processes 

and additional communication channels between two communicating processes without 

changing the semantics of interprocess communication in Occam. It is a source level 

instrumentation technique and programmers are required to manually transform their 
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program before they can be monitored. Recently C a i and Turner [CaTu89] extended this 

approach to monitor real-time Occam programs. The emphasis of their work is to use a 

logical clock to minimize the interference and achieve high transparency, in particular, 

to satisfy the real-time constraints in some applications. It is based on program trans

formation and requires manually modification of the original program. A l l of this work 

is specific to the Occam language. Neither system addresses the problem of global clock 

and reporting overhead. 

A third transputer monitor is the one developed at Hong K o n g University [HoLa89]. 

It measures the processor utilization and channel communications on an individual node. 

Three different methods are used to measure the ut i l izat ion of each processor: periodic 

probing, idle counting and process profiling. Moni tor ing overhead is reduced by using 

assembly transputer instructions and careful code optimization. Their tool is rather 

simple in functionality. No advanced analysis is made of the data. On ly statistical 

summaries are supplied by their tool. 

The Vic to r project [Shea89] at I B M provides hardware support for nonintrusive mon

itoring in transputer-based multiprocessor. Moni tor ing is achieved with a separate hard

ware status bus which is independent of the regular transputer links and is connected to 

a dedicated P S / 2 monitor system. In each node there is a scan register and a scan bus 

through the system that is controlled by the coprocessor adapter in the P S / 2 coprocessor 

adapter for real-time acquisition of status data. The information collected for each node 

includes l ink activity, host id , memory activity, and state of user programmable L E D s . 

Al though the V i c t o r hardware monitor achieves a high degree of transparency, it has the 

same problem as most other pure hardware monitors. It can only be used to monitor low 

level activities of the system and is incapable of providing users with views of the system 

in an application oriented manner. 

One recent work in transputer monitoring is G R A V I D A L [VoZe90l. a graphical visu-
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alization environment for Occam programs on arbitrary transputer networks. It provides 

animated user defined views of the algorithm during run-time. The user has to manually 

place special statements into his source code and GRAVID AL will generate visualized ver

sion of his algorithm. GRAVID AL displays CPU load and link load as well as user-defined 

events on each node. A logical clock algorithm has been implemented in GRAVIDAL to 

order events on different nodes. GRAVIDAL does not provide an analysis tool for per

formance tuning since its emphasis is on graphical animation rather than performance 

studies of parallel programs. 



Chapter 3 

Performance Model 

A parallel computat ion can be characterized by the way different components of the 

parallel program interact. There are two main streams in parallel processor design: 

shared memory architecture and distributed memory architecture. Processes in a shared 

memory system communicate v ia global shared variables, while processes on a distributed 

memory machine communicate by message passing. The multicomputer network is a 

class of distr ibuted memory, M I M D parallel architecture. This chapter discusses the 

performance characterization of parallel programs on a multicomputer network. 

3.1 D e f i n i t i o n o f M u l t i c o m p u t e r N e t w o r k s 

A multicomputer network is a locally concentrated set of loosely coupled autonomous 

nodes interconnected in some topology, each wi th a microprocssor, local memory and 

hardware support for internode communication. Since hardware costs usually limit the 

number of connections on each node to a small number and the multicomputer net

work is only sparsely connected, messages must often be routed through a sequence of 

intermediate nodes to reach their destinations [ReFu87], 

18 
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The multicomputer network has the following characteristics which distinguish itself 

from other parallel architectures: 

• Scalability: Comput ing nodes can be easily added to a multicomputer network to 

obtain extra processing power. Mult icomputer networks of a large number of nodes 

have shown to have very impressive peak performance. 

• Message-based communication: Mult icomputer nodes can only communicate via 

message passing over the interconnection network. This distinguishes it from tightly 

coupled shared memory architectures. 

• Geographical concentration: Unlike loosely coupled systems which consists of nodes 

over a wide area, multicomputer nodes are usually packaged into a few boxes in 

the same room. 

• Communication locality: In contrast to LAN-based environments where communi

cation is unreliable and delays are measured in milliseconds, the communication in 

the multicomputer network is considered reliable and nearest neighbour communi

cation is usually measured in microseconds. 

Recent development in V L S I technology has paved the way for the development of mul

ticomputer networks. General purpose building blocks have been proposed to simplify 

the multicomputer design and construction. The Inmos transputer is among the most 

successful in the commercial market [Inmos89]. The IMS T800 transputer is a single 

chip with a 32-bit processor, 4 Kbytes of on-chip memory, a floating point un i t (FPU) , 

four bidirectional bit-serial communication links, and a simple interface to memory and 

I / O devices. B o t h message passing and process scheduling are supported in hardware, 

yielding a highly efficient implementation. A multicomputer network can be easily con

structed using IMS transputer boards. Appendix A of this thesis wi l l contain more 
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detailed information about the transputer architecture and construction of transputer-

based multicomputer networks. 

3.2 G r a p h R e p r e s e n t a t i o n o f P a r a l l e l C o m p u t a t i o n 

A parallel program is composed of many concurrent processes running on asyn

chronous multicomputer nodes, interacting with one another by message passing. From 

the programmer's point of view, basic process activities include: process creation, pro

cess destruction and interprocess communications. The execution of a process can be 

viewed as a sequence of primitive process events. Interprocess communication can be syn

chronous or asynchronous. In this thesis, we mainly discuss a so called semi-synchronous 

interprocess communication paradigm which is supported by most operating systems 

on multicomputer networks. It is possible to extend this model to systems which sup

port strictly synchronous and asynchronous interprocess communications. In the semi-

asynchronous scheme, the sending process unblocks as soon as the message is sent, while 

the receiving process blocks un t i l the expected message has arrived. Three types of prim

itive events are defined for interprocess communication activities: message send, receive 

call and message arrive. The process is suspended between a receive call event and the 

subsequent message arrive event. 

Based on the previous discussion, a parallel computation on a multicomputer net

work can be formalized as a directed acyclic graph ( D A G ) , called the execution graph 

G =< V, E > where V is the set of nodes and E is the set of edges. A node in the graph 

represents a process event. It is one of the primitive events or a user-defined event. The 

following is a minimal set of primit ive events for constructing the execution graph: pro

cess creation(procJnit), process destruction(proc_ej:i), message send(msg^send), receive 

call( recu_ca//), and message arrive(msg.arr). There are two types of edges in the graph, 
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which defines a partial order over the set of a l l the nodes. A vertical edge represents 

the computation activities between two consecutive events of the same process. The di

rection of the edge represents the temporal ordering of the two events. A diagonal edge 

represents the communication between two processes. There is always an edge from a 

msgjsend event to a corresponding msg.arr event in the graph. No edge exists between 

a recvjcaU event and the following msgjarr event because the process is suspended and 

there is no computation between these two events. The execution graph has the following 

properties: 

• In a parallel computation with n processes, there are exactly n nodes wi th in degree 

zero, representing the incarnation of the processes. 

• Each node in the graph has max imum in-degree 2. 

• The max imum out-degree for each node is n if multicast is supported; 2 otherwise. 

Each node in the execution graph can be tagged wi th the global timestamp of the cor

responding process event. The elapsed time between any two events can be calculated 

by comparing the two timestamps. Figure 3.1 shows the execution graph of a parallel 

computation wi th and without multicast. 

3 .3 P e r f o r m a n c e M e t r i c s 

In this section, we derive performance metrics for this system based on the parallel 

computation model defined in the last section. 

A s in the performance analysis of sequential programs, the overall performance of a 

parallel program can be measured by the program execution time. We assign a weight 

to each edge in the execution graph equal to the elapsed time between its source event 
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proc-initi proc-init proc-init 

proc exir proc-exit proc-exit 
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msg-send 

proc-exit; proc-exit proc-exit 

(A) Paral le l computation without multicast (B) Paral lel computation wi th multicast 

Figure 3.1: A n Example of Execution Graphs 
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and its destination event. The program execution time is given by the length of the 

longest path of the execution graph. Figure 3.2(A) shows the weighted execution graph 

for a parallel computat ion wi th three processes on two processors. Processor 0 timeslices 

between the two processes. The longest path, or the critical path [YaMi88], is highlighted 

in the graph. T h e program execution time is the sum of the weights of a l l the edges on 

the longest path, i.e. 25 + 8 + 5 + 10 + 3 + 3 + 15 = 69. 

Two other important metrics for parallel programs are speedup and efficiency. Let 

T(n, k) denotes the program execution time of a parallel computation wi th k processes on 

n processors, speedup is defined as S(n,k) = T(l,k)/T(n,k) and efficiency is defined as 

E(n. k) = 5 ( n , k)/n. Speedup is bounded by the number of processors, i.e. S(n, k) < n. 

In the execution graph, let C,- denotes the total amount of time process i spends in 

computation. Assuming that the same amount of work is done it follows that 2~Ii=i C{ = 

T(l,k). Subst i tut ing this in for T(n,k) in S(n,k), we obtain speedup as the ratio of 

total computation t ime to program execution time: 

. If there is no mult i tasking on the same processor, then C , is the sum of the weights of al l 

the vertical edges that belong to process i. In a parallel computation where some proces

sors are timesliced among multiple processes, the calculation of C, is more complicated. 

The execution graph has to be relabelled by assigning C P U time rather than elapsed 

time as the weight to the vertical edges in the graph. The CPU time of a vertical edge is 

the time the process is active computing between its source and destination event. Let P 

denote the C P U time and E denote the elapsed time between the two events. P = E if 

there is no timeslicing. Let A j be a time interval between the two events and the number 

of active processes on the processor during an interval of time rrij. Suppose there are / 
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such intervals between the two events. The CPU time is: 

P = £ - £ 
(m,- - l)Aj 

rrij 

The total computation time for a process can be computed by the sum of the CPU 

time of all vertical edges that belong to that process. Figure 3.2(B) shows that the 

execution graph in (A) with its vertical edges relabelled by the processor time. The total 

computation time of the execution graph is: ]£f=i C, = (18 + 2 + 10) + (17 -j- 3 -|- 8) + 

(5 + 5 + 20) = 85. The speedup of the program on 2 processors is 1.23 and its efficiency 

is about 62%. 

The granularity of a parallel program can be defined as the amount of time it spends 

in communication routines as compared to the total amount of computation. Let M 

denote the sum of the weights of all the diagonal edges in the execution graph. This is 

the total communication time of the program. Since the total computation time of the 

program is Yli=i Ci, the computation to communication ratio is (IZ?=i Ci) : M. This ratio 

for the program in Figure 3.2 is 80 : 20. 

In addition to the overall performance metrics for the whole program, we are also 

interested in the resource utilization on individual nodes over a given period of time. 

In a multicomputer network, the two most important resources are processors and com

munication channels. Given a time interval At, the degree of parallelism achieved in 

the system during At can be derived from the processor utilization of each individ

ual node Ucpui- Given n processors, the parallelism of the system is calculated by: 

P&t = {J2?=i UcpUi)/n. If At = T, then parallelism is equal to the efficiency of the 

parallel program, i.e. P^t = E(n). Similarly, we can define traffic load of the network 

during At as: LAt = Uunk^/m where denotes the utilization of fink i during 

At and m is the total number of links in the network. 

A l l of the above metrics are defined at the program level. That is, they reflect the 
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(A) An execution graph with multitasking (B) Relabelling the execution graph in (A) 

Figure 3.2: Assigning Weight to A n Extended Execution Graph 
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performance of the entire program. F rom the execution graph, it is also possible to derive 

performance metrics at the node level and process level, such as communication frequency 

between two nodes. These are simply statistical summaries and their calculation is 

straightforward. 

3.4 W e i g h t e d C r i t i c a l P a t h A n a l y s i s ( W C P A ) 

The performance measures described in Section 3.3 wi l l supply users wi th answers to 

how efficient their programs run. It does not answer questions the efficiency of their pro

grams or the locations of performance bottlenecks. The crit ical path analysis technique 

proposed in [YaMi88] tries to focus the user's attention to the sequence of program ac

tivities which take the longest time to execute. It is hoped that knowledge of the cri t ical 

path of a program's execution helps the user identify performance problems and better 

understand the behavior of their program. W h i l e the cri t ical path is useful i n measuring 

the program execution time of a parallel program (Section 3.3), the question we would 

like to answer is: does the sequence of program activities that take the longest t ime to 

execute accurately reflect the activities which contribute most to the performance of the 

program, or are several parts of the program which take equal time to execute on one 

node equally important to the overall performance of the parallel program? A positive 

answer seems to be intuitive for those who are used to programming in a uniprocessor 

environment. However, in a parallel system, the degree of parallelism achieved has a 

dramatic impacts on the overall performance of the program. For instance, executing a 

segment of code on one node with al l other nodes busy is not equivalent to executing 

for the same period of time with a l l other nodes idle. The latter indicates a potential 

sequential bottleneck in the parallel application and thus has a more significant effect 

on the performance of the program. Generally speaking there are two ways to deal with 
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sequential bottlenecks in parallel programs. One is to re-structure the program to remove 

the sequential component. This requires substantial changes to the application and may 

not always be possible since many parallel applications have an inherently sequential 

component. If / is the fraction of computation which has to be executed sequentially, 

the upperbound for speedup on n processors is given by Amdahl ' s law [EaZaLa89]: 

S ( n ' k ) < / + ( ! - / ) / . 

Another approach is to optimize the code that has to be executed sequentially, thus 

reducing the fraction of sequential computation / . Therefore, it is essential to identify 

the sequential bottlenecks in the application. Consider the port ion of a critical path 

shown in Figure 3.3. Suppose the number of processor is 100. A conventional critical 

path analysis tool would assign a weight,the elapsed time, to each edge. The elapsed 

time between event A and event B is 100 msec, while the elapsed time between B and 

C is 500 msec. It appears that the computation activities between event B and event C 

have a more significant effect on the performance of the program since they need longer 

time to execute. Since P&t = 0 between A and B, which means a l l other nodes are idle 

during that t ime interval, improving the execution time between A and B by 50% would 

reduce the program execution time by 50 msec. O n the other hand, since a l l other nodes 

are busy between B and C, reducing the execution time between B and C has litt le or no 

effect on the performance of the program unless the execution time on a l l other nodes is 

also improved. The cri t ical path of a parallel computation consists of a large number of 

events and it is difficult for the user to determine the relative importance of computation 

activities on the crit ical path to the performance of the program. The above example 

shows that the elapsed time alone is insufficient to capture the relative importance of 

concurrent program activities. 

Based on the above observation, we present an analysis method, called weighted crit-
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Figure 3.3: A Portion of the Critical Path 

ical path analysis (WCPA), which incorporates the notion of parallelism into the critical 

path analysis. The purpose of WCPA is to the identify sequential components and activ

ities with low degree of parallelism on the critical path. It is similar to the performance 

measurement technique used in Quartz [AnLa89] on shared memory machines(see Chap

ter 2). In WCPA, we apply the notion of parallelism to process activities on the critical 

path rather than to procedure activities in Quartz due to the unacceptable overhead of 

monitoring procedure level events in multicomputer networks. In the WCPA approach, 

an edge in the execution graph is weighted by two factors: the elapsed time between the 

two events and the degree of parallelism during that period. Let P&t denote the parallel 

factor during time interval At where At is the elapsed time between the two events and 

n is the number of processors in the system, the weight assigned to the edge is computed 

by: 

w = At + {l- PAt){n - l)At (0 < PAt < 1) 

When PAt = 1, i-e. maximum degree of parallelism is achieved, the weight assigned to 

an edge is equal to the elapsed time At; when P&t = 0, i.e. there is no parallelism in the 

system, the weight is maximized at nAt. An interpretation of this is that when there 

is no parallelism, the execution on one node is wasting the resources on all other nodes, 

virtually consuming the resources of the entire system. Now, the longest weighted path 

in the execution graph represents the sequence of program activities which have the most 
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significant effects on the overall performance of the parallel program. In Figure 3.3, the 

weight assigned to edges by the WCPA method is shown in brackets. Note that the 

weight for edge < A, B > is now 10100, far more than the weight of edge < B,C > 

500. This correctly reflects our intuition about the relative importance of these program 

activities. A good metric to measure the relative importance would be the percentage 

of each portion on the weighted critical path out of the total weight of the whole path. 

The computation activities which weight the most on the critical path represents "the 

hottest of hot spots" in the program. Optimization of these components is expected to 

result in substantial improvement of the performance of the program. 

3.5 S u m m a r y 

In this chapter, we introduced a graph theoretical model of parallel computation on 

multicomputer networks, which we called an execution graph. We show that a sufficient 

set of five primitive events: procjnit, procexit, msgsend, recv.call and msg.arr are 

adequate to construct the execution graph for any parallel computation. Various perfor

mance metrics can be derived from the execution graph. Based on this model, we also 

developed a method to diagnose performance problems in parallel applications. This was 

based on the critical path analysis technique but incorporated the notion of parallelism in 

locating performance bottlenecks of the program. The method we proposed is shown to 

be able to reflect the relative importance of program activities to the overall performance 

more accurately than the conventional critical path analysis technique. The model and 

methods proposed in this chapter can be adapted to other message-based parallel and 

distributed environment with minor modifications. 



Chapter 4 

Design of the Parallel Monitor 

This chapter describes the design of a parallel performance monitor and its imple

mentation on transputers. In Chapter 1, we discussed the major issues in monitoring 

parallel and distributed systems and possible solutions to these problems. In this chapter 

the techniques and approaches used to overcome these problems are described in detail. 

4.1 E n v i r o n m e n t 

We begin wi th a brief description of the underlying instrumentation environment. 

One of our design goals is that the instrumentation should require minimal changes to 

the target hardware and software system. 

4.1.1 Hardware Architecture 

The parallel monitor is currently implemented on a 74-node transputer-based mult i 

computer in the Department of Computer Science at U B C . The multicomputer consists 

of a Sun 4 workstation as the host and 74 I M S T800 transputers, each containing 4 

30 
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Kbytes on-chip R A M , 4 bidirectional serial links, and 1 Mbytes or 2 Mbytes local mem

ory. The 74 transputer nodes are interconnected through 10 programmable crossbar 

switches. Detailed description of the hardware architecture of the T800 transputer and 

the C004 crossbar switches and their physical connection can be found in Appendix A 

of this thesis. T h e transputers in the network are connected to the host Sun worksta

tion by a V M E bus interface. There are currently seven connections between the host 

and the transputers, Nodes which do not have direct connection with the host can only 

communicate wi th the host through intermediate nodes. 

The interconnection topology of the transputer network can be dynamically reconfig

ured by software running on the Sun which sends switch setting commands to the crossbar 

switches. Figure 4.1 shows a multicomputer network wi th 72 transputers configured as 

a 8x9 2-dimensional cylinder. 

4.1.2 Underlying Operating System 

The target software system is the Trollius Operating System [Burns88], a parallel 

operating system developed jointly at Cornell Universi ty and Ohio State University for 

distributed memory mul t i compute r and ported to the transputer-based multicomputer 

at U B C . Trollius provides a cross-development environment for parallel programming on 

transputers. It consists of two parts, one part which runs on the host and the second 

part running on transputer nodes. Trollius executes on top of U N I X on the host and 

provides a user command interface to boot the node, download programs to transputers, 

k i l l processes, etc. The most important tool provided by Trollius is message passing 

between processes. There are two levels of message passing in Troll ius. The kernel level 

allows communication between processes on the same node; the network level allows 

communication between processes on different nodes, as well as on the same node. A 
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Figure 4.1: A Multi-Transputer Network Configured as a 8x9 2-D Cylinder 
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Trollius process sending a message does not directly specify the process to receive the 

message, or vice versa. Instead, each process specifies an event type i n the header of 

the message. If the event type specified by the sending and receiving process match, 

the message w i l l be passed from the sender to the receiver. In network level message 

passing, the sender also has to specify the destination node of the message. Since the 

recipient of the message does not have to specify the source node, it can receive messages 

from a variety of senders. Trollius supports both an asynchronous and semi-synchronous 

interprocess communication paradigm as described in Chapter 3. Mul t icas t facility is also 

supported in Troll ius. Other tools include library routines for process creation, process 

destruction, signal handling, and access to remote file systems. For a detailed description 

of the Trollius Operating System, readers are referred to [Burns88]. 

4 .2 S y s t e m S t r u c t u r e 

Figure 4.2 shows the basic structure of the parallel monitor. There are three major 

components: data generating and collection, global control, data analysis and display. 

One transputer in the network is distinguished as the master node. It is capable of 

interrupting a l l nodes in the system to perform measurement tasks simultaneously. 

The monitoring software running on the master node includes an interface that ac

cepts monitor command from the user, and a controller that generates global interrupt 

signals to synchronize the monitoring activities on a l l slave nodes. The data generation 

and collection mechanism include: 

• Event probes inserted into the application running on slave nodes used to generate 

trace data, and a meter process to collect the event traces as they occur; 

• A backend process on each slave node that performs sampling and clock synchro-
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nization on the arrival of global interrupt signals. 

• A buffer pool on each slave node to store the trace data and cache intermediate 

results from the meter process and the backend process. The buffer manager flushes 

the buffers when they are full to make room for new trace entries. The trace data 

are sent back to the host for analysis using the message passing mechanism provided 

by the underlying operating system. 

• The collector on the host collects trace data from all of the slave nodes. 

The host collector sends the data to the data display which displays the performance 

results graphically to the user in real time on the frontend host station. The data are 

also dumped to trace files for input to the data analysis packages. 

4 . 3 B a s i c I n s t r u m e n t a t i o n T e c h n i q u e s 

There are two traditional ways of monitoring a computer system: event sampling and 

event tracing. 

4.3.1 Event Sampling 

Event sampling is a statistical approach to obtain an accurate estimation of the 

behavior of the computer system. The measurement task is performed at a pre-specined 

time interval for a long period of time. The main advantage of event sampling is that 

the amount of data it generates is small as compared to other approaches. This both 

reduces the monitoring overhead and simplifies the analysis. 

In order for the data collected by sampling to be representative, sample size should 

be large and the sampling interval should be short so that the distribution of workload 
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is homogeneous [Chan87]. Event sampling has proved to be the most economical and 

effective way of measuring resource utilization of the system. In a multicomputer network, 

sampling can be used to measure the uti l ization of processor and communication channels 

on each node wi th minimal overhead. However, unlike event sampling in uniprocessor 

systems, the sampling activities on different nodes must be coordinated to obtain results 

that reflect a consistent global view of the entire system. 

4.3.2 Event Tracing 

Unlike event sampling, event tracing measures events as they occur. Special software 

probes are inserted into strategic locations in the application programs or in the operating 

system kernel to trigger the recording of interesting events. Event traces are captured, 

buffered, and analyzed for display to the user. A major drawback wi th event tracing is 

that it is expensive when the frequency of the occurrence of the events to be traced is 

high. 

In mult icomputer networks, the volume of events generated on al l node during a 

parallel computat ion can be enormous, however, the buffer space available on each node 

is very l imited and the cost of transferring large amount of data across the network is 

extremely high. Therefore, event tracing is only suitable for measuring high-level events 

in systems wi th these characteristics. 

Another problem wi th event tracing in a parallel system is that though events that 

occur on the same node can be totally ordered, events from different nodes may arrive at 

the host in unpredictable order. A single clock is needed to re-order these asynchronous 

events on the host. This requires the local clocks on different node be synchronized. 
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4.3.3 Hybrid Monitor 

The parallel monitor we designed was a combination of the sampling and event tracing. 

It uses sampling to measure the resource utilization on each node, but uses event tracing 

to monitor the process events defined in Chapter 3. The process events collected are 

used by the analysis tool to reconstruct the complete execution history of the parallel 

program and to provide insight into the run-time behavior of the program. 

4 .4 G l o b a l C o n t r o l 

4.4.1 The Global Interrupt Approach 

In order to obtain precise global state and synchronized global clock in the multicom

puter network, we used a global interrupt approach, in which a master node interrupts 

all other nodes in the system to perform the measurement tasks almost simultaneously. 

A basic assumption is that the time required to respond to a global interrupt signal is 

negligible. The global interrupt approach can be used to start or stop a computation on 

all the nodes in the system. By generating periodic global interrupt signal, measurement 

tasks can be performed at some predefined time interval on system-wide basis. 

It is generally not always feasible to implement the global interrupt scheme in a loosely 

coupled distributed systems. However, the multicomputer network features geographical 

concentration and communication locality, it is usually easy to extend such system to 

support global interrupt. Only minimal hardware support is needed to implement the 

global interrupt in a transputer-based multicomputer network. 
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4.4.2 Hardware Extension 

Hardware requirements for implementing global interrupt scheme in a multicomputer 

network are: 

1. A mechanism on each multicomputer node to accept interrupt signal and transfer 

control of the processor to the interrupt handling routine without delay. 

2. A mechanism to deliver the external interrupt signal to a l l nodes in the network. 

3. A mechanism to generate the interrupt signal, either from a multicomputer node 

or from any other external source. 

The IMS T800 transputer provides an event channel in addition to the four data 

channels on each board. When the input of the event channel is held high, the process 

waiting for the event signal is scheduled. If the process blocking on the event channel is 

a high priority one and no other high priority process is running, the latency is at most 

58 processor cycles [Inmos89]. Since the processor speed of the T800 transputer is 20 

M H z . the delay in responding is less than three microseconds. 

In order to deliver the global interrupt signal to a l l transputers in the network, we 

built a special hardware circuit. The circuit is basically a fan-out with one input and 

74 outputs. The event channel of each transputer is connected to an output of the 

circuit. A data channel on the master node is connected to the input of the circuit. The 

global interrupt signal is generated by having the master node send to the data channel 

connected to the input of the circuit. Figure 4.3 shows a picture of the department's 

transputer-based multicomputer with the hardware extension. Seventy four transputers 

are physically split into two boxes, with 10 nodes in the small box and the rest of them 

in the big box. T h e global interrupt circuit is located on the top of the larger box. 



Figure 4.3: A Picture of the Transputer-based Mult icomputer 
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4.4.3 Global Sampling and Clock Synchronization 

A global interrupt is used to turn ON and OFF the monitor on a l l nodes dynamically. 

It is also used to perform global sampling and clock synchronization in the network. 

A high priority controller process on the master node triggers the interrupt periodi

cally at a pre-specified time interval. The first interrupt signal indicates the start of the 

parallel monitor. The controller process keeps sending until the monitor has been turned 

OFF explicit ly by the user. The monitor can be restarted after it has been turned OFF. 

O n each slave node, there is a high priori ty backend process waiting for the interrupt 

signal on the event channel. Upon the arr ival of the event signal, it checks a special mem

ory location [Beers89] to determine whether the processor and each of the data channels 

are currently busy, and increments the counters accordingly. Since the event signals are 

periodic , the backend process can also update its own local clock at a predefined in

terval by setting the clock to the expected value. The result of sampling is reported by 

periodically generating an event entry and writ ing it to the buffer pool. The overhead of 

sampling and clock synchronization is low since the code to be executed is exceedingly 

simple. It contains only a few transputer instructions and runs for less than 10 usee. 

If resynchronization is performed every second, the overhead is less than 0.0001%. The 

termination of a monitoring session is detected on each slave node by not receiving the 

interrupt signal after a pre-defined timeout period. In the current implementation, the 

timeout period is set to be twice of the sampling interval. 

The accuracy of clock synchronization wi l l be affected if the monitor is not the only 

high priority process since the backend process wi l l not be able to respond in a timely 

fashion when the interrupt signal arrives. Fortunately, in our environment, by default 

a l l user processes and Trollius server processes run in low priority. The only system pro

cesses that have to run in high priority are the kernel process and channel processes. The 
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execution of these processes is transient. A n adaptive synchronization scheme has been 

implemented in order to factor out the interference of these high priority processes to 

clock synchronization. In this scheme, the local clock is reset only if the monitor process 

gets control of the processor within a legitimate period of delay, say 20 microseconds; 

otherwise the value of the clock remains unchanged. Experimental result shows that this 

scheme reduces the worst case drift of the clock synchronization algorithm substantially. 

A l imi ta t ion is that if user processes are allowed to run in high priority, the clock syn

chronization could be postponed indefinitely. This problem is almost impossible to avoid; 

however, for most applications it is common to have all user processes run at low priority. 

Section 5.3 reports on experimental results for the accuracy of our clock synchronization 

algorithm. 

4.4.4 Summary 

In this section, we have described the global interrupt approach and how it is used 

to obtain global snapshots of the system and synchronize local clocks in the transputer 

network. In contrast to the logical clock approach [Lamport78] has tradit ionally been 

used to order asynchronous events and obtain a consistent global state in distributed and 

parallel systems. The logical clock approach has also been successfully used for parallel 

debugging in existing systems [Fowler88][VoZe90]. However, the logical time only reflects 

the temporal order of events but not the physical elapsed time. Since the differences of 

logical timestamps are not comparable wi th each other, logical time cannot be used to 

measure the performance of message transmission. Moreover, the expense to run the 

logical clock algorithm is high. Therefore, a logical clock did not satisfy the requirements 

of our system. 

Another approach to the global clock problem is the pure software clock synchroniza-
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tion algorithms which estimate the drifts between different clocks by passing messages 

around the network [Duda87][GuLa84][Shumway89]. This is a time-consuming approach 

since the a lgori thm involves exchanging a lot of messages among different nodes and 

the accuracy is disappointing. Chapter 5 gives a comparison between the global inter

rupt approach we used and the best known software synchronization algorithm on the 

transputer. 

As compared to other techniques, the global interrupt approach has the advantage 

of high accuracy, low overhead and simple implementation. We have showed it can be 

applied to a transputer network with minimal addit ional hardware support. 

4.5 Event Tracing 

4.5.1 Event Generation 

There are five types of standard events traced by the monitor: procJnit, proc.exit, 

msg^send, recv_call, msg.arr. As shown in Chapter 3 these events form a sufficient set 

of events which can be used to reconstruct the execution graph of the parallel program. 

Users can also specify their own events to be traced in the program. The probes to 

generate standard events are inserted into the appropriate routines in the Trollius run

time library. Appendix B discusses in detail the probe routines and the changes made 

to the Trollius library. In order to monitor an applications, users must recompile their 

programs and l ink to the instrumented version of the runtime library. 

A n addit ional l ibrary routine probe () is provided to allow user-specified events. The 

user is responsible for inserting the probe () call into the his source problem to generate 

the user-defined event. Our principle is to minimize monitoring overhead by tracing a 

minimal set of events but provide users the flexibility to monitor additional events. 
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Each invocation of the probe routine generates an event trace entry. It is encoded 

into a message and sent to the meter process on the local node using the Trollius kernel 

message passing mechanism. The structure of event entries is shown in Figure 4.4. 

1 4 4 12 

PROC-INTT Timestamp Process Id Process Name 

1 4 4 12 

PROC-EXIT Timestamp Process Id I 

1 4 4 4 4 4 

MSG-SEND Timestamp Process Id Event Type Dest Node Msg Length 

1 4 4 4 4 4 

RECV-CALL Timestamp Process Id Event Type Buffer Size 

1 4 4 4 4 4 

MSG-ARR Timestamp Process Id Event Type Source Node Msg Length 

1 4 16 
User-defined 

Event 
Timestamp Auxiliary Information 

Figure 4.4: Structure of Trace Entries 

4.5.2 Buffer Management 

The event trace data collected by the meter process as well as the utilization data 
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generated by the backend process are stored locally in a buffer pool before they are sent 

back to the host station for display and analysis. 

The buffer pool is organized as a double-buffer structure (Figure 4 .5) . Each buffer 

contains an identical number of trace entries. After one buffer is full, it is automatically 

switched to the other one. The buffer manager is a low priority process which periodically 

checks the status of buffers. Data in a full buffer are encoded into a message and sent to 

the host using Trollius network level message passing. The advantage of the double-buffer 

structure is that monitoring processes can continue writing trace entries to one buffer 

while the other is being flushed. Operations on the shared data structure are critical 

sections and are protected by disabling timeslicing during operations which access the 

buffer pool. If both buffers are full and new trace entries are being generated, the meter 

process blocks until a buffer has been emptied by the buffer manager. Since the backend 

sampling process cannot wait, it simply increments an overflow counter and proceeds. 

The overflow counter counter keeps track of the number of utilization events dropped 

by the monitor due to overflow. At the end of each monitoring session, the value of the 

overflow counter on each node is reported to the host monitor. 

4 . 5 . 3 Adaptive Reporting 

The trace data at each node are sent back to the host using Trollius network level 

message passing mechanism. The advantage of using the same communication mecha

nism as the application is the simplicity in implementation. It also makes the design of 

the parallel monitor more portable to other systems since there no need to change the 

communication mechanism provided by the underlying operating system. Since the com

munication network is multiplexed by the monitor and the application, status messages 

may interfere with normal communication of the application, and affect the accuracy of 
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Figure 4.5: Double-Buffer Structure 

the performance results measured by the monitor. Experimental results show that when 

the frequency of flushing buffer is high, up to 80% of the slowdown of the application is 

caused by monitor communication (See Section 5.2). 

A n adaptive reporting scheme was implemented to reduce the interference of moni

toring to application communication. In this scheme, the monitor on each node keeps 

track of current load of the network. Moni tor ing data are sent only when the network is 

l ightly loaded. The resource usage data measured by global sampling gives a very good 

indication of the current status of the transputer network, and this information can be 

used by the monitor to determine whether the trace data should be sent. Ideally, each 

node has complete load information of a l l processors and communication channels and 

can make the decision based on an global picture of the whole system. However, due to 

the inherent communication delay, the resource util ization of one node wi l l have been 

already obsolete when it is propagated to the monitor on a remote node. Therefore, 
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the information collected by the monitor does not reflect the most up-to-date consistent 

global view of the system. Also, it involves passing a lot of messages in the network. The 

approach we use is a distributed algorithm in which each processor's monitor decides 

whether or not to send the monitoring data based on local load information. A decision 

is made at each step on the path the monitoring message is routed to the host. Since 

the load information on the local node is always up-to-date, the monitor is able to make 

an accurate prediction for the next step. A predefined threshold function is used by the 

buffer manager on each node to determine whether the node is currently overloaded and 

whether to send the trace data. Let Ucpu denotes the C P U utilization. If l ink i is the 

one the monitor uses to send trace data to the host, let £/,• denotes the uti l izat ion of this 

link. The threshold function / is computed by: / = ctUcpu + f3Ui where a and /? are 

coefficients obtained from empirical data. If / > 0.8, the node is considered overloaded 

and the sending of monitoring data is postponed. If al l buffers on the local nodes are 

full, the buffer manager has no choice but to flush the buffers regardless of the current 

status of the network. The buffer size, reporting interval, and threshold function have to 

be selected carefully to achieve optimal performance. Chapter 5 contains an empirical 

study on tuning these parameters. 

In the current implementation, the adaptive decision is made only at the first step 

when the monitoring message leaves its origin. Implementation of the complete scheme 

requires substantial changes to the routing mechanism of the underlying operating system 

and affects the portabil i ty of the monitoring system. The preliminary implementation 

of the adaptive reporting scheme shows up to 50% improvement over the static scheme 

in term of degradation in the performance of the monitored application. Experimental 

results indicates that the adaptive scheme improves the performance more substantially 

for communication intensive applications since they are more sensitive to the interference 

of the monitor communication. 
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4.5.4 Summary 

Minimiz ing the communication overhead introduced the monitor is an important is

sue in monitoring multicomputer networks. Some existing systems [HaWy90] resort to 

a separate communication network for monitoring messages to ehminate the effect of 

monitoring. However, in most multicomputer networks, a separate network is not usu

ally available for monitoring purpose and is expensive to install in the system. Some 

systems [Parasoft88] store and process the trace data locally unt i l after the application 

computation terminates. However, in a multicomputer network where buffer space on 

each node is extremely l imited, it is impossible to collect adequate information about 

the execution of any substantial application. Moreover, this approach does not permit 

real-time monitoring, which is desirable for many applications. The adaptive reporting 

scheme has proven to be an effective approach to this problem. Refinement of this scheme 

is expected to result in further improvement of the performance of our tool. 

4.6 User Interface 

The parallel monitor is designed so that it can incorporate a wide range of user in

terfaces. A n simple command interface has been implemented for users to start and 

stop the parallel monitor interactively at the terminal. A programming language inter

face is also supported by providing two additional l ibrary routines start_monitor() and 

stop_monitor() so that the user may turn the monitor ON and OFF from within their 

programs. 

Originally a simple interface was implemented to display the performance result to 

the user as text lines. The textual interface does not allow users to visualize the execution 
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of their programs and was inconvenient to use. A n X window-based graphical interface 

has been developed to display performance results to the user as easy-to-read chart and 

graphs. Here we give a brief description of the functionality of the graphical display. 1 

Figure 4.6: Graphica l Display of Performance Result 

^he design and implementation of the graphical interface will be described in detail in Hilde Larsen"s 
M.Sc. thesis. 
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The output of the graphical display includes a main menu, the network topology, 

the global clock, and the execution graph. A sample view is shown in Figure 4.6. The 

main menu is the control panel for the parallel monitor. The window in the upper right 

corner in Figure 4.6 displays the topology of the transputer network. The C P U load for 

each node is shown in the square box representing a node in the network. B y clicking 

on the l ink which connects node 0 and node 1, a small rectangle box is popped up to 

display the uti l ization of the selected transputer link. The global clock window (the one 

in the upper left corner) shows the current time relative to the elapsed time of the whole 

program. The clock value can be set, reset, start, stop or adjust speed by clicking on 

the corresponding buttons in the window. The window on the lower half of the screen 

displays the execution graph of the parallel program. Different icons are used to represent 

different types of events in the graph. In Figure 4.6, a filled left triangle represents a 

msgjsend event. Open and filled right triangles represent recv.call and msg.arr events 

respectively. The communication patterns of the program can be easily visualized in 

the execution graph. Figure 4.6 shows a broadcasting from each node in the system. 

The vertical and horizontal scrolling bars allow users to conveniently browse through the 

execution graph or focus on only a portion of the execution graph. The display for both 

node utilizations and the execution graph are updated as the global clock proceeds. The 

user can also obtain more details of each event in the execution graph by clicking on 

the icon representing the event. A new window pops up with detailed description of the 

event being selected. For instance, if the selected event is a msgjsend, then the sender 

process id , the type and length of the message, the destination node and the time the 

message was sent wi l l be displayed to the user. The weighted cri t ical path generated 

by the analysis tool is highlighted on the execution graph, allowing the user to examine 

the cr i t ical path graphically. The graphical interface is currently implemented using 

the Interviews [LiCaV187] C + + graphics toolkit on top of the X window system. Our 
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experience shows that a graphical user interface is an indispensable component of any 

parallel and distributed monitoring tool. 



Chapter 5 

Testing and Verification 

Accuracy and overhead are the two most important indicators of the success of a 

monitoring tool. In this chapter, we present the testing and verification results for our 

monitoring tool. To measure the accuracy of the monitoring data, we used an artificial 

application wi th controllable behavior and predictable performance. The parallel monitor 

is then used to measure these programs. The accuracy of the performance result reported 

by the monitor is derived by comparing it to the expected result of the program. B o t h 

artificial and real benchmarks are used to measure the overhead of the parallel monitor. 

Efforts have been made to isolate various sources of overhead and to tune the parameters 

of the monitoring program to obtain optimal performance. The accuracy and overhead of 

our clock synchronization technique is also discussed and compared with other software 

clock synchronization algorithms reported in the literature. 

5.1 V a l i d a t i o n o f M o n i t o r i n g R e s u l t 

The performance results reported by the monitor is accurate if it correctly reflects 

the behavior of the application program when it runs without the monitor. In order 

51 
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to validate these results, the behavior of the monitored application must be known in 

advance. We have designed an artificial application wi th predictable behavior to verify 

the correctness of the monitoring results. 

The parallel monitor reports the processor and channel ut i l izat ion on each node in 

the transputer network. We designed two sets of programs wi th artificial workload to 

measure the accuracy of the processor and link util ization reported by the monitor. Given 

a predefined time interval At and an expected workload e, the artificial processor load 

program computes by incrementing a dummy counter for 1% of the time during At and 

sleeps the rest of the time. Similarly, the artificial link load programs on neighbouring 

nodes wi l l keep exchanging messages for 1% of the time during At and keeps the link idle 

the rest of the time. To guarantee that the communication channels are busy, al l artificial 

link load processes run in high priority and use low level transputer instructions zn() and 

aut(). The operating system level message passing primitives are not used in order to 

avoid unpredictable or extra context switches. Each artificial application is measured 

over an extended period of time: T ^> At. The experiment is repeated a large number of 

times and the average, range and standard deviation for the performance results reported 

by the monitor are calculated for each artificial workload. Table 5.1 shows the validation 

results for processor uti l izat ion. Table 5.2 shows the validation results for link utilization. 

In both cases, At = lsec, T = l O m i n , and the result is computed over 10 experiments. It 

can be seen from the tables that both processor uti l ization and l ink uti l ization measured 

by the monitor are very accurate, with worst case deviation less than 5% and standard 

deviation less than 2%. 

The accuracy of the resource utilization result is affected by the interval of global 

sampling. The sampling interval must be short enough for the distribution of workload 

to be homogeneous, but long enough to keep monitoring overhead within an acceptable 

range. One criteria for selecting the sampling interval is that it need not be performed 
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Expected Load Average Load Range Standard Deviat ion 

(%) (%) (%) (%) 
10 10.62 9 - 12 0.89 
20 20.72 19 - 22 1.13 
30 30.32 29 - 32 0.82 
40 40.10 40 - 41 0.30 
50 50.09 50 - 51 0.29 
60 60.08 59 - 61 0.38 
70 70.32 68 - 72 0.96 
80 80.13 78 - 81 0.88 
90 89.90 89 - 90 0.30 
100 99.90 99 - 100 0.30 

Table 5.1: Val idat ion of Processor Ut i l iza t ion 

Expected Load Average Load Range Standard Deviat ion 

(%) (%) (%) (%) 
10 10.41 9 - 12 0.83 
20 19.46 17 - 20 0.73 
30 29.00 27 - 30 0.87 
40 38.27 35 - 40 1.54 
50 48.80 46 - 50 1.09 
60 58.60 56 - 61 1.58 
70 68.82 67 - 71 1.36 
80 79.14 77 - 81 1.60 
90 89.71 87 - 92 1.69 
100 99.31 98 - 100 0.79 

Table 5.2: Val idat ion of Communication Channel Ut i l i za t ion 
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more frequently than events occurs. Since the frequency of interprocess communication 

events in Troll ius is measured in a few hundred microseconds, the sampling interval 

need not be less than 1 msec, but (probably) should not exceed 10 msec. Figure 5.1 

shows that the monitoring overhead decreases as the sampling interval increases. The 

overhead shown in the chart is in fact the sum of the sampling overhead and the reporting 

overhead. Report ing overhead decreases as sampling interval increases because trace data 

are reported less frequently. However, since the reporting interval is relatively long as 

compared to sampling interval, its effect on the monitored program does not show linear 

behavior. This is why in Figure 5.1 the overhead does not decrease linearly as sampling 

interval grows. Based on the result in Figure 5.1, 5 msec seems to be the best choice since 

the overhead remains almost constant at 2.5% once the sampling interval is increased to 

5 msec. The results given in Table 5.1 and Table 5.2 are measured with a global sampling 

performed every 5 msec on a l l nodes. 

Overhead (%) 

10 

8 

6 

4 

2 

1 2 3 4 5 6 7 8 
Sampling Interval (msec) 

Figure 5.1: Monitor ing Overhead for Different Sampling Intervals 

The accuracy of performance metrics such as program execution time relies on the 
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time measurement of the traced events, which in turn relies on the accuracy of the global 

clock. The accuracy of clock synchronization in the monitoring system wi l l be discussed 

in Section 5.3. 

5.2 M e a s u r e m e n t o f M o n i t o r i n g O v e r h e a d 

The overhead incurred by the parallel monitor is measured by the performance penalty 

(slowdown) it introduces to the monitored application. Let T be the program execution 

time of the parallel application when it runs without the monitor, and Tjv/ be the program 

execution t ime when the application runs with the monitor. The overhead is computed 

by (TM - T)/T x 100%. 

In Section 1.1.2, we discussed the various sources of monitoring overhead. In our 

experiments, we isolated different sources of monitoring overhead and measured each 

separately. Our purpose was to identify which one contributed most to the overhead 

in our system. The parallel monitor is functionally decomposed into three components, 

labelled: 

• A: global sampling and clock synchronization; 

• B: event tracing; 

• C: reporting. 

The monitoring overhead caused by different components was measured by disabling one 

or more of them during different monitoring sessions. For reporting(C), we measured both 

the static reporting scheme (Cs) and the adaptive reporting scheme (CA) as proposed 

in Chapter 4. The application used to evaluate the monitor was a parallel Cholesky's 

factorization algorithm implemented under Troll ius on the transputers. The input of 
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the program is a n x n matrix. During the computation, the matrix is decomposed 

into submatrices which are processed concurrently on different nodes. The size was held 

constant so that as the number of nodes increases, the granularity of the computation 

becomes finer. In Table 5.3, the overhead to monitor this application is shown when 

running on different topologies with constant input size 65 x 65. The overhead attributed 

to different components on each row. A + C$ means the monitor only performs global 

sampling and static reporting. A + B means it only performs sampling and event tracing 

without reporting the results to the host. Results for other rows can be interpreted in 

similar ways. 

Topology 
(Mesh) 

Overhead (%) Topology 
(Mesh) 1 x 2 2 x 2 2 x 4 4 x 4 4 x 8 6 x 8 
A + CA 0.5 0.8 1.1 2.4 0.7 3.6 
A + B 2.0 1.2 1.5 1.4 3.7 9.7 

A + B + Cs 2.8 2.4 5.8 8.1 42.6 45.2 
A + B + CA 2.6 2.4 5.3 5.4 20.9 39.1 

Table 5.3: Moni tor ing Overhead for Cholesky's Factorization Program 

The results given in Table 5.3 show that the overhead of both samphng(i4) and 

event tracing(Z?) is low, less than 4% in most cases. It also shows that the overhead 

of reporting(C) is reasonably low when executed on topologies with less than 16 nodes 

(the 4 x 4 mesh). The granularity of the 65 x 65 matr ix on 16 nodes is reasonable 

as each node get a 4 x 4 submatrix. As the computation becomes too fine-grained 

on larger topologies, e.g. the 4 x 8 or 6 x 8 mesh, the overhead incurred by reporting 

monitoring data increases dramatically to over 40%. This is because the communication 

of the application is so intensive that the interference wi th monitoring message severely 

degrades the performance of the application. The result for the adaptive reporting scheme 

(A + B + CA) indicates that substantial improvements are possible by reducing the 

interference of reporting to application communication. 
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Table 5.4 shows the overhead introduced to the Cholesky's factorization program with 

different size input. In this table the same 2 x 4 topology was used. The overhead is the 

sum of sampling, event tracing and reporting. Measurements are made for both the static 

reporting scheme and the adaptive reporting scheme. The number of events generated by 

the application for different size of input is also shown in the table. Note that overhead 

decreases as the input size increases. O n a fixed number of nodes, the larger the size 

of the input matrix, the less fine-grained the parallel computation and the less overhead 

the monitor communication incurs. This in combination wi th Table 5.3 supports our 

claim that the major source of monitoring overhead lies in the communication bandwidth 

used to report monitoring data. We can also conclude from these experiments that the 

overhead of reporting decreases as the granularity of the parallel application grows. The 

result in Figure 5.3 indicates that the adaptive reporting scheme is an effective means to 

reduce the communication overhead of the parallel monitor. However, when the overhead 

is low, adaptive and static reporting scheme behave basically the same (See Figure 5.4). 

For parallel applications wi th reasonable granularity, the overhead incurred by the parallel 

monitor is wi th in acceptable range (below the 15% performance penalty suggested in 

[Reed89]). 

M a t r i x Size Number of Events 
Overhead (%) 

M a t r i x Size Number of Events Static Reporting Adapt ive Reporting 
9 x 9 399 6.1 8.9 

29 x 29 871 8.0 6.7 
65 x 65 2032 5.8 5.3 

144 x 144 4195 2.3 1.6 
234 x 234 9388 1.1 1.1 
504 x 504 14590 1.0 1.0 

Table 5.4: Moni tor ing Overhead for Input of Various M a t r i x 

Another source of monitoring overhead which does not affect the running time of the 

program is the memory space allocated to store the data collected by the monitor on each 
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node. Memory is often is scarce resource on transputers. It is important to minimize the 

buffer space used by monitor so that memory can be used for scaling up the size of the 

problem However, reducing the size of the buffer pool would increase the frequency of 

reporting, resulting in higher overhead. Therefore, a trade-off has to be made between 

satisfying the memory constraint and reducing communication overhead of the monitor. 

Figure 5.2 shows the monitoring overhead for different buffer sizes for the Cholesky's 

factorization program with input size 65 x 65 on a 4 x 4 mesh. 
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Figure 5.2: Monitor ing Overhead for Different Buffer Size 

The default buffer size in the current implementation is 5378 bytes which could store 

256 trace entries. The user is given the flexibility to specify buffer size allocated for the 

parallel monitor on each node. 
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5.3 C l o c k S y n c h r o n i z a t i o n 

59 

A clock synchronization algorithm is acceptable if the drift between different clocks 

is small compared to the min imum interval of time between any two events. We use 

a global clock to order asynchronous events and measure the elapsed time of message 

transmission. Therefore the accuracy of the performance results we obtain heavily de

pends on the accuracy of the clock synchronization algori thm used i n our system. This 

section presents our results for the global interrupt approach we use to perform clock 

synchronization in the transputer network. We compare this approach to other software 

clock synchronization algorithms. 

We measured the drift between different clocks by having processes on neighbouring 

nodes exchange one single byte message for a predefined period of time. Assuming that 

when both channels are active the time to transmit a one-byte message is identical, 

the clock drift can be derived from the average difference of opposite direction message 

transmission time. The two communicating processes on the neighbouring node run in 

high priority and use the low level transputer assembly code in() and out() to exchange 

messages, in order to factor out the interference due to context switches. Table 5.5 shows 

the accuracy of our clock synchronization algorithm. 

Resync Interval (sec) 0.1 0.5 1.0 2.0 
Average Drift (psec) 0.84 1.95 3.58 5.91 

M a x i m u m Drift (psec) 6 7 8 14 
Standard Deviation(^.sec) 1.40 1.86 2.30 3.88 

Table 5.5: Accuracy of Clock Synchronization Using Globa l Interrupt 

Note that higher accuracy of clock synchronization can be achieved by performing 

a resynchronization more frequently. B y performing a resynchronization every second, 

we achieve an accuracy of average drift less than four microseconds and maximum drift 
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of eight microseconds. Very l i t t le overhead is incurred in our scheme since the code 

to be executed on each node to perform the resynchronization is extremely efficient. 

It contains only a few transputer instructions and runs for less than 10 usee. If the 

resynchronization interval is one second, then the overhead is less than 0.0001%. Also, it 

takes less than 10 microseconds to send a one-byte message across a transputer link, and 

the message transmission time in Trollius is measured in several hundred microseconds. 

The accuracy of clock synchronization algorithm is more than adequate for ordering 

asynchronous events and measuring message elapsed time. 

There have been a few clock synchronization algorithms for transputer networks re

ported in the literature [Shumway89][CaVi88]. We compared our scheme wi th the RING-

SYNC algori thm in [CaVi88] since it reports the best accuracy among a l l existing algo

rithms. 

The R I N G - S Y N C algorithm is based on a ring-structured transputer network in which 

a master node periodically passes a SYNC message around the ring containing the local 

clock value and the partial delay. U p o n receiving a SYNC message, every slave node sets 

the value of its clock to the sum of the clock value and partial delay in the SYNC message 

and updates the clock value in the message accordingly. When the SYNC message 

returns to the master node, it recalculates the partial delay for the next SYNC message. 

In [CaVi88], they also apply linear regression and g-degree extrapolation to estimate the 

drift between two resynchronizations and revise the clock value. Exper imental results for 

the R I N G - S Y N C algorithm have been reported in [CaVi88]. The max imum and typical 

clock drift are measured wi th and without the interference of user process, and the result 

is given before and after the drift correction using the g-degree extrapolation. Table 5.6 

gives the summary of the best of their results when resynchronization is performed every 

5 seconds. 

The result of the R I N G - S Y N C algorithm for the NO LOAD case after drift correction 
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No Revision 1-degree Extrapola t ion 
N O L O A D W / L O A D N O L O A D W / L O A D 

M a x i m u m Drift (psec) 100 115 12 56 
T y p i c a l Drift (psec) 100 115 8 36 

Table 5.6: Accuracy of R I N G - S Y N C algorithm 

using the 1-degree extrapolation seems to be almost as good as our clock synchroniza

t ion using global interrupts. However, it deteriorates drastically in the presence of user 

processes in the system. The reason is that the R I N G - S Y N C algorithm has to share the 

communication channels with the application and thus interferes wi th the user's com

munication activities. Since passing a SYNC message around the ring is very expensive, 

especially when the number of nodes in the system is large. Better accuracy cannot 

be achieved by performing resynchronization more frequently in R I N G - S Y N C . As com

pared to the R I N G - S Y N C algorithm, our clock synchronization algori thm using global 

interrupts has the following advantages: 

1. Topology independent. Our approach makes no assumption about the interconnec

t ion of the transputer network, while the R I N G - S Y N C algorithm only works in 

networks containing a ring. This l imitat ion of the R I N G - S Y N C algori thm implies 

that it cannot be directly applied to common topologies such as tree-structured 

networks. 

2. Application independent. The accuracy of clock synchronization using global clock 

is not affected by the application since a separate network, the global interrupt 

circuit, is used to deliver the signal. The accuracy of R I N G - S Y N C algorithm is 

seriously affected if the application is highly communicative. 

3. Lower overhead. The overhead of the R I N G - S Y N C is substantially higher than 

the global interrupt approach even if resynchronization is only performed rather 
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infrequently. Running the g-degree extrapolation algorithm for correction consumes 

extra processing power on each node. 

4. Higher accuracy. Even the accuracy of the RING-SYNC algorithm in the ideal 

case is only close to the accuracy achieved using global interrupt. The difference 

in the normal case with user processes in the system between the two scheme is an 

order of magnitude greater. 

•5. Simple implementation. The implementation of our scheme is exceedingly straight

forward and the code contains only a few transputer instructions. While efficient 

implementation of the RING-SYNC and the g-degree extrapolation algorithm can 

be tricky. 

The advantage of the RING-SYNC algorithm is that it is a pure software solution and 

does not need any extra hardware support. However, the accuracy and reliability of the 

global interrupt approach more than justified the minimal amount of extra hardware 

needed to implement it. 

5 . 4 Summary 

In this chapter, we presented the results of our experiments in measuring the accu

racy and overhead of the parallel performance monitor developed on the transputer-based 

multicomputer. The results indicate that both the accuracy and the overhead of our mon

itoring tool are within the desired range to achieve the goals we proposed in Section 1.3. 

By measuring the various sources of monitoring overhead we identify the communication 

activities.of the monitor as the major source of overhead in our system. The results indi

cate that the adaptive reporting scheme as proposed in Chapter 4 is an effective means 

o f reducing the interference of monitoring to application communications. A comparison 
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is made between our clock synchronization scheme using global interrupts and a pure 

software clock synchronization. The results indicate that our approach is superior in 

accuracy, overhead, applicability and simplicity, justifying our design principle of rely

ing on minimal hardware support to achieve performance beyond the realm of any pure 

software solutions. 



Chapter 6 

Performance Tuning: A Case Study 

In this chapter, an example is used to demonstrate the use of our monitoring tool to 

tune a parallel application. The application we have chosen is an image reconstruction 

algorithm implemented on transputers. 

6.1 T h e P a r a l l e l I m a g e R e c o n s t r u c t i o n A l g o r i t h m 

The algorithm is a parallel version of a sequential algorithm used in image processing 

to eliminate noise from a raw image by performing edge detection on the image. Input 

to the algorithm is a raw image as an n x m matrix, each element representing a pixel in 

the image. The algorithm is designed for a k x k 2-dimensional mesh. The input matrix 

is decomposed into k2 submatrices where a l l processors except those in the last row of 

the mesh receive a square submatrix of size [ M I N ( n > m ) j A l l extra columns in the input 

matrix are sent to the last row of the mesh. Upon receiving a submatrix, each processor 

runs the edge detection algori thm on the subimage and exchanges the side columns of 

its submatrix wi th its nearest neighbours in order to recompute the pixels at the edges 

of its subimage. The computation on the subimage is iterated unt i l convergence, i.e. 

64 
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unt i l no more elements in its submatrix get updated. A l l processed subimages are then 

recombined and the parallel computation terminates. 

The algori thm has been implemented under the Trollius Operating System and run 

on 17 transputers configured as a 4 x 4 mesh plus an external node which has a direct 

connection to the host workstation. The network topology on which the program runs 

is shown in the output of the graphical display of the parallel monitor (Figure 6.1). The 

transputer node adjacent to the host (called the master node) reads in the raw image from 

the host file sys tem It decomposes the input matrix into submatrices and distributes 

them to a l l transputer nodes in the mesh. Each slave node computes and communicates 

wi th its neighbouring nodes using Troll ius network level message passing primitives. The 

results from al l slave nodes are recombined at the master node. The reconstructed image 

is then writ ten to a file in the user's file system. The program contains about 1500 lines 

of C code and is an integrated part of an image processing package developed in the 

Computer Science Department at U B C . 

6.2 M e a s u r e m e n t a n d A n a l y s i s 

The program was originally implemented and debugged on transputers without the 

help of the parallel monitor, and it appeared to produce desired result. The program 

was recompiled and linked to the instrumented version of the Trollius runtime library 

without modification to its source code. The input image is a 47 x 47 square matrix. 

The first result we obtained from the parallel monitor turned out to be a debugging 

result rather than a performance result. The graphical display of the execution graph 

indicated that the monitor was unable to find the matching msg.arr events for some of 

the msg^send events on the slave nodes(Figure 6.2). This occurred near the end of the 

execution of the program. B y clicking on the unmatched sending events in the graph, we 
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Figure 6.1: Graphical Display of Network Topology 

examined the information about each of these events and discovered that some segments 

of the reconstructed subimage sent by the slave nodes were never received by the master 

node. The execution graph also indicated that a l l receiving events on the master node 

were matched. Hence, the problem was that the master node did not make enough 

receive calls when collecting subimages. W i t h the help of the monitoring tool, this bug 

was quickly fixed. Al though our tool is pr imari ly intended as a performance monitor, it 

certainly can also be used to debug programs. It allows the user to gain insight into the 

runtime behavior of execution of the parallel program and detect problems or locations 

where the program is behaving strangely. 

Once having debugging the program, we ran the W C P A tool on the trace to obtain 

our measurement. The performance of the ini tal implementation was very disappointing. 

The speedup on 16 nodes was less than 3 and the efficiency is less than 20%. The ratio 

of computat ion vs. communication in the program was 20 : 80, which means 80% of the 
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Figure 6.2: Graphical Display of Unmatched Message Events 

execution time was spent in communication. B y examining the weighted crit ical path 

generated by our tool , we discovered that the communication activities to distribute and 

return the subimages constitutes the major portion of the crit ical path. In order to 

obtain precise measurement of the relative weight of different phases in the execution of 

the program, we manually inserted probes into the application to generate user-defined 

events, signifying the start of each phase: 

probe(READ.IMAGE, "reading image"); 

probe(DISTRIBUTE_IMAGE, "distributing"); 

probe(COMPUTE.IMAGE, "computing"); 

probe(RETURN_IMAGE, "returning image"); 

probe(WRITE.IMAGE, "writing image"); 

These probes were placed in the main program right before the procedure calls to execute 

the corresponding tasks. We re-ran the program under the monitor and measured the 
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elapsed time and relative weight of each of the phases. For instance, the elapsed time 

and relative weight of distributing subimages was measured by the elapsed time between 

the DISTRIBUTE.IMAGE event and the COMPUTE.IMAGE event on the weighted critical path 

and the percentage of the total weight between them. These measures were generated 

automatically by our analysis tool. The result of the analysis is shown in Table 6.1. 

Phase in W C P A Relative weight 

Read Image 29% 
Distribute Image 5% 
Compute Image 8% 
Return Image 47% 
Wri te Image 11% 

Table 6.1: Analysis Result for Image Reconstruction Algor i thm 

As shown in Table 6.1, the input and output of the image was weighted 40% on the 

crit ical path. This is due to the low degree of parallelism during these operations, i.e. al l 

nodes are idle wait ing while the master is reading from or wri t ing to the host file system. 

Since only the master node is adjacent to the host, this I / O bottleneck is impossible to 

be completely removed. In the remainder of the discussion we ignore the effect of this 

sequential I / O bottleneck. 

The computation on the subimages was only weighted 8% on the crit ical path. This is 

because a l l nodes are processing the subimages in parallel and a high degree of parallelism 

has been achieved in the system. It also indicates that the code to be execute is efficient 

already and further code optimization cannot improve the performance very much. 

We therefore focus our attention on the distribution and gathering phases of the 

computation, which together were weighted 52% on the cri t ical path. The communication 

pattern of the parallel program can easily be visualized in the graphical display of the 

execution graph. Figure 6.3 shows the communication activities in the system when 

subimages are being distributed from the master node to a l l slave nodes. We can see 
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Figure 6.3: Communicat ion Activi t ies of Distr ibuting Subimages 

from the graph that the number of messages to send a submatrix appears to be excessive 

( A total of 11 messages are involved to send a subimage). Closer examination of each 

event in the graph revealed that the length of each message is only 60 bytes. To send 

a message using Trollius network level message passing primitives, the header attached 

to each message is more than 50 bytes. Thus sending each message incurred an almost 

50% communication overhead. B y consulting the author of the program, we found out 

that the subimages are distributed column by column, i.e. each column is encoded 

into a separate message, regardless of the size of the subimage. Since the size of our 

input image was relatively small and each column of the submatrix contained only 14-15 

elements, there were a large number of short messages. We recommended that some of 

the columns be combined and encoded into longer messages. The program now sends the 

subimage in a single message of its size does not exceed 800 bytes. B o t h the number of 

messages and the communication overhead of each message were dramatically reduced. 

The program execution time of the modified version showed 55% improvement over the 
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in i t ia l implementation. The weight of distributing and returning images on the crit ical 

path was reduced from 52% to 39%. T h e ratio of computation vs. communication was 

improved to 63:36, indicating that 63% of the time was spent in computation tasks. 

Speedup and efficiency have been improved by more than 100% due to the improvement 

of program execution time. 

6 .3 Summary 

In this chapter, we have demonstrated how our monitoring tool is used to effectively 

improve the performance of a parallel application. Tuning the performance of a parallel 

program is a very sophisticated task due to the complicated interaction among concurrent 

components of the program. Effective performance tuning not only relies on the user's 

thorough knowledge about the program structure, but also depends on the information 

available to the user about the execution of the program. The information presented 

to the user is useful only if the user gains insight into the runtime behavior of the 

program and can appropriately focus on the program activities which have the most 

impact on the overall performance of the program. B y combining a graphical display with 

the weighted cri t ical path analysis package, our tool provides at a high level automatic 

guidance for performance tuning. In our example, the identification and resolution of such 

a performance problem in a parallel application has led to more than 50% improvement 

i n program execution time. 



Chapter 7 

Conclusions 

7.1 S y n o p s i s 

This thesis has studied the performance characteristics of parallel programs i n mul

ticomputer networks, and presented the design and implementation of a real-time per

formance monitor on transputers. We started wi th a simple performance model which 

is based on a graph representation of parallel programs in the multicomputer network. 

This performance model allows us to easily derive a variety of performance metrics for 

parallel programs. F rom this model, we also developed a new analysis method, called 

weighted cr i t ical path analysis ( W C P A ) , which has proven to be helpful detecting perfor

mance bottlenecks in parallel programs. The design of a real-time performance monitor 

was proposed based on these ideas and then implemented on a 74-node transputer-based 

multicomputer. Lastly, we set up benchmarks to validate the accuracy of the monitoring 

results and to measure the overhead incurred by the monitor. We also demonstrated 

how this tool can be used to tune the performance of an actual parallel application on 

transputers. 

We proposed in Section 1.3 a set of goals to guide the design of our performance mon

itoring tool. Our experience with the tool indicates that our goals have been achieved. 
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The capability of measuring both resource utilization and tracing process events is clearly 

superior to other transputer performance monitoring tools. (Section 2.2). Extensibil i ty 

was achieved by the modular structure and well-design interface between different com

ponents of the parallel monitor(Section 4.2). Experimental results show that both the 

accuracy and the overhead of the monitor are within acceptable ranges. Transparency 

is achieved by inserting software probes into the run-time l ibrary of the underlying op

erating system so that users do not have to modify their source programs to make them 

monitorable. We took advantage of a high level windowing environment, namely the 

X window system, to display performance results in a user-friendly manner. Although 

our monitoring tool was designed for the transputer-based multicomputer networks and 

implemented under the Trollius Operating System, the measurement and instrumenta

tion techniques developed are applicable to a wide range of distributed memory parallel 

architectures. T h e performance model and the weighted cr i t ical path analysis method we 

proposed in Chapter 3 can be easily adapted to any message-based distributed systems, 

such as the L A N - b a s e d distributed environment. The use of global interrupts and the 

clock synchronization technique we used can be ported to most closely-coupled multicom

puter networks wi th min imal modifications. The adaptive reporting scheme and design 

of the graphical interface are generally applicable to any performance monitoring tools 

for parallel and distributed programs. 

7.2 F u t u r e W o r k 

We conclude this thesis by suggesting possible future enhancement of our tool and 

speculating on future research directions. 
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7.2.1 Enhancement of the Monitoring Tool 

The adaptive reporting scheme has not been fully implemented in the current imple

mentation. Since trace data are sent to the host using Trollius network level message 

passing mechanism, the decision on whether or not to send the data can only be made 

at the first step when it leaves its node of origin. The monitor has no control over 

status messages after they are sent. The router handles both user messages and status 

messages in the same way. Further refinement of the adaptive reporting scheme would 

include modification of the routing mechanism of the operating system so that message 

priorities are supported. User messages are given higher priority and monitoring mes

sages are given lower priori ty so that user messages going to the same channel as status 

messages are handled first. Status messages are sent only when there is no user message 

waiting for the same channel or when the local buffer has been filled. 

Another improvement of our tool includes better integration of the monitor with the 

graphical interface so that operation of the parallel monitor can be controlled interactively 

by "cl icking a button". 

7.2.2 Alternatives to Nonintrusive Monitoring 

To reduce the overhead caused by messages sent by the monitor, we proposed the 

adaptive reporting scheme(Section 4.5.3). There are other alternatives to achieve the 

same goal. One approach is to compensate for the overhead incurred by the monitoring 

when calculating performance metrics from raw trace data. For instance, to compensate 

for the communication overhead introduced by the monitor, the monitoring process on 

each node has to keep track of the number of status messages and that of user messages 

sent over a communication channel during a specific period of time. Using these data, it 
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can estimate the extra queuing delay the status messages have caused and distribute the 

total delay to each of the user message on the same channel. The extra delay for each 

step on the route is then subtracted from the total elapsed time of the message, thus 

obtaining the corrected message transmission time. In order to be able to compensate 

for the monitoring overhead, we must collect enough information about the execution of 

the monitor itself. In essence, it is a matter of how to monitor the monitor itself. Fur

thermore, an appropriate queuing model has to be developed to estimate the interference 

the monitor has caused to the application. 

A different approach that takes advantage of the global interrupt mechanism available 

in out system, is to stop the computation and communication activities of the application 

program in the whole system when performing measurement tasks and draining trace 

data from each node. Globa l interrupts can be used to stop al l nodes simultaneously and 

restart the system after the measurement task is finished. The clock value on each node 

is reset to its last value when the system was stopped. This would completely factor 

out a l l the overhead of monitoring and reporting to the host. The performance results 

obtained should precisely reflect the behavior of the application as i f it were run without 

the presence of the monitor and a high degree of virtual non-intrusiveness is achieved. 

One disadvantage of this scheme is that it is likely to be slow. A second problem is the 

difficulties in stopping the computation and communication activities of the application 

in a parallel system. Al though we can remove al l user processes temporarily from the 

ready queue when a global interrupt arrives, the work the system processes are doing 

on behalf of the application cannot be suspended halfway since some system services are 

needed to perform the measurement task. Moreover, process scheduling is supported by 

hardware on transputers; the manipulat ion of these process queues is t r icky and error-

prone. A third problem is how to deal wi th the user messages being transferred over a 

link when the system is stopped. The monitor must wait unti l the data transfer finishes 
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before it can get control of the link. 

B o t h schemes seem to be promising alternatives to achieve non-intrusive monitoring 

in the multicomputer networks. The possibility of implementing them on transputers 

wi l l be investigated in future research. 

7.2.3 Performance Steering 

A n interesting application of our tool is to use the information provided by the monitor 

to tune the performance of the application on the fly, which is known as performance 

steering. Performance steering is especially useful for programs that run for a long period 

of time, say several days to several weeks. In addition to displaying the performance 

data to the user, they can also be used as feedback to the underlying system which can 

control the execution of the application in order to achieve optimal performance. The 

dynamic load balancing technique also falls into this category. One special feature of 

the transputer network is that its topology can be dynamically reconfigured by simply 

sending instructions to the crossbar switches from the host. Since the communication 

pattern of the application is reflected in the execution graph generated by the monitor, 

it can be used to minimize the communication overhead. We may, for instance, try to 

directly connect nodes which communicate frequently so that messages do not have to 

be routed through intermediate nodes. 
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Appendix A 

Architecture of the 
Transputer-based Multicomputer 

The architecture of the IMS T800 transputer is shown in Figure A . L The processor 

speed of a l l T800 transputers are pin-selected to 20 M H z . The speed of a l l bi-directional 

links are set to 20 Mbits /sec . 

The architecture of the IMS C004 link switch is shown in Figure A . 2 . The speed of 

al l C004 switches in the system are set to 20 Mbi ts / sec . 

The physical connections of the transputers, crossbar switches and V M E interfaces 

are shown in Figure A . 3 . The transputers are connected to the Sun 4 workstation through 

a IMS B011 board and a C S A Part 8 Interface Board . There are six links on the C S A 

Part 8 board. T h e four buffered links are directly connected to the transputers, and 

the two unbuffered links are connected to the daisy chain of the configuration links of 

the crossbar switches. Therefore, there are five independent data channels between the 

transputers and the host. There are 74 T800 transputers and 10 C004 switches in the 

array of transputers and crossbar switches. The first 10 transputers and first 2 switches 

are placed in one box, with the remaining transputers and switches in another larger box. 

There are 8 connections between the two boxes. The transputers in the larger box are 
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numbered from 0 to 64. and the switches are numbered from 0 to 7. L i n k 0 of transputer 

i are directly connected to that of transputer i + 1. L ink 1, 2 and 3 of transputer i is 

connected Switch i, switch succ(i) and switch pred(i) respectively. A l l transputers are 

partit ioned into five reset groups. Therefore, up to five users can use the transputer-based 

multicomputer simultaneously. 
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Figure A . 3 : Physical Connections of the Transputers and the Switches 
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Appendix B 

Modifications to Trollius Run-time 
Library 

The following routines are inserted into the Trollius run-time library and replace 

existing ones. They are used to generate the five types of standard events defined in 

Section 4 . 5 as well as user-defined events. 

B . l D e f i n i t i o n o f M o n i t o r P a r a m e t e r s 

/ * event type for monitoring message * / 

#define MON.CMD -100 

#define MON.RES -101 

#define MON.TRACE -102 

/ * monitor controlling command * / 
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#define MON.BEG 
#define MQN.END 

0 
1 

typedef struct TraceEntry 

{ 

char tag; 
int data[NUM_REGS] ; 

} TraceEntry; 

typedef TraceEntry *TracePtr; 

/* a l l events to be monitored defined here */ 

#define NODE.USAGE '\000' 
#define MSG.SEND '\001' 
#define MSG.RECV '\002' 
#define RECV.CALL '\003' 
#define PROC.INIT '\004' 
#define PROC.EXIT '\005' 
#define OVERFLOW '\006' 

B .2 Probes to Generate Message Events 
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int msg_mon(nheader, trace_type) 

struct nmsg* nheader; 

char trace.type; 

{ 

struct kmsg kheader; 

TraceEntry trace_buf; 

trace_buf.tag = trace_type; 

trace.buf .data[l] - ltot(getpidO) ; 

trace.buf.data[2] = ltot(nheader—>nh_event); 

trace.buf.data[3] = ltot(nheader->nh_node); 

trace.buf.data[4] = ltot(nheader->nh_length); 

kheader.k_event = M0N_TRACE; 

kheader.k_type = 0; 
kheader.k_flags = 0; 
kheader.k_length = sizeof(trace_buf); 

kheader.k_msg = (char *) &trace_buf; 

i f (ksend(ftkheader)) 

return(errno); 

return(0); 
> 

int nsend(header) 

struct nmsg* header; 
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{ 

msg_mon(header, MSG_SEND); 

header->nh_data[0] = getnodeidO ; 

return(do_nsend(header, NSEND)); 

} 

int nrecv(header) 

strcut nmsg* header; 

{ 

int err_code; 

msg_mon(header, RECV_CALL); 

err.code = do.nrecv(header, NRECV); 

header->nh_node = header->nh_data[0]; 

msg.mon(header, MSG_RECV); 

return(err_code); 

} 

B . 3 P r o b e s t o G e n e r a t e P r o c e s s E v e n t s 

int mon_pinit() 

{ 

struct kmsg 

TraceEntry 

char* 

kheader; 

trace.buf; 

pname; 
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trace.buf.tag = PROC.INIT; 

trace.buf.data[l] = ltot(getpid()); 

pname = (char *) &(trace_buf.data[2]); 

GetProcName(pname); 

kheader.k_event = MON.TRACE; 

kheader.k_type = 0; 

kheader.k_flags = 0; 

kheader.k.length = sizeof(trace_buf); 

kheader.k_msg = (char *) &trace_buf; 

i f (ksend(ftkheader)) 

return(errno); 

return(0); 

> 

int mon_pexit() 

{ 

struct kmsg kheader; 

TraceEntry trace_buf; 

trace.buf.tag = PROC.EXIT; 

trace.buf .data[l] = ltot (getpidO); 

kheader.k.event = MON.TRACE; 

kheader.k_type = 0; 
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kheader.k_flags = 0; 

kheader.k.length = siz e o f ( t r a c e . b u f ) ; 
kheader.k_msg = (char *) &trace_buf; 

i f (ksend(ftkheader)) 
return(errno); 

return(O); 
} 

i n t k i n i t ( p r i o r i t y ) 
i n t p r i o r i t y ; 
{ 

i n t retcd; 

retcd = k a t t a c h ( p r i o r i t y ) ; 
mon_pinit(); 
return(retcd); 

} 

void k e x i t ( s t a t u s ) 
i n t status; 

{ 

mon_pexit(); 
_ k e x i t ( s t a t u s ) ; 
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} 

B . 4 P r o b e s t o G e n e r a t e U s e r - d e f i n e d E v e n t s 

i n t probe(probe_type, aux.info) 

char probe_type; 

char* aux.info; 

{ 
s t r u c t kmsg kheader; 
TraceEntry trace_buf; 
char* aux.buf; 
char aux_len; 

trace.buf.tag = probe_type; 
aux_buf = (char *) k(trace_buf.data[1]); 

aux.len = MIN(strlen(aux_info), MAX_AUX_LEN); 
strncpy(aux_buf, aux_info, aux.len); 
aux.buf[aux.len] = ' \ 0 ' ; 

kheader.k.event = M0N_TRACE; 
kheader.k.type = 0 ; 

kheader.k_flags = 0 ; 

kheader.k.length = sizeof(trace.buf); 
kheader.k_msg = (char *) &trace_buf; 

i f (ksend(&kheader)) 
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return(errno); 

return(0); 

B . 5 M o n i t o r C o n t r o l l i n g R o u t i n e s 

int mon_control(mon_cmd) 

int mon.cmd; 

{ 

struct nmsg header; 

header.nh.node = MASTER; 
header.nh.event = MON.CMD; 
header.nh.type = 0; 

header.nh_flags = 0; 

header.nh.length = 0; 

header.nh_msg = NULL; 
header.nh_data[0] = mon.cmd; 

if (nsend(&header)) 

return(l); 

else 

return(0); 

} 

int startmonO 

93 



return(mon_control(MON_BEG)); 

int stopmon() 

{ 
return(mon_control(MON_END)); 

} 
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