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Abstract 

A hybrid network comprising an Ethernet and a Cambridge Ring has been pro­

posed by researchers in the Department of Computer Science at the University of 

British Columbia as a means for improving reliablility and performance of computer 

communication in a local area network environment. This thesis explores the practica­

bility of this concept and constructs a generalization of this model, where an arbitrary 

number of L A N s , of arbitrary technologies, may be used together in an integrated 

fashion. The goal is a set of software primitives which provides a connection-oriented 

message-based IPC interface, and allows a user to utilize multiple networks with relative 

ease. A number of relevent design issues, including host reachability, path selection, 

and load monitoring are dealt with in detail. Also discussed is an implementation 

of this software interface here at the University of British Columbia, developed on 

Sun workstations running 4.2 BSD Unix which are inter-connected by an Ethernet 

and a Cambridge Ring. Measurement results on the performance of the implemented 

software are included. 
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C h a p t e r 1 

I n t r o d u c t i o n 

This thesis explores the complexities involved with interconnecting computers in a lo­

cal environment with more than one local area network (LAN) . The networks may be 

all of the same type (e.g. two Ethernets 1), or they may be of different types (e.g. an 

Ethernet and a Cambridge Ring); the problem domain is not restricted to one or the 

other. However, for reasons which will be explained shortly, this thesis will concen­

trate on the latter case. The ultimate goal is an integrated network environment, where 

the existence of multiple supporting networks is transparent to the end user, and the 

problems of dealing with multiple networks are simplified for systems and applications 

programmers. It is essentially an expansion of the hybrid L A N idea first proposed 

in [Vuon83]. Before discussing the design issues and describing a software implemen­

tation here at the University of British Columbia, this chapter will first present the 

motivations for researching this topic. 

1 Ethernet is a trademark of Xerox Corporation 

1 



CHAPTER 1. INTRODUCTION 2 

1.1 Motivations 

A local area network is an interconnection of computers which are distributed over a 

small geographical area, usually no more than a few square kilometers. L A N s have been 

steadily gaining popularity, as their characteristically high data rates and relatively low 

installation costs are well suited to small organizations which wish to better utilize their 

computing resources. 

However, as there is no single type of L A N which is optimal for all possible applica­

tions [Chan83,Limb84], each installation has had to choose one which is most suitable 

to its particular needs. A local area network is characterized by its topology, access 

method, and an associated family of protocols. These protocols usually correspond 

to the lower 3 layers of the ISO reference model for Open Systems Interconnection 

[IS081]. Sometimes layer 4, the Transport Layer, is also included. Some background 

on common L A N topologies and access methods are given in the following subsection. 

Experienced readers may skip to Subsection 1.1.2. 

1.1.1 B a c k g r o u n d 

The topology of a network refers to the configuration of interconnection between ma­

chines. For local area networks, the typical topologies are bus, ring, and star. A bus 
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network, as shown in Figure 1.1, consists of a single long line which is tapped into 

by the nodes. The connection is made in a passive way; that is, each node can listen 

to the signal on the line without disturbing it. A ring network consists of a series 

of point-to-point links which form a closed loop. Here the signal must pass through 

each ring interface unit, which also act as repeaters for the signal. Thus the nodes are 

considered to be active. A n illustration of the ring topology appears in Figure 1.2. A 

star network has all of its nodes connected to a central hub, as depicted in Figure 1.3. 

A l l traffic between nodes must pass through this central hub. A star-shaped ring is 

also possible [Neil85]. More on L A N topolgies may be found in [Tsao84]. This thesis 

will concentrate mostly on bus and ring networks, since they are the most popular. 

| | | Bus Interface Unit 

Station 

Figure 1.1: Bus Network 

The transmission medium in local area networks is shared by all the nodes. There­

fore some scheme is required to arbitrate the usage of the shared medium. This is 

referred to as the access method. For bus networks, a common access method is Car-

± 9 9 
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rier Sense Multiple Access with Collision Detection ( C S M A / C D ) . In this method a 

node which wishes to transmit data will first listen to the medium and wait until it 

is idle before transmitting. After the transmission has begun, it must also check for 

collisions with another node which is also transmitting at that time. Collisions usually 

occur due to the propagation delay between nodes. A collision requires re-transmission 

by each contending node, after some random backoff time. Collisions may also be re­

solved deterministically, as is done in some variations of C S M A / C D [Neil85]. 

Station 

Figure 1.2: Ring Network 

For ring networks, one scheme is to circulate a number of fixed-length slots contin-



CHAPTER 1. INTRODUCTION 5 

uously around the ring. Each slot, when empty, may be filled with a fixed amount of 

data as it passes a station which wishes to tranmit. The station will then mark the 

slot as full, and re-mark it as empty after it has traversed the ring and returned. A 

variation of the slotted ring is the register-insertion ring. Here each node contains a 

shift register which can be used to buffer incoming data while the node simultaneously 

transmits outgoing data. 

Station 

Figure 1.3: Star Network 

One other access method, which is suitable for both buses and rings, is to circulate 

a unique bit sequence which acts as a token. A node must get hold of the token before 

it can transmit. It then destroys the token, regenerating it only after the transmitted 

packet has returned to it. In a token bus the token is passed from node to node in a 
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logical ring. 

One of the most popular types of local area network is the Ethernet [Metc76], 

which is a C S M A / C D bus. Ethernet is often accessed through Arpanet's Transmission 

Control Protocol and Internet Protocol (generally referred to collectively as T C P / I P ) . 

Although T C P / I P [DARP81a,DARP81b] was designed for long haul networks (LHN), 

it is often used in L A N s because it comes as part of the 4.2 BSD Unix 2 system. It is 

unclear whether the term "Ethernet" encapsulates the supporting protocols as well as 

the underlying topology and access method, or is simply the best-known example of 

(and hence could be a synonym for) a C S M A / C D bus. This thesis will use it in the 

latter sense. Ethernet has been standardized as a L A N technology by I E E E (802.3). 

Another well-known type of local area network, particularly in Europe and the 

U K , is the Cambridge Ring [Wilk79], which is a slotted ring. The Cambridge Ring 

is usually associated with the Basic Block protocol (BB) and Byte Stream Protocol 

(BSP) [Dall8l]. Like any other ring network, the Cambridge Ring suffers minimal 

signal attenuation over long distances. This is due to the fact that the signal is re­

generated at each node. Because of the Cambridge Ring's suitability for covering a 

greater geographical area than most other L A N s , it has been standardized by I E E E 

as a community area network technology rather than a local area network technology. 

Nonetheless, the Cambridge Ring is generally considered to be a type of L A N . 

2Unix is a trademark of AT&T Bell Labs 
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Two other well-known L A N technologies are the token bus and the token ring. 

One token bus based network which is rapidly gaining recognition in industry is M A P 

(Manufacturing Automation Protocols). Developed by General Motors [GM85], M A P 

is intended for use in factories. The I B M Zurich Token Ring is an example of a net­

work which is based on a token ring. I E E E has standardized the token ring as a L A N 

technology (802.5), as well as the token bus (802.4). 

1.1.2 Problems 

Unfortunately, each type of L A N is suited for a set of requirements which often conflict 

with the requirements of another type of L A N . For instance, because of its high data 

rate and variable packet size, Ethernet is well-suited for bulk data transfers, such as 

remote disk accesses. Its non-deterministic access method, though, means that it is 

unsuitable for real-time applications. The Cambridge Ring, on the other hand, provides 

a guaranteed worst-case access time, but is not as efficient for large volume data due to 

its small packet size (only 2 bytes of actual data per mini-packet) and hence lower data 

rate. L A N s based on the other two technologies mentioned above similarly have their 

individual suitabilities and weaknesses for different applications. This implies that the 

selection of any single type of network will either exclude certain applications, or force 

those applications to run in an inefficient communications environment. 
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Recently, the emphasis has increasingly been placed on providing integrated ser­

vices. There are certainly many situations where the ability to access a large variety 

of resources from a single source is advantageous. For example, a process engineer 

may wish to be able to monitor plant operations as well as utilize spreadsheet software 

and access an MIS database. Clearly conflicting requirements are involved here. The 

first is a real-time application which demands an environment such as M A P , while the 

latter two are best served by a network such as T O P (Technical and Office Protocols), 

an Ethernet-based network for office and technical applications [Boei85]. 

One approach to this problem is to connect some of the machines on one type of 

network, and to connect the rest of the machines on another type of network. The 

two networks are then bridged by a gateway node, as shown in Figure 1.4, which is 

connected to both networks. Machines on network A will generally run applications 

which are suitable for network A , and machines on network B will generally run ap­

plications which are suitable for network B . Machines located on different networks 

can still communicate, by going through the gateway node G . This partially solves 

the problem, as each type of application can usually be run in an appropriate envi­

ronment, but are accessible from all stations. However, the gateway node presents a 

point of vulnerability where the two networks can become divided, as well as being a 

potential bottleneck. Also, an internetwork path will involve both types of network, 

and therefore it will suffer the combined disadvantages of both. 
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Unit 

Figure 1.4: Two L A N s Connected by a Gateway 
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As L A N technologies become more readily available and lower in cost, another 

feasible solution is to connect the machines with more than one network, as shown in 

Figure 1.5. This would allow each station to run each different type of application on 

the network which it is most suited for. In addition, reliability would be enhanced, 

since the unavailability of one network would not necessarily partition the machines. 

Furthermore, performance may be improved by allowing an application to use both 

networks simultaneously, or to select the network which is least congested. 

Network A 

Network B 

Bus Interface Unit 

Station 

Ring Interface Unit 

Figure 1.5: Stations Connected by Two L A N s 

One may argue here that L A N s are usually highly reliable already, so that added 

reliability is not much of a gain. However, L A N s may not be as reliable as people tend to 

believe. Results [Zwae85] have shown the error rates of the raw Ethernet transmission 
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medium to be on the order of 1 0 - 4 , rather than 10~6 as previously thought. This 

implies that L A N s are not inherently reliable, and that they require reliable protocols. 

In addition, there exist applications where extra reliability is desirable, for instance 

military networks or process control involving hazardous substances. 

One could also argue that currently processors are in general much slower than the 

transmission media, so that sending data over multiple paths simultaneously would not 

improve performance. Nonetheless, even if an individual station can use up no more 

than a few percent of a network's bandwidth, connecting hundreds of stations should 

produce enough traffic to significantly congest the network. Such large-scale L A N s are 

becoming more common. Also, applications such as interactive graphics may require 

large volumes of data to be transferred in short periods of time. Multiple networks can 

also be viewed, therefore, as a way of attaining the extra bandwidth needed in order 

to interconnect a greater number of computers together directly without suffering se­

riously degraded performance. 

1.2 G o a l s 

How should the availability of multiple networks be made accessible to users? Since 

the end user's only concern is to run applications, the existence of multiple networks 

should be made transparent to him. To the systems or applications programmers, 
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though, awareness of multiple networks is useful, since each programmer would know 

his particular application's requirements and therefore the network which he would 

prefer to use. Thus the aim was to design a set of system primitives which allow 

user programs to utilize the networks available as they see fit, or to let the system 

make that decision if they do not care. Although there exist systems which provide 

access to multiple networks (for example, 4.2 BSD Unix allows a user to imply a 

particular network by specifying a protocol name), they do not provide these services 

in an integrated way. That is, the individual networks are viewed as being completely 

separate, so that if a user wants to use several network links together to achieve a 

single purpose, he himself would have to deal with problems such as loss of data or 

a link, which host is reachable on which network, and so on. Our view is that users 

should not have to deal with such problems; these should be handled by the system, 

within our set of primitives. In addition, these primitives should be easy to use so that 

existing applications can be easily converted. 

To examine the practicality of such a service, another goal was to implement this 

set of primitives, so that measurements could be made to determine the overhead of 

this additional software. Moreover, it would allow us to see how easy or difficult it is 

to convert existing applications to this interface. 

Before continuing further, the reader may be wondering why this work is concerned 

exclusively with local area networks, and not at all with long haul networks. Since the 
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alleged benefits of having multiple networks connected are reliability and performance, 

LHNs would seem to be prime candidates since they are much less reliable and have 

much lower data rates than LANs? However, the way which multiple L A N s improve 

reliability and performance is by providing more than one path between machines, 

something which is already present in most LHNs due to their topologies. Therefore, 

in a sense what we are doing is applying techniques already being used in long haul 

networks to local area networks. However, we are generalizing these ideas, in that 

the access method and protocols are identical for all paths in an L H N , but the access 

method and protocols may be different for each path in our environment. 

1.3 Thesis Summary 

The preceding section has presented the motivations for working towards an integrated 

network, as well as the goals which we wish to achieve. Chapter 2 discusses in some 

detail the design issues which need to be dealt with, and some possible solutions. The 

approach was to work towards a general solution, for arbitrary types of L A N s , rather 

than a specific solution which is geared to our particular implementation environment. 

A n implementation of the objective software module of system primitives, referred 

from here on as M I N (for "multiple integrated networks"), was realized here at U . B . C . 

Chapter 3 describes this implementation, in particular with regard to how each of the 
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issues discussed in Chapter 2 were dealt with. It also reports on the implementation 

environment, in terms of both the hardware and the supporting network software. 

Chapter 4 gives the measurements results on the processing overhead incurred by 

adding our software. This was done by comparing the (real) execution times required 

to transfer a large amount of data over each network, with and without going through 

our software interface. 

Chapter 5 looks back at what we have done and draws some conclusions on whether 

the effort has been worthwhile. It also suggests some possible enhancements and future 

work. 



C h a p t e r 2 

D e s i g n 

As mentioned in Section 1.2, our objective is a set of software primitives, which we've 

termed M I N for "multiple integrated networks". This chapter discusses the design of 

M I N . The approach is to derive a general model, for arbitrary local area networks and 

hosts, rather than a specific solution for our particular implementation environment. 

The discussion begins with the overall structure, in terms of the relationship between 

our software, the user, and the supporting network protocols. Next, the type of com­

munication services that the M I N primitives should provide are described. A number 

of design issues, including host reachability, connection establishment, path selection, 

and load monitoring are also examined. The final section deals with the internal pro­

tocol employed by the M I N primitives for message exchange. 

15 
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2.1 O v e r a l l S t r u c t u r e 

The OSI reference model [IS081] is widely accepted as a framework for communications 

design. Therefore it is advisable for us to begin by determining where within the 7 

layers of the OSI model our objective software should reside. 

Wi th more than one network available, part of MIN's function is to choose one of 

the networks when data is to be transmitted. Making this choice in the Physical layer 

would not make much sense. In many cases the physical layer consists of a driver for the 

hardware, so that a separate one for each transmission medium is necessary. Placing 

M I N in the Data Link layer to make the routing decision there would correspond to 

the suggestion made in [Vuon83]. This scheme is illustrated in Figure 2.1. Note that 

the Presentation and Session layers are shown with dashed outlines because currently 

most systems do not actually contain these layers. 

If the decision is made in the Link layer, then the networks must be logically 

integrated in the higher layers. That is, a uniform protocol must be designed for 

the Network and Transport layers which could be used for all networks. There are 

a number of difficulties with this idea. Firstly, the functions provided by each layer 

must incorporate the functions provided by the corresponding layer for each network. 

Although in theory the functionality for each layer should be more or less the same 

regardless of the network, in practice it is not the case. Even high level protocols make 
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User 

Medium 1 Medium 2 Medium n 

Figure 2.1: Routing Decision with M I N in Data Link Layer 
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assumptions about the underlying network. For instance, BSP is a transport level 

protocol designed specifically for the Cambridge Ring. Additionally, each protocol also 

makes assumptions about the supporting protocol, or in other words, the layer directly 

beneath it. For example, T C P assumes IP to be the Network protocol, while BSP 

assumes B B to be underneath it. Furthermore, the M I N Data Link layer would need 

to know how to handle all possible packet formats (different for each network). Each 

future addition of a new type of network would require a modification to this layer as 

well. 

The same arguments may be applied to the Network layer, the Transport layer, 

and each successively higher layer. However, they become less significant in the higher 

layers because they are application dependent rather than network dependent. 

Another consideration is that we wish to let the user optionally select which net­

works to use for sending a message. As stated earlier in Section 1.2, each application 

should know which network it is most suited to, and should therefore be allowed to 

make that decision if so desired. If M I N is placed in the Data Link layer, then the 

user's path specification would need to be passed through all the higher layers, since the 

user process may only access the Application layer. Furthermore, allowing the user to 

choose the networks implies that each " M I N connection" between two user processes 

may have different characteristics in terms of which networks are used. Thus M I N 

should provide process-to-process connections, rather than a single host-to-host con-
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nection which multiplexes process-to-process connections provided by a higher layer. 

This suggests that M I N should be located at least above the Transport layer. Also, 

by being above the Transport layer M I N is provided with reliable connection-oriented 

communication, thereby making its task easier. The supporting protocols wil l perform 

error detection and recovery as appropriate to their respective layer. 

Functionally, M I N corresponds to the Session layer, in that it enables a user process 

to establish a connection, or session, with another process. However, in our environ­

ment a " M I N connection" may actually consist of multiple connections or sessions, one 

on each of the networks which the user process wishes to use. A Session "connection" 

in the ISO sense appears to imply the use of only a single network; there is no provi­

sion for the case of using multiple networks simultaneously (one may point out that 

if gateways are involved then the "connection" would include more than one network; 

however in that case the networks are used serially, not simultaneously; furthermore 

the internetworking is handled in the Network layer, and is transparent to the Session 

layer). 

As for the Presentation layer, there does not seem to be any motivations, functional 

or otherwise for placing M I N there. This leaves the Application layer. From the 

practicality viewpoint, this would be the best place for M I N since the least number of 

layers would be affected. It is also appropriate in that M I N is intended as an interface 

for user processes. The path selection parameter would then be obtained directly from 
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the user, without having to pass down through various other layers. However, it is not 

really part of the Application layer's function to be concerned with connections. 

We must point out however, that the decision of whether to place M I N in the 

Application layer or the Session layer is not a critical one. It depends on the particular 

implementation environment. If a new system is being created which will contain all 

seven layers of the ISO model, then M I N should probably be placed in the Session 

layer, since this is functionally more correct. However, if M I N is being incorporated 

into an existing system, then putting it into the Application layer would make the job 

easier. Moreover we note once again that many existing systems do not contain the 

Presentation and Session layers, so that whether M I N is conceptually placed in the 

Application or the Session layer makes no difference in the implementation. For the 

remainder of this chapter we will assume that M I N is placed in the Application layer, 

as illustrated in Figure 2.2. 

2.2 Service Model 

In the previous section we have implicitly assumed that M I N provides a connection-

oriented interface to the user process. The reasons for this choice were purposedly 

left out from the earlier discussion because they did not really relate to the topic of 

where M I N should reside in the ISO model. Mentioning them would only have served 

to confuse the reader. The service model for M I N is discussed in this section. 
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Presentation 1 

Session 1 

Transport 1 

Network 1 

Data Link 1 

Physical 1 

T 
Medium 1 

User 1 
MIN Application 

Presentation 2 

Session 2 

Transport 2 

Network 2 

Data Link 2 

Physical 2 

T 
Medium 2 

Presentation n 

Session n 

Transport n 

Network n 

Data Link n 

Physical n 

T 
Medium n 

Figure 2.2: Overall Structure with M I N in Application Layer 
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There are two basic types of remote inter-process communication (IPC) : connec­

tionless (datagram) and connection-oriented (virtual circuit) [Tane8l]. In the connection-

oriented type of remote communication, a logical association is established between two 

processes which wish to exchange data. This virtual connection provides a reliable ser­

vice in that lost messages are detected, and messages are guaranteed to be delivered in 

the same order in which they were sent. When one of the two processes wants to send 

a message, it is only necessary to supply a reference to the logical connection, rather 

than the receiving process's complete identification (host id + process id). A n example 

of a system which provides virtual circuits as one of its communication services is 4.2 

BSD Unix, which calls each end of the connection a "stream socket" [Leff83]. 

In a connectionless IPC environment, each time that a message is to be sent, the 

destination process' complete identification must be supplied. 4.2 BSD Unix also pro­

vides this type of service, in the form of an Unreliable Datagram Protocol (UDP). 

Here the user utilizes a "datagram socket", rather than a "stream socket" as in the 

connection-oriented case. 

A connection-oriented IPC model offers a higher level abstraction of communication 

to users. It provides a reliable end-to-end service, whereas in the connectionless model 

there is no concept of message sequencing, so that the user would need to deal with 

lost and out-of-order messages himself. More work is required on the system's part, 

though, to provide connection-oriented IPC, as the state of each connection must be 
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maintained. Wi th a connectionless model the transmission of each message is a totally 

independent operation from the system's point of view. Nonetheless most systems try 

to provide a connection-oriented type of service, since it offers a simpler interface to 

the user. Therefore a connection-oriented communication model was chosen for M I N , 

2.3 Message Versus Byte-Stream IPC 

For a connection-oriented service there are two possible formats for message exchange. 

One method views each transmitted message as an individual entity, so that one mes­

sage is delivered to the receiver at a time, in the same size as it was sent. The other 

method views the connection as a boundaryless byte stream, so that the receiver may 

accept the data in quantities different from the sizes of the messages sent by the sender. 

This style of data transfer corresponds to the file I /O model used in Unix, and is, in 

fact, the interface adopted for the stream sockets in the 4.2 BSD system. 

The differences in these two methods affect how messages must be handled at the 

receiving end, and not so much the transmission of messages. Whichever of these two 

methods is chosen for a system, though, the user may choose to impose his own view 

on incoming data, by building his own interface on top of the system services. For 

instance, if the system delivers a message at a time, but the user wants a byte stream 

abstraction, then he can simply keep receiving individual messages until the desired 

number of bytes have arrived. Any leftover data in a partially consumed message can 
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be stored for a subsequent "stream receive" operation. 

Stream Receive : 
If any data saved from previous message 

Then copy as much as is requested into user buffer 
While request not satisfied 

Await arrival of a message 

Copy as much as is requested from message to user buffer 
If message is only partially consumed 

Then save remaining data for next call 

Figure 2.3: Stream Receive for Message-oriented Service 

The other possiblity is that the system provides a boundaryless byte stream but the 

user wants to preserve message boundaries. In this case, the user must insert his own 

message delimiters. This can be achieved either through the use of a special pattern 

as a message terminator, or by pre-pending each message with a header that specifies 

how large the following message is. 

The use of either message terminators or message headers adds overhead data, 

and therefore causes additional processing overhead and message transmission delay. 

Also, the message-oriented style of message exchange is applicable to more types of 

communication than the byte stream method, which is suitable mainly for file or bulk 

transfers. The message-oriented method is therefore the style chosen for M I N . 
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Message Receive (using terminators) : 
Intialize message size counter to zero 
Repeat 

Get next byte 
If it is a message terminator 

Then stop and return message size 
Copy byte into next location in user buffer 
Increment message size counter 

Return message size 

Message Receive (using headers) : 

Get bytes comprising header 

Get as many bytes as message size specified in header 

Copy bytes into user buffer 

Return message size 

Figure 2.4: Message Receive for Byte Stream Service 

2.4 MIN Primitives 

Next the set of primitives offered to the user must be designed. For a connection-based 

service, the usual model of communication between processes is client-server. This is 

the model we will use for our primitives. Also, we strive for parsimony, since too many 

primitives would confuse users. However, we must ensure that these primitives provide 

sufficient functionality. The basic requirements are to enable users to establish and 

disconnect M I N connections, through which they may send and receive messages of 



CHAPTER 2. DESIGN 26 

arbitrary size. 

For a client-server model, connection establishment is initiated by the client, who 

is the active party. The server waits passively for a connection request. Thus two 

primitives are required for connection establishment : 

MINid = connect( servername, networks ) 

MINid — accept( servername, networks ) 

Connect is used by the client to try to establish a M I N connection with the server 

whose name is servername. Symbolic identifiers are used because M I N is an interface 

for user processes. Since servername is a symbolic identifier, we are assuming the 

existence of a name service which maps server names to addresses. This server address 

may be a Session layer address, in which case M I N can simply pass it along to the 

Session layer when it tries to establish a session on each network (see Section 2.6). 

However, if the Session layer for each network uses a different address, then M I N 

must map the server address to a set of Session layer addresses. In other words, the 

name server takes the symbolic identifier servername and returns an Application 

layer address to M I N , which then maps it to a set of Session layer addresses, one per 

network. Alternatively the name server may directly map servername to the set 

of Session layer addresses. Each Session layer address should also include the id of 
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the host on which the server process resides, since we assume server locations to be 

transparent to clients. If this were not the case for a particular system, then connect 

must take an additional parameter for specifying the server's host. 

Accept is used by the server which wishes to accept a MIN connection request from 

a client. When this request is issued, the name servername is logically bound, to the 

server process. The binding remains for the duration of the process. Only one process 

may be associated with a symbolic name at any given time. Again a name service 

is assumed which enforces this property. However, this uniqueness property could 

be enforced per-host or per-system. For implementation purposes it would depend 

on the name service available with the host system. If none were available, then we 

would recommend the implementation of one which enforced system-wide server-name 

uniqueness, since it would allow remotely accessed servers to have freedom of location. 

Accept only accepts one MIN client's connection request. The server must call 

accept each time that it wishes to accept another MIN connection. The accept prim­

itive blocks the invoking server process until a MIN connection request is successfully 

accepted or some error occurs during the connection establishment phase (see Section 

2.6 for more details). 

For both accept and connect, the second parameter networks specifies the net­

work or set of networks which the accept or connect operation is to include. This 

raises the issue of network identification, which will be discussed in Section 2.5. For 
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the time being, simply assume that an identification scheme exists which can be used 

for networks. When the user does not care which networks are to be used for the 

M I N connection, the parameter networks can simply be omitted. In that case the 

decision of which networks to use is left to the M I N software. M I N will attempt to use 

all the networks available. Most users would, in fact, omit the networks parameter, 

especially for accept. However, for generality the networks parameter is included 

for accept as well as for connect. This implies, though, that the networks specified 

by the client may not be the same as the networks specified by the server. This is 

resolved by a simple handshaking procedure which is discussed in Section 2.6. 

Both accept and connect return a non-negative M I N connection id MINid when 

the operation is successful. Otherwise a negative value indicating the cause of error is 

returned. Some of the possible errors are : 

1. networks is invalid 

2. unknown servername (for connect only) 

3. servername already in use (for accept only) 

Other errors may occur in dealing with the system's Session level services. These 

are system-dependent. 

The M I N connection id returned by connect and accept is a logical identification 

of the connection just established. This MINid is used for all subsequent operations 

on that connection, such as sending and receiving messages (described below). Since 
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the assignment of a M I N connection id is done at both ends of a connection, this 

implies that two ids are created for each connection - one returned to the server from 

an accept call, and another returned to the client from a connect call. Therefore 

some means is necessary for associating the two ids, so that messages sent by the 

server, using say i d l , will be received by the client using say id2, and vice versa. 

There are two possible ways of dealing with this problem. One method is to keep 

track of all the M I N connection ids being used in the entire distributed M I N environ­

ment. Then, each connection can be assigned a unique id which is used to reference it 

at both ends. In other words the server would get back from the accept call the same 

M I N i d as that returned to the client on the connect call. However, this solution is 

difficult to implement, as the dynamic creation and destruction of connection ids must 

be made known to all of the hosts. 

The alternative scheme requires a per-connection association of M I N ids to be 

maintained locally. That is, suppose a connection between a process on machinel and 

a process on machine2 is assigned i d l on machinel and id2 on machine2. A t machinel 

the local system can record that the id at the other end of this connection is id2, while 

at machine2 the local system can record that the other end of this connection has 

i d l . This method is preferable since it only involves the two hosts at the two ends 

of a connection, rather than all hosts in the entire M I N environment. There is still 

the problem of how each side of the connection discovers what the id being used at 
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the other end is. This may also be simply resolved during the handshaking done at 

connection establishment time mentioned above (see Section 2.6). 

To exchange messages, two primitives are needed : 

result = send( MINid , message, size, networks ) 

result = receive( MINid , buffer, size ) 

^The first parameter needed for both send and receive is the MINid returned from 

a successful connect or accept call. For send, size is the size of message in bytes. 

Since the entire message is considered as a single unit, send only returns whether the 

transmission attempt was successful. If this M I N connection involves more than one 

network connection, then one of them is chosen for sending the whole message. The 

user may limit the networks to choose from through the networks parameter. The 

format of networks is the same as that for connect and accept. However, if the 

networks supplied to the send call includes a network which was not specified in the 

connect or accept call which established the connection, an error is returned and 

the message is not sent. The networks parameter may be omitted, in which case 

the routing decision is left entirely to the M I N software (see 2.7). Although the user 

message is treated as a single entity and sent over just one network, it may require more 

than one actual transmission. This depends on the maximum message size allowed by 
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the chosen network's supporting software. 

The s e n d primitive is non-blocking, so that the user does not have to wait for 

the message to be received by the other process, nor for an associated reply message 

to arrive before continuing execution. However, in an actual implementation there is 

usually some delay from the wait for acknowledgements by the supporting layers of 

protocols. A successful s e n d does not imply that the message was actually received, 

merely that it was delivered and available to the destination process. A non-blocking 

style of s e n d was chosen in order to try to attain higher performance. Wi th more than 

one supporting network for the M I N connection, it is possible to have more than one 

message in-flight simultaneously, if the send primitive is non-blocking. 

For r e c e i v e , b u f f e r is the location of a buffer size bytes in size in which to place 

the next incoming message. If the arriving message is too large for the buffer, then 

the message is not placed in b u f f e r . If the buffer is big enough, then it is filled with 

the message's contents. In any case, though, the size of the message is returned as the 

rece ive primitive's return value. If the buffer was big enough, then this return value 

will let the user know how much data he has received. If the buffer was not big enough, 

then this return value will let the user know how large of a buffer is needed for his 

next r e c e i v e attempt. A more detailed discussion on the message reception procedure 

appears in Section 2.9. 
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One final primitive is needed for removing M I N connections : 

result = close( M I N i d ) 

This primitive may be used by clients or servers. Only one parameter, the M I N 

connection id, is needed. This causes all underlying network connections used for this 

M I N connection to be released. In addition any data which has arrived for this con­

nection but has not yet been passed to the user is discarded. However, a close call 

does not affect the other end of the connection, in that the process at the other end 

may still receive any unreceived data which was sent from this end before the close 

took place. Note that, as stated earlier, if M I N i d was established from an accept 

request, closing the connection does not unbind the process from servername. This 

does not occur until the termination of the server process. 

2.5 Host Reachability 

In order for two processes to connect to each other for communication, some physical 

path must exist between the hosts which the two processes reside on. Wi th the use 

of bridges and gateways, this is possible even if the two hosts are not both connected 

to the same network. This can lead to a very wide-spread inter-connection of hosts, 
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and combine to form a Long Haul Network like situation, where a message must pass 

through a number of intermediate hosts before reaching its eventual destination. 

In this thesis, though, we restrict our environment to exclude the use of bridges 

and gateways. That is, two hosts are considered reachable from each other only if they 

share at least one L A N in common. For instance, in Figure 2.5, host B is considered 

to be reachable from host D , but host D is not considered to be reachable from host 

A , as far as our M I N environment is concerned. 

Host B 

Host A Host D 

Host C 

Network 1 Network 2 

Figure 2.5: M I N Multiple Network Domain 

This restriction was imposed mainly to simplify our problem, not so much due to 

how bridges and gateways affect host reachability, but because of how they affect path 

selection based on network loads (discussed in Section 2.8). For host reachability, we 

can simply view those networks which are interconnected by gateways as being one 



CHAPTER 2. DESIGN 34 

large network. In Figure 2.5 for instance, suppose Host B has a Network layer which 

bridges Networkl and Network 2. We can thus consider Networks 1 and 2 to be a 

single network which connects Hosts A and D . That is, from Host A ' s point of view, it 

can reach Host D via Network 1, while from Host D's point of view it can reach Host 

A via Network 2. This can be recorded in the host reachability data structures (to be 

discussed shortly) in Host A and Host D . However, the fact that a bridge is involved 

should be transparent to M I N , since it is handled in the underlying Network layer. In 

any case, though, before the M I N concept can effectively include the use of gateways, 

the difficult problems which would be caused for path selection must be satisfactorily 

dealt with. 

Not all of the hosts need to be connected to all of the networks in our environment. 

For example, in Figure 2.5 Host A and Host B can only communicate through Network 

1, but Host B and Host C can reach each other through both Network 1 and Network 

2. Thus a means for determining which hosts can reach each other, and along which 

networks, must be devised. That is, a function which takes a (host, host) pair as input 

and returns a set of networks on which the two hosts can reach each other is required. 

Since the domain for the (host, host) pair is the set of valid host ids, the issue 

of host identification is relevant to our problem. Unfortunately, it is a complex issue 

which can not be adequately examined here. A thorough treatment can be found in 

[Chan86], which discusses the properties desirable for host identification schemes, and 
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presents one which satisfies these properties. For our purposes, we will simply assume 

the existence of a satisfactory scheme. 

The output of our mapping function has the set of valid network identifiers as its 

domain. This raises the issue of network identification. In this case, though, since it is 

only relevant to our own environment of multiply-connected machines, all we need is an 

internal scheme for uniquely identifying each network. A simple enumeration method, 

which assigns a static id to each network, suffices. For communicating with outside 

networks through bridges or gateways, we simply view our entire M I N environment as 

a single L A N , and just give it one global network identifier. 

One approach to implementing the host reachability function is to maintain a data 

structure which contains all the mapping information. A n obvious candidate for this 

data structure is a two dimensional matrix. The contents of the matrix could be 

organized in two different ways. One method is to take the point of view of the host 

on which the structure is maintained. That is, it will store for each network the set 

of hosts which are reachable from this host along that network. This implies that 

a different structure would be needed for each host. The second method is to take 

into account our entire M I N environment, and store for each network all the hosts 

which are connected to that network. As shown in Figure 2.6, with this scheme entry 

Aij is marked yes only if host j is connected to network i . The first method is more 

efficient, since it only requires looking up the entries for the destination host. However, 
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the second method is much more flexible since the same structure can be used for all 

hosts. 

1 2 3 4 

1 yes yes yes yes 

2 no yes yes yes 

3 yes yes yes yes 

4 no yes no yes 

Figure 2.6: Host Reachability Matrix 

The information in the structure can be maintained statically or dynamically. If 

it is done statically, then only the physical topology is taken into account, so that 

modification of the structure's contents are only necessary when hosts or networks 

are added or removed. Wi th dynamic maintenance, the goal is to maintain the most 

up-to-date status information, so that it is necessary to keep track of the crashes 

and recoveries of both hosts and networks. Wi th a static scheme, a user will only 

discover the loss of a host or network when his attempt to send a message fails. This 

usually occurs after some system-dependent number of timeouts and retries. Thus 
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one advantage of the dynamic scheme is that it would save the user from time wasted 

in finding out the loss of a host or network. However, the detection of host loss or 

recovery is difficult, and usually requires the sending of probe messages by the system. 

Since host and network crashes are not very common, a static scheme is sufficient for 

our purposes. 

Even for a static scheme, though, a simple matrix is actually not a totally satis­

factory data structure. This is due to its fixed dimensions, which do not allow easy 

growth or shrinkage. Since most hosts can join a network unobtrusively, it would be 

advantageous if the data structure can be readily enlarged. One structure which is 

suitable is shown in Figure 2.7. It consists of a linked list of host ids, each of which 

holds a pointer to a linked list of network ids. This structure has much greater freedom 

to grow and shrink in all directions. It also allows the set of networks common to two 

hosts to be easily found : this is simply the set of networks which appear in the linked 

list of networks for both hosts. 

2.6 Connection Establishment 

The set of networks to use may be specified by the user for both the connect and 

accept primitives. This means that the client and server may select different sets of 

networks. For example, the server may be accepting on networks 1 and 2, while the 

client is trying to connect on networks 2 and 3. In this example, connection can only 
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Figure 2.7: Host Reachability List Structure 

be established on network 2, since it is the only network common to both the client's 

set and the server's set of networks. Wi th n networks, the number of possible values 

for the networks parameter is 2 n. The total possible number of (accept-networks, 

connect-networks) combinations is 2"2. The M I N primitives must therefore perform 

some handshaking during connection establishment, so that both sides will have the 

same view of the M I N connection before any messages are exchanged. 

If the client attempts to connect on a network on which the server is not accepting 

requests, then the connect attempt will fail. Therefore the client, after making a 

connection attempt on each of the networks specified in the networks passed in the 

connect call, will know exactly which networks connection was established on. He 
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can then send an "end-of-connect" notification to the server on one of the connected 

networks (any one will do), to inform the server that he has finished his M I N connection 

attempt. The server, upon receiving this notification, can stop awaiting reception 

requests on the remaining networks, if any. The M I N connection phase for the client 

and server are shown in Figures 2.8 and 2.9 respectively. 

MIN Connect : 
Verify that server is reachable on each network specified 

in networks, removing any which are not 
If no valid network in networks 

Then return error 
Assign a MINid for this MIN connection 
For each valid network specified in networks do 

Try to establish a connection on that network 
If successful 

Then include this network for this MIN connection 
If connection was not established on any network 

Then free this MINid and return error 
Else (connection established on at least 1 network) 

Send end-of-connect notification containing MINid to server 
Wait for end-of-accept reply with MINid used by server 
Return MINid to invoking client 

Figure 2.8: Connection Phase for Client 

As mentioned in Section 2.4, each side of the connection must inform the other side 

of the connection of the M I N connection id which it is using. This is conveniently done 

during the handshaking procedure just described. In the end-of-connect notification 



CHAPTER 2. DESIGN 40 

M I N Accept : 
Verify that server is reachable on each network specified 

in networks, removing any which are not 
If no valid network in networks 

Then return error 
Repeat 

Await arrival of a connection request or end-of-connect 
notification on any valid network specified in networks 

If it is a connection request which arrived 
Then accept the request and include 

this network for this MIN connection 
Else (it is an end-of-connect notification) 

Record MINid sent by client in end-of-connect notification 
Send end-of-accept reply with server's MINid 
Return MINid to invoking server 

Figure 2.9: Connection Phase for Server 

sent by the client, he can include the M I N connection id which he is using. The server, 

upon receving this notification, sends an end-of-accept reply containing his own M I N 

connection id. This is also shown in Figures 2.8 and 2.9. To clarify further, Figure 2.10 

gives an event-by-event example of the connection phase. Since the Presentation and 

Session layers are usually not present, we have assumed them to be null and made M I N 

deal directly with the Transport entities for each network. 

Connection ids must be uniquely assigned within each host. That is, there must be 

no more than one M I N connection which is logically identified by a particular id. To 
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MIN Application 

Transport! 

Transport2 
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Server Process 

MIN Application 

Transport2 

1. Server process invokes MIN primitive accept for Networks 1 and 2 

2. MIN requests a passive Open from Transport layer for Network 1 (Transport 1) 

3. MIN requests a passive Open from Transport layer for Network 2 (Transport 2) 

4. Client process invokes MIN primitive connect for Networks 1 and 2 

5. MIN requests an active Open from Transport layer for Network 1 (Transport 1) 

6. Transport 1 (Client host) sends Open request to Transport 1 (Server host) 

7. Transport 1 (Server host) accepts Open request and returns Success to MIN 

8. Transport 1 (Server host) replies to Transport 1 (Client host) with Open Success 

9. Transport 1 (Client host) returns Success to MIN 

10. MIN requests an active Open from Transport layer for Network 2 (Transport 2) 

11. Transport 2 (Client host) sends Open request to Transport 2 (Server host) 

12. Transport 2 (Server host) accepts Open request and returns Success to MIN 

13. Transport 2 (Server host) replies to Transport 2 (Client host) with Open Success 

14. Transport 2 (Client host) returns Success to MIN 

15. MIN (Client host) sends End-of-connect notification with client MINid to MIN (Server 
host) 

16. MIN (Server host) sends End-of-accept reply with server MINid to MIN (Client host) 

17. MIN (Server host) returns server MINid to Server process 

18. MIN (Client host) returns client MINid to client process 

Figure 2.10: Event-by-Event Example of MIN Connection Establishment 
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ensure this, a 32 bit integer counter is used for assigning M I N ids. When a connect 

or accept call is successful, the current value of the counter is returned as the M I N 

connection id. The counter is then incremented, so that the same value is not used 

again. Although the counter will eventually wrap around, 32 bits should provide a large 

enough domain to guarantee uniqueness. One counter is used per host, for all M I N 

connections in that host. Additionally, some state information must be maintained for 

each M I N connection, for use in message exchange. This is discussed in more detail in 

Section 2.9. 

It is assumed that the underlying communication services for each network provides 

reliable connection establishment. It is also assumed that it is possible to simultane­

ously wait for the arrival of a connection request on one network, and for a message 

(end-of-connect notification) coming in on another network on which connection was 

already established. 

2.7 Path Selection 

In sending messages on a M I N connection which involves multiple underlying networks, 

path selection is performed on a per-message basis. That is, different messages may 

travel different paths, but no attempt is made to subdivide a user message. The choice 

of which network to send a message is made to optimize performance. Two important 
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criteria to consider in making this decision are the current load on each network and 

the message size [Vuon83]. More criteria may be found to be of significance in the 

future, therefore the decision algorithm or formula should be easily extendible. 

One possibility is to prioritize the criteria. That is, the one which is deemed as 

most important is always used first. If it is not sufficient to select a network (there 

is a tie between two or more networks), then the second most important criterion is 

used to decide between the contenders, and so on. This method is extendible, as any 

new criterion can be inserted into the appropriate position in the order of evaluation, 

according to its relative importance. However, it may not be a very good algorithm 

since it usually ignores all but the most important criterion. 

Another method is to quantify the suitability of each network for each criterion, 

then calculate the overall suitability value of each network using a weighted sum. 

For each network : 

v = t y i p i + w2p2 + ... + wnpn 

where 

Pi = suitability value with respect to criterion i 

Wi — relative weight of suitability value for criterion i 

v = overall suitability value of this network 
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E , Pi - l 

For example, suppose message size is the criterion to use. If we know that Ethernet 

is good for message sizes > 500 bytes, but is bad for message sizes <= 20 bytes, and 

that the Cambridge Ring is good for message sizes 100 bytes, but is bad for message 

sizes >1000 bytes, then we can set up a table like that in Figure 2.11. 

LAN 
Size^s^Type 
ofMessage^^ 

Ethernet Cambridge Ring 

<= 20 0.0 1.0 
20 < <= 100 0.3 0.7 

100 < <= 500 0.5 0.5 

500 < <= 1000 0.8 0.2 
1000 < 1.0 0.0 

Figure 2.11: Suitability Quantification Using Message Size 

This method too is extendible, as new terms can be easily added to the formula to 

account for new decision criteria. The relative weights, as well as the quantification 

scheme for each criterion, can be tuned according to measurement experiments for 

each particular system. However, this may be difficult when more than two criteria 

are used. Also, it is not as efficient as the priority method, since all criteria are always 
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considered, and each involves a multiplication. Efficiency is a concern since the path 

selection must be made on the sending of every user message. If the maximum benefit 

from choosing the "best" network, in terms of decreased delay time, is t , then the 

decision algorithm must require less than time t , or the potential benefit is lost. 

2.8 Load Monitoring 

A n important criterion for selecting a path for sending a user message is the current 

load of each network. Since the transmission medium in most L A N s is shared, having 

many stations which all wish to send messages around the same time would imply a 

longer delay before each station can access the medium. Delay can also come from the 

queuing of outgoing messages with each station, at various protocol layers. Thus the 

overall delay can be attributable to the global load and the local load. 

Message transmission in most L A N s is broadcast in nature (true for bus and ring 

topologies, but not for star). Thus the global load can be determined at each station by 

listening for any activity on the medium. For example, in a slotted ring, a station can 

monitor the number of filled slots passing by, regardless of the contents' destination. 

However, this is difficult without hardware support. Many vendors offer interfaces 

which only provide transmission and reception capabilities, but not monitoring func-

tons. 
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The local load is also difficult to measure, since queueing of messages, packets, 

and frames is dispersed throughout the different protocol layers. However, all must 

eventually pass through the physical layer, be they sends or receives. Therefore it is 

possible to get an estimate of the current local load, as well as make a prediction of 

what it will be in the near future. To do this, time can be divided into a number of 

fixed length quanta. The number of packets sent and received in each quantum can be 

counted. Using the n most recent quantum counts, a prediction can be made of the 

next quantum count. This predicted value could then be used as an approximation of 

the current load. Greater weight can be given to the more recent counts since they 

represent more up-to-date information. 

For each network : 

/ = W1X1 + w2x2 + ... + wnxn 

where 

Xi = packets sent and received in the i-th previous quantum 

Wi = relative weight for the i-th. previous count 

I — predicted quantum count for the next quantum 
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E< ^ = 1 

To check the accuracy of the prediction, each predicted load could be compared 

against the actual count measured in the next quantum. The relative weights can then 

be adjusted to reflect the characteristics of the system. Dynamic weight adjustment 

schemes, however, are extremely expensive. 

The quantum length must be carefully chosen. If it is too large, then accuracy is 

lost. On the other hand, if it is too small, then heavy processing overhead will be 

incurred since a load prediction is required at the end of every quantum. A similar 

tradeoff exists for choosing the number of quantum counts to use in predicting the 

next one. Too few would be insufficient to reflect a trend, and too many would incur 

memory as well as processing overhead. Again tuning is in order. 

Unfortunately this method only provides some idea of the local load. Additionally, 

it may even give the wrong information during times of very heavy network loads. This 

would occur if the network is so heavily used that a rising load would allow each station 

to perform less and less sends and receives during each time quantum. Our scheme 

would report a decreasing local load, and therefore infer an incorrect assessment of 

the network situation. Furthermore the work involved in calculating a weighted sum 

for every time quantum is very heavy. Therefore a simpler strategy based on the 

hot potato algorithm may be a better plan. Here the load for a network is simply 
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interpreted as the length of the sending queue at the physical layer. This algorithm 

requires much less computing time, and produces reasonably accurate results. Since 

the aim in determining the network load is to send a message quickly by using the 

lightest network, and the length of the outgoing queue for a network contributes to the 

delay before a message can be sent on that network, then it makes sense to consider 

the length of the outgoing queue. 

The length of the outgoing queue may be measured in terms of the number of 

packets waiting to be transmitted, or the total number of bytes in all of these packets. 

It is unclear which of these would be better to use. Also, in either case the length value 

may need to be multiplied by a factor which is different for each network. The values 

of the factors depend on the relative speeds of the networks. That is, if for example 

the Ethernet is twice as fast as the Cambridge Ring, then one packet in the Cambridge 

Ring queue should be considered as being equal to two packets in the Ethernet queue. 

Measurements could be taken in order to obtain some idea of the relative speeds of the 

networks to be used. However, since performance is affected by load, the factor would 

need to be dynamically adjusted, which could be costly. The adjustment for the factor 

may need to be different for each network as well, since different networks respond 

differently to changes in load. It is beyond the scope of this thesis to look thoroughly 

into the problem of quantifying the relative speeds of different networks. We merely 

point out that this issue needs to be considered. 
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The length of the incoming queue could, under certain circumstances, provide some 

information on the global network load. This would be true if the messages sent on 

the network are fairly evenly distributed among all the hosts as destinations. However, 

since this not always the case, the length of the incoming queue is not used by the 

M I N at all . There are other possible means for obtaining some indication of the global 

network load using the physical layer, even without adequate hardware support. This 

would depend, though, on the underlying network technology. For example, in a token 

bus or ring the length of time between successive arrivals of the token can be measured. 

The longer the time, the greater the probability that the token was consumed during 

that time. For a slotted ring, we can similarly measure the length of time between 

successive arrivals of an empty slot. For a C S M A / C D bus, it may be possible to count 

the number of collisions (and therefore re-transmissions), and include this value in the 

quantum count. In all of these cases, additional processing overhead is incurred. The 

optimum would still be a hardware interface which automatically monitors the network 

load, and makes this information available to the software as a value between 0 and 1 . 

The load information is collected in the physical layer, but it is made use of many 

layers above, in the M I N software. Still remaining then is the question of how to pass 

the information upwards. If it is accessed directly by M I N , then it would violate the 

protocol design principle which stipulates each layer to be aware of only the layer above 

and the layer below. However, the alternative of filtering the information through each 
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of the intervening layers is highly unattractive. It would be slow, as well as require 

each layer to be modified to accomodate this passing of load information. This change 

would need to be made to every protocol layer for every network! Accessing it directly 

is therefore a much better idea. To lessen the violation of the layered protocol principle, 

a N e t w o r k M o n i t o r could be utilized for gathering the load information from all the 

networks. Then M I N would simply obtain the information from the Network Monitor, 

which it can perceive as just another system entity. The Network Monitor may be 

either a separate process, if the host system adequately supports local inter-process 

communication, or it may be a shared module of system routines. The addition of the 

Network Monitor completes the picture of our overall software structure, as shown in 

Figure 2.12. 

Finally, we must discuss how the inclusion of gateways affects the task of path 

selection based on network loads. As alluded to in Section 2.6, this is not a simple 

problem. Suppose a host A can reach another host B either via Network 1 or via 

Networks 2 and 3 which are bridged by a host C. If network loads are to be used in 

deciding between the two possible paths, then we must consider the load on Network 3 

as well as the load on Network 2 for the second path. Since the delay for a message to 

travel through Network 2 is independent to that for Network 3. intuitively we should 

add the load for Network 3 to the load for Network 2. Additionally, we must consider 

the processing delay for the Network layer, the Data Link layer, and the Physical layer 
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Figure 2.12: Network Load Monitor 
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in the gateway host C. This is difficult to determine. Furthermore, how should the load 

information for Network 3 be made available to the M I N software on host A , where 

the path selection decision is being made? Since host A is not connected to Network 

3 this load information must be somehow passed along, probably through host C. If a 

path includes more than 1 gateway then the problem of accessing remote load infor­

mation for the source host becomes even more complex. The inclusion of gateways in 

a multiple network environment is a topic which is beyond the scope of this thesis. 

2.9 Message Exchange 

To send a user message on a M I N connection which consists of more than one physical 

network connection, one of the networks is selected for the actual transmission, as 

discussed earlier. However, there is no guarantee that the transmission attempt on the 

chosen path will actually succeed. A failure may arise from the loss of that network, or 

from the crash of the destination process's host, or from the death of the destination 

process itself. Since the cause is not easily determined, we will be pessimistic and 

assume that it is due to a network failure, and re-transmit the user message on another 

network. We can only conclude that it is a host failure, or equivalently, the death of 

the receiving process, after a transmission attempt on every network for this M I N 

connection has failed. The sending algorithm is shown below. 
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MUST Send : 
Construct a MIN message header for this message 
Repeat 

Choose network most favourable for sending on 
Try to send the MIN header on that network 
If failed 

Then disassociate this network from this MIN connection 
Else 

Try to send the user message on that network 
If failed 

Then disassociate this network from this MIN connection 
Until header and message successfully sent 

or have attempted and failed on all networks 

Figure 2.13: Message Transmission 

Notice that a transmission error on any network will cause that network to be 

disassociated from the M I N connection. This means that that network will never be 

used again for message transmission or reception, for the remaining duration of this 

M I N connection. The assumption is that network failures usually last more than a 

brief moment, so that it would be a waste of time to make any further transmission 

attempts on this network for sending subsequent user messages. Nonetheless, it would 

be beneficial if this disassociation could be temporary instead, so that the failed network 

can be used again once it has recovered. One way of doing so is through the Network 

Monitor. When a network is detected as being out-of-service, the Network Monitor can 

set the suitability value for that network as negative infinity, so that it will never be 
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selected for transmission. Once that network has recovered, its value can be returned 

to normal. However, this scheme requires additional system support, since a network 

failure must be accurately detected and distinguished from other possible causes of 

communication failures, such as the crash of the destination host. 

In Figure 2.13 a M I N message header is mentioned, which has not been discussed 

as yet. Its purpose is relevant to the task of message reception, which is described 

below. 

To receive a message on a M I N connection which involves multiple networks is 

slightly more difficult. Since multiple paths are available, and the send primitive is 

non-blocking, it is possible for user messages to arrive out of sequence. This property is 

purely a consequence of the behaviour of MIN's non-blocking transmission of messages. 

Therefore we must deal with message sequencing ourselves. For each M I N connection, 

it is necessary to maintain a sending sequence number and a receiving sequence number. 

The sending sequence number is put into a M I N header which is prepended to each user 

message to be sent. Also required is the size of the message, and the M I N connection 

id used by the receiving side of this connection. This simple header format is shown 

in Figure 2.14. Additional contents may be placed in the header in the future, as new 

features are incorporated into M I N . 

In order to avoid excessive data copying, the M I N header is not physically prepended 

to the user message and sent off together. Instead, the header is sent first separately, 
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Figure 2.14: M I N Message Header 

and then the user message is sent immediately afterwards. However, both the header 

and its associated user message must be sent on the same network. For each network 

involved in a M I N connection, the software must keep track of whether a M I N header 

or its following user message is due to arrive next. As long as each header/message pair 

is sent on the same network, one after the other, then this is not a difficult task, since 

the arrival order on each network will always be : header, message, header, message, 

and so on. 

On the arrival of a message header on one of the networks, the receiver must 

check whether it contains the correct sequence number. If the sequence number in the 

header matches the receiving sequence number for that M I N connection, then when 
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the associated user message arrives, it is passed to the user in his buffer. In either 

case, the size of the message is returned to the user as the return code to the receive 

call. If it is larger than the size of the buffer, then the user will know that the receive 

attempt failed, and how big of a buffer he needs. 

Alternatively, the sequence number in the header can be greater than the receiving 

sequence number for that M I N connection. This implies that this message has arrived 

out of sequence, ahead of another message which was actually transmitted before this 

one was. The out of sequence message should be buffered, until the preceding message 

or messages have arrived and have been consumed by the user. Also, since messages 

sent on the same network cannot arrive out of order (guaranteed by the Transport 

service on each network), we may as well temporarily ignore the network on which 

the out of sequence message arrived, to decrease the chances of having to deal with 

more out of sequence messages. This network can be "re-enabled" after its buffered 

out of sequence message has been delivered to the user. If all the networks for the M I N 

connection have thus been disabled, it means that a message has been lost, and the 

connection must then be closed. 

Another possibility is that the sequence number in the message is less than the 

receiving sequence number. This can be caused by an undetected network error which 

corrupted the sequence number in the M I N header, or it may imply the arrival of a 

duplicate message. In either case the dubious message should be discarded. Although 
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the Transport services for each network is supposed to provide reliable end-to-end 

communication, the nature of MIN's transmission algorithm makes duplicate messages 

possible. Suppose the Transport services of the chosen network successfully delivers 

the user message, but does not manage to get an acknowledgement from the Transport 

layer at the destination host. It will thus report the transmission attempt as having 

failed, even though it has been received by the destination Transport layer (there is no 

way to know that the acknowledgement was lost, since there is no acknowledgement 

of the acknowledgement). The M I N send primitive will then assume a failure on that 

network (which may actually be the case), and re-transmit on another network. When 

this message arrives via the second network and is passed to M I N , a duplicate message 

situation wil l have resulted. However, it is not a serious consequence, as the duplicate 

message can be simply discarded, and message reception can continue as normal. 

One other possible scenario is that the M I N header is successfully sent, but the user 

message is not. In this case, the sender should re-send both the header and the message 

on another network. This is done in order to preserve the arrival sequence of header, 

message, header, message, etc. on each network. The fact that the transmission failure 

occurred on trying to send the message can be detected by the receiver upon the arrival 

of a duplicate header. That is, a header with the same sequence number has already 

arrived on another network. In this case, the first network to have delivered this header 

should be considered to have failed, and that network should be disassociated from this 
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M I N connection. The M I N software on the sender's side does not re-transmit either the 

header or the message on the first network, since each of the underlying protocols layers 

has already made a number of re-trys before giving up and reporting a transmission 

failure. The algorithm for receiving is given below. 

There is also the issue of sequence number wraparound. The domain of sequence 

numbers should thus be chosen to be large enough as to make this rare, but not so 

large that it incurs a lot of overhead in terms of the size of the M I N header. A n 8 

bit sequence number should suffice. The sequence number is initialized to 0 when the 

M I N connection is created, and incremented once for each user message. 
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M I N Receive : 
Repeat 

Wait for a header or message to arrive on any network 
If an error occurs in trying to receive the header or message 

Disassociate this network from this MIN connection 
If all networks for this MIN network have been disabled 

Then return error 
Else If it is a header 

If message size > user's buffer size 
Then return size of message 

Record sequence number and message size for that network 
If sequence number > reception sequence number 

Temporarily disable that network 
Else If sequence number = reception sequence number 

and another network has already received the same header 
Disassociate that other network from this MIN connection 
If all networks for this MIN network have been disabled 

Then return error 
Else / * it is a message * / 

If recorded sequence number < reception sequence number 
Discard the duplicate message 

Else /* message is in-sequence */ 
Put message into user's buffer 
Update reception sequence number 
Return size of message 

Figure 2.15: Message Reception 



Chapter 3 

Implementation 

This chapter deals with an implementation of the M I N software at the University of 

B . C . First the hardware and software environment is described. Next the configuration 

of the software, i.e. the user interface, is discussed. Following that is a brief report 

on the supporting system software used by M I N . Explanations on how this support­

ing software is utilized for connection and establishment and message exchange are 

included. Also contained in this chapter are sections dealing with how network loads 

are monitored and how path selection for message transmission is made. 

It should be noted that the purpose of this implementation was mainly to obtain 

some measurement results for evaluating the practicality of the M I N concept. The fact 

that it was never intended for general use significantly influenced how certain aspects 

of the software was implemented. Evidence of this will appear in some of the upcoming 

sections. 

60 
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3.1 Environment 

The hardware environment for our implementation consists of a Vax 11/750, a Vax 

11/780, and 10 Sun-2 workstations, interconnected by a 10 Mb/ s Ethernet using 3 C O M 

interfaces [3COM82]. One of the Suns, named "ubc-dsrg", is also connected to a 10 

M b / s Toltec Cambridge Ring [Toltec]. Since the dsrg Sun is the only machine con­

nected to more than one network, most of the testing and performance measurements 

(given in chapter 4), were performed on this workstation. 

The Vaxes and Suns are connected to a number of terminals through a Develcon 

Data Switch. There are also dial-up lines, and remote logins are also possible through 

the Ethernet. A l l together, about 40 users may be simultaneously served. Unfortu­

nately, though, this is hardly sufficient to load down the network. 

A l l of the machines operate the 4.2 BSD Unix system, which provides local and 

remote transport level inter-process communication services in the form of sockets. 

These sockets are used by M I N as the interface to the system's supporting network 

protocols, for both the Ethernet and the Cambridge Ring. Before discussing how ex­

actly the sockets are used, the IPC primitives offered by 4.2 BSD are first presented. 

Only a very brief description is given; much more detail can be found in [Leff83]. 
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3.2 4.2 BSD IPC Primitives 

When a process running under 4.2 BSD Unix wishes to communicate with another 

process, each of these processes must first create a socket. This is done using the prim­

itive : 

socket( domain, type, options ) 

The first parameter specifies the communication domain. If it is local (both pro­

cesses reside on the same host), then the user use the constant A F J J N L X as the d o m a i n 

argument. If it is remote, the constant A F JTNET (for inter-net) is used. The parameter 

type defines the type of socket to create. The types available are stream (specified by 

the constant S T R E A M ) , for use in connection-oriented IPC, and datagram (specified 

by the constant D G R A M ) , for connectionless IPC. The M I N software uses only stream 

sockets. The value returned by socket is a non-negative socket number. 

For connection-oriented IPC, once each process has created a socket a logical con­

nection must be made between them. To achieve this, one the processes must act as a 

client and make a connection attempt to the other process, which is acting as a server 

by passively waiting for the connection attempt. The client's attempt is carried out 
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using the primitive : 

connect( socket, sin, sinsize ) 

The first parameter is the socket number returned by socket. The second parame­

ter points to a structure containing information on the server process which the client 

wishes to connect to, and the host machine which the server resides on. The third 

parameter indicates the size of the s in structure. The host and server information is 

obtained through 2 system functions : 

gethostbyname( hostname ) 

getservbyname( servername ) 

These functions allow users to refer to hosts and servers by symbollic names (Ascii 

strings). In 4.2 BSD there is a names service which enforces unique server names on a 

per-host basis, which is why both the host and server must be specified in the call to 

connect. 

Before the client can connect to a process named servername, the server must 
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have already assumed that identity. This it does using the primitive : 

bind( socket, sin, sinsize ) 

The s in and sinsize parameters are the same as those for connect. However, 

only the server information in the s in structure needs to be filled in, and not the host 

information. The server information is obtained using a call to getservbyname. 

Once the server process has logically bound a socket to the symbollic name, it can 

then sit and wait for a connection attempt by a client. This is done using the primitive 

listen( socket ) 

This primitive only needs to be called once by the server. It marks the specified 

socket as "listening" for connection attempts. When one arrives, the server may accept 

the connection request using the primitive : 

accept( socket, sin, sinsize ) 

The socket parameter is the number of the bound socket which the server is listen-
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ing on. The sin and sinsize paramters are the same as those for connect. However, 

the sin structure is filled in by the system rather than the user. On return from the 

accept call it contains information on the client whose connection request was just 

accepted. 

A connection is now established between the server and client. The accept primi­

tive creates a new socket for the server which is used for subsequent data transfer on 

that connection. The original socket is retained for listening for additional connection 

attempts by other clients. 

To send data through a connected socket, a process uses the primitive : 

write( socket, address, size ) 

This transfers size bytes of data located at address through socket to the socket 

at the other end of the connection. The w r i t e primitive returns the number of bytes 

successfully written. To retrieve the data, the other process uses the primitive : 

read( socket, buffer, size ) 

This attempts to get up to size bytes of data out of socket and put them into 

buffer. The read primitive returns the number of bytes successfully read. 
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Although data transfer on 4.2 stream sockets behaves more or less like standard 

Unix I /O (i.e. a boundaryless byte-stream), there are some differences. Suppose two 

processes have established a connection of stream sockets, and one process executes : 

read( socket, buffer, 96 ) 

while the other process executes 

write( socket, address, 64 ) 

write( socket, address, 32 ) 

The result returned to the receiving process for its read call may be different 

depending on the amount of time which passes between the 2 w r i t e calls made by the 

sender. If a long time elapses in between, then the read call returns 64, the number 

of bytes sent by the sender on its first wr i t e . That is, only the first chunk of data is 

delivered to the receiver. If there is a very brief interval, then all 96 bytes are delivered. 

This is because the 4.2 BSD software on the receiving side only waits a finite amount 

of time after the first block of data arrives for more data to arrive. If no further 

data arrives within that period, then it simply delivers whatever it has gotten so far. 

However, this characteristic of 4.2 BSD is not of great consequence as far as the M I N 
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software is concerned. 

When a process has finished using a socket, it can be removed using the primitive 

close ( socket ) 

As pointed out in chapter 2, it is crucial to the M I N software to be able to wait for 

more than one event simultaneously. The events of interest are the arrival of messages 

and connection requests. In 4.2 BSD there is a primitive which provides the ability to 

multiplex socket I /O : 

select( maxsocket, readmask, writemask, exceptmask, options ) 

The parameters readmask, wr i t emask , and exceptmask, are bit masks of socket 

numbers which the user is interested in using for receiving data, sending data, and 

transmission exceptions, respectively. The M I N software only needs to use readmask, 

so wr i t emask and exceptmask will not be further discussed. The final parameter 

options is for specifying additional options. This is not used by M I N either. 

Select is not a blocking function which does not return until one of the specified 

events (e.g. arrival of data on one of the sockets specified in readmask) occurs. 
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Rather, it takes an instantaneous check on the status of each of the specified sockets 

and reports on them. Thus to wait for an event, the user must repeatedly call select, 

in a polling fashion. 

To check whether any data has arrived on a certain socket, the user must set the 

corresponding bit in argument readmask to 1. For example, to check the socket whose 

id is 2, bit 2 (where bit 0 is the least significant bit) in readmask should be set to 1 

on entry to select. On exit, the same bit in readmask is set by the select function 

to indicate that socket's receiving status. If the bit is 1, it means that some data has 

arrived on that socket which has not been delivered to the process yet. A bit value of 

0 on the other hand mean that there is no outstanding incoming data on that socket. 

Thus readmask acts as both an input and an output parameter. 

More than one bit may be set in readmask, to allow multiple sockets to be ex­

amined for their status simultaneously. The limit depends on the host machine's word 

size (number of bits in readmask) and maximum number of sockets which may be 

open at the same time. On our Sun workstation the limit is 32, which is the word size. 

The maxsocket parameter is used to indicate the largest socket number specified 

in readmask, wr i t emask , or exceptmask. In our case only readmask is relevent. 

That is, maxsocket should be set to the number of the most significant "on" bit in 

readmask, plus one. For example, if the highest socket number selected is 6, so that 

bit 6 in readmask is set to 1, then maxsocket should be given the value 7. 
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The select function can be used to check for the arrival of a connection request as 

well as data, if the socket is marked as "listening". In either case the corresponding 

bit in readmask has the value 1 on exit from select. Thus a connection request could 

be viewed as a special type of data. 

3.3 Supporting Network Software 

Communication over the Ethernet is provided directly by 4.2 B S D , which runs T C P / I P 

as the default transport protocol for internet stream sockets. A t U . B . C . there is an­

other transport level protocol available, the locally developed L N T P (Local Network 

Transport Protocol) [Chan84]. Although L N T P is designed especially for L A N s and 

is therefore much more efficient in our environment, T C P / I P was chosen for our im­

plementation because it is much more widely used. Switching to L N T P or any other 

transport protocol would be easily done as it merely involves the modification of one 

of the parameters supplied to the 4.2 BSD IPC function connect (see 3.2). 

Access to the Cambridge Ring is provided by a software package developed by 

another graduate student at U . B . C , L . Chan [Chan85]. This software also provides 

transport level communication, using the BSP and B B protocols. Unlike the T C P / I P 

software, which sits passively in the 4.2 BSD kernel, the BSP software is structured 

as an active server process. The BSP server is interfaced through 4.2 local IPC , using 
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Unix domain sockets. 

The communication provided by the BSP server is connection-oriented, so that a 

client/server model is used for connection establishment. This begins with the user 

server process sending an accept request message to the B S P server. This message 

contains a BSP connection id which identifies the user to the BSP server. Unfortu­

nately the current state of the BSP software is such that these connection ids must 

be determined by the user himself, rather than given out by the BSP server. That is, 

the user must choose an id somehow and make sure that it is not used by anyone else. 

How the M I N software deals with this is discussed in Section 3.6. 

After the user server process has established contact with the B S P server, then 

the user client process can send a connect request message to the B S P server. This 

message should contain a connection id for the client itself, and the connection id used 

by the server which the client wishes to connect to. If the server connection id is 

incorrect, or the connect request message is received by the BSP server before the 

accept request message, then an error reply message is returned to the user client 

process. 

To send a message over the Cambridge Ring, a user process must first send a send 

request message to the BSP server, which contains the destination connection id, and 

the size of the message. The user process then sends the message itself to the BSP 

server. A reply message is returned by the BSP server to indicate the results of the 
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transmission attempt. 

To receive a message over the Ring, a receive request message is sent to the BSP 

server. This request message contains the user process's connection id, and the size 

of the expected message. The user process must know ahead of time how large the 

arriving message will be. If it turns out to be of a different size, then problems will 

develop. Fortunately this characteristic of the BSP server interface does not pose too 

great a difficulty for the M I N software (see Section 3.7). 

When a BSP connection is no longer needed, it may be removed by sending a close 

request message to the BSP server, and then closing the local socket. 

3.4 Software Configuration 

The M I N software is intended to provide communication services to all user processes, 

as part of the host system. Therefore it should reside in system space, as a re-entrant 

shared module. However, in our implementation it was decided not to place the M I N 

software in the host system, in order to disturb users as little as possible. Instead the 

M I N software is configured as a linkable library of routines, so that each user program 

contains its own copy of the code. Another motivation for this was that the BSP server 

is itself a user process, accessed through system IPC services. In our environment the 

4.2 BSD IPC functions form the Application layer. If the implementation were intended 
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for actual use rather than experimental purposes, then the M I N software would need 

to be incorporated into the system. 

The M I N library contains the 5 primitives described in Section 2.4. A synopsis of 

each appears below. These functions are implemented in C, and are intended for a C 

caller. The prefix m i n _ is added to their names in order to avoid confusion with the 

4.2 BSD IPC routines. 

int min_accept( servername, networks ) 

char * servername; 

int networks; 

int min_connect( hostname, servername, networks ) 

char * hostname; 

char * servername; 

int networks; 

int min_send( MINid , message, messagesize, networks ) 

int MINid; 

char * message; 

int messagesize; 

int networks; 
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int min_receive( MINid , buffer, buffersize ) 

int MINid; 

char * buffer; 

int buffersize; 

int min_close( MINid ) 

int MINid; 

The networks parameter for min_accept and min_connect is a bit mask of net­

work ids. Its format is similar to that of the readmask parameter for the 4.2 BSD 

function select (see Section 3.2), which is a bit mask of socket numbers. Each network 

in the M I N environment is assigned a small integer id, starting from 0 as the lowest 

id. To specify a network using networks, the bit which corresponds to that network's 

id is set to 1. For example, to specify the network whose id is 4, use : 

networks = 1 << 4 

In our implementation environment the Ethernet is assigned the id 0 while the Cam-
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bridge Ring is given id 1. These ids are also denned as the C constants M I N . E T H E R N E T 

and M I N _ C A M B R I N G , respectively, in the header file m i n . h . Thus to specify the 

Cambridge Ring for example, use : 

networks = 1 << M I N _ C A M B R I N G 

B y using networks as a bit mask, more than 1 network can be specified using a 

single value. This is achieved by setting the bits corresponding to each desired network 

to 1, using a logical O R operation. For example, to select both the Ethernet and the 

Cambridge Ring, use : 

networks = (1 « M I N . E T H E R N E T ) | (1 « M I N . C A M B R I N G ) 

If the user does not care which networks are used for the M I N connection, the 

networks parameter should be set to 0, or the defined constant M I N . A N Y N E T S . 

This symbol is also defined in the file m in .h , along with a number of other items 

which will be mentioned in the upcoming sections. 

The servername parameter is a pointer to a null-terminated Ascii string which 

symbolically identifies the server process. This string must be a name which is under­

stood by 4.2 BSD function getservbyname (see 3.2). Two names were created for the 
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purposes of developing M I N : "kctes t l" and akc_test2". The hostname parameter 

also points to an Ascii string. It identifies the host which the server resides on. It 

must be a name understood by the 4.2 BSD function gethostbyname, for instance 

"ubc-dsrg" for the dsrg Sun workstation. 

The min^accept and min_connect primitives return a non-negative M I N con­

nection id when a M I N connection is successfully established. This MINid is used for 

subsequent calls to min_send, min_receive, and min_close. If an error occurs, then 

a negative error code is returned instead. 

The min_send primitive returns 0 if the message located at message, of size mes-

sagesize bytes, is successfully sent. A negative error code is returned otherwise. The 

min_receive primitive returns a positive value equal to the size of the next received 

message. If the size of the user's buffer, buffersize, is large enough, then min_receive 

copies the message into buffer. If the user's buffer is not big enough, then it is left 

undisturbed. The user will know that a message has arrived but has not been passed to 

him, by the fact that the return code from min_receive is larger than his buffer size. 

Another call to min_receive, with a large enough buffer, would have to be made in 

order to retrieve that message. If some reception error has occurred, then min_receive 

returns a negative error code. One final possibility is that the process at the other side 

of the M I N connection has closed his end of the connection, so that no more messages 

will arrive on it. In this case m i n .receive returns 0. 
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The min_close primitive only requires a M I N connection id as a parameter. It re­

turns 0 if the connection is successfully closed, or a negative value if there is an error. 

The only possible error is that M I N i d is invalid. 

3.5 Host Reachability 

Our implementation of M I N uses a static scheme for recording host reachability in­

formation. That is, only the physical connection of the machines to the networks is 

stored. No attempt is made to keep track of the current up/down status of each host 

and network. 

The logical structure for storing the host reachability information is the linked list 

of linked lists structure described in Section 2.5. It is implemented as an Ascii text file, 

with each line containing the names of the hosts which are connected to that network. 

The first line is used for network 0 (Ethernet) and the second line is used for network 

1 (Cambridge Ring). The file is kept in Ascii instead of binary form so that it can 

be more easily read and modified. This file should be updated whenever the physical 

connectivity of hosts and networks in the M I N domain changes. 

Each of the host names in this file are those used for the local networking environ­

ment. That is, these names are understood by the system function gethostbyname. 

The host names on each line are separated by one or more blanks or any other white-
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space characters (tabs, etc.). When the min_connect primitive is called by a user, the 

M I N software searches each line of this file for the argument host name, to determine 

which networks that host is connected to. If the name is not found on any line, then 

it is an invalid name and min_connect returns an error code. Otherwise, if the user 

has specified a set of networks to use, then the M I N software must verify that the 

argument host name is found on the appropriate lines of the file. If it is missing from 

any of the specified network's corresponding lines, an error code is returned. 

The same check on the networks parameter is made by the min^accept prim­

itive. However, since the user is not required to submit the local host name as an 

argument to min_accept, the M I N software must either have it hard-wired into the 

code or determine it dynamically from the system. Since hardwiring the host name 

would require a different version of M I N on every machine, getting it at run-time is a 

much better idea. On 4.2 BSD there is a system function which provides this : 

gethostname( hostnamebuffer ) 

This function returns the name of the host in the argument buffer, as an Ascii 

string which is understood by the system function gethostbyname. It can therefore 

be used as the target string in searching each line of the host reachability file. 

There is the possibility that the file may be modified while it is being examined by 
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the M I N software. In order to take the changes into account as soon as possible, the 

M I N software reads in each of the file every time it wants to perform a search for a host 

name, rather than reading in the entire file only once at startup time and then perform­

ing all subsequent searches on the in-memory copy. Although the alternative method of 

keeping a copy of the file in memory may save a little bit of 1/O time, the results might 

not always be correct. For instance, if the application is a system deamon which is up 

for a long time, then it would not discover the changes in the host reachability file at all. 

3.6 Connection Establishment 

To establish a M I N connection between 2 processes, the M I N software must do the 

following : 

1. establish a connection on each of the networks on which the 2 processes can 
reach each other, and which were selected by both the client and server in their 
respective networks argument 

2. ensure that both sides have the same view of which networks are being used for 
that M I N connection 

3. inform each side of the connection of the MINid assigned to that M I N connection 
at the other side, so that message exchange can successfully take place 

The final step is not necessary in our implementation since the supporting network 

software is connection-oriented. This means that we only need to know the socket 
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number on our side of a connection when we wish to transmit a message. Since a 

logical connection has been established between that socket and the destination process' 

socket, the supporting software will deliver the message to the appropriate destinattion 

socket, and hence to the correct destination process. 

On the client's side, the M I N software makes a connection attempt on each of the 

networks selected for this M I N connection. These are the networks found in the host 

reachability file (see 3.5) which were selected by the user in the networks argument 

passed to min_connect. For the Ethernet, the connection attempt is made by creating 

a socket and then calling the 4.2 BSD routine connect (described in 3.2). If it is 

successful, then the socket number is recorded in a data structure which maintains the 

status of each M I N connection. The organization of this structure is shown below, in 

C programming language syntax. 

The structure member type is a sub-structure which details which networks are 

utilized for this M I N connection. Its format is shown below. 

The structure member m a n y indicates whether only one network is used, or more 

than one. If only one, then the union t contains the id of that lone network. If more 

than one network is used, then the union t holds a bit mask of all the network ids 

used. This bit mask is in essentially the same format as the ne tworks parameter for 

min_connect, min_accept, and min_send. By considering a M I N connection which 

only involves a single network to be a special case, it allows messages to be sent without 
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typedef struct 
{ 

T Y P E type; 
int smask; 
int rnaxs; 
int rmask; 
int sseq; 
int rseq; 
PORT port[MIN_MAXNET]; 

} CONNECTION; 

Figure 3.1: C O N N E C T I O N Structure 

going through the path selection algorithm first (discussed in 3.9), and messages to be 

received without polling all the sockets (discussed in 3.9). 

The members smask, maxs , and rmask of the C O N N E C T I O N structure are 

used for message reception, but only when the M I N connection involves more than one 

network. The members sseq and rseq are message sequence numbers used for sending 

and receiving, respectively, on this M I N connection. Message exchange is discussed in 

detail in Section 3.9. 

In addition to storing data which relate to the M I N connection as a whole, some 

information must be kept for each of the networks used for that M I N connection. This 

is kept in sub-structures, one per network connection. Each of these is termed a P O R T . 



CHAPTER 3. IMPLEMENTATION 81 

typedef struct 
{ 

BOOLEAN many; 
union; 

int net; 
int nmask; 

t; 

} T Y P E ; 

Figure 3.2: T Y P E Structure 

Each P O R T structure contains a socket number used for communicating over that 

network. For the Ethernet this would be a socket which is connected directly to the 

process on the other end of the M I N connection. For the Cambridge Ring this socket 

would be connected to the BSP server. As mentioned in Section 2.9, a M I N header 

logically prepended to each user message, and although the header and message are 

not sent together as a single unit, they are always launched on the same network, with 

the message immediately following the header. Thus the arrival sequence of items on 

each network is header, message, header, message, and so on. The P O R T structure 

must therefore keep track of whether it is a header or a user message which is due to 

arrive next on that network. This is done using the boolean structure member rda ta . 
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typedef struct 

{ 

int sock; 

BOOLEAN rdata; 

HEADER rhdr; 

} PORT; 

Figure 3.3: P O R T Structure 

When it is a message which is due to arrive next, rdata has the value T R U E . When 

it is a header which is due to arrive next, rdata has the value F A L S E . The P O R T 

structure also contains a buffer for storing the latest header received, which contains 

relevent information on its associated message, such as its size. The format of the 

H E A D E R structure and its usage is discussed in Section 3.9. 

When the min_connect primitive makes a successful connection on a network, the 

socket number is recorded in that network's P O R T structure. If this M I N connection 

involves more than one network, then the M I N software also sets the bit corresponding 

to the socket used for this network in the smask member of the C O N N E C T I O N stru-

ture. As mentioned earlier, smask is used for message reception, which is discussed in 

Section 3.9. If on the other hand the connection attempt failed, then the min.connect 

primitive must dissociate that network from this M I N connection, so that this network 
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would not be considered for subsequent message transmission and reception. This is 

done by clearing the bit corresponding to that network's id in the T Y P E sub-structure 

within the C O N N E C T I O N structure. A connection attempt may fail due to a number 

of reasons. One possibility is that there is a problem with the network or the destina­

tion host. Another possible cause is that the server is not present or is not listening 

for connection attempts on that network. If connection is not successfully established 

on any network, then min_connect returns an error code. 

Once a connection attempt has been made on each of the networks selected for 

this M I N connection, and the results appropriately recorded, then the min_connect 

primitive sends the connection information in the T Y P E sub-structure over one of the 

networks on which connection is established. This action serves two purposes. First, 

it tells the process at the other end of the connection which networks the process at 

this end thinks connection is established on. Secondly, it lets the server know that 

the client has completed all his connection attempts and is now ready for message 

exchange. The latter is useful in case the server is listening for connection attempts 

on more networks than the client is trying to connect on. For example, suppose that 

the server is listening on both the Ethernet and the Cambridge Ring, but the client 

only wants to connect on the Ethernet. When connection has been established on the 

Ethernet and the T Y P E information arrives, the server will then know that this client 

only wants to connect on the Ethernet. It can therefore stop listening for connection 
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attempts on the Cambridge Ring. Since a client's connection attempt blocks him from 

further execution until the server has received and accepted it, it is not possible for 

the T Y P E information to arrive at the server until the client has completed all of 

his connection attempts. Therefore there is no possibility of the T Y P E information 

arriving too soon and causing an error. 

However, if there is more than one client attempting to connect on more than one 

network around the same time, then problems may arise if their connection attempts 

are interleaved. For example, suppose there are two clients clientl and client2, both 

wishing to connect to the server on both the Ethernet and Cambridge Ring. Suppose 

further that clientl's Ethernet attempt has already arrived and has been accepted, 

when client2's Cambridge attempt arrives. If the M I N software does not realize that 

this attempt is from a different client than the one accepted on the Ethernet, then it 

would incorrectly form a M I N connection from the Ethernet connection to clientl and 

the Cambridge Ring connection to clientl. Thus some client identification information 

must be retained when a connection attempt is accepted. Fortunately this information 

is made available by the 4.2 BSD routine accept, so that min_connect does not have 

to send it itself. 

Another scheme which was considered as a possible solution to the above problem 

is to order all the networks in our environment so that clients always runs through the 

networks for their connection attempts in the same order. The most obvious ordering 
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is by network ids, so that in our implementation a connection attempt would always be 

made on the Ethernet before the Cambridge Ring. This scheme works very well for the 

scenario described above. Since the server has already accepted clientl's connection 

on the Ethernet, it ignores client2's connection attempt on the Ethernet. Thus client2 

is blocked, and it cannot make a connection attempt on the Cambridge Ring and have 

it arrive before clientl's Cambridge Ring connection attempt. Unfortunately, though, 

this method does not always work. A counter-example is easily formed by modifying 

the above situation so that client2 is only attempting to connect on the Cambridge 

Ring. 

For the server, the M I N software's task is different depending on whether the M I N 

connection involves more than one network or not. If only one network is used, then 

the min_accept primitive merely has to create a socket, and then wait for a connection 

attempt from the client. 

If more than one network is involved, then the server must create a socket for each 

of these networks. It then polls all the sockets at the same time for the arrival of 

connection attempts (on the Cambridge Ring the server must first send an accept 

request message to the BSP server). When a connection attempt arrives on one of 

the networks, the M I N software accepts it. If it arrived on the Ethernet, then the 

new socket number returned by the 4.2 BSD function accept must be stored into the 

P O R T sub-structure. The M I N software then records the fact that connection has been 
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established on this network by clearing the bit corresponding to the socket used for this 

network in the rmask member of the C O N N E C T I O N structure (rmask is initialized 

to the value of smask after all the sockets are created). However, min_accept does 

not ignore this network but continues to listen to all the networks selected for this 

M I N connection. Later, when the 4.2 BSD function select reports that something has 

arrived on an already connected network, the M I N software will know that it is not 

a connection attempt which has arrived, but rather the T Y P E information sent by 

the client to indicate the end of the connection establishment phase. The min_ Jaccept 

primitive can then stop listening for connection attempts on the yet unconnected net­

works if there are any, and dissociate those networks from this M I N connection by 

clearing the corresponding bits in its C O N N E C T I O N structure's T Y P E sub-structure. 

A check should be made that the local T Y P E information matches the contents 

of the T Y P E sent by the client. In the unlikely event that they disagree, all network 

connections just established for this M I N connection are removed and min^accept 

returns an error result. 

3.7 Path Selection 

When the user wants to send a message over a M I N connection which uses more than 

one supporting network, a path selection must be made. If the user has specified 
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a network or a set of candidate networks using the networks parameter passed to 

min_send, then only these networks are considered, if they are valid for this M I N 

connection. The validity of the specified networks are easily determined using the 

T Y P E information in the C O N N E C T I O N structure. If any of the specified networks 

are invalid, i.e. connection was not actually established on those networks or the 

destination host is not reachable on those networks, then those networks are not used 

for the path selection algorithm. If the user did not specify any networks using the 

ne tworks parameter, which would be the usual case, then the M I N software will 

choose from the networks indicated in the T Y P E sub-structure. 

The path selection algorithm used by our implementation considers two factors : 

message size and network loads. A prioritized scheme, as described in Section 2.7, 

is used, with message size treated as the more important of the two factors. Since 

the Cambridge Ring is more suitable than the Ethernet for sending small messages, 

the Cambridge Ring is chosen for sending all messages <= 32 bytes. On the other 

hand, the Cambridge Ring is not nearly as efficient as the Ethernet for sending large 

messages. Thus the Ethernet is chosen for sending all messages >= 512 bytes. These 

size boundaries were not mathematically derived to be the optimum; their selection 

was based on the fact that the Cambridge Ring's Basic Block protocol only puts 2 

bytes of actual data in each mini-packet. Also, the Ethernet always pads packets to a 

minimum size of 128 bytes. These size boundaries are reasonable for our purposes, but 
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for an implementation which is intended for general use, more careful analysis would 

need to be done. 

For messages with sizes between 32 and 512, the path selection is based on the 

current load on the two networks. The minjsend primitive chooses the network with 

the lighter load to send the message on. How the network loads are estimated and 

accessed by the M I N software is discussed in the next section. 

3.8 Load Monitoring 

Our implementation of the M I N software uses the length of the outgoing queue at the 

lowest protocol layer as an estimate on the network load. The length of the queue 

is measured in terms of the number of packets in the queue, rather than the total 

size of the data contained in the packets. Although this value only reflects the local 

load, it is a reasonable measure to use since the length of the transmission queue has a 

direct effect on the delay before the message is actually transmitted, and the purpose 

of monitoring the network loads is to try to get the message launched as quickly as 

possible. 

In order to store the load information, the device drivers for the Ethernet and Cam­

bridge Ring were modified to each keep a counter for the length of its outgoing queue. 

They were also changed to accept a new type of I /O control request, for inquiring on 
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the current network load (length of the transmission queue). Thus the load informa­

tion for a network is obtained using the system function ioctl, as follows : 

ioctl( dd, G E T L O A D , &load ); 

The argument dd is a device descriptor number, obtained from an earlier call to 

open the device (Ethernet or Cambridge Ring). The argument G E T L O A D is a 

denned constant which uses the system-defined macro JEOCTL to construct a packed 

32 bit value which specifies that this is a request to get the current network load. 

The final argument is the address of an integer variable load, into which the modified 

device driver will place the network load value. 

To avoid direct access of the physical layer device drivers by the M I N software, a 

Network Monitor process was built which made the ioctl calls to get the network loads 

information and forwarded these to the M I N software through Unix domain sockets. 

However, as one would expect this proved to be much too expensive, as a request and 

reply would need to be exchanged each time a user message to be transmitted requires 

a path selection based on network loads. Thus the ioctl calls have been moved into 

the M I N software, and are made by the min_send primitive instead. 
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3.9 Message Exchange 

The min_send primitive was relatively straightforward to implement. When the M I N 

connection only involves a single network, all user messages are sent on that one net­

work. The M I N software sends a header ahead of each user message. The header 

structure is organized as follows : 

typedef struct 
{ 

unsigned seq; 
unsigned size; 

} HEADER; 

Figure 3.4: H E A D E R Structure 

The structure member seq is the sequence number for that message. This is the 

sending sequence number for this M I N connection, stored in the sseq member of the 

C O N N E C T I O N structure. The sequence number is initialized to zero when the M I N 

connection is created. 

When a message is to be sent on a M I N connection which involves more than one 

network, the M I N software must go through the path selection algorithm described 

in Section 3.7. The message is then sent on the selected network, preceded by the 
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header described above. If an error occurs in attempting to send either the header or 

the message, the M I N software assumes that this network has failed, and dissociates 

it from this M I N connection by clearing the corresponding bit in the C O N N E C T I O N 

structure's T Y P E sub-structure. The min_send primitive must then select one the 

remaining networks for this M I N connection for re-transmission. On the re-try both 

the header and the message are sent, even if the header was successfully sent on the 

first try and the error had occurred in trying to send the actual message. This is 

done in order to preserve the arrival order of header, message, header, message, and 

so on for each network, which simplifies the task of the M I N software for receiving 

messages. The re-transmission process continues until either it is successful or a failure 

has occurred on every network for this M I N connection, in which case the min_send 

primitive returns an error result and removes this M I N connection altogether. 

Although our implementation could have been simplified somewhat by taking into 

consideration the fact that we are only dealing with two networks, we instead con­

structed our software to handle the general case of n networks. By doing so we lend 

greater validity to the measurement results obtained, and allow the simulation and 

testing of an n-network situation. 

The task of receiving a message on a M I N connection which only involves a single 

network is also relatively simple. The M I N software primitive first waits for a header 

to arrive on that network, then checks the size of the following message indicated in 
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the received header against the size of the buffer passed by the user to m i n .receive. 

If the user's buffer is not big enough, then m i n .receive immediately returns the size 

of the expected message, to let the user know that he needs a larger buffer. When 

m i n .receive is called again, the M I N software will know that this is a reception 

re-try on the part of the user, by examining the r d a t a flag in the P O R T structure 

for this network (this flag was toggled previously upon receiving the header). Again 

the user's buffer size is checked for adequacy. If it is big enough this time, then 

min_receive waits for the message to arrive, and puts it into the user's buffer. The 

size of the message is returned. If an error occurs in trying to receive either the header 

or the message, the m i n .receive primitive returns an error result and assumes that 

the network has failed. Since it is the only network for this M I N connection, the 

M I N connection is removed. Also, even though the underlying network software is 

supposed to provide reliable service, the sequence number in the received header is 

checked against this M I N connection's reception sequence number (stored in the rseq 

member of the C O N N E C T I O N structure). If the sequence numbers do not match, 

then something has gone wrong with the supporting software for this network, and the 

M I N connection must be removed. 

The only case for which the M I N software's task is relatively complex is that of 

receiving a message on a M I N connection which involves more than one network. Here, 

the m i n .receive primitive repeatedly polls the status of all the networks used for this 
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M I N connection using the 4.2 BSD routine select, as described in Section 3.2, until 

something arrives on one of the networks. To determine whether it is a header or data 

which has arrived, the rda t a flag in the P O R T structure for this network is consulted. 

If it is a header, then it is received using the 4.2 BSD routine read and placed in the 

P O R T structure. The M I N software then toggles the rda t a flag to indicate that it 

is the message and not a header which is due to arrive next on this network. Next, 

the sequence number in the received header is examined, and compared against the 

the reception sequence number for this M I N connection, stored in the rseq member 

of the C O N N E C T I O N structure. If they differ, then it is an out-of-sequence header 

(and message). Since each network is assumed to preserve the order of messages sent 

on it, the M I N software can therefore temporarily ignore this network, and only poll 

the other networks in search of the in-sequence message. This is done by clearing the 

bit in the rmask member of the P O R T structure which corresponds to the socket 

number used for communicating on this network. Since rmask is used as an argument 

to select, this effectively excludes that network in subsequent polling. 

Since sequence numbers wrap around, it is not possible to recognize the re-appearance 

of an already received header by virtue of its sequence number being "less than" the 

expected sequence number. However, if a header is received in-sequence, which has 

already been received on another network, then we can conclude that the network on 

which that header was first received has failed, and the sender is now using the other 
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network for re-transmission. This conclusion is consistent with how transmission errors 

are handled by min_send, as described above. 

After receiving an in-sequence header, the M I N software then checks whether the 

user's buffer is large enough. If not, then min_receive immediately returns the size 

of the incoming message to indicate buffer size deficiency to the user. If the buffer is 

large enough, the M I N software continues polling until the message has arrived on that 

network. Its contents is then obtained using the 4.2 BSD function read and placed 

into the user's buffer. 

If an error occurs in trying to receive either the header or a message on a network, 

then that network is dissociated from the M I N connection by clearing the corresponding 

bit in the C O N N E C T I O N structure's T Y P E sub-structure. Also, to prevent further 

polling of this network, the bit corresponding to the socket number used for this net­

work in the smask member of the C O N N E C T I O N structure is cleared. The rmask 

member is set to the value of smask after each message is successfully received, so 

that all networks will be polled again on the next invocation of min_receive. 



C h a p t e r 4 

M e a s u r e m e n t 

This chapter reports the results of some measurements and a simulation. The measure­

ments were taken in order to determine the overhead incurred by the M I N software. 

This is discussed in the first section. The second section deals with a simulation study 

set up to provide some idea on the type of conditions under which the use of multiple 

networks with M I N would improve communication performance. There are a number 

of reasons for using a simulation instead of taking actual measurements even though 

we have implemented the M I N software in an environment which contains an Ethernet 

and a Cambridge Ring. These will be explained in the second section, along with the 

simulation results. 

95 
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4.1 Overhead of MIN 

By using M I N , a process incurs the overhead of having to go through an additional 

layer of software. In order to determine how much of an overhead M I N is, two sets 

of measurements were taken. Both sets consisted of a number of test runs, in each of 

which a client process first connects to a server process then sends him a large amount 

of data in fixed-size messages. The time required to transfer the data is measured 

at the server, starting from the moment the client's connection request is accepted 

and ending when the last message is received. The client and server in the first set 

of measurements use 4.2 BSD IPC services over the Ethernet. The client and server 

in the second set of measurements also communicate over the Ethernet, but they use 

the M I N primitives we implemented on top of the 4.2 BSD services. Since the only 

difference between the 2 sets of measurements is that M I N is used for the second set 

but not for the first, by comparing the results we should be able to determine the 

overhead incurred by M I N . 

In each set of measurements two factors were independently varied : the total 

amount of data transferred and the size of each message. This was done in order to 

determine what effects if any these factors have on performance. For each combina­

tion of (total data, message size), 10 measurement runs were made without M I N and 

10 made with M I N . The average total transfer time for each group of 10 runs were 
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calculated. These results are shown in Table 4.1. 

These measurements were taken late at night, when there were no other users on 

the machines. The data transfer was remote. That is, the client and server resided on 

different S U N workstations. In both sets of measurements only one network, the Eth­

ernet, was used. It was planned to perform the same measurements on the Cambridge 

Ring. However they were not done because of hardware problems and the unreliable 

nature of the local implementation of the Cambridge Ring protocols. 

From the results in Table 4.1 one observes that the percentage difference between 

using and not using M I N decreased with the message size. This behaviour is intuitively 

reasonable. The overhead of M I N is composed of two portions. One is the C P U 

cycles expended in executing the M I N software. The other is the work required for 

the supporting network protocols to send the M I N message header. The C P U time 

used for M I N should be constant regardless of the message size since there is no data 

copying of the message's contents within M I N . On the other hand the relative size 

of the fixed-length M I N header decreases as the size of the message increases. This 

explains the decreasing nature of the percentage overhead of M I N . Therefore if the 

results were expressed on a per-message basis rather than for the overall data transfer 

time, the M I N overhead should be basically constant. It should be unaffected by either 

the message size or the total amount of data transferred. These result are shown in 

Table 4.2. 
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One other observation which may be made from this table is that there appears to 

be a performance peak when the message size is 1024 bytes and M I N is not used. That 

is, the tendency for the time to send a message to increase as the size of the message 

increases does not hold when the message size is 1024 bytes. A similar observation 

has been reported by Cabrera [Cabr85], whose investigation uncovered the cause to be 

the buffer management technique in 4.2 BSD's implementation of T C P / I P . When the 

message size is exactly 1024 bytes, internal copying of the message data within the 4.2 

networking software is done by augmenting a counter. When the message size is not 

1024 bytes, physical copying is done, which is a more expensive operation. 

However, this peak phenomenon does not occur in the case where M I N is used. 

Without M I N the time per message is less for a 1024 byte message than for a 512 byte 

message, but with M I N the results are reversed. This is because the gain in 4.2 BSD 

performance for a 1024 byte message (about 2 msec) is over-shadowed by the M I N 

overhead (about 5 msec). 

In these first two sets of measurements, a client sends continuously to a server 

with no return data from the server. Since both the 4.2 BSD IPC services and the 

M I N primitives perform sends in a non-blocking manner, the sender can keep sending 

ahead until the buffers are exhausted in one of the supporting protocol layers in either 

the client's or the server's host. Wi th the M I N software sending a header for every 

user message, the buffers will fill up sooner with M I N than without. Therefore this 
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particular scenario can be taken as the worst case for the M I N overhead. The opposite 

situation would be one in which the message transmission alternates, with each client-

sent message followed by a server-sent message. There would be no sending ahead at 

all. This scenario was used to obtain two additional sets of measurements. The total 

data sent by the client as well as the message size were set to the same values as those 

used for the first two sets of measurements. The server's reply is of the same size as 

the client's message. The per-message results are shown in Table 4.3. 

In this table we observe that there is no performance peak at a message size of 1024 

bytes either with or without M I N . It was explained earlier that physical data copying 

is unnecessary inside 4.2 BSD when the message size is 1024 bytes. In addition to the 

time saved by not doing data copying, more buffer space is available since only one 

copy of the data exists instead of two or more. Therefore more sending ahead can be 

done, further benefiting the one-way client send to server situation used for the first 

two sets of measurements. However, in the second two sets of measurements there is 

no sending ahead at all, so that there is no gain from the increased availability of buffer 

space. This would explain the lack of a performance peak at a message size of 1024 

bytes in the results of Table 4.3. 
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4.2 When Multiple LANs May Improve Performance 

As stated earlier one of the possible benefits of using multiple networks is improved 

performance. That is, by choosing the network which we think has the lightest load 

for sending each message, the total time required may be less than if we were to use 

a single network only. As well, the total network throughput rate will increase with 

more than one physical communication medium. However, the time saved by choosing 

a lightly-loaded network must be greater than the processing overhead incurred in 

making the path selection. In order to determine the network load conditions under 

which using multiple networks through M I N would out-perform using a single network 

without M I N , a simulation study was performed. 

There are two main reasons for using a simulation instead of taking actual measure­

ments despite the fact we have implemented M I N in an environment which contains 

an Ethernet and a Cambridge Ring. First, we lack the hardware to sufficiently load 

down the networks. Second, it is easier to vary the network loads using a simulation. 

Although a simulation suffers the disadvantage of possibly not taking all the necessary 

factors into account, it is sufficient for our purposes since we are not after exact results. 

The simulated scenario is similar to that for the first set of measurements reported 

in Section 4.1, in that it involves a client sending continuously to a server. However, 

here the comparison is between using a single network without M I N and using two 
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networks with M I N . Also, the simulation focuses on what goes on at the client's host, 

and disregards the server. It divides the time required to send a message into 3 parts. 

The first part is the processing delay for the client's message to filter down through 

the various protocol layers and queue up at the physical layer. This is termed the 

protocol delay. The second part is the amount of time the message spends before it 

reaches the head of the queue : the queueing delay. The third part is the time needed 

for the message at the head of the queue to be successfully sent : the launch delay. 

This launch delay includes the time to attain the network, and any re-transmissions 

required due to error. Re-transmissions due to error is a random quantity while the 

time needed to access the network can be interpreted as a measure of the network's 

global load. 

The protocol delay in filtering through the various layers depends on the particular 

protocols involved. For simplicity we assume it to be the same for both networks, 

although the simulation program is set up so that it can be individually specified for 

each network. 

The queueing delay is handled by actually implementing a queue for each network 

in the simulation program. That is, after the protocol delay when the message enters 

the physical layer, it is added to the end of the F IFO queue. If it is the only message 

in the queue, then an attempt is made to launch it (see launch delay below). Also, a 

maximum queue length is defined. If the queue is now full, then the user process is 
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blocked and not allowed to generate more outgoing messages until the message at the 

head of the queue is successfully sent. This will be described in more detail shortly, 

when the event sequences are discussed. When the queue is not full then the user 

process is allowed to send ahead, by generating another message as soon as the first 

message is put into the queue. 

In most cases, a user message is divided into one or more packets or frames by the 

time it reaches the physical layer. The number of packets a message is divided into 

depends on the size of the message. However, by assuming the messages to be of fixed 

size, we can define the maximum queue length in terms of messages instead. 

The launch delay is how long it takes for the message at the head of the queue to 

be successfully sent. In other words it is the length of time a message spends at the 

head of the queue. 

For the case of two networks, the M I N processing delay must be added to the 

protocol delay. Other than this the two cases are the same, as shown in Figure 4.1. The 

delay at the server's host, after the message is successfully received, is not considered. 

The simulation program is completely event-driven. It begins at time 0 with a send 

message event. When only using one network, this creates an enter queue event for 

network 0 at time + protocol delay. When using more than one network, then the 

network with the shorter queue is selected. A n enter queue event is generated for 

time + protocol delay, using the protocol delay for the chosen network. When an enter 
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Figure 4.1: Portions of Time Required to Send a Message 

q u e u e event occurs, the queue length is incremented. If the queue was previously 

empty, then a s t a r t l a u n c h event is generated. Also, if the queue is not yet full, 

then a s e n d m e s s a g e event is immediately created, simulating send ahead. A s t a r t 

l a u n c h event generates a s u c c e s s f u l s e n d event at time + launch delay, using the 

launch delay for that network. When a s u c c e s s f u l l a u n c h takes place, the message 

at the head of the queue is removed by decrementing the queue length. If this does 

not empty the queue, then a s t a r t l a u n c h event is created, to start sending the next 

message in the queue. Also, if the queue was previously full, then a s e n d m e s s a g e 

event is generated, to simulate the un-blocking of the user process. The simulation 

ends when the specified number of messages have been successfully sent. 
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Figure 4.2: Simulation Results For Sending On One Network and Two Networks 
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The simulation program was executed using various values for the launch delays 

for each network. However, rather than using a constant launch delay value for each 

execution, random values uniformly distributed about a mean was used instead, to 

simulate the variability of network loads and occurrence of transmission errors. A 

different mean is used for each simulation run. The results are depicted below. The 

time is measured in units of milliseconds. The M I N delay is taken from the previous 

measurements as 5 milliseconds while the protocol delay is 10 milliseconds. A total of 

100 messages were sent. 

From Figure 4.2 one observes that above a certain network delay (network load) 

the time required to send a message is less using two networks than using a single 

network. Below this threshold the high M I N overhead exceeds the gain in using two 

networks. Above this threshold the time to send a message is no longer bound by 

the processing time, but rather by the high network delay, so that the benefit from 

using two networks outweighs the M I N overhead. For our results this threshold value 

for the network delay is about 15 milliseconds. However, this particular value is not 

of significance outside of our simplified simulation. Additionally, the deterioration in 

performance with rising network load is less severe for the two network case than for 

the single network case. This is an intuitive result since the second network provides 

additional bandwidth and therefore greater possible throughput. 
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Total Data Message Total Time Total Time Difference Percentage 
Transferee! Size Without M I N With M I N in Total Time Difference 
(K bytes) (bytes) (sees) (sees) (sees) 

64 32 9.87 19.88 10.01 101.5 
64 64 5.94 10.96 5.02 84.5 
64 128 3.69 6.18 2.49 67.4 
64 256 2.33 3.58 1.25 53.4 
64 512 1.62 2.28 0.66 40.6 
64 1024 0.68 1.50 0.82 119.3 
64 2048 0.85 1.39 0.55 64.6 

128 32 19.83 39.84 20.01 100.9 
128 64 11.89 22.17 10.29 86.5 
128 128 9.14 12.40 3.26 35.7 
128 256 5.06 7.22 2.16 42.7 
128 512 3.68 4.53 0.85 23.0 
128 1024 1.58 3.02 1.44 91.1 
128 2048 1.63 2.64 1.01 61.7 

256 32 40.44 79.17 38.73 95.8 
256 64 25.12 43.66 18.55 73.8 
256 128 14.80 24.84 10.04 67.8 
256 256 9.35 14.32 4.97 53.1 
256 512 6.51 9.09 2.58 39.6 
256 1024 3.25 6.01 2.76 84.8 
256 2048 2.95 5.34 2.39 80.8 

Table 4.1: Total Transfer Time for One-way Client to Server 
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Message Number of Time Per Message Time Per Message Difference 
Size Messages Without M I N With M I N 

(bytes) (msecs) (msecs) (msecs) 

32 2048 4.82 9.71 4.89 
64 1024 5.80 10.70 4.90 
128 512 7.21 12.07 4.86 
256 256 9.11 13.97 4.86 
512 128 12.64 17.77 5.14 
1024 64 10.70 23.48 12.77 
2048 32 26.48 43.59 17.11 

32 4096 4.84 9.73 4.89 
64 2048 5.81 10.83 5.02 
128 1024 8.93 12.11 3.18 
256 512 9.88 14.10 4.22 
512 256 14.38 17.69 3.31 
1024 128 12.34 23.59 11.25 
2048 64 25.47 41.17 15.70 

32 8192 4.94 9.66 4.73 
64 4096 6.13 10.66 4.53 
128 2048 7.23 12.13 4.90 
256 1024 9.13 13.99 4.85 
512 512 12.71 17.74 5.03 
1024 256 12.71 23.48 10.77 
2048 128 23.05 41.68 18.63 

Table 4.2: Time Per Message for One-way Client to Server 
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Message Total Time Per Message Time Per Message Difference 
Size Number of Without M I N With M I N (msecs) 

(bytes) Messages (msecs) (msecs) 
(msecs) 

32 4096 9.79 13.37 3.58 
64 2048 10.10 13.99 3.90 
128 1024 10.23 15.50 5.27 
256 512 13.53 17.26 3.73 
512 256 16.95 21.02 4.06 
1024 128 17.15 21.76 4.61 
2048 64 24.84 40.39 15.55 

32 8192 10.20 12.10 1.90 
64 4096 8.58 13.04 4.46 
128 2048 10.41 14.56 4.16 
256 1024 12.51 16.75 4.24 
512 512 16.86 20.94 4.08 
1024 256 17.33 21.84 4.50 
2048 128 24.92 40.76 15.84 

32 16384 7.67 12.07 4.41 
64 8192 8.65 12.96 4.31 
128 4096 10.37 14.53 4.16 
256 2048 12.70 16.80 4.09 
512 1024 17.12 21.11 3.99 
1024 512 17.34 21.85 4.51 
2048 256 25.07 40.75 15.68 

Table 4.3: Time Per Message for Client to Server with Reply 
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C o n c l u s i o n s 

This thesis has explored the idea of using multiple local area networks for increasing the 

reliability and improving the performance of communication in a local environment. 

It has presented the motivations for researching this topic, and dealt with various 

issues relevent to the design of a software interface which simplifies the user's task 

of utilizing multiple networks. Also, the details of an implementation here at the 

University of British Columbia of this software interface, which we have termed M I N , 

were discussed. Measurement results on the overhead incurred by using M I N was 

reported. This chapter draws a few conclusions on what has been done so far and 

suggests some possible additional work which could be carried out in the future. 

The implementation of the M I N software did not require too much effort. Wi th the 

reasonably reliable and easy to use 4.2 BSD IPC services, only 2 man-months of work 

were needed to write and debug the code. It would be interesting to try to implement 

M I N on another system which does not provide a connection-oriented communication 

109 
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services, to discover how much more difficult the task would be. The decision to provide 

a message-based rather than a stream I /O type of interface also contributed to the ease 

of implementation. 

It was unfortunate that we were unable to obtain measurements using the Cam­

bridge Ring. If more machines were available so that we could sufficiently load down 

the networks, then it would be feasible to make measurements of MIN's performance 

using two networks. Perhaps there is some means for artificially creating heavier loads 

on the networks. One possibility is to use a reasonably fast machine which is not booted 

up with a normal operating system, but is instead running some dedicated software 

which uses up empty ring slots or jams the Ethernet bus to the desired degree. 

If the above suggestions cannot be achieved, then an alternative is to improve the 

simulation program described in Section 4.2. For example, some measurement results 

can be obtained for the actual protocol delays for the protocols used for the Ethernet 

and Cambridge Ring. The fraction of the M I N overhead used for C P U cycles and the 

fraction caused by having to send a header can be determined. These figures can then 

be applied to the appropriate points in the simulation program's flow of events, rather 

than merely adding the total M I N delay to the protocol delay at the start of sending 

the message. Furthermore the simulation program's flow of events may be made more 

detailed to better reflect what actually takes place in the system. 

The header for each message is required because messages sent on different net-
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works may arrive out of order at the destination. This is a consequence of having the 

min_send primitive non-blocking in nature. If min_send were made blocking instead, 

then a sender cannot have 2 messages in flight simultaneously, and the header would 

no longer be necessary. A n acknowledgement from the receiver is required for every 

message. However, some means must then be devised for distinguishing an incoming 

message from an acknowledgement. In our implementation environment this problem 

can be solved by using separate sockets for sending messages and acknowledgements. 

This is not a general solution, though. Additionally a non-blocking send would mean 

that a process is unable to send ahead, which will reduce performance by eliminating 

parallel operations of sending and launching messages. 

Another design decision which merits some discussion is that of making a path 

selection for every message to be sent. Alternatively the M I N software can choose a 

network at connection time, and send all subsequent messages for this M I N connection 

on the chosen network. Only when a transmission or reception failure occurs on this 

network is another network chosen. This would remove the need to check the load of 

each network every time a message is to be sent. Furthermore, since network loads 

do not remain constant for long periods of time, the initial network selection should 

not be based on network loads either. This means that network loads are not used for 

path selection at all, thus making it unnecessary to keep track of the network loads. 

However, since we use the length of the outgoing queue as an estimate of the network 
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load, this does not gain us much. It does not take very much work to maintain and 

check the queue lengths. Nonetheless, if performance is not an important consideration, 

then ignoring network loads would be an acceptable means for further simplifying the 

implementation task. In fact, this is one aspect of M I N which does not have to be the 

same at all hosts. A M I N user which ignores network loads can still communicate with 

a M I N user which considers network loads. 

We use the length of the outgoing queue at the lowest layer - the physical layer - as 

an estimate of a network's load, since all messages must eventually pass through this 

layer before reaching the transmission medium. However, to consider only the queue 

at this layer may not always be correct. Even if a network has a shorter physical layer 

queue than another network, this network may have many more messages queued up 

in the higher layers. Since messages queued in any protocol layer contributes delay, the 

message queues in all the protocol layers should be considered. However, as messages 

in higher layers may be split into several packets or frames when they are passed to 

lower layers, it is unknown as to how to weigh the queue length contributions from the 

various layers. This is similar to the problem of comparing queue lengths in different 

physical layer protocols for different networks, mentioned in Section 2.8. 

This thesis has examined in some detail a number of design issues relevent to using 

multiple L A N s . Some but not all of the discovered problems have been adequately 

solved. More problems arose than was anticipated at the beginning of the research 
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effort, but this is often the case with relatively unexplored topics. Our implemented 

software has been found to incur fairly high overhead. Nonetheless a simulation study, 

albeit greatly simplified, suggests that under heavy network loads this overhead is 

outweighed by improved performance. In any case, reliability is certainly enhanced by 

having more than one available network. A t this time, though, it is still unclear as to 

whether M I N is a concept of practical value which may someday be put to general use. 

Further investigation is in order. 
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