
AN ESTELLE-C COMPILER FOR AUTOMATIC PROTOCOL IMPLEMENTATION

by

ROBIN ISAAC MAN-HANG CHAN

B.Sc, The University of British Columbia, 1980

M.Sc, The University of British Columbia, 1983

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

T H E REQUIREMENTS FOR T H E DEGREE OF

MASTER OF SCIENCE

in

T H E FACULTY OF GRADUATE STUDIES

(DEPARTMENT OF COMPUTER SCIENCE)

We accept this thesis as conforming

to the required standard

T H E UNIVERSITY OF BRITISH COLUMBIA

October 1987

© Robin Isaac Man-Hang Chan, 1987

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

Department of Computer Science

The University of British Columbia
1956 Main Mall
Vancouver, Canada
V6T 1Y3

Date October 13, 1987

Abstract

Over the past few years, much experience has been gained in semi-automatic protocol imple

mentation using an existing Estelle-C compiler developed at the University of British Columbia.

However, with the continual evolution of the Estelle language, that compiler is now obsolete.

The present study found substantial syntactic and semantic differences between the Estelle

language as implemented by the existing compiler and that specified in the latest ISO docu

ment to warrant the construction of a new Estelle-C compiler. The result is a new compiler

which translates Estelle as defined in the second version of the ISO Draft Proposal 9074 into

the programming language C. The new Estelle-C compiler addresses issues such as dynamic

reconfiguration of modules and maintenance of priority relationships among nested modules. A

run-time environment capable of supporting the new Estelle features is also presented. The im

plementation strategy used in the new Estelle-C compiler is illustrated by using the alternating

bit protocol found in the ISO Draft Proposal 9074 document.

u

Contents

Abstract ii

Contents iii

List of Figures v

Acknowledgement vi

1 Introduction 1
1.1 Motivations for a New Estelle Compiler 1
1.2 Thesis Outline 2

2 Estelle Evolution 3
2.1 Module Hierarchy 5

2.1.1 Static Organization 5
2.1.2 Dynamic Organization 6

2.2 Module Configuration 7
2.2.1 Dynamic Module Instantiation 7
2.2.2 Dynamic Module Interconnection 8

2.3 Justification for a New Estelle-C Compiler 9
2.3.1 Syntactic Issues 9
2.3.2 Semantics Issues 10
2.3.3 User Issues 11

3 Estelle to C Translation 13
3.1 Global Declaration Blocks 14

3.1.1 Signal Parameter Block 14
3.1.2 Module Variable Block 16

3.2 Run-time Control Blocks 16
3.2.1 Signal Control Block 18
3.2.2 Channel Control Block 19
3.2.3 Process Control Block 20

iii

3.2.4 Improvement over past Estelle Compilers 22
3.3 Run-time Support Routines 23

3.3.1 Process Control Block Routines 24
3.3.2 Channel Control Block Routines 24
3.3.3 Signal Control Block Routines 25

3.4 Module Translation 26
3.4.1 Initialization Routine 26
3.4.2 Transition Routine 29

3.5 Transition Translation 29
3.5.1 Transition Clauses 31
3.5.2 Transition Blocks 36

4 Estelle Run-time Execution 37
4.1 Run-time Organization 37

4.1.1 Initialization Routines 38
4.1.2 Scheduler Routine 39

4.2 Transition Processing 41
4.2.1 Input Transitions 41
4.2.2 Spontaneous Transitions 42
4.2.3 Delayed Transitions 42
4.2.4 No Enabled Transitions 43

5 Conclusions 44
5.1 Thesis Summary 44

5.2 Future Work 46

Bibliography 48

A Alternating Bit Protocol — Estelle Specification 50

B Alternating Bit Protocol — Generated Codes 60

C Process Control Block Support Routines 76

D Channel Control Block Support Routines 79

E Signal Control Block Support Routines 89

iv

List of Figures

3.1 Signal Parameter Block Structure 15
3.2 Module Variable Block Structure 17
3.3 Signal Control Block Structure 18
3.4 Channel Control Block Structure 19
3.5 Process Control Block Structure 21
3.6 Initialization Routine 28
3.7 Transition Routine 30
3.8 Codes generated for a FROM clause 32
3.9 Codes generated for a WHEN clause 32
3.10 Codes generated for a PROVIDED clause 33
3.11 Codes generated for a DELAY clause 34
3.12 Codes generated for an OUTPUT statement 36

4.1 Main Driver Routine 37
4.2 Run-time Scheduler Routine 40

v

Acknowledgement

The author wishes to express his thanks to his supervisor, Dr. Son Vuong, for his guidance

and to Dr. Samuel Chanson for his careful reading of the thesis.

He also wishes to thank his wife, Silvian, for her many helpful suggestions in the preparation

of this manuscript and for her patience and support throughout the course of this work.

vi

Chapter 1

Introduction

Estelle is a formal description technique (FDT) developed to be used by ISO standards

committees for the specification of communication protocols and services destined to become

international standards. The use of formal methods for protocol specification reduces the risks

of erroneous or incompatible implementations of these protocols. In addition, the availability

of precise and unambiguous descriptions of protocols allows automatic tools to be built for

generating protocol implementations directly from the formal specifications.

In response to the challenge of realizing automatic implementation of protocols from Estelle

specifications, the first Estelle compiler was developed at the University of Montreal [Gerb83].

This compiler accepts Estelle specifications and generates implementation codes in Pascal.

Currently, several Estelle compilers, interpreters and simulators have already been developed

[Ansa87,Cour86,Garg87].

1.1 Motivations for a New Estelle Compiler

At the University of British Columbia (UBC), an Estelle-C compiler was developed by

Daniel Ford in 1984 [Ford85]. The compiler accepts Estelle as defined by the 1984 Estelle

working document [Este84] and generates target codes in the programming language C. The

1

CHAPTER 1. INTRODUCTION 2

original compiler was found to be erroneous and was subsequently improved by Alan Lau in

1986 [Lau86]. The improved compiler was successfully used by Lau in a comparative study on

semi-automatic versus manual implementation [Vuon87,Vuon88] of the ISO class 2 transport

protocol [IS082a,IS082b].

However, the Estelle language has undergone two major changes since 1984 and is currently

in the second draft proposal stage [Este85,Este86]. The UBC Estelle-C compiler is now obsolete

due to the substantial differences between the current Estelle specification and the Estelle

language as implemented by Ford. Therefore, it is necessary to build a new UBC Estelle-C

compiler that will conform to the new standards [Este86] and, thus, allow further works in

automatic protocol implementations.

1.2 Thesis Outline

This thesis describes the implementation of a new Estelle-C compiler. Chapter 2 presents

the changes made to the Estelle language since 1984 and the justification for the reimplemen-

tation of a new compiler instead of the modification of the old compiler to conform to the new

standards. Chapter 3 describes the translation scheme used in the new compiler and compares

it with the scheme used in the old compiler. The implementation strategy used in the new

Estelle-C compiler is illustrated by using the alternating bit protocol. Chapter 4 discusses the

run-time environment used in the new compiler. Chapter 5 concludes the thesis with some

insights gained from this project.

Chapter 2

Estelle Evolution

Estelle is a hybrid formal protocol description technique which combines an underlying

extended finite state machine model with the use of a programming language notation. Syntac

tically, Estelle is based on the programming language Pascal with additional features borrowed

from Ada and Modula-2. An Estelle specification describes a complex protocol specification

as a hierarchical structure of increasingly refined communicating finite state machines called

modules. The syntax provides constructs necessary to specify state transitions within the

modules as well as the means to interconnect the various specified modules. Semantically, these

modules are allowed to be executed in parallel.

The modules communicate with each other through abstract interfaces called interaction

points. A bidirectional communication path between two interacting modules, called a chan

nel, is formed when two interaction points, one from each module, are connected together.

After a channel is established between two modules, the modules can interact by transmitting

units of information, called interactions, through the channel.

The dynamics of a channel is modeled abstractly as a pair of first-in-first-out queues located

at the two linked interaction points. Each interaction signaled between two modules is routed

3

CHAPTER 2. ESTELLE EVOLUTION 4

from the interaction point at the sending module to the queue in the interaction point at the

receiving module.

Each channel is associated with a channel type. For each channel type, a set of parameterized

interaction primitives can be specified for generating interaction instances which are to be

transmitted through the channel. Because of the bidirectional nature of the channels, two

interaction role identifiers must be specified for each channel in order to distinguish the two

directions. Each of the allowable interaction primitives may be associated with either one or

both of the defined roles. The use of the role identifier allows each interaction primitive to

be specified as either unidirectional or bidirectional. The two corresponding interaction points

for each channel must have opposite roles so that they can be used to send and to receive

interactions of the opposite type.

The abstraction provided by the Estelle channel can be used naturally for modeling the set

of service primitives allowable at the boundaries between two adjacent protocol layers. When

a protocol specification is refined into submodules, the same abstraction can also be used to

specify interactions between any two submodules.

Excellent descriptions of the Estelle features and facilities can be found in Linn [Linn86]

and Courtiat et al. [Cour86], This chapter only describes the changes to the Estelle language

from the 1984 working document [Este84] to its present 1986 draft proposal form [Este86] and

concludes with a justification for building a new Estelle-C compiler from scratch instead of

modifying the current UBC Estelle-C compiler.

CHAPTER 2. ESTELLE EVOLUTION 5

2.1 Module Hierarchy

Some of the major differences between the Estelle language as defined in the original working

document [Este84] and that defined in the resulting draft proposal documents [Este85,Este86]

are the changes made to the hierarchical structuring of the modules. Since a module is the

basic unit of protocol specification in Estelle, the changes have profound effects on the run-time

environment that the new Estelle-C compiler must support.

2.1.1 Static Organization

A protocol specification is originally defined as a hierarchy of modules of two different

types [Este84]. At the bottom of the module hierarchy are processes. A process defines an

atomic unit of protocol specification as an extended finite state machine which cannot be further

subdivided. The behavior of a process is specified as a list of possible transitions. All processes

are specified to be executed in parallel. The modules at the higher layers in the module hierarchy

are called refinements. Refinements may be further divided into submodules, each of which

may be either a process or another refinement. Refinements, however, may not contain any

transition specification. The sole purpose of the refinement modules is to impose a structure on

the set of defined processes during system initialization time; these modules are inactive during

protocol execution.

The implication of this modular organization is that a protocol specified in this manner

has a static structure. Since only the bottom layer of the hierarchy contains active modules,

the structure cannot be changed during run-time. Another consequence of this organization is

that the structure is linear. The set of active modules can be linked together into a linear list.

Simple round-robin scheduling over this list will suffice during run-time to simulate parallelism

CHAPTER 2. ESTELLE EVOLUTION 6

[Ford85].

2.1.2 Dynamic Organization

In the first draft proposal for Estelle [Este85], transition execution is allowed in the higher

level modules. In addition, provisions are made to allow modules to share common variables.

In order to ensure mutual exclusion between the shared variables, two restrictions are imposed

on the structuring principles of an Estelle protocol specification.

First, two types of modules with different execution semantics are defined. An activity

is a module which is considered to be atomic and cannot be substructured. A process is a

module which may be substructured into either child processes or child activities. Processes at

the same level may be run in parallel, but activities may be run only in an interleaved fashion.

Second, a parent/child priority relation is imposed on the module hierarchy. If a transition of

a parent module is enabled, no child may begin a transition.

The first restriction will ensure mutual exclusion among modules at the same level in the

module hierarchy if they are specified as activities. The second restriction will ensure mutual

exclusion among modules at different levels in the module hierarchy.

In the second draft proposal for Estelle [Este86], the major change to the Estelle language

specification is to forbid the use of shared variables among modules at the same level in the

module hierarchy. The inclusion of this restriction eliminates the concern of mutual exclusion

among modules at the same level. Consequently, there is no further need to distinguish be

tween processes and activities. However, the concepts of processes and activities are retained

to distinguish the two possible forms of module execution semantics. The process abstraction

represents a synchronous parallel execution while the activity abstraction represents a nonde-

terministic sequential execution. Because of these new semantics, activity modules may now

CHAPTER 2. ESTELLE EVOLUTION 7

be further substructured into other activities.

The new module synchronization semantics defined in the two Estelle draft proposals

[Este85,Este86] imply a more complicated run-time environment than is necessary for Estelle

as defined in the working document [Este84]. The new run-time scheduler must differentiate

between modules at different levels in order to enforce the parent/child priority relationships.

The scheduler used in the new Estelle-C compiler is discussed in Section 4.1.

2.2 Module Configuration

Module configuration is the process of instantiating and interconnecting the modules defined

in an Estelle specification. Module configuration can only be performed by a parent module on

its immediate child modules. In the original version of Estelle [Este84], module configuration

can only be performed at system initialization time. Since all modules above the bottom level

are inactive, the number and the types of modules will remain unchanged for the life-time of

the specified system. In the later versions [Este85,Este86] where active modules are present in

the higher levels, module configuration may be carried out any time. The potential result of

this enhancement is a protocol specification with a dynamically varying module organization.

2.2.1 Dynamic Module Instantiation

The process of module instantiation includes the declaration of a module variable, the

initialization of a module instance, and the binding of the initialized module instance to the

module variable.

In the working document version of Estelle [Este84], module instantiation is an implied oper

ation associated with the declaration of a module variable. In the later versions [Este85,Este86],

modules are explicitly created and initialized by using the INIT statement. Module termination

CHAPTER 2. ESTELLE EVOLUTION 8

is possible using the RELEASE statement. These two special Estelle statements may be used

either at system initialization or within transition execution. The use of explicit statements to

perform these two operations in an Estelle protocol specification provides the power to change

the number and the type of modules within the specification dynamically. The need to sup

port dynamic module creation and termination results in a run-time environment which must

maintain the complete hierarchical module organization at all times. In contrast, under the old

Estelle environment, this information may be discarded after the system has been initialized

[Ford85].

2.2.2 Dynamic Module Interconnection

With the addition of dynamic module instantiation, it becomes necessary to provide explicit

module interconnection statements. These operations are provided in Estelle by the special

statements: CONNECT, DISCONNECT, ATTACH and DETACH. The CONNECT and DISCONNECT

statements are used to alter the interconnections between modules at the same level; and the

ATTACH and DETACH statements are used to alter the interconnections between modules at

adjacent levels.

With the added capabilities for dynamic reconfiguration, the immediate parent of a set

of modules can be specified to act as a supervisory manager. However, these provisions for

dynamic reconfiguration of the various entities in a protocol specification result in an Estelle

run-time environment that is more complex than one which simply maintains a complete module

hierarchy.

CHAPTER 2. ESTELLE EVOLUTION 9

2.3 Justification for a New Estelle-C Compiler

With the basic ideas underlying the semi-automatic approach to protocol implementation

well understood and demonstrated by the many existing Estelle compilers [Boch87a], the major

motivation for developing a new compiler for Estelle is to upgrade the UBC Estelle-C compiler

to support the latest Estelle language specification [Este86]. However, it is apparent that there

are many issues which must be addressed in changing from a static run-time environment to a

dynamic one. This section describes the justifications for a complete rewrite of the Estelle-C

compiler instead of modifying the existing compiler.

2.3.1 Syntactic Issues

One of most important reasons for rewriting the new Estelle-C compiler is that the syntax

of Estelle has changed so significantly that building a new parser is desirable. The old compiler

was written with the aid of the UNIX utilities lex and yacc. A significant omission in the

old compiler was the lack of syntax error recovery mechanisms. The building of a new parser

offers an opportunity to incorporate this important compiler feature into the new compiler.

With added error recovery as part of the design goal, the Estelle grammar is rewritten into a

LL(1) form. Then, the parser for the new Estelle-C compiler is hand-coded in C using recursive

descent techniques. Syntax error recovery is carried out using the panic mode technique with a

dynamic stop symbol set. An unrelated advantage gained from rewriting the compiler without

using lex and yacc is the possibility for further development of the new compiler in non-UNIX

environments.

CHAPTER 2. ESTELLE EVOLUTION 10

2.3.2 Semantics Issues

Another important reason for rewriting the new compiler relates to semantics issues. Being

a formal description technique for protocol specification, the Estelle language must have precise

meaning; otherwise, protocols specified in Estelle will not have a sound foundation and may

be opened to different interpretations. In order to satisfy this requirement, the second draft

proposal for Estelle is published with a new section on formal semantics [Este86]. When the

implementation of the old Estelle-C compiler is compared with the new formal semantics, several

features are found to be incompatible.

The major area of incompatibility has to do with the scoping rules for variables. The old

Estelle compiler did not pay particular attention to the scoping of many variables. Variables

local to individual transitions were not supported. Module parameters were not made available

to the module transitions. Procedures and functions defined within a module were not allowed

access to global variables declared within the same module. Furthermore, the old Estelle-C

compiler is still erroneous despite the improvements made by Alan Lau [Lau86]. In particular,

the old compiler lacks some important Estelle features, such as the data types SET and multi

dimensional A R R A Y . Solutions to these and other problems are all part of the redesign of the

new Estelle-C compiler.

Other semantics issues deal with error checking. The old Estelle-C compiler has no provision

for checking semantic errors besides Estelle specific semantic errors. Since the code generated

by the Estelle compiler would have to be further compiled by the C compiler, the rationale

was that the C compiler can be used for most of the semantic checks. However, by placing

most of semantic checking burden on the C compiler, the error messages from the C compiler

become cryptic. Users of the compiler without firm understanding of the organization of the

CHAPTER 2. ESTELLE EVOLUTION 11

generated C-codes frequently have trouble understanding errors detected during the subsequent

C compilation. In order to build a more "user-friendly" Estelle compiler, more emphasis is

placed on semantic checking in the new Estelle-C compiler.

2 .3 .3 U s e r Issues

Building extensive error checking facilities into the new Estelle-C compiler is not adequate

to make the new compiler user-friendly. The old Estelle-C compiler produces a C program

which is not readily compilable by the C compiler without extensive user modifications. Also,

the old Estelle run-time support routines contain specification dependent details which must

be modified for each Estelle specification. In order to generate an executable implementation

from an Estelle specification, the user must recompile the run-time support routines using the

C compiler along with the C-code generated by the Estelle-C compiler. In the new Estelle-C

compiler, it is no longer necessary for the user to modify any of the generated codes. Be

sides improving and extending the run-time routines to support the new Estelle features, all

specification dependent details have been extracted from these run-time support routines. The

specification independent routines have been precompiled into a single object library. After

the generated C-codes have been compiled by the C compiler, they can be easily linked to this

object library to form the final executable program.

In summary, the new Estelle-C compiler is written to incorporate the features in the latest

version of the Estelle language and to improve the user-friendliness of the compiler. The user-

friendliness aspect of the improvement includes the use of effective error diagnostics for the

user and the freeing of the user from the need to know the details in the underlying run-time

environment. The goal is to increase the degree of automation than that achieved in the previous

semi-automatic implementations of protocols from formal specifications. Wi th regards to the

CHAPTER 2. ESTELLE EVOLUTION

shortcomings in the old Estelle-C compiler,

well as necessary.

a complete rewrite of the compiler is desirable

Chapter 3

Estelle to C Translation

The translation of Estelle to C in the new Estelle-C compiler follows the implementation

strategy used by Gerber [Gerb83], a strategy which was also adopted by Ford [Ford85]. Each

Estelle module is translated into two separate C routines. One routine is used for transition

execution while the other is used for module initialization. The transition routine implements

the finite state machine specified for the module. The initialization routine sets up the

internal states of the module before it is ready for the subsequent transition execution.

Besides generating executable codes to implement the modules, the Estelle-C compiler also

generates two sets of global declaration structures. One structure, called the signal parameter

block (FDTSVAR), is used for storing the parameter information carried in the interactions

passed between modules. The other structure, called the module variable block (FDTLVAR),

is used by each module for storing local variables. After these four sets of generated C codes

are compiled and then linked together with a set of pre-compiled run-time support routines, an

executable protocol implementation results.

The Estelle run-time environment is constructed from three major control blocks represent

ing the three major abstractions defined in the Estelle language. The interactions which are

13

CHAPTER 3. ESTELLE TO C TRANSLATION 14

signaled between modules are represented by signal control blocks (FDTSCBs). The chan

nels through which the interactions are transmitted are represented by channel control blocks

(FDTCCBa). Finally, the modules which send and receive the interactions are represented by

process control blocks (FDTPCBs).

The following sections present the Alternating Bit Protocol as an example in Estelle to

C translation. The complete Estelle specification for the Alternating Bit Protocol and the C

program generated from it are included in Appendices A and B, respectively. The sections

begin with the explanation on the generation of the two global declaration blocks followed by a

description of the three control blocks and the ways in which they are combined with the gen

erated declaration codes and with each other to form the run-time environment. Subsequently,

the translation of an Estelle module into an initialization and a transition routine is discussed.

3.1 Global Declaration Blocks

Two global declaration blocks are generated to represent all of the specification dependent

variables needed during run-time. To facilitate the ease of understanding the generated code,

the identifiers used in the generated C code retain their Estelle names. The elaborate variant

structures described below is necessary to protect the Estelle names from identifier conflicts

when used within a C program.

3.1.1 S i g n a l P a r a m e t e r B l o c k

The signal parameter block (FDTSVAR) is a three-level variant record structure repre

senting the combination of all specified parameters in all interaction primitives for all channel

types within an Estelle specification. The FDTSVAR generated for the alternating bit protocol

is shown in Figure 3.1.

CHAPTER 3. ESTELLE TO C TRANSLATION 15

typedef union i

/* CHANNEL U_access_point primitives and t h e i r i d e n t i t y numbers */

union {
struct {

i n t udata ; /* 1. SEND.REQ (udata : : udata.type); */
} SEND.REQ ;
i n t RECV.REQ ; /* 2. RECV.REQ; */
struct {

i n t udata ; /* 3. RECV.RSP (udata : : udata_type); */
} RECV.RSP ;

} U.access.point ;

/* CHANNEL N.access.point primitives and t h e i r i d e n t i f i e r s */

union {.
struct {

ndata.type ndata ; /* 1. DATA.REQ (ndata : ndata.type); */
} DATA.REQ ;
struct {

ndata.type ndata ; /* 2. DATA.RSP (ndata : ndata.type); */
> DATA.RSP ;

} N.access.point ;

/* CHANNEL S.access.point primitives and t h e i r i d e n t i f i e r s */

union {
i n t TIMER.REQ ; /* 1. TIMER.REQ; */
i n t TIMER.RSP ; /* 2. TIMER.RSP; */

} S.access.point ;

} FDTSVAR;

Figure 3.1: Signal Parameter Block Structure

CHAPTER 3. ESTELLE TO C TRANSLATION 16

The first level variant structures identify the channel types while the second level variant

structures identify the interaction primitives within the channels. For easy identification, the

interaction primitives defined for each channel type are numbered. The identity numbers as

signed by the Estelle-C compiler for the interaction primitives are shown in Figure 3.1. The

innermost structures represent an enumeration of the parameters for the interaction primitives.

These innermost structures are absent for interaction primitives without parameters.

3.1.2 Module Variable Block

The module variable block (FDTLVAR) is a two-level variant record structure that

contains the complete global state variables for all module bodies. The module variable block

generated for the alternating bit protocol is presented in Figure 3.2.

The outer level variant structures identify the module bodies in the Estelle specification. The

inner structures store all major and minor state variables declared for the module bodies. The

variables are collected from the various Estelle declaration sections. The first set of variables is

extracted from the module parameter declaration and the exported variable declaration sections

in the associated module header declarations. The rest of the variables are derived from the

S T A T E , STATESET, VAR and MODVAR declaration sections in the module bodies. The origins of

the various variables in the FDTLVAR are shown in Figure 3.2 as comments. Module bodies

without any variable declarations are not represented in the FDTLVAR structure.

3.2 Run-time Control Blocks

Three control blocks are used to represent all of the specification independent bookkeeping

information during run-time. The following sections describe the three control blocks and

conclude with a discussion on the improvements made with respect to the old Estelle-C run-

CHAPTER 3. ESTELLE TO C TRANSLATION

typedef union {
struct {

i n t cep_id ;
in t f l a g ;
i n t data ;

} user_body;
struct {

i n t count ;
} network_body;
struct i

i n t time ;
i n t F D T 3 ;

i n t stop ;
i n t stop_bis ;

} timer_body;
struct {

in t cep_id ;
set.type EITHER ;
in t STATE ;
ndata_type buf ;
msg_type recv_msg ;
msg_type send_msg ;
buf_type recv.buf ;
buf_type send_buf ;
i n t recv_seq ;
in t send_seq ;

} datax_body;
struct {

in t cep_id ;
FDTPCB *timer_module ;
FDTPCB *datax_module ;

} abit_body;
struct {
FDTPCB *abit_module [2] ;
FDTPCB *user_module [2];
FDTPCB *network_module ;

> SPECIFICATION ;
} FDTLVAR;

/* MODULE user.body */
/* Parameter */
/* Variable */
/* Variable */

/* MODULE network_body */
/* Variable */

/* MODULE timer.body */
/* Parameter */
/* Temporary */
/* Variable */
/* Variable */

/* MODULE datax_body */
/* Parameter */
/* Stateset */
/* State */
/* Variable */
/* Variable */
/* Variable */
/* Variable */
/* Variable */
/* Variable */
/* Variable */

/* MODULE abit.body */
/* Parameter */
/* Modvar */
/* Modvar */

/* SPECIFICATION abit.s
/* Modvar */
/* Modvar */
/* Modvar */

Figure 3.2: Module Variable Block Structure

CHAPTER 3. ESTELLE TO C TRANSLATION 18

time control blocks.

3.2.1 Signal Control Block

Each unit of interaction (or signal) sent through a channel is represented by a signal

control block (FDTSCB) in conjunction with a signal parameter block (FDTSVAR). As

described in Section 3.1.1, the FDTSVAR is a specification dependent structure generated from

the channel type declaration sections in an Estelle specification. In contrast, the FDTSCB is

a specification independent run-time control block (Figure 3.3). The two blocks are linked

struct FDTSCB_struct
{

struct FDTSCB.struct *next; /* Next signal */
i n t cid; /* Channel i d */
i n t sid; /* Primitive i d */
i n t *svar; /* Parameters */

};
typedef struct FDTSCB_struct FDTSCB;

Figure 3.3: Signal Control Block Structure

together by the pointer svar located in the FDTSCB. Since the FDTSVAR contains only

interaction parameter fields (see Figure 3.1), additional information must be provided within

the FDTSCB for the identification of interaction primitives. With the FDTSVAR implemented

as a three-level variant record structure, two identifiers are necessary to uniquely identify the

interaction being conveyed. The first identifier, encoded in the field cid, indicates the index

number of the target interaction point within the target module. Since each interaction point

is associated with only one channel type in Estelle, this number also identifies the channel type.

The second identifier, stored in the field sid, is used to specify the interaction primitive within

CHAPTER 3. ESTELLE TO C TRANSLATION 19

the channel identified by cid. The next field is used for queue manipulation at the target

interaction point.

3.2.2 Channel Control Block

Each interaction point associated with a channel is represented by a channel control block

(FDTCCB). The number of FDTCCBa necessary to completely specify an Estelle channel at

run-time depends on the number of C O N N E C T and A T T A C H statements used to build the channel.

Every C O N N E C T or A T T A C H operation involves two FDTCCBa.

The bookkeeping for interaction point binding is maintained by three pairs of variables

within each FDTCCB (See Figure 3.4). The pair (targeta, channela) is used to specify the

struct FDTCCB_struct
{

struct FDTSCB.struct *head, * t a i l ;
struct FDTPCB_struct *targeta, *targetc, *targete;
int channela, channelc. channele;
int queue_kind;

>;
typedef struct FDTCCB.struct FDTCCB;

Figure 3.4: Channel Control Block Structure

target interaction point of an A T T A C H operation when the target interaction point is located

at a child module. The field targeta indicates the target module while the field channela

specifies the index number of the target channel within the target module. Similarly, the pair

(targetc, channelc) is used to represent the target interaction point of a C O N N E C T operation

or the target interaction point of an A T T A C H operation when the target interaction point is

located at a parent module. Because connected interaction points may be further attached to

CHAPTER 3. ESTELLE TO C TRANSLATION 20

other interaction points, in order to be efficient in determining the real target interaction point

when interaction are sent between module, the pair (targete, channele) is used to specify the

effective target interaction point directly. This tremendous amount of bookkeeping is necessary

to keep track of the channel binding between modules so that channels may be DISCONNECTed

and DETACHed afterwards. In contrast, under the old run-time environment for Estelle, where

channels are prohibited from unbinding, only the effective target interaction point needs to be

maintained in each FDTCCB [Ford85].

The other fields with the FDTCCB depicted in Figure 3.4 are used to implement the inter

action queue. When an interaction, represented by a FDTSCB is sent through one FDTCCB,

it will be queued at the opposite FDTCCB indicated by the (targete, channele) pair. The

head and t a i l fields are pointers to the first and last FDTSCBs in this queue, respectively.

In Estelle, interaction points may be specified with either COMMON or INDIVIDUAL queueing

discipline. The queue_kind field is used to indicate this queueing discipline for the interaction

point.

3.2.3 Process Control Block

Each module instance at run-time is represented by a process control block (FDTPCB)

in conjunction with a module variable block (FDTLVAR). While the FDTLVAR, as described

in Section 3.1.2, is a specification dependent structure generated from the various variable

declaration sections in an Estelle specification, the FDTPCB is a specification independent

run-time control block (Figure 3.5). This control block is used to store bookkeeping information

for each module instance for the duration of its existence at run-time.

The fields parent, sib and ref are pointers used to maintain the static module hierarchical

structure at run-time. They point to the parent module, the next sibling at the same hierarchical

CHAPTER 3. ESTELLE TO C TRANSLATION 21

struct FDTPCB.struct

struct FDTPCB. .struct •parent; /* Parent FDTPCB */
struc t FDTPCB. .struct *sib; /* Next s i b l i n g FDTPCB */
struct FDTPCB. .struct *ref; /* F i r s t c h i l d FDTPCB */
struct FDTCCB. .struct *chan; /* FDTCCB array */
i n t ipnum; /* Size of FDTCCB array */
i n t ipnext; /* Next i p to search */
i n t prio; /* Hierarchical l e v e l */
i n t sigcnt; /* Pending signal count */
i n t delay; /* Delay clause i d */
i n t tO, t l ; /* Delay time l i m i t s */
i n t spont; /* Spontaneous present? */
i n t export; /* Export variables? */
i n t (*trans)(); /* Transition routine */
i n t *lvar; /* Module variable block */

typedef struct FDTPCB.struct FDTPCB;

Figure 3.5: Process Control Block Structure

CHAPTER 3. ESTELLE TO C TRANSLATION 22

level and the head of the list of child modules at the next hierarchical level, respectively.

The address of the transition routine which implements the extended finite state machine

specified for the module is stored at the field trans. The field lvar is a pointer to the FDTLVAR

block.

Since the number of interaction points in a module can be statically determined, all channel

control blocks FDTCCBa needed for a module are placed into one common array. The field

chan is used to point to this FDTCCB array while the field ipnum is used to store the size of

this array. Each interaction point is assigned an index number into this array starting at the

index value '1'. The FDTCCB with the index value of (0' is an extra channel control block

reserved for the COMMON queue. Interactions destined for a target interaction point specified

with COMMON queueing discipline are queued in this COMMON FDTCCB. Interactions destined

for a target interaction point specified with INDIVIDUAL queueing discipline are queued in the

specified target FDTCCB. The field sigcnt indicates the sum of all pending interactions in

the queues.

The three fields delay, tO and t l are used to implement DELAYed transitions (See Sec

tion 4.2.3 for detail). The remaining fields identify the hierarchical level of the module (prio),

the next interaction queue to examine for the pending interactions (ipnext), and whether or

not the module has spontaneous transitions (spont) and export variables (export).

3.2.4 Improvement over past Estelle Compilers

The run-time data structures used in the new Estelle-C compiler represent some of the

major improvements made to the new compiler as compared to those used in the old compilers

[Gerb83,Ford85].

In the past, the signal parameter block is placed within the signal control block; and the

CHAPTER 3. ESTELLE TO C TRANSLATION 23

module variable block is placed within the process control block. Since, these two combined

control blocks contain specification dependent information, they are different for different Estelle

specifications. Furthermore, since the run-time routines must have access to the control blocks,

it is necessary for the old run-time routines to be recompiled for different specifications. With

the arrangement used in the new Estelle-C compiler, the specification dependent details are

isolated into the FDTSVAR and FDTLVAR structures while the control blocks remain the

same for all specifications. Consequently, the new run-time support routines are specification

independent and they no longer require recompilation.

A second improvement is made in the structuring of the FDTCCBa. In the old Estelle

compiler, the FDTCCB8 are linked together into a linear list. Therefore, every channel access

must involve a linear search along this list for the required FDTCCB. The new Estelle-C

compiler takes advantage of the fact that the number of channel is fixed for each module and

assigns a unique index number to each channel. Channel access in the new Estelle-C compiler

is thus performed by array indexing rather than by linear searching.

3.3 Run-time Support Routines

The control blocks described so far are constructed into a run-time data structure that

reflects the module organization defined in the Estelle specification. This structure is built

using a set of pre-written support routines. The calls to these routines are made by codes

incorporated within the two sets of generated module routines. The support routines can be

divided into three groups, each of which manipulates one type of control blocks. The following

sections describe these three groups of support routines.

CHAPTER 3. ESTELLE TO C TRANSLATION 24

3.3.1 Process Control Block Routines

There are two process control block routines used to create and destroy process control

blocks. The codes for these routines are depicted in Appendix C. The routine FDTPCBinitO

creates and initializes an FDTPCB. This routine is used to instantiate a new Estelle module

and it implements all of the specification independent operations required for the INIT operation

defined in Estelle. The first part of the initialization process results in the linking of the newly

created FDTPCB to the FDTPCB of its parent module and to the FDTPCBs of its other sibling

modules. Afterwards, the appropriate number of FDTCCBs are created for the module being

instantiated. Finally, other bookkeeping variables are initialized. The specification dependent

operations are individually implemented in the initialization routines generated for each defined

Estelle module (See Section 3.4.1 for detail).

The routine FDTPCBtermO destroys a specified module and all its child modules recursively.

This routine implements the RELEASE operation defined in Estelle.

3.3.2 Channel Control Block Routines

The channel control blocks are manipulated by a set of seven run-time routines shown in

Appendix D. These routines can be divided into two functional groups.

One group consists of the two routines, FDTCCBinitO and FDTCCBtermO, are used to

allocate and to release the appropriate number of channel control blocks for a module. These

two routines are in turn used by the routines, FDTPCBinitO and FDTPCBtermO, respectively,

when modules are created and destroyed.

The other group is made up of five routines used to bind and unbind pairs of communi

cating channel control blocks. The routines FDTCCBconnectO and FDTCCBdisconnO are used

CHAPTER 3. ESTELLE TO C TRANSLATION 25

to bind and unbind FDTCCBs of modules at the same level in the module hierarchy. The

routines FDTCCBattachO, FDTCCBdetachl () and FDTCCBdetach2() are used to bind and un

bind FDTCCBa of modules at adjacent levels in the hierarchy. Essentially, they implement the

Estelle operations CONNECT, DISCONNECT, ATTACH, and DETACH respectively.

3.3.3 Signal Control Block Routines

Interactions queued at a FDTCCB are manipulated by four pre-written library routines

shown in Appendix E. In this version of the Estelle-C run-time environment, the interaction

queues are implemented as singly-linked circular queues.

The routine FDTSCBsignalO is used to dispatch an interaction through a specified channel.

A call to this routine is generated as the last step in the translation of an OUTPUT statement (See

also Section 3.5.2). The newly dispatched interaction is placed in either the COMMON channel

or the specified target channel of the target module depending on the queueing discipline of the

target interaction point (See also Section 3.2.3).

The routine FDTSCBspontO is used when it is necessary to generate a spontaneous signal.

A call to this routine is issued, when appropriate, after a transition is completed.

The routine FDTSCBdisposeQ is used after a transition has been completed in order to

disposed of a received input interaction or a spontaneous interaction (See also Section 3.4.2 for

details).

Finally, the function FDTSCBpendingO is used by the global scheduler to search for a pend

ing signal destined for a particular process.

CHAPTER 3. ESTELLE TO C TRANSLATION 26

3.4 Module Translation

The module abstraction in an Estelle specification represents the basic unit of protocol

specification. A module type is declared as an abstract data type. The external visibility of

the module is defined in a module header while the internal behavior is specified in a module

body. The Estelle language definition allows several different module bodies to be specified

for each module header.

As described in Section 3.1.2, the module head and the global declarations within the

module body are used to generate declaration structures within the module variable block

(FDTLVAR). The two C routines that are generated from each module are translated from

the initialization parts and the transition parts within the module body. The convention used

in the Estelle-C compiler is to name these routines after their corresponding module body. In

order to distinguish the initialization routine from the transition routine, the prefix FDT is added

to the name of the initialization routine. There is one exception to this naming convention.

The two routines translated from the outermost SPECIFICATION module are always named

FDTSPECIFICATIONO and SPECIFICATION), respectively.

The following sections describe the general structure of the two generated implementation

routines. The discussion on the translation of the transitions themselves is deferred until Sec

tion 3.5.

3.4.1 Initialization Routine

The initialization routine for a module is generated from the initialization parts within

a module body. This routine is used to set up the initial states of the extended finite state

machine representing the module. The initialization routine for a module is executed whenever

CHAPTER 3. ESTELLE TO C TRANSLATION 27

an INIT statement referencing the module is executed by its parent module.

The general structure for an initialization routine is depicted in Figure 3.6. The first part of

the routine allocates a control block for the module. Initialization begins by calling the run-time

support routine FDTPCBinitO to create a FDTPCB. Afterwards, an FDTLVAR is created and

linked to the FDTPCB. The routine FDTPCBinitO implements the specification independent

aspects for the INIT statement (See Section 3.3.1 for detail). The rest of the initialization routine

represents the specification dependent portion of the initialization process.

After a FDTPCB and a FDTLVAR has been allocated for the module, the initialization

routine begins with module parameter initialization. All the module parameters declared in the

module header section for the module are passed to the initialization routine. These parameters

are copied into the FDTLVAR by assignment statements.

The next section in the routine contains the code for the initialization transitions. These

transitions are usually responsible for calling other initialization routines which, in turns, instan

tiate the underlying submodules and then interconnect these submodules to the module being

initialized. Other activities performed by the initialization transitions includes initializing the

various global variables and setting the module into the proper state before the subsequent

transition execution.

If the module contain spontaneous transitions, a spontaneous signal is generated in the next

section. The last step in the initialization routine returns the address of the created FDTPCB

to the parent module which calls this initialization routine. This pointer is stored within the

FDTLVAR of the parent module for subsequent references to this particular child module.

CHAPTER 3. ESTELLE TO C TRANSLATION

struct FDTPCB *FDTbody (parent, argl, arg2, ...)
FDTPCB *parent;
... /* type declarations l o r argl, arg2, ... */
{
FDTPCB *pcb;
FDTLVAR *lvar;

/* Creates control blocks */
pcb = FDTPCBinit (parent, ipnum, SPDNTbody. XPORTbody. TRANSbody)
pcb->lvar = (int *) (lvar = (FDTLVAR *) malloc(sizeof(FDTLVAR)));

/* Copying arguments to module variable block */
1var->body.argl = argl;
lvar->body.arg2 = arg2;

/* I n i t i a l i z a t i o n transitions (See Section 3 .5) * /

/* Generates a spontaneous interaction i f possible */
trans_end :
i f (pcb->spont)

FDTSCBspont (pcb);
return (pcb);

Figure 3.6: Initialization Routine

CHAPTER 3. ESTELLE TO C TRANSLATION 29

3.4.2 Transition Routine

The transition routine for a module is generated from the transition parts within a

module body. This part of the Estelle specification is used to define the state transitions that

constitute the extended finite state machine representing the module. The routine itself is called

whenever the run-time scheduler selects the corresponding module for execution.

The general structure of a transition routine is depicted in Figure 3.7. Two parameters

are passed to each transition routine when the module is executed by the scheduler. The

parameter process supplies the routine with the correct FDTPCB for the module while the

parameter signal indicates the interaction selected by the scheduler to be processed by the

module. Within the routine, the local variables lvar and svar are used to facilitate access to

the FDTLVAR and FDTSVAR control blocks, respectively.

The codes in the first part of the routine implements the module transitions. The details

for these codes are described in Section 3.5. The final section in the routine contains the exit

sequence for the module. The details for these codes are explained in Section 4.2.

3.5 Transition Translation

In Estelle, the transitions for an extended finite state machine may be described in either an

initialization part or a transition part within the module bodies. There may be zero or more of

these transition description sections within a module body. A module without any initialization

part will be initialized with the creation of its FDTPCB and FDTLVAR blocks and the copying

of its module parameters, if any, into its FDTLVAR. A module without any transition part

are inactive after its initialization. Inactive modules are generally used as structuring devices

which impose an hierarchical organization to their underlying child modules.

CHAPTER 3. ESTELLE TO C TRANSLATION 30

body (process, signal)
FDTPCB *process;
FDTSCB *signal;
{
FDTLVAR *lvar = process->lvar;
FDTSVAR *svar = signal->svar;

/* Code f o r transitions (See Section 3.5) */

/* Exit code when no t r a n s i t i o n was triggered */
i f (signal->cid == 0)

FDTSCBdispose (process, signal);
return;

/* Exit code when a t r a n s i t i o n was triggered */
trans_end :
FDTSCBdispose (process, signal);
i f (process->spont)

FDTSCBspont (process);

/* Exit code f o r spontaneous t r a n s i t i o n */
spont_end :
process->delay = 0;

Figure 3.7: Transition Routine

CHAPTER 3. ESTELLE TO C TRANSLATION 31

Each transition is specified in two parts. The actions to be performed by the transition are

defined by a Pascal style statement block. This transition block is preceded by zero or more

transition clauses. The transition clauses are used to specify the enabling conditions which must

be satisfied before the transition block can be executed. This section describes the translation

of the transition clauses followed by the translation of the transition blocks.

3.5.1 Transit ion Clauses

In Estelle, transition clauses may be used to specify the enabling conditions of a transition in

terms of the present state (FROM clause), the input signal (WHEN clause), an enabling predicate

(PROVIDED clause) or a transition priority (PRIORITY clause). Other clauses may be used to

specify actions such as going to a specified next state (TO clause) or delaying the action for a

specified time (DELAY clause). Finally, there is also a clause that can be used as a shorthand

notation for a sequence of transition (ANY clause). The translation scheme for generating codes

for the enabling transition clauses is essentially one of substituting a corresponding boolean

expression for the clause. The strategy for translating the action transition clauses is to place

statements that perform the indicated action within the enclosing transition block. Compare

Appendices A and B for illustrations.

The translation of most of the transition clauses are straight forward. A FROM clause is

translated into a boolean expression testing for the current state (Figure 3.8). As described

in Section 3.2, the current state for a module is stored as the variable STATE in the module

variable block (FDTLVAR) for the module. The WHEN clause is also translated into a boolean

expression (Figure 3.9). Two tests must be made. First the specified interaction point is

tested against the incoming signal (signal->cid). Then the incoming interaction primitive

type (signal->sid) must match the primitive specified in the clause.

CHAPTER 3. ESTELLE TO C TRANSLATION 32

i f (lvar->body.STATE == <FROM state>)
<

... /* Nested transitions */
}

Figure 3.8: Codes generated for a FROM clause

i f ((signal->cid == <channel>) && (signal->sid == <primitive>))
<

... /* Nested transitions */
}

Figure 3.9: Codes generated for a WHEN clause

Although the natural translation for a PROVIDED clause is also a boolean expression, but

because of the possible presence of an OTHERWISE condition, its translation is not straight

forward (Figure 3.10). The strategy taken in this implementation is to declare and initialize a

boolean flag to TRUE before the execution of the boolean expressions. After every PROVIDED

clause where a boolean expression is specified, a statement is added to set the flag to FALSE. If

the boolean expression is evaluated to TRUE, then the flag will be set to FALSE, otherwise the

flag will remain TRUE. If an OTHERWISE condition is specified in the final PROVIDED clause, a

boolean expression is generated to test the boolean flag for the TRUE condition. In this way,

the OTHERWISE transition is executed if and only if none of the previous boolean expressions

are satisfied.

The DELAY clause is the most complicated clause to translate (Figure 3.11). Three auxiliary

variables (delay, to, tl) located in the FDTPCB are used in order to implement this clause.

Each DELAY clause specified is assigned an unique number. The variable delay is always set to

CHAPTER 3. ESTELLE TO C TRANSLATION

i
i n t H a g = 1 /* TRUE */;

i f (boolean expression 1) /* PROVIDED clause 1
{

f l a g = 0 /* FALSE */;
i

... /* Nested transitions */
}

>

i f (boolean expression 2) /* PROVIDED clause 2
{

f l a g = 0 /* FALSE */;
{

... /* Nested transitions */
>

}

i f (f l a g == 1 /* TRUE */) /* OTHERWISE clause *
{

... /* Nested transitions */
}

}

Figure 3.10: Codes generated for a PROVIDED clause

CHAPTER 3. ESTELLE TO C TRANSLATION 34

process->tO = time(O);

/* Set timer i f not already set */

i f (process->delay != <delay id>)
{

process->tl «* process->tO + <delay time>;
process->delay = <delay id>;

>

/* Tests f o r timer expiration */

i f (process->tO >= process->tl)
{

.... /* Perform action */
}

else return;
>

Figure 3.11: Codes generated for a DELAY clause

CHAPTER 3. ESTELLE TO C TRANSLATION 35

the number assigned to the DELAY clause currently in effect. If none is in effect, the variable is

set to the value '0'. The variable tO is used to store the current time while the variable t l is

used to store the expiration time for the delay. See Section 4.2.3 for the run-time effect of this

clause.

The TO clause is translated into a statement in the enclosing transition block which changes

the module state variable to the indicated state in the TO clause. If there are several transition

block nested under a TO clause, then the state change statement is replicated in all of the

enclosing transition blocks.

The ANY clause is translated into a simple for statement which steps through all values in

the specified scalar domain. If more than one domain is specified, a set of nested for statements

are used.

Within a transition routine, the transitions are layed out in the same sequence that they

are defined in the Estelle specification. Therefore, the transition clauses will be evaluated in

the order in which that they are specified. The transition that will be executed will be the first

transition which enabling clauses are all satisfied. The use of this scheme implies that the order

in which the transitions are specified is significant. Consequently, the PRIORITY clause is not

implemented in the Estelle-C compiler. The user can always rearrange the transitions in the

order of their priority.

Although the scheme used is deterministic, the Estelle definition does allow the protocol

implementer to make this choice [Este86]. If non-deterministic transition is to be supported,

all of the transition clauses must be evaluated to determine the enabled set. From the enabled

set of transitions, the ones with the highest priority and which also satisfy the delay criteria

are selected. Finally, from this fireable set, a transition must be offered to be executed non-

CHAPTER 3. ESTELLE TO C TRANSLATION 36

deterministically. This three step selection process will only make for an inefficient protocol

implementation.

3.5.2 Transition Blocks

The translation of the Pascal style statements in a transition block into equivalent C style

statements is generally done by straight substitution. The problems encountered are already

noted by Ford and Lau [Ford85,Lau86]. Most of these difficulties have to do with Pascal

constructs which have no equivalence in C.

Most of the special statements provided in Estelle are translated into subroutine calls to the

appropriate run-time support routines which implement the corresponding functions. These

routines are described in Sections 3.3.1 and 3.3.2.

The OUTPUT statement is translated into a C block containing a local pointer variable news-

var (Figure 3.12). This local variable is used to allocate a signal parameter block FDTSVAR

i
FDTSVAR *newsvar = (FDTSVAR *) malloc(sizeof(FDTSVAR));

newsvar-><ch.annel>. <primitive>. <parameterl> = <valuel>;
newsvar-><channel>.<primitive>.<parameter2> = <value2>;

FDTSCBsignal (process, <channel id>, <primitive id>, newsvar);
>

Figure 3.12: Codes generated for an OUTPUT statement

within the block. Then, the parameters supplied to the OUTPUT statement are copied into the

FDTSVAR. Finally, a signal control block (FDTSCB) is constructed and appended to the des

tination queue specified in the OUTPUT statement using the run-time routine FDTSCBsignal().

Chapter 4

Estelle Run-time Execution

An executable program generated from the Estelle specification described in Chapter 3 still

only represents a static description of the Estelle specification. It is only when this C program

is executed that a dynamic entity will result. This chapter describes the inner working of the

generated program during execution.

4.1 Run-time Organization

The execution of an Estelle specification is implemented as a two-stage process driven by

the main driver routine supplied in the Estelle run-time support package (Figure 4.1). First,

mainO
{
FDTPCB *root;

root = FDTSPECIFICATION(NULL);
FDTSCHexec(root);

}

Figure 4.1: Main Driver Routine

the driver constructs a run-time structure to represent the initial module hierarchy for the

37

CHAPTER 4. ESTELLE RUN-TIME EXECUTION 38

specification by calling the initialization routine, FDTSPECIFICATIONO. Then, the driver calls

the run-time scheduler routine, FDTSCHexec (), to take over the execution of the protocol.

The following sections explain how two dependent run-time structures are generated from

the same set of control blocks and how these structures are used by the run-time scheduler to

execute an Estelle specification.

4.1.1 Initialization Routines

The initialization routines generated from the Estelle module body declarations are invoked

in a sequence which reflects the nested module organization defined in the Estelle specification.

As noted in Section 3.4, the initialization routine of the specification module is always named

FDTSPECIFICATIONO. This routine is the only specification dependent routine that is directly

invoked by the run-time support system. Consequently, the use of a fixed name for this routine

is one of the reasons why the new Estelle run-time support system needs not be recompiled for

every different Estelle specification.

The function of an initialization routine for a module is to create the two control blocks,

FDTPCB and FDTLVAR, which when taken together, represent an instance of the module, and

to execute the initialization routines of all its child modules. The result of each invocation of

an initialization routine is the simultaneous construction of two tree structures which represent

the initialized module and all its child modules in two different ways.

In one system, each tree structure constructed by a child module is stored in a module

variable located in the FDTLVAR of the parent (See Figure 3.2). After the initialization

process, a parent module can refer to any of its child modules by name through the use of these

module variables in its FDTLVAR. This system is used within the implementation routines

generated from the Estelle specification. The second system is generated automatically when

CHAPTER 4. ESTELLE RUN-TIME EXECUTION 39

the initialization routines invoke FDTPCBinitO to create the FDTPCBs. This system is used by

the run-time scheduler to refer to the modules anonymously and in a specification independent

fashion.

4.1.2 Scheduler Routine

The function of the scheduler is to repeatedly select an interaction from the pool of pending

interactions and to execute the appropriate module to process the selected interaction. The

scheduling algorithm used is, in essence, a pre-order traversal of the module hierarchy tree in a

round-robin manner. However, the scheduling algorithm is not straightly round-robin because

of the parent/child priority relationship which exists in the module hierarchy. The scheduler

routine is shown in Figure 4.2.

The scheduler keeps track of a current module for each level in the hierarchy. At any one

time, the current module at one of these level is the current module in the system. The scheduler

first checks if there are any pending interactions for the module. If a pending interaction exists,

then the current module is selected to be executed. There is also the concept of a next level. If

no pending interaction exists, the next level will be one level down. But, if a pending interaction

exists and the execution of current module affects some of its ancestor modules, then the level of

the ancestor module closest to the specification module will become the next level. Otherwise,

the next level is still the current level. In any case, the next module to be selected at the current

level will be the next sibling module of the current module.

To summarize, the next level stays at the current level or goes up if a pending interaction

exists for the current level. Otherwise, the next level becomes one level down. This scheduler

algorithm ensured that when a module has the potential to execute transitions, none of its

child modules can execute. The algorithm also ensures against module starvation because it

CHAPTER 4. ESTELLE RUN-TIME EXECUTION

FDTSCHexec (root)
FDTPCB *root;

{
CurrLevel = (FDTSCH *) malloc(sizeof(FDTSCH));
CurrLevel->prev = CurrLevel;
CurrLevel->next = NULL;
CurrLevel->pcb = root;
while (1)

{
CurrBlock = CurrLevel->pcb;
CurrSignal = FDTSCBpending(CurrBlock);
i i (CurrSignal != NULL)
{

i f (CurrBlock->export)
NextLevel = CurrLevel->prev;

else
NextLevel = CurrLevel;

/* Transition routine may change NextLevel */
CurrBlock->trans (CurrBlock, CurrSignal);

}

else i f (CurrBlock->ref != NULL)
{

i f (CurrLevel->next == NULL) {
NextLevel = (FDTSCH *) malloc(sizeof(FDTSCH))
NextLevel->prev = CurrLevel;
NextLevel->next = NULL;
NextLevel->pcb = CurrBlock->ref;

} else {
NextLevel = CurrLevel->next;
i f (NextLevel->pcb == NULL)

NextLevel->pcb = CurrBlock->ref;
>

}

CurrLevel->pcb = CurrBlock->sib;
CurrLevel = NextLevel;
while (CurrLevel->pcb == NULL)

CurrLevel = CurrLevel->prev;
>

}

Figure 4.2: Run-time Scheduler Routine

CHAPTER 4. ESTELLE RUN-TIME EXECUTION 41

is not possible for a module to execute two transitions in a row even if it has several pending

interactions enqueued at the same time.

4.2 Transition Processing

After the scheduler executes the transition routine of the current module, the next step is

for the transition routine to search for the first transition within the module which satisfies all

its enabling conditions. This transition is then executed to process the input interaction. The

following sections elaborate on the procedures for processing transitions in various situations.

4.2.1 Input Transitions

When all the enabling condition of an input transition is satisfied, the actions specified in its

transition block is executed. After the completion of the transition actions, the module performs

an exit sequence which is common to all input transitions (See Figure 3.7). First, because the

interaction which caused the transition has already been processed, it is disposed. Second,

because the actions of the just completed transition may have enabled one of the spontaneous

transitions in the module, actions must be taken to ensure that the scheduler will execute the

module once more in order to check for this situation. If a pending interaction exists for the

module, nothing needs to be done. However, if none exists then a spontaneous interaction is

generated for the module by the use of the routine FDTSCBspont 0. Finally, because the just

completed transition would have nullified any pending delayed transition, the variable delay

in the FDTPCB is cleared.

CHAPTER 4. ESTELLE RUN-TIME EXECUTION 42

4.2.2 Spontaneous Transitions

The exit sequence after the completion of a spontaneous transition is a lot simpler than

that for an input transition. There are two reasons for this difference. Firstly, if the interaction

selected for the module is an input interaction, then it will not be processed by the spontaneous

transition. Therefore, the interaction selected for the module by the scheduler should not be

disposed. Secondly, if the interaction is a spontaneous interaction, then another spontaneous

interaction must be needed to check for more enabled spontaneous transitions. Again, there is

no need to dispose the interaction. The only action necessary after a spontaneous interaction

is to nullify any pending delayed transition (See Figure 3.7).

4.2.3 Delayed Transitions

Delayed transitions are spontaneous transitions with additional timing constraints. How

ever, unlike other transitions, delay transition also has a entry code sequence (See Figure 3.11).

If the transition is newly enabled, then the delay parameters are saved by this entry sequence

into the FDTPCB of the module. A desirable side effect of this action is that it will also nullify

another pending delayed transition in the module. In the next step, the delay timer is checked.

If the delay constraints are satisfied, the transition is executed. In this case, the exit sequence

for it is identical to that for a regular spontaneous transition. Otherwise, control is immediately

returned to the scheduler. This bypassing of the exit sequence will cause the selected interaction

for the module to remain pending and to cause the scheduler to execute the module at a future

time.

CHAPTER 4. ESTELLE RUN-TIME EXECUTION 43

4.2.4 No Enabled Transitions

The final situation which must be taken into account is the situation in which the interaction

selected by the scheduler does not trigger any transitions. This situation can occur because

the scheduler has no knowledge of the transitions within the transition routines. Therefore,

the availability of a pending interaction does not guarantee its processing and disposal. This

situation is most likely caused by a spontaneous interaction which is used only to check for

enabled spontaneous transitions. The actions needed to handle this situation is to dispose the

interaction if it is spontaneous, and to leave it pending in the queue if it is not. In order to help

prevent deadlock, when the module is again selected for execution, the scheduler will search for

pending interactions at other interaction points first.

Chapter 5

Conclusions

The present study found substantial syntactic and semantic differences between the Estelle

language as implemented by the existing UBC Estelle-C compiler and that specified in the latest

ISO document [Este86] and cumulated in the construction of a new Estelle-C compiler. The

new compiler supports a large subset of the latest Estelle language specification. The following

sections summarize the present work and suggest possible future studies.

5.1 Thesis Summary

As stated in Section 2.3, the major motivation for developing the new compiler is to upgrade

an existing UBC Estelle-C compiler to support the latest Estelle language specification. The

new compiler fulfills this goal by supporting dynamic reconfiguration of the various entities in

a protocol specification. However, there are several Estelle features not included in this new

compiler. The PRIORITY clause is not supported due to the reasons given in Section 3.5.1.

Additional Estelle features missing are the A L L statement, the FORONE statement and the

EXIST expression which are used for implicit access to module instances by types rather than

by names. A general solution that implements these constructs would require a module directory

service to associate module types with module names. The module directory would be further

44

CHAPTER 5. CONCLUSIONS 45

complicated by the presence of indexed module names. In view of the fact that these constructs

can usually be replaced by a mixture of iterative and conditional statements designed for specific

situations, their general support would not be cost effective in terms of run-time overhead.

Other issues resolved in the new Estelle-C compiler include problems cited by Lau in regards

to the old compiler [Lau86]. The old compiler handles module parameter passing very clumsily.

In the new compiler, module parameters are automatically accessible in the module initialization

routines, the module transition routines and the subroutines nested within the Estelle module.

Global variables are also supported as defined by the formal semantics in the new Estelle

language specification. The Pascal multi-dimensional ARRAY type is now available for user

defined variables as well as MODULE and IP types. However, the data type SET is only partially

supported in the form of STATESET. Other Pascal-to-C translation problems that remained

are in the areas of SET expressions and nested procedures and functions. These limitations are

certainly not unsolvable but their solutions are beyond the scope of protocol implementation.

The new compiler is hand-coded in C without using the UNIX utilities lex and yacc. It

consists of approximately 300 subroutines totaling to just under 11,000 lines of source code and

just under 11K bytes of object code. The size of the new compiler compares favorably with

that of the old compiler which contains over 14,000 lines of source code and just over 14K bytes

of object code.

The new Estelle run-time support routines are also implemented in C. There are 40 routines

in the package with approximately 1,500 lines of source code and 7K bytes of object code. In

contrast, there are only 17 routines in the old run-time support routines with 1,400 lines of

source code and 2K bytes of object code.

As part of the redesign of the Estelle-C compiler, the user operation of the compiler has been

CHAPTER 5. CONCLUSIONS 46

greatly simplified. In the old compiler, the user is required to modify certain sections of the

generated C code as well as the run-time support routines. Consequently, the old compiler was

labeled with the term "semi-automatic." The new compiler translates an Estelle specification

directly into a compilable C program. Modification of any of the generated C code is no longer

necessary. In addition, the new run-time support routines have been rewritten to contain only

specification independent details and they can be directly linked to the compiled C program

without the need for recompilation. With these two user-friendly improvements, "automatic"

implementation of protocols from formal protocol specifications is now realized.

5.2 Future Work

Although an executable program can be generated automatically from a formal protocol

specification using the new Estelle-C compiler, formal protocol specifications are usually in

complete. It is the nature of formal specifications to be "completely independent of methods of

implementation, so that the technique itself does not provide any undue constraints on imple-

menters" [Este86]. Examples of implementation dependent properties that are almost always

left unspecified are functions such as user data management routines, timer management rou

tines and protocol data unit encoding and decoding routines. The user must provide customized

versions of these functions manually for the actual implementations in different machine envi

ronments. However, it may be possible to define generic interfaces for these functions to be

usable from within a formal Estelle specification. The user data management example in the

Estelle language specification [Este86] presents one possibility. Another direction for research

may be in the area of incorporating ASN.l [CCI86] into Estelle for the specification of protocol

data unit encoding and decoding functions.

CHAPTER 5. CONCLUSIONS 47

The usefulness of Estelle compilers has already been demonstrated for semi-automatic gen

eration of communication protocols [Boch86,Lau86,Boch87b] and for automatic generation of

test skeletons from protocol specifications [Favr87]. The possible enhancements of these Estelle

compilers for the production of emulators for protocol testing and monitors for protocol perfor

mance evaluation would be invaluable. Therefore, the further development of novel applications

using these compilers in other areas of protocol development should be encouraged.

Bibliography

[Ansa87] Ansart, J.P., Amer, P., Chari, V., Lenotre, J.F., Lumbroso, L., Mariani, E. and
Mattera, E., "Software Tools for Estelle," Protocol Specification, Testing, and Veri
fication, VI, (IFIP/WG6.1), B. Sarikaya and G.V. Bochmann, Eds., North Holland,
pp. 55-61, 1987.

[Boch86] Bochmann, G.v., "Semi-Automatic Implementation of Transport and Session Proto
cols," Computer Standards <fe Interfaces, 5:343-349, 1986.

[Boch87a] Bochmann, G.v., "Usage of Protocol Development Tools: The Results of a Survey,"
Protocol Specification, Testing, and Verification, VII, (IFIP/WG6.1), H. Rudin and
CH. West, Eds., North Holland, 1987.

[Boch87b] Bochmann, G.v., Gerber, G.W. and Serre, J.M., "Semiautomatic Implementation of
Communication Protocols," IEEE Trans, on Software Engineering, SE-13:989-1000,
1987.

[CCI86] CCITT, "Data Communication Networks — Message Handling Systems — Recom
mendations X.400-X.430," Red Book, Vol. VIII, Fascicle VIII.7, Ganeva, 1986.

[Cour86] Courtiat, J.P., Pedroza, A. and Ayache, J.M., "A Simulation Environment for Pro
tocol Specifications Described in Estelle," Protocol Specification, Testing, and Veri
fication, V, (IFIP/WG6.1), M. Diaz, Ed., North Holland, pp. 297-312, 1986.

[Este84] ISO/TC97/SC21/WGl/Subgroup B, "A Formal Description Technique Based on an
Extended State Transition Model," Working Document, 1984.

[Este85] ISO/TC97/SC21/WGl/Subgroup B, "Estelle — A Formal Description Technique
Based on an Extended State Transition Model," DP 9074, 1985.

[Este86] ISO/TC97/SC21/WGl/Subgroup B, "Estelle — A Formal Description Technique
Based on an Extended State Transition Model," 2nd DP 9074, 1986.

[Favr87] Favreau, J.P. and Linn, R. J., "Automatic Generation of Test Skeletons from Protocol
Specification Written in Estelle," Protocol Specification, Testing and Verification, VI
(IFIP/WG 6.1), B. Sarikaya and Bochmann, G.v., Eds., North Holland (1987).

48

[Ford85] Ford, D.A., "Semi-Automatic Implementation of Network Protocols," Master Thesis,
University of British Columbia, 1985.

[Garg87] Garguilo, J., Fauneau, J.P., Hobbs, M. and Linn, R.J. "Automated Protocol De
velopment Through Use of the NBS Prototype Estelle Compiler," ICST/APM-87-2,
National Bureau of Standards, Guithersburg, 1987.

[Gerb83] Gerber, G.W., "Une Methode D'Implantation Automatique de Systemes Specifies
Formellement," Master Thesis, University of Montreal, 1983.

[IS082a] ISO/TC97/SC16, "Transport Protocol Specification," DP 8073, 1982.

[IS082b] ISO/TC97/SC16, "Transport Service Definition," DP 8072, 1982.

[Lau86] Lau, A.C. "A Semi-Automatic Approach to Protocol Implementation — The ISO
Class 2 Transport Protocol as an Example," Master Thesis, University of British
Columbia, 1986.

[Linn86] Linn, R.J., Jr., "The Features and Facilities of Estelle," Protocol Specification, Test
ing, and Verification, V, (IFIP/WG6.1), M. Diaz, Ed., North Holland, pp. 271-296,
1986.

[Vuon87] Vuong, S.T. and Lau, A.C, "A Semi-Automatic Approach to Protocol Implementa
tion — The ISO Class 2 Transport Protocol as an Example," INFOCOM '87, San
Francisco, 1987.

[Vuon88] Vuong, S.T., Lau, A.C. and Chan, R.I., "Semi-Automatic Implementation of Pro
tocols using an Estelle-C Compiler," IEEE Trans, on Software Engineering,, to be
published, 1988.

49

Appendix A

Alternating Bit Protocol — Estelle
Specification

5 0

APPENDIX A. ALTERNATING BIT PROTOCOL — ESTELLE SPECIFICATION

SPECIFICATION abp_spec SYSTEMPROCESS; TIMESCALE seconds;

CONST
LOV/.CEP
HIGH_CEP

1; { Minimum cep subscript }
2; { Maximum cep subscript }

TYPE
cep_type
seq_type
pid_type (DATA. ACKM);

INTEGER;
RECORD

LOVLCEP..HIGH_CEP;
0. .1;

i

•C

Connection end point }
Sequence number }
Packet type }

udata_type
ndata.type

pid : pid_type;
cid : cep_type;
seq : seq_type;
dat : udata_type

•c

i

Type of message }
Cep of sender }
Sequence number }
User data >

END;

{ Channel between user and alternating bit protocol provider }

CHANNEL U_access_point (user, provider);
BY user :
SEND.REQ. (udata : udata_type);
RECV.REQ;

BY provider :
RECV.RSP (udata : udata_type);

{ Channel between alternating bit protocol provider and the network }

CHANNEL N_access_point (user, provider);
BY user :
DATA_REQ (ndata : ndata.type);

BY provider :
DATA.RSP (ndata : ndata.type);

MODULE user.type PROCESS (cep.id : cep.type); IP
U : U_access_point(user) INDIVIDUAL QUEUE;

END; { MODULE user.type >

BODY user.body FOR user.type;

VAR
data : udata.type;
flag : BOOLEAN;

APPENDIX A. ALTERNATING BIT PROTOCOL — ESTELLE SPECIFICATION

INITIALIZE

BEGIN
data := 0 ;
flag := TRUE

END; { INITIALIZE }

TRANS

WHEN U.RECV_RSP

{ Received data from peer and proceeds to send next data to peer }

NAME userl : BEGIN
data := data + 1;
OUTPUT U.SEND_REQ (data);
OUTPUT U.RECV_REq

END; { userl >

TRANS

PROVIDED flag

{ Spontaneous transition to send initial data }

NAME uaer2 : BEGIN
flag := FALSE;
OUTPUT U.SENDJREQ (data);
OUTPUT U.RECV_REq

END; { user2 >

END; { BODY user_body }

MODULE network_type PROCESS; IP
N : ARRAY [cep_type] OF N_access_point (provider) COMMON QUEUE;

END; i MODULE network_type >

BODY network_body FOR network_type;

VAR

count : INTEGER;

TRANS

ANY i : cep_type DO

APPENDIX A. ALTERNATING BIT PROTOCOL — ESTELLE SPECIFICATION

WHEN N[i].DATA_REQ

NAME networkl : BEGIN
count := count + 1;
IF count <> 4 THEN
OUTPUT N[HIGH_CEP-i+l].DATA_RSP (ndata)

END; { network! >

END; { BODY network_body >

MODULE abit_type PROCESS (cep_id : cep.type); IP
U : U_access_point (provider) INDIVIDUAL QUEUE;
N : N_access_point (user) INDIVIDUAL QUEUE;

END; i MODULE abit.type }

BODY abit_body FOR abit.type;

CONST
RETRAN_TIME =30; { Retransmission time }

CHANNEL S_access_point (user, provider);
BY user :
TTMER.REQ;

BY provider :
TIMER_RSP;

MODULE timer.type ACTIVITY (time : INTEGER); IP
S : S_access_point (provider) INDIVIDUAL QUEUE;

END; { MODULE timer_type >

BODY timer_body FOR timer_type;

VAR

stop, stop.bis : BOOLEAN;

INITIALIZE

BEGIN
stop := TRUE;
stop_bis := TRUE

END; i INITIALIZE }
TRANS

WHEN S.TIMER.REQ

APPENDIX A. ALTERNATING BIT PROTOCOL — ESTELLE SPECIFICATION

NAME timerl
stop

: BEGIN
:= TRUE;

stop_bis := FALSE
END; i timerl }

TRANS

PROVIDED NOT stop.bia

NAME timer2 : BEGIN
stop := FALSE;
stop_bis := TRUE

END; { timer2 >

PROVIDED NOT stop
DELAY (time, time)

NAME timer3 : BEGIN
stop := TRUE;
OUTPUT S.TIMER.RSP

END; { timer3 >

END; { BODY timer.body >

MODULE datax_type ACTIVITY (cep_id : cep_type); IP
U : U_access_point (provider) INDIVIDUAL QUEUE;
N : N.access.point (user) INDIVIDUAL QUEUE;
S : S.access.point (user) INDIVIDUAL QUEUE;

END; { MODULE datax.type >

BODY datax_body FOR datax_type;

TYPE
mag_type = RECORD

msgcid : cep.type;
msgseq : seq.type;
msgdat : udata.type

END;
buf.type RECORD

empty : BOOLEAN;
message : msg.type

END;

VAR
send_seq : seq.type;
recv.seq : seq.type;

{ Send sequence number }
•i Receive sequence number }

APPENDIX A. ALTERNATING BIT PROTOCOL — ESTELLE SPECIFICATION

send_buf : buf_type; < ACKM pending flag
recv_buf : buf_type; { DATA pending flag
send_msg : msg_type; { Message being sent
recv.msg : msg_type; { Message receive
buf : ndata_type; {. Network buffer

STATE
ACK_MIT, ESTAB;

STATESET

EITHER = [ACK_WAIT, ESTAB];

PURE FUNCTION ack_ok (buf : ndata.type) : BOOLEAN;

{ Checks ACKM message in the network buffer }
BEGIN { ack_ok >
ack_ok := (buf.pid = ACKM) AND (buf.seq = send_seq)

END; { ack_ok >

PROCEDURE format_data (msg : msg_type; VAR buf : ndata_type);

{ Formats a DATA message into the network buffer >

BEGIN { format_data >
buf.pid := DATA;
buf.cid := cep_id;
buf.seq := msg.msgseq;
buf.dat := msg.msgdat

END; { format_data >

PROCEDURE format_ack (msg : msg_type; VAR buf : ndata_type);

{ Places an ACKM message into the network buffer }

BEGIN { format.ack >
buf.pid := ACKM;
buf.cid := msg.msgcid;
buf.seq := msg.msgseq;
buf.dat := msg.msgdat

END; { format_ack >

PROCEDURE store (VAR buf : buf_type; msg : msg_type);

{ Stores message into the buffer }

BEGIN { store >

APPENDIX A. ALTERNATING BIT PROTOCOL — ESTELLE SPECIFICATION

buf.empty := FALSE;
buf.message := msg;

END; < store }

PROCEDURE remove (VAR buf : buf_type; msg : msg_type);

{ Empties the buffer }

BEGIN { remove >
buf.empty := TRUE

END;

FUNCTION retrieve (buf : buf.type) : msg_type;

{ Retrieves the message from the buffer }

BEGIN { retrieve >
retrieve := buf.message

END; { retrieve >

FUNCTION buffer_empty (buf : buf.type) : BOOLEAN;

{ Checks for empty buffer >

BEGIN { buffer_empty }
buffer_empty := buf.empty

END; { buffer_empty >

PROCEDURE inc_send_seq;

{. Increments the send sequence number }

BEGIN < inc_send_seq >
send_aeq := (send_seq + 1) MOD 2

END; •{ inc_send_seq >

PROCEDURE inc_recv_seq;

{ Increments the receive sequence number }

BEGIN { inc_recv_seq }
recv_seq := (recv_seq + 1) MOD 2

END; { inc_recv_seq >

INITIALIZE { data.body >

APPENDIX A. ALTERNATING BIT PROTOCOL — ESTELLE SPECIFICATION

TO ESTAB
BEGIN
send_seq := 0;
recv.seq := 0;
send.buf.empty := TRUE;
recv_buf.empty := TRUE

END; { INITIALIZE }

TRANS

FROM ESTAB TO ACK.WAIT
WHEN U.SEND..REQ

{ Processes user send REQ }

NAME dataxl : BEGIN
send_msg.msgdat := udata;
send_msg.msgseq := send.seq;
store (send..buf, send_msg) ;
format_data (send_msg, buf);
OUTPUT N.DATA.REQ (buf);
OUTPUT S.TIMER.REQ

END; { dataxl >

FROM EITHER TO SAME
WHEN U.RECV.REQ

PROVIDED NOT buffer_empty (recv_buf)

{ Retrieves received message for user if one has been received }

NAME datax2 : BEGIN
recv_msg := retrieve (recv_buf);
OUTPUT U.RECV.RSP (recv.msg.msgdat);
remove (recv_buf, recv_msg)

END; { datax2 }
FROM ACK.V/AIT TO ACK.V/AIT
WHEN S.TIMER.RSP

{ Resend user message after time out }

NAME datax3 : BEGIN
send_msg := retrieve (send_buf);
format_data (send_msg, buf);
OUTPUT N.DATA.REQ (buf);
OUTPUT S.TIMER_REQ

APPENDIX A. ALTERNATING BIT PROTOCOL — ESTELLE SPECIFICATION

END; { dataxS }

FROM ESTAB TO ESTAB
WHEN S.TIMER.RSP

{ The message that caused this timer to be set has been acknowledged }

NAME datax4 : BEGIN
END; { datax4 >

FROM ACK_WAIT TO ESTAB
WHEN N.DATA_RSP

PROVIDED ack_ok(ndata)

{ Acknowlegement for the last message sent has been received }

NAME dataxS : BEGIN
send_msg := retrieve (send_buf);
remove (send_buf, send.msg);
inc_send_seq

END; { dataxS >
FROM EITHER TO SAME
WHEN N.DATA_RSP
PROVIDED ndata.pid = DATA

{ Processes message received from peer }

NAME datax6 : BEGIN
recv_msg.msgdat := ndata.dat;
recv_msg.msgseq := ndata.seq;
format_ack (recv_msg, buf);
OUTPUT N.DATA_REQ (buf);
IF ndata.seq = recv_seq THEN BEGIN

Btore (recv_buf, recv_msg);
inc_recv_seq

END { IF >
END; i datax6 >

END; i BODY datax_body >

MODVAR
datax.module : datax_type;
timer_module : timer_type;

INITIALIZE { abit.body >
BEGIN

APPENDIX A. ALTERNATING BIT PROTOCOL — ESTELLE SPECIFICATION

INIT datax.module WITH datax_body (cep_id);
INIT timer_module WITH timer.body (RETRAN_TIME);

CONNECT datax_module.S TO timer_module.S;
ATTACH U TO datax.module.U;
ATTACH N TO datax_module.N;

END; i INITIALIZE >
END; { abit_body }

MODVAR
network_module : network_type;
user_module : ARRAY [cep_type] OF user_type;
abit_module : ARRAY [cep_type] OF abit_type;

INITIALIZE { abp.spec >

BEGIN
INIT network_module WITH network_body;
ALL cep : cep.type DO BEGIN
INIT user.module[cep] WITH user_body(cep);
INIT abit_module[cep] WITH abit_body(cep);

CONNECT user_module[cep].U TO abit.module[cep].U;
CONNECT abit_module[cep].N TO network_module.N[cep];

END; i ALL >
END; i INITIALIZE >

END. { abp_spec >

Appendix B

Alternating Bit Protocol
Generated Codes

60

APPENDIX B. ALTERNATING BIT PROTOCOL — GENERATED CODES

#include
#include
#include
#include
#include
#include

<8tdio.h>
"fdtset.h"
"fdtscb.h"
"fdtccb.h"
"fdtpcb.h"
"fdtsch.h"

/* Type declarations */

typedef int cep_type ;
typedef int seq_type ;
typedef int pid_type ;
typedef int udata_type ;
typedef struct {

int dat ;
int seq ;
int cid ;
int pid ;

> ndata.type ;
typedef struct {

int msgdat ;
int msgseq ;
int msgcid ;

} msg_type ;
typedef struct {.

msg_type message ;
int empty ;

> buf_type ;

/* Signal parameter block declarations */

typedef union {
union {

struct {
int udata ;

> SEND.request ;
int RECV.request ;
struct {

int udata ;
} RECV.response ;

y U_acce8s_point ;
union {

struct {
ndata.type ndata ;

> DATA_request ;
struct {

APPENDIX B. ALTERNATING BIT PROTOCOL — GENERATED CODES

ndata_type ndata ;
}• DATA_response ;

y N_access_point ;
union i.

int TIMER_requei3t ;
int TIMER_response ;

y S_access_point ;
> FDTSVAR;

/* Variable block declarations */

typedef union {
struct {

int cep_id ;
int flag ;
int data ;

} user_body ;
struct {

int dummy ;
>
struct {

int time ;
int FDT3 ;
int stop ;
int stop_bis ;

> timer_body;
struct {

int cep_id ;
set_type EITHER ;
int STATE ;
ndata_type buf ;
msg_type recv_msg ;
msg_type send_msg ;
buf_type recv_buf ;
buf_type send_buf ;
int recv_seq ;
int send_seq ;

} datax_body;
struct i.

int cep_id ;
struct FDTPCB *timer_module ;
struct FDTPCB *datax_module ;

y abit_body;
struct {

struct FDTPCB *abit_module [2] ;
struct FDTPCB *user_module [2] ;

APPENDIX B. ALTERNATING BIT PROTOCOL — GENERATED CODES

struct FDTPCB *network_module ;
} SPECIFICATION ;

} FDTLVAR;

/* Miscellaneous declarations */

#define XPORTuser_body 0
#define SPONTuser_body 0
extern int user_body();
#define TRANSuser_body user.body
#define XPORTnetwork_body 0
#define SPONTnetwork_body 0
extern int network_body();
#define TRANSnetwork_body network_body
#define XPORTtimer_body 0
#define SPONTtimer_body 1
extern int timer_body();
#define TRANStimer_body timer_body
#define XPORTdatax_body 0
#define SPONTdatax_body 0
extern int datax_body();
#define TRANSdatax_body datax_body
#define XPORTabit.body 0
#define SPONTabit.body 0
#define TRANSabit_body NULL
#define XPORTSPECIFICATION 0
#define SPONTSPECIFICATION 0
#define TRANSSPECIFICATION NULL

/* Procedure and function declarations */

int ack_ok (buf)
ndata.type buf ;
{
FDTLVAR *lvar = CurrBlock->lvar;
int FUNCTION;

FUNCTION = (buf .pid == 1 /* ACKM */) hk
(buf .seq == lvar->datax_body.send_seq) ;

return (FUNCTION) ;
}

format_data (msg , buf)
msg_type msg ;

APPENDIX B. ALTERNATING BIT PROTOCOL — GENERATED CODES

ndata.type *buf ;

FDTLVAR *lvar = CurrBlock->lvar;

(*buf) .pid =
(*buf) .cid =
(*buf) .seq =
(*buf) .dat =

0 /* DATA */;
lvar->datax_body.cep_id ;
msg .msgseq ;
msg .msgdat ;

format_ack (msg , buf)
msg_type msg ;
ndata.type *buf ;
i
FDTLVAR *lvar = CurrBlock->lvar;

(*buf) .pid =
(*buf) .cid =
(*buf) .seq =
(*buf) .dat =

1 /* ACKM */;
msg .msgcid ;
msg .msgseq ;
msg .msgdat ;

store (buf , msg)
buf_type *buf ;
msg_type msg ;
•C
FDTLVAR *lvar = CurrBlock->lvar;

(*buf) .empty = 0 /* FALSE */;
(*buf) .message = msg ;

>

remove (buf , msg)
buf_type *buf ;
msg_type msg ;
{

FDTLVAR *lvar = CurrBlock->lvar;

(*buf) .empty = 1 /* TRUE */;
>

msg_type retrieve (buf)
buf_type buf ;

APPENDIX B. ALTERNATING BIT PROTOCOL — GENERATED CODES 65

FDTLVAR *lvar = CurrBlock->lvar;
msg_type FUNCTION;

FUNCTION = buf .message ;
return (FUNCTION) ;

}

int buffer_empty (buf)
buf_type buf ;
{
FDTLVAR *lvar = CurrBlock->lvar;
int FUNCTION;

FUNCTION = buf .empty ;
return (FUNCTION) ;

>

inc_send_8eq ()
•C
FDTLVAR *lvar = (FDTLVAR *) CurrBlock->lvar;

lvar->datax_body.send_seq = (lvar->datax_body.send_seq + i) % 2 ;
>

inc_recv_seq ()
•C
FDTLVAR *lvar = (FDTLVAR *) CurrBlock->lvar;

lvar->datax_body.recv_seq = (lvar->datax_body.recv_Beq + 1) % 2 ;
>

/* Specification declarations */

FDTPCB *FDTuser_body (parent , cep_id)
FDTPCB *parent;
int cep_id ;
<
FDTPCB *pcb;
FDTLVAR *lvar;

pcb = FDTPCBinit (parent , 1 , SPONTuser_body , XPORTuser_body , TRANSuser_body);
pcb->lvar = (int *) (lvar = (FDTLVAR *) malloc(sizeof(FDTLVAR)));

APPENDIX B. ALTERNATING BIT PROTOCOL — GENERATED CODES

lvar->user_body.cep_id = cep_id ;
<

lvar->user_body.data = 0 ;
lvar->user_body.flag = 1 /* TRUE */;
goto trans_end ;

>
trana_end :
i f (pcb->spont)
FDTSCBspont (pcb);

return (pcb);

user.body (process, signal)
FDTPCB ^process;
FDTSCB *signal;
•C
FDTLVAR *lvar = (FDTLVAR *) process->lvar;
FDTSVAR *svar = (FDTSVAR *) signal->svar;

{
i f ((signal->cid == 1) 44 (signal->sid == 3))
{ /* userl */

lvar->user_body.data = lvar->user_body.data + 1 ;
•c
FDTSVAR *newsvar = (FDTSVAR *) malloc(sizeof(FDTSVAR));

newsvar->U_access_point.SEND_REQ.udata = lvar->user_body.data ;
FDTSCBsignal (process, 1 , 1 , newsvar);
}
<
FDTSVAR *newsvar = (FDTSVAR *) malloc(sizeof(FDTSVAR));

FDTSCBsignal (p r o c e s s , 1 , 2 , newsvar);
>
goto trans.end ;

>
>
•C

int FDT1 = 1 ;

i f (lvar->user_body.flag)
•C

FDT1 = 0;
i /* user2 */

lvar->user_body.flag = 0 /* FALSE */;

APPENDIX B. ALTERNATING BIT PROTOCOL — GENERATED CODES

i
FDTSVAR *newsvar = (FDTSVAR *) malloc(sizeof(FDTSVAR));

newsvar->U_access_point.SEND_REQ.udata = lvar->uaer_body.data ;
FDTSCBsignal (p r o c e s s , 1 , 1 , newsvar);
}

i
FDTSVAR *newsvar = (FDTSVAR *) malloc(sizeof(FDTSVAR));

FDTSCBsignal (p r o c e s s , 1 , 2 , newsvar);
>
goto spont.end ;

>
>

}
i f (signal->cid == 0)
FDTSCBdispose (process, signal);

return;

trans_end :
FDTSCBdispose (process, signal);
i f (process->spont)
FDTSCBspont (process);

spont_end :
process->delay = 0;

FDTPCB *FDTnetwork_body (parent)
FDTPCB *parent;
{
FDTPCB *pcb;
FDTLVAR *lvar;

pcb = FDTPCBinit (parent , 2 , SPONTnetwork_body ,
XPORTnetwork_body , TRANSnetwork_body) ;

pcb->lvar = (int *) (lvar = (FDTLVAR *) malloc(sizeof(FDTLVAR)));

trans_end :
i f (pcb->8pont)
FDTSCBspont (pcb);

return (pcb);

network_body (process, signal)
FDTPCB ^process;

APPENDIX B. ALTERNATING BIT PROTOCOL — GENERATED CODES 68

FDTSCB *signal;
i
FDTLVAR *lvar = (FDTLVAR *) process->lvar;
FDTSVAR *avar = (FDTSVAR *) signal->svar;

int i ;

for (i = 1 ; i <= 2 ; i++)
•C

i f ((signal-->cid ==l + i - l) & & (signal->sid == 1))
{ /* networkl */

•C
FDTSVAR *newsvar = (FDTSVAR *) malloc(sizeof(FDTSVAR));

newsvar->N_access_point.DATA_RSP.ndata = svar->N_access_point.DATA_REQ.ndata ;
FDTSCBsignal (process, 1 + 2 /* HIGH_CEP */- i + 1 - 1 , 2 , newsvar);
>
goto trans.end ;

>
>

>
i f (signal->cid === 0)
FDTSCBdispose (process, signal);

return;

trans_end :
FDTSCBdispose (process, signal);
i f (process->spont)
FDTSCBspont (process);

spont.end :
process->delay = 0;

FDTPCB *FDTtimer_body (parent , time)
FDTPCB *parent;
int time ;
•C
FDTPCB *pcb;
FDTLVAR *lvar;

pcb = FDTPCBinit (parent , 1 , SPONTtimer_body ,
XPORTtimer.body , TRANStimer_body);

pcb->lvar = (int *) (lvar = (FDTLVAR *) malloc(Bizeof(FDTLVAR)));

lvar->timer_body.time = time ;

APPENDIX B. ALTERNATING BIT PROTOCOL — GENERATED CODES

lvar->timer_body.atop = 1 /* TRUE */;
lvar->timer_body.Btop_bis = 1 /* TRUE */;
goto trans_end ;

>
trans_end :
i f (pcb->spont)
FDTSCBspont (pcb);

return (pcb);

timer_body (process, signal)
FDTPCB *process;
FDTSCB *signal;
•C
FDTLVAR *lvar = (FDTLVAR *) process->lvar;
FDTSVAR *svar = (FDTSVAR *) signal->svar;

•C
i f ((signal->cld == 1) && (signal->sid == 1))
< /* timerl */

lvar->timer_body.stop =1 /* TRUE */;
lvar->timer_body.stop_bis = 0 /* FALSE */;
goto trans_end ;

}
>
•C

int FDT2 = 1 ;

i f (!lvar->timer_body.stop_bis)
•C
FDT2 = 0;
•C /* timer2 */

lvar->timer_body.stop = 0 /* FALSE */;
lvar->timer_body.stop_bis = 1 /* TRUE */;
goto spont_end ;

>
}
i f (!lvar->timer_body.stop)
•c
FDT2 = 0;
•C
process->t0 = time(0);

i f (process->delay != 3)
•C

APPENDIX B. ALTERNATING BIT PROTOCOL — GENERATED CODES 70

procesB->tl = process->tO + (lvar->timer_body.time);
process->delay = 3 ;

>

i f (process->t0 >= process->tl)
< /* timer3 */

lvar->timer_body.stop = 1 /* TRUE */;
{

FDTSVAR *newsvar = (FDTSVAR *) malloc(sizeof(FDTSVAR));

FDTSCBsignal (p r o c e s s , 1 , 2 , newsvar);
}
goto spont_end ;

>
else return;

>
>

>
i f (signal->cid === 0)
FDTSCBdispose (process, signal);

return;
trans_end :
FDTSCBdispose (process, signal);
i f (process->spont)
FDTSCBspont (process);

spont.end :
process->delay = 0;

FDTPCB *FDTdatax_body (parent , cep_id)
FDTPCB *parent;
int cep_id ;
•C
FDTPCB *pcb;
FDTLVAR *lvar;

pcb = FDTPCBinit (parent , 3 , SPONTdatax_body ,
XPORTdatax_body , TRANSdatax.body);

pcb->lvar = (int *) (lvar = (FDTLVAR *) malloc(sizeof(FDTLVAR)));

lvar->datax_body.cep_id = cep_id ;

assign_set (&(lvar->datax_body.EITHER) , 2 , 1 /* ESTAB */, 0 /* ACK_¥AIT * /) ;

{

APPENDIX B. ALTERNATING BIT PROTOCOL — GENERATED CODES

lvar->datax_body.send_seq = 0 ;
lvar->datax_body.recv_seq = 0 ;
lvar->datax_body.Bend_buf .empty = i /* TRUE */;
lvar->datax_body.recv_buf .empty = 1 /* TRUE */;
lvar->datax_body.STATE = 1 /* ESTAB */ ;
goto trans_end ;

>
trans_end :
i f (pcb->spont)
FDTSCBspont (pcb);

return (pcb);

datax_body (process, Bignal)
FDTPCB *process;
FDTSCB *signal;
{
FDTLVAR *lvar = (FDTLVAR *) process->lvar;
FDTSVAR *svar = (FDTSVAR *) signal->svar;

<
i f ((1var->datax_body.STATE = 1 /* ESTAB */))
i

i f ((signal->cid == 1) kb (signal->sid == 1))
•C /* dataxl */

lvar->datax_body.send_msg .msgdat - svar->U_access_point.SEND_REQ.udata ;
lvar->datax_body.send_msg .msgseq = lvar->datax_body.send_seq ;
store (&(lvar->datax_body.send_buf) , lvar->datax_body.send_msg);
format_data (lvar->datax_body.send_msg , A(lvar->datax_body.buf));
•C
FDTSVAR *newBvar = (FDTSVAR *) malloc(sizeof(FDTSVAR));

newsvar->N_access_point.DATA_REQ.ndata = lvar->datax_body.buf ;
FDTSCBsignal (p r o c e s s , 2 , 1 , newsvar);
>
•C
FDTSVAR *newsvar = (FDTSVAR *) malloc(sizeof(FDTSVAR));

FDTSCBsignal (p r o c e B B , 3 , 1 , newsvar);
>
lvar->datax_body.STATE = 0 /* ACK_WAIT */ ;
goto trans_end ;

>
>
i f ((is_set_member (k(1var->datax_body.EITHER) , lvar->datax_body.STATE)))
•C

APPENDIX B. ALTERNATING BIT PROTOCOL — GENERATED CODES

i f ((signal->cid == 1) kk (signal->sid == 2))
i

int FDT4 = 1 ;

if (!buffer_empty (lvar->datax_body.recv_buf))
•C
FDT4 = 0;
i /* datax2 */

lvar->datax_body.recv_msg = retrieve (lvar->datax_body.recv_buf)
{
FDTSVAR *newBvar = (FDTSVAR *) malloc(Bizeof(FDTSVAR));

newsvar->U_access_point.RECV_RSP.udata
= lvar->datax_body.recv_msg .msgdat ;

FDTSCBsignal (p r o c e s s , 1 , 3 , newsvar);
>
remove (&(lvar->datax_body.recv_buf) , lvar->datax_body.recv_msg
goto trans_end ;

>
>

>
}
i f ((lvar->datax_body.STATE = 0 /* ACK.WAIT */))
•C

i f ((signal->cid == 3) kk (signal->sid == 2))
i /* datax3 */

lvar->datax_body.send_msg = retrieve (lvar->datax_body.send_buf) ;
format.data (lvar->datax_body.send_msg , &(lvar->datax_body.buf));
•C
FDTSVAR *newsvar = (FDTSVAR *) malloc(sizeof(FDTSVAR));

newsvar->N_access_point.DATA_REQ.ndata = lvar->datax_body.buf ;
FDTSCBsignal (process, 2 , 1 , newsvar);

>
•C

FDTSVAR *newsvar = (FDTSVAR *) malloc(sizeof(FDTSVAR));

FDTSCBsignal (p r o c e s s , 3 , 1 , newsvar);
>
lvar->datax..body.STATE = 0 /* ACK_WAIT */ ;
goto trans.end ;

>
>
i f ((1var->datax_body.STATE == 1 /* ESTAB */))
{

if ((signal->cid == 3) kk (signal->sid == 2))
< /* datax4 */

APPENDIX B. ALTERNATING BIT PROTOCOL — GENERATED CODES 73

lvar->datax_body.STATE = 1 /* ESTAB */ ;
goto trans_end ;

>
}
i f ((lvar->datax_body. STATE = 0 /* ACK.VIAIT */))
i

i f ((signal->cid == 2) kk (signal->sid == 2))

int FDT5 = 1 ;
i f (ack_ok (svar->N_acceBB_point.DATA_RSP.ndata))
i
FDT5 = 0;
{ /* dataxS */

lvar->datax_body.send_m8g = retrieve (lvar->datax_body.send_buf) ;
remove (&(lvar->datax_body.send_buf) , lvar->datax_body.send_mag);
inc_send_Beq ();
lvar->datax_body.STATE = 1 /* ESTAB */ ;
goto trans.end ;

}
>

>
}
i f ((is_set_member (4(lvar->datax_body.EITHER) , lvar->datax_body.STATE)))
i

i f ((aignal->cid == 2) hk (signal->sid == 2))
•C

int FDT6 = 1 ;

i f (svar->N_access_point.DATA_RSP.ndata .pid == 0 /* DATA */)
<
FDT6 = 0;
{ /* datax6 */

lvar->datax_body.recv_msg .msgdat
= Bvar->N_access_point.DATA.RSP.ndata .dat ;

lvar->datax_body.recv_msg .msgseq
= 8var->N_access_point.DATA_RSP.ndata .seq ;

format_ack (lvar->datax_body.recv_msg , &(lvar->datax_body.buf));
•C
FDTSVAR *newsvar = (FDTSVAR *) malloc(sizeof(FDTSVAR));

newsvar->N_accesa_point.DATA_REQ.ndata = lvar->datax_body.buf ;
FDTSCBsignal (p r o c e s s , 2 , 1 , newsvar);
>
i f (svar->N_access_point.DATA_RSP.ndata .seq ==

lvar->datax_body.recv_seq)

APPENDIX B. ALTERNATING BIT PROTOCOL — GENERATED CODES

store (&(lvar->datax_body.recv_buf) , lvar->datax_body.recv_msg)
inc_recv_seq ();

>
goto trana_end ;

}
}

>
>

>
i f (signal->cid == 0)
FDTSCBdispose (process, signal);

return;

trans_end :
FDTSCBdispose (process, signal);
i f (process->spont)
FDTSCBspont (process);

spont_end :
process->delay = 0;

FDTPCB *FDTabit_body (parent , cep_id)
FDTPCB *parent;
int cep_id ;
•C
FDTPCB *pcb;
FDTLVAR *lvar;

pcb = FDTPCBinit (parent , 2 , SP0NTabit_body ,
XPORTabit.body , TRANSabit.body);

pcb->lvar = (int *) (lvar = (FDTLVAR *) malloc(sizeof(FDTLVAR)));

lvar->abit_body.cep_id = cep_id ;

lvar->abit_body.datax_module = FDTdatax_body(pcb , lvar->abit_body.cep_id);
lvar->abit_body.timer_module = FDTtimer_body(pcb , 30 /* RETRAN_TIME * /) ;
FDTCCBconnect (lvar->abit_body.datax_module , 3 , 1 ,

lvar->abit_body.timer_module , 1 , 1) ;
FDTCCBattach (pcb, 1 , 1 ,

lvar->abit_body.datax_module , 1 , 1) ;
FDTCCBattach (pcb, 2 , 1 ,

Ivar->abit_body.datax_module , 2 , 1) ;
goto trans_end ;

}
trans_end :
i f (pcb->spont)

APPENDIX B. ALTERNATING BIT PROTOCOL — GENERATED CODES 75

FDTSCBspont (pcb);
return (pcb);

>

FDTPCB *FDTSPECIFICATION (parent)
FDTPCB *parent;
•C
FDTPCB *pcb;
FDTLVAR *lvar;

pcb = FDTPCBinit (parent , 0 , SPONTSPECIFICATION ,
XPORTSPECIFICATION , TRANSSPECIFICATION);

pcb->lvar = (int *) (lvar = (FDTLVAR *) malloc(sizeof(FDTLVAR)));
•C
lvar->SPECIFICATION.network_module = FDTnetwork_body(pcb);
i

int cep ;
for (cep = 1 ; cep <= 2 ; cep++)
i

lvar->SPECIFICATION.user_module [cep - 1] = FDTuser_body(pcb , cep);
lvar->SPECIFICATION.abit_module [cep - 1] = FDTabit_body(pcb , cep);
FDTCCBconnect (lvar->SPECIFICATION.user_module [cep - 1] , 1 , 1 ,

lvar->SPECIFICATION.abit_module [cep - 1] , 1 , 1);
FDTCCBconnect (lvar->SPECIFICATION.abit_module [cep - 1] , 2 , 1 ,

lvar->SPECIFICATION.network_module , 1 + cep - 1 , 0);
>

>
goto trans.end ;

}
trans_end :
i f (pcb->spont)
FDTSCBspont (pcb);

return (pcb);

Appendix C

Process Control Block Support
Routines

76

APPENDIX C. PROCESS CONTROL BLOCK SUPPORT ROUTINES

/*
* Creates and i n i t i a l i z e s a new process control block (PCB)
* Places the PCB at the head of the sibling l i s t
* If process contains transitions, inserts PCB into the scheduler's l i s t s
* Returns the new PCB
*/

FDTPCB *FDTPCBinit (parent, ipnum, spont, export, transition)
FDTPCB *parent;
int ipnum;
int spont;
int export;
int (^transition)();

{
FDTPCB *newpcb = (FDTPCB *) malloc(sizeof(FDTPCB));

/***+* Links new process control block to the module hierarchy *****/

newpcb->pid = Pid++;
newpcb->parent = parent;
i f (parent != NULL)
<
newpcb->sib = parent->ref;
parent->ref = newpcb;
newpcb->prio = parent->prio + 1;

>
else /* This i s the root module */
{
newpcb->sib = newpcb;
newpcb->prio = 1;

>
newpcb->ref = NULL;

/***** Allocates enough interaction points for the module *****/

newpcb->ipnum = ipnum;
i f (ipnum > 0)

newpcb->chan = FDTCCBinit (newpcb->ipnum);
else

newpcb->chan = NULL;

/***** Initializes other module state variables *****/
newpcb->ipnext != 0;
newpcb->sigcnt = 0;
newpcb->delay = 0;
newpcb->spont = spont;

APPENDIX C. PROCESS CONTROL BLOCK SUPPORT ROUTINES 78

newpcb->export = export;
newpcb->trans = transition;

return (newpcb);
>

/*
* Releases the specified process control block and a l l i t s descendents
*/

FDTPCBterm (pcb)
FDTPCB *pcb;
{
FDTPCB *p;

i f (pcb == NULL)
return;

i f ((p = pcb->parent) == NULL)

FDTLIBerror ("Root module attempting to k i l l itself\n");

i f (p->ref == pcb)

p->ref = pcb->sib;
>

else
{

p = p->ref;
while ((p != NULL) && (p->sib != pcb))

p = p->sib;
i f (p == NULL)

FDTLIBerror ("Error in link to parent\n");

p->sib = pcb->sib;
}

/***** Terminates a l l children recursively and then deallocates i t s e l f *****/

while (pcb->ref != NULL)
FDTPCBterm (pcb->ref);

i f (pcb->chan != NULL)
FDTCCBterm (pcb);

free (pcb);
>

Appendix D

Channel Control Block Support
Routines

79

APPENDIX D. CHANNEL CONTROL BLOCK SUPPORT ROUTINES

/*
* Creates and i n i t i a l i z e s a new channel control block
*/

FDTCCB *FDTCCBinit (size)
int size;

•C
FDTCCB * i , *ccb = (FDTCCB *) calloc(size+ 1, sizeof(FDTCCB));

for (i=ccb; i<ccb+size+l; i++)
•C
i->head = i->tail = NULL;
i->targeta = i->targetc = i->targete = NULL;
i->channela = i->channelc = i->channele = 0;
i->qdispl = COMMON;

>

return (ccb);
}

/*
* Removes a channel l i s t from a process control block
*/

FDTCCB *FDTCCBterm (process)
FDTPCB ^process;
{
FDTCCB *ccbl, *ccb2;
int i ;

for (i=l; i<process->ipnum+l; i++)
•C

ccbl = process->chan + i ;
i f (ccbl->targetc != NULL)

•C
ccb2 = ccbl->targetc->chan + ccbl->channelc;
i f ((ccb2->targetc == process) kk (ccb2->channelc == i))

FDTCCBdisconn (process, i) ;
else

FDTCCBdetach2 (process, i) ;
}

>
free (procesB->chan);

>

APPENDIX D. CHANNEL CONTROL BLOCK SUPPORT ROUTINES

I*
* Implements the Estelle connect statement

FDTCCBconnect (processl, channell, qdispll, process2, channel2, qdispl2)
FDTPCB *processl, *process2;
int channell, channel2;
queue.kind qdispll, qdispl2;
<
FDTCCB *ccbl, *ccb2;

/***** Locates channel control blocks *****/

ccbl - processl->chan + channell;
ccb2 - process2->chan + channel2;

ccbl->qdispl = qdispll;
ccb2->qdispl = qdispl2;

/***** Tests for prior connections *****/

i f ((ccbl->targetc != NULL) || (ccb2->targetc != NULL))
FDTLIBerror ("Channel i s already connected");

/***** Makes formal connections *****/

ccbl->targetc - process2; ccbl->channelc = channel2;
ccb2->targetc = processl*, ccb2->channelc = channell;

/***** Finds actual target channel control blocks *****/

i f (ccbl->targeta != NULL)
i

processl = ccbl->targete;
channell = ccbl->channele;
ccbl->targete = NULL;
ccbl->channele = 0;
ccbl = processl->chan + channell;

>

i f (ccb2->targeta != NULL)
i

process2 = ccb2->targete;
channel2 = ccb2->channele;
ccb2->targete = NULL;
ccb2->channele = 0;
ccb2 = process2->chan + channel2;

APPENDIX D. CHANNEL CONTROL BLOCK SUPPORT ROUTINES 82

>

/***** Makes actual connec

ccbl->targete = process2;
ccb2->targete = processl;

m *****/

ccbl->channele = channel2;
ccb2->channele = channell;

/*
* Implements the Estelle ATTACH statement
*/

FDTCCBattach (processl, channell, qdispll, process2, channel2, qdispl2)
FDTPCB *processl, *process2;
int channell, channel2;
queue_kind qdispll, qdispl2;

i
FDTCCB *ccbl, *ccb2;

/***** Locates channel control blocks •****/

ccbl = processl->chan + channell;
ccb2 = process2->chan + channel2;

ccbl->qdispl = qdispll;
ccb2->qdispl = qdispl2;

/***** Tests for prior connections *****/

i f ((ccbl->targeta != NULL) || (ccb2->targetc != NULL))
FDTLIBerror ("Channel i s already attached");

/***** Makes formal attachments *****/

ccbl->targeta = process2; ccbl->channela = channel2; /* attach down */
ccb2->targetc = processl; ccb2->channelc = channell; /* connect up */

/***** Finds actual target channels •****/

i f (ccbl->targetc != NULL)
{

processl = ccbl->targete;
channell = ccbl->channele;
ccbl->targete = NULL;
ccbl->channele = 0;
ccbl = processl->chan + channell;

APPENDIX D. CHANNEL CONTROL BLOCK SUPPORT ROUTINES

>

i f (ccb2->targeta != NULL)
{.
process2 = ccb2->targete;
channel2 = ccb2->channele;
ccb2->targete = NULL;
ccb2->channele = 0;
ccb2 = process2->chan + channel2;

>

/***** Makes actual attachment *****/

ccbl->targete = process2; ccbl->channele = channel2;
ccb2->targete = proceasl; ccb2->channele = channell;

>

/*
* Implements the Estelle DISCONNECT statement
*/

FDTCCBdisconn (p r o c e s B l c , channellc)
FDTPCB *processlc;
int channellc;
{
FDTCCB *ccblc, *ccb2c;
FDTCCB *ccble, *ccb2e;
FDTPCB *processle, *process2c, *process2e;
int channelle, channel2c, channel2e;

i f (channellc == 0)

int i ;

for (i=l; i<processic->ipnum; i++)
FDTCCBdisconn (processlc, i) ;

}
elBe

•c
/***** Locates actual channel control blocks *****/

ccblc = processlc->chan + channellc;

process2c = ccblc->targetc;
channel2c = ccblc->channelc;
i f (process2c = NULL)

APPENDIX D. CHANNEL CONTROL BLOCK SUPPORT ROUTINES

FDTLIBerror ("Attempt to disconnect unbound channel");
ccb2c = process2c->chan + channel2c;

/***** Tests for prior connections *****/

i f ((ccb2c->targetc != processlc) I I (ccb2c->channelc != channellc))
FDTLIBerror ("Attempt to disconnect attached channel");

/***** Locates effective channel control blocks *****/

ccble = ccblc;
while (ccble->targete == NULL)

•C
processle = ccble->targeta;
channelle = ccble->channela;
ccble = processle->chan + channelle;

ccb2e = ccb2c;
while (ccb2e->targete == NULL)

i
process2e = ccb2e->targeta;
channel2e = ccb2e->channela;
ccb2e = process2e->chan + channel2e;

>

/***** Disconnects actual channels *****/

ccblc->targetc = NULL; ccblc->channelc = 0;
ccb2c->targetc = NULL; ccb2c->channelc = 0;

/***** Rebinds effective channels, i f necessary *****/

i f (ccblc != ccble)
<

ccblc->targete = processle; ccblc->channele = channelle;
ccble->targete = processlc; ccble->channele = channellc;

>
else

ccble->targete = NULL; ccble->channele = 0;

i f (ccb2c != ccb2e)
i

ccb2c->targete = process2e; ccb2c->channele = channel2e;
ccb2e->targete = process2c; ccb2e->channele = channel2c;

APPENDIX D. CHANNEL CONTROL BLOCK SUPPORT ROUTINES

>
e lse

ccb2e->targete = NULL; ccb2e->channele = 0;
>

}
>

/*
* Implements the Estelle DETACH statement for an external interaction point
*/

FDTCCBdetachl (processla, channella)
FDTPCB *processla;
int channella;

i
FDTCCB *ccbla, *ccb2a; /* Formal attachments */
FDTCCB *ccble, *ccb2e; /* Actual attachments */
FDTPCB *proceasle, *process2a, *process2e;
int channelle, channel2a, channel2e;

/***** Locates channel control blocks for actual attachments if****/

ccbla = processla->chan + channella;

process2a = ccbla->targeta;
channel2a = ccbla->channela;
i f (process2a = NULL)

FDTLIBerror ("Attempt to detach unbound channel");
ccb2a = process2a->chan + channel2a;

/***** Tests for prior attachments *****/

i f ((ccb2a->targete != processla) II (ccb2a->channelc != channella))
FDTLIBerror ("Attempt to detach improperly attached channel");

/***** Locates channel control blocks for effective attachments *****/

ccb2e = ccb2a;
while (ccb2e->targete == NULL)
{

process2e = ccb2e->targeta;
channel2e = ccb2e->channela;
ccb2e = process2e->chan + channel2e;

}
processle = ccb2e->targete;

APPENDIX D. CHANNEL CONTROL BLOCK SUPPORT ROUTINES 86

channelle = ccb2e->channele;
ccble = processle->chan + channelle;

/***** Dettaches actual channels **•**/

ccbla->targeta = NULL; ccbla->channela = 0;
ccb2a->targetc = NULL; ccb2a->channelc = 0;

/***** Rebinds effective channels, i f necessary *****/

i f (ccbla != ccble)

ccbla->targete = processle; ccbla->channele = channelle;
ccble->targete = processla; ccbie->channele = channella;

else

ccble->targete = NULL; ccble->channele = 0;

i f (ccb2a != ccb2e)

ccb2a->targete = process2e; ccb2a->channele = channel2e;
ccb2e->targete = process2a; ccb2e->channele = channel2a;

else

ccb2e->targete = NULL; ccb2e->channele = 0;

* Implements the Estelle DETACH statement for a child's external interaction point
*/

FDTCCBdetach2 (process2a, channel2a)
FDTPCB *proce8s2a;
int channel2a;

•C
FDTCCB *ccbla, *ccb2a; /* Formal attachments */
FDTCCB *ccble, *ccb2e; /* Actual attachments */
FDTPCB *processla, •processle, *process2e;
int channella, channelle, channel2e;

/***** Locates channel control blocks for actual attachments *****/

APPENDIX D. CHANNEL CONTROL BLOCK SUPPORT ROUTINES

ccb2a = proceBs2a->chan + channel2a;

processla = ccb2a->targeta;
channella = ccb2a->channela;
i f (processla == NULL)

FDTLIBerror ("Attempt to detach unbound channel");
ccbla = processla->chan + channella;

/***** Tests for prior attachments *****/

i f ((ccbla->targetc != process2a) I I (ccbla->channelc != channel2a))
FDTLIBerror ("Attempt to detach improperly attached channel");

/***** Locates channel control blocks for effective attachments ****

ccb2e = ccb2a;
while (ccb2e->targete == NULL)

i
process2e = ccb2e->targeta;
channel2e = ccb2e->channela;
ccb2e = process2e->chan + channel2e;

>
processle = ccb2e->targete;
channelle = ccb2e->channele;
ccble = processle->chan + channelle;

/ i f * * * * Dettaches actual channels *****/

ccbla->targeta = NULL; ccbla->channela = 0;
ccb2a->targetc = NULL; ccb2a->channelc = 0;

/***** Rebinds effective channels, i f necessary *****/

i f (ccbla != ccble)
•C

ccbla->targete = processle; ccbla->channele = channelle;
ccble->targete = processla; ccble->channele = channella;

}
else

<
ccble->targete = NULL; ccble->channele = 0;

i f (ccb2a != ccb2e)
•C

ccb2a->targete = process2e; ccb2a->channele = channel2e;
ccb2e->targete = process2a; ccb2e->channele = channel2a;

APPENDIX D. CHANNEL CONTROL BLOCK SUPPORT ROUTINES

}
else

i
ccb2e->targete = NULL; ccb2e->channele = 0;

>

Appendix E

Signal Control Block Support
Routines

89

APPENDIX E. SIGNAL CONTROL BLOCK SUPPORT ROUTINES 90

/*
* Creates a new signal control block on the target of the specified channel
*/

FDTSCBsignal (process, cid, sid, svar)
FDTPCB ^process;
int cid;
int sid;
int *svar;
<
FDTCCB *ccbl, *ccb2;
FDTSCB *scb;
FDTPCB *target;

/***** Determines the location of the target channel *****/
ccbl = process->chan + cid;
target = ccbl->targete;
ccb2 = target->chan + ccbl->channele;
i f (ccb2->qdispl == COMMON)

ccb2 = target->chan;

/***** Constructs an outgoing signal control block *****/
scb = (FDTSCB *) malloc(sizeof(FDTSCB));
scb->cid = ccbl->channele;
scb->sid = sid;
scb->svar = svar;

/****« QueueB the Bignal control block to the t a i l of the target channel *****/
scb->next = NULL;
i f (ccb2->tail == NULL)

ccb2->head = scb;
else

ccb2->tail->next = scb;
ccb2->tail = scb;

/***** Increments the pending signal counter *****/
(target->sigcnt)++;

>

/*
* Creates a spontaneous signal at
* i f there are no pending signals
*/

the common channel for the process
for the process

FDTSCBspont (process)
FDTPCB ^process;

APPENDIX E. SIGNAL CONTROL BLOCK SUPPORT ROUTINES 91

•C
FDTCCB *ccb;
FDTSCB *scb;

/***** Exits i f there are pending signals *****/
i f (process->sigcnt > 0)

return;

/**•** Constructs a spontaneous signal control block *****/
scb = (FDTSCB *) malloc(sizeof(FDTSCB));
scb->cid = 0;
scb->sid = 0;
scb->svar = NULL;

/***** queues the signal control block at the common channel *•***/
ccb = process->chan;
scb->next = ccb->head;
ccb->head = scb;
i f (ccb->tail = NULL)

ccb->tail = scb;

/***** Increments the pending signal counter *****/
(p r o c e 8 S->sigcnt)++;

>

/*
* Removes a signal control block from a channel
*/

FDTSCBdispose (process, signal)
FDTPCB *process;
FDTSCB *signal;

<
FDTCCB *ccb;
FDTSCB *scb;

/***** Determines the location of the signal queue •****/
ccb = process->chan + signal->cid;
i f (ccb->qdispl == COMMON)

ccb = process->chan;

/***** Removes the signal control block at the head of the queue *****/
scb = ccb->head;
ccb->head = scb->next;
i f (ccb->head = NULL)

ccb->tail = NULL;

APPENDIX E. SIGNAL CONTROL BLOCK SUPPORT ROUTINES

i f (scb->avar != NULL)
free (scb->svar);

free (scb);

/***** Decrements the pending signal counter *****/
(process->sigcnt)—;

}

/*
* Searches for a pending signal for the process
*/

FDTSCB *FDTSCBpending (process)
FDTPCB *process;

FDTCCB *ccb;

i f (process->sigcnt == 0)
return (NULL);

ccb = process->chan + process->ipnext;
while (ccb <= process->chan + process->ipnum)

i f (ccb->head != NULL)
•C

process->ipnext = ccb - process->chan + 1;
return (ccb->head);

>
else

•c
ccb++;

>
ccb = process->chan;
while (ccb < process->chan + process->ipnext)

i f (ccb->head != NULL)
<

process->ipnext = ccb - process->chan + 1;
return (ccb->head);

>
else

ccb++;
>

return (NULL);
}

