
A FULLY AUTOMATIC ANALYTIC APPROACH TO BUDGET-CONSTRAINED 

SYSTEM UPGRADE 

By 

ANGELA SAI ON WONG 

B.S., University of California at Los Angeles, 1983 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF 

THE REQUIREMENTS FOR THE DEGREE OF 

MASTER OF SCIENCE 

in 

THE FACULTY OF GRADUATE STUDIES 

(DEPARTMENT OF COMPUTER SCIENCE) 

We accept this thesis as conforming 

to the required standard 

THE UNIVERSITY OF BRITISH COLUMBIA 

March 1987 

© Angela Wong, 1987 



In presenting this thesis in partial fulfilment of the requirements for an advanced 

degree at the University of British Columbia, I agree that the Library shall make it 

freely available for reference and study. I further agree that permission for extensive 

copying of this thesis for scholarly purposes may be granted by the head of my 

department or by his or her representatives. It is understood that copying or 

publication of this thesis for financial gain shall not be allowed without my written 

permission. 

Department of CbtAf^T&X JQi^CtT 

The University of British Columbia 
1956 Main Mall 
Vancouver, Canada 
V6T 1Y3 

Date Awok 2°, >r^7  

DE-6G/81) 



Abstract 

This thesis describes the development of a software package to upgrade computer 

systems. The package, named OPTIMAL, solves the following problem: given an ex­

isting computer system and its workload, a budget, and the costs and descriptions of 

available upgrade alternatives for devices in the system, what is the most cost-effective 

way of upgrading and tuning the system to produce the optimal system throughput? 

To enhance the practicality of OPTIMAL, the research followed two criteria: i) input 

required by OPTIMAL must be system and workload characteristics directly measur­

able from the system under consideration; ii) other than gathering the appropriate 

input data, the package must be completely automated and must not require any spe­

cialized knowledge in systems performance evaluation to interpret the results. The 

output of OPTIMAL consists of the optimal system throughput under the budget con­

straint, the workload and system configuration (or upgrade strategy) that provide such 

throughput, and the cost of the upgrade. Various optimization techniques, including 

saturation analysis and fine tuning, have been applied to enhance the performance of 

OPTIMAL. 

ii 



Acknowledgement 

Words cannot quite express my gratitude for my supervisor, Dr. S. Chanson, 

for his inspirations, encouragement, advice and guidance during the entire period of 

the development of OPTIMAL. Thanks must also go to Dr. S. Vuong for being the 

second reader, and to friends in the Department of Computer Science here for technical 

discussions, proof reading and helping me on producing the final draft of this thesis. 

iii 



Contents 

Abstract ii 

Acknowledgement iii 

Table of Contents iv 

List of Figures v i 

List of Tables vi i 

1 Introduction 1 
1.1 The Role of Performance Evaluation in Capacity Planning 1 
1.2 Motivation of Thesis 2 
1.3 Brief Outline of Thesis 5 

2 T h e Baseline Heuristic 7 
2.1 Assumptions and Inputs 7 
2.2 The Iterative Process 9 
2.3 The Output 13 
2.4 Performance of the Baseline Heuristic 14 

3 Var ia t ion of the Baseline Heuristic 20 
3.1 Description of a Practical Situation 20 
3.2 Description of OPTIMAL 21 

3.2.1 Assumptions and Inputs 21 
3.2.2 The Iterative Process 22 
3.2.3 The Output 25 

4 Implementation of O P T I M A L 26 
4.1 System Performance Analysis Algorithms . 26 

i v 



4.2 The Implementation Assumptions 28 
4.3 Optimization of OPTIMAL 29 

4.3.1 Saturation Analysis and Tuning 30 
4.3.2 Calculation of Cost-effectiveness 30 
4.3.3 Optimizing the Multiprogramming Level 31 
4.3.4 Fine Tuning 33 

4.4 Performance of OPTIMAL 34 

5 Conclusion 46 
5.1 Concluding Remarks 46 
5.2 Future Extensions 47 

5.2.1 Multiple Job Class Systems 47 
5.2.2 I/O Subsystems 48 

5.2.3 Swapping Systems 48 

Bibliography 50 

Appendix 52 

A O P T I M A L User's Guide 52 

v 



List of Figures 

4.1 Closed Batch Model with Memory Constraint M > Ncusts 27 
4.2 Throughput vs. Multiprogramming Level in a Paging System 32 

A.I Lifetime Curve Representing the Paging Activities of System 9 58 

vi 



List of Tables 

2.1 System 1 15 
2.2 System 2 15 
2.3 System 3 16 
2.4 System 4 16 
2.5 Comparison of Results from the Baseline Heuristic and P i applied to 

Systems 1 to 4 18 

4.1 System 5 35 
4.2 System 5 Upgrade Alternatives 36 
4.3 System 6 37 
4.4 System 6 Upgrade Alternatives 38 
4.5 System 7 39 
4.6 System 7 Upgrade Alternatives 40 
4.7 System 8 41 
4.8 System 8 Upgrade Alternatives 42 
4.9 Comparison of Results from OPTIMAL and P2 applied to Systems 5 to 8 44 

A.I System and Input Parameters for OPTIMAL 53 
A.2 Adjustments and Corresponding Adjustment Codes for the Input Phase 

of OPTIMAL 55 
A.3 System 9 57 
A.4 System 9 Upgrade Alternatives 59 

vii 



Chapter 1 

Introduction 

1.1 The Role of Performance Evaluation in Capac­
ity Planning 

As the computer plays an increasingly dominant role in today's world, a great deal of 

human and economic effort is being spent on planning computer system configurations 

to meet the service requirements of a given workload. This process of planning system 

configurations is commonly known as capacity planning; it is a process of continually 

monitoring a system and its workload, and recommending changes when one or more 

service requirements with respect to a workload is not being met. The recommenda­

tions may include adjusting the workload, hardware changes, operating system changes 

and staffing changes. Adjusting workload may include restructuring or relocating user 

files. Hardware changes are to reconfigure, add or replace existing hardware compo­

nents. Operating system changes include adjusting the settings of various parameters. 

Staffing changes include hiring more staff, retraining present staff or instituting new 

1 



CHAPTER 1. INTRODUCTION 2 

quality control procedures. [Conn84] 

Capacity planning is usually carried out in two stages: characterization of workload 

and analysis of performance [Pang86]. In the first stage, the workload of some system of 

interest is analyzed and quantified; this is then used as input to the second stage. The 

results of performance analysis indicate whether the system configuration is suitable 

for the workload. 

In the performance analysis stage, system performance is typically computed many 

times as modifications to system configuration or system workload are made. Different 

approaches, ranging from guessing, mathematical modelling, simulation, to real system 

emulation, have been used for performance prediction [Pang86]. Among these, perfor­

mance evaluation by analytic modelling has been used extensively [Kuma80] [L08O] 

[Sevc80] [Hodg82] and demonstrated to be effective tools to provide reasonable pre­

dictions. In particular, the most useful analytic modelling techniques use workload 

parameter values derived from a real system, and employs mathematical methods in 

queueing theory and operational analysis [Denn78] to predict system performance. 

1.2 Motivation of Thesis 

The notion of applying artificial intelligence (specifically, expert system) technology 

to capacity planning to increase the productivity of performance analysts has aroused 



CHAPTER 1. INTRODUCTION 3 

much interests [Levi85] [Maed85] [Ostr85]. In particular, an expert system which uses 

facts and heuristics on a domain of expertise to solve a certain problem provides a 

powerful tool for system performance analysis. Previously, most works have been 

designed for the needs of particular computer systems and utilize tools specific to 

these systems [L08O] [Hodg82] [Levi85] [Ostr85] [Sala85], or consider only particular 

units in a computer system, such as the CPU or the disk storage system [Coop80] 

[Kuma80] [Orch83]. Even for [Sevc80] that considers alternative configurations to 

replace a system, the study was directed toward a particular case and thus is limited 

in its application. Furthermore, gathering the required input data and interpreting the 

output results in most of the suggested approaches require experience and knowledge 

in computer systems performance evaluation. In the realm of applying expert systems 

to capacity planning, the problem that we propose to solve for a given computer system 

is: given a budget, the current system configuration and workload, available devices on 

the market and their associated costs, what is the most cost-effective way of upgrading 

and tuning the system such that the optimal system throughput is obtained? This is 

the system upgrade problem that computing centre managers face from time to time 

when their systems saturate or approach saturation. 

We have chosen system throughput rather than mean system response time as the 

primary performance index in our solution for the following reasons: 

1. System throughput reflects the capacity of a computing system most directly. 



CHAPTER 1. INTRODUCTION 4 

2. For general purpose computing systems, response times vary tremendously - from 

a few milliseconds to hours. The mean response time is practically meaningless 

for evaluation purposes [Pang86]. 

3. Distribution of response time is expensive to compute and current estimation and 

measurement techniques predict throughput much more accurately than response 

time. 

4. Under the condition that the workload remains constant, hardware upgrade 

strategies that maximize system throughput also optimize mean response time. 

However, the approach described in this thesis can be used for other performance in­

dices provided that the underlying system performance analysis tool is able to compute 

their values. 

To enhance the practicality of the solution, two criteria are followed. The system 

under consideration (SUC) is a system already in existence, and the parameters char­

acterizing the system configuration and workload are directly measurable from the 

SUC. Furthermore, unlike most currently available capacity planning systems, after 

the required input data have been gathered, the solution process is fully automated 

and no specialized knowledge in performance evaluation is required to interpret the 

final results. 

Two intrinsic issues to consider initially are: what kind of system modelling tech-



CHAPTER 1. INTRODUCTION 5 

nique should be employed and how optimal throughput should be defined. For the first 

issue, for the purpose of being able to apply the solution to any system in general, and 

the fact that analytic models have proven to be able to accurately and cost-effectively 

reflect the performance measures of a system [Denn78], we have opted for analytic mod­

els over simulation. For the second issue, rather than aiming at an absolute highest 

throughput possible for a given system, budget and set of upgrading device alterna­

tives, we define optimal throughput to be the highest throughput per dollar spent. 

Furthermore, in almost all systems, depending on the availability of memory, there 

exists a limit on the number of processes that can be active simultaneously; such a 

limit is known as memory constraint which places an upper bound on the extent to 

which processing resources can be used concurrently, and thus on the system through­

put [Lazo84]. So, for systems with paging and memory constraint, we further optimize 

the system throughput with the optimal multiprogramming level with respect to the 

SUC. 

1.3 Brief Outline of Thesis 

With the modelling technique and the optimization criterion to the upgrading problem 

determined, we begin with a simple backbone solution to our problem, the Baseline 

Heuristic. The solution is applicable to systems where each device has only one upgrade 



CHAPTER 1. INTRODUCTION 6 

alternative with some associated cost. The number of devices in the SUC is assumed to 

remain constant; i.e. only replacement of devices is considered. This Baseline Heuristic 

and its performance evaluation are presented in Chapter 2. 

A more commonly found situation is one where each device in a system has one or 

more possible upgrade alternatives, and both addition and replacement of devices are to 

be considered in an optimal upgrade recommendation. To adapt the Baseline Heuristic 

to such a situation, a variation of the Baseline Heuristic, which we shall call OPTIMAL, 

is presented in Chapter 3. This is followed by a description of an implementation 

of OPTIMAL in C on a SUN 3/160 in Chapter 4. Various optimization techniques 

including saturation analysis, tuning, optimizing the multiprogramming level, and fine 

tuning are also discussed. 

A conclusion of the research and possible future extensions of OPTIMAL are dis­

cussed in Chapter 5. A User's Guide to OPTIMAL and a sample session are presented 

in Appendix A. 



Chapter 2 

The Baseline Heuristic 

2.1 Assumptions and Inputs 

For simplicity, the SUC is assumed to be representable as a centralized single class 

closed queuing system model with batch or terminal workload. The possibility of 

extending the model to include more complex systems such as multiple job class systems 

will be discussed in Chapter 5. 

Placement of files on devices with the objective of balancing the load across I/O 

devices 1 can often improve system performance [Lazo84]. Thus tuning, with the 

above objective, is considered whenever it is possible to move files from one I/O device 

to another. It is also assumed that such tuning measures do not incur additional 

monetary costs. 

For systems with memory constraint, it is assumed that there exist two system-

dependent parameters: the maximum memory size and the maximum degree of mul-

1 I n t h e c o n t e x t o f t u n i n g , o n l y o n - l i n e s e c o n d a r y s t o r a g e I / O d e v i c e s a r e m o d e l l e d . 

7 



CHAPTER 2. THE BASELINE HEURISTIC 8 

tiprogramming. Homogeneity assumptions about the workload are also made, as de­

scribed below. For swapping systems, it is assumed that with respect to the configu­

ration and workload of the SUC, the mean degree of multiprogramming is measurable 

and the users share main memory equally. Thus the mean size of memory allocated per 

job is calculated by dividing the size of main memory available to users by the mean 

degree of multiprogramming. For paging systems, the size of memory allocated per job 

actually varies according to the current multiprogramming level of the SUC, but since 

jobs are assumed to be identical, the mean multiprogramming level of a paging system 

obtained over some fixed period of time is used. Furthermore for paging systems, it is 

assumed that the paging device can be either dedicated to paging activities, or shared 

between regular file I/O and paging activities. The memory reference characteristics of 

jobs and the page replacement policy of the operating system are assumed to interact 

with one another in a manner reflected by the programme lifetime function specific 

to the SUC [Lazo84]. It is also assumed that the operating system allocates mem­

ory on an equipartitional basis for the current number of jobs within the maximum 

multiprogramming level supported by the system. 

The input data required by the Baseline Heuristic are the current system config­

uration and workload characteristics of the SUC, the available budget, a fixed unit 

increment on the capability of each device in the system, and the cost for such a unit 

increment. One system configuration characteristic is the capability of each device in 



CHAPTER 2. THE BASELINE HEURISTIC 9 

the system. The capability of a non-memory device is assumed to be characterized by 

the service rate, and may be expressed in various terms. For example, for the CPU, it 

may be in number of millions of instructions per second (MIPS), or in number of jobs 

per second; for I/O devices, it may be in number of jobs per second or in number of 

page frames per unit time. For memory, its capability may be expressed in number 

of kilobytes or number of page frames. Thus a unit increment for the CPU or an I/O 

device may be expressed as the increase in the number of jobs serviced per second, 

and for memory, it may be an increase in the number of page frames. Another system 

configuration characteristic is whether files on a device can be reallocated to another. 

Workload characteristics of SUC are expressed as visit ratios for I/O devices, mean 

number of instructions per job or visit ratio for CPU, and, the multiprogramming level 

for memory. 

2.2 The Iterative Process 

The following parameters are assumed in the Baseline Heuristic: 

System Parameters: 

Ncents : number of non-memory devices in the system 

Lt, : service rate of device i 



CHAPTER 2. THE BASELINE HEURISTIC 

r : mean CPU instruction execution rate 

memsize : main memory size 

max-memsize : maximum main memory size supported by system 

Workload Parameters: 

Ncusts : number of active customers in the closed system 

z : mean thinktime for transactional workload 

V{ : visit ratio, i.e., mean number of service requests made per job, for device 

v : sum of visit ratios of all devices on which tuning is allowed 

L : mean number of instructions executed by CPU per job 

M : maximum multiprogramming level allowed in a memory-constrained syst 

m : mean size of memory allocated per job 

l(m) = Hfetime(m) : lifetime function for paging system 

Economic Parameters 

A fa : unit increment on service rate for device i 

A M : unit increment on memory size 

Ar : unit increment on the CPU instruction execution rate 

AC< : unit cost incurred by unit increase in the capability of device i 

B : initial budget 



CHAPTER 2. THE BASELINE HEURISTIC 11 

remain : running balance of the budget kept in the heuristic 

The Baseline Heuristic recommends tuning to be done initially if files are allowed 

to be moved across I/O devices. As mentioned earlier, balancing system load by re­

assignment of files has been shown to improve system performance. An I/O device with 

very high utilization (close to 100%) may be a system bottleneck; improving the capa­

bility of other devices may not yield any improvement in system performance. However, 

if files are re-assigned from this device to others balancing their service demands, uti­

lization of the original bottleneck will be lowered. Thus, if tuning is allowed, it should 

be done before upgrading. Otherwise, upgrading the original system bottleneck alone 

is not likely to be the most cost-effective measure to improve system throughput. 

After initial tuning (if possible), the Baseline Heuristic operates as an iterative 

process. 

Step 0 Balance load of I/O devices by reallocating files, if possible. Evaluate system 

to find initial system throughput t. Initialize remain = B. 

The iterative process: 

Step 1 For each device i for which upgrading is considered, 0 < i < Ncents: 

Step 1.1 If remain > AC,-, 

then if i = memory and memsize + AM < max-memsize, 



CHAPTER 2. THE BASELINE HEURISTIC 12 

then increment memsize by A M , 

else if i = C P U , 

then increment either r by A r , or fj,cpu by A / / c p u , 

where appropriate 2 , 

else increment fa by A/^,-. 

Balance load of device i with other devices, if possible. 

Step 1.2 Evaluate system to find current system throughput U with respect to 

the upgrade on device i.3 

Step 1.3 Restore capability of device i to the state prior to Step 1. 4 

Step 2 Calculate the cost-effectiveness of device i, determined as the increase in 

throughput obtained per unit dollar spent: 

cefft = {U - t)/ACi 

Step 3 For device i where 

cefft = max{ceffi}, 
i 

upgrade device i by the corresponding increment. Balance load of device i with 

other I /O devices if possible. 
3 The system is modelled and evaluated analytically by a system performance analysis algorithm such 

as exact Mean Value Analysis. 
4If tuning was done in Step 1.1, then visit ratios to these tuned devices should also be restored to 

the state in Step 1. 



CHAPTER 2. THE BASELINE HEURISTIC 13 

Step 4 Evaluate system performance and find the throughput t with respect to the 

upgrade in Step 3. Decrement remain by AC,-. 

The iterative process halts as soon as remain < AC,-, Vi. 

2.3 The Output 

The Baseline Heuristic produces the following as results: 

1. A recommmendation on how to distribute the given budget among the devices 

for which upgrading is considered. 

2. The remaining budget. 

3. The optimal system throughput with respect to the recommended system con­

figuration, with the load balanced across I/O devices, if possible. 5 Note that, 

as discussed earlier in Section 1.2, although an absolute highest throughput, ti, 

might be obtained with amount B\ within the given budget, B, the heuristic pro­

duces a throughput, t2, less than (or equal to) t\, obtained with amount 1?2(< B\). 

It is optimal in the sense that the improvement in throughput obtained per unit 

dollar with B2 is higher than (or equal to) that with Bi. 

5Balancing service demands on I/O devices while keeping the sum of their visit ratios constant is 
mathematically likely to produce non-integral visit ratios. Fine tuning of these devices is required to 
produce an optimal throughput that can be realized. This is further discussed in Section 4.3. 



CHAPTER 2. THE BASELINE HEURISTIC 14 

2.4 Performance of the Baseline Heuristic 

To evaluate the performance of the Baseline Heuristic, a control programme, PI, was 

set up to enumerate all possible ways of allocating a given budget to the devices of a 

given system. For each such possible way, based on the allocated funds, each device 

is upgraded accordingly, and the system throughput is evaluated, using exact Mean 

Value Analysis (MVA) [Reis80]. The optimal throughput produced by PI is thus the 

throughput which is maximum over all possible allocations of funds. 

Two criteria of comparing the performance of the Baseline Heuristic and PI are: 

the optimal throughput and the execution time required. Four hypothetical systems of 

different complexities have been used to test the two programmes. Their descriptions 

are shown in Tables 2.1 to 2.4. 



CHAPTER 2. THE BASELINE HEURISTIC 

• Closed interactive system without memory-constraint. 

• N o devices are tuned. 

• Ncusts = 15 

• z = 50.0s 

• B = $20000 

• uniform unit increment = 1 

Device i Vi AC,-
C P U 300 96 $2000 
Disk 1 100 20 3000 
Disk 2 120 35 4000 
Disk 3 140 40 5000 

Table 2.1: System 1 

• Closed interactive system without memory-constraint. 

• N o devices are tuned. 

• Ncusts = 70 

• z = 8.0s 

• B = $10000 

• uniform unit increment = 1 

Device i Mt Vi AC,-
C P U 180 36 $2000 
Disk 1 40 10 999 
Disk 2 50 13 1000 
Disk 3 50 12 800 

Table 2.2: System 2 



CHAPTER 2. THE BASELINE HEURISTIC 

• Closed interactive system without memory-constraint. 

• Disks 1 and 3 can be tuned. 

• Ncusts = 70 

• z = 8.0s 

o B = $10000 

• uniform unit increment — 1 

Device i /*< Vi AC,-
CPU 180 36 $2000 
Disk 1 40 10 999 
Disk 2 50 13 1000 
Disk 3 50 12 800 

Table 2.3: System 3 

• Closed interactive system without memory-constraint. 

• Disks 1 and 3 can be tuned. 

• Ncusts = 70 

• z = 8.0s 

• B = $60000 

• uniform unit increment = 1 

Device i Hi AC,-
CPU 180 36 $2000 
Disk 1 40 10 999 
Disk 2 50 13 1000 
Disk 3 50 12 800 

Table 2.4: System 4 



CHAPTER 2. THE BASELINE HEURISTIC 17 

Comparison of results in terms of execution time 6 , the optimal throughput ob­

tained and amount spent is shown in Table 2.5. 

6Time data was collected by the time system call in UNIX. User time and system time are reported as 
the length of time in seconds a programme spends in user mode and supervisory mode respectively; their 
sum contribute to the CPU time. Elapsed time is reported in hours:minutes:seconds. The comparisons 
were carried out and times were measured on a SUN 3/160 with an execution rate of approximately 
2MIPS. 



CHAPTER 2. THE BASELINE HEURISTIC 18 

Baseline Heuristic P l Conclusion 
System 1 
User time(sec) 3.3 22.3 For timing, 
System time(sec) 0.2 0.6 Baseline Heuristic 
Elapsed time 00:00:03 00:00:24 is superior. 
Optimal throughput 0.293115 0.293115 Same 
Amount spent $20000 $20000 Same 
Throughput increase 0.00405 0.00405 Same 
per dollar spent 
(xl(T 6) 
System 2 
User time(sec) 8.8 19.9 For timing, 
System time(sec) 0.3 1.3 Baseline Heuristic 
Elapsed time 00:00:19 00:02:04 superior. 
Optimal throughput 4.033241 4.033635 Differ by 0.0097% 
Amount spent $9597 $9797 
Throughput increase 0.000029 0.000028 Baseline Heuristic 
per dollar spent is superior. 
System 3 
User time(sec) 1.0 24.5 For timing, 
System time(sec) 0.2 1.3 Baseline Heuristic 
Elapsed time 00:00:21 00:02:08 superior. 
Optimal throughput 4.055627 4.059224 Differ by 0.0886% 
Amount spent $9800 $10000 
Throughput increase 0.0000307 0.0000305 Baseline Heuristic 
per dollar spent is superior. 
System 4 
User time(sec) 8.9 14943.8 For timing, 
System time(sec) 0.7 181.9 Baseline Heuristic 
Elapsed time 00:01:50 04:14:58 far superior. 
Optimal throughput 4.938146 4.942504 Differ by 0.0881% 
Amount spent $59400 $60000 
Throughput increase 0.0000199 0.0000198 Baseline Heuristic 
per dollar spent is superior. 

Table 2.5: Comparison of Results from the Baseline Heuristic and P l applied to Sys­
tems 1 to 4 



CHAPTER 2. THE BASELINE HEURISTIC 19 

Thus for the above examples, the improvement in throughput per dollar spent with 

the Baseline Heuristic is always equal to or higher than that with P i , and the optimal 

throughput obtained by the Baseline Heuristic is within 0-0.1% of the highest possible 

for each system. As for the execution time, the more complex the SUC, the better the 

Baseline Heuristic performs relative to Pi ; the improvement can be very significant, 

ranging from a few to more than a thousand times improvement in User time, and 

a few to more than two hundred times improvement in System time in the examples 

tested. 



Chapter 3 

Variation of the Baseline Heuristic 

3.1 Description of a Practical Situation 

A more commonly found situation is one in which each device in a system has more 

than one upgrade alternative, each alternative with a possibly different cost. Further­

more, the devices in the existing system may carry a positive resale value. Upgrading 

a system with a given budget may call for replacing existing devices with certain up­

grade alternatives, as well as adding more devices to the system, completely changing 

the system configuration. A variation of the Baseline Heuristic, OPTIMAL, takes into 

consideration the above issues. 

20 



CHAPTER 3. VARIATION OF THE BASELINE HEURISTIC 21 

3 . 2 Description of O P T I M A L 

3.2.1 Assumptions and Inputs 

The assumptions for the Baseline Heuristic described in Section 2.1 carry over to OP­

TIMAL. In addition, for simplicity, it is assumed that the sets of upgrade alternatives 

for the devices in a given SUC are compatible with each other. Thus, for instance, 

each of the CPU upgrade alternatives is compatible with all of the memory upgrade 

alternatives. Since addition of devices is also considered, alternative j of device i added 

to the system as a new device is assumed to have the same upgrade alternatives as 

device i. A system-dependent parameter, the maximum number of devices on a given 

system, is also assumed. 

Similar to the Baseline Heuristic, the input data required by OPTIMAL include a 

given budget and the existing system configuration. In addition, for each device in the 

SUC for which upgrading is considered, the required input data are the resale value, 

the number of upgrade alternatives, and for each alternative, its capability and its cost, 

and whether tuning is allowed for that device 1 . 

1 Applicable to non-CPU and non-memory devices only. 



CHAPTER 3. VARIATION OF THE BASELINE HEURISTIC 22 

3.2.2 The Iterative Process 

In addition to the system and workload parameters described in Section 2.2, the fol­

lowing are used by OPTIMAL: 

System Parameters: 

max : maximum number of devices supported by system 

Economic Parameters: 

n-alti : number of upgrade alternatives for device i 

Hij : service rate of jth upgrade alternative of device i 

Mj : memory size of jth upgrade alternative of the memory device 

rj : instruction execution rate of the jth upgrade alternative for the CPU 

C{j : cost of the jth upgrade alternative of device i 

c, : resale value of device i 

B : initial budget 

remain : running balance of the budget 

Similar to the Baseline Heuristic, OPTIMAL recommends tuning to be done ini­

tially whenever possible. It then operates as an iterative process. 



CHAPTER 3. VARIATION OF THE BASELINE HEURISTIC 23 

Step 0 Balance load of I/O devices by reallocating files if possible. Find initial system 

throughput t. 

The iterative process: 

Step 1 For each device i for which upgrading is considered, and for each upgrade 

alternative j of device i, 0 < i < Ncents, 0 < j < n-alti : 

Step 1.1 Try replacing device i by alternative j: if C,y > c,- and remain > 

Cij — Ci, or if C{j < Ci, substitute capability of alternative j for device i. 

Balance load of device i with other devices if possible. If replacement is not 

possible, go to Step 1.4. 

Step 1.2 Evaluate system performance and find the throughput with respect 

to the replacement in Step 1.1. 

Step 1.3 Restore capability of device i to the state in Step 1. If tuning was 

done in Step 1.1, restore visit ratios of tuned devices to the state in Step 1. 

Step 1.4 Try adding alternative j to system: 2 

if remain > Cij, 

and if i ^ memory and Ncents < max, 

or if i — memory and memsize + AM < max-memsize, 

2Addition of devices is only permitted for memory and for I /O devices for which files can be re­
allocated. 



CHAPTER 3. VARIATION OF THE BASELINE HEURISTIC 24 

then add a new device with capability equal to that of alternative j to 

the system. If i is an I/O device, move files to new device such that load 

is balanced across all I/O devices that can be tuned. If addition is not 

possible, go to Step 2. 

Step 1.5 Evaluate system performance and find the throughput with respect 

to the addition in Step 1.4. 

Step 1.6 Restore original system configuration by removing new device, and if 

i 7̂  memory, restoring visit ratios to the state in Step 1. 

Step 2 Calaculate the cost-effectiveness of each upgrading measure carried out in Step 

1, i.e., for each device i, compute: 

cemi=itr

ii-t)/{Cii-ei) 

and 

cef^ = (^-t)/Ci3; 

if the corresponding upgrade is possible. 

Step 3 For device i and alternative j where 

c e f f action = m a x {cefftfiony, a c t i o n G { j . ^ 
1 i,j,action 

upgrade system by the corresponding action, i.e., either replacing device i by its 

j'-th alternative, or adding alternative j to the system as a new device. Balance 



CHAPTER 3. VARIATION OF THE BASELINE HEURISTIC 25 

load of device i with other I/O devices if possible. Increment Ncents if action is 

addition of device to system. 

Step 4 Record system throughput t with respect to upgrade decision in Step 3 (i.e. 

t = <7y o r tfj)- Decrement remain by (c7tJ- — c,) if action is replacement, and by 

if action is addition. 

The iterative process terminates when the remaining budget is insufficient for any type 

of upgrading action for any device. 

3.2.3 The Output 

O P T I M A L produces the following as output: 

1. A recommendation on how to distribute the given budget among the various 

upgrade alternatives, i.e., which devices to replace in the initial system and which 

devices should be added to the system. 

2. The remaining budget. 

3. The system throughput with respect to the recommended system configuration 

(after fine-tuning if possible). 



Chapter 4 

Implementation of OPTIMAL 

4.1 System Performance Analysis Algorithms 

A s mentioned in Chapter 2, the S U C that is assumed is a centralized single class 

closed system with batch or terminal workload, and the system performance analysis 

algorithm that is used is the exact M e a n Value Analysis algorithm first developed by 

Reiser and Lavenberg [Reis80] and later extended by Lazowska et al. [Lazo84] How­

ever, this is by no means a restriction on the practicality of the Baseline Heuristic and 

O P T I M A L . In fact, given the appropriate analytic modelling tool, other systems, for 

instance, multiple class systems, can also be applied to the Baseline Heuristic and O P ­

T I M A L with minor modifications, as discussed later in Chapter 5. Such modelling tools 

are widely available; for instance, B E S T / 1 [BEST79] has been widely used in North 

A m e r i c a since 1979. Q N E T S [Pang86] analyzes multiple class centralized systems with 

memory-constraint. Another package, Q N A P 2 [INRI84], models and evaluates the 

performance of systems with varied complexities: open or closed systems with single 

26 



CHAPTER 4. IMPLEMENTATION OF OPTIMAL 27 

or multiple job class, with, or without memory constraint, with local or remote trans­

actions over a network, and non-separable [Denn78j systems with a finite number of 

processors linked together by a network. 

Two notes on the exact Mean Value Analysis as applied to memory-constraint batch 

and paging systems. For memory-constraint batch systems where the total number of 

customers, Ncusts, is less than or equal to the multiprogramming level, M, of the 

system, rather than taking the mean throughput over all feasible populations 1,..., 

Ncusts, the system throughput is that obtained at multiprogramming level Ncusts, 

since all processes can be accommodated in main memory and there is no delay imposed 

outside of the multiprogramming subsystem (refer to Figure 4.1). 

f4 

M >= Ncusts 
delay = 0 

Multiprogramming 

Subsystem * w 

Multiprogramming 

Subsystem 

Figure 4.1: Closed Batch Model with Memory Constraint M > Ncusts 



CHAPTER 4. IMPLEMENTATION OF OPTIMAL 28 

For paging systems, because the visit ratio to the paging device for paging service 1 

is dependent on the current multiprogramming level, to calculate the system through­

put at each feasible multiprogramming level, it is necessary to find the visit ratio and 

the service demand to the paging device for paging service at each of these levels. T h e 

visit ratio to the paging device for paging service at feasible population n is in turn 

derived from the formula: 

visit ratiopag — service demandcpu/ lifetime(m), 

where, according to the user-specified lifetime function, lifetime(m) yields the mean 

C P U time between consecutive page faults with respect to the memory allocation per 

job (m) when the current multiprogramming level is n (i.e., m = memsize/n). 

4.2 The Implementation Assumptions 

In addition to the assumptions outlined in Section 3.2.1 for O P T I M A L , one other major 

implementation assumption has been made for the sake of clarity in demonstrating the 

operation of O P T I M A L . T h e assumption is: for a given system, if files are allowed to 

be reallocated, then in principle they can be moved to any 1/O device on which files can 

be reallocated. T h a t is, when a file is moved from one device to another, the service 

demands of all I/O devices in the system to which files can be reallocated are also 

•"•Paging devices may be shared between paging activities and regular file I /O activities. 



CHAPTER 4. IMPLEMENTATION OF OPTIMAL 29 

balanced. Furthermore, only upgrade alternatives for memory and such "tuneable" I/O 

devices are considered to be added to the system in the iterative process of OPTIMAL. 

Since only single processor systems are considered in OPTIMAL, upgrade alternatives 

of the CPU are for replacement only, never for addition. 

Other more sophisticated strategies can be incorporated into OPTIMAL by defin­

ing n closed groups of I/O devices. Moving a file from one device to another within 

a group results in balancing the service demands of only those devices in the group. 

One may also allow adding devices for which general tuning is not permitted. In this 

case, files from such an existing I/O device in the system are only moved to the new 

device to balance the service demands of these two devices only. Thus, different lev­

els of sophistication may be built into OPTIMAL allowing a wider scope of application. 

4.3 Optimization of O P T I M A L 

Optimization is carried out in OPTIMAL in the following four main areas: saturation 

analysis and tuning, calculation of cost-effectiveness, optimizing multiprogramming 

level, and fine tuning. 



CHAPTER 4. IMPLEMENTATION OF OPTIMAL 30 

4.3.1 Saturation Analysis and Tuning 

As mentioned in Section 2.2, a saturated device in a system is not necessarily the most 

cost-effective device to upgrade. If the saturated device is an I/O device from which 

files can be moved to other I/O devices in the system balancing their service demands, 

then such tuning action may eliminate this primary bottleneck. Some other device 

whose service demand has not been affected by the tuning measure may become the 

most heavily utilized device in the system and hence emerges as the current primary 

bottleneck. However, owing to the fact that the cost-effectiveness of upgrading a device 

is defined as the ratio of the improvement in throughput to the cost of the upgrade, cost 

is also a factor in determining whether a device is the most cost-effective to upgrade. 

Thus, the most highly utilized device is not necessarily selected for upgrade. 

4.3.2 Calculation of Cost-effectiveness 

In some situations, the replacement cost of a new device may be less than or equal to 

the resale value of an existing device in the system. For instance, soon after a disk is 

purchased, a competitor manufacturer offers a huge discount on a slightly faster disk 

such that the resale value of the newly purchased disk is higher than or equal to the 

cost of the discounted disk. In such cases, after examining the replacement cost and 

resale value of a device, OPTIMAL upgrades this device by replacing it with the alter­

native, before proceeding to calculate the cost-effectiveness of the rest of the devices. 



I 

CHAPTER 4. IMPLEMENTATION OF OPTIMAL 31 

The profit made in the upgrade transaction is accounted into the budget. In situations 

where the capability of an upgrade alternative is equal to or even lower than that of an 

existing device in the system, OPTIMAL ignores this upgrade possibility and proceeds 

to examine the next. 

4.3.3 Optimizing the Multiprogramming Level 

When memory is added to memory-constrained swapping systems, the multiprogram­

ming level of the system may be increased up to the maximum possible, based on the 

mean memory size allocated per job for that system (see Section 2.1). System through­

put will increase with the multiprogramming level for such systems. For memory-

constrained paging systems, however, since throughput is convex with multiprogram­

ming level [Lazo84] (refer to Figure 4.2), the optimal multiprogramming level is one at 

which system throughput is maximized. It is important to note that the optimal mul­

tiprogramming level is a function of the current workload and system configuration, 

including the lifetime function that characterizes the paging activities of the particular 

system. 

As in the case of tuning, optimization of the multiprogramming level for paging 

systems should be done before the iterative process of OPTIMAL begins. This is 

achieved by evaluating the system at each feasible population from 1 to the current 



CHAPTER 4. IMPLEMENTATION OF OPTIMAL 

Figure 4.2: Throughput vs. Multiprogramming Level in a Paging System 



CHAPTER 4. IMPLEMENTATION OF OPTIMAL 33 

multiprogramming level, but halting as soon as the throughput obtained at level M+l 

is less than that at M ( M + 1 < current multiprogramming level). T h e initial optimal 

multiprogramming level is then set at M. A t every step of 1.2 and 1.5 of the iterative 

process, optimization is also necessary. T h e optimization is carried out as outlined 

below. 

If the current optimal multiprogramming level is M when an upgrade possibility is 

considered, evaluate the system at each multiprogramming level M,M + 1,... ,max-M, 

obtaining system throughputs tM, IM+U • • • > tmax-M- T h e optimal multiprogramming 

level is the one corresponding to the m a x i m u m throughput rate. However, the evalua­

tion process can stop as soon as tM+n < ^M+n-i for some n > 0 and M + n < max-M. 

In the latter case, the optimal multiprogramming level with respect to the specific 

upgrade possibility is M + n — 1. Optimization is carried out in O P T I M A L so that at 

every step the most cost-effective upgrade measure is determined based on the highest 

possible throughput for each upgrade possibility. 

4.3.4 Fine Tuning 

Balancing service demands on I/O devices while keeping their service rates and the 

sum of their visit ratios constant may often result in non-integral visit ratios [Ferr83]. 

One goal of fine tuning is to obtain integral visit ratios based on the non-integral 



CHAPTER 4. IMPLEMENTATION OF OPTIMAL 34 

ones such that the throughput obtained with these visit ratios is at least as high 

as that obtained with the non-integral visit ratios.2 As the relationship between 

throughput and visit ratios is intuitively complex, it is only reasonable to try integral 

visit ratios in the vicinity of the non-integral ones while keeping the sum of the visit 

ratios constant. Since the practicability of the final recommendations of OPTIMAL is 

the main concern, fine tuning is required only in the final step of OPTIMAL, rather 

than after every tuning measure. 

4.4 Performance of O P T I M A L 

To evaluate the performance of OPTIMAL, a control programme, P 2 , was set up to 

enumerate all possible ways of allocating funds to the upgrading alternatives of a given 

system. Each possible way results in replacement of existing devices by upgrade al­

ternatives and/or addition of new devices into the system. The optimal throughput 

produced by P 2 is the throughput that is maximum over all such possibilities. Sim­

ilar to the case of evaluating the performance of the Baseline Heuristic, the optimal 

throughput and the execution time are used as criteria for comparison between OP­

TIMAL and P 2 . However, for systems with devices having two or more alternatives 

that are also candidates to be added to the system, and for a sufficiently large budget, 

it is obvious that the number of possible ways of allocating the budget is very large. 

2 Empirical data from test examples on fine tuning have shown that throughput at least as high is 
achievable. 



CHAPTER 4. IMPLEMENTATION OF OPTIMAL 35 

Consequently, for most test systems, OPTIMAL performs far better than P2 with re­

spect to execution time, and thus this criterion is of less interest here. The criterion 

of primary concern in such systems is the optimal throughput. 

Four hypothetical systems of varied complexities have been tested by both OPTI­

MAL and P2. Their descriptions are shown in Tables 4.1 - 4.8. 

• Closed interactive system with memory-constraint. 

• Memory management: swapping. 

• Disks 1 and 2 can be tuned. 

• System configuration and workload: 

- Ncusts = 20 
- z = 50.0s 
- B — $120,000 

Device i Mi Vi 
CPU 150 351 $ 5000 
Disk 1 50 150 10000 
Disk 2 30 200 5000 

• Memory: 

— memsize = 16MB 

— M = 8 

— max-memsize = 32MB 

— max-M = 15 
— ^memory — $5000 

Table 4.1: System 5 



CHAPTER 4. IMPLEMENTATION OF OPTIMAL 

Device i Capability Cost 
C P U : - -

Disk 1: 
1 50 $25000 
2 60 30000 

Disk 2: 
1 50 25000 
2 60 30000 

Memory: 
1 4 20000 
2 6 28000 

Table 4.2: System 5 Upgrade Alternatives 



CHAPTER 4. IMPLEMENTATION OF OPTIMAL 

• Closed interactive system with memory-constraint. 

• Memory management: swapping. 

• Disks 1 and 2 can be tuned. 

• System configuration and workload: 

- Ncusts = 20 

- z = 50.0s 

- B = $130,000 

Device i Vi c, 
CPU 250 621 $ 5000 
Disk 1 50 150 10000 
Disk 2 30 200 5000 
Disk 3 40 120 4000 
Disk 4 45 150 4500 

• Memory: 

— memsize = 12MB 

— M = 10 

— max-memsize = 32MB 

— max-M— 12 

Table 4.3: System 6 



CHAPTER 4. IMPLEMENTATION OF OPTIMAL 

Device i Capability Cost 
CPU: - -

Disk 1: 
1 55 $25000 
2 70 40000 

Disk 2: 
1 55 25000 
2 70 40000 

Disk 3: 
1 55 25000 
2 70 40000 

Disk 4: 
1 55 25000 
2 70 40000 

Memory: 
1 2 15000 
2 4 20000 

Table 4.4: System 6 Upgrade Alternatives 



CHAPTER 4. IMPLEMENTATION OF OPTIMAL 

• Closed interactive system with memory-constraint. 

• Memory management: swapping. 

• Disks 1, 2 and 3 can be tuned. 

• System configuration and workload: 

- Ncusts = 30 

- z = 60.0s 

- B = $130,000 

Device i Vi Ci 

C P U 250 621 $ 5000 
Disk 1 50 150 10000 
Disk 2 30 200 5000 
Disk 3 40 120 4000 
Disk 4 45 150 4500 

• Memory: 

— memsize = 12MB 

- M = 10 

— max-memsize = 32MB 

- max-M — 12 

Table 4.5: System 7 



CHAPTER 4. IMPLEMENTATION OF OPTIMAL 

Device i Capability Cost 
CPU: - -

Disk 1: 
1 55 $25000 
2 70 40000 
3 80 60000 

Disk 2: 
1 55 25000 
2 70 40000 
3 80 60000 

Disk 3: 
1 55 25000 
2 70 40000 
3 80 60000 

Disk 4: 
1 55 25000 
2 70 40000 
3 80 60000 

Memory: 
1 2 15000 
2 4 20000 

Table 4.6: System 7 Upgrade Alternatives 



CHAPTER 4. IMPLEMENTATION OF OPTIMAL 

• Closed interactive system with memory-constraint. 

• Memory management: swapping. 

• Disks 1, 2 and 3 can be tuned. 

o System configuration and workload: 

- Ncusts - 35 

- z = 50.0s 

- B = $130,000 

Device i /A- Ci 

CPU 250 621 $ 5000 
Disk 1 50 150 10000 
Disk 2 30 . 200 5000 
Disk 3 40 120 4000 
Disk 4 45 150 4500 

• Memory: 

— memsize — 12MB 

— M = 10 

— max-memsize = 32MB 

— max-M = 12 

Table 4.7: System 8 



CHAPTER 4. IMPLEMENTATION OF OPTIMAL 

Device i Capability Cost 
CPU: - -

Disk 1: 
1 55 $25000 
2 70 40000 
3 80 60000 
4 60 30000 

Disk 2: 
1 55 25000 
2 70 40000 
3 80 60000 
4 60 30000 

Disk 3: 
i 55 25000 
•2 70 40000 
3 80 60000 
4 60 30000 

Disk 4: 
1 55 25000 
2 70 40000 
3 80 60000 
4 60 30000 

Memory: 
1 4 20000 
2 6 30000 

Table 4.8: System 8 Upgrade Alternatives 



CHAPTER 4. IMPLEMENTATION OF OPTIMAL 43 

Compar ison of results from O P T I M A L and P2 in terms of the opt imal throughput 

produced and execution t ime are shown i n Table 5. 



CHAPTER 4. IMPLEMENTATION OF OPTIMAL 44 

OPTIMAL P2 Conclusion 
System 5 
User time 2.4 42.6 For timing, 
System time 0.2 12.8 OPTIMAL is 
Elapsed time 00:00:14 00:21:06 slightly superior. 
Optimal throughput 0.303972 0.303972 Same 
Amount spent $115000 $115000 Same 
Throughput increase Same 
per dollar spent 1.343 1.343 
(xl(T 6) 
System 6 
User time 7.1 717.0 For timing, 
System time 0.1 28.8 OPTIMAL 
Elapsed time 00:00:26 00:57:12 is superior. 
Optimal throughput 0.259581 0.261927 Differ by 0.89% 
Amount spent $116500 $126500 
Throughput increase 0.632 0.601 OPTIMAL is 
per dollar spent superior. 
(xl(T 6) 
System 7 
User time 57.7 3672.9 For timing, 
System time 1.6 377.6 OPTIMAL is 
Elapsed time 00:01:15 04:34:53 superior. 
Optimal throughput 0.308968 0.311382 Differ by 0.775% 
Amount spent $120500 $125500 
Throughput increase 0.928 0.910 OPTIMAL 
per dollar spent is superior. 
(xl(T 6) 
System 8 
User time 1.5 6021.6 For timing, 
System time 1.2 195.4 OPTIMAL is 
Elapsed time 00:01:46 13:34:21 superior. 
Optimal throughput 0.328815 0.328815 Same. 
Amount spent $125500 $125500 Same. 
Throughput increase 1.049 1.049 Same. 
per dollar spent 
(xlO- 6) 

Table 4.9: Comparison of Results from OPTIMAL and P2 applied to Systems 5 to 8 



CHAPTER 4. IMPLEMENTATION OF OPTIMAL 45 

Thus, for the above examples, the improvement in throughput per dollar spent is 

always equal or higher in OPTIMAL than in P2, and the optimal throughput is within 

1.0% from the highest possible for each system. 



Chapter 5 

Conclusion 

5.1 Concluding Remarks 

OPTIMAL, an automatic scheme of upgrading a given system to produce optimal 

system throughput per dollar, constrained by a given budget and available upgrade 

alternatives, has been implemented and described in the thesis. Various optimization 

techniques, including optimizing the multiprogramming level and fine tuning, have 

been used to enhance the performance of OPTIMAL. The backbone heuristic - the 

Baseline Heuristic - as well as OPTIMAL have been tested with sample systems of 

varied complexities. Both methods give throughputs within the range 0.0 - 1.0% of the 

absolute maximum for each system, and with equal or higher improvement in through­

put per unit dollar spent as compared to that obtained with the absolute maximum 

throughput. 

46 



CHAPTER 5. CONCLUSION 47 

5.2 Future Extensions 

One of the possible future extensions of OPTIMAL is to incorporate a more sophisti­

cated set of system performance analysis algorithms to increase the scope of application 

of OPTIMAL to cover more complex systems, such as multiple job class systems, and 

systems with elaborate I/O subsystems and swapping devices. As suggested in Sec­

tion 4.1, such algorithms are widely available as packages and can be interfaced with 

OPTIMAL, replacing the current simple exact MVA system performance analysis pro­

gramme. The extensions can be easily accommodated as the structure of OPTIMAL 

is not dependent on the performance analysis algorithm used. 

5.2.1 Multiple Job Class Systems 

As mentioned in Section 2.1, homogeneity assumptions about the workload are made 

and currently only systems with single job class are considered. The reason for this 

is to simplify the workload so as to clearly illustrate the operation of the Baseline 

Heuristic and OPTIMAL. However, for systems in which the jobs being modelled are 

not indistinguishable but have significantly different behaviours (for instance systems 

with a mixture of CPU and I/O bound jobs), a multiple class model can provide more 

accurate results. To include the multiple job class systems as possible input systems, 

OPTIMAL can be modified to accept the workload characteristics of each job class, 

and in Steps 0, 1.2, 1.5 and 4, use exact MVA that models multiple job class systems 



CHAPTER 5. CONCLUSION 48 

to obtain throughput values for each job class, which are then summed to obtain the 

system throughput. [Lazo84] 

5.2.2 I/O Subsystems 

Because of advances in VLSI technology, processor, memory and other purely electronic 

components of the computer system have outpaced the advancement in I/O subsystems 

technology. Consequently it is more common for current systems to have bottlenecks 

in I/O components rather than CPU or memory. A common I/O subsystem consists of 

various elements of varied intelligence: channels, controllers, string heads, disks. Being 

able to locate the bottleneck element in a highly utilized I/O subsystem is a key to 

improving system performance. The current implementation of OPTIMAL captures 

the details of an I/O subsystem in the disk service demand obtained from measure­

ment data. Thus a more sophisticated modelling approach, such as the one suggested 

in [Lazo84], is necessary to account for the effect of improving each I/O subsystem 

component on system performance. 

5.2.3 Swapping Systems 

Similar to I/O subsystems, in order for OPTIMAL to examine the effect of improving 

the swapping device on system performance, the system performance analysis tool has 



CHAPTER 5. CONCLUSION 

to be able to model the swapping device. 

[Lazo84]. 

A possible means has also been suggested 



Bibl iography 

[BEST79] BEST/1 User's Guide, Release 5.0, BGS Systems, Inc., Lincoln, MA, Aug. 
1979 

[Buze78] J. Buzen, Operational Analysts: an Alternative to Stochastic Modeling, Proc. 
of International Conference on the Performance of Computer Installation, 
ICPCI '78, Italy, 1978 

[Conn84] W.M. Conner, An Introduction to Capacity Planning, CMG '84 Proc. of the 
International Conference on the Management and Performance Evaluation 
of Computer Systems, San Francisco, CA, Dec. 1984, pp.586-590 

[Coop80] J.C. Cooper, A Capacity Planning Methodology, IBM Systems Journal, 
Vol.19, #1, 1980, pp.28-45 

[Denn78] P.J. Denning, J.P. Buzen The Operational Analysis of Queueing Network 
Models, Computing Surveys, Vol.10, #3, Sept. 1978, pp.225-261 

[Ferr83] D. Ferrari, G. Serazzi, A. Zeigner, Measurement and Tuning of Computer 
Systems, Prentice Hall, 1983 

[Hodg82] L.F. Hodges, Workload Characterization and Performance Evaluation in a 
Research Environment, Proc. of the 1982 A C M SIGMETRICS Conference 
on Measurement and Modeling of Computer Systems, Vol.11, #4, 1982 

[INRI84] New Users' Introduction to QNAP2, Version 08/84, INRIA, France, 1984 

[Kuma80] S.R. Kumar, R.B. Lake, C T . Nute, File Allocation Methodology for Perfor­
mance Enhancement, Proc. 16th CPEUG Meeting, 1980, pp.175-188 

[Lazo84] E.D. Lazowska, J. Zahorjan, G.S. Graham, K.C. Sevcik, Quantitative Sys­
tem Performance, Computer System Analysis Using Queueing Network 
Models, Prentice Hall, 1984 

50 



BIBLIOGRAPHY 51 

[Levi85] A.P. Levine, ESP: an Expert System for Computer Performance Manage­
ment, CMG '85 Proc. of the International Conference on the Management 
and Performance Evaluation of Computer Systems, 1985, pp.181-186 

[Lo80] T.L. Lo, Computer Capacity Planning Using Queuing Network Models, 
Proc. of Performance '80 the 7th IFIP W.G. 7.3, International Sympo­
sium on Computer Performance Modelling, Measurement and Evaluation, 
Toronto, Ont., May 1980 

[Maed85] A.T. Maeda, L.A. Aho, Using Expert System Technology to Evaluate Sys­
tem Resource Planning Alternatives: a Management Perspective, CMG '85 
Proc. of the International Conference on the Management and Performance 
Evaluation of Computer Systems, 1985, pp.558-563 

J.F. Pang, Characterizing User Workload for Capacity Planning, M.Sc. The­
sis, U. of British Columbia, 1986 

M. Reiser, S.S. Lavenberg, Mean Value Analysis of Closed Multichain 
Queueing Networks, JACM, Vol.27, #2, April 1980, pp.312-322 

R.A. Orchard, Algebraic Models for CPU Sizing, CPEUG 83 Proc. of the 
Computer Performance Evaluation Users Group 19th Meeting, San Fran­
cisco, CA, Oct. 1983, pp.116-134 

J.M. Ostrowski, J.L. Webb, T.A. Hilton, Implementing Expert System Tech­
nology into the Field of Computer Performance Evaluation, CMG '85 Proc. 
of the International Conference on the Management and Performance Eval­
uation of Computer Systems, 1985, pp.245-250 

K.O. Salawu, A Note on Computer System Capacity Planning Through Ma­
terial Requirements Planning, CPEUG 80 Proc. of the Computer Perfor­
mance Evaluation Users Group 16th Meeting, 1980, pp. 199-203 

K.O. Salawu, Capacity Prediction for UNIX Systems, CMG '85 Proc. of the 
International Conference on the Management and Performance Evaluation 
of Computer Systems, 1985 

[Sevc80] K.C. Sevcik, G.S. Graham, J. Zahorjan, Configuration and Capacity Plan­
ning in a Distributed Processing System, Proc. 16th CPEUG Meeting, 1980, 
pp.165-171 



Appendix A 

OPTIMAL User's Guide 

O P T I M A L 1 can be invoked 2 on-line by the command: optimal. 

O P T I M A L consists of three phases: the input phase, the processing phase and the 

output phase. T h e input phase of O P T I M A L is a question-and-answer session; input 

and output are directed through the terminal. 

T h e type of system and input parameters that O P T I M A L considers are described 

in Table A . I below. 

lrrhe source of the current implementation requires approximately 118K, and the object 115K. 
2 OPTIMAL as running on a UNIX-based system. 

52 



APPENDIX A. OPTIMAL USER'S GUIDE 53 

System Configuration : 
Workload 

Memory Management: 

Input Parameters 

centralized 
batch or interactive 
swapping or paging; with or without memory 
constraint 
as listed below; units are not fixed but 
must be consistent (e.g. seconds for 
mean thinktime, and jobs per second 
or MIPS for CPU capability) 

System Configuration Workload Economic 
For all systems: 
1. No. of service centres 
2. Paging or swapping 
3. Memory-constrained or 
not 
4. Whether tuning is 
allowed, and if so, 
which are the devices 
on which tuning is 
allowed 
For paging systems: 
service rates for non-CPU, 
non-memory devices, and 
mean instruction execution 
rate for CPU. 
For non-paging systems: 
service rates for all 
non-memory devices 

For memory-constrained 
systems: 
max. memory size, current 
memory size, maximum 
degree of multiprogramming 
supported 

For all systems; 
1. Mean no. of customers 
2. Mean thinktime 

For paging systems: 
visit ratios for non-CPU, 
non-paging, non-memory 
devices, and mean no. of 
instructions per program 
for CPU. 
For non-paging systems: 
visit ratios for all 
non-memory devices 

For all systems: 
1. Budget 
2. For each device to be 
considered for 
upgrading, its market 
value, no. of 
upgrade alternatives 
available, and their 
capabilities and 
costs 

Table A.I: System and Input Parameters for OPTIMAL 



APPENDIX A. OPTIMAL USER'S GUIDE 54 

After the initial input session and before processing begins, adjustments to prior 

input values are possible. Table A.2 shows a list of adjustment codes for the corre­

sponding adjustments. Note that adjustments for corresponding adjustment codes are 

carried out as described, except for the following where related adjustments are also 

prompted for: 

4: if system is paging, then OPTIMAL also prompts for descriptions of the paging 

device. 

5:- if system is memory-constrained, then OPTIMAL also prompts for descriptions of 

the memory constraint. 

9: if number of devices on which tuning 3 is allowed is > 1, then OPTIMAL also 

prompts for the identities of these devices. 

16: if number of upgrade alternatives for a device is > 0, then OPTIMAL also prompts 

for descriptions of the upgrade alternatives 

When no further adjustments are necessary, inputting adjustment code 20 ends the 

adjustment process and begins the processing phase. 

3 F i l e s a r e a l l o w e d t o b e r e l o c a t e d a m o n g t h e s e d e v i c e s . 



APPENDIX A. OPTIMAL USER'S GUIDE 55 

adjustment code adjustment 

1 number of customers 
2 mean thinktime 
3 number of devices 
4 system is / not paging 
5 system is / not memory-constrained 
6 instruction execution rate of C P U / service rate 

of a device 
7 visit ratio of a device 
8 paging device is / not shared 
9 number of devices on which tuning is allowed 

10 maximum memory size supported by system 
11 maximum degree of multiprogramming supported 
12 current main memory size 
13 mean degree of multiprogramming 
14 budget 
15 market value of a device 
16 number of upgrade alternatives for a device 
17 lifetime function 
20 no further adjustments 

Table A.2: Adjustments and Corresponding Adjustment Codes for the Input Phase of 
O P T I M A L 



APPENDIX A. OPTIMAL USER'S GUIDE 56 

The processing phase of OPTIMAL is a completely automated process. 

At the end of the processing phase, OPTIMAL enters the output phase. Output of 

OPTIMAL includes: 

• optimal system throughput, with or without fine-tuning 

• the recommended system configuration, including: 

— number of added devices 

— for each device, its capability, visit ratio where applicable, the recommended 

amount to be spent on it, and the equivalent device type in the initial system 

(EqD) (this information is needed if the device is a new device to be added 

onto the system) 

— for paging systems, the recommended multiprogramming level 

• the budget required and the remaining budget 

A sample session of OPTIMAL, showing the input and output phases of System 9 

(see Table A.3, Figure A.I, Table A.4), is illustrated below. This session attempts to 

illustrate most of the features of OPTIMAL. 



APPENDIX A. OPTIMAL USER'S GUIDE 

• Closed interactive system with memory-constraint. 

• Memory management: paging. 

• Disks 2 and 3 can be tuned. 

• System configuration and workload: 

- Ncusts = 15 

- z = 50.0s 

- L = 5 MI 

- B = $30,000 

Device i capability Vi 

CPU 1 MIPS - $ 1000 
Disk 1 30 jobs/s 120 2500 
Disk 2 30jobs/s 150 2500 
Disk 3 40 jobs/s 160 3000 
Shared paging disk 45 jobs/s 90 3000 

o Memory: 

— memsize = 300 page frames 

- M = 10 

— max-memsize — 1500 page frames 

- max-M= 12 

~~ Cmemory = $500 

Table A.3: System 9 



APPENDIX A. OPTIMAL USER'S GUIDE 58 

C P U lifetime 
in seconds 

.0150i 

.0125 

.0100 

.0075 

.005 

.0025 

0 25 50 75 100 125 150 

Frames 

Figure A.I: Lifetime Curve Representing the Paging Activities of System 9 



APPENDIX A. OPTIMAL USER'S GUIDE 

D e v i c e * C a p a b i l i t y C o s t 

C P U : 2 M I P S $4500 
D i s k 1: 
1 25 3000 
2 40 4500 
D i s k 2: 
1 35 3000 
2 40 4500 
D i s k 3: 
1 35 3500 
2 50 5500 
S h a r e d p a g i n g d i sk : 
1 50 5500 
M e m o r y : 
1 500 2000 

T a b l e A . 4 : S y s t e m 9 U p g r a d e A l t e r n a t i v e s 



APPENDIX A. OPTIMAL USER'S GUIDE 

> optimal 4 

* System and Workload Parameters * 

Enter number of customers: 15 

Enter average t h i n k time of customers ( s e c ) : 40 

Enter number of devices excluding memory: 5 

Is there a paging device? (0 = 'no', 1 = 'yes') 1 

Is memory to be evaluated? (0 = 'no', 1 = 'yes') 1 

For the f o l l o w i n g , device 1 must be the CPU 

and device 5 the paging device 

and device 6 main memory 

4Invoke OPTIMAL. 



APPENDIX A. OPTIMAL USER'S GUIDE 61 

* CPU * 

E n t e r mean no. of i n s t r u c t i o n s t o be executed per programme: 5000000 

E n t e r mean CPU i n s t r u c t i o n e x e c u t i o n r a t e : 1000000 

* O n - l i n e I/O Device * 

E n t e r v i s i t r a t i o f o r de v i c e 2 : 120 

E n t e r s e r v i c e r a t e f o r d e v i c e 2 ( t r a n s a c t i o n s / s e c . ) :30 



APPENDIX A. OPTIMAL USER'S GUIDE 62 

* On-line I/O Device * 

Enter v i s i t r a t i o f o r device 3 : 150 

Enter s e r v i c e r a t e f o r device 3 ( t r a n s a c t i o n s / s e c . ) :30 

* On-line I/O Device * 

Enter v i s i t r a t i o f o r device 4 : 160 

Enter s e r v i c e r a t e f o r device 4 ( t r a n s a c t i o n s / s e c . ) :40 

* Paging Device * 



APPENDIX A. OPTIMAL USER'S GUIDE 63 

Is paging device shared? (0 = 'no', 1 = 'yes') 0 

Enter service irate for paging device (transactions/sec.) : 45 

* Memory * 

Enter maximum memory size possible (e.g.KB, page frames): 1500 

Enter maximum degree of multiprogramming supported: 12 

Enter main memory size (e.g.KB, page frames): 300 

Enter mean degree of multiprogramming: 10 



APPENDIX A. OPTIMAL USER'S GUIDE 64 

* L i f e t i m e Function * 

The l i f e t i m e f u n c t i o n i s input by a s s i g n i n g 

the maximum a b s c i s s a (programme s i z e ) , the 

i n t e r v a l on the h o r i z o n t a l a x i s between p o i n t s 

at which the ord i n a t e s of the l i f e t i m e curve 

are to be given ( s t e p ) , and the ordinates 

corresponding to these p o i n t s (mean time 

between page f a u l t s ) . 

Enter maximum a b s c i s s a (e.g.KB, page frames): 150 

Enter step s i z e f o r l i f e t i m e f u n c t i o n : 5 

For each of the f o l l o w i n g mean memory a l l o c a t i o n per job, 

enter mean time between page f a u l t s : 

0: 0 



APPENDIX A. OPTIMAL USER'S GUIDE 

5 : 0 . 0 0 0 2 

1 0 : 0 . 0 0 0 4 

1 5 : 0 . 0 0 0 7 

2 0 : 0 . 0 0 1 

2 5 : 0 . 0 0 1 4 

3 0 : 0 . 0 0 2 

3 5 : 0 . 0 0 2 7 3 

4 0 : 0 . 0 0 3 4 

4 5 : 0 . 0 0 4 

5 0 : 0 . 0 0 6 



APPENDIX A. OPTIMAL USER'S GUIDE 

55: 0.0077 

60: 0.009 

65: 0.0104 

70: 0.0114 

75: 0.0119 

80: 0.01225 

85: 0.0126 

90: 0.01275 

95: 0.01285 

100: 0.013 



APPENDIX A. OPTIMAL USER'S GUIDE 

105: 0.01325 

110: 0.01335 

115: 0.0136 

120: 0.01375 

125: 0.014 

130: 0.0142 

135: 0.01438 

140: 0.0145 

145: 0.0145 

150: 0.0145 



APPENDIX A. OPTIMAL USER'S GUIDE 68 

* Tuning * 

Enter number of devices on which tuning i s allowed: 2 

Enter t h e i r device numbers, 

each f o l l o w e d by a RETURN: 3 

4 

* Economic Parameters * 

Enter budget ( d o l l a r s ) : 30000 

Enter market value of device 1 ( d o l l a r s ) : 1000 

Enter no. of a l t e r n a t i v e s a v a i l a b l e f o r upgrading device 1: 1 



APPENDIX A. OPTIMAL USER'S GUIDE 69 

For a l t e r n a t i v e 1 f o r device 1, 

enter i t s c a p a b i l i t y ( t r a n s a c t i o n s / s e c ) : 2000000 

enter i t s p r i c e ( d o l l a r s ) : 4500 

Enter market value of device 2 ( d o l l a r s ) : 2500 

Enter no. of a l t e r n a t i v e s a v a i l a b l e f o r upgrading device 2: 0 

Enter market value of device 3 ( d o l l a r s ) : 2500 

Enter no. of a l t e r n a t i v e s a v a i l a b l e f o r upgrading device 3: 2 

For a l t e r n a t i v e 1 f o r device 3, 
enter i t s c a p a b i l i t y ( t r a n s a c t i o n s / s e c ) : 35 

enter i t s p r i c e ( d o l l a r s ) : 3000 

For a l t e r n a t i v e 2 f o r device 3, 



APPENDIX A. OPTIMAL USER'S GUIDE 70 

enter i t s c a p a b i l i t y ( t r a n s a c t i o n s / s e c ) : 40 

enter i t s p r i c e ( d o l l a r s ) : 4500 

Enter market value of device 4 ( d o l l a r s ) : 3000 

Enter no. of a l t e r n a t i v e s a v a i l a b l e f o r upgrading device 4: 2 

For a l t e r n a t i v e 1 f o r device 4, 

enter i t s c a p a b i l i t y ( t r a n s a c t i o n s / s e c . ) : 35 

enter i t s p r i c e ( d o l l a r s ) : 3500 

For a l t e r n a t i v e 2 f o r device 4, 

enter i t s c a p a b i l i t y ( t r a n s a c t i o n s / s e c ) : 50 

enter i t s p r i c e ( d o l l a r s ) : 5500 

Enter market value of device 5 ( d o l l a r s ) : 3000 



APPENDIX A. OPTIMAL USER'S GUIDE 71 

Enter no. of a l t e r n a t i v e s a v a i l a b l e f o r upgrading device 5: 1 

For a l t e r n a t i v e 1 f o r device 5, 

enter i t s c a p a b i l i t y ( t r a n s a c t i o n s / s e c . ) : 50 

enter i t s p r i c e ( d o l l a r s ) : 5000 

Enter market value of device 6 ( d o l l a r s ) : 500 

Enter no. of a l t e r n a t i v e s a v a i l a b l e f o r upgrading device 6: 1 

For a l t e r n a t i v e 1 f o r device 6, 
enter i t s c a p a b i l i t y (e.g.KB, page frames): 500 

enter i t s p r i c e ( d o l l a r s ) : 2000 



APPENDIX A. OPTIMAL USER'S GUIDE 

* Adjustments * 

Adjustments and corresponding adjustment codes: 

* 1 * number of customers 

* 2 * mean thinktime 

* 3 * number of devices 

* * 

* 4 * system i s / not paging 

* 5 * system i s / not memory-

* * c o n s t r a i n e d 

* 6 * i n s t r u c t i o n execution 

* * r a t e of CPU / s e r v i c e 

* * r a t e of a device 

* 7 * v i s i t r a t i o of device 

* 11 * max. degree of * 

* * multiprogramming * 

* 12 * cur r e n t main mem. s i z e * 

* 13 * mean degree of * 

* * multiprogramming * 

* 14 * budget * 

* 15 * market value of device * 

* * * 

* 16 * number of upgrade * 

* * a l t e r n a t i v e s f o r a device* 

* * * 

* 17 * l i f e t i m e f u n c t i o n * 

* 8 * paging device i s / not shared* 20 * no f u r t h e r adjustments * 



APPENDIX A. OPTIMAL USER'S GUIDE 

* 9 * no.of tuneable devices * * * 

* 10 * max. memory size * * * 

Enter adjustment code: 2 

Thinktime entered i s 40.000000 (sec.) 

Is entered information correct? (0 = 'no', 1 = 'yes') 0 

Enter thinktime ( s e c ) : 50 



APPENDIX A. OPTIMAL USER'S GUIDE 

Adjustments and corresponding adjustment codes: 

* 1 * number of customers 

* 2 * mean thinktime 

* 3 * number of devices 

* * 

* 4 * system i s / not paging 

* 5 * system i s / not memory-

* * c o n s t r a i n e d 

* 11 * max. degree of 

* * multiprogramming 

* 12 * cur r e n t main mem. s i z e * 

* 13 * mean degree of 

* * multiprogramming 

* 14 * budget 

* 15 * market value of device * 

* 6 * i n s t r u c t i o n execution * 16 * number of upgrade 

* r a t e of CPU / s e r v i c e 

* r a t e of a device 

* 7 * v i s i t r a t i o of device 

* a l t e r n a t i v e s f o r a device* 

* 17 * l i f e t i m e f u n c t i o n 

* 8 * paging device i s / not shared* 20 * no f u r t h e r adjustments * 

* 9 * no.of tuneable devices * * * 

* 10 * max. memory s i z e * * * 

******:}:>l:*>l tJ i<********************************************************* 

Enter adjustment code: 7 



APPENDIX A. OPTIMAL USER'S GUIDE 75 

Enter device number: 5 

V i s i t r a t i o f o r device 5 entered i s 0.000000 

Is entered i n f o r m a t i o n c o r r e c t ? (0 = 'no', 1 = 'yes') 0 

Enter v i s i t r a t i o f o r device 5 : 90 



APPENDIX A. OPTIMAL USER'S GUIDE 

Adjustments and corresponding adjustment codes: 

* 1 * number of customers 

* * 

* 2 * mean thinktime 

* 3 * number of devices 

* * 

* 4 * system i s / not paging 

* 5 * system i s / not memory-

* * c o n s t r a i n e d 

* * r a t e of CPU / s e r v i c e 

* r a t e of a device 

* 7 * v i s i t r a t i o of device 

11 * max. degree of 

* multiprogramming 

* 12 * current main mem. s i z e * 

* 13 * mean degree of 

* * multiprogramming 

* 14 * budget 

* 15 * market value of device * 

* 6 * i n s t r u c t i o n execution * 16 * number of upgrade 

* a l t e r n a t i v e s f o r a device* 

* 17 * l i f e t i m e f u n c t i o n 

* 8 * paging device i s / not shared* 20 * no f u r t h e r adjustments * 

* 9 * no.of tuneable devices * * * 

* 10 * max. memory s i z e * * * 

******************************************************************** 

Enter adjustment code: 16 



APPENDIX A. OPTIMAL USER'S GUIDE 

Enter device number: 2 

No. of a l t e r n a t i v e s a v a i l a b l e f o r upgrading device 2 entered i s 

Is entered i n f o r m a t i o n c o r r e c t ? (0 = 'no', 1 = 'yes') 0 

Enter no. of a l t e r n a t i v e s a v a i l a b l e f o r upgrading device 2: 2 

For a l t e r n a t i v e 1 f o r device 2, 

enter i t s c a p a b i l i t y ( t r a n s a c t i o n s / s e c ) : 25 

enter i t s p r i c e ( d o l l a r s ) : 3000 

For a l t e r n a t i v e 2 f o r device 2, 

enter i t s c a p a b i l i t y ( t r a n s a c t i o n s / s e c ) : 40 

enter i t s p r i c e ( d o l l a r s ) : 4500 



APPENDIX A. OPTIMAL USER'S GUIDE 

Adjustments and corresponding adjustment codes: 

*************************************** 

* 1 * number of customers 

* * 

* 2 * mean thinktime 

* 3 * number of devices 

* * 

* 4 * system i s / not paging 

* 5 * system i s / not memory-

* * c o n s t r a i n e d * * 

* 6 * i n s t r u c t i o n execution * 16 * number of upgrade 

* * r a t e of CPU / s e r v i c e 

* r a t e of a device 

* 7 * v i s i t r a t i o of device 

* 11 * max. degree of * 

* * multiprogramming * 

* 12 * current main mem. s i z e * 

* 13 * mean degree of * 

* * multiprogramming * 

* 14 * budget * 

* 15 * market value of device * 

* a l t e r n a t i v e s f o r a device* 

* 17 * l i f e t i m e f u n c t i o n 

* 8 * paging device i s / not shared* 20 * no f u r t h e r adjustments * 

* 9 * no.of tuneable devices * * * 

* 10 * max. memory s i z e * * * 

******************************************************************** 

Enter adjustment code: 16 



APPENDIX A. OPTIMAL USER'S GUIDE 79 

Enter device number: 5 

No. of alternatives available for upgrading device 5 entered i s 1 

For alternative 1 for device 5, 

capability entered i s 50.000000, (transactions/sec.) 

price entered i s 5000.000000 (dollars) 

Is entered information correct? (0 = 'no', 1 = 'yes') 0 

Enter no. of alternatives available for upgrading device 5: 1 

For alternative 1 for device 5, 

enter i t s capability (transactions/sec.): 50 

enter i t s price (dollars): 5500 



APPENDIX A. OPTIMAL USER'S GUIDE 

Adjustments and corresponding adjustment codes: 

* \L» sir vl. sir Jr si* vl* sir sir sir sir sir sir sir sj* *L. .A. st st st vt st* st st* si-" «±# st st SL* ^ ^ st st °t ^ ' •1 ' Jr- ^ st Jr Jr st Jr st st Jr Jr Jr Jr st six Jr st st Jr Jr sir sir Jr Jr st Jr Jr 

* 1 * number of customers 

* * 

* 2 * mean thinktime 

* 3 * number of devices 

* * 

* 4 * system i s / not paging 

* 5 * system i s / not memory-

* * constrained 

* 6 * instruction execution 

* * rate of CPU / service 

* * rate of a device 

* 7 * v i s i t ratio of device 

* 11 * max. degree of * 

* * multiprogramming * 

* 12 * current main mem. size * 

* 13 * mean degree of * 

* * multiprogramming * 

* 14 * budget * 

* 15 * market value of device * 

* * * 

* 16 * number of upgrade * 

* * alternatives for a device* 

* * * 

* 17 * lifetime function * 

* 8 * paging device i s / not shared* 20 * no further adjustments * 

* 9 * no.of tuneable devices * * * 

* 10 * max. memory size * * * 

************************************************ 

Enter adjustment code: 20 



APPENDIX A. OPTIMAL USER'S GUIDE 81 

* * * P r o c e s s i n g begins ... optimal s o l u t i o n i s ... 

* Recommendations * 

* Optimal system throughput (not f i n e - t u n e d ) : 0.166517 * 

* Optimal system throughput ( f i n e - t u n e d ) : 0.166536 * 

* * 

* Recommended system c o n f i g u r a t i o n : * 

* * 

* Number of added non-memory devices: 3 * 

* T h e i r device numbers: 5 * 

* 6 * 

* 7 * 

* * 



APPENDIX A. OPTIMAL USER'S GUIDE 82 

Paging device i s now device 8. 

* Dev * EqD * Se r v i c e Rate * V i s i t Ratio * Amount Spent * 

* 1 * 1 * 2000000.00 n/a 3500.00 * 

* 2 * 2 * 

* 3 * 3 * 

* 4 * 4 * 

* 5 * 3 * 

* 6 * 4 * 

* 7 * 3 * 

* 8 * 5 * 

40.00 

40.00 

50.00 

40.00 

50.00 

35.00 

50.00 

120 

57 

74 

57 

72 

50 

90 

2000.00 * 

2000.00 * 

2500.00 * 

4500.00 * 

5500.00 * 

3000.00 * 

2500.00 * 

* Recommended memory s i z e : 1300 * 4000.00 * 

* Recommended multiprogramming l e v e l : 9 * * 

* T o t a l budget r e q u i r e d : 

* Remaining budget: 

29500.00 * 

500.00 * 

******************************************* 



APPENDIX A. OPTIMAL USER'S GUIDE 83 

Upgrade completed. 


