
I N T E G R A T I N G L O C A L A R E A N E T W O R K S T O I M P R O V E R E L I A B I L I T Y A N D

P E R F O R M A N C E

By

K E N N E T H C H I - K I N C H A N

B . S c , University of British Columbia, 1984

A THESIS S U B M I T T E D IN P A R T I A L F U L F I L L M E N T OF

T H E R E Q U I R E M E N T S F O R T H E D E G R E E OF

M A S T E R OF S C I E N C E

in

T H E F A C U L T Y OF G R A D U A T E STUDIES

(D E P A R T M E N T OF C O M P U T E R SCIENCE)

We accept this thesis as conforming

to the required standard

T H E U N I V E R S I T Y OF B R I T I S H C O L U M B I A

October 1986

© Kenneth Chan, 1986

I n p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f t h e
r e q u i r e m e n t s f o r an advanced degree a t t h e U n i v e r s i t y
o f B r i t i s h C o l u m b i a , I agree t h a t t h e L i b r a r y s h a l l make
i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s t u d y . I f u r t h e r
agree t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s
f o r s c h o l a r l y purposes may be g r a n t e d by t h e head o f my
department o r by h i s o r her r e p r e s e n t a t i v e s . I t i s
u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s
f o r f i n a n c i a l g a i n s h a l l n o t be a l l o w e d w i t h o u t my w r i t t e n
p e r m i s s i o n .

Department o f Computer Science

The U n i v e r s i t y o f B r i t i s h Columbia
1956 Main Mall
Vancouver, Canada
V6T 1Y3

Date Oct. 16, 1986

)E-6 (3/81)

Abstract

A hybrid network comprising an Ethernet and a Cambridge Ring has been pro­

posed by researchers in the Department of Computer Science at the University of

British Columbia as a means for improving reliablility and performance of computer

communication in a local area network environment. This thesis explores the practica­

bility of this concept and constructs a generalization of this model, where an arbitrary

number of L A N s , of arbitrary technologies, may be used together in an integrated

fashion. The goal is a set of software primitives which provides a connection-oriented

message-based IPC interface, and allows a user to utilize multiple networks with relative

ease. A number of relevent design issues, including host reachability, path selection,

and load monitoring are dealt with in detail. Also discussed is an implementation

of this software interface here at the University of British Columbia, developed on

Sun workstations running 4.2 BSD Unix which are inter-connected by an Ethernet

and a Cambridge Ring. Measurement results on the performance of the implemented

software are included.

i i

C o n t e n t s

Abstract ii

List of Figures v

List of Tables vi

Acknowledgement vii

1 Introduction 1
1.1 Motivations 2

1.1.1 Background 2
1.1.2 Problems 7

1.2 Goals 11
1.3 Thesis Summary 13

2 Design 15
2.1 Overall Structure 16
2.2 Service Model 20
2.3 Message Versus Byte-Stream IPC 23
2.4 M I N Primitives 25
2.5 Host Reachability 32
2.6 Connection Establishment 37
2.7 Path Selection 42
2.8 Load Monitoring 45
2.9 Message Exchange 52

3 Implementation 60
3.1 Environment 61
3.2 4.2 BSD IPC Primitives 62
3.3 Supporting Network Software 69

ii i

3.4 Software Configuration 71
3.5 Host Reachability 76
3.6 Connection Establishment 78
3.7 Path Selection 86
3.8 Load Monitoring 88
3.9 Message Exchange 90

4 Measurement 95
4.1 Overhead of M I N 96

4.2 When Multiple L A N s May Improve Performance 100

5 Conclusions 109

Bibliography 114

iv

L i s t o f F i g u r e s

1.1 Bus Network 3
1.2 Ring Network 4
1.3 Star Network 5
1.4 Two L A N s Connected by a Gateway 9
1.5 Stations Connected by Two L A N s 10

2.1 Routing Decision with M I N in Data Link Layer 17
2.2 Overall Structure with M I N in Application Layer 21
2.3 Stream Receive for Message-oriented Service 24
2.4 Message Receive for Byte Stream Service 25
2.5 M I N Multiple Network Domain 33
2.6 Host Reachability Matrix 36
2.7 Host Reachability List Structure 38
2.8 Connection Phase for Client 39
2.9 Connection Phase for Server 40
2.10 Event-by-Event Example of M I N Connection Establishment 41
2.11 Suitability Quantification Using Message Size 44
2.12 Network Load Monitor 51
2.13 Message Transmission 53
2.14 M I N Message Header 55
2.15 Message Reception 59

3.1 C O N N E C T I O N Structure 80
3.2 T Y P E Structure 81
3.3 P O R T Structure 82
3.4 H E A D E R Structure 90

4.1 Portions of Time Required to Send a Message 103
4.2 Simulation Results For Sending On One Network and Two Networks . . 104

v

L i s t o f T a b l e s

4.1 Total Transfer Time for One-way Client to Server 106
4.2 Time Per Message for One-way Client to Server 107
4.3 Time Per Message for Client to Server with Reply 108

vi

Acknowledgement

I would like to thank my supervisor Dr. Sam Chanson for his guidance and coop­

eration. His counsel is greatly appreciated. Thanks must go also to Dr. Son Vuong,

who served as the second reader for this thesis. Lastly, I am grateful for the help of

Rick Sample, who overcame a great number of difficulties relating to the computing

facilities here on my behalf.

vii

C h a p t e r 1

I n t r o d u c t i o n

This thesis explores the complexities involved with interconnecting computers in a lo­

cal environment with more than one local area network (LAN) . The networks may be

all of the same type (e.g. two Ethernets 1), or they may be of different types (e.g. an

Ethernet and a Cambridge Ring); the problem domain is not restricted to one or the

other. However, for reasons which will be explained shortly, this thesis will concen­

trate on the latter case. The ultimate goal is an integrated network environment, where

the existence of multiple supporting networks is transparent to the end user, and the

problems of dealing with multiple networks are simplified for systems and applications

programmers. It is essentially an expansion of the hybrid L A N idea first proposed

in [Vuon83]. Before discussing the design issues and describing a software implemen­

tation here at the University of British Columbia, this chapter will first present the

motivations for researching this topic.

1 Ethernet is a trademark of Xerox Corporation

1

CHAPTER 1. INTRODUCTION 2

1.1 Motivations

A local area network is an interconnection of computers which are distributed over a

small geographical area, usually no more than a few square kilometers. L A N s have been

steadily gaining popularity, as their characteristically high data rates and relatively low

installation costs are well suited to small organizations which wish to better utilize their

computing resources.

However, as there is no single type of L A N which is optimal for all possible applica­

tions [Chan83,Limb84], each installation has had to choose one which is most suitable

to its particular needs. A local area network is characterized by its topology, access

method, and an associated family of protocols. These protocols usually correspond

to the lower 3 layers of the ISO reference model for Open Systems Interconnection

[IS081]. Sometimes layer 4, the Transport Layer, is also included. Some background

on common L A N topologies and access methods are given in the following subsection.

Experienced readers may skip to Subsection 1.1.2.

1.1.1 B a c k g r o u n d

The topology of a network refers to the configuration of interconnection between ma­

chines. For local area networks, the typical topologies are bus, ring, and star. A bus

CHAPTER 1. INTRODUCTION 3

network, as shown in Figure 1.1, consists of a single long line which is tapped into

by the nodes. The connection is made in a passive way; that is, each node can listen

to the signal on the line without disturbing it. A ring network consists of a series

of point-to-point links which form a closed loop. Here the signal must pass through

each ring interface unit, which also act as repeaters for the signal. Thus the nodes are

considered to be active. A n illustration of the ring topology appears in Figure 1.2. A

star network has all of its nodes connected to a central hub, as depicted in Figure 1.3.

A l l traffic between nodes must pass through this central hub. A star-shaped ring is

also possible [Neil85]. More on L A N topolgies may be found in [Tsao84]. This thesis

will concentrate mostly on bus and ring networks, since they are the most popular.

| | | Bus Interface Unit

Station

Figure 1.1: Bus Network

The transmission medium in local area networks is shared by all the nodes. There­

fore some scheme is required to arbitrate the usage of the shared medium. This is

referred to as the access method. For bus networks, a common access method is Car-

± 9 9

CHAPTER 1. INTRODUCTION 4

rier Sense Multiple Access with Collision Detection (C S M A / C D) . In this method a

node which wishes to transmit data will first listen to the medium and wait until it

is idle before transmitting. After the transmission has begun, it must also check for

collisions with another node which is also transmitting at that time. Collisions usually

occur due to the propagation delay between nodes. A collision requires re-transmission

by each contending node, after some random backoff time. Collisions may also be re­

solved deterministically, as is done in some variations of C S M A / C D [Neil85].

Station

Figure 1.2: Ring Network

For ring networks, one scheme is to circulate a number of fixed-length slots contin-

CHAPTER 1. INTRODUCTION 5

uously around the ring. Each slot, when empty, may be filled with a fixed amount of

data as it passes a station which wishes to tranmit. The station will then mark the

slot as full, and re-mark it as empty after it has traversed the ring and returned. A

variation of the slotted ring is the register-insertion ring. Here each node contains a

shift register which can be used to buffer incoming data while the node simultaneously

transmits outgoing data.

Station

Figure 1.3: Star Network

One other access method, which is suitable for both buses and rings, is to circulate

a unique bit sequence which acts as a token. A node must get hold of the token before

it can transmit. It then destroys the token, regenerating it only after the transmitted

packet has returned to it. In a token bus the token is passed from node to node in a

CHAPTER 1. INTRODUCTION 6

logical ring.

One of the most popular types of local area network is the Ethernet [Metc76],

which is a C S M A / C D bus. Ethernet is often accessed through Arpanet's Transmission

Control Protocol and Internet Protocol (generally referred to collectively as T C P / I P) .

Although T C P / I P [DARP81a,DARP81b] was designed for long haul networks (LHN),

it is often used in L A N s because it comes as part of the 4.2 BSD Unix 2 system. It is

unclear whether the term "Ethernet" encapsulates the supporting protocols as well as

the underlying topology and access method, or is simply the best-known example of

(and hence could be a synonym for) a C S M A / C D bus. This thesis will use it in the

latter sense. Ethernet has been standardized as a L A N technology by I E E E (802.3).

Another well-known type of local area network, particularly in Europe and the

U K , is the Cambridge Ring [Wilk79], which is a slotted ring. The Cambridge Ring

is usually associated with the Basic Block protocol (BB) and Byte Stream Protocol

(BSP) [Dall8l]. Like any other ring network, the Cambridge Ring suffers minimal

signal attenuation over long distances. This is due to the fact that the signal is re­

generated at each node. Because of the Cambridge Ring's suitability for covering a

greater geographical area than most other L A N s , it has been standardized by I E E E

as a community area network technology rather than a local area network technology.

Nonetheless, the Cambridge Ring is generally considered to be a type of L A N .

2Unix is a trademark of AT&T Bell Labs

CHAPTER 1. INTRODUCTION 7

Two other well-known L A N technologies are the token bus and the token ring.

One token bus based network which is rapidly gaining recognition in industry is M A P

(Manufacturing Automation Protocols). Developed by General Motors [GM85], M A P

is intended for use in factories. The I B M Zurich Token Ring is an example of a net­

work which is based on a token ring. I E E E has standardized the token ring as a L A N

technology (802.5), as well as the token bus (802.4).

1.1.2 Problems

Unfortunately, each type of L A N is suited for a set of requirements which often conflict

with the requirements of another type of L A N . For instance, because of its high data

rate and variable packet size, Ethernet is well-suited for bulk data transfers, such as

remote disk accesses. Its non-deterministic access method, though, means that it is

unsuitable for real-time applications. The Cambridge Ring, on the other hand, provides

a guaranteed worst-case access time, but is not as efficient for large volume data due to

its small packet size (only 2 bytes of actual data per mini-packet) and hence lower data

rate. L A N s based on the other two technologies mentioned above similarly have their

individual suitabilities and weaknesses for different applications. This implies that the

selection of any single type of network will either exclude certain applications, or force

those applications to run in an inefficient communications environment.

CHAPTER 1. INTRODUCTION 8

Recently, the emphasis has increasingly been placed on providing integrated ser­

vices. There are certainly many situations where the ability to access a large variety

of resources from a single source is advantageous. For example, a process engineer

may wish to be able to monitor plant operations as well as utilize spreadsheet software

and access an MIS database. Clearly conflicting requirements are involved here. The

first is a real-time application which demands an environment such as M A P , while the

latter two are best served by a network such as T O P (Technical and Office Protocols),

an Ethernet-based network for office and technical applications [Boei85].

One approach to this problem is to connect some of the machines on one type of

network, and to connect the rest of the machines on another type of network. The

two networks are then bridged by a gateway node, as shown in Figure 1.4, which is

connected to both networks. Machines on network A will generally run applications

which are suitable for network A , and machines on network B will generally run ap­

plications which are suitable for network B . Machines located on different networks

can still communicate, by going through the gateway node G . This partially solves

the problem, as each type of application can usually be run in an appropriate envi­

ronment, but are accessible from all stations. However, the gateway node presents a

point of vulnerability where the two networks can become divided, as well as being a

potential bottleneck. Also, an internetwork path will involve both types of network,

and therefore it will suffer the combined disadvantages of both.

CHAPTER 1. INTRODUCTION 9

Unit

Figure 1.4: Two L A N s Connected by a Gateway

CHAPTER 1. INTRODUCTION 10

As L A N technologies become more readily available and lower in cost, another

feasible solution is to connect the machines with more than one network, as shown in

Figure 1.5. This would allow each station to run each different type of application on

the network which it is most suited for. In addition, reliability would be enhanced,

since the unavailability of one network would not necessarily partition the machines.

Furthermore, performance may be improved by allowing an application to use both

networks simultaneously, or to select the network which is least congested.

Network A

Network B

Bus Interface Unit

Station

Ring Interface Unit

Figure 1.5: Stations Connected by Two L A N s

One may argue here that L A N s are usually highly reliable already, so that added

reliability is not much of a gain. However, L A N s may not be as reliable as people tend to

believe. Results [Zwae85] have shown the error rates of the raw Ethernet transmission

CHAPTER 1. INTRODUCTION 11

medium to be on the order of 1 0 - 4 , rather than 10~6 as previously thought. This

implies that L A N s are not inherently reliable, and that they require reliable protocols.

In addition, there exist applications where extra reliability is desirable, for instance

military networks or process control involving hazardous substances.

One could also argue that currently processors are in general much slower than the

transmission media, so that sending data over multiple paths simultaneously would not

improve performance. Nonetheless, even if an individual station can use up no more

than a few percent of a network's bandwidth, connecting hundreds of stations should

produce enough traffic to significantly congest the network. Such large-scale L A N s are

becoming more common. Also, applications such as interactive graphics may require

large volumes of data to be transferred in short periods of time. Multiple networks can

also be viewed, therefore, as a way of attaining the extra bandwidth needed in order

to interconnect a greater number of computers together directly without suffering se­

riously degraded performance.

1.2 G o a l s

How should the availability of multiple networks be made accessible to users? Since

the end user's only concern is to run applications, the existence of multiple networks

should be made transparent to him. To the systems or applications programmers,

CHAPTER 1. INTRODUCTION 12

though, awareness of multiple networks is useful, since each programmer would know

his particular application's requirements and therefore the network which he would

prefer to use. Thus the aim was to design a set of system primitives which allow

user programs to utilize the networks available as they see fit, or to let the system

make that decision if they do not care. Although there exist systems which provide

access to multiple networks (for example, 4.2 BSD Unix allows a user to imply a

particular network by specifying a protocol name), they do not provide these services

in an integrated way. That is, the individual networks are viewed as being completely

separate, so that if a user wants to use several network links together to achieve a

single purpose, he himself would have to deal with problems such as loss of data or

a link, which host is reachable on which network, and so on. Our view is that users

should not have to deal with such problems; these should be handled by the system,

within our set of primitives. In addition, these primitives should be easy to use so that

existing applications can be easily converted.

To examine the practicality of such a service, another goal was to implement this

set of primitives, so that measurements could be made to determine the overhead of

this additional software. Moreover, it would allow us to see how easy or difficult it is

to convert existing applications to this interface.

Before continuing further, the reader may be wondering why this work is concerned

exclusively with local area networks, and not at all with long haul networks. Since the

CHAPTER 1. INTRODUCTION 13

alleged benefits of having multiple networks connected are reliability and performance,

LHNs would seem to be prime candidates since they are much less reliable and have

much lower data rates than LANs? However, the way which multiple L A N s improve

reliability and performance is by providing more than one path between machines,

something which is already present in most LHNs due to their topologies. Therefore,

in a sense what we are doing is applying techniques already being used in long haul

networks to local area networks. However, we are generalizing these ideas, in that

the access method and protocols are identical for all paths in an L H N , but the access

method and protocols may be different for each path in our environment.

1.3 Thesis Summary

The preceding section has presented the motivations for working towards an integrated

network, as well as the goals which we wish to achieve. Chapter 2 discusses in some

detail the design issues which need to be dealt with, and some possible solutions. The

approach was to work towards a general solution, for arbitrary types of L A N s , rather

than a specific solution which is geared to our particular implementation environment.

A n implementation of the objective software module of system primitives, referred

from here on as M I N (for "multiple integrated networks"), was realized here at U . B . C .

Chapter 3 describes this implementation, in particular with regard to how each of the

CHAPTER 1. INTRODUCTION 14

issues discussed in Chapter 2 were dealt with. It also reports on the implementation

environment, in terms of both the hardware and the supporting network software.

Chapter 4 gives the measurements results on the processing overhead incurred by

adding our software. This was done by comparing the (real) execution times required

to transfer a large amount of data over each network, with and without going through

our software interface.

Chapter 5 looks back at what we have done and draws some conclusions on whether

the effort has been worthwhile. It also suggests some possible enhancements and future

work.

C h a p t e r 2

D e s i g n

As mentioned in Section 1.2, our objective is a set of software primitives, which we've

termed M I N for "multiple integrated networks". This chapter discusses the design of

M I N . The approach is to derive a general model, for arbitrary local area networks and

hosts, rather than a specific solution for our particular implementation environment.

The discussion begins with the overall structure, in terms of the relationship between

our software, the user, and the supporting network protocols. Next, the type of com­

munication services that the M I N primitives should provide are described. A number

of design issues, including host reachability, connection establishment, path selection,

and load monitoring are also examined. The final section deals with the internal pro­

tocol employed by the M I N primitives for message exchange.

15

CHAPTER 2. DESIGN 16

2.1 O v e r a l l S t r u c t u r e

The OSI reference model [IS081] is widely accepted as a framework for communications

design. Therefore it is advisable for us to begin by determining where within the 7

layers of the OSI model our objective software should reside.

Wi th more than one network available, part of MIN's function is to choose one of

the networks when data is to be transmitted. Making this choice in the Physical layer

would not make much sense. In many cases the physical layer consists of a driver for the

hardware, so that a separate one for each transmission medium is necessary. Placing

M I N in the Data Link layer to make the routing decision there would correspond to

the suggestion made in [Vuon83]. This scheme is illustrated in Figure 2.1. Note that

the Presentation and Session layers are shown with dashed outlines because currently

most systems do not actually contain these layers.

If the decision is made in the Link layer, then the networks must be logically

integrated in the higher layers. That is, a uniform protocol must be designed for

the Network and Transport layers which could be used for all networks. There are

a number of difficulties with this idea. Firstly, the functions provided by each layer

must incorporate the functions provided by the corresponding layer for each network.

Although in theory the functionality for each layer should be more or less the same

regardless of the network, in practice it is not the case. Even high level protocols make

CHAPTER 2. DESIGN 17

User

Medium 1 Medium 2 Medium n

Figure 2.1: Routing Decision with M I N in Data Link Layer

CHAPTER 2. DESIGN 18

assumptions about the underlying network. For instance, BSP is a transport level

protocol designed specifically for the Cambridge Ring. Additionally, each protocol also

makes assumptions about the supporting protocol, or in other words, the layer directly

beneath it. For example, T C P assumes IP to be the Network protocol, while BSP

assumes B B to be underneath it. Furthermore, the M I N Data Link layer would need

to know how to handle all possible packet formats (different for each network). Each

future addition of a new type of network would require a modification to this layer as

well.

The same arguments may be applied to the Network layer, the Transport layer,

and each successively higher layer. However, they become less significant in the higher

layers because they are application dependent rather than network dependent.

Another consideration is that we wish to let the user optionally select which net­

works to use for sending a message. As stated earlier in Section 1.2, each application

should know which network it is most suited to, and should therefore be allowed to

make that decision if so desired. If M I N is placed in the Data Link layer, then the

user's path specification would need to be passed through all the higher layers, since the

user process may only access the Application layer. Furthermore, allowing the user to

choose the networks implies that each " M I N connection" between two user processes

may have different characteristics in terms of which networks are used. Thus M I N

should provide process-to-process connections, rather than a single host-to-host con-

CHAPTER 2. DESIGN 19

nection which multiplexes process-to-process connections provided by a higher layer.

This suggests that M I N should be located at least above the Transport layer. Also,

by being above the Transport layer M I N is provided with reliable connection-oriented

communication, thereby making its task easier. The supporting protocols wil l perform

error detection and recovery as appropriate to their respective layer.

Functionally, M I N corresponds to the Session layer, in that it enables a user process

to establish a connection, or session, with another process. However, in our environ­

ment a " M I N connection" may actually consist of multiple connections or sessions, one

on each of the networks which the user process wishes to use. A Session "connection"

in the ISO sense appears to imply the use of only a single network; there is no provi­

sion for the case of using multiple networks simultaneously (one may point out that

if gateways are involved then the "connection" would include more than one network;

however in that case the networks are used serially, not simultaneously; furthermore

the internetworking is handled in the Network layer, and is transparent to the Session

layer).

As for the Presentation layer, there does not seem to be any motivations, functional

or otherwise for placing M I N there. This leaves the Application layer. From the

practicality viewpoint, this would be the best place for M I N since the least number of

layers would be affected. It is also appropriate in that M I N is intended as an interface

for user processes. The path selection parameter would then be obtained directly from

CHAPTER 2. DESIGN 20

the user, without having to pass down through various other layers. However, it is not

really part of the Application layer's function to be concerned with connections.

We must point out however, that the decision of whether to place M I N in the

Application layer or the Session layer is not a critical one. It depends on the particular

implementation environment. If a new system is being created which will contain all

seven layers of the ISO model, then M I N should probably be placed in the Session

layer, since this is functionally more correct. However, if M I N is being incorporated

into an existing system, then putting it into the Application layer would make the job

easier. Moreover we note once again that many existing systems do not contain the

Presentation and Session layers, so that whether M I N is conceptually placed in the

Application or the Session layer makes no difference in the implementation. For the

remainder of this chapter we will assume that M I N is placed in the Application layer,

as illustrated in Figure 2.2.

2.2 Service Model

In the previous section we have implicitly assumed that M I N provides a connection-

oriented interface to the user process. The reasons for this choice were purposedly

left out from the earlier discussion because they did not really relate to the topic of

where M I N should reside in the ISO model. Mentioning them would only have served

to confuse the reader. The service model for M I N is discussed in this section.

CHAPTER 2. DESIGN 21

Presentation 1

Session 1

Transport 1

Network 1

Data Link 1

Physical 1

T
Medium 1

User 1
MIN Application

Presentation 2

Session 2

Transport 2

Network 2

Data Link 2

Physical 2

T
Medium 2

Presentation n

Session n

Transport n

Network n

Data Link n

Physical n

T
Medium n

Figure 2.2: Overall Structure with M I N in Application Layer

CHAPTER 2. DESIGN 22

There are two basic types of remote inter-process communication (IPC) : connec­

tionless (datagram) and connection-oriented (virtual circuit) [Tane8l]. In the connection-

oriented type of remote communication, a logical association is established between two

processes which wish to exchange data. This virtual connection provides a reliable ser­

vice in that lost messages are detected, and messages are guaranteed to be delivered in

the same order in which they were sent. When one of the two processes wants to send

a message, it is only necessary to supply a reference to the logical connection, rather

than the receiving process's complete identification (host id + process id). A n example

of a system which provides virtual circuits as one of its communication services is 4.2

BSD Unix, which calls each end of the connection a "stream socket" [Leff83].

In a connectionless IPC environment, each time that a message is to be sent, the

destination process' complete identification must be supplied. 4.2 BSD Unix also pro­

vides this type of service, in the form of an Unreliable Datagram Protocol (UDP).

Here the user utilizes a "datagram socket", rather than a "stream socket" as in the

connection-oriented case.

A connection-oriented IPC model offers a higher level abstraction of communication

to users. It provides a reliable end-to-end service, whereas in the connectionless model

there is no concept of message sequencing, so that the user would need to deal with

lost and out-of-order messages himself. More work is required on the system's part,

though, to provide connection-oriented IPC, as the state of each connection must be

CHAPTER 2. DESIGN 23

maintained. Wi th a connectionless model the transmission of each message is a totally

independent operation from the system's point of view. Nonetheless most systems try

to provide a connection-oriented type of service, since it offers a simpler interface to

the user. Therefore a connection-oriented communication model was chosen for M I N ,

2.3 Message Versus Byte-Stream IPC

For a connection-oriented service there are two possible formats for message exchange.

One method views each transmitted message as an individual entity, so that one mes­

sage is delivered to the receiver at a time, in the same size as it was sent. The other

method views the connection as a boundaryless byte stream, so that the receiver may

accept the data in quantities different from the sizes of the messages sent by the sender.

This style of data transfer corresponds to the file I /O model used in Unix, and is, in

fact, the interface adopted for the stream sockets in the 4.2 BSD system.

The differences in these two methods affect how messages must be handled at the

receiving end, and not so much the transmission of messages. Whichever of these two

methods is chosen for a system, though, the user may choose to impose his own view

on incoming data, by building his own interface on top of the system services. For

instance, if the system delivers a message at a time, but the user wants a byte stream

abstraction, then he can simply keep receiving individual messages until the desired

number of bytes have arrived. Any leftover data in a partially consumed message can

CHAPTER 2. DESIGN 24

be stored for a subsequent "stream receive" operation.

Stream Receive :
If any data saved from previous message

Then copy as much as is requested into user buffer
While request not satisfied

Await arrival of a message

Copy as much as is requested from message to user buffer
If message is only partially consumed

Then save remaining data for next call

Figure 2.3: Stream Receive for Message-oriented Service

The other possiblity is that the system provides a boundaryless byte stream but the

user wants to preserve message boundaries. In this case, the user must insert his own

message delimiters. This can be achieved either through the use of a special pattern

as a message terminator, or by pre-pending each message with a header that specifies

how large the following message is.

The use of either message terminators or message headers adds overhead data,

and therefore causes additional processing overhead and message transmission delay.

Also, the message-oriented style of message exchange is applicable to more types of

communication than the byte stream method, which is suitable mainly for file or bulk

transfers. The message-oriented method is therefore the style chosen for M I N .

CHAPTER 2. DESIGN 25

Message Receive (using terminators) :
Intialize message size counter to zero
Repeat

Get next byte
If it is a message terminator

Then stop and return message size
Copy byte into next location in user buffer
Increment message size counter

Return message size

Message Receive (using headers) :

Get bytes comprising header

Get as many bytes as message size specified in header

Copy bytes into user buffer

Return message size

Figure 2.4: Message Receive for Byte Stream Service

2.4 MIN Primitives

Next the set of primitives offered to the user must be designed. For a connection-based

service, the usual model of communication between processes is client-server. This is

the model we will use for our primitives. Also, we strive for parsimony, since too many

primitives would confuse users. However, we must ensure that these primitives provide

sufficient functionality. The basic requirements are to enable users to establish and

disconnect M I N connections, through which they may send and receive messages of

CHAPTER 2. DESIGN 26

arbitrary size.

For a client-server model, connection establishment is initiated by the client, who

is the active party. The server waits passively for a connection request. Thus two

primitives are required for connection establishment :

MINid = connect(servername, networks)

MINid — accept(servername, networks)

Connect is used by the client to try to establish a M I N connection with the server

whose name is servername. Symbolic identifiers are used because M I N is an interface

for user processes. Since servername is a symbolic identifier, we are assuming the

existence of a name service which maps server names to addresses. This server address

may be a Session layer address, in which case M I N can simply pass it along to the

Session layer when it tries to establish a session on each network (see Section 2.6).

However, if the Session layer for each network uses a different address, then M I N

must map the server address to a set of Session layer addresses. In other words, the

name server takes the symbolic identifier servername and returns an Application

layer address to M I N , which then maps it to a set of Session layer addresses, one per

network. Alternatively the name server may directly map servername to the set

of Session layer addresses. Each Session layer address should also include the id of

CHAPTER 2. DESIGN 27

the host on which the server process resides, since we assume server locations to be

transparent to clients. If this were not the case for a particular system, then connect

must take an additional parameter for specifying the server's host.

Accept is used by the server which wishes to accept a MIN connection request from

a client. When this request is issued, the name servername is logically bound, to the

server process. The binding remains for the duration of the process. Only one process

may be associated with a symbolic name at any given time. Again a name service

is assumed which enforces this property. However, this uniqueness property could

be enforced per-host or per-system. For implementation purposes it would depend

on the name service available with the host system. If none were available, then we

would recommend the implementation of one which enforced system-wide server-name

uniqueness, since it would allow remotely accessed servers to have freedom of location.

Accept only accepts one MIN client's connection request. The server must call

accept each time that it wishes to accept another MIN connection. The accept prim­

itive blocks the invoking server process until a MIN connection request is successfully

accepted or some error occurs during the connection establishment phase (see Section

2.6 for more details).

For both accept and connect, the second parameter networks specifies the net­

work or set of networks which the accept or connect operation is to include. This

raises the issue of network identification, which will be discussed in Section 2.5. For

CHAPTER 2. DESIGN 28

the time being, simply assume that an identification scheme exists which can be used

for networks. When the user does not care which networks are to be used for the

M I N connection, the parameter networks can simply be omitted. In that case the

decision of which networks to use is left to the M I N software. M I N will attempt to use

all the networks available. Most users would, in fact, omit the networks parameter,

especially for accept. However, for generality the networks parameter is included

for accept as well as for connect. This implies, though, that the networks specified

by the client may not be the same as the networks specified by the server. This is

resolved by a simple handshaking procedure which is discussed in Section 2.6.

Both accept and connect return a non-negative M I N connection id MINid when

the operation is successful. Otherwise a negative value indicating the cause of error is

returned. Some of the possible errors are :

1. networks is invalid

2. unknown servername (for connect only)

3. servername already in use (for accept only)

Other errors may occur in dealing with the system's Session level services. These

are system-dependent.

The M I N connection id returned by connect and accept is a logical identification

of the connection just established. This MINid is used for all subsequent operations

on that connection, such as sending and receiving messages (described below). Since

CHAPTER 2. DESIGN 29

the assignment of a M I N connection id is done at both ends of a connection, this

implies that two ids are created for each connection - one returned to the server from

an accept call, and another returned to the client from a connect call. Therefore

some means is necessary for associating the two ids, so that messages sent by the

server, using say i d l , will be received by the client using say id2, and vice versa.

There are two possible ways of dealing with this problem. One method is to keep

track of all the M I N connection ids being used in the entire distributed M I N environ­

ment. Then, each connection can be assigned a unique id which is used to reference it

at both ends. In other words the server would get back from the accept call the same

M I N i d as that returned to the client on the connect call. However, this solution is

difficult to implement, as the dynamic creation and destruction of connection ids must

be made known to all of the hosts.

The alternative scheme requires a per-connection association of M I N ids to be

maintained locally. That is, suppose a connection between a process on machinel and

a process on machine2 is assigned i d l on machinel and id2 on machine2. A t machinel

the local system can record that the id at the other end of this connection is id2, while

at machine2 the local system can record that the other end of this connection has

i d l . This method is preferable since it only involves the two hosts at the two ends

of a connection, rather than all hosts in the entire M I N environment. There is still

the problem of how each side of the connection discovers what the id being used at

CHAPTER 2. DESIGN 30

the other end is. This may also be simply resolved during the handshaking done at

connection establishment time mentioned above (see Section 2.6).

To exchange messages, two primitives are needed :

result = send(MINid , message, size, networks)

result = receive(MINid , buffer, size)

^The first parameter needed for both send and receive is the MINid returned from

a successful connect or accept call. For send, size is the size of message in bytes.

Since the entire message is considered as a single unit, send only returns whether the

transmission attempt was successful. If this M I N connection involves more than one

network connection, then one of them is chosen for sending the whole message. The

user may limit the networks to choose from through the networks parameter. The

format of networks is the same as that for connect and accept. However, if the

networks supplied to the send call includes a network which was not specified in the

connect or accept call which established the connection, an error is returned and

the message is not sent. The networks parameter may be omitted, in which case

the routing decision is left entirely to the M I N software (see 2.7). Although the user

message is treated as a single entity and sent over just one network, it may require more

than one actual transmission. This depends on the maximum message size allowed by

CHAPTER 2. DESIGN 31

the chosen network's supporting software.

The s e n d primitive is non-blocking, so that the user does not have to wait for

the message to be received by the other process, nor for an associated reply message

to arrive before continuing execution. However, in an actual implementation there is

usually some delay from the wait for acknowledgements by the supporting layers of

protocols. A successful s e n d does not imply that the message was actually received,

merely that it was delivered and available to the destination process. A non-blocking

style of s e n d was chosen in order to try to attain higher performance. Wi th more than

one supporting network for the M I N connection, it is possible to have more than one

message in-flight simultaneously, if the send primitive is non-blocking.

For r e c e i v e , b u f f e r is the location of a buffer size bytes in size in which to place

the next incoming message. If the arriving message is too large for the buffer, then

the message is not placed in b u f f e r . If the buffer is big enough, then it is filled with

the message's contents. In any case, though, the size of the message is returned as the

rece ive primitive's return value. If the buffer was big enough, then this return value

will let the user know how much data he has received. If the buffer was not big enough,

then this return value will let the user know how large of a buffer is needed for his

next r e c e i v e attempt. A more detailed discussion on the message reception procedure

appears in Section 2.9.

CHAPTER 2. DESIGN 32

One final primitive is needed for removing M I N connections :

result = close(M I N i d)

This primitive may be used by clients or servers. Only one parameter, the M I N

connection id, is needed. This causes all underlying network connections used for this

M I N connection to be released. In addition any data which has arrived for this con­

nection but has not yet been passed to the user is discarded. However, a close call

does not affect the other end of the connection, in that the process at the other end

may still receive any unreceived data which was sent from this end before the close

took place. Note that, as stated earlier, if M I N i d was established from an accept

request, closing the connection does not unbind the process from servername. This

does not occur until the termination of the server process.

2.5 Host Reachability

In order for two processes to connect to each other for communication, some physical

path must exist between the hosts which the two processes reside on. Wi th the use

of bridges and gateways, this is possible even if the two hosts are not both connected

to the same network. This can lead to a very wide-spread inter-connection of hosts,

CHAPTER 2. DESIGN 33

and combine to form a Long Haul Network like situation, where a message must pass

through a number of intermediate hosts before reaching its eventual destination.

In this thesis, though, we restrict our environment to exclude the use of bridges

and gateways. That is, two hosts are considered reachable from each other only if they

share at least one L A N in common. For instance, in Figure 2.5, host B is considered

to be reachable from host D , but host D is not considered to be reachable from host

A , as far as our M I N environment is concerned.

Host B

Host A Host D

Host C

Network 1 Network 2

Figure 2.5: M I N Multiple Network Domain

This restriction was imposed mainly to simplify our problem, not so much due to

how bridges and gateways affect host reachability, but because of how they affect path

selection based on network loads (discussed in Section 2.8). For host reachability, we

can simply view those networks which are interconnected by gateways as being one

CHAPTER 2. DESIGN 34

large network. In Figure 2.5 for instance, suppose Host B has a Network layer which

bridges Networkl and Network 2. We can thus consider Networks 1 and 2 to be a

single network which connects Hosts A and D . That is, from Host A ' s point of view, it

can reach Host D via Network 1, while from Host D's point of view it can reach Host

A via Network 2. This can be recorded in the host reachability data structures (to be

discussed shortly) in Host A and Host D . However, the fact that a bridge is involved

should be transparent to M I N , since it is handled in the underlying Network layer. In

any case, though, before the M I N concept can effectively include the use of gateways,

the difficult problems which would be caused for path selection must be satisfactorily

dealt with.

Not all of the hosts need to be connected to all of the networks in our environment.

For example, in Figure 2.5 Host A and Host B can only communicate through Network

1, but Host B and Host C can reach each other through both Network 1 and Network

2. Thus a means for determining which hosts can reach each other, and along which

networks, must be devised. That is, a function which takes a (host, host) pair as input

and returns a set of networks on which the two hosts can reach each other is required.

Since the domain for the (host, host) pair is the set of valid host ids, the issue

of host identification is relevant to our problem. Unfortunately, it is a complex issue

which can not be adequately examined here. A thorough treatment can be found in

[Chan86], which discusses the properties desirable for host identification schemes, and

CHAPTER 2. DESIGN 3 5

presents one which satisfies these properties. For our purposes, we will simply assume

the existence of a satisfactory scheme.

The output of our mapping function has the set of valid network identifiers as its

domain. This raises the issue of network identification. In this case, though, since it is

only relevant to our own environment of multiply-connected machines, all we need is an

internal scheme for uniquely identifying each network. A simple enumeration method,

which assigns a static id to each network, suffices. For communicating with outside

networks through bridges or gateways, we simply view our entire M I N environment as

a single L A N , and just give it one global network identifier.

One approach to implementing the host reachability function is to maintain a data

structure which contains all the mapping information. A n obvious candidate for this

data structure is a two dimensional matrix. The contents of the matrix could be

organized in two different ways. One method is to take the point of view of the host

on which the structure is maintained. That is, it will store for each network the set

of hosts which are reachable from this host along that network. This implies that

a different structure would be needed for each host. The second method is to take

into account our entire M I N environment, and store for each network all the hosts

which are connected to that network. As shown in Figure 2.6, with this scheme entry

Aij is marked yes only if host j is connected to network i . The first method is more

efficient, since it only requires looking up the entries for the destination host. However,

CHAPTER 2. DESIGN 36

the second method is much more flexible since the same structure can be used for all

hosts.

1 2 3 4

1 yes yes yes yes

2 no yes yes yes

3 yes yes yes yes

4 no yes no yes

Figure 2.6: Host Reachability Matrix

The information in the structure can be maintained statically or dynamically. If

it is done statically, then only the physical topology is taken into account, so that

modification of the structure's contents are only necessary when hosts or networks

are added or removed. Wi th dynamic maintenance, the goal is to maintain the most

up-to-date status information, so that it is necessary to keep track of the crashes

and recoveries of both hosts and networks. Wi th a static scheme, a user will only

discover the loss of a host or network when his attempt to send a message fails. This

usually occurs after some system-dependent number of timeouts and retries. Thus

CHAPTER 2. DESIGN 37

one advantage of the dynamic scheme is that it would save the user from time wasted

in finding out the loss of a host or network. However, the detection of host loss or

recovery is difficult, and usually requires the sending of probe messages by the system.

Since host and network crashes are not very common, a static scheme is sufficient for

our purposes.

Even for a static scheme, though, a simple matrix is actually not a totally satis­

factory data structure. This is due to its fixed dimensions, which do not allow easy

growth or shrinkage. Since most hosts can join a network unobtrusively, it would be

advantageous if the data structure can be readily enlarged. One structure which is

suitable is shown in Figure 2.7. It consists of a linked list of host ids, each of which

holds a pointer to a linked list of network ids. This structure has much greater freedom

to grow and shrink in all directions. It also allows the set of networks common to two

hosts to be easily found : this is simply the set of networks which appear in the linked

list of networks for both hosts.

2.6 Connection Establishment

The set of networks to use may be specified by the user for both the connect and

accept primitives. This means that the client and server may select different sets of

networks. For example, the server may be accepting on networks 1 and 2, while the

client is trying to connect on networks 2 and 3. In this example, connection can only

CHAPTER 2. DESIGN 38

H o s t 1

*
H o s t 2

H o s t 3

i
H o s t 4

L H N 1

L A N I

L H N 2

L H N 3

L H N 3 L H N 4

L H N 1

X
L H N 1 L H N 2 L H N 4 L H N 1 L H N 2 L H N 4 . 1

Figure 2.7: Host Reachability List Structure

be established on network 2, since it is the only network common to both the client's

set and the server's set of networks. Wi th n networks, the number of possible values

for the networks parameter is 2 n. The total possible number of (accept-networks,

connect-networks) combinations is 2"2. The M I N primitives must therefore perform

some handshaking during connection establishment, so that both sides will have the

same view of the M I N connection before any messages are exchanged.

If the client attempts to connect on a network on which the server is not accepting

requests, then the connect attempt will fail. Therefore the client, after making a

connection attempt on each of the networks specified in the networks passed in the

connect call, will know exactly which networks connection was established on. He

CHAPTER 2. DESIGN 39

can then send an "end-of-connect" notification to the server on one of the connected

networks (any one will do), to inform the server that he has finished his M I N connection

attempt. The server, upon receiving this notification, can stop awaiting reception

requests on the remaining networks, if any. The M I N connection phase for the client

and server are shown in Figures 2.8 and 2.9 respectively.

MIN Connect :
Verify that server is reachable on each network specified

in networks, removing any which are not
If no valid network in networks

Then return error
Assign a MINid for this MIN connection
For each valid network specified in networks do

Try to establish a connection on that network
If successful

Then include this network for this MIN connection
If connection was not established on any network

Then free this MINid and return error
Else (connection established on at least 1 network)

Send end-of-connect notification containing MINid to server
Wait for end-of-accept reply with MINid used by server
Return MINid to invoking client

Figure 2.8: Connection Phase for Client

As mentioned in Section 2.4, each side of the connection must inform the other side

of the connection of the M I N connection id which it is using. This is conveniently done

during the handshaking procedure just described. In the end-of-connect notification

CHAPTER 2. DESIGN 40

M I N Accept :
Verify that server is reachable on each network specified

in networks, removing any which are not
If no valid network in networks

Then return error
Repeat

Await arrival of a connection request or end-of-connect
notification on any valid network specified in networks

If it is a connection request which arrived
Then accept the request and include

this network for this MIN connection
Else (it is an end-of-connect notification)

Record MINid sent by client in end-of-connect notification
Send end-of-accept reply with server's MINid
Return MINid to invoking server

Figure 2.9: Connection Phase for Server

sent by the client, he can include the M I N connection id which he is using. The server,

upon receving this notification, sends an end-of-accept reply containing his own M I N

connection id. This is also shown in Figures 2.8 and 2.9. To clarify further, Figure 2.10

gives an event-by-event example of the connection phase. Since the Presentation and

Session layers are usually not present, we have assumed them to be null and made M I N

deal directly with the Transport entities for each network.

Connection ids must be uniquely assigned within each host. That is, there must be

no more than one M I N connection which is logically identified by a particular id. To

CHAPTER 2. DESIGN 41

Client Process
4 I t1 8

MIN Application

Transport!

Transport2

1 6

1 5
6

8

1 5

1 1

Server Process

MIN Application

Transport2

1. Server process invokes MIN primitive accept for Networks 1 and 2

2. MIN requests a passive Open from Transport layer for Network 1 (Transport 1)

3. MIN requests a passive Open from Transport layer for Network 2 (Transport 2)

4. Client process invokes MIN primitive connect for Networks 1 and 2

5. MIN requests an active Open from Transport layer for Network 1 (Transport 1)

6. Transport 1 (Client host) sends Open request to Transport 1 (Server host)

7. Transport 1 (Server host) accepts Open request and returns Success to MIN

8. Transport 1 (Server host) replies to Transport 1 (Client host) with Open Success

9. Transport 1 (Client host) returns Success to MIN

10. MIN requests an active Open from Transport layer for Network 2 (Transport 2)

11. Transport 2 (Client host) sends Open request to Transport 2 (Server host)

12. Transport 2 (Server host) accepts Open request and returns Success to MIN

13. Transport 2 (Server host) replies to Transport 2 (Client host) with Open Success

14. Transport 2 (Client host) returns Success to MIN

15. MIN (Client host) sends End-of-connect notification with client MINid to MIN (Server
host)

16. MIN (Server host) sends End-of-accept reply with server MINid to MIN (Client host)

17. MIN (Server host) returns server MINid to Server process

18. MIN (Client host) returns client MINid to client process

Figure 2.10: Event-by-Event Example of MIN Connection Establishment

CHAPTER 2. DESIGN 42

ensure this, a 32 bit integer counter is used for assigning M I N ids. When a connect

or accept call is successful, the current value of the counter is returned as the M I N

connection id. The counter is then incremented, so that the same value is not used

again. Although the counter will eventually wrap around, 32 bits should provide a large

enough domain to guarantee uniqueness. One counter is used per host, for all M I N

connections in that host. Additionally, some state information must be maintained for

each M I N connection, for use in message exchange. This is discussed in more detail in

Section 2.9.

It is assumed that the underlying communication services for each network provides

reliable connection establishment. It is also assumed that it is possible to simultane­

ously wait for the arrival of a connection request on one network, and for a message

(end-of-connect notification) coming in on another network on which connection was

already established.

2.7 Path Selection

In sending messages on a M I N connection which involves multiple underlying networks,

path selection is performed on a per-message basis. That is, different messages may

travel different paths, but no attempt is made to subdivide a user message. The choice

of which network to send a message is made to optimize performance. Two important

CHAPTER 2. DESIGN 43

criteria to consider in making this decision are the current load on each network and

the message size [Vuon83]. More criteria may be found to be of significance in the

future, therefore the decision algorithm or formula should be easily extendible.

One possibility is to prioritize the criteria. That is, the one which is deemed as

most important is always used first. If it is not sufficient to select a network (there

is a tie between two or more networks), then the second most important criterion is

used to decide between the contenders, and so on. This method is extendible, as any

new criterion can be inserted into the appropriate position in the order of evaluation,

according to its relative importance. However, it may not be a very good algorithm

since it usually ignores all but the most important criterion.

Another method is to quantify the suitability of each network for each criterion,

then calculate the overall suitability value of each network using a weighted sum.

For each network :

v = t y i p i + w2p2 + ... + wnpn

where

Pi = suitability value with respect to criterion i

Wi — relative weight of suitability value for criterion i

v = overall suitability value of this network

CHAPTER 2. DESIGN 44

E , Pi - l

For example, suppose message size is the criterion to use. If we know that Ethernet

is good for message sizes > 500 bytes, but is bad for message sizes <= 20 bytes, and

that the Cambridge Ring is good for message sizes 100 bytes, but is bad for message

sizes >1000 bytes, then we can set up a table like that in Figure 2.11.

LAN
Size^s^Type
ofMessage^^

Ethernet Cambridge Ring

<= 20 0.0 1.0
20 < <= 100 0.3 0.7

100 < <= 500 0.5 0.5

500 < <= 1000 0.8 0.2
1000 < 1.0 0.0

Figure 2.11: Suitability Quantification Using Message Size

This method too is extendible, as new terms can be easily added to the formula to

account for new decision criteria. The relative weights, as well as the quantification

scheme for each criterion, can be tuned according to measurement experiments for

each particular system. However, this may be difficult when more than two criteria

are used. Also, it is not as efficient as the priority method, since all criteria are always

CHAPTER 2. DESIGN 45

considered, and each involves a multiplication. Efficiency is a concern since the path

selection must be made on the sending of every user message. If the maximum benefit

from choosing the "best" network, in terms of decreased delay time, is t , then the

decision algorithm must require less than time t , or the potential benefit is lost.

2.8 Load Monitoring

A n important criterion for selecting a path for sending a user message is the current

load of each network. Since the transmission medium in most L A N s is shared, having

many stations which all wish to send messages around the same time would imply a

longer delay before each station can access the medium. Delay can also come from the

queuing of outgoing messages with each station, at various protocol layers. Thus the

overall delay can be attributable to the global load and the local load.

Message transmission in most L A N s is broadcast in nature (true for bus and ring

topologies, but not for star). Thus the global load can be determined at each station by

listening for any activity on the medium. For example, in a slotted ring, a station can

monitor the number of filled slots passing by, regardless of the contents' destination.

However, this is difficult without hardware support. Many vendors offer interfaces

which only provide transmission and reception capabilities, but not monitoring func-

tons.

CHAPTER 2. DESIGN 46

The local load is also difficult to measure, since queueing of messages, packets,

and frames is dispersed throughout the different protocol layers. However, all must

eventually pass through the physical layer, be they sends or receives. Therefore it is

possible to get an estimate of the current local load, as well as make a prediction of

what it will be in the near future. To do this, time can be divided into a number of

fixed length quanta. The number of packets sent and received in each quantum can be

counted. Using the n most recent quantum counts, a prediction can be made of the

next quantum count. This predicted value could then be used as an approximation of

the current load. Greater weight can be given to the more recent counts since they

represent more up-to-date information.

For each network :

/ = W1X1 + w2x2 + ... + wnxn

where

Xi = packets sent and received in the i-th previous quantum

Wi = relative weight for the i-th. previous count

I — predicted quantum count for the next quantum

CHAPTER 2. DESIGN 47

E< ^ = 1

To check the accuracy of the prediction, each predicted load could be compared

against the actual count measured in the next quantum. The relative weights can then

be adjusted to reflect the characteristics of the system. Dynamic weight adjustment

schemes, however, are extremely expensive.

The quantum length must be carefully chosen. If it is too large, then accuracy is

lost. On the other hand, if it is too small, then heavy processing overhead will be

incurred since a load prediction is required at the end of every quantum. A similar

tradeoff exists for choosing the number of quantum counts to use in predicting the

next one. Too few would be insufficient to reflect a trend, and too many would incur

memory as well as processing overhead. Again tuning is in order.

Unfortunately this method only provides some idea of the local load. Additionally,

it may even give the wrong information during times of very heavy network loads. This

would occur if the network is so heavily used that a rising load would allow each station

to perform less and less sends and receives during each time quantum. Our scheme

would report a decreasing local load, and therefore infer an incorrect assessment of

the network situation. Furthermore the work involved in calculating a weighted sum

for every time quantum is very heavy. Therefore a simpler strategy based on the

hot potato algorithm may be a better plan. Here the load for a network is simply

CHAPTER 2. DESIGN 48

interpreted as the length of the sending queue at the physical layer. This algorithm

requires much less computing time, and produces reasonably accurate results. Since

the aim in determining the network load is to send a message quickly by using the

lightest network, and the length of the outgoing queue for a network contributes to the

delay before a message can be sent on that network, then it makes sense to consider

the length of the outgoing queue.

The length of the outgoing queue may be measured in terms of the number of

packets waiting to be transmitted, or the total number of bytes in all of these packets.

It is unclear which of these would be better to use. Also, in either case the length value

may need to be multiplied by a factor which is different for each network. The values

of the factors depend on the relative speeds of the networks. That is, if for example

the Ethernet is twice as fast as the Cambridge Ring, then one packet in the Cambridge

Ring queue should be considered as being equal to two packets in the Ethernet queue.

Measurements could be taken in order to obtain some idea of the relative speeds of the

networks to be used. However, since performance is affected by load, the factor would

need to be dynamically adjusted, which could be costly. The adjustment for the factor

may need to be different for each network as well, since different networks respond

differently to changes in load. It is beyond the scope of this thesis to look thoroughly

into the problem of quantifying the relative speeds of different networks. We merely

point out that this issue needs to be considered.

CHAPTER 2. DESIGN 49

The length of the incoming queue could, under certain circumstances, provide some

information on the global network load. This would be true if the messages sent on

the network are fairly evenly distributed among all the hosts as destinations. However,

since this not always the case, the length of the incoming queue is not used by the

M I N at all . There are other possible means for obtaining some indication of the global

network load using the physical layer, even without adequate hardware support. This

would depend, though, on the underlying network technology. For example, in a token

bus or ring the length of time between successive arrivals of the token can be measured.

The longer the time, the greater the probability that the token was consumed during

that time. For a slotted ring, we can similarly measure the length of time between

successive arrivals of an empty slot. For a C S M A / C D bus, it may be possible to count

the number of collisions (and therefore re-transmissions), and include this value in the

quantum count. In all of these cases, additional processing overhead is incurred. The

optimum would still be a hardware interface which automatically monitors the network

load, and makes this information available to the software as a value between 0 and 1 .

The load information is collected in the physical layer, but it is made use of many

layers above, in the M I N software. Still remaining then is the question of how to pass

the information upwards. If it is accessed directly by M I N , then it would violate the

protocol design principle which stipulates each layer to be aware of only the layer above

and the layer below. However, the alternative of filtering the information through each

CHAPTER 2. DESIGN 5 0

of the intervening layers is highly unattractive. It would be slow, as well as require

each layer to be modified to accomodate this passing of load information. This change

would need to be made to every protocol layer for every network! Accessing it directly

is therefore a much better idea. To lessen the violation of the layered protocol principle,

a N e t w o r k M o n i t o r could be utilized for gathering the load information from all the

networks. Then M I N would simply obtain the information from the Network Monitor,

which it can perceive as just another system entity. The Network Monitor may be

either a separate process, if the host system adequately supports local inter-process

communication, or it may be a shared module of system routines. The addition of the

Network Monitor completes the picture of our overall software structure, as shown in

Figure 2.12.

Finally, we must discuss how the inclusion of gateways affects the task of path

selection based on network loads. As alluded to in Section 2.6, this is not a simple

problem. Suppose a host A can reach another host B either via Network 1 or via

Networks 2 and 3 which are bridged by a host C. If network loads are to be used in

deciding between the two possible paths, then we must consider the load on Network 3

as well as the load on Network 2 for the second path. Since the delay for a message to

travel through Network 2 is independent to that for Network 3. intuitively we should

add the load for Network 3 to the load for Network 2. Additionally, we must consider

the processing delay for the Network layer, the Data Link layer, and the Physical layer

CHAPTER 2. DESIGN 51

User

Presentation 1

Session 1

Transport 1

Network 1

Data Link 1

Physical 1

MIN Application

Network
Monitor

Presentation n

Session n

Transport n

Network n

Data Link n

Physical n

Medium 1 Medium n

Figure 2.12: Network Load Monitor

CHAPTER 2. DESIGN 52

in the gateway host C. This is difficult to determine. Furthermore, how should the load

information for Network 3 be made available to the M I N software on host A , where

the path selection decision is being made? Since host A is not connected to Network

3 this load information must be somehow passed along, probably through host C. If a

path includes more than 1 gateway then the problem of accessing remote load infor­

mation for the source host becomes even more complex. The inclusion of gateways in

a multiple network environment is a topic which is beyond the scope of this thesis.

2.9 Message Exchange

To send a user message on a M I N connection which consists of more than one physical

network connection, one of the networks is selected for the actual transmission, as

discussed earlier. However, there is no guarantee that the transmission attempt on the

chosen path will actually succeed. A failure may arise from the loss of that network, or

from the crash of the destination process's host, or from the death of the destination

process itself. Since the cause is not easily determined, we will be pessimistic and

assume that it is due to a network failure, and re-transmit the user message on another

network. We can only conclude that it is a host failure, or equivalently, the death of

the receiving process, after a transmission attempt on every network for this M I N

connection has failed. The sending algorithm is shown below.

CHAPTER 2. DESIGN 53

MUST Send :
Construct a MIN message header for this message
Repeat

Choose network most favourable for sending on
Try to send the MIN header on that network
If failed

Then disassociate this network from this MIN connection
Else

Try to send the user message on that network
If failed

Then disassociate this network from this MIN connection
Until header and message successfully sent

or have attempted and failed on all networks

Figure 2.13: Message Transmission

Notice that a transmission error on any network will cause that network to be

disassociated from the M I N connection. This means that that network will never be

used again for message transmission or reception, for the remaining duration of this

M I N connection. The assumption is that network failures usually last more than a

brief moment, so that it would be a waste of time to make any further transmission

attempts on this network for sending subsequent user messages. Nonetheless, it would

be beneficial if this disassociation could be temporary instead, so that the failed network

can be used again once it has recovered. One way of doing so is through the Network

Monitor. When a network is detected as being out-of-service, the Network Monitor can

set the suitability value for that network as negative infinity, so that it will never be

CHAPTER 2. DESIGN 54

selected for transmission. Once that network has recovered, its value can be returned

to normal. However, this scheme requires additional system support, since a network

failure must be accurately detected and distinguished from other possible causes of

communication failures, such as the crash of the destination host.

In Figure 2.13 a M I N message header is mentioned, which has not been discussed

as yet. Its purpose is relevant to the task of message reception, which is described

below.

To receive a message on a M I N connection which involves multiple networks is

slightly more difficult. Since multiple paths are available, and the send primitive is

non-blocking, it is possible for user messages to arrive out of sequence. This property is

purely a consequence of the behaviour of MIN's non-blocking transmission of messages.

Therefore we must deal with message sequencing ourselves. For each M I N connection,

it is necessary to maintain a sending sequence number and a receiving sequence number.

The sending sequence number is put into a M I N header which is prepended to each user

message to be sent. Also required is the size of the message, and the M I N connection

id used by the receiving side of this connection. This simple header format is shown

in Figure 2.14. Additional contents may be placed in the header in the future, as new

features are incorporated into M I N .

In order to avoid excessive data copying, the M I N header is not physically prepended

to the user message and sent off together. Instead, the header is sent first separately,

CHAPTER 2. DESIGN 55

MIN
id

S e q u e n c e
N u m b e r

M e s s a g e
S i z e

U s e r
M e s s a g e

Figure 2.14: M I N Message Header

and then the user message is sent immediately afterwards. However, both the header

and its associated user message must be sent on the same network. For each network

involved in a M I N connection, the software must keep track of whether a M I N header

or its following user message is due to arrive next. As long as each header/message pair

is sent on the same network, one after the other, then this is not a difficult task, since

the arrival order on each network will always be : header, message, header, message,

and so on.

On the arrival of a message header on one of the networks, the receiver must

check whether it contains the correct sequence number. If the sequence number in the

header matches the receiving sequence number for that M I N connection, then when

CHAPTER 2. DESIGN 56

the associated user message arrives, it is passed to the user in his buffer. In either

case, the size of the message is returned to the user as the return code to the receive

call. If it is larger than the size of the buffer, then the user will know that the receive

attempt failed, and how big of a buffer he needs.

Alternatively, the sequence number in the header can be greater than the receiving

sequence number for that M I N connection. This implies that this message has arrived

out of sequence, ahead of another message which was actually transmitted before this

one was. The out of sequence message should be buffered, until the preceding message

or messages have arrived and have been consumed by the user. Also, since messages

sent on the same network cannot arrive out of order (guaranteed by the Transport

service on each network), we may as well temporarily ignore the network on which

the out of sequence message arrived, to decrease the chances of having to deal with

more out of sequence messages. This network can be "re-enabled" after its buffered

out of sequence message has been delivered to the user. If all the networks for the M I N

connection have thus been disabled, it means that a message has been lost, and the

connection must then be closed.

Another possibility is that the sequence number in the message is less than the

receiving sequence number. This can be caused by an undetected network error which

corrupted the sequence number in the M I N header, or it may imply the arrival of a

duplicate message. In either case the dubious message should be discarded. Although

CHAPTER 2. DESIGN 57

the Transport services for each network is supposed to provide reliable end-to-end

communication, the nature of MIN's transmission algorithm makes duplicate messages

possible. Suppose the Transport services of the chosen network successfully delivers

the user message, but does not manage to get an acknowledgement from the Transport

layer at the destination host. It will thus report the transmission attempt as having

failed, even though it has been received by the destination Transport layer (there is no

way to know that the acknowledgement was lost, since there is no acknowledgement

of the acknowledgement). The M I N send primitive will then assume a failure on that

network (which may actually be the case), and re-transmit on another network. When

this message arrives via the second network and is passed to M I N , a duplicate message

situation wil l have resulted. However, it is not a serious consequence, as the duplicate

message can be simply discarded, and message reception can continue as normal.

One other possible scenario is that the M I N header is successfully sent, but the user

message is not. In this case, the sender should re-send both the header and the message

on another network. This is done in order to preserve the arrival sequence of header,

message, header, message, etc. on each network. The fact that the transmission failure

occurred on trying to send the message can be detected by the receiver upon the arrival

of a duplicate header. That is, a header with the same sequence number has already

arrived on another network. In this case, the first network to have delivered this header

should be considered to have failed, and that network should be disassociated from this

CHAPTER 2. DESIGN 58

M I N connection. The M I N software on the sender's side does not re-transmit either the

header or the message on the first network, since each of the underlying protocols layers

has already made a number of re-trys before giving up and reporting a transmission

failure. The algorithm for receiving is given below.

There is also the issue of sequence number wraparound. The domain of sequence

numbers should thus be chosen to be large enough as to make this rare, but not so

large that it incurs a lot of overhead in terms of the size of the M I N header. A n 8

bit sequence number should suffice. The sequence number is initialized to 0 when the

M I N connection is created, and incremented once for each user message.

CHAPTER 2. DESIGN

M I N Receive :
Repeat

Wait for a header or message to arrive on any network
If an error occurs in trying to receive the header or message

Disassociate this network from this MIN connection
If all networks for this MIN network have been disabled

Then return error
Else If it is a header

If message size > user's buffer size
Then return size of message

Record sequence number and message size for that network
If sequence number > reception sequence number

Temporarily disable that network
Else If sequence number = reception sequence number

and another network has already received the same header
Disassociate that other network from this MIN connection
If all networks for this MIN network have been disabled

Then return error
Else / * it is a message * /

If recorded sequence number < reception sequence number
Discard the duplicate message

Else /* message is in-sequence */
Put message into user's buffer
Update reception sequence number
Return size of message

Figure 2.15: Message Reception

Chapter 3

Implementation

This chapter deals with an implementation of the M I N software at the University of

B . C . First the hardware and software environment is described. Next the configuration

of the software, i.e. the user interface, is discussed. Following that is a brief report

on the supporting system software used by M I N . Explanations on how this support­

ing software is utilized for connection and establishment and message exchange are

included. Also contained in this chapter are sections dealing with how network loads

are monitored and how path selection for message transmission is made.

It should be noted that the purpose of this implementation was mainly to obtain

some measurement results for evaluating the practicality of the M I N concept. The fact

that it was never intended for general use significantly influenced how certain aspects

of the software was implemented. Evidence of this will appear in some of the upcoming

sections.

60

CHAPTER 3. IMPLEMENTATION 61

3.1 Environment

The hardware environment for our implementation consists of a Vax 11/750, a Vax

11/780, and 10 Sun-2 workstations, interconnected by a 10 Mb/ s Ethernet using 3 C O M

interfaces [3COM82]. One of the Suns, named "ubc-dsrg", is also connected to a 10

M b / s Toltec Cambridge Ring [Toltec]. Since the dsrg Sun is the only machine con­

nected to more than one network, most of the testing and performance measurements

(given in chapter 4), were performed on this workstation.

The Vaxes and Suns are connected to a number of terminals through a Develcon

Data Switch. There are also dial-up lines, and remote logins are also possible through

the Ethernet. A l l together, about 40 users may be simultaneously served. Unfortu­

nately, though, this is hardly sufficient to load down the network.

A l l of the machines operate the 4.2 BSD Unix system, which provides local and

remote transport level inter-process communication services in the form of sockets.

These sockets are used by M I N as the interface to the system's supporting network

protocols, for both the Ethernet and the Cambridge Ring. Before discussing how ex­

actly the sockets are used, the IPC primitives offered by 4.2 BSD are first presented.

Only a very brief description is given; much more detail can be found in [Leff83].

CHAPTER 3. IMPLEMENTATION 62

3.2 4.2 BSD IPC Primitives

When a process running under 4.2 BSD Unix wishes to communicate with another

process, each of these processes must first create a socket. This is done using the prim­

itive :

socket(domain, type, options)

The first parameter specifies the communication domain. If it is local (both pro­

cesses reside on the same host), then the user use the constant A F J J N L X as the d o m a i n

argument. If it is remote, the constant A F JTNET (for inter-net) is used. The parameter

type defines the type of socket to create. The types available are stream (specified by

the constant S T R E A M) , for use in connection-oriented IPC, and datagram (specified

by the constant D G R A M) , for connectionless IPC. The M I N software uses only stream

sockets. The value returned by socket is a non-negative socket number.

For connection-oriented IPC, once each process has created a socket a logical con­

nection must be made between them. To achieve this, one the processes must act as a

client and make a connection attempt to the other process, which is acting as a server

by passively waiting for the connection attempt. The client's attempt is carried out

CHAPTER 3. IMPLEMENTATION 63

using the primitive :

connect(socket, sin, sinsize)

The first parameter is the socket number returned by socket. The second parame­

ter points to a structure containing information on the server process which the client

wishes to connect to, and the host machine which the server resides on. The third

parameter indicates the size of the s in structure. The host and server information is

obtained through 2 system functions :

gethostbyname(hostname)

getservbyname(servername)

These functions allow users to refer to hosts and servers by symbollic names (Ascii

strings). In 4.2 BSD there is a names service which enforces unique server names on a

per-host basis, which is why both the host and server must be specified in the call to

connect.

Before the client can connect to a process named servername, the server must

CHAPTER 3. IMPLEMENTATION 64

have already assumed that identity. This it does using the primitive :

bind(socket, sin, sinsize)

The s in and sinsize parameters are the same as those for connect. However,

only the server information in the s in structure needs to be filled in, and not the host

information. The server information is obtained using a call to getservbyname.

Once the server process has logically bound a socket to the symbollic name, it can

then sit and wait for a connection attempt by a client. This is done using the primitive

listen(socket)

This primitive only needs to be called once by the server. It marks the specified

socket as "listening" for connection attempts. When one arrives, the server may accept

the connection request using the primitive :

accept(socket, sin, sinsize)

The socket parameter is the number of the bound socket which the server is listen-

CHAPTER 3. IMPLEMENTATION 65

ing on. The sin and sinsize paramters are the same as those for connect. However,

the sin structure is filled in by the system rather than the user. On return from the

accept call it contains information on the client whose connection request was just

accepted.

A connection is now established between the server and client. The accept primi­

tive creates a new socket for the server which is used for subsequent data transfer on

that connection. The original socket is retained for listening for additional connection

attempts by other clients.

To send data through a connected socket, a process uses the primitive :

write(socket, address, size)

This transfers size bytes of data located at address through socket to the socket

at the other end of the connection. The w r i t e primitive returns the number of bytes

successfully written. To retrieve the data, the other process uses the primitive :

read(socket, buffer, size)

This attempts to get up to size bytes of data out of socket and put them into

buffer. The read primitive returns the number of bytes successfully read.

CHAPTER 3. IMPLEMENTATION 66

Although data transfer on 4.2 stream sockets behaves more or less like standard

Unix I /O (i.e. a boundaryless byte-stream), there are some differences. Suppose two

processes have established a connection of stream sockets, and one process executes :

read(socket, buffer, 96)

while the other process executes

write(socket, address, 64)

write(socket, address, 32)

The result returned to the receiving process for its read call may be different

depending on the amount of time which passes between the 2 w r i t e calls made by the

sender. If a long time elapses in between, then the read call returns 64, the number

of bytes sent by the sender on its first wr i t e . That is, only the first chunk of data is

delivered to the receiver. If there is a very brief interval, then all 96 bytes are delivered.

This is because the 4.2 BSD software on the receiving side only waits a finite amount

of time after the first block of data arrives for more data to arrive. If no further

data arrives within that period, then it simply delivers whatever it has gotten so far.

However, this characteristic of 4.2 BSD is not of great consequence as far as the M I N

CHAPTER 3. IMPLEMENTATION 67

software is concerned.

When a process has finished using a socket, it can be removed using the primitive

close (socket)

As pointed out in chapter 2, it is crucial to the M I N software to be able to wait for

more than one event simultaneously. The events of interest are the arrival of messages

and connection requests. In 4.2 BSD there is a primitive which provides the ability to

multiplex socket I /O :

select(maxsocket, readmask, writemask, exceptmask, options)

The parameters readmask, wr i t emask , and exceptmask, are bit masks of socket

numbers which the user is interested in using for receiving data, sending data, and

transmission exceptions, respectively. The M I N software only needs to use readmask,

so wr i t emask and exceptmask will not be further discussed. The final parameter

options is for specifying additional options. This is not used by M I N either.

Select is not a blocking function which does not return until one of the specified

events (e.g. arrival of data on one of the sockets specified in readmask) occurs.

CHAPTER 3. IMPLEMENTATION 68

Rather, it takes an instantaneous check on the status of each of the specified sockets

and reports on them. Thus to wait for an event, the user must repeatedly call select,

in a polling fashion.

To check whether any data has arrived on a certain socket, the user must set the

corresponding bit in argument readmask to 1. For example, to check the socket whose

id is 2, bit 2 (where bit 0 is the least significant bit) in readmask should be set to 1

on entry to select. On exit, the same bit in readmask is set by the select function

to indicate that socket's receiving status. If the bit is 1, it means that some data has

arrived on that socket which has not been delivered to the process yet. A bit value of

0 on the other hand mean that there is no outstanding incoming data on that socket.

Thus readmask acts as both an input and an output parameter.

More than one bit may be set in readmask, to allow multiple sockets to be ex­

amined for their status simultaneously. The limit depends on the host machine's word

size (number of bits in readmask) and maximum number of sockets which may be

open at the same time. On our Sun workstation the limit is 32, which is the word size.

The maxsocket parameter is used to indicate the largest socket number specified

in readmask, wr i t emask , or exceptmask. In our case only readmask is relevent.

That is, maxsocket should be set to the number of the most significant "on" bit in

readmask, plus one. For example, if the highest socket number selected is 6, so that

bit 6 in readmask is set to 1, then maxsocket should be given the value 7.

CHAPTER 3. IMPLEMENTATION 69

The select function can be used to check for the arrival of a connection request as

well as data, if the socket is marked as "listening". In either case the corresponding

bit in readmask has the value 1 on exit from select. Thus a connection request could

be viewed as a special type of data.

3.3 Supporting Network Software

Communication over the Ethernet is provided directly by 4.2 B S D , which runs T C P / I P

as the default transport protocol for internet stream sockets. A t U . B . C . there is an­

other transport level protocol available, the locally developed L N T P (Local Network

Transport Protocol) [Chan84]. Although L N T P is designed especially for L A N s and

is therefore much more efficient in our environment, T C P / I P was chosen for our im­

plementation because it is much more widely used. Switching to L N T P or any other

transport protocol would be easily done as it merely involves the modification of one

of the parameters supplied to the 4.2 BSD IPC function connect (see 3.2).

Access to the Cambridge Ring is provided by a software package developed by

another graduate student at U . B . C , L . Chan [Chan85]. This software also provides

transport level communication, using the BSP and B B protocols. Unlike the T C P / I P

software, which sits passively in the 4.2 BSD kernel, the BSP software is structured

as an active server process. The BSP server is interfaced through 4.2 local IPC , using

CHAPTER 3. IMPLEMENTATION 70

Unix domain sockets.

The communication provided by the BSP server is connection-oriented, so that a

client/server model is used for connection establishment. This begins with the user

server process sending an accept request message to the B S P server. This message

contains a BSP connection id which identifies the user to the BSP server. Unfortu­

nately the current state of the BSP software is such that these connection ids must

be determined by the user himself, rather than given out by the BSP server. That is,

the user must choose an id somehow and make sure that it is not used by anyone else.

How the M I N software deals with this is discussed in Section 3.6.

After the user server process has established contact with the B S P server, then

the user client process can send a connect request message to the B S P server. This

message should contain a connection id for the client itself, and the connection id used

by the server which the client wishes to connect to. If the server connection id is

incorrect, or the connect request message is received by the BSP server before the

accept request message, then an error reply message is returned to the user client

process.

To send a message over the Cambridge Ring, a user process must first send a send

request message to the BSP server, which contains the destination connection id, and

the size of the message. The user process then sends the message itself to the BSP

server. A reply message is returned by the BSP server to indicate the results of the

CHAPTER 3. IMPLEMENTATION 71

transmission attempt.

To receive a message over the Ring, a receive request message is sent to the BSP

server. This request message contains the user process's connection id, and the size

of the expected message. The user process must know ahead of time how large the

arriving message will be. If it turns out to be of a different size, then problems will

develop. Fortunately this characteristic of the BSP server interface does not pose too

great a difficulty for the M I N software (see Section 3.7).

When a BSP connection is no longer needed, it may be removed by sending a close

request message to the BSP server, and then closing the local socket.

3.4 Software Configuration

The M I N software is intended to provide communication services to all user processes,

as part of the host system. Therefore it should reside in system space, as a re-entrant

shared module. However, in our implementation it was decided not to place the M I N

software in the host system, in order to disturb users as little as possible. Instead the

M I N software is configured as a linkable library of routines, so that each user program

contains its own copy of the code. Another motivation for this was that the BSP server

is itself a user process, accessed through system IPC services. In our environment the

4.2 BSD IPC functions form the Application layer. If the implementation were intended

CHAPTER 3. IMPLEMENTATION 72

for actual use rather than experimental purposes, then the M I N software would need

to be incorporated into the system.

The M I N library contains the 5 primitives described in Section 2.4. A synopsis of

each appears below. These functions are implemented in C, and are intended for a C

caller. The prefix m i n _ is added to their names in order to avoid confusion with the

4.2 BSD IPC routines.

int min_accept(servername, networks)

char * servername;

int networks;

int min_connect(hostname, servername, networks)

char * hostname;

char * servername;

int networks;

int min_send(MINid , message, messagesize, networks)

int MINid;

char * message;

int messagesize;

int networks;

CHAPTER 3. IMPLEMENTATION 73

int min_receive(MINid , buffer, buffersize)

int MINid;

char * buffer;

int buffersize;

int min_close(MINid)

int MINid;

The networks parameter for min_accept and min_connect is a bit mask of net­

work ids. Its format is similar to that of the readmask parameter for the 4.2 BSD

function select (see Section 3.2), which is a bit mask of socket numbers. Each network

in the M I N environment is assigned a small integer id, starting from 0 as the lowest

id. To specify a network using networks, the bit which corresponds to that network's

id is set to 1. For example, to specify the network whose id is 4, use :

networks = 1 << 4

In our implementation environment the Ethernet is assigned the id 0 while the Cam-

CHAPTER 3. IMPLEMENTATION 74

bridge Ring is given id 1. These ids are also denned as the C constants M I N . E T H E R N E T

and M I N _ C A M B R I N G , respectively, in the header file m i n . h . Thus to specify the

Cambridge Ring for example, use :

networks = 1 << M I N _ C A M B R I N G

B y using networks as a bit mask, more than 1 network can be specified using a

single value. This is achieved by setting the bits corresponding to each desired network

to 1, using a logical O R operation. For example, to select both the Ethernet and the

Cambridge Ring, use :

networks = (1 « M I N . E T H E R N E T) | (1 « M I N . C A M B R I N G)

If the user does not care which networks are used for the M I N connection, the

networks parameter should be set to 0, or the defined constant M I N . A N Y N E T S .

This symbol is also defined in the file m in .h , along with a number of other items

which will be mentioned in the upcoming sections.

The servername parameter is a pointer to a null-terminated Ascii string which

symbolically identifies the server process. This string must be a name which is under­

stood by 4.2 BSD function getservbyname (see 3.2). Two names were created for the

CHAPTER 3. IMPLEMENTATION 75

purposes of developing M I N : "kctes t l" and akc_test2". The hostname parameter

also points to an Ascii string. It identifies the host which the server resides on. It

must be a name understood by the 4.2 BSD function gethostbyname, for instance

"ubc-dsrg" for the dsrg Sun workstation.

The min^accept and min_connect primitives return a non-negative M I N con­

nection id when a M I N connection is successfully established. This MINid is used for

subsequent calls to min_send, min_receive, and min_close. If an error occurs, then

a negative error code is returned instead.

The min_send primitive returns 0 if the message located at message, of size mes-

sagesize bytes, is successfully sent. A negative error code is returned otherwise. The

min_receive primitive returns a positive value equal to the size of the next received

message. If the size of the user's buffer, buffersize, is large enough, then min_receive

copies the message into buffer. If the user's buffer is not big enough, then it is left

undisturbed. The user will know that a message has arrived but has not been passed to

him, by the fact that the return code from min_receive is larger than his buffer size.

Another call to min_receive, with a large enough buffer, would have to be made in

order to retrieve that message. If some reception error has occurred, then min_receive

returns a negative error code. One final possibility is that the process at the other side

of the M I N connection has closed his end of the connection, so that no more messages

will arrive on it. In this case m i n .receive returns 0.

CHAPTER 3. IMPLEMENTATION 76

The min_close primitive only requires a M I N connection id as a parameter. It re­

turns 0 if the connection is successfully closed, or a negative value if there is an error.

The only possible error is that M I N i d is invalid.

3.5 Host Reachability

Our implementation of M I N uses a static scheme for recording host reachability in­

formation. That is, only the physical connection of the machines to the networks is

stored. No attempt is made to keep track of the current up/down status of each host

and network.

The logical structure for storing the host reachability information is the linked list

of linked lists structure described in Section 2.5. It is implemented as an Ascii text file,

with each line containing the names of the hosts which are connected to that network.

The first line is used for network 0 (Ethernet) and the second line is used for network

1 (Cambridge Ring). The file is kept in Ascii instead of binary form so that it can

be more easily read and modified. This file should be updated whenever the physical

connectivity of hosts and networks in the M I N domain changes.

Each of the host names in this file are those used for the local networking environ­

ment. That is, these names are understood by the system function gethostbyname.

The host names on each line are separated by one or more blanks or any other white-

CHAPTER 3. IMPLEMENTATION 77

space characters (tabs, etc.). When the min_connect primitive is called by a user, the

M I N software searches each line of this file for the argument host name, to determine

which networks that host is connected to. If the name is not found on any line, then

it is an invalid name and min_connect returns an error code. Otherwise, if the user

has specified a set of networks to use, then the M I N software must verify that the

argument host name is found on the appropriate lines of the file. If it is missing from

any of the specified network's corresponding lines, an error code is returned.

The same check on the networks parameter is made by the min^accept prim­

itive. However, since the user is not required to submit the local host name as an

argument to min_accept, the M I N software must either have it hard-wired into the

code or determine it dynamically from the system. Since hardwiring the host name

would require a different version of M I N on every machine, getting it at run-time is a

much better idea. On 4.2 BSD there is a system function which provides this :

gethostname(hostnamebuffer)

This function returns the name of the host in the argument buffer, as an Ascii

string which is understood by the system function gethostbyname. It can therefore

be used as the target string in searching each line of the host reachability file.

There is the possibility that the file may be modified while it is being examined by

CHAPTER 3. IMPLEMENTATION 78

the M I N software. In order to take the changes into account as soon as possible, the

M I N software reads in each of the file every time it wants to perform a search for a host

name, rather than reading in the entire file only once at startup time and then perform­

ing all subsequent searches on the in-memory copy. Although the alternative method of

keeping a copy of the file in memory may save a little bit of 1/O time, the results might

not always be correct. For instance, if the application is a system deamon which is up

for a long time, then it would not discover the changes in the host reachability file at all.

3.6 Connection Establishment

To establish a M I N connection between 2 processes, the M I N software must do the

following :

1. establish a connection on each of the networks on which the 2 processes can
reach each other, and which were selected by both the client and server in their
respective networks argument

2. ensure that both sides have the same view of which networks are being used for
that M I N connection

3. inform each side of the connection of the MINid assigned to that M I N connection
at the other side, so that message exchange can successfully take place

The final step is not necessary in our implementation since the supporting network

software is connection-oriented. This means that we only need to know the socket

CHAPTER 3. IMPLEMENTATION 79

number on our side of a connection when we wish to transmit a message. Since a

logical connection has been established between that socket and the destination process'

socket, the supporting software will deliver the message to the appropriate destinattion

socket, and hence to the correct destination process.

On the client's side, the M I N software makes a connection attempt on each of the

networks selected for this M I N connection. These are the networks found in the host

reachability file (see 3.5) which were selected by the user in the networks argument

passed to min_connect. For the Ethernet, the connection attempt is made by creating

a socket and then calling the 4.2 BSD routine connect (described in 3.2). If it is

successful, then the socket number is recorded in a data structure which maintains the

status of each M I N connection. The organization of this structure is shown below, in

C programming language syntax.

The structure member type is a sub-structure which details which networks are

utilized for this M I N connection. Its format is shown below.

The structure member m a n y indicates whether only one network is used, or more

than one. If only one, then the union t contains the id of that lone network. If more

than one network is used, then the union t holds a bit mask of all the network ids

used. This bit mask is in essentially the same format as the ne tworks parameter for

min_connect, min_accept, and min_send. By considering a M I N connection which

only involves a single network to be a special case, it allows messages to be sent without

CHAPTER 3. IMPLEMENTATION 80

typedef struct
{

T Y P E type;
int smask;
int rnaxs;
int rmask;
int sseq;
int rseq;
PORT port[MIN_MAXNET];

} CONNECTION;

Figure 3.1: C O N N E C T I O N Structure

going through the path selection algorithm first (discussed in 3.9), and messages to be

received without polling all the sockets (discussed in 3.9).

The members smask, maxs , and rmask of the C O N N E C T I O N structure are

used for message reception, but only when the M I N connection involves more than one

network. The members sseq and rseq are message sequence numbers used for sending

and receiving, respectively, on this M I N connection. Message exchange is discussed in

detail in Section 3.9.

In addition to storing data which relate to the M I N connection as a whole, some

information must be kept for each of the networks used for that M I N connection. This

is kept in sub-structures, one per network connection. Each of these is termed a P O R T .

CHAPTER 3. IMPLEMENTATION 81

typedef struct
{

BOOLEAN many;
union;

int net;
int nmask;

t;

} T Y P E ;

Figure 3.2: T Y P E Structure

Each P O R T structure contains a socket number used for communicating over that

network. For the Ethernet this would be a socket which is connected directly to the

process on the other end of the M I N connection. For the Cambridge Ring this socket

would be connected to the BSP server. As mentioned in Section 2.9, a M I N header

logically prepended to each user message, and although the header and message are

not sent together as a single unit, they are always launched on the same network, with

the message immediately following the header. Thus the arrival sequence of items on

each network is header, message, header, message, and so on. The P O R T structure

must therefore keep track of whether it is a header or a user message which is due to

arrive next on that network. This is done using the boolean structure member rda ta .

CHAPTER 3. IMPLEMENTATION 82

typedef struct

{

int sock;

BOOLEAN rdata;

HEADER rhdr;

} PORT;

Figure 3.3: P O R T Structure

When it is a message which is due to arrive next, rdata has the value T R U E . When

it is a header which is due to arrive next, rdata has the value F A L S E . The P O R T

structure also contains a buffer for storing the latest header received, which contains

relevent information on its associated message, such as its size. The format of the

H E A D E R structure and its usage is discussed in Section 3.9.

When the min_connect primitive makes a successful connection on a network, the

socket number is recorded in that network's P O R T structure. If this M I N connection

involves more than one network, then the M I N software also sets the bit corresponding

to the socket used for this network in the smask member of the C O N N E C T I O N stru-

ture. As mentioned earlier, smask is used for message reception, which is discussed in

Section 3.9. If on the other hand the connection attempt failed, then the min.connect

primitive must dissociate that network from this M I N connection, so that this network

CHAPTER 3. IMPLEMENTATION 83

would not be considered for subsequent message transmission and reception. This is

done by clearing the bit corresponding to that network's id in the T Y P E sub-structure

within the C O N N E C T I O N structure. A connection attempt may fail due to a number

of reasons. One possibility is that there is a problem with the network or the destina­

tion host. Another possible cause is that the server is not present or is not listening

for connection attempts on that network. If connection is not successfully established

on any network, then min_connect returns an error code.

Once a connection attempt has been made on each of the networks selected for

this M I N connection, and the results appropriately recorded, then the min_connect

primitive sends the connection information in the T Y P E sub-structure over one of the

networks on which connection is established. This action serves two purposes. First,

it tells the process at the other end of the connection which networks the process at

this end thinks connection is established on. Secondly, it lets the server know that

the client has completed all his connection attempts and is now ready for message

exchange. The latter is useful in case the server is listening for connection attempts

on more networks than the client is trying to connect on. For example, suppose that

the server is listening on both the Ethernet and the Cambridge Ring, but the client

only wants to connect on the Ethernet. When connection has been established on the

Ethernet and the T Y P E information arrives, the server will then know that this client

only wants to connect on the Ethernet. It can therefore stop listening for connection

CHAPTER 3. IMPLEMENTATION 84

attempts on the Cambridge Ring. Since a client's connection attempt blocks him from

further execution until the server has received and accepted it, it is not possible for

the T Y P E information to arrive at the server until the client has completed all of

his connection attempts. Therefore there is no possibility of the T Y P E information

arriving too soon and causing an error.

However, if there is more than one client attempting to connect on more than one

network around the same time, then problems may arise if their connection attempts

are interleaved. For example, suppose there are two clients clientl and client2, both

wishing to connect to the server on both the Ethernet and Cambridge Ring. Suppose

further that clientl's Ethernet attempt has already arrived and has been accepted,

when client2's Cambridge attempt arrives. If the M I N software does not realize that

this attempt is from a different client than the one accepted on the Ethernet, then it

would incorrectly form a M I N connection from the Ethernet connection to clientl and

the Cambridge Ring connection to clientl. Thus some client identification information

must be retained when a connection attempt is accepted. Fortunately this information

is made available by the 4.2 BSD routine accept, so that min_connect does not have

to send it itself.

Another scheme which was considered as a possible solution to the above problem

is to order all the networks in our environment so that clients always runs through the

networks for their connection attempts in the same order. The most obvious ordering

CHAPTER 3. IMPLEMENTATION 85

is by network ids, so that in our implementation a connection attempt would always be

made on the Ethernet before the Cambridge Ring. This scheme works very well for the

scenario described above. Since the server has already accepted clientl's connection

on the Ethernet, it ignores client2's connection attempt on the Ethernet. Thus client2

is blocked, and it cannot make a connection attempt on the Cambridge Ring and have

it arrive before clientl's Cambridge Ring connection attempt. Unfortunately, though,

this method does not always work. A counter-example is easily formed by modifying

the above situation so that client2 is only attempting to connect on the Cambridge

Ring.

For the server, the M I N software's task is different depending on whether the M I N

connection involves more than one network or not. If only one network is used, then

the min_accept primitive merely has to create a socket, and then wait for a connection

attempt from the client.

If more than one network is involved, then the server must create a socket for each

of these networks. It then polls all the sockets at the same time for the arrival of

connection attempts (on the Cambridge Ring the server must first send an accept

request message to the BSP server). When a connection attempt arrives on one of

the networks, the M I N software accepts it. If it arrived on the Ethernet, then the

new socket number returned by the 4.2 BSD function accept must be stored into the

P O R T sub-structure. The M I N software then records the fact that connection has been

CHAPTER 3. IMPLEMENTATION 86

established on this network by clearing the bit corresponding to the socket used for this

network in the rmask member of the C O N N E C T I O N structure (rmask is initialized

to the value of smask after all the sockets are created). However, min_accept does

not ignore this network but continues to listen to all the networks selected for this

M I N connection. Later, when the 4.2 BSD function select reports that something has

arrived on an already connected network, the M I N software will know that it is not

a connection attempt which has arrived, but rather the T Y P E information sent by

the client to indicate the end of the connection establishment phase. The min_ Jaccept

primitive can then stop listening for connection attempts on the yet unconnected net­

works if there are any, and dissociate those networks from this M I N connection by

clearing the corresponding bits in its C O N N E C T I O N structure's T Y P E sub-structure.

A check should be made that the local T Y P E information matches the contents

of the T Y P E sent by the client. In the unlikely event that they disagree, all network

connections just established for this M I N connection are removed and min^accept

returns an error result.

3.7 Path Selection

When the user wants to send a message over a M I N connection which uses more than

one supporting network, a path selection must be made. If the user has specified

CHAPTER 3. IMPLEMENTATION 87

a network or a set of candidate networks using the networks parameter passed to

min_send, then only these networks are considered, if they are valid for this M I N

connection. The validity of the specified networks are easily determined using the

T Y P E information in the C O N N E C T I O N structure. If any of the specified networks

are invalid, i.e. connection was not actually established on those networks or the

destination host is not reachable on those networks, then those networks are not used

for the path selection algorithm. If the user did not specify any networks using the

ne tworks parameter, which would be the usual case, then the M I N software will

choose from the networks indicated in the T Y P E sub-structure.

The path selection algorithm used by our implementation considers two factors :

message size and network loads. A prioritized scheme, as described in Section 2.7,

is used, with message size treated as the more important of the two factors. Since

the Cambridge Ring is more suitable than the Ethernet for sending small messages,

the Cambridge Ring is chosen for sending all messages <= 32 bytes. On the other

hand, the Cambridge Ring is not nearly as efficient as the Ethernet for sending large

messages. Thus the Ethernet is chosen for sending all messages >= 512 bytes. These

size boundaries were not mathematically derived to be the optimum; their selection

was based on the fact that the Cambridge Ring's Basic Block protocol only puts 2

bytes of actual data in each mini-packet. Also, the Ethernet always pads packets to a

minimum size of 128 bytes. These size boundaries are reasonable for our purposes, but

CHAPTER 3. IMPLEMENTATION 88

for an implementation which is intended for general use, more careful analysis would

need to be done.

For messages with sizes between 32 and 512, the path selection is based on the

current load on the two networks. The minjsend primitive chooses the network with

the lighter load to send the message on. How the network loads are estimated and

accessed by the M I N software is discussed in the next section.

3.8 Load Monitoring

Our implementation of the M I N software uses the length of the outgoing queue at the

lowest protocol layer as an estimate on the network load. The length of the queue

is measured in terms of the number of packets in the queue, rather than the total

size of the data contained in the packets. Although this value only reflects the local

load, it is a reasonable measure to use since the length of the transmission queue has a

direct effect on the delay before the message is actually transmitted, and the purpose

of monitoring the network loads is to try to get the message launched as quickly as

possible.

In order to store the load information, the device drivers for the Ethernet and Cam­

bridge Ring were modified to each keep a counter for the length of its outgoing queue.

They were also changed to accept a new type of I /O control request, for inquiring on

CHAPTER 3. IMPLEMENTATION 89

the current network load (length of the transmission queue). Thus the load informa­

tion for a network is obtained using the system function ioctl, as follows :

ioctl(dd, G E T L O A D , &load);

The argument dd is a device descriptor number, obtained from an earlier call to

open the device (Ethernet or Cambridge Ring). The argument G E T L O A D is a

denned constant which uses the system-defined macro JEOCTL to construct a packed

32 bit value which specifies that this is a request to get the current network load.

The final argument is the address of an integer variable load, into which the modified

device driver will place the network load value.

To avoid direct access of the physical layer device drivers by the M I N software, a

Network Monitor process was built which made the ioctl calls to get the network loads

information and forwarded these to the M I N software through Unix domain sockets.

However, as one would expect this proved to be much too expensive, as a request and

reply would need to be exchanged each time a user message to be transmitted requires

a path selection based on network loads. Thus the ioctl calls have been moved into

the M I N software, and are made by the min_send primitive instead.

CHAPTER 3. IMPLEMENTATION 90

3.9 Message Exchange

The min_send primitive was relatively straightforward to implement. When the M I N

connection only involves a single network, all user messages are sent on that one net­

work. The M I N software sends a header ahead of each user message. The header

structure is organized as follows :

typedef struct
{

unsigned seq;
unsigned size;

} HEADER;

Figure 3.4: H E A D E R Structure

The structure member seq is the sequence number for that message. This is the

sending sequence number for this M I N connection, stored in the sseq member of the

C O N N E C T I O N structure. The sequence number is initialized to zero when the M I N

connection is created.

When a message is to be sent on a M I N connection which involves more than one

network, the M I N software must go through the path selection algorithm described

in Section 3.7. The message is then sent on the selected network, preceded by the

CHAPTER 3. IMPLEMENTATION 91

header described above. If an error occurs in attempting to send either the header or

the message, the M I N software assumes that this network has failed, and dissociates

it from this M I N connection by clearing the corresponding bit in the C O N N E C T I O N

structure's T Y P E sub-structure. The min_send primitive must then select one the

remaining networks for this M I N connection for re-transmission. On the re-try both

the header and the message are sent, even if the header was successfully sent on the

first try and the error had occurred in trying to send the actual message. This is

done in order to preserve the arrival order of header, message, header, message, and

so on for each network, which simplifies the task of the M I N software for receiving

messages. The re-transmission process continues until either it is successful or a failure

has occurred on every network for this M I N connection, in which case the min_send

primitive returns an error result and removes this M I N connection altogether.

Although our implementation could have been simplified somewhat by taking into

consideration the fact that we are only dealing with two networks, we instead con­

structed our software to handle the general case of n networks. By doing so we lend

greater validity to the measurement results obtained, and allow the simulation and

testing of an n-network situation.

The task of receiving a message on a M I N connection which only involves a single

network is also relatively simple. The M I N software primitive first waits for a header

to arrive on that network, then checks the size of the following message indicated in

CHAPTER 3. IMPLEMENTATION 92

the received header against the size of the buffer passed by the user to m i n .receive.

If the user's buffer is not big enough, then m i n .receive immediately returns the size

of the expected message, to let the user know that he needs a larger buffer. When

m i n .receive is called again, the M I N software will know that this is a reception

re-try on the part of the user, by examining the r d a t a flag in the P O R T structure

for this network (this flag was toggled previously upon receiving the header). Again

the user's buffer size is checked for adequacy. If it is big enough this time, then

min_receive waits for the message to arrive, and puts it into the user's buffer. The

size of the message is returned. If an error occurs in trying to receive either the header

or the message, the m i n .receive primitive returns an error result and assumes that

the network has failed. Since it is the only network for this M I N connection, the

M I N connection is removed. Also, even though the underlying network software is

supposed to provide reliable service, the sequence number in the received header is

checked against this M I N connection's reception sequence number (stored in the rseq

member of the C O N N E C T I O N structure). If the sequence numbers do not match,

then something has gone wrong with the supporting software for this network, and the

M I N connection must be removed.

The only case for which the M I N software's task is relatively complex is that of

receiving a message on a M I N connection which involves more than one network. Here,

the m i n .receive primitive repeatedly polls the status of all the networks used for this

CHAPTER 3. IMPLEMENTATION 93

M I N connection using the 4.2 BSD routine select, as described in Section 3.2, until

something arrives on one of the networks. To determine whether it is a header or data

which has arrived, the rda t a flag in the P O R T structure for this network is consulted.

If it is a header, then it is received using the 4.2 BSD routine read and placed in the

P O R T structure. The M I N software then toggles the rda t a flag to indicate that it

is the message and not a header which is due to arrive next on this network. Next,

the sequence number in the received header is examined, and compared against the

the reception sequence number for this M I N connection, stored in the rseq member

of the C O N N E C T I O N structure. If they differ, then it is an out-of-sequence header

(and message). Since each network is assumed to preserve the order of messages sent

on it, the M I N software can therefore temporarily ignore this network, and only poll

the other networks in search of the in-sequence message. This is done by clearing the

bit in the rmask member of the P O R T structure which corresponds to the socket

number used for communicating on this network. Since rmask is used as an argument

to select, this effectively excludes that network in subsequent polling.

Since sequence numbers wrap around, it is not possible to recognize the re-appearance

of an already received header by virtue of its sequence number being "less than" the

expected sequence number. However, if a header is received in-sequence, which has

already been received on another network, then we can conclude that the network on

which that header was first received has failed, and the sender is now using the other

CHAPTER 3. IMPLEMENTATION 94

network for re-transmission. This conclusion is consistent with how transmission errors

are handled by min_send, as described above.

After receiving an in-sequence header, the M I N software then checks whether the

user's buffer is large enough. If not, then min_receive immediately returns the size

of the incoming message to indicate buffer size deficiency to the user. If the buffer is

large enough, the M I N software continues polling until the message has arrived on that

network. Its contents is then obtained using the 4.2 BSD function read and placed

into the user's buffer.

If an error occurs in trying to receive either the header or a message on a network,

then that network is dissociated from the M I N connection by clearing the corresponding

bit in the C O N N E C T I O N structure's T Y P E sub-structure. Also, to prevent further

polling of this network, the bit corresponding to the socket number used for this net­

work in the smask member of the C O N N E C T I O N structure is cleared. The rmask

member is set to the value of smask after each message is successfully received, so

that all networks will be polled again on the next invocation of min_receive.

C h a p t e r 4

M e a s u r e m e n t

This chapter reports the results of some measurements and a simulation. The measure­

ments were taken in order to determine the overhead incurred by the M I N software.

This is discussed in the first section. The second section deals with a simulation study

set up to provide some idea on the type of conditions under which the use of multiple

networks with M I N would improve communication performance. There are a number

of reasons for using a simulation instead of taking actual measurements even though

we have implemented the M I N software in an environment which contains an Ethernet

and a Cambridge Ring. These will be explained in the second section, along with the

simulation results.

95

CHAPTER 4. MEASUREMENT 96

4.1 Overhead of MIN

By using M I N , a process incurs the overhead of having to go through an additional

layer of software. In order to determine how much of an overhead M I N is, two sets

of measurements were taken. Both sets consisted of a number of test runs, in each of

which a client process first connects to a server process then sends him a large amount

of data in fixed-size messages. The time required to transfer the data is measured

at the server, starting from the moment the client's connection request is accepted

and ending when the last message is received. The client and server in the first set

of measurements use 4.2 BSD IPC services over the Ethernet. The client and server

in the second set of measurements also communicate over the Ethernet, but they use

the M I N primitives we implemented on top of the 4.2 BSD services. Since the only

difference between the 2 sets of measurements is that M I N is used for the second set

but not for the first, by comparing the results we should be able to determine the

overhead incurred by M I N .

In each set of measurements two factors were independently varied : the total

amount of data transferred and the size of each message. This was done in order to

determine what effects if any these factors have on performance. For each combina­

tion of (total data, message size), 10 measurement runs were made without M I N and

10 made with M I N . The average total transfer time for each group of 10 runs were

CHAPTER 4. MEASUREMENT 97

calculated. These results are shown in Table 4.1.

These measurements were taken late at night, when there were no other users on

the machines. The data transfer was remote. That is, the client and server resided on

different S U N workstations. In both sets of measurements only one network, the Eth­

ernet, was used. It was planned to perform the same measurements on the Cambridge

Ring. However they were not done because of hardware problems and the unreliable

nature of the local implementation of the Cambridge Ring protocols.

From the results in Table 4.1 one observes that the percentage difference between

using and not using M I N decreased with the message size. This behaviour is intuitively

reasonable. The overhead of M I N is composed of two portions. One is the C P U

cycles expended in executing the M I N software. The other is the work required for

the supporting network protocols to send the M I N message header. The C P U time

used for M I N should be constant regardless of the message size since there is no data

copying of the message's contents within M I N . On the other hand the relative size

of the fixed-length M I N header decreases as the size of the message increases. This

explains the decreasing nature of the percentage overhead of M I N . Therefore if the

results were expressed on a per-message basis rather than for the overall data transfer

time, the M I N overhead should be basically constant. It should be unaffected by either

the message size or the total amount of data transferred. These result are shown in

Table 4.2.

CHAPTER 4. MEASUREMENT 98

One other observation which may be made from this table is that there appears to

be a performance peak when the message size is 1024 bytes and M I N is not used. That

is, the tendency for the time to send a message to increase as the size of the message

increases does not hold when the message size is 1024 bytes. A similar observation

has been reported by Cabrera [Cabr85], whose investigation uncovered the cause to be

the buffer management technique in 4.2 BSD's implementation of T C P / I P . When the

message size is exactly 1024 bytes, internal copying of the message data within the 4.2

networking software is done by augmenting a counter. When the message size is not

1024 bytes, physical copying is done, which is a more expensive operation.

However, this peak phenomenon does not occur in the case where M I N is used.

Without M I N the time per message is less for a 1024 byte message than for a 512 byte

message, but with M I N the results are reversed. This is because the gain in 4.2 BSD

performance for a 1024 byte message (about 2 msec) is over-shadowed by the M I N

overhead (about 5 msec).

In these first two sets of measurements, a client sends continuously to a server

with no return data from the server. Since both the 4.2 BSD IPC services and the

M I N primitives perform sends in a non-blocking manner, the sender can keep sending

ahead until the buffers are exhausted in one of the supporting protocol layers in either

the client's or the server's host. Wi th the M I N software sending a header for every

user message, the buffers will fill up sooner with M I N than without. Therefore this

CHAPTER 4. MEASUREMENT 99

particular scenario can be taken as the worst case for the M I N overhead. The opposite

situation would be one in which the message transmission alternates, with each client-

sent message followed by a server-sent message. There would be no sending ahead at

all. This scenario was used to obtain two additional sets of measurements. The total

data sent by the client as well as the message size were set to the same values as those

used for the first two sets of measurements. The server's reply is of the same size as

the client's message. The per-message results are shown in Table 4.3.

In this table we observe that there is no performance peak at a message size of 1024

bytes either with or without M I N . It was explained earlier that physical data copying

is unnecessary inside 4.2 BSD when the message size is 1024 bytes. In addition to the

time saved by not doing data copying, more buffer space is available since only one

copy of the data exists instead of two or more. Therefore more sending ahead can be

done, further benefiting the one-way client send to server situation used for the first

two sets of measurements. However, in the second two sets of measurements there is

no sending ahead at all, so that there is no gain from the increased availability of buffer

space. This would explain the lack of a performance peak at a message size of 1024

bytes in the results of Table 4.3.

CHAPTER 4. MEASUREMENT 100

4.2 When Multiple LANs May Improve Performance

As stated earlier one of the possible benefits of using multiple networks is improved

performance. That is, by choosing the network which we think has the lightest load

for sending each message, the total time required may be less than if we were to use

a single network only. As well, the total network throughput rate will increase with

more than one physical communication medium. However, the time saved by choosing

a lightly-loaded network must be greater than the processing overhead incurred in

making the path selection. In order to determine the network load conditions under

which using multiple networks through M I N would out-perform using a single network

without M I N , a simulation study was performed.

There are two main reasons for using a simulation instead of taking actual measure­

ments despite the fact we have implemented M I N in an environment which contains

an Ethernet and a Cambridge Ring. First, we lack the hardware to sufficiently load

down the networks. Second, it is easier to vary the network loads using a simulation.

Although a simulation suffers the disadvantage of possibly not taking all the necessary

factors into account, it is sufficient for our purposes since we are not after exact results.

The simulated scenario is similar to that for the first set of measurements reported

in Section 4.1, in that it involves a client sending continuously to a server. However,

here the comparison is between using a single network without M I N and using two

CHAPTER 4. MEASUREMENT 101

networks with M I N . Also, the simulation focuses on what goes on at the client's host,

and disregards the server. It divides the time required to send a message into 3 parts.

The first part is the processing delay for the client's message to filter down through

the various protocol layers and queue up at the physical layer. This is termed the

protocol delay. The second part is the amount of time the message spends before it

reaches the head of the queue : the queueing delay. The third part is the time needed

for the message at the head of the queue to be successfully sent : the launch delay.

This launch delay includes the time to attain the network, and any re-transmissions

required due to error. Re-transmissions due to error is a random quantity while the

time needed to access the network can be interpreted as a measure of the network's

global load.

The protocol delay in filtering through the various layers depends on the particular

protocols involved. For simplicity we assume it to be the same for both networks,

although the simulation program is set up so that it can be individually specified for

each network.

The queueing delay is handled by actually implementing a queue for each network

in the simulation program. That is, after the protocol delay when the message enters

the physical layer, it is added to the end of the F IFO queue. If it is the only message

in the queue, then an attempt is made to launch it (see launch delay below). Also, a

maximum queue length is defined. If the queue is now full, then the user process is

CHAPTER 4. MEASUREMENT 102

blocked and not allowed to generate more outgoing messages until the message at the

head of the queue is successfully sent. This will be described in more detail shortly,

when the event sequences are discussed. When the queue is not full then the user

process is allowed to send ahead, by generating another message as soon as the first

message is put into the queue.

In most cases, a user message is divided into one or more packets or frames by the

time it reaches the physical layer. The number of packets a message is divided into

depends on the size of the message. However, by assuming the messages to be of fixed

size, we can define the maximum queue length in terms of messages instead.

The launch delay is how long it takes for the message at the head of the queue to

be successfully sent. In other words it is the length of time a message spends at the

head of the queue.

For the case of two networks, the M I N processing delay must be added to the

protocol delay. Other than this the two cases are the same, as shown in Figure 4.1. The

delay at the server's host, after the message is successfully received, is not considered.

The simulation program is completely event-driven. It begins at time 0 with a send

message event. When only using one network, this creates an enter queue event for

network 0 at time + protocol delay. When using more than one network, then the

network with the shorter queue is selected. A n enter queue event is generated for

time + protocol delay, using the protocol delay for the chosen network. When an enter

CHAPTER 4. MEASUREMENT 103

U S E R

p r o t o c o l
d e l a y

q u e u e i n g
d e l a y

l a u n c h
d e l a y

U S E H 1
U P P E R

L A Y E R S

P H Y S I C A L

L R V E R

N E T W O R K

I
M I N

U P P E R U P P E R

L R V E R S L R V E R S I I
P H Y S I C A L P H V S I C R L

L R V E R L R V E R I I
N E T W O R K N E T W O R K

MIN
d e l a y

p r o t o c o l
d e l a y

q u e u e i n g
d e l a y

l a u n c h
d e l a y

Figure 4.1: Portions of Time Required to Send a Message

q u e u e event occurs, the queue length is incremented. If the queue was previously

empty, then a s t a r t l a u n c h event is generated. Also, if the queue is not yet full,

then a s e n d m e s s a g e event is immediately created, simulating send ahead. A s t a r t

l a u n c h event generates a s u c c e s s f u l s e n d event at time + launch delay, using the

launch delay for that network. When a s u c c e s s f u l l a u n c h takes place, the message

at the head of the queue is removed by decrementing the queue length. If this does

not empty the queue, then a s t a r t l a u n c h event is created, to start sending the next

message in the queue. Also, if the queue was previously full, then a s e n d m e s s a g e

event is generated, to simulate the un-blocking of the user process. The simulation

ends when the specified number of messages have been successfully sent.

CHAPTER 4. MEASUREMENT 104

Time to Send
(msec/message)

Network 1 only

Network 1
and

Network 2

Network2 Delay
= 40 msec

Network2 Delay
= 4 msec

4 8 12 16 20 24 28 32 36 40

Networkl Delay
(msec)

Figure 4.2: Simulation Results For Sending On One Network and Two Networks

CHAPTER 4. MEASUREMENT 105

The simulation program was executed using various values for the launch delays

for each network. However, rather than using a constant launch delay value for each

execution, random values uniformly distributed about a mean was used instead, to

simulate the variability of network loads and occurrence of transmission errors. A

different mean is used for each simulation run. The results are depicted below. The

time is measured in units of milliseconds. The M I N delay is taken from the previous

measurements as 5 milliseconds while the protocol delay is 10 milliseconds. A total of

100 messages were sent.

From Figure 4.2 one observes that above a certain network delay (network load)

the time required to send a message is less using two networks than using a single

network. Below this threshold the high M I N overhead exceeds the gain in using two

networks. Above this threshold the time to send a message is no longer bound by

the processing time, but rather by the high network delay, so that the benefit from

using two networks outweighs the M I N overhead. For our results this threshold value

for the network delay is about 15 milliseconds. However, this particular value is not

of significance outside of our simplified simulation. Additionally, the deterioration in

performance with rising network load is less severe for the two network case than for

the single network case. This is an intuitive result since the second network provides

additional bandwidth and therefore greater possible throughput.

CHAPTER 4. MEASUREMENT 106

Total Data Message Total Time Total Time Difference Percentage
Transferee! Size Without M I N With M I N in Total Time Difference
(K bytes) (bytes) (sees) (sees) (sees)

64 32 9.87 19.88 10.01 101.5
64 64 5.94 10.96 5.02 84.5
64 128 3.69 6.18 2.49 67.4
64 256 2.33 3.58 1.25 53.4
64 512 1.62 2.28 0.66 40.6
64 1024 0.68 1.50 0.82 119.3
64 2048 0.85 1.39 0.55 64.6

128 32 19.83 39.84 20.01 100.9
128 64 11.89 22.17 10.29 86.5
128 128 9.14 12.40 3.26 35.7
128 256 5.06 7.22 2.16 42.7
128 512 3.68 4.53 0.85 23.0
128 1024 1.58 3.02 1.44 91.1
128 2048 1.63 2.64 1.01 61.7

256 32 40.44 79.17 38.73 95.8
256 64 25.12 43.66 18.55 73.8
256 128 14.80 24.84 10.04 67.8
256 256 9.35 14.32 4.97 53.1
256 512 6.51 9.09 2.58 39.6
256 1024 3.25 6.01 2.76 84.8
256 2048 2.95 5.34 2.39 80.8

Table 4.1: Total Transfer Time for One-way Client to Server

CHAPTER 4. MEASUREMENT

Message Number of Time Per Message Time Per Message Difference
Size Messages Without M I N With M I N

(bytes) (msecs) (msecs) (msecs)

32 2048 4.82 9.71 4.89
64 1024 5.80 10.70 4.90
128 512 7.21 12.07 4.86
256 256 9.11 13.97 4.86
512 128 12.64 17.77 5.14
1024 64 10.70 23.48 12.77
2048 32 26.48 43.59 17.11

32 4096 4.84 9.73 4.89
64 2048 5.81 10.83 5.02
128 1024 8.93 12.11 3.18
256 512 9.88 14.10 4.22
512 256 14.38 17.69 3.31
1024 128 12.34 23.59 11.25
2048 64 25.47 41.17 15.70

32 8192 4.94 9.66 4.73
64 4096 6.13 10.66 4.53
128 2048 7.23 12.13 4.90
256 1024 9.13 13.99 4.85
512 512 12.71 17.74 5.03
1024 256 12.71 23.48 10.77
2048 128 23.05 41.68 18.63

Table 4.2: Time Per Message for One-way Client to Server

CHAPTER 4. MEASUREMENT 108

Message Total Time Per Message Time Per Message Difference
Size Number of Without M I N With M I N (msecs)

(bytes) Messages (msecs) (msecs)
(msecs)

32 4096 9.79 13.37 3.58
64 2048 10.10 13.99 3.90
128 1024 10.23 15.50 5.27
256 512 13.53 17.26 3.73
512 256 16.95 21.02 4.06
1024 128 17.15 21.76 4.61
2048 64 24.84 40.39 15.55

32 8192 10.20 12.10 1.90
64 4096 8.58 13.04 4.46
128 2048 10.41 14.56 4.16
256 1024 12.51 16.75 4.24
512 512 16.86 20.94 4.08
1024 256 17.33 21.84 4.50
2048 128 24.92 40.76 15.84

32 16384 7.67 12.07 4.41
64 8192 8.65 12.96 4.31
128 4096 10.37 14.53 4.16
256 2048 12.70 16.80 4.09
512 1024 17.12 21.11 3.99
1024 512 17.34 21.85 4.51
2048 256 25.07 40.75 15.68

Table 4.3: Time Per Message for Client to Server with Reply

C h a p t e r 5

C o n c l u s i o n s

This thesis has explored the idea of using multiple local area networks for increasing the

reliability and improving the performance of communication in a local environment.

It has presented the motivations for researching this topic, and dealt with various

issues relevent to the design of a software interface which simplifies the user's task

of utilizing multiple networks. Also, the details of an implementation here at the

University of British Columbia of this software interface, which we have termed M I N ,

were discussed. Measurement results on the overhead incurred by using M I N was

reported. This chapter draws a few conclusions on what has been done so far and

suggests some possible additional work which could be carried out in the future.

The implementation of the M I N software did not require too much effort. Wi th the

reasonably reliable and easy to use 4.2 BSD IPC services, only 2 man-months of work

were needed to write and debug the code. It would be interesting to try to implement

M I N on another system which does not provide a connection-oriented communication

109

CHAPTER 5. CONCLUSIONS 110

services, to discover how much more difficult the task would be. The decision to provide

a message-based rather than a stream I /O type of interface also contributed to the ease

of implementation.

It was unfortunate that we were unable to obtain measurements using the Cam­

bridge Ring. If more machines were available so that we could sufficiently load down

the networks, then it would be feasible to make measurements of MIN's performance

using two networks. Perhaps there is some means for artificially creating heavier loads

on the networks. One possibility is to use a reasonably fast machine which is not booted

up with a normal operating system, but is instead running some dedicated software

which uses up empty ring slots or jams the Ethernet bus to the desired degree.

If the above suggestions cannot be achieved, then an alternative is to improve the

simulation program described in Section 4.2. For example, some measurement results

can be obtained for the actual protocol delays for the protocols used for the Ethernet

and Cambridge Ring. The fraction of the M I N overhead used for C P U cycles and the

fraction caused by having to send a header can be determined. These figures can then

be applied to the appropriate points in the simulation program's flow of events, rather

than merely adding the total M I N delay to the protocol delay at the start of sending

the message. Furthermore the simulation program's flow of events may be made more

detailed to better reflect what actually takes place in the system.

The header for each message is required because messages sent on different net-

CHAPTER 5. CONCLUSIONS 111

works may arrive out of order at the destination. This is a consequence of having the

min_send primitive non-blocking in nature. If min_send were made blocking instead,

then a sender cannot have 2 messages in flight simultaneously, and the header would

no longer be necessary. A n acknowledgement from the receiver is required for every

message. However, some means must then be devised for distinguishing an incoming

message from an acknowledgement. In our implementation environment this problem

can be solved by using separate sockets for sending messages and acknowledgements.

This is not a general solution, though. Additionally a non-blocking send would mean

that a process is unable to send ahead, which will reduce performance by eliminating

parallel operations of sending and launching messages.

Another design decision which merits some discussion is that of making a path

selection for every message to be sent. Alternatively the M I N software can choose a

network at connection time, and send all subsequent messages for this M I N connection

on the chosen network. Only when a transmission or reception failure occurs on this

network is another network chosen. This would remove the need to check the load of

each network every time a message is to be sent. Furthermore, since network loads

do not remain constant for long periods of time, the initial network selection should

not be based on network loads either. This means that network loads are not used for

path selection at all, thus making it unnecessary to keep track of the network loads.

However, since we use the length of the outgoing queue as an estimate of the network

CHAPTER 5. CONCLUSIONS 1 1 2

load, this does not gain us much. It does not take very much work to maintain and

check the queue lengths. Nonetheless, if performance is not an important consideration,

then ignoring network loads would be an acceptable means for further simplifying the

implementation task. In fact, this is one aspect of M I N which does not have to be the

same at all hosts. A M I N user which ignores network loads can still communicate with

a M I N user which considers network loads.

We use the length of the outgoing queue at the lowest layer - the physical layer - as

an estimate of a network's load, since all messages must eventually pass through this

layer before reaching the transmission medium. However, to consider only the queue

at this layer may not always be correct. Even if a network has a shorter physical layer

queue than another network, this network may have many more messages queued up

in the higher layers. Since messages queued in any protocol layer contributes delay, the

message queues in all the protocol layers should be considered. However, as messages

in higher layers may be split into several packets or frames when they are passed to

lower layers, it is unknown as to how to weigh the queue length contributions from the

various layers. This is similar to the problem of comparing queue lengths in different

physical layer protocols for different networks, mentioned in Section 2.8.

This thesis has examined in some detail a number of design issues relevent to using

multiple L A N s . Some but not all of the discovered problems have been adequately

solved. More problems arose than was anticipated at the beginning of the research

CHAPTER 5. CONCLUSIONS 113

effort, but this is often the case with relatively unexplored topics. Our implemented

software has been found to incur fairly high overhead. Nonetheless a simulation study,

albeit greatly simplified, suggests that under heavy network loads this overhead is

outweighed by improved performance. In any case, reliability is certainly enhanced by

having more than one available network. A t this time, though, it is still unclear as to

whether M I N is a concept of practical value which may someday be put to general use.

Further investigation is in order.

B i b l i o g r a p h y

[Boei85] Boeing, Technical and Office Protocols, Specification Version 1.0,
Nov. 1985

[Cabr85] L . F . Cabrera, M . J . Karels, D . Mosher, The Impact of Buffer Management
on Networking Software Performance in Berkeley Unix 4.2BSD : A Case
Study, U . C . Berkeley, report # U C B / C S D 85/247, Jun. 1985

[Chan83] S.T. Chanson, A . Kumar, A . V . Nadkarni, Performance of some Local Area
Network Technologies, Proc. of Spring Compcon Conference, San Fran­
cisco, Mar. 1983

[Chan84] S.T. Chanson, K . Ravindran, S. Atkins, An Efficient Transport Proto­
col for Local Area Networks, Technical Report, U . of British Columbia,
Dec. 1984

[Chan85] L . Chan, Implementation of the Cambridge Ring Protocols on the Sun
Workstation, M.Sc. Thesis, U . of British Columbia, Jul . 1985

[Chan86] S.T. Chanson, K . Ravindran, Host Identification in Reliable Distributed
Kernels, Technical Report 86-5 (draft), U . of British Columbia, Apr. 1986

[Cher84] D.R. Cheriton, The V Kernel : A Software Base for Distributed Systems,
I E E E Software, Vol . 1, #2, pp. 19-42, Apr. 1984

[Dall81] I .N. Dallas, Transport Service Byte Stream Protocol, U . of Kent at Can­
terbury Computing Lab. report #1, Aug. 1981

[DARP81a] D A R P A Internet Program Protocol Specifications, Transmission Control
Protocol, R F C 793, Information Sciences Institute, US C, C A , Sep. 1981

[DARP81b] D A R P A Internet Program Protocol Specifications, Internet Protocol,
R F C 791, Information Sciences Institute, U S C , C A , Sep. 1981

114

BIBLIOGRAPHY 115

[GM85] General Motors, MAP Specification 2.1, G M Technical Centre, Warren,
Michigan, Mar. 85

[IS081] Int'l Standards Organization Draft Standard 7498, Open Systems Inter­
connection Basic Reference Model, ISO/TC97/SC16, 1981

[Leff83] S.J. Lemer, R.S. Fabry, W . N . Joy, 4-2 BSD Interprocess Communication
Primer, Computer Systems Research Group, U . C . Berkeley, Mar. 83

[Limb84] J .O. Limb, Performance of Local Area Networks at High Speed, I E E E Com­
munications Mag., Vol . 22, #8, Aug. 1984, pp. 41-45

[Metc76] R . M . Metcalfe, D.R. Boggs, Ethernet : Distributed Packet Switching for
Local Computer Networks, Communications of the A C M , Vol . 19, #7,
July 1976, pp. 395-404

[Neil85] W . J . Neilson, U . M . Maydell, A Survey of Current Local Area Network
Technology and Performance, INFOR, Vol . 23, #3, Aug. 1985, pp. 215-
247

[Tane81] A.S . Tanenbaum, Computer Networks, Prentice-Hall Inc., 1981

[3COM82] 3 C O M Corporation, Multibuf Ethernet Controller Reference Manual,
May 82

[Toltec] Toltec Computer Limited, Toltec's Cambridge DataRing

[Tsao84] C D . Tsao, Defining LAN Environments and User Needs, I E E E Commu­
nications Mag., Vol . 22, #8, Aug. 1984, pp. 7-11

[Vuon83] S.T. Vuong, S.T. Chanson, R . K . Y . Lee, A Hybrid Local Area Network
for Efficient and Reliable Communication, Proc. of Int'l Electronics and
Electrical Conference and Exposition, Toronto, 1983

[Wilk79] M . V . Wilkes, D . J . Wheeler, The Cambridge Digital Communication Ring,
Proc. of Local Area Communication Network Symposium, Mitre Corp.,
May 1979, pp. 46-61

[Zwae85] W. Zwaenepoel, Protocols for Large Data Transfers over Local Networks,
Proc. of 9th Data Communications Symposium, Whister Mtn . , B . C . ,
Sep. 1985, pp. 22-32

