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Abstract 

Team Shoshin is an extension of Shoshin, a testbed for distributed software origi­

nally developed on the LSI ll/23s at the University of Waterloo. This thesis presents 

a description of the implementation of Team Shoshin on the Sun Workstation. With 

wide disparity in the underlying hardware, a major part of our initial development ef­

fort was to port Shoshin to its new hardware. The problems and design decisions faced 

by the porting effort and how they were overcome will be discussed. The development 

of Team Shoshin has provided us the opportunity to investigate the use of multiprocess 

structuring techniques at the kernel level. We will describe the design and implemen­

tation of the proposed kernel multiprocess structure and the rationale behind it. The 

applicability of the proposed kernel multiprocess structure and its impact on operat­

ing system design will be discussed drawing from experience gained through actual 

implementation. 

ii 



Contents 

Abstract ii 

List of Figures _' v 

Acknowledgement vi 

1 Introduction 1 
1.1 Motivations 2 
1.2 Brief Taxonomy of Distributed Systems . 4 

1.2.1 Computer-Communication Networks 5 
1.2.2 Computer Networks 6 
1.2.3 Classification of Team Shoshin 8 

1.3 Thesis Outline 9 

2 Team Shoshin on New Hardware 11 
2.1 Hardware Architecture 11 

2.1.1 Memory management hardware 12 
2.1.2 Handling of Peripheral Devices 14 

2.2 Effects on System Architecture 15 
2.2.1 Software Structure 15 
2.2.2 Contexts and Process Management 16 
2.2.3 Associating Teams with Contexts 17 
2.2.4 Data Transfer between Contexts 18 
2.2.5 Mapping of Peripheral Devices 20 

3 Description of Team Shoshin 22 
3.1 Past and Present State 22 
3.2 Process Management 24 

3.2.1 Process Creation 24 
3.2.2 Process Destruction 26 

iii 



3.2.3 Process Scheduling 27 
3.3 Interprocess Communication 28 

3.3.1 IPC Primitives 29 
3.3.2 Relaying of Remote IPC 30 

3.4 Input/Output Facilities 33 
3.5 Other System Facilities 36 

3.5.1 Dynamic Memory Allocation and Mapping 36 
3.5.2 Timing facilities 37 
3.5.3 Miscellaneous System Primitives 37 

4 Multiprocess Structuring of the kernel 39 
4.1 The Rationale . . . 39 
4.2 The Design 42 
4.3 The Implementation 48 
4.4 Retrospect 51 

5 Concluding Remarks 53 
5.1 Summary 53 

5.2 Future work 55 

Bibliography 57 

A Kernel Data Structures 60 

iv 



List of Figures 

2.1 Memory mapping in Sun-2 13 
2.2 Software structure in Team Shoshin 15 

4.1 kteamconftab Configuration Table 46 
4.2 devtab Configuration Table 47 

v 



Acknowledgement 

I would like to thank my supervisor, Dr. Son Vuong, for his advice and guidance on 

this thesis and Dr. Sam Chanson for reading the final draft. 

Thanks are also in order for my colleague and friend, Donald Acton, who was 

responsible for the porting of the remote communication software and the initial im­

plementation of the object based protocol. His help in testing and debugging Team 

Shoshin is particularly appreciated. I would also like to thank my fellow graduate stu­

dents for making my stay at UBC a very pleasant one. Lastly, financial support from 

the University of British Columbia in the form of University Graduate Fellowship is 

also gratefully acknowledged. 

vi 



Chapter 1 

Introduction 

This thesis describes the implementation of Team Shoshin distributed operating 

system on the Motorola 68010 [MOT084] based SUN Workstation1 interconnected by 

a 10 Mbps Ethernet.2 The system is modeled after Shoshin[TOKU83a,TOKU84] with 

modifications and enhancements to facilitate efficient local and remote operations. The 

research reported here is based on the work done in porting, redesigning and developing 

the original Shoshin into its current state, namely Team Shoshin. 

The original Shoshin's hardware environment was significantly different from the 

one we have here. With wide disparity in the underlying hardware, a major part of 

our initial development effort was to port Shoshin to its new hardware. Throughout 

the course of porting, we have the opportunity to try out new ideas and experiment 

with various operating system design techniques. In particular, we investigated the 

use of multi-process structuring[CHER79a] techniques at the kernel level through the 
1 SUN Workstation is a trademark of Sun Microsystems Inc. 
2Ethernet is a trademark of Xerox Corporation 
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introduction of kernel team processes that execute in kernel space. 

This thesis will first discuss the problems and design decisions faced by the initial 

porting effort and how they were overcome. Next, we will describe the design and im­

plementation of the kernel team processes and the rationale behind it. As considerable 

experience was gained from this implementation, we will discuss the lessons learned 

and identify some potential problems. The design and implementation process has also 

led to insights in the applicability of the kernel multiprocess structure and its impact 

on operating system design. It is from all these lessons learned and experience gained 

through the implementation of Team Shoshin that form the basis for this thesis. 

1.1 Motivations 

The development of Team Shoshin on the SUN workstation was initially motivated 

by the poor performance in the original Shoshin. Part of this problem was due to the 

original Shoshin's underlying LSI 11/23 hardware that does not have good architectural 

support for context switching and memory management. This has motivated us to see 

how far performance can be improved through software restructuring in Shoshin to take 

advantage of the relatively superior hardware provided by the SUN workstations. This 

raises performance issues in porting operating system as to how much a limitation the 

new hardware can impose on system performance on the one hand and on the other 

hand how far one can improve system efficiency through software restructuring and 
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enhancements for the target machine. 

Further motivations come from the porting process itself which has provided a 

golden opportunity to actually implement various experiments in operating: system 

structuring and design. The application of multiprocess structuring in message-based 

operating systems was first introduced in the Thoth operating system[CHER79a] whose 

multiprocess structure is restricted only to the software layer above the basic kernel ab­

straction. Little work has been done in extending the multiprocess structuring concept 

to the kernel layer and until recently only some research work were carried out in this 

area[RAVI85a][RAVI85b]. It is apparent that the traditional kernel abstraction by its 

inherently passive nature somewhat enforces localised control as opposed to distributed 

control. This has motivated us to explore the idea of an active kernel by extending the 

concept of a process into the kernel. This can be accomplished by factoring the tra­

ditional kernel functions into kernel processes that execute within kernel space. The 

multiprocess structure of the kernel can also be extended to include functions that 

were ordinarily carried out by system processes for increased efficiency . We believe 

that this approach coupled with Shoshin's transparent remote and local message-based 

interprocess communication mechanism will greatly enhance distributed control and 

functionality. 
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1.2 Brief Taxonomy of Distributed Systems 

In the following section, we will attempt to classify distributed systems in general 

and introduce some common definitions and terminologies. The main goal of this 

section is to provide a brief taxonomy of distributed systems so as to facilitate better 

understanding of the functions of Team Shoshin and its relationship with other existing 

distributed systems. 

Distributed systems refer loosely to a whole spectrum of systems that have some 

characterization of distribution in their logical and physical features[LAMP81]. On 

one end of the spectrum we have the tightly coupled systems employing shared memory 

and centralised resource management and on the other end we have the loosely coupled 

systems that have no shared memory and are completely autonomous. Multi-processors 

like the Cray-1 is a good example of the former and for the latter the best known 

example is the heterogenous network ARPANET. In between the two extremes of the 

distributed systems spectrum are the multi-processor systems such as StarOS and 

homogenous networks such as MININET. A heterogenous network is one where the 

hosts are different as opposed to a homogenous network where all the hosts have the 

same architecture and run the same operating system. 

To characterize Team Shoshin, it is worthwhile to consider resource-sharing net­

works and distributed-processing networks. As the name resource-sharing suggests, 
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this type of network allows the user at one location to utilize and share computer 

resources that may be physically dispersed. A resource-sharing network differs from 

• . ' ly ! 
the centralised uniprocessor system with remote terminals in that it allows users to 

access several hosts from different locations. A distributed-processing network facili­

tates problem solving by division of labour or functional specialization so that they can 

be carried out concurrently by several computer systems, each performing part of the 

total processing required. Logically, distributed-processing networks are built on top 

of resource-sharing networks. Resource-sharing networks can be roughly categorized 

into two major classes based on how computer resources are managed[ELOV74]: 
1. Computer-communication Networks 
2. Computer Networks 

1.2.1 Computer-Communication Networks 

Computer-communication networks are usually heterogenous and loosely coupled. 

From the user point of view, the network is characterized as a collection of several 

different computer systems with varying capabilities and access protocols. The user of 

the network is not protected from the idiosyncrasies of different hardware and system 

dependent interfaces, and the responsibility of managing distributed resources rest 

solely on the user. To utilize a resource in an computer-communication network, the 

user must first determine the system on which the resource resides and then establish 

a connection to that system. Next, all the system dependent commands and access 
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protocols needed to invoke the resource must be learned and familarised. Thus, the 

user must be conversant with each different system on the network if he/she wishes to 

access resources associated with these systems in the network. 

1.2.2 Computer Networks 

A Computer network is a much more powerful form of network as it is intended to 

isolate the user from the varying hardware and system dependencies that might com­

plicate access to distributed resources. In effect, the user of a Computer network views 

the entire network as one large computer system. Here the responsibility of managing 

distributed resources in the network lies in the network operating system (NOS) that 

extends the programming environment to embrace remote accesses. In other words, 

accesses to local and remote resources by users and programs are transparently handled 

by the NOS. In short, the intend of the NOS is to provide the functions of a traditional 

single machine operating system on a multi-computer basis. 

It is apparent that the development of an NOS is difficult especially when one has to 

deal with heterogenous networks. An NOS requires additional software to be written 

for each host so that local computing environment can be extended to handle remote 

operations with a uniform network wide access mechanism. Various issues have been 

raised in designing NOS and we will include some of them in this section[LANTZ80]. 

1. Basic system goal (general purpose versus specialized) 
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A NOS may be designed to be general purpose and "open-ended" so that it 

can support a wide range of applications. Alternately, a NOS may be built to 

solve a specific problem or a class of related problems with real-time and other 

performance constraints. 

2. Implementation base (base level versus guest level) 

In the base level implementation, the system is built from bare hardware com­

ponents. The advantage in this approach is that the NOS can be specifically 

designed to function efficiently and effectively with the underlying hardware. 

Moreover, the attainment of transparent local and remote accesses can be ad­

dressed right from the start during system design. In the case of guest level ap­

proach, the NOS is built as an extension of existing operating systems and usually 

utilizes the system services provided by the host operating systems. For trans­

parent local and remote operations to be achieved in the guest level approach, 

some encapsulation interface must be provided to examine system requests and 

redirect remote requests to appropriate NOS routines. This will inevitably incur 

additional performance penalty on local services. Alternately, NOS services can 

be provided through a set of NOS primitives which are called explicitly by ap­

plication programs using NOS resources. In this respect, it is only reasonable to 

take the base level approach if local services can be provided at least as cheap as 

in local operating system, (non-distributed) 
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3. Procedure-oriented versus message-oriented 

A procedure-oriented system is characterized by its dependence on some form 

of shared memory with system services being accessed largely through proce­

dure calls. In contrast, message-oriented system depends on the explicit use of 

messages for interprocess communication and request for services. 

4. Resource abstraction 

Resource abstraction refers to the concept of a meta-resource that possesses cer­

tain attributes commonly used and implemented. A meta-resource is a resource 

created by abstracting common attributes from system services and objects that 

would permit interchangeable use of different resources by different applications. 

Since the notion of a service in a NOS can be local or remote, resource abstrac­

tion has become an important issue as it helps to eliminate duplication of NOS 

services. 

1.2.3 Classification of Team Shoshin 
With respect to the above summary of distributed systems, Team Shoshin possesses 

the following characteristics: 

1. general-purpose system 

2. homogenous, loosely coupled, message oriented network operating system 
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3. base-level implementation on the SUN Workstations (with additional guest-level 

implementation of Team Shoshin IPC interface[ACTON85a] on other SUNs and 

VAXes running 4.2BSD UNIX3). 

4. Resource abstraction over the Ethernet communication interface through trans­

parent local and remote interprocess communication. This is provided as a basic 

system service. 

The guest-level implementation of Team Shoshin IPC interface on SUNs and VAXes 

running on 4.2BSD UNIX allows UNIX processes to use Shoshin-like IPC primitives 

to communicate with other Shoshin and UNIX processes residing on remote machines. 

This has provided Team Shoshin the ability to access large number of services in UNIX 

with ease. This facility is extremely useful and important especially during the early 

stages of system development. 

1.3 Thesis Outline 

Chapter two deals with the impact of the new hardware on the development of 
\ 

Team Shoshin. Various aspects of the Sun Workstation hardware 'architecture that 

have bearing on operating system porting and development will be described. The 

software structure of Team Shoshin is then presented with emphasis on the problems 

faced and decisions made in the light of the new hardware. 
3UNIX is a trademark of AT&T Bell Laboratories 
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Chapter three presents a detail description of Team Shoshin. The system has 

evolved considerably from its predecessor, the original Shoshin, and we will attempt 

to document such changes here. A synopsis of the history of Shoshin is first provided, 

followed by an overview of Team Shoshin and its system and user interfaces. 

Chapter four investigates the idea of performing multiprocess structuring at the 

kernel layer. First, the rationale behind this investigation will be presented, followed 

by an description of the design and implementation of our proposed kernel multiprocess 

structure. The impact and applicability of this proposed structure are then discussed 

based on experiences gained through its use. 

Finally, the last chapter concludes this thesis with a summary of the main results 

and suggestions for future work. 



Chapter 2 

Team Shoshin on New Hardware 

Like all operating system implementations, one has to deal with the peculiarity of 

the target machine architecture. In this chapter, the impact of the Sun Workstation 

architecture on the development of Team Shoshin will be discussed. The focus will 

be on the problems faced and implementation decisions made in the light of the new 

hardware. 

2.1 Hardware Architecture 

This section will describe various aspects of the SUN Workstation's architecture 

that have some bearing on operating system porting and development. Most of the 

information below are for the SUN-2 Model which are obtained largely after many 

hours of experimentation of the SUN-2 hardware and partly from an assortment of 

available SUN-1 Model manuals[SUN82] [SUN83]. 

11 



CHAPTER 2. TEAM SHOSHIN ON NEW HARDWARE 12 

2.1.1 Memory management hardware 

The memory management unit (MMU) of the SUN Workstation comprises of two 

context registers, a segment map and a page map. All memory accesses by the SUN's 

processor are virtual and are translated by the MMU into physical addresses according 

to the segment and page map entries. The basic unit is a page which is 2 Kbytes 

(2048). The segment size is 32 Kbytes and each segment maps logically onto a block 

of 16 consecutive pages. Memory address mapping is done with respect to the current 

context and up to 8 contexts can be mapped concurrently. The current context is 

determined by one of the two context registers, namely the supervisor and the user 

context registers. When the processor is in supervisor state, the current context is 

determined by the supervisor context register which is always set to the supervisor 

context (context 0). In the case where the processor is in user state, the user context 

register is used to determine the current context. Each context has a block of 512 

hardware segment map entries giving the maximum logical address space for a context 

to be 16 Mbytes. In contrast, the number of hardware page map entries shared by 

all contexts is only 4096, limiting the maximum physical address space that can be 

mapped to 8 Mbytes. As a result, it will not be possible for a context to have all its 

segment map entries distinct. The hardware page map entries are grouped into blocks 

of 16 consecutives pages called segment groups ranging from 0 to 255. 

As an illustration of how the MMU works, let us trace through the translation 
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process that is involved in an memory access [see Fig 2.1]. First the high 9 bits of the 
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Figure 2.1: Memory mapping in Sun-2 

Physical 
Address 

24-bit virtual memory address is taken to index into the segment map of the current 

context and the segment group number is read from the indexed segment entry. The 

segment group number is then used to index into the corresponding segment group of 

the hardware page map entries and the next high 4 bits of the virtual address are used 
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to determine which page map entry in that segment group to be examined. Finally, 

the output of the page map entry,is concatenated with the remaining low bits of the ;1 [; • : 
virtual address to form the corresponding physical address. 

2.1.2 Handling of Peripheral Devices 

The SUN Workstation Hardware does what is known as "memory-mapped" in­

put/output in that accesses to peripheral devices is done exactly in the same manner 

as memory accesses[SUN84]. The only distinction between memory and peripherals 

is the presence of three special address spaces (apart from on-board memory space) 

that allow peripheral devices to be mapped. These three additional address spaces 

are namely the Multi-bus memory space, the Multi-bus I/O space and the On-board 

I/O space. The Multi-bus memory and I/O spaces are used to access devices that are 

attached to the IEEE-P796 Multibus or the VMEbus. Other special On-board devices 

like the TOD(timeofday) clock can be accessed through the On-board I/O space. By 

setting a special page type field in a hardware page map entry, the page can be declared 

to be in one of these address spaces. As a result, the Sun MMU can map any part of 

a program address space to the Multi-bus memory space, Multi-bus I/O space or the 

On-board I/O space. 
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2.2 Effects on System Architecture 

2.2.1 Software Structure 

Team Shoshin comprises of four layers of software executing under the two differ­

ent processor statesfsee Fig 2.2]. The lowest layer is the kernel which executes only 

L E U E L 

USER 

SPACE 

S Y S T E M C A L L S (TRAPS) 
\L s j / \L \L \L vj/ yL 
l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l 

K E R N E L 

KERNEL 

SPACE 

Interaction by messages 

Figure 2.2: Software structure in Team Shoshin 

in supervisor mode and provides the bare essential functions to support the higher 

software layers. It is guaranteed memory resident and resides in the supervisor context 
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whose segment map is set up to have access to the entire physical memory space. Next 

in the software hierarchy is the kernel team processes that execute in kernel space(see 

Chapter 4) , followed by a layer of system processes that execute in user space. Both of 

these software layers execute under user mode and are responsible for implementing all 

other higher system abstractions. Finally, at the highest layer are the user application 

programs that run in user mode. 

2.2 .2 Contexts and Process Management 

The concept of a context realized by the SUN's memory management hardware 

has allowed for rapid process switches, a crucial factor in attaining an efficient multi­

task environment. By manipulating the user context register under supervisor mode, 

we can switch between 8 different segment maps allowing 8 contexts to be mapped 

concurrently. A Process switch to an existing process residing in a context is very 

cheap as there is no memory translation state information to be reloaded except for 

the user context register. This raises the question of how allocation of contexts to 

processes for multitasking is to be accomplished to fully exploit the SUN's MMU. One 

simple scheme to facilitate multitasking is to allocate one context per process. This 

scheme will work well as long as the number of executing processes do not exceed the 

number of contexts which is eight. For the case where there are more processes than 

available contexts, some context replacement strategies have to be adopted to displace 
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an existing process residing in context to make room for other processes. The cost for 

a context replacement is substantial since the segment map entries have to be reloaded 

for the new process. This performance penalty associated with a context replacement 

has prompted us to devise means to reduce the occurrences of context replacements. 

2 . 2 . 3 Associating Teams with Contexts 

One obvious way to reduce context replacements is to have a team of processes 

sharing a context. The team of processes must all be executing in the same address 

space requiring only one segment mapping. Consequently, process switches between 

team members will not require the loading of a new context. This observation has lead 

us to include Cheriton's team creation into Shoshin so that team of processes sharing 

the same address space can be created and be associated with a context. 

The close association between teams and contexts has provided us with some in­

teresting ideas in configurating system software. One of which is to dedicate some of 

the available hardware contexts to certain important process teams. The rationale for 

this is that the operations of certain system process teams have substantial bearing on 

overall system performance. Due to the design philosophy of Shoshin that advocates 

the design of a small kernel with higher system functions abstracted by server process, 

there is a large volume of message exchanges generated by user requests for services. As 

a consequence, an exceptionally high degree of process switchings are involved due to 
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the synchronous nature of Team Shoshin IPC primitives. In particular, a server process 

which provides a highly demanded service will be constantly blocked and unblocked 

most of the time receiving requests. If this server process team is not guaranteed to be 

context resident, chances are some process team will be mapped into its context when 

it blocks, increasing the probability of context replacements. Thus it is reasonable to 

have certain server process team that offers a highly demanded service to be context 

resident. The trivial case is the kernel which resides permanently in the supervisor 

context (context 0). To fully utilize the supervisor context, we also included a pro­

cess team which comprises of kernel team processes sharing the same address space 

as the kernel. This multiprocess structuring of the kernel will be discussed in detail 

in Chapter 4. Next, the server process team called the communication manager is 

also configured to be guaranteed context resident in context 1. The communication 

manager is solely responsible for implementing the remote IPC interface and serves as 

the only link through which remote messages can be exchanged. Clearly, its services 

are highly demanded as rendered by the distributed nature of Team Shoshin. 

2 . 2 . 4 Data Transfer between Contexts 

Due to the nature of SUN's MMU hardware, access to data in a different con­

text can only be done in supervisor state with respect to the current user context. In 

other words, data transfer between contexts is only limited between supervisor con-



CHAPTER 2. TEAM SHOSHIN ON NEW HARDWARE 19 

text and the current user context. This poses a serious limitation in supporting data 

transmission between processes residing arbitrarily in different contexts. In the case 

of Shoshin's' interprocess communication, this data transfer support is crucial as the 

message sent by the sender is copied directly into the receiver address space to avoid 

buffering. 

To solve this problem, two special segment blocks each consisting of two consecutive 

hardware segment entries are reserved in the supervisor context. When data transfer 

between two different user contexts is required, the segment groups containing the data 

of one of the target context are mapped into the special segment block entries reserved 

in the supervisor context. Data transfer is then carried out between the supervisor 

context and the other target user context through special MC68010 instructions. This 

scheme will allow us to copy data of size ranging from 32 Kbytes to 64 Kbytes depending 

on where the target address lies with respect to the segment boundary. This limit can 

be easily increased by allocating more hardware segment entries to each of the special 

segment block in the supervisor context. The use of special MC68010 instructions to 

perform data transmissions between the supervisor context and the user context cost 

more than normal copy instructions which operate within a context. For efficiency, 

data transfer between different user contexts of size larger than 512 bytes will have the 

segment groups of both target addresses mapped into the supervisor context so that 

data copying can be done within the supervisor context. The 512 bytes optimal limit 
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is obtained by numerous iterations of trial and error. 

2.2.5 Mapping of Peripheral Devices 

The "memory-mapped" input/output support for peripheral devices in the SUN 

workstation has enable us to provide dynamic mapping of certain devices into user 

address space. Ordinarily, the absence of such mapping facility will require device 

managers to trap into the kernel space via system calls to gain access to the peripherals. 

This usually resulted in reduced efficiency due to the overhead in system call associated 

with each access to the device by the device manager. The cost can be extremely high 

especially when large amount of data is required to transfer into or out of the device 

frequently, as in the case of the Ethernet controller. Moreover, access control to the 

device has to be enforced each time the device is being accessed. In contrast, access 

control for the device is applied only once when mapping of the device is requested. 

Once this is done, the server process basically "owns" the device and access control is 

no longer required. 

The dynamic mapping of devices is performed by the primitive memmap and 

currently only mapping of the 3Com Ethernet[3COM] controller is supported. Due to 

the device-dependent nature of the mapping, the actual routine that does the mapping 

is obtained by indexing into the devtab configuration table in the kernel using the device 

number argument passed to memmap. In this manner, access controls for the mapping 



CHAPTER 2. TEAM SHOSHIN ON NEW HARDWARE 21 

of a device can be specifically tailored for that device and enforced. Peripherals that 

are do not support dynamic mapping simply have null mapping routines in its entries 

in the device table. 



Chapter 3 

Description of Team Shoshin 

An overview of Team Shoshin is presented in this chapter. The system has evolved 

considerably from its predecessor, the original Shoshin, especially in terms of increased 

system functionalities. As a result, various changes in the original Shoshin design had 

been made and we will attempt to document such modifications here. This chapter will 

first provide a synopsis of the history of Shoshin, its past and current state, followed 

by an overview of Team Shoshin and its system and user interfaces. 

3.1 Past and Present State 

The original Shoshin operating system.was first written by Hide Tokuda and San-

jay Radia at the University of Waterloo in April 1984. It was initially implemented as 

a distributed software testbed running stand-alone on a collection of LSI ll/23s inter­

connected by a tailor made high speed bus called the 5cAoo/6us.[TOKU83a] Software 

development was done in two PDP ll/45s running UNIX which also serve as fileserver 

22 
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and boot server for downloading Shoshin to the LSI 11/23 machines. 

The author commenced working on the original Shoshin in July 1984. The work 

includes porting the Shoshin kernel to the SUN workstations and rewriting and extend­

ing the kernel to its present state. Other extensions in the system accomplished by the 

author include user team creation based on Cheriton's Team concept[CHER79a], dy­

namic memory allocation using SUN's memory management hardware, facility to map 

certain selected devices into user memory space, timing services, multiple terminal sup­

port and a uniform distributed I/O interface. The remote IPC software written for the 

original Schoolbus [TOKU83a] hardware was ported by Donald Acton to the Ethernet 

environment. Much of the work on remote IPC facilities which is handled by a server 

process called the Communication manager was reported in [ACTON85a][ACTON85b]. 

At present, through a rudimentary UNIX-like command interpreter called the 

'micro-shell', Team Shoshin features multi-tasking and transparent (local and remote), 

device-independent input/output of terminal and disk files. Currently, all disk files are 

adopted from the UNIX's filesystem and are remotely accessed from machines running 

4.2BSD UNIX through guest-level implementation of Team Shoshin's IPC interface 

under UNIX. 
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3.2 Process Management 

As in the original Shoshin, a process in Team Shoshin is a logical component of a 

distributed program. Each process has a unique 48 bit network wide process identifier 

(PID) which is assigned at process creation time. It consists of two parts, a unique 32 

bit host identifier (HID) and a 16 bit local identifier (LID) assigned by the kernel to a 

process upon its creation. The unique HID is the internet host identifier and this allows 

interprocess communications to be extented to systems running 4.2BSD UNIX. Such 

static allocation of host identifiers is mainly adopted for the purpose of convenience and 

there are various problems associated with this fixed scheme. Currently, a new host 

identification scheme [CHAN86] is being studied and may be adopted in later version 

of Team Shoshin. A simple local identifier generation scheme described in [CHER79a] 

is used. 

3.2.1 Process Creat ion 

The only major difference in process creation in Team Shoshin as compared to the 

original Shoshin is the implementation of the team process concept. The following are 

the primitives for process creation that are available in Team Shoshin. 

pid = create(pname,f_tree,rel_pri,at) 

pid = teamcreate(func,rel_pri,ssize,nargs,argl,arg2,..) 

The c r e a t e primitive is identical to the one in the original Shoshin. The process 

to be created is defined by the name "pname" which specifies the file name of the 
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load module. The created process can be attached or detached from its creator's 

family tree by passing ATTACH or DETACH as the parameter in "f.tree". This is for 

process destruction since only child processes that are attached to the parent will be 

destroyed when their parent dies. The "at" parameter indicates the user preference 

for the location of the new process. The priority of the child process is given by the 

formula, parent's priority + reLpri, such that the lower the priority value, the higher 

the actual priority. In Team Shoshin, a process created by the c r e a t e primitive is 

a team root which is analogous to the team root in [CHER79a]. A team root can 

be viewed as a full-fledged process that owns the process address space shared by its 

offsprings created in the team. Naturally, the death of a team root will result in the 

destruction of all its team processes. 

The primitive t e a m c r e a t e is identical to Cheriton's notion of creating a process on 

a team. This type of process creation is fast as it does not involve creating a separate 

address space, or locating the file containing code and initialized data. The created 

child process shares with its team root the same address space, code segment, data 

segment and memory free list. The entry point of the function to be executed as a new 

process is specified in "func" and the parameter "ssize" indicates the size of the new 

process stack to be statically allocated from the memory free list. Due to the fixed 

allocation of the process stack, it is the user responsibility to ensure sufficient stack 

size is specified in "ssize". In contrast, the process stack of a team root is dynamic 
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and grows from high memory to low memory. The "nargs" parameter specifies the 

number of arguments passed to the function and "argl","arg2".. are the arguments to 

be passed. A process created by teamcreate is automatically attached to its creator 

and is destroyed when its parent terminates. 

The following system primitive is identical to that of UNIX's and is provided to 

facilitate the passing of command line argument of C [KERN78] in Team Shoshin. 

execv(pname,argv) 

The text and data segments are found in a file called "pname" and "argv" is an array 

of character pointers to strings. Upon successful execution of execv, the caller process 

will be transformed into a new process with its core image overlayed by the text and 

data segments specified in "pname". The argument list consisting of strings specified 

in "argv" will be made available to the new process. The use of the primitive execv 

is forbidden in team roots since execv will result in destroying the original core image 

that might be shared by other processes. Upon completion of the execv, the process 

will be detached from its parent and becomes a team root. 

3.2.2 Process Destruction 

The destruction of a process is usually accomplished by either an explicit call to 

the primitive exit, or an implicit one when the process "falls off its code". Process 

destruction can also be explicitly initiated by other processes using the kill primitive. 

In any case, all resources owned by the terminated process are reclaimed and will be 
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available for future use. In particular, the process stack allocated for a terminated team 

process is also recovered and returned to the memory free list shared by surviving team 

mates. This recovery is crucial as it facilitates dynamic process creation and destruction 

within a team without exhausting the memory free list all the time. It is interesting to 

note that such resources if not reclaimed will be ultimately recovered when the team 

root dies. When a process terminates, a process destruction wave is initiated such that 

all its attached descendents are automatically killed. 

3.2.3 Process Scheduling 

A ready process is one that can execute when the CPU is available. A process that 

is active or currently having the CPU shall relinquish the processor under the following 

conditions. 

1. process time quantum expires. 

2. preempted by a higher priority process that has become ready. 

3. process blocks for synchronization. 

4. process terminates 

The ready processes are grouped into priority queues such that processes belonging to 

a particular priority queue have the same priority associated with that queue. The 

priority queues are then arranged into a ready queue in descending order of priority. 
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When the active process relinquishes the CPU, the first process on the ready queue 

will be scheduled to get the CPU. 

Due to the introduction of team concept, additional considerations have to be made 
i 

in process scheduling to ensure team processes execute indivisibly within their team. 

This assurance that no active team process is preempted by its team mates is vital 

in maintaining data consistency within the team. In order to accomplish this, the 

following additional restrictions are enforced. First, no team process can have higher 

priority than its team root. Second, a process can only be preempted by a higher 

priority process of a different team. Third, upon expiration of the time quantum, the 

active process will only relinquish the CPU if the next process to be scheduled belongs 

to a different team and have priority equal or higher than itself. Finally, a process that 

goes into a ready state from an active state will be entered into its team root priority 

queue such that no processes of the same team come before it. In the normal case 

where a process unblocks and becomes ready, it will be entered FIFO into the priority 

queue associated with its priority. 

3.3 Interprocess Communication 

The interprocess communication facility of Team Shoshin provides a simple, yet 

extensible set of IPC primitives. As far as the user process is concerned, both local and 

remote communications share the same IPC interface and is totally transparent. In any 
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case, the user process simply supplies the PID of the process it wants to communicate 

with to the desired IPC primitive. Message lengths are arbitrary and the maximum 

message length is only limited by the maximum buffer size at the receiver site. The 

Team Shoshin IPC model provides both blocking and non-blocking types of receive 

primitives but only blocking type send primitives. The flow-controlled send fsend 

[TOKU83b] primitive was not implemented. 

3.3.1 IPC Primitives 

A process can send a message using the three direct IPC send primitives. They 

are defined as follows: 

nr = request (topid,&msg,m,&buf,n,mtag) 

ns = reply(topid,&msg,m) 

ns = bsend(topid,&msg,m,mtag) 

The "topid" indicates the destination PID, "&msg" and "&buf" indicate addresses of 

message and buffer areas. The two parameters V and "n" indicate the byte sizes 

of the message and reply message respectively while "mtag" specifies the message tag 

value to be used in Selective Receive. [TOKU83b] The values "ns" and "nr" represent 

the number of bytes to be sent and received respectively. 

As in the original Shoshin, the request and reply primitives are used for estab­

lishing a "client-server" model between processes. When a process sends a message 

using the request primitive, the requestor will be blocked until the reply message is 
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returned from the receiver. In the case of the bsend primitive, the sender is blocked 

until the receiver receives the message. There is no need for a reply message from the 

receiver to unblock the sender. 

The receive primitives provide both blocking and non-blocking modes of operation: 
nr = brec(frompid,&buf,n) 

nr = nrec(frompid,&buf,n,mtag) 

xpid = brecany(&buf,n,mtag). 

xpid = nrecany(&buf,n,mtag) 

Where the sender's PID is specified in the parameter "frompid" and the return value 

"xpid" is a special structure that contains the sender's PID and the number of bytes 

received. Descriptions of the other parameters are given in earlier definitions. 

The blocking brec primitive blocks the receiver until the message arrives from the 

desired sender. The message tag parameter "mtag" is removed in brec since in Team 

Shoshin a sender can send at most one message. This is not true in the case of the 

original Shoshin where non-blocking flow-controlled send fsend is supported. In the 

case of blocking receive any (brecany) the receiver is blocked until a message with the 

specified tag arrives. All other non-blocking receive primitives are based on querying 

the message queue of the process and retrieving the specified message if it exists. 

3.3.2 Relaying of Remote IPC 

The handling of remote IPC is carried out by a special server process called the 

communication manager, which is solely responsible for all message exchanges between 
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machines. By examining the location of the destination process, the kernel upon de­

tecting ,a remote IPC invocation will relay the IPC. request to the communication 

manager. The relaying of remote IPC requests in Team Shoshin differs considerably 

from its predecessor, the original Shoshin. For remote invocation of IPC primitives, 

the original Shoshin takes the approach of having the caller build a request packet 

in kernel space and then sending, via the request IPC primitive, the request to the 

communication manager. When the communication manager receives the request it 

performs the requested actions and replies the result directly using IPC to the caller 

process. Advantages of this approach arises from the apparent adoption of a straight­

forward service access protocol, where user processes simply send explicit requests to 

the servers relying heavily on the local IPC facilities. However, this advantage might 

be deceiving as one has to consider the complexity involving kernel stack management 

to facilitate user processes to build request packets in kernel space and the unwinding 

of kernel stack upon the unblocking of the caller process. Ironically, this approach 

appears to be procedure-based, since the kernel in this case will have to run as an 

extension of the user process and has to be blocked on behalf of the user process. It 

can also be costly as a result of inefficiency due to the redundancy associated with the 

nature of the service primitive. 

In particular, for remote IPC, the caller who invoked the request primitive to a 

remote process has to build a request packet in kernel space and invoke the request 
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primitive again (recursively) to send the request to the network server, in this case the 

communication manager server. Clearly there is a great deal of redundancy associated 

in the above design since the second recursive call to request will go through checks 

and tests which are not necessary. Every remote IPC invocation in the original Shoshin 

actually involves two calls to the local IPC facilities thus making it rather expensive 

to use. 

To remedy this problem with remote IPCs, we decided to remove the dependency 

on local IPC routines for the relaying of remote IPC requests to the communications 

manager. Instead, the relaying of remote IPC requests are carried out directly at the 

kernel level. When a user process invokes an IPC primitive, the activated routine in 

the kernel checks the location of the destination process in the specified process iden­

tifier. If the destination process is on a remote host, the process descriptor of the 

invoking process is then queued directly to the message queue of the communication 

manager server with additional remote IPC related information entered in the descrip­

tor. The communications manager server obtains the remote IPC requests from the 

kernel through a special kernel primitive called getcommreq. Upon completion of a 

remote IPC, the communications manager returns the IPC status directly to the user 

through another special kernel primitive, remipcdone. With this approach, the user 

processes are viewed as blocking and resuming execution at the point of entry into the 

kernel. The support for kernel software to run as an extension of a user process and 
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to be able to sleep on the behalf of it is no longer required. In effect, such approach 

enforces a clear boundary between user and kernel execution threads which greatly 

reduces complexity and enhance understanding in kernel software. 

A possible objection to the above solution is the large potential overhead involved 

in maintaining remote IPC information in the process descriptor. Fortunately we find 

the fields that were originally designated in the process descriptor for local IPCs are 

sufficient, and can be easily be extended to cater for remote IPC. 

3.4 Input/Output Facil ities 

Team Shoshin I/O interface is implemented by server processes with client pro­

cesses communicating their I/O requests via IPC. The I/O interface is distributed by 

the fact that Team Shoshin supports transparent local/remote IPC. Consequently, as 

far as the servers are concerned, there is no difference in local and remote requests thus 

allowing location independent accesses of objects (files,devices). Under this arrange­

ment, the I/O system has provided Team Shoshin a reasonably uniform interface with 

local and remote peripheral devices by facilitating the indiscriminate use of standard 

I/O library routines on such devices. The data transfer mechanism for I/O operations 

is achieved by adopting Cheriton's "connectionless" object-based protocol[CHER81]. 

Under this protocol, the concept of a file is generalized to that of a view of an object 

or activity abstracted by a server. To access an object, the object must be first opened 



CHAPTER 3. DESCRIPTION OF TEAM SHOSHIN 34 

by 

objdescrpt.ptr = OpenObject(objname,mode) 

where "objname" specifies the pathname of the object with access mode indicated by 

"mode". The primitive OpenObject returns a pointer objdescrpt.ptr to an object 

descriptor which contains information about the opened object. This object descriptor 

is a non-sharable per-process data structure and the pointer to it serves as an identifier 

to the accessed object. 

Read and write operations can now be performed on the accessed object through the 

objdescrpt_ptr explicitly or implicitly. By explicitly, we mean that the object descriptor 

pointer has to be specified as a parameter in the operation. The primitives involved 

in these explicit read/write operations are 

byt_read = ReadObject(objdescrpt_ptr,buf,bsiz) 

byt_wrote = WriteObject(objdescrpt_ptr,buf,bsiz) 

ReadObject attempts to read "bsiz" bytes from the object specified by objdescrpt_ptr 

into the buffer "buf". The number of bytes actually read is returned. In the write op­
's 

eration, WriteObject will attempt to write "bsiz" bytes starting from address "buf" 

into the specified object. Similarly, the number of bytes actually written is also re­

turned. 

For implicit read/write operations, the accessed object has to be selected as one 

of the standard I/O units or streams of the process. In Team Shoshin, each process 
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is created with three standard I/O units, STDOUT.U, STDINJJ and STDERRJJ 

corresponding to standard input, standard output and stardard error respectively. 

Each of these standard I/O units is used to index into an object descriptor pointer 

which is initially inherited from the parent process. The accessed object can be selected 

to be a standard I/O stream by 

oldobjdescrpt_ptr = resetiounit(iounit,objdescrpt_ptr) 

where "objdescrpt.ptr" is a pointer to the accessed object to be selected "as stardard 

I/O unit "iounit". A pointer to the previously selected object descriptor for "iounit" is 

returned. Read/write operations on stardard I/O units are performed by the following 

primitives. 

putchar(ch) 

_perror(ch) 

ch = getchar() 

The primitives putchar and _perror will attempt to write the character "ch" into 

standard output and stardard error respectively. In getchar, a character from the 

standard input is read and returned. 

To facilitate efficient input/output, device dependent buffering schemes are imple­

mented with the read/write operations. In order to ensure that data output is written 

out onto the device, the primitive 

flush_buffer(objdescrpt_ptr) 
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flushes out all buffered data onto the object pointed by "objdescrpt_ptr". Finally, the 

primitive 

CloseObject(objdescrpt_ptr) 

flushes out all previously buffered output associated with the object specified by "ob-

jdescrpt.ptr" and terminates access to the object. 

3.5 Other System Facilities 

3.5.1 Dynamic Memory Allocation and Mapping 

The following UNIX-like primitives are available for allocating memory from the 

memory free list which grows from low to high memory, 

memory _vec = malloc(msize) 

memory _vec = valloc(msize) 

A pointer to a contiguous array of memory of "msize" bytes will be returned to mem­

ory _vec. In the case of valloc, the block of memory allocated is guaranteed to start 

on a page boundary. Memory allocated can be returned to the free list by using the 

primitive 

free(memory_vec) 

To facilitate the mapping of objects into user address space, the following primitive is 

provided. 

memmap(obj,uaddr,len,offs) 
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The pages starting at "uaddr" and continuing for "len" bytes are mapped onto the 

object specified by "obj" at offset "offs". The parameter "uaddr" must be on page 

boundary and the "len" and "offs" parameters must be in multiples of page size. 

3.5.2 Timing facilities 

The system clock abstraction of Team Shoshin supports the following primitives. 

gettimeofday(date_and_time,tzone) 

settimeofday(dateJand_time,tzone) 

gettime(time) 

delay(secs,clks) 

The time and date of the day can be obtained by calling the primitive gettimeof-

day. The date/time and timezone values are returned by copying into the structures 

"date_and_time" and "tzone" respectively. The primitive gettime provides a similar 

function but it attempts to read the timeofday hardware clock thus providing more 

accuracy. It is used mainly for performance measurements. The date/time and time-

zone of the system can be set by the primitive settimeofday. Finally, the primitive 

delay allows the invoking process to sleep for "sees" seconds and "elks" clicks. A click 

is equivalent to one clock interrupt and it is machine dependent. 

3.5.3 Miscellaneous System Primitives 

In addition to the basic IPC, process creation and I/O services supported by Team 

Shoshin, the following system services are also provided to look after various aspects 
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of Shoshin programming environment. 

pid = self() 

pid = parent () 

pid = whois (logname) 

pexist (lid) 

The primitive self returns the process id of the caller process. A process can find out 

its parent's process id by invoking the parent primitive. The primitive whois allows 

user processes to find out process ids of well-known server processes using their logical 

names. Lastly, the primitive pexist checks the existence of a process specified by its 

local process id "lid". A non-zero value is returned if the process in question exists, 

otherwise a zero value will be returned. 



Chapter 4 

Multiprocess Structuring of the 
kernel 

This chapter describes the design and implementation of the kernel multiprocess 

structure. The main objective here is to explore the idea of extending the concept of 

a process to the kernel level by experimenting with kernel team processes that execute 

within kernel address space. 

4.1 The Rationale 

One of our foremost concerns in the implementation of Team Shoshin has been 

efficiency. Our approach in this aspect is not to change the original goals of Shoshin as 

a flexible and modular distributed system, but to find ways to accomplish these goals 

in a more efficient manner. 

One common approach is to put more functionalities into the kernel for increased 

efficiency. In fact, we are observing a growing trend in current system architectures 

3 9 
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where an increasing number of system functions ordinarily abstracted by server pro­

cesses are now being implemented directly into the kernel. Unfortunately, such mi­

grations of system functionalities into the kernel are often accomplished in an adhoc 

manner which inevitably increase the complexity and size of the kernel. In addition, 

such approach reduces the use of server processes in carrying out system functions, thus 

seriously curtailing system flexibility in terms of ability to change its functionality and 

configuration by adding or deleting server processes. What one would like to have is 

some systematic means which allows one to implement system services in the kernel 

with relative ease. Such scheme should also be flexible enough so that it permits easy 

deletion of an existing service if one chooses to have that service implemented outside 

the kernel. In this way, the kernel is allowed to have the facility of adding functionality 

without increasing complexity. 

Having all these considerations in mind, we decided to investigate the use of mul­

tiprocess structuring techniques at the kernel level as a basis for such a scheme. The 

proposed multiprocess structure is the creation of kernel team processes that execute 

• in kernel space. With this kernel team concept, we now have the means of migrating 

selected server processes into the kernel thus preserving their process abstraction with­

out having the need to implement their functions directly in the kernel. We view this 

extension of the concept of a process into the kernel to be very useful since it has the 

potential of providing the ease in adding/deleting functionalities into/from the kernel 



CHAPTER 4. MULTIPROCESS STRUCTURING OF THE KERNEL 41 

by simply adding/deleting kernel team processes systematically. In terms of efficiency, 

the use of kernel team processes is by no means better than the direct implementation 

approach (that is implementing services directly into the kernel). But it clearly has 
i 

the advantage of simplicity and flexibility in ease of reconfiguration while improving 

performance by cutting the overhead in process switching and scheduling since kernel 

team processes are guaranteed to be memory resident. Another advantage arises from 

the sharing of the kernel data segment by all kernel team processes. The ease of access 

to certain kernel data structures is sometimes crucial in the performance of certain 

processes. In addition, devices especially memory-mapped ones are usually mapped 

into kernel space and kernel team processes that handle such devices can access them 

with ease. 

The extension of multiprocess structuring concept to the kernel also provides a 

means of factoring traditional kernel functions into kernel team processes. This al­

lows us to explore the idea of an "active" kernel as opposed to the convectional kernel 

abstraction that passively implements its traditional set of so called kernel functions. 

To illustrate this point, consider process creation which is traditionally implemented 

as a kernel function. Accessing it will require the user process to perform a trap to 

the kernel via a system call. Due to the localized nature of system calls, a separate 

mechanism will be needed to handle remote requests for process creation. One tech­

nique .commonly used here is the Remote Procedure Call(RPC)[BIRR84] mechanism. 



CHAPTER 4. MULTIPROCESS STRUCTURING OF THE KERNEL 42 

In contrast, if process creation is abstracted as a kernel process where accesses for ser­

vices are being realized by IPC, then there will be no distinction in the access protocol 

for local and remote invocation with transparent local and remote IPC support. It is 

apparent from this illustration that conventional kernel abstraction by its inherently 

passive nature somewhat enforces localised control as oppose to distributed control. 

In many aspects, the introduction of the kernel multiprocess structure actually allows 

the kernel size-to be logically reduced by factoring out kernel functions into processes. 

In effect, we have a logically smaller kernel. 

4.2 The Design 

From the discussion in the previous section, it is clear that for the kernel multi­

process structure to achieve its goals, certain design criteria must be observed. 

1. The kernel multiprocess structure should be simple. 

2. The kernel multiprocess structure must allow easy addition or deletion of kernel 

team processes. 

3. The functionalities abstracted by kernel team processes can be interchangeably 

implemented by ordinary server processes with relative ease. 

The application of these criteria to the design of the kernel multiprocess structure 

has resulted in the static creation of kernel team processes during system initialization 
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time. This fixed creation avoids the problems associated with a dynamic scheme which 

inevitably requires some form of resource allocation/reclaimation strategy within the 

kernel. Such fixed scheme allows for the preallocation of all resources required by 

the kernel team processes during the crucial system startup phase. Specifically, the 

preallocation of resources occurs before system resources are being sized up and ac­

counted so that there will be no interference involving operations carried out by existing 

kernel resource management routines. To completely avoid the problems of resource 

reclaimation upon possible death of a kernel team process, the attribute of immortality 

is imposed upon the created kernel team processes. The introduction of this immor­

tality attribute is consistent with the whole rationale behind the kernel multiprocess 

structure which is to be viewed as a tool for structuring operating systems, in this 

case, the kernel. This kernel multiprocess structure can be regarded as an integral 

component of the kernel and thus any failure in a kernel team process is viewed as a 

failure in the kernel. Of course, one can adopt various scheme in handling failures in 

the kernel team processes to achieve some level of fault tolerance. The discussion of 

fault tolerance in this aspect is beyond the scope of this thesis. 

The design criterion to permit easy interchangeable use of kernel team processes 

and ordinary server processes for realizing system functions has resulted in making the 

kernel team process abstraction very similar to that of an ordinary process. A kernel 

team process like an ordinary process is an independent entity which is uniquely identi-
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fied by its process id assigned at creation time. As far as other processes are concerned, 

it is just an ordinary process that can be communicated to via IPC. Access to system 
• I: 

services by kernel teams is performed in the similar manner as ordinary processes. All 

stardard system library routines except for memory allocation (see below) in Team 

Shoshin are shared and used by both kernel teams and ordinary processes. With this 

uniform treatment in terms of access to system services for kernel team processes, 

interchangeable use of kernel teams and ordinary server processes can be facilitated. 

For example if one decided to reconfigure the system by migrating an existing system 

function realized by a kernel team process to a server abstraction outside the kernel, 

little changes will be required since the system interfaces, used in the kernel team im­

plementation are basically similar to that of an ordinary process. The same applies in 

the reverse situation. With this scheme, an operating system designer can restructure 

the system by bringing it down and reconfigure it with ease through adding/deleting 

kernel team and ordinary server processes. Note that in the case of memory allocation, 

a separate set of primitives are provided for the kernel team processes. This is nec­

essary since standard memory allocation primitives are only applicable to user space. 

To provide such capability, memory buffers are preallocated at system startup time 

and accesses to these memory buffers are done through calls to the special memory 

allocation routines provided. 
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One possible objection to this uniform treatment is that the advantage of accessing 

kernel primitives directly by the kernel-resident processes is not tapped. Instead, the 

kernel primitives are accessed in the same manner as an ordinary process via a ker­

nel trap with its associated overhead using standard system library routines. Apart 

from the sake of achieving uniformity as described above, the decision to abandon the 

direct access of kernel primitives was also based on observations that led to the con­

clusion that the efficiency advantage might be deceiving. First, almost all of the kernel 

primitives are highly important functions that require access to privilege machine in­

structions. Of the most common usage of these instructions is the raising and lowering 

of interrupt levels to manage critical sections which occur in almost everywhere in 

kernel primitives. Since these machine instructions are privileged, the execution of 

them will require the kernel-resident process to be run under supervisor mode. The 

problem now is that under supervisor mode the kernel stack frame will have to be used, 

which consequently require the adoption of some kernel stack management scheme for 

kernel team processes. To make matter worse, the execution of some kernel primitives 

may result in the invoking process being blocked requiring the kernel to sleep on the 

behalf of the process. Such additional complexities associated with facilitating direct 

access of kernel primitives could be too costly to fully reap the benefeits of reduced 

overhead through direct access. Moreover, there will be little distinction in the kernel 

and kernel team processes execution threads which basically defeat the whole purpose 
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of introducing the concept of a process in the kernel. 

Kernel team processes are created according to two configuration tables namely, 

the kteamconftab and the devtab. During system startup, the entries in these two con­

figuration tables are interrogated and for each non-null entry, a kernel team process 

might be created according to the specifications in that entry. The kteamconftab con­

figuration table contains specifications of all machine independent kernel team process 

that must be created. Each entry in kteamconftab [see Fig 4.1] comprises of three fields, 

/ * Structure declaration for kteamconftab configuration table */ 
typedef struct { 

short kteampri; / * process software priority */ 
int (*kteamproc)(); '/* entry point for kernel team process */ 
int logname; ./* logical name */ 

} K T E A M C O N F ; 

Figure 4.1: kteamconftab Configuration Table 

kteampri, kteamproc and logname. The entry point of the kernel team process is speci­

fied in kteamproc and it is created with software priority kteampri. The field logname is 

an integer-valued logical service name used to index into the kernel name cache. Upon 

creation, the pid of the kernel team process will be entered into the kernel name cache 

via its logname so that registration for the offering of services is immediate. 
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To cater for creation of machine-dependent kernel team processes, the devtab con-

' figuration table is used. The devtab contains specifications of kernel team processes 

whose existence are used solely for the handling of peripheral devices. These kernel 

team processes fall basically into the category of device workers that operate directly 

on devices. For each peripheral device handled by the system, there is an entry in 

the devtab. Each entry [see Fig 4.2] consists of numerous fields, of particular interest 

/ * Structure declaration for the devtab configuration table */ 
typedef struct { 

PD *dev_hdrpd; / * pointer to kernel team PD */ 
short hdr.prio; / * hardware interrupt level of device */ 
int (*dev_hdr)(); / * entry point for kernel team process */ 
int dvcsr^addr; / * start address of device */ 
int (*deviint)(); / * routine for handling input interrupt */ 
int (*devoint)(); / * routine for handling output interrupt */ 
int (*dev_probe)(); / * routine for probing the device */ 
int (*dev_mmap)(); / * routine to perform memmap for device */ 
int (*dev_init)(); / * routine to initialize device */ 
int dev.unit; / * device unit number */ 
int logname; / * logical name * / 

} DEVSW; 

\ 

•' • . i 
Figure 4.2: devtab Configuration Table 

here are the fields dev.probe, devJidrpd, hdr.prio, devJidr and logname. During system 

startup, each entry of the devtab is examined and the device specified in the entry is 
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probed for existence using the device probe function in devjprobe. If the device exists, 

a kernel team process will then be created with entry point specified in devjidr. With 

this arrangement, we can ensure that these kernel-resident device workers are only 

created for peripherals devices that exist. Note that in the case where the devjidr has 

a null entry, no process will be created for that device. Once created, the kernel team 

process will be assigned a software priority that reflects the device hardware interrupt 

priority level specified in hdrjprio. This assigned software priority will be one of the 

7 highest software priorities corresponding to the Motorola's 7 interrupt levels. The 

created process is always executed under that interrupt level to prevent itself from 

being interrupted by the device that it manages. 

4.3 The Implementation 

Currently, the kteamconftab is configured to create two kernel team processes, the 

ttyserver and the nameserv [See Fig 4.1]. The ttyserver is responsible for the handling 

of all terminals attached to the Zilog1 serial communication ports provided by the 

Sun Workstation. For each serial device, the ttyserver manages two globally declared 

circular buffers for receiving and transmitting characters. Every time the serial device 

interrupts to accept a character for transmission, the interrupt handling routine in the 

kernel simply removes a character from the appropriate transmit circular buffer and 
1 Zilog is a trademark of Zilog Inc. 
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writes it to the device. Similarly in the case of receiving a character from the serial 

device, the interrupt handling routine concerned simply reads the character from the 

device and enters it into the receive buffer. Clearly with this scheme, actual character 

I/O on the serial devices can be made almost completely asynchronous as a result 

of close co-operation between the device interrupt handling routines and its device 

manager, the ttyserver. Such close co-operations were fostered through data sharing 

made possible by implementing the ttyserver as a kernel team process. Next, the kernel 

team process nameserv is implemented as a local name server. The nameserv process is 

responsible for managing the kernel name cache data structure used in name/address 

translations. Requests from user processes are accepted for translation of service names 

into corresponding server's pid. Registration of server processes into the name cache 

are also accepted and the name cache is then updated. 

The devtab configuration table presently creates two kernel team processes as de­

vice workers [See Fig 4.2], the zsdevJkdr and the ecdevJidr. The sole function of these 

device worker processes is to serve as a synchronization medium between its device 

managers and their corresponding devices. For example, the zsdevjidr process spends 

all its time waiting for an interrupt from the Zilog serial controller and once unblocked, 

it will signal to the ttyserver using the bsend IPC primitive and proceed to wait for 

the next interrupt. In this way, the ttyserver never waits on the Zilog controller and 

all outstanding I/O requests are queued to be act upon later when the ttyserver is 
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notified by zsdevjidr. The unblocking of the zsdevJidr process is carried out directly 

by the Zilog interrupt handling routines and this only occurs when the transmit buffer 

is empty and there is an outstanding write request pending or a character just arrived 

with a outstanding read request pending. From our experience, such conditions exist 

rather infrequently and in most cases the ttyserver spends a large portion of its time 

accepting user requests and filling/depleting circular buffers leaving the bulk of the 

actual I/O operations to be carried out asynchronously by the interrupt handling rou­

tines. In the case of the ecdevjidr, it serves as a device worker for the 3Com Ethernet 

controller which is managed by the communication manager process. The 3Com con­

troller generates four different interrupts each requiring extensive handling. All these 

interrupts are generated through one interrupt line and are distinguishable only by 

reading the interrupt bits from the 3Com control status register. To cater for such 

elaborate interrupt services, the ecdevjidr is dispatched whenever the Ethernet con­

troller interrupts. It then proceeds to disable the controller and send the interrupt bit 

sequences obtained from the 3Com control status register to the communication man­

ager which does the actual servicing. When servicing is completed, the communication 

manager will issue a reply to the ecdevjidr process which will then enable the Ethernet 

controller according to the reply message and resume waiting for interrupts. 
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4.4 Retrospect 

The static creation of1 kernel team processes from the kteamconftab and devtab con­

figuration tables has been successful in achieving easy addition/deletion of kernel team 

processes by manipulating the entries in the configuration tables. With this scheme, 

a limited capability is provided to change kernel functionalities without seriously cur­

tailing system flexibility and reconfigurability. 

The catering of machine-dependent creation of kernel team processes through the 

use of devtab had increased the applicability of the kernel multiprocess structure for 

handling device-dependent tasks. Indeed, experiences gained from the implementation 

of device workers and managers as kernel team processes had demonstrated remarkable 

close co-operation with the device interrupt handling facilities in the kernel. One direct 

advantage in fostering such close co-operations is that it facilitate the use of only 

one device worker to handle synchronization of many similar devices with its device 

manager. This was illustrated in the implementation of the zsdevjidr process which 

serves as an synchronization worker process for all the serial ports handled by the 

ttyserver. In contrast, the ttyserver in the original Shoshin uses two worker processes 

to synchronize input/output on a serial port. 

The implementation of the nameserv process to manage the kernel name cache 

suggests a possibility of allowing network-wide sharing of kernel data and state infor-
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mation. As demonstrated in the use of nameserv, the kernel name cache which is a 

kernel data structure can be accessed locally and remotely by user processes via IPC. 

Finally, the use of the kernel multiprocess structuri is not without problems. One 

main problem is that there is a strong tendency for the indiscriminate access of kernel 

primitives and data structures when writing kernel team processes. The unleashing 

of the power to create processes in kernel space that permit sharing of kernel data 

structures must be controlled in order to achieve our design criterion of simplicity. 

Some form of software methodology must be adopted when designing kernel team 

processes to achieve a simple, yet powerful kernel multiprocess structure. This software 

engineering aspect of writing kernel team processes is beyond the scope of this thesis. 



Chapter 5 

Concluding Remarks 

5.1 Summary 

In this thesis a description of the implementation of Team Shoshin operating system 

is presented. The emphases here are the development effort to port Shoshin onto the 

Sun Workstation and the subsequent investigation into multiprocess structuring of the 

kernel. Various aspects of the Sun Workstation hardware architecture are presented 

and its impacts on Team Shoshin software development are discussed. To underscore 

how much Team Shoshin has evolved from its predecessor, the original Shoshin, a 

detail description of Team Shoshin is provided in Chapter 3. In this chapter, the 

system and user interfaces of Team Shoshin are described with particular emphasis 

on documenting the changes made on the original Shoshin with respect to its design 

and implementation. In Chapter 4, the investigation into multiprocess structuring 

of the kernel is presented. The rationale for multiprocess structuring of the kernel 

is first discussed. This served as a basis for formulating the set of criteria which are 
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used in designing the proposed kernel multiprocess structure. Various implementations 

involving the use of the proposed kernel multiprocess structure are described. The 

applicability of the proposed kernel multiprocess structure and its impact on operating 

design are then discussed drawing from the experiences gained through its actual use. 

One major conclusion drawn from this thesis is that the extension of the process 

concept to the kernel is worthwhile and deserves further investigation. We do not 

contend that our proposed kernel multiprocess structure is "the solution" or the only 

approach to use. What is important here is that the work done in the kernel multi­

process structure has provided us a great deal of insights in its applicability and in its 

potential as a tool for structuring operating systems. Based on our experience in the 

implementation of the kernel multiprocess structure, the proper usage of the kernel 

multiprocess structuring concept is not trivial. It requires further studies and under­

standing and may even need the development of new techniques in software engineering 

to fully exploit it. 

Finally, the development of Team Shoshin has resulted in a great deal of software 

restructuring of the kernel. The kernel text size has grown to 43 kbytes compared to 
i 

24 kbytes in the original Shoshin, most of which are due to the introduction of the 

kernel multiprocess structure. Currently, local IPC in Team Shoshin is typically 4.5 to 

5.5 times faster than the original Shoshin. Apart from the fact that Team Shoshin has 

better underlying hardware support, a substantial part of this improvement in IPC 
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performance is an consequence of kernel restructuring. We estimated that message 

exchange time using the original Shoshin kernel software structure would be about 

double the time with kernel restructuring reported in [ACTON85a]. 

5 . 2 F u t u r e w o r k 

Many of the possible topics for future work that stemmed from this thesis pre­

sentation is centered on furthering ideas developed on multiprocess structuring of the 

kernel. In fact, many of these ideas are still not fully explored or even tested. So 

far we have not investigated the use of the kernel multiprocess structure to factor out 

traditional kernel functions into processes. A prime candidate for this investigation 

is to implement local process creation as a kernel team process. Due to the trans­

parent handling of local and remote IPC in Team Shoshin, the impact of this could 

be substantial since requests for process creation can be initiated locally or remotely. 

Consequently with this scheme, a separate facility for remote process creation may not 

be required. 

Another possibility is to look into the use of the kernel team processes to facili­

tate the network-wide sharing of kernel state information. By using kernel-resident 

processes that "own" such state information, local and remote processes can query or 

access them with ease via IPC. Alternatively, changes in kernel state information can 

be also used to affect the behaviour of some kernel team processes so as to reflect the 
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effects of such changes. For example, by implementing a death notifier as a kernel-

resident process that constantly monitors the process table, network-wide notification 

of a process death can be facilitated by dispatching the death notifier whenever the !•' 

process table changes. 

The development of Team Shoshin on the Sun Workstation has been an on-going 

project and there are still a great deal to be done to make it a full-fledge operating 

system. We will attempt to mention a few of them here. Currently, all Shoshin pro­

grams have to be downloaded with the operating system before they can be executed. 

It would be nice to have some form of dynamic loading facility that reads in load 

modules on demand from the disk. One possible way to achieve that is to read load 

modules from disks in existing Unix systems using our ability to communicate to Unix 

processes. In fact, a Unix fileserver that accept requests from Shoshin processes is 

already implemented. 

Finally, a virtual terminal management interface that allows a user to view and con­

trol the activities of its local and remote processes on the Sun Workstation bit-mapped 

display will definitely be welcome. Such interface will greatly enhance distributed com­

puting and control at the user level. 
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Appendix A 

Kernel Data Structures 

This appendix provides descriptions of various important data structures used in 
Team Shoshin kernel. These descriptions are all in the form of structure declarations 
using the C [KERN78] programming language. 

/* Basic type declarations */ 
typedef unsigned long ulong; 
typedef unsigned short ushort; 

/* Descriptor type - message descriptor or process descriptor */ 
typedef enum { IS_PD, IS_MD } PD_OR_MD; 

/* Process status */ 
typedef enum { 

WAITING, 
READY, 
DEAD, 
DELAYING 

} PSTATUS; 

/* Structure declaration for process id */ 
typedef struct { 

ulong hid; /* host id */ 
ushort lid; /* local id */ 

} PID; 
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I* Message wait condition */ 
typedef struct { 

PID w_pid; /* pid waited upon */ 
short w_tag; /* message tag */ 
STYPE w_stype; /* the ipc type waited upon */ 
ulong w_base; /* message base address */ 
ulong wJength; /* message length */ 

} WCOND; 

/* Structure declaration for the 
typedef struct PROCTAB { 

char p_name[MAXSPATH]; 
ushort p_mode; 
ushort p_uid; 
ushort P-gid; 
int p.tsize; 
int p.dsize; 
int p_bssize; 
int p.tseg; 
int p.dseg; 
int p.entry; 
short p_refcnt; 

} PROCTAB; 

Process table entry */ 

/* pathname of module */ 
/* mode */ 
/* user id */ 
/* group id */ 
/* text size in bytes */ 
/* data size in bytes */ 
/* bss size in bytes */ 
/* start of text seg */ 
/* start of data seg */ 
/* entry point */ 
/* reference count */ 

/* Structure declaration for a message descriptor - for remote IPC 
/* Note that message descriptors (MD) and process descriptors (PD) 
/* share the 1st few entries allowing PDs to be queued as MDs. 
typedef struct MSGDSC { 

struct MSGDSC *qnext; 
PD_OR_MD pd_or_md; 
STYPE mjsendtype; 
ulong mJength; 
short m_tag; 
ulong m_base; 
PID p_pid; 

} MSGDSC; 

/* pointer to next descriptor */ 
/*. is it PD or MD */ 
/* message sending type */ 
/* message length */ 
/* message tag */ 
/* message base address */ 
/* sender's pid */ 
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/* Structure declaration for a primary process descriptor */ 
typedef struct { 

struct PD *qnext; /* pointer to next PD */ 
PD_OR_MD pd_or_md; /* is it PD or MD */ 

/* the following is used when PD is used as a message descriptor*/ 
STYPE m_sendtype; 
ulong mJength; 
short m_tag; 
ulong m_base; 

PID p.pid; 
ushort p_sr; 
ulong p_pc; 
ulong p_regs[MAXREG]; 
ushort p.context; 
char pjstatus; 
char p_pri; 
PID p-ppid; 
struct PD *p_teampd; 

~ PID p_child[MAXCHILD]; 
char p.ctlflag; 
PROCTAB *p_proc; 
ushort p_segmap[MAXSREG]; 
ulong p_dbase; 
ulong p_dsize; 
ulong pJbssize; 
ulong pJastbssptr; 
ulong p_stbase; 
ulong p_stsize; 
ulong p_spdpge; 
MDSC *p_msgq; 
WCOND p.wcond; 
ushort p.cpu; 
ulong p.tolcpu; 

}PD; 

/* message send type */ 
/* message length */ 
/* message tag */ 
/* message base address */ 

/* own pid */ 
/* status register */ 
/* program counter */ 
/* general registers */ 
/* process context */ 
/* process status enum PSTATUS */ 
/* process priority */ 
/* parent's pid */ 
/* team pd */ 
/* Children pids */ 
/* process control flags */ 
/* pointer to the process table */ 
/* segment map */ 
/* base address of data segment */ 
/* size of data and bss seg */ 
/* size of bss (nearest page) */ 
/* end of used bss area */ 

base address of stack seg */ 
size of stack seg */ 
page entry of spdbase */ 
message queue */ 
waiting condition */ 
cpu time */ 
total cpu time used */ 

/* 

/* 

/* 

/* 

/* 

/* 

/* 
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/* Structure declaration for kteamconftab configuration table */ 
typedef struct { 

short kteampri; /* process software priority */ 
int (*kteamproc)(); /* entry point for kernel team process */ 
int logname; /* logical name */ 

} K T E A M C O N F ; 

/* Structure declaration for the devtab configuration table */ 
typedef struct { 

PD *dev_hdrpd; /* pointer to kernel team PD */ 
short hdr_prio; /* hardware interrupt level of device */ 
int (*dev_hdr)(); /* entry point for kernel team process */ 
int dvcsrjaddr; /* start address of device */ 
int (*deviint)(); /* routine for handling input interrupt */ 
int (*devoint)(); /* routine for handling output interrupt */ 
int (*dev_probe)(); /* routine for probing the device */ 
int (*devanmap)(); /* routine to perform memmap for device */ 
int (*devjnit)(); /* routine to initialize device */ 
int dev_unit; /* device unit number */ 
int logname; /* logical name */ 

} DEVSW; 


