
PERFORMANCE MONITORING IN TRANSPUTER-BASED

MULTICOMPUTER NETWORKS

B y

J I E C H E N G J I A N G

B . S c , Peking University, Ch ina , 1988

A T H E S I S S U B M I T T E D I N P A R T I A L F U L F I L L M E N T O F

T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F

M A S T E R O F S C I E N C E

in

T H E F A C U L T Y O F G R A D U A T E S T U D I E S

(D E P A R T M E N T O F C O M P U T E R S C I E N C E)

We accept this thesis as conforming

to the required standard

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

August 1990

© Jie Cheng J iang, 1990

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

Department of Sd€iiC£

The University of British Columbia
Vancouver, Canada

Date 5£ / °T . / <? f o

DE-6 (2/88)

Abstract
Paral lel architectures, like the transputer-based multicomputer network, offer poten

tially enormous computational power at modest cost. However, writ ing programs on a
multicomputer to exploit parallelism is very difficult due to the lack of tools to help users
understand the run-time behavior of the parallel system and detect performance bottle
necks in their programs. This thesis examines the performance characteristics of parallel
programs in a multicomputer network, and describes the design and implementation of
a real-time performance monitoring tool on transputers.

We started wi th a simple graph theoretical model in which a parallel computation
is represented as a weighted directed acyclic graph, called the execution graph. This
model allows us to easily derive a variety of performance metrics for parallel programs,
such as program execution time, speedup, efficiency, etc. From this model, we also
developed a new analysis method called weighted critical path analysts (W C P A) , which
incorporates the notion of parallelism into crit ical path analysis and helps users identify
the program activities which have the most impact on performance. Based on these ideas,
the design of a real-time performance monitoring tool was proposed and implemented on
a 74-node transputer-based multicomputer. Major problems in parallel and distributed
monitoring addressed in this thesis are: global state and global clock, minimization of
monitoring overhead, and the presentation of meaningful data. New techniques and novel
approaches to these problems have been investigated and implemented in our tool. Lastly,
benchmarks are used to measure the accuracy and the overhead of our monitoring tool.
We also demonstrate how this tool was used to improve the performance of an actual
parallel application by more than 50%.

11

Acknowledgement
First of a l l and above a l l , I would like to thank my supervisors Dr . Samuel Chanson

and Dr . A l a n Wagner for their patience, support and understanding. The advice I re

ceived from Sam has gone far beyond academic research. A n d A l a n , who never runs out

of creative ideas, always gave me friendly guidance when my work seemed to be at an

impasse.

I would like to extend special thanks to my project partner Hilde Larsen for doing

an excellent job in programming the graphical user interface. Also thanks to Ola Siksik

for donating her programs as benchmarks for our monitoring tool. Many other people

in the Department of Computer Science at U B C have also contributed to this thesis.

M i n g L a u , hardware technician of the department, built the hardware circuit to generate

global interrupts in the transputer network. Don Ac ton helped me to set up the system.

N o r m Goldstein and H . V . Sreekantaswamy proofread the final draft of this thesis. I am

also grateful to the people of the Trollius project, especially Greg Burns of Ohio State

University and J i m Beers of Cornel l Theory Center, for their help and suggestion in the

installation and instrumentation of Trollius Operating System.

Lastly, I am indebted to my family for their constant support and encouragement.

This thesis is dedicated to my grandparents.

i n

Contents

Abstract ii

Acknowledgement iii

Contents iv

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 . The Problems 1

1.1.1 Global State and Global Clock 2
1.1.2 Nonintrusive Monitoring 3
1.1.3 Automatic Performance Tuning 5

1.2 Motivation 6
1.3 Objectives and Goals 8
1.4 Thesis Outline 9

2 Related Work 11
2.1 Parallel Performance Monitoring 11
2.2 Transputer Monitoring Tools 15

3 Performance Model 18
3.1 Definition of Multicomputer Networks 18
3.2 Graph Representation of Parallel Computation 20
3.3 Performance Metrics 21
3.4 Weighted Critical Path Analysis (WCPA) 26
3.5 Summary 29

iv

4 Design of the Parallel Monitor 30
4.1 Environment 30

4.1.1 Hardware Architecture 30
4.1.2 Underlying Operating System 31

4.2 System Structure 33
4.3 Basic Instrumentation Techniques 35

4.3.1 Event Sampling 35
4.3.2 Event Tracing 36
4.3.3 Hybrid Monitor 37

4.4 Global Control 37
4.4.1 The Global Interrupt Approach 37
4.4.2 Hardware Extension 38
4.4.3 Global Sampling and Clock Synchronization 40
4.4.4 Summary 41

4.5 Event Tracing 42
4.5.1 Event Generation 42
4.5.2 Buffer Management 43
4.5.3 Adaptive Reporting 44
4.5.4 Summary 47

4.6 User Interface 47

5 Testing and Verification 51
5.1 Validation of Monitoring Result 51
5.2 Measurement of Monitoring Overhead 55
5.3 Clock Synchronization 59
5.4 Summary 62

6 Performance Tuning: A Case Study 64
6.1 The Parallel Image Reconstruction Algorithm 64
6.2 Measurement and Analysis 65
6.3 Summary 70

7 Conclusions 71
7.1 Synopsis • • • 71
7.2 Future Work 72

7.2.1 Enhancement of the Monitoring Tool 73
7.2.2 Alternatives to Nonintrusive Monitoring 73
7.2.3 Performance Steering 75

v

A Architecture of the Transputer-based Multicomputer 82

B Modifications to Trollius Run-time Library 86
B . l Definition of Monitor Parameters 86
B.2 Probes to Generate Message Events 87
B.3 Probes to Generate Process Events 89
B.4 Probes to Generate User-defined Events 92
B.5 Monitor Controlling Routines 93

v i

List of Tables

5.1 Validation of Processor Utilization 53
5.2 Validation of Communication Channel Utilization 53
5.3 Monitoring Overhead for Cholesky;s Factorization Program 56
5.4 Monitoring Overhead for Input of Various Matrix . 57
5.5 Accuracy of Clock Synchronization Using Global Interrupt 59
5.6 Accuracy of RING-SYNC algorithm 61

6.1 Analysis Result for Image Reconstruction Algorithm 68

vii

List of Figures

3.1 A n Example of Execution Graphs 22
3.2 Assigning Weight to A n Extended Execution Graph 25
3.3 A Port ion of the Cr i t i ca l Pa th 28

4.1 A Mult i-Transputer Network Configured as a 8x9 2-D Cyl inder 32
4.2 Basic Structure of the Parallel Moni tor 34
4.3 A Picture of the Transputer-based Mult icomputer 39
4.4 Structure of Trace Entries 43
4.5 Double-Buffer Structure 45
4.6 Graphical Display of Performance Result 48

5.1 Moni tor ing Overhead for Different Sampling Intervals 54
5.2 Moni tor ing Overhead for Different Buffer Size 58

6.1 Graphical Display of Network Topology 66
6.2 Graphical Display of Unmatched Message Events 67
6.3 Communicat ion Activi t ies of Distr ibuting Subimages 69

A . l Architecture of the I M S T800 Transputer 83
A.2 Architecture of the I M S C004 Crossbar Switch 84
A.3 Physical Connections of the Transputers and the Switches 85

vm

Chapter 1

Introduction

The transputer-based multicomputer network is a new and promising class of highly

parallel computer system because it not only offers potentially enormous computational

power at modest cost, but also serves as testbeds for research experiments in the field

of parallel processing. The focus of this thesis is instrumentation, modelling and perfor

mance analysis of parallel programs in multicomputer networks. New instrumentation

techniques are explored, and the design and implementation of a real-time performance

monitoring tool is presented.

1.1 T h e P r o b l e m s

Monitoring a computer system relies on dynamically extracting information about

the execution of a program at run-time, storing it and presenting it to the user in a

useful format. The information collected by the monitor depends on what the user

wants to know about the behavior of his program. Two traditional areas of studying the

execution of a program are debugging and performance analysis [Miller84]. Debugging is

concerned with the correctness of a program, while performance analysis chiefly addresses

1

CHAPTER 1. INTRODUCTION 2

the efficiency of the program. Performance analysis includes performance measurement

and performance tuning. Performance tools are invaluable to the application programmer

since they not only provide performance measurement results but also help users optimize

the performance of the program. The underlying instrumentation mechanisms used in

debugging and performance analysis are similar. The major distinction is that debugging

can control the execution of the program, while a performance monitor simply observes

rather than participates in the computation. For the purpose of measuring the efficiency

of a program, monitoring a computation without attempting to control its execution

offers the best opportunity to understand its behavior. The emphasis of this thesis is

in the performance aspect of understanding the execution of a program, though the

methods and tools we have developed are also useful in uncovering bugs in seemingly

correct programs.

Performance monitoring in uniprocessor computer systems has been studied exten

sively over the past 20 years and is well-understood; however, research in developing

methods and tools for monitoring, debugging, and measuring parallel systems lags behind

the technological advances in parallel architectures, distributed operating systems and

parallel programming languages. Uniprocessor instrumentation techniques do not gener

alize to a parallel and distributed environment. Mult icomputer networks feature asyn

chronous concurrent activities, nondeterministic and nonreproducible behaviors caused

by unpredictable communication delays, and the lack of central control and accurate

global t ime [HaWy90]. A l l these complicate the task of measuring and monitoring pro

grams in parallel and distributed systems.

1.1.1 Global State and Global Clock

A multicomputer network consists of a large number of computing nodes which run

CHAPTER 1. INTRODUCTION 3

asynchronously and interact with one another by passing messages. In order to obtain

precise global states of the entire system, the measurement tasks have to be performed

simultaneously on different nodes. Results however must be collected at a central work

station for analysis and display. Unpredictable communication delays and the lack of a

central control mechanism make it difficult to guarantee that the measurement of tasks

are performed at the same time and the information collected from the different nodes

reflects a consistent global view of the system. A related problem is the difficulty in ob

taining global clock i n the multicomputer network where each node has its own physical

clock and the drift between them is unpredictable. In parallel monitoring, an accurate

global clock is not only useful for ordering asynchronous events on different nodes but

is essential for measuring the elapsed time of message transmission. The logical clock

approach [Lamport78] has been widely used for ordering events in asynchronous envi

ronments. However, it is difficult to derive absolute elapsed time using logical clocks

since the differences of logical timestamps are not comparable to each other. Therefore,

the logical clock approach is inadequate and inefficient to measure the performance of

parallel programs in multicomputer networks.

The solution used in this thesis is a global interrupt approach in which a master node

interrupts a l l other nodes in the multicomputer networks to perform the measurement

tasks almost simultaneously, giving us an accurate snapshot of the system. Only minimal

hardware support was needed to implement this scheme on the transputer network and

it can be easily extended to other closely coupled multicomputer architectures.

1.1.2 Nonintrusive Monitoring

One of the most desirable properties of any monitoring tool is that it should incur

minimal overhead and cause minimum interference to a monitored application. In parallel

CE AFTER 1. INTRODUCTION 4

systems, stopping or slowing down a process may alter the behavior of the entire system

and even produce different results. Unlike monitoring a centralized system, the presence

of the monitor in a multicomputer network may not only cause severe degradation in the

performance of the monitored application, but also distort the execution of the program

yielding invalid results. It is impossible for any software monitoring tools to be totally

nonintrusive since the monitoring software has to share the system resources with the

application. Hardware monitors can be designed to have little or no effect on the host

system, but they only provide limited, low level information about the activities of the

host system. It is also difficult to map low level events to the source level program. The

installation of extra hardware device requires skill and thorough knowledge of the host

system, and can affect the hardware design and its expected performance. In addition,

hardware instrumentation is expensive and impractical in most cases. On the contrary,

software monitors can present information in an application-oriented manner and are

easy to install. But if the performance results are to accurately reflect the behavior

of the unmonitored application, the monitoring overhead must be within an acceptable

range. [Reed89] suggests that a less than 15% performance penalty is acceptable for a

software monitor.

The overhead introduced by a software monitor comes from the following sources:

• CPU time to run the monitoring software;

• memory space to store the monitoring data;

• communication bandwidth to report monitoring results to the host;

• extra context switches between monitoring processes and user processes.

In a multicomputer network where local memory available on each node is very lim

ited, it is impossible to store all information collected by the monitor locally until the ap-

CHAPTER 1. INTRODUCTION 5

plication computation terminates. Experimental results show that when the frequency of

reporting is high, up to 80% of the slowdown of the monitored application is attributable

to the communication overhead of the parallel monitor. Therefore, an important issue is

how to minimize the interference of the monitoring messages to normal communications

of the application program. Most existing systems fail to address this problem. See

Chapter 2.

The approach investigated i n this thesis is an adaptive reporting scheme in which

the monitor tries to avoid jamming the network traffic by sending out monitoring data

only when the network is l ightly loaded. A pre-defined threshold function based on

empirical data is used to determine whether the node is currently overloaded and whether

the monitoring data should be sent. Limitat ions of this approach are also discussed in

Chapter 4.

1.1.3 Automatic Performance Tuning

A performance tool is useful only if it can help to tune the performance of an appli

cation. It is a matter of how to present the performance data collected by the monitor

to the user. Since the amount of trace data collected from all nodes in a multicomputer

network is very large, it is important to present the information in a meaningful format so

that the user w i l l not be overwhelmed. Ideally the performance tool should supply users

wi th solutions to a performance problem rather than statistical numbers. It is necessary

to define a few simple metrics which can characterize the performance of the parallel

program. Unfortunately, there is no generally agreed upon model for parallel computa

tion, nor a model for the performance of these systems. Uniprocessor analysis techniques

cannot handle the drastically increased number of parameters in parallel systems. New

methods for analyzing the performance of parallel programs are at best underdeveloped.

CHAPTER 1. INTRODUCTION 6

Most existing systems only supply users with statistical summaries of the execution of

their programs.

In this thesis, we have developed a new performance analysis method for the mult i

computer network, called weighted critical path analysis(\W CPA). It is based on a simple

parallel computation model in which the computation is formalized as an execution graph

constructed using a minimal set of process events. Common performance metrics like pro

gram execution time, speedup, efficiency and granularity can be easily measured using

the proposed method. B y incorporating parallelism into the crit ical path analysis tech

nique, W C P A helps users identify the program activities which have the most impact on

the performance of their applications.

1.2 M o t i v a t i o n

The chief motivation of this thesis is the lack of tools to help users understand the run

time behavior of the parallel system and detect performance bottlenecks in their applica

tions. Though progress has been made in developing parallel operating systems [Burns88]

[Parasoft88] and parallel programming languages [Inmos83] [Zenith90] on transputers,

most existing systems do not provide adequate support for users to measure and analyze

the performance of their applications. It is not unusual for the application programmer

to write special code and insert it into the application in order to obtain even the sim

plest time measurements of the program. It is almost impossible to trace the execution

of a parallel program on the transputers by print ing diagnosis messages from various

places wi th in the program, as most people usually do to their sequential programs. In

a parallel system like the transputer-based multicomputer where most nodes in the net

work do not have direct access to external devices, diagnosis messages have to be routed

through intermediate nodes to reach the host in order to appear on the user's terminal.

CHAPTER 1. INTRODUCTION 7

Moreover, messages from different nodes will appear in some arbitrary order. Therefore

it is highly desirable to provide support in the underlying operating system to capture

these interesting events, collect and reorder them, and present to the user in a meaningful

format.

Experimental results show that initial implementation of a parallel program typi

cally yields disappointing performance [AnLa89]. The effort required to tune a parallel

program, and the level of performance improvement that is eventually achieved depend

heavily on the quality of the instrumentation that is available to the programmer. Since

a parallel program typically consists of many components running concurrently on asyn

chronous nodes, and the interaction among different components of the parallel program

can be quantitatively overwhelming and qualitatively complicated, it is difficult for the

programmer to identify which part of the program contributes most to the performance

of the entire program. It is desirable to provide analysis tools to appropriately direct the

attention of the programmer by efficiently measuring those factors that characterize the

performance of the entire program.

The successful development of performance monitoring tools relies on a good under

standing of the performance characterization of the target system. Existing monitoring

tools on transputers only provide simple statistical measures such as processor and link

utilization on individual nodes during the execution of the whole program (see Sec

tion 2.2). There is a pressing need for new monitoring tools which can measure the

overall performance of parallel applications and help users tune the performance of their

programs. Previous work has concentrated on instrumentation techniques or implemen

tation tricks on the transputer rather than performance modelling itself. We feel that

to build effective performance tools on the transputer, the first step is to define a simple

model which can capture the performance behavior of parallel programs on multicom

puter networks. This model is described in the first part of this thesis (Chapter 3. The

CHAPTER 1. INTRODUCTION 8

second part of the thesis is dedicated to the designing a parallel performance monitor on

transputers based on the model we define.

1.3 O b j e c t i v e s a n d G o a l s

In designing a performance monitoring tool, the following are the primary goals we

want to achieve:

• Functionality: The tool should provide users wi th enough information for perfor

mance studies of their program. In addition to measuring resource util ization in

the system, it should have the ability to trace system and user-defined events.

• Extensibility: The instrumentation should not require substantial changes to the

host system, both in hardware and software. Also , the monitoring system should

be flexible and allow a wide range of user interfaces and analysis packages to be in

corporated into the tool. This requires a separation of data collection and selection

from data display and analysis and a well-defined interface between them.

• Transparency: the instrumentation should be transparent to the application pro

grammer. T h e user should not be required to modify his program in order to

monitor i t . The only exception to this is the case of user-defmed events, which may

be application dependent.

• Efficiency: The overhead introduced by the monitor should be wi thin an acceptable

range.

• Accuracy: The performance results reported by the monitor should reflect the

behavior of the unmonitored application. The behavior of the program should be

the same when running with or without the monitor.

CHAPTER 1. INTRODUCTION 9

• User-friendliness: The monitor should be easy to use and the resulting data should

be easy to read. A graphical interface is necessary to display the data in a user-

friendly manner. The monitoring tool should be flexible so that it can be turned

ON and OFF interactively, either by the user from the host, or from within the

program running on a multicomputer node.

There are other secondary goals. We would like the tools to be applicable to a wide

range of systems rather than the instrumentation of a specific hardware architecture (the

transputer) or a specific target operating system. The approaches suggested in this thesis

should be generally applicable to other closely-coupled multicomputer architectures.

1.4 T h e s i s O u t l i n e

This section gives a brief description of the contents of the following chapters.

Chapter 2 is a literature survey of previous work in areas related to parallel and

distributed monitoring. Key ideas which contributed to this thesis are identified.

Chapter 3 presents a performance model for parallel programs on the multicomputer

network. We give a definition of a multicomputer network and then give a simple model

of computation on the multicomputer network. Based on this computation model, we

derive a set of performance metrics used to characterize the performance behavior of

a parallel program. Finally, we propose a new method for measuring and analyzing

the performance of parallel programs on the multicomputer network. Applicability and

limitations of this method is also discussed in Chapter 3.

Chapter 4 describes the design and implementation of a parallel performance mon

itor on the transputers. It begins with a brief overview of the hardware and software

instrumentation environment, followed by the description of the design of the monitor-

CHAPTER 1. INTRODUCTION 10

ing system. Various techniques applied in the parallel monitor are described in detail,

with new approaches to the problems discussed in section 1.1 and their implementation

highlighted. The design of the graphical user interface is briefly described at the end of

chapter 4.

Chapter 5 presents the testing and verification results. The accuracy of the resource

utilization results measured by the monitor is validated by comparing against artificial

load programs. Measurement of monitoring overhead is discussed, and a comparison is

made between our clock synchronization technique with other reported software clock

synchronization algorithms for transputers.

Chapter 6 shows an example of how the performance monitoring tool is used to tune

the performance of a real parallel application. It demonstrates how it helps to discover

a serious bug in a seemingly correct parallel program.

Chapter 7 concludes the thesis by summarizing key ideas presented in the previous

chapters and suggests future enhancements of the monitoring tool.

Appendix A is a detailed description of the architecture of the transputer-based mul

ticomputer network. Appendix B contains a list of changes made to the target software

system, namely the Trollius Operating System. An up-to-date bibliography on parallel

and distributed monitoring is included at the end of the thesis.

Chapter 2

Related Work

The problem of monitoring the execution of a program in a parallel and distributed

system has attracted much attention among researchers in recent years. Prototypes of

monitoring tools have been developed on a wide range of parallel architectures, wi th

emphasis on either debugging or performance analysis [Joyce87]. These systems apply

different techniques and achieve different degree of success in dealing wi th the problems

presented i n Section 1.1. In this chapter, we first make a general survey of tools developed

in other distributed and parallel environment. Second we give a brief review of existing

monitoring tools on transputers. Since the body of literature on parallel and distributed

monitoring is large, we only present works that are of particular interest to performance

studies and have had the most influence to the design of our tools. We also identify ideas

that have contributed to this thesis and point out deficiencies in the model or design of

existing systems.

2.1 P a r a l l e l P e r f o r m a n c e M o n i t o r i n g

A m o n g the existing tools to monitor the performance of distributed and parallel

11

CHAPTER 2. RELATED WORK 12

programs, the following systems have the most influence to the design of our tool.

IPS [MiYa87][Miller90] is a performance measurement system for parallel and dis

tributed programs developed at the University of Wisconsin-Madison. IPS is based on

the ideas proposed in Mil ler ' s P h . D thesis [Miller84] and its predecessor D P M [Miller88].

IPS uses a hierarchical model as the framework for performance measurement. The be

havior of a program is described at multiple levels of abstraction. Program level is the

top level of the hierarchy and it describes the general behavior of the whole program,

such as program execution time and speedup. The next level below is the machine

level, which records summary information for each node and the interaction between

them, such memory and C P U utilization of each machine. The process level ignores the

machine boundary and views the distributed computation as a single group of communi

cating processes. A t procedure level, a distributed program is represented as a collection

of sequentially executed procedure call chain for each process. The lowest level of the

hierarchy is the primitive activities level, which is a collection of primit ive activities that

are detected to support upper level measurement. Performance metrics are defined for

each level in the hierarchy and allow the the behavior of the program to be viewed at

different level of detail. IPS applies different techniques to measure events at different

level. Da ta for process, machine and program level are collected using event tracing,

while data for procedure and primitive activities level are collected using periodic sam

pling. IPS is designed for loosely-coupled, message-based distributed environment and

has been implemented under the Charlotte Distr ibuted Operating System as well as the

4.3BSD U n i x systems. The ini t ia l version of IPS [MiYa87] only supplies a simple textual

user interface. T h e second generation of the tool, IPS-2 [Miller90], extends the old sys

tem with an interactive graphical user interface, which allows the programmer to display

metric in tabular or graphical form and use the analysis tools interactively. IPS uses the

instrumentation strategy of modifying the run-time library provided by the underlying

CHAPTER 2. RELATED WORK 13

operating system. Hooks are automatically inserted into the application by selecting a

compiler option.

IPS provides automatic guidance techniques for performance tuning. The most im

portant tool it provides is to find the path that consumes the most time through a graph

of the program execution history, known as critical path analysis (CP A). In this thesis,

we develop a new variation of this which we call weighted cr i t ical path ana lys i s (WCPA).

W C P A incorporates the notion of parallelism into C P A , i n order to precisely reflect the

relative importance of program elements to performance.(See Section 3.4) A n analysis

technique called phase behavior analysis which tries to automatically detect different

phases in the parallel computation, is being investigated in IPS-2.

IPS does not address the problem of global state and global clock. It assumes that

the clocks supplied by the underlying operating system are already synchronized among

different machines. Also it does not address nonintrusive monitoring, especially the

overhead of transferring large amount of trace data over the network. The overhead of

IPS-2 [\liller90] ranges from 10-45%. Another disadvantage is that IPS is a post-mortem

tool. Performance results cannot be viewed by the user i n real-time, which makes it

inappropriate for long computations.

Quartz [AnLa89], developed at the University of Washington, is a tool for tuning

parallel program performance on a shared memory multiprocessor. The principle metric

used by Quartz is the total processor time spent in each section of code along with

the number of other processors that are concurrently busy when the section of code

is being executed. W h e n tied to the logical structure of the program, this correlation

provides a "smoking gun" pointing at those areas of the program most likely responsible

for poor performance. Quartz is implemented on the shared memory Sequent Symmetry

Multiprocessor. Nonintrusiveness is achieved in Quartz by using a dedicated processor

statistically checkpointing to shared memory the number of busy processors and the state

file:///liller90

CHAPTER 2. RELATED WORK 14

of each processor. Each procedure in the application is assigned a weight as the total

processor time of each procedure divided by the number of concurrently busy processors

during the execution of the procedure. To focus the programmer's attention on the

program segments that have the greatest impact on performance, Quartz presents a list

of procedures sorted by its weight plus the weight of work done on its behalf. The

W C P A method proposed in this thesis was inspired by Quartz. However, while Quartz

incorporates the notion of parallelism into the sequential U N I X tool gprof, we incorporate

the notion of parallelism into our own cri t ical path analysis.

Another interesting tool is the T M P monitoring system developed by Haban and

Wybranie tz for the I N C A S experimental multicomputer environment [HaWy90]. T M P

is a hybrid monitor which is designed to benefit from the advantage of both hardware

and software monitors while overcoming their deficiencies. A special hardware support,

which consists of a test and measurement processor(TMP), is designed and attached to

each node in the multicomputer. T M P s are used to collect and process event trace data

generated by the instrumented application. A l l T M P s are connected v ia a separate net

work to a central station, thereby avoiding any interference of transferring trace data to

the host system. Since monitoring data are collected, processed and transferred using ex

tra hardware devices, the operations of T M P s are completely transparent. The overhead

introduced by the monitor is min imal (less than 0.1%). Moreover, since events are gener

ated by software, using the semantic information about the program structure provided

by the compiler, the monitoring software is able to present data in an application-oriented

manner. In T M P , probes to trigger events are placed in the operating system kernel so

that it is not necessary to recompile the user's program. The probe routines write a

trace entry to a special memory location which is then read by the T M P hardware.

T M P also provides a graphical user interface to display performance results. Although

T M P achieves a very attractive degree of transparency, the degree of hardware support it

CHAPTER 2. RELATED WORK 15

requires makes it expensive and unportable to most multicomputer systems. The global

interrupt approach proposed in this thesis is partly inspired by T M P . We follow the

principle of using minimal , affordable hardware support to achieve performance beyond

the scope of any pure software monitoring tools. Several different approaches have been

investigated in T M P to solve the problem of global state and global clock.

1. A k ind of logical clock algorithm [Lamport78] has been implemented to preserve

the causality relationship of events which occur on different nodes.

2. A software solution similar to the T E M P O algorithm [GuLa84] has been imple

mented to synchronize the clocks on different machines.

3. The T M P hardware offers the use of a central physical clock which triggers the

local time counter on each T M P .

The current implementation of T M P only supports (1) and (2) and is able to synchronize

the clocks i n the order of lOOusec.

In summary the major drawback of their system is the need for extensive hardware

support and the lack of advanced tools for analyzing the performance data.

2.2 T r a n s p u t e r M o n i t o r i n g T o o l s

The research and development of monitoring tools on transputers dates back to Capon

and West's program transformation technique to monitor channel communications in Oc

cam programs [CaWe88]. In their system, efforts are made to insert monitoring processes

and additional communication channels between two communicating processes without

changing the semantics of interprocess communication in Occam. It is a source level

instrumentation technique and programmers are required to manually transform their

CHAPTER 2. RELATED WORK 16

program before they can be monitored. Recently C a i and Turner [CaTu89] extended this

approach to monitor real-time Occam programs. The emphasis of their work is to use a

logical clock to minimize the interference and achieve high transparency, in particular,

to satisfy the real-time constraints in some applications. It is based on program trans

formation and requires manually modification of the original program. A l l of this work

is specific to the Occam language. Neither system addresses the problem of global clock

and reporting overhead.

A third transputer monitor is the one developed at Hong K o n g University [HoLa89].

It measures the processor utilization and channel communications on an individual node.

Three different methods are used to measure the ut i l izat ion of each processor: periodic

probing, idle counting and process profiling. Moni tor ing overhead is reduced by using

assembly transputer instructions and careful code optimization. Their tool is rather

simple in functionality. No advanced analysis is made of the data. On ly statistical

summaries are supplied by their tool.

The Vic to r project [Shea89] at I B M provides hardware support for nonintrusive mon

itoring in transputer-based multiprocessor. Moni tor ing is achieved with a separate hard

ware status bus which is independent of the regular transputer links and is connected to

a dedicated P S / 2 monitor system. In each node there is a scan register and a scan bus

through the system that is controlled by the coprocessor adapter in the P S / 2 coprocessor

adapter for real-time acquisition of status data. The information collected for each node

includes l ink activity, host id , memory activity, and state of user programmable L E D s .

Al though the V i c t o r hardware monitor achieves a high degree of transparency, it has the

same problem as most other pure hardware monitors. It can only be used to monitor low

level activities of the system and is incapable of providing users with views of the system

in an application oriented manner.

One recent work in transputer monitoring is G R A V I D A L [VoZe90l. a graphical visu-

CHAPTER 2. RELATED WORK 17

alization environment for Occam programs on arbitrary transputer networks. It provides

animated user defined views of the algorithm during run-time. The user has to manually

place special statements into his source code and GRAVID AL will generate visualized ver

sion of his algorithm. GRAVID AL displays CPU load and link load as well as user-defined

events on each node. A logical clock algorithm has been implemented in GRAVIDAL to

order events on different nodes. GRAVIDAL does not provide an analysis tool for per

formance tuning since its emphasis is on graphical animation rather than performance

studies of parallel programs.

Chapter 3

Performance Model

A parallel computat ion can be characterized by the way different components of the

parallel program interact. There are two main streams in parallel processor design:

shared memory architecture and distributed memory architecture. Processes in a shared

memory system communicate v ia global shared variables, while processes on a distributed

memory machine communicate by message passing. The multicomputer network is a

class of distr ibuted memory, M I M D parallel architecture. This chapter discusses the

performance characterization of parallel programs on a multicomputer network.

3.1 D e f i n i t i o n o f M u l t i c o m p u t e r N e t w o r k s

A multicomputer network is a locally concentrated set of loosely coupled autonomous

nodes interconnected in some topology, each wi th a microprocssor, local memory and

hardware support for internode communication. Since hardware costs usually limit the

number of connections on each node to a small number and the multicomputer net

work is only sparsely connected, messages must often be routed through a sequence of

intermediate nodes to reach their destinations [ReFu87],

18

CHAPTER 3. PERFORMANCE MODEL 19

The multicomputer network has the following characteristics which distinguish itself

from other parallel architectures:

• Scalability: Comput ing nodes can be easily added to a multicomputer network to

obtain extra processing power. Mult icomputer networks of a large number of nodes

have shown to have very impressive peak performance.

• Message-based communication: Mult icomputer nodes can only communicate via

message passing over the interconnection network. This distinguishes it from tightly

coupled shared memory architectures.

• Geographical concentration: Unlike loosely coupled systems which consists of nodes

over a wide area, multicomputer nodes are usually packaged into a few boxes in

the same room.

• Communication locality: In contrast to LAN-based environments where communi

cation is unreliable and delays are measured in milliseconds, the communication in

the multicomputer network is considered reliable and nearest neighbour communi

cation is usually measured in microseconds.

Recent development in V L S I technology has paved the way for the development of mul

ticomputer networks. General purpose building blocks have been proposed to simplify

the multicomputer design and construction. The Inmos transputer is among the most

successful in the commercial market [Inmos89]. The IMS T800 transputer is a single

chip with a 32-bit processor, 4 Kbytes of on-chip memory, a floating point un i t (FPU) ,

four bidirectional bit-serial communication links, and a simple interface to memory and

I / O devices. B o t h message passing and process scheduling are supported in hardware,

yielding a highly efficient implementation. A multicomputer network can be easily con

structed using IMS transputer boards. Appendix A of this thesis wi l l contain more

CHAPTER 3. PERFORMANCE MODEL 20

detailed information about the transputer architecture and construction of transputer-

based multicomputer networks.

3.2 G r a p h R e p r e s e n t a t i o n o f P a r a l l e l C o m p u t a t i o n

A parallel program is composed of many concurrent processes running on asyn

chronous multicomputer nodes, interacting with one another by message passing. From

the programmer's point of view, basic process activities include: process creation, pro

cess destruction and interprocess communications. The execution of a process can be

viewed as a sequence of primitive process events. Interprocess communication can be syn

chronous or asynchronous. In this thesis, we mainly discuss a so called semi-synchronous

interprocess communication paradigm which is supported by most operating systems

on multicomputer networks. It is possible to extend this model to systems which sup

port strictly synchronous and asynchronous interprocess communications. In the semi-

asynchronous scheme, the sending process unblocks as soon as the message is sent, while

the receiving process blocks un t i l the expected message has arrived. Three types of prim

itive events are defined for interprocess communication activities: message send, receive

call and message arrive. The process is suspended between a receive call event and the

subsequent message arrive event.

Based on the previous discussion, a parallel computation on a multicomputer net

work can be formalized as a directed acyclic graph (D A G) , called the execution graph

G =< V, E > where V is the set of nodes and E is the set of edges. A node in the graph

represents a process event. It is one of the primitive events or a user-defined event. The

following is a minimal set of primit ive events for constructing the execution graph: pro

cess creation(procJnit), process destruction(proc_ej:i), message send(msg^send), receive

call(recu_ca//), and message arrive(msg.arr). There are two types of edges in the graph,

CHAPTER 3. PERFORMANCE MODEL 21

which defines a partial order over the set of a l l the nodes. A vertical edge represents

the computation activities between two consecutive events of the same process. The di

rection of the edge represents the temporal ordering of the two events. A diagonal edge

represents the communication between two processes. There is always an edge from a

msgjsend event to a corresponding msg.arr event in the graph. No edge exists between

a recvjcaU event and the following msgjarr event because the process is suspended and

there is no computation between these two events. The execution graph has the following

properties:

• In a parallel computation with n processes, there are exactly n nodes wi th in degree

zero, representing the incarnation of the processes.

• Each node in the graph has max imum in-degree 2.

• The max imum out-degree for each node is n if multicast is supported; 2 otherwise.

Each node in the execution graph can be tagged wi th the global timestamp of the cor

responding process event. The elapsed time between any two events can be calculated

by comparing the two timestamps. Figure 3.1 shows the execution graph of a parallel

computation wi th and without multicast.

3 .3 P e r f o r m a n c e M e t r i c s

In this section, we derive performance metrics for this system based on the parallel

computation model defined in the last section.

A s in the performance analysis of sequential programs, the overall performance of a

parallel program can be measured by the program execution time. We assign a weight

to each edge in the execution graph equal to the elapsed time between its source event

CHAPTER 3. PERFORMANCE MODEL 22

Process 1 Process 2 Process 3

proc-initi proc-init proc-init

proc exir proc-exit proc-exit

Process 1 Process 2 Process 3

msg-send

proc-exit; proc-exit proc-exit

(A) Paral le l computation without multicast (B) Paral lel computation wi th multicast

Figure 3.1: A n Example of Execution Graphs

CHAPTER 3. PERFORMANCE MODEL 23

and its destination event. The program execution time is given by the length of the

longest path of the execution graph. Figure 3.2(A) shows the weighted execution graph

for a parallel computat ion wi th three processes on two processors. Processor 0 timeslices

between the two processes. The longest path, or the critical path [YaMi88], is highlighted

in the graph. T h e program execution time is the sum of the weights of a l l the edges on

the longest path, i.e. 25 + 8 + 5 + 10 + 3 + 3 + 15 = 69.

Two other important metrics for parallel programs are speedup and efficiency. Let

T(n, k) denotes the program execution time of a parallel computation wi th k processes on

n processors, speedup is defined as S(n,k) = T(l,k)/T(n,k) and efficiency is defined as

E(n. k) = 5 (n , k)/n. Speedup is bounded by the number of processors, i.e. S(n, k) < n.

In the execution graph, let C,- denotes the total amount of time process i spends in

computation. Assuming that the same amount of work is done it follows that 2~Ii=i C{ =

T(l,k). Subst i tut ing this in for T(n,k) in S(n,k), we obtain speedup as the ratio of

total computation t ime to program execution time:

. If there is no mult i tasking on the same processor, then C , is the sum of the weights of al l

the vertical edges that belong to process i. In a parallel computation where some proces

sors are timesliced among multiple processes, the calculation of C, is more complicated.

The execution graph has to be relabelled by assigning C P U time rather than elapsed

time as the weight to the vertical edges in the graph. The CPU time of a vertical edge is

the time the process is active computing between its source and destination event. Let P

denote the C P U time and E denote the elapsed time between the two events. P = E if

there is no timeslicing. Let A j be a time interval between the two events and the number

of active processes on the processor during an interval of time rrij. Suppose there are /

CHAPTER 3. PERFORMANCE MODEL 24

such intervals between the two events. The CPU time is:

P = £ - £
(m,- - l)Aj

rrij

The total computation time for a process can be computed by the sum of the CPU

time of all vertical edges that belong to that process. Figure 3.2(B) shows that the

execution graph in (A) with its vertical edges relabelled by the processor time. The total

computation time of the execution graph is:]£f=i C, = (18 + 2 + 10) + (17 -j- 3 -|- 8) +

(5 + 5 + 20) = 85. The speedup of the program on 2 processors is 1.23 and its efficiency

is about 62%.

The granularity of a parallel program can be defined as the amount of time it spends

in communication routines as compared to the total amount of computation. Let M

denote the sum of the weights of all the diagonal edges in the execution graph. This is

the total communication time of the program. Since the total computation time of the

program is Yli=i Ci, the computation to communication ratio is (IZ?=i Ci) : M. This ratio

for the program in Figure 3.2 is 80 : 20.

In addition to the overall performance metrics for the whole program, we are also

interested in the resource utilization on individual nodes over a given period of time.

In a multicomputer network, the two most important resources are processors and com

munication channels. Given a time interval At, the degree of parallelism achieved in

the system during At can be derived from the processor utilization of each individ

ual node Ucpui- Given n processors, the parallelism of the system is calculated by:

P&t = {J2?=i UcpUi)/n. If At = T, then parallelism is equal to the efficiency of the

parallel program, i.e. P^t = E(n). Similarly, we can define traffic load of the network

during At as: LAt = Uunk^/m where denotes the utilization of fink i during

At and m is the total number of links in the network.

A l l of the above metrics are defined at the program level. That is, they reflect the

CHAPTER 3. PERFORMANCE MODEL

proc-exit

Node 2

(A) An execution graph with multitasking (B) Relabelling the execution graph in (A)

Figure 3.2: Assigning Weight to A n Extended Execution Graph

CHAPTER 3. PERFORMANCE MODEL 26

performance of the entire program. F rom the execution graph, it is also possible to derive

performance metrics at the node level and process level, such as communication frequency

between two nodes. These are simply statistical summaries and their calculation is

straightforward.

3.4 W e i g h t e d C r i t i c a l P a t h A n a l y s i s (W C P A)

The performance measures described in Section 3.3 wi l l supply users wi th answers to

how efficient their programs run. It does not answer questions the efficiency of their pro

grams or the locations of performance bottlenecks. The crit ical path analysis technique

proposed in [YaMi88] tries to focus the user's attention to the sequence of program ac

tivities which take the longest time to execute. It is hoped that knowledge of the cri t ical

path of a program's execution helps the user identify performance problems and better

understand the behavior of their program. W h i l e the cri t ical path is useful i n measuring

the program execution time of a parallel program (Section 3.3), the question we would

like to answer is: does the sequence of program activities that take the longest t ime to

execute accurately reflect the activities which contribute most to the performance of the

program, or are several parts of the program which take equal time to execute on one

node equally important to the overall performance of the parallel program? A positive

answer seems to be intuitive for those who are used to programming in a uniprocessor

environment. However, in a parallel system, the degree of parallelism achieved has a

dramatic impacts on the overall performance of the program. For instance, executing a

segment of code on one node with al l other nodes busy is not equivalent to executing

for the same period of time with a l l other nodes idle. The latter indicates a potential

sequential bottleneck in the parallel application and thus has a more significant effect

on the performance of the program. Generally speaking there are two ways to deal with

CHAPTER 3. PERFORMANCE MODEL 27

sequential bottlenecks in parallel programs. One is to re-structure the program to remove

the sequential component. This requires substantial changes to the application and may

not always be possible since many parallel applications have an inherently sequential

component. If / is the fraction of computation which has to be executed sequentially,

the upperbound for speedup on n processors is given by Amdahl ' s law [EaZaLa89]:

S (n ' k) < / + (! - /) / .

Another approach is to optimize the code that has to be executed sequentially, thus

reducing the fraction of sequential computation / . Therefore, it is essential to identify

the sequential bottlenecks in the application. Consider the port ion of a critical path

shown in Figure 3.3. Suppose the number of processor is 100. A conventional critical

path analysis tool would assign a weight,the elapsed time, to each edge. The elapsed

time between event A and event B is 100 msec, while the elapsed time between B and

C is 500 msec. It appears that the computation activities between event B and event C

have a more significant effect on the performance of the program since they need longer

time to execute. Since P&t = 0 between A and B, which means a l l other nodes are idle

during that t ime interval, improving the execution time between A and B by 50% would

reduce the program execution time by 50 msec. O n the other hand, since a l l other nodes

are busy between B and C, reducing the execution time between B and C has litt le or no

effect on the performance of the program unless the execution time on a l l other nodes is

also improved. The cri t ical path of a parallel computation consists of a large number of

events and it is difficult for the user to determine the relative importance of computation

activities on the crit ical path to the performance of the program. The above example

shows that the elapsed time alone is insufficient to capture the relative importance of

concurrent program activities.

Based on the above observation, we present an analysis method, called weighted crit-

CHAPTER 3. PERFORMANCE MODEL 28

Pf=0 pf=l

100 / \ 500

(10100) (500)

Figure 3.3: A Portion of the Critical Path

ical path analysis (WCPA), which incorporates the notion of parallelism into the critical

path analysis. The purpose of WCPA is to the identify sequential components and activ

ities with low degree of parallelism on the critical path. It is similar to the performance

measurement technique used in Quartz [AnLa89] on shared memory machines(see Chap

ter 2). In WCPA, we apply the notion of parallelism to process activities on the critical

path rather than to procedure activities in Quartz due to the unacceptable overhead of

monitoring procedure level events in multicomputer networks. In the WCPA approach,

an edge in the execution graph is weighted by two factors: the elapsed time between the

two events and the degree of parallelism during that period. Let P&t denote the parallel

factor during time interval At where At is the elapsed time between the two events and

n is the number of processors in the system, the weight assigned to the edge is computed

by:

w = At + {l- PAt){n - l)At (0 < PAt < 1)

When PAt = 1, i-e. maximum degree of parallelism is achieved, the weight assigned to

an edge is equal to the elapsed time At; when P&t = 0, i.e. there is no parallelism in the

system, the weight is maximized at nAt. An interpretation of this is that when there

is no parallelism, the execution on one node is wasting the resources on all other nodes,

virtually consuming the resources of the entire system. Now, the longest weighted path

in the execution graph represents the sequence of program activities which have the most

CHAPTER 3. PERFORMANCE MODEL 29

significant effects on the overall performance of the parallel program. In Figure 3.3, the

weight assigned to edges by the WCPA method is shown in brackets. Note that the

weight for edge < A, B > is now 10100, far more than the weight of edge < B,C >

500. This correctly reflects our intuition about the relative importance of these program

activities. A good metric to measure the relative importance would be the percentage

of each portion on the weighted critical path out of the total weight of the whole path.

The computation activities which weight the most on the critical path represents "the

hottest of hot spots" in the program. Optimization of these components is expected to

result in substantial improvement of the performance of the program.

3.5 S u m m a r y

In this chapter, we introduced a graph theoretical model of parallel computation on

multicomputer networks, which we called an execution graph. We show that a sufficient

set of five primitive events: procjnit, procexit, msgsend, recv.call and msg.arr are

adequate to construct the execution graph for any parallel computation. Various perfor

mance metrics can be derived from the execution graph. Based on this model, we also

developed a method to diagnose performance problems in parallel applications. This was

based on the critical path analysis technique but incorporated the notion of parallelism in

locating performance bottlenecks of the program. The method we proposed is shown to

be able to reflect the relative importance of program activities to the overall performance

more accurately than the conventional critical path analysis technique. The model and

methods proposed in this chapter can be adapted to other message-based parallel and

distributed environment with minor modifications.

Chapter 4

Design of the Parallel Monitor

This chapter describes the design of a parallel performance monitor and its imple

mentation on transputers. In Chapter 1, we discussed the major issues in monitoring

parallel and distributed systems and possible solutions to these problems. In this chapter

the techniques and approaches used to overcome these problems are described in detail.

4.1 E n v i r o n m e n t

We begin wi th a brief description of the underlying instrumentation environment.

One of our design goals is that the instrumentation should require minimal changes to

the target hardware and software system.

4.1.1 Hardware Architecture

The parallel monitor is currently implemented on a 74-node transputer-based mult i

computer in the Department of Computer Science at U B C . The multicomputer consists

of a Sun 4 workstation as the host and 74 I M S T800 transputers, each containing 4

30

CHAPTER 4. DESIGN OF THE PARALLEL MONITOR 31

Kbytes on-chip R A M , 4 bidirectional serial links, and 1 Mbytes or 2 Mbytes local mem

ory. The 74 transputer nodes are interconnected through 10 programmable crossbar

switches. Detailed description of the hardware architecture of the T800 transputer and

the C004 crossbar switches and their physical connection can be found in Appendix A

of this thesis. T h e transputers in the network are connected to the host Sun worksta

tion by a V M E bus interface. There are currently seven connections between the host

and the transputers, Nodes which do not have direct connection with the host can only

communicate wi th the host through intermediate nodes.

The interconnection topology of the transputer network can be dynamically reconfig

ured by software running on the Sun which sends switch setting commands to the crossbar

switches. Figure 4.1 shows a multicomputer network wi th 72 transputers configured as

a 8x9 2-dimensional cylinder.

4.1.2 Underlying Operating System

The target software system is the Trollius Operating System [Burns88], a parallel

operating system developed jointly at Cornell Universi ty and Ohio State University for

distributed memory mul t i compute r and ported to the transputer-based multicomputer

at U B C . Trollius provides a cross-development environment for parallel programming on

transputers. It consists of two parts, one part which runs on the host and the second

part running on transputer nodes. Trollius executes on top of U N I X on the host and

provides a user command interface to boot the node, download programs to transputers,

k i l l processes, etc. The most important tool provided by Trollius is message passing

between processes. There are two levels of message passing in Troll ius. The kernel level

allows communication between processes on the same node; the network level allows

communication between processes on different nodes, as well as on the same node. A

CHAPTER 4. DESIGN OF THE PARALLEL MONITOR 32

VME BUS

c \

-\ SUN 4
Workstation

c

Or

b

b

b

b

b

b

b

b

Figure 4.1: A Multi-Transputer Network Configured as a 8x9 2-D Cylinder

CHAPTER 4. DESIGN OF THE PARALLEL MONITOR 33

Trollius process sending a message does not directly specify the process to receive the

message, or vice versa. Instead, each process specifies an event type i n the header of

the message. If the event type specified by the sending and receiving process match,

the message w i l l be passed from the sender to the receiver. In network level message

passing, the sender also has to specify the destination node of the message. Since the

recipient of the message does not have to specify the source node, it can receive messages

from a variety of senders. Trollius supports both an asynchronous and semi-synchronous

interprocess communication paradigm as described in Chapter 3. Mul t icas t facility is also

supported in Troll ius. Other tools include library routines for process creation, process

destruction, signal handling, and access to remote file systems. For a detailed description

of the Trollius Operating System, readers are referred to [Burns88].

4 .2 S y s t e m S t r u c t u r e

Figure 4.2 shows the basic structure of the parallel monitor. There are three major

components: data generating and collection, global control, data analysis and display.

One transputer in the network is distinguished as the master node. It is capable of

interrupting a l l nodes in the system to perform measurement tasks simultaneously.

The monitoring software running on the master node includes an interface that ac

cepts monitor command from the user, and a controller that generates global interrupt

signals to synchronize the monitoring activities on a l l slave nodes. The data generation

and collection mechanism include:

• Event probes inserted into the application running on slave nodes used to generate

trace data, and a meter process to collect the event traces as they occur;

• A backend process on each slave node that performs sampling and clock synchro-

CHAPTER 4. DESIGN OF THE PARALLEL MONITOR

Master

Controllei Interface

Host

Display Analyst

Collectoi

VME

Arbitrary Network

Slave

•v.

L
Backend

Buffei
Mgr

•

r

Meter

Slave Buffer
Mgr

Backend |/ = \ Meter

I T

Application dprobes^
Event Event

Figure 4.2: Basic Structure of the Parallel Moni to r

CHAPTER 4. DESIGN OF THE PARALLEL MONITOR 35

nization on the arrival of global interrupt signals.

• A buffer pool on each slave node to store the trace data and cache intermediate

results from the meter process and the backend process. The buffer manager flushes

the buffers when they are full to make room for new trace entries. The trace data

are sent back to the host for analysis using the message passing mechanism provided

by the underlying operating system.

• The collector on the host collects trace data from all of the slave nodes.

The host collector sends the data to the data display which displays the performance

results graphically to the user in real time on the frontend host station. The data are

also dumped to trace files for input to the data analysis packages.

4 . 3 B a s i c I n s t r u m e n t a t i o n T e c h n i q u e s

There are two traditional ways of monitoring a computer system: event sampling and

event tracing.

4.3.1 Event Sampling

Event sampling is a statistical approach to obtain an accurate estimation of the

behavior of the computer system. The measurement task is performed at a pre-specined

time interval for a long period of time. The main advantage of event sampling is that

the amount of data it generates is small as compared to other approaches. This both

reduces the monitoring overhead and simplifies the analysis.

In order for the data collected by sampling to be representative, sample size should

be large and the sampling interval should be short so that the distribution of workload

CHAPTER 4. DESIGN OF THE PARALLEL MONITOR 36

is homogeneous [Chan87]. Event sampling has proved to be the most economical and

effective way of measuring resource utilization of the system. In a multicomputer network,

sampling can be used to measure the uti l ization of processor and communication channels

on each node wi th minimal overhead. However, unlike event sampling in uniprocessor

systems, the sampling activities on different nodes must be coordinated to obtain results

that reflect a consistent global view of the entire system.

4.3.2 Event Tracing

Unlike event sampling, event tracing measures events as they occur. Special software

probes are inserted into strategic locations in the application programs or in the operating

system kernel to trigger the recording of interesting events. Event traces are captured,

buffered, and analyzed for display to the user. A major drawback wi th event tracing is

that it is expensive when the frequency of the occurrence of the events to be traced is

high.

In mult icomputer networks, the volume of events generated on al l node during a

parallel computat ion can be enormous, however, the buffer space available on each node

is very l imited and the cost of transferring large amount of data across the network is

extremely high. Therefore, event tracing is only suitable for measuring high-level events

in systems wi th these characteristics.

Another problem wi th event tracing in a parallel system is that though events that

occur on the same node can be totally ordered, events from different nodes may arrive at

the host in unpredictable order. A single clock is needed to re-order these asynchronous

events on the host. This requires the local clocks on different node be synchronized.

CHAPTER 4. DESIGN OF THE PARALLEL MONITOR 37

4.3.3 Hybrid Monitor

The parallel monitor we designed was a combination of the sampling and event tracing.

It uses sampling to measure the resource utilization on each node, but uses event tracing

to monitor the process events defined in Chapter 3. The process events collected are

used by the analysis tool to reconstruct the complete execution history of the parallel

program and to provide insight into the run-time behavior of the program.

4 .4 G l o b a l C o n t r o l

4.4.1 The Global Interrupt Approach

In order to obtain precise global state and synchronized global clock in the multicom

puter network, we used a global interrupt approach, in which a master node interrupts

all other nodes in the system to perform the measurement tasks almost simultaneously.

A basic assumption is that the time required to respond to a global interrupt signal is

negligible. The global interrupt approach can be used to start or stop a computation on

all the nodes in the system. By generating periodic global interrupt signal, measurement

tasks can be performed at some predefined time interval on system-wide basis.

It is generally not always feasible to implement the global interrupt scheme in a loosely

coupled distributed systems. However, the multicomputer network features geographical

concentration and communication locality, it is usually easy to extend such system to

support global interrupt. Only minimal hardware support is needed to implement the

global interrupt in a transputer-based multicomputer network.

CHAPTER 4. DESIGN OF THE PARALLEL MONITOR 38

4.4.2 Hardware Extension

Hardware requirements for implementing global interrupt scheme in a multicomputer

network are:

1. A mechanism on each multicomputer node to accept interrupt signal and transfer

control of the processor to the interrupt handling routine without delay.

2. A mechanism to deliver the external interrupt signal to a l l nodes in the network.

3. A mechanism to generate the interrupt signal, either from a multicomputer node

or from any other external source.

The IMS T800 transputer provides an event channel in addition to the four data

channels on each board. When the input of the event channel is held high, the process

waiting for the event signal is scheduled. If the process blocking on the event channel is

a high priority one and no other high priority process is running, the latency is at most

58 processor cycles [Inmos89]. Since the processor speed of the T800 transputer is 20

M H z . the delay in responding is less than three microseconds.

In order to deliver the global interrupt signal to a l l transputers in the network, we

built a special hardware circuit. The circuit is basically a fan-out with one input and

74 outputs. The event channel of each transputer is connected to an output of the

circuit. A data channel on the master node is connected to the input of the circuit. The

global interrupt signal is generated by having the master node send to the data channel

connected to the input of the circuit. Figure 4.3 shows a picture of the department's

transputer-based multicomputer with the hardware extension. Seventy four transputers

are physically split into two boxes, with 10 nodes in the small box and the rest of them

in the big box. T h e global interrupt circuit is located on the top of the larger box.

Figure 4.3: A Picture of the Transputer-based Mult icomputer

CHAPTER 4. DESIGN OF THE PARALLEL MONITOR 40

4.4.3 Global Sampling and Clock Synchronization

A global interrupt is used to turn ON and OFF the monitor on a l l nodes dynamically.

It is also used to perform global sampling and clock synchronization in the network.

A high priority controller process on the master node triggers the interrupt periodi

cally at a pre-specified time interval. The first interrupt signal indicates the start of the

parallel monitor. The controller process keeps sending until the monitor has been turned

OFF explicit ly by the user. The monitor can be restarted after it has been turned OFF.

O n each slave node, there is a high priori ty backend process waiting for the interrupt

signal on the event channel. Upon the arr ival of the event signal, it checks a special mem

ory location [Beers89] to determine whether the processor and each of the data channels

are currently busy, and increments the counters accordingly. Since the event signals are

periodic , the backend process can also update its own local clock at a predefined in

terval by setting the clock to the expected value. The result of sampling is reported by

periodically generating an event entry and writ ing it to the buffer pool. The overhead of

sampling and clock synchronization is low since the code to be executed is exceedingly

simple. It contains only a few transputer instructions and runs for less than 10 usee.

If resynchronization is performed every second, the overhead is less than 0.0001%. The

termination of a monitoring session is detected on each slave node by not receiving the

interrupt signal after a pre-defined timeout period. In the current implementation, the

timeout period is set to be twice of the sampling interval.

The accuracy of clock synchronization wi l l be affected if the monitor is not the only

high priority process since the backend process wi l l not be able to respond in a timely

fashion when the interrupt signal arrives. Fortunately, in our environment, by default

a l l user processes and Trollius server processes run in low priority. The only system pro

cesses that have to run in high priority are the kernel process and channel processes. The

CHAPTER 4. DESIGN OF THE PARALLEL MONITOR 41

execution of these processes is transient. A n adaptive synchronization scheme has been

implemented in order to factor out the interference of these high priority processes to

clock synchronization. In this scheme, the local clock is reset only if the monitor process

gets control of the processor within a legitimate period of delay, say 20 microseconds;

otherwise the value of the clock remains unchanged. Experimental result shows that this

scheme reduces the worst case drift of the clock synchronization algorithm substantially.

A l imi ta t ion is that if user processes are allowed to run in high priority, the clock syn

chronization could be postponed indefinitely. This problem is almost impossible to avoid;

however, for most applications it is common to have all user processes run at low priority.

Section 5.3 reports on experimental results for the accuracy of our clock synchronization

algorithm.

4.4.4 Summary

In this section, we have described the global interrupt approach and how it is used

to obtain global snapshots of the system and synchronize local clocks in the transputer

network. In contrast to the logical clock approach [Lamport78] has tradit ionally been

used to order asynchronous events and obtain a consistent global state in distributed and

parallel systems. The logical clock approach has also been successfully used for parallel

debugging in existing systems [Fowler88][VoZe90]. However, the logical time only reflects

the temporal order of events but not the physical elapsed time. Since the differences of

logical timestamps are not comparable wi th each other, logical time cannot be used to

measure the performance of message transmission. Moreover, the expense to run the

logical clock algorithm is high. Therefore, a logical clock did not satisfy the requirements

of our system.

Another approach to the global clock problem is the pure software clock synchroniza-

CHAPTER 4. DESIGN OF THE PARALLEL MONITOR 42

tion algorithms which estimate the drifts between different clocks by passing messages

around the network [Duda87][GuLa84][Shumway89]. This is a time-consuming approach

since the a lgori thm involves exchanging a lot of messages among different nodes and

the accuracy is disappointing. Chapter 5 gives a comparison between the global inter

rupt approach we used and the best known software synchronization algorithm on the

transputer.

As compared to other techniques, the global interrupt approach has the advantage

of high accuracy, low overhead and simple implementation. We have showed it can be

applied to a transputer network with minimal addit ional hardware support.

4.5 Event Tracing

4.5.1 Event Generation

There are five types of standard events traced by the monitor: procJnit, proc.exit,

msg^send, recv_call, msg.arr. As shown in Chapter 3 these events form a sufficient set

of events which can be used to reconstruct the execution graph of the parallel program.

Users can also specify their own events to be traced in the program. The probes to

generate standard events are inserted into the appropriate routines in the Trollius run

time library. Appendix B discusses in detail the probe routines and the changes made

to the Trollius library. In order to monitor an applications, users must recompile their

programs and l ink to the instrumented version of the runtime library.

A n addit ional l ibrary routine probe () is provided to allow user-specified events. The

user is responsible for inserting the probe () call into the his source problem to generate

the user-defined event. Our principle is to minimize monitoring overhead by tracing a

minimal set of events but provide users the flexibility to monitor additional events.

CHAPTER 4. DESIGN OF THE PARALLEL MONITOR 43

Each invocation of the probe routine generates an event trace entry. It is encoded

into a message and sent to the meter process on the local node using the Trollius kernel

message passing mechanism. The structure of event entries is shown in Figure 4.4.

1 4 4 12

PROC-INTT Timestamp Process Id Process Name

1 4 4 12

PROC-EXIT Timestamp Process Id I

1 4 4 4 4 4

MSG-SEND Timestamp Process Id Event Type Dest Node Msg Length

1 4 4 4 4 4

RECV-CALL Timestamp Process Id Event Type Buffer Size

1 4 4 4 4 4

MSG-ARR Timestamp Process Id Event Type Source Node Msg Length

1 4 16
User-defined

Event
Timestamp Auxiliary Information

Figure 4.4: Structure of Trace Entries

4.5.2 Buffer Management

The event trace data collected by the meter process as well as the utilization data

CHAPTER 4. DESIGN OF THE PARALLEL MONITOR 44

generated by the backend process are stored locally in a buffer pool before they are sent

back to the host station for display and analysis.

The buffer pool is organized as a double-buffer structure (Figure 4 .5) . Each buffer

contains an identical number of trace entries. After one buffer is full, it is automatically

switched to the other one. The buffer manager is a low priority process which periodically

checks the status of buffers. Data in a full buffer are encoded into a message and sent to

the host using Trollius network level message passing. The advantage of the double-buffer

structure is that monitoring processes can continue writing trace entries to one buffer

while the other is being flushed. Operations on the shared data structure are critical

sections and are protected by disabling timeslicing during operations which access the

buffer pool. If both buffers are full and new trace entries are being generated, the meter

process blocks until a buffer has been emptied by the buffer manager. Since the backend

sampling process cannot wait, it simply increments an overflow counter and proceeds.

The overflow counter counter keeps track of the number of utilization events dropped

by the monitor due to overflow. At the end of each monitoring session, the value of the

overflow counter on each node is reported to the host monitor.

4 . 5 . 3 Adaptive Reporting

The trace data at each node are sent back to the host using Trollius network level

message passing mechanism. The advantage of using the same communication mecha

nism as the application is the simplicity in implementation. It also makes the design of

the parallel monitor more portable to other systems since there no need to change the

communication mechanism provided by the underlying operating system. Since the com

munication network is multiplexed by the monitor and the application, status messages

may interfere with normal communication of the application, and affect the accuracy of

CHAPTER 4. DESIGN OF THE PARALLEL MONITOR 45

A B

Current Buffer

Reserve Buffer

Current Buffer

Reserve Buffer

Current Buffer

Reserve Buffer

Figure 4.5: Double-Buffer Structure

the performance results measured by the monitor. Experimental results show that when

the frequency of flushing buffer is high, up to 80% of the slowdown of the application is

caused by monitor communication (See Section 5.2).

A n adaptive reporting scheme was implemented to reduce the interference of moni

toring to application communication. In this scheme, the monitor on each node keeps

track of current load of the network. Moni tor ing data are sent only when the network is

l ightly loaded. The resource usage data measured by global sampling gives a very good

indication of the current status of the transputer network, and this information can be

used by the monitor to determine whether the trace data should be sent. Ideally, each

node has complete load information of a l l processors and communication channels and

can make the decision based on an global picture of the whole system. However, due to

the inherent communication delay, the resource util ization of one node wi l l have been

already obsolete when it is propagated to the monitor on a remote node. Therefore,

CHAPTER 4. DESIGN OF THE PARALLEL MONITOR 46

the information collected by the monitor does not reflect the most up-to-date consistent

global view of the system. Also, it involves passing a lot of messages in the network. The

approach we use is a distributed algorithm in which each processor's monitor decides

whether or not to send the monitoring data based on local load information. A decision

is made at each step on the path the monitoring message is routed to the host. Since

the load information on the local node is always up-to-date, the monitor is able to make

an accurate prediction for the next step. A predefined threshold function is used by the

buffer manager on each node to determine whether the node is currently overloaded and

whether to send the trace data. Let Ucpu denotes the C P U utilization. If l ink i is the

one the monitor uses to send trace data to the host, let £/,• denotes the uti l izat ion of this

link. The threshold function / is computed by: / = ctUcpu + f3Ui where a and /? are

coefficients obtained from empirical data. If / > 0.8, the node is considered overloaded

and the sending of monitoring data is postponed. If al l buffers on the local nodes are

full, the buffer manager has no choice but to flush the buffers regardless of the current

status of the network. The buffer size, reporting interval, and threshold function have to

be selected carefully to achieve optimal performance. Chapter 5 contains an empirical

study on tuning these parameters.

In the current implementation, the adaptive decision is made only at the first step

when the monitoring message leaves its origin. Implementation of the complete scheme

requires substantial changes to the routing mechanism of the underlying operating system

and affects the portabil i ty of the monitoring system. The preliminary implementation

of the adaptive reporting scheme shows up to 50% improvement over the static scheme

in term of degradation in the performance of the monitored application. Experimental

results indicates that the adaptive scheme improves the performance more substantially

for communication intensive applications since they are more sensitive to the interference

of the monitor communication.

CHAPTER 4. DESIGN OF THE PARALLEL MONITOR 47

4.5.4 Summary

Minimiz ing the communication overhead introduced the monitor is an important is

sue in monitoring multicomputer networks. Some existing systems [HaWy90] resort to

a separate communication network for monitoring messages to ehminate the effect of

monitoring. However, in most multicomputer networks, a separate network is not usu

ally available for monitoring purpose and is expensive to install in the system. Some

systems [Parasoft88] store and process the trace data locally unt i l after the application

computation terminates. However, in a multicomputer network where buffer space on

each node is extremely l imited, it is impossible to collect adequate information about

the execution of any substantial application. Moreover, this approach does not permit

real-time monitoring, which is desirable for many applications. The adaptive reporting

scheme has proven to be an effective approach to this problem. Refinement of this scheme

is expected to result in further improvement of the performance of our tool.

4.6 User Interface

The parallel monitor is designed so that it can incorporate a wide range of user in

terfaces. A n simple command interface has been implemented for users to start and

stop the parallel monitor interactively at the terminal. A programming language inter

face is also supported by providing two additional l ibrary routines start_monitor() and

stop_monitor() so that the user may turn the monitor ON and OFF from within their

programs.

Originally a simple interface was implemented to display the performance result to

the user as text lines. The textual interface does not allow users to visualize the execution

CHAPTER 4. DESIGN OF THE PARALLEL MONITOR 48

of their programs and was inconvenient to use. A n X window-based graphical interface

has been developed to display performance results to the user as easy-to-read chart and

graphs. Here we give a brief description of the functionality of the graphical display. 1

Figure 4.6: Graphica l Display of Performance Result

^he design and implementation of the graphical interface will be described in detail in Hilde Larsen"s
M.Sc. thesis.

CHAPTER 4. DESIGN OF THE PARALLEL MONITOR 49

The output of the graphical display includes a main menu, the network topology,

the global clock, and the execution graph. A sample view is shown in Figure 4.6. The

main menu is the control panel for the parallel monitor. The window in the upper right

corner in Figure 4.6 displays the topology of the transputer network. The C P U load for

each node is shown in the square box representing a node in the network. B y clicking

on the l ink which connects node 0 and node 1, a small rectangle box is popped up to

display the uti l ization of the selected transputer link. The global clock window (the one

in the upper left corner) shows the current time relative to the elapsed time of the whole

program. The clock value can be set, reset, start, stop or adjust speed by clicking on

the corresponding buttons in the window. The window on the lower half of the screen

displays the execution graph of the parallel program. Different icons are used to represent

different types of events in the graph. In Figure 4.6, a filled left triangle represents a

msgjsend event. Open and filled right triangles represent recv.call and msg.arr events

respectively. The communication patterns of the program can be easily visualized in

the execution graph. Figure 4.6 shows a broadcasting from each node in the system.

The vertical and horizontal scrolling bars allow users to conveniently browse through the

execution graph or focus on only a portion of the execution graph. The display for both

node utilizations and the execution graph are updated as the global clock proceeds. The

user can also obtain more details of each event in the execution graph by clicking on

the icon representing the event. A new window pops up with detailed description of the

event being selected. For instance, if the selected event is a msgjsend, then the sender

process id , the type and length of the message, the destination node and the time the

message was sent wi l l be displayed to the user. The weighted cri t ical path generated

by the analysis tool is highlighted on the execution graph, allowing the user to examine

the cr i t ical path graphically. The graphical interface is currently implemented using

the Interviews [LiCaV187] C + + graphics toolkit on top of the X window system. Our

CHAPTER 4. DESIGN OF THE PARALLEL MONITOR 50

experience shows that a graphical user interface is an indispensable component of any

parallel and distributed monitoring tool.

Chapter 5

Testing and Verification

Accuracy and overhead are the two most important indicators of the success of a

monitoring tool. In this chapter, we present the testing and verification results for our

monitoring tool. To measure the accuracy of the monitoring data, we used an artificial

application wi th controllable behavior and predictable performance. The parallel monitor

is then used to measure these programs. The accuracy of the performance result reported

by the monitor is derived by comparing it to the expected result of the program. B o t h

artificial and real benchmarks are used to measure the overhead of the parallel monitor.

Efforts have been made to isolate various sources of overhead and to tune the parameters

of the monitoring program to obtain optimal performance. The accuracy and overhead of

our clock synchronization technique is also discussed and compared with other software

clock synchronization algorithms reported in the literature.

5.1 V a l i d a t i o n o f M o n i t o r i n g R e s u l t

The performance results reported by the monitor is accurate if it correctly reflects

the behavior of the application program when it runs without the monitor. In order

51

CHAPTER 5. TESTING AND VERIFICATION 52

to validate these results, the behavior of the monitored application must be known in

advance. We have designed an artificial application wi th predictable behavior to verify

the correctness of the monitoring results.

The parallel monitor reports the processor and channel ut i l izat ion on each node in

the transputer network. We designed two sets of programs wi th artificial workload to

measure the accuracy of the processor and link util ization reported by the monitor. Given

a predefined time interval At and an expected workload e, the artificial processor load

program computes by incrementing a dummy counter for 1% of the time during At and

sleeps the rest of the time. Similarly, the artificial link load programs on neighbouring

nodes wi l l keep exchanging messages for 1% of the time during At and keeps the link idle

the rest of the time. To guarantee that the communication channels are busy, al l artificial

link load processes run in high priority and use low level transputer instructions zn() and

aut(). The operating system level message passing primitives are not used in order to

avoid unpredictable or extra context switches. Each artificial application is measured

over an extended period of time: T ^> At. The experiment is repeated a large number of

times and the average, range and standard deviation for the performance results reported

by the monitor are calculated for each artificial workload. Table 5.1 shows the validation

results for processor uti l izat ion. Table 5.2 shows the validation results for link utilization.

In both cases, At = lsec, T = l O m i n , and the result is computed over 10 experiments. It

can be seen from the tables that both processor uti l ization and l ink uti l ization measured

by the monitor are very accurate, with worst case deviation less than 5% and standard

deviation less than 2%.

The accuracy of the resource utilization result is affected by the interval of global

sampling. The sampling interval must be short enough for the distribution of workload

to be homogeneous, but long enough to keep monitoring overhead within an acceptable

range. One criteria for selecting the sampling interval is that it need not be performed

CHAPTER 5. TESTING AND VERIFICATION

Expected Load Average Load Range Standard Deviat ion

(%) (%) (%) (%)
10 10.62 9 - 12 0.89
20 20.72 19 - 22 1.13
30 30.32 29 - 32 0.82
40 40.10 40 - 41 0.30
50 50.09 50 - 51 0.29
60 60.08 59 - 61 0.38
70 70.32 68 - 72 0.96
80 80.13 78 - 81 0.88
90 89.90 89 - 90 0.30
100 99.90 99 - 100 0.30

Table 5.1: Val idat ion of Processor Ut i l iza t ion

Expected Load Average Load Range Standard Deviat ion

(%) (%) (%) (%)
10 10.41 9 - 12 0.83
20 19.46 17 - 20 0.73
30 29.00 27 - 30 0.87
40 38.27 35 - 40 1.54
50 48.80 46 - 50 1.09
60 58.60 56 - 61 1.58
70 68.82 67 - 71 1.36
80 79.14 77 - 81 1.60
90 89.71 87 - 92 1.69
100 99.31 98 - 100 0.79

Table 5.2: Val idat ion of Communication Channel Ut i l i za t ion

CHAPTER 5. TESTING AND VERIFICATION 54

more frequently than events occurs. Since the frequency of interprocess communication

events in Troll ius is measured in a few hundred microseconds, the sampling interval

need not be less than 1 msec, but (probably) should not exceed 10 msec. Figure 5.1

shows that the monitoring overhead decreases as the sampling interval increases. The

overhead shown in the chart is in fact the sum of the sampling overhead and the reporting

overhead. Report ing overhead decreases as sampling interval increases because trace data

are reported less frequently. However, since the reporting interval is relatively long as

compared to sampling interval, its effect on the monitored program does not show linear

behavior. This is why in Figure 5.1 the overhead does not decrease linearly as sampling

interval grows. Based on the result in Figure 5.1, 5 msec seems to be the best choice since

the overhead remains almost constant at 2.5% once the sampling interval is increased to

5 msec. The results given in Table 5.1 and Table 5.2 are measured with a global sampling

performed every 5 msec on a l l nodes.

Overhead (%)

10

8

6

4

2

1 2 3 4 5 6 7 8
Sampling Interval (msec)

Figure 5.1: Monitor ing Overhead for Different Sampling Intervals

The accuracy of performance metrics such as program execution time relies on the

CHAPTER 5. TESTING AND VERIFICATION 55

time measurement of the traced events, which in turn relies on the accuracy of the global

clock. The accuracy of clock synchronization in the monitoring system wi l l be discussed

in Section 5.3.

5.2 M e a s u r e m e n t o f M o n i t o r i n g O v e r h e a d

The overhead incurred by the parallel monitor is measured by the performance penalty

(slowdown) it introduces to the monitored application. Let T be the program execution

time of the parallel application when it runs without the monitor, and Tjv/ be the program

execution t ime when the application runs with the monitor. The overhead is computed

by (TM - T)/T x 100%.

In Section 1.1.2, we discussed the various sources of monitoring overhead. In our

experiments, we isolated different sources of monitoring overhead and measured each

separately. Our purpose was to identify which one contributed most to the overhead

in our system. The parallel monitor is functionally decomposed into three components,

labelled:

• A: global sampling and clock synchronization;

• B: event tracing;

• C: reporting.

The monitoring overhead caused by different components was measured by disabling one

or more of them during different monitoring sessions. For reporting(C), we measured both

the static reporting scheme (Cs) and the adaptive reporting scheme (CA) as proposed

in Chapter 4. The application used to evaluate the monitor was a parallel Cholesky's

factorization algorithm implemented under Troll ius on the transputers. The input of

CHAPTER 5. TESTING AND VERIFICATION 56

the program is a n x n matrix. During the computation, the matrix is decomposed

into submatrices which are processed concurrently on different nodes. The size was held

constant so that as the number of nodes increases, the granularity of the computation

becomes finer. In Table 5.3, the overhead to monitor this application is shown when

running on different topologies with constant input size 65 x 65. The overhead attributed

to different components on each row. A + C$ means the monitor only performs global

sampling and static reporting. A + B means it only performs sampling and event tracing

without reporting the results to the host. Results for other rows can be interpreted in

similar ways.

Topology
(Mesh)

Overhead (%) Topology
(Mesh) 1 x 2 2 x 2 2 x 4 4 x 4 4 x 8 6 x 8
A + CA 0.5 0.8 1.1 2.4 0.7 3.6
A + B 2.0 1.2 1.5 1.4 3.7 9.7

A + B + Cs 2.8 2.4 5.8 8.1 42.6 45.2
A + B + CA 2.6 2.4 5.3 5.4 20.9 39.1

Table 5.3: Moni tor ing Overhead for Cholesky's Factorization Program

The results given in Table 5.3 show that the overhead of both samphng(i4) and

event tracing(Z?) is low, less than 4% in most cases. It also shows that the overhead

of reporting(C) is reasonably low when executed on topologies with less than 16 nodes

(the 4 x 4 mesh). The granularity of the 65 x 65 matr ix on 16 nodes is reasonable

as each node get a 4 x 4 submatrix. As the computation becomes too fine-grained

on larger topologies, e.g. the 4 x 8 or 6 x 8 mesh, the overhead incurred by reporting

monitoring data increases dramatically to over 40%. This is because the communication

of the application is so intensive that the interference wi th monitoring message severely

degrades the performance of the application. The result for the adaptive reporting scheme

(A + B + CA) indicates that substantial improvements are possible by reducing the

interference of reporting to application communication.

CHAPTER 5. TESTING AND VERIFICATION 57

Table 5.4 shows the overhead introduced to the Cholesky's factorization program with

different size input. In this table the same 2 x 4 topology was used. The overhead is the

sum of sampling, event tracing and reporting. Measurements are made for both the static

reporting scheme and the adaptive reporting scheme. The number of events generated by

the application for different size of input is also shown in the table. Note that overhead

decreases as the input size increases. O n a fixed number of nodes, the larger the size

of the input matrix, the less fine-grained the parallel computation and the less overhead

the monitor communication incurs. This in combination wi th Table 5.3 supports our

claim that the major source of monitoring overhead lies in the communication bandwidth

used to report monitoring data. We can also conclude from these experiments that the

overhead of reporting decreases as the granularity of the parallel application grows. The

result in Figure 5.3 indicates that the adaptive reporting scheme is an effective means to

reduce the communication overhead of the parallel monitor. However, when the overhead

is low, adaptive and static reporting scheme behave basically the same (See Figure 5.4).

For parallel applications wi th reasonable granularity, the overhead incurred by the parallel

monitor is wi th in acceptable range (below the 15% performance penalty suggested in

[Reed89]).

M a t r i x Size Number of Events
Overhead (%)

M a t r i x Size Number of Events Static Reporting Adapt ive Reporting
9 x 9 399 6.1 8.9

29 x 29 871 8.0 6.7
65 x 65 2032 5.8 5.3

144 x 144 4195 2.3 1.6
234 x 234 9388 1.1 1.1
504 x 504 14590 1.0 1.0

Table 5.4: Moni tor ing Overhead for Input of Various M a t r i x

Another source of monitoring overhead which does not affect the running time of the

program is the memory space allocated to store the data collected by the monitor on each

CHAPTER 5. TESTING AND VERIFICATION 58

node. Memory is often is scarce resource on transputers. It is important to minimize the

buffer space used by monitor so that memory can be used for scaling up the size of the

problem However, reducing the size of the buffer pool would increase the frequency of

reporting, resulting in higher overhead. Therefore, a trade-off has to be made between

satisfying the memory constraint and reducing communication overhead of the monitor.

Figure 5.2 shows the monitoring overhead for different buffer sizes for the Cholesky's

factorization program with input size 65 x 65 on a 4 x 4 mesh.

Overhead (9fc)

220

200

180

160

140

120

lOO

80

60

40

20

64 128 192 256 320 384 448 512

Buffer Size (# entries. 1 entry = 21 Bytes)

Figure 5.2: Monitor ing Overhead for Different Buffer Size

The default buffer size in the current implementation is 5378 bytes which could store

256 trace entries. The user is given the flexibility to specify buffer size allocated for the

parallel monitor on each node.

CHAPTER 5. TESTING AND VERIFICATION

5.3 C l o c k S y n c h r o n i z a t i o n

59

A clock synchronization algorithm is acceptable if the drift between different clocks

is small compared to the min imum interval of time between any two events. We use

a global clock to order asynchronous events and measure the elapsed time of message

transmission. Therefore the accuracy of the performance results we obtain heavily de

pends on the accuracy of the clock synchronization algori thm used i n our system. This

section presents our results for the global interrupt approach we use to perform clock

synchronization in the transputer network. We compare this approach to other software

clock synchronization algorithms.

We measured the drift between different clocks by having processes on neighbouring

nodes exchange one single byte message for a predefined period of time. Assuming that

when both channels are active the time to transmit a one-byte message is identical,

the clock drift can be derived from the average difference of opposite direction message

transmission time. The two communicating processes on the neighbouring node run in

high priority and use the low level transputer assembly code in() and out() to exchange

messages, in order to factor out the interference due to context switches. Table 5.5 shows

the accuracy of our clock synchronization algorithm.

Resync Interval (sec) 0.1 0.5 1.0 2.0
Average Drift (psec) 0.84 1.95 3.58 5.91

M a x i m u m Drift (psec) 6 7 8 14
Standard Deviation(^.sec) 1.40 1.86 2.30 3.88

Table 5.5: Accuracy of Clock Synchronization Using Globa l Interrupt

Note that higher accuracy of clock synchronization can be achieved by performing

a resynchronization more frequently. B y performing a resynchronization every second,

we achieve an accuracy of average drift less than four microseconds and maximum drift

CHAPTER 5. TESTING AND VERIFICATION 60

of eight microseconds. Very l i t t le overhead is incurred in our scheme since the code

to be executed on each node to perform the resynchronization is extremely efficient.

It contains only a few transputer instructions and runs for less than 10 usee. If the

resynchronization interval is one second, then the overhead is less than 0.0001%. Also, it

takes less than 10 microseconds to send a one-byte message across a transputer link, and

the message transmission time in Trollius is measured in several hundred microseconds.

The accuracy of clock synchronization algorithm is more than adequate for ordering

asynchronous events and measuring message elapsed time.

There have been a few clock synchronization algorithms for transputer networks re

ported in the literature [Shumway89][CaVi88]. We compared our scheme wi th the RING-

SYNC algori thm in [CaVi88] since it reports the best accuracy among a l l existing algo

rithms.

The R I N G - S Y N C algorithm is based on a ring-structured transputer network in which

a master node periodically passes a SYNC message around the ring containing the local

clock value and the partial delay. U p o n receiving a SYNC message, every slave node sets

the value of its clock to the sum of the clock value and partial delay in the SYNC message

and updates the clock value in the message accordingly. When the SYNC message

returns to the master node, it recalculates the partial delay for the next SYNC message.

In [CaVi88], they also apply linear regression and g-degree extrapolation to estimate the

drift between two resynchronizations and revise the clock value. Exper imental results for

the R I N G - S Y N C algorithm have been reported in [CaVi88]. The max imum and typical

clock drift are measured wi th and without the interference of user process, and the result

is given before and after the drift correction using the g-degree extrapolation. Table 5.6

gives the summary of the best of their results when resynchronization is performed every

5 seconds.

The result of the R I N G - S Y N C algorithm for the NO LOAD case after drift correction

CHAPTER 5. TESTING AND VERIFICATION 61

No Revision 1-degree Extrapola t ion
N O L O A D W / L O A D N O L O A D W / L O A D

M a x i m u m Drift (psec) 100 115 12 56
T y p i c a l Drift (psec) 100 115 8 36

Table 5.6: Accuracy of R I N G - S Y N C algorithm

using the 1-degree extrapolation seems to be almost as good as our clock synchroniza

t ion using global interrupts. However, it deteriorates drastically in the presence of user

processes in the system. The reason is that the R I N G - S Y N C algorithm has to share the

communication channels with the application and thus interferes wi th the user's com

munication activities. Since passing a SYNC message around the ring is very expensive,

especially when the number of nodes in the system is large. Better accuracy cannot

be achieved by performing resynchronization more frequently in R I N G - S Y N C . As com

pared to the R I N G - S Y N C algorithm, our clock synchronization algori thm using global

interrupts has the following advantages:

1. Topology independent. Our approach makes no assumption about the interconnec

t ion of the transputer network, while the R I N G - S Y N C algorithm only works in

networks containing a ring. This l imitat ion of the R I N G - S Y N C algori thm implies

that it cannot be directly applied to common topologies such as tree-structured

networks.

2. Application independent. The accuracy of clock synchronization using global clock

is not affected by the application since a separate network, the global interrupt

circuit, is used to deliver the signal. The accuracy of R I N G - S Y N C algorithm is

seriously affected if the application is highly communicative.

3. Lower overhead. The overhead of the R I N G - S Y N C is substantially higher than

the global interrupt approach even if resynchronization is only performed rather

CHAPTER 5. TESTING AND VERIFICATION 62

infrequently. Running the g-degree extrapolation algorithm for correction consumes

extra processing power on each node.

4. Higher accuracy. Even the accuracy of the RING-SYNC algorithm in the ideal

case is only close to the accuracy achieved using global interrupt. The difference

in the normal case with user processes in the system between the two scheme is an

order of magnitude greater.

•5. Simple implementation. The implementation of our scheme is exceedingly straight

forward and the code contains only a few transputer instructions. While efficient

implementation of the RING-SYNC and the g-degree extrapolation algorithm can

be tricky.

The advantage of the RING-SYNC algorithm is that it is a pure software solution and

does not need any extra hardware support. However, the accuracy and reliability of the

global interrupt approach more than justified the minimal amount of extra hardware

needed to implement it.

5 . 4 Summary

In this chapter, we presented the results of our experiments in measuring the accu

racy and overhead of the parallel performance monitor developed on the transputer-based

multicomputer. The results indicate that both the accuracy and the overhead of our mon

itoring tool are within the desired range to achieve the goals we proposed in Section 1.3.

By measuring the various sources of monitoring overhead we identify the communication

activities.of the monitor as the major source of overhead in our system. The results indi

cate that the adaptive reporting scheme as proposed in Chapter 4 is an effective means

o f reducing the interference of monitoring to application communications. A comparison

CHAPTER 5. TESTING AND VERIFICATION 63

is made between our clock synchronization scheme using global interrupts and a pure

software clock synchronization. The results indicate that our approach is superior in

accuracy, overhead, applicability and simplicity, justifying our design principle of rely

ing on minimal hardware support to achieve performance beyond the realm of any pure

software solutions.

Chapter 6

Performance Tuning: A Case Study

In this chapter, an example is used to demonstrate the use of our monitoring tool to

tune a parallel application. The application we have chosen is an image reconstruction

algorithm implemented on transputers.

6.1 T h e P a r a l l e l I m a g e R e c o n s t r u c t i o n A l g o r i t h m

The algorithm is a parallel version of a sequential algorithm used in image processing

to eliminate noise from a raw image by performing edge detection on the image. Input

to the algorithm is a raw image as an n x m matrix, each element representing a pixel in

the image. The algorithm is designed for a k x k 2-dimensional mesh. The input matrix

is decomposed into k2 submatrices where a l l processors except those in the last row of

the mesh receive a square submatrix of size [M I N (n > m) j A l l extra columns in the input

matrix are sent to the last row of the mesh. Upon receiving a submatrix, each processor

runs the edge detection algori thm on the subimage and exchanges the side columns of

its submatrix wi th its nearest neighbours in order to recompute the pixels at the edges

of its subimage. The computation on the subimage is iterated unt i l convergence, i.e.

64

CHAPTER 6. PERFORMANCE TUNING: A CASE STUDY 65

unt i l no more elements in its submatrix get updated. A l l processed subimages are then

recombined and the parallel computation terminates.

The algori thm has been implemented under the Trollius Operating System and run

on 17 transputers configured as a 4 x 4 mesh plus an external node which has a direct

connection to the host workstation. The network topology on which the program runs

is shown in the output of the graphical display of the parallel monitor (Figure 6.1). The

transputer node adjacent to the host (called the master node) reads in the raw image from

the host file sys tem It decomposes the input matrix into submatrices and distributes

them to a l l transputer nodes in the mesh. Each slave node computes and communicates

wi th its neighbouring nodes using Troll ius network level message passing primitives. The

results from al l slave nodes are recombined at the master node. The reconstructed image

is then writ ten to a file in the user's file system. The program contains about 1500 lines

of C code and is an integrated part of an image processing package developed in the

Computer Science Department at U B C .

6.2 M e a s u r e m e n t a n d A n a l y s i s

The program was originally implemented and debugged on transputers without the

help of the parallel monitor, and it appeared to produce desired result. The program

was recompiled and linked to the instrumented version of the Trollius runtime library

without modification to its source code. The input image is a 47 x 47 square matrix.

The first result we obtained from the parallel monitor turned out to be a debugging

result rather than a performance result. The graphical display of the execution graph

indicated that the monitor was unable to find the matching msg.arr events for some of

the msg^send events on the slave nodes(Figure 6.2). This occurred near the end of the

execution of the program. B y clicking on the unmatched sending events in the graph, we

CHAPTER 6. PERFORMANCE TUNING: A CASE STUDY 66

Figure 6.1: Graphical Display of Network Topology

examined the information about each of these events and discovered that some segments

of the reconstructed subimage sent by the slave nodes were never received by the master

node. The execution graph also indicated that a l l receiving events on the master node

were matched. Hence, the problem was that the master node did not make enough

receive calls when collecting subimages. W i t h the help of the monitoring tool, this bug

was quickly fixed. Al though our tool is pr imari ly intended as a performance monitor, it

certainly can also be used to debug programs. It allows the user to gain insight into the

runtime behavior of execution of the parallel program and detect problems or locations

where the program is behaving strangely.

Once having debugging the program, we ran the W C P A tool on the trace to obtain

our measurement. The performance of the ini tal implementation was very disappointing.

The speedup on 16 nodes was less than 3 and the efficiency is less than 20%. The ratio

of computat ion vs. communication in the program was 20 : 80, which means 80% of the

CHAPTER 6. PERFORMANCE TUNING: A CASE STUDY 67

Figure 6.2: Graphical Display of Unmatched Message Events

execution time was spent in communication. B y examining the weighted crit ical path

generated by our tool , we discovered that the communication activities to distribute and

return the subimages constitutes the major portion of the crit ical path. In order to

obtain precise measurement of the relative weight of different phases in the execution of

the program, we manually inserted probes into the application to generate user-defined

events, signifying the start of each phase:

probe(READ.IMAGE, "reading image");

probe(DISTRIBUTE_IMAGE, "distributing");

probe(COMPUTE.IMAGE, "computing");

probe(RETURN_IMAGE, "returning image");

probe(WRITE.IMAGE, "writing image");

These probes were placed in the main program right before the procedure calls to execute

the corresponding tasks. We re-ran the program under the monitor and measured the

CHAPTER 6. PERFORMANCE TUNING: A CASE STUDY 68

elapsed time and relative weight of each of the phases. For instance, the elapsed time

and relative weight of distributing subimages was measured by the elapsed time between

the DISTRIBUTE.IMAGE event and the COMPUTE.IMAGE event on the weighted critical path

and the percentage of the total weight between them. These measures were generated

automatically by our analysis tool. The result of the analysis is shown in Table 6.1.

Phase in W C P A Relative weight

Read Image 29%
Distribute Image 5%
Compute Image 8%
Return Image 47%
Wri te Image 11%

Table 6.1: Analysis Result for Image Reconstruction Algor i thm

As shown in Table 6.1, the input and output of the image was weighted 40% on the

crit ical path. This is due to the low degree of parallelism during these operations, i.e. al l

nodes are idle wait ing while the master is reading from or wri t ing to the host file system.

Since only the master node is adjacent to the host, this I / O bottleneck is impossible to

be completely removed. In the remainder of the discussion we ignore the effect of this

sequential I / O bottleneck.

The computation on the subimages was only weighted 8% on the crit ical path. This is

because a l l nodes are processing the subimages in parallel and a high degree of parallelism

has been achieved in the system. It also indicates that the code to be execute is efficient

already and further code optimization cannot improve the performance very much.

We therefore focus our attention on the distribution and gathering phases of the

computation, which together were weighted 52% on the cri t ical path. The communication

pattern of the parallel program can easily be visualized in the graphical display of the

execution graph. Figure 6.3 shows the communication activities in the system when

subimages are being distributed from the master node to a l l slave nodes. We can see

CHAPTER 6. PERFORMANCE TUNING: A CASE STUDY 69

JO 'JP 1B7 1S7 1B7 1S7 167 107 107 107 107 187 107 107 107 1S7 1£7 :£7 197 107 107 ISO I S

Figure 6.3: Communicat ion Activi t ies of Distr ibuting Subimages

from the graph that the number of messages to send a submatrix appears to be excessive

(A total of 11 messages are involved to send a subimage). Closer examination of each

event in the graph revealed that the length of each message is only 60 bytes. To send

a message using Trollius network level message passing primitives, the header attached

to each message is more than 50 bytes. Thus sending each message incurred an almost

50% communication overhead. B y consulting the author of the program, we found out

that the subimages are distributed column by column, i.e. each column is encoded

into a separate message, regardless of the size of the subimage. Since the size of our

input image was relatively small and each column of the submatrix contained only 14-15

elements, there were a large number of short messages. We recommended that some of

the columns be combined and encoded into longer messages. The program now sends the

subimage in a single message of its size does not exceed 800 bytes. B o t h the number of

messages and the communication overhead of each message were dramatically reduced.

The program execution time of the modified version showed 55% improvement over the

CHAPTER 6. PERFORMANCE TUNING: A CASE STUDY 70

in i t ia l implementation. The weight of distributing and returning images on the crit ical

path was reduced from 52% to 39%. T h e ratio of computation vs. communication was

improved to 63:36, indicating that 63% of the time was spent in computation tasks.

Speedup and efficiency have been improved by more than 100% due to the improvement

of program execution time.

6 .3 Summary

In this chapter, we have demonstrated how our monitoring tool is used to effectively

improve the performance of a parallel application. Tuning the performance of a parallel

program is a very sophisticated task due to the complicated interaction among concurrent

components of the program. Effective performance tuning not only relies on the user's

thorough knowledge about the program structure, but also depends on the information

available to the user about the execution of the program. The information presented

to the user is useful only if the user gains insight into the runtime behavior of the

program and can appropriately focus on the program activities which have the most

impact on the overall performance of the program. B y combining a graphical display with

the weighted cri t ical path analysis package, our tool provides at a high level automatic

guidance for performance tuning. In our example, the identification and resolution of such

a performance problem in a parallel application has led to more than 50% improvement

i n program execution time.

Chapter 7

Conclusions

7.1 S y n o p s i s

This thesis has studied the performance characteristics of parallel programs i n mul

ticomputer networks, and presented the design and implementation of a real-time per

formance monitor on transputers. We started wi th a simple performance model which

is based on a graph representation of parallel programs in the multicomputer network.

This performance model allows us to easily derive a variety of performance metrics for

parallel programs. F rom this model, we also developed a new analysis method, called

weighted cr i t ical path analysis (W C P A) , which has proven to be helpful detecting perfor

mance bottlenecks in parallel programs. The design of a real-time performance monitor

was proposed based on these ideas and then implemented on a 74-node transputer-based

multicomputer. Lastly, we set up benchmarks to validate the accuracy of the monitoring

results and to measure the overhead incurred by the monitor. We also demonstrated

how this tool can be used to tune the performance of an actual parallel application on

transputers.

We proposed in Section 1.3 a set of goals to guide the design of our performance mon

itoring tool. Our experience with the tool indicates that our goals have been achieved.

71

CHAPTER 7. CONCLUSIONS 72

The capability of measuring both resource utilization and tracing process events is clearly

superior to other transputer performance monitoring tools. (Section 2.2). Extensibil i ty

was achieved by the modular structure and well-design interface between different com

ponents of the parallel monitor(Section 4.2). Experimental results show that both the

accuracy and the overhead of the monitor are within acceptable ranges. Transparency

is achieved by inserting software probes into the run-time l ibrary of the underlying op

erating system so that users do not have to modify their source programs to make them

monitorable. We took advantage of a high level windowing environment, namely the

X window system, to display performance results in a user-friendly manner. Although

our monitoring tool was designed for the transputer-based multicomputer networks and

implemented under the Trollius Operating System, the measurement and instrumenta

tion techniques developed are applicable to a wide range of distributed memory parallel

architectures. T h e performance model and the weighted cr i t ical path analysis method we

proposed in Chapter 3 can be easily adapted to any message-based distributed systems,

such as the L A N - b a s e d distributed environment. The use of global interrupts and the

clock synchronization technique we used can be ported to most closely-coupled multicom

puter networks wi th min imal modifications. The adaptive reporting scheme and design

of the graphical interface are generally applicable to any performance monitoring tools

for parallel and distributed programs.

7.2 F u t u r e W o r k

We conclude this thesis by suggesting possible future enhancement of our tool and

speculating on future research directions.

CHAPTER 7. CONCLUSIONS 73

7.2.1 Enhancement of the Monitoring Tool

The adaptive reporting scheme has not been fully implemented in the current imple

mentation. Since trace data are sent to the host using Trollius network level message

passing mechanism, the decision on whether or not to send the data can only be made

at the first step when it leaves its node of origin. The monitor has no control over

status messages after they are sent. The router handles both user messages and status

messages in the same way. Further refinement of the adaptive reporting scheme would

include modification of the routing mechanism of the operating system so that message

priorities are supported. User messages are given higher priority and monitoring mes

sages are given lower priori ty so that user messages going to the same channel as status

messages are handled first. Status messages are sent only when there is no user message

waiting for the same channel or when the local buffer has been filled.

Another improvement of our tool includes better integration of the monitor with the

graphical interface so that operation of the parallel monitor can be controlled interactively

by "cl icking a button".

7.2.2 Alternatives to Nonintrusive Monitoring

To reduce the overhead caused by messages sent by the monitor, we proposed the

adaptive reporting scheme(Section 4.5.3). There are other alternatives to achieve the

same goal. One approach is to compensate for the overhead incurred by the monitoring

when calculating performance metrics from raw trace data. For instance, to compensate

for the communication overhead introduced by the monitor, the monitoring process on

each node has to keep track of the number of status messages and that of user messages

sent over a communication channel during a specific period of time. Using these data, it

CHAPTER 7. CONCLUSIONS 74

can estimate the extra queuing delay the status messages have caused and distribute the

total delay to each of the user message on the same channel. The extra delay for each

step on the route is then subtracted from the total elapsed time of the message, thus

obtaining the corrected message transmission time. In order to be able to compensate

for the monitoring overhead, we must collect enough information about the execution of

the monitor itself. In essence, it is a matter of how to monitor the monitor itself. Fur

thermore, an appropriate queuing model has to be developed to estimate the interference

the monitor has caused to the application.

A different approach that takes advantage of the global interrupt mechanism available

in out system, is to stop the computation and communication activities of the application

program in the whole system when performing measurement tasks and draining trace

data from each node. Globa l interrupts can be used to stop al l nodes simultaneously and

restart the system after the measurement task is finished. The clock value on each node

is reset to its last value when the system was stopped. This would completely factor

out a l l the overhead of monitoring and reporting to the host. The performance results

obtained should precisely reflect the behavior of the application as i f it were run without

the presence of the monitor and a high degree of virtual non-intrusiveness is achieved.

One disadvantage of this scheme is that it is likely to be slow. A second problem is the

difficulties in stopping the computation and communication activities of the application

in a parallel system. Al though we can remove al l user processes temporarily from the

ready queue when a global interrupt arrives, the work the system processes are doing

on behalf of the application cannot be suspended halfway since some system services are

needed to perform the measurement task. Moreover, process scheduling is supported by

hardware on transputers; the manipulat ion of these process queues is t r icky and error-

prone. A third problem is how to deal wi th the user messages being transferred over a

link when the system is stopped. The monitor must wait unti l the data transfer finishes

CHAPTER 7. CONCLUSIONS 75

before it can get control of the link.

B o t h schemes seem to be promising alternatives to achieve non-intrusive monitoring

in the multicomputer networks. The possibility of implementing them on transputers

wi l l be investigated in future research.

7.2.3 Performance Steering

A n interesting application of our tool is to use the information provided by the monitor

to tune the performance of the application on the fly, which is known as performance

steering. Performance steering is especially useful for programs that run for a long period

of time, say several days to several weeks. In addition to displaying the performance

data to the user, they can also be used as feedback to the underlying system which can

control the execution of the application in order to achieve optimal performance. The

dynamic load balancing technique also falls into this category. One special feature of

the transputer network is that its topology can be dynamically reconfigured by simply

sending instructions to the crossbar switches from the host. Since the communication

pattern of the application is reflected in the execution graph generated by the monitor,

it can be used to minimize the communication overhead. We may, for instance, try to

directly connect nodes which communicate frequently so that messages do not have to

be routed through intermediate nodes.

Bibliography

[AnLaS9] T . E . Anderson and E . D . Lazowska, Quartz: A tool for tuning parallel pro
gram performance, Technical Report 89-09-05, Dept. of Computer Science, Univ . of
Washington, Sept. 1989.

[AnJoST] F . Andre and A . Joubert, SiGLe: An evaluation tool for distributed systems,
Proc. I E E E Int l . Conf. on Parallel Processing, 1987, pp.466-472.

[BabbS7] R . G . Babb , et al, Multi-level monitoring of parallel programs, Technical Re
port, Dept . of Computer Science, Oregon Graduate Center, Rpt . No. C S / E 87-013,
Nov. 1987.

[BaWi83] P . Bates and J . Wileden, High-level debugging of distributed systems: the be
havioral abstraction approach, A C M S I G P L A N Notice, V o l . 18, No. 8, A u g . 1983.

[Beers89] J . Beers, Private communication, 1989.

[Beilner88] H . Beilner, Measuring with slow clocks, Technical Report, TR-88-003, Inter
national Computer Science Institute, Berkeley, C A , Ju ly 1988

[Bran89] W . C . Brantley, et al, RP3 performance monitoring hardware, Instrumentation
for Future Para l le l Computing Systems, Addison-Wesley, 1989.

[BuMi89] H . Burkhar t and R . Mi l l en , Performance-measurement tools in a multiproces
sor environment, I E E E Trans, on Computers, V o l . 38, No. 5, M a y 1989.

[BurnsSS] G . D . Burns , Trollius operating system definition, Trollius Documentation
Series, Ohio Supercomputer Center, Oct . 1988.

[CaTu89] W . C a i and S. Turner, Highly transparent monitoring of real-time occam pro
grams, Proc . of 2nd Conf. of Nor th Amer ican Transputer User Group, Oct. 1989,
pp.41-52.

76

BIBLIOGRAPHY 77

[CaWe88] P. C . Capon and A . J . West, Monitoring Occam channels by programming
transformation, Proc. of 1988 Transputer Conference, 1988, pp. 160-169.

[CaVi88] V . Car l in i and U . Vi l lano , A simple algorithm for clock synchronization in
transputer network, Software - Practice and Experience, V o l . 18, No. 4, Apr . 1988.

[Chan87] S. C . Chan , Designing and implementation of an event monitor for the Unix op
erating system, M . S c . Thesis, Dept. of Computer Science, Univ . of Br i t i sh Columbia,
A p r i l 1987.

[CouchSS] A . L . Couch, Graphical representation of program performance on hypercube
message-passing mutliprocessors, P h . D . dessertation, Dept. of Mathematics. Tufts
University, M a y 1988.

[EaZaLa89] D . L . Eager, J . Zahorjan and E . D . Lazowska, Speedup versus efficiency in
parallel systems, I E E E Trans, on Computers, V o l . 38, No . 3, march 1989.

[Duda87] A . Duda , et al, Estimating global time in distributed systems, Proc. of 7th Intl.
Conf. on Dist . Comp. Syst., Sept. 1987, pp.299-306.

[Emrath88] P. A . Emra th , S. Ghosh and D . A . Padua, Event synchronization analysis for
debugging parallel programs, Center for Supercomputing Research and Development,
Univ . of Illinois at Urbana-Champaign, C S R D Rpt . No. 839, Dec. 1988.

[Fromm83] H . F romm, et al, Experience with performance measurement and modelling
of a processor array, I E E E Trans, on Computers, V o l . C-32, No. 1, Jan. 1983, pp.
15-31.

[Fowler88] R . Fowler, et al, An integrated approach to parallel program debugging and
performance analysis on large-scale multiprocessors, Proc. of Workshop on Parallel
and Distr ibuted Debugging, M a y 1988, pp.163.

[Gait86] J . Gai t , A probe effect in concurrent programs, Software - Practice and Experi
ence, V o l . 16, No . 3, M a r c h 1986, pp.225-233.

[GaMo84] H . Garc ia -Mol ina , et al, Debugging a distributed system, I E E E Trans, on Soft
ware Engineering, V o l . SE-10, No. 2, march 1984.

[GuLa84] R . Gusella and S. La t t i , TEMPO - A network time controller for a distributed
Berkeley Unix system, I E E E Distributed Processing Tech. Comm. Newsletter, Vol .
6, No. 2, June 1984.

BIBLIOGRAPHY 78

[HaSh.89] D . Haban and K . Shin, Application of real-time monitoring to scheduling tasks
with random execution times, Technical Report , International Computer Science
Institute, Berkeley, C A , TR-89-028, M a y 1989.

[HaWy89] D . Haban and D . Wybrantietz, Monitoring and measuring parallel systems
using a non-instrusive rule-based system, Technical Report, International Computer
Science Institute, Berkeley, C A , TR-89-030, M a y 1989.

[HaWy90] D . Haban and D . Wybrantietz, A hybrid monitor for behaviour and perfor
mance analysis of distributed systems, I E E E Trans, on Software Engineering, V o l .
16, No . 2, Feb. 1990.

[HeBr89] D . Helmbold and D . Bryan , Design of run-time monitors for concurrent pro
grams, Technical Report, No. CSL-TR-89-395 , Computer Systems Laboratory, Stan
ford U n i v . , Oct . 1989.

[HoCu87] P . A . Hough and J . E . Cuny, Belvedere: prototype of a pattern-oriented debug
ger for highly parallel computation, Proc. of 1987 Intl . Conf. on Parallel Processing,
1987, pp.735-738.

[HoLa89] D . N . M . Ho, S. W . L a u and F . C . M . L a u , Efficient tools for transputer
monitoring, Proc. of 2nd Conf. of Nor th Amer ican Transputer User Group, Oct .
1989, pp.27-40.

[Inmos83] Inmos Corporation, Occam Programming Manual, 1983.

[Inmos89] Inmos Corporation, The Transputer Databook, Second Edi t ion . 19S9.

[JiWaCh90] J . J iang, A . Wagner and S. Chanson, Tmon: A real-time performance moni
tor for transputer-based multicomputer, To appear i n Proc. of the 4th Conf. of Nor th
American Transputer Users Group, Oct . 1990.

[Joyce87] J . Joyce, et al, Monitoring distributed systems A C M Trans, on Computer Sys
tems, V o l . 5, No. 2, M a y 1987, pp.121-150.

[KaF190] A . K a r p and H . Flat t , Measuring parallel processor performance, Communica
tion of A C M , V o l . 33, No. 5, M a y 1990.

[KeSc87] T . Kero la and H . Schwetunm. Monit: A performance monitoring tool for par
allel and pseudo parallel programs A C M Performance Evaluation Review, Vol . 15,
No. 1, pp.163-174.

BIBLIOGRAPHY 79

[Lamport78] L . Lampor t , Time, clocks, and the ordering of events in a distributed sys
tem, Communicat ion of A C M , V o l . 21, No. 7, Ju ly 1978.

[LeRo85] R . J . LeBlanc and A . D . Robbins, Event-driven monitoring of distributed pro
grams, Proc . of 5th Intl . Conf. on Dist . Comp. Syst., M a y 1985, pp.515-522.

[LeMe87] T . J . Leblanc and J . M . Mellor-Crummey, Debugging parallel programs with
instant replay, I E E E Trans, on Computers, Vo l . C-36, No. 4, A p r i l 1987.

[LiCaV187] M . A . L in ton , P. R . Calderand J . M . Vlissides, Interviews: A C++ Graphical
Interface Toolkit, Proc. of the U S E N I X C + + Workshop, Nov. 1987.

[Malony89] A . D . Malony, et al, An integrated performance data collection, analysis
and visualization systems, Dept. of Computer Science, Univ . of Illinois, Rpt . No.
UIUCDCS-R-89-1504 , M a r c h 1989.

[MaPi88] A . D . Malony and J . R . Pickert, An environment architecture and its use in
performance data analysis, Center for Supercomputing Research and Development,
Univ . of Illinois, Rp t . No. 829, Oct. 1988.

[McDaniel77] G . M c D a n i e l , METRIC: A kernel instrumentation system for distributed
environment, P roc . of 6th A C M Symp. on Operating System Principles, Nov. 1977,
pp.93-99.

[McHe89] C . E . M c D o w e l l and D . P. Helmbold, Debugging concurrent programs, A C M
Computing Surveys, V o l . 21, No. 4, Dec. 1989.

|Miller84] B . P. Mi l l e r , Performance characterization of distributed programs, Technical
Report, Computer Science Div i s ion (EECS) , Univ . of California, Berkeley, T R No.
U C B / C S D 84/197, A u g . 1984.

[Miller88] B . P. Mi l l e r , DPM: A measurement system for distributed programs, I E E E
Trans, on Computers, V o l . 37, No. 2, Feb. 1988.

[Miller90] B . P . Mi l l e r , et al, IPS-2: the second generation of a parallel program mea
surement system, I E E E Trans, on Parallel and Distr ibuted Systems, Vo l . 1, No. 2.
Apr . 1990.

[MiMa86] B . P . Mi l l e r , C . Macrander and S. Sechrest, A distributed program monitor
for Berkeley Unix, Software - Practice and Experience, V o l . 16, No. 3, March 1986,
pp.225-233.

BIBLIOGRAPHY 80

[MiYa87] B . P. Mi l le r , C . - Q . Yang, IPS: An interactive and automatic performance mea
surement tool for parallel and distributed programs, Proc. of 7th Int l Conf Distributed
Comput ing Systems. Sept. 1987.

[Mohan84] J . Mohan , Performance of parallel programs: model and analyses, P h . D . The
sis, Dept. of Computer Science, Carnegie-Mellon Univ. , Ju ly 1984.

[Nelson89] H . Nelson, Experience with performance monitors, Instrumentation for Future
Paral lel Comput ing Systems, Addison-Wesley, 1989.

[OgSc85] D . Ogle and K . Schwan, The real-time collection and analysis of dynamic in
formation in a distributed system, Technical Report, Computer and Information
Science Research Center, Ohio State Univ . , O S U - C I S R C - T R - 8 5 - 1 2 , Sept. 1985.

[Parasoft88] Parasoft Corporation, An overview of the EXPRESS system, Technical
Notes, 1988.

[Reed89] D . Reed, Distributed Memory Working Group Summary, Instrumentation for
Future Paral lel Comput ing Systems, Addison-Wesley, 1989

[ReFu87] D . Reed and R . Fujimoto, Multicomputer networks: message-based parallel
processing, The M I T Press Series in Scientific Computat ion, 1987.

[Sart85] S. Sartzetakis, et al, A real-time multiprocessor performance monitoring tool,
Proc. of I E E E Electroniccom 1985, Oct. 1985, pp.104-108.

[SeRu85] Z. Segall and L . Ruldolph , PIE: A programming and instrumentation environ
ment for parallel processing, I E E E Software, Vo l . 2, No. 6 , Nov. 1985, pp.22-37.

[Shea89] D . G . Shea, et al, Monitoring and simulation of processing strategies for large
knowledge bases on the IBM Victor multiprocessor, Proc. of 2nd Conf. of the North
American Transputer User Group, Oct. 1989, pp.11-26.

[Shephard86] R . Shephard, Extraordinary use of transputer links, Inmos Technical Notes,
Nov. 1986.

[Shumway89] M . Shumway, Synchronizing clocks in multi-transputer networks, Inmos
Technical Notes, A u g . 1989.

[Snodgers88] R . Sondgers, A relational approach to monitoring complex systems, A C M
Trans, on Comp. Syst., V o l . 6 , No. 2, M a y 1988.

BIBLIOGRAPHY 81

[SpKe88] M . Spezialetti and J . Kearns, A general approach to recognizing event oc
curences in distributed computations, Proc. of I E E E 8th Intl. Conf. on Dist . Comp.
Syst., June 1988, pp.300-307.

[Sterling88] T . Sterling, et al, Multiprocessor performance measurement using embedded
instrumentation, Proc. of I E E E Intl. Conf. on Paral lel Processing, Vo l . 1, A u g . 1988,
pp.156.

[VoZe90] O. Vornberger and K . Zeppenfeld, Graphical visualization of distributed algo
rithms, Proc . of 3rd Conf. of Nor th American Transputer Users Group, A p r . 1990,
pp.223-234.

[YaMi88] C . - Q . Yang and B . P. Mil ler , Critical path analysis for the execution of parallel
and distributed programs, Proc. of 8th I E E E Intl . Conf. on Distributed Comp. Syst.,
June 1988, pp.482-489.

[Zenith90] S. E . Zenith, Linda coordination language; subsystem kernel architecture
(on transputers), Research Report, Dept of Computer Science, Yale University,
Y A L E U / D C S / R R - 7 9 4 , M a y 1990.

Appendix A

Architecture of the
Transputer-based Multicomputer

The architecture of the IMS T800 transputer is shown in Figure A . L The processor

speed of a l l T800 transputers are pin-selected to 20 M H z . The speed of a l l bi-directional

links are set to 20 Mbits /sec .

The architecture of the IMS C004 link switch is shown in Figure A . 2 . The speed of

al l C004 switches in the system are set to 20 Mbi ts / sec .

The physical connections of the transputers, crossbar switches and V M E interfaces

are shown in Figure A . 3 . The transputers are connected to the Sun 4 workstation through

a IMS B011 board and a C S A Part 8 Interface Board . There are six links on the C S A

Part 8 board. T h e four buffered links are directly connected to the transputers, and

the two unbuffered links are connected to the daisy chain of the configuration links of

the crossbar switches. Therefore, there are five independent data channels between the

transputers and the host. There are 74 T800 transputers and 10 C004 switches in the

array of transputers and crossbar switches. The first 10 transputers and first 2 switches

are placed in one box, with the remaining transputers and switches in another larger box.

There are 8 connections between the two boxes. The transputers in the larger box are

82

System

Services

Timers

4K bytes
of

On-chip
RAM

External

Memory

Interface

64 bit Floating Point Unit

^ \

h

32
bits

•4.

32 bit

Processor

Link
Services

Link
Interface

Link
Interface

Link
Interface

Link
Interface

Event

LinkS pecial
LinkOSpecial
Linkl23Special

LinkOutO
LinklnO

LinkOutl
Linklnl

LinkOut2
Linkln2

LinkOut3
linkln3

EventReq
EventAck

Figure A . l : Architecture of the I M S T800 Transputer

83

LinklnO

Linklnl

Linkln31

32 Position

Crossbar

Switch

LinkOutO

LinkOutl

LinkOut31

ConfigLinkln

ConfigLinkOut

Control

Logic

System
Services

Figure A . 2 : Architecture of the IMS C004 Crossbar Switch

84

numbered from 0 to 64. and the switches are numbered from 0 to 7. L i n k 0 of transputer

i are directly connected to that of transputer i + 1. L ink 1, 2 and 3 of transputer i is

connected Switch i, switch succ(i) and switch pred(i) respectively. A l l transputers are

partit ioned into five reset groups. Therefore, up to five users can use the transputer-based

multicomputer simultaneously.

\ f "\
Sun 4

Workstation
s , . J

V M E Bus)

f "\
Sun 4

Workstation
s , . J

f "\
Sun 4

Workstation
s , . J

IMS

B011

i r

CSA Part 8 V M E Interface

C004 Switch 0

C004 Switch 1

C004 Switch 8

C004 Switch 9

Transputers and Crossbar Switches

Figure A . 3 : Physical Connections of the Transputers and the Switches

85

Appendix B

Modifications to Trollius Run-time
Library

The following routines are inserted into the Trollius run-time library and replace

existing ones. They are used to generate the five types of standard events defined in

Section 4 . 5 as well as user-defined events.

B . l D e f i n i t i o n o f M o n i t o r P a r a m e t e r s

/ * event type for monitoring message * /

#define MON.CMD -100

#define MON.RES -101

#define MON.TRACE -102

/ * monitor controlling command * /

86

#define MON.BEG
#define MQN.END

0
1

typedef struct TraceEntry

{

char tag;
int data[NUM_REGS] ;

} TraceEntry;

typedef TraceEntry *TracePtr;

/* a l l events to be monitored defined here */

#define NODE.USAGE '\000'
#define MSG.SEND '\001'
#define MSG.RECV '\002'
#define RECV.CALL '\003'
#define PROC.INIT '\004'
#define PROC.EXIT '\005'
#define OVERFLOW '\006'

B .2 Probes to Generate Message Events

87

int msg_mon(nheader, trace_type)

struct nmsg* nheader;

char trace.type;

{

struct kmsg kheader;

TraceEntry trace_buf;

trace_buf.tag = trace_type;

trace.buf .data[l] - ltot(getpidO) ;

trace.buf.data[2] = ltot(nheader—>nh_event);

trace.buf.data[3] = ltot(nheader->nh_node);

trace.buf.data[4] = ltot(nheader->nh_length);

kheader.k_event = M0N_TRACE;

kheader.k_type = 0;
kheader.k_flags = 0;
kheader.k_length = sizeof(trace_buf);

kheader.k_msg = (char *) &trace_buf;

i f (ksend(ftkheader))

return(errno);

return(0);
>

int nsend(header)

struct nmsg* header;

88

{

msg_mon(header, MSG_SEND);

header->nh_data[0] = getnodeidO ;

return(do_nsend(header, NSEND));

}

int nrecv(header)

strcut nmsg* header;

{

int err_code;

msg_mon(header, RECV_CALL);

err.code = do.nrecv(header, NRECV);

header->nh_node = header->nh_data[0];

msg.mon(header, MSG_RECV);

return(err_code);

}

B . 3 P r o b e s t o G e n e r a t e P r o c e s s E v e n t s

int mon_pinit()

{

struct kmsg

TraceEntry

char*

kheader;

trace.buf;

pname;

89

trace.buf.tag = PROC.INIT;

trace.buf.data[l] = ltot(getpid());

pname = (char *) &(trace_buf.data[2]);

GetProcName(pname);

kheader.k_event = MON.TRACE;

kheader.k_type = 0;

kheader.k_flags = 0;

kheader.k.length = sizeof(trace_buf);

kheader.k_msg = (char *) &trace_buf;

i f (ksend(ftkheader))

return(errno);

return(0);

>

int mon_pexit()

{

struct kmsg kheader;

TraceEntry trace_buf;

trace.buf.tag = PROC.EXIT;

trace.buf .data[l] = ltot (getpidO);

kheader.k.event = MON.TRACE;

kheader.k_type = 0;

90

kheader.k_flags = 0;

kheader.k.length = siz e o f (t r a c e . b u f) ;
kheader.k_msg = (char *) &trace_buf;

i f (ksend(ftkheader))
return(errno);

return(O);
}

i n t k i n i t (p r i o r i t y)
i n t p r i o r i t y ;
{

i n t retcd;

retcd = k a t t a c h (p r i o r i t y) ;
mon_pinit();
return(retcd);

}

void k e x i t (s t a t u s)
i n t status;

{

mon_pexit();
_ k e x i t (s t a t u s) ;

91

}

B . 4 P r o b e s t o G e n e r a t e U s e r - d e f i n e d E v e n t s

i n t probe(probe_type, aux.info)

char probe_type;

char* aux.info;

{
s t r u c t kmsg kheader;
TraceEntry trace_buf;
char* aux.buf;
char aux_len;

trace.buf.tag = probe_type;
aux_buf = (char *) k(trace_buf.data[1]);

aux.len = MIN(strlen(aux_info), MAX_AUX_LEN);
strncpy(aux_buf, aux_info, aux.len);
aux.buf[aux.len] = ' \ 0 ' ;

kheader.k.event = M0N_TRACE;
kheader.k.type = 0 ;

kheader.k_flags = 0 ;

kheader.k.length = sizeof(trace.buf);
kheader.k_msg = (char *) &trace_buf;

i f (ksend(&kheader))

92

return(errno);

return(0);

B . 5 M o n i t o r C o n t r o l l i n g R o u t i n e s

int mon_control(mon_cmd)

int mon.cmd;

{

struct nmsg header;

header.nh.node = MASTER;
header.nh.event = MON.CMD;
header.nh.type = 0;

header.nh_flags = 0;

header.nh.length = 0;

header.nh_msg = NULL;
header.nh_data[0] = mon.cmd;

if (nsend(&header))

return(l);

else

return(0);

}

int startmonO

93

return(mon_control(MON_BEG));

int stopmon()

{
return(mon_control(MON_END));

}

94

