CHARACTERIZING USER WORKLOAD FOR CAPACITY
PLANNING

By
JEE FUNG PANG
B.Sc., University of British Columbia, 1982

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

in
THE FACULTY OF’ GRADUATE STUDIES
(DEPARTMENT OF COMPUTER SCIENCE)

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA
October 1986
© Jee Fung Pang, 1986

In presenting this thesis in partial fulfilment of the
requirements for an advanced degree at the University

of British Columbia, I agree that the Library shall make
it freely available for reference and study. I further
agree that permission for extensive copying of this thesis
for scholarly purposes may be granted by the head of my
department or by his or her representatives. It is
understood that copying or publication of this thesis

for financial gain shall not be allowed without my written

permission.

Department of <1WW%&&¢V/ ggmiﬁﬂuL/

The University of British Columbia
1956 Main Mall

Vancouver, Canada

V6T 1Y3

e L[[

{

DE-6 (3/81)

ABSTRACT

With the widespread use of computers in today’s industry, planning system
configurations in computer sites plays an increasingly important role. The process
of planning system configurations or determining hardware requirements for new
or existing systems is commonly known as capacity planning among performance

researchers and analysts.

This thesis presents a refined capacity planning process for centralized
computing system, with special attention to characterizing user workload for
capacity planning. The objective is to make the entire process simpler for the
computer user community, while relieving the capacity planner or performance
analyst from having to rely on guesswork for the user workload performance

factors.

The process is divided into four phases; namely, data collection, data
reduction, workload/user classification and, modeling and performance analysis.
The second and third phases are collectively known as user workload

characterization.

Thg main objective of our workload characterization is to avoid any guess
work on the performance factors that cannot be easily measured. The results of
the workload characterization process are specifically meant to be used in
analytic and simulation modeling. Three software tools required for the data
reduction, workload/user classification and performance analysis phases have

been developed and are discussed in the thesis.

ii

CONTENTS

1. INETOAUCHION wevereeeeeeeeeesieeeeeeeerereseaensnsneeessssseensossnsasesessns e eeeeeerererrereeeaaaas

2. The Capacity Planning Processccccoveiiiiiiiuiiiiiiueniinineciniininccensennnnnne
D20 & T W0 € {011 4 U AN PPN
2.2 The Capacity Planning Phasescccoooveiiivrimiiiiimiiniiiniiiiiniiiic e
2.2.1 Data ColleCtioncoevveriiiiiiiiiiiiiiiiiiiiriiciiiinn e
2.2.2 Data Reductionccceveiuiiiiiiiiiiniiiiniiiic ittt et e
2.2.3 Workload/User Classificationccccevvevueiniiinienniinceniienieneenie e,

2.2.4 Modeling and Performance Analysisc.cccccoveiveniinmniiiiniiiiniiiicininennnenn

3. Workload Characterizationc.cceceiiiiieiinnnnnn. ereeerenreeetne et sasat s aaenns
3.1 ReqUITemMENtS ...cccirueiiiiiiumniiiiiiiiiiiiiiiii it rsareseenressssrrnnssssasssasanassenns
3.2 Workload Representationcc..c.ccccccniiiiciiminiiiiimiiniiinnnnenenceneennen.
3.2.1 Measured StatiStiCscccecerererrrerrriiiriiriiiiiiiiitie et seranassessens
3.2.2 Configuration Datacccccceveeeeiirieeeniiiiiiiiiiiiiii e
3.2.3 Workload Data ..ccccceeveeueiiiieininniiiiiiiiniinninneeenins e

3.3 TransSaction ClaSSeS ..icivicciersreceirerrreirasnrmsenceseressessssnsssasensasrsessassssesrsesnsases

4. Resource Demand Representationcccccevveiiivinmmiiiniiiinnnininiicinnnnn
4.1 EVENL TTACE .eierrerieirntuieeerrreneeaerrnssrsesanauseseetsstseatesnesessnssssessassessenssnssssses
4.2 Data RedUCtioncceiiceeireireemumieiniiiiieiiiiiiseeeeeterrneinises s e eeen s seseseees

4.3 Workload ClassifiCation ..c..iveeeeriereeieiiiiiiesreeeerreeserseeseesesssnsasronsassssessssssses

iii

10

10

12

12

14

14

15

16

18

- 20

20

22

24

5. Memory Representationcccceeeeeeveereeeiveessenreesuesseesseesserssnessesssessnesnnes

5.1 Data CoOllECtION ieereereerereerrnrnsesseseseceensessnsssssessussnmenmnsseassssssssenssssssensaneses ;

5.2 Curve Fitting ..ceevieereiiiiiiiiiin it

5.3 Data ReUCEION vueivrreeeiiiiiiiierariiereetesstssesieennresessesssssssssssssssesrrsssnsessnsones

5.4 User Classification

6. Modeling and Performance Analysiscccoovviiiimiiiiiiiiniiiiiiniiiiiiniinnnn

6.1 Modeling APProachccccccveiiieiiiiuiiiiiiiiiiiiic e e e

6.1.1 Simulation Modelingcccoeeveeiimecirrermreiiiriiir ettt e e

6.1.2 Analytic Modelingcccceeerrrmiiiiiiiimiiiiinirc i e

6.2 Valldatlon eveneereeeeiieeeusinseseesesssssassaceorensnssssrssssssssssssasnssassnsssssssesnssnsnsonses

6.2.1 EITor ADNalYSIs .cccuvreereiieeccaimmmiiicii i s e e se e e e nenn s

6.3 PTOJECHION tevvurniiiiirierreniiiiiisceeirirtte e s se s e nebe bbb esae e s e ens e seaasesasaenns

6.3.1 Error Analysis ..cccocceeeenriieiiienciiiinminiiiieiiii e ereeeesnertneeeanennns

7. Future EnNhanCemenits .ooveeiciireieeiirrieieieirerneeeeerarecensestsssnsacansasnseamsessanseanns

7.1 Virtual Page Faults. .cccovvrvevvviiiiii e,

7.2 Transaction SUDCIasSSES .oiviiiiireiierinieietiiiiiereniiererienrareracisnserarassassssssossses

7.3 Characterizating Semaphorescc...cccciiiiiiiiiiiiieeeniiiiiice e

7.4 Multiple PTOCESSOTIS .oovviviiiiiiiiiiiiiiiiiiiiiieeer e e

7.5 Networks and Distributed Systemscccccovvrrviiiiiiiiiiiiiiiie

7.6 Clustering Techniquesccovviiiiiiiiiiiiniiiiiii e

References

iv

25
25
26
30

31

32
32
33
33
34
35
39

39

44
44
45
45
45
46

46

47

Appendix A
Appendix B

Appendix C

--

--

--

INTRODUCTION

With the widespread use of computers in today’s industry, planning system
configurations in computer customer sites plays an increasingly important role.
The process of planning system configurations or determining hardware
requirements for new or existing systems is commonly known as capacity planning

among performance researchers and analysts.

This thesis presents a refined capacity planning process for centralized
computer systems, with special attention to characterizing user workload for
capacity planning. In the past, researchers and analysts have devoted much time
and effort in refining performance projection techniques. Little effort has been
spent in finding an accurate and systematic way of representing the workload
used by these projection techniques. To date, the most common ways of
obtaining user workload are through the use of sampling tools and benchmarks.
These tools usually do not provide enough information to represent user workload

and often introduce unnecessary and non-negligible overhead.

The main objective of our workload characterization is to avoid any guess
work on the performance factors that cannot be easily measured. The proposed

alternative to collecting user workload is through the use of a system event-

driven software monitor. The advantages of such a monitor are that it is
relatively easy to develop, it introduces only about 2%-3% overhead and it can
provide almost any data desired. The tools required to process the event data
will also be presented here. Each of these tools corresponds to a phase of our

refined capacity planning process.

The results of the workload characterization process are specifically meant to
be used in analytic and simulation modeling. An analytic modeling tool based on
the Linearizer Approximation Method[4] will be used as an illustration on how
the characterized workload can be used for performance validations and

projections.

CHAPTER 2
THE CAPACITY PLANNING PROCESS

In general, capacity planning serves to answer the typical “what if”’ type

questions regarding computer system performance. The most common of such

questions are:

(1)

(2)

(3)

(4)

(5)
(6)

What is the system bottleneck? In other words, which device(s) is

limiting system performance.

When will the system saturate? In other words, based on projected rate

of growth of the workload, when will the system reach its capacity?

What is an appropriate initial system configuration for a new installation
site?

What is the impact of changing user workload? Examples are by
increased number of users or different kinds of user workload.

How can one tune an existing system to obtain better performance?

How much workload can a system support without significant degradation

in performance?

Note that the answers to all of the above questions require system

performance projection or prediction. In fact, capacity planning consists of two

stages; namely, user workload characterization and performance projection. In the

first stage the user workload is quantified and used as input to the second stage.

The results of the projections help the analyst decide on the best solution for his

capacity planning task.

2.1 BACKGROUND

Over the past years, several approaches for performance projection have

been used for capacity planning. They range from guessing to using real systems.

Brief descriptions of these approaches are given below:

(1)

(2)

(3)

Guessing.

Here, the performance analysts guess the performance of a projected
system based on past experience. Although the very experienced analyst
might be able to come up with a good estimate, this approach is very

often inaccurate and it is difficult to justify the results.

Linear Projection.

The performance is projected linearly based on the performance factors or
workload parameters obtained from a single user environment. Linear
projection typically over-estimates projected performance because it does
not take resource contention into consideration. Today, it is still used in
certain pre-sales configuration planning where performance under-
estimation is necessary. In general, it is inaccurate and the scope covered
is very limited. Specifically, this approach cannot be used to project
response times, or when response times are used as part of performance

guidelines.

Analytic Modeling.

In this approach, mathematical models and queuing theory or operational
analysis [8] are used to project system performance. Compared to linear
projection, more workload factors are taken into consideration. Also, the
workload ﬁa.rameters are typically obtained from a real multi-user system,
rather than a synthetic single user environment. A lot of research has
been done in this area with promising results. The models developed can
be specific to a particular system in which case the results are usually

quite accurate, or can be genefal for a wide range of systems. In general,

the error given by analytic models is seldom worse than 20% (e.g. BEST1,
CADS and MAP).

(4) Simulation Modeling.
Here, the system is simulated using software, typically with the use of a
simulation language. This approach requires more information on user
workload than that required by analytic models. As a result, this method
is comparatively more accurate. The error introduced is usually less than
10%. Simulation models usually require much longer execution time than

analytic models to produce a set of results.

(5) Remote Terminal Emulation (RTE).
In a RTE environment, a simulator machine emulates actual user
workload by communicating with the simulated machine via terminal
lines. The emulated workload is typically captured from a real system and
stored in a disk file in the simulator machine. The error introduced by
this method rarely exceeds 5%. The main disadvantage, however, are
that it requires the actual hardware, human resources to set up the
hardware and a long run time. Also, the simulator machine used should
be at least 1.5 times faster than the system under study; otherwise, the

simulator may become a bottleneck during the emulation.

(6) Real System.
Although this is the most accurate approach, it is hardly ever used for
performance projection. Here, the real system is actually set up with the
actual users when the system is calibrated. Because of the difficulties in
controlling the workload and the costs of changing the system, this

approach is very often considered not feasible.

Our objective in capacity planning is to use an approach that requires

reasonable run time and hardware, and produces results of acceptable accuracy.

-5-

From the descriptions above, the best approaches are the use of modeling or

remote terminal emulation.

2.2 THE CAPACITY PLANNING PHASES

The approaches towards capacity planning that are used most commonly by
capacity planners and performance analysts today are analytic and simulation
modeling. To date, much research has been dedicated towards refining these
techniques to produce higher degrees of accuracy. The advantages of using
modeling are that the hardware requirements and the response time in obtaining
the results are comparatively less than those for remote terminal emulation.
Specifically, modeling does not require any dedicated hardware to be set up. The
accuracy of the results provided by modeling techniques is within acceptable

range.

The present capacity planning process is divided into three phases; namely,
data collection, workload characterization and performance modeling. In the data
collection phase, special tools are used to collect system performance statistics.
The measurement period varies from two hours to a few days depending on the
objective of the study. The workload characterization phase involves
manipulation of the measured data to a representation form usable by the
modeling tools. This phase typically takes more than one hour (depending on the
amount of collected data). The duration of the modeling phase depends on the
modeling technique used. As mentioned earlier, analytic modeling requires only a
few seconds of execution time, while simulation time usually takes more than one

hour (depending on the length of simulated time specified).

Most capacity planning questions requife several iterations of the process

before answers can be provided. Specifically, either the workload characterization

or the performance projection process may have to be repeated several times. For
example, if jobs are not grouped properly into job classes, the validation results
can be inaccurate. In this case, the analslrst has to try different combinations of
grouping until acceptable results are obtained. As another example, to project the
maximum workload supported by a system, the analyst needs to increase the
workload gradually for each projection until the projected results show system

saturation.

In our refined capacity planning process we elect to use both analytic and
simulation modeling. As a result, our workload representation must fulfill both of
their requirements, as well as the general requirements of workload -
characterization. Most important of all, the workload must be completely
characterized and represented based on measured data so that no guess work on
any part of the workload is necessary. Details of the requirements will be given in

subsequent chapters.

The refined capacity planning process is divided into four phases. This
process is faster when compared to the traditional capacity planning because the
ﬁime required for any repetitions required in the process is reduced. The phases
are data collection, data reduction, user workload classification and performance
analysis. The purpose of dividing workload characterization into data reduction
and workload classification is that classifying reduced data merely requires several
seconds of CPU time, while analyzing raw measured data can take over one hour.
The choice of using either analytic modeling or simulation modeling is left to the
analyst. A guideline would be to use analytic modeling to narrow to a target
configuration, (for example, finding the amount of memory required for a
targeted response time), and then use simulation modeling to obtain more
accurate statistics. This is because the response time of analytic modeling tools is
typically in a matter of seconds, while the response time of simulation is typically

hours.

Data are pipelined from each phase to the next buffered by disk files. An
illustration of the data flow is given below:
Event Data ==condenser==> Reduced Data ==user_class===> Model Data
where the tools that manipulate the respective data are embedded in the arrows
(in italics). The event data is collected and dumped by the system event monitor,
typically onto a tape. Condenser processes and reduces the raw event data into
reduced data. User_class manipulates the reduced data to produce model data
useful for modeling tools. The modeling tools use the model data to do

performance validations and predictions.

2.2.1 DATA COLLECTION

During this phase, a system event-driven software monitor is used to record
traces of selected events whenever they occur. These traces, known as event data
are usually dumped onto a tape because its size is normally very large. Prior to
data collection, software probes must have been placed at pre-selected locations
in the system. Each event has two probes to respectively indicate the start and
end of the event. Each event record includes the CPU clock and the elapsed time
clock so that statistics on the event can be calculated offline during the next
phase. To minimize the monitor’s overhead, all the information associated with

an event record must be readily available in the system.

Note that this technique of data collection is far more accurate and
introduces less system overhead than other measurement tools such as sampling
tools and benchmarks. Sampling tools often do not provide enough information
required by modeling techniques. Examples are CPU burst time and page fault
service time. This is because such tools merely examine existing system meters
and counters at the end of each sampling period. In order to obtain more detailed

information, they have to perform computations during the sampling period;

thus, introducing extra overhead. Most benchmarks merely consist of command
script files. During the benchmark runs, extra overhead results from reading and
timing the scripts (e.g. using the UNIX’s time command). In general,
benchmarks are only useful for single-user calibration. They cannot be used for

multi-user environment, nor for I/O bound environment.

There are also hardware measurement tools that can be used for data
collection (see [3] for details). The most common of them are hardware monitors.
Although they are more accurate and efficient than software monitors, they lack
flexibility. Also, the placement of hardware probes is restricted to hardware level
(i.e. difficult to interact with the operating system to obtain all the required user

statistics).

2.2.2 DATA REDUCTION

Event data recorded by the monitor is typically very large. Each analysis
through the raw event data typically takes one or more hours. The reason for this
is due to the slow speed of tape reads (or even disk reads). As mentioned earlier,
performance analysts often need to go through the data several times for
analyses. It is, therefore, desirable that the data is condensed so that each
analysis can be done in a few minutes. A tool known as condenser is introduced
in our capacity planning process to perforni the task of data reduction; the

resulting data is known as the reduced data.

The data reduction process involves computing and aggregating all the
statistics associated with all the monitored events. Details of the data reduction
phase will be given in the subsequent chapters. The resulting reduced data is
dumped into a binary file to be used for workload classification. An ASCII
readable form of the reduced file is also printed for the analyst’s convenience.

Note that all the aggregate statistics given by condenser are on a per user basis.

Appendix A gives a complete description of condenser.

2.2.3 WORKLOAD/USER CLASSIFICATION

The purpose of this phase is to provide workload data that fulfills the input
requirements of both the analytic and simulation modeling tools. A tool known
as user_class (user classification) takes the reduced data from condenser and
groups the workload of users or jobs into classes. The objective here is to group
users of the same workload characteristics into the same class. A common
example is to group users running the same application program into the same
class. The performance analysts are given the option of classification by selecting
specific users (identified by their user numbers) or letting user_class classify the

users workloads according to a prespecified formula.

Each run through the reduced data typically takes several seconds,
depending on the number of users and the effective speed of the input/output
operations. The model data produced by user_class contains representation of the
user workload derived from the measured data. A tabular readable form of the

model data is also given by user_class for the analyst’s convenience.

Appendix B contains a complete description of user_class.

2.2.4 MODELING AND PERFORMANCE ANALYSIS

During this phase, the model input data from the user classification phase is
used by the analysis tools for validation and projection. The input data is
divided into two categories, namely, configuration data and workload data. The
configuration data consists of information on the measured and projected system

configurations, while the workload data is a representation of the user workload.

-10 -

During the validation process, the analyst merely sets the configuration data
for both the measured and projected systems to be identical. The results given
by the modeling tools should be reasonably close to those given by user_class (i.e.
the measured results) before the validation process is considered successful.
Although the validation process may not be necessary for a well-known and
proven model of a particular system, it is often carried out to ensure that the

classification of the users has been done properly.

In the projection process, the configuration data for the projected system is
set accordingly. The results given by the analysis tools is then analyzed and
compared to the capacity planning objective. If the objective is not met, the

model data is modified and the projection process is repeated.

Note that during either the validation process or the projection process, the
workload data need not be modified nor adjusted. The values of the workload
parameters required by the modeling tools are obtained from the measured data.
As a result, the analyst need not do any guess work or use published results of

other installations as part of workload data.

In general, the choice of the modeling approach is left to the capacity
planner. Depending on the objective and scope of his analysis, he can use
existing modeling tools (simulation or analytic tools, or both), or he can develop
his own tools based on existing algorithms/methodologies, or he can implement a
new model entirely from scratch. As a simple example, an analytic modeling tool

known as qnets, based on the linearizer algorithm, is described in chapter 5.

-11 -

CHAPTER 3
WORKLOAD CHARACTERIZATION

The phases of data reduction and workload classification in our capacity
planning process is collectively called workload characterization. In general,
workload characterization is the quantitative representation of the hardware and
software resources utilized by users in a computer system. This chapter discusses
the requirements of workload representation and how they can be fulfilled using

data reduction and workload classification.

3.1 REQUIREMENTS

For our capacity planning process, the requirements of workload
characterization will be geared towards the requirements of both analytic and

simulation modeling. These requirements are:

(1) Elapsed Time Independence.
This means that the workload representation should remain relatively
invariant regardless of the measurement period, provided that the system
is in steady state and the measuring period is not too short (e.g. more
than 1 hour). Elapsed time independence can be achieved by representing
workload on a per transaction per user basis. For example, the average
CPU demand per transaction by a single user remains constant regardless
of the duration of the measurement period. This assumes that the system

is in, or near steady state.

(2) Representativeness of All Resources.
The resources used in the systemm must be properly and accurately
represented. Note that this requires accurate measured data on the

resources to be represented. Data on the resources used can be measured

-12 -

(4)

()

(6)

using an event-driven monitor. Software probes are inserted into properly
pre-selected areas. Workload data can then be derived from statistical
information measured by these probes. The representativeness of the

workload data can be verified from the results of the modeling tools.

Independence on the Number of Users.

In this case, the workload characteristics of a single user should not vary
regardless of other users in the measured system. By representing
workload on a single user basis, the dependence on the number of users is
removed. This also assumes that the workload representation does not

contain statistics due to contention.

Linearly Dependence on Hardware Speeds.

In other words, it should be possible to linearly extrapolate the workload
data collected on one system configuration to that of another
configuration based on the relative speeds of hardware (see 3] for details).
As long as the hardware speeds are provided to the modeling tools, the
extrapolation is simple and can be done by the modeling tools. For
example, if the CPU service time for a measured machine is n
milliseconds, it will be n/2 on a machine that is twice as fast.

Flexibility.

The workload representation should allow for easy modification to reflect
variations in the real system. For our purpose, we will restrict the
flexibility. Our workload representation will be divided into two parts.
The first part can easily be modified based on changes in the system
configuration. The second part is the representation of the invariant user

workloads.

Compactness.

The degree of detail that a workload is represented. A more compact

-18 -

model is usually less detailed and less representative. In general,
compactness is dictated by the availability of information from the
measured data. Software probes are placed to monitor all the resources
utilized. Because each event is monitored, it is easy to obtain detailed
information on the workload data. Our objective is to collect and

represent workload to fulfill the requirements of modeling tools.

3.2 WORKLOAD REPRESENTATION

The data produced by the first three phases of our capacity planning
process, namely, data collection, data reduction and workload classification,
consist of three categories. They are measured statistics, configuration data and
workload data. However, only condenser and user_class provide the user with a
readable form of these data. The configuration data and workload data is

collectively known as model data.

3.2.1 MEASURED STATISTICS

The measured statistics serve as a calibration of the measured systems. In
other words, they help the analyst assess the system performance. They are
dependent on system configuration and workload. The analyst can also use them
directly to validate modeling tools by comparing the measured statistics with the

output from the modeling tools.

The measured statistics are given in two forms: system wide, and per
user/class per transaction type basis. Explanation for transaction type will be

given in section 3.3. The system wide or global statistics are as follows:

(1) System throughput

This is equivalent to the system arrival rate for a system in steady state.

-14 -

It is the rate at which jobs or transactions are being serviced at the

system.

(2) Device utilizations
The percentage of time each device is busy during the measurement

period.

(3) Page fault rate

The rate at which page faults occur in the system.

The second form of statistics which are on a per user/class per transaction

basis are as follows:

(1) Response times
On the average, the amdunt of real time it takes to complete a
transaction.

(2) Throughputs
The rate at which transactions are being serviced at each service center.
For terminals (which is essentially a delay service center), this is the rate

at which transactions are being generated.

3.2.2 CONFIGURATION DATA

The configuration data is a representation of the system configuration. It is
divided into two parts, namely the measured system. configuration data and the
projected system configuration data. The former set of data is for the system
where data measurement was previously done. The latter set is for the system

whose performance we wish to project.

The components of each set of configuration data are:

-15 -

(1) CPU type
The name of the processor or alternatively, the processor speed.
(2) Memory size
The size of the memory in the system.
(3) Disks
The number of disk controllers, and the number of disks associated with

each controller.

(4) User classes

The number of job classes, and the number of users in each class.

3.2.3 WORKLOAD DATA

The workload data is the actual representation of the user workload in the
measured system. It is also made up of two parts. The first part represents the
resource demands of the users or job classes. The second part describes the
behaviour of the service centers (except the CPU processor).

The demand on a resource by a user or a job class is represented by the
average resource service time, and the rate of demand. Note that the
representation is on a per user basis (actually on a per transaction type basis as
well). The resource demands represented are:

(1) CPU demand
The average CPU burst time and the number of CPU bursts per
transaction.

2) I/O demand

The average 1/O service time and the number of I/Os per transaction.

(3) Page fault CPU demand

This is for CPU used to service page faults. The representation is the

-16 -

average page fault CPU burst time and the number of page fault CPU

bursts per transaction.

(4 Think time
The average interval time at which jobs are generated at the terminal.
This can also be viewed as the average time a user spend ”thinking”

before he generates a transaction.

The resource behaviour is also represented by the resource service time and
the rate the resource is used. However, the representation is on a per center per
transaction basis.

(1) Truedisk I/O
A true disk I/O operation is any I/O that is not due to page fault. The
representation is the average I/O service time and the rate of I/O
requests per disk per transaction.

(2) Page fault disk I/0
A page fault disk I/O operation is any I/O that is caused by a page fault.
The representation is the average page fault I/O service time and the rate

of page fault I/O per disk per transaction.

-17 -

3.3 TRANSACTION CLASSES

In the industrial world, computer users’ perception of response time is
sometimes different from that reported by performance analysts and capacity
planners. As an illustration, consider an environment where there are terminal
users running simple commands and large compilations simultaneously. For the
analysts, the response time is often expressed in terms of the average response
times of the commands and the large compilations. It may be difficult to assess
the system performance based on the average response time alone. Also, from
the performance point of view, the users are usually less concerned with the
response'times of large compilations, and are more interested in the response

times of these simple commands.

The inadequacy of average response times was addressed in E. Lazowska’s
thesis [10]. For our purpose, we will use the following simple illustration. An
average response time of 10 seconds, for example, could mean that the simple
commands take an average of 10 seconds to complete when there are few large
compilations. This would indicate that the system is performing poorly. On the
other hand, this response time could also indicate excellent system performance if
there are many large compilations. In this case, the response time for the simple

commands would be very small.

As a solution to the above problem, it is necessary to classify user
transactions into different classes based on their resource demands. This should
not be confused with the user workload classification mentioned in the capacity
planning process. Transaction classification is essentially a subclassification of the
user workload. At the moment, the capacity planning tools subclassify
transactions into three types, namely, micro transaction, normal transaction and

large transaction. Details of these transaction types are given below, assuming a

1IMIP machine.

-18 -

A micro transaction is any transaction that utilizes less than 10 milliseconds
of pure CPU usage. Examples are keystrokes commands of visual editors (e.g.

EMACS, vt), and trivial UNIX commands such as date and eckio.

A normal transaction is any other transaction that utilizes less than 100
milliseconds of pure CPU time. Most commands and small programs in any
operating system fall into this type. Typical examples are UNIX commands Is

and small compilations.

A large transaction is any transaction that uses more that 100 milliseconds
of CPU time. Most commercial packages, large compilations and scientific

applications constitute large transactions.

-19 -

CHAPTER 4
RESOURCE DEMAND REPRESENTATION

As described in the last chapter, the resources used in a system will be
represented by the service times and the frequency of use. This representation is
used most commonly by performance analyst. The only resource that cannot be
represented using this representation is the system memory. Description of
memory representation will be deferred to the next chapter. This chapter
describes how resource utilization data are manipulated and represented during

the data reduction and workload classification phase.

4.1 EVENT TRACE

In order to produce meaningful data to the condenser, the software monitor

must record specific information. This information includes:

(1) Event Group
This is used to distinguish the system events. Each event group has its
own characteristics, usually very distinct from other groups. Examples of

event groups are transactions, page faults and I/O events.

(2 Event Type
For the purpose of condenser, this is primarily used to define the
occurrence and duration of any event group. The two possible event types
are start event and end event. The former type denotes the actual start of
an event group, while the latter denotes the end of an event group. Note
that, in general, software monitor typically have more than two event

types for various uses.

(3) Real Clock

The system real time clock that gives the elapsed time.

-20-

(49 CPU Clock
The CPU processor clock that gives the total processor time used. Most

systems maintain a CPU clock for each user.

(5) Auxiliary Information
This varies depending on the event group. For example, for an I/O event,
the auxiliary information should include a drive number that identifies the

disk where the I/0 is taking place.

In order to record the occurrence of events, software probes are placed in
appropriate places in the system software. At the occurrence of each event, the
probe will result in a subroutine call to record all the information related to the
probe, i.e. the event group, the event type, the system real time clock, and the
CPU clock for the user, and some auxiliary information. More detailed

information on the format and contents of an event record are given in Appendix

A.

For an easier understanding of the process, an example of a typical trace will

be used. Consider the following trace for a particular user:

Event Event Real CPU Aux
Group Type Clock Clock
(tms) (ms)

1 Trans start 2179 30
2 PF start 2182 32
3 I/O start 2185 35 Diskl
4 I/O end 2190 38 Disk1l
5 I/O start 2190 38 Disk1l
6 yO end 2193 41 Disk1l
7 F end 2198 46
8 I/O start 2220 60 Disk2
9 I/O end 2225 63 Disk2
10 rans end 2300 85
11 Trans start 6015 85
12 I/0 start 6050 100 Disk2
13 I/O0 end 6055 103 Disk2
14 rans end 6207 241

where both the clock values are given in units of milliseconds.

-21 -

4.2 DATA REDUCTION

The primary function of condenser is to gather and accumulate statistics in
between start and end events of all the desired event groups. Details of the

required statistics was given earlier in Section 3.2.

The basic operation used to calculate most statistics is to simply compute
the difference in the clock values given in a corresponding start and end event of
a transaction group. From the trace given above, for example, the first page fault
event group (given by event 2 and 7) uses 14 milliseconds of CPU and takes 16
milliseconds of real time. Note that the 14 milliseconds of CPU time also include

6 milliseconds used to perform two page fault disk operations.

A revised approach is used to calculate the statistics in fragments and
attribute them to the appropriate event groups. For simplicity, we will only
consider the CPU statistic. First, we define a cpu slice to be the CPU time used
between any two events. In the above example, the page fault event has 5 CPU
slices. Two slices were used to perform the corresponding page fault disk
operations. As a result, the page fault event uses 8 milliseconds of CPU time to
perform the page fault and 6 milliseconds to perform the associated disk
operations. The elapsed time (or response time) can also be calculated in a

similar manner.

Note that we are also interested other statistics such as the number of other
events within a particular event group. Examples are the number of I/Os for a
page fault and the number of page faults per transaction. These statistics can
easily be calculated by counting the occurrences of those events within an event

group.

Aggregate statistics are then calculated by adding and averaging all the
above statistics on a per transaction basis. Some of the average statistics of the

two transactions given in the above table is listed below:

-22 -

Number of CPU bursts = 4

Average CPU burst Time = 51.25 ms

Number of CPU bursts per transaction = 2
Number of page faults = 1

Number of I/Os per transaction = 2

Average page fault burst time = 3.0 ms

Number of I/Os per page fault = 2

Average disk service time per disk = 3.0 ms

Total visits to disks = 2

Average paging disk sevice time per disk = 2.75 ms
Total visits to paging disk = 2

Average Think time = 3715 ms

Average Response Time = 0.1565 seconds
Throughput = 0.4965 transactions per second

CPU utilization = total CPU used / elapsed time = 5.238%

A more detailed example of the output statistics given by condenser is given

in Appendix A.

NOTE: A CPU burst is defined as the CPU time used between true I/O events
(i.e. excluding I/Os due to page faults), or between the start of a transaction and
the start of a true I/O event, or between the end of a true I/O and the end of a
transaction event. As an example, a transaction with two true I/Os will have
three CPU bursts. In general, a transaction with n true I/Os will have n+1 CPU
bursts.

Similarly, a page fault CPU burst is defined as the CPU time used between

page fault I/Os, or between the start of a page fault and the start of a page fault

-28 -

I/O event, or the end of a page fault I/O event and the end of a page fault.
Hence, a page fault with n page fault I/Os will have n+1 page fault CPU bursts.

4.3 WORKLOAD CLASSIFICATION

To perform workload classification, user_class has to group the statistics of
all the users in a particular class. The process of grouping the statistics is very
simple and straightforward. It involves adding the corresponding statistics for all

the users and recalculate the average statistics.

As an example, let us assume that from the reduced data provided by
condenser, there are two users in a class, and there is only one class. For
simplicity, let us consider only the CPU statistics. User A requires an average of
8.2 milliseconds of CPU burst time, and has a total of 200 CPU bursts and 20
transactions. User B requires an average of 9.0 milliseconds of CPU burst time,
and has a total of 170 CPU bursts and 21 transactions. By grouping them into a
class, they used up a total of (8.2%200) + (9.0*170) or 3170 milliseconds of CPU.
Also, they have a total of 370 CPU bursts and 41 transactions. The resulting
average statistics will be an average of 8.57 CPU burst time, and 9.02 CPU

bursts per transaction.

All other statistics, except memory statistics, can be obtained in a similar
manner. The average statistics calculated using this grouping and averaging
process are used directly to represent the workload of all the user in a class, as
described in Chapter 3. Detailed output and model data provided by user_class

are given in Appendix B.

-24 -

CHAPTER 5
MEMORY REPRESENTATION

The representation of memory demand by users have always been a problem
mainly because very few tools can accurately and efficiently collect data on
memory demand. In our capacity planning process, we elect to use Chamberlain’s
lifetime equation [1] that has long been proven to approximate the lifetime

behavior. This equation is given below:

2b
2
14+—

m2

where L is the lifetime, m is the active memory held by a user, and b, ¢ are

L=

constants of the equation. The lifetime is defined as the mean CPU time used

between successive page faults in a user transaction.

5.1 DATA COLLECTION

The system monitor should provide the lifetime values L; and the active
memory m; for each user at every page fault. For systems where the active
memory held by each user is not easily obtainable (i.e. without causing
unnecessary overhead), one can set m; to be the average available memory. This
can be done by dividing the total memory by the number of active users during a
particular page faults. Note that this requires the monitor to register the number
of active users at every page fault event and it usually under-estimates m. At
the moment, condenser indirectly calculates the m values based on information

given in the event data. Details on the computation will be given later.

- 25 -

5.2 CURVE FITTING

For each user, given the values of L; and m; (where s ranges from one to the
number of page faults), our objective is to obtain the values of b and ¢ that fit
the lifetime function as closely as possible. Because the sample size or the number
of page faults during a data collection period is typically very large, an
approximation technique that uses iterative approximation is needed. This means
that we cannot use the standard Least Square Approximation because the
algorithm requires all the sample data to be available first. After some research,
the best possible solution is to apply the absolute déviation technique. A few
simple experiments showed that the difference in the results produced by the
absolute deviation is within 2% when compared to those by of the least square

approximation method.

The second problem is that the lifetime function is not a linear equation,
making any method to solve a matrix of equations (required for approximation
techniques) non-trivial. However, it is possible to translate the lifetime function

to a linear equation and the b, ¢ values obtained using substitution.

The entire derivation process is given below, using the absolute deviation

approximation:

Given a set of data L; and m; where 1=1,...,n and n is the total number of page

faults, we want to minimize the absolute error of the following:

2
n 2b
E Ll - cz
=1
1+—
m2

Using the substitutions:

- 206 -

—L.

u; = —2‘, v; = L’-, C=62, B:2b,
my
the above lifetime equation becomes

v~Cu; = B, or v; = Cu+B

Since u; and v; can be directly obtained from the measured values of L; and m,,
our objective now is to minimize the error:
n

3

=1

2
v; - (Cu,-+B)|

For the absolute deviation approximation, the conditions below must hold:

d " 2 n
0= rid [v,——Cu,—B] = 22 (v—~Cu~B)(-v,)
=1 =1

and

d_y- [v,—Cu,—B] ‘= Zf] (v~ Cu~B)(-1)

—dB':I =1

These simplify to the following normal equations:

n n n
CYu? + By u; = Yuy, ——(1)
=1 =1 1=1
n n
CYu; +Bn=Yvy, -—(2)
=1 =1

From equation (2),

n n
Yui-CYy;
=1

B= = — ——(3)

Substituting (3) into (1), we have:

f)v;— CZ"Ju.-

=1 =1

n

n n n
CY ul + DU = DU
=1 = ;

=1 =1
or,

-27-

[5]

n n n
nCRul + o3y, - C| YNy =Yy
=1

=1 =1 =1 =1

or,

n 2 n 2 n n n
C "E“i[gui) = Yy = 3 U3 Y

=1 =1 =1 =1 =1

This simplifies to a solution for C:

n n n
nY)uv; — DUy,

=l =1 =1 p
- n 2 n 2 \4)
nyui— |)] “i]
=1 =1

Substituting C into the equation (2), we have:

n n n
ONTAEDITHINS

=1 =1 =1

n n
| 2w+ Bn= Yy,
LAY i =1 i=1
ndu- | Yy
=1 ;

=1

or,

nﬁ“ii“ivi— {En]“i] 22'.3”{'*'3" nf)“?‘ [i“ﬁ]z = nf]u?ivi— [iui} 22”{

=1 i=1 =1 =1 i=1 =1 =1 =1 =1
giving,
n 2 n n n
PDIUDILEIDILHIL A
=1 =1 =1 =1 (
B o n n 2 \5)
St - |)
=1 =1
n n n . n
Since the cumulative sums 3 u; Y v; 3y, and 3] u? in equations (4) and (5)
=1 =1 g=]1 =1
can easily be calculated iteratively, with n=1, 2, 3, ..., none of the previous values

of u; and v; (i.e. the samples) need to be stored. Furthermore, at each iteration,
only the new values of the cumulative sums in the previous iteration are needed.

At the end of the iterations (i.e. n = sample size), B and C can be computed

- 28 -

using equations (4) and (5).

- 29 .-

5.3 DATA REDUCTION

The tool condenser simply uses the results presented in the previous section.
At every page fault, the values of u, u?, u;v;, and v; are computed from the

measured values of L; and m;, using the substitution:

The computed values are added respectively to obtain their cumulative sums.

When condenser has gone through all the event data, we will have the values of

n n n n
Nu, 3ud, Yy, and v, We can now compute the values of B and C using
=1 =1 =1 1=1

the equations (4) and (5) given in the previous section. Finally, the constants b
and ¢ of the lifetime function can easily be computed using the following
substitutions:
c=VvVC, b= B
2
The values of L and m are not directly available from the event data. The

lifetime between two page faults, i.e. L,, is calculated by adding all the true CPU

burst times that occur during that interval.

The computation for the m values requires more data from the system
monitor. First, the system monitor should dump the page table at the beginning
of the event data. The page table dumped is merely an array of pages with the
owners’ user numbers. From this table, condenser can easily determine the
number of pages owned by each user. When the condenser is processing the
data, it keeps track of the number of active pages held by each user at each page
fault. In other words, at the end of every page fault, condenser will decrement

the number of pages held by the owner of the page replaced, while incrementing V

- 380 -

that of the owner who has just paged in the page. Note the data for each page
fault end event should include the page number, and the owner of the page
replaced. If the owner cannot be easily determined by the event monitor, a copy
of the page table should be included in the header of collected data to be used by

condenser to determine page owners at page fault events.

5.4 USER CLASSIFICATION

The workload/user classification process of the lifetime function b and ¢
parameters involves using the absolute deviation approximation. The main
purpose is to determine one value of b and ¢ for each user class from all the b and

¢ values of all the users in that class.

The algorithm used by the tool user_class for each user class is as follows:
First, values of m,, with 1=1,..,10000, are generated. These values of m,; range
from O to the maximum memory. Using the Chamberlain’s lifetime function and
the b and ¢ constants for each user in the class, values of L are generated. This
results in 10000*y pairs of L; and m,, where j is the number of users in the class.
The absolute deviation approximation technique is then applied to these values.
The final values of b and ¢ are finally calculated using substitutions from the
solutions to the equations (4) and (5) given earlier. In other words, we use only

10,000 samples to calculate the values of b and ¢ for each user.

-31 -

CHAPTER 6
MODELING AND PERFORMANCE ANALYSIS

The main task of modeling is to represent a system using an abstract model.
The model should contain only factors that are essential to the system’s
performance behavior. Statistics known as performance indices are produced by

models to describe system performance.

The modeling and performance analysis phase (or modeling cycle as
described in [9]) involves two steps. These steps are model validation and
performance projection. During model validation, a system is carefully
parameterized and the model is evaluated to ensure that the performance indices
given by the model are within acceptable range from the actual measured
statistics. During performance projection, the model is used to project the
performance of another system with different configuration. If the model is under
development, the analyst should also validate the projected statistics. In this
case, the projected system is first configured and measured. The measured
statistics are then compared to the projected statistics given by the model.

Details of these steps are given in later sections in this chapter.

The efforts of research scientists have contributed to a vast variety of
performance models. Some of these models are fairly general and some are
customized for specific systems. Understandably, the general models are
comparatively less accurate than the specific models. To preserve the generality
of our refined capacity planning process, we leave the choice of the models to the

capacity planner.

6.1 MODELING APPROACH

32 -

As mentioned in chapter 2, the two most common modeling techniques used
today are simulation modeling and analytic modeling. Both of these techniques
have their advantages and disadvantages. The choice of these techniques is also
left to the capacity planner; condenser and user_class work for either modeling

techniques.

We will use an analytic model to illustrate how the characterized workload
produced by user_class can be used. The analytic modeling tool used is known as

gnets and is based on Linearizer [4].

6.1.1 SIMULATION MODELING

The main purpose of this approach is to simulate the system’s behavior in
the time domain using software. The software is typically implemented using a
special simulation language such as SIMULA and SIMPL. The main advantages
of simulation modeling are that it is flexible and accurate. In general, the
accuracy provided by simulation models is within 10%. The main disadvantage

is that it is expensive (i.e. it requires a lot of CPU time and memory).

6.1.2 ANALYTIC MODELING

Analytic modeling involves representing a system wusing a set of
mathematical equations or a mathematical model. The derivation of the model
can be based on queueing theory or operational analysis[8]. The solutions to the
equations can be exact or approximate. In general, exact models are less

common and more expensive than approximation techniques.

Compared to simulation modeling, analytic modeling is less accurate because
it does not take as many system parameters into consideration. On the other

hand, it is very inexpensive (usually requires much less CPU time than

-838 -

simulation). The accuracy given by analytic models is typically within 10% for

utilizations and throughputs, and 10-30% for response times.

The tool gnets is based on an approximation technique known as linearizer.
The reason for choosing linearizer is that it is fairly general and efficient. The
two drawbacks are that it does not model system memory and it assumes

processor sharing discipline on all service centers.

In memory modeling, we need to know the page fault rate and subsequently,
the resulting visit ratios to disk based on a given amount of memory. To do this,
gnets first calculates the lifetime using the b and ¢ values provided by user_class
and the lifetime function described in chapter 5. From the page fault rate (which
is the reciprocal of the lifetime value) and disk visit rate due to page fault (from

user_class), we can easily calculate the new visit ratios to disks.

To support other kinds of service disciplines, such as first-come-first-serve,
we merely need to modify equation (1) described [1] that computes the wait times
at a server queue. The solutions to various disciplines are available in [6] and [7]

and will not be dealt with here.

6.2 VALIDATION

In our capacity planning process, we assume that a chosen model has already
been proven to represent the system under study. In this case, the validation step
involves setting the configuration data (in the model data given by user_class) to
correspond to those of the measured system. The model is then evaluated using
this model data and the performance indices are compared to the measured
statistics. If the difference is not acceptable, the performance analyst will repeat
his re-classification of the workload data (using user_class) and repeat the model

evaluation. This is done until acceptable results are obtained from the model.

-34 -

6.2.1 ERROR ANALYSIS

For the examples shown below, three systems with different workload
environments were measured with a system monitor. The respective workload
data were reduced using condenser and classified using user_class. The model
data were then used by gnets as input and the performance indices (output) were

compared with the measured statistics.

(1) Development environment, with distinct users running EMACS, Pascal,

Fortran and Basic.

Environment: Development
Users: 30

CPU Speed: 4 MIPS
Memory: 8 Mb

UTILIZATION (%)

Measured Qnets %Error
CPU 83.8% 96.5% +15.1%
Disk 0 15.7% 15.2% -3.2%
Disk 1 4.94% 4.90% -0.8%
Disk 2 30.4% 30.0% -1.3%

THROUGHPUTS (transactions/second)

Measured Qnets %Error

Class 1 0.399 0.401 +0.5%
Class 2 6.035 6.142 +1.8%
Class 3 7.625 7.867 +3.2%

-35 -

Class 4
Class 5
Class 6

Class 1
Class 2
Class 3
Class 4
Class 5
Class 6

0.398
0.261
7.841

0.400 +0.5%
0.245 -6.1%
8.057 +2.8%

RESPONSE TIMES (seconds)

Measured
1.879
0.226
0.147
1.793
11.47
0.149

Qnets %Error
1.820 -3.1%
0.211 -6.6%
0.127 -13.6%
1.741 -2.9%
12.66 +10.4%
0.132 -11.4%

-386 -

(2) In the commercial environment, the users executed MIS tools and data base

queries.
Environment: MIS Commercial
Users: 16
CPU Speed: 1.7 MIPS
Memory: 4 Mb
UTILIZATION (%)
Measured Qnets %Error
CPU 98.9% 95.9% -3.0%
Disk 0 3.64% 3.70% +1.6%
THROUGHPUTS (transactions/second)
Measured Qnets %Error
Class 1 32.88 33.57 +2.1%
RESPONSE TIMES (seconds)
Measured Qnets %Error
Class 1 0.163 0.149 -8.56%

-37-

(3) Mixed environment, consists of distinct development users, commercial users

and office automation users.

Environment: Mixed
Users: 24

CPU Speed: 1.7 MIPS
Memory: 4 Mb

UTILIZATION (%)

Measured Qnets %Error
CPU 89.1% 86.7% -2.69%
Disk 0 81.3% 75.8% -6.77%

THROUGHPUTS (transactions/second)

Measured Qnets %Error
Emacs 2.452 2.526 +3.0%
Fortran 0.165 0.174 -5.5%
Pascal 1.900 1.979 +4.2%
OA 1 0.367 0.374 +1.9%
OA 2 0.629 0.640 +1.7%
MIS 14.45 14.44 +0.0%

RESPONSE TIMES (seconds)

Measured Qnets %Error
Emacs 0.491 0.450 -8.35%
Fortran 9.513 8.501 -10.64%
Pascal 0.796 0.730 -8.30%

- 88 -

OA1l 3.306 3.002 -9.20%
OA 2 0.788 0.711 -9.77%
MIS 0.095 0.093 -2.11%

6.3 PROJECTION

During performance projection, the performance analyst merely changes the
configuration data in the model data file to correspond to the projected system.
The performance indices provided by the modeling tool are then analyzed to
determine the projected system’s performance. If the system performance does
not fulfill the capacity planning objective, the analyst will modify the

configuration data and repeat the projection until the objective is met.

In the following examples, we used the model data provided in the last
section to do performance projection. Actual system configurations that
correspond to those of the respective projected systems are also set up and
measured. The purpose is to ensure that gnets projects system performance with

acceptable results.

6.3.1 ERROR ANALYSIS

(1) In the scientific environment, the total number of users are increased from 30

to 60, while the rest of the system configuration remains the same.

Environment: Scientific
Users: 60

CPU Speed: 4 MIPS
Memory: 8 Mb

-89 -

UTILIZATION (%)

Measured Qnets %Error
CPU 98.5% 99.8% +1.3%
Disk 0 59.3% 59.3% +0.0%
Disk 1 13.9% 14.1% +1.4%
Disk 2 65.9% 66.4% -0.8%

THROUGHPUTS (transactions/second)

Measured Qnets %Error
Class 1 0.517 0.535 +3.5%
Class 2 7.070 7.189 +1.7%
Class 3 13.09 12.60 -3.7%
Class 4 1.955 2.017 +3.2%
Class 5 0.120 0.131 +9.2%
Class 6 14.41 13.87 -3.7%

RESPONSE TIMES (seconds)

Measured Qnets %Error
Class1 8.479 7.826 -1.711%
Class 2 0.769 0.746 -3.00%
Class 3 0.313 0.343 -9.60%
Class 4 2.142 1.983 -7.42%
Class 5 71.05 64.44 -9.30%
Class 6 0.285 0.312 +9.47%

- 40 -

(2) In the commercial environment, the number of users are increased to 32.
Also, the CPU is replaced by a faster 2 MIPS CPU. The amount of memory in

the system remains the same.

Environment: MIS Commercial
Users: 32

CPU Speed: 2 MIPS
Memory: 4 Mb

UTILIZATION (%)

Measured Qnets %Error
CPU 99.0% 99.9% +0.9%
Disk 0 5.07% 5.20% +2.6%

THROUGHPUTS (transactions/second)
Measured Qnets %Error
Class 1 26.21 28.01 +6.87%

RESPONSE TIMES (seconds)
Measured Qnets %Error
Class 1 0.813 0.735 -9.60%

- 41 -

(3) In the mixed environment, the total number of users is increased to 24. At

the same time, the amount of memory is increased from 4Mb to 6Mb.

Environment: Mix
Users: 24

CPU Speed: 1.7 MIPS
Memory: 6 Mb

UTILIZATION (%)

Measured Qnets %Error
CPU 83.3% 89.9% +7.9%
Disk 0 972% - 9712% +0.0%

THROUGHPUTS (transactions/second)

Measured Qnets %Error
Emacs 2.911 2.740 -3.9%
Fortran 0.163 0.153 -6.1%
Pascal 1.101 1.040 -5.54%
OA1 0.369 0.379 +2.7%
MIS 11.77 13.34 +13.4%

RESPONSE TIMES (seconds)

Measured Qnets %Error
Emacs 0.996 01.104 +10.8%
Fortran 28.26 30.55 +8.10%

- 42 -

Pascal 2.635 2.901 +10.1%
OA 1 9.864 9.206 -5.76%
MIS 0.365 0.285 -21.9%

- 43 -

CHAPTER 7
FUTURE ENHANCEMENTS

The tools described earlier assumed that the systems under study are single-
processor systems. Enhancements are required to expand the scope of these tools.

The following are some of the possible enhancements:

7.1 VIRTUAL PAGE FAULTS

In UNIX 4.1BSD or later systems, it is possible to have virtual page faults.
A virtual page fault or a soft page fault is any page fault that does not result in
actual physical I/O. This happens when the page missing from the working set is
already in physical memory. Note however, compared to a true page fault or hard
page fault (where a page has to be physically brought in from a secondary paging
device), a virtual page fault uses more CPU time to perform the memory to

memory page copy.

Virtual page faults are mostly caused by the spawning of child processes.
When a child process is being forked, the child must have a copy of the parent’s
workspace. Since the parent process is active during the forking process, most of
its workspace are still active in memory. As a result, numerous virtual page faults

will likely to occur during the workspace copying.

To date, there are no modeling solutions for virtual page faults. It should be
pointed out that virtual page faults must NOT be considered as CPU bursts.
This is because the number of virtual page faults depends on the memory size,
whereas the number of CPU bursts does not. A possible approach towards
modeling virtual page faults is to determine the ratio between virtual and true
page faults. This ratio depends on the memory size, pre-paging capacity (i.e. the

number of pages prepaged), and the number of wired pages per process (i.e. those

-44 -

pages of a process that one always resident in memory, e.g. file unit table).

7.2 TRANSACTION SUBCLASSES

All analytical modeling solutions today assume that all transactions of a user
or job class are identical. As a result, the response times provided by these
models are expressed as the average response times of all these transactions.
Because transactions need to be subclassified (as described in Chapter 3),

analytical solutions are required to model transaction classes.

7.3 CHARACTERIZING SEMAPHORES

Delays due to semaphore waits can contribute significantly to response
times, especially if there is much contention on semaphores. For systems such as
Berkerley’s UNIX systems, semaphore operations are emulated using system calls
sleep() and wakeup(). Semaphore contention is very common in data base

management environment.

Our workload characterization process can easily be modified to represent
semaphore contention. The representation will be CPU time used by a user while
holding the semaphore, and the rate at which he waits on semaphores. This
representation can easily be used by simulation modeling tools or analytical

models.

7.4 MULTIPLE PROCESSORS

All the capacity planning tools described earlier assume that the systems
under study are single-processor systems. The tools can be readily enhanced to
characterize workload for multiple-processor system provided that the system

event monitor associates each event with the responsible processor. In other

- 45 -

words, each event record should include a number indicating the associated

processor.

7.5 NETWORKS and DISTRIBUTED SYSTEMS

Characterizing networks and distributed operating systems workload is an
area that requires much work. In order to use tools such as condenser and
user_class to characterize such workload, it is essential to have a network event
monitor that does not introduce excessive overhead. A few issues regarding
network event monitoring are addressed by Lamport [11] and Chen [10]. Because
the events monitored in a distributed environment is different from those in a
stand-alone system, separate tools similar to condenser and user_class have to be

developed.

7.6 CLUSTERING TECHNIQUES

New clustering techniques are required to take into consideration the
memory demand representation of user workload. Clustering is especially useful
during the workload classification phase when the analyst is not able to classify
the workload by mere selection of user numbers. The clustering process involves

grouping users with similar resource demands into the same job class.

If the workload characterization phase of our capacity planning process is
enhanced to take semaphore usage into consideration, a new clustering technique

is also required to include semaphore demand.

- 46 -

[1]

4]

5]

(6]

7]

[9]

[10]

[11]

REFERENCES

D.D. CHAMBERLAIN, S.H. FULLER, and L. Y. LIU, An Analysis of
Page Allocation Strategies for Multiprogramming Systems with Virtual
Memory. IBM J. Res. Dev. 17, 15 Sept., 1973, 404-412.

DOMENICO FERRARI, Computer Systems Performance Fuvaluation.
Prentice-Hall, Inc. 1978.

D. FERRARI, G. SERAZZI and A. ZEIGNER, Measurement and Tuming
of Computer Systems. Prentice-Hall, Inc. 1983.

CHANDY, K. MANDY and NEUSE, DOUG, Linearizer: A Heuristic
Algorithm for Queueing Network Models of Computing Systems. CACM
25, 2 (April 1982), 126-134.

R.L. BURDEN, J.D. FAIRES and A.C. REYNOLDS, Numerical Analysts,
2nd Edition. Prindle, Weber & Schmidt. 1978, p.318-344.

REISER, M., and LAVENBERG, S.S. Mean-value analysis of closed
multichain queueing networks. J. ACM 27, 2 (April 1980), p.313-322.

FERRARI, DOMENICO, Constderations on the Insularity of Performance
Evaluation. IEEE Transactions on Software Engineering, Vol. SE-12, No.
2, February 1986.

DENNING, P. J. and BUZEN, J. P., The operational analysis of queuing
network models, ACM Computing Surveys, Vol. 10, No. 3, September
1978, pp. 225-261.

LAZOWSKA, E.D., ZAHORJAN, J, GRAHAM, G. S., and SEVCIK,
K.C., Quantitative System Performance, Prentice-Hall, 1984.

CHEN, Y.F., PRAKASH, A. and RAMAMOORTHY, C.V., The Network
Event Manager, Computer Science Division, University of California,
Berkeley, CA 94720, Report No. UCB/CSD 86./299, June 1986

LAMPORT, L., Time, Clocks and the Ordering of Events in a Distributed
System, CACM Vol. 21, No. 7, pp. 558-565, July 1978.

- 47 -

APPENDIX A CONDENSER 1.0

1. Proposal |

1.1 The Problem

The modeling tools of any Capacity Planning process/paékage (namely the
simulation and analytical tools) require specialized statistics to be abstracted from raw
event data. These statistics include resource demands on cpu, /0 and the paging device.
This document describes the design of a tool that is used as part of the Capacity
Planning process.

The next paragraph gives a very high level and brief description of the Capacity
Planning process and how condenser fits into the process. The reader should be
familiar with system event monitoring and general performance analysis before reading
this document.

In general, the performance analyst must first collect workload data on an active
machine using a system event monitor. When the data collection phase is done, the
analyst will use condenser to process and to reduce this data for simpler manipulation
by user__class. The analyst can now use user_ class to classify/group users and/or to
omit certain set of users. Finally, the output of user__class can be used by modeling
tools to perform validations and performance projections.

Note that it is necessary to have condenser because we do not want to use
user__class to repetitively go through the raw event data. This is because the size of
the event data is typically very large. The introduction of condenser to condense the
event data for user__class can subsequently reduce user__class’s response.

- 48 -

APPENDIX A CONDENSER 1.0

2. Program Function

2.1 Terminology

Below are brief descriptions of some of the most commonly used terms in this

document.

Event Data The raw binary data produced by a system event monitor. The data
is typically in buffers of records, with each record corresponding to
an event.

Aggprepate Statistics
These are accumulated statistics calculated from all the related event
events obtained from the event data.

Transient Statistics

: Statistics that are caused by unmatched events. This happens when
the event monitor is shutdown and there are events with statistical
data still being collected.

Micro-Transaction A user transaction that uses less than 10 milliseconds of CPU.
’ Examples are EMACS or vi single character transaction and date
command. The limit of 10 milliseconds may be changed in the

future.

Normal Transaction
A user transaction that uses more than 10 milliseconds but less than
100 milliseconds of CPU. This includes most PRIMOS commands.
The range of 10 to 100 milliseconds may be changed in the future.

Large Transaction A user transaction that uses more than 100 microseconds of CPU. A
good example is a large compilation run. The limit of 100
milliseconds may be changed in the future.

Window The user can select a contiguous block of event data to be processed
by condenser. The window range can be provided in terms of
elapsed times or buffer numbers. If both the time and buffer
windowing are used, the intersection of the two window ranges will
be used.

Reduction The actual process of calculating aggregate statistics from raw event
data, and then the compression of the statistics for user_ class.

Transaction Anything that UNIX inputs from a terminal and replies. This can
be a command line (e.g. UNIX command) or a single character (ie.
emacs transaction).

Response Time This is defined as the amount of real time that UNIX takes to
reply upon receiving a transaction (either a character or a command
line).

Think Time This is defined as the amount of real time between the last UNIX
response/reply and the next time when UNIX actually receive
another transaction. This can also be viewed as the idle time plus

- 49 -

APPENDIX A CONDENSER 1.0

the typing time.

CPU_Burst The number of times that the user’s job uses the CPU during a
transaction.

1/0 Burst The number input/output operations done by a user’s job during a
transaction.

Virtual Page Fault
For UNIX 4.1BSD (or above) systems, it is possible to have a
virtual page fault. Here, a page fault event occurs but there was no
1/0 operation because the required page is still in memory.

Physical Page Fault .
The actual page fault event that have one or more [/Q operations.
This is also known as the true page fault.

Login/Logout Transaction
This includes login/logout of terminal, child wusers. Note that
condenser will treat login/logout exactly as a normal terminal
transaction.

Lifetime Function An empirical formula that gives the inter-page fault time (actually
CPU time) for a given memory demand. The formula of the
function is I{m) = 2*b / (1 + (c*c)/(m*m)), where m is the memory
demand (or active memory), L is the inter-page fault time, and b, ¢
are the lifetime function parameters to be approximated for each
user.

APPENDIX A CONDENSER 1.0

2.2 User Interfaces

Condenser requires several input parameters from the user before it cam commence
going through event data. The user input requirements are given in detail in the next
section. Also, all collected and calculated statistics are written in a user-specified (in
user input) output file. Details on the the user output is given in the following

subsection below.

2.2.1 User Input

At the moment, the interaction between condenser and the user will be on-line.
In the near future, the interaction will be screen-oriented provided that the user uses a
supported terminal. Note that before running condenser, the user must have the event
data ready to be used (either on tape or disk).

The command line options for condenser are as follows (with abbreviations in
boldface):
condenser [-input <file>] [-output <file>] [-reduce (file>] [-help]

[-version] [-windowbuf fer] [-windowtime]
[-fullhelp]

Condenser takes event data as input and reduces the data to be used by the
Capacity Planning userclassification utility user__class. The input may be from a tape
or from a disk file. The reduced file will be in binary form, but an ASCH form of
the reduced file will be written in the output file.

If no options are given, condenser will prompt the user for the necessary set of
input options.

Condenser supports the following options:

-input, -i -output, -0
-reduce, -r -help, -h
-version, -v -fullhelp, -fh
-windowbu f fer, -wb -windowtime, -wt

The following paragraphs summarize all the condenser options, which can be selected
in any order.

-input, -i
Takes a file name as an argument (for input file). If this option is omitted,
condenser will prompt the user for an input file name. Also, condenser will always

continue to prompt the user if it fails to open the associated file. Currently, the
event data on tape is assumed to be at the beginning of the tape.

- 81 -

APPENDIX A CONDENSER 1.0

-reduce, -r

Takes a file name where the reduced data is to be stored. The user will be
queried before an existing file is overwritten. If this option is omitted, condenser will
prompt the user for a reduced file name. The reduced file must be a disk file.

-output, -0

Takes an output file name as an argument. If the output file exists the user will
be queried before it is overwritten. If this option is omitted, condenser will prompt
the user for an output file name. The output file must be a disk file. Note that the
output produced by condenser is essentially a readable form of the reduced data.

-help, -h
Prints the command line format on how to invoke condenser.
-windowbuf fer, -wb

Turns on buffer windowing option. The user will be prompted for the starting
buffer number and the number of buffers to be processed.

-windowtime, -wt

Turns on time windowing option. The user will be prompted for the starting time
in the data and the duration desired. This time is the real time in the event data.

-version, -v
Prints condenser version stamp plus the date and time that it was built.
-fullhelp, -fh

Prints this full help information on how to use condenser.

A sample run is given below (with user’s input in bold face):

0K, condenser
[CONDENSER Rev. 1.8 — 1986]

Enter input file name ? EVENT_DATA
Enter output file name ? EVENT_OUTPUT
Enter reduced file nome ?2 EVENT_REDUCE

Monitor started on ©5/25/84 15:55:03.512

Monitor Version: 1 on 4.28SD

Monitor User Name: root User Number: 30

CPU: VAX 11/750 Memory: 2048 poges Maximum users: 32
REMARK :

Elapsed time = 1969.285 seconds
Number of events processed = 13310
Total blocks/buffers read = 93
OKo

- 52 -

APPENDIX A CONDENSER 1.0

2.2.2 User Output

Fach item of the statistics printed by condenser in the output file is always made
up of two values; namely, the total count and the total usage. For I/O statistics, for
example, the total count is the total number of 1/0O operations and the total usage is
the total 1/O time used. A description of all the statistics is given below:

Response times Response times for all interactive users on a per user per transaction

basis.

Think times Think times for all interactive users on a per user per transaction
basis.

True 170 The pure 1/O operations excludes any 1/0 caused by page faults.

Any disk queueing statistics are also excluded. This is given on a
per user per transaction basis.

Page Fault I/0 The 1/0 operations caused by page faults only. Any disk queueing
statistics are excluded. This is given on a per user per transaction
basis.

True CPU The pure CPU usage (ie. excludes any CPU time for page faults).
This is given on a per user per transaction basis.

Page Fault CPU The CPU usage for handling page faults only. This is given on a
per user per transaction basis.

Physical Page Fault
Page faults that actually cause one or more I/0 operations, given on
a per user per transaction basis. It should be pointed that the usage
statistics for physical page faults are average elapsed times and not
service/virtual time.

Virtual Page Fault
Page faults that do not cause any /O operation at all. This is given
on a per user per transaction basis. The usage statistics for virtual
page faults are also average elapsed times and not service/virtual
time.

Disk 1/0 The disk true 1/0O operations on a per user per disk basis. Queueing
at the disks are excluded in the statistics.

Disk PF 1/0 The disk page fault 1/0 operations on a per user per disk basis.
Queueing statistics at the disks are excluded.

Login/Logout The login and logout of terminal users and child processes.

Lifetime Function This is unlike all the above statistics. =~ The approximated b and ¢
parameters will be printed for each user.

Transient This is due to the event monitor being shutdown before any end
events are encountered (i.e. for those events that have been “started”).

A sample output file is given below:

- 53 -

APPENDIX A CONDENSER 1.0

05/25/84 15:55:03.512
on 4.2BSD
root Monitor User Number: 30
Memory: 2048 pages Maximum users: 32

Monitor started on
Monitor Version: 1
Monitor User Name:
CPU: VAX 11/750
REMARK :

Elapsed time = 1969.285 seconds
Number of events processed = 13310
Tota! blocks/buffers read = 93
Number of users = 7

RESPONSE TIMES (seconds)

MICRO NORMAL LARGE OVERALL
USER N AVERAGE N AVERAGE N AVERAGE N AVERAGE
1 (4} 0.000 1 0.039 1 0.033 2 0.036
2 69 1.993 86 7.021 57 12.270 212 6.503
3 1 8.000 19 0.046 42 0.616 62 0.432
TOTAL 70 1.077 106 5.705 109 7.253 276 5.092

THINK TIMES (seconds)

MICRO NORMAL LARGE OVERALL
USER N AVERAGE N AVERAGE N AVERAGE N AVERAGE
1 0 0.000 1 5.567 1 2.000 2 3.783
2 69 1.783 86 3.291 56 2.885 211 2.699
3 1 0.052 18 22.449 42 30.794 61 27.828
TOTAL 70 1.758 105 6.597 99 14.717 274 8.295

TRUE 1/0 WITHOUT QUEUE STATISTICS (ms)

MICRO NORMAL LARGE | OVERALL
USER N AVERAGE N AVERAGE N AVERAGE N AVERAGE
1] @.000 [0.000 21 31.025 21 31.025
2] 2.000 0 0.000 253 17.439 253 17.439
3 (4 ©.000 1 12.121 244 26.391 245 26.333
TOTAL [0.000 1 12.121 518 22.207 519 22.187

PAGE FAULT I/0 WITHOUT QUEUE STATISTICS (ms)

MICRO NORMAL LARGE OVERALL
USER N AVERAGE N AVERAGE N AVERAGE N AVERAGE
2 0 ©.000 5 22.424 68 16.488 73 16.895
3] 0.000 0 0.000 112 18.534 112 18.534
TOTAL 0 0.000 5 22.424 180 17.761 185 17.887

TRUE CPU BURST STATISTICS (ms)

MICRO NORMAL LARGE OVERALL
USER N AVERAGE N AVERAGE N AVERAGE N AVERAGE
1 (] 9.000 1 36.864 21 5.071 22 6.516
2 69 5.921 91 28.132 569 55.685 729 47.535
3 1 1.024 20 38.810@ 415 33.597 436 33.761
TOTAL 70 5.851 112 30.117 1085 45.506 1187 41.716

- 54

APPENDIX A v CONDENSER 1.0

" PAGE FAULT CPU STATISTICS (ms)

MICRO NORMAL LARGE : OVERALL
USER N AVERAGE N AVERAGE N AVERAGE N AVERAGE
2 0 0.000 10 1.229 328 1.861 338 1.842
3 (] ©0.000 %] 0.000 241 1.287 241 1.287
TOTAL 0 0.000 10 1.229 569 1.618 579 1.611

PHYSICAL PAGE FAULT STATISTICS (ms)

MICRO NORMAL LARGE OVERALL
USER N AVERAGE N AVERAGE N AVERAGE N AVERAGE
2 (4 0.000 5 26.061 68 20.410 73 20.797
3 2] ©.000 (<] 0.000 112 24.729 112 24.729
TOTAL o ©.000 5 26.061 180 23.098 185 23.178
VIRTUAL PAGE FAULT STATISTICS (ms)
MICRO NORMAL LARGE OVERALL
USER N AVERAGE N AVERAGE N AVERAGE N AVERAGE
2 0 ©.000) 0.000 182 2.857 192 2.857
3 0 ©.000 0 ©.000 17 3.030 17 3.030
TOTAL 0 0.000 0 0.000 209 2.871 209 2.871
DISK I/0 WITHOUT QUEUE STATISTICS (ms)
DISK 8 OVERALL
USER N AVERAGE N AVERAGE
1 116 29.363 116 29.363
2 253 17.439 253 17.438
3 248 26.075 248 26.075
23 724 14.494 724 14.494
24 330 14.105 330 14.105
25 4 23.485 4 23.485
30 118 34.361 118 34.361
TOTAL 1793 18.729 1783 18.729
DISK PF 1/0 WITHOUT QUEUE STATISTICS (ms)
) DISK 8 OVERALL
USER N AVERAGE N AVERAGE
2 73 16.895 73 16.895
3 112 18.534 112 18.534
TOTAL 185 17.887 185 17.887

LOGIN STATISTICS (seconds)
USER NO NO. TRANS AVERAGE

LOGOUT STATISTICS (seconds)
USER NO NO. TRANS AVERAGE

- 55 -

APPENDIX A

LIFETIME FUNCTION PARAMETERS

USERS B C AVG MEM
1 4.2064 762.8945 1679.0278
2 0.29%0 38.0003 46.5000
3 4.7094 113.9048 167.4931

TRANSIENT STATISTICS (ms)

1/0

USER N TOTAL
1 95 2754 .5455

3 3 15.1515
23 724 10493.9394
24 330 4654 .5455
25 4 93.9394
30 118 4054 5455

TRANSIENT TIMES (seconds)

USER RESPONSE THINK
1 . (4 247270
2 17185 1
3 176 11

N
94
3
740
347
3
17

TRANSIENT LOGIN/LOGOUT (seconds)

USER LOGIN LOGOUT
2 7361 0

CPU

CONDENSER 1.0

TOTAL

368.
145.
.3920
.2320

63.
1562.

32059
20831

6400
4080

4880
6240

APPENDIX A

2.3 Program Interfaces

CONDENSER 1.0

The most important ones are the layouts of the raw data that condenser reads and

writes. These data are the event data read

that condenser writes for user_ class.

2.3.1 Event Data

by condenser and thé reduced aggregate

The layouts event data, which can either be on a tape or disk, must be made up

of fixed size buffers. Each of these buffer

is of fixed size (usually 4096 bytes).

Every buffer is made up of event records. The format of each record is as follows:

NAME SIZE
Length 2 bytes
Event Group 1 bytes
Event Type 1 byte
User Number 2 bytes
CPU time 4 bytes
Real time 4 bytes
Auxiliary Information Length-18

DATA TYPE

binary short

binary

binary

binary short

binary long

binary long (microsecs)
Variable

The first one or two records of each set of event data must contain header

information. All header records must have an
of the header (i.e. auxiliary information of

follows:

NAME SIZE

Event record 18 Bytes
Date 6 bytes
Minutes 2 bytes
Seconds 2 bytes
Ticks 2 bytes
Tick Rate 2 bytes
Monitor user number 2 bytes
Monitor user name 32 bytes
UNIX version length 2 bytes
UNIX version 16 bytes
Memory size 2 bytes
Number of users 2 bytes

associated event group of 0. The layout
the header event record) is given as

DATA TYPE

See above for layout
ASCII (MMDDYY)
binary short
binary short
binary short
binary short
binary short
ASCII

binary short
ASCII

binary short
binary short

Following the header buffer will be the contents of UNIX page map. Hence, the

first buffer will only contain header information.

- 87 -

APPENDIX A

2.3.2 Reduced Data

CONDENSER 1.0

Condenser also writes all its statistics to a file to be read in by user_ class. All

data are written in binary format. The statistics is first preceded by cornidenser’s header

and the header format is as follows:

NAME SIZE
Month 2 bytes
Day 2 bytes
Year 2 bytes
Hour 2 bytes
Minutes 2 bytes
Seconds 2 bytes
Ticks 2 bytes
Monitor version 2 bytes
Monitor user no 2 bytes
Monitor user name 32 bytes
CPU timer 2 bytes
Real timer 2 bytes
UNIX version stamp 16 bytes
CPU type/name 16 bytes
Memory size 2 bytes
Number of users 2 bytes
Number of event events 2 bytes
Number of event buffers 2 bytes
Length of remark 2 bytes
Elapsed time 4 bytes
Maximum user number 2 bytes
Maximum disk number 2 bytes
Remark varying

Following the header are all the statistical matrices and arrays.

DATA TYPE
binary short
binary short
binary short
binary short
binary short
binary short
binary short
binary short
binary short
ASCII
binary short
binary short
binary short
binary short
binary short
binary short
binary short
binary short
binary short
double
binary short
binary short
ASCII

Their sizes are

dependent on the maximum user number and maximum disk number (which are given

in condenser’s header). The details of the statistical data are given below:

STATISTIC DIMENSION

recorded max__user

resp___tot NTRANS by max__user
Tesp_n NTRANS by max__user
think__tot NTRANS by max__user
think_ n NTRANS by max__user
io__noq__tot NTRANS by max__user
io__nog__n NTRANS by max__user
pf__io__noq__tot NTRANS by max__user
pf_io_noq_n NTRANS by max__user
cpu__tot NTRANS by max__user
cpu_n NTRANS by max__user
pf __cpu__tot NTRANS by max__user
pf_cpu_n NTRANS by max__user
disk__noq__tot max__drive by max__ user

DATA TYPE
short
double
long
double
long
double
long
double
long
double
long
double
long
double

- 58 -

DESCRIPTION

flags for recorded users
total response times

number of transactions

total think times

total idle transactions

total /O without queue usage
total 1/0s without queue
total PF I/O usage

total PF 1/Os

total true CPU burst time
total no. of true CPU bursts
total PF CPU burst time
total no of PF CPU bursts
total true disk I/O usage

APPENDIX A

disk__noq_n
pf__disk__noq__tot
pf__disk__noq_n
Iftb

Iftc

max__drive by max__user
max__drive by max__user
max__drive by max__user
max__user
max__user

- 59 -

long
double
long
double
double

CONDENSER 1.0

total no of true disk I/Os
total PF disk 1/0 usage
total no of PF disk I/Os
b parameter

C parameter

APPENDIX A CONDENSER 1.0

3. Program Design

3.1 Design Overview

The general algorithm of condenser is to match start and end event types of the
associated event group and calculate the appropriate statistics. An overview of the

algorithm is as follow:

Process command |ine
User Input from terminol
Get event data header
Get page map
Compute active memory size for each user
Allocate storage
while more event records
Classify Event_Group
Claossify Event_Type for each Group
I1f Stort_Event store timer values
If End_Event calculate statistics by
current timer values — stored timer volues
Spreod transient statistics
Compute aggregate statistics
Print event header and all statistics
Reduce stotistics
Cieanup transient statistics for user_ class

3.2 Internal Data Structures

3.2.1 Constants

The following constants are used to define the dimensions of matrices and arrays.

#define MAXUSRPLUS 257 /* moximum number of users + 1 ./
#define MAXDRIVESPLUS 17 /* maximum number of disk drives + 1 s/
#define NTRANSPLUS 4 /* number of transaction classes + 1 =/

3.2.2 Types

The structures below are used to store special statistics such as memory.

typedef struct It_struct /+ tifetime function structure s/
double 1ftpo, /% below 5 are cumulative s/
1ftp1, /e used to compute the final «/
1ftqt, /* two parameters. ./

* 1ftro,

iftry,
Iftb, /* "b" parameter s/
Ifte; /* "¢" paorameter ./

! LFTSTRUCT;

APPENDIX A CONDENSER 1.0

3.2.3 Data Structures

For each set of statistical data collected (e.g. CPU usage), there are always two
associated values; namely, the total ’usage (e.g. total CPU usage) and the total number
of transactions (e.g. total number of CPU bursts). Except for login/logout statistics, all
other statistics are given on a per user per transaction basis (or per user per disk basis
for disk statistics). The login/logout statistics are given merely on a per user basis.

/* cumulative/aggregate statistics per user per transaction s/

double ==cpu_tot, /% cumulative CPU usage s/
ssresp_tot, /% cumulative response times s/
ssthink_tot, /* cumulotive think times ./
sio_noq_tot, / cumulative 1/0 without queue o/
sapf_io_noq_tot, /% cumulative PF 1/0 without queue s/
«spf_cpu_tot, /* cumulative PF CPU usage ./
espf_tot, /* cumulative physical page faults s/
sevpf_tot; /* cumulotive virtual page fauits s/

long secpu_n, /* total CPU bursts s/
ssresp_n, /* total number of command |ine ./
ssthink_n, /* tronsactions s/
sio_noq_n, / total no. of 1/0s without queue s/
sspf_io_noq_n, /% total PF 1/0s without queue */
sspf_cpu_n, /* total CPU bursts for PF s/
sspf_n, /+ total physical page faults s/
ssvpf_n; /* total virtual poge faults s/

/* aggregate disk statistics on per user per disk basis s/

double +»disk_noq_tot, /* aggregate disk usage 74
=spf_disk_noqg_tot; /+ aggregate PF disk usage s/

long +sdisk_nog_n, /* total disk 1/0s without queue ¢/
«spf_disk_noq_n; /* tota! PF disk I/0s " " s/

double =login_tot, /* aggregate login elapsed time o/

s logout_tot; /* oggregate logout elapsed time ./
long siogin_n, /* total times logged in . s/
«logout_n; / total times not logged in s/

The following are used to store temporary accumulative statistics on a per user

basis.
/* temporary statistics on a per user basis only s/
double =tcpu_tot, /* accumulative CPU usage s/
stio_noq_tot, /* accumulative I/0 no queue usage s/
stpf_io_noq_tot, /* * PF 1/0 no queue usage s/
stpf_cpu_tot, /* poge fault CPU usage s/
stpf_tot, /* poge fault service time s/
«tvpf_tot; /% virtual page foult service time s/
long stepu_n, /% no. of CPU bursts s/
«tio_nog n, /% no. of 1/0 without queue ./
etpf_io_noqg_n, /* no. of Pf 1/0 without queue +/
etpf_cpu_n, /* PF CPU bursts s/
stpf_n, /* no. of physical page faults 74
stvpf_n; /% no. of virtual page faults s/

The event header consists of the date and time structure and other system

- 61 -

APPENDIX A CONDENSER 1.0

information. These are all mapped into the following variables:

char month{2], /* month of date s/
doy[2]). /+ day of dote s/
yeor[2]: /* yeor of dote s/

short min, /% minutes of date o/
sec, /* seconds of date °/
tick, /* ticks of date o/
tic_rote, /* tick rote in ticks/second o/
userno; /* event user number ./

chor usernome[32]); /* event user nome o/

/¢ END OF TIMEDAT structure s/

short vien; /e UNIX version stomp length o/

char version[16]; /s UNIX version stamp ./

short cpuid, /* index to CPU nomes s/
memory, /* memory size in pages o/
nusers; /* number of users o/
mon_version, /¢ monitor version number o/
cpu_tic_rote, /* processor tick rote (Rev 3) o/

/¢ END OF event HEADER FORMAT o/

Each event record will be mapped into the following:

short event_group, /* event event group number s/
event_type, /v event event type number ¢/
user_no; /® User number coused the event s/

doubie cpu_time, /¢ CPU usage in milliseconds o/
recl_time; /* elopsed time in milliseconds o/

short aux_length; /+ length of the ouxiltory info s/

chor soux_info; /* Auxilliory informotion o/

short spogemep: /* contoins UNIX HMAP poge mop »/

-62-

APPENDIX A

3.3 Module Design

CONDENSER 1.0

For the modules below, a design/execution level number is included to indicate the

modules position in the condenser’s hierarchical algorithm. A brief description of each

module’s algorithm is also included.

main{argcargv) - Level 0

The main program. Does command line processing and calls level 1

routines.

int argc;
chor ssargv;

Process command |ine

User_Input(); /*
Get_Header(); /*
Post_Init(); /*
Driver(); /*
Transient(); /*
Aggregate(): /*
Print_Output(); /e
Reducer(); /*
Cleanup(); /*

options

to process user’'s terminal input s/

Get event’'s header information ./

Post initialization «/

Process event data here 74
spread transient statistics ./

Compute aggregate statistics «/

Print out all stotistics »/

Reduce ali statistics for user_ class «/
Clean up transient statistics s/

User__Input(ifname, ofname, rfname) - Level 1
Simply prompts the user for the appropriate file names. Also,
prompts for window range if the appropriate flags are turned on.

char sifname, <«ofname,

erfnome;

if input fite name (ifname) not given

prompt the user

if output file nome (ofname) not given

prompt the user

if reduced file nome (rfnome) not given

prompt the user

if window_time, prompt for time range
if window_buffer, prompt for buffer range

Get__Header() - Level 1

Reads in event header information and stores them in memory. The
number of header records read depends on the event revision. The
first record is common for all event records. Subsequent records only
have useful information in the auxilliary field.

reod in first record
get size of page map
discard current buff
read in page map

Post__Init() - Level 1
Does any initialization

/*
/*
er /*
/*

that

common for all event revs s/
size of page map dumped o/
for compatibilty only 74
row form of page map 74

requires event header information.

Specifically, allocate storage for all statistical structures, and initialize

them to default values.

- 63 -

APPENDIX A ' CONDENSER 1.0

Driver() - Level 1
The actual high level driver that classify event event groups.

while more event records
case (event_group) of

1 : Groupt(); /* User command level transaction =/

2 : Group2(); /* Login/Logout event «/

3 : Group3d(); /* Page fault event */

4 : Groupd(); /* Disk 1/0 event s/
end_case;

Aggregate() - Level 1
Compute all aggregate statistics by adding all rows and columns of
every statistical matrices and arrays. The algorithm is straight-
forward.

Print_OQutput() - Level 1
Prints all statistics into the output file. The algorithm is straight-
forward.

Reducer{() - Level 1
Reduce all statistics to minimize space.

Prepare and write condenser header
for every matrices
convert them into an array which caon be indexed
using (i*no_of_columns)+j; where i, j are indices
of the matrices
write out all converted matrices and arrays.

Cleanup() - Level 1
Handles events that were still active when event was shutdown.
The algorithm at this stage is to simple dump all the transient
statistics for user__class to process.

Groupl() - Level 2
The user command level event group. The following is done for the
user causing the event.

if start_event
" reset temporary statistics
eise if end_event
classify transaction according to CPU usage
copy temporary statistics to global statistics

Group2() - Level 2
The event group is user login/logout. This includes login/logout of
terminal users, remote users, phantoms and child processes. The
following is done for the event user only.

APPENDIX A CONDENSER 1.0

call Group1()
if start_event
reset login temporary statistics

copy logout temporary statistics to globatl statistics
else if end_event

reset logout temporary statistics
copy login temporary statistics to global statistics

/* treat login/logout events as transactions s/

Group3() - Level 2

Page fault event group. Under 4.1BSD or higher systems, we can
have either a wvirtual or physical page fault event. Note that the
pf_on flag for each user can have on of the three values TRUE,

FALSE, and TRUE_PF. We only do the following for the event
user.

if start_event

set pf_on flag to TRUE
reset temporory stotistics
else if end_event
if (pf_on is TRUE_PF)
copy temporary statistics to physical PF statistics

else copy temporary statistics to virtual PF statistics
reset pf_on to FALSE

Group4() - Level 2

The disk 1/O event group. An 1/O event can be caused by a page

fault or be a simple I/O operation. For the user responsible for the
event, we do the following.

if start_event

if (pf_on is TRUE) set pf_on = TRUE_PF
reset temporary 10 statistics
else if end_event

copy temporory statistics to globol statistics

Transient() - Level 2

Spreading transient statistics into uniform transactions.

for each recorded user

if temporary cpu usage < 2 s LARGE_LIMIT
set no_of_trans to 1

else /¢ have o tronsaction every 100 seconds s/
set no_of_trans to elapsed_time / 100.0

spread out all other statistics into global statistics
namely, cpu, pf_cpu, io, pf_io

add to resp_tot the sum of cpu_tot+pf+cpu_tot+io_tot

add to think_tot any remaining idle time

set resp_n and think_n to no_of_trans

- 65 -

APPENDIX A CONDENSER 1.0

3.4 Design Issues

The major concern of condenser’s design is the memory usage. Because the event
header gives the maximum number of configured users, this parameter is used for
dynamic storage allocation. The storage for all the statistical matrices and arrays
should not be allocated until any user interaction has been completed in order to
minimize condenser’s startup time. As a result, the storage is allocated in the procedure
Init__Stats().

For login and logout events, condenser will treated them as normal terminal
transactions. For example, terminal logins/logouts are treated identically as Group 1
events. Also, a child process (including login through logout) is treated as a user
command (i.e. Group 1 event).

3.5 Standards

Condenser is developed to be used by a system monitor on 4.2BSD. If the program
is to be used by monitors developed on other systems, it is important that the event
data should conform to the format described in earlier sections.

3.6 Implementation Language

The language used to develop condenser is the C programming language. The main
reasons for using this language is the need for bit and byte manipulation, and the
need for address manipulation, and it is well supported in UNIX systems.

- 66 -

APPENDIX B USER_CLASS 1.0

1. Proposal

Before reading this .document, the reader must be familiar with the functionalities
of condenser and the requirements of the CAPP package.

1.1 The Problem

All modeling tools require measurable representation of workload as input. The
tools condenser and user_ class of CAPP serve to extract workload statistics from
event data and produce the input data using workload characterization and
classification. In other words, condenser primarily deals with workload characterization
while user__class mainly performs workload classification.

In general, the size of the data produced by a system event monitor is usually too
large to allow the user to repetitively go through the data to collect different sets of
data. Each set of this data is typically made up of a cluster of users. The process of
forming such a cluster is known as user classification.

1.2 Goals and Non-Goals

The primary goal of user__class is to allow the user to perform user classification
without having to go through the raw event data again. This can easily be
accomplished with the use of condenser (which can actually be viewed as an event
data pre-processor as well). In other words, it is essential that the user can do user

classification in a short amount of time.

As for the user classification process, we should allow the user to do arbitrary
classification. This allows the user to select specific users (by their user numbers) to
different groups. User__class will also allow other kinds of user classification, such as
automatic classification by workload.

The third goal of user__class is to automate the modeling phase of the capacity
planning process as much as possible. To accomplish this, user__class will pipeline
data to the modeling tools. In other words, the output from user__class can readily be
used as input for modeling tools without user intervemtion or modification to the
pipelined data.

Note that user__class is not a product by itself. It will only accept data from

condenser.

- 67 -

APPENDIX B USER_CLASS 1.0

2. Program Function

2.1 Terminology

User class A group of users that share some common characteristics. The most
typical characteristic is the user’s type of workload or application
(e.g. EMACS users or DBMS users).

User _classification The process where users are grouped into different classes. The
criteria of the assignment of users to classes can be by user numbers
or by the users’ workload. Each user can be in at most one class.
Note that this is essentially the same as workload classification.

Model data The data that user__class produces to be used as input data by
modeling tools. This data is essentially made up of parameter names -
and parameter values.

Workload characterization
The manner in which we represent workload. In general, workload
characteristics include CPU, 1/0 and memory demands.

2.2 User Interface

To invoke user__class, the command line must conform to the following format
(with abbreviations in boldface):

user__class [-input <file>] [-output <(file>] [-reduce <file>] [-help]
[-version] [-model <file>] [-fullhelp]
[-classtype [useriworkload]]

If no options are given, user__class will prompt the user for the necessary set of
input options.

User__class supports the following options:

-input, -i -output, -0
-reduce, -r -help, -h
-version, -v ~-model, -m
-fullhelp, -fh ~classtype, -ct

The following screens summarize all the user__class options.
-input, -i
Takes a file name as an argument (for input file). The input file should be saved

by a previous user__class run, and should contain lists of user for all classes. If this
option is omitted, user__class will prompt the user for classification information.

-reduce, -0

- 68 -

file:///iser/workload

APPENDIX B USER_CLASS 1.0

Takes a reduced file name as an argument. This file must be the produced by
condenser. User__class will prompt the user for a reduced file name if this option is

. omitted.

-model, -m

Takes a file name where the model data is to be stored. The user will be queried
before an existing file is overwritten. User__class will prompt the user for a model
file name if this option is omitted.

-output, -0

Takes an output file name as an argument. If the output file exists the user will
be queried before it is overwritten. User__class will prompt the user for an output
file name if this option is omitted. Note that the output file merely contains a tabular
form of the model data, plus some global system statistics. .

-help, -h
Prints the command line format on how to invoke user__class.
-fullhelp, -fh
Prints this full help information on user__class usage.
-version, -v
Prints user__class version stamp plus the date and time that it was built.
-verbose
Tells user__class to print traces of its operations on the terminal.
-force

If this option is used, the user will not be prompted for confirmation before an
output file is overwritten. Such files are model file and output file.

-classtype, -ct

Allows the user to do user classification. If the argument is WorkLoad, then the
users will be classified according to workload. Otherwise, the user can do arbitrary
classification by user number. The default is classification by user number.

- 69 -

APPENDIX B USER_CLASS 1.0

- A sample terminal session is given below, with user’s typed input in boldface:

user__class -classtype user

[USER_CLASS Rev. 1.0 — 1986]

Enter reduced file name ? ev60-3.red
Enter output file name ? out

Enter mode! output file name ? mod

CLASSIFYING USERS:

1 2 3 6 7 8 9 18 11 12 13 14 15 16 17
18 19 20 21 22 23 24 25 26 27 28 29 3@ 31 32
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
63 64 126 128 130

Enter number of user classes? 6

NOTE: for the following, terminate user number list with *$’
Enter name for class 1? CLASS1
Enter user numbers for class 17 6 12 18 24 30 36 42 48 5S4 60 $
Enter naome for class 2? CLASS2
Enter user numbers for class 2?2 7 13 19 25 31 37 43 49 55 61 $
Enter nome for class 3? CLASS3
Enter user numbers for class 3? 8 14 20 26 32 38 44 50 56 62 $
Enter name for claoss 4? CLASS4
Enter user numbers for class 4?2 9 15 21 27 33 39 45 51 57 63 §
Enter name for class 5? CLASSS
Enter user numbers for class 5?7 10 16 22 28 34 40 46 52 S8 64 $
Enter nome for class 6? CLASS6 ‘
Enter user numbers for closs 6?7 11 17 23 29 35 41 47 53 59 §
Enter save file name ? sav
Reading data from 'ev6@-3.red’...

NOTES

1. If a user number appears in more than one class, user__class will assign it
to the class that it was first assigned. In other words, each user can belong
to at most one class. A warning message will be printed whenever a class
re-assignment is attempted.

2. If there are users without any class assigned, user__class will automatically
create a dummy class for them.

- 10 -

APPENDIX B USER_CLASS 1.0

2.2.1 ' User Input

User__class allows the user to save user classification input data into a file. This
data informs user__class on how to classify the users in the reduced data. The
format of the input/saved file is made up of parameter names followed by 1 or more
parameter values. Each parameter name must be on a line. A /* delimits the start of
a comment. The parameter names supported at the moment are:

class__type specifies how the user classification is going to be done. Possible
values are user and workload. In the former case, user_ class will
classify the users in the data according to their user numbers. In
the latter case, the classification is done using weighted functions of
the their workloads.

no__class the number of classes desired.

class__name a user-specified name used to identify a class (apart from the class
number chosen by user__class).

user__class used to enumerate a list of user numbers belonging to a class.

work__load used to specify the uppe‘r limit of a class’ weighted workload.

A sample copy of a saved file is given below:

class_type user /* user classification type
no_class] /* number of user classes
/* User classification by user numbers

class_name 1 CLASSH

user_class 1 6 12 18 24 30 36 42 48 54 60
class_name 2 CLASS2

user_class 2 7 13 19 25 31 37 43 49 55 61
class_name 3 CLASS3

user_class 3 8 14 20 26 32 38 44 50 56 62
class_name 4 CLASS4

user_class 4 9 15 21 27 33 39 45 51 57 63
class_name 5 CLASSS

user_class 5 10 16 22 28 34 490 46 52 58 64
class_name 6 CLASS6

user_closs 6 11 17 23 29 35 41 47 53 59

-7 -

APPENDIX B

USER_CLASS 1.0

2.2.2 User Output

User__class’s output is essentially identical to that of condenser, except that the

statistics are given on a per class per transaction basis. However, user__class also gives

system wide statistics that are not given by condenser. They are:

System Throughput

CPU utilization

Page Fault Rate

Disk Utilization

Throughputs The

This is the system’s throughput in the number of transactions per
second.

The percentage of CPU time used for true CPU usage, page faults
and the total usage, assuming that the system has only one CPU.

The number of true and virtual page faults per second, as well as
the total page fault rate per second.

The percentage of the time when each disk is busy doing true 1/0s
and page fault I/Os. The total disk busy time is also given.

throughputs or arrival rates of all job classes in the number of
transactions per second.

A description of all other statistics is given below:

Response times

Think times

True CPU

Page Fault CPU

True 1/0

Page Fault 1/0

Disk 1/0

Disk PF 1/0

Response times for all interactive users on a per class per transaction
basis.

Think times for all interactive users on a per class per transaction
basis.

The pure CPU usage (ie. excludes any CPU time used for page
faults). This is given on a per class per transaction basis.

The CPU usage for handling page faults only. This is given on a
per class per transaction basis.

The pure 1/0 operations excludes any 1/0 caused by page faults.
Any disk queueing statistics are also excluded. This is given on a
per class per transaction basis.

The 1/0 operations caused by page faults only. Any disk queueing
statistics are excluded. This is given on a per class per transaction
basis.

The disk true I/O operations on a per class per disk basis. Queueing
at the disks are excluded in the statistics.

The disk page fault’ /O operations on a per class per disk basis.
Queueing statistics at the disks are excluded.

Lifetime Function This is unlike all the above statistics. The approximated b and ¢

parameters will be printed for all users.

-7 -

APPENDIX B

A sample copy of user__class’s output file is given below:

USER_CLASS OUTPUT

Monitor started on @3/17/86 14:20:21.163
Monitor Version: 1 on 4.2BSD
Monitor User Nome: root Monitor User Number: 75

USER_CLASS 1.0

CPU: VAX 11/75@ Memory: 4096 pages Maximum users: 78
Number of user classes: 3
REMARK :
Elapsed time = 8812.739 seconds
Number of events processed = 122770
Totol blocks/buffers read = 817
GLOBAL SYSTEM STATISTICS
SYSTEM THROUGHPUT = 2.744 transactions/sec
STATISTIC TRUE VIRTUAL TOTAL
CPU UTILIZATION 38.6038% ©0.3493% 38.9532%
PAGE FAULT RATE 0.0044 0.0111 0.0156
DISK © 4.1738% 0.1612% 4.3350%
DISK 1 0.1385% 0.2287% 0.3672%
DISK 8 0.2788% 0.2142% 0.4930%
DISK 9 0.0064% 0.0000% 0.0064%
THROUGHPUTS (transactions/sec)
CLASS MICRO NORMAL LARGE OVERALL
1 1.316 1.060 2.114 2.491
2 0.044 ©.025 0.004 0.072
3 ©.000 9.050 @.131 9.181
TOTAL 1.360 1.135 0.249 2.744
CLASSIFICATION OF USERS
USER CLASS USER NUMBERS
1 4 10 19 20 21 24 26 27 34 46
2 49 50
3 1 59 66 61 62 63 64 65 66 67 69 71 72 73 74
3 75 76 77 78
RESPONSE TIMES (seconds)
MICRO NORMAL LARGE OVERALL
CLASS N AVERAGE N AVERAGE N AVERAGE N AVERAGE
1 11600 0.159 9344 0.445 1007 7.554 21951 0.620
2 387 0.005 217 9.029 31 1.164 635 0.070
3 0 0.000 440 0.032 1155 9.705 1595 7.037
TOTAL 11987 0.154 10001 0.418 2193 8.597 24181 1.029

- 73 -

APPENDIX B

MICRO

THINK TIMES (seconds)

PAGE FAULT 1/0 WITHOUT QUEUE TIMES (msec)

CLASS N AVERAGE

1 11601 3.165

2 387 7.475

3 (4 0.000

TOTAL 11988 3.304
MICRO

CLASS N AVERAGE

1 0.528 3.465

2 0.609 4.294

3 ©0.000 0.000

TOTAL ©.496 3.491
MICRO

CLASS N AVERAGE

1 0.002 2.432

2 9.000 0.000

3 0.000 0.000

TOTAL ©.002 2.475
MICRO

CLASS N AVERAGE

1 ©.000 0.000

2 0.000 0.000

3 0.000 ©.000

TOTAL ©.000 ©.000
MICRO

CLASS N AVERAGE

1 0.002 21.212

2 0.000 0.000

3 9.000 ©0.000

TOTAL ©.002 21.212
MICRO

CLASS N AVERAGE

1 0.002 23.864

TRUE

NORMAL
N AVERAGE
9344 3.036
217 51.862
440 47.491
10001 6.852

N

1007

31
1155
2193

LARGE
AVERAGE

9.356
110.782
109.533

63.550

TRUE CPU BURST STATISTICS (msec)

NORMAL

N

0.427
0.381
0.314
0.418

AVERAGE

21.918
21.974
24 .482
22.047

N

0.217
0.235
14.690
1.172

LARGE
AVERAGE

137.473
166.458
104 .858
110.670

PAGE FAULT CPU STATISTICS (msec)

N

.003
.003
.065
.007

OO

N

. 009
.039
.038
.0e4

[I~ I

NORMAL

AVERAGE

5.798
48.128
3.659
5.013

NORMAL

AVERAGE

20.152
23.758
22.553
22.384

NORMAL

N

0.003
©.003
0.065
0.007

AVERAGE

20.952
18.182
19.153
19.861

N

0.068
0.069
0.199
0.077

N

0.171
©.186
13.966
1.082

N

0.090
0.151
0.352
0.109

LARGE
AVERAGE

8.694
18.223
50.667
16.117

I1/0 WITHOUT QUEUE TIMES (msec)

LARGE
AVERAGE

19.252
22.393
14.712
15.400

LARGE
AVERAGE

18.268
19.287
19.149
18.492

TRUE PAGE FAULT TIMES (msec)

NORMAL

N

0.0083

AVERAGE

25.668

N

0.068

- 174 -

LARGE
AVERAGE

30.071

N

21952
635
1585
24182

1.172
1.225
15.004
2.086

.073
.072
.263
.086

[\ I

0.172
0.225
14.004
1.086

.095
.154
.416
.118

o6

0.073

USER__CLASS 1.0

OVERALL
AVERAGE

3.394
27.687
92.417

9.904

OVERALL
AVERAGE

35.018
40.851
103.175
67.442

OVERALL
AVERAGE

8.384
19.567
39.139
14.872

OVERALL
AVERAGE

19.257
22.632
14.733
15.428

OVERALL
AVERAGE

18.425
19.264
19.149
18.622

OVERALL
AVERAGE

29.698

APPENDIX B

USER_CLASS 1.0

2 e.e00 ©.000 ©.003 19.697 ©.269 51.791 @.072 50.395
3 e.e00 ©.000 ©.065 22.183 ©.199 43.055 @.263 37.937
TOTAL ©.002 23.864 ©.807 23.524 ©.077 32.814 ©.086 31.830
VIRTUAL PAGE FAULT TIMES (msec)
MICRO NORMAL LARGE OVERALL
CLASS N AVERAGE N AVERAGE N AVERAGE N AVERAGE
1 0.000 1.515 ©.9003 3.328 ©.147 2.303 ©0.150 2.321
2 e.ee2 3.030 0.076 2.399 0.447 2.113 0.524 2.157
3 o.000 0.000 0.045 2.483 2.524 4.385 2.569 4.352
TOTAL ©.000 1.818 0.007 2.746 0.31 3.409 0.319 3.392
TRUE DISK 1/0 WITHOUT QUEUE TIMES (msec)
DISK © DISK 1 DISK 8 DISK 9
CLASS N AVERAGE N AVERAGE N AVERAGE N AVERAGE
1 0.114 19.278 @.025 18.053 ©.033 19.919 ©.000 39.394
2 0.192 21.908 ©.000 0.000 ©.033 26.840 ©.000 ©.0800
3 13.661 14.537 0.077 19.537 ©.260 23.152 ©.006 36.700
TOTAL 1.@10 15.061 ©.028 18.327 ©.048 21.199 ©.000 37.778
OVERALL
CLASS N AVERAGE
1 0.172 19.257
2 0.225 22.632
3 14.004 14.733
TOTAL 1.086 15.428
PAGE FAULT DISK 1/0 WITHOUT QUEUE TIMES (msec)
DISK © DISK 1 DISK 8 OVERALL
CLASS N AVERAGE N AVERAGE N AVERAGE N AVERAGE
1 0.033 16.810 ©.033 18.779 ©.030 19.796 ©.895 18.425
2 0.002 51.515 ©.099 19.240 0.054 18.360 @.154 19.264
3 0.078 16.679 ©.176 19.573 ©.162 19.960 ©.417 19.180
TOTAL ©.835 16.832 0.044 19.017 ©.040 19.789 ©.118 18.629

LIFETIME FUNCTION PARAMETERS
CLASS B c

1 2.7500e+02 1.3860e+02
2 2.2753e+02 6.4103e+00
3 8.2088e+92 1.0695e+02

AVERAGE LIFETIMES

CLASS AVG. LTIME
1 5.618351e402
2 6.9039106e+02
3 5.878784e+03

- 175 -

APPENDIX B USER_CLASS 1.0

2.3 Program Interfaces

User__class interfaces with condenser and modeling tools via files. The interface
with condenser is a binary file containing all the reduced and aggregate statistics. The
interface with modeling tools is a text file containing parameter names and values
required by these tools. A detail description of these interfaces is given in the next
two subsections.

However, the knowledgable user can also use the output from user__class for input
to any other modelling tools. In this case, the user has to know how to interpret this
output and translate to the input of any modelling tool that the user may be using.

2.3.1 Condenser Interface

The reduced file written by condenser must begin with header information
necessary for user__class to determine the sizes of all following data within. The
header also contains a simplified form of the event data header that condenser obtains
from the event data. The format of the header is given below:

NAME SIZE DATA TYPE
Month 2 bytes binary short
Day 2 bytes binary short
Year 2 bytes binary short
Hour 2 bytes binary short
Minutes 2 bytes binary short
Seconds 2 bytes binary short
Ticks 2 bytes binary short
Monitor version 2 bytes binary short
Monitor user 2 bytes binary short
Monitor user name 32 bytes ASCII
UNIX version stamp ~ 16 bytes binary short
CPU type/name 16 bytes binary short
Memory size 2 bytes binary short
Number of users 2 bytes binary short
Number of events 2 bytes binary short
Number of buffers 2 bytes binary short
Length of remark 2 bytes binary short
Elapsed time 4 bytes double
Maximum user number 2 bytes binary short
Maximum disk number 2 bytes binary short
Remark varying ASCI
Recorded users 2 * maxuser bytes binary short

- 76 -

APPENDIX B USER_CLASS 1.0

Following the header are all the statistical matrices and arrays. Their sizes are
dependent on the maximum user number and maximum disk number (which are given
in condenser’s header). The details of the statistical data are given below:

STATISTIC DIMENSTON DATA TYPE DESCRIPTION

recorded max_user short flaogs for recorded users
resp_tot NTRANS by max_user double total response times
resp_n NTRANS by max_user long number of transactions
think_tot NTRANS by max_user double total think times

think_n NTRANS by mox_user long total idle transactions
io_noq_tot NTRANS by max_user double total 1/0 without queue usage
io_noq_n NTRANS by max_user long total 1/0s without queue
pf_io_nog_tot NTRANS by max_user double total PF 1/0 usage
pf_io_nog_n NTRANS by max_user long total PF 1/0s

cpu_tot NTRANS by max_user double total true CPU burst time
cpu_n NTRANS by max_user long tota!l no. of true CPU bursts
pf_cpu_tot NTRANS by max_user double total PF CPU burst time
pf_cpu_n NTRANS by max_user long total no of PF CPU bursts
disk_noq_tot max_drive by max_user double total true disk 1/0 usage
disk_noq_n max_drive by max_user long total no of true disk I/0s
pf_disk_nogq_tot max_drive by max_user double total PF disk 1/0 usage
pf_disk_noq_n mox_drive by max_user fong total no of PF disk 1/0s
pf_n NTRANS by mox_user long total true PFs

vpf_n NTRANS by max_user long total virtual PFs

1ftb max_user double b parameter

lftc max_user double C parameter

- 77 -

APPENDIX B USER_CLASS 1.0

2.3.2 Modeling Tools Interface

The model data file from user_class to be used by the modeling tools consists of
parameter values and names. These parameters are the union of the input parameter
requirements of these tools. The contents of the file is line-oriented, and each line must
conform to the following format:

Parameter Name Parameter Value(s) ; Comments

Note that each parameter name can have one or more values. A sample subset of the
model data file is given below:

/.lt".."""‘...“."‘“‘"".“‘.“0‘..‘..‘l"‘.“.‘t‘t/

/* PROJECTION PARAMETERS ./
/-‘..‘.‘t“‘..“‘.“..“'..“‘.‘“.“.“‘.““l.“.‘.““‘/
sim_cpu_type P850 /+ CPU Type (projection)
sim_memory_size 4095 /« Memory size (projection) in poges
sim_time 8813 /+ Simulation time (seconds)
/.""..“‘“.“.".".“.......“‘.“l#‘..‘..““....".‘/
/* GEM DATA PARAMETERS s/
/.‘.....“'....""..‘“‘“‘."“'.““‘.“"““‘.““.“/
cpu_type P850 /+ CPU Type (measured data)

memory_size 4095 /+ Memory size (measured data) in pages
n_cont 2 /* No. of disk controllers

n_disk e 2 /» No. of disks in controller @
n_disk 2 2 /» No. of disks in controller 2
n_class 3 /+* Number of user classes

/....‘.....‘.‘...‘.tl.‘“‘.".l.."..“"..‘.‘..“..‘.‘.../

/* USER CLASS 1 PARAMETERS s/

/..“.‘.“.t.“..‘..‘.‘.‘.‘.O.“....‘..“..‘O“O.“‘.“.../
user_class 1 TERMINAL

n_users 10 /* number of users in class

1ftb 2.7500e+02

lftc 1.3860e+02

cpu 1 3.4646 /s ovg CPU burst time per micro transaction
cpu_n 1 ©.5285 /+ no of CPU bursts for micro tronsactions

cpu 2 21.9185 /+ avg CPU burst time per norma! tronsoction
cpu_n 2 ©.4266 /+ no of CPU bursts for normal tronsactions

cpu 3 137.4730 /+ ovg CPU burst time per large tronsaction
cpu_n 3 ©.2173 /+ no of CPU bursts for large transactions
pf_cpu 1 2.4320 /+» avg PF CPU burst time per micro transaction
pf_cpu_n 1 ©.2022 /+ no of PF CPU bursts for micro tronsactions
pf_cpu 2 5.7976 /+ avg PF CPU burst time per normal transaction
pf_cpu_n 2 0.0031 /+ no of PF CPU bursts for normal! tronsactions
pf_cpu 3 8.6937 /+ ovg PF CPU burst time per large tronsaction
pf_cpu_n 3 ©.0678 /+ no of PF CPU bursts for large transactions

io 1 ©.0000 /« avg 1/0 service time per micro transaction
io_n 1 ©.0000 /+ no of 1/0s for micro transactions

io 2 20.1515 /+ avg 1/0 service time per normal transaction
io_n 2 ©.0009 /¢ no of 1/0s for normal transactions

io 3 19.2520 /¢ avg 1/0 service time per Jarge tronsaction
io_n 3 9.1714 /e no of 1/0s for large transactions

pf_io 1 21.2121 /» ovg PF 1/0 service time per micro transaction
pf_io_n 1 0.0022 /e no of PF I1/0s for micro transactions

pf_io 2 20.9524 /+ avg PF 1/0 service time per normal transaction
pf_io_n 2 ©.0832 /¢ no of PF 1/0s for normol transactions

pf_io 3 18.2677 /¢ avg PF 1/0 service time per large transaction
pf_io_n 3 ©.0901 /e no of PF 1/0s for large transoctions

think 1 3.1652 /« avg Think time per micro transaction

- 178 -

APPENDIX B

think_n
think
think_n
think
think_n
disk
disk_n
disk
disk_n
disk
disk_n
disk
disk_n
pf_disk
pf_disk_n
pf_disk
pf_disk_n
pf_disk
pf_disk_n
pf_disk
pf_disk_n

HURNN -

1
3.

9.

OOV~ DO DODOW - =

1601 /o
0363 /o
9344 /»
3563 /=
1007 /e
19.
(]
18.
0
19.
0
39.
0
16.
0.
18.
Q.
19.
0.
0.
0.

No. of trans for micro transactions
avg Think time per normal transaction
No. of trons for normal transactions
avg Think time per large transaction
trans for large tronsoctions

No. of
2780 [

.1143 /»

0535 /»

.0247 /e

9188 [+

.0330 /s

3939 /e

.0003 /»

8102 /+
0327 /»
7786 /e
0326 /=
7955 /»
0301 /s
2000 /+
2000 /o

mean 1/0 service time
total(ratio) 1/0s for
mean I/0 service time
totol(ratio) 1/0s for
mean 1/0 service time
total(ratio) 1/0s for
mean 1/0 service time
totol(ratio) 1/0s for
mean [/0 service time
total(ratio) 1/0s for
mean 1/0 service time
total(ratio) I/0s for
mean 1/0 service time
total(ratio) I1/0s for
mean 1/0 service time
total(ratio) 1/0s for

- 79 -

for disk
disk @
for disk
disk 1
for disk
disk 8
for disk
disk 9
for disk
disk @
for disk
disk 1
for disk
disk 8
for disk
disk 9

USER_CLASS 1.0

APPENDIX B

3. Progrém Design

3.1 Design Overview

USER_CLASS 1.0

The main objective of user__class is to collect groups of users and récompute the

associated statistics for each group. An general view of the top level algorithm is given

below:

Process command line
Clossify users to groups
For eoch group of users:
add each of their total usage statistic
add each of their total count statistic
Resulting class stotistics is totol usage / total counts
Compute aggregate statistics on a per class basis
Compute averages
Output all class statistics in output file
Output model data in the mode! file

3.2 Internal Data Structures

The following is the header of the reduced data produced by condenser:

typedef struct heodertype §

short month, /* month of date s/
day, /* day of date s/
year, /* year of date s/
hours, /+* hours of time (millitary) s/
minutes, /* minutes of time Y4
seconds, /* seconds of time s/
ticks; /* ticks of time ./
short monitor_version, /* Monitor version number 74
monitor_user; /* Monitor user number s/
char monitor_unome[32]; /* MOnitor user name s/
char os_version[16], /* UNIX wversion stamp ./
cputype[16]; /* CPU name/type Y4
short memory, /+ Memory size */
nusers, /* No. of configured users ./
nevents, /* total no. of events o/
nbuffers, /* total no. of buffers ./
rien; /* length of monitor remark s/
double elapsed; /* elapsed time */
short maxuser, /* maximum user no. in data s/
maxdisk; /+ maximum disk no. in data s/

$ REDUCED_HEADER;

APPENDIX B USER_CLASS 1.0

3.3 Module Design

main{argcargv) - Level 0O ‘
The main program. Does command line processing and calls level 1
routines.

int argc;
char ssargv;

Process command |ine options

User_Input(); /* to process user’s terminal input */
Get_Dato(); /* Input dotao from condenser Y4
Classify(); /* Classify the users o/
Aggregate(); /* recompute on a per class basis &/
Average(); /* calculate average vaiues ./
Mode|_Output(); /» Print out mode! data ./

Print_Output(); /+ Print user__class output statistics =/

User _Input(ifname, ofname, rfname) - Level 1
Simply prompts the wuser for the appropriate file names. Also,
prompts for window range if the appropriate flags are turned on.

char =ifname, sofname, srfname;

if input file name (ifname) not given
prompt the user

if output file nome (ofname) not given
prompt the user

if reduced file name (rfname) not given
prompt the user

if window_time, prompt for time raonge

if window_buffer, prompt for buffer range

Get__Data() - Level 1
Read in all the reduced data from the reduced file.

Classify() - Level 1
Does the actual classification here. The resulting statistics will be in
separate structures given above. During classification, the statistics of
users in a common class are summed. For lifetime function
parameters, however, the average values of a single class users are
used to generate numerous sets of data points for the orthogonal
approximation to produce a resulting set of parameters.

Aggregate() - Level 1
Recompute the aggregate statistics on a per class basis.

Average() - Level 1
Compute average values of all statistics, replacing the total wvalues
stored.

Model__Output() - Level 1
Print the average statistics to the model data file, together with
model configuration data.

Print__Output() - Level 1
Calculate and print global system statistics. Print all average

- 81 -

APPENDIX B USER_CLASS 1.0

statistics to the output file.

3.4 Design Issues

The major concern in the design of user_class is the size of the structures for
storing all statistics. Because condenser can provide information on limits of these
structures in the reduced file header, user__class can easily allocate the required space
for the structures dynamically. This avoids the use of static structures (which
increases the startup time of user__class) and minimizes memory requirements.

During user classification, the b and ¢ parameters provided by condenser for each
user will be averaged for each of the 100 data points generated using the lifetime

curve function.

3.5 Implementation Language

The language used to develop user__class is the C programming language. The
main reasons for using this language is the need for bit and byte manipulation, the
need for address manipulation, and that it is highly portable among UNIX systems.

- R -

APPENDIX C QNETS 1.0

1. Proposal

Before reading this document, the reader must be familiar with the model data
provided by user__class. Also, a gnets user should also be familiar with general
capacity planning techniques.

This document describes the development of gnets, an analytical modeling tool that
accepts model data from user__class and provides performance statistics of the system
to be modeled.

1.1 Goals and Non-Goals

The goal of gnets is to be able to model as many systems as possible. Besides
being general, the tool should provide results with sufficient accuracies. The input to
gnets is the model data provided by wuser_ class.

The analytical algorithm used by gnets is Linearizer (see Linearizer: A Heuristic
Algorithm for Queueing Network Models of Computing Systems, CACM 25, 2 (April
1982), 126-134 by Mandy Chandy et. al). Memory modeling is also added to gqnets
(note that linearizer does not model memory).

Because gnets is based on linearizer, the user should be aware of the algorithm’s
restrictions. In particular, he should know whether or not gnets can be used to model
the system under study.

- 83 -

APPENDIX C QNETS 1.0

2. Program Function

2.1 Terminology

Performance indices
The set of statistics that serves to calibrate a system’s performance.
Examples are utilizations, throughputs and response times.

Model validation The purpose of model validation is to ensure that a model
representation (for example, a mathematical model) of a system
correctly represents the system. The process involves validating the
performance indices given by the model with the measured statistics
of the system.

Workload characterization
The manner in which we represent workload. In general, workload
characteristics include CPU, I/0 and memory demands.

Performance Projection
A validation model is evaluated using a representative workload to
determine the performance indices of the projected system.

2.2 User Interface

To invoke gnets, the command line must conform to the following format (with
abbreviations in boldface):

gnets [-input <file>] [-output <file>] [-help] [-fullhelp]
[-version] [-force]

If no options are given, gnets will prompt the user for the necessary set of input

options.

QOnets supports the following options:

-input, -i -output, -0
-help, -h -version, -v
-fullhelp, -fh -force

The following screens summarize all the gnets options.
-input,
Takes a file name as an argument (for input file). The input file should be saved

by a previous gnets run, and should contain lists of user for all classes. If this option
is omitted, gnets will prompt the user for classification information.

-output, -0

Takes an output file name as an argument. If the output file exists the user will
be queried before it is overwritten. (nets will prompt the user for an output file

APPENDIX C QNETS 1.0

name if this option is omitted.
-help, -h |
Prints the command line format on how to invoke gnrets.
-fullhelp, -fh
Prints this full help information on gnets usage.
-version, -v
Prints gnets version stamp plus the date and time that it was built.
-force

If this option is used, the user will not be prompted for confirmation before an
output file is overwritten. Such files are model file and output file.

A sample terminal session is given below, with user’s typed input in boldface:

qnets

[QNETS Rev. 1.0 - 1986]

Enter input file name ? model__data
Enter output file nome ? outfile

- 2.2.1 User Input

The input file to qnets must be produced by user__class. Details of the input file
and format are given in Appendix B.

- RS -

APPENDIX C

QNETS 1.0

2.2.2 User Output

The output produced by gnets consists of statistics identical to the measured

statistics produced

by user__class. They are as follows:

System Throughput

Page Fault Rate

Utilizations

Throughputs

This is the system’s throughput in the number of transactions per
second.

The number of page faults per second.
The percentage of the time when each service is busy servicing jobs.

The throughputs or arrival rates of all job classes in the number of
transactions per second.

A sample copy of gnets’s output file is given below (device 0 is the CPU):

CPU: VAX 11/750

Memory: 4096 poges Maximum users: 78

Number of user classes: 3

Number of disks:

CLASS DEVICE @
0 35.0174

1 40.8475
2 183.1754

CLASS DEVICE @

o 1.1724
1 1.2251
2 15.0038

SYSTEM THROUGHPUT
PAGE FAULT RATE

4

SERVICE TIMES(msec)

DEVICE 1 DEVICE 2 DEVICE 3 DEVICE 4
18.5243 18.5392 19.8468 39.3939
22.2774 19.2400 20.8149 0.0000
14,5929 19.5699 20.7756 36.7003

VISIT RATIOS

DEVICE 1 DEVICE 2 DEVICE 3 DEVICE 4
©.1646 ©0.0748 ©.0793 ©0.0003
0.1945 0.1506 0.1143 0.0000

14.0266 0.8979 1.0161 0.0056

PROJECTED STATISTICS

= 3.217966 trans/sec
= 0.019027 per sec

CLASS THINK(sec) RESPONSE(sec) THRUPUT(/sec)
) 3.3943 0.0062 2.9407
1 27.6868 ©.0098 0.0722
2° 92.4175 0.2550 0.2050
CENTER UTILIZATION
] 44.1724%
1 5.1243%

- 86 -

APPENDIX C QNETS 1.0

2 ©.7890%
3 0.9126%
4 0.0077%
QUEUE LENGTHS
CLASS DEVICE @ . DEVICE 1 DEVICE 2 DEVICE 3 DEVICE 4
o 9.9818 0.0094 0.0041 0.0047 0.0000
1 1.9993 0.0003 0.0002 0.0002 0.0000
2 18.9477 ©0.0442 0.0036 0.0044 0.0000

- 87 -

APPENDIX C

3. Program Design

3.1 Design Overview

The modeling algorithm used in gnets is known as Linearizer.

of gnets is as follows:

Process command)ine
Read in input file

Colculate poge foult rate from lifetime function

Include disk visits due to page fault to disk visit ratio

Invoke Linearizer
Output statistics

3.2 Internal Data Structures

QNETS 1.0

The overall design

The following is the header of the reduced data produced by condenser:

#define MAXCENTER 30
#define MAXCLASS 10
typedef double MATRIX[MAXCLASS][MAXCENTER];
typedef double UCMAT[S][MAXCLASS]:
typedef double DARR[MAXCLASS];
typedef long LARR[MAXCLASS];
MATRIX Ser_t,
Vst_r,
Res, /*
Q, /*
/* input parameters s/
disk, disk_n, pf_disk, pf_disk_n;
UCMAT cpu, cpu_n, io, io_n, pf_cpu, pf_cpu_n, think, think_n;
DARR Thk_t, /*
Thpt, /*
pfs, /*
N_usr, /*

Iftb, Iftc;

/* visit ratios per class per device

response times per closs

queue lengths per class per device

think times per class
throughputs per class

poge fault rates per class

size of each job class

- 88 -

/* service times per class per device s/

+/
+/
*/

+/
+/
+/
s/

APPENDIX C OQNETS 1.0

3.3 Module Design

main{argc.argv) - Level 0 ‘
The main program. Does command line processing and calls level 1
Toutines. '

int argc;
char ssgrgv;

Process command |line options

Restore(); /* Read in input file ./
Simplify(); /* Compute page fault and disk VR =/
Linzr(); /* Invoke Linearizer s/
Print_Output(); /* Print all statistics ./

Restore() - Level 1
Read in all the input parameters from the input file. Store all data

into arrays.

Simplify() - Level 1
Aggregate transaction subclass statistics. Compute page fault rate
from lifetime function. Compute disk visits due to page fault.
Recompute all disk visit ratios.

Print_Qutput() - Level 1 .
Print all output statistics given by Linzr().

3.4 Design Issues

Unlike user__class and condenser, all the data structures used in gnets are static
arrays. This is because the size of the arrays are comparatively smaller. If the user
requires to model more service centers or more job classes that gnets currently supports,
the constants MAXCENTER and MAXCLASS should be increased accordingly.

3.5 Implementation Language

The language used to develop gnets is the C programming language. The main
reason for using this language is that it is portable among UNIX systems.

- 89 -

