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ABSTRACT

This thesis describes an animation extension to a high-
level graphical programming language which provides
constructs for the definition, manipulation, -and external
representation of three-dimensional articulate figures and
and their associated movements. The extension permits the
definition of models consisting of segments and joints and
the specification of each model's motion at a high level of
abstraction. The relationship of the extension with respect
to the host language is discussed and a general description
of the animation 1language's design and implementation is
given. The modelling and motion constructs are discussed
and examples of the constructs are presented. It is
concluded that high level animation permits the
implementation of sophisticated application programs that

are easy to read and understand.
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Chapter 1

INTRODUCTION

"Animation is the graphic art which occurs in time.
Whereas a static image (such as a Picasso or a
complex graph) may convey complex information
through a single picture, animation conveys
equivalently complex information through a seqguence
of images seen in time. It is characteristic of
this medium opposed to static imagery, that the
actual graphical information at any given instant
is relatively slight. The source of information
for the viewer of animation is implicit in picture
change: change in relative position, shape, and
dynamics. Therefore, a computer is ideally suited
to making animation 'possible' through the fluid
refinement of these changes." Baecker [4]

Mankind has always been interested 1in pictorially
representing his world. This is understandable; pictures
can invoke emotions, refresh memories, teach, and explain.
They allow the representation of a maximum amount of

information in a minimum area.

Within the last one hundred years, a new interest has
developed; the'desire to add movement to pictures. The use
of animation has been widely accepted and moving pictures
have become common, however, the creation of animation is a
labour-intensive ' process. For each second of viewing time,
high quality-film animation requires the preparation of

twenty-four 1images (frames), each differing only slightly



from the preceding one. A two-hour animated feature film

contains approximately 170,000 frames.

In an attempt to decrease the labour involved,
commercial studios have traditionally painted images onto
celluloid sheets called "cels". Several of these overlays
‘are used to create a  frame. This technique saves time,
because only the parts of a character that actually move in
a particular frame have to be redrawn. The entire process
can still be quite expensive, since a feature film may

require the preparation of over half a million cels [6].

With the introduction of computers, a faster and
cheaper method of producing animated films was made
possible. The first efforts to utilize digital computers in
the production of animated films dates back to the early
1960s. Computer-assisted animation has since played a role
in the three main areas of conventional animation: the
creation of drawings, the production of in-between frames,
and the painting of cels. Recent advances in computer
graphics hardware and software have made computer animation
a rapidly expanding field which now includes a large number

of different production styles, approaches, and techniques.

One new approach that has been developed is computer-
modelled animation. Computer-modelled animation differs

from computer-assisted animation because it corresponds to



animation sequences in which three-dimensional models move
about in a three-dimensional spaée. This process 1is very
complex without a computer. Many of the advances which have
occurred in computer modelling in the last few years have
been in the area of figure modelling and motion

specification.

Several methods have been proposed including the
modelling and control of figures using procedures
(procedural modelling) [13], the control of a physical model
by the application of forces (dynamic modelling) [1], the
use of goal-directed systems for the generation of a model's
motion [12, 23], and the use of key frame animation [7], one

of the oldest animation techniques still in use.

A different approach for the modelling of a three-
dimensional articulate figure and the subsequent control of
its motions will be presented here. Whereas many of the
previous methods have approached figure modelling from a
subroutine level, this approach involves the use of a high-
level animation programming language. It provides
constructs that permit a programmer to define and manipulate
data of the type MODEL and MOTION, therefore allowing the
representation of real three-dimensional jointed bodies and

their associated motions [24].



This thesis discusses aspects of the design and
implementation of such a language. The problem of figure
modelling and motion specification is dealt with in terms of
kinematics: the study of position ‘(displacement) and its
time derivatives (velocity and acceleration). Consid-
erations of force, mass (dynamics) [11, 17], balance [15],
and obstacle avoidance [18] are beyondbthe scope of this

thesis.

Chapter 2 presents an overview of the animation
language. The overall relationship of the language with
respect to the host language is considered. 1In addition, a
general description of the language's design and

implementation is given.

The language's modelling constructs are studied in
Chapter 3. The internal representation of a figure and its
implementation is discussed. Also, two different techniques

for modifying a defined model are presented.

Chapter 4 introduces the concept of a motion primitive
and examines the constructs which allow the motion's
definition and manipulation. The motion's internal
representation is analyzed and 1its implementation 1is

presented.



Chapter 5 examines how the articulate figures and
motion primitives are integrated to produce animation. In
addition, several language features are introduced which

simplify the animation process.



Chapter 2

LANGUAGE DESIGN ENVIRONMENT

Virtually all graphics programming languages are
extensions to existing high-level computer languages, since
a graphics application program generally requires non-
graphics constructs for support. The same applies to the
animation language discussed here. It assumes the
availability of a high-level graphics programming language
which provides the support for the non-animation constructs
present in an animation application program. The constructs
and features introduced are independent of any of the host
constructs, con;equently the animation extension can be
gbplied to any high-level graphics language with equal

success.

The host language used in the implementation is called
LIG6 (Language for Interactive Graphics Version 6) [19, 22]
and is currently in use only at the University of British
Columbia. The LIG6 system is implemented on a 48 megabyte
Amdahl 5850 mainframe, under the Michigan Terminal System.
The language LIG6 was chosen for two main reasons: it is an
easy language to learn, and it has been designed as a
produdtion system. Also, a large number of students have

been exposed to LIG6, thus ensuring +that the language is

6



free of errors. Since LIG6 1is the host language, the
animation language implementation 1is called LIG ANIMATE

(Language for Interactive Graphics ANIMATion Extension).

LIG6 1is 1implemented as a FORTAN extension. A
preprocessor written in PASCAL converts LIG6 programs into
standard FORTRAN programs with extension elements translated
into «calls to subroutines in a run-time 1library. The
subroutines are coded ih FORTRAN. When a LIG6 application
program 1is to be executed, the object deck produced by
compiling the preprocessor output is run in conjunction with
the run-time library; more complete information is available

in the LIG6 User's Manual [20].

Since the LIG ANIMATE constructs are independent of its
host language, the translator for the language is
implemented as. an independent preprocessor. The
preprocessor analyzes only the animation constructs present
in the animation application program and produces LIG6

target code. The decision to use a preprocessor has proven

to be satisfactory. It has allowed experimentation with
different animation constructs and has allowed
experimentation with the preprocessor itself. 1In addition,

the construction of a complete compiler for LIG6 and the
extension would have complicated the objective of this

thesis.



The LIG ANIMATE preprocessor was written with the |use
of a top-down Compiler Writing System (CWS). A CWS aids in
the creation of a compiler or precompiler (preprocessor) for
a general language, hence, it was unnecessary to completely
write the preprocessor. Several consequences result from
the use of a CWS in creating the preprocessor. The CWS does
not support the free form 1input <conventions of LIG6;
delimiters and reserved words are required [16].
Consequently, the host 1language statements can not be
parsed; it 1is necessary to flag the extension statements

with a special character (an asterisk) in the first column.

The segregation of the host language and extension
statements introduces two restrictions. The preprocessor
does not allow the mixture of host and extension statements
on a single line. Any syntactic errors which are present in
the host statements are not detected until the preprocessor
output is compiled. The objective of the research was not
the creation of a complete production system. 1Its object
was to examine the definition of animation at a high level
of abstraction, therefore, the approach was chosen to

simplify the implementation.

LIG ANIMATE has been designed independently of the host
language, hence, it does not take advantage of many of the
host's construct features. For example, LIG6 allows the use

of COMMON statements, arrays, functions, and parameter



passing of the basic data types. LIG ANIMATE does not allow
these features with the wuse of 1its data type MODEL,
although, MOTION data types can be used in COMMON statements

and passed as parameters.,

The implementation does share some general input
conventions with LIG6. Although the preprocessor introduces
reserved words which must be delimited by‘blanks, statements
may span two or more lines. Multiple extension statements
per line are allowed, provided they are separated by
semicolons. Comments enclosed in braces may appear
anywhere. The length of a line is 255 characters and column
positions are not important with respect to the beginning of

statements.

Several LIG6 input conventions have been extended in
LIG ANIMATE. Vériable names, present in the animation
constructs, may contain up to fifteen characters, however,
the first five characters must be unique. Identifiers,
variables, and keywords used in LIG ANIMATE may be in either
upper casé or lower case, since they are translated to upper
case. The only consideration which affects any of the host
code statements is that none of the variables present in the
host statements or animation constructs can begin with the
dollar sign. Variables beginning with the dollar sign are

restricted for use by the LIG6 ANIMATE routines.
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Two factors helped further shape the eventual design of
the preprocessor. The CWS is based on PASCAL and LIG6 is
based on FORTRAN. A problem 1is created since the
manipulation of articulate figures is naturally recursive.
FORTRAN does not easily allow the simulation of recursion,
therefore, the model database is stored in the preprocessor.
The preprocessor receives commands to define, manipulate,
and display models in its database. When the preprocessor
displays the model, it does so by créating program segments

that LIG6 can process.

The motion database is not stored in the preprocessor.
A suitable representation was implementable in the host
language, consequently, motions are stored 1in the host
language. The preprocessor directly translates motion
constructs into a form which the LIG6 language can compile.
The motion extensions are translated into calls to
subroutines in a run-time library. The subroutines are
written in LIG6. When a LIG ANIMATE program 1is to be
executed, the object deck produced by compiling the LIG6

output is run in conjunction with the run-time library.



Chapter 3

MODELLING SYSTEM

Before an attempt is made to specify a desired motion
for a figure, a method for specifying the figure must be
available. This chapter discusses the problems associated
with model specification and presents two constructs that

allow the creation of an articulate model.

LIG ANIMATE assumes that all of the model's segments
(links) are rigid, that 1is, once defined, the links are
assumed to remain the same shape throughout the life of the
model. No formal specification 1is incorporated 1in LIG
ANIMATE for the definition of links, they are assumed to be
defined as graphical objects in the host language. Every
segment is assumed to have been defined 1in 1its own local
coordinate system [3, 12, 23], with the origin at the center

of the link.

3.1 DESCRIPTION OF JOINTS

In the simplest form, an articulate model contains two
rigid segments and a joint between the segments. Since the
responsibility for defining, manipulating, and displaying
the 1links is that of the host language, LIG ANIMATE is only

11
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responsible for the specification of the relationship
between the links. The specification includes the position,

degrees of freedom, and restrictions on a joint.

A joint has up to three degrees of freedom; it can be
rotated about the X, ¥, and Z axes. Joints may be
restricted to fewer than three degrees of freedom by
permitting the joint to rotate about only one or two of the
axes. Thus, simple joints such as fingers (hinge joints),
and complex joints, such as shoulders (ball-and-socket
joints) can be simulated. A Jjoint <connects only two
segments. A joint can move independently of all other
joints, hence, the position of one joint does not affect the

motion of another.

Links are restritted in their movements about a joint.
During a single joint's movement, one 1link (the primary
segment) 1is considered stationary and the second link (the
secondary segment) moves with respect to the stationary
link. A single link can function as both a primary segment
and a secondary segment if it belongs to more than one
joint. One segment, the model's main link, is singled out
from the others. All movement ultimately refers to the main
link. Only one segment mayvbe designated as the main link
and it must be the primary segment in all joints it belongs

to.
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Each joint instance 1is assigned a unique identifier
that permits subsequent reference to the joint. The wuser
may place restrictions on the range of angles through which
~the secondary link can travel and may specify where the two
segments are to be joined. A typical statement creating an
articulate joint 1is

JOINT joint_identifier,

primary_link, relative_location_1,

secondary link, relative_ location_2,

X_extremes, y _extremes, z_extremes
where 'joint_identifier' 1is the unique identifier for this
joint 1instance; 'primary_link' and 'seéondary_link' are
previously declared graphical objects (which are defined in
independent coordinate systems). 'primary link' 1s the
stationary _ segment with which 'secondary link' moves.
'relative_location_1' and 'relative_location_2' are vectors
that contain the joint's relative positions, with respect to
each graphical object's coordinate system. The extreme
parameters are component vectors which store a pair of
maximum angles beyond which the Jjoint <can not move.
Extremes, as well éé the joint's current angles, are
specified relative to the joint's predefined neutral

position of (0°, 0°, 0°).

The neutral position for a joint is determined by the
definition of the graphical objects used in the joint. Two
different joints are shown in Figure 1. 1In both cases, the

models are present 1in their neutral positions which is
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possible only if the segments are defined as in Figure 2 and
the joint locations are specified as in the subsequent
statements.

JOINT joint_id, objectt,

(
object2, (
X _extremes

-2.0, 0.0),
+2,0, 0.0),

0.0,
0.0,
, y_extremes, z_extremes

JOINT joint id, object3, ( 0
object4, (-2
S

. _2-0, 0.0)'
X_extremes, ;

0.0, 0.0),

0,
0,
extremes, z_extremes

Both images in Figure 1 can be produced by either of the
joints presented, if the current angles in either joint are

+90°, or -90.0°, respectively.

The direction of the extremes associated with a joint
can be determined by the right hand rule. By pointing the
right hand thumb in the direction of the positive half of an
axis and closing the‘ right hand, the counterclockwise
direction of the <curled fingers is the positive direction
for the extremes. Consequently, the clockwise direction
about the axis is the negative direction for the extremes.
Figure 3 displays a joint 1in 1its neutral position which
contains one degree of fréedom since the X and Y axes are
locked at 0°. The joint's axes and the associated maximums
are also displayed in the figure. The joint can be created
by the statement:

JOINT joint_id, object1l, rel_loct,

object2, rel loc2,
(0°, 0°), (0%, 0°), (0°, 135°)



Figure 1

Two joints in different neutral positions

3.2 INTERNAL REPRESENTATION

The internal representation of an articulate figure 1is
described by a tree structure of nodes and arcs that is
stored in the LIG ANIMATE preprocessor. Links are
represented by nodes and the joints are represented by arcs
{2, 23]. Each level of nodes moves with respect to the
nodes of the higher level and is considered stationary by
the nodes below. The nodes at the 1leaves of the tree
represent the outermost extremities of the model; the root

node is considered the main link. Figure 4 is an example of
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Object 1 Object 3

—’1-0 i _'1.0 ;}: ggf
Object2

fm].o.ﬁiiz

Figure 2

Definition of graphical objects

a partial model of a human figure. Figure 5 contains the
model's internal structure. A model may have at most a
total of m arcs present in its structure. This value is
theoretically wunlimited, however, LIG ANIMATE currently

restricts models to a maximum of thirty arcs (joints).



Z axis

Figure 3

Sample joint extremes

Each node is associated with at least one arc, as 1in
the case of the extremities that are secondary segments.
Typically, two arcs are associated with a node,
corresponding to a 1link (such as the femur of a leg) that
acts as both a primary and secondary segment, however, a
node may have three or more arcs associated with it. For
example, the hand has six arcs (one representing the wrist

joint, the other five representing the finger joints). A



Link ->

Joint ->

Torso

@)

<- Hand

Figure 4

Partial model of a human figure

<- Root node (Torso)

<- Hand

Figure 5

Internal structure of a model
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node may be associated with at most n arcs. The branching
factor n 1is also theoretically unlimited, but a factor of

ten is deemed sufficient to define most articulate figures.

The information typically associated with a node is
shown in Figure 6. Every node contains general information
such as the naﬁe of the corresponding host's graphical
~object, the scaling factor, and the number of jointé present
in which the current node is a primary link. In addition,
every node carries joint specific information. Both of the
nodes bounding an arc contain information pertaining to the
joint and a pointer to the joint's opposite node. Each node
also contains a joint identifier and the location of the
joint on the node's graphical object. The joint identifier
is used to identify a, joint and acts as a pointer to
information stored at the model 1level containing the
restrictions associated with the joint. The joint
information stored at table location zero represents a joint
in which the current node is a secondary segment (an upward
arc). The joint information stored in locations one to n
represent joints in which the current node is a primary

segment (a downward arc).

The model's tree structure permits the representation
of open kinematic chains only. A kinematic chain . is a
linear sequence of links that are connected by joints. In

an open chain, one end point is fixed and the remaining
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Graphical Object Name
Object Scale

Number of Subjoints
No.| Joint # |Ptr to Node| Joint Location
0 0 o (0,0,0)
1 0 0 (0,0,0)
2 0 0 (0,0,0)
n 0 0 (0,0,0)

Figure 6

Information associated with each link

chain is allowed to move freely, as in Figure 7a. In a
closed chain, more than one end point is fixed in.space, as
in Figure 7b. For example, if two hands are joined together
and the arms are allowed to move while keeping the body
motionless, a closed kinematic chain is formed by the arms.
The motion produced in such a chain is more complex to
analyze and is beyond the scope of this thesis.

Every model has an associated symbol table, see Figure
8. The table contains information from the declaration of
the model, in addition to state information. The
information includes: the joint identifiers, the rotational
maximums associated with each degree of freedom, the current

rotational angles of each degree of freedom, and the
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V7724

V2222

Figure 7a Figure 7b
a) Open kinematic chain
b) Closed kinematic chain
instantaneous velocity and acceleration of the joints along
each degree of freedom. The table is defined to describe
the model's position completely. The contents of the table,
at a specific frame, represents a model's current

orientation.

. (.':urrer!t X Y b4 Current Current
Joint # | Orientation | Extremes Extremes Extremes Velocity | Acceleration
No. 1 (0;0;0) (0,0,0) (0,0,0) (orolo) 0 0
No. 2 (0,0,0) (0,0,0) (0,0,0) (0,0,0) 0 0
No. 3 (0’010) (0!0!0) (030’0) (01010) 0 0
Noom | (0,0,00 | (0,0,0) | (0,0,0) | (0,0,0) 0 0

Figure 8

Model symbol table
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Since the state information must be available to the
model during the animation, the table can not be stored in
the preprocessor. The table is stored in a suitable form in
the host language. Whenever the preprocessor receives a
command to retrieve a model, the preprocessor transfers the
model's external representation and the model's symbol table

to the target code.

3.3 MODEL DEFINITION USING SUBMODELS

An articulate model can be defined using two basic
techniques. The first uses the JOINT construct and allows
the use of articulate submodels; the second approach is
discussed in Section 3.4. Instead of simply using a static
graphical object for every link, each link can consist bf a
grouping of other segments and joints; which permits the
creation of intermediate models or submodels that can be

referenced independently.

In the statements,

a :- JOINT .., obj1, .., obj2, ..

b :- JOINT .., obj3, .., a, .o

¢ :- JOINT .., b, .., obj4, ..

d :- JOINT .., a, .., b, .
the symbols 'a', 'b', 'c', 'd' represent variables of the
type MODEL. The symbol ':-' 1is the model assignment

operator, which causes the resulting node structure on the

right hand side of the MODEL variable to be stored on the
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left hand side of the operator. If each of the preceding
statements were executed in order, the structures in Figure

9 would be generated respectively.

Model A ModelB  Model C Modél D
loviz oeit|  Jobit|  Jobis]  Jobiz|  Jobis
I - I

-

Figure 9

Model assignment

The JOINT construct can be compared to the T+t
(superposition) in high-level graphical languages. Whenever
the secondary segment is a model, the relative location
vector for the secondary segment must be specified with
respect to the main 1link in the submodel. Models are
internally represented as pointer structures, hence, the LIG
ANIMATE system does not allow the user to create cycles in
the structures. Infinite 1loops are prevented since the
system uses copies of the submodels specified in the JOINT

construct, 1if the submodel's name is not the same as the
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recipient model. This approach 1is effective because it
prevents the creation of infinite 1loops, such as by the
statements:

a :— JOINT .., b, .., c, ..

¢ :— JOINT .., a, .., 4, ..
The technique allows an efficient implementation of model
addition. In the statements

a :—- JOINT .., a, .., b, ..

a :— JOINT .., b, .., a, ..
model 'b' is added to model 'a', without using copies of

both models. The system has one restriction. The following

statement
a ¢~ JOINT .., 8, ee, 8, oo

is not allowed. The execution of such a statement creates a
structure containing a <cycle, therefore, the preprocessor

produces an error message.

An advantage to the above method of model creation is
that fewer statements are required to create symmetric
models. For example, creating a model of a human body first
entails the creation of submodels for the right arm and the
right leg. Once defined, both submodels can be duplicated
and joined to the right and left half of a human torso. A
separate set of left limbs need not be defined. One problem

arises. The values of the joint identifiers should not be
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.duplicated in the right hand and left hand limbs, else the
two sets of limbs will behave identically. Thus, to ensure
unique identification of the Jjoints, the submodel joint
identifiers must be modified before the submodels can be

connected to the torso.

Consider the statement:

arm := JOINT 2; humerus, (1.0, 5.0, 1.0),
forearm <TRANS JOINTS BY 10>,
(0.0, 0.5, 1.0),
(0°, 135°), (0°, 180°)
which creates a model of an arm consisting of a forearm and
backarm (humerus) joined at the elbow. The secondary link
(forearm), which was previously defined, 1is an articulate

model whose joint identifiers have been translated by a

value of ten onto a new range of identifiers.

3.4 MODEL DEFINITION BY CONSTRUCT

The submodel approach has one disadvantage. It can
produce temporary models unnecessarily. Consequently, an
alternative technique for creating models is provided that
assumes none of the model's subcomponents is subsequently
required. The method creates only the resultant model with

no intermediate articulate models, The construct
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STARTMODEL arm

JOINT 1, humerus, (0.0, 5.0, 1.0),
ulna, (0.0, 0.5, 1.0),
(0°, 35°), (0°, 180°)
JOINT 2, ulna, (0.0, -5.0, 1.0),
palm, (0.0, 3.0, 1.0),
(-90°, 0°), (-25°, 25°)
JOINT 3, palm, (0.0, -3.0, 1.0),
little, (0.0, 1.5, 0.5),
(-90°, 45°), (-45°, 45°)
JOINT 4, palm, (0.0, -3.0, 2.0),
ring, (0.0, 1.5, 0.5),
(-90°, 45°), (-45°, 45°)
JOINT 5, palm, (0.0, -3.0, 3.0),
middle, (0.0, 1.5, 0.5),
(-90°, 45°), (-45°, 45°)
JOINT 6, palm, (0.0, -3.0, 4.0),
index, (0.0, 1.5, 0.5),
(-90°, 45°), (-45°, 45°)
JOINT 7, palm, (0.0, -3.0, 5.0),
thumb, (0.0, 1.5, 0.5),
(-90°, 45°), (-45°, 45°)

ENDMODEL

creates a non-trivial model 'arm' with a single construct.
The primary links, specified within the construct are
restricted to graphical objects, however, the secondary

links may be either graphical objects or submodels.

If the model 'hand' comprising the last five joints has
been defined prior to the use of the MODEL construct, then

the model definition can be further simplified:

STARTMCDEL arm

JOINT 1, humerus, (0.0, 5.0, 1.0),
ulna, (0.0, 0.5, 1.0),
(0°, 35°), (0°, 180°)

JOINT 2, ulna, (0.0, -5.0, 1.0),
hand, (0.0, 3.0, 1.0),
(-90°, 0°), (-25°, 25°)

ENDMODEL

The order of the JOINT statements present within the MODEL
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construct 1s arbitrary. The joint statements need not be
specified in the same order as their appearance 1in the
internal structure. The system sorts the specifications and
. assembles the model in the appropriate order, provided the
segment identifiers are unique. If the segment identifiers
are not unique, the JOINT statements must be placed in the

same order as they appear in the internal structure.

The user is responsible for creating a non-ambiguous
model specification. All the preceding model definitions
produce models unambiguously. The following is an example
of an ambiguous model:

STARTMODEL hand

JOINT 1, palm, .oy
finger, ..,

LR ] e o g .o

JOINT 2, palm, oy
finger, .., )
. e . e L]

JOINT 3, finger, ..,
fingernail, ..,

ENDMODEL

The specification of JOINT 3 causes the difficulty. With
this model definition, the system cannot determine to which
finger the fingernail belongs. The result of such a
specification depends completely on the implementation of
the preprocessor, hence, it should be assumed that ambiguous

specifications produce unpredictable models.
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3.5 MODEL TRANSFORMATIONS

Once a model has been defined, it can be treated as a
unit. As previocusly shown, a model can function as a
building block for the definition of more complex models.
Currently, no constructs are provided that permit the user
direct  access to the model's database, however, several
transformations have been provided that permit model

modification by the user.

Model elements on the right hand side of a model
assignment statement represent instances of previously
defined model identifiers. Such instances can be modified
creating different instances of a model identifier with
different results. Currently, the modifications permitted
are the transformations joint identifier translation, model
segment scaling, and model joint extreme scaling. They
follow a model in a list separated by commas and surrounded
by angle brackets ("<", ">") and have the syntactic form

TRANS JOINTS [ BY ] <integer>

SCALE MODEL <real>

SCALE EXTREMES <real>
where brackets ("[" and "]") indicate an option and "<type>"
represent constants of the type "type". Model
transformations are independent, consequently, they are
commutative. They may be‘applied in any order and may be

repeated. If the TRANS JOINTS transformation 1is repeated,
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the resulting transformation 1is the sum of all the
instances. Repeating either the SCALE MODEL or SCALE

EXTREMES transformations produces a transformation

consisting of the product of the instances.

The TRANS JOINTS transformation translates the joint

identifiers present in the model. The statement
b :- a <TRANS JOINTS BY 10>

creates a new model whose Jjoint identifiers have been
translated by a value of ten onto a new range of
identifiers. This transformation is used primarily whenever
submodels present in a model definition contain an overlap

in the joint identifier range.

The SCALE MODEL transformation scales all of a model's

segments. The statement
a :- a <SCALE MODEL 2.0>

redefines model A such that its physical size is twice its
original size. If the scaling factor 1is negative, the
system will create a new model instance which is a mirror

image of the previous model.

The SCALE EXTREMES transformation scales all of a

model's joint extremes. The statement
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b :- a <SCALE EXTREMES 2.0>

creates a new model whose joint extremes have been
multiplied by the factor 2.0, thus doubling the range
through which the joints can travel. 1If the scaling factor
is negative, mirror images of the existing joint ranges are
created, in addition to the change in the joint movement's

magnitudes.

The statement
b :- a <SCALE MODEL 1.5, SCALE EXTREME 0.7>

creates a model 'b' which 1is larger than model 'a', and
whose movements are more restricted than those of model 'a'.
Model transformations are wuseful in creating models wh&se
size and movement ranges are different, but whose internal
structure are the same. If the preceding statement was
executed, with 'a' predefined as a model of a robot, the
corresponding models in Figure 10a and 10b would be
generated. Figure 10a and 10b represent models 'a' and 'b',

respectively, and the extremes by which they can squat.

Often it is desirable to have a model perform a range
of motions. If these motions involve the movement of a
model with respect to different main links, a technigue must
be available to change thelmain link with which a movement
is performed. Therefore, a second method exists for the

transformation of a model. The transformation has the
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Figure 10a Figure 10b

a) Model squatting
b) Modified model squatting

syntactic form:

FIGURE model name MAIN [ LINK link_id ]
[ JOINT joint_id ]

Execution of the FIGURE statement assigns a new link as
the model's main 1link. The new main segment may be
specified by the link's name or by the joint identifier in
which the link is present. If the joint identifier is used,
the joint's secondary link is defined as the main segment.
Executing the FIGURE statement without any options assigns
the model's original main link as the current main segment.
Figures 11 and 12 demonstrate the difference the main link
can make to a movement. In Figure 11, the model has

squatted correctly. The torso has descended towards the
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ground because the main segment is a foot. In Figure 12,
the main 1link 1s the torso and the squatting movement
produced is quite different; the feet have risen away from
the ground. This occurs since the torso is kept stationary

during the sguatting motion.
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Figure 11

Model sqguatting with the foot as main link
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Figure 12

Model squatting with the torso as main link

The 1internal structures of the models are set up such
that the structure is independent of the main segment. Yet,

the structure enables the system to determine the original
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orientation of the structure. This ability allows the
system to orient a model correctly whenever a new main link

is defined.

A relationship exists between the sign of a joint's
current angle and the priority of its two segments. In
Figure 13, both Jjoints have the same angle magnitude,
however, the sign of the angles between the 1links is
reversed. The sign of the angle depends upon which link is
viewed as the primary or secdndary link. Whenever a new
main segment is defined, several of a model's links reverse
their roles (i.e. primary 1links become secondary and
secondary links become primary). By comparing the model's
current main segment with the originally defined main link,
the system can automatically determine which joint angles

need their signs reversed.

‘In Figure 14, the model has sguatted. The torso has
descended towards the ground because the main segment is the
left foot. The model was originally defined with the torso
as the main-link, consequently, the roles of the left foot
and leg have changed. The signs of the joint angles,
however, have not been reversed thus the left leg became

contorted.
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Primary Link , Secondary Link

Figure 13

Joints with same angle but different sign
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Model improperly squatting



Chapter 4

MOTION PRIMITIVES

Once the model has been defined, motions for the model
can be created. This chapter discusses the problems
associated with  motion specification, presents two
constructs for Adefining motions, and examines a method for

v

motion manipulation.

Conventional two-dimensional animation relies heavily
on the use of keyframe and interpolation ("in-betweening")
techniques. Keyframes are a set of important drawings that
show figures at crucial points (extremes) in a given action.
In animation studios, keyframes are drawn by head animators;
the missing frames required to create smooth animation are

produced by in-betweening artists.

One of the earlier approaches to computer-assisted
animation allowed the animator to enter keyframe drawings
into the computer's memory and had the computer assume the
role of the in-betweeners [7]. Although some very effective
animations have been achieved, keyframe drawings are two-
dimensional projections of three-dimensional figures
visualized by the animator, hence the information available

is limited 1in creating realistic animation. Also, in-

35
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between frames are frequently linearly interpolated,
resulting in temporal discontinuities and movements that
actually deform figures during the animation. For example,
1f a figure's leg obscures the other, the 1loss of
information 1limits the automatic in-betweening of the
keyframe drawings. An animator can deduce the original
object from the drawings because he 1is familiar with the
original model. In order for a program to understand a
drawing 1t must contain a model of the figure that

corresponds to the model in the animator's head [9].

Use of three-dimensional computer modelling in figure
representation eliminates several problems associated with
two-dimensional animation, however, the problem of motion
specification for a three-dimensional model is introduced.
One popular technique is to express a model's positions and
velocities as functions of time. The technique 1is
frequently used on a piecewise basis (i.e. the motion of
each model segment is computed separately). Functions of
time are evaluated on a frame-by-frame basis which involves
specifying a path over time. The method has the advantage
of producing motion with few temporal discontinuities,
nevertheless, the description of a three-dimensional path as

a -function of time is generally a difficult task.
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4.1 MOTION SPECIFICATION

The proposed approach for motion specification combines
the best aspects of both the keyframe and functional
techniques. Whereas two-dimensional keyframe animation
views a figuré with an external perspective and the
functional approach views a figure from a piecewise
perspective, the proposed technique treats a model as a unit
and views it from an internal perspective (i.e. from the
model's point of view). Consequently, a model's positional
orientation can be uniquely specified throughout time. The
method is similar to keyframe animation because keyframes or
positional extremes are used throughout time, however, a
three-dimensional model is employed and dealt with on a high
lével of abstraction, thus allowing more flexibility and

accuracy in a figure's animation.

The motion specification of a single joint is similar
to an animation script used in cel animation. As shown in
Figure 15, the specification contains a joint identifier, an
initial starting position (angle), and a set of movements
(keyframes). Every keyframe contains the frame identifier
during which the movement is completed, the joint position
at the current frame, and the interpolation method used to

reach the positional extreme (Figure 16).
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Joint #|Starting Position [Movement 1|Movement 2{ . ...

Figure 15

Motion specification for a single joint

Frame # |Angular Position | Interpolation Method

Figure 16

Keyframe information

The angular position is given relative to the Jjoint's
neutral position of (0°, 0°, 0°). The neutral position is
determined by the definition of the graphical objects used
in the joint. The frame identifiers represent the number of
ticks (units of time) that have passed during the motion
seguence. The frame identifiers are given with respect to
the start of the motion specification. The initial frame
identifier is assigned the value of zero. The interpolation
techniques currently available are: 1linear, acceleration,
deceleration, and a combination of both acceleration and

deceleration.

The keyframe information is sufficient to specify a
single joint's movement throughout an animation sequence.

The interpolation routines have been designed to reduce the
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effects of temporal discontinuities. Such reductions are
possible because the system stores every joint's
instantaneous velocity and acceleration. The interpolation
routines take advantage of the information and make
interpolation adjustments. For example, the linear
interpolation routine allows several frames for a joint to
achieve an optimum velocity before the joint travels
linearly. Similar modifications have been made to all the
interpolation routines, therefore decreasing the irregular
motion which is normally caused by discontinuities 1in the

direction of motion at every keyframe.

Joint 1 |Starting Position |Movement 1|Movement 2} . ...

Joint 2 |Starting Position [Movement 1{Movement 2| . ...

Joint 3 |Starting Position |Movement 1{Movement 2| . ...

Joint 4 |Starting Position [Movement 1{Movement 2| .. ..

Figure 17

Motion template

A complete motion definition for a model consists of
motion specifications for all of the joints present in the
model. A motion template is given in Figure 17. The motion

specifications are entirely independent, consequently,
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different numbers of keyframes may exist for each joint and
the keyframes may end on different frame identifiers. Any
joint that finishes processing its keyframes remains frozen
at its current angular position for the remainder of the

motion.

4.2 EXPLICIT DEFINITION

A motion can be specified using two basic approaches,
an explicit and implicit approach. The implicit approach is
discussed in Section 4.3. The explicit approach allows an
exact motion specification for a model, however, the details
of every joint's orientation must be supplied to the LIG

- ANIMATE language.

The explicit specification of a model's motion can be
approached with either of two techniques. The first
technique assumes that the desired motion contains
relationships between each joint's keyframes that can be
expressed 1in the form of a mathematical formula. A typical
statement definihg one keyframe for a single joint is

motion_name [joint_id, key_frame_id] :=

FRAME frame_id
POSITION angle_x, angle_y, angle_z
INTERPOLATE interpolation_technique
where 'motion_name' 1is a variable of the type MOTION;

'joint_id' is a joint identifier in the model for which the

movement belongs. A motion may not have more joint
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specifications than the maximum allowable joints per model.
Currently this number 1is thirty. 'key_frame_id' is the
relative location of the keyframe from the beginning of the
motion. A motion may have at most n keyframes. This value
is theoretically wunlimited, however, LIG ANIMATE currently

restricts motions to a maximum of fifty keyframes.

'"frame_id' is the frame 1location 1in the animation

sequence at which the keyframe specifies the figure's

movement extreme. "frame_id 1is specified relative to the
beginning of the motion. 'angle_x', 'angle_y', and
'angle_z' represent the angular position of.the joint's
secondary 1link with respect to the primary link.
"interpolation_technique'’ is the interpolation method

(LINEAR, ACCELERATE, or ACCDCC) used from the previous
keyframe to the current keyframe. If 'keyframe_id' is
specified as zero then the value for FRAME is set to zero
regardless of the value actually specified by 'frame_id';
the interpolation_technique is also ignored. The approach
allows direct access to a motion variable. It can be
employed within other bonstructsv and permits the wuse of
iteration to produce the motion specifications. The
technique reduces the number of statements and the amount of

work needed to define the specifications.

Since the construct allows the specification of a

model's motion with the use of a formula, the identifiers
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may be either variables or constants. If variables are
used, the variable wvalue at the time of the statement
execution will be stored in the current keyframe. The

following is an example of a motion definition and a

corresponding model definition.

DO 10 hand = 1, 2
DO 20 minute = 0, 120
IF hand = 1 THEN
BEGIN :
{ Calculate the minute hand's current }
{ angle }
anglez = (360 / 60) * minute
END
ELSE BEGIN

{ Calculate the hour hand's current angle }

anglez = (360 / 12) * (minute / 60)
END .

anglez = anglez MOD 360
angle = (0, 0, anglez)

frame_num = 24 * minute

TIME[hand, minute] = FRAME frame_num
POSITION angle -

INTERPOLATION linear
20 CONTINUE

10 CONTINUE

clock :- JOINT 1, clock_body,

minute hand, ..
14

(0°, 0°), (o0° ), (0°, 360°)

clock :- JOINT 2, clock, ceey
hour_hand, ...,
(0°, 0°), (0°, O°), (0°, 360°)

The defined motion animates a clock for two minutes.
To show an exaggerated movement of time, the clock runs at
the rate of one minute per second. Therefore, in a two

minute scene, two hours will have elapsed. Figure 18 shows
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six selected frames from the animation sequence. 1In the
sequence, the clock's neutral position was defined at twelve
o'clock. If a clock is to be animated over a different two
hour rénge, this motion can animate a different «clock
defined with a neutral position at the start of the new
range. Otherwise, this clock can be used, but with a motion
defined over the new range. For example, a motion defined

from 150 to 270 would animate the clock from 2:30 - 4:30.
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Figure 18

Frames from the clock animation
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In the preceding example, the relationship between the
joints and motion can be defined mathematically. But the
relationship can not always be defined mathematically,
consequently, an alternate method for creating motions is
provided. The method assumes that the desired motion does
not contain a mathematical relationship between the joints
and keyframes. It can be tedious to use, nevertheless, it
allows the description of complex motions that can not
easily be described mathematically. The construct

STARTMOTION motion_ name

JOINT joint_ id
[ POSITION angle_x, angle_y, angle z ]
FRAME frame id
POSITION angle X, angle_y, angle_z
INTERPOLATE interpolation_technique
FRAME frame id

POSITION angle X, angle_y, angle_z
INTERPOLATE 1nterpolat10n technigue

ENDJOINT
JOINT joint id .....
FRAME ...
ENDJOINT
ENDMOTION
allows an exact motion definition. 'motion _name' is a

variable of the type MOTION which contains the joint-motion
specifications. The joint identifiers correspond to those

defined in the animated model. The construct permits a
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structured approach to produce a motion specification. It
does not allow the wuse of other control constructs. The
values of the identifiliers must all be constants: no
variables are allowed. The keyframe identifier is not used
because the construct assumes that the keyframes are placed
in aﬁ ascending sequential order. The starting position'for
each joint is specified in the POSITION statement. If the
statement 1is not present in a joint's motion specification,

the starting position is assumed to be the neutral position.

4,3 IMPLICIT DEFINITION

Once a motion has been defined, the specification <can
be viewed as a unit (motion primitive) and it can function
as a building block for the definition qf more complex
motions. A primitive motion algebra has been introduced for
this use. The élgébra allows the creation of new motions
that have been temporally compounded from predefined
motions. For example, to create.a motion that enables a
human model to hop, skip, and jump ten times, the following

statement can be used:

new_walk = 10 * (hop + skip + jump)

In the statement, the symbols 'new_walk', "hop',
'skip', and 'jump' represent variables of the type MOTION.
The symbol '=' is the motion assignment operator. It stores

a motion expression on the right hand side to the motion
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variable on the left hand side. 'new_walk' is the resulting
action. 'hop', 'skip', and 'jump' are previously defined
motions which allow a model to hop, skip and Jjump
respectively. The constant 10 is the repetition factor that

is applied to the actions 'hop', 'skip', and 'jump'.

The symbols '+' and '*' are the operators present in
the motion algebra. The '+' addition operator temporally
merges two motions into a new motion. The '*' repetition
operator creates a new motion by repeating an expression on
the right hand side of the '*' by the factor on the left
hand side. The '+' and '*' operators cén be used

interchangeably. Both of the statements

new_walk (hop + skip) + (hop + skip) + (hop + skip)

new_walk = 3 * (hop + skip)

produce the same motion. The addition and repetition are
independent operations, however, the repetition operator
 takes precedence over the addition operator. In the

statement
motion = 10 * hop + skip
the motion 'hop' is repeated 10 times before the skipping

motion is added.

The motion algebra allows motion expressions of a

general form on the right hand side of the '=' assignment
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operator. The production for the expression 1is called
<motion express>. The Backus-Naur form definition for the
production is

<motion term>

<motion express> ::=
| <motion term> + <motion express>

<motion factor>

<motion term> ::=
| <motion factor> <modification list>

<motion factor> ::= <simple>
| <simple list>
<simple list> ::= (<motion express>)

<simple> ::= <motion primitive>
| <repetition>

<repetition> ::= <integer constant> * <repetition list>
| <integer variable> * <repetition list>

<repetition list> ::= <motion primitive>
| <simple list>

The motion algebra relies heavily on the availability
of predefined motion primitives. It is recognized that the
explicit definition of such primitives can be both difficult
and time consuming, therefore, operations have been
introduced that allow a more convenient definition of the
motion primitives, For example, if a motion primitive
(walk) exists which allows a model to walk, it may be
desirable to employ the action of the legs in a different
motion. The operation STRIP has been introduced, which
creates a partial motion from a given motion, In the

statement

walking_legs = STRIP walk, 5, 6, 7, 8, ...
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'walking legs' is a new motion primitive that animates a
model's legs. The valuves 5, 6, 7, 8, ..., are the joint
identifiers present in the model's legs. Using the method,
several motion primitives can be created that animate only
portions of a given model. 1f the preceding statement is

executed, the motions in Figure 19 would be present.

MOTION: Walk
Joint 1|Starting Position| Keyframe 1| Keyframe 2| Keyframe 3 .
Joint 2|Starting Position| Keyframe 1| Keyframe 2 | Keyframe 3 .
Joint 3 |Starting Position| Keyframe 1| Keyframe 2| Keyframe 3 .
Joint 4]Starting Position| Keyframe 1| Keyframe 2| Keyframe 3 .
Joint 5]Starting Position| Keyframe 1{ Keyframe 2] Keyframe 3 “ e
Joint 6|Starting Position| Keyframe 1| Keyframe 2| Keyframe 3| ..
Joint 7|Starting Position| Keyframe 1| Keyframe 2 | Keyframe 3 .
Joint 8|Starting Position| Keyframe 1| Keyframe 2| Keyframe 3 .
MOTION: Walking_legs
Joint 5|Starting Position| Keyframe 1| Keyframe 2| Keyframe 3 .
Joint 6|Starting Position| Keyframe 1| Keyframe 2 | Keyframe 3 “
Joint 7|Starting Position| Keyframe 1| Keyframe 2| Keyframe 3 .o
Joint 8]Starting Position| Keyframe 1|Keyframe 2] Keyframe 3] ....
Figure 19

Strip operation

The operation SYNCHRONIZE has also been introduced.
When given a set of partial motions, SYNCHRONIZE creates a

new motion that animates portions of a model concurrently.

The statement
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my walk := SYNCHRONIZE wa}kipg_legs,
swinging_arms
defines a motion primitive (my walk) which allows a figure
to walk while swinging its arms. If the preceding statement
is executed, the motions in Figure 20 would be present. The
use of the STRIP and SYNCHRONIZE operations allow an
increase in the number of motion primitives without

explicitly defining the motions.

MOTION: Walking_legs

Joint 5(Starting Position| Keyframe 1{Keyframe 2| Keyframe 3] .. ..
Joint 6|Starting Position| Keyframe 1|Keyframe 2| Keyframe 3] ....
Joint 7|Starting Position| Keyframe 1| Keyframe 2| Keyframe 3} ....
Joint 8|Starting Position| Keyframe 1| Keyframe 2| Keyframe 3] .. ..

MOTION: Swinging_arms

Joint 1|]Starting Position| Keyframe 1| Keyframe Keyframe 3| . .

N

N

Joint 2|Starting Position} Keyframe 1| Keyframe Keyframe 3] .. ..

MOTION: My_walk

Joint 1[Starting Position| Keyframe 1| Keyframe 2| Keyframe 3] .. ..
Joint 2|Starting Position| Keyframe 1| Keyframe 2| Keyframe 3] ...

Joint 5)Starting Position| Keyframe 1] Keyframe 2| Keyframe 3| . ...
Joint 6|Starting Position| Keyframe 1|Keyframe 2| Keyframe 3] .. ..
Joint 7|Starting Position| Keyframe 1| Keyframe 2| Keyframe 3| . ...
Joint 8|Starting Position| Keyframe 1|Keyframe 2| Keyframe 3] ....

Figure 20

Synchronize operation
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4.4 MOTION TRANSFORMATIONS

In addition to the use of the motion algebra, a method
has been provided- fhat allows a wuser to tailor motion
primitives to the needs of an animation sequence without
knowing details of the underlying motion. Motion elements
on the right hand side of the motion assignment represent
instances of previously defined motion identifiers. These
instances can be modified to create different instances of
the same motion with different results. Currently, the
modifications permitted are the transformations temporal
scaling, and keyframe extreme scaling. They follow a motion

in a list separated by angle brackets ('<', '>').

The sYntactic form of the transformations is given by

SCALE FRAMES <real>
SCALE EXTREMES <real>

The transformations are independent, consequently, they are
commutative. They may be applied in any order and may be
repeated. If a transformation is repeated, the resulting

transformation is the product of all the instances.

The SCALE FRAMES transformation temporally scales a

motion. Thus, the statement
b = a <SCALE FRAMES 2.0>

assigns to motion 'b' an instance of motion 'a' that has
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been temporally stretched to twice its original length. The
number of keyframes present in 'b' is the same as in 'a',
however, the number of intermediate frames between each
keyframe has been doubled. In addition, if the scaling
factor is negative, the system will reverse the keyframe
order, producing a temporally reversed instance of the

motion (Figure 21 and 22).
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Figure 22

Motion b from b = a <SCALE FRAMES -2.0>
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The SCALE EXTREMES transformation scales the keyframe

extremes present in a motion. Thus, the statement

b = a <SCALE EXTREMES 0.5>

A\l

assigns to motion 'b' an instance of motion 'a' which has
had every keyframe extreme scaled by a factor of 0.5. The
number of keyframes present in 'b' remains the same as in
1

a', and the number of 1intermediate frames between each

keyframe is unchanged (Figure 21 and 23).

o]

()

S

By

HH

Figure 23

Motion b from b = a <SCALE EXTREMES 0.5>

Such an approach to motion modification gives rise to
many transformations that «can tailor motion primitives to
the needs of an animation sequence. These transformations,
as well "as the operations '*' and '+', have the advantage
that an intimate knowledge of a model's structure and motion
definitions are not necessary. They allow motion

manipulation at a high level of abstraction.



Chapter 5

CREATING ANIMATION

5.1 TOOLS FOR ANIMATION

Once a model is defined and motions for the model have
been created, the model can be animated. A typical
animation statement is

ANIMATE model name FROM start_frame TO end frame

USING motion_name [ REPEAT ]
where 'model name' is a predefined articulate model;
'motion name' is a previously specified motion that is
applied to the model. The frame identifiers 'start_frame’
and ‘'end_frame' are temporal endpoints of the model's

animation. They are defined relative to the beginning of a

scene.

The REPEAT keyword 1is optional. If the REPEAT is
unspecified, the motion 1is assumed to span the entire
animation sequence; the ﬁodel remains frozen at its last
specified orientation, if the motion used does not define
movement for the -entire time span. The REPEAT is used
whenever the motion does not span the entire model animation

sequence; the motion 1is automatically repeated until the

53
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time span is covered. Care must be taken 1in creating
motions that are repeated. Severe discontinuities can arise
‘as the motion is finished and restarted. For best results,
a model's positional orientation should be similar at both

endpoints of the motion.

Once the ANIMATE statement 1is executed, a graphical
object of the name 'model name' is available to the host
language (i.e. the host language treats each model instance
present in a frame as a graphical object). The ANIMATE
statement produces animation with respect to a model's main
link. It is the responsibility of the host language to
prdvide» the capabilities to translate the resulting
graphical object throughout a scene. LIG ANIMATE provides a
set of tools which control the complex motions associated
with articulate models, but it does not replace the function

of the host language.

Models of the same class (i.e. models of identical
structure) and models with different-sized segments react
identically when animated by the same motion. Models
containing an egual number but different types of joints can
still be driven by the same motion specifications, however,
the resulting model movements may be difficult to predict.
Models place restrictions on their movements. For example,
if a rotation is employed that violates a joint's extremes,

the joint will enforce its extreme rotation limit over the
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motion specification given. This restriction permits two
models of the same <class, but different restrictions, to

behave realistically using the same motion.

Once the elements for a scene have been defined, the
scene can be explicitly specified with static and dynamic

components. A typical statement creating a scene is

INITIALIZE SCENE scene_identifier
initialize scene environment

STARTSCENE LENGTH scene_length
[ SAMEFRAME imagesperframe ]

ANIMATE model name FROM ....
ANIMATE any dynamic models

. . .

movements which vary with time
(camera movements, panning,
zooming, etc.)

ENDSCENE
where 'scene_identifier' 1is a wunique identifier for the
scene instance; 'scene_length' 1is the number of frames

displayed during the scene. The INITIALIZE section of the
scene permits a user to specify static information that
initializes the environment prior to the execution of a
scene. By default, the statements present between the
STARTSCENE and ENDSCENE are executed once for each frame
generated during the scene. The default can be changed by

the SAMEFRAME option; it allows a user to display several
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images of each model on the frame. This option is useful
when real-time output capabilities are wunavailable. Each
model produces several images per frame, thus allowing
easier examination of a model's movements when using

hardcopy devices.

The scenes defined are displayed by the statement:

SHOOTSCENES

The scenes are displayed in sequential order beginning from
the lowest scene identifier to the highest one. The use of
scene constructs 1is advantageous because the animation
sequence can be broken into a set of independent scenes.
Animated films can be created on a piecewise basié, thus
simplifying the animation process. The creation ' of
ihdepen@ent scenes also permits changes in the scene
ordering without any knowledge of the framé identifiers

involved.

A statement has been introduced for wuse primarily

within the SCENE construct. The statement
BACKGROUND object1, object2, object3, ...

defines a list of graphical objects that are displayed as
the background of a scene. Placing the BACKGROUND
definition in the scene initialization section defines a

static background. If the BACKGROUND statement is placed
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between the STARTSCENE and ENDSCENE, the user can define a
new or modified background for each scene's frame by using
graphical objects that are modified throughout the life of a

scene.,

LIG ANIMATE restricts user access to the internal
structure of variables of the type MODEL, however, it 1is
possible to observe a model's internal relationships. The

statement
PRINT variablel, variable2, ...

displays the internal status of variables. Variables of
either MODEL or MOTION type may be displayed. Specifying a
model's name in a PRINT statement produces a listing of the
model's internal node relationships. Preceding the model's
name with the symbol 'S$' produces é status report of the
model's symbol table. Specifying a motion's name produces a
listing of the keyframe information currently stored in the "

motion.

A mbdel's internal relationships are displayed when LIG
ANIMATE processes 1its source code because the model's
database is stored in the preprocessor. The motion and
symbol table information is not displayed until the object
code is compiled and run because this information is stored
at the host language level. The PRINT statement is normally

used independently of constructs, however, the statement may
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be used within the SCENE construct to obtain the status of a

model's symbol table at each scene frame.

5.2 MODEL TRAVERSAL

A model's internal tree structure is completely
traversed each time a model is displayed (i.e. once each
frame). A model's symbol table is updated with each joint's
current positional angle, current velocity, and acceleration
prior to the traversal of the model. The symbol table
information is obtained from both the motion specification

and the interpolation routines.

The traversal algorithm -is a recursive post-order
routine. It assembles each model's instance (from the
extremities inward) with respect to the main 1link in the
model. The resulting model instance is a graphical object
that 1is subsequently displayed by the host - graphical
language. Recursive routines are employed in the tree
traversal because they allow storage of the model's primary-
secondary link relationship in the recursion stack. The use
of recﬁrsion also simplifies the model traversal on models

whose main links (roots) have been changed.
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5.3 LEVELS OF LANGUAGE USAGE

The LIG ANIMATE language may be used at three different
levels of abstraction. The motion algebra, STRIP and
SYNCHRONIZE functions, and explicit motion definition reside
on different abstract levels with each level more flexible
that the level directly below it. The first level 1is a
subset of the second which 1is, in turn, a subset of the
third level. The differentiation by levels allows
programmers with different levels of sophistication to use
the language. Each level is characterized by the amount of

information known by the programmer.

The first level entails the use of the motion algebra.
At this level, the user need not know the structure of the
motion primitives or the model being animated. The user
assumes a model is present which meets the desired need and
that a set of motions exist which animate the model. The
user may then expand on this motion set to create motions
specific to the animation sequence desired. Usage at this
level assumes the user has had a programmer create the model
and basic motions necessary or that a library of models and

motions is accessible.

The second level incorporates the wuse of the JOINT,
STRIP and SYNCHRONIZE operations. At this level, the user

must have knowledge of both the motion primitives being used
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and the model being animated. The user need not know the
details of the movements present in each motion's joint
specification, however, knowledge of their overall effect 1is
needed. Also, the user must know the joint identifiers used
in both the model and the motions. The programmer is
removed one step from the details necessary in explicit
motion definition. At this level, the wuser can build on
existing submodels to create more complex models and create
new motion primitives from portions of those already

present.

The third and highest level entails the explicit
definition of models and motion; the user knows detailed
informa£ion of the model's structure and each keyframe of
the Jjoint-motion specifications. The third level is the
most flexible and allows the definition of the most detailed
models and motions. The user knows the extremes of each
motion and decides on the nature of the 1interpolation wused
to create the intermediate frames. This level is used

either directly or indirectly by all users.



Chapter 6

CONCLUSION

Thfee—dimensional computer animation, in some respects,
is similar to clay, puppet, or model animation. In three-
dimensional animation, the model, props, and backgrounds are
built and painted. A motion picture camera is prepared and
one frame of the film is exposed. The animator moves the
model a little and another frame is exposed. Repeating this
procedure is the process of creating animation. As a result
of the persistence of vision, when these single frames are
projected at. an appropriate rate they appear to blend into

movement [21].

The object of this thesis is to give a programmer a set
of tools for modelling complex articulate figures and for
controlling their movements. In addition, movement
synthesizing tools are supplied that decrease much of the
work associated with generating explicit motion descriptions
for articulate figures. LIG ANIMATE allows the creation of
computer models of figures, props and backgrounds. Many
copies or instances of a model can be used and they can be
manipulated by changing their size, position and orientation
in space. LIG ANIMATE removes the burden of representing a

figure's segment relationships from the host language. Yet,
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the host language is allowed access to the graphical object
produced by the model at each animation frame. The LIG
ANIMATE system does not replace the function of the host
language. The systém is responsible for a model's movement
with respect to 1itself; the host language remains
responsible for the model's movement as a unit. LIG ANiMATE
simpiifies the work of the host language but still allows

the flexibilities associated with the host language.

Many computer animation systems allow 'a user to
describe motions for three-dimensional objects by geometric
descriptions. Defining a realistic walking sequence is
difficult because the graphics must be controlled by the
motion dynamics of the walking object [1]. Other systems
approach the problem by assigning constraints to the limbs
that relate to the constraints found in nature and by wusing
goal-directed ‘techniques to create separate movements which
are part of the final motion [23]. These methods tend to be
computationally expensive and usually isolate the user from

both the models and motions.

LIG ANIMATE has a simpler approach to the problem of
animation specification which falls between the extremes of
motion dynamics and goal direction. It attempts to raise
the level of animation specification by extending the
structure present in high-level graphical languages. One

strength associated with LIG ANIMATE's approach is
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flexibility. For example, the interpolations are defined
independently of the LIG ANIMATE preprocessor. A‘programmer
can use existing interpolation subroutines, or can add new
ones. Interpolation subroutines that are more sophisticated
can easily be added to LIG ANIMATE, thus allowing more
realistical model movement. Interpolations can also be
created that check for specific events, thus allowing
animation synchronization by message passing between models,

without modifying the LIG ANIMATE preprocessor.

Several animation systems have attempted to approach
animation from a high level of abstraction. Directors and
scripts are employed [5, 14], however, the articulate models
are implemented as procedures (i.e. the model and motion are
inseparable). Such systems lack the ability to add
animation sequences, or to change the motions associated
with a model. They also do not permit the transformation of
model instances. For example, if a procedure has been
created which animates a man walking, a separate procedure
must be written to animate a child walking, even though the

structure of both models is identical.

LIG ANIMATE allows a structured approach to the
creation of both models and motions. Models and motions can
be coarsely defined and subsequently refined to a desired
level. For example, a walking motion <can initially be

specified that primarily relies on the use of a model's hip
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and shoulder joints; the rest of the model remains rigid.
Once the hip and shoulder movements are correct, the
movements associated with the secondary joints (elbows,
knees, etc.) can be specified. This approach simplifies the
creation of motion because it is possible to deal with a

motion's movements individually.

The same approach can be applied to model . development.
A modei may be defined with only the major joints and as the
development proceeds more joints can be added. Another
approach to model development is also possible. A model's
internal structure can be specified independently of the
graphical objects that represent the segments, therefore,
the graphical objects can be modified to redefine a model's
appearance. For example, a block may initially represent a
segment; the segment can subsequently be represented by mofte
complex polygonal structures. This segment development can
proceed independently of a model's definition, provided the
dimensions of the graphical objects remain essentially the

same.,

LIG ANIMATE's approach to defining motion is flexible
because data generation software can create motion
specifications. Human motion specification can be
simplified by deriving real time data from instrumentation.
A human can be wired with devices (electrogoniometers) that

measure positional orientation [8]. The movements performed
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by the human can be recorded and subsequently used to

animate human models,

As is the case with most projects, further work would
be Dbeneficial. LIG ANIMATE currently restricts joints to
rotational joints (i.e. the secondary segment rotates about
a pivotal point located on the primary segment). Prismatic
joints (i.e. a joint in which the secondary 1link slides
within the primary link) are commonly used in robotic arms.
LIG ANIMATE could be extended to permit the use of all
joints, rather than permitting only rotational joints.
Further work could péfmit the sYstem to use segments which
change in size and shape throughout a model's animation
sequence. The segment's shape and size could be defined
using a keyframe technique; the language would in-between
the appropriate segments during the animation. Such an
ability would allow the metamorphosis of models (e.g. a mail

box could change into a human during a scene).

LIG ANIMATE 1is designed as an extension to a host
language, and to be executed 1in a batch environment. A
preprocessor translates all extended 1language statements
into procedure calls. | Other implementations, such as a
command language that is interpreted by an executive kernel,
are possible. The batch environment complicates the use of
predefined models and motions., At present, these

definitions must be made at the beginning of an application
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program before they can be employed. Most computer
animation studios build up the equivalent of a shopping
catalog of mddels that are available for future work [10].
Ideally, there should be a method to archive the models and
motions defined in a program. The models and motions would
be assigned names and stored 1in a library. Subsequent
programs would need only load definitions for the models and
motions before using them. Such an approach would increase
the flexibility and speed associated with the <creation of
animation using LIG ANIMATE.

The use of library definitions creates a new problem.
Unless a wuser has specified a model and the associated
motions, or has previously worked with them, it is difficult
to determine a model's poﬁential movements. It would be
useful to have a viewing utility that permits the viewing of
predefined models and motions in an interactive environment.
This technique would allow the wuser to determine exactly
what had been previously defined and what further

definitions must be made in the application program.

LIG ANIMATE has several advantages over existing
systems. It permits the modelling and animation of figures
at a high 1level of abstraction from within a programming
language‘thus allowing the implementation of sophisticated
application programs that are easy to read and understand.

Where many systems can not easily work with rotations, LIG
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ANIMATE deals with rotations effectively. The use of
rotations enables the creation of generalized motions which
can be applied to models of the same joint structure; motion
specifications using paths and forces can only be used on
the specific models for which they were designed.
Articulate figures are frequently interpolated at the point
level because a two-dimensional projection of the figure 1is
used. The approach presented permits the modelling of
three-dimensional figures and their subsequent interpolation
on a rotational basis (i.e. the rotational extremes
cofrespond to the keyframe drawings in two-dimensional
interpolation), thus allowing for easier specification of

three-dimensional animation.
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APPENDIX A

A LIG ANIMATE PROGRAM

The LIG ANIMATE program shown on the following pages
was used to create the animation .seqguence present in Figure
11. PRIMITIVE BOX is a LIG6 graphical subprogram which
creates graphical objects for the figure's segments. The
statements flagged with an asterisk in the first column are
processed by the LIG ANIMATE preprocessor. " The host
statements are copied to the preprocessor target file. This
program demonstrates the ability of LIG ANIMATE to animate
an articulate‘figure while allowing the host language access

to the figure as a unit.
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PRIMITIVE BOX produces a 3D rectangle of arbitrary
height, width and depth. The rectangle is defined
about the origin. Width is along the X axis. Height
is along the Y axis. Depth is along the Z axis.

PRIMITIVE BOX
REAL HEIGHT, WIDTH, DEPTH, LIGHT, LIGHT2
VECTOR CENTRE, FTR, FTL, FBR, FBL, BTR, BTL, BBR, BBL

BOX ::= 'BOX' ['AT' CENTRE ','
<CENTRE = (0.0, 0.0, 0.0)>
'"WIDTH' WIDTH ','
"HEIGHT' HEIGHT ','
'DEPTH' DEPTH
['"," "LIGHTNESS' LIGHT]<LIGHT = 40.0> ;

LIGHT2 = LIGHT * 1.5

FTR = CENTRE + (WIDTH/2, HEIGHT/2, DEPTH/2)
FTL = FTR ~ (WIDTH, 0.0, 0.0)
FBL = FTL - (0.0, HEIGHT, 0.0)
FBR = FTR - (0.0, HEIGHT, 0.0)
BTR = FTR - (0.0, 0.0, DEPTH)
BTL = BTR - (WIDTH, 0.0, 0.0)
BBL = BTL - (0.0, HEIGHT, 0.0)
BBR = BTR - (0.0, HEIGHT, 0.0)

Set the drawing parameters
DRAW WITH <LIGHTNESS LIGHT>
Back

DRAW POLY FROM (BTR) TO (BTL) TO (BBL) TO (BBR)
TO (BTR)

Set the drawing parameters
DRAW WITH <LIGHTNESS LIGHT2>
Top

DRAW POLY FROM (FTR) TO (BTR) TO (BTL) TO (FTL)
TO (FTR)

Bottom

DRAW POLY FROM (FBR) TO (BBR) TO (BBL) TO (FBL)
TO (FBR)

Left

DRAW POLY FROM (FTL) TO (BTL) TO (BBL) TO (FBL)
TO (FTL)



Right

DRAW POLY FROM (FTR) TO (BTR) TO (BBR) TO (FBR)

"TO (FTR)

Set the drawing parameters

DRAW WITH <LIGHTNESS LIGHT>

Front

DRAW POLY

RETURN

END

GRAPHICAL
GRAPHICAL
VECTOR

REAL

FROM (FTR) TO

TO (FTR)

HEAD, BODY, TORSO
FARM, BARM, FLEG, BLEG, FOOT
LOCATN, DISTAN
VUWID, TORWID, FRMNUM

MODEL HUMAN, LARM, RARM, LLEG, RLEG

MOTION SQUAT

Define the model's HEAD

(FTL) TO (FBL) TO (FBR)

HEAD :- BOX WIDTH 0.30, HEIGHT 0.30, DEPTH 0.16

Define the model's TORSO

BODY :- BOX WIDTH 0.56, HEIGHT 0.86, DEPTH 0.36

TORSO :- (HEAD + BODY<TRANS(0.0, -0.58, 0.0)>)

<TRANS(0.0, 0.58, 0.0)>

Define the model's limbs

(Forearm, Backarm, Foreleg, Backleg)

FARM :- BOX WIDTH 0.22, HEIGHT 0.48, DEPTH 0.14,
LIGHTNESS 25.0

BARM :- BOX WIDTH 0.22, HEIGHT 0.48, DEPTH 0.14,
LIGHTNESS 25.0

FLEG :- BOX WIDTH 0.30, HEIGHT 0.58, DEPTH 0.18,
LIGHTNESS 25.0

BLEG :- BOX WIDTH 0.30, HEIGHT 0.40, DEPTH 0.18,
LIGHTNESS 25.0

Define the model's FOOT

FOOT :- BOX WIDTH 0.42, HEIGHT 0.13, DEPTH 0.10,

LIGHTNESS 25.0
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Defi

RARM :- JOINT 1, BARM, (0.0, -0.24, 0.0
FARM, (0.0, 0.24, 0.0)
(0.0, 0.0), (0.0, 0.0)

LARM

Defi

ne the model's right and left arms

:-— RARM <TRANS JOINTS BY 1>

ne the model's right and left legs

STARTMODEL RLEG
JOINT 3, BLEG, ( 0.00, -0.20, 0.0),
FLEG, ( 0.00, 0.29, 0.0),
(0.0, 0.0), (0.0, 0.0), (
JOINT 4, FLEG, (-0.05, -0.29, 0.0),
FooT, (-0.11, 0.06, 0.0),
(0.0, 45.0), (-25.0, 25.0)
ENDMODEL
LLEG :- RLEG <TRANS JOINTS BY 2>

Add

HUMA

HUMA

HUMA

HUMA

Defi

STAR

the extremities to the model HUMAN

N :- JOINT 7, TORSO, (0.00, 0.40,-0.18),

RARM, (0.0, 0.24, O.

0),

(0.0, 180.0), (-20.0, 20.0),

(-90.0, 180.0)
N :- JOINT 8, HUMAN, (0.00, 0.40,
LARM, (0.0, 0.24, O.

0.18),
0),

(0.0, 180.0), (-20.0, 20.0),

> (-90.0, 180.0)

N :- JOINT 9, HUMAN, (0.00,-0.40,-0.18),

RLEG, (0.0, 0.24, O.
(-45.0, 45.0), (-45.
(-90.0, 135.0)

N :- JOINT 10, HUMAN, (0.00,-0.40,
LLEG, (0.0, 0.24, O.
(-45.0, 45.0), (-45.
(-90.0, 135.0)

ne the motion SQUAT

TMOTION SQUAT
JOINT 1 POSITION 0.0, 0.0, 135.0
JOINT 2 POSITION 0.0, 0.0, 135.0
JOINT 3 POSITION 0.0, 0.0, 0.0
FRAME 5 POSITION 0.0, 0.0,-135.
INTERPOLATE ACCELERATE
0

JOINT 4 POSITION 0.0, 0.0, 0.0
FRAME 5 POSITION 0.0, 0.0, 45.
INTERPOLATE ACCELERATE

JOINT 5 POSITION 0.0, 0.0, 0.0

FRAME 5 POSITION 0.0, 0.0,-135.
INTERPOLATE ACCELERATE

O),
0, 45.0),

0.18),
0),
0, 45.0),

(0.0, 135.0)
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JOINT 6 POSITION 0.0, 0.0, 0.0
FRAME 5 POSITION 0.0, 0.0, 45.0
INTERPOLATE ACCELERATE
JOINT 9 POSITION 0.0, 0.0, 0.0
FRAME 5 POSITION 0.0, 0.0, 90.0
INTERPOLATE ACCELERATE
JOINT 10 POSITION 0.0, 0.0, 0.0

FRAME 5 POSITION 0.0, 0.0, 90.0
INTERPOLATE ACCELERATE

ENDMOTION
FIGURE HUMAN MAIN LINK FOOT

INITIALIZE SCENE 1

VIEW POINT = (0.0, 0.0, 4.0)
VIEW WIDTH = 7.5

DISTAN = ( 6.0, 0.0, 0.0)
LOCATN = (-2.0, 0.0, 0.0)

STARTSCENE LENGTH 6 SAMEFRAME 6

ANIMATE HUMAN FROM 0 TO 5 USING SQUAT
HUMAN :- HUMAN <TRANS (LOCATN)>

LOCATN = LOCATN + (DISTAN / 5.0)

ENDSCENE

SHOOTSCENE

STOP
END



APPENDIX B

IMPLEMENTATION NOTES

The language LIG ANIMATE 1is implemented on the
University of British Columbia Computing Centre's Amdahl
5850 computer wunder the Michigan Terminal System. The
following MTS commands will execute a LIG ANIMATE program
contained in the file LIGPROGRAM.

SRUN LIGANIMATE.O SCARDS=LIGPROGRAM SPRINT=-QUTPUT

SPUNCH=-LIGCODE PAR=NEW=35 LIST=-LIST

SRUN LIG6:LIG6 SCARDS=-LIGCODE SPUNCH=-FTN

SRUN *FTN SCARDS=-FTN SPUNCH=-FTNOBJ
SRUN -FTNOBJ+LIG6:LIB+LIGANIMATE.LIB

Several statistics regarding the implementation of LIG
ANIMATE have been obtained. The preprocessor was written in
PASCAL wusing a top-down Compiler Writing System., The
resulting preprocessor consists of 229 procedures totalling
6,312 lines of code. This represents a listing of 124 pages
and occupies a disk file containing 56 pages (each disk page
contains 4096 bytes). The object code resulting from the
compilation of the preprocessor source code requires a disk
file of 50 pages and it takes 0.334 seconds of CPU time to

load.
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The run-time library was written in LIG6; it contains
28 subroutines consisting of 1,151 1lines of code. This
represents a listing of 22 pages and occupies a disk file of
12 pages. The resulting object code requires a 12 page disk

file and takes 0.083 seconds of CPU time to load.

The translation of a LIG ANIMATE program into an
equivalent ©LIG6 program involves the replacement of
extension constructs with LIG6 statements and calls to
subroutines in a run-time library. The actual expansion
that occurs depends wupon the program being processed. 1In
the program shown in Appendix A, the 99 statement program
took 1,139 CPU seconds and cost $0.29 for the preprocessor
to analyse the program, create an equivalent 234 statement
LIG6 program, and produce a listing. The expansion factor
for the LIG ANIMATE program was 2.4. The HUMAN model was
defined wusing 11 statements. The equivalent LIG6 code
contains 75 statements, an expansion factor of 6.8. The
SQUAT motion was defined wusing 16 statements. The
equivalent LIG6 code contains 29 statements, an expansion

factor of 1.8.



