
IMPLEMENTATION OF TEAM SHOSHIN : AN EXERCISE IN PORTING AND

MULTIPROCESS STRUCTURING OF THE KERNEL

By

HUAY-YONG WANG

BMATH, University of Waterloo, 1983

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

(DEPARTMENT OF COMPUTER SCIENCE)

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

March 1986

© Huay-Yong Wang, 1986

7%-

I n p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f t h e
r e q u i r e m e n t s f o r an a d v a n c e d d e g r e e a t t h e U n i v e r s i t y
o f B r i t i s h C o l u m b i a , I a g r e e t h a t t h e L i b r a r y s h a l l make
i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s t u d y . I f u r t h e r
a g r e e t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s
f o r s c h o l a r l y p u r p o s e s may be g r a n t e d by t h e h e a d o f my
d e p a r t m e n t o r by h i s o r h e r r e p r e s e n t a t i v e s . I t i s
u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s
f o r f i n a n c i a l g a i n s h a l l n o t be a l l o w e d w i t h o u t my w r i t t e n
p e r m i s s i o n .

D e p a r t m e n t o f

The U n i v e r s i t y o f B r i t i s h C o l u m b i a
1956 Main Mall
V a n c o u v e r , Canada
V6T 1Y3

D a t e

E-6 (3/81)

Abstract

Team Shoshin is an extension of Shoshin, a testbed for distributed software origi­

nally developed on the LSI ll/23s at the University of Waterloo. This thesis presents

a description of the implementation of Team Shoshin on the Sun Workstation. With

wide disparity in the underlying hardware, a major part of our initial development ef­

fort was to port Shoshin to its new hardware. The problems and design decisions faced

by the porting effort and how they were overcome will be discussed. The development

of Team Shoshin has provided us the opportunity to investigate the use of multiprocess

structuring techniques at the kernel level. We will describe the design and implemen­

tation of the proposed kernel multiprocess structure and the rationale behind it. The

applicability of the proposed kernel multiprocess structure and its impact on operat­

ing system design will be discussed drawing from experience gained through actual

implementation.

ii

Contents

Abstract ii

List of Figures _' v

Acknowledgement vi

1 Introduction 1
1.1 Motivations 2
1.2 Brief Taxonomy of Distributed Systems . 4

1.2.1 Computer-Communication Networks 5
1.2.2 Computer Networks 6
1.2.3 Classification of Team Shoshin 8

1.3 Thesis Outline 9

2 Team Shoshin on New Hardware 11
2.1 Hardware Architecture 11

2.1.1 Memory management hardware 12
2.1.2 Handling of Peripheral Devices 14

2.2 Effects on System Architecture 15
2.2.1 Software Structure 15
2.2.2 Contexts and Process Management 16
2.2.3 Associating Teams with Contexts 17
2.2.4 Data Transfer between Contexts 18
2.2.5 Mapping of Peripheral Devices 20

3 Description of Team Shoshin 22
3.1 Past and Present State 22
3.2 Process Management 24

3.2.1 Process Creation 24
3.2.2 Process Destruction 26

iii

3.2.3 Process Scheduling 27
3.3 Interprocess Communication 28

3.3.1 IPC Primitives 29
3.3.2 Relaying of Remote IPC 30

3.4 Input/Output Facilities 33
3.5 Other System Facilities 36

3.5.1 Dynamic Memory Allocation and Mapping 36
3.5.2 Timing facilities 37
3.5.3 Miscellaneous System Primitives 37

4 Multiprocess Structuring of the kernel 39
4.1 The Rationale . . . 39
4.2 The Design 42
4.3 The Implementation 48
4.4 Retrospect 51

5 Concluding Remarks 53
5.1 Summary 53

5.2 Future work 55

Bibliography 57

A Kernel Data Structures 60

iv

List of Figures

2.1 Memory mapping in Sun-2 13
2.2 Software structure in Team Shoshin 15

4.1 kteamconftab Configuration Table 46
4.2 devtab Configuration Table 47

v

Acknowledgement

I would like to thank my supervisor, Dr. Son Vuong, for his advice and guidance on

this thesis and Dr. Sam Chanson for reading the final draft.

Thanks are also in order for my colleague and friend, Donald Acton, who was

responsible for the porting of the remote communication software and the initial im­

plementation of the object based protocol. His help in testing and debugging Team

Shoshin is particularly appreciated. I would also like to thank my fellow graduate stu­

dents for making my stay at UBC a very pleasant one. Lastly, financial support from

the University of British Columbia in the form of University Graduate Fellowship is

also gratefully acknowledged.

vi

Chapter 1

Introduction

This thesis describes the implementation of Team Shoshin distributed operating

system on the Motorola 68010 [MOT084] based SUN Workstation1 interconnected by

a 10 Mbps Ethernet.2 The system is modeled after Shoshin[TOKU83a,TOKU84] with

modifications and enhancements to facilitate efficient local and remote operations. The

research reported here is based on the work done in porting, redesigning and developing

the original Shoshin into its current state, namely Team Shoshin.

The original Shoshin's hardware environment was significantly different from the

one we have here. With wide disparity in the underlying hardware, a major part of

our initial development effort was to port Shoshin to its new hardware. Throughout

the course of porting, we have the opportunity to try out new ideas and experiment

with various operating system design techniques. In particular, we investigated the

use of multi-process structuring[CHER79a] techniques at the kernel level through the
1 SUN Workstation is a trademark of Sun Microsystems Inc.
2Ethernet is a trademark of Xerox Corporation

CHAPTER 1. INTRODUCTION 2

introduction of kernel team processes that execute in kernel space.

This thesis will first discuss the problems and design decisions faced by the initial

porting effort and how they were overcome. Next, we will describe the design and im­

plementation of the kernel team processes and the rationale behind it. As considerable

experience was gained from this implementation, we will discuss the lessons learned

and identify some potential problems. The design and implementation process has also

led to insights in the applicability of the kernel multiprocess structure and its impact

on operating system design. It is from all these lessons learned and experience gained

through the implementation of Team Shoshin that form the basis for this thesis.

1.1 Motivations

The development of Team Shoshin on the SUN workstation was initially motivated

by the poor performance in the original Shoshin. Part of this problem was due to the

original Shoshin's underlying LSI 11/23 hardware that does not have good architectural

support for context switching and memory management. This has motivated us to see

how far performance can be improved through software restructuring in Shoshin to take

advantage of the relatively superior hardware provided by the SUN workstations. This

raises performance issues in porting operating system as to how much a limitation the

new hardware can impose on system performance on the one hand and on the other

hand how far one can improve system efficiency through software restructuring and

CHAPTER 1. INTRODUCTION 3

enhancements for the target machine.

Further motivations come from the porting process itself which has provided a

golden opportunity to actually implement various experiments in operating: system

structuring and design. The application of multiprocess structuring in message-based

operating systems was first introduced in the Thoth operating system[CHER79a] whose

multiprocess structure is restricted only to the software layer above the basic kernel ab­

straction. Little work has been done in extending the multiprocess structuring concept

to the kernel layer and until recently only some research work were carried out in this

area[RAVI85a][RAVI85b]. It is apparent that the traditional kernel abstraction by its

inherently passive nature somewhat enforces localised control as opposed to distributed

control. This has motivated us to explore the idea of an active kernel by extending the

concept of a process into the kernel. This can be accomplished by factoring the tra­

ditional kernel functions into kernel processes that execute within kernel space. The

multiprocess structure of the kernel can also be extended to include functions that

were ordinarily carried out by system processes for increased efficiency . We believe

that this approach coupled with Shoshin's transparent remote and local message-based

interprocess communication mechanism will greatly enhance distributed control and

functionality.

CHAPTER 1. INTRODUCTION 4

1.2 Brief Taxonomy of Distributed Systems

In the following section, we will attempt to classify distributed systems in general

and introduce some common definitions and terminologies. The main goal of this

section is to provide a brief taxonomy of distributed systems so as to facilitate better

understanding of the functions of Team Shoshin and its relationship with other existing

distributed systems.

Distributed systems refer loosely to a whole spectrum of systems that have some

characterization of distribution in their logical and physical features[LAMP81]. On

one end of the spectrum we have the tightly coupled systems employing shared memory

and centralised resource management and on the other end we have the loosely coupled

systems that have no shared memory and are completely autonomous. Multi-processors

like the Cray-1 is a good example of the former and for the latter the best known

example is the heterogenous network ARPANET. In between the two extremes of the

distributed systems spectrum are the multi-processor systems such as StarOS and

homogenous networks such as MININET. A heterogenous network is one where the

hosts are different as opposed to a homogenous network where all the hosts have the

same architecture and run the same operating system.

To characterize Team Shoshin, it is worthwhile to consider resource-sharing net­

works and distributed-processing networks. As the name resource-sharing suggests,

CHAPTER 1. INTRODUCTION 5

this type of network allows the user at one location to utilize and share computer

resources that may be physically dispersed. A resource-sharing network differs from

• . ' ly !
the centralised uniprocessor system with remote terminals in that it allows users to

access several hosts from different locations. A distributed-processing network facili­

tates problem solving by division of labour or functional specialization so that they can

be carried out concurrently by several computer systems, each performing part of the

total processing required. Logically, distributed-processing networks are built on top

of resource-sharing networks. Resource-sharing networks can be roughly categorized

into two major classes based on how computer resources are managed[ELOV74]:
1. Computer-communication Networks
2. Computer Networks

1.2.1 Computer-Communication Networks

Computer-communication networks are usually heterogenous and loosely coupled.

From the user point of view, the network is characterized as a collection of several

different computer systems with varying capabilities and access protocols. The user of

the network is not protected from the idiosyncrasies of different hardware and system

dependent interfaces, and the responsibility of managing distributed resources rest

solely on the user. To utilize a resource in an computer-communication network, the

user must first determine the system on which the resource resides and then establish

a connection to that system. Next, all the system dependent commands and access

CHAPTER 1. INTRODUCTION 6

protocols needed to invoke the resource must be learned and familarised. Thus, the

user must be conversant with each different system on the network if he/she wishes to

access resources associated with these systems in the network.

1.2.2 Computer Networks

A Computer network is a much more powerful form of network as it is intended to

isolate the user from the varying hardware and system dependencies that might com­

plicate access to distributed resources. In effect, the user of a Computer network views

the entire network as one large computer system. Here the responsibility of managing

distributed resources in the network lies in the network operating system (NOS) that

extends the programming environment to embrace remote accesses. In other words,

accesses to local and remote resources by users and programs are transparently handled

by the NOS. In short, the intend of the NOS is to provide the functions of a traditional

single machine operating system on a multi-computer basis.

It is apparent that the development of an NOS is difficult especially when one has to

deal with heterogenous networks. An NOS requires additional software to be written

for each host so that local computing environment can be extended to handle remote

operations with a uniform network wide access mechanism. Various issues have been

raised in designing NOS and we will include some of them in this section[LANTZ80].

1. Basic system goal (general purpose versus specialized)

CHAPTER 1. INTRODUCTION 7

A NOS may be designed to be general purpose and "open-ended" so that it

can support a wide range of applications. Alternately, a NOS may be built to

solve a specific problem or a class of related problems with real-time and other

performance constraints.

2. Implementation base (base level versus guest level)

In the base level implementation, the system is built from bare hardware com­

ponents. The advantage in this approach is that the NOS can be specifically

designed to function efficiently and effectively with the underlying hardware.

Moreover, the attainment of transparent local and remote accesses can be ad­

dressed right from the start during system design. In the case of guest level ap­

proach, the NOS is built as an extension of existing operating systems and usually

utilizes the system services provided by the host operating systems. For trans­

parent local and remote operations to be achieved in the guest level approach,

some encapsulation interface must be provided to examine system requests and

redirect remote requests to appropriate NOS routines. This will inevitably incur

additional performance penalty on local services. Alternately, NOS services can

be provided through a set of NOS primitives which are called explicitly by ap­

plication programs using NOS resources. In this respect, it is only reasonable to

take the base level approach if local services can be provided at least as cheap as

in local operating system, (non-distributed)

CHAPTER 1. INTRODUCTION 8

3. Procedure-oriented versus message-oriented

A procedure-oriented system is characterized by its dependence on some form

of shared memory with system services being accessed largely through proce­

dure calls. In contrast, message-oriented system depends on the explicit use of

messages for interprocess communication and request for services.

4. Resource abstraction

Resource abstraction refers to the concept of a meta-resource that possesses cer­

tain attributes commonly used and implemented. A meta-resource is a resource

created by abstracting common attributes from system services and objects that

would permit interchangeable use of different resources by different applications.

Since the notion of a service in a NOS can be local or remote, resource abstrac­

tion has become an important issue as it helps to eliminate duplication of NOS

services.

1.2.3 Classification of Team Shoshin
With respect to the above summary of distributed systems, Team Shoshin possesses

the following characteristics:

1. general-purpose system

2. homogenous, loosely coupled, message oriented network operating system

CHAPTER 1. INTRODUCTION 9

3. base-level implementation on the SUN Workstations (with additional guest-level

implementation of Team Shoshin IPC interface[ACTON85a] on other SUNs and

VAXes running 4.2BSD UNIX3).

4. Resource abstraction over the Ethernet communication interface through trans­

parent local and remote interprocess communication. This is provided as a basic

system service.

The guest-level implementation of Team Shoshin IPC interface on SUNs and VAXes

running on 4.2BSD UNIX allows UNIX processes to use Shoshin-like IPC primitives

to communicate with other Shoshin and UNIX processes residing on remote machines.

This has provided Team Shoshin the ability to access large number of services in UNIX

with ease. This facility is extremely useful and important especially during the early

stages of system development.

1.3 Thesis Outline

Chapter two deals with the impact of the new hardware on the development of
\

Team Shoshin. Various aspects of the Sun Workstation hardware 'architecture that

have bearing on operating system porting and development will be described. The

software structure of Team Shoshin is then presented with emphasis on the problems

faced and decisions made in the light of the new hardware.
3UNIX is a trademark of AT&T Bell Laboratories

CHAPTER 1. INTRODUCTION 10

Chapter three presents a detail description of Team Shoshin. The system has

evolved considerably from its predecessor, the original Shoshin, and we will attempt

to document such changes here. A synopsis of the history of Shoshin is first provided,

followed by an overview of Team Shoshin and its system and user interfaces.

Chapter four investigates the idea of performing multiprocess structuring at the

kernel layer. First, the rationale behind this investigation will be presented, followed

by an description of the design and implementation of our proposed kernel multiprocess

structure. The impact and applicability of this proposed structure are then discussed

based on experiences gained through its use.

Finally, the last chapter concludes this thesis with a summary of the main results

and suggestions for future work.

Chapter 2

Team Shoshin on New Hardware

Like all operating system implementations, one has to deal with the peculiarity of

the target machine architecture. In this chapter, the impact of the Sun Workstation

architecture on the development of Team Shoshin will be discussed. The focus will

be on the problems faced and implementation decisions made in the light of the new

hardware.

2.1 Hardware Architecture

This section will describe various aspects of the SUN Workstation's architecture

that have some bearing on operating system porting and development. Most of the

information below are for the SUN-2 Model which are obtained largely after many

hours of experimentation of the SUN-2 hardware and partly from an assortment of

available SUN-1 Model manuals[SUN82] [SUN83].

11

CHAPTER 2. TEAM SHOSHIN ON NEW HARDWARE 12

2.1.1 Memory management hardware

The memory management unit (MMU) of the SUN Workstation comprises of two

context registers, a segment map and a page map. All memory accesses by the SUN's

processor are virtual and are translated by the MMU into physical addresses according

to the segment and page map entries. The basic unit is a page which is 2 Kbytes

(2048). The segment size is 32 Kbytes and each segment maps logically onto a block

of 16 consecutive pages. Memory address mapping is done with respect to the current

context and up to 8 contexts can be mapped concurrently. The current context is

determined by one of the two context registers, namely the supervisor and the user

context registers. When the processor is in supervisor state, the current context is

determined by the supervisor context register which is always set to the supervisor

context (context 0). In the case where the processor is in user state, the user context

register is used to determine the current context. Each context has a block of 512

hardware segment map entries giving the maximum logical address space for a context

to be 16 Mbytes. In contrast, the number of hardware page map entries shared by

all contexts is only 4096, limiting the maximum physical address space that can be

mapped to 8 Mbytes. As a result, it will not be possible for a context to have all its

segment map entries distinct. The hardware page map entries are grouped into blocks

of 16 consecutives pages called segment groups ranging from 0 to 255.

As an illustration of how the MMU works, let us trace through the translation

CHAPTER 2. TEAM SHOSHIN ON NEW HARDWARE 13

process that is involved in an memory access [see Fig 2.1]. First the high 9 bits of the

v>
S>

TJ
TS

tn
E
T t -

C N 1 1

LSB

S e g m e n t Map

(C u r r e n t C o n t e x t)

1
2
3
4

5 1 1
5 1 2

Page Map
i

2

3

4

4 0 9 5

4 0 9 6

Figure 2.1: Memory mapping in Sun-2

Physical
Address

24-bit virtual memory address is taken to index into the segment map of the current

context and the segment group number is read from the indexed segment entry. The

segment group number is then used to index into the corresponding segment group of

the hardware page map entries and the next high 4 bits of the virtual address are used

CHAPTER 2. TEAM SHOSHIN ON NEW HARDWARE 14

to determine which page map entry in that segment group to be examined. Finally,

the output of the page map entry,is concatenated with the remaining low bits of the ;1 [; • :
virtual address to form the corresponding physical address.

2.1.2 Handling of Peripheral Devices

The SUN Workstation Hardware does what is known as "memory-mapped" in­

put/output in that accesses to peripheral devices is done exactly in the same manner

as memory accesses[SUN84]. The only distinction between memory and peripherals

is the presence of three special address spaces (apart from on-board memory space)

that allow peripheral devices to be mapped. These three additional address spaces

are namely the Multi-bus memory space, the Multi-bus I/O space and the On-board

I/O space. The Multi-bus memory and I/O spaces are used to access devices that are

attached to the IEEE-P796 Multibus or the VMEbus. Other special On-board devices

like the TOD(timeofday) clock can be accessed through the On-board I/O space. By

setting a special page type field in a hardware page map entry, the page can be declared

to be in one of these address spaces. As a result, the Sun MMU can map any part of

a program address space to the Multi-bus memory space, Multi-bus I/O space or the

On-board I/O space.

CHAPTER 2. TEAM SHOSHIN ON NEW HARDWARE 15

2.2 Effects on System Architecture

2.2.1 Software Structure

Team Shoshin comprises of four layers of software executing under the two differ­

ent processor statesfsee Fig 2.2]. The lowest layer is the kernel which executes only

L E U E L

USER

SPACE

S Y S T E M C A L L S (TRAPS)
\L s j / \L \L \L vj/ yL
l

K E R N E L

KERNEL

SPACE

Interaction by messages

Figure 2.2: Software structure in Team Shoshin

in supervisor mode and provides the bare essential functions to support the higher

software layers. It is guaranteed memory resident and resides in the supervisor context

CHAPTER 2. TEAM SHOSHIN ON NEW HARDWARE
16

whose segment map is set up to have access to the entire physical memory space. Next

in the software hierarchy is the kernel team processes that execute in kernel space(see

Chapter 4) , followed by a layer of system processes that execute in user space. Both of

these software layers execute under user mode and are responsible for implementing all

other higher system abstractions. Finally, at the highest layer are the user application

programs that run in user mode.

2.2 .2 Contexts and Process Management

The concept of a context realized by the SUN's memory management hardware

has allowed for rapid process switches, a crucial factor in attaining an efficient multi­

task environment. By manipulating the user context register under supervisor mode,

we can switch between 8 different segment maps allowing 8 contexts to be mapped

concurrently. A Process switch to an existing process residing in a context is very

cheap as there is no memory translation state information to be reloaded except for

the user context register. This raises the question of how allocation of contexts to

processes for multitasking is to be accomplished to fully exploit the SUN's MMU. One

simple scheme to facilitate multitasking is to allocate one context per process. This

scheme will work well as long as the number of executing processes do not exceed the

number of contexts which is eight. For the case where there are more processes than

available contexts, some context replacement strategies have to be adopted to displace

CHAPTER 2. TEAM SHOSHIN ON NE W HARD WARE 17

an existing process residing in context to make room for other processes. The cost for

a context replacement is substantial since the segment map entries have to be reloaded

for the new process. This performance penalty associated with a context replacement

has prompted us to devise means to reduce the occurrences of context replacements.

2 . 2 . 3 Associating Teams with Contexts

One obvious way to reduce context replacements is to have a team of processes

sharing a context. The team of processes must all be executing in the same address

space requiring only one segment mapping. Consequently, process switches between

team members will not require the loading of a new context. This observation has lead

us to include Cheriton's team creation into Shoshin so that team of processes sharing

the same address space can be created and be associated with a context.

The close association between teams and contexts has provided us with some in­

teresting ideas in configurating system software. One of which is to dedicate some of

the available hardware contexts to certain important process teams. The rationale for

this is that the operations of certain system process teams have substantial bearing on

overall system performance. Due to the design philosophy of Shoshin that advocates

the design of a small kernel with higher system functions abstracted by server process,

there is a large volume of message exchanges generated by user requests for services. As

a consequence, an exceptionally high degree of process switchings are involved due to

CHAPTER 2. TEAM SHOSHIN ON NEW HARDWARE 18

the synchronous nature of Team Shoshin IPC primitives. In particular, a server process

which provides a highly demanded service will be constantly blocked and unblocked

most of the time receiving requests. If this server process team is not guaranteed to be

context resident, chances are some process team will be mapped into its context when

it blocks, increasing the probability of context replacements. Thus it is reasonable to

have certain server process team that offers a highly demanded service to be context

resident. The trivial case is the kernel which resides permanently in the supervisor

context (context 0). To fully utilize the supervisor context, we also included a pro­

cess team which comprises of kernel team processes sharing the same address space

as the kernel. This multiprocess structuring of the kernel will be discussed in detail

in Chapter 4. Next, the server process team called the communication manager is

also configured to be guaranteed context resident in context 1. The communication

manager is solely responsible for implementing the remote IPC interface and serves as

the only link through which remote messages can be exchanged. Clearly, its services

are highly demanded as rendered by the distributed nature of Team Shoshin.

2 . 2 . 4 Data Transfer between Contexts

Due to the nature of SUN's MMU hardware, access to data in a different con­

text can only be done in supervisor state with respect to the current user context. In

other words, data transfer between contexts is only limited between supervisor con-

CHAPTER 2. TEAM SHOSHIN ON NEW HARDWARE 19

text and the current user context. This poses a serious limitation in supporting data

transmission between processes residing arbitrarily in different contexts. In the case

of Shoshin's' interprocess communication, this data transfer support is crucial as the

message sent by the sender is copied directly into the receiver address space to avoid

buffering.

To solve this problem, two special segment blocks each consisting of two consecutive

hardware segment entries are reserved in the supervisor context. When data transfer

between two different user contexts is required, the segment groups containing the data

of one of the target context are mapped into the special segment block entries reserved

in the supervisor context. Data transfer is then carried out between the supervisor

context and the other target user context through special MC68010 instructions. This

scheme will allow us to copy data of size ranging from 32 Kbytes to 64 Kbytes depending

on where the target address lies with respect to the segment boundary. This limit can

be easily increased by allocating more hardware segment entries to each of the special

segment block in the supervisor context. The use of special MC68010 instructions to

perform data transmissions between the supervisor context and the user context cost

more than normal copy instructions which operate within a context. For efficiency,

data transfer between different user contexts of size larger than 512 bytes will have the

segment groups of both target addresses mapped into the supervisor context so that

data copying can be done within the supervisor context. The 512 bytes optimal limit

CHAPTER 2. TEAM SHOSHIN ON NEW HARDWARE 20

is obtained by numerous iterations of trial and error.

2.2.5 Mapping of Peripheral Devices

The "memory-mapped" input/output support for peripheral devices in the SUN

workstation has enable us to provide dynamic mapping of certain devices into user

address space. Ordinarily, the absence of such mapping facility will require device

managers to trap into the kernel space via system calls to gain access to the peripherals.

This usually resulted in reduced efficiency due to the overhead in system call associated

with each access to the device by the device manager. The cost can be extremely high

especially when large amount of data is required to transfer into or out of the device

frequently, as in the case of the Ethernet controller. Moreover, access control to the

device has to be enforced each time the device is being accessed. In contrast, access

control for the device is applied only once when mapping of the device is requested.

Once this is done, the server process basically "owns" the device and access control is

no longer required.

The dynamic mapping of devices is performed by the primitive memmap and

currently only mapping of the 3Com Ethernet[3COM] controller is supported. Due to

the device-dependent nature of the mapping, the actual routine that does the mapping

is obtained by indexing into the devtab configuration table in the kernel using the device

number argument passed to memmap. In this manner, access controls for the mapping

CHAPTER 2. TEAM SHOSHIN ON NEW HARDWARE 21

of a device can be specifically tailored for that device and enforced. Peripherals that

are do not support dynamic mapping simply have null mapping routines in its entries

in the device table.

Chapter 3

Description of Team Shoshin

An overview of Team Shoshin is presented in this chapter. The system has evolved

considerably from its predecessor, the original Shoshin, especially in terms of increased

system functionalities. As a result, various changes in the original Shoshin design had

been made and we will attempt to document such modifications here. This chapter will

first provide a synopsis of the history of Shoshin, its past and current state, followed

by an overview of Team Shoshin and its system and user interfaces.

3.1 Past and Present State

The original Shoshin operating system.was first written by Hide Tokuda and San-

jay Radia at the University of Waterloo in April 1984. It was initially implemented as

a distributed software testbed running stand-alone on a collection of LSI ll/23s inter­

connected by a tailor made high speed bus called the 5cAoo/6us.[TOKU83a] Software

development was done in two PDP ll/45s running UNIX which also serve as fileserver

22

CHAPTER 3. DESCRIPTION OF TEAM SHOSHIN 23

and boot server for downloading Shoshin to the LSI 11/23 machines.

The author commenced working on the original Shoshin in July 1984. The work

includes porting the Shoshin kernel to the SUN workstations and rewriting and extend­

ing the kernel to its present state. Other extensions in the system accomplished by the

author include user team creation based on Cheriton's Team concept[CHER79a], dy­

namic memory allocation using SUN's memory management hardware, facility to map

certain selected devices into user memory space, timing services, multiple terminal sup­

port and a uniform distributed I/O interface. The remote IPC software written for the

original Schoolbus [TOKU83a] hardware was ported by Donald Acton to the Ethernet

environment. Much of the work on remote IPC facilities which is handled by a server

process called the Communication manager was reported in [ACTON85a][ACTON85b].

At present, through a rudimentary UNIX-like command interpreter called the

'micro-shell', Team Shoshin features multi-tasking and transparent (local and remote),

device-independent input/output of terminal and disk files. Currently, all disk files are

adopted from the UNIX's filesystem and are remotely accessed from machines running

4.2BSD UNIX through guest-level implementation of Team Shoshin's IPC interface

under UNIX.

CHAPTER 3. DESCRIPTION OF TEAM SHOSHIN 24

3.2 Process Management

As in the original Shoshin, a process in Team Shoshin is a logical component of a

distributed program. Each process has a unique 48 bit network wide process identifier

(PID) which is assigned at process creation time. It consists of two parts, a unique 32

bit host identifier (HID) and a 16 bit local identifier (LID) assigned by the kernel to a

process upon its creation. The unique HID is the internet host identifier and this allows

interprocess communications to be extented to systems running 4.2BSD UNIX. Such

static allocation of host identifiers is mainly adopted for the purpose of convenience and

there are various problems associated with this fixed scheme. Currently, a new host

identification scheme [CHAN86] is being studied and may be adopted in later version

of Team Shoshin. A simple local identifier generation scheme described in [CHER79a]

is used.

3.2.1 Process Creat ion

The only major difference in process creation in Team Shoshin as compared to the

original Shoshin is the implementation of the team process concept. The following are

the primitives for process creation that are available in Team Shoshin.

pid = create(pname,f_tree,rel_pri,at)

pid = teamcreate(func,rel_pri,ssize,nargs,argl,arg2,..)

The c r e a t e primitive is identical to the one in the original Shoshin. The process

to be created is defined by the name "pname" which specifies the file name of the

CHAPTER 3. DESCRIPTION OF TEAM SHOSHIN 25

load module. The created process can be attached or detached from its creator's

family tree by passing ATTACH or DETACH as the parameter in "f.tree". This is for

process destruction since only child processes that are attached to the parent will be

destroyed when their parent dies. The "at" parameter indicates the user preference

for the location of the new process. The priority of the child process is given by the

formula, parent's priority + reLpri, such that the lower the priority value, the higher

the actual priority. In Team Shoshin, a process created by the c r e a t e primitive is

a team root which is analogous to the team root in [CHER79a]. A team root can

be viewed as a full-fledged process that owns the process address space shared by its

offsprings created in the team. Naturally, the death of a team root will result in the

destruction of all its team processes.

The primitive t e a m c r e a t e is identical to Cheriton's notion of creating a process on

a team. This type of process creation is fast as it does not involve creating a separate

address space, or locating the file containing code and initialized data. The created

child process shares with its team root the same address space, code segment, data

segment and memory free list. The entry point of the function to be executed as a new

process is specified in "func" and the parameter "ssize" indicates the size of the new

process stack to be statically allocated from the memory free list. Due to the fixed

allocation of the process stack, it is the user responsibility to ensure sufficient stack

size is specified in "ssize". In contrast, the process stack of a team root is dynamic

CHAPTER 3. DESCRIPTION OF TEAM SHOSHIN 26

and grows from high memory to low memory. The "nargs" parameter specifies the

number of arguments passed to the function and "argl","arg2".. are the arguments to

be passed. A process created by teamcreate is automatically attached to its creator

and is destroyed when its parent terminates.

The following system primitive is identical to that of UNIX's and is provided to

facilitate the passing of command line argument of C [KERN78] in Team Shoshin.

execv(pname,argv)

The text and data segments are found in a file called "pname" and "argv" is an array

of character pointers to strings. Upon successful execution of execv, the caller process

will be transformed into a new process with its core image overlayed by the text and

data segments specified in "pname". The argument list consisting of strings specified

in "argv" will be made available to the new process. The use of the primitive execv

is forbidden in team roots since execv will result in destroying the original core image

that might be shared by other processes. Upon completion of the execv, the process

will be detached from its parent and becomes a team root.

3.2.2 Process Destruction

The destruction of a process is usually accomplished by either an explicit call to

the primitive exit, or an implicit one when the process "falls off its code". Process

destruction can also be explicitly initiated by other processes using the kill primitive.

In any case, all resources owned by the terminated process are reclaimed and will be

CHAPTER 3. DESCRIPTION OF TEAM SHOSHIN 27

available for future use. In particular, the process stack allocated for a terminated team

process is also recovered and returned to the memory free list shared by surviving team

mates. This recovery is crucial as it facilitates dynamic process creation and destruction

within a team without exhausting the memory free list all the time. It is interesting to

note that such resources if not reclaimed will be ultimately recovered when the team

root dies. When a process terminates, a process destruction wave is initiated such that

all its attached descendents are automatically killed.

3.2.3 Process Scheduling

A ready process is one that can execute when the CPU is available. A process that

is active or currently having the CPU shall relinquish the processor under the following

conditions.

1. process time quantum expires.

2. preempted by a higher priority process that has become ready.

3. process blocks for synchronization.

4. process terminates

The ready processes are grouped into priority queues such that processes belonging to

a particular priority queue have the same priority associated with that queue. The

priority queues are then arranged into a ready queue in descending order of priority.

CHAPTER 3. DESCRIPTION OF TEAM SHOSHIN 28

When the active process relinquishes the CPU, the first process on the ready queue

will be scheduled to get the CPU.

Due to the introduction of team concept, additional considerations have to be made
i

in process scheduling to ensure team processes execute indivisibly within their team.

This assurance that no active team process is preempted by its team mates is vital

in maintaining data consistency within the team. In order to accomplish this, the

following additional restrictions are enforced. First, no team process can have higher

priority than its team root. Second, a process can only be preempted by a higher

priority process of a different team. Third, upon expiration of the time quantum, the

active process will only relinquish the CPU if the next process to be scheduled belongs

to a different team and have priority equal or higher than itself. Finally, a process that

goes into a ready state from an active state will be entered into its team root priority

queue such that no processes of the same team come before it. In the normal case

where a process unblocks and becomes ready, it will be entered FIFO into the priority

queue associated with its priority.

3.3 Interprocess Communication

The interprocess communication facility of Team Shoshin provides a simple, yet

extensible set of IPC primitives. As far as the user process is concerned, both local and

remote communications share the same IPC interface and is totally transparent. In any

CHAPTER 3. DESCRIPTION OF TEAM SHOSHIN 29

case, the user process simply supplies the PID of the process it wants to communicate

with to the desired IPC primitive. Message lengths are arbitrary and the maximum

message length is only limited by the maximum buffer size at the receiver site. The

Team Shoshin IPC model provides both blocking and non-blocking types of receive

primitives but only blocking type send primitives. The flow-controlled send fsend

[TOKU83b] primitive was not implemented.

3.3.1 IPC Primitives

A process can send a message using the three direct IPC send primitives. They

are defined as follows:

nr = request (topid,&msg,m,&buf,n,mtag)

ns = reply(topid,&msg,m)

ns = bsend(topid,&msg,m,mtag)

The "topid" indicates the destination PID, "&msg" and "&buf" indicate addresses of

message and buffer areas. The two parameters V and "n" indicate the byte sizes

of the message and reply message respectively while "mtag" specifies the message tag

value to be used in Selective Receive. [TOKU83b] The values "ns" and "nr" represent

the number of bytes to be sent and received respectively.

As in the original Shoshin, the request and reply primitives are used for estab­

lishing a "client-server" model between processes. When a process sends a message

using the request primitive, the requestor will be blocked until the reply message is

CHAPTER 3. DESCRIPTION OF TEAM SHOSHIN 30

returned from the receiver. In the case of the bsend primitive, the sender is blocked

until the receiver receives the message. There is no need for a reply message from the

receiver to unblock the sender.

The receive primitives provide both blocking and non-blocking modes of operation:
nr = brec(frompid,&buf,n)

nr = nrec(frompid,&buf,n,mtag)

xpid = brecany(&buf,n,mtag).

xpid = nrecany(&buf,n,mtag)

Where the sender's PID is specified in the parameter "frompid" and the return value

"xpid" is a special structure that contains the sender's PID and the number of bytes

received. Descriptions of the other parameters are given in earlier definitions.

The blocking brec primitive blocks the receiver until the message arrives from the

desired sender. The message tag parameter "mtag" is removed in brec since in Team

Shoshin a sender can send at most one message. This is not true in the case of the

original Shoshin where non-blocking flow-controlled send fsend is supported. In the

case of blocking receive any (brecany) the receiver is blocked until a message with the

specified tag arrives. All other non-blocking receive primitives are based on querying

the message queue of the process and retrieving the specified message if it exists.

3.3.2 Relaying of Remote IPC

The handling of remote IPC is carried out by a special server process called the

communication manager, which is solely responsible for all message exchanges between

CHAPTER 3. DESCRIPTION OF TEAM SHOSHIN 31

machines. By examining the location of the destination process, the kernel upon de­

tecting ,a remote IPC invocation will relay the IPC. request to the communication

manager. The relaying of remote IPC requests in Team Shoshin differs considerably

from its predecessor, the original Shoshin. For remote invocation of IPC primitives,

the original Shoshin takes the approach of having the caller build a request packet

in kernel space and then sending, via the request IPC primitive, the request to the

communication manager. When the communication manager receives the request it

performs the requested actions and replies the result directly using IPC to the caller

process. Advantages of this approach arises from the apparent adoption of a straight­

forward service access protocol, where user processes simply send explicit requests to

the servers relying heavily on the local IPC facilities. However, this advantage might

be deceiving as one has to consider the complexity involving kernel stack management

to facilitate user processes to build request packets in kernel space and the unwinding

of kernel stack upon the unblocking of the caller process. Ironically, this approach

appears to be procedure-based, since the kernel in this case will have to run as an

extension of the user process and has to be blocked on behalf of the user process. It

can also be costly as a result of inefficiency due to the redundancy associated with the

nature of the service primitive.

In particular, for remote IPC, the caller who invoked the request primitive to a

remote process has to build a request packet in kernel space and invoke the request

CHAPTER 3. DESCRIPTION OF TEAM SHOSHIN 32

primitive again (recursively) to send the request to the network server, in this case the

communication manager server. Clearly there is a great deal of redundancy associated

in the above design since the second recursive call to request will go through checks

and tests which are not necessary. Every remote IPC invocation in the original Shoshin

actually involves two calls to the local IPC facilities thus making it rather expensive

to use.

To remedy this problem with remote IPCs, we decided to remove the dependency

on local IPC routines for the relaying of remote IPC requests to the communications

manager. Instead, the relaying of remote IPC requests are carried out directly at the

kernel level. When a user process invokes an IPC primitive, the activated routine in

the kernel checks the location of the destination process in the specified process iden­

tifier. If the destination process is on a remote host, the process descriptor of the

invoking process is then queued directly to the message queue of the communication

manager server with additional remote IPC related information entered in the descrip­

tor. The communications manager server obtains the remote IPC requests from the

kernel through a special kernel primitive called getcommreq. Upon completion of a

remote IPC, the communications manager returns the IPC status directly to the user

through another special kernel primitive, remipcdone. With this approach, the user

processes are viewed as blocking and resuming execution at the point of entry into the

kernel. The support for kernel software to run as an extension of a user process and

CHAPTER 3. DESCRIPTION OF TEAM SHOSHIN 33

to be able to sleep on the behalf of it is no longer required. In effect, such approach

enforces a clear boundary between user and kernel execution threads which greatly

reduces complexity and enhance understanding in kernel software.

A possible objection to the above solution is the large potential overhead involved

in maintaining remote IPC information in the process descriptor. Fortunately we find

the fields that were originally designated in the process descriptor for local IPCs are

sufficient, and can be easily be extended to cater for remote IPC.

3.4 Input/Output Facil ities

Team Shoshin I/O interface is implemented by server processes with client pro­

cesses communicating their I/O requests via IPC. The I/O interface is distributed by

the fact that Team Shoshin supports transparent local/remote IPC. Consequently, as

far as the servers are concerned, there is no difference in local and remote requests thus

allowing location independent accesses of objects (files,devices). Under this arrange­

ment, the I/O system has provided Team Shoshin a reasonably uniform interface with

local and remote peripheral devices by facilitating the indiscriminate use of standard

I/O library routines on such devices. The data transfer mechanism for I/O operations

is achieved by adopting Cheriton's "connectionless" object-based protocol[CHER81].

Under this protocol, the concept of a file is generalized to that of a view of an object

or activity abstracted by a server. To access an object, the object must be first opened

CHAPTER 3. DESCRIPTION OF TEAM SHOSHIN 34

by

objdescrpt.ptr = OpenObject(objname,mode)

where "objname" specifies the pathname of the object with access mode indicated by

"mode". The primitive OpenObject returns a pointer objdescrpt.ptr to an object

descriptor which contains information about the opened object. This object descriptor

is a non-sharable per-process data structure and the pointer to it serves as an identifier

to the accessed object.

Read and write operations can now be performed on the accessed object through the

objdescrpt_ptr explicitly or implicitly. By explicitly, we mean that the object descriptor

pointer has to be specified as a parameter in the operation. The primitives involved

in these explicit read/write operations are

byt_read = ReadObject(objdescrpt_ptr,buf,bsiz)

byt_wrote = WriteObject(objdescrpt_ptr,buf,bsiz)

ReadObject attempts to read "bsiz" bytes from the object specified by objdescrpt_ptr

into the buffer "buf". The number of bytes actually read is returned. In the write op­
's

eration, WriteObject will attempt to write "bsiz" bytes starting from address "buf"

into the specified object. Similarly, the number of bytes actually written is also re­

turned.

For implicit read/write operations, the accessed object has to be selected as one

of the standard I/O units or streams of the process. In Team Shoshin, each process

CHAPTER 3. DESCRIPTION OF TEAM SHOSHIN 35

is created with three standard I/O units, STDOUT.U, STDINJJ and STDERRJJ

corresponding to standard input, standard output and stardard error respectively.

Each of these standard I/O units is used to index into an object descriptor pointer

which is initially inherited from the parent process. The accessed object can be selected

to be a standard I/O stream by

oldobjdescrpt_ptr = resetiounit(iounit,objdescrpt_ptr)

where "objdescrpt.ptr" is a pointer to the accessed object to be selected "as stardard

I/O unit "iounit". A pointer to the previously selected object descriptor for "iounit" is

returned. Read/write operations on stardard I/O units are performed by the following

primitives.

putchar(ch)

_perror(ch)

ch = getchar()

The primitives putchar and _perror will attempt to write the character "ch" into

standard output and stardard error respectively. In getchar, a character from the

standard input is read and returned.

To facilitate efficient input/output, device dependent buffering schemes are imple­

mented with the read/write operations. In order to ensure that data output is written

out onto the device, the primitive

flush_buffer(objdescrpt_ptr)

CHAPTER 3. DESCRIPTION OF TEAM SHOSHIN 3 6

flushes out all buffered data onto the object pointed by "objdescrpt_ptr". Finally, the

primitive

CloseObject(objdescrpt_ptr)

flushes out all previously buffered output associated with the object specified by "ob-

jdescrpt.ptr" and terminates access to the object.

3.5 Other System Facilities

3.5.1 Dynamic Memory Allocation and Mapping

The following UNIX-like primitives are available for allocating memory from the

memory free list which grows from low to high memory,

memory _vec = malloc(msize)

memory _vec = valloc(msize)

A pointer to a contiguous array of memory of "msize" bytes will be returned to mem­

ory _vec. In the case of valloc, the block of memory allocated is guaranteed to start

on a page boundary. Memory allocated can be returned to the free list by using the

primitive

free(memory_vec)

To facilitate the mapping of objects into user address space, the following primitive is

provided.

memmap(obj,uaddr,len,offs)

CHAPTER 3. DESCRIPTION OF TEAM SHOSHIN 37

The pages starting at "uaddr" and continuing for "len" bytes are mapped onto the

object specified by "obj" at offset "offs". The parameter "uaddr" must be on page

boundary and the "len" and "offs" parameters must be in multiples of page size.

3.5.2 Timing facilities

The system clock abstraction of Team Shoshin supports the following primitives.

gettimeofday(date_and_time,tzone)

settimeofday(dateJand_time,tzone)

gettime(time)

delay(secs,clks)

The time and date of the day can be obtained by calling the primitive gettimeof-

day. The date/time and timezone values are returned by copying into the structures

"date_and_time" and "tzone" respectively. The primitive gettime provides a similar

function but it attempts to read the timeofday hardware clock thus providing more

accuracy. It is used mainly for performance measurements. The date/time and time-

zone of the system can be set by the primitive settimeofday. Finally, the primitive

delay allows the invoking process to sleep for "sees" seconds and "elks" clicks. A click

is equivalent to one clock interrupt and it is machine dependent.

3.5.3 Miscellaneous System Primitives

In addition to the basic IPC, process creation and I/O services supported by Team

Shoshin, the following system services are also provided to look after various aspects

CHAPTER 3. DESCRIPTION OF TEAM SHOSHIN 38

of Shoshin programming environment.

pid = self()

pid = parent ()

pid = whois (logname)

pexist (lid)

The primitive self returns the process id of the caller process. A process can find out

its parent's process id by invoking the parent primitive. The primitive whois allows

user processes to find out process ids of well-known server processes using their logical

names. Lastly, the primitive pexist checks the existence of a process specified by its

local process id "lid". A non-zero value is returned if the process in question exists,

otherwise a zero value will be returned.

Chapter 4

Multiprocess Structuring of the
kernel

This chapter describes the design and implementation of the kernel multiprocess

structure. The main objective here is to explore the idea of extending the concept of

a process to the kernel level by experimenting with kernel team processes that execute

within kernel address space.

4.1 The Rationale

One of our foremost concerns in the implementation of Team Shoshin has been

efficiency. Our approach in this aspect is not to change the original goals of Shoshin as

a flexible and modular distributed system, but to find ways to accomplish these goals

in a more efficient manner.

One common approach is to put more functionalities into the kernel for increased

efficiency. In fact, we are observing a growing trend in current system architectures

3 9

CHAPTER 4. MULTIPROCESS STRUCTURING OF THE KERNEL 40

where an increasing number of system functions ordinarily abstracted by server pro­

cesses are now being implemented directly into the kernel. Unfortunately, such mi­

grations of system functionalities into the kernel are often accomplished in an adhoc

manner which inevitably increase the complexity and size of the kernel. In addition,

such approach reduces the use of server processes in carrying out system functions, thus

seriously curtailing system flexibility in terms of ability to change its functionality and

configuration by adding or deleting server processes. What one would like to have is

some systematic means which allows one to implement system services in the kernel

with relative ease. Such scheme should also be flexible enough so that it permits easy

deletion of an existing service if one chooses to have that service implemented outside

the kernel. In this way, the kernel is allowed to have the facility of adding functionality

without increasing complexity.

Having all these considerations in mind, we decided to investigate the use of mul­

tiprocess structuring techniques at the kernel level as a basis for such a scheme. The

proposed multiprocess structure is the creation of kernel team processes that execute

• in kernel space. With this kernel team concept, we now have the means of migrating

selected server processes into the kernel thus preserving their process abstraction with­

out having the need to implement their functions directly in the kernel. We view this

extension of the concept of a process into the kernel to be very useful since it has the

potential of providing the ease in adding/deleting functionalities into/from the kernel

CHAPTER 4. MULTIPROCESS STRUCTURING OF THE KERNEL 41

by simply adding/deleting kernel team processes systematically. In terms of efficiency,

the use of kernel team processes is by no means better than the direct implementation

approach (that is implementing services directly into the kernel). But it clearly has
i

the advantage of simplicity and flexibility in ease of reconfiguration while improving

performance by cutting the overhead in process switching and scheduling since kernel

team processes are guaranteed to be memory resident. Another advantage arises from

the sharing of the kernel data segment by all kernel team processes. The ease of access

to certain kernel data structures is sometimes crucial in the performance of certain

processes. In addition, devices especially memory-mapped ones are usually mapped

into kernel space and kernel team processes that handle such devices can access them

with ease.

The extension of multiprocess structuring concept to the kernel also provides a

means of factoring traditional kernel functions into kernel team processes. This al­

lows us to explore the idea of an "active" kernel as opposed to the convectional kernel

abstraction that passively implements its traditional set of so called kernel functions.

To illustrate this point, consider process creation which is traditionally implemented

as a kernel function. Accessing it will require the user process to perform a trap to

the kernel via a system call. Due to the localized nature of system calls, a separate

mechanism will be needed to handle remote requests for process creation. One tech­

nique .commonly used here is the Remote Procedure Call(RPC)[BIRR84] mechanism.

CHAPTER 4. MULTIPROCESS STRUCTURING OF THE KERNEL 42

In contrast, if process creation is abstracted as a kernel process where accesses for ser­

vices are being realized by IPC, then there will be no distinction in the access protocol

for local and remote invocation with transparent local and remote IPC support. It is

apparent from this illustration that conventional kernel abstraction by its inherently

passive nature somewhat enforces localised control as oppose to distributed control.

In many aspects, the introduction of the kernel multiprocess structure actually allows

the kernel size-to be logically reduced by factoring out kernel functions into processes.

In effect, we have a logically smaller kernel.

4.2 The Design

From the discussion in the previous section, it is clear that for the kernel multi­

process structure to achieve its goals, certain design criteria must be observed.

1. The kernel multiprocess structure should be simple.

2. The kernel multiprocess structure must allow easy addition or deletion of kernel

team processes.

3. The functionalities abstracted by kernel team processes can be interchangeably

implemented by ordinary server processes with relative ease.

The application of these criteria to the design of the kernel multiprocess structure

has resulted in the static creation of kernel team processes during system initialization

CHAPTER 4. MULTIPROCESS STRUCTURING OF THE KERNEL 43

time. This fixed creation avoids the problems associated with a dynamic scheme which

inevitably requires some form of resource allocation/reclaimation strategy within the

kernel. Such fixed scheme allows for the preallocation of all resources required by

the kernel team processes during the crucial system startup phase. Specifically, the

preallocation of resources occurs before system resources are being sized up and ac­

counted so that there will be no interference involving operations carried out by existing

kernel resource management routines. To completely avoid the problems of resource

reclaimation upon possible death of a kernel team process, the attribute of immortality

is imposed upon the created kernel team processes. The introduction of this immor­

tality attribute is consistent with the whole rationale behind the kernel multiprocess

structure which is to be viewed as a tool for structuring operating systems, in this

case, the kernel. This kernel multiprocess structure can be regarded as an integral

component of the kernel and thus any failure in a kernel team process is viewed as a

failure in the kernel. Of course, one can adopt various scheme in handling failures in

the kernel team processes to achieve some level of fault tolerance. The discussion of

fault tolerance in this aspect is beyond the scope of this thesis.

The design criterion to permit easy interchangeable use of kernel team processes

and ordinary server processes for realizing system functions has resulted in making the

kernel team process abstraction very similar to that of an ordinary process. A kernel

team process like an ordinary process is an independent entity which is uniquely identi-

CHAPTER 4. MULTIPROCESS STRUCTURING OF THE KERNEL 44

fied by its process id assigned at creation time. As far as other processes are concerned,

it is just an ordinary process that can be communicated to via IPC. Access to system
• I:

services by kernel teams is performed in the similar manner as ordinary processes. All

stardard system library routines except for memory allocation (see below) in Team

Shoshin are shared and used by both kernel teams and ordinary processes. With this

uniform treatment in terms of access to system services for kernel team processes,

interchangeable use of kernel teams and ordinary server processes can be facilitated.

For example if one decided to reconfigure the system by migrating an existing system

function realized by a kernel team process to a server abstraction outside the kernel,

little changes will be required since the system interfaces, used in the kernel team im­

plementation are basically similar to that of an ordinary process. The same applies in

the reverse situation. With this scheme, an operating system designer can restructure

the system by bringing it down and reconfigure it with ease through adding/deleting

kernel team and ordinary server processes. Note that in the case of memory allocation,

a separate set of primitives are provided for the kernel team processes. This is nec­

essary since standard memory allocation primitives are only applicable to user space.

To provide such capability, memory buffers are preallocated at system startup time

and accesses to these memory buffers are done through calls to the special memory

allocation routines provided.

CHAPTER 4. MULTIPROCESS STRUCTURING OF THE KERNEL 45

One possible objection to this uniform treatment is that the advantage of accessing

kernel primitives directly by the kernel-resident processes is not tapped. Instead, the

kernel primitives are accessed in the same manner as an ordinary process via a ker­

nel trap with its associated overhead using standard system library routines. Apart

from the sake of achieving uniformity as described above, the decision to abandon the

direct access of kernel primitives was also based on observations that led to the con­

clusion that the efficiency advantage might be deceiving. First, almost all of the kernel

primitives are highly important functions that require access to privilege machine in­

structions. Of the most common usage of these instructions is the raising and lowering

of interrupt levels to manage critical sections which occur in almost everywhere in

kernel primitives. Since these machine instructions are privileged, the execution of

them will require the kernel-resident process to be run under supervisor mode. The

problem now is that under supervisor mode the kernel stack frame will have to be used,

which consequently require the adoption of some kernel stack management scheme for

kernel team processes. To make matter worse, the execution of some kernel primitives

may result in the invoking process being blocked requiring the kernel to sleep on the

behalf of the process. Such additional complexities associated with facilitating direct

access of kernel primitives could be too costly to fully reap the benefeits of reduced

overhead through direct access. Moreover, there will be little distinction in the kernel

and kernel team processes execution threads which basically defeat the whole purpose

CHAPTER 4. MULTIPROCESS STRUCTURING OF THE KERNEL 46

of introducing the concept of a process in the kernel.

Kernel team processes are created according to two configuration tables namely,

the kteamconftab and the devtab. During system startup, the entries in these two con­

figuration tables are interrogated and for each non-null entry, a kernel team process

might be created according to the specifications in that entry. The kteamconftab con­

figuration table contains specifications of all machine independent kernel team process

that must be created. Each entry in kteamconftab [see Fig 4.1] comprises of three fields,

/ * Structure declaration for kteamconftab configuration table */
typedef struct {

short kteampri; / * process software priority */
int (*kteamproc)(); '/* entry point for kernel team process */
int logname; ./* logical name */

} K T E A M C O N F ;

Figure 4.1: kteamconftab Configuration Table

kteampri, kteamproc and logname. The entry point of the kernel team process is speci­

fied in kteamproc and it is created with software priority kteampri. The field logname is

an integer-valued logical service name used to index into the kernel name cache. Upon

creation, the pid of the kernel team process will be entered into the kernel name cache

via its logname so that registration for the offering of services is immediate.

CHAPTER 4. MULTIPROCESS STRUCTURING OF THE KERNEL 47

To cater for creation of machine-dependent kernel team processes, the devtab con-

' figuration table is used. The devtab contains specifications of kernel team processes

whose existence are used solely for the handling of peripheral devices. These kernel

team processes fall basically into the category of device workers that operate directly

on devices. For each peripheral device handled by the system, there is an entry in

the devtab. Each entry [see Fig 4.2] consists of numerous fields, of particular interest

/ * Structure declaration for the devtab configuration table */
typedef struct {

PD *dev_hdrpd; / * pointer to kernel team PD */
short hdr.prio; / * hardware interrupt level of device */
int (*dev_hdr)(); / * entry point for kernel team process */
int dvcsr^addr; / * start address of device */
int (*deviint)(); / * routine for handling input interrupt */
int (*devoint)(); / * routine for handling output interrupt */
int (*dev_probe)(); / * routine for probing the device */
int (*dev_mmap)(); / * routine to perform memmap for device */
int (*dev_init)(); / * routine to initialize device */
int dev.unit; / * device unit number */
int logname; / * logical name * /

} DEVSW;

\

•' • . i
Figure 4.2: devtab Configuration Table

here are the fields dev.probe, devJidrpd, hdr.prio, devJidr and logname. During system

startup, each entry of the devtab is examined and the device specified in the entry is

CHAPTER 4. MULTIPROCESS STRUCTURING OF THE KERNEL 48

probed for existence using the device probe function in devjprobe. If the device exists,

a kernel team process will then be created with entry point specified in devjidr. With

this arrangement, we can ensure that these kernel-resident device workers are only

created for peripherals devices that exist. Note that in the case where the devjidr has

a null entry, no process will be created for that device. Once created, the kernel team

process will be assigned a software priority that reflects the device hardware interrupt

priority level specified in hdrjprio. This assigned software priority will be one of the

7 highest software priorities corresponding to the Motorola's 7 interrupt levels. The

created process is always executed under that interrupt level to prevent itself from

being interrupted by the device that it manages.

4.3 The Implementation

Currently, the kteamconftab is configured to create two kernel team processes, the

ttyserver and the nameserv [See Fig 4.1]. The ttyserver is responsible for the handling

of all terminals attached to the Zilog1 serial communication ports provided by the

Sun Workstation. For each serial device, the ttyserver manages two globally declared

circular buffers for receiving and transmitting characters. Every time the serial device

interrupts to accept a character for transmission, the interrupt handling routine in the

kernel simply removes a character from the appropriate transmit circular buffer and
1 Zilog is a trademark of Zilog Inc.

CHAPTER 4. MULTIPROCESS STRUCTURING OF THE KERNEL 49

writes it to the device. Similarly in the case of receiving a character from the serial

device, the interrupt handling routine concerned simply reads the character from the

device and enters it into the receive buffer. Clearly with this scheme, actual character

I/O on the serial devices can be made almost completely asynchronous as a result

of close co-operation between the device interrupt handling routines and its device

manager, the ttyserver. Such close co-operations were fostered through data sharing

made possible by implementing the ttyserver as a kernel team process. Next, the kernel

team process nameserv is implemented as a local name server. The nameserv process is

responsible for managing the kernel name cache data structure used in name/address

translations. Requests from user processes are accepted for translation of service names

into corresponding server's pid. Registration of server processes into the name cache

are also accepted and the name cache is then updated.

The devtab configuration table presently creates two kernel team processes as de­

vice workers [See Fig 4.2], the zsdevJkdr and the ecdevJidr. The sole function of these

device worker processes is to serve as a synchronization medium between its device

managers and their corresponding devices. For example, the zsdevjidr process spends

all its time waiting for an interrupt from the Zilog serial controller and once unblocked,

it will signal to the ttyserver using the bsend IPC primitive and proceed to wait for

the next interrupt. In this way, the ttyserver never waits on the Zilog controller and

all outstanding I/O requests are queued to be act upon later when the ttyserver is

CHAPTER 4. MULTIPROCESS STRUCTURING OF THE KERNEL 50

notified by zsdevjidr. The unblocking of the zsdevJidr process is carried out directly

by the Zilog interrupt handling routines and this only occurs when the transmit buffer

is empty and there is an outstanding write request pending or a character just arrived

with a outstanding read request pending. From our experience, such conditions exist

rather infrequently and in most cases the ttyserver spends a large portion of its time

accepting user requests and filling/depleting circular buffers leaving the bulk of the

actual I/O operations to be carried out asynchronously by the interrupt handling rou­

tines. In the case of the ecdevjidr, it serves as a device worker for the 3Com Ethernet

controller which is managed by the communication manager process. The 3Com con­

troller generates four different interrupts each requiring extensive handling. All these

interrupts are generated through one interrupt line and are distinguishable only by

reading the interrupt bits from the 3Com control status register. To cater for such

elaborate interrupt services, the ecdevjidr is dispatched whenever the Ethernet con­

troller interrupts. It then proceeds to disable the controller and send the interrupt bit

sequences obtained from the 3Com control status register to the communication man­

ager which does the actual servicing. When servicing is completed, the communication

manager will issue a reply to the ecdevjidr process which will then enable the Ethernet

controller according to the reply message and resume waiting for interrupts.

CHAPTER 4. MULTIPROCESS STRUCTURING OF THE KERNEL 51

4.4 Retrospect

The static creation of1 kernel team processes from the kteamconftab and devtab con­

figuration tables has been successful in achieving easy addition/deletion of kernel team

processes by manipulating the entries in the configuration tables. With this scheme,

a limited capability is provided to change kernel functionalities without seriously cur­

tailing system flexibility and reconfigurability.

The catering of machine-dependent creation of kernel team processes through the

use of devtab had increased the applicability of the kernel multiprocess structure for

handling device-dependent tasks. Indeed, experiences gained from the implementation

of device workers and managers as kernel team processes had demonstrated remarkable

close co-operation with the device interrupt handling facilities in the kernel. One direct

advantage in fostering such close co-operations is that it facilitate the use of only

one device worker to handle synchronization of many similar devices with its device

manager. This was illustrated in the implementation of the zsdevjidr process which

serves as an synchronization worker process for all the serial ports handled by the

ttyserver. In contrast, the ttyserver in the original Shoshin uses two worker processes

to synchronize input/output on a serial port.

The implementation of the nameserv process to manage the kernel name cache

suggests a possibility of allowing network-wide sharing of kernel data and state infor-

CHAPTER 4. MULTIPROCESS STRUCTURING OF THE KERNEL 52

mation. As demonstrated in the use of nameserv, the kernel name cache which is a

kernel data structure can be accessed locally and remotely by user processes via IPC.

Finally, the use of the kernel multiprocess structuri is not without problems. One

main problem is that there is a strong tendency for the indiscriminate access of kernel

primitives and data structures when writing kernel team processes. The unleashing

of the power to create processes in kernel space that permit sharing of kernel data

structures must be controlled in order to achieve our design criterion of simplicity.

Some form of software methodology must be adopted when designing kernel team

processes to achieve a simple, yet powerful kernel multiprocess structure. This software

engineering aspect of writing kernel team processes is beyond the scope of this thesis.

Chapter 5

Concluding Remarks

5.1 Summary

In this thesis a description of the implementation of Team Shoshin operating system

is presented. The emphases here are the development effort to port Shoshin onto the

Sun Workstation and the subsequent investigation into multiprocess structuring of the

kernel. Various aspects of the Sun Workstation hardware architecture are presented

and its impacts on Team Shoshin software development are discussed. To underscore

how much Team Shoshin has evolved from its predecessor, the original Shoshin, a

detail description of Team Shoshin is provided in Chapter 3. In this chapter, the

system and user interfaces of Team Shoshin are described with particular emphasis

on documenting the changes made on the original Shoshin with respect to its design

and implementation. In Chapter 4, the investigation into multiprocess structuring

of the kernel is presented. The rationale for multiprocess structuring of the kernel

is first discussed. This served as a basis for formulating the set of criteria which are

53

C H A P T E R 5. C O N C L U D I N G R E M A R K S 54

used in designing the proposed kernel multiprocess structure. Various implementations

involving the use of the proposed kernel multiprocess structure are described. The

applicability of the proposed kernel multiprocess structure and its impact on operating

design are then discussed drawing from the experiences gained through its actual use.

One major conclusion drawn from this thesis is that the extension of the process

concept to the kernel is worthwhile and deserves further investigation. We do not

contend that our proposed kernel multiprocess structure is "the solution" or the only

approach to use. What is important here is that the work done in the kernel multi­

process structure has provided us a great deal of insights in its applicability and in its

potential as a tool for structuring operating systems. Based on our experience in the

implementation of the kernel multiprocess structure, the proper usage of the kernel

multiprocess structuring concept is not trivial. It requires further studies and under­

standing and may even need the development of new techniques in software engineering

to fully exploit it.

Finally, the development of Team Shoshin has resulted in a great deal of software

restructuring of the kernel. The kernel text size has grown to 43 kbytes compared to
i

24 kbytes in the original Shoshin, most of which are due to the introduction of the

kernel multiprocess structure. Currently, local IPC in Team Shoshin is typically 4.5 to

5.5 times faster than the original Shoshin. Apart from the fact that Team Shoshin has

better underlying hardware support, a substantial part of this improvement in IPC

CHAPTER 5. CONCLUDING REMARKS 55

performance is an consequence of kernel restructuring. We estimated that message

exchange time using the original Shoshin kernel software structure would be about

double the time with kernel restructuring reported in [ACTON85a].

5 . 2 F u t u r e w o r k

Many of the possible topics for future work that stemmed from this thesis pre­

sentation is centered on furthering ideas developed on multiprocess structuring of the

kernel. In fact, many of these ideas are still not fully explored or even tested. So

far we have not investigated the use of the kernel multiprocess structure to factor out

traditional kernel functions into processes. A prime candidate for this investigation

is to implement local process creation as a kernel team process. Due to the trans­

parent handling of local and remote IPC in Team Shoshin, the impact of this could

be substantial since requests for process creation can be initiated locally or remotely.

Consequently with this scheme, a separate facility for remote process creation may not

be required.

Another possibility is to look into the use of the kernel team processes to facili­

tate the network-wide sharing of kernel state information. By using kernel-resident

processes that "own" such state information, local and remote processes can query or

access them with ease via IPC. Alternatively, changes in kernel state information can

be also used to affect the behaviour of some kernel team processes so as to reflect the

V

CHAPTER 5. CONCLUDING REMARKS 5 6

effects of such changes. For example, by implementing a death notifier as a kernel-

resident process that constantly monitors the process table, network-wide notification

of a process death can be facilitated by dispatching the death notifier whenever the !•'

process table changes.

The development of Team Shoshin on the Sun Workstation has been an on-going

project and there are still a great deal to be done to make it a full-fledge operating

system. We will attempt to mention a few of them here. Currently, all Shoshin pro­

grams have to be downloaded with the operating system before they can be executed.

It would be nice to have some form of dynamic loading facility that reads in load

modules on demand from the disk. One possible way to achieve that is to read load

modules from disks in existing Unix systems using our ability to communicate to Unix

processes. In fact, a Unix fileserver that accept requests from Shoshin processes is

already implemented.

Finally, a virtual terminal management interface that allows a user to view and con­

trol the activities of its local and remote processes on the Sun Workstation bit-mapped

display will definitely be welcome. Such interface will greatly enhance distributed com­

puting and control at the user level.

Bibliography

[ACTON85a] D. Acton, Remote Interprocess Communication and its Performance
in Team Shoshin, Master Thesis, Technical Report 85-16, University of
British Columbia, November 1985.

[ACTON85b] D. Acton, H. Wang, S. Vuong, Experience in Interprocess Communica­
tion in the Distributed Operating System Team Shoshin, to appear in
Proceedings of IEEE's International Conference on Communications'86,
Toronto, June 22-25, 1986.

[BIRR84] A.D. Birrell, B.J. Nelson, "Implementing remote procedure calls", ACM
Transaction on Computing Systems, Vol 2, Number 1, February 1984.

[CHAN86] Host identification in reliable distributed kernels, S.T. Chanson, K. Ravin­
dran, Technical Report 86-4, University of British Columbia, 1986

[CHER79a] D.R. Cheriton, Multi-process Structuring and the Thoth Operating Sys­
tem, Ph.D Thesis, University of Waterloo, 1979.

[CHER79b] D.R. Cheriton, Interactive Verex, Technical Report 79-1, University of
British Columbia, September 1979 revised January 1983.

[CHER79c] D.R. Cheriton, Zed Programming Manual, Technical Report 79-2, Uni­
versity of British Columbia, September 1979 revised January 1983.

[CHER81] D.R. Cheriton, Distributed I O using an Object-based Protocol, Technical
Report 81-1, University of British Columbia, January 1981.

[CHER83] D.R. Cheriton, T.P. Mann, "The Distributed V Kernel and its Perfor­
mance for Diskless Workstation", Proceedings of the Ninth Symposium
on Operating System Principles pp. 128-140 ACM, October 1983.

[ELOV74] H.S. Elovitz, C.L. Heitmeyer, "What is a Computer Network?" IEEE
1974 NTC Record, pages NTC 74-1007 to 74-1014

57

BIBLIOGRAPHY 58

[KERN78] B.W. Kernighan, D.M. Ritchie, The C Programming Language, Prentice-
Hall, Englewood Cliffs, N.J., U.S.A., 1978.

[LAMP81] Edited by B.W. Lampson, M. Paul, H.J. Siegert, Distributed Systems
Architecture and Implementation An Advanced Course, Springer-Verlag,
New York, Berlin, Heidelberg, Tokyo, 1981.

[LANTZ80] Keith A. Lantz, Uniform Interfaces for Distributed Systems PH.D. Thesis,
University of Rochester, 1980.

[METC76] R. Metcalfe, D. Boggs, "Ethernet: Distributed Packet Switching for Local
Computer Networks", Communications of the ACM vol.19 #7 pp. 395-
404, July 1976.

[MOT084] Motorola, M68000 16 32-bit Microprocessor Programmer s Reference
Manual fourth edition, Englewood Cliffs, New Jersey, Prentice-Hall,
1984.

[RAVI85a] K. Ravindran, S. Chanson, On process aliases in distributed kernel design,
Proceedings of the 6th International Conference on Distributed Comput­
ing Systems, Boston, Mass, May 1986.

[RAVI85b] K. Ravindran, S. Chanson, State inconsistency issues in local area
network-based distributed kernels, Proceedings of the 5th Symposium in
Reliability of Distributed Systems and Databases, Los Angeles, January
1986.

[SUN82] Programmer s Reference Manual for the Sun Workstation Version 1.0,
SUN Microsystem Inc., October 1982.

[SUN83] Sun 68000 Board, Revision B, Sun Microsystem Inc., February 1983.

[SUN84] System Internals Manual for the Sun Workstation, Revision C, Release
1.1, Sun Microsystem Inc., January 1984.

[TOKU83a] Hideyuki Tokuda, Sanjay Radia, Eric Manning, "Shoshin OS: a Message-
based Operating System for a Distributed Software Testbed", Proceedings
of the Sixteenth Annual Conference on System Sciences 1983 pp. 329-
338, 1983.

[TOKU83b] Hideyuki Tokuda, Eric Manning, "An Interprocess Communications
Model for a Distributed Software Testbed", Proceedings of SIGCOMM
'83 Symposium on Communications Architectures and Protocols pp.
205-212, March 1983.

BIBLIOGRAPHY 5 9

[TOKU84] Hideyuki Tokuda, Shoshin A Distributed Software Testbed Ph.D. The­
sis, University of Waterloo, 1984.

[3COM] Model SC400 MULTIBUS Ethernet ME Controller Reference Manual
May 1982.

Appendix A

Kernel Data Structures

This appendix provides descriptions of various important data structures used in
Team Shoshin kernel. These descriptions are all in the form of structure declarations
using the C [KERN78] programming language.

/* Basic type declarations */
typedef unsigned long ulong;
typedef unsigned short ushort;

/* Descriptor type - message descriptor or process descriptor */
typedef enum { IS_PD, IS_MD } PD_OR_MD;

/* Process status */
typedef enum {

WAITING,
READY,
DEAD,
DELAYING

} PSTATUS;

/* Structure declaration for process id */
typedef struct {

ulong hid; /* host id */
ushort lid; /* local id */

} PID;

60

APPENDIX A. KERNEL DATA STRUCTURES

I* Message wait condition */
typedef struct {

PID w_pid; /* pid waited upon */
short w_tag; /* message tag */
STYPE w_stype; /* the ipc type waited upon */
ulong w_base; /* message base address */
ulong wJength; /* message length */

} WCOND;

/* Structure declaration for the
typedef struct PROCTAB {

char p_name[MAXSPATH];
ushort p_mode;
ushort p_uid;
ushort P-gid;
int p.tsize;
int p.dsize;
int p_bssize;
int p.tseg;
int p.dseg;
int p.entry;
short p_refcnt;

} PROCTAB;

Process table entry */

/* pathname of module */
/* mode */
/* user id */
/* group id */
/* text size in bytes */
/* data size in bytes */
/* bss size in bytes */
/* start of text seg */
/* start of data seg */
/* entry point */
/* reference count */

/* Structure declaration for a message descriptor - for remote IPC
/* Note that message descriptors (MD) and process descriptors (PD)
/* share the 1st few entries allowing PDs to be queued as MDs.
typedef struct MSGDSC {

struct MSGDSC *qnext;
PD_OR_MD pd_or_md;
STYPE mjsendtype;
ulong mJength;
short m_tag;
ulong m_base;
PID p_pid;

} MSGDSC;

/* pointer to next descriptor */
/*. is it PD or MD */
/* message sending type */
/* message length */
/* message tag */
/* message base address */
/* sender's pid */

APPENDIX A. KERNEL DATA STRUCTURES

/* Structure declaration for a primary process descriptor */
typedef struct {

struct PD *qnext; /* pointer to next PD */
PD_OR_MD pd_or_md; /* is it PD or MD */

/* the following is used when PD is used as a message descriptor*/
STYPE m_sendtype;
ulong mJength;
short m_tag;
ulong m_base;

PID p.pid;
ushort p_sr;
ulong p_pc;
ulong p_regs[MAXREG];
ushort p.context;
char pjstatus;
char p_pri;
PID p-ppid;
struct PD *p_teampd;

~ PID p_child[MAXCHILD];
char p.ctlflag;
PROCTAB *p_proc;
ushort p_segmap[MAXSREG];
ulong p_dbase;
ulong p_dsize;
ulong pJbssize;
ulong pJastbssptr;
ulong p_stbase;
ulong p_stsize;
ulong p_spdpge;
MDSC *p_msgq;
WCOND p.wcond;
ushort p.cpu;
ulong p.tolcpu;

}PD;

/* message send type */
/* message length */
/* message tag */
/* message base address */

/* own pid */
/* status register */
/* program counter */
/* general registers */
/* process context */
/* process status enum PSTATUS */
/* process priority */
/* parent's pid */
/* team pd */
/* Children pids */
/* process control flags */
/* pointer to the process table */
/* segment map */
/* base address of data segment */
/* size of data and bss seg */
/* size of bss (nearest page) */
/* end of used bss area */

base address of stack seg */
size of stack seg */
page entry of spdbase */
message queue */
waiting condition */
cpu time */
total cpu time used */

/*

/*

/*

/*

/*

/*

/*

APPENDIX A. KERNEL DATA STRUCTURES

/* Structure declaration for kteamconftab configuration table */
typedef struct {

short kteampri; /* process software priority */
int (*kteamproc)(); /* entry point for kernel team process */
int logname; /* logical name */

} K T E A M C O N F ;

/* Structure declaration for the devtab configuration table */
typedef struct {

PD *dev_hdrpd; /* pointer to kernel team PD */
short hdr_prio; /* hardware interrupt level of device */
int (*dev_hdr)(); /* entry point for kernel team process */
int dvcsrjaddr; /* start address of device */
int (*deviint)(); /* routine for handling input interrupt */
int (*devoint)(); /* routine for handling output interrupt */
int (*dev_probe)(); /* routine for probing the device */
int (*devanmap)(); /* routine to perform memmap for device */
int (*devjnit)(); /* routine to initialize device */
int dev_unit; /* device unit number */
int logname; /* logical name */

} DEVSW;

