
ON IMPLEMENTING THE ISO FILE TRANSFER, ACCESS

AND MANAGEMENT PROTOCOL FOR

A UNIX 4.2 BSD ENVIRONMENT

by

MEI JEAN GOH

B.Sc.(Honours), University of British Columbia, 1984

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

(DEPARTMENT OF COMPUTER SCIENCE)

We accept this thesis as conforming

to the required standard.

THE UNIVERSITY OF BRITISH COLUMBIA

October 1987

© Mei Jean Goh, 1987

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

Department of COMPUTER. S C I E N C E

The University of British Columbia
1956 Main Mall
Vancouver, Canada
V6T 1Y3

I3 OCT 8 7

Abstract

Different computer systems have their own ways of representing, storing and man­

aging files. One approach to facilitate file transfers among systems in a heterogeneous

networked environment is for each system to locally map files for transfer onto a vir­

tual filestore (VFS). Conceptually, a virtual filestore provides a universal model for

describing files and how they can be manipulated.

The ISO File Transfer, Access and Management (FTAM) protocol offers one such

virtual filestore model. This thesis reports on the prototype implementation of a useful

subset of the ISO F T A M protocol for the UNIX 4.2 BSD 1 file system. We call this

implementation ubcFTAM. UNIX files, ordinarily regarded as unstructiired, can be

endowed with some internal structure thereby allowing the transfer of selective portions

of a file. Furthermore, the implementation offers several file attributes not supported

by UNIX.

ubcFTAM runs on several Sun Workstations2 interconnected by a 10 Mbps Ether­

net. Some performance data of ubcFTAM are also presented. This thesis also identifies
l T J N I X is a registered trademark of American Telephone and Telegraph Bell Laboratories.

BSD denotes Berkeley Standard Distribution
2 S U N Workstation is a trademark of Sun Microsystems, Inc.

ii

several aspects of the specifications that are ambiguous or that are inadequate, warrant­

ing further studies. Resolutions for these issues are discussed. We hope this experience

will be useful to others planning to implement F T A M for UNIX systems.

iii

Contents

Abstract ii

Contents iv

List of Tables vii

List of Figures viii

Acknowledgement ix

1 Introduction 1
1.1 Object ive 3
1.2 Mot iva t ion 4
1.3 Thesis Out l ine 5

2 The Standard Specifications 7
2.1 The V i r t ua l Fi lestore 8

2.1.1 F i l e Access Structure 10
2.1.2 F i l e At t r ibu tes 15
2.1.3 F i l e Operat ions 19

2.2 The F i l e Service 23
2.2.1 F i l e Service Regimes 27
2.2.2 Types of F i le Service 29

2.3 The F i l e Service Protoco l 29
2.3.1 T h e Bas ic Protoco l 30
2.3.2 T h e E r ro r Recovery Protoco l 30

2.4 A n Examp le of the Use of F T A M 31
2.4.1 Transferr ing a Por t ion of a F i le 31

2.5 Rela ted Work 35

iv

3 The Implementation 38
3.1 The File System under Study 39

3.1.1 Ordinary Files 39
3.1.2 Directories 40
3.1.3 Special Files 41
3.1.4 A Sample UNIX Directory Structure 41
3.1.5 File Protection 41

3.2 The Scope of ubcFTAM 43
3.2.1 The Virtual Filestore 43
3.2.2 The File Service 46
3.2.3 The File Service Protocol 46

3.3 Implementation Structure 47
3.3.1 The Service Provider 49
3.3.2 The User Interface 50
3.3.3 A Walkthrough 51
3.3.4 Functional Modules 53

3.4 Local Implementation Decisions 54
3.4.1 File Attributes 54
3.4.2 File Access Structure 55
3.4.3 Semantics of Filename 55
3.4.4 Semantics of User Identifier 58
3.4.5 File Access Control and Protection 58
3.4.6 ASN.l Encoding 59

3.5 Specification Issues and Resolutions 60
3.5.1 Denning the F-DATA Protocol Data Unit 61
3.5.2 Presentation Context 62
3.5.3 Authentication 63
3.5.4 Commitment Control 63
3.5.5 Concurrency Control 66

4 Evaluation 68
4.1 Remarks on the Implementation 68

4.1.1 The VFS Views 68
4.1.2 Structured Files 73

4.2 Remarks on the Standard Specifications 74
4.2.1 File Identification 74
4.2.2 Semantics for Structured Files 75

4.3 Performance 76
4.3.1 Observations 79

v

4.4 Improvements
4.5 Extensions

5 Conclusion

Bibliography

Appendix

A State Transition Diagrams

B ASN.l definitions for FTAM

C Program Mode

D Grouping

List of Tables

4.1 Transfer of Unstructured files 78
4.2 Transfer of Flat files 79
4.3 Write Flat files - comparing different commit schemes 81

vii

List of Figures

2.1 File Access Structure - A General [Hierarchical) Example 11
2.2 Example of the Flat File Access Structure 12
2.3 Example of the Unstructured File Access Structure 13
2.4 File Service Regimes 28
2.5 An Example of the Use of ISO FTAM Protocol 32
2.6 Reading a Portion of a File 33
2.7 Updating a Portion of a File 34
2.8 Mimicry of part of the ISO FTAM Protocol 36

3.1 A Sample UNIX Directory Structure 42
3.2 The Conceptual FTAM Model 48
3.3 Open Systems Interconnection Reference Model 49
3.4 One Way to Interpret and Treat the Filename Attribute 57
3.5 Representing a pdu tree node in C 60

viii

Acknowledgement

I sincerely thank D r . Samuel T. Chanson, my thesis supervisor, for his invaluable

guidance, commitment and supportiveness. I a m also grateful to Dr . Gera ld Neufeld

insightful discussions and reading the final draft. I also thank Ba r r y B rachman for

his pract ical and helpful suggestions as well as for proof reading the drafts. Technical

assistance f rom R ick Sample, Frank Pronk , members of the E A N research group and

the departmental office staff is much appreciated.

F inanc ia l support f rom the Computer Science department and f rom an E A N re­

search grant is graciously acknowledged.

M a n y friends f rom campus, student residences and church deserve my grati tude

for giving me moral support and various special learning experiences. I am also much

indebted to my support ive fami ly and M r . and M r s . Henry G a n . However, as in al l

things, the glory is God ' s .

i x

Chapter 1

Introduction

'Tis pleasant through the loopholes of retreat
To peep at such a world; to see the stir
Of the great Babel, and not to feel the crowd.

The Winter Evening
William Cowper

Over the past decade, computer networks have become widespread linking together

a diverse variety of host systems and their users. It has become common to exploit

such network interconnections to distribute new software, access remote resources such

as hardware and databases, operate diskless workstations in a local area network, send

electronic mail and conduct computer conferences amongst other activities. Funda­

mental to these activities is the need for some standard means of handling information

to be shared or exchanged between dissimilar systems. To meet this demand, sev­

eral organisations, such as the National Bureau of Standards of the United States, the

European Computer Manufacturers' Association, and vendors, such as Digital Equip­

ment Corporation and American Telephone and Telegraph Company, have designed

their own "standard" protocols for transferring units of information (known as files)

1

CHAPTER 1. INTRODUCTION 2

for systems interconnected by networks. However, the protocols used by one system

or network are often incompatible with those used by another, rendering interworking

amongst systems more complex or less functional if not impossible. To truly achieve

mutual accessibility or Open Systems Interconnection (OSI), internationally standard­

ised protocols for networking and, in particular, for file transfer must be promulgated

by some authority and be universally adopted by the various systems. This is where the

International Standards Organisation (ISO) steps into the arena. The current status of

ISO's work on file transfer is the File Transfer, Access and Management (FTAM) proto­

col as defined in the latest Draft International Standard documents [F T A M DIS 1986]

put forth in July 19861.

Different systems have their own peculiar styles of describing the storage of data

and the ways in which such data can be accessed. The ISO F T A M protocol defines a

standard for transferring, accessing and managing files among open systems without

having to know how file storage is implemented on different systems.

The rationale behind the concept of open systems interconnection is to minimise

the amount of detailed technical information that has to be agreed upon amongst the

participating systems. To this end, before protocols and procedures for file transfer,

access and management can be effectively defined, a reference model to promote a

universal view of files must be established. In the ISO F T A M protocol, this model,

which is an abstraction of mechanisms for manipulating files, is referred to as the

Virtual Filestore (VFS).

1 F T A M has been passed as International Standard in June 1987 but has not been put into print yet

CHAPTER!. INTRODUCTION 3

Using the VFS as a common model for describing files, a local mapping function can

absorb differences in style and specification between different systems, thereby enabling

them to interwork in mutually understood terms. Essentially, the appeal of the VFS

as a common model is that this requires only N mappings instead of N x N mappings,

where N is the number of distinct, disparate real systems wishing to interconnect with

one another for file exchange. The VFS not only shields differences of style between

similar kinds of data storage but also resolves differences of type or sophistication of

these N different systems. With this approach, we also need not worry about systems

protected by proprietary rights which making it difficult, if not impossible, to acquire

the necessary information to do the mappings.

To realise the FTAM File Service and File Protocol, an implementation has to relate

the elements of the VFS definition in the OSI environment to the resources available

on a real storage system.

1.1 Objective

The principal objective of this thesis is to develop a function that maps the abstract

VFS definition onto an existing file system — specifically, that in the UNIX 4.2 BSD2

environment. It is hoped that the experience drawn from this will be valuable for

implementations mapping the VFS to other kinds of host file systems.

Under our working time frame, the implementation done for this thesis is actually

2UNIX is a registered trademark of American Telephone and Telegraph Bell Laboratories.
BSD denotes Berkeley Standard Distribution

CHAPTER 1. INTRODUCTION 4

based on the ISO F T A M second Draft Proposal [FTAM DP2 1985] rather than the

later Draft International Standard. However, this is no major setback since the Draft

International Standard [F T A M DIS 1986] is not substantially different from its prede­

cessor, the second Draft Proposal. The differences between the two versions will be

pointed out in the ensuing chapters.

1.2 Motivation

The plethora of diverse protocol standards of various organisational bodies used

by different networked systems are beginning to gravitate towards a smaller, more

manageable set of protocols. In fact, the trend is to adopt the ISO standards with the

hope of "talking to everyone else". Since more and more systems are converging to

using ISO standards for various areas of data communication, not just for file transfer,

it is definitely worthwhile to develop a prototype ISO F T A M protocol implementation,

especially one that can be utilised by systems running UNLX 4.2 BSD operating systems

whose use have become particularly popular. Such an endeavour would interest and

benefit a large community.

Moreover, although the ISO F T A M protocol was yet to be ratified at the time the

project began in early 1986, the specifications were fundamentally stable judging from

the kind of changes made to the second Draft Proposal to produce the current Draft

International Standard over a lapse of 17 months.

Indeed, the primary motivation behind implementing and using the ISO F T A M is

that the virtual filestore concept offers a common interface for storing, transferring and

CHAPTER 1. INTRODUCTION 5

managing files independent of the underlying host file system. This would facilitate

file transfers from our network of computer systems in the Department of Computer

Science which run UNIX 4.2 BSD with other systems which already or will support the

ISO FTAM protocol.

There are also secondary benefits. The local UNIX 4.2 BSD file system, through

the VFS concept, stands to gain enhanced functionality.

Locally, the ISO FTAM virtual filestore can endow ordinary UNIX files (which are

essentially unstructured, being simply regarded as a string of characters) with some

internal structure. The granules of a structured file are commonly known as records.

Having structured files gives the potential of supporting access, locking and protection

at the record level (in addition to the file level). This, in turn, offers the possibility

of using FTAM to access files structured by UNIX applications, such as files used by

database applications like INGRESS.

The semantics defined by the ISO FTAM protocol for the access control file at­

tribute is sufficiently rich for supporting an elaborate extended file access protection

scheme. The protection mechanism based on this would be more comprehensive than

that offered by the local UNIX file system.

1.3 Thesis Outline

The rest of the thesis is structured in the following manner :

• Chapter 2 presents the essence of the standard ISO FTAM specifications. It also

cites other work related to the ISO FTAM protocol.

CHAPTER 1. INTRODUCTION 6

• Chapter 3 describes the local F T A M implementation for a system running UNIX

4.2 BSD, highlighting some of the implementation concerns and the solution tech­

niques. The testing of the resultant implementation is also covered here.

• Chapter 4 gives a retrospective evaluation of the implementation experience. It

also discusses possible future extensions.

• Chapter 5 wraps up by giving some general concluding remarks and some sug­

gestions on areas deserving further research.

Chapter 2

The Standard Specifications

The standard specifications for FTAM are detailed in the ISO FTAM Draft In­

ternational Standard documents [FTAM DIS 1986], published in July 1986, which su­

persedes the previous standard specifications defined by the ISO FTAM second Draft

Proposal [FTAM DP2 1985] in February 1985. Apart from the clearer definitions pro­

vided by the DIS with respect to the more detailed aspects of the protocol, these two

documents are fundamentally similar. In this chapter, we shall present the specifica­

tions according to the second Draft Proposal on which the implementation described

in this thesis is based.1

The standard specifications may be described under three headings :

• the virtual filestore

which defines the objects to be manipulated,
1 However, the ISO F T A M terms used hereafter are those from the Draft International Standard

unless there are terms belonging only to the second Draft Proposal nomenclature and not the former.
Such instances and aspects where the second Draft Proposal differ from the Draft International Standard
will receive special note.

7

CHAPTER 2. THE STANDARD SPECIFICATIONS 8

• the file service

which defines the operations that may be applied to the objects and

• the file protocol

which defines the legal sequences in which the actions of the file service can be

performed.

2.1 The Virtual Filestore

A file is an identifiable receptacle of information without any reference to its actual

representation or physical storage and without any reference to the meaning of the data

it contains, unlike a database where meaning is imposed on the data.

Within a file, the file contents or data are represented according to local operating

system conventions (e.g., text characters can be coded in ASCII or EBCDIC). Often,

the term file is loosely or implicitly used to refer to the data contents of the file.

Depending on the host operating system, a file may be structured into blocks of

information units called logical records. Each logical record represents the smallest unit

of information within the file that can be identified and accessed.

A filestore is a library or inventory of files. The files may be catalogued into nested

groups (typically called directories).

CHAPTER 2. THE STANDARD SPECWICATIONS 9

An analogy for these terms may be drawn with terms used for books as illustrated

below :

file

filename

file attributes

file contents

file structure

filestore

• book

• book title

• properties, e.g., author, number of pages,

edition and date of publishing.

- manuscript

• internal organisation

(logical records might correspond to

chapters or words)

• library system

(library catalogue +

library of books +

library procedures)

Along the line of this analogy, a virtual filestore corresponds to the view of a library

system that includes not only books from the local library but also books from affili­

ated libraries available through inter-library loans. The books in the system might be

identified, say, by their ISBNs (International Standard Book Numbers).

The virtual filestore provides an abstract model for describing files and filestores.

Users on different systems may transfer, access and manage files on another system

CHAPTER 2. THE STANDARD SPECIFICATIONS 10

using some mutually understood terms in the context of this virtual filestore model.

This V F S model defines the following :

1. the internal structure of the contents of a file,

2. the properties of individual files and

3. the set of actions for manipulating the objects of the model.

Note, however, that this VFS model does not include facilities for modelling database

systems although such applications could conceivably be implemented on top of it.

2.1.1 File Access Structure

The organisation of data contained within a file is described by its file access

structure attribute. The file access structure affects the manner in which the contents

of a file are accessed. A file contains one or more identifiable data units that may be

related in some logical way (e.g. sequentially or hierarchically). In the virtual filestore

model, complex file structures are described using a rooted tree whose nodes represent

data and whose root represents the entire file. Each node in the tree corresponds to a

structural unit of the real file and is assigned a level indicating its depth from the root.

Each separately accessible subtree is referred to as a File Access Data Unit (FADU).

The FADUs may have identifiers associated with them so that they may be directly

accessed. A node may or may not have data associated with it. The data associated

with a node is called a data unit (DU). A D U may correspond to a logical record of a

structured file.

CHAPTER 2. THE STANDARD SPECIFICATIONS 11

FADU

root

FADU = File Access Data Unit

DU = Data Unit

Figure 2.1: File Access Structure - A General (Hierarchical) Example

CHAPTER 2. THE STANDARD SPECIFICATIONS 12

The general form of internal file organisation is described by the Hierarchical access

structure. This is illustrated in Figure 2.1. Two special cases, as depicted by Figures 2.2

and 2.3 respectively, are also named :

• Flat access structure

This is represented by an F A D U tree with strictly two levels — the root node

and its child nodes. The root node has no associated D U while each child node

can have a D U .

• Unstructured access structure

This is simply represented by a degenerate F A D U tree, i.e., a single (root) node

with which a D U may be associated.

FADU
root

FADU = File Access Data Unit
DU = Data Unit

Figure 2.2: Example of the Flat File Access Structure

CHAPTER 2. THE STANDARD SPECWICATIONS 13

FADU
s

root

iCH OU

Figure 2.3: Example of the Unstructured File Access Structure

The ordering of the nodes in the F A D U tree representing the access structure of

a file is significant. Referring to Figure 2.1, (in which the nodes have been uniquely

labelled purely for illustrative purposes) the pre-order traversal sequence of the nodes is :

R A B C D E F.

A c c e s s C o n t e x t

For the most general case, the full hierarchical structure of a file can be transferred.

This entails conveying all the structuring information and all the data in the specified

F A D U . In addition, the ISO F T A M protocol also permits a file to be accessed with a

restricted view of its innate structure (i.e., the access structure type with which the

file was originally created) by specifying different access contexts. For instance, a user

CHAPTER 2. THE STANDARD SPECIFICATIONS 14

may wish to view a Flat file as Unstructured.

The various access contexts under which a file may be read are listed below using

the terminology of the Draft International Standard. The Draft International Stan­

dard provides a larger range than the second Draft Proposal. The access contexts

corresponding to those defined in the second Draft Proposal are marked by their less

mnemonic names (in parentheses) as given in the second Draft Proposal. In all cases,

the pre-order traversal sequence of the nodes within an FADU subtree is assumed.

• Hierarchical All Data Units (CONTEXT 1)

This access context allows access to all DUs within the addressed FADU, together

with the complete FADU structure description information.

• Hierarchical No Data Units (CONTEXT 5)

This access context allows access to the complete FADU structure description

within the addressed FADU without any DUs.

• Flat All Data Units

This access context allows access to only those nodes within the addressed FADU

which have DUs associated with them; both the structuring information and the

DUs of such nodes are accessible.

• Flat Single Data Unit

This access context allows access to both the structuring information and the DU

belonging to the root node of the addressed FADU.

CHAPTER 2. THE STANDARD SPECmCATIONS 15

• Flat One Level Data Units (CONTEXT 4)
This access context allows access to all the D Us in a given level of the addressed

FADU, but without any FADU description information.

• Unstructured All Data Units (CONTEXT 2)

This access context allows access to all DUs within the addressed FADU, but

without any FADU description information.

e Unstructured Single Data Unit (CONTEXT 3)
This access context allows access only to the DU associated with the root of the

addressed FADU without any FADU description information.

In the second Draft Proposal, FADU is ill-defined, overlooking the transfer of structur­

ing information necessary to support access contexts CONTEXT 1 and CONTEXT 5.

However, the definition of FADU in the Draft International Standard is more precise

and complete.

2.1.2 File Attributes

Various attributes are provided to describe a file. These are listed below.

• filename

This attribute identifies the file, distinguishing it from the other files in the file­

store.

• permitted actions

This attribute indicates the range of actions that can be performed on the file.

CHAPTER 2. THE STANDARD SPECIFICATIONS 16

• access control

This attribute states the conditions under which access to the file would be

granted. This allows specifying who (userld), upon supplying the correct pass­

words (passwords) can perform the requested actions(permittedActions) on the

file in question. In Abstract Syntax Notation One, this attribute is represented

thus2 :

C o n d i t i o n SEQUENCE {
permitt e d A c c e s s
u s e r l d
passwords
l o c a t i o n

[0] A c c e s s C o n t r o l ,
[1] U s e r l d OPTIONAL,
[2] AccessPasswords,
[3] SEAPAddress OPTIONAL}

A c c e s s C o n t r o l ::= BITSTRING <

AccessPasswords ::=

rea d (0) »

i n s e r t C h i l d (1) •
i n s e r t S i s t e r (2) t

r e p l a c e (3) t

e x t e n d (4) »

erase (5) •
c h a n g e A t t r i b u t e s (6) I

r e a d A t t r i b u t e s (7) t

d e l e t e F i l e (8) •
c r e a t e F i l e (9) }

SEQUENCE {
re a d [0] OCTETSTRING OPTIONAL.
i n s e r t C h i l d [1] OCTETSTRING OPTIONAL.
i n s e r t S i s t e r [2] OCTETSTRING OPTIONAL,
r e p l a c e [3] OCTETSTRING OPTIONAL,
extend [4] OCTETSTRING OPTIONAL.
erase [5] OCTETSTRING OPTIONAL.
c h a n g e A t t r i b u t e s [6] OCTETSTRING OPTIONAL.

2In the Draft International Standard, the access type c r e a t e F i l e is omitted. The reason is that
these access control fields relate to a file; whereas the c r e a t e F i l e access type describes control over
F T A M usage on a user. Whether or not a user is allowed to create files or even use F T A M depends on
the administrative control at that particular F T A M .

CHAPTER 2. THE STANDARD SPECIFICATIONS 17

readAttributes
deleteFile
createFile

[7] OCTETSTRING OPTIONAL,
[8] OCTETSTRING OPTIONAL,
[9] OCTETSTRING OPTIONAL}

Userld ::= GraphString

SEAPAddress ::= EXTERNAL

• storage account

Th i s at t r ibute identifies who would be responsible for accumulated file storage

charges.

• date and time of creation

T h i s at t r ibute indicates when the file was created according to the local t ime at

the host machine of the filestore.

• date and time of last modification

Th i s at t r ibute indicates when the contents of the file was last changed.

• date and time of last read access

Th i s at t r ibute indicates when the contents of the file was last read.

• identity of creator

T h i s at t r ibute indicates who created the file.

• identity of last modifier

Th i s at t r ibute indicates who was the last to modify the file contents.

CHAPTER 2. THE STANDARD SPECIFICATIONS 18

• identity of last reader

This attribute indicates who was the last to read the file contents.

• file availability

This attribute indicates whether delay should be expected before the file can be

opened.

• access structure type t
This attribute indicates the innate access structure type (either hierarchical, flat

or unstructured) of the file. In fact, the value of this attribute represents the

most complex access structure under which the file contents may be accessed. A

file of access structure type hierarchical may be accessed as hierarchical, flat or

unstructured while a file of access structure type flat may be accessed as flat or

unstructured. Files of access structure type unstructured can only be accessed as

unstructured.

• presentation context T

This attribute indicates how the contents of the file are to be represented and

interpreted. For instance, the presentation context of a file may be text and the

file would be expected to be composed of ASCII characters.

TIn the Draft International Standard, a new file attribute, contents type is defined. This attribute
encompasses both the file access structure type and presentation context attributes of the second Draft
Proposal, permitting a more precise and practical description of the file contents. The contents type
attribute indicates the abstract data types as well as the structuring information of the contents of the
file. It may take on values such as sequential text, sequential binary, unstructured binary and simple
hierarchical

CHAPTER 2. THE STANDARD SPECmCATIONS 1 9

• encryption

Th is at t r ibute gives the name of the encrypt ion a lgor i thm to be used for data

storage.

• current files ize

Th is at t r ibute indicates the size of the entire file.

• future filesize

Th i s at t r ibute indicates the size to which the file may grow due to modif icat ion

and extension.

• legal qualifications

Th is at t r ibute describes information about the legal status of the file and its

usage.

• private use

T h e ISO F T A M documents leave the meaning for this at t r ibute open. Th is

at t r ibute is provided i n case a local implementat ion has no other choice but to

use this at t r ibute to embody its own private informat ion for local use only. Its

use is discouraged by the standards documents.

2.1.3 File Operations

A variety of actions may be done either

• on a file as a whole or

CHAPTER 2. THE STANDARD SPECIFICATIONS 20

• on a constituent portion of the file contents (i.e., on an FADU).

Operations on Entire Files

The following are operations that act on a file as a whole :

• create file

This action creates a new file or selects an existing file. In the case of a new file,

its attributes are established.

• select file

This action establishes a particular file as the currently "selected" file on which

subsequent file operations are performed until the file gets "deselected". Precisely

one file may be selected at a time.

• deselect file

This action relinquishes the "selected" file.

• delete file

This action permanently removes the "selected" file from the VFS and thus the

file is automatically deselected.

• open file

This action opens the "selected" file for subsequent reading or writing. At this

time, the current location within the file is at the root node of its FADU tree

representation.

CHAPTER 2. THE STANDARD SPECIFICATIONS 21

• close file

This action closes the "selected" file in a normal fashion. At this time, the file

attributes time of last modification, time of last read access and time of creation

are updated.

• read file attributes

This action interrogates the values of the requested file attributes of the "selected"

file.

• change file attributes

This action modifies the values of the requested file attributes of the "selected"

file. The file attributes that are allowed to be explicitly modified by the user

through the change file attributes operation are :

— filename

— access control

— account

— file availability

— encryption name

— future file size

— legal qualifications

— private use

CHAPTER 2. THE STANDARD SPECWICATIONS 22

Operations on File Contents

The following are operations that affect the file contents; in particular, the actions

are on a per-FADU basis :

• locate FADU

This action locates the specified FADU thereby setting the "current location"

within the file. An FADU may be identified in one of the following ways :

- by specifying either the 'first' (i.e., the root node) or the 'last' FADU ac­

cording to the pre-order traversal sequence,

- by relative position — 'current', 'previous' or 'next' FADU — according to

the pre-order traversal sequence,

- directly by the node name of the desired FADU,

- by specifying a sequence of FADUs as the traversal path to trace to the

desired FADU,

- by the level number of the FADU tree. (This way is valid only with Access

Context Flat One Level Data Units.)

• read

This action locates and reads an FADU.

Depending on the access context requested, the data units and structuring infor­

mation transferred may pertain to the root node of the FADU or all component

nodes of the entire FADU subtree.

CHAPTER 2. THE STANDARD SPECIFICATIONS 23

• insert
This action creates a new F A D U and inserts it into the appropriate position in

the file.

• replace
This action replaces the contents in an existing F A D U . Either the entire F A D U

subtree currently located is replaced or only the contents of the D U associated

with its root node is replaced.

• extend
This action appends data to the end of the data unit associated with the root-node

of the current F A D U . The extend action only applies to existing DUs.

• erase
This action erases the current F A D U (i.e., the entire subtree) and the current

F A D U is set to the first F A D U in preorder traversal sequence after the erased

F A D U .

2.2 The File Service

The services provided to the F T A M users are modelled as service elements and their

corresponding service primitives. For instance, the service primitives corresponding to

the service element, F - C R E A T E , are : F-CREATE.request, F-CREATE.response, F-

CREATE.indication and F-CREATE.confirm. F T A M information is conveyed between

the F T A M user and the VFS via F T A M service primitives. The various services of the

CHAPTER 2. THE STANDARD SPEC&ICATIONS 24

File Service are outlined below.

1. FTAM regime control

The relevant service elements are :

F-INITIALIZE F-TERMINATE

F-U-ABORT

These elements are used to establish or terminate an FTAM connection. The F-

INITIALIZE service element initiates the connection and negotiates the service

class and functional units available. The user can effect orderly (or graceful)

termination using F-TERMINATE or abrupt termination using F-U-ABORT.

2. filestore management

This service allows management operations on the filestore. Although details

for these operations have yet to be defined in the Draft International Standard.

Filestore management operations might conceivably include, for example, ascer­

taining the total file space in the VFS consumed by the user or listing all the

user's own files.

3. file selection regime control

The relevant service elements are :

F-SELECT F-DESELECT

F-CREATE F-DELETE

CHAPTER 2. THE STANDARD SPECIFICATIONS 25

The file selection regime control service allows the identification or creation of a

unique file (to be known as the "selected" file) on which subsequent operations

will apply, and the deselection or deletion of the selected file.

4. file management

The relevant service elements are :

F-READ-ATTRIB F-CHANGE-ATTRIB

These allow reading and modifying the file attributes of the selected file.

5. file open regime control

The relevant service elements are :

F-OPEN F-CLOSE

These allow opening and closing the selected file.

6. access to file content

The relevant service elements are :

F-LOCATE F-ERASE

These allow location and erasure of certain portions of the file contents.

7. bulk data transfer

The relevant service elements are :

CHAPTER 2. THE STANDARD SPECIFICATIONS 26

F-READ F-WRITE

F-DATA F-DATA-END

F-TRANSFER-END F-CANCEL

These facilitate the bulk transfer of a file.

8. grouping control

The relevant service elements are :

F-BEGIN-GROUP F-END-GROUP

The grouping control service allows the initiator to delimit (i.e., indicate the

start and the end of) a set of primitives to be processed and responded to as a

group. However, the range and the sequences of primitives that are allowed to be

sandwiched between the F-BEGIN-GROUP.request and F-END-GROUP.request

are restricted to those specified in the standard document. (The valid sequnces

are cited in Appendix D). These sequences respect the contextual changes when

crossing regime boundaries (refer to section 2.2.1) during a dialogue. Using the

grouping control service to submit certain frequently used sequences of request

primitives together eliminates having to wait for the response to each correspond­

ing request before sending the next request. The sequence of primitives sent

together are responded to as a group. Total elapsed time can thus be reduced.

9. recovery

The relevant service element is :

CHAPTER 2. THE STANDARD SPECmCATIONS 27

F-RECOVER

This allows the initiator to re-create the open file regime destroyed by failures

signalled by F-P-ABORT, F-U-ABORT or F-CANCEL.

10. checkpointing and restarting

The relevant service elements are :

F-RESTART F-CHECK

These allow the "sender" of data to plant marks (or checkpoints) in the flow

of data for the purpose of subsequent recovery or restart. F-RESTART offers

the possibility of interrupting a transfer in progress and to negotiate a point

within the current bulk data transfer regime at which data can be re-transmitted

immediately.

2.2.1 File Service Regimes

The file service definition includes a number of regimes in which the actual discourse

is performed. The regimes are nested. Figure 2.4 illustrates the regime nesting and the

service elements allowed in each regime. The service elements that invoke or terminate

a particular regime are also indicated. The Filestore Management service elements

belong to the application association regime. Each regime establishes a context under

which implicit conditions prevail. For instance, while the file selection regime is in

effect, all operations are implicitly performed on the file that was selected at the onset

of the file selection regime.

CHAPTER 2. THE STANDARD SPECmCATIONS

F-INITIALIZE
— (Filestore Management)

~ F-SELECT
F-CREATE

F-READ-ATTRIB
F-CHANGE-ATTRIB

69
©

©

©
V)
0)

1

©

©
o
©

©

F-OPEN

F-LOCATE
F-ERASE

©
©

F-READ
F-WRITE

1 F-DATA
F-DATA-END

I— F-TRANSFER-END

F-CLOSE
F-DESELECT
F-DELETE

F-TERMINATE
F-ABORT

Figure 2.4: File Service Regimes

CHAPTER 2. THE STANDARD SPECIFICATIONS 29

Only one instance of a regime type is allowed at any one time; in other words,

regimes cannot be recursively invoked. However, for regimes within the application

association regime, successive instances of a particular regime are permitted. For ex­

ample, there may be a sequence of one or more data transfer regimes within a file open

regime.

2.2.2 Types of Fi le Service

Two types of file service are defined :

1. user correctable file service
This allows the user, through the available file service facilities, to have direct

control of error recovery and error management.

2. reliable file service
For this service, the user is not informed of error detection and recovery. Instead,

these functions are left to the file service provider once the user has stated its

quality of service requirements.

2.3 The File Service Protocol

The file service protocol describes

• the actions to be taken when service primitives are invoked by the file service

user or the underlying service provider and

• the actions to be taken as a result of events within the local system.

CHAPTER 2. THE STANDARD SPECIFICATIONS 30

The FTAM protocol is connection-oriented. On a single FTAM connection, only

one file may be active (or"selected") at any one time.

There are two levels of protocols corresponding to the two types of file service are

defined in the preceding section. The Basic Protocol supports the user-correctable file

service while the Error Recovery Protocol supports the reliable file service.

2.3.1 The Basic Protocol

The basic protocol supports the user correctable file service. It supports functions

such as :

• representation of the user correctable file service primitives as a sequence of data

items for transmission by the presentation service,

• concatenation, when appropriate, of the representations of logically separate ser­

vice primitives and

• ensuring the progress of the protocol.

2.3.2 The Error Recovery Protocol

The error recovery protocol, using the user correctable file service, supports the

reliable file service. It supports functions such as :

• management of error recovery information during the normal operation of the file

service,

CHAPTER 2. THE STANDARD SPECD7ICATIONS 31

• restart of data transfer after interruption by errors which do not destroy the file

data transfer regime,

• recovery from errors which destroy the file open or file selection regime but do

not destroy the application association regime and

• recovery from errors which destroy the application association regime.

2.4 A n Example of the Use of F T A M

A typical FTAM session is exemplified in Figure 2.5.

2.4.1 Transferring a Portion of a File

Viewing the internal structure of a file as an FADU tree provides the semantics that

allow accessing and transferring specific portions of a file (corresponding to particular

FADUs).

If a file is structured and the File Access service is supported, a selected portion of

the file contents, rather than all the file contents, may be transferred.

If only a segment of the file is to be read, F-LOCATE is first used to specify the

desired FADU before issuing the F-READ. (Refer to Figure 2.6.)

Also, if an additional "chunk" of data is to be inserted at a specific position in a file,

F-LOCATE is first used to specify the desired position (corresponding to an FADU)

prior to issuing the F-WRITE. (Refer to Figure 2.7.)

The specifications do not stipulate the number of F-D ATA.requests that must be

exchanged for each bulk transfer. Hence, this issue was locally resolved. To F-READ

CHAPTER 2. THE STANDARD SPECWICATIONS

F-INITIALIZE.req

F-SELECT.req

F-OPERreq

F-READATTRIB.req $

F-CHANGEATTRRreq^

F-READ.req

F-TfWSFStNDJBq^

F-CLOSEreq

F-DELETEreq

F-TERMINATE.req ^

| F-INITIALIZE.resp

1
$ F-SELECT.resp

I
F-OPEMresp

F-READATTRIB.resp

$ F-CHANGEATTRIB.resp

5
F-DATAreq

^ F-DATAreq
| F-DATAEND.req
s

$ FTRANSFEREND.resp

I
^ F-CL.OSE.resp

5 F-DELETEresp

| F-TERMINATE.resp

Figure 2.5: A n Examp le of the Use of ISO F T A M Pro toco l

http://F-CL.OSE.resp

CHAPTER 2. THE STANDARD SPECIFICATIONS 33

Initiator

F-INITIALIZE.req

F-SELECT.req $

F-OPEMreq

F-TRANSFEREhD.req ̂

F-CLOSEreq $

F-DESELECT.req $

F-TERMINATE.neq ^ 1

^ F-INITIALIZE.resp

^ F-DATAEND.req

FTRANSFERBO.PBsp

^ F-DESELECT.resp

^ F-TERMINATE.resp

Figure 2.6: Reading a Portion of a File

CHAPTER 2. THE STANDARD SPECLTICATIONS 34

Initiator Responded

F-INITIALIZE.req ^

F-SELECT.req

F-OPEN.req

F-LOCATEreq

F-WRrTE.req ^

F-DATA.req

F-DATAreq o
I

F-DATAErOjBq ^ $
F-TRANSFB»JD.req §

F-CLOSEreq

F-DESELECT.req |

!
F-TERMlNATE.req $

^ F-INITIALIZE.resp

1
^ F-SELECT.resp 1
$ F-OPEMresp

|
5; F-LOCATEresp

^ FTRANSFEREND.resp

!
^ F-CLOSEresp

§ F-D6SELECT.nBsp

F-TERMINATE.resp

1
Figure 2.7: Updating a Portion of a File

CHAPTER 2. THE STANDARD SPECIFICATIONS 35

an Unstructured file, only a single F-DATA.request is used while to F-WRITE onto

an Unstructured file, the data of all F-DATA.requests within a bulk transfer regime

constitute the same (single) F A D U of the Unstructured file access structure. For Flat

files, each F-DATA.request corresponds to one F A D U .

2.5 Related Work

Since the release of the draft proposals for the ISO F T A M protocol, several different

groups have embarked on producing the mapping functions for various existing systems

onto the F T A M VFS. In lieu of a full scale implementation of the actual protocol, some

have chosen to mimic the behaviour of the ISO F T A M protocol. This was the case in

the Danish P A X N E T project [Petersen 1985] where the semantics of the ISO F T A M

service are mapped onto an existing and widely accepted interim file transfer protocol,

the Network Independent File Transfer Protocol NrFTP-B(80) (otherwise dubbed the

"Blue Book protocol") [NBFTP 1981]. Figure 2.8 gives an idea of how this masquerade

is accomplished by P A X N E T .

The advantage of this approach is that it avoids continually changing the file trans­

fer service (and hence the application programs utilising it) during the progressive

replacement of non-standard protocols with ISO standard protocols. In this respect,

the P A X N E T file transfer module claims to have "forward compatibility" with the

ISO F T A M service standard. However, the drawback is that the ISO F T A M subset

available to users may be unnecessarily limited due to the constraints imposed by the

file transfer protocol being disguised, not to mention the inefficiency accruing from the

36

CHAPTER 2- T H E S T A — — S

Figure 2.8: Misery of part
of the ISO FTAM Protocol

CHAPTER 2. THE STANDARD SPECIFICATIONS 37

translation process.

At the University of Montreal, a subset of FTAM has been implemented for the

VMS file system on a VAX 11/750 machine [Bessette 1986]. VMS supports several dif­

ferent types of files including unstructured files, structured (or flat) files with records

of variable or fixed length which may be indexed. Also, the record management sys-

tem(RMS) on VMS can be exploited to support the flat and hierarchical FTAM access

structure types. The range of file attributes supported by the VMS file system is

reasonably large and covers many of those defined by the FTAM VFS.

An FTAM project for the UNDJC environment is also being pursued at the University

College, London as part of a larger system known as the ISO development environment

(ISODE). However, we are presently unaware of any publication on this project relating

to its FTAM implementation.

C h a p t e r 3

T h e I m p l e m e n t a t i o n

At the University of British Columbia, a subset of the ISO FTAM protocol has been

implemented for the Sun 3/260 and Sun 2/120 Workstations1 running respectively Sun

UNIX Release 3.2 and Sun UNIX Release 2.3, respectively, (both being compatible

with UNIX 4.2 BSD). Hereafter, ubcFTAM would denote this local implementation

whereas FTAM would refer to the ISO FTAM model as specified in the four-part

ISO document, Information Processing Systems - Open Systems Interconnection - File

Transfer, Access and Management [FTAM DIS 1986] and [FTAM DP2 1985]. Since

ubcFTAM is a subset compliant with the ISO FTAM, unless noted otherwise, comments

about FTAM would apply to ubcFTAM as well. ubcFTAM was written in C and

accounts for approximately 12,000 lines of documented source code. This chapter

describes the implementation details of ubcFTAM.

1 S U N Workstation is a trademark of Sun Microsystems, Inc.

38

CHAPTER 3. THE IMPLEMENTATION 39

3.1 The File System under Study

It would be edifying to present a cursory overview of the UNIX file system upon

which the ubcFTAM VFS is built. However, we shall focus on those features of the

UNIX file system (refer to [Quarterman 1985] and [Ritchie 1978]) relevant to the ubcF­

TAM implementation.

From the user's point of view, three main types of files provided by UNIX :

1. ordinary disk files,

2. directories and

3. special files.

3.1.1 Ordinary Files

An ordinary file contains whatever information the user places into it. It may

contain text or binary (object) programs. A file is simply regarded as a string of char­

acters (or bytes) and no structuring information is expected by the system. A binary

file is one that contains a binary program which is the sequence of words resembling

the core memory ready for execution. Text files are usually considered to be structured

in that they are composed of "lines" which, by convention, are demarcated by newline

characters (the ASCH line feed characters) although the system is oblivious to such

structuring. Nevertheless, a program is free to impose internal structure on files it

manipulates. The structure of a file is determined by the programs utilising it and not

by the system.

CHAPTER 3. THE IMPLEMENTATION 40

3.1.2 Directories

Files (be they ordinary files, directories or special files) are organised into directo­

ries giving the file system, as a whole, a tree structure. A directory, as the appellation

suggests, is itself a file that contains information on how to find other files. Subdirec­

tories may be created under a directory. A directory behaves just like an ordinary file

except that it cannot be modified directly by a program but rather it must be modified

through system calls. In this way, the system controls the contents of directories.

All files in the system can be located by tracing a path through a series of directories

until the desired file is reached. The ultimate starting point is the root directory

representing the root of the entire directory for the file system. One way of specifying

a filename to the system is in the form of a pathname which is, syntactically, a sequence

of directory names separated by slash ('/') symbols and ending with a filename. As

an example, for the pathname /user/jolly/project, the system will begin to search

from the root directory (denoted by the first '/') for the directory user. The directory

jolly is to be searched under directory user and the entry project under directory

jolly. From the pathname syntax alone, we cannot determine whether project is an

ordinary file or a directory.

A non-directory file may also be referenced by aliases (i.e., synonyms) that may

appear under possibly several different directories. This is accomplished through the

directory entries for files known as links which behave like pointers to the actual file.

CHAPTER 3. THE IMPLEMENTATION 41

3.1.3 Special Files

An unusual feature of the UNIX file system is the special file concept. Each

supported I/O (input/output) device is associated with at least one special file. To the

user, a special file may be read and written just like an ordinary disk file although such

read or write requests automatically activate the device associated with it. Entries for

each special file conventionally reside in directory /dev. For instance, special files exist

for each disk, each tape drive, each terminal, each printer, each communication line

and for physical main memory.

At the user level, files and devices reflect uniform behaviour. The advantage of this

scheme is that file and device I/O can be treated essentially in the same way. Since

filenames and device names share the same syntax and meaning, a program expecting

a filename as a parameter can be passed a device name as well. Furthermore, special

files are subject to the same protection mechanism as ordinary files.

3.1.4 A Sample U N I X Directory Structure

Figure 3.1 shows how some directories, ordinary files and special files might be

organised in a segment of a real file system.

3.1.5 File Protection

The access control scheme is relatively simple. Each user of the system is assigned

a unique user identification number (UID). When a file is created, it is branded with

the UID of its owner. Each file is also assigned ten protection bits. Nine of these

CHAPTER 3. THE IMPLEMENTATION 42

Figure 3.1: A Sample UNIX Directory Structure

CHAPTER 3. THE IMPLEMENTATION 43

independently specify read, write and execute access permissions for the owner of the

file, for the user members of the file's group and for all other users ("the world at

large"). Only the system administrator can create groups and specify who is to be

included in each group.

One unique feature of UNIX lies in the power of the tenth bit. When this bit is on,

subject to the other protection bits, the system will execute the file as a program with

the privileges of the owner of the file instead of the user of the program.

3.2 The Scope of u b c F T A M

ubcFTAM is a subset of the ISO FTAM. Accordingly, the implementation of ubcF­

TAM, can be described in terms of the virtual filestore, the file service and the file

service protocol. The subset that we have chosen to support in ubcFTAM is one that

would exhibit what we consider the essential features of the ISO FTAM that are reason­

ably useful as a prototype implementation of the protocol. In this section, we delineate

the scope of ubcFTAM, stating which aspects it does and does not support.

3.2.1 The V i r t u a l Filestore

The VFS can take on at least two possible views, namely:

• the "universal" view — where the VFS knows of all files in the host's file system

and

• the "exclusive " view — where the VFS knows only of files that have been explicitly

created using the FTAM F-CREATE primitive. (These files can thus be said to

CHAPTER 3. THE IMPLEMENTATION 44

have been registered with the VFS.)

The exclusive view was chosen for ubcFTAM. It allows better control in terms of

security than does the universal view. Moreover, it promotes a more uniform view of

all VFS files. The choice between these two views is discussed at length in the next

chapter.

The ubcFTAM VFS was developed on top of the UNIX 4.2 BSD file system. Virtual

files are achieved through a mapping onto resources and services provided locally by the

UNIX file system. However, UNDX notions, such as links, special files, sockets (used for

inter-process communication) and directories which, albeit being referred to as "files"

in UNIX terminology, do not each fit into the generic mould of a file. They bear

connotations that prevent them from straightforward embodiment into the mapping

since they do not have a meaningful place within the confines of the VFS model defined

by the ISO FTAM protocol. For instance, special files represent I/O devices and are

treated by the UNIX kernel as device interfaces; and hence their significance would be

lost under the ISO FTAM VFS.

In ubcFTAM, the VFS files are placed under the VFS's own directory, /user/vfs

and access to them by other users is strictly controlled.

File Attributes

Of the list of file attributes specified by the ISO FTAM documents, ubcFTAM

supports the following :

• permitted actions

CHAPTER 3. THE IMPLEMENTATION

• access control

• last modification time

• last read access time

• creation time

• identity of creator

• identity of last modifier

• identity of last reader

• presentation context

• access structure type

• current file size

while the following file attributes are currently not supported:

• account

• file availability

• encryption name

• future file size

• legal qualifications

• private use

CHAPTER 3. THE IMPLEMENTATION 46

3.2.2 The File Service

u b c F T A M supports user-correctable service and offers the following the file services:

• F T A M regime control

• file selection regime control

• file management

• file open regime control

• file access

• bulk da ta transfer

T h e services current ly not supported include:

• grouping control

• recovery

• checkpoint ing and restart ing

3.2.3 The File Service Protocol

Present ly, u b c F T A M supports a single connection at a t ime. It provides user-

correctable service and hence supports only the user-correctable protocol. To this end,

the file service wou ld , as far as possible, supply diagnostics to indicate the source of

errors but does not at tempt to apply intell igent guesses to automat ical ly rectify errors.

CHAPTER 3. THE IMPLEMENTATION 47

The task of error recovery is left entirely to the responsibility of the user or the user

program.

3.3 Implementation Structure

The conceptual model for the FTAM protocol is portrayed in Figure 3.2. The

model has two main entities : the initiator and the responder. These two entities

may reside in two separate computers or on the same computer. The standard does,

however, stipulate that an implementation claiming to support ISO FTAM be able to

act as either initiator or responder.

The initiator plays the active role in an FTAM session. It allows FTAM users to

submit requests to the responder. The responder's role is to service the initiator's

requests. The responder accesses files through the aid of the virtual filestore.

At each of the initiator and the responder, the global behaviour of the protocol may

be described by a finite state machine whose states correspond to distinct phases or

regimes (as detailed in the previous chapter) during the progress of the protocol. (Refer

to Appendix A for the state transition diagrams for the initiator and the responder.)

The protocol entity 3 is responsible for keeping track of the protocol state transitions at

the initiator or responder and ensuing the correct progress of the protocol.

With respect to the ISO Open Systems Interconnection seven layered reference

model [OSI 1983], the ISO FTAM protocol belongs to the Application Layer (see Fig­

ure 3.3). At the lower boundary of this layer lies what is collectively called the service

2The term protocol entity is also referred to as the protocol state machine or protocol machine.

CHAPTER 3. THE IMPLEMENTATION 48

UNIX
file system

support

\ \ \ \ % \ \ \ \ \ \ \ \ \ \ \ \
s s s s s s s s s s s s s
\ \ \ \ \ \ \ \ \ \ \ \

- - - • • • • • • • • • • • • •

Figure 3.2: The Conceptual FTAM Model

CHAPTER 3. THE IMPLEMENTATION

provider; and at the upper boundary, the application user.

49

AQDipDOesttflQiro L a y e r

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Figure 3.3: Open Systems Interconnection Reference Model

3.3.1 The Service Provider

The service protocol straddles upon what is called the service provider in OSI ter­

minology. The ISO OSI reference model dictates that the immediate underlying layers

supporting an application service, such as FTAM, be the Session and Presentation

layers. For the Application layer protocol entities to interface with the lower sup­

port layers, the FTAM document suggests using the yet to be standardised Common

Application Service Elements (CASE) [CASE 1986].

However, in the ubcFTAM implementation, the Presentation and Session layers

CHAPTER 3. THE IMPLEMENTATION 50

are not distinct and are not ISO-standard. Presentation layer functions exist only

insofar as the encoding and decoding of protocol data units to or from the ASN.l no­

tation is concerned. In fact, the topmost layer of the service provider is the Transport

layer, specifically the ARPANET Transmission Control Protocol / Internet Protocol

(TCP/IP). The provisional interface to this service provider makes use of TCP/IP

stream sockets supported by UNLX 4.2 BSD. This Transport layer offers reliable con­

nection service, facilitating the establishment of a connection over which the initiator

entity and the responder entity communicate. (The responder may be physically res­

ident on a different computer than the initiator.) At this stage of development, the

implementation does not promise much in terms of error recovery; it merely goes as far

as reporting that something has gone amiss.

3.3.2 The User Interface

An ubcFTAM user has the choice of issuing FTAM service primitives either using

an interactive interface or from within a C program.

Interactive Mode

A simple interactive user interface is available. The interface prompts the interac­

tive user with menus. Menu displays are particularly handy for the user because of the

large number of FTAM service primitives along with the variety of ways of specifying

their parameters.

One may wish to use the UNLX feature of redirecting input from a file where the

CHAPTER 3. THE IMPLEMENTATION 51

requests are recorded rather than from the terminal. However, the present menu style

user interface inevitably makes such non-interactive input rather cryptic.

Program Mode

Within a C program, the user can simply embed routine calls from a given library

that invokes FTAM service primitives. An example of how to use ubcFTAM within a

C program is furnished in Appendix C.

3.3.3 A Walkthrough

Let us trace what normally happens when an FTAM user makes a file service

request.

1. An FTAM user (a human user or an application program) executes the FTAM

protocol, submitting FTAM service request primitives.

2. The initiating service user entity then forwards the FTAM request service prim­

itive to the initiating protocol entity.

3. The initiating protocol entity, while maintaining the protocol state for the ini­

tiator, encodes the service primitive, based on its ASN.l definition, to build a

protocol data unit (pdu) which gets transmitted to the destination responder via

the service provider.

4. The service provider carries the pdu across to the destination responder (possibly

across a network to another computer system).

CHAPTER 3. THE IMPLEMENTATION 52

5. The responding protocol entity, attentive to incoming pdus from the service

provider, accepts the pdu, decodes it to rebuild the request service primitive

duly updating the protocol state for the responder.

6. The request service primitive is forwarded to the VFS. The VFS user executes

the command, possibly invoking system calls to the host file system. Following

this, the VFS user conveys the result of the request by forwarding the response

service primitive back to the responding protocol entity.

7. The responding protocol entity encodes the response service primitive, building

a pdu to be sent via the service provider back to the initiator.

8. The initiating protocol entity, listening to the service provider, accepts the in­

coming pdu, decodes it and reconstructs the response primitive which it forwards

to the initiating service user entity.

9. The response primitive is finally returned to the FTAM user.

Both protocol entities are continuously listening both to the service provider and their

respective service user entities. They must be ready to abruptly sever the FTAM

association upon receiving request to do so as signalled by an F-U-ABORT.request

or F-P-ABORT.request. The connection can also be gracefully terminated after an

F-TERMINATE request from the initiator has been met.

CHAPTER 3. THE IMPLEMENTATION 53

3.3.4 Funct ional Modules

The implementation structure is tiered according to the interfaces between the

entities of the FTAM model depicted in Figure 3.2. Its organisation is captured by the

functional modules listed below.

• user interface

interfaces between the initiating entity and the FTAM user.

• FTAM service elements

interface between the initiating protocol entity and the initiating user and also

between the responding protocol entity and the VFS user.

• ASN.l encoding-decoding module

for both protocol entities.

• protocol state transition maintenance

for both protocol entities. (The protocol state machine is realised through using

a C language "switch" statement. Depending on the prevailing protocol state

and the current event, control branches conditionally into different routines for

appropriate actions and finally the protocol state is updated accordingly.)

• (lower boundary) communication interface module

interfaces between the (initiating or responding) protocol entities and the service

provider.

CHAPTER 3. THE IMPLEMENTATION 54

• host system calls

interface between the VFS user and the UNIX file system.

• VFS housekeeping module

includes modules for maintaining file structure, file attributes and bulk transfer.

3.4 Local Implementation Decisions

It is not the intention of the ISO FTAM to dictate the inner workings of an

implementation of the protocol. Indeed, design decisions made for ubcFTAM were

often shaped by the resources available, the administrative policies and the peculiarities

or features within the local system. Under normal circumstances, such decisions should

be transparent to the application users of ubcFTAM. The ensuing sections raise some

issues encountered and qualify why certain decisions were made.

3.4.1 File Attributes

Several of the file attributes listed in the FTAM specifications are not maintained

by the host UNLX filesystem. To provide for these, the attributes must be initialised

and maintained by ubcFTAM.

Each file created in the virtual filestore has an affiliated "attribute file" whose

existence is hidden from the FTAM user. This attribute file is used to store values of

file attributes for which support provided by UNIX 4.2 BSD is unavailable, inadequate

or inconsistent. On the other hand, ubcFTAM draws on the resources of the host UNIX

operating system to automatically maintain certain file attributes, such as current

CHAPTER 3. THE IMPLEMENTATION 55

filesize.

3.4.2 File Access Structure

The access structure types currently supported are the unstructured and flat types.

The hierarchical access structure type is not supported.

The FADU tree structure of a file is maintained via information kept in an affiliated

"structure file" that contains indices to the file (or the file contents, to be precise).

To support operations pertaining to the access structure of files, a rooted binary tree,

reflecting the FADU tree structure of the file, is dynamically created and maintained.

3.4.3 Semantics of Filename

According to the ISO FTAM documents, syntactically, a filename is composed of a

sequence of character strings. As the semantics are not specified by the standard, this

syntax offers a potentially rich means of interpretation.

An FTAM user may choose to use the filename components to reflect the nature of

his local host file naming convention. For instance, an avid UNIX user of FTAM might

use the sequence of FTAM filename components to correspond with the pathname

components of a file. Alternatively, one may prefer to ignore the local filename naming

convention altogether and to use one's own customised scheme. This can easily be

accommodated by the flexible FTAM definition for filename. As an example, a user

might use the first component to represent file ownership; the second, filename; the

third, file type and the fourth, version number of the file.

CHAPTER 3. THE IMPLEMENTATION 56

To allow such latitude from the FTAM user's point of view, the VFS has to decide

how to interpret and handle FTAM filenames within its capabilities.

For our implementation on UNIX, one general view would be a flat one where the

VFS recognises each file simply by a single name — the concatenation of the filename

components and a special character delimiting filename component boundaries. This

scheme, however, is constrained by the maximum number of characters for a filename

imposed by the local file system. Although this limit on UNIX 4.2BSD is very large, this

scheme tends to lead to "overpopulation" under one directory and reduced efficiency

in searching for a file.

Alternatively, to exploit the hierarchical directory organisation of files offered by the

UNIX file system, each filename component may be mapped as a subdirectory name

of the pathname representing the filename. Consider the following scheme :

Under the VFS's private directory (/user/vfs) are subdirectories for each

FTAM user. The files created by a user are placed under his designated

directory. Suppose the filename given by the user adamflubc .cdn consists

of the following three filename components :

oceanography,

project and

version2.

Then, the VFS's directory organisation might resemble the set up shown in

Figure 3.4

CHAPTER 3. THE IMPLEMENTATION

vfs

adam@ubc.cdn

oceanography

project

m

version2

Figure 3.4: One Way to Interpret and Treat the Filename Attribute

mailto:adam@ubc.cdn

CHAPTER 3. THE IMPLEMENTATION 58

In our implementation, a two level tree structure was adopted. The first level

contains the identities of the creators. Under each of the (creator's) directory are

files whose pathnames are the concatenations of the filename components. Classifying

files according to their creators can be helpful for accounting purposes; it also allows

different users to create files with the same names.

3.4.4 Semantics of User Identifier

In the ISO FTAM documents, Userld is simply a string of alphanumeric characters

without any semantic directions ascribed to it, as in the case with Filename. Userld is

an application-specific type defined for attributes like the identity of initiator and the

identity of creator.

One possible useful interpretation for Userld is to regard it as an Originator/Recipient

Address (O/R Address) type of the CCITT X.400 Recommendation [X400 1984]. An

O/R Address is a symbolic name designed to express various electronic addresses and

can be used for electronic messaging systems. An example of an O/R Address is

adamfiubc .edn where edn is referred to as the message domain identifier; ubc, the sub-

domain name (e.g., the name of an organisation) and adam, the domain-specific string

(e.g., the local user identifier).

3.4.5 File Access Control and Protection

The full-fledged version of the access control scheme defined by FTAM is very

comprehensive and elaborate. The access control offered by the host UNIX system is

simplistic by comparison. One limitation is that the users themselves cannot freely

CHAPTER 3. THE IMPLEMENTATION 59

create groups of persons and specify precisely the kind of access each person may be

given for each file. Also, the types of protection in UNIX offered are restricted only

to read, write and execute accesses (and their combinations), in contrast to the array

of nine elements (read, insert as child, insert as sister, replace, erase, extend, change

attributes, read attributes, delete file, create file8) ISO FTAM VFS offers. For instance,

we can incorporate the access control mechanism proposed by Brachman and Chanson

[Brachman 1987].

In ISO FTAM, access control is provided only on a per-file basis and not on a

per-FADU (or per-record) basis. The latter case can be useful especially for database

management if commitment and concurrency control were also enforced on a per-FADU

basis.

3.4.6 A S N . l Encod ing

Communication between the initiator and the responder occurs through the ex­

change of protocol data units (pdu's). The syntax for the FTAM pdu's are defined in

ISO FTAM documents in Part IV of [FTAM DP2 1985] in terms of Abstract Syntax

Notation One (ASN.l) (refer to Appendix B). Detailed specification of ISO's ASN.l

notation may be found in [ASN1 1985a] and [ASNl 1985b].

A pdu has a hierarchical tree structure. During an FTAM dialogue, pdu trees are

constructed with dynamically allocated storage. The pdu tree can be represented as a

binary tree where each node of a pdu tree corresponds to the C structure displayed in
3In contrast to the 2nd Draft Proposal, the access control for create file is omitted in the Draft

International Standard.

CHAPTER 3. THE IMPLEMENTATION 60

Figure 3.5. This scheme is borrowed from the software developed for the EAN X.400

messaging system [Neufeld 1985]. Here, id holds the protocol code for this node. To

send a pdu out on a transmission line, the pdu tree must be "flattened" into a stream

of octets (or bytes). The number of octets needed to represent this pdu is stored in

length at the root node of the pdu tree. This length value is used in the reconstruction

of the pdu tree from the pdu received. The constructor field points to the pdu subtree

of this node. If this node is a leaf node in the pdu tree, then primitive will point to

the value of the data contained in this leaf node. The next field points to the sibling of

this node in the pdu tree (in contrast to the "subtree" of a node which represents the

"descendants" of the node).

3.5 Specification Issues and Resolutions

Incompleteness and ambiguities in the ISO FTAM specification necessitated ex­

ploring possible avenues of interpretation and picking out the "most reasonable" path

to follow for the local system under prevailing circumstances.

typedef struct ENODE {
long
long
unsigned char *
struct ENODE *
struct ENODE *

id;
length;
primitive:
constructor;
next;

}

Figure 3.5: Representing a pdu tree node in C

CHAPTER 3. THE IMPLEMENTATION 61

3.5.1 Defining the F-DATA Protocol Data Un i t

The representation for all the protocol data units in ubcFTAM abides by the

abstract syntax definitions for the ISO FTAM as given in Part 4 of [FTAM DP2 1985].

However, an adaptation had to be resorted to.

For each FTAM request service primitive, the specification defines a corresponding

pdu. An exception is the F-DATA request service primitive. According to the ISO

FTAM document, the F-DATA.request service primitive corresponds to the Presenta­

tion layer P-DATA service element and no F-DATA request pdu is defined. As a result

of this direct correspondence between the F-DATA.request service primitive encoding

and the P-D ATA.request, a series of F-DATA.requests may be conveyed on a single P-

DATA.request. On the other hand, unlike F-DATA, the other service primitives with

their variety of more complex, application specific parameters, result in pdu's that

are complex data types each of which requires description by a compound set of data

elements, each to be transmitted by separate P-DATA.requests.

Since ubcFTAM does not interface directly with a clear Presentation layer (whose

function is to support the P-DATA service and data type representation transparently),

an explicit F-DATA pdu has to be defined. The parameter of the F-DATA pdu is simply

a stream of octets (or bytes) without any notion of data types. In ASN.l notation, this

implementation-dependent definition is as follows :

BulkdataPDU ::= CHOICE {

CHAPTER 3. THE IMPLEMENTATION 62

[55] IMPLICIT F-DATArequest }

FDATArequest ::= OCTETSTRING

Incidentally, the context specific tag was chosen to be 55 to conform to an FTAM

implementation specification by the National Bureau of Standards [NBS 1986]. Refer

to Appendix B for full details of the abstract syntax definitions ubcFTAM uses.

This decision could affect agreement between two different FTAM implementations

unless the underlying layers implicitly assume that the pdu following a F-READ pdu

or F-WRITE pdu has to be a F-DATA pdu.

3.5.2 Presentation Context

Currently, the only values for the presentation context file attribute that ubcFTAM

recognises are text and binary.

In a practical implementation, it is neither efficient nor feasible to scan the contents

of the entire file to determine the presentation context of the file. Since a text file may

also be considered as binary, it is up to the user of the file to "declare" the appropriate

presentation context according to how the user wishes to view the file contents. Hence,

verification that the presentation context of a file does indeed match what the initiator

has stated is not performed and the presentation context value supplied by the initiator

is simply taken at face value.

Conversion of the contents of a given file to a common presentation context before

storing the file is not advisable. Firstly, the conversion function may not be reflexive

CHAPTER 3. THE IMPLEMENTATION 63

and the exact, original file may not be recoverable. A prime example is the problematic

conversion of data types like floating point numbers. Secondly, the chances are high

that a user subsequently requests the file with the same presentation context as that

with which the file was created.

3.5.3 Authentication

Authentication refers to the ability to verify that someone (the initiator, in our

case) is indeed whoever is claimed. Robust authentication is not easy and is beyond the

scope of this thesis. Thus, we choose to rely on the login authentication and security

provided by the host UNIX operating system.

The credentials of the FTAM user can be locally verified at the system the initiator

runs on before the user is permitted to initiate an FTAM association. Then, the

responder has to authenticate the identity of the initiator machine. One approach

would be to require that the FTAM user or the initiator machine possess the rights to

log on to the UNLX system at the responder machine. In other words, the responder

will only accept FTAM association requests from a predetermined clique of trusted

initiators.

3.5.4 Commitment Control

A file is said to be "committed" the moment all operations requested are "com­

mitted", i.e., from this time on, all changes are guaranteed to be effected and are made

permanent. Prior to the point of commitment, the changes can only be thought of as

tentative, since they are subject to possible rollback (i.e., restoration to the state before

CHAPTER 3. THE IMPLEMENTATION 64

the changes).

If several file service activities are to be considered as atomic (i.e., as an indivisi­

ble action), or if a file service activity is to be combined with other Application layer

activities to form an atomic action, the FTAM file service can serve as a cooperating

main service. In other words, the file service can cooperate with the other activities to

recognise the point where the atomic action begins or ends (i.e., the point of commit­

ment) or both points. An atomic action begun with one file service activity may end

on a different activity. An FTAM responder never offers commitment if any activity is

unsuccessful.

If a distributed commitment control scheme is desired, the activity performed via

the file service can be integrated into it. The file service can support this integration

by acting as a cooperating main service conveying the parameters and semantics of the

Commitment, Concurrency and Recovery (CCR) primitives within the parameters of

certain of the file service primitives. However, FTAM users may dynamically choose

not to have commitment and rollback mechanisms in effect.

The following FTAM service elements can carry commitment primitives :

F-OPEN F-CLOSE

F-SELECT F-CREATE

F-TRANSFER-END F-DESELECT

F-CANCEL F-U-ABORT

The commitment elements borne by the above FTAM service elements may be one of

CHAPTER 3. THE IMPLEMENTATION 65

the following :

C-BEGIN C-RESTART

C-READY C-REFUSE

C-PREPARE C-COMMIT

C-ROLLBACK

Refer to Annex C of Part ITI of [FTAM DP2 1985] for details.

In our implementation, Commitment Control is currently "not supported" in the

sense that if the commitment control parameters are supplied in the service request

primitives, they are ignored and the following minimal commitment control scheme is

effected.

Insofar as bulk data transfer is concerned, the responder will commit a file whenever

F-TRANSFER-END is executed at the end of each write phase and whenever F-ERASE

is executed. This ensures that an F-READ issued after an F-WRITE within the same

data transfer regime will get the up-to-date view of the file.

Commiting a file in as a single atomic action is accomplished through the aid of the

UNIX 4.2 BSD system call rename which guarantees that the act of renaming a file is

atomic. At the onset of a bulk transfer regime, if the selected file already exists, its

data contents are copied to a temporary file which is updated during the data transfer.

At the end of a data transfer (signified by F-TRANSFER-END), the temporary file is

renamed to the original filename atomically. While this scheme tends to be inefficient,

it is a simple way of ensuring atomic action.

CHAPTER 3. THE IMPLEMENTATION 66

3.5.5 Concurrency Contro l

Multiple, simultaneous write access to a file can cause inconsistent views of the file.

To prevent this, concurrency control is necessary. A simple, non-optimal scheme is one

that allows "one write, many reads". Under such a scheme, before a user is granted

write access (i.e., insert, replace, erase, extend and change attributes, in the case of ISO

FTAM) to a file, the user must first acquire a "lock" for it. A file is said to be "locked"

when only the holder of the lock has exclusive access to the file at that time; other

requests to access the locked file are not granted during this time. For ISO FTAM,

read accesses encompass read and read attributes operations. Unlike write accesses,

read accesses to a file do not update the file and thus would not affect the view of the

file; hence, more than one simultaneous read accesses can be permitted.

Actually, the ISO FTAM leaves it to the user to specify different kinds of locks for

different operations. The forms of locking for the operations — read, insert, replace,

erase, extend, read attributes and change attributes — available are :

• shared — "I may perform the operation; so may others";

• exclusive — "I may perform the operation; others may not";

• not required — "I will not perform the operation; others may";

• no access — "No one may perform the operation".

Concurrency control problems are presently circumvented by restricting the num­

ber of FTAM associations the responding protocol machine will accept to one. In

CHAPTER 3. THE IMPLEMENTATION 67

ubcFTAM, all files under the jurisdiction of the VFS belong to the VFS's own direc­

tory (and so can be appropriately protected from other users even with the regular

UNIX file protection scheme). Also, for each connection, at any time, there can be

exactly one "selected" file on which file operations may be performed. Therefore, it is

possible for the VFS to orchestrate concurrent accesses to the "selected" file.

C h a p t e r 4

E v a l u a t i o n

u b c F T A M which is a subset of the ISO F T A M protocol has been implemented.

T h e implementat ion can be run as either the ini t iator or the responder. Current ly ,

u b c F T A M runs on two departmental computers, a Sun 2/120 and a Sun 3 /260 (which

is approximately five times as fast as the former). B o t h computers support U N I X file

systems compat ib le w i t h U N I X 4.2 B S D and are l inked by a 10 M b p s Ethernet .

In this chapter, we give some general retrospective remarks on the implementat ion

of u b c F T A M as well as on the standard specifications on wh ich u b c F T A M is based.

Some empir ical results of its performance is also presented.

4.1 Remarks on the Implementation

4.1.1 The V F S Views

To recapitulate, the V F S can assume at least two views, namely,

• the universal v iew — where the V F S knows of al l files in the host's file system

and

68

CHAPTER 4. EVALUATION 69

• the exclusive view — where the VFS knows only of files that have been explicitly

created using the F T A M file creation service.

Here, we present the issues and arguments for these two views. In general, an argument

that supports one view disputes the other view, and vice versa.

• a c c e s s i b i l i t y o f f i l e s

Exclusive View

Where the VFS takes on the exclusive view, an F T A M user cannot normally or

easily access a remote file that is resident on the VFS's host computer but not

recognised by the VFS (i.e., the requested file was not previously created by the

F TAM file creation service).

LTniversai View

Any file on the VFS's host file system is known to the VFS regardless of whether

or not it had been explicitly created by the FTAM file creation service. Hence,

any file can be directly accessed. When a file is selected to be read, the universal

view VFS dynamically maps the requested file onto a virtual file and transfers it

to the host computer of the F T A M user and then later removes the virtual file.

These actions at the VFS are transparent to the F T A M user.

• i s o l a t e d F T A M effects a n d a u t o n o m o u s c o n t r o l

Exclusive View

Actions on files initiated by F T A M are confined to those files under the dominion

of the VFS and hence other (non-FTAM) users of the system are insulated from

CHAPTER 4. EVALUATION 70

any inexplicable side-effects due to the FTAM program.

Also, accounting of space usage is simplified since all files are owned by the VFS.

Universal View

Since the universal view VFS knows of all files on its host system, contention can

occur due to a file being requested through FTAM and also by some non-FTAM

process on the host computer at the same time. Careful concurrency control

and priority policy that might affect even non-FTAM users on the host computer

become necessary.

• user authentication

Exclusive View

An advantage of the VFS owning the files known to FTAM is that users without

login accounts on the host machine can create files. Such users who are known to

FTAM can utilise FTAM primitives to create (subject to the VFS access control,

of course) and manipulate files. The VFS host machine need not create new login

accounts for remote users.

Universal View

Remote FTAM users must have login accounts on the host machine so that the

local operating system can identify the FTAM user before allowing local files not

created by FTAM to be accessed.

• support features not provided by local file system

Exclusive View

CHAPTER 4. EVALUATION 71

When augmenting the host UNIX file system with features (such as file access

structure and additional file attributes) that it does not normally support, the

exclusive view VFS can promote a uniform view of all files since all the VFS files

would have similar support.

Universal View

With the universal view VFS, to support those features not automatically sup­

ported by the host UNIX file system, files that cannot be fully described in terms

of the host file system require affiliated support files (see sections 3.4.1 and 3.4.2)

for the VFS to maintain the extra features. Two problems may arise. First, only

some files (namely, those intended for VFS use) would have the affiliated support

files; and so, in this respect, the view of all files known to the universal VFS

is not consistent. Second, when a file is deleted by a non-FTAM process, these

VFS-specific affiliated files may be left "dangling" without any files referencing

them. This necessitates periodic garbage collection on affiliated support files un­

less the UNIX kernel is modified to delete any affiliated support files when a file

is destroyed.

• extended file access control and security

Exclusive View

Since all files known to the VFS under the exclusive view are within its direct

control, the VFS can exert its own level of access control (possibly more refined

than what the host file system can offer) over all the VFS files in the best interests

CHAPTER 4. EVALUATION 72

of the F T A M users.

Universal View

In contrast, on a file system such as U N I X that offers only a simple form of

access control , the universal view V F S may have to direct ly use whatever file

access control the host file system can offer. However, this can seriously stifle

the sophist icat ion of the access control mechanism that an ISO F T A M V F S can

be expected to support . Th i s also aggravates the prob lem of protect ing files

on the host computer f rom unscrupulous or unauthorised users. It is unfair

to the users of the host computer who are unwary of the existence of F T A M

activit ies if an F T A M user (possibly f rom a remote system) is permit ted to access

al l the local files whose access control mode have been set to allow access to

everyone. Authent icat ion of F T A M users becomes a real issue. It would have to

be str ingently enforced and this is a non-tr iv ia l task.

The View Adopted

B o t h the universal and the exclusive views are acceptable since both conform to

the specifications. The implementor has the l iberty to decide which view to adopt.

F r o m one standpoint , the clash between these two views essentially hovers around

the confl ict ing demands on t ime and space. In other respects, the resolution of this

polemical contest involves weighing the costs and benefits of achieving certain goals

like ease of use for the F T A M user, minimis ing the complexi ty (and thus the possibi l i ty

of erroneous interpretation) of implementat ion and conceptual consistency. Another

CHAPTER 4. EVALUATION 73

criterion is to consider the main application of the FTAM users — whether FTAM is

to be used primarily for archival purposes or for frequent exchange and updates of files.

The exclusive view tends to favour the former whereas the universal view, the latter.

In light of the above considerations, our decision was to adopt the exclusive view for

the ubcFTAM VFS. The key reasons include the following — conceptual consistency in

the support for features not supported by the host system, security of the host system

and the insulation between FTAM and non-FTAM users on the local system. Clearly,

tradeoffs in this decision are inevitable and justification cannot be easily quantified.

Perhaps, a compromise between these two views can be worked out.

4.1.2 Structured Files

The philosophy behind the design of UNIX was simplicity and modularity. The

premise is that when more complex structures or programs are required, these can

be developed from exploiting the simple, basic building blocks UNIX provides. This

philosophy is reflected by the fact that UNIX only supports one type of file — all UNIX

files are simply regarded as a string of characters without any internal structure.

As a result, mapping UNIX files onto the VFS file attributes is trivial. All UNIX

files can simply be regarded as having an 'Unstructured' Access Structure.

However, most UNIX users tend to regard a file containing only text characters to

be structured as a sequence of "lines" of text (i.e., a sequential file with variable-length

records of text characters). In such files, the linefeed character may have the special

role of marking the end of a line (or a record). In order to convey this commonly

CHAPTER 4. EVALUATION 74

accepted implicit structuring information, such files should be mapped onto a VFS file

as having Access Structure 'Flat' where the DU of each child node of the FADU tree

corresponds to a line (or a record).

On the other hand, the simplicity of UNIX takes its toll on the overhead necessary

to support structured files. Since UNIX does not provide any file record management

facilities, these had to be implemented.

4.2 Remarks on the Standard Specifications

4.2.1 File Identification

The standard does not attach any semantics to the filename components. If a file

is to be selected solely on the basis of the string of filename components, qualifying the

file with its owner is not straightforward.

Taking the UNIX file system as an example, if the pathname identifying a file begins

with a string with syntax, /user/xxx, then xxx would by convention indicate that

the owner of the file is someone whose user identity is xxx. Thus, the file naming

convention on UNIX can be said to have semantic bearings since it conveys implicit

information about the file.

In support of universality of the VFS as a common model, the filename should not

implicitly reveal properties of the file. If desired, such information can be conveyed by

the other file attributes. Since the F T A M documents do not impose any semantics on

filename, we are compelled to assume that a filename identifies a file belonging to the

F T A M user requesting it. It is not unusual to allow different users to own or create

CHAPTER 4. EVALUATION 75

files with the same syntactic names and yet allow such files to be uniquely identified

network-wide. Hence, under this file identification scheme, there must be a way for

an FTAM user to qualify the filename with the ownership of the file. This can be

done by having the VFS use both filename and fileAttributes to identify a file. The

identity Of Creator field of fileAttributes can be used to specify the owner of the file.

The ASN.l definition in the second Draft Proposal for F-SELECT.request allows

both filename and fileAttributes to be passed as parameters and this file identification

scheme can be facilitated. However, in the Draft International Standard, although the

ASN.l definition for F-SELECT.request syntactically allows both filename and other

fileAttributes to be specified, there is an additional clause stating that only the filename

field is used.

Greater flexibility in file identification may be desired. For instance, a user might

wish to be able to pinpoint a file, not merely by its filename, but rather by supplying

a list of file attribute values describing and characterising a particular file. Hence,

to accommodate generality, the standard specifications should allow the possibility of

selecting a file based also on the given values of the attributes of the file apart from

the filename.

4.2.2 Semantics for Structured Files

The internal structure of a file can be described in terms of the ordering of records

within the file and how these records can be directly accessed. The common file organ­

isation styles include :

CHAPTER 4. EVALUATION 76

• sequential: sequentially ordered records, sequentially accessible;

• relative : sequentially ordered records, accessible by position;

• random : sequentially ordered records, accessible by key;

• indexed : key-ordered records, accessible by key.

The hierarchical FADU tree representation for the file access structure is sufficient to

describe all the organisation styles mentioned above except for indexed organisation.

When mapping indexed files to the virtual file format, the primary key (or index)

can correspond to the FADU identifier; however, the FADU structure does not offer

facilities to represent the other (secondary) keys, thus deterring traversal of the file

based on these keys.

Furthermore, the protocol should allow the negotiation of whether or not direct

accessibility of records by their keys is supported. It is unrealistic to assume that all

systems support access techniques other than sequential.

4.3 Performance

To give some idea of the performance of ubcFTAM, a number of test runs and time

measurements were made. The following apply to the test runs.

• The Responder was run on the Sun 3/260 and the Initiator on the Sun 2/120.

• To observe the behaviour of the implementation, the current value of the system

clock was recorded at certain strategic points of interest. Time measurements

CHAPTER 4. EVALUATION 77

using the system clock are only accurate to the second.

• The total elapsed time of interest is measured at the Initiator's side from

the time the F-INITIALIZE.request primitive is sent until the time the F-

TERMINATE.response primitive is received. In other words, the total elapsed

time corresponds to the length of time for one Association regime.

In each run, one main task is performed. The task may be the reading or writing

of a file with access structure Unstructured or Flat. In general, each run involves the

following steps : establishing an FTAM association, creating or selecting a file, opening

the file, transferring the file (by reading or writing), ending the transfer, closing the

file, deselecting the file and finally relinquishing the association. The test runs may be

categorised according to the main task performed as follows :

• write to Unstructured Hie :

The main task is to create a file with access structure Unstructured and write

data into the file.

• write to Flat Hie :

The main task is to create a file with access structure Flat and sequentially write

records to the file. Actually, in our case, a utility routine is used to read lines

(terminated by newline characters) as records from a local UNIX file to be written

to the VFS file via FTAM.

• read entire Rle :

CHAPTER 4. EVALUATION 78

The main task is to select a file already existent at the VFS and read the entire

file with access context Unstructured All Data Units. Note that the requested file

can be one which had been created with access structure Unstructured or Flat.

In the case of Flat files, the records (leaf FADU nodes) are returned one by one

in pre-order traversal sequence.

The time measurements from several runs of each case were averaged. The empirical

results are tabulated in Table 4.1 and Table 4.2. While these statistics cannot be taken

as absolute, they provide some indication of the relative performance of the runs. We

observed that the performance varied with the load on the system and the network.

So, attempts were made to execute the different runs under approximately similar light

system workload conditions.

data bytes
transferred

Total Elapsed Time (seconds) # data bytes
transferred

Write
Unstructured file

Read entire
Unstructured file

3,000 8.3 8.0
5,000 9.3 9.0
10,000 12.7 13.0
30,000 25.0 43.3
50,000 37.7 90.5

Table 4.1: Transfer of Unstructured files

CHAPTER 4. EVALUATION 79

records
transferred

data bytes
transferred

Total Elapsed Time (seconds) # records
transferred

data bytes
transferred

Write
Flat file

Read entire
Flat file

60 3,000 62.3 22.5
106 5,000 109.0 33.0
300 14,175 419.0 83.5
400 18,896 659.5 108.5
1600 50,000 6517.5 415.0

Table 4.2: Transfer of Flat files

4.3.1 Observations

Transferring an entire Flat file evidently takes longer than transferring an entire

Unstructured file containing the same number of data bytes. The main factor influencing

the total elapsed time in the case of Flat files is the number of records (i.e., FADU nodes)

whereas that for Unstructured files is the number of data bytes.

Writing to Flat files takes significantly longer than reading them. This is partly

attributed to the larger number of service primitives that have to be exchanged in

the case of writing. For each record, the following sequence of five service primitives

must be exchanged — F-WRITE.request, F-DATA.request, F-DATAEND.request, F-

TRANSFEREND.request and F-TRANSFEREND.response. For reading the entire

Flat file, the sequence of service primitives involved are — F-READ.request, F-

DATA.request, . . . [as many as there are records] . . ., F-DATAEND.request,

CHAPTER 4. EVALUATION 80

F-TRANSFEREND.request and F-TRANSFEREND.response. Furthermore, when a

Flat file is being written, the present simple commitment control scheme requires

that the VFS commit the file each time after a record is serviced (at the time of

F-TRANSFEREND .request). This certainly lengthens the overhead processing time

at the VFS. A major factor contributing to this overhead is the scheme used to commit

files in an atomic fashion, as described in Section 3.5.4.

The experiment Write to Flat file was repeated such that the file is committed only

after all the records have been transferred (i.e., committed only at F-CLOSE) rather

than after every record. As anticipated, the time elapsed were shorter and closer to

being proportionate to the number of records transferred. The results are shown in

Table 4.3. Of course, a price must be paid for committing a file only after all records

have been transferred — should the transfer be prematurely halted during an open

regime, whatever records transferred thus far would be lost.

As pointed out in Section 2.4.1, when an Unstructured file is read, the initiator

receives the contents in a single F-DATA.request whereas the contents of an Unstruc­

tured file for an F-WRITE.request are transmitted in fragments (of size IK in the above

test runs). From Table 4.1, for an Unstructured file larger than a certain size (5K in

our test runs), reading the entire file takes longer than writing it. This occurs partly

because the F-DATA.request primitive carrying the single DU of an Unstructured file

gets so large that it adversely affects the time for fragmenting and re-assembling the

large pdu before sending and on receiving it. In fact, according to the table, the turning

point occurs between transferring 5K and 10K bytes; and this reflects the 8K optimal

CHAPTER 4. EVALUATION 81

records
transferred

data bytes
transferred

Write Flat File

records
transferred

data bytes
transferred

Total Elapsed Time (seconds) # records
transferred

data bytes
transferred

Commit after
each record transferred

Commit after
all records transferred

60 3,000 62.3 32.2
106 5,000 109.0 50.4
300 14,175 419.0 130.0
400 18,896 659.5 179.0
1600 50,000 6517.5 649.3

Table 4.3: Write Flat files - comparing different commit schemes

packet size used by the underlying TCP/IP software. When the file to be transferred

is smaller than the turning point size, the exchange of several F-DATA.requests takes

longer than that of a single F-DATA.request (of the same total size). This can be at­

tributed to the fact that the lower layer software waits to accumulate the smaller units

until some threshold size is reached before sending them as a whole. Correspondingly,

the receiving entity has to appropriately break down the packet received.

Furthermore, the data flow between the initiator and the responder is changed

more frequently during a read data transfer regime than during a write data transfer

regime. For writing, data flow starts with the initiator sending an F-WRITE.request,

followed by a series of F-DATA.requests, an F-DATAEND.request and finally a F-

TRANSFEREND.request before the data flow switches when the responder sends the

CHAPTER 4. EVALUATION 82

F-TRANSFEREND .response. On the other hand, for reading, data flow starts with

the initiator sending an F-READ.request, switches to the responder which sends F-

DATA.requests and an F.DATAEND.request, then switches again to the initiator which

sends an F-TRANSFEREND.request and finally switches back to the responder which

sends the F-TRANSFEREND .response. In other words, data flow alternates four times

for reading in,contrast to two times for writing. This can become a contributing factor

to longer time delays for reading especially when the network is particularly slow.

In general, using FTAM takes longer than using the UNIX remote copy (rep) utility.

On an average, rep takes only up to 6 seconds to transfer a 50,000 byte (unstructured)

file between the two Sun machines. This is expected since FTAM attempts to accom­

modate a variety of file systems and so more parameters have to be exchanged and

negotiated. On the other hand, rep is meant to be used for file transfers only among

UNIX file systems. Moreover, part of the delay was due to using FTAM without the

grouping control service support and the "stop and wait" nature of the protocol. Most

of the time, the Initiator has to wait to receive a response primitive before it can send

the next request primitive. Also, the FTAM protocol must proceed strictly in stages

as dictated by the regimes. However, if the grouping control service were supported,

a series of request primitives may be submitted together to be serviced and responded

to as a group.

4.4 Improvements

Reflecting on the present implementation, there is room for improvement in several

CHAPTER 4. EVALUATION 83

aspects.

The current scheme to support structured files is simple and requires the entire

FADU to be resident in memory for dynamic manipulation. This demand for mem­

ory is exacerbated when several concurrent FTAM associations are entertaining files

represented by large, complex hierarchical FADU trees. A better and more efficient

algorithm for record management requiring less dynamic memory space can be sought.

The algorithm used to maintain the data contents of a file is simple. Every time a

file is committed, if any FADU node of the structure tree has been modified, the entire

file containing the file contents is re-written. This method can be expensive especially

when the frequency of file commitment is high. Nonetheless, it has the advantage of

not creating "holes" in the file that stores the file contents per se due to records being

replaced by shorter ones. Better algorithms for maintaining the file contents can be

sought and tested for efficiency under general FTAM usage.

With the aid of the timing results reflecting the behaviour of the implementation

under common usage, modules can be identified for code optimisation.

4.5 Extensions

The current ubcFTAM implementation is a subset of the ISO FTAM protocol.

This subset can be extended to offer more functionality and provide more services. As

the next phase of development, the implementation can be progressively enhanced to

support the following useful features as well.

• standard Presentation layer interface

CHAPTER 4. EVALUATION 84

The interface to the service provider can be modified to utilise the standard ISO

Presentation layer services using Presentation layer service primitives or CASE.

• hierarchical file access structure

The VFS can be extended to support hierarchically structured files. The present

representation of the internal structure of files is adequate for supporting the

hierarchical file access structure. However, some special treatment is needed

for the reading or writing of a hierarchically structured file, especially when it

is accessed with access contexts Hierarchical All Data Units or Hierarchical No

Data Units.

• grouping control service

This would permit the concatenation of frequently used sequences of service prim­

itives together to be processed and responded to as a group. The FTAM user

may find this feature attractive since delays can be reduced, especially when the

time lapse due to communication between the initiator's host and the respon­

ded host is long. For service elements such as F-TRANSFEREND, F-CLOSE

and F-DESELECT for which failure is unlikely or failure would not cause serious

repercussions, the FTAM user probably would not care to wait to receive every

single response primitive. State transition maintenance would have to be modi­

fied to take into consideration the fact that sequences of (grouped) primitives are

regarded as a unit.

• multiple associations

CHAPTER 4. EVALUATION 85

The responder can be upgraded to accept more than one F T A M associations at

a t ime. Consequently, more attent ion must be paid to concurrency control since

a part icular file in the V F S may be accessed simultaneously by separate F T A M

associations. Users on different, concurrent F T A M associations must have a con­

sistent view of the same file. Depending on the concurrency control a lgor i thm,

some delays may arise due to files being temporar i ly unavai lable if they are locked.

• checkpoint ing, recovery and restart ing services

For a more reliable file service, the implementat ion should also al low checkpoints

to be interspersed wi th in the data being transferred to faci l i tate restart ing the

transfer of data as well as recovery f rom failure dur ing data transfer. To support

recovery and restart ing, buffer management schemes are needed.

• commitment, concurrency and recovery support

Th is feature is necessary if the file service act iv i ty is to be used in conjunction

w i th other App l ica t ion layer activit ies to form an atomic act ion. Checkpoint­

ing, recovery and restart ing services are necessary to support commitment and

rol lback mechanisms.

Chapter 5

Conclusion

This thesis aimed at developing a prototype system for a UNIX 4.2 BSD system to

allow files to be transferred, accessed and managed in a manner conforming to the ISO

F T A M protocol. This goal has been realised. Furthermore, through developing the ISO

F T A M virtual filestore mapping for UNIX, we have also succeeded in enduing the local

file system with the ability to store and handle structured files, to access and transfer

segments of file contents as well as to support several file attributes not supported by

UNIX.

We have also drawn attention to several areas which the standard specifications

have left open to question and that warrant further standardisation. In the meantime,

practical development work can only be interim since different implementors would

resort to their own interpretation rendering conformance to the standard difficult and

thus defeating the noble goals of Open Systems Interconnection.

In addition, the experience gained from studying and implementing a protocol such

as the ISO F T A M has also prompted us to identify the following issues meriting further

86

CHAPTER 5. CONCLUSION 87

research and work.

• name resolution

In order to provide network wide access control, there must be a scheme to

resolve how to represent a user's identity, Userld, since the syntax may differ

from machine to machine. When building up an access control list, how would a

user on machine A know how to identify another user on another machine B that

may use a different naming convention? A common user identification scheme is

needed for authentication, access control and accounting purposes.

• third party file transfers

In its most general configuration, a file transfer can involve three host computers

(or parties):

— the initiating or controlling host which specifies and coordinates the transfer,

— the sending host at which the file originally resides and

— the receiving host(s) where the file is to be sent.

A third party file transfer is one that allows a user at host A to initiate the transfer

of a file residing on another host B to a third host C.

The definition of the FTAM service primitives do not make provision for speci­

fying third party file transfers. Third party transfers using a connection-oriented

protocol necessitates more intricate synchronisation control since two connections

(between A and B as well as between B and C) have to be maintained. It might be

CHAPTER 5. CONCLUSION 88

useful to provide service primitives to support the specification and coordination

of third party file transfers.

• locking at a per-FADU basis

This would be particularly useful for use of the file service by database applica­

tions where files are usually accessed record by record, necessitating locking at

the record level. Often, a record maps onto a component FADU of the FADU

tree. On many operating systems, the locking mechanism takes a file as the

smallest object that can be locked; that is, individual component records within

a file cannot be locked. In such cases, to support locking on a per-FADU basis is

definitely non-trivial.

• compression of data to be transferred

To minimise the traffic due to the volume of data transferred, it might be desirable

to condense the data. Then, an additional file attribute to specify the data

compression algorithm used is needed. If the data transferred is to be encrypted,

there must be some agreement on whether the compression algorithm is to be

applied before or after the encryption algorithm. Encoding the contents of files

(for purposes such as encryption and data compression) really should be handled

by the Presentation Layer service which, according to the OSI reference model,

is responsible for the representation of data and their data types.

Bibliography

[Aggarwal 1985]

[Aggarwal 1986]

[ASN1 1985a]

[ASN1 1985b]

[Bessette 1986]

[Brachman 1987]

[CASE 1986]

Aggarwal, S., Sabnani K. and Gopinath, B., "A New File
Transfer Protocol", AT&T Technical Journal, 64 (10), De­
cember 1985.

Aggarwal, S. and Sabnani K., "Formal Specification of a
File Transfer Protocol", Proceedings of the IEEE INFO-
COM '86, 1986, pp. 44-57.

International Standards Organisation, "Information Pro­
cessing Systems - Open Systems Interconnection - Speci­
fication of Abstract Syntax Notation One", ISO DIS 8824,
June 1985.

International Standards Organisation, "Information Pro­
cessing Systems - Open Systems Interconnection - Basic
Encoding Rules for Abstract Syntax Notation One", ISO
DIS 8825, June 1985.

Bessette, Sylvie, "Implantation d'un protocole de transfert,
d'acces et de gestion de fichiers", M.Sc. thesis, Unversite
de Montreal, July 1986.

Brachman, B.J. and Chanson, S.T., "An Access Control
Mechanism based on the ISO FTAM recommendation",
Canadian Information Processing Society Conference Pro­
ceedings, May 1987, pp.161-166.

ISO DIS 8649/2, "Information Processing Systems - OSI
- Service Definition for Common Application Service Ele­
ments Part 2: Association Control" June 1986.

89

[ECMA 1982] European Computer Manufacturers' Association, "Virtual
File Protocol", ECMA-85, September 1982.

[FTAM DIS 1986]

[FTAM DP2 1985]

[Lewan 1983]

[Linington 1984]

[Neufeld 1985]

[NBS 1986]

[NIFTP 1981]

[OSI 1983]

[Petersen 1985]

ISO DIS 8571/1, 2, 3, 4, "Information Processing Systems
- OSI - File Transfer, Access and Management" ISO/TC
91'/SC 21 N1215, N1216, N1217, N1218, July 1986.

ISO DIS 8571/1, 2, 3, 4, "Information Processing Systems
- OSI - File Transfer, Access and Management" ISO/TC
97/SC16 N1190, N1222, N122S, N1224 , February 1985.

Lewan, D. and Long, H. G., "The OSI File Service", Pro­
ceedings of the IEEE, 71 (12), December 1983, pp. 1414-
1419.

Linington, P. F., "The Virtual Filestore Concept", Com­
puter Networks, 8 (l), January 1984, pp. 13-16.

Neufeld, G., Demco, J., Hilpert B., and Sample, R., "EAN:
An X.400 Message System", Computer Message Systems -
85, Proceedings of the IFIP TC 6 International Sympo­
sium on Computer Message Systems, Uhlig, R. P. (ed.),
September 1985, pp. 3-15.

National Bureau of Standards, Edited by Heather, J.,
"Implementation Agreements Among Implementors of OSI
Protocols", NBSIR 86-SS85-2, October 1986.

File Transfer Protocol Implementors Group, "A Net­
work Independent File Transfer Protocol", NIFTP-B(80),
February 5, 1981.

International Standards Organisation, "Information Pro­
cessing Systems - Open Systems Interconnection - Basic
Reference Model", 1983.

Petersen, N. K. and Skovgaard T., "Anticipating the ISO
File Transfer Standards in an Open Systems Implemen­
tation", Computer Networks and ISDN Systems, 9 (4),
April 1985, pp. 267-280.

90

International Standards Organisation, "Information Pro­
cessing Systems - OSI - Connection oriented presentation
service definition", ISO DIS 8822, June 1986.

International Standards Organisation, "Information Pro­
cessing Systems - OSI - Connection oriented presentation
protocol specification", ISO DIS 8823, June 1986.

Quarterman, J. S., Siberschatz A. and Peterson, J. L.,
"4.2BSD and 4.3BSD as Examples of the UNIX System",
ACM Computing Surveys, 17 (4), December 1985, pp. 371-
401.

Ritchie, D. M. and Thompson K., "The UNIX Time-
Sharing System", The Bell System Technical Journal,
57 (6), July/August 1978, pp. 1905-1930.

Comite Consultatif Internationale de Telegraphique et
Telephonique, "Fascicle VIII.7 Recommendation X.400,
Data Communication Networks : Message Handling Sys­
tems", Recommendation X.4OO, October 1984.

Comite Consultatif Internationale de Telegraphique et
Telephonique, "Recommendation X.409, Message Han­
dling Systems: Presentation Transfer Syntax and Nota­
tion", Recommendation X.409, December 1983.

91

Appendix A

State Transition Diagrams

Legend f o r the s e r v i c e p r i m i t i v e s :
r e q = re q u e s t
i n d = i n d i c a t i o n
r e s = response
conf = c o n f i r m

92

APPENDIX A. STATE TRANSITION DIAGRAMS

State Transition Diagram
for Association Establishment (Initiator)

APPENDIX A. STATE TRANSITION DIAGRAMS

State Transition Diagram
for Association Establishment (Responder)

F-INITIALIZE resp (+)
F-TERMINATE ind

APPENDIX A. STATE TRANSITION DIAGRAMS

State Transition Diagram
for the File Selection Establishment service (Initiator)

F-OPEN conf (+) F-CLOSE req

APPENDIX A. STATE TRANSITION DIAGRAMS 96

State Transition Diagram
tor the File Selection Establishment service (Responder)

F-CREATE ind S V
(initialized j

F-DELETE resp

APPENDIX A. STATE TRANSITION DIAGRAMS

State Transition Diagram
for the Bulk Data Transfer Service (Initiator)

F-DATA ind F-DATA req

APPENDIX A. STATE TRANSITION DIAGRAMS

State Transition Diagram
for the Bulk Data Transfer Service (R e s p o n d e r)

F-DATA- req F-DATA ind

Appendix B

A S N . l definitions for F T A M

IS08571-FTAM definitions

BEGIN

PDU ::= CHOICE<InitializePDU, FilePDU. BulkdataPDU}

InitializePDU ::= CHOICE {
[APPLICATION 1] IMPLICIT FINITIALIZErequest,

[1] IMPLICIT FINITIALIZEresponse,
[2] IMPLICIT FTERMINATErequest,
[3] IMPLICIT FTERMINATEresponse,
[4] IMPLICIT FUABORTrequest.
[5] IMPLICIT FUABORTresponse }

FilePDU := CHOICE {
[6] IMPLICIT FSELECTrequest,
[7] IMPLICIT FSELECTresponse,
[8] IMPLICIT FDESELECTrequest,
[9] IMPLICIT FDESELECTresponse,
[10] IMPLICIT FCREATErequest,
[11] IMPLICIT FCREATEresponse,
[12] IMPLICIT FDELETErequest,
[13] IMPLICIT FDELETEresponse,
[14] IMPLICIT FREADATTRIBrequest,
[15] IMPLICIT FREADATTRIBresponse,

99

APPENDIX B. ASN.l DEFINITIONS FOR FTAM 100

[16] IMPLICIT FCHANGEATTRIBrequest,
[17] IMPLICIT FCHANGEATTRIBrespon.se.
[18] IMPLICIT FOPENrequest,
[19] IMPLICIT FOPENresponse.
[20] IMPLICIT FCLOSErequest,
[21] IMPLICIT FCLOSEresponse.
[22] IMPLICIT FBEGINGROUPrequest,
[23] IMPLICIT FBEGINGROUPresponse.
[24] IMPLICIT FENDGROUPrequest,
[25] IMPLICIT FENDGROUPresponse.
[26] IMPLICIT FRECOVERrequest,
[27] IMPLICIT FRECOVERresponse.
[28] IMPLICIT FLOCATErequest.
[29] IMPLICIT FLOCATEresponse.
[30] IMPLICIT FERASErequest.
[31] IMPLICIT FERASEresponse
>

BulkdataPDU := CHOICE <
[32] IMPLICIT FREADrequest.
[33] IMPLICIT FWRITErequest,
[34] IMPLICIT FDATAENDrequest.
[35] IMPLICIT FTRANSFERENDrequest,
[36] IMPLICIT FTRANSFERENDresponse.
[37] IMPLICIT FCANCELrequest.
[38] IMPLICIT FCANCELresponse.
[39] IMPLICIT FRESTARTrequest,
[40] IMPLICIT FRESTARTrespon.se,
[55] IMPLICIT FDATArequest
>

[APPLICATION 1] IMPLICIT FINITIALIZErequest ::=
SEQUENCE <

protocolld [0] INTEGER < isoFTAM(O) >.
versionNumber [1] IMPLICIT SEQUENCE <

major INTEGER.
minor INTEGER >

http://FCHANGEATTRIBrespon.se
http://FRESTARTrespon.se

APPENDIX B. ASN.l DEFINITIONS FOR FTAM 101

— i n i t i a l l y {major 0,
minor 0}

serviceType [2] INTEGER
{ reliable (0).

user correctable(1) },
serviceClass [3] INTEGER

{ transfer(0) ,
access (1),
management (2) },

functionalUnits [4] BITSTRING {
read (0),
write (1),
fileAccess (2),
limitedManagement (3),
enhancedManagement (4),
grouping (5),
recovery (6),
restartDataTransfer (7) >

attributeGroups [5] BITSTRING {
storage (0),
security (1) >

rollbackAvailability [6] BOOLEAN DEFAULT FALSE,
PresentationContextName,
identityOfInitiator [7] GraphString OPTIONAL,
CurrentAccount OPTIONAL.
filestorePassword [8] OCTETSTRING OPTIONAL,
checkpointWindow [9] INTEGER OPTIONAL.

[1] IMPLICIT FINITIALIZEresponse ::=
SEQUENCE {

Diagnostic,
protocolld [0] INTEGER -CisoFTAM(O) },
versionNumber [1] IMPLICIT SEQUENCE {

major INTEGER,
minor INTEGER >

serviceType [2] INTEGER
< reliable (0),

APPENDIX B. ASN.l DEFINITIONS FOR FTAM 102

user correctable(1)
serviceClass [3] INTEGER

i transfer(O),
access (1) ,
management (2) >,

functionalUnits [4] BITSTRING {
read (0).
write (1).
fileAccess (2),
limitedManagement (3),
enhancedManagement (4).
grouping (5),
recovery (6).
restartDataTransf er (7) >

attributeGroups [5] BITSTRING {
storage (0),
security (1))•

rollbackAvailability [6] BOOLEAN DEFAULT FALSE.
PresentationContextName.
checkpointWindow [7] INTEGER OPTIONAL.

>

[2] IMPLICIT FTERMINATErequest ::=

SEQUENCE {-- no members defined for now -- >

[3] IMPLICIT FTERMINATErespon.se : := SEQUENCE { Charging OPTIONAL }

[4] IMPLICIT FUABORTrequest ::= SEQUENCE < Diagnostic }

[5] IMPLICIT FPABORTrequest ::= SEQUENCE < Diagnostic }
[6] IMPLICIT FSELECTrequest ::=

SEQUENCE <
Filename,
OtherAttributes OPTIONAL.
AccessControl,
AccessPasswords OPTIONAL.
ConcurrencyControl OPTIONAL,

http://FTERMINATErespon.se

APPENDIX B. ASN.l DEFINITIONS FOR FTAM 103

CommitmentControl OPTIONAL,
currentAccessStructureType [0]

AccessStructureType OPTIONAL,
CurrentAccount OPTIONAL }

[7] IMPLICIT FSELECTresponse : : =
SEQUENCE {

Diagnostic,
Filename
OtherAttributes
AccessControl }

OPTIONAL.
OPTIONAL,

[8] IMPLICIT FDESELECTrequest ::= SEQUENCE { >

[9] IMPLICIT FDESELECTresponse ::=
SEQUENCE <

Diagnostic,
Charging OPTIONAL }

[10] IMPLICIT FCREATErequest : : =
SEQUENCE {

Filename,
OtherAttributes
AccessControl,
AccessPasswords
Cone urrenc yContro1
CommitmentControl
override
CurrentAccount

OPTIONAL,

OPTIONAL.
OPTIONAL.
OPTIONAL,

INTEGER OPTIONAL.
OPTIONAL >

[11] IMPLICIT FCREATEresponse ::= FSELECTresponse

[12] IMPLICIT FDELETErequest ::=
SEQUENCE < deletePassword [0] OCTETSTRING OPTIONAL }

[13] IMPLICIT FDELETEresponse ::= FDESELECTresponse

[14] IMPLICIT FREADATTRIBrequest ::= SEQUENCE { AttributeNames }

APPENDIX B. ASN.l DEFINITIONS FOR FTAM 104

[15] IMPLICIT FREADATTRIBresponse :: =
SEQUENCE {

Diagnostic,
Filename OPTIONAL,
OtherAttributes OPTIONAL }
— At least one of the OPTIONALs

[16] IMPLICIT FCHANGEATTRIBrequest :: =
SEQUENCE {

Filename
OtherAttributes

OPTIONAL,
OPTIONAL }

At least one the OPTIONALs

<< NOTE >> :
-- That the 2DP requires at least one OPTIONAL i s not consistent

because i f none of the f i e l d s i n OtherAttributes were successfully
changed, the OtherAttributes would be absent.

-- So, i t i s reasonable to remove this requirement that
"at least one of the OPTIONALs" especially since this i s
consistent with the DIS.

[17] IMPLICIT FCHANGEATTRIBresponse ::= FREADATTRIBresponse

[18] IMPLICIT FOPENrequest ::= SEQUENCE {
processingMode [0] BITSTRING {

read (0),
insertChild (1),
ins e r t S i s t e r (2),
replace (3),
extend (4).
erase (5) },

PresentationContextName
ConcurrencyControl
CommitmentControl
A c t i v i t y l d e n t i f i e r
[1] RecoveryMode

OPTIONAL.
OPTIONAL,
OPTIONAL,
OPTIONAL.
OPTIONAL >

RecoveryMode ::= INTEGER { none(O),

APPENDIX B. ASN.l DEFINITIONS FOR FTAM 105

a t S t a r t O f F i l e (l) .
a t A n y A c t i v e C h e c k p o i n t (2) }

[19] IMPLICIT FOPENresponse ::=
SEQUENCE {

D i a g n o s t i c ,
PresentationContextName
Cone u r r e n c yContro1
[0] RecoveryMode
[1] P r e s e n t a t i o n A c t i o n s

OPTIONAL,
OPTIONAL,
OPTIONAL
OPTIONAL >

P r e s e n t a t i o n A c t i o n s ::= BITSTRING { pDefine(O), p D e l e t e (l) >

[20] IMPLICIT FCLOSErequest ::=
SEQUENCE < CommitmentControl OPTIONAL >

[21] IMPLICIT FCLOSEresponse ::=
SEQUENCE {

D i a g n o s t i c ,

CommitmentControl OPTIONAL >

[22] IMPLICIT FBEGINGROUPrequest ::= SEQUENCE { t h r e s h o l d [0] INTEGER }

[23] IMPLICIT FBEGINGROUPresponse ::= SEQUENCE { -- no members — }

[24] IMPLICIT FENDGROUPrequest ::= SEQUENCE { -- no members -- >

[25] IMPLICIT FENDGROUPresponse ::= SEQUENCE < -- no members -- >
[26] IMPLICIT FRECOVERrequest ::=

SEQUENCE <
A c t i v i t y l d e n t i f i e r ,
bulkTransferNumber [0] INTEGER,
A c c e s s C o n t r o l
Ac c e s s Pas s words
r e c o v e r y P o i n t

OPTIONAL,
OPTIONAL.

[1] INTEGER OPTIONAL }

APPENDIX B. ASN.l DEFINITIONS FOR FTAM 106

[27] IMPLICIT FRECOVERresponse ::=
SEQUENCE {

Diagnostic,
recoveryPoint [0] INTEGER OPTIONAL >

[28] IMPLICIT FLOCATErequest ::=
SEQUENCE {

FTAM_FADUIdentity.
ConcurrencyControl OPTIONAL }

[29] IMPLICIT FERASErequest ::=
SEQUENCE <

Diagnostic,
FTAM.FADUIdentity OPTIONAL >

[30] IMPLICIT FERASErequest ::=
SEQUENCE {

FTAM.FADUIdentity.
ConcurrencyControl OPTIONAL >

[31] IMPLICIT FERASErequest ::= SEQUENCE { Diagnostic >

[32] IMPLICIT FREADrequest ::=
SEQUENCE {

FTAM.FADUIdentity.

[33] IMPLICIT FWRITErequest ::=
SEQUENCE <

faduOperation [0] INTEGER {
insertChild (0),
insertSister (1).

AccessContext OPTIONAL.
ConcurrencyControl OPTIONAL}

replace
extend

(2) .
(3) }.

FTAM.FADUIdentity.
AccessContext OPTIONAL,
ConcurrencyControl OPTIONAL}

APPENDIX B. ASN.l DEFINITIONS FOR FTAM 107

[34] IMPLICIT FDATAENDrequest ::=
SEQUENCE { D i a g n o s t i c }

[35] IMPLICIT FTRANSFERENDrequest ::=
SEQUENCE { CommitmentControl OPTIONAL >

[36] IMPLICIT FTRANSFERENDresponse ::=
SEQUENCE {

D i a g n o s t i c ,

CommitmentControl OPTIONAL }

[37] IMPLICIT FCANCELrequest ::= SEQUENCE { D i a g n o s t i c }

[38] IMPLICIT FCANCELresponse ::= FCANCELrequest
[39] IMPLICIT FRESTARTrequest ::=

SEQUENCE {
c h e c k p o i n t I d [0] INTEGER,
D i a g n o s t i c OPTIONAL }

[40] IMPLICIT FRESTARTresponse ::=
SEQUENCE {

c h e c k p o i n t I d [0] INTEGER,
D i a g n o s t i c OPTIONAL >

[55] IMPLICIT FDATArequest ::= OCTETSTRING

A p p l i c a t i o n - w i d e Types

D i a g n o s t i c ::= [APPLICATION 0] IMPLICIT SEQUENCE OF
SEQUENCE <

e r r o r t y p e i d e n t i f i e r [0] E r r o r T y p e l d e n t i f i e r ,
e r r o r i d e n t i f i e r [1] E r r o r l d e n t i f i e r ,
e r r o r 0 b s e r v e r [2] INTEGER,
e r r o r S o u r c e [3] INTEGER,

APPENDIX B. ASN.l DEFINITIONS FOR FTAM 108

suggestedDelay[4] INTEGER OPTIONAL,
further/Details CHOICE {

[5] GraphString,
[6] OCTETSTRING } OPTIONAL

ErrorTypeldentifier ::= INTEGER {
success (0),
warning (1),
recoverableError (2),
unrecoverableError (3) }

E r r o r l d e n t i f i e r ::= INTEGER as defined i n 2DP Part III

CurrentAccount ::= [APPLICATION 2] GraphString

Charging ::= [APPLICATION 3] IMPLICIT SEQUENCE OF
SEQUENCE < resourceeld

chargingUnit
chargingValue

GraphString,
GraphString,
INTEGER >

Filename ::= [APPLICATION 4] IMPLICIT SEQUENCE OF GraphString

OtherAttributes :
[APPLICATION 5] IMPLICIT SEQUENCE OF

CHOICE {
permittedActions [i] BITSTRING -C

read(O).
insertChild(l) ,
insertSister(2),
replace(3).
extend(4),
erase(5).
readforwards(6),
readbackwards(7),
readAny0rder(8),
writeforwards(9),
writebackwards(lO),
writeAnyOrder(11),

APPENDIX B. ASN.l DEFINITIONS FOR FTAM 109

wr i t e E 0 F (1 2)
}

a c c e s s C o n t r o l [2] IMPLICIT SEQUENCE OF C o n d i t i o n ,
account [3] Cur r e n t A c c o u n t ,
c r e a t i o n [4] G e n e r a l i s e d T i m e ,
l a s t M o d i f i c a t i o n [5] Ge n e r a l i s e d T i m e ,
l a s t R e a d A c c e s s [6] Ge n e r a l i s e d T i m e ,
i d e n t i t y O f C r e a t o r [7] U s e r l d
i d e n t i t y O f L a s t M o d i f i e r [8] U s e r l d ,
i d e n t i t y O f L a s t R e a d e r [9] U s e r l d ,
f i l e A v a i l a b i l i t y [10] INTEGER {

p r e s e n t a t i o n C o n t e x t [11]
IMPLICIT SEQUENCE OF PresentationContextName,

encryptionName [12] G r a p h S t r i n g ,
a c c e s s S t r u c t u r e T y p e [13] A c c e s s S t r u c t u r e T y p e ,
c u r r e n t F i l e S i z e [14] F i l e s i z e ,
f u t u r e F i l e S i z e [15] F i l e s i z e ,
l e g a l Q u a l i f i c a t i o n s [16] G r a p h S t r i n g ,
p r i v a t e U s e [17] OCTETSTRING >

immediate (0) ,
d e f e r r e d (1) }

A c c e s s C o n t r o l [APPLICATION 6] BITSTRING {
read
i n s e r t C h i l d
i n s e r t S i s t e r
r e p l a c e
extend

c h a n g e A t t r i b u t e s
r e a d A t t r i b u t e s
d e l e t e F i l e
c r e a t e F i l e

erase

(0) .
(1) .
(2) .
(3) ,
(4) ,
(5) .
(6) ,
(7) ,
(8) ,
(9) }

AttributeNames BITSTRING {
fi l e n a m e
p e r m i t t e d A c t i o n s
a c c e s s C o n t r o l

(0) .
(1) .
(2) ,
(3) . account

APPENDIX B. ASN.l DEFINITIONS FOR FTAM 110

creation (4),
lastModification (5),
lastReadAccess (6),
identityOfCreator (7).
identityOfLastModifier (8),
identityOfLastReader (9),
f i l e A v a i l a b i l i t y (10),
presentationContext (11),
encryptionName (12),
accessStructureType (13),
currentFileSize (14),
futureFileSize (15),
legalQualifications (16),
privateUse (17)

Condition ::= SEQUENCE { permittedAccess [0] AccessControl,
identity [1] Userld OPTIONAL,
passwords [2] AccessPasswords,
locationOfInitiator[3] SEAPAddress OPTIONAL }

AccessPasswords ::= [APPLICATION 7] IMPLICIT SEQUENCE {
read [0] OCTETSTRING OPTIONAL,
insertChild [1] OCTETSTRING OPTIONAL.
insertSister [2] OCTETSTRING OPTIONAL.
replace [3] OCTETSTRING OPTIONAL.
extend [4] OCTETSTRING OPTIONAL.
erase [5] OCTETSTRING OPTIONAL.
changeAttributes [6] OCTETSTRING OPTIONAL.
readAttributes [7] OCTETSTRING OPTIONAL.
deleteFile [8] OCTETSTRING OPTIONAL.
createFile [9] OCTETSTRING OPTIONAL >

Userld ::= GraphString

AccessStructureType ::= SEQUENCE {
[0] INTEGER <

unstructured (0),

APPENDIX B. ASN.l DEFINITIONS FOR FTAM 111

f l a t (1) ,
h i e r a r c h i c a l (2) >,

maxDepth [1] INTEGER OPTIONAL,
-- maxDepth o n l y p e r m i t t e d w i t h h i e r a r c h i c a l

}

F i l e s i z e ::= SEQUENCE < u n i t s INTEGER.
s i z e l n U n i t s INTEGER,
r e s i d u e INTEGER}

PresentationContextName ::= IS08822-PRES.ref
— ubcFTAM used t h i s :
PresentationContextName ::= BITSTRING { b i n a r y (l) , a s c i i (2) >

C o n c u r r e n c y C o n t r o l ::= [APPLICATION 8] A c c e s s C o n t r o l
-- s e t f o r e x c l u s i v e ,

unset f o r shared

CommitmentControl ::= [APPLICATION 9] ISO-8649/3.ref
— as d e f i n e d i n the CCR standards

A c t i v i t y l d e n t i f i e r ::= [APPLICATION 10] INTEGER

F A D U I d e n t i f i e r ::= CHOICE { G r a p h S t r i n g . INTEGER >

FTAM_FADUIdentity ::=
[APPLICATION 11] CHOICE

{ f a d u l d e n t i t y [0] IS08571 - FSTR.FADUIdentity,
i d e n t i t y [1] EXTERNAL >

-- FTAM S t r u c t u r e Module d e f i n i t i o n : PART I I , Clause 5.3.1

FADUI d e n t i t y ::= SEQUENCE*
CHOICE*

[0] INTEGER { f i r s t (O) , l a s t (l) } .
[1] INTEGER -[current (0) .

next (1) ,

APPENDIX B. ASN.l DEFINITIONS FOR FTAM 112

}

p r e v i o u s (2) } ,
[2] F A D U I d e n t i f i e r .
[3] IMPLICIT SEQUENCE OF SEQUENCE {

f a d u l d e n t i f i e r F A D U I d e n t i f i e r ,
a r c l e n g t h [1] INTEGER DEFAULT 1 >,

levelnumber[4] INTEGER
-- levelnumber o n l y i n access c o n t e x t 4

FADUStructure := SEQUENCE <
f a d u l d e n t i f i e r
d a t a E x i s t s
subtree

[0] IMPLICIT F A D U I d e n t i f i e r ,
[1] BOOLEAN.
SEQUENCE OF SEQUENCE {

a r c l e n g t h [0] INTEGER DEFAULT 1,
FADUStructure

>

FADU ::= SEQUENCE {
f a d u l d e n t i f i e r
d a t a U n i t
s u b t r e e

[0] IMPLICIT F A D U I d e n t i f i e r ,
DU OPTIONAL,

SEQUENCE OF SEQUENCE {
a r c l e n g t h [0] INTEGER DEFAULT 1,
FADU }

F i l e T r a n s f e r S t r u c t u r e ::= CHOICE <
a c c e s s C o n t e x t l [1] IMPLICIT FADU,
accessContext2 [2] IMPLICIT SEQUENCE OF DU,
accessContext3 [3] DU,
accessContext4 [4] IMPLICIT SEQUENCE OF DU.

-- Same l e v e l number
accessContextB [5] IMPLICIT FADUStructure >

DU := d a t a U n i t [0] EXTERNAL

AccessContext := [APPLICATION 12] INTEGER <
a c c e s s C o n t e x t l (1) ,

APPENDIX B. ASN.l DEFINITIONS FOR FTAM 113

accessContext2 (2),
accessContext3 (3),
accesaContext4 (4),
accessContext5 (5) >

SEAPAddress ::= EXTERNAL — outside scope of this standard
ubcFTAM used this :

SEAPAddress ::= GraphString;

END.

H I

..IT TOOT i.
{ :q.no oq.oS :T.«AOJ = OJ }

v 8 Z T

0 6 8 Z 9 9 f r £ S I 6 8 Z 9 9 f r £ C T 6 8 Z 9 9 f r £ S I 6 8 Z 9 9 ^ £ 2 I 0

1000 II

• 00 I u

10000000000000000000000000 T000000000000000. .

. 00000000000000000000000000T T T000000000000I I

•00000000000000000000000000TO1000000000000 . i

1000I I

. 00000000000000000000000000000T TOOOOOOOOOO II

1000I I

. 00000000000000000000000000000000100T000T 0 II

I O T O O I I

, i 000H

I O O O O O O O O O O O T T 0 T T T T T 0 T T T T T0000000000000000 u

HOOW ONISSHDOHd
(T B A 3 J)2uiq .TX9

QN3H3iSNVHI
aNaviva'

viva'
3IIM'
aV3H

3S010
N3dO

ID313S30
I0313S

9IHIIVaV3H
3XVNIWH3I

3ZITVIIINI

'3"dVW
'i"dVW
'i"dVW
"i~dVW
"i~dVW
"i"dVW
"i"dVW
"i~dVW
"J"dVW
"3"dVW
"i"dVN
"3"dVW

euxiep#
aire jap#

/*

*/
eutjap#
autiap#
3UTi 9p #

0UTJ9p#
euxjep#
euxiep#
9UTJSp#
auxiap#
auxiap#
eutjap#
auTjap#
auTjep#

„u/ aoxA-ias/u;/ •
„u;- ssaoDB/Ti/ •

..u/nTjd/uy
„u/nrejed/uy
..u/uiep/uy

apn-[ouT#
epn-[ouT#
apnxoux#
apnx3UT#

„ epnioux#

O xipuaddy

APPENDIX C. PROGRAM MODE 115

/* processing mode set for: */
/* READ, REPLACE. EXTEND. ERASE */

#define NEW_DATA "This i s the sample data for replacement."
#define WAIT 1

/*
*
* The routines used here for sending and receiving
* FTAM service primitives are stateSendO and stateRecvO .
* These routines are invoked thus :
* stateSend(param, Jc.state);
* stateRecv(Jrparam, fc.state);
* and automatically maintain the protocol state i n .state.
*
* If the protocol state i s not to be maintained,
* invoke routines
* sendFTAMprimC param) and recvFTAMprim(Jrparam).
*
*/

mainO

ParamListType *param = NULL;
int rc, _state;

rc = 0;

START.FTAMO; /* -- i n i t i a l i s e s .state */

/* -- invokes the i n i t i a t o r process */

/* i n i t i a l i s i n g an FTAM association */

initParamListC ¶m);
param->service = F.INITIALIZE.RQ;
(void) strcpy(param->paramMap, MAP.F.INITIALIZE);
param->protocolId =0;
param->versionMajor = 0;
param->versionMinor = 0;
param->calledAddr = "f tamtest(Dcsgrads" ;

APPENDIX C. PROGRAM MODE 116

param->callingAddr = " f t a m t e s t f i d s r g " ;
param->serviceType = ST_USER_CORRECTABLE:
param->serviceClass = SC_TRANSFER;
param->funcUnits = "11111000"; /* READ. WRITE. FILE_ACCESS. */

/* LIMITED_FMGT, ENHANCED.FMGT */
param->attrGrpa = "11"; /* STORAGE. SECURITY */
param->rollback = FALSE;
p a r a m - > i d I n i t i a t o r = "goh";
setPasswd(¶m->filestorePasswd, " s e c r e t ");
param->charging = NULL;

i f (s t a t e S e n d (param, &_state) < 0) e x i t i n g (-1);
i f (s t a t e R e c v (fcparam, &_state. WAIT) < 0) e x i t i n g C -1);

/* s e l e c t i n g a f i l e */

i n i t P a r a m L i s t (Jrparam);
param->service = F_SELECT_RQ;
(v o i d) strcpy(param->paramMap, MAP_F_SELECT);
param->filename = ALLOCREC(FilenameNode);

param->filename->next = NULL;
(v o i d) strcpy(param->filename->filename, " m y f i l e ");

param->accessCtrl = ALL0CSTR(MAXACCESSCTRL);
param->accessCtrl = "1001111110"; /* t u r n s on b i t s f o r */

/* READ. REPLACE. */
/* EXTEND. ERASE. */
/* CHANGEATTRIB, */
/* READATTRIB. */

/* DELETEFILE */
param->accessStr = (i n t) AS .UNSTRUCTURED;

i f (s t a t e S e n d (param, &_state) < 0) e x i t i n g (-1);
i f (s t a t e R e c v (irparam, &_state, WAIT) < 0) e x i t i n g (-1);

/* r e a d a t t r i b u t e s of the s e l e c t e d f i l e */

i n i t P a r a m L i s t (tparam);

APPENDIX C. PROGRAM MODE 117

param->service = F_READATTRIB_RQ;
(void) strcpy(param->paramMap, MAP_F_READATTRIB);
param->attrNames = "011011000001011000";

/* requesting to read the following attributes: */
/* permitted actions, access control, */
/* time of creation, */
/* time of l a s t modification. */
/* presentation context, access structure. */
/* current f i l e s i z e */

i f (stateSend(param, &_state) < 0) exiting(-1);
i f (stateRecv(fcparam, &_state, WAIT) < 0) exiting(-1);

showParamList(param); /* to display values of attributes read */

/* — open the selected f i l e */

initParamList(fcparam);
param->service = F_0PEN_RQ;
(void) strcpy(param->paramMap, MAP_F_0PEN);
param->processMode = ALL0CSTR(strlen(PROCESSING_MODE));

(void) strcpy(param->processMode, PROCESSING_MODE);
param->presContext = ALL0CSTR(strlen(n01"));

(void) strcpy(param->presContext, "01"); /* a s c i i */

i f (stateSend(param, &_state) < 0) exiting(-1);
i f (stateRecv(fcparam, &_state, WAIT) < 0) exiting(-1);

/* read the selected f i l e */

initParamList(fcparam);
param->service = F_READ_RQ;
(void) strcpy(param->paramMap, MAP_F_READ);
setFaduId(¶m->faduld, FADU_REF_FIRST);
param->accessContext = C0NTEXT2;

/* send F_READ_RQ */
i f (stateSend(param, &_state) < 0) exiting(-1);

APPENDIX a PROGRAM MODE 118

/* t o r e c e i v e incoming F_DATA_RQ */

i f (stateRecvC fcparam, 4 _ s t a t e , WAIT) < 0) e x i t i n g (-1);
w h i l e (param->service == F_DATA_RQ) <

c o l l e c t (param->data);
/* t o r e c e i v e F_DATA_RQ */
i f (stateRecvC fcparam, & _ s t a t e , WAIT) < 0)

e x i t i n g (-1);
}

i f (param->service == F_DATAEND_RQ) {
i n i t P a r a m L i s t (fcparam);
param->service = F_TRANSFEREND_RQ;
(v o i d) strcpy(param->paramMap, MAP_F_TRANSFEREND);

i f (s t a t e S e n d (param, &_state) < 0) e x i t i n g (-1);

/* t o r e c e i v e F_TRANSFEREND_RP */
i f (s t a t e R e c v (iparam, & _ state, WAIT) < 0) e x i t i n g (-1);

>
e l s e

e x i t i n g (-1); /* unexpected p r i m i t i v e r e c e i v e d */

/* r e p l a c e the Data U n i t */

i n i t P a r a m L i s t (tparam);
param->service = F_WRITE_RQ;
(v o i d) strcpy(param->paramMap, MAP_F_WRITE);
param->faduOp = AC_REPLACE;
set F a d u I d (¶m->faduld, FADU_REF_FIRST);
param->accessContext = C0NTEXT2;

i f (s t a t e S e n d (param, &_state) < 0) e x i t i n g (-1);
i f (s t a t e R e c v (fcparam, t _ s t a t e , WAIT) < 0) e x i t i n g (-1);

/* send data
i n i t P a r a m L i s t (¶m);
param->service = F_DATA_RQ;

*/

APPENDIX C. PROGRAM MODE 119

(void) strcpy(param->paramMap, MAP_F_DATA);
param->data = ALLOCREC(OCTETSTRING);

param->data->length = strlen(NEW_DATA);
param->data->content = ALL0CSTR(param->data->length);
(void) strcpy (param->data->content, NEW_DATA);

i f (stateSend(param, &_state) < 0) exiting(-1);

/* send dataend */
initParamList(fcparam);
param->service = F_DATAEND_RQ;
(void) strcpy(param->paramMap, MAP_F_DATAEND);
i f (stateSend(param, &_state) < 0) exiting(-1);

/* send transferend */
initParamList(¶m);
param->service = F_TRANSFEREND_RQ;
(void) strcpy(param->paramMap, MAP_F_TRANSFEREND);
/* to send F_TRANSFEREND_Rq */
i f (stateSend(param, Jr.state) < 0) exiting(
/* to receive F_TRANSFEREND_RP */
i f (stateRecvC Jrparam, Jr_state, WAIT) < 0) exitingC

-1);

-1);

/* close the selected f i l e */

initParamListC frparam);
param->service = F_CL0SE_Rq;
Cvoid) strcpyCparam->paramMap, MAP_F_CLOSE);
i f C stateSendC param, &_state) < 0)
i f C stateRecvC tparam, &_state, WAIT) < 0)

exitingC -1);
exitingC -1);

/* deselect the f i l e */

initParamList(feparam);
param->service = F_DESELECT_RQ;
(void) strcpy(param->paramMap, MAP_F_DESELECT);
i f (stateSend(param, &_state) < 0) exiting(-1);
i f (.stateRecv(ftparam, &_state, WAIT) < 0) exiting(-1);

/* terminate the FTAM association */

APPENDIX C. PROGRAM MODE 120

i n i t P a r a m L i s t (ftparam);
param->service = F_TERMINATE_RQ;
(v o i d) strcpy(param->paramMap, MAP_F_TERMINATE);
i f (st a t e S e n d (param, &_state) < 0) e x i t i n g (-1);
i f (s t a t e R e c v (fcparam, &_state, WAIT) < 0) e x i t i n g (-1);

out :

END_FTAM(); /* — k i l l s the i n i t i a t o r p r o c e s s */
e x i t (r c);

>

Appendix D

Grouping

The grouping control service allows certain sequences of service primitive requests to
be concatenated. A complete grouped sequence enclosed by the F-BEGIN-GROUP
and the F-END-GROUP primitives constitute a single protocol state transition. The
primitives i n a grouped sequence are syntactic segments of a single message communi­
cated.

The permissible grouped sequences are defined below, using the following notation:

N o t a t i o n
(1) Square b r a c k e t s , " [" and "] " i n d i c a t e o p t i o n a l p r i m i t i v e s

w i t h i n a sequence.

(2) V e r t i c a l b a r , " I " i n d i c a t e a l t e r n a t i v e s .

(3) Round b r a c k e t s , " (" and ") " have normal a l g e b r a i c s i g n i f i c a n c e .
The v a l i d groups are

Group A : F-BEGIN-GROUP
(F-SELECT | F-CREATE)
[F-READ-ATTRIB]
[F-CHANGE-ATTRIB]
F-OPEN
F-END-GROUP

121

APPENDIX D. GROUPING 122

Group B : F-BEGIN-GROUP
F-CLOSE
[F-READ-ATTRIB]
[F-CHANGE-ATTRIB]
(F-DESELECT I F-DELETE)
F-END-GROUP

Group C : F-BEGIN-GROUP
(F-SELECT I F-CREATE)
[F-READ-ATTRIB]
[F-CHANGE-ATTRIB]
(F-DESELECT I F-DELETE)
F-END-GROUP

Group D : F-BEGIN-GROUP
(F-SELECT I F-CREATE)
[F-READ-ATTRIB]
[F-CHANGE-ATTRIB]
F-END-GROUP

Group E : F-BEGIN-GROUP
[F-READ-ATTRIB]
[F-CHANGE-ATTRIB]
(F-DESELECT I F-DELETE)
F-END-GROUP

