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Abstract 

Over the past few years, much experience has been gained in semi-automatic protocol imple

mentation using an existing Estelle-C compiler developed at the University of British Columbia. 

However, with the continual evolution of the Estelle language, that compiler is now obsolete. 

The present study found substantial syntactic and semantic differences between the Estelle 

language as implemented by the existing compiler and that specified in the latest ISO docu

ment to warrant the construction of a new Estelle-C compiler. The result is a new compiler 

which translates Estelle as defined in the second version of the ISO Draft Proposal 9074 into 

the programming language C. The new Estelle-C compiler addresses issues such as dynamic 

reconfiguration of modules and maintenance of priority relationships among nested modules. A 

run-time environment capable of supporting the new Estelle features is also presented. The im

plementation strategy used in the new Estelle-C compiler is illustrated by using the alternating 

bit protocol found in the ISO Draft Proposal 9074 document. 
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Chapter 1 

Introduction 

Estelle is a formal description technique (FDT) developed to be used by ISO standards 

committees for the specification of communication protocols and services destined to become 

international standards. The use of formal methods for protocol specification reduces the risks 

of erroneous or incompatible implementations of these protocols. In addition, the availability 

of precise and unambiguous descriptions of protocols allows automatic tools to be built for 

generating protocol implementations directly from the formal specifications. 

In response to the challenge of realizing automatic implementation of protocols from Estelle 

specifications, the first Estelle compiler was developed at the University of Montreal [Gerb83]. 

This compiler accepts Estelle specifications and generates implementation codes in Pascal. 

Currently, several Estelle compilers, interpreters and simulators have already been developed 

[Ansa87,Cour86,Garg87]. 

1.1 Motivations for a New Estelle Compiler 

At the University of British Columbia (UBC), an Estelle-C compiler was developed by 

Daniel Ford in 1984 [Ford85]. The compiler accepts Estelle as defined by the 1984 Estelle 

working document [Este84] and generates target codes in the programming language C. The 
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CHAPTER 1. INTRODUCTION 2 

original compiler was found to be erroneous and was subsequently improved by Alan Lau in 

1986 [Lau86]. The improved compiler was successfully used by Lau in a comparative study on 

semi-automatic versus manual implementation [Vuon87,Vuon88] of the ISO class 2 transport 

protocol [IS082a,IS082b]. 

However, the Estelle language has undergone two major changes since 1984 and is currently 

in the second draft proposal stage [Este85,Este86]. The UBC Estelle-C compiler is now obsolete 

due to the substantial differences between the current Estelle specification and the Estelle 

language as implemented by Ford. Therefore, it is necessary to build a new UBC Estelle-C 

compiler that will conform to the new standards [Este86] and, thus, allow further works in 

automatic protocol implementations. 

1.2 Thesis Outline 

This thesis describes the implementation of a new Estelle-C compiler. Chapter 2 presents 

the changes made to the Estelle language since 1984 and the justification for the reimplemen-

tation of a new compiler instead of the modification of the old compiler to conform to the new 

standards. Chapter 3 describes the translation scheme used in the new compiler and compares 

it with the scheme used in the old compiler. The implementation strategy used in the new 

Estelle-C compiler is illustrated by using the alternating bit protocol. Chapter 4 discusses the 

run-time environment used in the new compiler. Chapter 5 concludes the thesis with some 

insights gained from this project. 



Chapter 2 

Estelle Evolution 

Estelle is a hybrid formal protocol description technique which combines an underlying 

extended finite state machine model with the use of a programming language notation. Syntac

tically, Estelle is based on the programming language Pascal with additional features borrowed 

from Ada and Modula-2. An Estelle specification describes a complex protocol specification 

as a hierarchical structure of increasingly refined communicating finite state machines called 

modules. The syntax provides constructs necessary to specify state transitions within the 

modules as well as the means to interconnect the various specified modules. Semantically, these 

modules are allowed to be executed in parallel. 

The modules communicate with each other through abstract interfaces called interaction 

points. A bidirectional communication path between two interacting modules, called a chan

nel, is formed when two interaction points, one from each module, are connected together. 

After a channel is established between two modules, the modules can interact by transmitting 

units of information, called interactions, through the channel. 

The dynamics of a channel is modeled abstractly as a pair of first-in-first-out queues located 

at the two linked interaction points. Each interaction signaled between two modules is routed 
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CHAPTER 2. ESTELLE EVOLUTION 4 

from the interaction point at the sending module to the queue in the interaction point at the 

receiving module. 

Each channel is associated with a channel type. For each channel type, a set of parameterized 

interaction primitives can be specified for generating interaction instances which are to be 

transmitted through the channel. Because of the bidirectional nature of the channels, two 

interaction role identifiers must be specified for each channel in order to distinguish the two 

directions. Each of the allowable interaction primitives may be associated with either one or 

both of the defined roles. The use of the role identifier allows each interaction primitive to 

be specified as either unidirectional or bidirectional. The two corresponding interaction points 

for each channel must have opposite roles so that they can be used to send and to receive 

interactions of the opposite type. 

The abstraction provided by the Estelle channel can be used naturally for modeling the set 

of service primitives allowable at the boundaries between two adjacent protocol layers. When 

a protocol specification is refined into submodules, the same abstraction can also be used to 

specify interactions between any two submodules. 

Excellent descriptions of the Estelle features and facilities can be found in Linn [Linn86] 

and Courtiat et al. [Cour86], This chapter only describes the changes to the Estelle language 

from the 1984 working document [Este84] to its present 1986 draft proposal form [Este86] and 

concludes with a justification for building a new Estelle-C compiler from scratch instead of 

modifying the current UBC Estelle-C compiler. 
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2.1 Module Hierarchy 

Some of the major differences between the Estelle language as defined in the original working 

document [Este84] and that defined in the resulting draft proposal documents [Este85,Este86] 

are the changes made to the hierarchical structuring of the modules. Since a module is the 

basic unit of protocol specification in Estelle, the changes have profound effects on the run-time 

environment that the new Estelle-C compiler must support. 

2.1.1 Static Organization 

A protocol specification is originally defined as a hierarchy of modules of two different 

types [Este84]. At the bottom of the module hierarchy are processes. A process defines an 

atomic unit of protocol specification as an extended finite state machine which cannot be further 

subdivided. The behavior of a process is specified as a list of possible transitions. All processes 

are specified to be executed in parallel. The modules at the higher layers in the module hierarchy 

are called refinements. Refinements may be further divided into submodules, each of which 

may be either a process or another refinement. Refinements, however, may not contain any 

transition specification. The sole purpose of the refinement modules is to impose a structure on 

the set of defined processes during system initialization time; these modules are inactive during 

protocol execution. 

The implication of this modular organization is that a protocol specified in this manner 

has a static structure. Since only the bottom layer of the hierarchy contains active modules, 

the structure cannot be changed during run-time. Another consequence of this organization is 

that the structure is linear. The set of active modules can be linked together into a linear list. 

Simple round-robin scheduling over this list will suffice during run-time to simulate parallelism 
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[Ford85]. 

2.1.2 Dynamic Organization 

In the first draft proposal for Estelle [Este85], transition execution is allowed in the higher 

level modules. In addition, provisions are made to allow modules to share common variables. 

In order to ensure mutual exclusion between the shared variables, two restrictions are imposed 

on the structuring principles of an Estelle protocol specification. 

First, two types of modules with different execution semantics are defined. An activity 

is a module which is considered to be atomic and cannot be substructured. A process is a 

module which may be substructured into either child processes or child activities. Processes at 

the same level may be run in parallel, but activities may be run only in an interleaved fashion. 

Second, a parent/child priority relation is imposed on the module hierarchy. If a transition of 

a parent module is enabled, no child may begin a transition. 

The first restriction will ensure mutual exclusion among modules at the same level in the 

module hierarchy if they are specified as activities. The second restriction will ensure mutual 

exclusion among modules at different levels in the module hierarchy. 

In the second draft proposal for Estelle [Este86], the major change to the Estelle language 

specification is to forbid the use of shared variables among modules at the same level in the 

module hierarchy. The inclusion of this restriction eliminates the concern of mutual exclusion 

among modules at the same level. Consequently, there is no further need to distinguish be

tween processes and activities. However, the concepts of processes and activities are retained 

to distinguish the two possible forms of module execution semantics. The process abstraction 

represents a synchronous parallel execution while the activity abstraction represents a nonde-

terministic sequential execution. Because of these new semantics, activity modules may now 
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be further substructured into other activities. 

The new module synchronization semantics defined in the two Estelle draft proposals 

[Este85,Este86] imply a more complicated run-time environment than is necessary for Estelle 

as defined in the working document [Este84]. The new run-time scheduler must differentiate 

between modules at different levels in order to enforce the parent/child priority relationships. 

The scheduler used in the new Estelle-C compiler is discussed in Section 4.1. 

2.2 Module Configuration 

Module configuration is the process of instantiating and interconnecting the modules defined 

in an Estelle specification. Module configuration can only be performed by a parent module on 

its immediate child modules. In the original version of Estelle [Este84], module configuration 

can only be performed at system initialization time. Since all modules above the bottom level 

are inactive, the number and the types of modules will remain unchanged for the life-time of 

the specified system. In the later versions [Este85,Este86] where active modules are present in 

the higher levels, module configuration may be carried out any time. The potential result of 

this enhancement is a protocol specification with a dynamically varying module organization. 

2.2.1 Dynamic Module Instantiation 

The process of module instantiation includes the declaration of a module variable, the 

initialization of a module instance, and the binding of the initialized module instance to the 

module variable. 

In the working document version of Estelle [Este84], module instantiation is an implied oper

ation associated with the declaration of a module variable. In the later versions [Este85,Este86], 

modules are explicitly created and initialized by using the INIT statement. Module termination 
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is possible using the RELEASE statement. These two special Estelle statements may be used 

either at system initialization or within transition execution. The use of explicit statements to 

perform these two operations in an Estelle protocol specification provides the power to change 

the number and the type of modules within the specification dynamically. The need to sup

port dynamic module creation and termination results in a run-time environment which must 

maintain the complete hierarchical module organization at all times. In contrast, under the old 

Estelle environment, this information may be discarded after the system has been initialized 

[Ford85]. 

2.2.2 Dynamic Module Interconnection 

With the addition of dynamic module instantiation, it becomes necessary to provide explicit 

module interconnection statements. These operations are provided in Estelle by the special 

statements: CONNECT, DISCONNECT, ATTACH and DETACH. The CONNECT and DISCONNECT 

statements are used to alter the interconnections between modules at the same level; and the 

ATTACH and DETACH statements are used to alter the interconnections between modules at 

adjacent levels. 

With the added capabilities for dynamic reconfiguration, the immediate parent of a set 

of modules can be specified to act as a supervisory manager. However, these provisions for 

dynamic reconfiguration of the various entities in a protocol specification result in an Estelle 

run-time environment that is more complex than one which simply maintains a complete module 

hierarchy. 
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2.3 Justification for a New Estelle-C Compiler 

With the basic ideas underlying the semi-automatic approach to protocol implementation 

well understood and demonstrated by the many existing Estelle compilers [Boch87a], the major 

motivation for developing a new compiler for Estelle is to upgrade the UBC Estelle-C compiler 

to support the latest Estelle language specification [Este86]. However, it is apparent that there 

are many issues which must be addressed in changing from a static run-time environment to a 

dynamic one. This section describes the justifications for a complete rewrite of the Estelle-C 

compiler instead of modifying the existing compiler. 

2.3.1 Syntactic Issues 

One of most important reasons for rewriting the new Estelle-C compiler is that the syntax 

of Estelle has changed so significantly that building a new parser is desirable. The old compiler 

was written with the aid of the UNIX utilities lex and yacc. A significant omission in the 

old compiler was the lack of syntax error recovery mechanisms. The building of a new parser 

offers an opportunity to incorporate this important compiler feature into the new compiler. 

With added error recovery as part of the design goal, the Estelle grammar is rewritten into a 

LL(1) form. Then, the parser for the new Estelle-C compiler is hand-coded in C using recursive 

descent techniques. Syntax error recovery is carried out using the panic mode technique with a 

dynamic stop symbol set. An unrelated advantage gained from rewriting the compiler without 

using lex and yacc is the possibility for further development of the new compiler in non-UNIX 

environments. 
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2.3.2 Semantics Issues 

Another important reason for rewriting the new compiler relates to semantics issues. Being 

a formal description technique for protocol specification, the Estelle language must have precise 

meaning; otherwise, protocols specified in Estelle will not have a sound foundation and may 

be opened to different interpretations. In order to satisfy this requirement, the second draft 

proposal for Estelle is published with a new section on formal semantics [Este86]. When the 

implementation of the old Estelle-C compiler is compared with the new formal semantics, several 

features are found to be incompatible. 

The major area of incompatibility has to do with the scoping rules for variables. The old 

Estelle compiler did not pay particular attention to the scoping of many variables. Variables 

local to individual transitions were not supported. Module parameters were not made available 

to the module transitions. Procedures and functions defined within a module were not allowed 

access to global variables declared within the same module. Furthermore, the old Estelle-C 

compiler is still erroneous despite the improvements made by Alan Lau [Lau86]. In particular, 

the old compiler lacks some important Estelle features, such as the data types SET and multi

dimensional A R R A Y . Solutions to these and other problems are all part of the redesign of the 

new Estelle-C compiler. 

Other semantics issues deal with error checking. The old Estelle-C compiler has no provision 

for checking semantic errors besides Estelle specific semantic errors. Since the code generated 

by the Estelle compiler would have to be further compiled by the C compiler, the rationale 

was that the C compiler can be used for most of the semantic checks. However, by placing 

most of semantic checking burden on the C compiler, the error messages from the C compiler 

become cryptic. Users of the compiler without firm understanding of the organization of the 
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generated C-codes frequently have trouble understanding errors detected during the subsequent 

C compilation. In order to build a more "user-friendly" Estelle compiler, more emphasis is 

placed on semantic checking in the new Estelle-C compiler. 

2 .3 .3 U s e r Issues 

Building extensive error checking facilities into the new Estelle-C compiler is not adequate 

to make the new compiler user-friendly. The old Estelle-C compiler produces a C program 

which is not readily compilable by the C compiler without extensive user modifications. Also, 

the old Estelle run-time support routines contain specification dependent details which must 

be modified for each Estelle specification. In order to generate an executable implementation 

from an Estelle specification, the user must recompile the run-time support routines using the 

C compiler along with the C-code generated by the Estelle-C compiler. In the new Estelle-C 

compiler, it is no longer necessary for the user to modify any of the generated codes. Be

sides improving and extending the run-time routines to support the new Estelle features, all 

specification dependent details have been extracted from these run-time support routines. The 

specification independent routines have been precompiled into a single object library. After 

the generated C-codes have been compiled by the C compiler, they can be easily linked to this 

object library to form the final executable program. 

In summary, the new Estelle-C compiler is written to incorporate the features in the latest 

version of the Estelle language and to improve the user-friendliness of the compiler. The user-

friendliness aspect of the improvement includes the use of effective error diagnostics for the 

user and the freeing of the user from the need to know the details in the underlying run-time 

environment. The goal is to increase the degree of automation than that achieved in the previous 

semi-automatic implementations of protocols from formal specifications. Wi th regards to the 
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shortcomings in the old Estelle-C compiler, 

well as necessary. 

a complete rewrite of the compiler is desirable 



Chapter 3 

Estelle to C Translation 

The translation of Estelle to C in the new Estelle-C compiler follows the implementation 

strategy used by Gerber [Gerb83], a strategy which was also adopted by Ford [Ford85]. Each 

Estelle module is translated into two separate C routines. One routine is used for transition 

execution while the other is used for module initialization. The transition routine implements 

the finite state machine specified for the module. The initialization routine sets up the 

internal states of the module before it is ready for the subsequent transition execution. 

Besides generating executable codes to implement the modules, the Estelle-C compiler also 

generates two sets of global declaration structures. One structure, called the signal parameter 

block (FDTSVAR), is used for storing the parameter information carried in the interactions 

passed between modules. The other structure, called the module variable block (FDTLVAR), 

is used by each module for storing local variables. After these four sets of generated C codes 

are compiled and then linked together with a set of pre-compiled run-time support routines, an 

executable protocol implementation results. 

The Estelle run-time environment is constructed from three major control blocks represent

ing the three major abstractions defined in the Estelle language. The interactions which are 

13 
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signaled between modules are represented by signal control blocks (FDTSCBs). The chan

nels through which the interactions are transmitted are represented by channel control blocks 

(FDTCCBa). Finally, the modules which send and receive the interactions are represented by 

process control blocks (FDTPCBs). 

The following sections present the Alternating Bit Protocol as an example in Estelle to 

C translation. The complete Estelle specification for the Alternating Bit Protocol and the C 

program generated from it are included in Appendices A and B, respectively. The sections 

begin with the explanation on the generation of the two global declaration blocks followed by a 

description of the three control blocks and the ways in which they are combined with the gen

erated declaration codes and with each other to form the run-time environment. Subsequently, 

the translation of an Estelle module into an initialization and a transition routine is discussed. 

3.1 Global Declaration Blocks 

Two global declaration blocks are generated to represent all of the specification dependent 

variables needed during run-time. To facilitate the ease of understanding the generated code, 

the identifiers used in the generated C code retain their Estelle names. The elaborate variant 

structures described below is necessary to protect the Estelle names from identifier conflicts 

when used within a C program. 

3.1.1 S i g n a l P a r a m e t e r B l o c k 

The signal parameter block (FDTSVAR) is a three-level variant record structure repre

senting the combination of all specified parameters in all interaction primitives for all channel 

types within an Estelle specification. The FDTSVAR generated for the alternating bit protocol 

is shown in Figure 3.1. 
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typedef union i 

/* CHANNEL U_access_point primitives and t h e i r i d e n t i t y numbers */ 

union { 
struct { 

i n t udata ; /* 1. SEND.REQ (udata : : udata.type); */ 
} SEND.REQ ; 
i n t RECV.REQ ; /* 2. RECV.REQ; */ 
struct { 

i n t udata ; /* 3. RECV.RSP (udata : : udata_type); */ 
} RECV.RSP ; 

} U.access.point ; 

/* CHANNEL N.access.point primitives and t h e i r i d e n t i f i e r s */ 

union {. 
struct { 

ndata.type ndata ; /* 1. DATA.REQ (ndata : ndata.type); */ 
} DATA.REQ ; 
struct { 

ndata.type ndata ; /* 2. DATA.RSP (ndata : ndata.type); */ 
> DATA.RSP ; 

} N.access.point ; 

/* CHANNEL S.access.point primitives and t h e i r i d e n t i f i e r s */ 

union { 
i n t TIMER.REQ ; /* 1. TIMER.REQ; */ 
i n t TIMER.RSP ; /* 2. TIMER.RSP; */ 

} S.access.point ; 

} FDTSVAR; 

Figure 3.1: Signal Parameter Block Structure 
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The first level variant structures identify the channel types while the second level variant 

structures identify the interaction primitives within the channels. For easy identification, the 

interaction primitives defined for each channel type are numbered. The identity numbers as

signed by the Estelle-C compiler for the interaction primitives are shown in Figure 3.1. The 

innermost structures represent an enumeration of the parameters for the interaction primitives. 

These innermost structures are absent for interaction primitives without parameters. 

3.1.2 Module Variable Block 

The module variable block (FDTLVAR) is a two-level variant record structure that 

contains the complete global state variables for all module bodies. The module variable block 

generated for the alternating bit protocol is presented in Figure 3.2. 

The outer level variant structures identify the module bodies in the Estelle specification. The 

inner structures store all major and minor state variables declared for the module bodies. The 

variables are collected from the various Estelle declaration sections. The first set of variables is 

extracted from the module parameter declaration and the exported variable declaration sections 

in the associated module header declarations. The rest of the variables are derived from the 

S T A T E , STATESET, VAR and MODVAR declaration sections in the module bodies. The origins of 

the various variables in the FDTLVAR are shown in Figure 3.2 as comments. Module bodies 

without any variable declarations are not represented in the FDTLVAR structure. 

3.2 Run-time Control Blocks 

Three control blocks are used to represent all of the specification independent bookkeeping 

information during run-time. The following sections describe the three control blocks and 

conclude with a discussion on the improvements made with respect to the old Estelle-C run-
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typedef union { 
struct { 

i n t cep_id ; 
in t f l a g ; 
i n t data ; 

} user_body; 
struct { 

i n t count ; 
} network_body; 
struct i 

i n t time ; 
i n t F D T 3 ; 

i n t stop ; 
i n t stop_bis ; 

} timer_body; 
struct { 

in t cep_id ; 
set.type EITHER ; 
in t STATE ; 
ndata_type buf ; 
msg_type recv_msg ; 
msg_type send_msg ; 
buf_type recv.buf ; 
buf_type send_buf ; 
i n t recv_seq ; 
in t send_seq ; 

} datax_body; 
struct { 

in t cep_id ; 
FDTPCB *timer_module ; 
FDTPCB *datax_module ; 

} abit_body; 
struct { 
FDTPCB *abit_module [ 2 ] ; 
FDTPCB *user_module [ 2 ]; 
FDTPCB *network_module ; 

> SPECIFICATION ; 
} FDTLVAR; 

/* MODULE user.body */ 
/* Parameter */ 
/* Variable */ 
/* Variable */ 

/* MODULE network_body */ 
/* Variable */ 

/* MODULE timer.body */ 
/* Parameter */ 
/* Temporary */ 
/* Variable */ 
/* Variable */ 

/* MODULE datax_body */ 
/* Parameter */ 
/* Stateset */ 
/* State */ 
/* Variable */ 
/* Variable */ 
/* Variable */ 
/* Variable */ 
/* Variable */ 
/* Variable */ 
/* Variable */ 

/* MODULE abit.body */ 
/* Parameter */ 
/* Modvar */ 
/* Modvar */ 

/* SPECIFICATION abit.s 
/* Modvar */ 
/* Modvar */ 
/* Modvar */ 

Figure 3.2: Module Variable Block Structure 
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time control blocks. 

3.2.1 Signal Control Block 

Each unit of interaction (or signal) sent through a channel is represented by a signal 

control block (FDTSCB) in conjunction with a signal parameter block (FDTSVAR). As 

described in Section 3.1.1, the FDTSVAR is a specification dependent structure generated from 

the channel type declaration sections in an Estelle specification. In contrast, the FDTSCB is 

a specification independent run-time control block (Figure 3.3). The two blocks are linked 

struct FDTSCB_struct 
{ 

struct FDTSCB.struct *next; /* Next signal */ 
i n t cid; /* Channel i d */ 
i n t sid; /* Primitive i d */ 
i n t *svar; /* Parameters */ 

}; 
typedef struct FDTSCB_struct FDTSCB; 

Figure 3.3: Signal Control Block Structure 

together by the pointer svar located in the FDTSCB. Since the FDTSVAR contains only 

interaction parameter fields (see Figure 3.1), additional information must be provided within 

the FDTSCB for the identification of interaction primitives. With the FDTSVAR implemented 

as a three-level variant record structure, two identifiers are necessary to uniquely identify the 

interaction being conveyed. The first identifier, encoded in the field cid, indicates the index 

number of the target interaction point within the target module. Since each interaction point 

is associated with only one channel type in Estelle, this number also identifies the channel type. 

The second identifier, stored in the field sid, is used to specify the interaction primitive within 
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the channel identified by cid. The next field is used for queue manipulation at the target 

interaction point. 

3.2.2 Channel Control Block 

Each interaction point associated with a channel is represented by a channel control block 

(FDTCCB). The number of FDTCCBa necessary to completely specify an Estelle channel at 

run-time depends on the number of C O N N E C T and A T T A C H statements used to build the channel. 

Every C O N N E C T or A T T A C H operation involves two FDTCCBa. 

The bookkeeping for interaction point binding is maintained by three pairs of variables 

within each FDTCCB (See Figure 3.4). The pair (targeta, channela) is used to specify the 

struct FDTCCB_struct 
{ 

struct FDTSCB.struct *head, * t a i l ; 
struct FDTPCB_struct *targeta, *targetc, *targete; 
int channela, channelc. channele; 
int queue_kind; 

>; 
typedef struct FDTCCB.struct FDTCCB; 

Figure 3.4: Channel Control Block Structure 

target interaction point of an A T T A C H operation when the target interaction point is located 

at a child module. The field targeta indicates the target module while the field channela 

specifies the index number of the target channel within the target module. Similarly, the pair 

(targetc, channelc) is used to represent the target interaction point of a C O N N E C T operation 

or the target interaction point of an A T T A C H operation when the target interaction point is 

located at a parent module. Because connected interaction points may be further attached to 
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other interaction points, in order to be efficient in determining the real target interaction point 

when interaction are sent between module, the pair (targete, channele) is used to specify the 

effective target interaction point directly. This tremendous amount of bookkeeping is necessary 

to keep track of the channel binding between modules so that channels may be DISCONNECTed 

and DETACHed afterwards. In contrast, under the old run-time environment for Estelle, where 

channels are prohibited from unbinding, only the effective target interaction point needs to be 

maintained in each FDTCCB [Ford85]. 

The other fields with the FDTCCB depicted in Figure 3.4 are used to implement the inter

action queue. When an interaction, represented by a FDTSCB is sent through one FDTCCB, 

it will be queued at the opposite FDTCCB indicated by the (targete, channele) pair. The 

head and t a i l fields are pointers to the first and last FDTSCBs in this queue, respectively. 

In Estelle, interaction points may be specified with either COMMON or INDIVIDUAL queueing 

discipline. The queue_kind field is used to indicate this queueing discipline for the interaction 

point. 

3.2.3 Process Control Block 

Each module instance at run-time is represented by a process control block (FDTPCB) 

in conjunction with a module variable block (FDTLVAR). While the FDTLVAR, as described 

in Section 3.1.2, is a specification dependent structure generated from the various variable 

declaration sections in an Estelle specification, the FDTPCB is a specification independent 

run-time control block (Figure 3.5). This control block is used to store bookkeeping information 

for each module instance for the duration of its existence at run-time. 

The fields parent, sib and ref are pointers used to maintain the static module hierarchical 

structure at run-time. They point to the parent module, the next sibling at the same hierarchical 
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struct FDTPCB.struct 

struct FDTPCB. .struct •parent; /* Parent FDTPCB */ 
struc t FDTPCB. .struct *sib; /* Next s i b l i n g FDTPCB */ 
struct FDTPCB. .struct *ref; /* F i r s t c h i l d FDTPCB */ 
struct FDTCCB. .struct *chan; /* FDTCCB array */ 
i n t ipnum; /* Size of FDTCCB array */ 
i n t ipnext; /* Next i p to search */ 
i n t prio; /* Hierarchical l e v e l */ 
i n t sigcnt; /* Pending signal count */ 
i n t delay; /* Delay clause i d */ 
i n t tO, t l ; /* Delay time l i m i t s */ 
i n t spont; /* Spontaneous present? */ 
i n t export; /* Export variables? */ 
i n t (*trans)(); /* Transition routine */ 
i n t *lvar; /* Module variable block */ 

typedef struct FDTPCB.struct FDTPCB; 

Figure 3.5: Process Control Block Structure 
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level and the head of the list of child modules at the next hierarchical level, respectively. 

The address of the transition routine which implements the extended finite state machine 

specified for the module is stored at the field trans. The field lvar is a pointer to the FDTLVAR 

block. 

Since the number of interaction points in a module can be statically determined, all channel 

control blocks FDTCCBa needed for a module are placed into one common array. The field 

chan is used to point to this FDTCCB array while the field ipnum is used to store the size of 

this array. Each interaction point is assigned an index number into this array starting at the 

index value '1'. The FDTCCB with the index value of (0' is an extra channel control block 

reserved for the COMMON queue. Interactions destined for a target interaction point specified 

with COMMON queueing discipline are queued in this COMMON FDTCCB. Interactions destined 

for a target interaction point specified with INDIVIDUAL queueing discipline are queued in the 

specified target FDTCCB. The field sigcnt indicates the sum of all pending interactions in 

the queues. 

The three fields delay, tO and t l are used to implement DELAYed transitions (See Sec

tion 4.2.3 for detail). The remaining fields identify the hierarchical level of the module (prio), 

the next interaction queue to examine for the pending interactions (ipnext), and whether or 

not the module has spontaneous transitions (spont) and export variables (export). 

3.2.4 Improvement over past Estelle Compilers 

The run-time data structures used in the new Estelle-C compiler represent some of the 

major improvements made to the new compiler as compared to those used in the old compilers 

[Gerb83,Ford85]. 

In the past, the signal parameter block is placed within the signal control block; and the 
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module variable block is placed within the process control block. Since, these two combined 

control blocks contain specification dependent information, they are different for different Estelle 

specifications. Furthermore, since the run-time routines must have access to the control blocks, 

it is necessary for the old run-time routines to be recompiled for different specifications. With 

the arrangement used in the new Estelle-C compiler, the specification dependent details are 

isolated into the FDTSVAR and FDTLVAR structures while the control blocks remain the 

same for all specifications. Consequently, the new run-time support routines are specification 

independent and they no longer require recompilation. 

A second improvement is made in the structuring of the FDTCCBa. In the old Estelle 

compiler, the FDTCCB8 are linked together into a linear list. Therefore, every channel access 

must involve a linear search along this list for the required FDTCCB. The new Estelle-C 

compiler takes advantage of the fact that the number of channel is fixed for each module and 

assigns a unique index number to each channel. Channel access in the new Estelle-C compiler 

is thus performed by array indexing rather than by linear searching. 

3.3 Run-time Support Routines 

The control blocks described so far are constructed into a run-time data structure that 

reflects the module organization defined in the Estelle specification. This structure is built 

using a set of pre-written support routines. The calls to these routines are made by codes 

incorporated within the two sets of generated module routines. The support routines can be 

divided into three groups, each of which manipulates one type of control blocks. The following 

sections describe these three groups of support routines. 
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3.3.1 Process Control Block Routines 

There are two process control block routines used to create and destroy process control 

blocks. The codes for these routines are depicted in Appendix C. The routine FDTPCBinitO 

creates and initializes an FDTPCB. This routine is used to instantiate a new Estelle module 

and it implements all of the specification independent operations required for the INIT operation 

defined in Estelle. The first part of the initialization process results in the linking of the newly 

created FDTPCB to the FDTPCB of its parent module and to the FDTPCBs of its other sibling 

modules. Afterwards, the appropriate number of FDTCCBs are created for the module being 

instantiated. Finally, other bookkeeping variables are initialized. The specification dependent 

operations are individually implemented in the initialization routines generated for each defined 

Estelle module (See Section 3.4.1 for detail). 

The routine FDTPCBtermO destroys a specified module and all its child modules recursively. 

This routine implements the RELEASE operation defined in Estelle. 

3.3.2 Channel Control Block Routines 

The channel control blocks are manipulated by a set of seven run-time routines shown in 

Appendix D. These routines can be divided into two functional groups. 

One group consists of the two routines, FDTCCBinitO and FDTCCBtermO, are used to 

allocate and to release the appropriate number of channel control blocks for a module. These 

two routines are in turn used by the routines, FDTPCBinitO and FDTPCBtermO, respectively, 

when modules are created and destroyed. 

The other group is made up of five routines used to bind and unbind pairs of communi

cating channel control blocks. The routines FDTCCBconnectO and FDTCCBdisconnO are used 
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to bind and unbind FDTCCBs of modules at the same level in the module hierarchy. The 

routines FDTCCBattachO, FDTCCBdetachl () and FDTCCBdetach2() are used to bind and un

bind FDTCCBa of modules at adjacent levels in the hierarchy. Essentially, they implement the 

Estelle operations CONNECT, DISCONNECT, ATTACH, and DETACH respectively. 

3.3.3 Signal Control Block Routines 

Interactions queued at a FDTCCB are manipulated by four pre-written library routines 

shown in Appendix E. In this version of the Estelle-C run-time environment, the interaction 

queues are implemented as singly-linked circular queues. 

The routine FDTSCBsignalO is used to dispatch an interaction through a specified channel. 

A call to this routine is generated as the last step in the translation of an OUTPUT statement (See 

also Section 3.5.2). The newly dispatched interaction is placed in either the COMMON channel 

or the specified target channel of the target module depending on the queueing discipline of the 

target interaction point (See also Section 3.2.3). 

The routine FDTSCBspontO is used when it is necessary to generate a spontaneous signal. 

A call to this routine is issued, when appropriate, after a transition is completed. 

The routine FDTSCBdisposeQ is used after a transition has been completed in order to 

disposed of a received input interaction or a spontaneous interaction (See also Section 3.4.2 for 

details). 

Finally, the function FDTSCBpendingO is used by the global scheduler to search for a pend

ing signal destined for a particular process. 
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3.4 Module Translation 

The module abstraction in an Estelle specification represents the basic unit of protocol 

specification. A module type is declared as an abstract data type. The external visibility of 

the module is defined in a module header while the internal behavior is specified in a module 

body. The Estelle language definition allows several different module bodies to be specified 

for each module header. 

As described in Section 3.1.2, the module head and the global declarations within the 

module body are used to generate declaration structures within the module variable block 

(FDTLVAR). The two C routines that are generated from each module are translated from 

the initialization parts and the transition parts within the module body. The convention used 

in the Estelle-C compiler is to name these routines after their corresponding module body. In 

order to distinguish the initialization routine from the transition routine, the prefix FDT is added 

to the name of the initialization routine. There is one exception to this naming convention. 

The two routines translated from the outermost SPECIFICATION module are always named 

FDTSPECIFICATIONO and SPECIFICATION), respectively. 

The following sections describe the general structure of the two generated implementation 

routines. The discussion on the translation of the transitions themselves is deferred until Sec

tion 3.5. 

3.4.1 Initialization Routine 

The initialization routine for a module is generated from the initialization parts within 

a module body. This routine is used to set up the initial states of the extended finite state 

machine representing the module. The initialization routine for a module is executed whenever 
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an INIT statement referencing the module is executed by its parent module. 

The general structure for an initialization routine is depicted in Figure 3.6. The first part of 

the routine allocates a control block for the module. Initialization begins by calling the run-time 

support routine FDTPCBinitO to create a FDTPCB. Afterwards, an FDTLVAR is created and 

linked to the FDTPCB. The routine FDTPCBinitO implements the specification independent 

aspects for the INIT statement (See Section 3.3.1 for detail). The rest of the initialization routine 

represents the specification dependent portion of the initialization process. 

After a FDTPCB and a FDTLVAR has been allocated for the module, the initialization 

routine begins with module parameter initialization. All the module parameters declared in the 

module header section for the module are passed to the initialization routine. These parameters 

are copied into the FDTLVAR by assignment statements. 

The next section in the routine contains the code for the initialization transitions. These 

transitions are usually responsible for calling other initialization routines which, in turns, instan

tiate the underlying submodules and then interconnect these submodules to the module being 

initialized. Other activities performed by the initialization transitions includes initializing the 

various global variables and setting the module into the proper state before the subsequent 

transition execution. 

If the module contain spontaneous transitions, a spontaneous signal is generated in the next 

section. The last step in the initialization routine returns the address of the created FDTPCB 

to the parent module which calls this initialization routine. This pointer is stored within the 

FDTLVAR of the parent module for subsequent references to this particular child module. 
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struct FDTPCB *FDTbody (parent, argl, arg2, ...) 
FDTPCB *parent; 
... /* type declarations l o r argl, arg2, ... */ 
{ 
FDTPCB *pcb; 
FDTLVAR *lvar; 

/* Creates control blocks */ 
pcb = FDTPCBinit (parent, ipnum, SPDNTbody. XPORTbody. TRANSbody) 
pcb->lvar = (int *) (lvar = (FDTLVAR *) malloc(sizeof(FDTLVAR))); 

/* Copying arguments to module variable block */ 
1var->body.argl = argl; 
lvar->body.arg2 = arg2; 

/* I n i t i a l i z a t i o n transitions (See Section 3 .5) * / 

/* Generates a spontaneous interaction i f possible */ 
trans_end : 
i f (pcb->spont) 

FDTSCBspont (pcb); 
return (pcb); 

Figure 3.6: Initialization Routine 
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3.4.2 Transition Routine 

The transition routine for a module is generated from the transition parts within a 

module body. This part of the Estelle specification is used to define the state transitions that 

constitute the extended finite state machine representing the module. The routine itself is called 

whenever the run-time scheduler selects the corresponding module for execution. 

The general structure of a transition routine is depicted in Figure 3.7. Two parameters 

are passed to each transition routine when the module is executed by the scheduler. The 

parameter process supplies the routine with the correct FDTPCB for the module while the 

parameter signal indicates the interaction selected by the scheduler to be processed by the 

module. Within the routine, the local variables lvar and svar are used to facilitate access to 

the FDTLVAR and FDTSVAR control blocks, respectively. 

The codes in the first part of the routine implements the module transitions. The details 

for these codes are described in Section 3.5. The final section in the routine contains the exit 

sequence for the module. The details for these codes are explained in Section 4.2. 

3.5 Transition Translation 

In Estelle, the transitions for an extended finite state machine may be described in either an 

initialization part or a transition part within the module bodies. There may be zero or more of 

these transition description sections within a module body. A module without any initialization 

part will be initialized with the creation of its FDTPCB and FDTLVAR blocks and the copying 

of its module parameters, if any, into its FDTLVAR. A module without any transition part 

are inactive after its initialization. Inactive modules are generally used as structuring devices 

which impose an hierarchical organization to their underlying child modules. 
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body (process, signal) 
FDTPCB *process; 
FDTSCB *signal; 
{ 
FDTLVAR *lvar = process->lvar; 
FDTSVAR *svar = signal->svar; 

/* Code f o r transitions (See Section 3.5) */ 

/* Exit code when no t r a n s i t i o n was triggered */ 
i f (signal->cid == 0) 

FDTSCBdispose (process, signal); 
return; 

/* Exit code when a t r a n s i t i o n was triggered */ 
trans_end : 
FDTSCBdispose (process, signal); 
i f (process->spont) 

FDTSCBspont (process); 

/* Exit code f o r spontaneous t r a n s i t i o n */ 
spont_end : 
process->delay = 0; 

Figure 3.7: Transition Routine 
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Each transition is specified in two parts. The actions to be performed by the transition are 

defined by a Pascal style statement block. This transition block is preceded by zero or more 

transition clauses. The transition clauses are used to specify the enabling conditions which must 

be satisfied before the transition block can be executed. This section describes the translation 

of the transition clauses followed by the translation of the transition blocks. 

3.5.1 Transit ion Clauses 

In Estelle, transition clauses may be used to specify the enabling conditions of a transition in 

terms of the present state (FROM clause), the input signal (WHEN clause), an enabling predicate 

(PROVIDED clause) or a transition priority (PRIORITY clause). Other clauses may be used to 

specify actions such as going to a specified next state (TO clause) or delaying the action for a 

specified time (DELAY clause). Finally, there is also a clause that can be used as a shorthand 

notation for a sequence of transition (ANY clause). The translation scheme for generating codes 

for the enabling transition clauses is essentially one of substituting a corresponding boolean 

expression for the clause. The strategy for translating the action transition clauses is to place 

statements that perform the indicated action within the enclosing transition block. Compare 

Appendices A and B for illustrations. 

The translation of most of the transition clauses are straight forward. A FROM clause is 

translated into a boolean expression testing for the current state (Figure 3.8). As described 

in Section 3.2, the current state for a module is stored as the variable STATE in the module 

variable block (FDTLVAR) for the module. The WHEN clause is also translated into a boolean 

expression (Figure 3.9). Two tests must be made. First the specified interaction point is 

tested against the incoming signal (signal->cid). Then the incoming interaction primitive 

type (signal->sid) must match the primitive specified in the clause. 
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i f (lvar->body.STATE == <FROM state>) 
< 

... /* Nested transitions */ 
} 

Figure 3.8: Codes generated for a FROM clause 

i f ((signal->cid == <channel>) && (signal->sid == <primitive>)) 
< 

... /* Nested transitions */ 
} 

Figure 3.9: Codes generated for a WHEN clause 

Although the natural translation for a PROVIDED clause is also a boolean expression, but 

because of the possible presence of an OTHERWISE condition, its translation is not straight 

forward (Figure 3.10). The strategy taken in this implementation is to declare and initialize a 

boolean flag to TRUE before the execution of the boolean expressions. After every PROVIDED 

clause where a boolean expression is specified, a statement is added to set the flag to FALSE. If 

the boolean expression is evaluated to TRUE, then the flag will be set to FALSE, otherwise the 

flag will remain TRUE. If an OTHERWISE condition is specified in the final PROVIDED clause, a 

boolean expression is generated to test the boolean flag for the TRUE condition. In this way, 

the OTHERWISE transition is executed if and only if none of the previous boolean expressions 

are satisfied. 

The DELAY clause is the most complicated clause to translate (Figure 3.11). Three auxiliary 

variables (delay, to, tl) located in the FDTPCB are used in order to implement this clause. 

Each DELAY clause specified is assigned an unique number. The variable delay is always set to 
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i 
i n t H a g = 1 /* TRUE */; 

i f (boolean expression 1) /* PROVIDED clause 1 
{ 

f l a g = 0 /* FALSE */; 
i 

... /* Nested transitions */ 
} 

> 

i f (boolean expression 2) /* PROVIDED clause 2 
{ 

f l a g = 0 /* FALSE */; 
{ 

... /* Nested transitions */ 
> 

} 

i f ( f l a g == 1 /* TRUE */) /* OTHERWISE clause * 
{ 

... /* Nested transitions */ 
} 

} 

Figure 3.10: Codes generated for a PROVIDED clause 
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process->tO = time(O); 

/* Set timer i f not already set */ 

i f (process->delay != <delay id>) 
{ 

process->tl «* process->tO + <delay time>; 
process->delay = <delay id>; 

> 

/* Tests f o r timer expiration */ 

i f (process->tO >= process->tl) 
{ 

.... /* Perform action */ 
} 

else return; 
> 

Figure 3.11: Codes generated for a DELAY clause 
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the number assigned to the DELAY clause currently in effect. If none is in effect, the variable is 

set to the value '0'. The variable tO is used to store the current time while the variable t l is 

used to store the expiration time for the delay. See Section 4.2.3 for the run-time effect of this 

clause. 

The TO clause is translated into a statement in the enclosing transition block which changes 

the module state variable to the indicated state in the TO clause. If there are several transition 

block nested under a TO clause, then the state change statement is replicated in all of the 

enclosing transition blocks. 

The ANY clause is translated into a simple for statement which steps through all values in 

the specified scalar domain. If more than one domain is specified, a set of nested for statements 

are used. 

Within a transition routine, the transitions are layed out in the same sequence that they 

are defined in the Estelle specification. Therefore, the transition clauses will be evaluated in 

the order in which that they are specified. The transition that will be executed will be the first 

transition which enabling clauses are all satisfied. The use of this scheme implies that the order 

in which the transitions are specified is significant. Consequently, the PRIORITY clause is not 

implemented in the Estelle-C compiler. The user can always rearrange the transitions in the 

order of their priority. 

Although the scheme used is deterministic, the Estelle definition does allow the protocol 

implementer to make this choice [Este86]. If non-deterministic transition is to be supported, 

all of the transition clauses must be evaluated to determine the enabled set. From the enabled 

set of transitions, the ones with the highest priority and which also satisfy the delay criteria 

are selected. Finally, from this fireable set, a transition must be offered to be executed non-
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deterministically. This three step selection process will only make for an inefficient protocol 

implementation. 

3.5.2 Transition Blocks 

The translation of the Pascal style statements in a transition block into equivalent C style 

statements is generally done by straight substitution. The problems encountered are already 

noted by Ford and Lau [Ford85,Lau86]. Most of these difficulties have to do with Pascal 

constructs which have no equivalence in C. 

Most of the special statements provided in Estelle are translated into subroutine calls to the 

appropriate run-time support routines which implement the corresponding functions. These 

routines are described in Sections 3.3.1 and 3.3.2. 

The OUTPUT statement is translated into a C block containing a local pointer variable news-

var (Figure 3.12). This local variable is used to allocate a signal parameter block FDTSVAR 

i 
FDTSVAR *newsvar = (FDTSVAR *) malloc(sizeof(FDTSVAR)); 

newsvar-><ch.annel>. <primitive>. <parameterl> = <valuel>; 
newsvar-><channel>.<primitive>.<parameter2> = <value2>; 

FDTSCBsignal (process, <channel id>, <primitive id>, newsvar); 
> 

Figure 3.12: Codes generated for an OUTPUT statement 

within the block. Then, the parameters supplied to the OUTPUT statement are copied into the 

FDTSVAR. Finally, a signal control block (FDTSCB) is constructed and appended to the des

tination queue specified in the OUTPUT statement using the run-time routine FDTSCBsignal(). 



Chapter 4 

Estelle Run-time Execution 

An executable program generated from the Estelle specification described in Chapter 3 still 

only represents a static description of the Estelle specification. It is only when this C program 

is executed that a dynamic entity will result. This chapter describes the inner working of the 

generated program during execution. 

4.1 Run-time Organization 

The execution of an Estelle specification is implemented as a two-stage process driven by 

the main driver routine supplied in the Estelle run-time support package (Figure 4.1). First, 

mainO 
{ 
FDTPCB *root; 

root = FDTSPECIFICATION(NULL); 
FDTSCHexec(root); 

} 

Figure 4.1: Main Driver Routine 

the driver constructs a run-time structure to represent the initial module hierarchy for the 

37 
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specification by calling the initialization routine, FDTSPECIFICATIONO. Then, the driver calls 

the run-time scheduler routine, FDTSCHexec (), to take over the execution of the protocol. 

The following sections explain how two dependent run-time structures are generated from 

the same set of control blocks and how these structures are used by the run-time scheduler to 

execute an Estelle specification. 

4.1.1 Initialization Routines 

The initialization routines generated from the Estelle module body declarations are invoked 

in a sequence which reflects the nested module organization defined in the Estelle specification. 

As noted in Section 3.4, the initialization routine of the specification module is always named 

FDTSPECIFICATIONO. This routine is the only specification dependent routine that is directly 

invoked by the run-time support system. Consequently, the use of a fixed name for this routine 

is one of the reasons why the new Estelle run-time support system needs not be recompiled for 

every different Estelle specification. 

The function of an initialization routine for a module is to create the two control blocks, 

FDTPCB and FDTLVAR, which when taken together, represent an instance of the module, and 

to execute the initialization routines of all its child modules. The result of each invocation of 

an initialization routine is the simultaneous construction of two tree structures which represent 

the initialized module and all its child modules in two different ways. 

In one system, each tree structure constructed by a child module is stored in a module 

variable located in the FDTLVAR of the parent (See Figure 3.2). After the initialization 

process, a parent module can refer to any of its child modules by name through the use of these 

module variables in its FDTLVAR. This system is used within the implementation routines 

generated from the Estelle specification. The second system is generated automatically when 
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the initialization routines invoke FDTPCBinitO to create the FDTPCBs. This system is used by 

the run-time scheduler to refer to the modules anonymously and in a specification independent 

fashion. 

4.1.2 Scheduler Routine 

The function of the scheduler is to repeatedly select an interaction from the pool of pending 

interactions and to execute the appropriate module to process the selected interaction. The 

scheduling algorithm used is, in essence, a pre-order traversal of the module hierarchy tree in a 

round-robin manner. However, the scheduling algorithm is not straightly round-robin because 

of the parent/child priority relationship which exists in the module hierarchy. The scheduler 

routine is shown in Figure 4.2. 

The scheduler keeps track of a current module for each level in the hierarchy. At any one 

time, the current module at one of these level is the current module in the system. The scheduler 

first checks if there are any pending interactions for the module. If a pending interaction exists, 

then the current module is selected to be executed. There is also the concept of a next level. If 

no pending interaction exists, the next level will be one level down. But, if a pending interaction 

exists and the execution of current module affects some of its ancestor modules, then the level of 

the ancestor module closest to the specification module will become the next level. Otherwise, 

the next level is still the current level. In any case, the next module to be selected at the current 

level will be the next sibling module of the current module. 

To summarize, the next level stays at the current level or goes up if a pending interaction 

exists for the current level. Otherwise, the next level becomes one level down. This scheduler 

algorithm ensured that when a module has the potential to execute transitions, none of its 

child modules can execute. The algorithm also ensures against module starvation because it 
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FDTSCHexec (root) 
FDTPCB *root; 

{ 
CurrLevel = (FDTSCH *) malloc(sizeof(FDTSCH)); 
CurrLevel->prev = CurrLevel; 
CurrLevel->next = NULL; 
CurrLevel->pcb = root; 
while (1) 

{ 
CurrBlock = CurrLevel->pcb; 
CurrSignal = FDTSCBpending(CurrBlock); 
i i (CurrSignal != NULL) 
{ 

i f (CurrBlock->export) 
NextLevel = CurrLevel->prev; 

else 
NextLevel = CurrLevel; 

/* Transition routine may change NextLevel */ 
CurrBlock->trans (CurrBlock, CurrSignal); 

} 

else i f (CurrBlock->ref != NULL) 
{ 

i f (CurrLevel->next == NULL) { 
NextLevel = (FDTSCH *) malloc(sizeof(FDTSCH)) 
NextLevel->prev = CurrLevel; 
NextLevel->next = NULL; 
NextLevel->pcb = CurrBlock->ref; 

} else { 
NextLevel = CurrLevel->next; 
i f (NextLevel->pcb == NULL) 

NextLevel->pcb = CurrBlock->ref; 
> 

} 

CurrLevel->pcb = CurrBlock->sib; 
CurrLevel = NextLevel; 
while (CurrLevel->pcb == NULL) 

CurrLevel = CurrLevel->prev; 
> 

} 

Figure 4.2: Run-time Scheduler Routine 
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is not possible for a module to execute two transitions in a row even if it has several pending 

interactions enqueued at the same time. 

4.2 Transition Processing 

After the scheduler executes the transition routine of the current module, the next step is 

for the transition routine to search for the first transition within the module which satisfies all 

its enabling conditions. This transition is then executed to process the input interaction. The 

following sections elaborate on the procedures for processing transitions in various situations. 

4.2.1 Input Transitions 

When all the enabling condition of an input transition is satisfied, the actions specified in its 

transition block is executed. After the completion of the transition actions, the module performs 

an exit sequence which is common to all input transitions (See Figure 3.7). First, because the 

interaction which caused the transition has already been processed, it is disposed. Second, 

because the actions of the just completed transition may have enabled one of the spontaneous 

transitions in the module, actions must be taken to ensure that the scheduler will execute the 

module once more in order to check for this situation. If a pending interaction exists for the 

module, nothing needs to be done. However, if none exists then a spontaneous interaction is 

generated for the module by the use of the routine FDTSCBspont 0. Finally, because the just 

completed transition would have nullified any pending delayed transition, the variable delay 

in the FDTPCB is cleared. 
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4.2.2 Spontaneous Transitions 

The exit sequence after the completion of a spontaneous transition is a lot simpler than 

that for an input transition. There are two reasons for this difference. Firstly, if the interaction 

selected for the module is an input interaction, then it will not be processed by the spontaneous 

transition. Therefore, the interaction selected for the module by the scheduler should not be 

disposed. Secondly, if the interaction is a spontaneous interaction, then another spontaneous 

interaction must be needed to check for more enabled spontaneous transitions. Again, there is 

no need to dispose the interaction. The only action necessary after a spontaneous interaction 

is to nullify any pending delayed transition (See Figure 3.7). 

4.2.3 Delayed Transitions 

Delayed transitions are spontaneous transitions with additional timing constraints. How

ever, unlike other transitions, delay transition also has a entry code sequence (See Figure 3.11). 

If the transition is newly enabled, then the delay parameters are saved by this entry sequence 

into the FDTPCB of the module. A desirable side effect of this action is that it will also nullify 

another pending delayed transition in the module. In the next step, the delay timer is checked. 

If the delay constraints are satisfied, the transition is executed. In this case, the exit sequence 

for it is identical to that for a regular spontaneous transition. Otherwise, control is immediately 

returned to the scheduler. This bypassing of the exit sequence will cause the selected interaction 

for the module to remain pending and to cause the scheduler to execute the module at a future 

time. 



CHAPTER 4. ESTELLE RUN-TIME EXECUTION 43 

4.2.4 No Enabled Transitions 

The final situation which must be taken into account is the situation in which the interaction 

selected by the scheduler does not trigger any transitions. This situation can occur because 

the scheduler has no knowledge of the transitions within the transition routines. Therefore, 

the availability of a pending interaction does not guarantee its processing and disposal. This 

situation is most likely caused by a spontaneous interaction which is used only to check for 

enabled spontaneous transitions. The actions needed to handle this situation is to dispose the 

interaction if it is spontaneous, and to leave it pending in the queue if it is not. In order to help 

prevent deadlock, when the module is again selected for execution, the scheduler will search for 

pending interactions at other interaction points first. 



Chapter 5 

Conclusions 

The present study found substantial syntactic and semantic differences between the Estelle 

language as implemented by the existing UBC Estelle-C compiler and that specified in the latest 

ISO document [Este86] and cumulated in the construction of a new Estelle-C compiler. The 

new compiler supports a large subset of the latest Estelle language specification. The following 

sections summarize the present work and suggest possible future studies. 

5.1 Thesis Summary 

As stated in Section 2.3, the major motivation for developing the new compiler is to upgrade 

an existing UBC Estelle-C compiler to support the latest Estelle language specification. The 

new compiler fulfills this goal by supporting dynamic reconfiguration of the various entities in 

a protocol specification. However, there are several Estelle features not included in this new 

compiler. The PRIORITY clause is not supported due to the reasons given in Section 3.5.1. 

Additional Estelle features missing are the A L L statement, the FORONE statement and the 

EXIST expression which are used for implicit access to module instances by types rather than 

by names. A general solution that implements these constructs would require a module directory 

service to associate module types with module names. The module directory would be further 

44 
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complicated by the presence of indexed module names. In view of the fact that these constructs 

can usually be replaced by a mixture of iterative and conditional statements designed for specific 

situations, their general support would not be cost effective in terms of run-time overhead. 

Other issues resolved in the new Estelle-C compiler include problems cited by Lau in regards 

to the old compiler [Lau86]. The old compiler handles module parameter passing very clumsily. 

In the new compiler, module parameters are automatically accessible in the module initialization 

routines, the module transition routines and the subroutines nested within the Estelle module. 

Global variables are also supported as defined by the formal semantics in the new Estelle 

language specification. The Pascal multi-dimensional ARRAY type is now available for user 

defined variables as well as MODULE and IP types. However, the data type SET is only partially 

supported in the form of STATESET. Other Pascal-to-C translation problems that remained 

are in the areas of SET expressions and nested procedures and functions. These limitations are 

certainly not unsolvable but their solutions are beyond the scope of protocol implementation. 

The new compiler is hand-coded in C without using the UNIX utilities lex and yacc. It 

consists of approximately 300 subroutines totaling to just under 11,000 lines of source code and 

just under 11K bytes of object code. The size of the new compiler compares favorably with 

that of the old compiler which contains over 14,000 lines of source code and just over 14K bytes 

of object code. 

The new Estelle run-time support routines are also implemented in C. There are 40 routines 

in the package with approximately 1,500 lines of source code and 7K bytes of object code. In 

contrast, there are only 17 routines in the old run-time support routines with 1,400 lines of 

source code and 2K bytes of object code. 

As part of the redesign of the Estelle-C compiler, the user operation of the compiler has been 
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greatly simplified. In the old compiler, the user is required to modify certain sections of the 

generated C code as well as the run-time support routines. Consequently, the old compiler was 

labeled with the term "semi-automatic." The new compiler translates an Estelle specification 

directly into a compilable C program. Modification of any of the generated C code is no longer 

necessary. In addition, the new run-time support routines have been rewritten to contain only 

specification independent details and they can be directly linked to the compiled C program 

without the need for recompilation. With these two user-friendly improvements, "automatic" 

implementation of protocols from formal protocol specifications is now realized. 

5.2 Future Work 

Although an executable program can be generated automatically from a formal protocol 

specification using the new Estelle-C compiler, formal protocol specifications are usually in

complete. It is the nature of formal specifications to be "completely independent of methods of 

implementation, so that the technique itself does not provide any undue constraints on imple-

menters" [Este86]. Examples of implementation dependent properties that are almost always 

left unspecified are functions such as user data management routines, timer management rou

tines and protocol data unit encoding and decoding routines. The user must provide customized 

versions of these functions manually for the actual implementations in different machine envi

ronments. However, it may be possible to define generic interfaces for these functions to be 

usable from within a formal Estelle specification. The user data management example in the 

Estelle language specification [Este86] presents one possibility. Another direction for research 

may be in the area of incorporating ASN.l [CCI86] into Estelle for the specification of protocol 

data unit encoding and decoding functions. 
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The usefulness of Estelle compilers has already been demonstrated for semi-automatic gen

eration of communication protocols [Boch86,Lau86,Boch87b] and for automatic generation of 

test skeletons from protocol specifications [Favr87]. The possible enhancements of these Estelle 

compilers for the production of emulators for protocol testing and monitors for protocol perfor

mance evaluation would be invaluable. Therefore, the further development of novel applications 

using these compilers in other areas of protocol development should be encouraged. 
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APPENDIX A. ALTERNATING BIT PROTOCOL — ESTELLE SPECIFICATION 

SPECIFICATION abp_spec SYSTEMPROCESS; TIMESCALE seconds; 

CONST 
LOV/.CEP 
HIGH_CEP 

1; { Minimum cep subscript } 
2; { Maximum cep subscript } 

TYPE 
cep_type 
seq_type 
pid_type (DATA. ACKM); 

INTEGER; 
RECORD 

LOVLCEP..HIGH_CEP; 
0. .1; 

i 

•C 

Connection end point } 
Sequence number } 
Packet type } 

udata_type 
ndata.type 

pid : pid_type; 
cid : cep_type; 
seq : seq_type; 
dat : udata_type 

•c 

i 

Type of message } 
Cep of sender } 
Sequence number } 
User data > 

END; 

{ Channel between user and alternating bit protocol provider } 

CHANNEL U_access_point (user, provider); 
BY user : 
SEND.REQ. (udata : udata_type); 
RECV.REQ; 

BY provider : 
RECV.RSP (udata : udata_type); 

{ Channel between alternating bit protocol provider and the network } 

CHANNEL N_access_point (user, provider); 
BY user : 
DATA_REQ (ndata : ndata.type); 

BY provider : 
DATA.RSP (ndata : ndata.type); 

MODULE user.type PROCESS (cep.id : cep.type); IP 
U : U_access_point(user) INDIVIDUAL QUEUE; 

END; { MODULE user.type > 

BODY user.body FOR user.type; 

VAR 
data : udata.type; 
flag : BOOLEAN; 
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INITIALIZE 

BEGIN 
data := 0 ; 
flag := TRUE 

END; { INITIALIZE } 

TRANS 

WHEN U.RECV_RSP 

{ Received data from peer and proceeds to send next data to peer } 

NAME userl : BEGIN 
data := data + 1; 
OUTPUT U.SEND_REQ (data); 
OUTPUT U.RECV_REq 

END; { userl > 

TRANS 

PROVIDED flag 

{ Spontaneous transition to send initial data } 

NAME uaer2 : BEGIN 
flag := FALSE; 
OUTPUT U.SENDJREQ (data); 
OUTPUT U.RECV_REq 

END; { user2 > 

END; { BODY user_body } 

MODULE network_type PROCESS; IP 
N : ARRAY [cep_type] OF N_access_point (provider) COMMON QUEUE; 

END; i MODULE network_type > 

BODY network_body FOR network_type; 

VAR 

count : INTEGER; 

TRANS 

ANY i : cep_type DO 
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WHEN N[i].DATA_REQ 

NAME networkl : BEGIN 
count := count + 1; 
IF count <> 4 THEN 
OUTPUT N[HIGH_CEP-i+l].DATA_RSP (ndata) 

END; { network! > 

END; { BODY network_body > 

MODULE abit_type PROCESS (cep_id : cep.type); IP 
U : U_access_point (provider) INDIVIDUAL QUEUE; 
N : N_access_point (user) INDIVIDUAL QUEUE; 

END; i MODULE abit.type } 

BODY abit_body FOR abit.type; 

CONST 
RETRAN_TIME =30; { Retransmission time } 

CHANNEL S_access_point (user, provider); 
BY user : 
TTMER.REQ; 

BY provider : 
TIMER_RSP; 

MODULE timer.type ACTIVITY (time : INTEGER); IP 
S : S_access_point (provider) INDIVIDUAL QUEUE; 

END; { MODULE timer_type > 

BODY timer_body FOR timer_type; 

VAR 

stop, stop.bis : BOOLEAN; 

INITIALIZE 

BEGIN 
stop := TRUE; 
stop_bis := TRUE 

END; i INITIALIZE } 
TRANS 

WHEN S.TIMER.REQ 
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NAME timerl 
stop 

: BEGIN 
:= TRUE; 

stop_bis := FALSE 
END; i timerl } 

TRANS 

PROVIDED NOT stop.bia 

NAME timer2 : BEGIN 
stop := FALSE; 
stop_bis := TRUE 

END; { timer2 > 

PROVIDED NOT stop 
DELAY (time, time) 

NAME timer3 : BEGIN 
stop := TRUE; 
OUTPUT S.TIMER.RSP 

END; { timer3 > 

END; { BODY timer.body > 

MODULE datax_type ACTIVITY (cep_id : cep_type); IP 
U : U_access_point (provider) INDIVIDUAL QUEUE; 
N : N.access.point (user) INDIVIDUAL QUEUE; 
S : S.access.point (user) INDIVIDUAL QUEUE; 

END; { MODULE datax.type > 

BODY datax_body FOR datax_type; 

TYPE 
mag_type = RECORD 

msgcid : cep.type; 
msgseq : seq.type; 
msgdat : udata.type 

END; 
buf.type RECORD 

empty : BOOLEAN; 
message : msg.type 

END; 

VAR 
send_seq : seq.type; 
recv.seq : seq.type; 

{ Send sequence number } 
•i Receive sequence number } 
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send_buf : buf_type; < ACKM pending flag 
recv_buf : buf_type; { DATA pending flag 
send_msg : msg_type; { Message being sent 
recv.msg : msg_type; { Message receive 
buf : ndata_type; {. Network buffer 

STATE 
ACK_MIT, ESTAB; 

STATESET 

EITHER = [ACK_WAIT, ESTAB]; 

PURE FUNCTION ack_ok (buf : ndata.type) : BOOLEAN; 

{ Checks ACKM message in the network buffer } 
BEGIN { ack_ok > 
ack_ok := (buf.pid = ACKM) AND (buf.seq = send_seq) 

END; { ack_ok > 

PROCEDURE format_data (msg : msg_type; VAR buf : ndata_type); 

{ Formats a DATA message into the network buffer > 

BEGIN { format_data > 
buf.pid := DATA; 
buf.cid := cep_id; 
buf.seq := msg.msgseq; 
buf.dat := msg.msgdat 

END; { format_data > 

PROCEDURE format_ack (msg : msg_type; VAR buf : ndata_type); 

{ Places an ACKM message into the network buffer } 

BEGIN { format.ack > 
buf.pid := ACKM; 
buf.cid := msg.msgcid; 
buf.seq := msg.msgseq; 
buf.dat := msg.msgdat 

END; { format_ack > 

PROCEDURE store (VAR buf : buf_type; msg : msg_type); 

{ Stores message into the buffer } 

BEGIN { store > 
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buf.empty := FALSE; 
buf.message := msg; 

END; < store } 

PROCEDURE remove (VAR buf : buf_type; msg : msg_type); 

{ Empties the buffer } 

BEGIN { remove > 
buf.empty := TRUE 

END; 

FUNCTION retrieve (buf : buf.type) : msg_type; 

{ Retrieves the message from the buffer } 

BEGIN { retrieve > 
retrieve := buf.message 

END; { retrieve > 

FUNCTION buffer_empty (buf : buf.type) : BOOLEAN; 

{ Checks for empty buffer > 

BEGIN { buffer_empty } 
buffer_empty := buf.empty 

END; { buffer_empty > 

PROCEDURE inc_send_seq; 

{. Increments the send sequence number } 

BEGIN < inc_send_seq > 
send_aeq := (send_seq + 1) MOD 2 

END; •{ inc_send_seq > 

PROCEDURE inc_recv_seq; 

{ Increments the receive sequence number } 

BEGIN { inc_recv_seq } 
recv_seq := (recv_seq + 1) MOD 2 

END; { inc_recv_seq > 

INITIALIZE { data.body > 
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TO ESTAB 
BEGIN 
send_seq := 0; 
recv.seq := 0; 
send.buf.empty := TRUE; 
recv_buf.empty := TRUE 

END; { INITIALIZE } 

TRANS 

FROM ESTAB TO ACK.WAIT 
WHEN U.SEND..REQ 

{ Processes user send REQ } 

NAME dataxl : BEGIN 
send_msg.msgdat := udata; 
send_msg.msgseq := send.seq; 
store (send..buf, send_msg) ; 
format_data (send_msg, buf); 
OUTPUT N.DATA.REQ (buf); 
OUTPUT S.TIMER.REQ 

END; { dataxl > 

FROM EITHER TO SAME 
WHEN U.RECV.REQ 

PROVIDED NOT buffer_empty (recv_buf) 

{ Retrieves received message for user if one has been received } 

NAME datax2 : BEGIN 
recv_msg := retrieve (recv_buf); 
OUTPUT U.RECV.RSP (recv.msg.msgdat); 
remove (recv_buf, recv_msg) 

END; { datax2 } 
FROM ACK.V/AIT TO ACK.V/AIT 
WHEN S.TIMER.RSP 

{ Resend user message after time out } 

NAME datax3 : BEGIN 
send_msg := retrieve (send_buf); 
format_data (send_msg, buf); 
OUTPUT N.DATA.REQ (buf); 
OUTPUT S.TIMER_REQ 
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END; { dataxS } 

FROM ESTAB TO ESTAB 
WHEN S.TIMER.RSP 

{ The message that caused this timer to be set has been acknowledged } 

NAME datax4 : BEGIN 
END; { datax4 > 

FROM ACK_WAIT TO ESTAB 
WHEN N.DATA_RSP 

PROVIDED ack_ok(ndata) 

{ Acknowlegement for the last message sent has been received } 

NAME dataxS : BEGIN 
send_msg := retrieve (send_buf); 
remove (send_buf, send.msg); 
inc_send_seq 

END; { dataxS > 
FROM EITHER TO SAME 
WHEN N.DATA_RSP 
PROVIDED ndata.pid = DATA 

{ Processes message received from peer } 

NAME datax6 : BEGIN 
recv_msg.msgdat := ndata.dat; 
recv_msg.msgseq := ndata.seq; 
format_ack (recv_msg, buf); 
OUTPUT N.DATA_REQ (buf); 
IF ndata.seq = recv_seq THEN BEGIN 

Btore (recv_buf, recv_msg); 
inc_recv_seq 

END { IF > 
END; i datax6 > 

END; i BODY datax_body > 

MODVAR 
datax.module : datax_type; 
timer_module : timer_type; 

INITIALIZE { abit.body > 
BEGIN 
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INIT datax.module WITH datax_body (cep_id); 
INIT timer_module WITH timer.body (RETRAN_TIME); 

CONNECT datax_module.S TO timer_module.S; 
ATTACH U TO datax.module.U; 
ATTACH N TO datax_module.N; 

END; i INITIALIZE > 
END; { abit_body } 

MODVAR 
network_module : network_type; 
user_module : ARRAY [cep_type] OF user_type; 
abit_module : ARRAY [cep_type] OF abit_type; 

INITIALIZE { abp.spec > 

BEGIN 
INIT network_module WITH network_body; 
ALL cep : cep.type DO BEGIN 
INIT user.module[cep] WITH user_body(cep); 
INIT abit_module[cep] WITH abit_body(cep); 

CONNECT user_module[cep].U TO abit.module[cep].U; 
CONNECT abit_module[cep].N TO network_module.N[cep]; 

END; i ALL > 
END; i INITIALIZE > 

END. { abp_spec > 
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#include 
#include 
#include 
#include 
#include 
#include 

<8tdio.h> 
"fdtset.h" 
"fdtscb.h" 
"fdtccb.h" 
"fdtpcb.h" 
"fdtsch.h" 

/* Type declarations */ 

typedef int cep_type ; 
typedef int seq_type ; 
typedef int pid_type ; 
typedef int udata_type ; 
typedef struct { 

int dat ; 
int seq ; 
int cid ; 
int pid ; 

> ndata.type ; 
typedef struct { 

int msgdat ; 
int msgseq ; 
int msgcid ; 

} msg_type ; 
typedef struct {. 

msg_type message ; 
int empty ; 

> buf_type ; 

/* Signal parameter block declarations */ 

typedef union { 
union { 

struct { 
int udata ; 

> SEND.request ; 
int RECV.request ; 
struct { 

int udata ; 
} RECV.response ; 

y U_acce8s_point ; 
union { 

struct { 
ndata.type ndata ; 

> DATA_request ; 
struct { 
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ndata_type ndata ; 
}• DATA_response ; 

y N_access_point ; 
union i. 

int TIMER_requei3t ; 
int TIMER_response ; 

y S_access_point ; 
> FDTSVAR; 

/* Variable block declarations */ 

typedef union { 
struct { 

int cep_id ; 
int flag ; 
int data ; 

} user_body ; 
struct { 

int dummy ; 
> 
struct { 

int time ; 
int FDT3 ; 
int stop ; 
int stop_bis ; 

> timer_body; 
struct { 

int cep_id ; 
set_type EITHER ; 
int STATE ; 
ndata_type buf ; 
msg_type recv_msg ; 
msg_type send_msg ; 
buf_type recv_buf ; 
buf_type send_buf ; 
int recv_seq ; 
int send_seq ; 

} datax_body; 
struct i. 

int cep_id ; 
struct FDTPCB *timer_module ; 
struct FDTPCB *datax_module ; 

y abit_body; 
struct { 

struct FDTPCB *abit_module [ 2 ] ; 
struct FDTPCB *user_module [ 2 ] ; 
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struct FDTPCB *network_module ; 
} SPECIFICATION ; 

} FDTLVAR; 

/* Miscellaneous declarations */ 

#define XPORTuser_body 0 
#define SPONTuser_body 0 
extern int user_body(); 
#define TRANSuser_body user.body 
#define XPORTnetwork_body 0 
#define SPONTnetwork_body 0 
extern int network_body(); 
#define TRANSnetwork_body network_body 
#define XPORTtimer_body 0 
#define SPONTtimer_body 1 
extern int timer_body(); 
#define TRANStimer_body timer_body 
#define XPORTdatax_body 0 
#define SPONTdatax_body 0 
extern int datax_body(); 
#define TRANSdatax_body datax_body 
#define XPORTabit.body 0 
#define SPONTabit.body 0 
#define TRANSabit_body NULL 
#define XPORTSPECIFICATION 0 
#define SPONTSPECIFICATION 0 
#define TRANSSPECIFICATION NULL 

/* Procedure and function declarations */ 

int ack_ok ( buf ) 
ndata.type buf ; 
{ 
FDTLVAR *lvar = CurrBlock->lvar; 
int FUNCTION; 

FUNCTION = ( buf .pid == 1 /* ACKM */) hk 
( buf .seq == lvar->datax_body.send_seq ) ; 

return ( FUNCTION ) ; 
} 

format_data ( msg , buf ) 
msg_type msg ; 
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ndata.type *buf ; 

FDTLVAR *lvar = CurrBlock->lvar; 

(*buf ) .pid = 
(*buf ) .cid = 
(*buf ) .seq = 
(*buf ) .dat = 

0 /* DATA */; 
lvar->datax_body.cep_id ; 
msg .msgseq ; 
msg .msgdat ; 

format_ack ( msg , buf ) 
msg_type msg ; 
ndata.type *buf ; 
i 
FDTLVAR *lvar = CurrBlock->lvar; 

(*buf ) .pid = 
(*buf ) .cid = 
(*buf ) .seq = 
(*buf ) .dat = 

1 /* ACKM */; 
msg .msgcid ; 
msg .msgseq ; 
msg .msgdat ; 

store ( buf , msg ) 
buf_type *buf ; 
msg_type msg ; 
•C 
FDTLVAR *lvar = CurrBlock->lvar; 

(*buf ) .empty = 0 /* FALSE */; 
(*buf ) .message = msg ; 

> 

remove ( buf , msg ) 
buf_type *buf ; 
msg_type msg ; 
{ 

FDTLVAR *lvar = CurrBlock->lvar; 

(*buf ) .empty = 1 /* TRUE */; 
> 

msg_type retrieve ( buf ) 
buf_type buf ; 
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FDTLVAR *lvar = CurrBlock->lvar; 
msg_type FUNCTION; 

FUNCTION = buf .message ; 
return ( FUNCTION ) ; 

} 

int buffer_empty ( buf ) 
buf_type buf ; 
{ 
FDTLVAR *lvar = CurrBlock->lvar; 
int FUNCTION; 

FUNCTION = buf .empty ; 
return ( FUNCTION ) ; 

> 

inc_send_8eq () 
•C 
FDTLVAR *lvar = (FDTLVAR *) CurrBlock->lvar; 

lvar->datax_body.send_seq = ( lvar->datax_body.send_seq + i ) % 2 ; 
> 

inc_recv_seq () 
•C 
FDTLVAR *lvar = (FDTLVAR *) CurrBlock->lvar; 

lvar->datax_body.recv_seq = ( lvar->datax_body.recv_Beq + 1 ) % 2 ; 
> 

/* Specification declarations */ 

FDTPCB *FDTuser_body ( parent , cep_id ) 
FDTPCB *parent; 
int cep_id ; 
< 
FDTPCB *pcb; 
FDTLVAR *lvar; 

pcb = FDTPCBinit ( parent , 1 , SPONTuser_body , XPORTuser_body , TRANSuser_body ); 
pcb->lvar = (int *) (lvar = (FDTLVAR *) malloc(sizeof(FDTLVAR))); 
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lvar->user_body.cep_id = cep_id ; 
< 

lvar->user_body.data = 0 ; 
lvar->user_body.flag = 1 /* TRUE */; 
goto trans_end ; 

> 
trana_end : 
i f (pcb->spont) 
FDTSCBspont (pcb); 

return (pcb); 

user.body ( process, signal ) 
FDTPCB ^process; 
FDTSCB *signal; 
•C 
FDTLVAR *lvar = (FDTLVAR *) process->lvar; 
FDTSVAR *svar = (FDTSVAR *) signal->svar; 

{ 
i f ( ( signal->cid == 1 ) 44 ( signal->sid == 3 ) ) 
{ /* userl */ 

lvar->user_body.data = lvar->user_body.data + 1 ; 
•c 
FDTSVAR *newsvar = (FDTSVAR *) malloc(sizeof(FDTSVAR)); 

newsvar->U_access_point.SEND_REQ.udata = lvar->user_body.data ; 
FDTSCBsignal ( process, 1 , 1 , newsvar); 
} 
< 
FDTSVAR *newsvar = (FDTSVAR *) malloc(sizeof(FDTSVAR)); 

FDTSCBsignal ( p r o c e s s , 1 , 2 , newsvar); 
> 
goto trans.end ; 

> 
> 
•C 

int FDT1 = 1 ; 

i f (lvar->user_body.flag ) 
•C 

FDT1 = 0; 
i /* user2 */ 

lvar->user_body.flag = 0 /* FALSE */; 
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i 
FDTSVAR *newsvar = (FDTSVAR *) malloc(sizeof(FDTSVAR)); 

newsvar->U_access_point.SEND_REQ.udata = lvar->uaer_body.data ; 
FDTSCBsignal ( p r o c e s s , 1 , 1 , newsvar); 
} 

i 
FDTSVAR *newsvar = (FDTSVAR *) malloc(sizeof(FDTSVAR)); 

FDTSCBsignal ( p r o c e s s , 1 , 2 , newsvar); 
> 
goto spont.end ; 

> 
> 

} 
i f (signal->cid == 0) 
FDTSCBdispose (process, signal); 

return; 

trans_end : 
FDTSCBdispose (process, signal); 
i f (process->spont) 
FDTSCBspont (process); 

spont_end : 
process->delay = 0; 

FDTPCB *FDTnetwork_body ( parent ) 
FDTPCB *parent; 
{ 
FDTPCB *pcb; 
FDTLVAR *lvar; 

pcb = FDTPCBinit ( parent , 2 , SPONTnetwork_body , 
XPORTnetwork_body , TRANSnetwork_body ) ; 

pcb->lvar = (int *) (lvar = (FDTLVAR *) malloc(sizeof(FDTLVAR))); 

trans_end : 
i f (pcb->8pont) 
FDTSCBspont (pcb); 

return (pcb); 

network_body ( process, signal ) 
FDTPCB ^process; 
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FDTSCB *signal; 
i 
FDTLVAR *lvar = (FDTLVAR *) process->lvar; 
FDTSVAR *avar = (FDTSVAR *) signal->svar; 

int i ; 

for ( i = 1 ; i <= 2 ; i++ ) 
•C 

i f ( ( signal-->cid ==l + i - l ) & & ( signal->sid == 1 ) ) 
{ /* networkl */ 

•C 
FDTSVAR *newsvar = (FDTSVAR *) malloc(sizeof(FDTSVAR)); 

newsvar->N_access_point.DATA_RSP.ndata = svar->N_access_point.DATA_REQ.ndata ; 
FDTSCBsignal ( process, 1 + 2 /* HIGH_CEP */- i + 1 - 1 , 2 , newsvar); 
> 
goto trans.end ; 

> 
> 

> 
i f (signal->cid === 0) 
FDTSCBdispose (process, signal); 

return; 

trans_end : 
FDTSCBdispose (process, signal); 
i f (process->spont) 
FDTSCBspont (process); 

spont.end : 
process->delay = 0; 

FDTPCB *FDTtimer_body ( parent , time ) 
FDTPCB *parent; 
int time ; 
•C 
FDTPCB *pcb; 
FDTLVAR *lvar; 

pcb = FDTPCBinit ( parent , 1 , SPONTtimer_body , 
XPORTtimer.body , TRANStimer_body ); 

pcb->lvar = (int *) (lvar = (FDTLVAR *) malloc(Bizeof(FDTLVAR))); 

lvar->timer_body.time = time ; 
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lvar->timer_body.atop = 1 /* TRUE */; 
lvar->timer_body.Btop_bis = 1 /* TRUE */; 
goto trans_end ; 

> 
trans_end : 
i f (pcb->spont) 
FDTSCBspont (pcb); 

return (pcb); 

timer_body ( process, signal ) 
FDTPCB *process; 
FDTSCB *signal; 
•C 
FDTLVAR *lvar = (FDTLVAR *) process->lvar; 
FDTSVAR *svar = (FDTSVAR *) signal->svar; 

•C 
i f ( ( signal->cld == 1 ) && ( signal->sid == 1 ) ) 
< /* timerl */ 

lvar->timer_body.stop =1 /* TRUE */; 
lvar->timer_body.stop_bis = 0 /* FALSE */; 
goto trans_end ; 

} 
> 
•C 

int FDT2 = 1 ; 

i f (!lvar->timer_body.stop_bis ) 
•C 
FDT2 = 0; 
•C /* timer2 */ 

lvar->timer_body.stop = 0 /* FALSE */; 
lvar->timer_body.stop_bis = 1 /* TRUE */; 
goto spont_end ; 

> 
} 
i f (!lvar->timer_body.stop ) 
•c 
FDT2 = 0; 
•C 
process->t0 = time(0); 

i f ( process->delay != 3 ) 
•C 
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procesB->tl = process->tO + ( lvar->timer_body.time ); 
process->delay = 3 ; 

> 

i f (process->t0 >= process->tl ) 
< /* timer3 */ 

lvar->timer_body.stop = 1 /* TRUE */; 
{ 

FDTSVAR *newsvar = (FDTSVAR *) malloc(sizeof(FDTSVAR)); 

FDTSCBsignal ( p r o c e s s , 1 , 2 , newsvar); 
} 
goto spont_end ; 

> 
else return; 

> 
> 

> 
i f (signal->cid === 0) 
FDTSCBdispose (process, signal); 

return; 
trans_end : 
FDTSCBdispose (process, signal); 
i f (process->spont) 
FDTSCBspont (process); 

spont.end : 
process->delay = 0; 

FDTPCB *FDTdatax_body ( parent , cep_id ) 
FDTPCB *parent; 
int cep_id ; 
•C 
FDTPCB *pcb; 
FDTLVAR *lvar; 

pcb = FDTPCBinit ( parent , 3 , SPONTdatax_body , 
XPORTdatax_body , TRANSdatax.body ); 

pcb->lvar = (int *) (lvar = (FDTLVAR *) malloc(sizeof(FDTLVAR))); 

lvar->datax_body.cep_id = cep_id ; 

assign_set ( &(lvar->datax_body.EITHER) , 2 , 1 /* ESTAB */, 0 /* ACK_¥AIT * / ) ; 

{ 
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lvar->datax_body.send_seq = 0 ; 
lvar->datax_body.recv_seq = 0 ; 
lvar->datax_body.Bend_buf .empty = i /* TRUE */; 
lvar->datax_body.recv_buf .empty = 1 /* TRUE */; 
lvar->datax_body.STATE = 1 /* ESTAB */ ; 
goto trans_end ; 

> 
trans_end : 
i f (pcb->spont) 
FDTSCBspont (pcb); 

return (pcb); 

datax_body ( process, Bignal ) 
FDTPCB *process; 
FDTSCB *signal; 
{ 
FDTLVAR *lvar = (FDTLVAR *) process->lvar; 
FDTSVAR *svar = (FDTSVAR *) signal->svar; 

< 
i f ( ( 1var->datax_body.STATE = 1 /* ESTAB */) ) 
i 

i f ( ( signal->cid == 1 ) kb ( signal->sid == 1 ) ) 
•C /* dataxl */ 

lvar->datax_body.send_msg .msgdat - svar->U_access_point.SEND_REQ.udata ; 
lvar->datax_body.send_msg .msgseq = lvar->datax_body.send_seq ; 
store ( &( lvar->datax_body.send_buf ) , lvar->datax_body.send_msg ); 
format_data ( lvar->datax_body.send_msg , A( lvar->datax_body.buf ) ); 
•C 
FDTSVAR *newBvar = (FDTSVAR *) malloc(sizeof(FDTSVAR)); 

newsvar->N_access_point.DATA_REQ.ndata = lvar->datax_body.buf ; 
FDTSCBsignal ( p r o c e s s , 2 , 1 , newsvar); 
> 
•C 
FDTSVAR *newsvar = (FDTSVAR *) malloc(sizeof(FDTSVAR)); 

FDTSCBsignal ( p r o c e B B , 3 , 1 , newsvar); 
> 
lvar->datax_body.STATE = 0 /* ACK_WAIT */ ; 
goto trans_end ; 

> 
> 
i f ( ( is_set_member ( k(1var->datax_body.EITHER) , lvar->datax_body.STATE ) ) ) 
•C 
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i f ( ( signal->cid == 1 ) kk ( signal->sid == 2 ) ) 
i 

int FDT4 = 1 ; 

if (!buffer_empty ( lvar->datax_body.recv_buf ) ) 
•C 
FDT4 = 0; 
i /* datax2 */ 

lvar->datax_body.recv_msg = retrieve ( lvar->datax_body.recv_buf ) 
{ 
FDTSVAR *newBvar = (FDTSVAR *) malloc(Bizeof(FDTSVAR)); 

newsvar->U_access_point.RECV_RSP.udata 
= lvar->datax_body.recv_msg .msgdat ; 

FDTSCBsignal ( p r o c e s s , 1 , 3 , newsvar); 
> 
remove ( &( lvar->datax_body.recv_buf ) , lvar->datax_body.recv_msg 
goto trans_end ; 

> 
> 

> 
} 
i f ( ( lvar->datax_body.STATE = 0 /* ACK.WAIT */) ) 
•C 

i f ( ( signal->cid == 3 ) kk ( signal->sid == 2 ) ) 
i /* datax3 */ 

lvar->datax_body.send_msg = retrieve ( lvar->datax_body.send_buf ) ; 
format.data ( lvar->datax_body.send_msg , &( lvar->datax_body.buf ) ); 
•C 
FDTSVAR *newsvar = (FDTSVAR *) malloc(sizeof(FDTSVAR)); 

newsvar->N_access_point.DATA_REQ.ndata = lvar->datax_body.buf ; 
FDTSCBsignal ( process, 2 , 1 , newsvar); 

> 
•C 

FDTSVAR *newsvar = (FDTSVAR *) malloc(sizeof(FDTSVAR)); 

FDTSCBsignal ( p r o c e s s , 3 , 1 , newsvar); 
> 
lvar->datax..body.STATE = 0 /* ACK_WAIT */ ; 
goto trans.end ; 

> 
> 
i f ( ( 1var->datax_body.STATE == 1 /* ESTAB */) ) 
{ 

if ( ( signal->cid == 3 ) kk ( signal->sid == 2 ) ) 
< /* datax4 */ 



APPENDIX B. ALTERNATING BIT PROTOCOL — GENERATED CODES 73 

lvar->datax_body.STATE = 1 /* ESTAB */ ; 
goto trans_end ; 

> 
} 
i f ( ( lvar->datax_body. STATE = 0 /* ACK.VIAIT */) ) 
i 

i f ( ( signal->cid == 2 ) kk ( signal->sid == 2 ) ) 

int FDT5 = 1 ; 
i f (ack_ok ( svar->N_acceBB_point.DATA_RSP.ndata ) ) 
i 
FDT5 = 0; 
{ /* dataxS */ 

lvar->datax_body.send_m8g = retrieve ( lvar->datax_body.send_buf ) ; 
remove ( &( lvar->datax_body.send_buf ) , lvar->datax_body.send_mag ); 
inc_send_Beq ( ); 
lvar->datax_body.STATE = 1 /* ESTAB */ ; 
goto trans.end ; 

} 
> 

> 
} 
i f ( ( is_set_member ( 4(lvar->datax_body.EITHER) , lvar->datax_body.STATE ) ) ) 
i 

i f ( ( aignal->cid == 2 ) hk ( signal->sid == 2 ) ) 
•C 

int FDT6 = 1 ; 

i f (svar->N_access_point.DATA_RSP.ndata .pid == 0 /* DATA */) 
< 
FDT6 = 0; 
{ /* datax6 */ 

lvar->datax_body.recv_msg .msgdat 
= Bvar->N_access_point.DATA.RSP.ndata .dat ; 

lvar->datax_body.recv_msg .msgseq 
= 8var->N_access_point.DATA_RSP.ndata .seq ; 

format_ack ( lvar->datax_body.recv_msg , &( lvar->datax_body.buf ) ); 
•C 
FDTSVAR *newsvar = (FDTSVAR *) malloc(sizeof(FDTSVAR)); 

newsvar->N_accesa_point.DATA_REQ.ndata = lvar->datax_body.buf ; 
FDTSCBsignal ( p r o c e s s , 2 , 1 , newsvar); 
> 
i f ( svar->N_access_point.DATA_RSP.ndata .seq == 

lvar->datax_body.recv_seq ) 
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store ( &( lvar->datax_body.recv_buf ) , lvar->datax_body.recv_msg ) 
inc_recv_seq ( ); 

> 
goto trana_end ; 

} 
} 

> 
> 

> 
i f (signal->cid == 0) 
FDTSCBdispose (process, signal); 

return; 

trans_end : 
FDTSCBdispose (process, signal); 
i f (process->spont) 
FDTSCBspont (process); 

spont_end : 
process->delay = 0; 

FDTPCB *FDTabit_body ( parent , cep_id ) 
FDTPCB *parent; 
int cep_id ; 
•C 
FDTPCB *pcb; 
FDTLVAR *lvar; 

pcb = FDTPCBinit ( parent , 2 , SP0NTabit_body , 
XPORTabit.body , TRANSabit.body ); 

pcb->lvar = (int *) (lvar = (FDTLVAR *) malloc(sizeof(FDTLVAR))); 

lvar->abit_body.cep_id = cep_id ; 

lvar->abit_body.datax_module = FDTdatax_body( pcb , lvar->abit_body.cep_id ); 
lvar->abit_body.timer_module = FDTtimer_body( pcb , 30 /* RETRAN_TIME * / ) ; 
FDTCCBconnect (lvar->abit_body.datax_module , 3 , 1 , 

lvar->abit_body.timer_module , 1 , 1 ) ; 
FDTCCBattach (pcb, 1 , 1 , 

lvar->abit_body.datax_module , 1 , 1 ) ; 
FDTCCBattach (pcb, 2 , 1 , 

Ivar->abit_body.datax_module , 2 , 1 ) ; 
goto trans_end ; 

} 
trans_end : 
i f (pcb->spont) 
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FDTSCBspont (pcb); 
return (pcb); 

> 

FDTPCB *FDTSPECIFICATION ( parent ) 
FDTPCB *parent; 
•C 
FDTPCB *pcb; 
FDTLVAR *lvar; 

pcb = FDTPCBinit ( parent , 0 , SPONTSPECIFICATION , 
XPORTSPECIFICATION , TRANSSPECIFICATION ); 

pcb->lvar = (int *) (lvar = (FDTLVAR *) malloc(sizeof(FDTLVAR))); 
•C 
lvar->SPECIFICATION.network_module = FDTnetwork_body( pcb ); 
i 

int cep ; 
for ( cep = 1 ; cep <= 2 ; cep++ ) 
i 

lvar->SPECIFICATION.user_module [ cep - 1 ] = FDTuser_body( pcb , cep ); 
lvar->SPECIFICATION.abit_module [ cep - 1 ] = FDTabit_body( pcb , cep ); 
FDTCCBconnect (lvar->SPECIFICATION.user_module [ cep - 1 ] , 1 , 1 , 

lvar->SPECIFICATION.abit_module [ cep - 1 ] , 1 , 1 ); 
FDTCCBconnect (lvar->SPECIFICATION.abit_module [ cep - 1 ] , 2 , 1 , 

lvar->SPECIFICATION.network_module , 1 + cep - 1 , 0 ); 
> 

> 
goto trans.end ; 

} 
trans_end : 
i f (pcb->spont) 
FDTSCBspont (pcb); 

return (pcb); 
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/* 
* Creates and i n i t i a l i z e s a new process control block (PCB) 
* Places the PCB at the head of the sibling l i s t 
* If process contains transitions, inserts PCB into the scheduler's l i s t s 
* Returns the new PCB 
*/ 

FDTPCB *FDTPCBinit (parent, ipnum, spont, export, transition) 
FDTPCB *parent; 
int ipnum; 
int spont; 
int export; 
int (^transition)(); 

{ 
FDTPCB *newpcb = (FDTPCB *) malloc(sizeof(FDTPCB)); 

/***+* Links new process control block to the module hierarchy *****/ 

newpcb->pid = Pid++; 
newpcb->parent = parent; 
i f (parent != NULL) 
< 
newpcb->sib = parent->ref; 
parent->ref = newpcb; 
newpcb->prio = parent->prio + 1; 

> 
else /* This i s the root module */ 
{ 
newpcb->sib = newpcb; 
newpcb->prio = 1; 

> 
newpcb->ref = NULL; 

/***** Allocates enough interaction points for the module *****/ 

newpcb->ipnum = ipnum; 
i f (ipnum > 0) 

newpcb->chan = FDTCCBinit (newpcb->ipnum); 
else 

newpcb->chan = NULL; 

/***** Initializes other module state variables *****/ 
newpcb->ipnext != 0; 
newpcb->sigcnt = 0; 
newpcb->delay = 0; 
newpcb->spont = spont; 
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newpcb->export = export; 
newpcb->trans = transition; 

return (newpcb); 
> 

/* 
* Releases the specified process control block and a l l i t s descendents 
*/ 

FDTPCBterm (pcb) 
FDTPCB *pcb; 
{ 
FDTPCB *p; 

i f (pcb == NULL) 
return; 

i f ((p = pcb->parent) == NULL) 

FDTLIBerror ("Root module attempting to k i l l itself\n"); 

i f (p->ref == pcb) 

p->ref = pcb->sib; 
> 

else 
{ 

p = p->ref; 
while ((p != NULL) && (p->sib != pcb)) 

p = p->sib; 
i f (p == NULL) 

FDTLIBerror ("Error in link to parent\n"); 

p->sib = pcb->sib; 
} 

/***** Terminates a l l children recursively and then deallocates i t s e l f *****/ 

while (pcb->ref != NULL) 
FDTPCBterm (pcb->ref); 

i f (pcb->chan != NULL) 
FDTCCBterm (pcb); 

free (pcb); 
> 
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/* 
* Creates and i n i t i a l i z e s a new channel control block 
*/ 

FDTCCB *FDTCCBinit (size) 
int size; 

•C 
FDTCCB * i , *ccb = (FDTCCB *) calloc(size+ 1, sizeof(FDTCCB)); 

for (i=ccb; i<ccb+size+l; i++) 
•C 
i->head = i->tail = NULL; 
i->targeta = i->targetc = i->targete = NULL; 
i->channela = i->channelc = i->channele = 0; 
i->qdispl = COMMON; 

> 

return (ccb); 
} 

/* 
* Removes a channel l i s t from a process control block 
*/ 

FDTCCB *FDTCCBterm (process) 
FDTPCB ^process; 
{ 
FDTCCB *ccbl, *ccb2; 
int i ; 

for (i=l; i<process->ipnum+l; i++) 
•C 

ccbl = process->chan + i ; 
i f (ccbl->targetc != NULL) 

•C 
ccb2 = ccbl->targetc->chan + ccbl->channelc; 
i f ((ccb2->targetc == process) kk (ccb2->channelc == i)) 

FDTCCBdisconn (process, i ) ; 
else 

FDTCCBdetach2 (process, i ) ; 
} 

> 
free (procesB->chan); 

> 
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I* 
* Implements the Estelle connect statement 

FDTCCBconnect (processl, channell, qdispll, process2, channel2, qdispl2) 
FDTPCB *processl, *process2; 
int channell, channel2; 
queue.kind qdispll, qdispl2; 
< 
FDTCCB *ccbl, *ccb2; 

/***** Locates channel control blocks *****/ 

ccbl - processl->chan + channell; 
ccb2 - process2->chan + channel2; 

ccbl->qdispl = qdispll; 
ccb2->qdispl = qdispl2; 

/***** Tests for prior connections *****/ 

i f ((ccbl->targetc != NULL) || (ccb2->targetc != NULL)) 
FDTLIBerror ("Channel i s already connected"); 

/***** Makes formal connections *****/ 

ccbl->targetc - process2; ccbl->channelc = channel2; 
ccb2->targetc = processl*, ccb2->channelc = channell; 

/***** Finds actual target channel control blocks *****/ 

i f (ccbl->targeta != NULL) 
i 

processl = ccbl->targete; 
channell = ccbl->channele; 
ccbl->targete = NULL; 
ccbl->channele = 0; 
ccbl = processl->chan + channell; 

> 

i f (ccb2->targeta != NULL) 
i 

process2 = ccb2->targete; 
channel2 = ccb2->channele; 
ccb2->targete = NULL; 
ccb2->channele = 0; 
ccb2 = process2->chan + channel2; 
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> 

/***** Makes actual connec 

ccbl->targete = process2; 
ccb2->targete = processl; 

m *****/ 

ccbl->channele = channel2; 
ccb2->channele = channell; 

/* 
* Implements the Estelle ATTACH statement 
*/ 

FDTCCBattach (processl, channell, qdispll, process2, channel2, qdispl2) 
FDTPCB *processl, *process2; 
int channell, channel2; 
queue_kind qdispll, qdispl2; 

i 
FDTCCB *ccbl, *ccb2; 

/***** Locates channel control blocks •****/ 

ccbl = processl->chan + channell; 
ccb2 = process2->chan + channel2; 

ccbl->qdispl = qdispll; 
ccb2->qdispl = qdispl2; 

/***** Tests for prior connections *****/ 

i f ((ccbl->targeta != NULL) || (ccb2->targetc != NULL)) 
FDTLIBerror ("Channel i s already attached"); 

/***** Makes formal attachments *****/ 

ccbl->targeta = process2; ccbl->channela = channel2; /* attach down */ 
ccb2->targetc = processl; ccb2->channelc = channell; /* connect up */ 

/***** Finds actual target channels •****/ 

i f (ccbl->targetc != NULL) 
{ 

processl = ccbl->targete; 
channell = ccbl->channele; 
ccbl->targete = NULL; 
ccbl->channele = 0; 
ccbl = processl->chan + channell; 
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> 

i f (ccb2->targeta != NULL) 
{. 
process2 = ccb2->targete; 
channel2 = ccb2->channele; 
ccb2->targete = NULL; 
ccb2->channele = 0; 
ccb2 = process2->chan + channel2; 

> 

/***** Makes actual attachment *****/ 

ccbl->targete = process2; ccbl->channele = channel2; 
ccb2->targete = proceasl; ccb2->channele = channell; 

> 

/* 
* Implements the Estelle DISCONNECT statement 
*/ 

FDTCCBdisconn ( p r o c e s B l c , channellc) 
FDTPCB *processlc; 
int channellc; 
{ 
FDTCCB *ccblc, *ccb2c; 
FDTCCB *ccble, *ccb2e; 
FDTPCB *processle, *process2c, *process2e; 
int channelle, channel2c, channel2e; 

i f (channellc == 0) 

int i ; 

for (i=l; i<processic->ipnum; i++) 
FDTCCBdisconn (processlc, i ) ; 

} 
elBe 

•c 
/***** Locates actual channel control blocks *****/ 

ccblc = processlc->chan + channellc; 

process2c = ccblc->targetc; 
channel2c = ccblc->channelc; 
i f (process2c = NULL) 
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FDTLIBerror ("Attempt to disconnect unbound channel"); 
ccb2c = process2c->chan + channel2c; 

/***** Tests for prior connections *****/ 

i f ((ccb2c->targetc != processlc) I I (ccb2c->channelc != channellc)) 
FDTLIBerror ("Attempt to disconnect attached channel"); 

/***** Locates effective channel control blocks *****/ 

ccble = ccblc; 
while (ccble->targete == NULL) 

•C 
processle = ccble->targeta; 
channelle = ccble->channela; 
ccble = processle->chan + channelle; 

ccb2e = ccb2c; 
while (ccb2e->targete == NULL) 

i 
process2e = ccb2e->targeta; 
channel2e = ccb2e->channela; 
ccb2e = process2e->chan + channel2e; 

> 

/***** Disconnects actual channels *****/ 

ccblc->targetc = NULL; ccblc->channelc = 0; 
ccb2c->targetc = NULL; ccb2c->channelc = 0; 

/***** Rebinds effective channels, i f necessary *****/ 

i f (ccblc != ccble) 
< 

ccblc->targete = processle; ccblc->channele = channelle; 
ccble->targete = processlc; ccble->channele = channellc; 

> 
else 

ccble->targete = NULL; ccble->channele = 0; 

i f (ccb2c != ccb2e) 
i 

ccb2c->targete = process2e; ccb2c->channele = channel2e; 
ccb2e->targete = process2c; ccb2e->channele = channel2c; 
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> 
e lse 

ccb2e->targete = NULL; ccb2e->channele = 0; 
> 

} 
> 

/* 
* Implements the Estelle DETACH statement for an external interaction point 
*/ 

FDTCCBdetachl (processla, channella) 
FDTPCB *processla; 
int channella; 

i 
FDTCCB *ccbla, *ccb2a; /* Formal attachments */ 
FDTCCB *ccble, *ccb2e; /* Actual attachments */ 
FDTPCB *proceasle, *process2a, *process2e; 
int channelle, channel2a, channel2e; 

/***** Locates channel control blocks for actual attachments if****/ 

ccbla = processla->chan + channella; 

process2a = ccbla->targeta; 
channel2a = ccbla->channela; 
i f (process2a = NULL) 

FDTLIBerror ("Attempt to detach unbound channel"); 
ccb2a = process2a->chan + channel2a; 

/***** Tests for prior attachments *****/ 

i f ((ccb2a->targete != processla) II (ccb2a->channelc != channella)) 
FDTLIBerror ("Attempt to detach improperly attached channel"); 

/***** Locates channel control blocks for effective attachments *****/ 

ccb2e = ccb2a; 
while (ccb2e->targete == NULL) 
{ 

process2e = ccb2e->targeta; 
channel2e = ccb2e->channela; 
ccb2e = process2e->chan + channel2e; 

} 
processle = ccb2e->targete; 
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channelle = ccb2e->channele; 
ccble = processle->chan + channelle; 

/***** Dettaches actual channels **•**/ 

ccbla->targeta = NULL; ccbla->channela = 0; 
ccb2a->targetc = NULL; ccb2a->channelc = 0; 

/***** Rebinds effective channels, i f necessary *****/ 

i f (ccbla != ccble) 

ccbla->targete = processle; ccbla->channele = channelle; 
ccble->targete = processla; ccbie->channele = channella; 

else 

ccble->targete = NULL; ccble->channele = 0; 

i f (ccb2a != ccb2e) 

ccb2a->targete = process2e; ccb2a->channele = channel2e; 
ccb2e->targete = process2a; ccb2e->channele = channel2a; 

else 

ccb2e->targete = NULL; ccb2e->channele = 0; 

* Implements the Estelle DETACH statement for a child's external interaction point 
*/ 

FDTCCBdetach2 (process2a, channel2a) 
FDTPCB *proce8s2a; 
int channel2a; 

•C 
FDTCCB *ccbla, *ccb2a; /* Formal attachments */ 
FDTCCB *ccble, *ccb2e; /* Actual attachments */ 
FDTPCB *processla, •processle, *process2e; 
int channella, channelle, channel2e; 

/***** Locates channel control blocks for actual attachments *****/ 
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ccb2a = proceBs2a->chan + channel2a; 

processla = ccb2a->targeta; 
channella = ccb2a->channela; 
i f (processla == NULL) 

FDTLIBerror ("Attempt to detach unbound channel"); 
ccbla = processla->chan + channella; 

/***** Tests for prior attachments *****/ 

i f ((ccbla->targetc != process2a) I I (ccbla->channelc != channel2a)) 
FDTLIBerror ("Attempt to detach improperly attached channel"); 

/***** Locates channel control blocks for effective attachments **** 

ccb2e = ccb2a; 
while (ccb2e->targete == NULL) 

i 
process2e = ccb2e->targeta; 
channel2e = ccb2e->channela; 
ccb2e = process2e->chan + channel2e; 

> 
processle = ccb2e->targete; 
channelle = ccb2e->channele; 
ccble = processle->chan + channelle; 

/ i f * * * * Dettaches actual channels *****/ 

ccbla->targeta = NULL; ccbla->channela = 0; 
ccb2a->targetc = NULL; ccb2a->channelc = 0; 

/***** Rebinds effective channels, i f necessary *****/ 

i f (ccbla != ccble) 
•C 

ccbla->targete = processle; ccbla->channele = channelle; 
ccble->targete = processla; ccble->channele = channella; 

} 
else 

< 
ccble->targete = NULL; ccble->channele = 0; 

i f (ccb2a != ccb2e) 
•C 

ccb2a->targete = process2e; ccb2a->channele = channel2e; 
ccb2e->targete = process2a; ccb2e->channele = channel2a; 
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} 
else 

i 
ccb2e->targete = NULL; ccb2e->channele = 0; 

> 
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/* 
* Creates a new signal control block on the target of the specified channel 
*/ 

FDTSCBsignal (process, cid, sid, svar) 
FDTPCB ^process; 
int cid; 
int sid; 
int *svar; 
< 
FDTCCB *ccbl, *ccb2; 
FDTSCB *scb; 
FDTPCB *target; 

/***** Determines the location of the target channel *****/ 
ccbl = process->chan + cid; 
target = ccbl->targete; 
ccb2 = target->chan + ccbl->channele; 
i f (ccb2->qdispl == COMMON) 

ccb2 = target->chan; 

/***** Constructs an outgoing signal control block *****/ 
scb = (FDTSCB *) malloc(sizeof(FDTSCB)); 
scb->cid = ccbl->channele; 
scb->sid = sid; 
scb->svar = svar; 

/****« QueueB the Bignal control block to the t a i l of the target channel *****/ 
scb->next = NULL; 
i f (ccb2->tail == NULL) 

ccb2->head = scb; 
else 

ccb2->tail->next = scb; 
ccb2->tail = scb; 

/***** Increments the pending signal counter *****/ 
(target->sigcnt)++; 

> 

/* 
* Creates a spontaneous signal at 
* i f there are no pending signals 
*/ 

the common channel for the process 
for the process 

FDTSCBspont (process) 
FDTPCB ^process; 
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•C 
FDTCCB *ccb; 
FDTSCB *scb; 

/***** Exits i f there are pending signals *****/ 
i f (process->sigcnt > 0) 

return; 

/**•** Constructs a spontaneous signal control block *****/ 
scb = (FDTSCB *) malloc(sizeof(FDTSCB)); 
scb->cid = 0; 
scb->sid = 0; 
scb->svar = NULL; 

/***** queues the signal control block at the common channel *•***/ 
ccb = process->chan; 
scb->next = ccb->head; 
ccb->head = scb; 
i f (ccb->tail = NULL) 

ccb->tail = scb; 

/***** Increments the pending signal counter *****/ 
( p r o c e 8 S->sigcnt)++; 

> 

/* 
* Removes a signal control block from a channel 
*/ 

FDTSCBdispose (process, signal) 
FDTPCB *process; 
FDTSCB *signal; 

< 
FDTCCB *ccb; 
FDTSCB *scb; 

/***** Determines the location of the signal queue •****/ 
ccb = process->chan + signal->cid; 
i f (ccb->qdispl == COMMON) 

ccb = process->chan; 

/***** Removes the signal control block at the head of the queue *****/ 
scb = ccb->head; 
ccb->head = scb->next; 
i f (ccb->head = NULL) 

ccb->tail = NULL; 
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i f (scb->avar != NULL) 
free (scb->svar); 

free (scb); 

/***** Decrements the pending signal counter *****/ 
(process->sigcnt)—; 

} 

/* 
* Searches for a pending signal for the process 
*/ 

FDTSCB *FDTSCBpending (process) 
FDTPCB *process; 

FDTCCB *ccb; 

i f (process->sigcnt == 0) 
return (NULL); 

ccb = process->chan + process->ipnext; 
while (ccb <= process->chan + process->ipnum) 

i f (ccb->head != NULL) 
•C 

process->ipnext = ccb - process->chan + 1; 
return (ccb->head); 

> 
else 

•c 
ccb++; 

> 
ccb = process->chan; 
while (ccb < process->chan + process->ipnext) 

i f (ccb->head != NULL) 
< 

process->ipnext = ccb - process->chan + 1; 
return (ccb->head); 

> 
else 

ccb++; 
> 

return (NULL); 
} 


