
CHARACTERIZING USER WORKLOAD FOR CAPACITY 

PLANNING 

By 

JEE FUNG PANG 

B.Sc, University of British Columbia, 1982 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF 

THE REQUIREMENTS FOR THE DEGREE OF 

MASTER OF SCIENCE 

in 

THE FACULTY OF GRADUATE STUDIES 

(DEPARTMENT OF COMPUTER SCIENCE) 

We accept this thesis as conforming 

to the required standard 

THE UNIVERSITY OF BRITISH COLUMBIA 

October 1986 

© Jee Fung Pang, 1986 



I n p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f t h e 
r e q u i r e m e n t s f o r an advanced degree a t the U n i v e r s i t y 
o f B r i t i s h C o l u m b i a , I agree t h a t t h e L i b r a r y s h a l l make 
i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s t u d y . I f u r t h e r 
agree t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s 
f o r s c h o l a r l y purposes may be g r a n t e d by t h e head o f my 
department o r by h i s o r h e r r e p r e s e n t a t i v e s . I t i s 
u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s 
f o r f i n a n c i a l g a i n s h a l l n o t be a l l o w e d w i t h o u t my w r i t t e n 
p e r m i s s i o n . 

Department o f .1* <JL^ 

The U n i v e r s i t y o f B r i t i s h Columbia 
1956 Main Mall 
Vancouver, Canada 
V6T 1Y3 

DE-6 (3/81) 



ABSTRACT 

With the widespread use of computers in today's industry, planning system 

configurations in computer sites plays an increasingly important role. The process 

of planning system configurations or determining hardware requirements for new 

or existing systems is commonly known as capacity planning among performance 

researchers and analysts. 

This thesis presents a refined capacity planning process for centralized 

computing system, with special attention to characterizing user workload for 

capacity planning. The objective is to make the entire process simpler for the 

computer user community, while relieving the capacity planner or performance 

analyst from having to rely on guesswork for the user workload performance 

factors. 

The process is divided into four phases; namely, data collection, data 

reduction, workload/user classification and, modeling and performance analysis. 

The second and third phases are collectively known as user workload 

characterization. 

The main objective of our workload characterization is to avoid any guess 

work on the performance factors that cannot be easily measured. The results of 

the workload characterization process are specifically meant to be used in 

analytic and simulation modeling. Three software tools required for the data 

reduction, workload/user classification and performance analysis phases have 

been developed and are discussed in the thesis. 

ii 



C O N T E N T S 

1. Introduction .'. 1 

2. The Capacity Planning Process 3 

2.1 Background 3 

2.2 The Capacity Planning Phases 6 

2.2.1 Data Collection 8 

2.2.2 Data Reduction 9 

2.2.3 Workload/User Classification 10 

2.2.4 Modeling and Performance Analysis 10 

3. Workload Characterization 12 

3.1 Requirements 12 

3.2 Workload Representation 14 

3.2.1 Measured Statistics 14 

3.2.2 Configuration Data 15 

3.2.3 Workload Data 16 

3.3 Transaction Classes 18 

4. Resource Demand Representation 20 

4.1 Event Trace 20 

4.2 Data Reduction 22 

4.3 Workload Classification 24 

iii 



5. Memory Representation 25 

5.1 Data Collection 25 

5.2 Curve Fitting 26 

5.3 Data Reduction 30 

5.4 User Classification 31 

6. Modeling and Performance Analysis 32 

6.1 Modeling Approach 32 

6.1.1 Simulation Modeling 33 

6.1.2 Analytic Modeling 33 

6.2 Validation 34 

6.2.1 Error Analysis 35 

6.3 Projection 39 

6.3.1 Error Analysis 39 

7. Future Enhancements 44 

7.1 Virtual Page Faults 44 

7.2 Transaction Subclasses 45 

7.3 Characterizating Semaphores 45 

7.4 Multiple processors 45 

7.5 Networks and Distributed Systems 46 

7.6 Clustering Techniques 46 

References 47 

iv 



Appendix A 

Appendix B 

Appendix C 



I N T R O D U C T I O N 

With the widespread use of computers in today's industry, planning system 

configurations in computer customer sites plays an increasingly important role. 

The process of planning system configurations or determining hardware 

requirements for new or existing systems is commonly known as capacity planning 

among performance researchers and analysts. 

This thesis presents a refined capacity planning process for centralized 

computer systems, with special attention to characterizing user workload for 

capacity planning. In the past, researchers and analysts have devoted much time 

and effort in refining performance projection techniques. Little effort has been 

spent in finding an accurate and systematic way of representing the workload 

used by these projection techniques. To date, the most common ways of 

obtaining user workload are through the use of sampling tools and benchmarks. 

These tools usually do not provide enough information to represent user workload 

and often introduce unnecessary and non-negligible overhead. 

The main objective of our workload characterization is to avoid any guess 

work on the performance factors that cannot be easily measured. The proposed 

alternative to collecting user workload is through the use of a system event-

- 1 -



driven software monitor. The advantages of such a monitor are that it is 

relatively easy to develop, it introduces only about 2%-3% overhead and it can 

provide almost any data desired. The tools required to process the event data 

will also be presented here. Each of these tools corresponds to a phase of our 

refined capacity planning process. 

The results of the workload characterization process are specifically meant to 

be used in analytic and simulation modeling. A n analytic modeling tool based on 

the Linearizer Approximation Method[4] will be used as an illustration on how 

the characterized workload can be used for performance validations and 

projections. 

- 2 -



C H A P T E R 2 
T H E C A P A C I T Y P L A N N I N G P R O C E S S 

In general, capacity planning serves to answer the typical "what if" type 

questions regarding computer system performance. The most common of such 

questions are: 

(1) What is the system bottleneck? In other words, which device(s) is 

limiting system performance. 

(2) When will the system saturate? In other words, based on projected rate 

of growth of the workload, when will the system reach its capacity? 

(3) What is an appropriate initial system configuration for a new installation 

site? 

(4) What is the impact of changing user workload? Examples are by 

increased number of users or different kinds of user workload. 

(5) How can one tune an existing system to obtain better performance? 

(6) How much workload can a system support without significant degradation 

in performance? 

Note that the answers to all of the above questions require system 

performance projection or prediction. In fact, capacity planning consists of two 

stages; namely, user workload characterization and performance projection. In the 

first stage the user workload is quantified and used as input to the second stage. 

The results of the projections help the analyst decide on the best solution for his 

capacity planning task. 

2.1 B A C K G R O U N D 

- 3 -



Over the past years, several approaches for performance projection have 

been used for capacity planning. They range from guessing to using real systems. 

Brief descriptions of these approaches are given below: 

(1) Guessing. 

Here, the performance analysts guess the performance of a projected 

system based on past experience. Although the very experienced analyst 

might be able to come up with a good estimate, this approach is very 

often inaccurate and it is difficult to justify the results. 

(2) Linear Projection. 

The performance is projected linearly based on the performance factors or 

workload parameters obtained from a single user environment. Linear 

projection typically over-estimates projected performance because it does 

not take resource contention into consideration. Today, it is still used in 

certain pre-sales configuration planning where performance under­

estimation is necessary. In general, it is inaccurate and the scope covered 

is very limited. Specifically, this approach cannot be used to project 

response times, or when response times are used as part of performance 

guidelines. 

(3) Analytic Modeling. 

In this approach, mathematical models and queuing theory or operational 

analysis [8] are used to project system performance. Compared to linear 

projection, more workload factors are taken into consideration. Also, the 

workload parameters are typically obtained from a real multi-user system, 

rather than a synthetic single user environment. A lot of research has 

been done in this area with promising results. The models developed can 

be specific to a particular system in which case the results are usually 

quite accurate, or can be general for a wide range of systems. In general, 

- 4 -



the error given by analytic models is seldom worse than 2 0 % (e.g. BESTl, 

CADS and MAP). 

(4) Simulation Modeling. 

Here, the system is simulated using software, typically with the use of a 

simulation language. This approach requires more information on user 

workload than that required by analytic models. As a result, this method 

is comparatively more accurate. The error introduced is usually less than 

1 0 % . Simulation models usually require much longer execution time than 

analytic models to produce a set of results. 

(5) Remote Terminal Emulation (RTE). 

In a RTE environment, a simulator machine emulates actual user 

workload by communicating with the simulated machine via terminal 

lines. The emulated workload is typically captured from a real system and 

stored in a disk file in the simulator machine. The error introduced by 

this method rarely exceeds 5 % . The main disadvantage, however, are 

that it requires the actual hardware, human resources to set up the 

hardware and a long run time. Also, the simulator machine used should 

be at least 1 . 5 times faster than the system under study; otherwise, the 

simulator may become a bottleneck during the emulation. 

(6) Real System. 

Although this is the most accurate approach, it is hardly ever used for 

performance projection. Here, the real system is actually set up with the 

actual users when the system is calibrated. Because of the difficulties in 

controlling the workload and the costs of changing the system, this 

approach is very often considered not feasible. 

Our objective in capacity planning is to use an approach that requires 

reasonable run time and hardware, and produces results of acceptable accuracy. 

- 5 -



From the descriptions above, the best approaches are the use of modeling or 

remote terminal emulation. 

2.2 T H E C A P A C I T Y P L A N N I N G P H A S E S 

The approaches towards capacity planning that are used most commonly by 

capacity planners and performance analysts today are analytic and simulation 

modeling. To date, much research has been dedicated towards refining these 

techniques to produce higher degrees of accuracy. The advantages of using 

modeling are that the hardware requirements and the response time in obtaining 

the results are comparatively less than those for remote terminal emulation. 

Specifically, modeling does not require any dedicated hardware to be set up. The 

accuracy of the results provided by modeling techniques is within acceptable 

range. 

The present capacity planning process is divided into three phases; namely, 

data collection, workload characterization and performance modeling. In the data 

collection phase, special tools are used to collect system performance statistics. 

The measurement period varies from two hours to a few days depending on the 

objective of the study. The workload characterization phase involves 

manipulation of the measured data to a representation form usable by the 

modeling tools. This phase typically takes more than one hour (depending on the 

amount of collected data). The duration of the modeling phase depends on the 

modeling technique used. As mentioned earlier, analytic modeling requires only a 

few seconds of execution time, while simulation time usually takes more than one 

hour (depending on the length of simulated time specified). 

Most capacity planning questions require several iterations of the process 

before answers can be provided. Specifically, either the workload characterization 

- 6 -



or the performance projection process may have to be repeated several times. For 

example, if jobs are not grouped properly into job classes, the validation results 

can be inaccurate. In this case, the analyst has to try different combinations of 

grouping until acceptable results are obtained. As another example, to project the 

maximum workload supported by a system, the analyst needs to increase the 

workload gradually for each projection until the projected results show system 

saturation. 

In our refined capacity planning process we elect to use both analytic and 

simulation modeling. As a result, our workload representation must fulfill both of 

their requirements, as well as the general requirements of workload 

characterization. Most important of all, the workload must be completely 

characterized and represented based on measured data so that no guess work on 

any part of the workload is necessary. Details of the requirements will be given in 

subsequent chapters. 

The refined capacity planning process is divided into four phases. This 

process is faster when compared to the traditional capacity planning because the 

time required for any repetitions required in the process is reduced. The phases 

are data collection, data reduction, user workload classification and performance 

analysis. The purpose of dividing workload characterization into data reduction 

and workload classification is that classifying reduced data merely requires several 

seconds of CPU time, while analyzing raw measured data can take over one hour. 

The choice of using either analytic modeling or simulation modeling is left to the 

analyst. A guideline would be to use analytic modeling to narrow to a target 

configuration, (for example, finding the amount of memory required for a 

targeted response time), and then use simulation modeling to obtain more 

accurate statistics. This is because the response time of analytic modeling tools is 

typically in a matter of seconds, while the response time of simulation is typically 

hours. 

- 7 -



Data are pipelined from each phase to the next buffered by disk files. An 

illustration of the data flow is given below: 

Event Data ==condenser==> Reduced Data —=user_class==> Model Data 

where the tools that manipulate the respective data are embedded in the arrows 

(in italics). The event data is collected and dumped by the system event monitor, 

typically onto a tape. Condenser processes and reduces the raw event data into 

reduced data. Userjclass manipulates the reduced data to produce model data 

useful for modeling tools. The modeling tools use the model data to do 

performance validations and predictions. 

2.2.1 D A T A C O L L E C T I O N 

During this phase, a system event-driven software monitor is used to record 

traces of selected events whenever they occur. These traces, known as event data 

are usually dumped onto a tape because its size is normally very large. Prior to 

data collection, software probes must have been placed at pre-selected locations 

in the system. Each event has two probes to respectively indicate the start and 

end of the event. Each event record includes the CPU clock and the elapsed time 

clock so that statistics on the event can be calculated offline during the next 

phase. To minimize the monitor's overhead, all the information associated with 

an event record must be readily available in the system. 

Note that this technique of data collection is far more accurate and 

introduces less system overhead than other measurement tools such as sampling 

tools and benchmarks. Sampling tools often do not provide enough information 

required by modeling techniques. Examples are CPU burst time and page fault 

service time. This is because such tools merely examine existing system meters 

and counters at the end of each sampling period. In order to obtain more detailed 

information, they have to perform computations during the sampling period; 

- 8 -



thus, introducing extra overhead. Most benchmarks merely consist of command 

script files. During the benchmark runs, extra overhead results from reading and 

timing the scripts (e.g. using the UNIX's time command). In general, 

benchmarks are only useful for single-user calibration. They cannot be used for 

multi-user environment, nor for I/O bound environment. 

There are also hardware measurement tools that can be used for data 

collection (see [3] for details). The most common of them are hardware monitors. 

Although they are more accurate and efficient than software monitors, they lack 

flexibility. Also, the placement of hardware probes is restricted to hardware level 

(i.e. difficult to interact with the operating system to obtain all the required user 

statistics). 

2.2.2 DATA REDUCTION 
Event data recorded by the monitor is typically very large. Each analysis 

through the raw event data typically takes one or more hours. The reason for this 

is due to the slow speed of tape reads (or even disk reads). As mentioned earlier, 

performance analysts often need to go through the data several times for 

analyses. It is, therefore, desirable that the data is condensed so that each 

analysis can be done in a few minutes. A tool known as condenser is introduced 

in our capacity planning process to perform the task of data reduction; the 

resulting data is known as the reduced data. 

The data reduction process involves computing and aggregating all the 

statistics associated with all the monitored events. Details of the data reduction 

phase will be given in the subsequent chapters. The resulting reduced data is 

dumped into a binary file to be used for workload classification. An ASCII 

readable form of the reduced file is also printed for the analyst's convenience. 

Note that all the aggregate statistics given by condenser are on a per user basis. 

- 9 -



Appendix A gives a complete description of condenser. 

2.2.3 W O R K L O A D / U S E R C L A S S I F I C A T I O N 

The purpose of this phase is to provide workload data that fulfills the input 

requirements of both the analytic and simulation modeling tools. A tool known 

as user_class (user classification) takes the reduced data from condenser and 

groups the workload of users or jobs into classes. The objective here is to group 

users of the same workload characteristics into the same class. A common 

example is to group users running the same application program into the same 

class. The performance analysts are given the option of classification by selecting 

specific users (identified by their user numbers) or letting user_class classify the 

users workloads according to a prespecified formula. 

Each run through the reduced data typically takes several seconds, 

depending on the number of users and the effective speed of the input/output 

operations. The model data produced by userjclass contains representation of the 

user workload derived from the measured data. A tabular readable form of the 

model data is also given by userjclass for the analyst's convenience. 

Appendix B contains a complete description of user_class. 

2.2.4 M O D E L I N G A N D P E R F O R M A N C E A N A L Y S I S 

During this phase, the model input data from the user classification phase is 

used by the analysis tools for validation and projection. The input data is 

divided into two categories, namely, configuration data and workload data. The 

configuration data consists of information on the measured and projected system 

configurations, while the workload data is a representation of the user workload. 

- 10 -



During the validation process, the analyst merely sets the configuration data 

for both the measured and projected systems to be identical. The results given 

by the modeling tools should be reasonably close to those given by userjclass (i.e. 

the measured results) before the validation process is considered successful. 

Although the validation process may not be necessary for a well-known and 

proven model of a particular system, it is often carried out to ensure that the 

classification of the users has been done properly. 

In the projection process, the configuration data for the projected system is 

set accordingly. The results given by the analysis tools is then analyzed and 

compared to the capacity planning objective. If the objective is not met, the 

model data is modified and the projection process is repeated. 

Note that during either the validation process or the projection process, the 

workload data need not be modified nor adjusted. The values of the workload 

parameters required by the modeling tools are obtained from the measured data. 

As a result, the analyst need not do any guess work or use published results of 

other installations as part of workload data. 

In general, the choice of the modeling approach is left to the capacity 

planner. Depending on the objective and scope of his analysis, he can use 

existing modeling tools (simulation or analytic tools, or both), or he can develop 

his own tools based on existing algorithms/methodologies, or he can implement a 

new model entirely from scratch. As a simple example, an analytic modeling tool 

known as qnets, based on the linearizer algorithm, is described in chapter 5 . 

- 11 -



C H A P T E R 3 
W O R K L O A D C H A R A C T E R I Z A T I O N 

The phases of data reduction and workload classification in our capacity 

planning process is collectively called workload characterization. In general, 

workload characterization is the quantitative representation of the hardware and 

software resources utilized by users in a computer system. This chapter discusses 

the requirements of workload representation and how they can be fulfilled using 

data reduction and workload classification. 

3.1 REQUIREMENTS 

For our capacity planning process, the requirements of workload 

characterization will be geared towards the requirements of both analytic and 

simulation modeling. These requirements are: 

(1) Elapsed Time Independence. 

This means that the workload representation should remain relatively 

invariant regardless of the measurement period, provided that the system 

is in steady state and the measuring period is not too short (e.g. more 

than 1 hour). Elapsed time independence can be achieved by representing 

workload on a per transaction per user basis. For example, the average 

CPU demand per transaction by a single user remains constant regardless 

of the duration of the measurement period. This assumes that the system 

is in, or near steady state. 

(2) Representativeness of All Resources. 

The resources used in the system must be properly and accurately 

represented. Note that this requires accurate measured data on the 

resources to be represented. Data on the resources used can be measured 

- 12 -



using an event-driven monitor. Software probes are inserted into properly 

pre-selected areas. Workload data can then be derived from statistical 

information measured by these probes. The representativeness of the 

workload data can be verified from the results of the modeling tools. 

(3) Independence on the Number of Users. 

In this case, the workload characteristics of a single user should not vary 

regardless of other users in the measured system. By representing 

workload on a single user basis, the dependence on the number of users is 

removed. This also assumes that the workload representation does not 

contain statistics due to contention. 

(4) Linearly Dependence on Hardware Speeds. 

In other words, it should be possible to linearly extrapolate the workload 

data collected on one system configuration to that of another 

configuration based on the relative speeds of hardware (see [3] for details). 

As long as the hardware speeds are provided to the modeling tools, the 

extrapolation is simple and can be done by the modeling tools. For 

example, if the CPU service time for a measured machine is n 

milliseconds, it will be n/2 on a machine that is twice as fast. 

(5) Flexibility. 

The workload representation should allow for easy modification to reflect 

variations in the real system. For our purpose, we will restrict the 

flexibility. Our workload representation will be divided into two parts. 

The first part can easily be modified based on changes in the system 

configuration. The second part is the representation of the invariant user 

workloads. 

(6) Compactness. 

The degree of detail that a workload is represented. A more compact 

- 13 -



model is usually less detailed and less representative. In general, 

compactness is dictated by the availability of information from the 

measured data. Software probes are placed to monitor all the resources 

utilized. Because each event is monitored, it is easy to obtain detailed 

information on the workload data. Our objective is to collect and 

represent workload to fulfill the requirements of modeling tools. 

3.2 W O R K L O A D REPRESENTATION 

The data produced by the first three phases of our capacity planning 

process, namely, data collection, data reduction and workload classification, 

consist of three categories. They are measured statistics, configuration data and 

workload data. However, only condenser and user_class provide the user with a 

readable form of these data. The configuration data and workload data is 

collectively known as model data. 

3.2.1 M E A S U R E D STATISTICS 

The measured statistics serve as a calibration of the measured systems. In 

other words, they help the analyst assess the system performance. They are 

dependent on system configuration and workload. The analyst can also use them 

directly to validate modeling tools by comparing the measured statistics with the 

output from the modeling tools. 

The measured statistics are given in two forms: system wide, and per 

user/class per transaction type basis. Explanation for transaction type will be 

given in section 3.3. The system wide or global statistics are as follows: 

(1) System throughput 

This is equivalent to the system arrival rate for a system in steady state. 

- 14 -



It is the rate at which jobs or transactions are being serviced at the 

system. 

(2) Device utilizations 

The percentage of time each device is busy during the measurement 

period. 

(3) Page fault rate 

The rate at which page faults occur in the system. 

The second form of statistics which are on a per user/class per transaction 

basis are as follows: 

(1) Response times 

On the average, the amount of real time it takes to complete a 

transaction. 

(2) Throughputs 

The rate at which transactions are being serviced at each service center. 

For terminals (which is essentially a delay service center), this is the rate 

at which transactions are being generated. 

3.2.2 CONFIGURATION D A T A 

The configuration data is a representation of the system configuration. It is 

divided into two parts, namely the measured system configuration data and the 

projected system configuration data. The former set of data is for the system 

where data measurement was previously done. The latter set is for the system 

whose performance we wish to project. 

The components of each set of configuration data are: 

- 15 -



(1) C P U type 

The name of the processor or alternatively, the processor speed. 

(2) Memory size 

The size of the memory in the system. 

(3) Disks 

The number of disk controllers, and the number of disks associated with 

each controller. 

(4) User classes 

The number of job classes, and the number of users in each class. 

3.2.3 W O R K L O A D D A T A 

The workload data is the actual representation of the user workload in the 

measured system. It is also made up of two parts. The first part represents the 

resource demands of the users or job classes. The second part describes the 

behaviour of the service centers (except the CPU processor). 

The demand on a resource by a user or a job class is represented by the 

average resource service time, and the rate of demand. Note that the 

representation is on a per user basis (actually on a per transaction type basis as 

well). The resource demands represented are: 

(1) C P U demand 

The average CPU burst time and the number of CPU bursts per 

transaction. 

(2) I/O demand 

The average I/O service time and the number of I/Os per transaction. 

(3) Page fault C P U demand 

This is for CPU used to service page faults. The representation is the 

- 16 -



average page fault CPU burst time and the number of page fault CPU 

bursts per transaction. 

(4) Think time 

The average interval time at which jobs are generated at the terminal. 

This can also be viewed as the average time a user spend "thinking" 

before he generates a transaction. 

The resource behaviour is also represented by the resource service time and 

the rate the resource is used. However, the representation is on a per center per 

transaction basis. 

(1) True disk I/O 

A true disk I/O operation is any I/O that is not due to page fault. The 

representation is the average I/O service time and the rate of I/O 

requests per disk per transaction. 

(2) Page fault disk I/O 

A page fault disk I/O operation is any I/O that is caused by a page fault. 

The representation is the average page fault I/O service time and the rate 

of page fault I/O per disk per transaction. 

- 17 



3.3 T R A N S A C T I O N C L A S S E S 

In the industrial world, computer users' perception of response time is 

sometimes different from that reported by performance analysts and capacity 

planners. As an illustration, consider an environment where there are terminal 

users running simple commands and large compilations simultaneously. For the 

analysts, the response time is often expressed in terms of the average response 

times of the commands and the large compilations. It may be difficult to assess 

the system performance based on the average response time alone. Also, from 

the performance point of view, the users are usually less concerned with the 

response times of large compilations, and are more interested in the response 

times of these simple commands. 

The inadequacy of average response times was addressed in E. Lazowska's 

thesis [10]. For our purpose, we will use the following simple illustration. An 

average response time of 10 seconds, for example, could mean that the simple 

commands take an average of 10 seconds to complete when there are few large 

compilations. This would indicate that the system is performing poorly. On the 

other hand, this response time could also indicate excellent system performance if 

there are many large compilations. In this case, the response time for the simple 

commands would be very small. 

As a solution to the above problem, it is necessary to classify user 

transactions into different classes based on their resource demands. This should 

not be confused with the user workload classification mentioned in the capacity 

planning process. Transaction classification is essentially a subclassification of the 

user workload. At the moment, the capacity planning tools subclassify 

transactions into three types, namely, micro transaction, normal transaction and 

large transaction. Details of these transaction types are given below, assuming a 

1MIP machine. 

- 18 -



A micro transaction is any transaction that utilizes less than 10 milliseconds 

of pure CPU usage. Examples are keystrokes commands of visual editors (e.g. 

EMACS, vi), and trivial UNIX commands such as date and echo. 

A normal transaction is any other transaction that utilizes less than 100 

milliseconds of pure CPU time. Most commands and small programs in any 

operating system fall into this type. Typical examples are UNIX commands Is 

and small compilations. 

A large transaction is any transaction that uses more that 100 milliseconds 

of CPU time. Most commercial packages, large compilations and scientific 

applications constitute large transactions. 

- 19 -



C H A P T E R 4 

R E S O U R C E D E M A N D R E P R E S E N T A T I O N 

As described in the last chapter, the resources used in a system will be 

represented by the service times and the frequency of use. This representation is 

used most commonly by performance analyst. The only resource that cannot be 

represented using this representation is the system memory. Description of 

memory representation will be deferred to the next chapter. This chapter 

describes how resource utilization data are manipulated and represented during 

the data reduction and workload classification phase. 

4.1 E V E N T T R A C E 

In order to produce meaningful data to the condenser, the software monitor 

must record specific information. This information includes: 

(1) Event Group 

This is used to distinguish the system events. Each event group has its 

own characteristics, usually very distinct from other groups. Examples of 

event groups are transactions, page faults and I/O events. 

(2) Event Type 

For the purpose of condenser, this is primarily used to define the 

occurrence and duration of any event group. The two possible event types 

are start event and end event. The former type denotes the actual start of 

an event group, while the latter denotes the end of an event group. Note 

that, in general, software monitor typically have more than two event 

types for various uses. 

(3) Real Clock 

The system real time clock that gives the elapsed time. 

- 20 -



(4) C P U Clock 

The CPU processor clock that gives the total processor time used. Most 

systems maintain a CPU clock for each user. 

(5) Auxiliary Information 

This varies depending on the event group. For example, for an I/O event, 

the auxiliary information should include a drive number that identifies the 

disk where the I/O is taking place. 

In order to record the occurrence of events, software probes are placed in 

appropriate places in the system software. At the occurrence of each event, the 

probe will result in a subroutine call to record all the information related to the 

probe, i.e. the event group, the event type, the system real time clock, and the 

CPU clock for the user, and some auxiliary information. More detailed 

information on the format and contents of an event record are given in Appendix 

For an easier understanding of the process, an example of a typical trace will 

be used. Consider the following trace for a particular user: 

A. 

Event Event 
Group Type 

Real 
Clock 
(ms) 

CPU 
Clock 
(ms) 

Aux 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

2179 
2182 
2185 
2190 
2190 
2193 
2198 
2220 
2225 
2300 
6015 
6050 
6055 
6207 

30 
32 
35 
38 
38 
41 
46 
60 
63 
85 
85 
100 
103 
241 

Diskl 
Diskl 
Diskl 
Diskl 

Disk2 
Disk2 

Trans start 
I/O start Disk2 

Disk2 

where both the clock values are given in units of milliseconds. 

- 21 -



4.2 D A T A R E D U C T I O N 

The primary function of condenser is to gather and accumulate statistics in 

between start and end events of all the desired event groups. Details of the 

required statistics was given earlier in Section 3.2. 

The basic operation used to calculate most statistics is to simply compute 

the difference in the clock values given in a corresponding start and end event of 

a transaction group. From the trace given above, for example, the first page fault 

event group (given by event 2 and 7) uses 14 milliseconds of CPU and takes 16 

milliseconds of real time. Note that the 14 milliseconds of CPU time also include 

6 milliseconds used to perform two page fault disk operations. 

A revised approach is used to calculate the statistics in fragments and 

attribute them to the appropriate event groups. For simplicity, we will only 

consider the CPU statistic. First, we define a cpu slice to be the CPU time used 

between any two events. In the above example, the page fault event has 5 CPU 

slices. Two slices were used to perform the corresponding page fault disk 

operations. As a result, the page fault event uses 8 milliseconds of CPU time to 

perform the page fault and 6 milliseconds to perform the associated disk 

operations. The elapsed time (or response time) can also be calculated in a 

similar manner. 

Note that we are also interested other statistics such as the number of other 

events within a particular event group. Examples are the number of I/Os for a 

page fault and the number of page faults per transaction. These statistics can 

easily be calculated by counting the occurrences of those events within an event 

group. 

Aggregate statistics are then calculated by adding and averaging all the 

above statistics on a per transaction basis. Some of the average statistics of the 

two transactions given in the above table is listed below: 

- 22 -



Number of CPU bursts — 4 

Average CPU burst Time = 51.25 ms 

Number of CPU bursts per transaction = 2 

Number of page faults = 1 

Number of I/Os per transaction = 2 

Average page fault burst time = 3.0 ms 

Number of I/Os per page fault = 2 

Average disk service time per disk = 3.0 ms 

Total visits to disks = 2 

Average paging disk sevice time per disk = 2.75 ms 

Total visits to paging disk = 2 

Average Think time = 3715 ms 

Average Response Time = 0.1565 seconds 

Throughput = 0.4965 transactions per second 

CPU utilization = total CPU used / elapsed time = 5.238% 

A more detailed example of the output statistics given by condenser is given 

in Appendix A. 

NOTE: A CPU burst is defined as the CPU time used between true I/O events 

(i.e. excluding I/Os due to page faults), or between the start of a transaction and 

the start of a true I/O event, or between the end of a true I/O and the end of a 

transaction event. As an example, a transaction with two true I/Os will have 

three CPU bursts. In general, a transaction with n true I/Os will have n+1 CPU 

bursts. 

Similarly, a page fault CPU burst is defined as the CPU time used between 

page fault I/Os, or between the start of a page fault and the start of a page fault 

- 23 -



I/O event, or the end of a page fault I/O event and the end of a page fault. 

Hence, a page fault with n page fault 1/Os will have n+1 page fault CPU bursts. 

4.3 WORKLOAD CLASSIFICATION 

To perform workload classification, user_class has to group the statistics of 

all the users in a particular class. The process of grouping the statistics is very 

simple and straightforward. It involves adding the corresponding statistics for all 

the users and recalculate the average statistics. 

As an example, let us assume that from the reduced data provided by 

condenser, there are two users in a class, and there is only one class. For 

simplicity, let us consider only the CPU statistics. User A requires an average of 

8.2 milliseconds of CPU burst time, and has a total of 200 CPU bursts and 20 

transactions. User B requires an average of 9.0 milliseconds of CPU burst time, 

and has a total of 170 CPU bursts and 21 transactions. By grouping them into a 

class, they used up a total of (8.2*200) + (9.0*170) or 3170 milliseconds of CPU. 

Also, they have a total of 370 CPU bursts and 41 transactions. The resulting 

average statistics will be an average of 8.57 CPU burst time, and 9.02 CPU 

bursts per transaction. 

All other statistics, except memory statistics, can be obtained in a similar 

manner. The average statistics calculated using this grouping and averaging 

process are used directly to represent the workload of all the user in a class, as 

described in Chapter 3. Detailed output and model data provided by user_class 

are given in Appendix B. 

- 24 -



C H A P T E R 5 

M E M O R Y R E P R E S E N T A T I O N 

The representation of memory demand by users have always been a problem 

mainly because very few tools can accurately and efficiently collect data on 

memory demand. In our capacity planning process, we elect to use Chamberlain's 

lifetime equation [1] that has long been proven to approximate the lifetime 

behavior. This equation is given below: 

where L is the lifetime, m is the active memory held by a user, and b, c are 

constants of the equation. The lifetime is defined as the mean CPU time used 

between successive page faults in a user transaction. 

5.1 D A T A C O L L E C T I O N 

The system monitor should provide the lifetime values and the active 

memory m,- for each user at every page fault. For systems where the active 

memory held by each user is not easily obtainable (i.e. without causing 

unnecessary overhead), one can set m,- to be the average available memory. This 

can be done by dividing the total memory by the number of active users during a 

particular page faults. Note that this requires the monitor to register the number 

of active users at every page fault event and it usually under-estimates m. At 

the moment, condenser indirectly calculates the m values based on information 

given in the event data. Details on the computation will be given later. 

- 25 -



5.2 C U R V E F I T T I N G 

For each user, given the values of Li and m,- (where i ranges from one to the 

number of page faults), our objective is to obtain the values of b and c that fit 

the lifetime function as closely as possible. Because the sample size or the number 

of page faults during a data collection period is typically very large, an 

approximation technique that uses iterative approximation is needed. This means 

that we cannot use the standard Least Square Approximation because the 

algorithm requires all the sample data to be available first. After some research, 

the best possible solution is to apply the absolute deviation technique. A few 

simple experiments showed that the difference in the results produced by the 

absolute deviation is within 2% when compared to those by of the least square 

approximation method. 

The second problem is that the lifetime function is not a linear equation, 

making any method to solve a matrix of equations (required for approximation 

techniques) non-trivial. However, it is possible to translate the lifetime function 

to a linear equation and the b, c values obtained using substitution. 

The entire derivation process is given below, using the absolute deviation 

approximation: 

Given a set of data L,- and m,- where »=l,...,n and n is the total number of page 

faults, we want to minimize the absolute error of the following: 

2 

s 
«=1 

26 

1+ 
ml 

Using the substitutions: 

- 26 -



-Li 
« , - = — f , v{ = L{, C=c\ B=2b, 

m-

the above lifetime equation becomes 

Vf-Cuf ' B, or vt = Cut+B 

Since ut- and u,- can be directly obtained from the measured values of L,- and m,-, 

our objective now is to minimize the error: 

2 
E • = i v{ - (Cui+B) 

For the absolute deviation approximation, the conditions below must hold: 

d  n  

0 = —V] vrCut-B 2 = 2Yl(vrCurB)(-ut) » = i 
and 

d n 

0 = — y ; 
dBh 

vrCurB 2 = 2j](vrCurB)(-l) 
i - l 

These simplify to the following normal equations: 

<?E«2 + 5 E « , = E ««•"• 

i = l t = l t = l 
« = i t = i 

-(1) 

"(2) 

From equation (2), 

B » = i « = i 
n (3) 

Substituting (3) into (1), we have: 

1=1 

E « , - C E « , -

t = l i=l 
n 

or, 

n n 
E » • = E  ui vi t = i t = i 

- 27 -



t'=i 1=1 1=1 

n E « , -
«=i E  ui vi 

i=l 

or, 

t'=l 

( n E « . -
L i=i , 

n n n 
= « E  ui vi ~ E U « E u i 

i=l i=i ,=i 

This simplifies to a solution for C: 

C = 

n n n 
n E  u* vi - E U . E  vi 

t=i «=i i=i 

«=i i i=i J 

-(4) 

Substituting C into the equation (2), we have: 

« E  ui vi ~ E U » E  vi 
i=l i=l t=l 

n (- n \ 2 

» X X - E « . -
«=1 I i=l J 

1=1 1=1 

or, 

n E U . E 
t=i t=i 

giving, 

( n \ * n E « . + 
I. i=l J i=l 

i=l I i=i j 
= « E " i E v . -

i=i i=i 

( n \ L n 

I. ,=i j ,=i 

5 = 

n n n n 

i=i i=i i=i t=i 

t=i 11=1 ) 

"(5) 

n n n 
Since the cumulative sums u,-, u,-, u,v,-, and u2 in equations (4) and (5) 

t=i t=i i'=i i=i 

can easily be calculated iteratively, with n=l, 2, 3, none of the previous values 

of u,- and v,- (i.e. the samples) need to be stored. Furthermore, at each iteration, 

only the new values of the cumulative sums in the previous iteration are needed. 

At the end of the iterations (i.e. n = sample size), B and C can be computed 

- 28 -



using equations (4) and (5). 

- 29 -



5.3 D A T A R E D U C T I O N 

The tool condenser simply uses the results presented in the previous section. 

At every page fault, the values of u,-, uj, u,u,-, and v,- are computed from the 

measured values of Lt- and m,-, using the substitution: 

« . = — 7 »  vi=Li 

The computed values are added respectively to obtain their cumulative sums. 

When condenser has gone through all the event data, we will have the values of 
n n n n 

u,-, v?i, u.Vi, and v,-. We can now compute the values of B and C using 
t=i »=i i=i i=i 

the equations (4) and (5) given in the previous section. Finally, the constants b 
and c of the lifetime function can easily be computed using the following 

substitutions: 

C = SC, b=^-
2 

The values of L and m are not directly available from the event data. The 

lifetime between two page faults, i.e. L,-, is calculated by adding all the true CPU 

burst times that occur during that interval. 

The computation for the m values requires more data from the system 

monitor. First, the system monitor should dump the page table at the beginning 

of the event data. The page table dumped is merely an array of pages with the 

owners' user numbers. From this table, condenser can easily determine the 

number of pages owned by each user. When the condenser is processing the 

data, it keeps track of the number of active pages held by each user at each page 

fault. In other words, at the end of every page fault, condenser will decrement 

the number of pages held by the owner of the page replaced, while incrementing 

- 3 0 -



that of the owner who has just paged in the page. Note the data for each page 

fault end event should include the page number, and the owner of the page 

replaced. If the owner cannot be easily determined by the event monitor, a copy 

of the page table should be included in the header of collected data to be used by 

condenser to determine page owners at page fault events. 

5.4 U S E R C L A S S I F I C A T I O N 

The workload/user classification process of the lifetime function b and c 

parameters involves using the absolute deviation approximation. The main 

purpose is to determine one value of b and c for each user class from all the b and 

c values of all the users in that class. 

The algorithm used by the tool user_class for each user class is as follows: 

First, values of m,-, with i=l,..,10000, are generated. These values of m,- range 

from 0 to the maximum memory. Using the Chamberlain's lifetime function and 

the b and c constants for each user in the class, values of L are generated. This 

results in 10000*,/ pairs of and m,-, where j is the number of users in the class. 

The absolute deviation approximation technique is then applied to these values. 

The final values of b and c are finally calculated using substitutions from the 

solutions to the equations (4) and (5) given earlier. In other words, we use only 

10,000 samples to calculate the values of b and c for each user. 

- 31 -



C H A P T E R 6 

M O D E L I N G A N D P E R F O R M A N C E A N A L Y S I S 

The main task of modeling is to represent a system using an abstract model. 

The model should contain only factors that are essential to the system's 

performance behavior. Statistics known as performance indices are produced by 

models to describe system performance. 

The modeling and performance analysis phase (or modeling cycle as 

described in [9]) involves two steps. These steps are model validation and 

performance projection. During model validation, a system is carefully 

parameterized and the model is evaluated to ensure that the performance indices 

given by the model are within acceptable range from the actual measured 

statistics. During performance projection, the model is used to project the 

performance of another system with different configuration. If the model is under 

development, the analyst should also validate the projected statistics. In this 

case, the projected system is first configured and measured. The measured 

statistics are then compared to the projected statistics given by the model. 

Details of these steps are given in later sections in this chapter. 

The efforts of research scientists have contributed to a vast variety of 

performance models. Some of these models are fairly general and some are 

customized for specific systems. Understandably, the general models are 

comparatively less accurate than the specific models. To preserve the generality 

of our refined capacity planning process, we leave the choice of the models to the 

capacity planner. 

6.1 MODELING A P P R O A C H 

- 32 -



As mentioned in chapter 2, the two most common modeling techniques used 

today are simulation modeling and analytic modeling. Both of these techniques 

have their advantages and disadvantages. The choice of these techniques is also 

left to the capacity planner; condenser and user_class work for either modeling 

techniques. 

We will use an analytic model to illustrate how the characterized workload 

produced by user_class can be used. The analytic modeling tool used is known as 

qnets and is based on Linearizer [4], 

6.1.1 S I M U L A T I O N M O D E L I N G 

The main purpose of this approach is to simulate the system's behavior in 

the time domain using software. The software is typically implemented using a 

special simulation language such as SIMULA and SIMPL. The main advantages 

of simulation modeling are that it is flexible and accurate. In general, the 

accuracy provided by simulation models is within 10%. The main disadvantage 

is that it is expensive (i.e. it requires a lot of CPU time and memory). 

6.1.2 A N A L Y T I C M O D E L I N G 

Analytic modeling involves representing a system using a set of 

mathematical equations or a mathematical model. The derivation of the model 

can be based on queueing theory or operational analysis[8]. The solutions to the 

equations can be exact or approximate. In general, exact models are less 

common and more expensive than approximation techniques. 

Compared to simulation modeling, analytic modeling is less accurate because 

it does not take as many system parameters into consideration. On the other 

hand, it is very inexpensive (usually requires much less CPU time than 

- 33 -



simulation). The accuracy given by analytic models is typically within 10% for 

utilizations and throughputs, and 10-30% for response times. 

The tool qnets is based on an approximation technique known as linearizer. 

The reason for choosing linearizer is that it is fairly general and efficient. The 

two drawbacks are that it does not model system memory and it assumes 

processor sharing discipline on all service centers. 

In memory modeling, we need to know the page fault rate and subsequently, 

the resulting visit ratios to disk based on a given amount of memory. To do this, 

qnets first calculates the lifetime using the b and c values provided by userjclass 

and the lifetime function described in chapter 5. From the page fault rate (which 

is the reciprocal of the lifetime value) and disk visit rate due to page fault (from 

userjclass), we can easily calculate the new visit ratios to disks. 

To support other kinds of service disciplines, such as first-come-first-serve, 

we merely need to modify equation (1) described [1] that computes the wait times 

at a server queue. The solutions to various disciplines are available in [6] and [7] 

and will not be dealt with here. 

6.2 VALIDATION 
In our capacity planning process, we assume that a chosen model has already 

been proven to represent the system under study. In this case, the validation step 

involves setting the configuration data (in the model data given by user_class) to 

correspond to those of the measured system. The model is then evaluated using 

this model data and the performance indices are compared to the measured 

statistics. If the difference is not acceptable, the performance analyst will repeat 

his re-classification of the workload data (using userjclass) and repeat the model 

evaluation. This is done until acceptable results are obtained from the model. 

- 34 



6.2.1 E R R O R A N A L Y S I S 

For the examples shown below, three systems with different workload 

environments were measured with a system monitor. The respective workload 

data were reduced using condenser and classified using user_class. The model 

data were then used by qnets as input and the performance indices (output) were 

compared with the measured statistics. 

(1) Development environment, with distinct users running EMACS, Pascal, 

Fortran and Basic. 

Environment: 

Users: 

CPU Speed: 

Memory: 

Development 

30 

4 MIPS 

8 Mb 

UTILIZATION (%) 

Measured Qnets %Error 

CPU 83.8% 96.5% + 15.1% 

Disk 0 15.7% 15.2% -3.2% 

Disk 1 4.94% 4.90% -0.8% 

Disk 2 30.4% 30.0% -1.3% 

THROUGHPUTS (transactions/second) 

Measured Qnets %Error 

Class 1 0.399 0.401 +0.5% 

Class 2 6.035 6.142 +1.8% 

Class 3 7.625 7.867 +3.2% 

- 35 -



Class 4 0.398 0.400 +0.5% 

Class 5 0.261 0.245 -6.1% 

Class 6 7.841 8.057 +2.8% 

RESPONSE TIMES (seconds) 

Measured Qnets %Error 

Class 1 1.879 1.820 -3.1% 

Class 2 0.226 0.211 -6.6% 

Class 3 0.147 0.127 -13.6% 

Class 4 1.793 1.741 -2.9% 

Class 5 11.47 12.66 +10.4% 

Class 6 0.149 0.132 -11.4% 

- 36 -



(2) In the commercial environment, the users executed MIS tools and data base 

queries. 

Environment: 

Users: 

CPU Speed: 

Memory: 

MIS Commercial 

16 

1.7 MIPS 

4 Mb 

UTILIZATION (%) 

Measured Qnets %Error 

CPU 98.9% 95.9% -3.0% 

DiskO 3.64% 3.70% +1. 

THROUGHPUTS (transactions/second) 

Measured Qnets %Error 

Class 1 32.88 33.57 +2.1% 

RESPONSE TIMES (seconds) 

Measured Qnets %Error 

Class 1 0.163 0.149 -8.56% 

- 37 -



(3) Mixed environment, consists of distinct development users, commercial users 

and office automation users. 

Environment: Mixed 

Users: 24 

CPU Speed: 1.7 MIPS 

Memory: 4 Mb 

UTILIZATION (%) 

Measured Qnets %Error 

CPU 89.1% 86.7% -2.69% 

Disk 0 81.3% 75.8% -6.77% 

THROUGHPUTS (transactions/second) 

Measured Qnets %Error 

Emacs 2.452 2.526 +3.0% 

Fortran 0.165 0.174 -5.5% 

Pascal 1.900 1.979 +4.2% 

OA 1 0.367 0.374 +1.9% 

OA 2 0.629 0.640 +1.7% 

MIS 14.45 14.44 +0.0% 

RESPONSE TIMES (seconds) 

Measured Qnets %Error 

Emacs 0.491 0.450 -8.35% 

Fortran 9.513 8.501 -10.64% 

Pascal 0.796 0.730 -8.30% 

- 38 -



OA 1 

OA 2 

MIS 

3.306 

0.788 

0.095 

3.002 

0.711 

0.093 

-9.20% 

-9.77% 

-2.11% 

6.3 P R O J E C T I O N 

During performance projection, the performance analyst merely changes the 

configuration data in the model data file to correspond to the projected system. 

The performance indices provided by the modeling tool are then analyzed to 

determine the projected system's performance. If the system performance does 

not fulfill the capacity planning objective, the analyst will modify the 

configuration data and repeat the projection until the objective is met. 

In the following examples, we used the model data provided in the last 

section to do performance projection. Actual system configurations that 

correspond to those of the respective projected systems are also set up and 

measured. The purpose is to ensure that qnets projects system performance with 

acceptable results. 

6.3.1 E R R O R A N A L Y S I S 

(1) In the scientific environment, the total number of users are increased from 30 

to 60, while the rest of the system configuration remains the same. 

Environment: Scientific 

Users: 60 

CPU Speed: 4 MIPS 

Memory: 8 Mb 

- 39 -



UTILIZATION (%) 

Measured Qnets %Error 

CPU 98.5% 99.8% + 1.3% 

Disk 0 59.3% 59.3% +0.0% 

Disk 1 13.9% 14.1% +1.4% 

Disk 2 65.9% 66.4% -0.8% 

THROUGHPUTS (transactions/second) 

Measured Qnets %Error 

Class 1 0.517 0.535 +3.5% 

Class 2 7.070 7.189 +1.7% 

Class 3 13.09 12.60 -3.7% 

Class 4 1.955 2.017 +3.2% 

Class 5 0.120 0.131 +9.2% 

Class 6 14.41 13.87 -3.7% 

RESPONSE TIMES (seconds) 

Measured Qnets %Error 

Class 1 8.479 7.826 -7.71% 

Class 2 0.769 0.746 -3.00% 

Class 3 0.313 0.343 -9.60% 

Class 4 2.142 1.983 -7.42% 

Class 5 71.05 64.44 -9.30% 

Class 6 0.285 0.312 +9.47% 

- 40 -



(2) In the commercial environment, the number of users are increased to 32. 

Also, the CPU is replaced by a faster 2 MIPS CPU. The amount of memory in 

the system remains the same. 

Environment: MIS Commercial 

Users: 32 

CPU Speed: 2 MIPS 

Memory: 4 Mb 

UTILIZATION (%) 

Measured Qnets %Error 

CPU 99.0% 99.9% +0.9% 

DiskO 5.07% 5.20% +2.6% 

THROUGHPUTS (transactions/second) 

Measured Qnets %Error 

Class 1 26.21 28.01 +6.87% 

RESPONSE TIMES (seconds) 

Measured Qnets %Error 

Class 1 0.813 0.735 -9.60% 

- 41 -



(3) In the mixed environment, the total number of users is increased to 24. 

the same time, the amount of memory is increased from 4Mb to 6Mb. 

Environment: Mix 

Users: 24 

CPU Speed: 1.7 MIPS 

Memory: 6 Mb 

UTILIZATION (%) 

Measured Qnets %Error 

CPU 83.3% 89.9% +7.9% 

Disk 0 97.2% 97.2% +0.0% 

THROUGHPUTS (transactions/second) 

Measured Qnets %Error 

Emacs 2.911 2.740 -3.9% 

Fortran 0.163 0.153 -6.1% 

Pascal 1.101 1.040 -5.54% 

OA 1 0.369 0.379 +2.7% 

MIS 11.77 13.34 +13.4% 

RESPONSE TIMES (seconds) 

Measured Qnets %Error 

Emacs 0.996 01.104 +10.8% 

Fortran 28.26 30.55 +8.10% 

- 42 -



Pascal 2.635 2.901 +10.1% 

OA 1 9.864 9.296 -5.76% 

MIS 0.365 0.285 -21.9% 

- 4 3 -



C H A P T E R 7 

F U T U R E E N H A N C E M E N T S 

The tools described earlier assumed that the systems under study are single-

processor systems. Enhancements are required to expand the scope of these tools. 

The following are some of the possible enhancements: 

7.1 V I R T U A L P A G E F A U L T S 

In UNIX 4.1BSD or later systems, it is possible to have virtual page faults. 

A virtual page fault or a soft page fault is any page fault that does not result in 

actual physical I/O. This happens when the page missing from the working set is 

already in physical memory. Note however, compared to a true page fault or hard 

page fault (where a page has to be physically brought in from a secondary paging 

device), a virtual page fault uses more CPU time to perform the memory to 

memory page copy. 

Virtual page faults are mostly caused by the spawning of child processes. 

When a child process is being forked, the child must have a copy of the parent's 

workspace. Since the parent process is active during the forking process, most of 

its workspace are still active in memory. As a result, numerous virtual page faults 

will likely to occur during the workspace copying. 

To date, there are no modeling solutions for virtual page faults. It should be 

pointed out that virtual page faults must NOT be considered as CPU bursts. 

This is because the number of virtual page faults depends on the memory size, 

whereas the number of CPU bursts does not. A possible approach towards 

modeling virtual page faults is to determine the ratio between virtual and true 

page faults. This ratio depends on the memory size, pre-paging capacity (i.e. the 

number of pages prepaged), and the number of wired pages per process (i.e. those 

- 4 4 -



pages of a process that one always resident in memory, e.g. file unit table). 

7.2 T R A N S A C T I O N S U B C L A S S E S 

All analytical modeling solutions today assume that all transactions of a user 

or job class are identical. As a result, the response times provided by these 

models are expressed as the average response times of all these transactions. 

Because transactions need to be subclassified (as described in Chapter 3), 

analytical solutions are required to model transaction classes. 

7.3 C H A R A C T E R I Z I N G S E M A P H O R E S 

Delays due to semaphore waits can contribute significantly to response 

times, especially if there is much contention on semaphores. For systems such as 

Berkerley's UNLX systems, semaphore operations are emulated using system calls 

sleep() and wakeupQ. Semaphore contention is very common in data base 

management environment. 

Our workload characterization process can easily be modified to represent 

semaphore contention. The representation will be CPU time used by a user while 

holding the semaphore, and the rate at which he waits on semaphores. This 

representation can easily be used by simulation modeling tools or analytical 

models. 

7.4 M U L T I P L E P R O C E S S O R S 

All the capacity planning tools described earlier assume that the systems 

under study are single-processor systems. The tools can be readily enhanced to 

characterize workload for multiple-processor system provided that the system 

event monitor associates each event with the responsible processor. In other 

- 45 -



words, each event record should include a number indicating the associated 

processor. 

7.5 NETWORKS and DISTRIBUTED SYSTEMS 

Characterizing networks and distributed operating systems workload is an 

area that requires much work. In order to use tools such as condenser and 

userjclass to characterize such workload, it is essential to have a network event 

monitor that does not introduce excessive overhead. A few issues regarding 

network event monitoring are addressed by Lamport [11] and Chen [10]. Because 

the events monitored in a distributed environment is different from those in a 

stand-alone system, separate tools similar to condenser and userjclass have to be 

developed. 

7.6 C L U S T E R I N G TECHNIQUES 

New clustering techniques are required to take into consideration the 

memory demand representation of user workload. Clustering is especially useful 

during the workload classification phase when the analyst is not able to classify 

the workload by mere selection of user numbers. The clustering process involves 

grouping users with similar resource demands into the same job class. 

If the workload characterization phase of our capacity planning process is 

enhanced to take semaphore usage into consideration, a new clustering technique 

is also required to include semaphore demand. 

- 46 -



R E F E R E N C E S 

D.D. CHAMBERLAIN, S.H. FULLER, and L. Y. LIU, An Analysis of 
Page Allocation Strategies for Multiprogramming Systems with Virtual 
Memory. IBM J. Res. Dev. 17, 15 Sept., 1973, 404-412. 

DOMENICO FERRARI, Computer Systems Performance Evaluation. 
Prentice-Hall, Inc. 1978. 

D. FERRARI, G. SERAZZI and A. ZEIGNER, Measurement and Tuning 
of Computer Systems. Prentice-Hall, Inc. 1983. 

CHANDY, K. MANDY and NEUSE, DOUG, Linearizer: A Heuristic 
Algorithm for Queueing Network Models of Computing Systems. CACM 
25, 2 (April 1982), 126-134. 

R.L. BURDEN, J.D. FAIRES and A.C. REYNOLDS, Numerical Analysis, 
2nd Edition. Prindle, Weber & Schmidt. 1978, p.318-344. 

REISER, M., and LAVENBERG, S.S. Mean-value analysis of closed 
multichain queueing networks. J. ACM 27, 2 (April 1980), p.313-322. 

FERRARI, DOMENICO, Considerations on the Insularity of Performance 
Evaluation. IEEE Transactions on Software Engineering, Vol. SE-12, No. 
2, February 1986. 

DENNING, P. J. and BUZEN, J. P., The operational analysis of queuing 
network models, ACM Computing Surveys, Vol. 10, No. 3, September 
1978, pp. 225-261. 

LAZOWSKA, E.D., ZAHORJAN, J, GRAHAM, G. S., and SEVCIK, 
K.C., Quantitative System Performance, Prentice-Hall, 1984. 

CHEN, Y.F., PRAKASH, A. and RAMAMOORTHY, C.V., The Network 
Event Manager, Computer Science Division, University of California, 
Berkeley, CA 94720, Report No. UCB/CSD 86./299, June 1986 

LAMPORT, L., Time, Clocks and the Ordering of Events in a Distributed 
System, CACM Vol. 21, No. 7, pp. 558-565, July 1978. 

- 47 -



APPENDIX A CONDENSER 1.0 

1. Proposal 

1.1 The Problem 

The modeling tools of any Capacity Planning process/package (namely the 
simulation and analytical tools) require specialized statistics to be abstracted from raw 
event data. These statistics include resource demands on cpu, I/O and the paging device. 
This document describes the design of a tool that is used as part of the Capacity 
Planning process. 

The next paragraph gives a very high level and brief description of the Capacity 
Planning process and how condenser fits into the process. The reader should be 
familiar with system event monitoring and general performance analysis before reading 
this document. 

In general, the performance analyst must first collect workload data on an active 
machine using a system event monitor. When the data collection phase is done, the 
analyst will use condenser to process and to reduce this data for simpler manipulation 
by user class. The analyst can now use user_class to classify/group users and/or to 
omit certain set of users. Finally, the output of user class can be used by modeling 
tools to perform validations and performance projections. 

Note that it is necessary to have condenser because we do not want to use 
user class to repetitively go through the raw event data. This is because the size of 
the event data is typically very large. The introduction of condenser to condense the 
event data for user class can subsequently reduce user class's response. 

- 48 -



APPENDIX A CONDENSER 1-0 

2. Program Function 

2.1 Terminology 

Below are brief descriptions of some of the most commonly used terms in this 
document. 

Event Data The raw binary data produced by a system event monitor. The data 
is typically in buffers of records, with each record corresponding to 
an event. 

Aggregate Statistics 
These are accumulated statistics calculated from all the related event 
events obtained from the event data. 

Transient Statistics 
Statistics that are caused by unmatched events. This happens when 
the event monitor is shutdown and there are events with statistical 
data still being collected. 

Micro-Transaction A user transaction that uses less than 10 milliseconds of CPU. 
Examples are EMACS or vi single character transaction and date 
command. The limit of 10 milliseconds may be changed in the 
future. 

Normal Transaction 
A user transaction that uses more than 10 milliseconds but less than 
100 milliseconds of CPU. This includes most PRIMOS commands. 
The range of 10 to 100 milliseconds may be changed in the future. 

Large Transaction A user transaction that uses more than 100 microseconds of CPU. A 
good example is a large compilation run. The limit of 100 
milliseconds may be changed in the future. 
The user can select a contiguous block of event data to be processed 
by condenser. The window range can be provided in terms of 
elapsed times or buffer numbers. If both the time and buffer 
windowing are used, the intersection of the two window ranges will 
be used. 
The actual process of calculating aggregate statistics from raw event 
data, and then the compression of the statistics for user class. 

Anything that UNIX inputs from a terminal and replies. This can 
be a command line (e.g. UNIX command) or a single character (Le. 
emacs transaction). 
This is defined as the amount of real time that UNIX takes to 
reply upon receiving a transaction (either a character or a command 
line). 
This is defined as the amount of real time between the last UNIX 
response/reply and the next time when UNIX actually receive 
another transaction. This can also be viewed as the idle time plus 

Window 

Reduction  

Transaction 

Response Time 

Think Time 

- 49 -



APPENDIX A CONDENSER 1.0 

CPU Burst 

the typing time. 
The number of times that the user's job uses the CPU during a 
transaction. 

I/O Burst The number input/output operations done by a user's job during a 
transaction. 

Virtual Page Fault 
For UNIX 4.1 BSD (or above) systems, it is possible to have a 
virtual page fault. Here, a page fault event occurs but there was no 
I/O operation because the required page is still in memory. 

Physical Page Fault 
The actual page fault event that have one or more I/O operations. 
This is also known as the true page fault. 

Login/Logout Transaction 
This includes login/logout of terminal, child users. Note that 
condenser will treat login/logout exactly as a normal terminal 
transaction. 

Lifetime Function An empirical formula that gives the inter-page fault time (actually 
CPU time) for a given memory demand. The formula of the 
function is L(m) = 2*b I (l + (c*c)/(m*m)\ where m is the memory 
demand (or active memory), L is the inter-page fault time, and b, c 
are the lifetime function parameters to be approximated for each 
user. 

- 50 -



APPENDIX A CONDENSER 1.0 

2.2 User Interfaces 

Condenser requires several input parameters from the user before it can commence 
going through event data. The user input requirements are given in detail in the next 
section. Also, all collected and calculated statistics are written in a user-specified (in 
user input) output file. Details on the the user output is given in the following 
subsection below. 

2.2.1 User Input 

At the moment, the interaction between condenser and the user wi l l be on-line. 
In the near future, the interaction wil l be screen-oriented provided that the user uses a 
supported terminal. Note that before running condenser, the user must have the event 
data ready to be used (either on tape or disk). 

The command line options for condenser are as follows (with abbreviations in 
boldface): 

condenser [-input <file>] [-output <file>] [-reduce <file>] [-help] 
[-•version] [-windowbuffer] [-nvindowtime] 
[-fuUhelp] 

Condenser takes event data as input and reduces the data to be used by the 
Capacity Planning user-classification utility user class. The input may be from a tape 
or from a disk file. The reduced file wi l l be in binary form, but an ASCII form of 
the reduced file wi l l be written in the output file. 

If no options are given, condenser wi l l prompt the user for the necessary set of 
input options. 

Condenser supports the following options: 

-input, -i -output, -o 
-reduce, -r -help, -h 
-version, -v -fullhelp, -fh 
-windowbuffer, -wb -windowtime, -wt 

The following paragraphs summarize all the condenser options, which can be selected 
in any order. 

-input, -i 

Takes a file name as an argument (for input file). If this option is omitted, 
condenser wi l l prompt the user for an input file name. Also, condenser wi l l always 
continue to prompt the user if it fails to open the associated file. Currently, the 
event data on tape is assumed to be at the beginning of the tape. 

- 51 -



APPENDIX A CONDENSER 1.0 

-reduce, -r 

Takes a file name where the reduced data is to be stored. The user will be 
queried before an existing file is overwritten. If this option is omitted, condenser will 
prompt the user for a reduced file name. The reduced file must be a disk file. 

-output, -o 

Takes an output file name as an argument. If the output file exists the user will 
be queried before it is overwritten. If this option is omitted, condenser will prompt 
the user for an output file name. The output file must be a disk file. Note that the 
output produced by condenser is essentially a readable form of the reduced data. 

-help, -h 

Prints the command line format on how to invoke condenser, 

-windowbuffer, -wb 

Turns on buffer windowing option. The user will be prompted for the starting 
buffer number and the number of buffers to be processed. 

-windowtime, -wt 

Turns on time windowing option. The user will be prompted for the starting time 
in the data and the duration desired. This time is the real time in the event data. 

-version, -v 

Prints condenser version stamp plus the date and time that it was built. 

-fullhelp, -fh 

Prints this full help information on how to use condenser. 

A sample run is given below (with user's input in bold face): 

OK, condenser 
[CONDENSER R e v . 1 . 6 - 1 9 8 6 ] 
E n t e r i n p u t f i l e nome ? EVENT DATA 
E n t e r o u t p u t f i l e name ? EVENT_OUTPUT 
E n t e r r e d u c e d f i l e nome ? EVENT_REDUCE 
M o n i t o r s t a r t e d on 0 5 / 2 5 / 8 4 1 5 : 5 5 : 0 3 . 5 1 2 
M o n i t o r V e r s i o n : 1 on 4 . 2 B S D 
M o n i t o r U s e r Name: r o o t U s e r N u m b e r : 3 0 
C P U : VAX 1 1 / 7 5 0 M e m o r y : 2 0 4 8 p a g e s Maximum u s e r s : 32 
REMARK: 

E l a p s e d t i m e «= 1 9 6 9 . 2 8 5 s e c o n d s 
Number o f e v e n t s p r o c e s s e d = 1 3 3 1 0 
T o t a l b l o c k s / b u f f e r s r e a d = 9 3 
OK. 

- 5 2 -



APPENDIX A CONDENSER 1.0 

2.2.2 User Output 
Each item of the statistics printed by condenser in the output file is always made 

up of two values; namely, the total count and the total usage. For I/O statistics, for 
example, the total count is the total number of I/O operations and the total usage is 
the total I/O time used. A description of all the statistics is given below: 

Response times Response times for all interactive users on a per user per transaction 
basis. 

Think times Think times for all interactive users on a per user per transaction 
basis. 

True I/O The pure I/O operations excludes any I/O caused by page faults. 
Any disk queueing statistics are also excluded. This is given on a 
per user per transaction basis. 

Page Fault I/O The I/O operations caused by page faults only. Any disk queueing 
statistics are excluded. This is given on a per user per transaction 
basis. 

True CPU The pure CPU usage (i.e. excludes any CPU time for page faults). 
This is given on a per user per transaction basis. 

Page Fault CPU The CPU usage for handling page faults only. This is given on a 
per user per transaction basis. 

Physical Page Fault 
Page faults that actually cause one or more I/O operations, given on 
a per user per transaction basis. It should be pointed that the usage 
statistics for physical page faults are average elapsed times and not 
service/virtual time. 

Virtual Page Fault 
Page faults that do not cause any I/O operation at all. This is given 
on a per user per transaction basis. The usage statistics for virtual 
page faults are also average elapsed times and not service/virtual 
time. 

Disk I/O The disk true I/O operations on a per user per disk basis. Queueing 
at the disks are excluded in the statistics. 

Disk PF I/O The disk page fault I/O operations on a per user per disk basis. 
Queueing statistics at the disks are excluded. 

Login/Logout The login and logout of terminal users and child processes. 

Lifetime Function This is unlike all the above statistics. The approximated b and c 
parameters wil l be printed for each user. 

Transient This is due to the event monitor being shutdown before any end 
events are encountered (i.e. for those events that have been "started"). 

A sample output file is given below: 

- 53 -



APPENDIX A CONDENSER 1-0 

M o n i t o r s t a r t e d o n 0 5 / 2 5 / 8 4 1 5 : 5 5 : 0 3 . 5 1 2 
M o n i t o r V e r s i o n : 1 o n 4 . 2 B S D 
M o n i t o r U s e r Name: r o o t M o n i t o r U s e r N u m b e r : 3 0 
C P U : VAX 1 1 / 7 5 0 M e m o r y : 2 0 4 8 p a g e s Maximum u s e r s : 3 2 
R E M A R K : 

E l a p s e d t i m e »= 1 9 6 9 . 2 8 5 s e c o n d s 
N u m b e r o f e v e n t s p r o c e s s e d = 13310 
T o t a l b l o c k s / b u f f e r s r e a d = 9 3 
N u m b e r o f u s e r s = 7 

RESPONSE T IMES ( s e c o n d s ) 
MICRO NORMAL LARGE OVERALL 

USER N AVERAGE N AVERAGE N AVERAGE N AVERAGE 

1 0 0 . 0 0 0 1 0 . 0 3 9 1 0 . 0 3 3 2 0 . 6 3 6 
2 6 9 1 . 0 9 3 8 6 7 . 0 2 1 57 1 2 . 2 7 0 2 1 2 6 . 5 0 3 
3 1 0 . 0 0 0 19 0 . 0 4 6 42 0 . 6 1 6 6 2 0 . 4 3 2 

TOTAL 7 0 1 . 0 7 7 106 5 . 7 0 5 100 7 . 2 5 3 2 7 6 5 . 0 9 2 

THINK T I M E S ( s e c o n d s ) 
MICRO NORMAL LARGE OVERALL 

USER N AVERAGE N AVERAGE N AVERAGE N AVERAGE 

1 0 0 . 0 0 0 1 5 . 5 6 7 1 2 . 0 0 0 2 3 . 7 8 3 
2 69 1 . 7 8 3 8 6 3 . 2 9 1 56 2 . 8 8 5 211 2 . 6 9 0 
3 1 0 . 0 5 2 18 2 2 . 4 4 9 42 3 0 . 7 9 4 61 2 7 . 8 2 8 

TOTAL 7 0 1 . 7 5 8 105 6 . 5 9 7 99 1 4 . 7 1 7 2 7 4 8 . 2 9 5 

TRUE I / O WITHOUT QUEUE S T A T I S T I C S (ms) 
MICRO NORMAL LARGE . OVERALL 

USER N AVERAGE N AVERAGE N AVERAGE N AVERAGE 

1 0 0 . 0 0 0 0 0 . 0 0 0 21 3 1 . 0 2 5 21 3 1 . 0 2 5 
2 0 0 . 0 0 0 0 0 . 0 0 0 2 5 3 1 7 . 4 3 9 2 5 3 1 7 . 4 3 9 
3 0 0 . 0 0 0 1 1 2 . 1 2 1 2 4 4 2 6 . 3 9 1 2 4 5 2 6 . 3 3 3 

TOTAL 0 0 . 0 0 0 1 1 2 . 1 2 1 5 1 8 2 2 . 2 0 7 5 1 9 2 2 . 1 8 7 

PAGE FAULT I / O WITHOUT QUEUE S T A T I S T I C S ( m s ) 
MICRO NORMAL LARGE OVERALL 

USER N AVERAGE N AVERAGE N AVERAGE N AVERAGE 

2 0 0 . 0 0 0 5 2 2 . 4 2 4 68 1 6 . 4 8 8 7 3 1 6 . 8 9 5 
3 0 0 . 0 0 0 0 0 . 0 0 0 112 1 8 . 5 3 4 112 1 8 . 5 3 4 

TOTAL 0 0 . 0 0 0 5 2 2 . 4 2 4 180 1 7 . 7 6 1 1 8 5 1 7 . 8 8 7 

TRUE CPU BURST S T A T I S T I C S (ms ) 
MICRO NORMAL L A R G E OVERALL 

USER N AVERAGE N AVERAGE N AVERAGE N AVERAGE 

1 0 0 . 0 0 0 1 3 6 . 8 6 4 21 5 . 0 7 1 2 2 6 . 5 1 6 
2 69 5 . 9 2 1 91 2 8 . 1 3 2 5 6 9 5 5 . 6 8 5 7 2 9 4 7 . 5 3 5 
3 1 1 . 0 2 4 2 0 3 8 . 8 1 0 4 1 5 3 3 . 5 9 7 4 3 6 3 3 . 7 6 1 

TOTAL 7 0 5 . 8 5 1 112 3 0 . 1 1 7 1005 4 5 . 5 0 6 1 1 8 7 4 1 . 7 1 6 

- 54 -



APPENDIX A CONDENSER 1.0 

PAGE F A U L T C P U S T A T I S T I C S (ms) 
MICRO NORMAL LARGE O V E R A L L 

USER N AVERAGE N AVERAGE N AVERAGE N AVERAGE 

2 0 0 . 0 0 0 10 1 . 2 2 9 3 2 8 1 .861 3 3 8 1 . 8 4 2 
3 0 0 . 0 0 0 0 0 . 0 0 0 241 1 . 2 8 7 241 1 . 2 8 7 

TOTAL 0 0 . 0 0 0 10 1 . 2 2 9 5 6 9 1 . 6 1 8 5 7 9 1 .611 

P H Y S I C A L P A G E FAULT S T A T I S T I C S ( m s ) 
MICRO NORMAL LARGE O V E R A L L 

USER N AVERAGE N AVERAGE N AVERAGE N AVERAGE 

2 0 0 . 0 0 0 5 2 6 . 0 6 1 6 8 2 0 . 4 1 0 7 3 2 0 . 7 9 7 
3 0 0 . 0 0 0 0 0 . 0 0 0 112 2 4 . 7 2 9 112 2 4 . 7 2 9 

TOTAL 0 0 . 0 0 0 5 2 6 . 0 6 1 180 2 3 . 0 9 8 185 2 3 . 1 7 8 

V I R T U A L P A G E FAULT S T A T I S T I C S ( m s ) 
MICRO NORMAL LARGE O V E R A L L 

USER N AVERAGE N AVERAGE N AVERAGE N AVERAGE 

2 0 0 . 0 0 0 0 0 . 0 0 0 192 2 . 8 5 7 192 2 . 8 5 7 
3 0 0 . 0 0 0 0 0 . 0 0 0 17 3 . 0 3 0 17 3 . 0 3 0 

TOTAL 0 0 . 0 0 0 0 0 . 0 0 0 2 0 9 2 . 8 7 1 2 0 9 2 . 8 7 1 

D I S K I / O WITHOUT QUEUE S T A T I S T I C S ( m s ) 
D I S K 8 O V E R A L L 

USER N AVERAGE N AVERAGE 

1 116 2 9 . 3 6 3 116 2 9 . 3 6 3 
2 2 5 3 1 7 . 4 3 9 2 5 3 1 7 . 4 3 9 
3 2 4 8 2 6 . 0 7 5 2 4 8 2 6 . 0 7 5 

2 3 7 2 4 1 4 . 4 9 4 7 2 4 1 4 . 4 9 4 
24 3 3 0 1 4 . 1 0 5 3 3 0 1 4 . 1 0 5 
25 4 2 3 . 4 8 5 4 2 3 . 4 8 5 
3 0 118 3 4 . 3 6 1 118 3 4 . 3 6 1 

TOTAL 1 7 9 3 1 8 . 7 2 9 1793 1 8 . 7 2 9 

D I S K P F I / O WITHOUT QUEUE S T A T I S T I C S (ms ) 
D I S K 8 O V E R A L L 

USER N AVERAGE N A V E R A G E 

2 7 3 1 6 . 8 9 5 7 3 1 6 . 8 9 5 
3 112 1 8 . 5 3 4 112 1 8 . 5 3 4 

TOTAL 1 8 5 1 7 . 8 8 7 185 1 7 . 8 8 7 

L O G I N S T A T I S T I C S ( s e c o n d s ) 
USER NO NO. TRANS AVERAGE 

LOGOUT S T A T I S T I C S ( s e c o n d s ) 
USER NO NO. TRANS AVERAGE 

- 55 -



APPENDIX A CONDENSER 1.0 

L I F E T I M E FUNCTION PARAMETERS 

U S E R S B C AVG MEM 

1 4 . . 2 0 6 4 762 . 8 9 4 5 1 6 7 9 . 0 2 7 8 
2 0 . . 2 9 9 0 38 . 0 0 0 3 4 6 . 5 0 0 0 
3 4 . . 7 0 9 4 113 . 9 0 4 8 1 6 7 . 4 9 3 1 

T R A N S I E N T S T A T I S T I C S ( m s ) 

I / O 
USER N TOTAL N 

1 9 5 2 7 5 4 . 5 4 5 5 94 
3 3 1 5 . 1 5 1 5 3 

2 3 7 2 4 1 0 4 9 3 . 9 3 9 4 7 4 0 
24 3 3 0 4 6 5 4 . 5 4 5 5 3 4 7 
2 5 4 9 3 . 9 3 9 4 3 
30 118 4 0 5 4 . 5 4 5 5 117 

CPU 
T O T A L 

3 6 8 . 6 4 0 0 
1 4 5 . 4 0 8 0 

3 2 0 5 9 . 3 9 2 0 
2 0 8 3 1 . 2 3 2 0 

6 3 . 4 8 8 0 
1 5 6 2 . 6 2 4 0 

T R A N S I E N T T I M E S ( s e c o n d s ) 
USER RESPONSE THINK 

1 0 2 4 7 2 7 0 
2 1 7 1 8 5 1 
3 176 11 

TRANSIENT LOGIN/LOGOUT ( s e c o n d s ) 
USER LOGIN LOGOUT 

2 7361 0 

- 56 -



APPENDIX A CONDENSER 1.0 

2.3 Program Interfaces 

The most important ones are the layouts of the raw data that condenser reads and 
writes. These data are the event data read by condenser and the reduced aggregate 
that condenser writes for user class. 

2.3.1 Event Data 

The layouts event data, which can either be on a tape or disk, must be made up 
of fixed size buffers. Each of these buffer is of fixed size (usually 4096 bytes). 
Every buffer is made up of event records. The format of each record is as follows: 

NAME 
Length 
Event Group 
Event Type 
User Number 
CPU time 
Real time 
Auxiliary Information 

SIZE DATA TYPE 
2 bytes binary short 
1 bytes binary 
1 byte binary 
2 bytes binary short 
4 bytes binary long 
4 bytes binary long (microsecs) 
Length-18 Variable 

The first one or two records of each set of event data must contain header 
information. All header records must have an associated event group of 0. The layout 
of the header (i.e. auxiliary information of the header event record) is given as 
follows: 

NAME SIZE DATA TYPE 
Event record 18 Bytes See above for layout 
Date 6 bytes ASCII (MMDDYY) 
Minutes 2 bytes binary short 
Seconds 2 bytes binary short 
Ticks 2 bytes binary short 
Tick Rate 2 bytes binary short 
Monitor user number 2 bytes binary short 
Monitor user name 32 bytes ASCII 
UNIX version length 2 bytes binary short 
UNIX version 16 bytes ASCII 
Memory size 2 bytes binary short 
Number of users 2 bytes binary short 

Following the header buffer will be the contents of UNIX page map. Hence, the 
first buffer will only contain header information. 

- 57 -



APPENDIX A CONDENSER 1.0 

2.3.2 Reduced Data 

Condenser also writes all its statistics to a file to be Tead in by user class. A l l 
data are written in binary format. The statistics is first preceded by condenser's header 
and the header format is as follows: 

N A M E SIZE DATA TYPE 
Month 2 bytes binary short 
Day 2 bytes binary short 
Year 2 bytes binary short 
Hour 2 bytes binary short 
Minutes 2 bytes binary short 
Seconds 2 bytes binary short 
Ticks 2 bytes binary short 
Monitor version 2 bytes binary short 
Monitor user no 2 bytes binary short 
Monitor user name 32 bytes ASCII 
CPU timer 2 bytes binary short 
Real timer 2 bytes binary short 
UNIX version stamp 16 bytes binary short 
CPU type/name 16 bytes binary short 
Memory size 2 bytes binary short 
Number of users 2 bytes binary short 
Number of event events 2 bytes binary short 
Number of event buffers 2 bytes binary short 
Length of remark 2 bytes binary short 
Elapsed time 4 bytes double 
Maximum user number 2 bytes binary short 
Maximum disk number 2 bytes binary short 
Remark varying ASCII 

Following the header are all the statistical matrices and arrays. Their sizes are 
dependent on the maximum user number and maximum disk number (which are given 
in condenser's header). The details of the statistical data are given below: 

STATISTIC DIMENSION DATA TYPE DESCRIPTION 
recorded max user short flags for recorded users 
resp tot NTRANS by max user double total response times 
resp n NTRANS by max user long number of transactions 
think tot NTRANS by max user double total think times 
think n NTRANS by max user long total idle transactions 
io_noq_tot NTRANS by max user double total I/O without queue usage 
io noq n NTRANS by max user long total I/Os without queue 
pf io noq tot NTRANS by max user double total PF I/O usage 
pf io noq n NTRANS by max user long total PF I/Os 
cpu tot NTRANS by max user double total true CPU burst time 
cpu n NTRANS by max user long total no. of true CPU bursts 
pf cpu tot NTRANS by max user double total PF CPU burst time 
pf cpu n NTRANS by max user long total no of PF CPU bursts 
disk noq tot max drive by max user double total true disk I/O usage 

- 58 -



APPENDIX A CONDENSER 1.0 

disk noq n max_drive by max. _user long total no of true disk I/Os 
pf disk noq tot max_drive by max. _user double total PF disk I/O usage 
pf_disk noq_n max_drive by max. _user long total no of PF disk I/Os 
lftb max__user double b parameter 
lftc max user double c parameter 

- 59 -



APPENDIX A CONDENSER 1.0 

3. Program Design 

3.1 Design Overview 

The general algorithm of condenser is to match start and end event types of the 
associated event group and calculate the appropriate statistics. An overview of the 
algorithm is as follow: 

P r o c e s s command l i n e 
U s e r I n p u t f r o m t e r m i n a l 
G e t e v e n t d a t a h e a d e r 

G e t p a g e map 
C o m p u t e a c t i v e memory s i z e f o r e a c h u s e r 

AI I o c a t e s t o r a g e 
w h i l e m o r e e v e n t r e c o r d s 

C l a s s i f y E v e n t _ G r o u p 
C l a s s i f y E v e n t _ T y p e f o r e a c h G r o u p 

I f S t o r t _ E v e n t s t o r e t i m e r v a l u e s 
I f E n d _ E v e n t c a l c u l a t e s t a t i s t i c s by 

c u r r e n t t i m e r v a l u e s — s t o r e d t i m e r v a l u e s 
S p r e a d t r a n s i e n t s t a t i s t i c s 
C o m p u t e a g g r e g a t e s t a t i s t i c s 
P r i n t e v e n t h e a d e r a n d a l l s t a t i s t i c s 
R e d u c e s t a t i s t i c s 
C l e a n u p t r a n s i e n t s t a t i s t i c s f o r user class 

3.2 Internal Data Structures 

3.2.1 Constants 

The following constants are used to 

^ d e f i n e MAXUSRPLUS 2 5 7 / • 
# d e f i n e M A X D R I V E S P L U S 17 / • 
# d e f i n e NTRANSPLUS 4 / • 

define the dimensions of matrices and arrays. 

maximum number o f u s e r s + 1 » / 
maximum number o f d i s k d r i v e s + 1 * / 
number o f t r a n s a c t i o n c l a s s e s + 1 * / 

3.2.2 Types 

The structures below are used to store special statistics such as memory. 

t y p e d e f s t r u c t l t _ s t r u c t 
i 

d o u b l e I f t p O , 
I f t p 1 . 
I f t q l . 
I f t re. 
I f t r 1 , 
I f t b , 
I f t c ; 

j L F T S T R U C T ; 

/ * l i f e t i m e f u n c t i o n s t r u c t u r e 

/ * b e l o w 5 a r e c u m u l a t i v e 
/ * u s e d t o c o m p u t e t h e f i n a l 

two p a r a m e t e r s . / 

' b " p a r a m e t e r 
' c " p o r a m e t e r 

- 60 -



APPENDIX A CONDENSER 1.0 

3.2.3 Data Structures 

For each set of statistical data collected (e.g. CPU usage), there are always two 
associated values; namely, the total usage (e.g. total CPU usage) and the total number 
of transactions (e.g. total number of CPU bursts). Except for login/logout statistics, all 
other statistics are given on a per user per transaction basis (or per user per disk basis 
for disk statistics). The login/logout statistics are given merely on a per user basis. 

/ * c u m u l a t i v e / a g g r e g a t e s t a t i s t i c s p e r u s e r p e r t r a n s a c t i o n •/ 
d o u b 1 e • » c p u _ t o t , A c u m u l a t i v e C P U u s a g e •/ 

• » r e s p _ t o t , A c u m u l a t i v e r e s p o n s e t i m e s •/ 
• • t h i n k _ t o t , A c u m u l a t i v e t h i n k t i m e s •/ 
• » i o _ n o q _ t o t , A c u m u l a t i v e I / O w i t h o u t q u e u e •/ 
» * p f _ i o _ n o q _ t o t , A c u m u l a t i v e P F I / O w i t h o u t q u e u e •/ 
• * p f _ c p u _ t o t , A c u m u l a t i v e P F C P U u s a g e •/ 
• • p f . t o t . /• c u m u l a t i v e p h y s i c a l p a g e f a u l t s */ 
• • v p f _ t o t ; /• c u m u l a t i v e v i r t u a l p a g e f a u l t s •/ 

1 o n g > » c p u _ n , /• t o t a l C P U b u r s t s •/ 
r e s p _ n , /• t o t a l n u m b e r o f c o m m a n d l i n e •/ 

• » t h i n k _ n , A t r a n s a c t i o n s •/ 
• • i o _ n o q _ n , /• t o t a l n o . o f I / O s w i t h o u t q u e u e •/ 
• • p f _ i o _ n o q _ n , A t o t a l P F I / O s w i t h o u t q u e u e •/ 
• * p f _ c p u _ n . A t o t a l C P U b u r s t s f o r P F •/ 
• * p f _ n , A t o t a l p h y s i c a l p a g e f a u l t s •/ 
• * v p f _ n ; /• t o t a l v i r t u a l p a g e f a u l t s •/ 

/ * o g g r e g a t e d i s k s t a t i s t i c s o n p e r u s e r p e r d i s k b a s i s •/ 
d o u b l e • * d i s k _ n o q _ t o t , A a g g r e g a t e d i s k u s a g e •/ 

• » p f _ d i s k _ n o q _ t o t ; /• a g g r e g a t e P F d i s k u s a g e •/ 
l o n g < • • d i s k _ n o q _ n , /• t o t a l d i s k I / O s w i t h o u t q u e u e •/ 

• * p f _ d i s k _ n o q _ n ; A t o t a l P F d i s k I / O s " •/ 
d o u b l e » l o g i n _ t o t , / • a g g r e g a t e l o g i n e l a p s e d t i m e * / 

* l o g o u t _ t o t ; / • a g g r e g a t e l o g o u t e l a p s e d t i m e • / 

l o n g * l o g i n _ n , / • t o t a l t i m e s l o g g e d i n • / 
* l o g o u t _ n ; / * t o t a l t i m e s n o t l o g g e d i n • / 

The following are used to store temporary accumulative statistics on a per user 
basis. 

/ * t e m p o r a r y s t a t i s t i c s o n a p e r u s e r b a s i s o n l y • / 
d o u b l e » t c p u _ t o t , / • a c c u m u l a t i v e C P U u s a g e • / 

» t i o _ n o q _ t o t , / • a c c u m u l a t i v e I / O n o q u e u e u s a g e » / 
* t p f _ i o _ n o q _ t o t , / * " P F 1/0 n o q u e u e u s a g e • / 
* t p f _ c p u _ t o t , / * p o g e f a u l t C P U u s a g e • / 
• t p f _ t o t , / » p a g e f a u l t s e r v i c e t i m e • / 
» t v p f _ t o t ; / • v i r t u a l p a g e f a u l t s e r v i c e t i m e • / 

l o n g » t c p u _ n , / » n o . o f C P U b u r s t s • / 
• t i o _ n o q _ n , / • n o . o f I / O w i t h o u t q u e u e * / 

* t p f _ i o _ n o q _ n , / • n o . o f P f I / O w i t h o u t q u e u e * / 

• t p f _ c p u _ n , / » P F C P U b u r s t s • / 
• t p f _ n , / • n o . o f p h y s i c a l p a g e f a u l t s » / 
• t v p f _ n ; / * n o . o f v i r t u a l p a g e f a u l t s • / 

The event header consists of the date and time structure and other system 

- 61 -



APPENDIX A CONDENSER 1.0 

information. These are all mapped into the following variables: 

c h o r m o n t h [ 2 ] , /• m o n t h of d a t e •/ 
d o y [ 2 ] . /• day of d o t e •/ 
y e o r [ 2 ] ; /• y e o r of d o t e •/ 

s h o r t m i n . /• m i n u t e s of d a t e •/ 
s e c , /• s e c o n d s of d a t e •/ 
t i c k . /• t i c k s o f d o t e •/ 
t i c _ r o t e , /• t i c k r a t e i n t i c k s / s e c o n d •/ 
t s e r n o ; /• e v e n t u s e r number •t 

c h o r u s e r n o m e [ 3 2 ] ; /• e v e n t u s e r name •i 

END OF TIMEDAT s t r u c t u r e • / 
s h o r t v 1 e n ; /• UNIX v e r s i o n s t o m p l e n g t h •/ 
c h o r ve re i o n [ 1 6 ] ; /• UNIX v e r s i o n s t a m p •/ 
s h o r t c p u i d, /• i n d e x t o CPU names •/ 

m e m o r y , /• memory s i z e i n p a g e s •/ 
n u s e r s ; /• number o f u s e r s •/ 
m o n _ v e r s i o n , /• m o n i t o r v e r s i o n number •/ 
c p u _ t i c _ r o t e , /• p r o c e s s o r t i c k r a t e (Rev 3 ) •/ 

/• END OF e v e n t HEADER FORMAT • / 

Each event record will be mapped into the following: 

s h o r t e v e n t _ g r o u p . /• e v e n t e v e n t g r o u p number • 
e v e n t _ t y p e , /• e v e n t e v e n t t y p e number • 
u s e r _ n o ; /• U s e r number c a u s e d t h e e v e n t •/ 

doub 1 e c p u _ t i m e . /• CPU u s a g e i n m i l l i s e c o n d s •/ 
r e o l _ t i m e ; /• e l o p s e d t i m e i n m i l l i s e c o n d s •/ 

s h o r t o u x _ l e n g t h ; /• l e n g t h o f t h e a u x i l i a r y i n f o •/ 
c h o r • o u * _ i n f o ; /• A u x i l l i o r y i n f o r m a t i o n •/ 
s h o r t • p o g e m o p ; /• c o n t o i n s UNIX HMAP poge mop •/ 

-62-



APPENDIX A CONDENSER 1.0 

3.3 Module Design 

For the modules below, a design/execution level number is included to indicate the 
modules position in the condenser's hierarchical algorithm. A brief description of each 
module's algorithm is also included. 

main(argc,argv) - Level 0 
The main program. Does command line processing and calls level 1 
routines. 

i n t a r g c ; 
c h a r * » o r g v ; 

P r o c e s s c o m m a n d l i n e o p t i o n s 

U s e r _ I n p u t ( ) ; / * t o p r o c e s s u s e r ' s t e r m i n a l i n p u t * / 
G e t _ H e a d e r ( ) ; / * G e t e v e n t ' s h e a d e r i n f o r m a t i o n « / 
P o s t _ I n i t ( ) ; / • P o s t i n i t i a l i z a t i o n * / 
D r i v e r ( ) ; / » P r o c e s s e v e n t d a t a h e r e * / 
T r a n s i e n t Q ; / • s p r e a d t r a n s i e n t s t a t i s t i c s * / 
A g g r e g a t e ( ) ; / • C o m p u t e a g g r e g a t e s t a t i s t i c s * / 

P r i n t _ O u t p u t ( ) ; / « P r i n t o u t a l l s t a t i s t i c s • / 
R e d u c e r Q ; / * R e d u c e a l l s t a t i s t i c s f o r user class * 

C l e a n u p Q ; / * C l e a n u p t r a n s i e n t s t a t i s t i c s • / 

User Input(ifname, of name, rfname) - Level 1 
Simply prompts the user for the appropriate file names. Also, 
prompts for window range if the appropriate flags are turned on. 

c h a r * i f n a m e , • o f n a m e , • r f n a m e ; 

i f i n p u t f i l e n a m e ( i f n a m e ) n o t g i v e n 
p r o m p t t h e u s e r 

i f o u t p u t f i l e n a m e ( o f n a m e ) n o t g i v e n 
p r o m p t t h e u s e r 

i f r e d u c e d f i l e n o m e ( r f n a m e ) n o t g i v e n 
p r o m p t t h e u s e r 

i f w i n d o w _ t i m e , p r o m p t f o r t i m e r a n g e 
i f w i n d o w _ b u f f e r , p r o m p t f o r b u f f e r r a n g e 

Get HeaderQ - Level 1 
Reads in event header information and stores them in memory. The 
number of header records read depends on the event revision. The 
first record is common for all event records. Subsequent records only 
have useful information in the auxilliary field. 

r e o d i n f i r s t r e c o r d / • c o m m o n f o r a l l e v e n t r e v s • / 

g e t s i z e o f p a g e m a p / * s i z e o f p a g e m a p d u m p e d • / 
d i s c a r d c u r r e n t b u f f e r / » f o r c o m p a t i b i l t y o n l y » / 
r e a d i n p a g e m a p / * r a w f o r m o f p a g e m a p * / 

Post_Init{) - Level 1 
Does any initialization that requires event header information. 
Specifically, allocate storage for all statistical structures, and initialize 
them to default values. 

- 63 -



APPENDIX A CONDENSER 1.0 

Driver{) - Level 1 
The actual high level driver that classify event event groups. 

w h i l e m o r e e v e n t r e c o r d s 
c a s e ( e v e n t _ g r o u p ) o f 

1 : G r o u p 1 ( ) 
2 : G r o u p 2 ( ) 
3 : G r o u p 3 ( ) 
4 : G r o u p 4 ( ) 

/ * U s e r c o m m a n d l e v e l t r a n s a c t i o n • / 
/ • L o g i n / L o g o u t e v e n t * / 
/ * P a g e f a u l t e v e n t » / 
/ » D i s k I / O e v e n t • / 

e n d _ c a s e ; 

Aggregate{) - Level 1 
Compute all aggregate statistics by adding all rows and columns of 
every statistical matrices and arrays. The algorithm is straight­
forward. 

Prints all statistics into the output file. The algorithm is straight­
forward. 

P r e p a r e a n d w r i t e condenser h e a d e r 
f o r e v e r y m a t r i c e s 

c o n v e r t t h e m i n t o a n a r r a y w h i c h c a n b e i n d e x e d 
u s i n g ( i * n o _ o f _ c o I u m n s ) + j ; w h e r e i , j a r e i n d i c e s 
o f t h e m a t r i c e s 

w r i t e o u t a l l c o n v e r t e d m a t r i c e s a n d a r r a y s . 

Handles events that were still active when event was shutdown. 
The algorithm at this stage is to simple dump all the transient 
statistics for user class to process. 

The user command level event group. The following is done for the 
user causing the event. 

i f s t a r t _ e v e n t 
r e s e t t e m p o r a r y s t a t i s t i c s 

e l s e i f e n d _ e v e n t 
c l a s s i f y t r a n s a c t i o n a c c o r d i n g t o C P U u s a g e 
c o p y t e m p o r a r y s t a t i s t i c s t o g l o b a l s t a t i s t i c s 

The event group is user login/logout. This includes login/logout of 
terminal users, remote users, phantoms and child processes. The 
following is done for the event user only. 

Print_Output{) - Level 1 

Reducer{) - Level 1 

Reduce all statistics to minimize space. 

Cleanupi) - Level 1 

Group l{) - Level 2 

Group2{) - Level 2 

- 64 -



APPENDIX A CONDENSER 1.0 

c a l l G r o u p 1 ( ) / • t r e a t l o g i n / l o g o u t e v e n t s a s t r a n s a c t i o n s * / 
i f 8 t a r t _ e v e n t 

r e s e t l o g i n t e m p o r a r y s t a t i s t i c s 
c o p y l o g o u t t e m p o r o r y s t a t i s t i c s t o g l o b a l s t a t i s t i c s 

e l s e i f e n d _ e v e n t 

r e s e t l o g o u t t e m p o r a r y s t a t i s t i c s 
c o p y l o g i n t e m p o r a r y s t a t i s t i c s t o g l o b a l s t a t i s t i c s 

Group3() - Level 2 
Page fault event group. Under 4.1BSD or higher systems, we can 
have either a virtual or physical page fault event. Note that the 
p/_on flag for each user can have on of the three values TRUE, 
FALSE, and TRUE_PF. We only do the following for the event 
user. 

i f s t a r t _ e v e n t 

s e t p f _ o n f l a g t o T R U E 
r e s e t t e m p o r o r y s t a t i s t i c s 

e I s e i f e n d _ e v e n t 

i f ( p f _ o n i s T R U E _ P F ) 
c o p y t e m p o r a r y s t a t i s t i c s t o p h y s i c a l P F s t a t i s t i c s 

e l s e c o p y t e m p o r a r y s t a t i s t i c s t o v i r t u o l P F s t a t i s t i c s 
r e s e t p f _ o n t o F A L S E 

Group4{) - Level 2 
The disk. I/O event group. An I/O event can be caused by a page 
fault or be a simple I/O operation. For the user responsible for the 
event, we do the following. 

i f s t a r t _ e v e n t 
i f ( p f _ o n i s T R U E ) s e t p f _ o n = T R U E _ P F 
r e s e t t e m p o r a r y 1 0 s t a t i s t i c s 

e l s e i f e n d _ e v e n t 

c o p y t e m p o r a r y s t a t i s t i c s t o g l o b a l s t a t i s t i c s 

Transient{) - Level 2 
Spreading transient statistics into uniform transactions. 

f o r e a c h r e c o r d e d u s e r 
i f t e m p o r a r y c p u u s a g e < 2 * L A R G E _ L I M I T 

s e t n o _ o f _ t r a n s t o 1 
e l s e / * h a v e a t r a n s a c t i o n e v e r y 1 0 0 s e c o n d s * / 

s e t n o _ o f _ t r a n s t o e l o p s e d _ t i m e / 1 0 0 . 0 
s p r e a d o u t a l l o t h e r s t a t i s t i c s i n t o g l o b a l s t a t i s t i c s 

n a m e l y , c p u , p f _ c p u , i o , p f _ i o 
a d d t o r e s p _ t o t t h e s u m o f c p u _ t o t + p f + c p u _ t o t + i o _ t o t 
a d d t o t h i n k _ t o t a n y r e m a i n i n g i d l e t i m e 
s e t r e s p _ n a n d t h i n k _ n t o n o _ o f _ t r a n s 

- 65 -



APPENDIX A CONDENSER 1.0 

3.4 Design Issues 

The major concern of condenser's design is the memory usage. Because the event 
header gives the maximum number of configured users, this parameter is used for 
dynamic storage allocation. The storage for all the statistical matrices and arrays 
should not be allocated until any user interaction has been completed in order to 
minimize condenser's startup time. As a result, the storage is allocated in the procedure 
Init_Stats{). 

For login and logout events, condenser wi l l treated them as normal terminal 
transactions. For example, terminal logins/logouts are treated identically as Group 1 
events. Also, a child process (including login through logout) is treated as a user 
command (i.e. Group 1 event). 

3.5 Standards 

Condenser is developed to be used by a system monitor on 4.2BSD. If the program 
is to be used by monitors developed on other systems, it is important that the event 
data should conform to the format described in earlier sections. 

3.6 Implementation Language 

The language used to develop condenser is the C programming language. The main 
reasons for using this language is the need for bit and byte manipulation, and the 
need for address manipulation, and it is well supported in UNIX systems. 

- 66 -



APPENDIX B USER_CLASS 1.0 

1. Proposal 

Before reading this document, the reader must be familiar with the functionalities 
of condenser and the requirements of the CAPP package. 

1.1 The Problem 

A l l modeling tools require measurable representation of workload as input. The 
tools condenser and user_class of CAPP serve to extract workload statistics from 
event data and produce the input data using workload characterization and 
classification. In other words, condenser primarily deals with workload characterization 
while user_class mainly performs workload classification. 

In general, the size of the data produced by a system event monitor is usually too 
large to allow the user to repetitively go through the data to collect different sets of 
data. Each set of this data is typically made up of a cluster of users. The process of 
forming such a cluster is known as user classification. 

1.2 Goals and Non-Goals 

The primary goal of user class is to allow the user to perform user classification 
without having to go through the raw event data again. This can easily be 
accomplished with the use of condenser (which can actually be viewed as an event 
data pre-processor as well). In other words, it is essential that the user can do user 
classification in a short amount of time. 

As for the user classification process, we should allow the user to do arbitrary 
classification. This allows the user to select specific users (by their user numbers) to 
different groups. User class w i l l also allow other kinds of user classification, such as 
automatic classification by workload. 

The third goal of user class is to automate the modeling phase of the capacity 
planning process as much as possible. To accomplish this, user class wi l l pipeline 
data to the modeling tools. In other words, the output from user__class can readily be 
used as input for modeling tools without user intervention or modification to the 
pipelined data. 

Note that user_class is not a product by itself. It will only accept data from 
condenser. 

- 67 -



APPENDIX B USER_CLASS 1.0 

2. Program Function 

2.1 Terminology 

User class A group of users that share some common characteristics. The most 
typical characteristic is the user's type of workload or application 
(e.g. EMACS users or DBMS users). 

User classification The process where users are grouped into different classes. The 
criteria of the assignment of users to classes can be by user numbers 
or by the users' workload. Each user can be in at most one class. 
Note that this is essentially the same as workload classification. 

Model data The data that user_class produces to be used as input data by 
modeling tools. This data is essentially made up of parameter names 
and parameter values. 

Workload characterization 
The manner in which we represent workload. In general, workload 
characteristics include CPU, I/O and memory demands. 

2.2 User Interface 
To invoke user_class, the command line must conform to the following format 

(with abbreviations in boldface): 

user_class [-input <file>] [-output <ftte>] [-reduce <fUe>] [-help] 
[-yersion] [-model <file>] [-fuUhelp] 
[-classtype [\iser\workload]] 

If no options are given, user class wi l l prompt the user for the necessary set of 
input options. 

User class supports the following options: 

-input, -i -output, -o 
-reduce, -r -help, -h 
-version, -v -model, -m 
-fullhelp, -fh -classtype, -ct 

The following screens summarize all the user class options. 

-input, -i 

Takes a file name as an argument (for input file). The input file should be saved 
by a previous user_class run, and should contain lists of user for all classes. If this 
option is omitted, user class w i l l prompt the user for classification information. 

-reduce, -o 

- 68 -

file:///iser/workload


APPENDIX B USER_CLASS 1.0 

Takes a reduced file name as an argument. This file must be the produced by 
condenser. User_class wi l l prompt the user for a reduced file name if this option is 
omitted. 

-model, -m 

Takes a file name where the model data is to be stored. The user wi l l be queried 
before an existing file is overwritten. User class wi l l prompt the user for a model 
file name if this option is omitted. 

-output, -o 

Takes an output file name as an argument. If the output file exists the user wi l l 
be queried before it is overwritten. User class wil l prompt the user for an output 
file name if this option is omitted. Note that the output file merely contains a tabular 
form of the model data, plus some global system statistics. 

-help, -h 

Prints the command line format on how to invoke user class. 

-fuUhelp, -fh 

Prints this full help information on user class usage. 

-version, -v 

Prints user class version stamp plus the date and time that it was built. 

-verbose 

Tells user_class to print traces of its operations on the terminal. 

-force 

If this option is used, the user wil l not be prompted for confirmation before an 
output file is overwritten. Such files are model file and output file. 

-classtype, -ct 

Allows the user to do user classification. If the argument is WorkLoad, then the 
users w i l l be classified according to workload. Otherwise, the user can do arbitrary 
classification by user number. The default is classification by user number. 

- 69 -



APPENDIX B USER_CLASS 1.0 

A sample terminal session is given below, with user's typed input in boldface: 
user class -classtype user 
[ U S E R _ C L A S S R e v . 1 . 0 - 1 9 8 6 ] 
E n t e r r e d u c e d f i l e name ? ev60-3.red 
E n t e r o u t p u t f i l e name ? out 
E n t e r m o d e l o u t p u t f i l e name ? mod 

C L A S S I F Y I N G U S E R S : 
1 2 3 6 7 8 9 10 11 12 13 14 15 16 17 

18 19 2 0 21 22 2 3 2 4 2 5 26 2 7 28 29 3 0 31 32 
3 3 3 4 3 5 3 6 3 7 3 8 3 9 4 0 41 4 2 4 3 44 4 5 4 6 4 7 
4 8 49 5 0 51 52 5 3 5 4 5 5 5 6 5 7 5 8 59 6 0 61 62 
6 3 64 126 1 2 8 130 

E n t e r number o f u s e r c l a s s e s ? 6 
NOTE : f o r t h e f o l l o w i n g , t e r m i n a t e u s e r number l i s t w i t h ' $ ' 

E n t e r name f o r c l a s s 1? C L A S S 1 
E n t e r u s e r n u m b e r s f o r c l a s s 1? 6 12 18 24 30 36 42 48 54 60 $ 
E n t e r name f o r c l a s s 2 ? C L A S S 2 
E n t e r u s e r n u m b e r s f o r c l a s s 2 ? 7 13 19 25 31 37 43 49 55 61 $ 
E n t e r name f o r c l a s s 3 ? C L A S S 3 
E n t e r u s e r n u m b e r s f o r c l a s s 3 ? 8 14 20 26 32 38 44 50 56 62 $ 
E n t e r name f o r c l a s s 4 ? C L A S S 4 
E n t e r u s e r n u m b e r s f o r c l a s s 4 ? 9 15 21 27 33 39 45 51 57 63 $ 
E n t e r name f o r c l a s s 5 ? C L A S S 5 
E n t e r u s e r n u m b e r s f o r c l a s s 5 ? 10 16 22 28 34 40 46 52 58 64 $ 
E n t e r name f o r c l a s s 6 ? C L A S S 6 
E n t e r u s e r n u m b e r s f o r c l a s s 6 ? 11 17 23 29 35 41 47 53 59 $ 
E n t e r s a v e f i l e name ? sav 
R e a d i n g d a t a f r o m ' e v 6 0 - 3 . r e d ' . . . 

NOTES 

1. If a user number appears in more than one class, user_class will assign it 
to the class that it was first assigned. In other words, each user can belong 
to at most one class. A warning message wil l be printed whenever a class 
re-assignment is attempted. 

2. If there are users without any class assigned, user class wi l l automatically 
create a dummy class for them. 

- 70 -



APPENDIX B USER CLASS 1.0 

2.2.1 '. User Input 

User_class allows the user to save user classification input data into a file. This 
data informs user_class on how to classify the users in the reduced data. The 
format of the input/saved file is made up of parameter names followed by 1 or more 
parameter values. Each parameter name must be on a line. A /* delimits the start of 
a comment. The parameter names supported at the moment are: 

class type specifies how the user classification is going to be done. Possible 
values are user and workload. In the former case, user__class wi l l 
classify the users in the data according to their user numbers. In 
the latter case, the classification is done using weighted functions of 
the their workloads. 

no class the number of classes desired. 

class_name a user-specified name used to identify a class (apart from the class 
number chosen by user class). 

user class used to enumerate a list of user numbers belonging to a class. 

work load used to specify the upper limit of a class' weighted workload. 

A sample copy of a saved file is given below: 
c 1 a s s _ t y p e u s e r /• u s e r c l a s s i f i c a t i o n t y p e 
n o _ c 1 a s s 6 number o f u s e r c I a s s e s 
/ * U s e r c l a s s i f i c a t i o n by u s e r numbe r s 
c 1 a s s _ n a m e 1 CLASS1 
u s e r _ c 1 a s s 1 6 12 18 2 4 3 0 36 4 2 4 8 5 4 6 0 
c 1 a s s _ n a m e 2 C L A S S 2 
u s e r _ c l a s s 2 7 13 19 2 5 31 37 4 3 49 5 5 61 
c 1 a s s _ n a m e 3 C L A S S 3 
u s e r _ c 1 a s s 3 8 14 2 0 2 6 32 3 8 4 4 5 0 5 6 62 
c 1 a s s _ n a m e 4 C L A S S 4 
u s e r _ c 1 a s s 4 9 15 21 2 7 3 3 39 4 5 51 5 7 6 3 
c 1 a s s _ n a m e 5 C L A S S 5 
u s e r _ c 1 a s s 5 10 16 22 2 8 3 4 4 0 4 6 52 5 8 64 
c 1 a s s _ n a m e 6 C L A S S 6 
u s e r _ c 1 a s s 6 11 17 2 3 2 9 3 5 41 4 7 5 3 59 

- 71 -



APPENDIX B USER_CLASS 1.0 

2.2.2 User Output 

User class's output is essentially identical to that of condenser, except that the 
statistics are given on a per class per transaction basis. However, user class also gives 
system wide statistics that are not given by condenser. They are: 

System Throughput 
This is the system's throughput in the number of transactions per 
second. 

CPU utilization The percentage of CPU time used for true CPU usage, page faults 
and the total usage, assuming that the system has only one CPU. 

Page Fault Rate The number of true and virtual page faults per second, as well as 
the total page fault rate per second. 

Disk Utilization The percentage of the time when each disk is busy doing true I/Os 
and page fault I/Os. The total disk busy time is also given. 

Throughputs The throughputs or arrival rates of all job classes in the number of 
transactions per second. 

A description of all other statistics is given below: 

Response times Response times for all interactive users on a per class per transaction 
basis. 

Think times Think times for all interactive users on a per class per transaction 
basis. 

True CPU The pure CPU usage (i.e. excludes any CPU time used for page 
faults). This is given on a per class per transaction basis. 

Page Fault CPU The CPU usage for handling page faults only. This is given on a 
per class per transaction basis. 

True I/O The pure I/O operations excludes any I/O caused by page faults. 
Any disk queueing statistics are also excluded. This is given on a 
per class per transaction basis. 

Page Fault I/O The I/O operations caused by page faults only. Any disk queueing 
statistics are excluded. This is given on a per class per transaction 
basis. 

Disk I/O The disk true I/O operations on a per class per disk basis. Queueing 
at the disks are excluded in the statistics. 

Disk PF I/O The disk page fault I/O operations on a per class per disk basis. 
Queueing statistics at the disks are excluded. 

Lifetime Function This is unlike all the above statistics. The approximated b and c 
parameters wi l l be printed for all users. 

- 72 -



APPENDIX B USER_CLASS 1.0 

A sample copy of user_class's output file is given below: 

U S E R _ C L A S S OUTPUT 

M o n i t o r s t a r t e d o n 0 3 / 1 7 / 8 6 1 4 : 2 0 : 2 1 . 1 6 3 
M o n i t o r V e r s i o n : 1 on 4 . 2 B S D 
M o n i t o r U s e r N a m e : r o o t M o n i t o r U s e r N u m b e r : 7 5 
C P U : VAX 1 1 / 7 5 0 Memory : 4 0 9 6 p a g e s Maximum u s e r s : 
N u m b e r o f u s e r c l a s s e s : 3 
REMARK: 

7 8 

E l a p s e d t i m e = 8 8 1 2 . 7 3 9 s e c o n d s 
N u m b e r o f e v e n t s p r o c e s s e d = 1 2 2 7 7 0 
T o t a l b l o c k s / b u f f e r s r e a d = 8 1 7 

GLOBAL S Y S T E M S T A T I S T I C S 

S Y S T E M THROUGHPUT 

S T A T I S T I C 

C P U U T I L I Z A T I O N 
P A G E FAULT R A T E 
D I S K 0 
D I S K 1 
D I S K 8 
D I S K 9 

2 . 7 4 4 t r a n s a c t i o n s / s e c 

TRUE 

3 8 . 6 0 3 8 % 
0 . 0 0 4 4 
4 . 1 7 3 8 % 
0 . 1 3 8 5 % 
0 . 2 7 8 8 % 
0 . 0 0 6 4 % 

V I R T U A L 

0 . 3 4 9 3 % 
0 . 0 1 1 1 
0 . 1 6 1 2 % 
0 . 2 2 8 7 % 
0 . 2 1 4 2 % 
0 . 0 0 0 0 % 

TOTAL 

3 8 . 9 5 3 2 % 
0 . 0 1 5 6 
4 . 3 3 5 0 % 
0 . 3 6 7 2 % 
0 . 4 9 3 0 % 
0 . 0 0 6 4 % 

C L A S S 

1 
2 
3 

TOTAL 

THROUGHPUTS ( t r a n s a c t i o n s / s e c ) 

MICRO NORMAL LARGE 

1 . 3 1 6 
0 . 0 4 4 
0 . 0 0 0 
1 . 3 6 0 

1 . 0 6 0 
0 . 0 2 5 
0 . 0 5 0 
1 . 1 3 5 

0 . 1 1 4 
0 . 0 0 4 
0 . 1 3 1 
0 . 2 4 9 

O V E R A L L 

2 . 4 9 1 
0 . 0 7 2 
0 . 1 8 1 
2 . 7 4 4 

C L A S S I F I C A T I O N OF USERS 

USER C L A S S USER NUMBERS 

1 4 10 19 2 0 21 2 4 2 6 2 7 34 4 6 

2 4 9 5 0 

3 1 5 9 6 0 61 62 6 3 6 4 6 5 66 6 7 69 71 7 2 7 3 7 4 
3 7 5 7 6 7 7 7 8 

LARGE O V E R A L L 
AVERAGE N AVERAGE 

M I C R O 
C L A S S N A V E R A G E 

1 11600 0 . 1 5 9 
2 387 0 . 0 0 5 
3 0 0 . 0 0 0 

TOTAL 11987 0 . 1 5 4 

RESPONSE T I M E S ( s e c o n d s ) 

NORMAL 
N A V E R A G E 

9 3 4 4 0 . 4 4 5 1007 
2 1 7 0 . 0 2 9 31 
4 4 0 0 . 0 3 2 1155 

10001 0 . 4 1 8 2 1 9 3 

7 . 5 5 4 2 1 9 5 1 0 . 6 2 0 
1 . 1 6 4 6 3 5 0 . 0 7 0 
9 . 7 0 5 1 5 9 5 7 . 0 3 7 
8 . 5 9 7 2 4 1 8 1 1 . 0 2 9 

- 73 -



A P P E N D I X B USER_CLASS 1.0 

THINK T IMES ( s e c o n d s ) 

C L A S S 
MICRO 

N AVERAGE 
NORMAL 

N AVERAGE 
LARGE 

N AVERAGE 
O V E R A L L 

N AVERAGE 

1 11601 3 . 1 6 5 9 3 4 4 3 . 0 3 6 1 0 0 7 9 . 3 5 6 2 1 9 5 2 3 . 3 9 4 
2 3 8 7 7 . 4 7 5 2 1 7 5 1 . 8 6 2 31 1 1 0 . 7 8 2 6 3 5 2 7 . 6 8 7 
3 0 0 . 0 0 0 4 4 0 4 7 . 4 9 1 1 1 5 5 1 0 9 . 5 3 3 1595 9 2 . 4 1 7 

TOTAL 1 1 9 8 8 3 . 3 0 4 10001 6 . 0 5 2 2 1 9 3 6 3 . 5 5 0 2 4 1 8 2 9 . 9 0 4 

C L A S S 
MICRO 

N AVERAGE 

TRUE CPU BURST S T A T I S T I C S ( m s e c ) 

NORMAL 
N AVERAGE 

LARGE 
N AVERAGE 

O V E R A L L 
N AVERAGE 

1 0 . 5 2 8 3 . 4 6 5 0 . 4 2 7 2 1 . 9 1 8 0 . 2 1 7 
2 0 . 6 0 9 4 . 2 9 4 0 . 3 8 1 2 1 . 9 7 4 0 . 2 3 5 
3 0 . 0 0 0 0 . 0 0 0 0 . 3 1 4 2 4 . 4 8 2 1 4 . 6 9 0 

TOTAL 0 . 4 9 6 3 . 4 9 1 0 . 4 1 8 2 2 . 0 4 7 1 . 1 7 2 

1 3 7 . 4 7 3 1 . 1 7 2 3 5 . 0 1 8 
1 6 6 . 4 5 8 1 . 2 2 5 4 0 . 8 5 1 
1 0 4 . 8 5 8 1 5 . 0 0 4 1 0 3 . 1 7 5 
1 1 0 . 6 7 0 2 . 0 8 6 6 7 . 4 4 2 

PAGE FAULT CPU S T A T I S T I C S ( m s e c ) 

MICRO NORMAL LARGE O V E R A L L 
C L A S S N AVERAGE N AVERAGE N AVERAGE N AVERAGE 

1 0 . 0 0 2 2 . 4 3 2 0 . . 0 0 3 5 . 7 9 8 0 . 0 6 8 8 . 6 9 4 0 . . 0 7 3 8 . 3 8 4 
2 0 . 0 0 0 0 . 0 0 0 0 . 0 0 3 4 8 . 1 2 8 0 . . 0 6 9 1 8 . 2 2 3 0 . 0 7 2 1 9 . 5 6 7 
3 0 . . 0 0 0 0 . 0 0 0 0 . . 0 6 5 3 . 6 5 9 0 . . 1 9 9 5 0 . 6 6 7 0 . 2 6 3 3 9 . 1 3 9 

TOTAL 0 . 0 0 2 2 . 4 7 5 0 . 0 0 7 5 . 0 1 3 0 . . 0 7 7 1 6 . 1 1 7 0 . 0 8 6 1 4 . 8 7 2 

TRUE I / O WITHOUT QUEUE T I M E S ( m s e c ) 

MICRO NORMAL LARGE O V E R A L L 
C L A S S N AVERAGE N AVERAGE N AVERAGE N AVERAGE 

1 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 2 0 . 1 5 2 0 . .171 1 9 . 2 5 2 0 . 1 7 2 1 9 . 2 5 7 
2 0 . . 0 0 0 0 . 0 0 0 0 . 0 3 9 2 3 . 7 5 8 0 . . 1 8 6 2 2 . 3 9 3 0 . 2 2 5 2 2 . 6 3 2 
3 0 . . 0 0 0 0 . 0 0 0 0 . . 0 3 8 2 2 . 5 5 3 1 3 . 9 6 6 1 4 . 7 1 2 14, . 0 0 4 1 4 . 7 3 3 

TOTAL 0 . 0 0 0 0 . 0 0 0 0 . . 0 0 4 2 2 . 3 8 4 1 . . 0 8 2 1 5 . 4 0 0 1 . 0 8 6 1 5 . 4 2 8 

C L A S S 

PAGE FAULT I / O WITHOUT QUEUE T I M E S ( m s e c ) 

MICRO 
N AVERAGE 

NORMAL 
N AVERAGE N 

LARGE 
AVERAGE 

O V E R A L L 
N AVERAGE 

1 0 . 0 0 2 2 1 . 2 1 2 0 . 0 0 3 
2 0 . 0 0 0 0 . 0 0 0 0 . 0 0 3 
3 0 . 0 0 0 0 . 0 0 0 0 . 0 6 5 

TOTAL 0 . 0 0 2 2 1 . 2 1 2 0 . 0 0 7 

2 0 . 9 5 2 0 . 0 9 0 1 8 . 2 6 8 0 . 0 9 5 1 8 . 4 2 5 
1 8 . 1 8 2 0 . 1 5 1 1 9 . 2 8 7 0 . 1 5 4 1 9 . 2 6 4 
1 9 . 1 5 3 0 . 3 5 2 1 9 . 1 4 9 0 . 4 1 6 1 9 . 1 4 9 
1 9 . 8 6 1 0 . 1 0 9 1 8 . 4 9 2 0 . 1 1 8 1 8 . 6 2 2 

C L A S S 

1 

MICRO 
N AVERAGE 

0 . 0 0 2 

TRUE P A G E FAULT T I M E S ( m s e c ) 

NORMAL 
N AVERAGE 

LARGE 
N AVERAGE 

2 3 . 8 6 4 0 . 0 0 3 2 5 . 6 6 8 0 . 0 6 8 

O V E R A L L 
N AVERAGE 

3 0 . 0 7 1 0 . 0 7 3 2 9 . 6 9 8 

- 74 -



APPENDIX B USER_CLASS 1.0 

2 
3 

T O T A L 

0 . 0 0 0 
0 . 0 0 0 
0 . 0 0 2 

0 . 0 0 0 
0 . 0 0 0 

2 3 . 8 6 4 

0 . 0 0 3 
0 . 0 6 5 
0 . 0 0 7 

1 9 . 6 9 7 
2 2 . 1 8 3 
2 3 . 5 2 4 

0 . 0 6 9 
0 . 1 9 9 
0 . 0 7 7 

5 1 . 7 9 1 
4 3 . 0 5 5 
3 2 . 8 1 4 

0 . 0 7 2 
0 . 2 6 3 
0 . 0 8 6 

5 0 . 3 9 5 
3 7 . 9 3 7 
3 1 . 8 3 0 

M I C R O 

V I R T U A L P A G E F A U L T T I M E S ( m s e c ) 

N O R M A L L A R G E O V E R A L L 
C L A S S N A V E R A G E N A V E R A G E N A V E R A G E N A V E R A G E 

1 0 . 0 0 0 1 . 5 1 5 0 . 0 0 3 3 . 3 2 8 0 . . 1 4 7 2 . 3 0 3 0 . , 1 5 0 2 . 3 2 1 
2 0 . . 0 0 2 3 . 0 3 0 0 . . 0 7 6 2 . 3 9 9 0 . 4 4 7 2 . 1 1 3 0 . . 5 2 4 2 . 1 5 7 
3 0 . . 0 0 0 0 . 0 0 0 0 . 0 4 5 2 . 4 8 3 2 . 5 2 4 4 . 3 8 5 2 . 5 6 9 4 . 3 5 2 

T O T A L 0 . 0 0 0 1 . 8 1 8 0 . 0 0 7 2 . 7 4 6 0 . 3 1 1 3 . 4 0 9 0 . , 3 1 9 3 . 3 9 2 

T R U E D I S K I / O W I T H O U T Q U E U E T I M E S ( m s e c ) 
D I S K 0 D I S K 1 D I S K 8 D I S K 9 

C L A S S N A V E R A G E N A V E R A G E N A V E R A G E N A V E R A G E 

1 0 . . 1 1 4 1 9 . 2 7 8 0 . , 0 2 5 1 8 . 0 5 3 0 . . 0 3 3 1 9 . 9 1 9 0 . . 0 0 0 3 9 . 3 9 4 
2 0 . 1 9 2 2 1 . 9 0 8 0 . 0 0 0 0 . 0 0 0 0 . 0 3 3 2 6 . 8 4 0 0 . . 0 0 0 0 . 0 0 0 
3 1 3 . . 6 6 1 1 4 . 5 3 7 0 . 0 7 7 1 9 . 5 3 7 0 . . 2 6 0 2 3 . 1 5 2 0 . . 0 0 6 3 6 . 7 0 0 

T O T A L 1 . 0 1 0 1 5 . 0 6 1 0 . 0 2 8 1 8 . 3 2 7 0 . . 0 4 8 2 1 . 1 9 9 0 . . 0 0 0 3 7 . 7 7 8 

O V E R A L L 
C L A S S N A V E R A G E 

1 0 . 1 7 2 1 9 . 2 5 7 

2 0 . . 2 2 5 2 2 . 6 3 2 
3 1 4 . . 0 0 4 1 4 . 7 3 3 

T O T A L 1 . 0 8 6 1 5 . 4 2 8 

P A G E F A U L T D I S K I / O W I T H O U T Q U E U E T I M E S ( m s e c ) 
D I S K 0 D I S K 1 D I S K 8 O V E R A L L 

C L A S S N A V E R A G E N A V E R A G E N A V E R A G E N A V E R A G E 

1 0 . 0 3 3 1 6 . 8 1 0 0 . 0 3 3 1 8 . 7 7 9 0 . 0 3 0 1 9 . 7 9 6 0 . . 0 9 5 1 8 . 4 2 5 
2 0 . . 0 0 2 5 1 . 5 1 5 0 . 0 9 9 1 9 . 2 4 0 0 . . 0 5 4 1 8 . 3 6 0 0 . 1 5 4 1 9 . 2 6 4 
3 0 . 0 7 8 1 6 . 6 7 9 0 . . 1 7 6 1 9 . 5 7 3 0 . . 1 6 2 1 9 . 9 6 0 0 . 4 1 7 1 9 . 1 8 0 

T O T A L 0 . 0 3 5 1 6 . 8 3 2 0 . . 0 4 4 1 9 . 0 1 7 0 . 0 4 0 1 9 . 7 8 9 0 . . 1 1 8 1 8 . 6 2 9 

L I F E T I M E F U N C T I O N P A R A M E T E R S 
C L A S S B C 

1 2 . 7 5 0 0 e + 0 2 1 . 3 8 6 0 e + 0 2 
2 2 . 2 7 5 3 e + 0 2 6 . 4 1 0 3 e + 0 0 
3 8 . 2 0 8 8 < * 0 2 1 . 0 6 9 5 e + 0 2 

A V E R A G E L I F E T I M E S 
C L A S S A V G . L T I M E 

1 5 . 6 1 8 3 5 1 e + 0 2 
2 6 . 9 0 9 1 0 6 e + 0 2 
3 5 . 8 7 8 7 8 4 e + 0 3 

- 75 -



APPENDIX B USER_CLASS 1.0 

2.3 Program Interfaces 

User class interfaces with condenser and modeling tools via files. The interface 
with condenser is a binary file containing all the reduced and aggregate statistics. The 
interface with modeling tools is a text file containing parameter names and values 
required by these tools. A detail description of these interfaces is given in the next 
two subsections. 

However, the knowledgable user can also use the output from user_class for input 
to any other modelling tools. In this case, the user has to know how to interpret this 
output and translate to the input of any modelling tool that the user may be using. 

2.3.1 Condenser Interface 

The reduced file written by condenser must begin with header information 
necessary for user_class to determine the sizes of all following data within. The 
header also contains a simplified form of the event data header that condenser obtains 
from the event data. The format of the header is given below: 

N A M E SIZE DATA TYPE 
Month 2 bytes binary short 
Day 2 bytes binary short 
Year 2 bytes binary short 
Hour 2 bytes binary short 
Minutes 2 bytes binary short 
Seconds 2 bytes binary short 
Ticks 2 bytes binary short 
Monitor version 2 bytes binary short 
Monitor user 2 bytes binary short 
Monitor user name 32 bytes ASCII 
UNIX version stamp 16 bytes binary short 
CPU type/name 16 bytes binary short 
Memory size 2 bytes binary short 
Number of users 2 bytes binary short 
Number of events 2 bytes binary short 
Number of buffers 2 bytes binary short 
Length of remark 2 bytes binary short 
Elapsed time 4 bytes double 
Maximum user number 2 bytes binary short 
Maximum disk number 2 bytes binary short 
Remark varying ASCII 
Recorded users 2 * maxuser bytes binary short 

- 76 -



APPENDIX B USER_CLASS 1.0 

Following the header are all the statistical matrices and arrays. Their sizes are 
dependent oh the maximum user number and maximum disk number (which are given 
in condenser's header). The details of the statistical data are given below: 

S T A T I S T I C D IMENSION DATA T Y P E D E S C R I P T I O N 
r e c o r d e d m a x _ u s e r s h o r t f 1 a g s f o r r e c o r d e d u s e r s 
r e s p _ t o t NTRANS by t t i o x _ u s e r d o u b l e t o t a l r e s p o n s e t i m e s 
r e s p _ n NTRANS by n t a x _ u s e r 1 o n g number o f t r a n s a c t i o n s 
t h i n k _ t o t NTRANS by m a x _ u s e r d o u b l e t o t a l t h i n k t i m e s 
t h i n k _ n NTRANS by n i a x _ u s e r 1 o n g t o t a l i d l e t r a n s a c t i o n s 
i o _ n o q _ t o t NTRANS by m a x _ u s e r d o u b l e t o t a l I / O w i t h o u t q u e u e u s a g e 
i o _ n o q _ n NTRANS by m a x _ u s e r l o n g t o t a l I / O s w i t h o u t q u e u e 
p f _ i o _ n o q _ t o t NTRANS by n i o x _ u s e r d o u b l e t o t a l P F I / O u s a g e 
p f i o _ n o q _ n NTRANS by m a x _ u s e r 1 o n g t o t a l P F I / O s 
c p u _ t o t NTRANS by m o x _ u s e r d o u b l e t o t a l t r u e CPU b u r s t t i m e 
c p u _ n NTRANS by m a x _ u s e r l o n g t o t a l n o . o f t r u e CPU b u r s t s 
p f _ c p u _ t o t NTRANS by m a x _ u s e r d o u b l e t o t a l P F C P U b u r s t t i m e 
p f _ c p u _ n NTRANS by m a x _ u s e r 1 o n g t o t a l no o f P F CPU b u r s t s 
d i s k _ n o q _ t o t m a x _ d r i v e by m o x _ u s e r d o u b l e t o t a l t r u e d i s k I / O u s a g e 
d i s k _ n o q _ n m a x _ d r i ve by m a x _ u s e r 1 o n g t o t a l no o f t r u e d i s k I / O s 
p f _ d i s k _ n o q _ t o t m o x _ d r i v e by m a x _ u s e r d o u b l e t o t a l P F d i s k I / O u s a g e 
p f _ d i s k _ n o q _ n m a x _ d r i v e by m o x _ u s e r 1 o n g t o t a l no o f P F d i s k I / O s 
p f _ n NTRANS by n i o x _ u s e r 1 o n g t o t a l t r u e P F s 
v p f _ n NTRANS by m a x _ u s e r l o n g t o t a l v i r t u a l P F s 
I f t b m a x _ u s e r d o u b l e b p a r a m e t e r 
1 f t c m a x _ u s e r d o u b l e C p a r a m e t e r 

- 77 -



APPENDIX B USER_CLASS 1.0 

2.3.2 Modeling Tools Interface 

The model data file from user class to be used by the modeling tools consists of 
parameter values and names. These parameters are the union of the input parameter 
requirements of these tools. The contents of the file is line-oriented, and each line must 
conform to the following format: 

Parameter Name Parameter Value{s) ; Comments 

Note that each parameter name can have one or more values. A sample subset of the 
model data file is given below: 
/»*»»»»»**»»»••»»»*•»«»»*«*•»•»»»••»•«»••»»»»»»*»•»••*»»«*/ 
/ • P R O J E C T I O N P A R A M E T E R S * / 

s i m _ c p u _ t y p e P 8 5 0 / * C P U T y p e ( p r o j e c t i o n ) 
s i m _ m e m o r y _ s i z e 4 0 9 5 / * M e m o r y s i z e ( p r o j e c t i o n ) i n p a g e s 
s i m _ t i m e 8 8 1 3 / • S i m u l a t i o n t i m e ( s e c o n d s ) 
/»«»»*•»»«•»»»»»•»*»»••»••»*•»•*»»•*****•**»••»»*••••»»*»»/ 
/ • G E M D A T A P A R A M E T E R S * / 
/»»»*»»**»»»»••»»*»•*»»»»*»*••»••»»«*••«***»»*•••»»•»•»»*»/ 
c p u _ t y p e 
m e m o r y _ s i z e 
n _ c o n t 
n _ d i s k 
n _ d i s k 
n _ c I a s s 
/»*•»»•»•«»»•••»»••••«»»*•• 
/ • U S E R C L A S S 
/ • » » • » » • » » * * • • • * • * » » • » * * • » * 

u s e r c l a s s 1 T E R M I N A L 

P 8 5 0 / * C P U T y p e ( m e a s u r e d d a t a ) 
4 0 9 5 / * M e m o r y s i z e ( m e a s u r e d d a t a ) i n p a g e s 

2 / • N o . o f d i s k c o n t r o l l e r s 
0 2 / • N o . o f d i s k s i n c o n t r o l l e r 0 

2 2 / • N o . o f d i s k s i n c o n t r o l l e r 2 
3 / * N u m b e r o f u s e r c l a s s e s 

* • • • • * • • * • * » * • • • • • » • • • • • • • • • * • / 

1 P A R A M E T E R S • / 
• » • » « » » » » » » » • • « « » » » • » • • • • » « • • * / 

n _ u s e r s 
I f t b 
I f t c 
c p u 
c p u _ n 
c p u 
c p u _ n 
c p u 
c p u _ n 
p f _ c p u 
p f _ c p u _ n 
p f _ c p u 
p f _ c p u _ n 
p f _ c p u 
p f _ c p u _ n 
i o 
i o _ n 
i o 
i o _ n 
i o 

i o _ n 
p f _ i o 

p f i o _ n 

p f _ i o 
p f i o _ n 

p f _ i o 
p f _ i o _ n 
t h i n k 

1 0 
2 . 7 5 0 0 e + 0 2 
1 . 3 8 6 0 e + 0 2 

/ n u m b e r o f u s e r s i n c l a s s 

1 3 4 6 4 6 /• a v g C P U b u r s t t i m e p e r m i c r o t r a n s a c t i o n 

1 0 5 2 8 5 /• n o o f C P U b u r s t s f o r m i c r o t r a n s a c t i o n s 
2 2 1 9 1 8 5 /• a v g C P U b u r s t t i m e p e r n o r m a l t r a n s a c t i o n 

2 0 4 2 6 6 /• n o o f C P U b u r s t s f o r n o r m a l t r a n s a c t i o n s 

3 1 3 7 4 7 3 0 /• a v g C P U b u r s t t i m e p e r l a r g e t r a n s a c t i o n 

3 0 2 1 7 3 /• n o o f C P U b u r s t s f o r l a r g e t r a n s a c t i o n s 

1 2 4 3 2 0 /• a v g P F C P U b u r s t t i m e p e r m i c r o t r a n s a c t i o n 

1 0 0 0 2 2 /• n o o f P F C P U b u r s t s f o r m i c r o t r a n s a c t i o n s 

2 5 7 9 7 6 /* a v g P F C P U b u r s t t i m e p e r n o r m a l t r a n s a c t i o n 

2 0 0 0 3 1 /* n o o f P F C P U b u r s t s f o r n o r m a l t r a n s a c t i o n s 

3 8 6 9 3 7 / • o v g P F C P U b u r s t t i m e p e r l a r g e t r a n s a c t i o n 

3 0 0 6 7 8 /• n o o f P F C P U b u r s t s f o r l a r g e t r a n s a c t i o n s 

1 0 0 0 0 0 /* o v g I / O s e r v i c e t i m e p e r m i c r o t r a n s a c t i o n 

1 0 0 0 0 0 /• n o o f I / O s f o r m i c r o t r a n s a c t i o n s 

2 2 0 1 5 1 5 /• a v g I / O s e r v i c e t i m e p e r n o r m a l t r a n s a c t i o n 

2 0 0 0 0 9 /• n o o f I / O s f o r n o r m a l t r a n s a c t i o n s 

3 1 9 2 5 2 0 /• o v g I / O s e r v i c e t i m e p e r l a r g e t r a n s a c t i o n 

3 0 1 7 1 4 /• n o o f I / O s f o r l a r g e t r a n s a c t i o n s 

1 2 1 2 1 2 1 /• a v g P F I / O s e r v i c e t i m e p e r m i c r o t r a n s a c t i o n 

1 0 0 0 2 2 /• n o o f P F I / O s f o r m i c r o t r a n s a c t i o n s 

2 2 0 9 5 2 4 /• o v g P F I / O s e r v i c e t i m e p e r n o r m a l t r a n s a c t i o n 

2 0 0 0 3 2 /• n o o f P F I / O s f o r n o r m a l t r a n s a c t i o n s 

3 1 8 2 6 7 7 /• a v g P F I / O s e r v i c e t i m e p e r l a r g e t r a n s a c t i o n 

3 0 0 9 0 1 /• n o o f P F I / O s f o r l a r g e t r a n s a c t i o n s 

1 3 1 6 5 2 /• a v g T h i n k t i m e p e r m i c r o t r a n s a c t i o n 

- 78 -



APPENDIX B USER_CLASS 1.0 

t h i n k _ n 1 1 1 6 0 1 /« N o . o f t r a n s f o r m i c r o t r a n s a c t i o n s 

t h i n k 2 3 . 0 3 6 3 / • a v g T h n k t i m e p e r n o r m a l t r a n s a c t i o n 
t h i n k _ n 2 9 3 4 4 / • N o . o f t r a n s f o r n o r m a l t r a n s a c t i o n s 
t h i n k 3 9 . 3 5 6 3 / * a v g T h i n k t i m e p e r l a r g e t r a n s a c t i o n 

t h i n k _ n 3 1 0 0 7 / • N o . o f t r a n s f o r l a r g e t r a n s a c t i o n s 
d i s k 0 1 9 . 2 7 8 0 /* m e a n / 0 s e r v i c e t i m e f o r d i s k 0 

d i s k _ n 0 0 . 1 1 4 3 /* t o t a l r a t i o ) I / O s f o r d i s k 0 

d i s k 1 1 8 . 0 5 3 5 /* m e a n 

/0 s e r v i c e t i m e 

f o r d i s k 1 

d i s k _ n 1 0 . 0 2 4 7 /• t o t a l [ r a t i o ) I / O s f o r d i s k 1 

d i s k 8 1 9 . 9 1 8 8 /• m e a n : / 0 s e r v i c e t i m e f o r d i s k 8 
d i s k _ n 8 0 . 0 3 3 0 /* t o t a l ' r a t i o ) l / 0 s f o r d i s k 8 

d i s k 9 3 9 . 3 9 3 9 /• m e a n : / 0 s e r v i c e t i m e f o r d i s k 9 

d i s k _ n 9 0 0 0 0 3 /• t o t a l [ r a t i o ) l / 0 s f o r d i s k 9 

p f _ d i s k 0 1 6 . 8 1 0 2 / • m e a n : / 0 s e r v i c e t i m e f o r d i s k 0 
p f _ d i s k _ n 0 0 0 3 2 7 /• t o t a l [ r a t i o ) I / O s f o r d i s k 0 

p f _ d i s k 1 1 8 7 7 8 6 /• m e a n I/O s e r v i c e t i m e f o r d i s k 1 

p f _ d i s k _ n 1 0 . 0 3 2 6 /• t o t a l [ r a t i o ) I / O s f o r d i s k 1 

p f _ d i s k 8 1 9 7 9 5 5 /• m e a n I / O s e r v i c e t i m e f o r d i s k 8 

p f _ d i s k _ n 8 0 0 3 0 1 /• t o t o l [ r a t i o ) l / 0 s f o r d i s k 8 

p f _ d i s k 9 0 0 0 0 0 /• m e a n I/O s e r v i c e t i m e f o r d i s k 9 

p f _ d i s k _ n 9 0 0 0 0 0 /• t o t a l [ r a t i o ) l / 0 s f o r d i s k 9 

- 79 -



APPENDIX B USER_CLASS 1.0 

3. Program Design 

3.1 Design Overview 

The main objective of user_class is to collect groups of users and recompute the 
associated statistics for each group. An general view of the top level algorithm is given 
below: 

P r o c e s s c o m m a n d l i n e 
C l a s s i f y u s e r s t o g r o u p s 

F o r e a c h g r o u p o f u s e r s : 

a d d e a c h o f t h e i r t o t a l u s a g e s t a t i s t i c 
a d d e a c h o f t h e i r t o t a l c o u n t s t a t i s t i c 
R e s u l t i n g c l a s s s t a t i s t i c s i s t o t a l u s a g e / t o t a l c o u n t s 

C o m p u t e a g g r e g a t e s t a t i s t i c s o n a p e r c l a s s b a s i s 
C o m p u t e a v e r a g e s 

O u t p u t a l l c l a s s s t a t i s t i c s i n o u t p u t f i l e 
O u t p u t m o d e l d a t a i n t h e m o d e l f i l e 

3.2 Internal Data Structures 

The foDowing is the header of the reduced data produced by condenser. 

t y p e d e f s t r u c t h e a d e r t y p e ) 
s h o r t m o n t h , /• m o n t h o f d a t e • / 

d a y , /• d a y o f d a t e •/ 
y e a r , /• y e a r o f d a t e */ 
h o u r s , /• h o u r s o f t i m e ( m i l l i t a r y ) •/ 
m i n u t e s . /• m i n u t e s o f t i m e •/ 
s e c o n d s , /• s e c o n d s o f t i m e •/ 
t i c k s ; /• t i c k s o f t i m e •/ 

s h o r t m o n i t o r _ v e r s i o n . /* M o n i t o r v e r s i o n n u m b e r •/ 
m o n i t o r _ u s e r ; /* M o n i t o r u s e r n u m b e r */ 

c h a r ffioni t o r _ u n o m e [ 3 2 ] ; /• M O n i t o r u s e r n a m e •/ 
c h a r o s _ v e r s i o n [ 1 6 ] , /• U N I X v e r s i o n s t a m p •/ 

c p u t y p e [ 1 6 ] ; /• C P U n a m e / t y p e •/ 
s h o r t m e m o r y , /* M e m o r y s i z e •/ 

n u s e r s , /• N o . o f c o n f i g u r e d u s e r s •/ 
n e v e n t s . / • t o t a l n o . o f e v e n t s •/ 
n b u f f e r s . /• t o t a l n o . o f b u f f e r s •/ 
r I e n ; /* l e n g t h o f m o n i t o r r e m a r k •/ 

d o u b l e e l a p s e d ; /• e l a p s e d t i m e •/ 
s h o r t m a x u s e r , / • m a x i m u m u s e r n o . i n d a t a •/ 

m a x d i s k ; / • m a x i m u m d i s k n o . i n d a t a •/ 
{ R E D U C E D _ H E A D E R ; 

- 80 -



APPENDIX B USER_CLASS 1.0 

3.3 Module Design 

main(argc#rgv) - Level 0 
The main program. Does command line processing and calls level 1 
routines. 

i n t a r g c ; 
c h a r * * a r g v ; 

P r o c e s s c o m m a n d l i n e o p t i o n s 
U s e r _ I n p u t ( ) ; 
G e t _ D o t a ( ) ; 
C l a s s i f y ( ) ; 
A g g r e g o t e Q ; 
A v e r a g e ( ) ; 
M o d e l _ O u t p u t ( ) ; 
P r i n t _ O u t p u t ( ) ; 

/ * t o p r o c e s s u s e r ' s t e r m i n a l i n p u t » / 
/ * I n p u t d a t a f r o m condenser «/ 
/ * C l a s s i f y t h e u s e r s * / 
/ • r e c o m p u t e o n a p e r c l a s s b a s i s • / 

/ • c a l c u l a t e a v e r a g e v a l u e s • / 

/ • P r i n t o u t m o d e l d a t a * / 
/ • P r i n t user class o u t p u t s t a t i s t i c s * / 

User Input(ifname, of name, rfname) - Level 1 
Simply prompts the user for the appropriate file names. Also, 
prompts for window range if the appropriate flags are turned on. 

c h a r • i f n a m e , * o f n a m e , " r f n a m e ; 

i f i n p u t f i l e n a m e ( i f n a m e ) n o t g i v e n 
p r o m p t t h e u s e r 

i f o u t p u t f i l e n a m e ( o f n a m e ) n o t g i v e n 
p r o m p t t h e u s e r 

i f r e d u c e d f i l e n a m e ( r f n a m e ) n o t g i v e n 

p r o m p t t h e u s e r 
i f w i n d o w _ t i m e , p r o m p t f o r t i m e r a n g e 
i f w i n d o w _ b u f f e r , p r o m p t f o r b u f f e r r a n g e 

Get_Data{) - Level 1 
Read in all the reduced data from the reduced file. 

Classify() - Level 1 
Does the actual classification here. The resulting statistics wi l l be in 
separate structures given above. During classification, the statistics of 
users in a common class are summed. For lifetime function 
parameters, however, the average values of a single class users are 
used to generate numerous sets of data points for the orthogonal 
approximation to produce a resulting set of parameters. 

Aggregate^) - Level 1 
Recompute the aggregate statistics on a per class basis. 

Average^) - Level 1 
Compute average values of all statistics, replacing the total values 
stored. 

Model_Output{) - Level 1 
Print the average statistics to the model data file, together with 
model configuration data. 

Print__Output{) - Level 1 
Calculate and print global system statistics. Print all average 

- 81 -



APPENDIX B USER_CLASS 1.0 

statistics to the output file. 

3.4 Design Issues 

The major concern in the design of user class is the size of the structures for 
storing all statistics. Because condenser can provide information on limits of these 
structures in the reduced file header, user class can easily allocate the required space 
for the structures dynamically. This avoids the use of static structures (which 
increases the startup time of user class) and minimizes memory requirements. 

During user classification, the b and c parameters provided by condenser for each 
user wil l be averaged for each of the 100 data points generated using the lifetime 
curve function. 

3.5 Implementation Language 

The language used to develop user class is the C programming language. The 
main reasons for using this language is the need for bit and byte manipulation, the 
need for address manipulation, and that it is highly portable among UNLX systems. 

- R-> -



APPENDIX C QNETS 1.0 

1. Proposal 

Before reading this document, the reader must be familiar with the model data 
provided by user class. Also, a qnets user should also be familiar with general 
capacity planning techniques. 

This document describes the development of qnets, an analytical modeling tool that 
accepts model data from user_class and provides performance statistics of the system 
to be modeled. 

1.1 Goals and Non-Goals 

The goal of qnets is to be able to model as many systems as possible. Besides 
being general, the tool should provide results with sufficient accuracies. The input to 
qnets is the model data provided by user class. 

The analytical algorithm used by qnets is Linearizer (see Linearizer: A Heuristic 
Algorithm for Queueing Network Models of Computing Systems, CACM 25, 2 (April 
1982), 126-134 by Mandy Chandy et. al). Memory modeling is also added to qnets 
(note that linearizer does not model memory). 

Because qnets is based on linearizer, the user should be aware of the algorithm's 
restrictions. In particular, he should know whether or not qnets can be used to model 
the system under study. 

- 83 -



APPENDIX C QNETS 1.0 

2. Program Function 

2.1 Terminology 

Performance indices 
The set of statistics that serves to calibrate a system's performance. 
Examples are utilizations, throughputs and response times. 

Model validation The purpose of model validation is to ensure that a model 
representation (for example, a mathematical model) of a system 
correctly represents the system. The process involves validating the 
performance indices given by the model with the measured statistics 
of the system. 

Workload characterization 
The manner in which we represent workload. In general, workload 
characteristics include CPU, I/O and memory demands. 

Performance Projection 
A validation model is evaluated using a representative workload to 
determine the performance indices of the projected system. 

2.2 User Interface 

To invoke qnets, the command line must conform to the following format (with 
abbreviations in boldface): 

qnets [-input <file>] [-output <file>] [-help] [-fullhelp] 
[-version] /-force7 

If no options are given, qnets wi l l prompt the user for the necessary set of input 
options. 

Qnets supports the following options: 

-input, -i -output, -o 
-help, -h -version, -v 
-fullhelp, -fh -force 

The following screens summarize all the qnets options. 

-input, -i 

Takes a file name as an argument (for input file). The input file should be saved 
by a previous qnets run, and should contain lists of user for all classes. If this option 
is omitted, qnets wil l prompt the user for classification information. 

-output, -o 

Takes an output file name as an argument. If the output file exists the user w i l l 
be queried before it is overwritten. Qnets w i l l prompt the user for an output file 

- 84 -



APPENDIX C QNETS 1.0 

name if this option is omitted. 

-help, -h 

Prints the command line format on how to invoke qnets. 

-fidlhelp, -fh 

Prints this full help information on qnets usage. 

-version, -v 

Prints qnets version stamp plus the date and time that it was built. 

-force 

If this option is used, the user wi l l not be prompted for confirmation before an 
output file is overwritten. Such files are model file and output file. 

A sample terminal session is given below, with user's typed input in boldface: 

qnets 
[ Q N E T S R e v . 1 . 0 - 1 9 8 6 ] 

E n t e r i n p u t f i l e n a m e ? model data 
E n t e r o u t p u t f i l e n a m e ? OUtfile 

2.2.1 User Input 

The input file to qnets must be produced by user_class. Details of the input file 
and format are given in Appendix B. 

- R S -



APPENDIX C QNETS 1.0 

2.2.2 User Output 
The output produced by qnets consists of statistics identical to the measured 

statistics produced by user_class. They are as follows: 

System Throughput 
This is the system's throughput in the number of transactions per 
second. 

Page Fault Rate 

Utilizations 

Throughputs 

The number of page faults per second. 

The percentage of the time when each service is busy servicing jobs. 

The throughputs or arrival rates of all job classes in the number of 
transactions per second. 

A sample copy of qnets's output file is given below (device 0 is the CPU): 
C P U : V A X 1 1 / 7 5 0 M e m o r y : 4 0 9 6 p o g e s M a x i m u m u s e r s : 7 8 
N u m b e r o f u s e r c l a s s e s : 3 
N u m b e r o f d i s k s : 4 

C L A S S D E V I C E 0 

3 5 . 0 1 7 4 
4 0 . 8 4 7 5 

1 0 3 . 1 7 5 4 

S E R V I C E T I M E S ( m s e c ) 

D E V I C E 1 D E V I C E 2 D E V I C E 3 

1 8 . 5 2 4 3 
2 2 . 2 7 7 4 
1 4 . 5 9 2 9 

1 8 . 5 3 9 2 
1 9 . 2 4 0 0 
1 9 . 5 6 9 9 

1 9 . 8 4 6 8 
2 0 . 8 1 4 9 
2 0 . 7 7 5 6 

D E V I C E 4 

3 9 . 3 9 3 9 
0 . 0 0 0 0 

3 6 . 7 0 0 3 

C L A S S D E V I C E 0 

1 . 1 7 2 4 
1 . 2 2 5 1 

1 5 . 0 0 3 8 

D E V I C E 1 

0 . 1 6 4 6 
0 . 1 9 4 5 

1 4 . 0 2 6 6 

V I S I T R A T I O S 

D E V I C E 2 D E V I C E 3 

0 . 0 7 4 8 0 . 0 7 9 3 
0 . 1 5 0 6 0 . 1 1 4 3 
0 . 8 9 7 9 1 . 0 1 6 1 

D E V I C E 4 

0 . 0 0 0 3 
0 . 0 0 0 0 
0 . 0 0 5 6 

P R O J E C T E D S T A T I S T I C S 

S Y S T E M T H R O U G H P U T = 3 . 2 1 7 9 6 6 t r a n s / s e c 

P A G E F A U L T R A T E « 0 . 0 1 9 0 2 7 p e r s e c 

C L A S S T H I N K ( s e c ) 

0 3 . 3 9 4 3 
1 2 7 . 6 8 6 8 
2 " 9 2 . 4 1 7 5 

R E S P O N S E ( s e c ) T H R U P U T ( / s e c ) 

0 . 0 0 6 2 2 . 9 4 0 7 
0 . 0 0 9 8 0 . 0 7 2 2 
0 . 2 5 5 0 0 . 2 0 5 0 

C E N T E R U T I L I Z A T I O N 

0 4 4 . 1 7 2 4 % 

1 5 . 1 2 4 3 % 

- 86 -



APPENDIX C QNETS 1.0 

2 0 . 7 8 9 0 % 
3 0 . 9 1 2 6 % 
4 0 . 0 0 7 7 % 

Q U E U E L E N G T H S 

C L A S S D E V I C E 0 D E V I C E 1 D E V I C E 2 D E V I C E 3 D E V I C E 4 

0 9 . 9 8 1 8 0 . 0 0 9 4 0 . 0 0 4 1 0 . 0 0 4 7 0 . 0 0 0 0 

1 1 . 9 9 9 3 0 . 0 0 0 3 0 . 0 0 0 2 0 . 0 0 0 2 0 . 0 0 0 0 
2 1 8 . 9 4 7 7 0 . 0 4 4 2 0 . 0 0 3 6 0 . 0 0 4 4 0 . 0 0 0 0 

- 87 -



APPENDIX C QNETS 1.0 

3. Program Design 

3.1 Design Overview 

The modeling algorithm used in qnets is known as Linearizer. The overall design 
of qnets is as follows: 

P r o c e s s c o m m a n d l i n e 
R e a d i n i n p u t f i l e 

C a l c u l a t e p o g e f a u l t r a t e f r o m l i f e t i m e f u n c t i o n 
I n c l u d e d i s k v i s i t s d u e t o p a g e f a u l t t o d i s k v i s i t r a t i o 
I n v o k e L i n e o r t z e r 
O u t p u t s t a t i s t i c s 

3.2 Internal Data Structures 

The following is the header of the reduced data produced by condenser: 

# d e f i n e M A X C E N T E R 3 0 

# d e f i n e M A X C L A S S 1 0 

t y p e d e f d o u b l e M A T R I X [ M A X C L A S S ] [ M A X C E N T E R ] ; 
t y p e d e f d o u b l e U C M A T [ 5 ] [ M A X C L A S S ] ; 
t y p e d e f d o u b l e D A R R f M A X C L A S S ] ; 
t y p e d e f l o n g L A R R [ M A X C L A S S ] ; 

/ • s e r v i c e t i m e s p e r c l a s s p e r d e v i c e * / 
/ * v i s i t r a t i o s p e r c l a s s p e r d e v i c e * / 
/ * r e s p o n s e t i m e s p e r c l a s s • / 
/ * q u e u e l e n g t h s p e r c l a s s p e r d e v i c e * / 

M A T R I X S e r _ t , 
V s t _ r . 
R e s . 
Q . 

/ • i n p u t p a r a m e t e r s * / 
d i s k , d i s k _ n , p f _ d i s k , p f _ d i s k _ n ; 

U C M A T c p u , c p u _ n , i o , i o _ n , p f _ c p u , p f _ c p u _ n , t h i n k 
D A R R T h k _ t , / * t h i n k t i m e s p e r c l a s s 

T h p t , / * t h r o u g h p u t s p e r c l a s s 
p f s , / • p a g e f a u l t r a t e s p e r c l a s s 
N _ u s r , / » s i z e o f e a c h j o b c l a s s 
I f t b , I f t c ; 

t h i n k n : 

•/ 
*/ 

- 88 -



APPENDIX C QNETS 1.0 

3 .3 Module Design 

nwin(argcjirgv) - Level 0 
The main program. Does command line processing and calls level 1 
routines. 

i n t o r g c ; 
c h o r * » o r g v ; 

P r o c e s s c o m m o n d l i n e o p t i o n s 

R e s t o r e ( ) ; / * R e a d i n i n p u t f i l e » / 

S i m p l i f y ^ ) ; / » C o m p u t e p a g e f a u l t a n d d i s k V R • / 
L i n z r Q ; / • I n v o k e L i n e a r i z e r • / 

P r i n t _ O u t p u t ( ) ; / * P r i n t a l l s t a t i s t i c s * / 

Restore{) - Level 1 
Read in all the input parameters from the input file. Store all data 
into arrays. 

Simplifyi) - Level 1 
Aggregate transaction subclass statistics. Compute page fault rate 
from lifetime function. Compute disk visits due to page fault. 
Recompute all disk visit ratios. 

Print_Output{) - Level 1 
Print all output statistics given by LinzrQ. 

3.4 Design Issues 

Unlike user class and condenser, all the data structures used in qnets are static 
arrays. This is because the size of the arrays are comparatively smaller. If the user 
requires to model more service centers or more job classes that qnets currently supports, 
the constants MAXCENTER and MAXCLASS should be increased accordingly. 

3.5 Implementation Language 

The language used to develop qnets is the C programming language. The main 
reason for using this language is that it is portable among UNIX systems. 

- 89 -


