
A P R O L O G I M P L E M E N T A T I O N OF A S U B S E T O F

M A R C U S ' P A R S E R A N D ITS R E L A T I O N T O T H E

H A N D L I N G OF E X T R A G R A M M A T I C A L I N P U T

B y

M I C H A E L S C A R L E T T D O R O T I C H

B . S c , U n i v e r s i t y o f S a s k a t c h e w a n , 1982

A T H E S I S S U B M I T T E D I N P A R T I A L F U L F I L L M E N T O F

T H E R E Q U I R E M E N T S F O R T H E D E G R E E OF

M A S T E R OF S C I E N C E

in

T H E F A C U L T Y OF G R A D U A T E S T U D I E S

(D E P A R T M E N T O F C O M P U T E R S C I E N C E)

We a c c e p t t h i s t h e s i s as c o n f o r m i n g

to the r e q u i r e d s t a n d a r d

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

A u g u s t 1986

© M i c h a e l S. D o r o t i c h , 1986

I n p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f t h e
r e q u i r e m e n t s f o r an advanced degree a t t h e U n i v e r s i t y
o f B r i t i s h C o l u m b i a , I agree t h a t t h e L i b r a r y s h a l l make
i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s t u d y . I f u r t h e r
agree t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s
f o r s c h o l a r l y purposes may be g r a n t e d by t h e head o f my
department o r by h i s o r h e r r e p r e s e n t a t i v e s . I t i s
u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s
f o r f i n a n c i a l g a i n s h a l l n o t be a l l o w e d w i t h o u t my w r i t t e n
p e r m i s s i o n .

Department o f C2<s^^jj\-u~ £~>c'ce /v\c&

The U n i v e r s i t y o f B r i t i s h Columbia
1956 Main Mall
Vancouver, Canada
V6T 1Y3

Date ftuaus± 2.|)9%£

E-6 (3/81}

A b s t r a c t

In any system employing a natural language interface, there is the problem

that, by means of a formal grammar, the system itself defines the language it will

accept. But, when using language, people will not always adhere to the rules of

this grammar; therefore, a natural language computer system should not simply

treat as incomprehensible any input not conforming to its internal grammar,

input we may call extragrammatical. The term extragrammatical refers to input

that is not necessarily incorrect in an absolute sense but only relative to the

formal scope of a system's grammar. Before a truly robust system can be

developed, what is needed is a parsing mechanism that enforces grammaticality

where possible, and this implies a deterministic approach to natural language

parsing. This thesis discusses the importance of flexible natural language

interfaces; the notion of extragrammatical language and its connexion to robust

parsing; a deterministic parser, PARSIFAL, developed by Mitchell Marcus; and

a reimplementation, using logic programming, of a subset of Marcus' system.

Programming was done with CProlog on a VAX 11/750* running 4.2 BSD

UNIX.*

* V A X is a trademark of Digital Equipment Corporation,
t UNIX is a trademark of A T & T Bell Laboratories.

ii

T a b l e of Contents

Abstract ii
List of Figures iv
Acknowledgements v
Chapter 1 - Introduction 1
Chapter 2 - Natural Language Interfaces 4

2.1 Flexible Natural Language Interfaces in Database Systems 5
2.2 Flexible Natural Language Interfaces in CAI Systems 8

2.2.1 Language and Learning 9
2.2.2 Intelligent CAI 10

Chapter 3 - Extragrammaticality in Natural Language Interfaces 17
3.1 What is Meant by Extragrammaticality ? 17
3.2 Where Extragrammaticality Arises 20
3.3 Handling Extragrammatical Phenomena 21

Chapter 4 - Deterministic Parsing 28
4.1 Marcus' Deterministic Parser . 29
4.2 PARSIFAL's Data Structures 32
4.3 Structure and Interpretation of the Grammar 36
4.4 Linguistic Generalizations Captured by PARSIFAL 45

Chapter 5 - Why Choose a Logic Programming Approach? 49
Chapter 6 - A Prolog Implementation of PARSIFAL 55
Chapter 7 - Limitations 66

7.1 Limitations to PARSIFAL 66
7.2 Limitations to the Current Implementation 68

Chapter 8 - Conclusions 73
References 76
Appendix 1 - Source Code 81
Appendix 2 - Sample Parses 119

iii

L i s t of Figures

Figure 4.1 - Parse tree with features on nodes 33
Figure 4.2 - Grammar rule 37
Figure 4.3 - After MAJOR-DECL-S has run 39
Figure 4.4 - After the auxiliary has been parsed 40
Figure 4.5 - After MAIN-VERB has run 41
Figure 4.6 - After OBJECTS has run 41
Figure 4.7 - Attention shifting rule 44
Figure 4.8 - After DETERMINER has run ,. 45
Figure 6.1 - Parse node structure 59
Figure 6.2 - Example session 65

iv

Acknowledgements

I wou ld l ike to thank my supervisor, Harvey Abramson, for his suggestions

and comments throughout the wr i t ing of this thesis, and R i chard Rosenberg for

his gracious consent to be the second reader. I must express my grat itude to the

Nat iona l Sciences and Engineering Counc i l for financial support. F ina l ly , I would

l ike to extend many thanks to L i nda P l umb for her moral support and

encouragement throughout my t ime as a Master 's student.

v

i

C h a p t e r 1

I n t r o d u c t i o n

Considerable work has been done on the design of natural language man-

machine interfaces. In most informal settings, people use language without

adhering to strict grammatical conventions—even if they have an unconscious

operative grammar in their minds—but deviations are inherent in spontaneous

language use whatever the modality, even in highly constrained formal settings.

Now, if computers are to understand human language, they must parse as

robustly as humans do. A computer system should not simply treat as

incomprehensible any input that does not conform to its internal grammar.

Systems in which this is a concern include database and expert systems.

Natural Language Understanding (NLTJ) systems and Natural Language

Interfaces (NLI's) are comprised of several components, the most fundamental

being the grammar used to describe input. Most systems, however, are not

equipped with mechanisms that attempt to handle input rejected by strict

grammatical processing. Nevertheless, people customarily communicate with less

than perfectly constructed sentences and naturally expect of computers some of

the skills in understanding they themselves exhibit. This may become

increasingly the case as artificial intelligence techniques, applied to user

interfaces, give these interfaces more and more the semblance of intelligence.

When a system intelligently answers questions or offers criticism, a user will

naturally assume intelligent conversational abilities of the system. Problems arise

when the user does not accurately perceive the limits of the system; therefore, a

system should present the user with a consistent model of its capabilities.

Moreover, within an educational expert system setting, there are certain

fundamental pedagogical reasons for having a sophisticated natural language

interface.

2

In the mid 1970's, NLTJ systems designers noted that understanding

requires some attempt to interpret, not merely reject, what seems to be ill-formed

input. Subsequently, work was done on seeing how the then current natural

language parsing mechanisms might handle such input. Recently, a new tool for

designing NLI's has emerged: logic programming. It would be interesting to

investigate how an N L U system founded upon logic programming might be made

to perform reasonably in the face of ill-formed input.

In any N L U system, there is the problem that the grammar itself defines

the language the system accepts. Input may deviate from that which is

acceptable either because it is wrong or because the grammar itself is wrong or

incomplete. So the first requirement of an NLTJ system that handles seemingly

ill-formed, or extragrammatical, input is a parser that enforces grammaticality

where possible but behaves gracefully where not, accepting sentences that do not

fit the grammar and noting the ways in which they are deviant. In order to do

this, a parser must recognize immediately that a sentence has deviated from its

grammar. A standard top-down parser would not work. To see why not,

consider that when such a parser gets stuck it takes this to mean it has made an

incorrect decision earlier in the parse of a given sentence whereupon it backs up

and tries an alternate parse. Failing all possible parses, the parser simply gives

up and cannot tell where the difficulty lies. This is a problem not only for

natural language parsers but also for formal computer language parsers. In fact,

this is what led the early recursive descent approach to be replaced by top-down

LL, or bottom-up LR, deterministic approaches. What is needed, then, is a

deterministic natural language parser and for this one may turn to the work of

Mitchell Marcus.

This thesis involves a survey of the literature pertinent to robust natural

language interfaces and a reimplementation in Prolog of a subset of Marcus'

3

deterministic parser, PARSIFAL. It is assumed that Prolog is already familiar

to the reader.1 Likewise, the reader is assumed to be familiar with elementary

grammar theory.2

The importance of sophisticated natural language interfaces in database and

computer assisted instruction systems is investigated in chapter two. Of major

significance to the design of a truly flexible natural language understanding

system is the handling of extragrammatical input, input that does not conform to

the system's grammar. This is the subject of chapter three. The first step

towards handling unexpected input is a deterministic parser, and so the work of

Mitchell Marcus is discussed in chapter four. Chapter five gives a brief look at

logic programming, and chapter six presents a Prolog version of part of the

PARSIFAL system. Chapter seven discusses limitations both of this work and

that of Marcus' on which it is based. Conclusions are drawn in the last chapter.

Source code and sample parses may be found in the appendices.

1 The standard reference is [CL081].
2 This can be found in compiler writing books like [TRE85].

4

C h a p t e r 2

N a t u r a l Language Interfaces

N L U systems usually fall into one of two categories: those for studying

natural language phenomena in general, and those tailored as interfaces to a

particular task domain within database and expert systems.

Two influential systems developed in the early 1970's attempted to tackle

both syntactic and semantic aspects of natural language. SHRDLU [WIN73,

WTN80], representing the first category, was designed to show that in order to

understand language, a program must integrate syntactic processing, semantic

processing, and reasoning.3 LSNLIS [W0072], on the other hand, was designed

to help geologists analyze moon rock samples using a database at the National

Aeronautical and Space Agency.

Both of these systems are based on procedural representations of language.

The philosophy behind SHRDLU is that language activates procedures within

the hearer. Thus, syntax and meaning can be represented directly as executable

computer programs while reasoning corresponds to the actual execution of the

programs. LSNLIS, one of the first systems to employ augmented transition

networks (ATN's) [WOO70], operates by translating English queries into a

formal query language. The formalized query is then presented to the database

for an answer. Another such system is PLANES [WAL78].

Alternatives employed by other researchers are declarative representations of

which the most outstanding are logic and semantic networks. Ideas behind

semantic networks have been employed in a number of N L U systems including

R ENDEZVOUS [COD74] and L A D D E R [HEN78]. Like procedural

3 In [WIN80], Winograd reviews SHRDLU and discusses further directions he has
taken in natural language understanding.

5

representation based systems, these also translate English queries into a data

sublanguage.

At one time there was a controversy among researchers as to whether

procedural or declarative representations should be used. This has died, however,

but it is interesting to note that with the advent of logic programming both

procedural and declarative interpretations may coexist [CL081, KOW79,

ROB83].

There are a few N L U systems—call them metasystems—that may be used

to aid building other systems which fall into either of the: two categories

mentioned above. ProGrammar [SAL85] and SAUMER [POP84], for

example, may be used to build and test grammars that may in turn be used for

linguistic analysis. LIFER [HEN77], which includes a grammar editor, is a

utility for building natural language front ends targeted to any domain.

Discussion in this and subsequent chapters will refer mainly to application

systems and linguistic phenomena that arise in them.4 This chapter discusses the

need for flexible natural language interfaces in database and educational expert

systems.

2.1 Flexible Natural Language Interfaces in Database Systems

The motivation one finds in the literature for natural language access to

databases is similar from one system to another. Natural language is convenient

and familiar to all and to a casual user is an easier means of making a query than

some special formal language or menu. If the user wishes to display elements

satisfying several predicates which: require logical combinations of multiple files, a

menu is not even sufficient: a special data language is required. But learning

4 For a good overview of all types of natural language understanding systems see
[BARR82].

6

such a language or, at least, using someone as an intermediary presents an

obstacle to a nontechnical person. Not only might learning a new language be

difficult but, because a person is used to thinking in his native language, learning

to translate into the new language might be difficult too. A nontechnical person

cannot be expected to be knowledgeable about computers, programming, logic, or

relations and yet must be able to obtain information with a minimum of training.

In order for an NLI to be of value it must have a large vocabulary of the

subject matter, accept a wide range of grammatical constructs, feed back

understanding of requests, tolerate spelling and simple grammatical errors, and

allow addition of new words and grammatical constructs to the knowledge base.

Furthermore, because a user will often ask several questions about the same

object, it is convenient that he be allowed to enter elliptical constructs,

incomplete input fragments, or pronominal references and that the system

interpret them in the context of previous input. While these are commonly set as

objectives by NLI designers, not all of them are met in all systems and there is

certainly room for further research into natural language understanding.

The R E N D E Z V O U S [COD74] system was designed with the intent of

having a user engage a relational database system in dialogue to attain mutual

agreement about the user's needs. Codd, who designed the system, states that

earlier systems failed because they assumed that if a user's English were beyond

the system's limited understanding it was the user's responsibility to restate his

query. To prevent the negative psychological impact upon a user caused by a

system rejecting a query for apparently arbitrary reasons, Codd proposed some

improvements to interface design. The user should be presented with a simple

data model because his view of the data influences the way he formulates queries.

Query formulation should be kept separate from database search until the user

and the system agree upon the user's intent. To achieve this, the user's query is

7

translated by a semantic grammar mechanism into a precise internal language,

Alpha, based on relational calculus. In the translation process an intermediate

form, Inter-Alpha, is used. The user should be fed back a precise restatement

of his query that he may verify the system has understood his request. In the

case of any misunderstanding, the user should be engaged by the system in a

clarification dialogue. While Codd clearly states the importance of a good NLI

to databases, RENDEZVOUS is limited in its ability to deal with input that

doesn't conform to its internal grammar.

The LIFER [HEN77] system has been used to build NLI's for a medical

database and a computer-based expert system, but the most complex system

built with it is L A D D E R [HEN78] which provides natural language access to a

large database of U.S. Navy information distributed over different computers

across the United States. Users do not need to know where data is stored. Nor

do they need to know a special data query language. Instead, they use a subset

of English pertinent to the domain of discourse which LIFER translates into a

general database query. The rest of LADDER handles the specifics of the

query. The LIFER system, also employing semantic grammars, is an

improvement over RENDEZVOUS. LIFER contains a spelling correction

feature. It allows language extension through definition of new words and

syntactic structures in terms of old. It allows the missing constituents in

elliptical inputs to be deduced from previous input. Lastly, it supports

interrogation of the underlying language definition through a grammar editor.

Thus, language definition and parsing can be intermixed. LIFER does have

some limitations. Because it is designed to build interfaces that retrieve from

(rather than update) databases, it does not handle assertions. Designed for wh-

type questions, LIFER does not support many yes-no questions. And LIFER

has trouble with input that displays syntactic or semantic ambiguity. For

8

example, in the request:

Name the ships from American home ports that are within 500 miles of Norfolk

it is not clear whether the relative clause should modify ships or ports.

The designers of LSNLIS [W0072] acknowledge that theirs is one of the

first usable natural language interfaces and as such emphasizes the translation

from English into a formal query language while ignoring the problem of input

that doesn't follow a strict parse.

The PLANES [WAL78] system is a large relational database of aircraft

flight and maintenance data. Like LSNLIS, it too uses an A T N parser, but is

more tolerant of nongrammatical requests. It handles ellipsis and several types of

pronoun reference, abbreviations, and a variety of syntactic structures including

relative clauses. PLANES also feeds back to the user a precise representation of

its understanding of the user's request. PLANES draws upon ideas put forth in

the design of LSNLIS and RENDEZVOUS.

This section has presented the motives of designers of some of the first non-

experimental NLI's to database systems. While claiming success, the designers

generally note a shortcoming as the problem of handling unexpected input. The

success of NLI's can be expected to increase as further techniques are developed

to make them more robust.

2.2 Flexible Natural Language Interfaces in CAI Systems

The flexible handling of linguistic phenomena has significant implications

within Computer Assisted Instruction (CAI) environments. The first subsection

presents a pedagogical motive for designing sophisticated natural language

interfaces. The second looks at recent work that has been done on improving

CAI and again reveals a need for further work on natural language

understanding.

9

2 . 2 . 1 L a n g u a g e a n d L e a r n i n g

The analogy employed by designers of educational computer systems is that

of a socratic dialogue between student and tutor (the computer). The student is

assumed to have little understanding of some concept while the computer is

assumed to have the complete understanding of an expert. Through dialogue,

the computer tutor aids the student in acquiring knowledge. But in order for this

to happen, the communication must be flexible.

Studies have firmly shown the impact communication has on learning

[BAR69, BAR75, BUL75, DOU79]. Authors writing about CAI courseware

[BOR80, NIE80] in particular have noted that CAI dialogue is similar to any

communication; consequently, one must consider what is communicated, to

whom, and how. Learners are not merely passive recipients of knowledge, and if

computer tutorials are to achieve higher educational goals than one of rote

learning, they must employ the skills of effective educational dialogue.

As the form of communication changes, so will the form of what is learnt.
One kind of communication wil l encourage the memorizing of details, another
wil l encourage pupils to reason about the evidence. . . . From the
communication, they wil l also learn what is expected of them as pupils, . . .
whether they are expected to have ideas of their own or only remember what
they have been told, . . . to take part in the formulating of knowledge, or . . .
to act mainly as receivers.

Douglas Barnes
From Communication to Curriculum, p 15.

Concept learning involves processes of accommodation and assimilation.5

Briefly, new knowledge must be assimilated by a learner in terms of what he

already knows. Sometimes new knowledge conflicts with a learner's world view in

which case old knowledge must be restructured to accommodate the new.

Unfortunately, we tend to regard knowledge as existing independently of someone

6 Piagetian learning theory has been directly applied to computerized education
environments. For a discussion of this, the reader is referred to Seymour Papert's
Mindstorms [PAP80] in which the foundations of the L O G O system are presented.

10

who knows when, in fact, it must be brought to life afresh within every knower

by his own efforts—efforts primarily involving language.

Educational theorists have noted that if we consider language as a means of

learning then we are regarding the learner as an active participant in the making

of meaning [BAR75]. Higher processes of thinking are achieved by the

interaction of language behaviour with other mental and perceptual powers

[BUL75]. Language is a continuous heuristic performed upon our experience of

the world in an effort to make it meaningful [DOU79].

In the effort of acquiring and restructuring knowledge, a student will use free

form language: false starts, broken off utterances, anaphoric references,

pronominalizations, and so on. Burton [BUR79] argues in favour of NLI's in

computer tutoring systems. The student must be free to concentrate on the task

at hand. Brown et al. [BR082] note the importance of a system's ability to

recognize alternate wordings of the same concept. But to go beyond this, a

computer tutor should be equipped with some means of interpreting less than

perfectly formed utterances which a student, ignorant of a concept, may be

incapable of making.

Significant progress was made when CAI authors realized that concept

learning cannot be done by rote, that tutoring is needed to promote

understanding. The success of CAI systems will increase as advances are made

in the flexibility of the tutorial dialogue.

2.2.2 Intelligent CAI

Recently, significant advances have been made in CAI systems, and flexible

NLI's are important even to different areas of research concentration.

Early CAI systems were designed at best—sometimes they were simply

"electronic page turners"—as drill and practice monitors presenting problems

11

selected at a level of difficulty appropriate to an individual student's

performance. For this reason, such systems were termed adaptive. Because of

the simplicity of the task domain, models of the student could be based on

parametric records of performance rather than explicit representation of

knowledge.

A driving goal behind the application of Artificial Intelligence (Al)

techniques to CAI was to extend both the task domains and the adaptiveness of

earlier systems. Some of the first intelligent CAI (ICAI) systems were termed

generative for their ability to generate problems from a database representing a

particular subject. But work went beyond this to create reactive learning

environments [BR075, BR082] with the student actively engaged by the

instructional system in a tutorial dialogue guided by the student's interests and

misunderstandings. Recently, research has focused on facilitating learning by

doing to allow students to gain experiential knowledge through application of

factual knowledge. ICAI attempts to transform a student's misconceptions into

constructive learning experiences. ICAI systems have been developed to tutor

various subjects, to create student-initiated learning environments, and to assist

diagnosis and assessment.6 Mechanisms are being developed to analyze student

learning behaviour and to employ effective tutoring strategies, both of these in

terms of skills that should be learned [BARR77, BR078, BUR82]. For this to be

possible, a system must have extensive knowledge and problem solving expertise,

student modeling and diagnostic capabilities, and a sophisticated tutoring and

explanation mechanism.

Thus, an ICAI system can be seen as composed of three components

[BARR82, COL85]: an expertise module, a student model, and a tutoring

mechanism. The first component contains information on a particular subject or
6 For a survey of I C A I see [BARR82] and for detailed discussion see [SLE82].

12

on problem solving skills relevant to that subject. The application specific

knowledge and inference mechanisms of this component resemble the expert

systems that have been developed for such areas as chemistry, medicine, and

geology. The second component must model not only the student's

understanding, but misconceptions and difficulties as well. This information has

to be inferred from the student's answers and problem solving behaviour. In

addition to the student model, this component includes diagnostic algorithms to

determine the student's unmastered skills. The third component must make

decisions about what to teach and how. The system should be able to assess the

process by which a student derives his answers and then make judgements about

where he may be going astray in order that it may provide adequate help. It is

this component that most directly communicates with the student.

There are so many facets to overall learning systems that researchers

necessarily focus on certain aspects while ignoring others. A l applications to

CAI include natural language understanding, knowledge representation, inference

methods, and such specific applications as electronics trouble-shooting and

medical diagnosis. Nevertheless, despite the necessity of limiting the

concentration of research, flexible natural language capability is often an

important consideration. Handling ill-formed input is important to all three

components of ICAI systems.

It is the expert component's task to generate problems and evaluate the

student's solutions. One area that has been investigated is that of special

purpose inference techniques. The main pedagogical motive behind the

SOPHIE systems [BR075, BR082] is that of experiential learning. The student

is engaged in a problem solving process giving rise to experiences that structure

factual knowledge. An extension of mixed initiative student-computer dialogue,

SOPHIE is a reactive learning environment. Students learn from their

13

mistakes. A tutoring system should, therefore, allow an interactive one-to-one

relationship between student and expert wherein the student can experiment with

hypotheses during problem solving and receive feedback and criticism of his ideas.

Moreover, the student should be able to ask questions of the expert. Clearly, this

requires that the student be able to communicate his ideas to the machine and

that a dialogue mechanism robustly handle the constructs that arise in

conversation.

It is the student model component's task to represent the student's

understanding of a subject and perhaps diagnose the underlying cause of error in

some procedural skill. Thus, another area of investigation has been that of

creating a model of the student from his observable behaviour and determining

what subskills he has not mastered. A system to diagnose errors in a procedural

skill must distinguish between goals and methods of achieving those goals, and it

must represent both the correct methods of achieving goals and the incorrect.

Given this, the diagnosis capable of such a system is determining what set of

incorrect methods, or perturbations of correct methods, a student has employed

to obtain his results.

A system currently exists to diagnose procedural errors in Mathematics.

The D E B U G G Y system [BR078, BUR82] examines a student's answers to

subtraction problems and attempts to deduce how a student's algorithmic

behaviour differs from the correct procedural skill. At the heart of the system is

the B U G G Y model. A student's knowledge cannot be represented just as a

subset of an expert's because misconceptions are not a subset of correct skills.

Therefore, Burton and Brown posit the idea of a perturbation construct:

misconceptions are to be represented as variants of correct skills.

In determining a student's arithmetic misconceptions, B U G G Y operates

under the assumption that errors are not random but are instead modifications of

14

correct procedures. An attempt is made to determine which internal incorrect

rules contained in the B U G G Y model give results equal to the student's answers

to subtraction problems; that is, the system tries to predict the student's

responses.

BUGGY's knowledge base includes representations of about one hundred

and ten primitive arithmetic procedural errors. The results of applying these to

subtraction questions are compared to the student's answers. The system selects

those bugs that account for at least one wrong answer. Heuristic devices are then

employed to reduce this set. For example, procedural errors that are subsumed

by others are removed, or some errors may be combined to form compounds.

After errors have been iteratively removed or combined, the remaining ones are

classified according to how well they explain the student's answers and from

these the system tries to pick one as the best explanation.

While student modeling and misconception diagnosis in a domain such as

Mathematics may not require an elaborate NLU mechanism, one might conceive

of a diagnostic system for sentence misconstructions that does. Poor

understanding of English usage and basic sentence construction is quite common

[BAK81]. A study done in secondary schools [DIE74] shows that the most

frequent errors can be classified into about twenty categories. One can find

underlying causes of misunderstanding and suggestions for teaching correct usage

[GAT80, SHAU77, WEA79]. An ICAI system to diagnose sentence construction

would be a useful educational tool and an interesting area of investigation. N L U

systems tend to focus only on understanding ill-formed input, not determining

the cause of error. Educational diagnosis systems, on the other hand, while

focusing on the cause of error, have not been applied to language. An expert

system to diagnose sentence misconstructions must attempt to tie the two

together.

15

It is the tutor component's task to integrate curriculum, teaching

methodology, and dialogue. Research here is varied. It includes problem

selection, performance monitoring, and remedial material selection. It includes

issues such as whether the system should debug the student's errors or the

student be encouraged to debug his own and issues such as whether coaching or

mixed-initiative is a better strategy. The BIP system [BARR77], for example,

employs an adaptive instructional strategy wherein the sequence of instructional

actions are a function of the student's performance. Different areas of instruction

require different approaches to individualizing the tutorial. Some areas, such as

those requiring memorization, are describable as a linear Markov process, but this

is not so of others where facts must be acquired and integrated. BIP, therefore,

describes each problem in terms of the skills it develops, builds a model of the

student's state of knowledge, and makes tutorial branching decisions on the basis

of a simple success-fail history. The aspect of this component relevant to this

paper is its direct communication with the student.

While ICAI designers have had success with their systems, there are some

commonly acknowledged shortcomings:

• Systems assume particular conceptualizations hence force a student's
performance into this framework. Unable to work within a student's
conceptual framework, these systems cannot diagnose misconceptions.

• Interaction is too constrained. A student's expressiveness is limited;
consequently, so is the tutor's diagnostic mechanism.

As discussed earlier, concept formation and communication are interrelated

and the fact that shortcomings have been identified by the ICAI designers

suggests a need to further artificial intelligence techniques to enhance robustness

and responsiveness. Indeed, in the introduction to their survey of the most

sophisticated ICAI systems, Sleeman and Brown [SLE82] identify as one of the

areas of continuing research the implementation of friendly interfaces and

conversational systems.

16

S u m m a r y

To conclude this chapter, let us recapitulate some of the requirements of a

flexible natural language interface:

• The user must be able to obtain information without technical
knowledge of computers and with a minimum of training.

• The user must be free from consideration of a constrained interface, free
to concentrate on the task at hand in his native language. This means
keeping to a minimum both the amount of information a user must
make explicit in the words he chooses and the number of words he
enters.

• The system should present a consistent model of its capabilities with its
conversational ability at a level of sophistication equal to that of the
type of question it can answer.

• The system should employ clarifying dialogue to feed back its
understanding of a user's request and to ask questions about
constituents it doesn't understand.

• The user should be able to query the system both with questions about
the knowledge base and with metaquestions about information and the
language definition.

• The user should be able to add new words and syntactic structures to
the knowledge base.

• The system should recognize alternate wordings of the same concept.
• The system should tolerate errors of spelling and grammar and suggest

corrections wherever possible.
• The system should recognize complex syntactic constructions including

abbreviations, context dependent anaphoric references, ellipses,
pronominalizations, relative clauses, and incomplete sentences.

Many of these requirements may be realized through a robust parsing

mechanism that accepts a wide range of input. This will be discussed in the next

chapter.

17

C h a p t e r 3

E x t r a g r a m m a t i c a l i t y i n

N a t u r a l Language Interfaces

The last chapter discussed the importance of developing flexible natural

language interfaces. One of the major stumbling blocks has been how to handle

input that is not strictly correct, input that may be called extragrammatical.

3.1 What is Meant by Extragrammaticality ?

Why call input extragrammatical rather than ungrammaticaP. A sentence is

considered extragrammatical if it cannot be accounted for—if it is viewed as ill-

formed—by a particular grammar.

A grammar of a language is a model of the linguistic competence of a user of

the language [CH065, RAD81]. There are two types of linguistic competence,

pragmatic and grammatical, but the former will not be pursued in this paper.7

Grammatical competence subsumes three types of linguistic ability: syntactic,

semantic, and phonological. Phonology is not of concern here as it pertains to

spoken language. Semantics is important to N L U systems such as database

front-ends where, for example, English sentences are converted into an internal

logical representation for querying. Syntactic competence has two aspects:

judgment of well-formedness, and judgment of structure. Our intuitions about

well-formedness tell us a sentence like:

John likes fast cars

is syntactically correct and our intuitions about structure tell us that fast

modifies cars and not likes. It is these sorts of abilities that a grammar attempts
7 Pragmatic competence involves language as it is employed in conversation and is

often studied in the area of discourse analysis, but it may be embodied in certain NLU
systems that use scripts [BARR81, RIC83].

18

to model.

Now, if a sentence like the one above is grammatical or well-formed, what

type of sentence is considered ill-formed? The notion of ill-formedness is by no

means clear cut and one must take care to specify what aspects of it are being

considered.

It is necessary to distinguish between descriptive well-formedness and

prescriptive correctness; that is, sentences like:

I am bigger than what you are

cannot arbitrarily be called incorrect because in some dialects they are perfectly

well-formed. However, problems of idiolects, dialects, and sociolects are better

left to the study of sociolinguistics.

Another problem with ill-formedness is deciding what might be wrong with a

sentence that sounds odd. Are we to call a phrase like:

The tree who we saw

ill-formed? Granted, it is a pragmatic oddity taken on its own, but in the

context of a story wherein plants are animate, the human-like qualities implied

by the relative pronoun who might be quite acceptable.

Radford notes that even ignoring pragmatic circumstances that might lead

one to accept sentences that appear linguistically ill-formed, there is still the

problem of whether a sentence is ill-formed by virtue of its syntax or its

semantics [RAD81]. A sentence like:

We respect herself

might be argued incorrect syntactically because herself is a third person feminine

singular reflexive pronoun disagreeing in person and number with the first person

plural nonreflexive pronoun subject we. However, a reflexive pronoun like herself

19

can appear as the direct object in a sentence like

Mary respects herself

hence, there is no overall syntactic restriction in English against using herself as

the object of a transitive verb (p. 11). Instead, the sentence in question might be

argued incorrect on the semantic grounds that a reflexive pronoun must take its

reference from some compatible antecedent. Differences in how sentences like

these are viewed reflect differences in the organization of grammatical models.

The conclusion that this discussion leads to is that we cannot consider ill-

formedness in an absolute sense. Certainly we would call a sentence: like:

The boy eat the apple

ungrammatical because the subject and verb disagree in number but in other

cases we cannot make such an easy judgement. It is not always clear whether a

sentence is wrong, or, if it is, why. For the sake of generality, we may consider

sentences ill-formed only relative to any grammar which attempts to model

language.

The notion of relative ill-formedness has important implications to the

design of N L U systems. People regularly communicate through sentences that

are not strictly grammatical, yet N L U systems do not generally attempt to

accept input rejected by grammatical processing. Input may be a syntactically

invalid but, nevertheless, • semantically meaningful construct; it may be a

syntactically correct construct simply beyond the capability of some system; or it

may be a correct, but incomplete,, construct. Kwasny [KWA80] suggest an

approach to handling this sort of input is to assume that just as a normative

grammar describing the structure of well-formed inputs can be specified, so can

the manner in which input may deviate be specified. This gives an N L U system

the appearance of of allowing a wider range of acceptable sentences when in fact

20

it is the case that sentences significantly close to acceptable ones are noted as

deviant and accepted as such. In all of these cases the input is ill-formed only

relative to the system and not the user. Hence, the term extragrammatical,

rather than ungrammatical or incorrect, is used.

3.2 Where Extragrammaticality Arises

Extragrammatical utterances may be found at different levels of linguistic

analysis: lexical, sentential, or dialogue.

Dialogue problems are pragmatic and result from a violation of conversation

rules: answering a question with a question, making nonsequitur responses, and so

forth. By and large, dialogue problems belong to the area of discourse analysis

and will not be pursued here.

Lexical problems are confined to individual words and include misspelling,

mistyping, incorrect segmentation, and unknown words.

Sentential problems are based on relationships between words and may be of

either a semantic or a syntactic nature. They may arise in a variety of situations.

For example, with a natural language data base access system a user may be

unwilling to change something that he has already typed, or he may believe that

the computer will understand a terse military style input. Contrasting with such

conscious grammatical violations, errors in normal written English are

unconscious, often arising from failure to grasp grammatical conventions.

Semantic problems involve omission of necessary information. Syntactic

problems include faulty subject-verb agreement, spurious constituents, word order

error, legitimate phrases a parser cannot deal with, broken off utterances,

unknown words filling a known grammatical role, run on sentences, fragmentary

input, elliptical input, and so on.

21

3.3 Handling Extragrammatical Phenomena

This section presents some examples of extragrammaticality as defined in the

last section. The notion of a grammar as a model of linguistic competence was

mentioned earlier. Chomsky speaks of different types of linguistic competence.

Similarly, he speaks of different levels of linguistic analysis. Such ideas can be

used to classify how different extragrammatical phenomena are to be handled,

that is, what level of linguistic analysis and grammatical representation are

needed:

• Lexical phenomena - a lexical representation such as a lexicon
containing parts of speech, preferred meaning, roots, and so on is
required.

• Syntactic phenomena - a lexical and a syntactic representation such as
a parse tree are required.

• Semantic phenomena - a lexical, a syntactic, and a semantic
representation such as extended first-order logic are required.

• Metalinguistic phenomena - a metalinguistic mechanism such as a
grammar editor or knowledge base modifier is required.

Although a detailed discussion is beyond the scope of this paper, it is useful

to look at a few phenomena and how they have been handled in various systems.

To deal with unexpected input, most robust parsers employ extensions of

existing methods, usually at a syntactic or semantic level.

Some work has been done at the level of words. Lexical disambiguation has

been handled with lexicons composed of words and associated semantic

information. As might be expected, such a scheme becomes cumbersome with

large lexicons but can be improved by ranking the semantic information

according to a word's preferred usage. Ambiguities are resolved by using the

ranking in conjunction with local contextual information.

Metalinguistic phenomena are simply those that reside at a level above a

grammar. They involve the techniques a writer employs in developing a

grammar. The LIFER, SAUMER, and ProGrammar systems contain some

22

metalinguistic capabilities.

New Words and Phrases

Features for handling new words and phrases may be found in the LIFER

and PLANES systems. Such a feature may be lexical or syntactic depending on

how it is employed.

The first step in the PLANES system is to put all individual words into

canonical form. Many words are replaced by their root forms and user defined

words are replaced with those words for which they are synonyms. A similar

process is carried out in LIFER.

LIFER is unable to interpret new constructs the first time it sees them;

however, the system does allow the user to interactively create personalized

syntactic constructs it then will continue to understand. If the system

understands some construct B, the user can create a new construct, A, with a

statement of the form Let A be like B. In LIFER, for example, the user can

enter:

Define Bi l l like Wil l iam

and the system will continue to treat the two names as synonymous.

LIFER has another feature: paraphrase. With this feature, the user can

enter:

Let "Describe John" be a paraphrase of "Pr int the height, weight, and age of John"

Given that the system recognizes the longer construct, then it would be able to

understand requests like:

Describe Mary's sister

To handle input like:

23

Define "new word" like "old word(s)"

a synonym table may be used with entries made when each new word is defined.

Whenever the new word is used again, it is simply replaced by another word or

words.

The simple case in which a single word is declared synonymous with an

existing word or phrase is a lexical phenomenon. Syntactic analysis is required

for something of the form:

Define "new phrase" like "old phrase"

In the example, Describe John may be parsed to <imperative verb> <object>

and Print the height, weight, and age of John to <imperative verb> <noun

modifiers> <object>. Since the object, John, is the same in both cases it may be

dropped leaving a correspondence between Describe and Print the height, weight,

and age of. When an input like Describe Mary's sister is entered the full

expansion can be got from the synonym table.

Ellipsis

Elliptic utterances are characterized by the omission of some sentential

constituent that can be easily subsumed in a particular sentence yet inferred from

the context of discourse. Two types of ellipsis may be identified: contextual and

telegraphic. Systems equipped for handling contextual ellipsis include LIFER,

PLANES, and SOPHIE.

Contextual ellipsis is characterized by the constituent being found in a

previous sentence. For example, the phrase:

Tom has

makes little sense in isolation but is appropriate in the context of:

24

Who has taken my book?
Tom has.

What appears to be a sentence with an incomplete predicate is, nevertheless,

acceptable. Similarly, a solitary prepositional phrase:

To the theatre

is an appropriate response to the question:

Where are you going?

Telegraphic ellipsis is characterized by the omission of words that convey

little meaning. This occurs when the sentence follows a common form such as a

newspaper headline or a sign in a shop:

Three chairs no waiting

Supporting both types of ellipsis in an N L U system allows a user to follow a

natural tendency to abbreviate. A hypothetical database system might allow:

> Who is the president of the company?
> The secretary?
> List profits each item

Ellipsis can generally be handled syntactically. Contextual ellipsis can be

handled if the utterance replaces a constituent in the parse tree of a previous

utterance. For example, the elliptic utterance, the secretary?, is parsed as a noun

phrase and fitted in as the object in the parse tree of the previous utterance.

Now the elliptic sentence can be interpreted as "Who is the secretary of the

company?". Although the SOPHIE and LIFER systems employ semantic

grammars, their approaches to handling ellipsis are syntactic.

Consider two consecutive queries that may be presented to SOPHIE:

2 5

What is the base emitter voltage of Q6?
What about Q3?

When the second query is processed, the appropriate grammar rule will contain

uninstantiated placeholders for constituents that depend upon context. The

context is provided by a history list of instantiated placeholders and grammar

rules used.

The approach taken by LIFER is to see if a contiguous set of words is

syntactically analogous to a contiguous subset of words in a previous input. The

elliptical phrase is then fitted into the parse representation of the complete

phrase. However, using analogy patterns derived from parse trees means an

elliptical utterance must match exactly some constituent of a previous parse and

so lacks generality.

Another approach to ellipsis is found in PLANES. The system utilizes

A T N subnetworks, case frames, and special context registers. The registers are

used to supply missing constituents in elided sentences.

Disagreement

There are a number of extragrammatical phenomena involving disagreement

among constituents: disagreement in number, case, person, mood, or voice. The

sentences:

The two apple are mine
Socrates am mortal

exhibit number and person disagreement respectively. Sentences such as these

are close enough to being grammatical that they are perfectly intelligible arid

should be treated by an N L U system as less preferred variations of acceptable

sentences.8

8 As a matter of interest, disagreement violations are found in certain dialects of
English. Nonstandard usage includes inflected plurals, double negatives, third person

26

Disagreement may be classified as a syntactic phenomenon. To handle

sentences of this category, Kwasny [KWA80, KWA81] employs techniques of test

and category relaxation. In terms of an A T N parser, test relaxation occurs on

failure at an arc containing a relaxable predicate. A predicate may be absolutely

violable in which case a value of true is substituted for a failed predicate and

parsing continues. This would occur with the sentence The two apple are mine.

Other predicates are conditionally violable in which case an alternate predicate is

tried upon failure. Category relaxation expands on Chomsky's hierarchy of

categories. To the grammar are added a hierarchy of words, categories, and

phrase types. For example, Pronouns may be Demonstrative (this, that...),

Personal (he, she...), or Reflexive (yourself, themselves...). In give he a cookie, he

is the incorrect pronoun but since it is found in one of the subcategories of

Pronoun, it is accepted.

S u m m a r y

Here are a few advantages to designing NLI's that robustly handle

extragrammatical input:

• Both the amount of typing and the consequent number of typing
mistakes can be reduced.

• A user may choose the level of vocabulary and pronominalization that
suits him.

• The user finds an ease in performing similar tasks with fragmentary
input interpreted in terms of earlier input.

• The user may extend the range of syntactic structures recognized by the
system.

• The user is given freedom in his means of expressing concepts and
making queries.

These points and others take on considerable significance in light of the

discussion of the last chapter. The material presented in this chapter is far from

exhaustive and is itself an area for further research. Nevertheless, it should be

singulars, and so on.

27

clear that an N L U system capable of handling extragrammatical input, one

which will accept input beyond that made explicit in its grammar, goes a long

way in meeting the requirements of a truly flexible NLI.

2$

C h a p t e r 4

Determinis t i c P a r s i n g

One constant difficulty faced by natural language systems is that the

grammar itself defines the language the system accepts. An input sentence may

deviate from the accepted language either because the user of the system has

made a mistake, or because the grammar itself is wrong or incomplete. The

origin of extragrammatical input as we have called it is irrelevant because,

whatever the case, a parser is faced with a choice: it must give up, or it must

assume the input is reasonable and find a way to deal with something unforeseen

by its own rules [KIN83].

Charniak [CHA83] suggests a parser which is "'semi-grammatical' in the

sense that it takes a standard 'correct' grammar of English and applies it so long

as it can, but will accept sentences which do not fit the grammar, while noting

the ways in which the sentences are deviant" (p. 117). A parser which does not

check for verb-noun agreement, for example, would not distinguish between:

The fish is dying
The fish are dying

Before an N L U system can handle extragrammatical input, what is needed

is a parser that enforces grammaticality where possible but behaves gracefully

where not. An A T N parsing mechanism could not provide this. When a semi-

grammatical parser encounters an extragrammatical situation, it must recognize

that the input deviates from what is described by the grammar and continue on.

A backtracking parser like ah ATN, on the other hand, when faced with an

extragrammaticality, would take this as evidence it had made an incorrect

decision and back up to try alternate parses. Not until such a parser has tried

unsuccessfully all possible parses of a given sentence does it know there is a

problem with the sentence. In other words, at the time it gets stuck, a

29

backtracking parser does not know why i t has to back up. Bu t w i th a

determinist ic parser, fai lure of rules at a given point may be assumed to be

because something is amiss w i th the input. If a parser is determinist ic, it may

assume that its input is correct up to the point where it blocks and make a guess

at what was intended in order to carry on. Here we turn to the work of M i t che l l

Marcus.

4 . 1 M a r c u s ' Deterministic Parser

The theory of parsing put forth by Marcus is an attempt to provide a

processing mechanism for current l inguistic theory, something l inguists

themselves have not done [SAM83]. The essence of Marcus ' parser is that it

provides a model wh ich corresponds to psychological real ity by being

determinist ic. In this important way it is different f rom the other language

processing systems mentioned earlier. It is designed to model how human beings

process language—we do not repeatedly t ry different analyses of a sentence unt i l

we find a correct one—rather than provide a tool for machine processing.

Consider the sentences:

Is the block sitting in the box?
Is the block sitting in the box red?

T o analyze left-to-right the structure of the above sentences, however, most

parsers must s imulate nondeterminism, t ry ing one wrong parse, backing up, and

t ry ing again. Th i s is the approach taken by A T N parsers. Not unt i l it knows

whether there are words after the phrase sitting in the box does a parser know if

the phrase functions as the complement of the verb is or as the modifier of the

noun block.

Marcus [MARC80] posits a "Dete rmin i sm Hypothesis":

. . . the syntax of any natural language can be parsed by a mechanism which
operates 'strictly deterministically' in that it does not simulate a

30

nondeterministic machine, (p. 2)

Of course, he does add that "only the syntactic component operates strictly

deterministically; . . . there is a clear necessity for a strictly deterministic parser

to ask questions of semantic-pragmatic components" (p. 3). Following this view,

Marcus proposes a parser that never backtracks; instead, it always takes the

right path.

Marcus' approach is to parse English with the weakest machine—and within

the most restricted framework—possible. This approach might not suffice in the

design of a large practical system such as one for translation or question

answering: the approach is theoretical, not practical [SAM83]. Instead of

presenting a large general grammar, Marcus presents one that captures a small

number of complex grammatical phenomena and their interactions.

Marcus discusses his deterministic parser in terms of a a grammar

interpreter, PARSIFAL, which allows simple rules to capture significant

linguistic generalizations: passives, yes-no questions, and imperatives, for

example. PARSIFAL's operation is constrained in such a way that to parse

sentences which violate grammatical constraints proposed by linguists would

require complex, ad hoe grammatical rules.9

The operation of the grammar interpreter has some interesting properties.

For one, all syntactic substructures created during parsing are permanent. This

implies that a backtracking simulation of determinism is impossible. For another,

all syntactic substructures created must be output as part of the overall syntactic

9 Berwick [BER83] notes that a stripped down Marcus parser can be characterized by
the LR(k,t) class of grammars. But Nozohoor-Farshi shows this is inadequate; He :

describes a new class of grammars, LRRL(k), for which deterministic, non-canonical,
bottom-up parsers can be derived and shows how grammars' parsable by Marcus' system
are a subclass of this class [NOZ85a]. He also shows the set of sentences accepted by
P A R S I F A L is a context-free language [NOZ85b].

31

structure. And this implies that the internal state of the interpreter may have no

temporary structures. Further, the parsing process itself has several properties:

• It is partially data-driven.
• It can have expectations based upon grammatical properties of partial

structures already built.
• It has a limited left-to-right lookahead facility.

The motivation for these properties can be found in the following sentences:

• Data-driven
John went to the store.
Did John go to the store?

• Expectations
I called [ffP John] [s to make Sue feel better].
I wanted [s John to make Sue feel better].

• Look-ahead
Have [s the boys take the exam today].
Have [N P the boys] [V P taken the exam today]?

These sentences have some important implications for the parsing process. First,

a deterministic parser cannot be strictly top-down. Top-down parsers are

hypothesis driven: they choose a goal and try to match the input to that goal.

But whether a sentence is a declarative or a yes-no question cannot be decided

without examination of the input as the first example above shows. Second, and

conversely, a deterministic parser cannot be strictly bottom-up. The second

example shows that the phrase John to make Sue feel better can be taken as an

infinitive complement or as two unrelated constituents. Bottom-up parsers are

data-driven: they look at the input and try to drive it towards some goal. A

bottom-up parser would fail to make the distinction in the given example. Third,

a deterministic parser cannot operate entirely left-to-right. The third example

shows that the verb following the boys must be examined before the structure of

the sentence is known.

Marcus' parser uses two important data structures: a stack of incomplete

constituents (partially built syntactic subtrees) called the active node stack, and a

buffer of complete constituents whose higher level function has not been

32

determined. The buffer is a list of five elements of which only a window of three

may be accessed at once. These data structures are acted upon by a grammar

consisting of pattern-action rules that are partially ordered and partitioned into

groups or packets. Patterns match elements of the buffer and the top of the

stack. The parser attaches buffer elements to the constituent at the top of the

stack until that constituent is complete and can be popped from the stack.

Returning to the properties of the parsing process, we see that they are

realized through the data structures. Pattern-action rules are triggered by

elements of the buffer, thus the parser is partially data-driven. The parser only

considers rules belonging to the active packets. Packets are made active to

reflect the properties of the constituents in the active node stack. Thus the

parser reflects expectations derived from partial structures. Finally, by using a

buffer, the parser has a lookahead capability. The elements of the buffer, the

lookahead symbols, can be completed constructs as well as bare words. Note that

unlimited lookahead would make the notion of determinism vacuous; therefore,

Marcus' system uses limited lookahead: no more than three elements can be in

the buffer.

Marcus' parser is intended to handle robustly a range of fairly difficult

linguistic phenomena and their interactions. The following sections will examine

how this is done.

4.2 PARSIFAL ' S Data Structures

Parse Nodes

Parse nodes represent grammatical constituents, each node being of a given

type such as S (sentence), NP (noun phrase), VP (verb phrase), etc. Tree

structures of parse nodes represent grammatical structures. Each node has a list

of its own descendents and is itself attached to its parent. Associated with a

node is a set of grammatical features summarizing the represented constituent's

33

properties. These are needed to decide upon a node's grammatical role in a

larger constituent or upon a constituent's overall grammatical behaviour. For

example, the behaviour of a verb phrase is affected by the types of complements

a verb takes. The parser builds constituent structures by attaching all

subconstituents to the topmost node of that constituent. It must be sure that all

attachments are correct because, as already noted, structure building is

permanent. Finally, each node has a unique system generated name. Figure 4.1

is taken from [MARC80].

S20 (DECL MAJOR S)
NP47 (NS NIP PRON-NP NOT-MODIFIABLE NP)

i
AUX20 (FUTURE VSPL AUX)

WORD112 will
VP22 (VP)

WORD113 schedule
NP50 (NS INDEF DET NP)

a meeting
WORD116 .

Figure 4.1 - Parse tree with features on nodes

The figure is not an exact example of the output produced by PARSIFAL;

rather, it is intended to show how the system analyses sentences. This is a

declarative, major sentence. The subject is a singular, first person noun phrase

which dominates a pronoun and is, therefore, not modifiable. The auxiliary verb

has future tense and will agree with any singular or plural subject. The object of

the verb phrase is a singular noun headed by an indefinite determiner.

Active Node Stack

The parser attempts to add constituents to the top of the stack covering an

incomplete constituent with other nodes while building the lower level

constituents that are its descendents. Completed, a node is popped from the

stack.

34

The parser may modify two elements of the active node stack: the top node

(the current active node) and the S or NP node closest to the top (the

dominating cyclic node).10 The parser may also examine, but not modify, the

descendents of these two: the nodes they dominate. In addition to name,

features, and descendents, nodes on the stack have associated with them a list of

active rule packets (more oh this later).

Buffer

When the parser pops the active node stack, the grammatical role of the

completed constituent may be as yet undetermined; that is, the current node may

have all its descendents attached but be unattached itself. In this case the node

is inserted into the buffer at the left. Of course, other elements of the buffer,

inserted at the right, are the unexamined words of an input sentence that are

retrieved when an active rule asks about the features of currently empty buffer

slots. Thus, each element of the buffer can be a grammatical constituent of any

type from a single word to a complete subordinate clause.

Often the parser, to decide what to do with the leftmost buffer constituent,

must look at the second or third element. We have seen an example in the last

section where the word have functions either as an auxiliary, initiating a yes-no

question, or as a main verb, initiating an imperative, depending on constituents

to its right. Three operations are associated with the buffer: read, insert, and

delete. Insertion and deletion are accompanied by right or left shifts to create or

fill space.

1 0 This is taken from generative grammar theory. S and NP nodes are special in that
transformations are applied cyclically to the constituents under them. A node which is
above another in a parse structure is said to dominate.

3 5

Operations on the Stack and Buffer

The parser has three fundamental operations:

• Attach a constituent to the current active node (stack top).
• Create a new active node and push it onto the stack.
• Drop a completed node from the stack.

A constituent involved in an attach operation may be a newly created node

or an element of the buffer. One node is attached to another by being made the

rightmost element in its parent's list of descendents. At the same time, if a

buffer element is being attached, the node is deleted from the buffer.

A new node is created whenever the parser decides the constituents in the

buffer actually begin a new constituent. If the parser knows the higher level role

of a node at the time of it's creation, it may immediately attach that node to the

old current active node. However, sometimes the parser may know that a new

higher level constituent is to be begun without knowing its higher level role as

when, for instance, it might attach either to the current active node or to some

predecessor of that node. We have already seen an example where a constituent

would be created without attachment. In the questions:

Is the block sitting in the box?
Is the block sitting in the box red?

the verb phrase sitting in the box can be attached either as a relative clause to

the block or as a verb phrase to the main clause itself. Being able to parse a

constituent before its grammatical role can be determined is necessary for

handling such nondeterministic sentences.

Whenever the current active node is completed, it is popped from the stack.

A node that was attached upon creation remains attached. However, an

unattached node cannot remain in limbo «o it Is inserted at the front of the buffer

at the same time as it is popped off the stack. This is all accomplished by the

36

composite operation: drop.

Why Both Stack and Buffer?

Marcus justifies using two data structures on the basis of combined top-

down and bottom-up parsing.

Top-down, hypothesis-driven, parsing such as that found in A T N

mechanisms, logic grammars (see chapter five), or recursive descent algorithms

adds subconstituents to a specific node in a parse tree by recursively postulating

subconstituents until a terminal symbol is reached that can be checked against

the input. The most natural data structure for this is a stack.

Bottom-up, data-driven, parsing attempts recursively to incorporate

contiguous sequences of constituents into higher level constituents until a root

symbol is reached. The most natural data structure for this is a buffer.

Marcus' parser incorporates both top-down and bottom-up features and so

uses two data structures. A node is pushed onto the stack when the parser is

looking for its subconstituents. Rather than attempting to find these in a purely

top-down fashion, the parser uses its pattern-action rules to recognize, through

contiguous sequences in the buffer, subconstituents of the current active node.

Constituents may also be recognized bottom-up by rules that are active no

matter what the current active node; that is, some constituents may be

recognizable no matter what the grammatical environment: for example, a noun

phrase. In short, the parser attempts, top-down, to find descendents of the nodes

in the active node stack; bottom-up, to find ancestors of the nodes in the buffer.

4.3 Structure and Interpretation of the Grammar

Grammar Rules

Each grammar rule consists of a pattern to be matched against elements of

the buffer and the current active node stack, and an action which operates upon

37

those elements. Rules are assigned a priority for arbitration amongst

simultaneous matches: the interpreter takes the action of the rule with highest

priority whose pattern matches. Before the interpreter will match a rule of a

given priority, all higher priority rules must have failed.

Rule patterns are lists of partial descriptions—up to five—to match against

each of the three nodes in the buffer as well as the current active node and

dominating cyclic node in the stack. Descriptions are tests for grammatical

features. Rule actions build constituent structures by:

• creating new parse nodes
• inserting lexical items into the buffer
• attaching a newly created node, or one deleted from the buffer, to the

current active node or dominating cyclic node
• popping the current active node from the stack and dropping it into the

buffer if it cannot be attached
• assigning features to any of the five accessible nodes
• activating or deactivating rule packets (described below)

Consider, as an example, Marcus' rule to detect the subject-auxiliary

inversion that marks a wh question.

{RULE AUX-INVERSION IN PARSE-SUBJ
[=auxverb] [=np] —>
Attach 2nd to c as np.

Deactivate parse-subj. Activate parse-aux.}

Figure 4.2 - Grammar rule

The name of this rule is AUX-INVERSION and it belongs to the PARSE-SUBJ

packet. Its pattern tests the first two buffer positions to see if they have the

features auxverb and np respectively. If so, it takes the specified action. The

second buffer element is deleted and attached to the current active node. The

PARSE-SUBJ packet is deactivated and PARSE-A UX is activated.

38

Rule Packets

Rules are organized into rule packets which can be activated or deactivated

as a group, and each node in the active stack has associated with it at any given

time a set of rule packets. The significance of this is that when a node becomes

the current active node, the rules in the packets associated with it determine

what the system does next. The interpreter only attempts to use rules in active

packets because most are applicable only under particular circumstances

reflecting global properties of structures already built. Note that several related

packets may be active simultaneously. For example, the verb seems can take

infinitive complements (It seems to be) or that-complements (It seems that). The

packeting mechanism captures most of the left context information about an

input sentence but some rules do examine the current active node, the

dominating cyclic node, and their descendents. Some of the more important rule

packets:

S S-S TART (Simple-Sentence-ST ART)
These rules determine the type of a major clause.

PARSE-SUBJ
These rules pick out and attach the subject of various types of clauses

CPOOL(Clause-POOL)
These rules are always active whenever any clause-level constituent is
being parsed. They are used, for example, to pick out noun phrases.

PARSE-AUX,BUILD-AUX
These rules initiate building of auxiliaries and attach completed
auxiliaries to the dominating S node.

PARSE-VP
These rules create a VP node and attach the main verb to it. When
the VP is complete, a later rule drops it from the stack and attaches it
to the main clause node.

SUBJ-VERB
These rules, involving the deep grammatical relation between the
surface subject of the clause and the verb, activate packets to parse
verb objects and complements. Some complements depend on the verb
of the clause; some on the global properties of the clause.

SS-VP
These rules attach the verb's objects in major clauses that are not wh
questions.

WH-VP ,EMBEDDED-S-VP
These rules parse objects of the verb plus VP-dominated PP's. The

39

first packet is for clauses with wh heads such as wh questions or relative
clauses; the second, similar to SS-VP, for embedded clauses that are
neither relative clauses nor indirect questions.

INF-COMP,SUBJ-LESS-INF-COMP,TO-BE-LESS-INF-COMP
These rules pick up infinitive complements, complements of verbs like
want that do not require a subject, complements of verbs like seems
that may take infinitive complements without a preceding to be, and so
on.

SS-FINAL
These rules attach clause level modifiers such as prepositional phrases,
adverbs, etc. to simple sentences.

EMBEDDED-S-FINAL
These rules are like those in SS-FINAL except they make a semantic
decision whether a modifier is to be attached to the current embedded
clause or to be left for later attachment to a higher level constituent.

Example Parse

We may now look at how Marcus' system carries out a parse and will

consider the sentence John has scheduled a meeting. For a more detailed look at

how P A R S I F A L operates, see [MARC80] or [SAM83].

Every parse begins with a call to INITIAL-RULE which creates an S node,

pushes it onto the stack, and activates the CPOOL and SS-START packets.

Amongst the rules belonging to SS-START is one, MAJOR-DECL-S, whose

pattern matches because the first two buffer elements are a noun phrase and

verb. The current active node, the S node, is labeled as declarative and major,

SS-START is deactivated, and PARSE-SUBJ is activated. Figure 4.3 shows the

state of the active node stack and buffer after the rule has run.

Active Node Stack
S16 (DECL MAJOR S) / (CPOOL PARSE-SUBJ)
Buffer
NP40 (NP NAME NS N3P) : (John)
WORD125 (*HAVE VERB AUXVERB PRES V3S) : (has)

{RULE MAJOR-DECL-S IN SS-START
[=np] [=verb] —>
Label c s,decl,major.
Deactivate ss-start. Activate parse-subj.}

Figure 4.3 - After MAJOR-DECL-S has run

40

The parse node on the active node stack has the system generated name si 6, the

features decl, major, and s, no descendents, and the associated active rule packets

CPOOL and PARSE-SUBJ. Before the rule was run, the buffer was empty.

Because the rule asked about features of empty buffer slots, a slot filling

mechanism was triggered. The parse node in the second buffer position has not

been examined by any grammar rule; therefore, its name is simply wordl25, its

features are those obtained from the word's entry in a lexicon, and its only

descendent is the word has. The node in the first buffer position has been

examined and represents a fully parsed noun phrase, but we shall defer discussion

of this.

One of the rules in the PARSE-SUBJ packet, UNMARKED-ORDER,

matches next. It attaches the first buffer constituent to the current active node,

deactivates PARSE-SUBJ, and activates PARSE-AUX: the subject of the

sentence has been found and the parser will now look for an auxiliary verb. The

details of auxiliary parsing need not concern us here. Briefly, what happens is

that the verb has is attached to the current active node as a descendent labeled

auxiliary, the PARSE-AUX packet is deactivated and PARSE-VP is activated.

Active Node Stack
S16 (DECL M A J O R S) / (CPOOL PARSE-VP)

NP : (John)
A U X : (has)

Buffer

WORD126 (*SCHEDULE C O M P - O B J V E R B INF-OBJ VSPL PAST) : (scheduled)

Figure 4.4 - After the auxiliary has been parsed

Note that there is a node in the first buffer position. This is because, in parsing

the auxiliary, PARSIFAL had to look ahead to see if it was comprised of more

than one word as would have been the case in, for instance, has been.

The next rule to match is MAIN- VERB which creates a new VP node

(making it the current active node), pushes it onto the stack, and attaches the

41

main verb to it. The rule also examines the features of the verb to decide which

packets to activate to parse the verb's complements. Only one complement-

initiating packet, INF-COMP, is made active since schedule can take an infinitive

complement as in Schedule the minister to give a talk.

Active Node Stack
S16 (DECL M A J O R S) / (CPOOL SS-FINAL)

NP : (John)
A U X : (has)

VP14 (VP) / (SS-VP INF -COMP CPOOL)
V E R B : (scheduled)

Buffer
NP41 (NS INDEF DET NP) : (a meeting)
WORD133 (*. F I N A L P U N C PUNC) : (.)

Figure 4.5 - After MA IN-VERB has run

The next rule to match is OBJECTS. The state of the system after it has

run is indicated i n figure 4.6.

Active Node Stack
S16 (DECL M A J O R S) / (CPOOL SS-FINAL)

NP : (John)
A U X : (has)

VP14 (VP) / (SS-VP INF -COMP CPOOL)
V E R B : (scheduled)
NP : (a meeting)

Buffer
WORD133 (*. F I N A L P U N C PUNC) : (.)

{ R U L E OB JECTS IN SS-VP
[=np] - >
Attach 1st to c as np.}

Figure 4.6 - After OBJECTS has run

The completion of the parse is simple! The default rule in SS- VP, VP-

DONE, runs. It pops the VP node from the active node stack and attaches it as

a descendent of the S node which has once again become the current active node.

This makes the packet SS-FINAL active. It, too, contains a default rule, SS-

DONE, which runs because there are no more constituents in the buffer except

42

for the final punctuation. The node representing the period is attached to the S

node and the parse is complete.

Attent ion Shifting Rules

Marcus proposes additional rules called attention shifting rules that extend

the basic grammar and cause the interpreter to shift attention, or move a

window, from the first buffer element to a later one if it indicates the beginning

of another higher level constituent of some sort. The parser constructs the

detected constituent, leaves it in the buffer, and then shifts attention back to the

beginning of the buffer.

These special rules enable other rules to treat constituents like noun phrases

as somehow primitive. To understand the need for them, consider how the

system might operate without. A rule in the CPOOL packet could match if any

word which can start an NP is in the first buffer slot. This would activate

another packet to build the NP and drop it into the buffer. Unfortunately, this

isn't general enough. Sometimes an NP must be constructed before its first word

reaches the first buffer slot. Moreover, while many words can begin an NP, they

don't always do so.

To solve this problem, the attention shifting rules cause the parser to shift

its attention from the actual start of the buffer to a later buffer cell or virtual

buffer start. After the constituent that triggered the attention shift is completed,

it is dropped into the buffer and the virtual buffer start is discarded. Then

higher level rules may run as if the constituent appeared fully formed.

Before the interpreter attempts to match the pattern of any high level rule,

it first checks to see if the pattern of any attention shifting rule matches. If so—

and here let us suppose the constituent that triggers the attention shifting rule is

in the nth buffer position—it shifts the virtual buffer start to the nth cell and

43

runs just the attention shifting rules until the complete constituent is parsed.

Marcus' attention shifting mechanism supports his "Determinism

Hypothesis". Consider the A T N PUSH arc which is also used to parse

subordinate constituents. That it may or may not succeed means it encodes the

top-down hypothesis that a constituent of a given type exists at a particular

point in the input. Whether the edge of a noun phrase, for instance, is clearly

indicated or not, a purely hypothesis-driven parser must hypothesize the

existence of such a constituent at every point at which it could occur. The

attention shifting rules, on the other hand, are data-driven. They allow Marcus'

parser to perform syntactic processing that combines expectation-driven and

data-driven methods, and to take advantage of guides which are encoded in the

input itself.

Buffer Handling with Attention Shifting

To accommodate the attention shifting rules, the index given to the routines

read, insert, and delete refers not to the ith actual buffer cell, rather, to the *th

cell from the virtual buffer start which is computed as an offset from the actual

start of the buffer. The command offset (j) adds j to the previous offset (initially

zero) and pushes the result on a stack of offsets. One consequence of this is that

buffer elements to the left of the virtual buffer start are invisible. An attention

shift is dismissed by the command pop_offset.

The reason for keeping a stack of offsets is that there may be attention shifts

within attention shifts. Consider the phrases:

a hundred rocks
a hundred pound rock

In the first case, a is part of the number phrase a hundred; in the second, it acts

as a determiner. The third constituent in the buffer must be examined to

44

determine the role of the first. This means the number phrase must be

constructed before its leading edge reaches the front of the buffer, and this is

accomplished by the attention shifting rules. However, this happens within the

parsing of an N P which itself triggered an attention shift.

The provision of attention shifting naturally implies the constituent buffer

must be more than just three elements long. Marcus makes two observations:

there are no grammar rules that match a constituent in the third cell and that

must be constructed by attention shifting rules; and nested attention shifts do

not result in even three shifts of the virtual buffer start. He, therefore, limits the

buffer to five cells and views the mechanism as a window of three cells sliding in

five.

Example Attention Shift

We look briefly at how PARSIFAL's attention shifting mechanism works.

Suppose the system is at the point in the parse of John has scheduled a meeting

where the the rule OBJECTS is about to be run. Before the interpreter attempts

to match the pattern of OBJECTS—which looks at the first buffer position to see

if it contains a noun phrase—it first tries the patterns of any active attention

shifting rules. The packet CPOOL contains one such rule: STARTNP.

{AS R U L E S T A R T N P IN C P O O L
[=ngstart] —>
Create a new np node.
If 1st is det then activate parse-det.
Activate npool.}

Figure 4.7 - Attention shifting rule

At the time this rule is tried, the word a is in the first buffer position. A

determiner can start a noun group and so has the feature ngstart. Because the

attention shifting rule triggers, the interpreter shifts attention to the cell occupied

by the constituent that triggered it. It does this by executing the command

45

offset(0) since the constituent is zero positions over from the current virtual

buffer start.11 Figure 4.8 shows the state of the system after the rule which parses

determiners has run.

Active Node Stack
S16 (DECL M A J O R S) / (CPOOL SS-FINAL)

N P : (John)
A U X : (has)

VP14 (VP) / (SS-VP INF -COMP CPOOL)
V E R B : (scheduled)

NP41 (INDEF DET NP) / (PARSE -NOUN NPOOL)
D E T : (a)

Buffer
WORD128 (*MEETING N G S T A R T N O U N NS) : (meeting)

{ R U L E D E T E R M I N E R IN PARSE -DET
[=det] - >
Attach 1st to c as det.
Label c det.
Transfer the features indef,def,wh from 1st to c.
Deactivate parse-det. Activate parse-noun.}

Figure 4.8 - After DETERMINER has run

Subsequent rules, similar to those for parsing higher level constituents, finish

parsing the noun phrase. The attention shift is dismissed by the command

pop_offset. Completed, the N P node is popped from the stack and dropped

back into the buffer whence it will be picked up by the rule OBJECTS.

4.4 Linguistic Generalizations Captured by PARSIFAL

The last section discussed the structure of PARSIFAL's grammar and how

the system parses. This section looks at the scope of linguistic coverage that

Marcus intended to capture.

Marcus claims that his parsing technique captures some of the

generalizations underlying English grammar and that the structure of the

1 1 Were the parser looking at a phrase like is a meeting, the interpreter would shift
attention by offset(l).

46

grammar interpreter itself imposes some of the constraints on transformations

found in current generative grammar theory.

Features a n d Traces

The general framework of the grammar is based on the notion of annotated

surface structure. Marcus borrows from Winograd the idea of "surface structure

annotated by the addition of a set of features to each node in a parse tree" (p.

90). From Chomsky he borrows the idea of "surface structure annotated by the

addition of an element called trace to indicate the 'underlying position' of

'shifted' NP's" (p. 90). The purpose is to represent grammatical information for

use in subsequent processing.

Features are used to summarize the grammatical properties of a

constituent's internal structure so that later syntactic and semantic analysis

routines can access them without actually examining that internal structure.

Note that functional information is not included in a constituent's feature set

because such information is indicated by position in a parse tree.

One example of how Marcus' parser uses information encoded in features has

to do with minor movement rules of generative grammar:12 the parser undoes

them. For instance, the inversion of a subject noun phrase and auxiliary verb

which mark a yes-no question is undone and a feature is added to the dominating

S node to indicate the sentence is a yes-no question.13

Traces are used to indicate the position of constituents that have been

displaced by transformations from their underlying logical positions. Following

current linguistic theory, a trace is essentially an empty noun phrase (a null-

deriving non-terminal) in the surface structure of a sentence without descendents

1 2 The notion of extraposition has been investigated in [PER81).
1 3 Subject-auxiliary inversion is also undone by CHAT-80—see [PER83, WAR82].

47

but bound to the noun phrase that filled that position at some level of deep

structure.14 In other words, rather than treat a noun phrase as having been

shifted from its original place in a sentence's deep structure, Marcus' parser

leaves it where it is and puts in a trace instead with a pointer to the surface NP.

Examples of using traces include indicating the underlying position of the wh-

head of a question or relative clause and indicating the underlying position of the

surface subject of a passivized clause. Another important use of traces in the

functioning of the interpreter is this: if a trace has been placed in the buffer by a

rule, later rules will be unaware that the NP did not actually appear in the

input.15

Yes-No Questions, Imperatives, and Passives

Section 4.3 showed how PARSIFAL handles a simple declarative sentence.

Special use of the buffer captures quite simply several linguistic phenomena:

• An element of the buffer other than the first may be removed allowing
discontinuous constituents to be reunited. Sometimes a structure
intervenes between two parts of one constituent as, for example, in a
yes-no question where the subject comes between two parts of a verb
cluster.1^

• Specific lexical items may be inserted into the input stream permitting
the same rules to operate on superficially different cases.

• A trace may be inserted into the buffer rather than directly attached to
the parse tree.

In parsing yes-no, questions PARSIFAL employs only two rules different

from those used to parse declaratives. They essentially negate the noun phrase

auxiliary inversion and so remove the need for the grammar to use special rules

to handle the discontinuity of the verb cluster. The inversion is undone merely

by picking out the subject of the clause found in the second buffer cell.

1 4 This idea originates in Chomsky's "Extended Standard Theory"—see [RAD81].
1 5 The same use of traces can be found in the CHAT-80 system and in example

Gapping Grammars in [DAH84a, DAH84b].
1 6 The idea here is similar to that behind gapping rules — see [DAH84a , PER81,

POP85].

48

Parsing imperatives and declaratives differs only in one rule. A rule for

imperatives inserts into the buffer the word you, labels the sentence node as

imperative, and activates the rule packet to look for the subject. This puts the

parser in the same state as it would be in if given a declarative clause.

Parsing passive constructions involves using traces. A special rule adds the

feature np-preposed to the sentence node to indicate the sentence has a preposed

subject, creates a trace which is bound to the already found subject, and drops

the trace into the buffer. A later rule will attach the trace to a verb so flagging

the fact that what appears to be the subject of a sentence is in fact the

underlying object.

S u m m a r y

This chapter has shown that if an NLU system is to handle

extragrammatical input it must first detect it as such, and that this requires a

deterministic approach to natural language parsing. One such approach—that of

Mitchell Marcus—was discussed in some detail. The next chapter motivates the

use of logic programming as a tool for developing natural language systems, and

then a logic programming implementation of part of Marcus' system is presented.

While further, and experimental, implementation is beyond the scope of this

thesis, chapter eight briefly mentions how a parser based on Marcus'

deterministic approach could handle extragrammatical input.

C h a p t e r 5

W h y Choose a L o g i c P r o g r a m m i n g A p p r o a c h ?

In the work of Terry Winograd we can find much insight into N L U systems.

Often theories of a mathematical or logical structure fail to create a holistic

model of language understanding. There are four types of knowledge (syntactic,

semantic, heuristic, and world) a person will employ in categorizing experience

along lines relevant to his his thought processes. These types of knowledge are

used in building interconnections in the mind between concepts. Utterances,

then, are programs that cause operations to be carried out in the hearer's

cognitive system—operations which, through reference to concepts and

interconnections, lead to understanding. With this view, Winograd designed his

S H RDLU system [WIN80].

SHRDLU exhibits procedural embedding of knowledge: specific world facts

are encoded as procedures to operate on representation structures. Operations

are justified not by facts about language but by a correspondence between the

representation and the world being described. Winograd notes that this

correspondence is not founded upon universal truths, rather, it is mediated

through the programmer who builds the representation structures. And in

creating these structures corresponding to facts in a particular domain, the

programmer is guided by his ideas of what is true in that domain and his

perception of the structures that exist in the mind of the user of the system.

We can infer from this that the understanding ability of any N L U system is

very much dependent upon what is made explicit—there is always a limit to

this—in the system; by the designer. Winograd admits that an expert system is

not a surrogate expert, only an intermediary, and that there always exists a

potential for breakdown. A system will fail when the assumptions underlying its

specification are not appropriate for some situation in which it is used. How can

50

the user of a system find out what the relevant assumptions are? Perhaps

through the provision of a meta-knowledge facility. We can in fact find in some

NLU systems the ability to query not only the knowledge base, but the

underlying grammar and deductive mechanisms [HEN77, HEN78, PERL82,

SAL85].

Winograd goes on to say that only a small amount of human reasoning fits

the mold of deductive logic. He comments that word categorization cannot be

equated with a finite set of logical predicates, that a word's applicability depends

on the purposes of the speaker and hearer. And so he steers away from a logical

deductive model of language. However, Winograd notes that these problems are

not automatically solved by moving to a procedural representation, and

difficulties still exist.

It seems Winograd is talking about understanding language in a very general

sense. We may accept the limits of a logical deductive model to represent human

reasoning; and the dependency of understanding upon the purposes of speaker

and hearer; and even the constraints imposed by the perceptions of system

designers, especially if a meta-knowledge facility is available—we may accept all

this and still find within database and expert systems, by the fact that they are

of limited scope, no reason to reject a logical representation of language. In fact,

inspired by recent developments, researchers are again using logic in N L U

systems.

Able to describe logical consequences, traditional logic has long been used to

represent meaning. Extensions to predicate calculus to represent the truth of

presuppositions and the subtleties of natural language quantification have been

reported in [DAH79]. Using logic in database design for both data description

and query formalism is discussed in [DAH82]. For a time, parsing knowledge,

semantic interpretation, and world knowledge had to be represented through

51

different formalisms and linked through interfaces. However, with the

development of Prolog [CL081, PER84], programming in logic [DAH83,

KOW79, ROB83] is now possible with logic being used throughout as knowledge

representation, programming language, data retrieval mechanism, meaning

representation, and even parsing mechanism. An important feature of Prolog is

that it allows natural language processors to be easily built.

Developments in all of these areas were drawn upon in the implementation

of experimental natural language database query systems [DAH81]. These have

some points in common with earlier systems such as LSNLIS and LADDER,

most notably the translation of English into an internal formal query language

and variable-typing to deal with meaning and aid disambiguation during parsing.

The idea is to associate a type with each domain and each element of that

domain in the knowledge base. Relations are represented as predicates whose

arguments are restricted to be elements of specific domains. Certain queries may

then be rejected on the basis of domain incompatibility. Logic provides a

particularly elegant means for doing this. In fact, logic programming can be

viewed as a generalization of relational databases with logic being used for data,

query language, and integrity constraints [FUC83].

But while disambiguation through typing is a point in common, the

differences are more significant. A logic programming approach using type-

checking allows both semantic and syntactic features of natural language to be

incorporated into a single formalism without the need of an intermediate

sublanguage. For example, a reading of the question

What is the colour of the car [that is] parked down the street?

in which the antecedent of the relative clause is taken as the colour of the car

would be rejected immediately on the grounds of semantic anomaly because the

subject of the verb park cannot belong to the colour domain. Syntactic and

52

semantic control are further aided by the incorporation of domain specific

knowledge into a lexicon containing entries for each word to specify syntactic role

and semantic interpretation. Other systems, LSNLIS for instance, use several-

pass analysis first to map the surface structure onto a Chomsky-type deep

structure [CH065] considering only syntax, and then to perform semantic checks.

RENDEZVOUS, too, employs an intermediate sublanguage.

In addition to the advantage of automatic parsing done by Prolog, a logic

programming approach has many of the desirable features of earlier formalisms.

ATN's were developed as a means of performing the type of analysis previously

only possible through difficult inversions of transformational grammars (TG's).

TG's were developed to explain how sentences with very different wordings can

have the same meaning while others with similar wordings can have different

meanings. Syntactic relationships between sentential constituents are

characterized by deep structures enumerated with context-free phrase structure

grammar rules. Sentences are generated by transformations applied to deep

structures. ATN's solve the problem of reversing transformations. They include

structure building actions to create syntactic representations and are flexible in

the way they do this. The order in which the pieces are put together need not be

the order in which they are found. Simulating a non-deterministic machine, an

A T N is able to reflect the ambiguity inherent in English. Burton [BUR79] states

two advantages of semantic grammars as being their ability to characterize the

sentences a system should handle and their ability to semantically constrain

parsing so aiding disambiguation. All of this can be said of logic programming.

The ability to include arguments in grammar symbols and procedure calls in

production rules allows syntactic and semantic agreement to be enforced and for

meaning-structures to be built.

The first work on logic based databases pioneered the way for further

53

research into logic programming as it applies to different aspects of natural

language database systems. Language analysis techniques were further

investigated in the CHAT-80 [PER83, WAR82] and MICROSIAL [PIQ82]

systems. SHADOW [HAD84] was explicitly designed to investigate how certain

natural language phenomena translate into precise database queries. A bottom-

up parsing strategy—contrasting with Prolog's normal top-down approach—that

allows left-recursive grammar rules may be found in the BUP system [MAT83].

Increasingly, Prolog based natural language front-ends are being developed for

the Japanese Fifth Generation Computer Systems project [MAR84]. It is

interesting that both attribute grammars used for compiler writing and

generalized phrase structure grammars for linguistic analysis can be seen as

variants of the Horn clause subset of logic [FUC83]. Logic grammars have been

applied to the specification of data types [ABR84b], the specification of formal

languages, the writing of compilers, and even the translation of English into

Spanish [DAH81]. Lastly, considerable work has been done on linguistics and the

logic programming formalism itself.

Prolog facilitates the writing of logic grammars in which productions are

represented as facts and rules of inference, and parsing as a deductive process

carried out by Prolog itself. Starting with the first logic grammar formalism,

Metamorphosis Grammars, developed by Colmerauer in 1975, many new

formalisms have developed. Definite Clause Grammars [PER80], included in the

implementation of Prolog itself, boast ease of implementation. Definite Clause

Translation Grammars [ABR84a] exhibit automatic construction of parse trees

and internal representation, as do Modifier Structure Grammars which were

actually developed to treat coordination problems. Applying grammars such as

these to a database NLI, it is possible concisely to specify translation into formal

query representation, syntactic analysis, and semantic checking all using a single

54

formalism and without concern for implementation details. Another formalism

developed to handle a specific linguistic phenomenon, namely that of left

extraposition, is the Extraposition Grammar [PER81]. An extension of

Extraposition Grammars to allow both left and right extraposition, free word

order, and reference to unspecified intermediate substrings has been developed

[DAH84a, DAH84b]i Gapping Grammars, as they are known, have most recently

been extended as Unrestricted Gapping Grammars [POP85] to allow more concise

description of production rules. An excellent summary of logic grammars may be

found in [DAH85b] and a look at parser writing through logic programming in

[DAH85a].

S u m m a r y

The following points summarize the advantages of logic programming in the

design of natural language interfaces:

• Truth and quantification represented through logic.
• Declarative grammar representation.
• Parsing concerns handled by language interpreter.
• Single pass syntactic-semantic analysis.
• Programming language, data, query and data retrieval mechanism,

parsing rules, semantic representation, and parsing mechanism all
represented with the same formalism.

As logic programming continues to grow, so will its use in building NLI's.

In the 1970's ATN's and semantic grammars were developed and applied to

N L U systems. Then work was done on making such systems more robust

[CAR83, GRA83, HAY81, JEN83, KWA80, KWA81]. Now logic programming

and logic grammars have been developed. Work has been done on extending

grammars themselves to describe natural language more easily, to translate

natural into formal language, and so on. It would be interesting to see how. an

NLI built through logic programming could be made to handle extragrammatical

phenomena.

55

C h a p t e r 6

A P r o l o g Implementat ion of P A R S I F A L

This chapter discusses a Prolog implementation of a subset of

PARSIFAL. It is not easy to reimplement a large program that grew without

prior definition or to design a specification of its functional behaviour, and this is

a recurring problem for those in A l who wish to build on existing work [RIT83].

But Marcus has published a reasonably full description of his grammar so it is at

least possible to come up with a rough specification of a system from that. Of

course, all the support routines to operate on data structures, which Marcus does

not discuss, had to be redesigned. Likewise, a lexicon composed of words and

their associated features had to be developed as did user interface i/o routines.

Here, however, we will assume their existence and concentrate primarily on the

grammar notation used in this Prolog implementation of Marcus' parser. For

implementation details, the source code is provided in the appendices.

PARSIFAL was built of several components, but of concern here is the

grammar. It was written in a specification language, Pidgin, 1 7 that resembles

English and must be translated into Lisp by an interpreter itself written in Lisp.

While this entails considerable processing overhead, the idea has certain practical

interest. In writing grammars for English, it is useful to write in a high level

notation; further, one may wish, as part of the grammatical description, to define

how the parsing is to be done. Now, Prolog lends itself to both these points;

and furthermore, Ritchie [RIT83] suggests a simpler function-argument notation

could be used to implement PARSIFAL without affecting the central" ideas.

Using Prolog, it is possible to rewrite Marcus' grammar rules in a predicate

notation run directly by the Prolog interpreter.

For a more complete description of P idgin see [MARC80].

56

Grammar Rules

In the discussion of the grammar structure, it was noted that rules are

assigned priorities to control the order in which pattern matching is attempted.

In Prolog this is unnecessary and can be accomplished by carefully ordering the

rules and allowing the Prolog interpreter to do the rest. It was also noted that

rules are grouped into packets so that only those rules in the currently active

packets are even attempted. Using Prolog, packeting is captured by giving all

rules belonging to the same packet the same predicate name. For identification,

each individual rule name is retained as a comment. The format of rules is:

/*
<rule name>
*/< packet name> :-

<pattern>,
I
*>

<action>, !.

Note the cut (!) after the pattern and action. PARSIFAL, in accordance with

Marcus' "Determinism Hypothesis", was designed to operate without

backtracking. But the Prolog interpreter is a backtracking system. Once a

rule's pattern matches, its action is to be taken and the parser is not to come

back to this rule; hence, the cut.

Another point: it may seem odd to have both the pattern and action parts of

a grammar rule in the body of a Prolog rule. Prolog is founded upon the Horn

Clause class of logic which permits but one clause in the head of a rule. A

grammar rule pattern, on the other hand, may be comprised of several goals, so it

has to be included in the body. Nevertheless, the placement of the cut retains

the logic of, "If this pattern matches, then take the following action."

Rule Patterns

Pidgin contains a number of ways of expressing patterns to be matched in

57

grammatical rules. For example:

[* is verb] [=np]

which tests the first and second buffer positions for the features verb and np may

be written in Prolog as:

has_feature(l,verb), has_feature(2,np), !

Similarly, a test of the current active node for the feature np-quest, written as:

[**c; =np-quest]

becomes:

has_feature(can,<np-quest'), !

Some patterns cannot be expressed quite so simply. A pattern like:

[there is a whcomp and it is not utilized]

tests to see if there is a whcomp attached to the dominating cyclic S node and if

it has been utilized, that is, there has been a trace np bound to it. This becomes

in Prolog:

retrieve_dcn(s,(_,SNodeFeatures)_,Descendents)),
nnd_descendent(whcomp,Descendents,_),
not(member(utilized,SNodeFeatures)), !

The predicate retrieve_dcn looks back through the active node stack to find the

specified dominating cyclic node. Find_descendent searches a list of

descendents to find a specific one. Success indicates it exists. The anonymous

variable is used as the third argument because it is not necessary the descendent

itself be returned. Finally, the member predicate is used to check if the whcomp

has been flagged as utilized by looking at the node's list of features.

The top of the active node stack, the current active node, may be examined by

using a predicate peek. Similarly, a read predicate examines elements of the

58

buffer.

Occasionally no test need be done in the pattern portion of a rule:

W

in Marcus' grammar becomes:

!

in Prolog.

Parse Nodes

Parse nodes are represented in Prolog as structures. Each structure has no

principal functor but does have four components:18 an atomic name, a list of

features, a list of descendents which may be individual words or further

structures, and, in the case of nodes on the stack, a list of active packets. In the

following figure, the S node has the name si; the features decl, major, and s; the

active packets cpool and ss_final; and three descendents (npl, auxl, and vpl)

which are themselves structures.

1 8 Strictly speaking, there is a functor—the comma (,)—which acts as an infix opera­
tor.

59

(s i , [decl,major,s], [cpool,ss_final],
[(npl, [name,ns,n3p,not-modifiable,np],

[(noun, [*john,ns,n3p,name,noun,propnoun,ngstart],
John)]),

(auxl,[perf,modal,vspl,past,aux],
[(modal, [*should,vspl,verb,auxverb,past,modal],

should),
(perf, [*have,v-3s,verb,auxverb,pres,tnsless],

have)]),
(vp l , [vp],

[(verb, [*schedule,vspl,verb,past,part,en,comp-obj,inf-obj],
scheduled),

(np2, [def,det,np],
[(det, [*the,ns,npl,n3p,det,def,ngstart],

the),
(nbar, [ns,nbar],

[(noun, [*meeting,ns,noun,ngstart],
meeting)])])])])

Figure 6.1 - Parse node structure

The list of active packets is left out when the node is dropped from the stack into

the buffer.

Operations on Parse Nodes

Marcus' system includes basic commands that act upon parse nodes. The

command for creating new parse nodes:

create a new <type> node

becomes:

create(<type>)

The operation to replace "deleted" items such as the implicit subject you in an

imperative statement is:

insert the word 'you' into the buffer before 1st

In Prolog, this, is written:

make_bufFer_node(you,Node),
insert(l,node).

60

The predicate, make_buffer_node, takes a word, looks it up in a lexicon, and

returns a parse node structure which includes the type word, features from the

lexicon, and the word itself.

To attach a buffer element to the current active node, Marcus writes:

i attach <cell> to c as <type>

This becomes:

attach(<cell>,<type>)

As mentioned, each node has a list of descendents. A node is attached to its

parent by being made the rightmost element of its parent's list of descendents.

When the parser is finished with the current active node, it may pop the node

from the active node stack and insert it at the front of the buffer. The operation:

drop c

is written:

drop

There are a few special grammar rules in Marcus' system that know at the time

of a new node's creation it is to be attached to the current active node upon

completion. Rather than dropping the node into the buffer and immediately

attaching it, the node may be attached upon creation to its parent so that when

it is dropped it remains attached. The operation in Marcus' system for

accomplishing this is:

attach a new <type> node to c as <type>

Because Prolog does not support pointers, a parse node cannot sit both atop the

active node stack and on its parent's list of descendents. For this reason it is

necessary to attach these special nodes upon completion rather than upon their

creation. This is accomplished by:

61

drop_and_attach(< type>)

Note that doing the attachment at this time should not affect the overall parse.

Even using Pidgin, a grammar writer must be aware of the attachment of the

current active node. Ritchie [RIT83] comments on an apparent problem in

Marcus' system: dropping a node which is both current and attached leaves an

already attached node in the buffer which some other rule may try again to

attach. He suggests eliminating the combined create and attach operation and

adopting a style of grammar writing in which a new node is created unattached

by one rule at the start of each new constituent, dropped on completion, and

attached by some other rule. This is in effect what has been done for this

Prolog implementation.

Another operation upon parse nodes is to test if a node has a descendent of a

given type. To test if the current active node has a det descendent, Marcus

writes:

if there is a det of c

In Prolog:

peek ((_,_,_,Descendents)),
find_descendent(det,Descendents), !

To test if the noun descendent of the first buffer element is a proper noun,

Marcus writes:

if the noun of 1st is propnoun

In Prolog:

read(1 ,(_,j_,Descendents)),
find_descendent(noun,Descendents,(_,Features,_)),
member(propnoun,Features), !

To look for a descendent of either the S or NP dominating cyclic node, Marcus

62

writes:

if there is a <type> of s (or np)
In Prolog:

retrieve_dcn(s,(_,_,_,Descendents)),
find_descendent(< type> ,Descendents,_), !

It is necessary to have a predicate that finds the dominating cyclic node by

searching back through the active node stack again because pointers are

unavailable in Prolog.

There are a number of operations that manipulate the features of nodes.

For example, to add features to the current active node, Marcus writes:

label c <feature set>

to add a feature to the second buffer element:

label 2nd <feature>

or to label the current active node with the intersection of a given set of features

and those associated with the first buffer element:

transfer <feature set> from 1st to c

In Prolog these are written:
label([<feature set>])
label(2 ,< feature>)
transfer([<feature set>])

An examination of Marcus' grammar shows commands such as:

attach 1st to c as <type>
attach a new <type> node to c as <type>
attach a new <type> node labeled <feature set> to c as <type>

Rather than have operations that appear similar but take different numbers of

arguments and have different effects, as Marcus does, it seems clearer to use just

the primitive operations create, attach, and label. Ritchie [RIT83] makes this

63

same observation.

At times Marcus uses conditional expressions:

if < boolean >
then < complex action 1>
else <complex action 2>

A <complex action> can be a single action, a sequence of actions, or another

conditional expression. In Prolog, both boolean expressions and actions are

predicates. Prolog has a special operator, ->, which is useful for readability

when a set of predicates are intended to represent an if-then-else construct. So

we get:

<predicate> ->
< predicate 1>

; <predicate 2>

Of course, each of these predicates may be a conjunction of predicates separated

by commas.

Traces

Marcus defines a trace to be "an NP which has no daughters but which has

associated with it a binding register which can be set to point to another NP" (p.

96). For a Prolog implementation, because there are no pointers, the interpreter

must look back through the active node stack to find the controlling NP. It then

extracts from that node and its descendents just the words and copies these as an

entire phrase into the trace NP node.

Control of Parsing

Next comes the issue of parser control. The parser tries to match the

patterns of only those rules that are applicable at any given point. It may use

the rules belonging to those packets that are currently active. Two predicates,

activate([<packet list>]) and deactivate([<packet list>]), add to and remove

64

from the current active node's list of active packets. The parser operates through

a recursive procedure, call_packets, which looks at the list of active packets and

calls each element (a Prolog predicate) in turn. When the last one completes,

the list is examined again. The list may have changed according to whether any

rule action included a call to activate or deactivate. No rule may fail. Even if

no patterns match there is always a default clause which may do nothing more

than succeed. When no packets remain active, the parse is finished.

Call.packets is invoked by an initial_rule that starts the parse of an entire

sentence but it may be invoked subsequently by an attention shifting rule to

parse a noun phrase.

Marcus permits rules to determine their own successors, avoiding the pattern

matching process, with an action like:

run <rule> next

This causes the rule's pattern to be overlooked and its action taken. For those

grammar rules which are invoked by others in such a manner, it is possible in

Prolog to have the rule contain the pattern and, in place of the action, a call to

a separate goal. Those rules which want to avoid the pattern simply call the goal

which represents the grammar rule's action. The decision to do it this way was

not save copying rule actions but to retain linguistic generalizations.

Accommodating attention shifting rules is straightforward. Whenever the

parser examines the buffer, the routine for doing this first checks to see if any of

the attention shifting rules apply. All attention shifting rules have the same

predicate name: as_rule. Which packet a rule belongs to (for example, CPOOL)

is indicated by the first argument. If cpool is included in the current active

node's list of active packets, then all as_rule clauses whose first argument is

cpool are tried.

65

Example Session

Here is an example of how the Prolog version of PARSIFAL works. After

the CProlog interpreter has consulted the source files, the user interface may be

invoked by the command input. The user is prompted for a sentence, given back

its parse, and asked if he wishes to continue.

C-Prolog version 1.5
| ?- [startup].
buffer consulted 5856 bytes 2.1 sec.
grammar consulted 15448 bytes 7.96667 sec.
input consulted 968 bytes 0.550005 sec.
lexicon consulted 11420 bytes 4.53334 sec.
nodes consulted 1504 bytes 0.833341 sec.
stack consulted 5104 bytes 2.63334 sec.
sysutils consulted 476 bytes 0.183345 sec.
tokens consulted 3080 bytes 1.73334 sec.
utils consulted 3696 bytes 2.00001 sec.
startup consulted 47552 bytes 22.9167 sec.

yes
| ?- input.

Sentence to parse
> John should have scheduled the meeting.

s: [decl,major,s]
np: [name,ns,n3p,not-modifiable,np]

noun: John
aux: [perf,modal,vspl,past,aux]

modal: should
perf: have

vp: [vp]
verb: scheduled
np: [def,det,np]

det: the
nbar: [ns.nbar]

noun: meeting
nnalpunc: .

Carry on? y/n : n

Figure 6.2 - Example session

C h a p t e r 7

L i m i t a t i o n s

7.1 Limitations to PARSIFAL

Marcus' PARSIFAL system has attracted some attention from others

involved in computational linguistics, mainly with respect to the theoretical

claims for its relevance to various linguistic phenomena. It is purported to be a

deterministic implementation of "Extended Standard Theory" so it is on the

psychological claims that attention has been focused.

Marcus claims that PARSIFAL parses those sentences "which a native

speaker can analyze without conscious effort" (p. 204) and that it fails only in

cases of psychological complexity, viz., garden path sentences. Briscoe [BRI83]

contradicts this. He notes some problems with the design of PARSIFAL which

allows it to look ahead into a sentence far enough to resolve all temporary

ambiguities except those which are garden paths. NP's can be processed in the

buffer because their leading edges can be detected. By the same reasoning that

allows this, Briscoe says, PP's, too, could be processed in the buffer, and this

would permit the parsing of some garden path sentences. Briscoe makes a second

point: preprocessing NP's gives PARSIFAL infinite lookahead at the word level

which translates into delayed processing. But people process language with

almost no delay.

PARSIFAL will sometimes fail on sentences other than garden paths and

require semantic support of syntax [SPA83]. Actually, Marcus does concede the

need for semantic processing at times and allows its interaction by only at the

request of the syntactic component. DeJong [DEJ79] comments that

PARSIFAL is in some ways similar to SHRDLU in that neither permits

semantic context to help the syntactic parser. On the other hand, SOPHIE, he

says, uses context but embeds so much domain specific knowledge in its rules as

67

to be inflexible. DeJong proposes the integration of a parser into a system so as

to benefit from predictions the system makes.

Sampson [SAM83] casts some doubt as to whether Marcus' system is

completely deterministic:

. . . If 'looking ahead' and 'backtracking' are just two metaphors for the same
thing . . . then it may be all that Marcus can claim is that his system is
relatively deterministic because his lookahead is limited. . . . (p. 96)

Yet Marcus insists his lookahead facility is not tantamount to nondeterminism:

for him the important point is that his system discards none of the structures it

creates. However, even given the definition of determinism in terms of no

building of unused structures, Marcus has been challenged as to whether, within

a strictly syntactic framework, parsing can be done deterministically.

An interesting drawback of Marcus' system is a direct consequence of its

deterministic parsing method. If a prepositional phrase can be attached to a V P

node it is; otherwise, it is left to be picked up by clause level rules. This implies

that if a PP can serve as a modifier of the object in a verb phrase, it will do so

even if it could also serve as a modifier of the entire clause. Thus, PARSIFAL

would produce only one parse of:

I saw the man with the telescope

in which the man has the telescope. It would miss the parse in which the

telescope is the instrument of seeing.

Marcus claims that PARSIFAL does not handle lexical ambiguity but

deals instead with structural ambiguity (p. 26). But in light of the example just

given, one begins to doubt the strength of this claim. This problem with a

rigidly deterministic parsing method is not limited to ambiguous prepositional

phrase attachment. Faced with a sentence which is globally ambiguous, for

instance:

68

The old men and women are muttering

Marcus' system would not produce two alternate outputs taking old to be an

immediate modifier of men or of men and women.

PARSIFAL was designed to deal mainly with syntactic phenomena but

even within this class coverage is not extensive. By Marcus' own admission, it

does not handle phenomena that require extensive semantic processing such as

conjunction, ellipsis, verb phase deletion, pronominalization, or prepositional

phrase attachment. It does not deal with centre embedded sentences like The

mouse the cat chased squeaks. Berwick [BER83] notes that it does not handle

right extraposition and only handles left extraposition through the use of traces.

He proposes some extensions to PARSIFAL to handle gapping.

Marcus intended PARSIFAL to handle robustly a range of fairly difficult

linguistic phenomena and their interactions, but here again some doubt has been

expressed. Ritchie [RIT83] notes that Marcus' own test grammar relies heavily

on a semantic component and case frame handler (not well documented) to make

decisions so making it difficult to assess just the syntactic component despite the

fact that Marcus discusses his parser in those terms. This, combined with a

relatively restricted set of test sentences, Ritchie says, does not substantiate

Marcus' "Determinism Hypothesis".

7.2 Limitations to the Current Implementation

As indicated in the preceding chapter, only a subset of PARSIFAL has

been implemented for this current research. There are a number of reasons for

this. For one, more extensive programming is beyond the scope of this thesis.

For another, there are parts of PARSIFAL not completely relevant to the idea

of writing a deterministic parser in Prolog.

69

PARSIFAL, in addition to its syntactic component, has a semantic case

frame interpreter. The published summary of the component is very sketchy so

it is difficult to draw up a specification for it. Moreover, most of Marcus'

theoretical claims relate to just the syntactic component. Thus, the semantic

component has been left out of this implementation.

It seems, however, that a practical system cannot completely ignore

semantic processing. Consider, for instance, the problem of prepositional phrase

attachment. This may well have to be addressed in a database: query NLI where

qualification is important. Prepositional phrase attachment is an interesting

problem in that it exemplifies a situation in which the parser must analyze a

constituent before its higher level grammatical role can be determined. Consider

the sentences:

I saw the man with the red hair
I saw the man with the telescope

The word with indicates the start of a prepositional phrase but the parser cannot

know immediately whether the phrase attaches as a modifier of the object or of

the entire main clause. Once the whole prepositional phrase has been found, a

semantic decision must be made as to where to attach it. In PARSIFAL, the

decision as to what to do with prepositional phrases like those above is left to the

rule packet SS- VP which is responsible for parsing verbs and complements. One

rule, PP- UNDER- VP-1, includes a semantic test to see if a PP can be attached a

given verb or if the PP should be left to attach later as a general clause modifier.

One simple guideline is that PP's serving as place and time modifiers

generally attach to an entire clause while those serving as other cases attach to a

verb phrase. This is exemplified by the sentence:

Take out the garbage before 5 o'clock

But there are exceptions. The verb schedule can take a time PP as a modifier,

70

for example:

Schedule an appointment for John before 5 o'clock

One method of partially solving the problem is through the use of case

frames which work with the annotated surface structure produced by the parser.

Case frames contain the predicate/argument relations in a sentence. However,

determining what case a phrase fills can be difficult. The most likely reading of:

The judge presented the boy with the prize

is as a paraphrase of:

The judge presented the prize to the boy

But consider:

The judge presented the boy with the prize to the jury

The problem is that prepositions can mark more than one case. For example,

with marks commitative, instrument, manner, and neutral cases.

The little Marcus does say about case frames is that they consist of four

components: a predicate, which is the word associated with the case frame;

specifiers, which provide extra information, such as auxiliary verbs or determiners

preceding verbs or nouns; cases; and modifiers which are optional, modify an

entire case frame, and are case frames themselves. However, he does not discuss

how a decision is made as to whether a prepositional phrase is a case or a

modifier. In fact, he comments that the general problem of PP attachment

requires extremely complex semantic interaction and is not addressed it in his

research. Since Marcus does not provide the code for his case frame interpreter

and since none of his test sentences exemplify PP attachment, it is not clear that

PARSIFAL handles the problem.

For this thesis, much of the syntactic component of PARSIFAL has been

71

implemented but not all of it. What have been left out are bells and whistles

which do not add to the idea of deterministic syntactic parsing: grammar rules

for such things as quantifier phrases and numbers.

While chapter five argued for a logic programming approach to building a

natural language parser, as it stands, this implementation of PARSIFAL does

not follow the principles of clean logic programming.

The active node stack, buffer, and input sentence are implemented as facts

in the Prolog database and are changed by the database modification commands

assert and retract. However, changes could be made to carry all three from

rule to rule as logical variables.

One of the ramifications of such a change would be a complete change in the

processing mechanism. As in the original PARSIFAL, this implementation,

too, uses a packeting mechanism to decide which grammar rules to try at any

point in a parse. Packets are activated and deactivated by making changes to

the current active node using assert and retract. Processing is controlled by a

special goal, call_packets, which invokes itself recursively. It looks at the list of

active packets associated with the current active node, calls each member of the

list (simply a Prolog predicate), and then begins again. Since each rule

belonging to the same packet has the same predicate name, all of the relevant

rules are tried. Because a rule may change the active packet list, parsing

progresses.

A better approach would involve having each rule invoke other rules as

goals, not only because this is cleaner logic programming but because it would be

necessary in order that the stack, buffer, and input be carried as arguments.

This could possibly be done with the setof predicate being used to make a list of

those rules which are applicable at any time. This is essentially what is done

with the active packet list but instead the Prolog interpreter itself would be

72

keeping track of what is active. A look at any of the papers describing logic

grammars will show that the flow of a parse may be controlled by the way

grammar rules reference each other. Conceivably, then, Marcus' grammar could

be rewritten following such a methodology. In fact, an improvement which has

been suggested by Ritchie [RIT83] is to connect the flow of processing to the

grammar rules so that explicit packet activation is not needed and some structure

building can be handled automatically.

Another way of cleaning up the current implementation might be to use

Concurrent Prolog. A grammar rule's pattern could be represented by the

guard of a clause and its action by the body. The commit operator would replace

the sequential Prolog cut which follows a rule's pattern. Although Concurrent

Prolog tries the guards of all clauses with the same head in parallel, only one

would commit to its body because of the mutual exclusiveness of the rule

patterns; thus, determinism would be retained.

73

C h a p t e r 8

Conclusions

This thesis has involved a literature survey and some programming. It has

shown the importance of designing very flexible interfaces to systems employing

natural language understanding. A major step towards that goal is the design of

a robust parsing mechanism capable of handling input not completely anticipated

by the system's internal grammar. Before a parser can deal with

extragrammatical input, it must first enforce grammaticality where it can, and

this implies a deterministic approach to natural language parsing. Such an

approach may be found in Marcus' PARSIFAL system. Following the recent

growth logic programming as a tool for developing natural language parsers, this

thesis has also presented a Prolog implementation of PARSIFAL.

An obvious extension of the work would be the handling of

extragrammatical input. Some of the features of Marcus' parser already lend

themselves to this. At any given point, not all of the grammar rules are tested,

in fact, most rules will be irrelevant. The packeting mechanism prevents

PARSIFAL from even considering more than just a few rules. Therefore, the

number of possible reasons for failure to parse is immediately limited. Another

thing: the attention shifting rules allow other rules to assume larger constituents

such as noun phrases have already been parsed. This might allow a correction

mechanism to operate in terms of constituents at a level higher than that of

words alone.

Charniak [CHA83] discusses a parser based on Marcus' that handles

ungrammatical input. One way that P A R A G R A M differs from PARSIFAL

is that rules, rather than being tested in order of priority, are tested in "parallel".

Moreover, the result of a test is not a binary decision, rather a goodness rating.

The rule with the highest rating is the one that runs next. A rating is the sum of

74

values returned by atomic tests. Charniak gives the following example:

Atomic Test
category (e.g. np)
specific word (e.g. to)
semantics okay
other (e.g. agreement)

Add if Succeed
4
6
0
2

Subtract if Fai l
15
15
8
15

The idea is that successful tests raise the score while failed ones reduce it greatly.

Note that priorities are not necessary to ensure more specific rules run before less

specific ones. A more specific rule, because it has more tests, will get a better

goodness rating. Now, with respect to extragrammatical input, one rule will still

have the highest rating even though none of them exactly matches the input.

PARAGRAM's ability to parse ungrarnmatical sentences stems from the

parsing mechanism itself. Furthermore, it can tell where a parse has broken

down since it is only then that the goodness rating drops below zero. Consider a

sentence like:

We is going to do it

After the subject we has been parsed, PARSIFAL activates the rule packet

PARSE-AUX. The rule START-AUX, which checks the first buffer element to

see if it is a verb, could have added to it an agreement test between the subject

and the verb. The sentence above would receive a rating of -11 (+4 for successful

category test, -15 for failed agreement). This would still be the highest rating of

all the rule patterns in the PARSE-AUX packet. Parsing could continue as it

should and a note could be made that an agreement test had failed. Charniak

does admit there are many ungrarnmatical, yet understandable, constructs which

P A R A G R A M cannot currently handle. Nonetheless, his ideas would be

interesting to try, especially in a Concurrent Prolog implementation whence

rule patterns would be tried in parallel.

Another enhancement that would increase the range of acceptable input

75

would be the inclusion of morphological analysis like that found in SATJMER

[POP84].

It was mentioned in the last chapter that Marcus' approach to parsing

effectively does away with ambiguity by choosing only one of several possible

readings. This might restrict its scope of applicability. It might be possible, using

Prolog, to overcome this problem through judiciously removing the cut from

certain rules and allowing backtracking to produce alternate parses. Given an

increased range of acceptable input and a more robust parsing mechanism, a final

enhancement would be useful indeed. In an NLU system it may be very

important the system be able to provide an explanation as to how a particular

parse was done, or, if it failed, why it failed. In order to give an explanation, the

system would have to record the path it takes to arrive at a solution. Ideas from

ProGrammar [SAL85] might be useful here. A parser capable of handling

extragrammatical input combined with an explanation facility could be applied to

several significant areas:

• A student engaged in a sentence construction tutorial could be told why
a sentence is incorrect.

• A database or CAI user could be aided in eliciting information.
• A grammar developer, given diagnostics for a sentence which is actually

correct, would find clues as to what is wrong with the grammar.

74

References

[ABR84a] Abramson, H., "Definite Clause Translation Grammars",
Proceedings IEEE Logic Programming Symposium, Atlantic City,
1984, pp 233-240.

[ABR84b] Abramson, H., "Definite Clause Translation Grammars and the
Logical Specification of Data Types as Unambiguous Context Free
Grammars", TR 84-11 Department of Computer Science, University
of British Columbia, 1984.

[BAK81] Baker, S., The Practical Stylist, New York: Harper & Row, 1981.
[BAR69] Barnes, D., Language, the Learner, and the School, Middlesex:

Penguin Books, 1969.
[BAR75] Barnes, D., From Communication to Curriculum, Middlesex: Penguin

Books, 1975.
[BARR77] Barr, A., and R.C. Atkinson, "Adaptive Instructional Strategies", in

H. Spada and W.F. Kempf (eds.), Structural Models of Thinking and
Learning, Bern: Hans Huber, 1977, pp 83-112.

[BARR81] Barr, A., and E.A. Feigenbaum, The Handbook of Artificial
Intelligence, vl, Los Altos, California: William Kauffman Inc, 1981.

[BARR82] Barr, A., and E.A. Feigenbaum, The Handbook of Artificial
Intelligence, v2, Los Altos, California: William Kauffman Inc, 1982.

[BER83] Berwick, R.C, "A Deterministic Parser with Broader Coverage",
Proceedings Eighth International Joint Conference on Artificial
Intelligence, Karlsruhe, West Germany, 1983, pp 710-712.

[BRI83] Briscoe, E.J., "Determinism and its Implementation is PARSIFAL",
in K. Sparck Jones and Y. Wilks (eds.), Automatic Natural Language
Parsing, Chichester: Ellis Horwood Ltd., 1983, pp 61-68.

[BOR80] Bork, A., "Preparing Student-Computer Dialogues: Advice to
Teachers", in R.P. Taylor (ed.), The Computer in the School: Tutor,
Tool, Tutee, New York: Teachers College Press, 1980, pp 15-52.

[BR075] Brown, J.S., R.R. Burton, and A.G. Bell, "SOPHIE: A Step Toward
Creating a Reactive Learning Environment", International Journal of
Man-Machine Studies, v7n5, Sept 1975, pp 675-696.

[BR078] Brown, J.S., and R.R. Burton, "Diagnostic Models for Procedural
Bugs in Basic Mathematical Skills", Cognitive Science, 2, 1978, pp
155-192.

[BR082] Brown, J.S., R.R. Burton, and J. DeKleer, "Pedagogical, Natural
Language and Knowledge Engineering Techniques in SOPHIE I, II
and HI", in D. Sleeman and J.S. Brown (eds.), Intelligent Tutoring
Systems, London: Academic Press, 1982, pp 227-282.

[BUL75] Bullock Committee, A Language for Life, London: Her Majesty's
Staionery Office, 1975.

[BUR79] Burton, R.R., and J.S. Brown, "Toward a Natural Language
Capability for Computer Assisted Instruction", in H.F. O'Neil (ed.),
Procedures for Instructional Systems Development, New York:
Academic Press, 1979, pp 273-313.

[BUR82] Burton, R.R., "Diagnosing Bugs in a Simple Procedural Skill", in D.
Sleeman and J.S. Brown (eds.), Intelligent Tutoring Systems,
London: Academic Press, 1982, pp 157-183.

77

[CAR83] Carbonell, J.G., and P.J. Hayes, "Recovery Strategies for Parsing
Extragrarnmatical Language", American Journal of Computational
Linguistics, v9n3-4, July-Dec 1983, pp 123-146.

[CHA83] Charniak, E., "A Parser with Something for Everyone", in M. King
(ed.), Parsing Natural Language, London: Academic Press, 1983, pp
117-149.

[CH065] Chomsky, N., Syntactic Structures, The Hague: Mouton & Co., 1965.
[CL081] Clocksin, W.F., and C.S. Mellish, Programming in Prolog, Berlin:

Springer-Verlag, 1981.
[COL85] Colbourn, M.J., "Applications of Artificial Intelligence Within

Education", International Journal of Computer Mathematics, to
appear April 1985.

[COD74] Codd, E.F., "Seven Steps to Rendezvous with the Casual User", in
J.W. Klimbie and K.L. Koffeman (eds.), Database Management,
Amsterdam: North Holland, 1974, pp 179-200.

[DAH79] Dahl, V., "Quantification in a Three-Valued Logic for Natural
Language Question-Answering Systems", Proceedings Sixth
International Joint Conference on Artificial Intelligence, Tokyo,
1979, pp 182-187.

[DAH81] Dahl, V., "Translating Spanish into Logic Through Logic",
American Journal of Computational Linguistics, v7n3, July-Dec
1981, pp 147-164.

[DAH82] Dahl, V., "On Database Systems Development Through Logic",
ACM Transactions on Database Systems, v7nl, March 1982, pp
102-123.

[DAH83] Dahl, V., "On Logic Programming as a Representation of
Knowledge", IEEE Computer, vl6nlO,Oct 1983, pp 106-111.

[DAH84a] Dahl, V., and H. Abramson, "On Gapping Grammars", Proceedings
Second International Logic Programming Conference, Uppsala, 1984,
pp 77-88.

[DAH84b] Dahl, V., "More on Gapping Grammars" Proceedings of the
International Conference on Fifth Generation Computer Systems,
Tokyo, 1984, pp 669-677.

[DAH85a] Dahl, V., "Hiding Complexity from the Casual Writer of Parsers", in
V. Dahl and P. Saint-Dizier (eds.), Natural Language Understanding,
New York: Elsevier, 1985.

[DAH85b] Dahl, V., "Logic Based Metagrammars for Natural Language
Analysis", TR 85-1, Computing Science Department, Simon Fraser
University, 1985.

[DEJ79] DeJong, G., "Prediction and Substantiation: A New Approach to
Natural Language Processing", Cognitive Science, v3, 1979, pp 251-
273.

[DIE74] Diederich, P.B., Measuring Growth in English, Urbana, Illinois:
National Council of Teachers of English, 1974.

[DOU79] Doughty, P., "Language for Living", Mc Gill Journal of Education,
vl4nl, 1979, pp 61-69.

[FUC83] Fuchi, K., "The Direction the FGCS Project will Take, New
Generation Computing, vlnl, 1983, pp 3-9.

78

[GAT80] Gatherer, W.A., A Study of English: Learning and Teaching the
Language, London: Heinemann, 1980.

[GRA83] Granger, R.H., "The NOMAD System: Expectation-Based Detection
and Correction of Errors During Understanding Syntactically and
Semantically Hi-formed Text", American Journal of Computational
Linguistics, v9n3-4, July-Dec 1983, pp 188-196.

[HAD84] Hadley, R.F., "SHADOW: A Natural Languge Query Analyser", TR
84-13, Computing Science Department, Simon Fraser University,
1984.

[HAY81] Hayes, P.J., and G.V. Mouradian, "Flexible Parsing", American
Journal of Computational Linguistics, v7n4, Oct-Dec 1981, pp 232-
242.

[HEN77] Hendrix, G.G., "Human Engineering for Applied Natural Language
Processing", Proceedings Fifth International Joint Conference on
Artificial Intelligence, Cambridge, Mass., pp 183-191.

[HEN78] Hendrix, G.G., E.D. Sacerdoti, D. Sagalowicz, and J. Slocum,
"Developing a Natural Language Interface to Complex Data", ACM
Transactions on Database Systems, v3n2, June 1978, pp 105-147.

[JEN83] Jensen, K., G.E. Heidorn, L.A. Miller, and Y. Ravin, "Parse Fitting
and Prose Fixing: Getting a Hold on Ill-formedness", American
Journal of Computational Linguistics, v9n3-4, July-Dec 1983, pp
147-160.

[KIN83] King, Margaret (ed.), Parsing Natural Language, London: Academic
Press, 1983.

[KOW79] Kowalski, R., Logic for Problem Solving, New York: Elsevier, 1979.
[KWA80] Kwasny, S.C., Treatment of Ungrammatical and Extra-Grammatical

Phenomena in Natural Language Understanding Systems,
Bloomington, Indiana: Indiana University Linguistics Club, 1980.

[KWA81] Kwasny, S.C., and Norman Sondheimer, "Relaxation Techniques for
Parsing Grammatically Ill-formed Input in Natural Language
Systems", American Journal of Computational Linguistics, v7n2,
April-June 1981, pp 99-108.

[MAR84] Marayama, H., and A. Yonezawa, "A Prolog Based Natural
Language Front-End System", New Generation Computing, v2nl,
1984, pp 91-99.

[MARC80] Marcus, Mitchell P., A Theory of Syntactic Recognition for Natural
Language, Cambridge: The MIT Press, 1980.

[MAT83] Matsumoto, Y, et. al., "BUP: A Bottom-Up Parser Embedded in
Prolog", New Generation Computing, vln2, 1983, pp 145-158.

[NIE80] Nievergelt, J., "A Paradigmatic Introduction to Courseware Design",
IEEE Computer, vl3n9, Sept 1980, pp 7-21.

[NOZ85a] Nozohoor-Farshi, R., "On Formalizations of Marcus' Parser",
Department of Computing Science, University of Alberta, 1985.

[NOZ85b] Nozohoor-Farshi, R., "Context-freeness of the Language Accepted by
Marcus' Parser", Department of Computing Science, University of
Alberta, 1985.

[PAP80] Papert, S., Mindstorms, New York: Basic Books, Inc., 1980.
[PER80] Pereira, F.C.N., and D.H.D. Warren, "Definite Clause Grammars for

Language Analysis—A Survey of the Formalism and a Comparison

79

with Augmented Transition Networks", Artificial Intelligence,
vl3n3, May 1980, pp 231-278.

[PER81] Pereira, F.C.N., "Extraposition Grammars", American Journal of
Computational Linguistics, v7n4, 1981, pp 243-256.

[PER83] Pereira, F.C.N., Logic for Natural Language Analysis, Menlo Park,
California: SRI International, 1983.

[PER84] Pereira, F.C.N, (ed.), C-Prolog User's Manual, SRI International,
Menlo Park, California, 1984.

[PERL82] Pereira, L.M., P. Sabatier, and E. Oliveira, "ORBI: An Expert
System for Environmental Resource Evaluation Through Natural
Language", Proceedings First International Logic Programming
Conference, Marseille, Sept 1982, pp 200-209.

[PIQ82] Pique, J.F., and P. Sabatier, "An Informative, Adaptable and
Efficient Natural Language Consultable Database System", 1982
European Conference on Artificial Intelligence, Orsay, July 1982, pp
250-254.

[POP84] Popowich, F., "SAUMER: Sentence Analysis Using MEtaRules", TR
84-10, Computing Science Department, Simon Fraser University,
1984.

[POP85] Popowich, F., "Unrestricted Gapping Grammars: Theory,
Implementations, and Applications", M.Sc. Thesis, Simon Fraser
University, 1985.

[RAD81] Radford, A., Transformational Syntax, Cambridge: Cambridge
University Press, 1981.

[RIC83] Rich, E., Artificial Intelligence, New York: McGraw Hill, 1983.
[RIT83] Ritchie, G.D., "The Implementation of a PIDGIN Interpreter", in K.

Sparck Jones and Y. Wilks (eds.), Automatic Natural Language
Parsing, Chichester: Ellis Horwood Ltd., 1983, pp 69-80.

[ROB83] Robinson, J.A., "Logic Programming—Past, Present, and Future",
New Generation Computing, vln2, 1983, pp 107-124.

[SAL85] Salim, J.S., "An Expert System Shell for Processing Logic
Grammars", M.Sc. Thesis, University of British Columbia, May
1985.

[SAM83] Sampson, G., "Deterministic Parsing", in M. King (ed.), Parsing
Natural Language, London: Academic Press, 1983, pp 91-116.

[SHA83] Shapiro, E., A Subset of Concurrent Prolog and its Interpreter,
ICOT Technical Report TR-003, February, 1983.

[SHAU77] Shaughnessy, M.P., Errors and Expectations, New York: Oxford
University Press, 1977.

[SLE82] Sleeman, D., and J.S. Brown (eds.), Intelligent Tutoring Systems,
London: Academic Press, 1982.

[SPA83] Sparck Jones, K., and Y. Wilks (eds.), Automatic Natural Language
Parsing, Chichester: Ellis Horwood Ltd., 1983.

[TRE85] Tremblay, J.P., and P.G. Sorenson, The Theory and Practice of
Compiler Writing, New York: McGraw Hill, 1985.

[WAL78] Waltz, D.L.-, "An English Language Question-Answering System for
a Large Relational Database", Communications of the ACM, v21n7,
July 1978, pp 526-539.

80

[WAR82] Warren, D.H.D., and F.C.N. Pereira, "An Efficient Easily Adaptable
System for Interpreting Natural Language Queries", American
Journal of Computational Linguistics, v8n3-4, July-Dec 1982, pp
110-122.

[WEA79] Weaver, C, Grammar for Teachers, Urbana, Illinois: National
Council of Teachers of English, 1979.

[WIN73] Winograd, T., "A Procedural Model of Language Understanding", in
R.C. Schank and K.M. Colby (eds.), Computer Models of Thought
and Language, San Francisco: W.H. Freeman and Co., 1973, pp 152-
186.

[WIN80] Winograd, T., "What Does it Mean to Understand Language?",
Cognitive Science, v4n3, July-Sept 1980, pp 209-241.

[WOO70] Woods, W.A., "Transition Network Grammars for Natural Language
Analysis", CACM, vl3nl0, Oct 1970, pp 591-606.

[W0072] Woods, W.A., R. Kaplan, and B. Nash-Webber, The LUNAR
Science Natural Language Information System: Final Report, BBN
Rep. No. 2378, Cambridge, Mass.: Bolt, Beranek and Newman, Inc.,
1972.

A p p e n d i x 1

Source Code

^********************** j
/ * G R A M M A R RULES */ *̂*** ********* *********yr

This rule creates an S node and activates the packet of rules to decide on a
sentence's type. It also activates the packet containing attention shifting rules that
are always active on the clause level. Any attention shifting rule that matches
always jhas priority over rules in other packets. A recursive procedure that controls
parsing is started. Finally, the remaining node on the active node stack is popped
and returned. This is the initial S node which now contains the structure
representing the parse tree of the input sentence.
7

initial_rule(Tree) :-
I
•J

create(s),
activate([cpool,ss_start]), !,
call_packets,
pop(Tree), !.

/̂***y
/ * SS-START Packet - Initiate major clauses * / y***y

/*
If a clause begins with a wh marker followed by a verb, it is a wh-question.
7
/*
WH_QUEST
*/ss_start :-

has_feature(l,wh),has_feature(2,verb),
I

*i
label([quest,'wh-quest',major]),
read(1, (_,Features,_)),
is_it_pp_or_np_quest(Features),
attach(l,whcomp),
deactivate([ss_start]),
activate([parse_subj]), !.

is_it_pp_or_np_quest(Features) :-
member(pp,Features),
label(['pp-quest'j).

is_it_pp_or_np_quest(Features) :-
member(np,Features),
label([' np-quest'])'.

is_it_pp_or_np_quest(_) :- !.
/*

82

If a clause begins with an NP followed by a verb, it is a declarative.
V

/*
MAJOR_DECL_S
*/ss_start :-

has_feature(l ,np) ,has_feature(2,verb),
I

label([decl,major]),
deactivate([ss_start]),
activate([parse_subj]), !.

/*
If a clause begins with an auxiliary verb followed by an NP, it is a yes/i
question
V

/*
YES_NO_Q
*/ss_start :-

has_feat ure(1 ,auxverb), has_feat ure (2, np),
I

yes_no_q_action, !.

yes_no_q_action :-
label([quest, 'y n-quest', major]),
deactivate([ss_start]),
activate([parse_subj]), !.

/*
If a clause begins with a tenseless verb, it is an imperative. The implied subject
'you' is inserted.
V

/*
IMPERATIVE
*/ss_start :-

has_feature(l,tnsless),
I

imperative_action, !.

imperative_action :-
label([imper.major]),
:make_buffer_node(you,Node),
insert(l,Node),
deactivate([ss_start]),
activate([parse_subj]), !.

/*
N P . U T T E R A N C E
*/ss_start :-

has_feat ure (1, np) ,has_feat ure (2, finalpunc),
1
•i
label(['np-utterance']),

83

attach(l,np),
attach(l,finalpunc),
deactivate(all), !.

/•
P P J J T T E R A N C E
*/ss_start :-

has_feature(l,pp),has_feature(2,finalpunc),
1
label(['pp-utterance']),
attach(l,pp),
attach(l,finalpunc),
deactivate(all), !.

y'**************************************J
/ * PARSE-SUBJ Packet - Subject parsing */ y**************************************J

I*
SUBJ_QUEST
*/parse_subj :-

has_feature(l,verb),has_feature(can,,np-quest'),has_feature(2,np),
I

((no t (has_fe at ure (1, aux verb))
; not(has_feature(3,verb))) ->

(create(np),
label([trace,'not-modifiable']),
bind(whcomp),
drop_and_attach(np),
Iabel(s, [utilized]),
deactivate([parse_subj]),
activate([parse_aux]))

; aux_inversion_action),

/*
This rule picks out the subject in clauses where an element of the auxiliary appears
before the subject.
V

/*
A U X J N V E R S I O N
*/parse_subj :-

has_feat ure (1 ,auxverb), has_feat ure (2, np),
I

aux_inversion_action, !.

aux_inversion_action :- .
attach(2,np),
deactivate([parse_subj]),
activate([parse_aux]), !.

7*
This rule picks out the subject in clauses where the subject appears before the

84

verb. This applies to both declaratives and imperatives.
V

/*
U N M A R K E D j O R D E R
*/parse_subj :-

has_feature(l,np) ,has_feature(2,verb),
I
•»

attach(l,np),
deac t ivat e ([parse_su bj J),
activate([parse_aux]), !.

j** j
I* P A R S E - A U X a n d BUILD-AUX Packets - Rules for building auxiliaries */
^**j

This rule creates a new node to contain the auxiliary construction and indicates its
person/number agreement and tense.
V

/*
S T A R T _ A U X
*/parse_aux :-

has_feature(l,verb),
I
•» *
create(aux),
transfer([vspLvls,,v-(-13s','vpl-|-2s','v-3s',v3s)

pres,past,future,tnsless]),
activate([cpool,build_aux]), !.

/*
TO_INFINITIVE
*/parse_aux :-

has_feature(l)'*to'),has_feature(l)auxverb),has_feature(2)tnsless),
I
•i

create(aux),
label([infj),
attach(l,to),
activate([cpool,build_aux]), !.

/ * • . .

Attach a completed auxiliary to the dominating S node.
7

/*
A U X . A T T A C H
*/parse_aux :-

has_feature(l,aux),
I
•i
attach(l,aux),
deactivate([parse_aux]),
activate([parse_vp]), !.

/ * BUILD-AUX Packet */

/ *
PERFECTIVE
*/build_aux :-

has_feature(l1
,*have'),has_feature(2,en),

t
*i
attach(l,perf),
label([perf]), !.

/*
PROGRESSIVE
*/build_aux :-

has_feat ure (1,' * be'), has_feat ure (2, ing),
t
•i
attach(l,prog),
label([prog]), !.

/*
PASSIVE.AUX
*/build_aux :-

has_feature(l,'*be'),has_feature(2,en),
I
•i
attach(l,passive),
label([passive]),
label(l,[passive]), !.

/*
M O D A L
*/build_aux :-

has_feature(l,modal),has_feature(2,tnsless),
I
•»

attach(l, modal),
label([modal]), !.

/*
F U T U R E
*/build_aux :-

has_feature(l,'*will'),has_feature(2,tnsless),
1
•i
attach(l,will),
label([future]), !.

/*
DO_SUPPORT
*/build_aux :- '

has_feature(l,'*do'),has_feature(2,tnsless),
I

attach(l,do), !.
/ * • . '
BE_PRED

*/build_aux :-
has_feature(l,'*be'), not(has_feature(2,part)),

86

(has_feature(2,adj) ; has_feature(2,prep)),
I

•i
attach(l,copula),
label([copula]),
label(l,[verb,'pred-verb']), !.

/*
A U X _ C O M P L E T E
*/build_aux :-

1
•t ••

drop, !.
^/***J
I* PARSE-VP and NO-SUB J Packets - Verb processing * / j****************************** ********************* j

This rule sets up the state of the S node, creates a VP node and attaches the main
verb to it, and activates the appropriate packets to parse objects and complements.
7

/*
M A I N . V E R B
*/parse_vp :-

has_feature(l,verb),
I
•j

deactivate([parse_vp]),
activate_major_or_embedded_final,
create (vp),
read(1, (_, VerbFeatures,_)),
attach(l,verb),
activate([cpool]),
check_inf_obj (VerbFeatures),
check_that_obj (VerbFeatures),
check_wh_comp,
check_passive(VerbFeatures), !.

activate_major_or_embedded_final :-
(has_feature(can,major) ->

activate([ss_final])
; activate([embedded_s_final])),
I

check_inf_obj (VerbFeatures) :-
member('inf-obj'.VerbFeatures) ->
(chec k_to_less_inf_obj (VerbFeat ures),
check_to_be_less_inf_obj(VerbFeatures),
check_subj_less_inf_obj(VerbFeatures),
activate([inf_comp]), !)

check_to_less_inf_obj (VerbFeatures) :-
memberCto-less-inf-obj',VerbFeatures) ->
(activate([toJess_inf_comp]), !)

87

• 1

check_to_be_less_inf_obj (VerbFeatures) :-
member('to-be-less-inf-obj', VerbFeatures) ->
(activate([toJbeJess_inf_comp]), i)

• I

i • • -
check_subj_less_inf_obj (VerbFeatures) :-

(member('subj-less-inf-obj', VerbFeatures) ->
activate([subj_less_inf_comp])

; check_no_subj(VerbFeatures)),
i .

check_no_subj(VerbFeatures) :-
member('no-subj',VerbFeatures) ->
(activate([no_subjj), !)

• 1
> ••

check_that_obj (VerbFeatures) :-
member('that-obj',VerbFeatures) ->
(activate([that_comp]), !)

• I

check_wh_comp :-
(wh_comp_not_utili2ed ->

activate([wh_vp])
; end_major_or_embedded),
J.

end_major_or_embedded :-
(has_feature(s,major) ->

activate([ss_vp])
; activate([embedded_s_vp])),

check_passive(VerbFeatures) :-
member(passive,VerbFeatures) ->
(passive_action, !)

If the main verb is passive, then the den S is marked as np-preposed and and a
new trace NP node is created.
V

/*
PASSIVE
*/passive_action :-

I

•i
label(s,['np-preposed']),
create(np),
la bel([trace, 'not-modifiable']),
bind(np),
drop, !.

88

/ * NO-SUBJ Packet */

/ *
If an infinitive is encountered and the main verb can be subjectless, this is a
"seems" construction. Note the similarity to the passive case.
7
/*
SEEMS
*/no_subj :-

has_fe at ure (1,' * to'), has_feat ure (2, tns less),
I

deactivate([no_subj]),
passive_action, !.

no_subj :- !.

/ * WH-VP Packet - WH Placement */

I*
WH_RESOLVED
*/wh_vp :-

wh_comp_utiliz ed,
1
deactivate([wh_vp]),
end_major_or_embedded, !.

This rule captures sentences like "What did John give to Mary?"

7

/*
WH_WITH_PP_NEXT
*/wh_vp :-

has_feat ure(1 ,prep) ,has_feature (2, np),
I

create_wh_trace_action, !.

/ * .
This rule captures sentences like "Who did John give the book to?"

7

/*
WH_WITH_NP_PP_NEXT
*/wh_vp :-

has_feature(l,np) ,has_feature(2,prep),
I

: objects_action, !.
I*
WH_PP_BTJILD
*/cpool :-

has_feature(l,prep),not(has_feature(2,np)),

89

wh_comp_not_utilized,
I
•i
create(pp),
attach(l,prep),
create(np),
label([trace]),
bind (whcomp),
label(s, [u tiliz ed]),
drop_and_attach(np),
drop, !.

I*
CREATE_WH_TRACE
*/wh_vp :-

I
•i
create_wh_trace_action, !.

create_wh_trace_action :-
create(np),
label([trace,'not-modifiable']),
bind(whcomp),
label(s,[utilized]),
drop, !.

This predicate succeeds if there is a whcomp attached to the dominating S node
and returns the den's list of features so that a check may be made to see if the
whcomp has been utilized.
7

wh_comp_exists(SNodeFeatures) :-
retrieve_dcn(s,(_)SNodeFeatures,_)Descendents),_),
find_descendent (whcomp,Descendents,_), !.

wh_comp_utilized :-
wh_comp_exists(SNodeFeatures),
member(utilized,SNodeFeatures), !.

wh_comp_not_utilized :-
wh_comp_exists(SNodeFeatures),
not (member (utilized,SNodeFeat ures)), !.

J** J
/ * T H A T - C O M P Packet - Parse that-complements */
J**J

I*
THAT_S_START
*/cpool :-

has_feature(l,comp),has_feature(l,'*that'),
has_feature(2,np))hasi_feature(3,verb),
t
•i
create(s),
label(['comp-s','that-s',8ec]),

90

attach(l,comp),
attach(l,np),
activate([cpool, parse_aux]),
call_packets,
drop, !.

/*
THAT_S_START_1
*/that_comp :-

has_feature (1 ,np) ,has_feat ure (2, verb),
I
•»

create(s),
labelJpcomp-sYthat-s^sec]),
attach(l,np),
deactivate([that_comp]),
activate([cpool, parse_aux]),
call_packets,
drop, !.

that_comp :-
deactivate([that_comp]), !.

/*
COMP_TO_NP
*/cpool :-

ha^feature^'comp-s'),
I
•i

create(np),
label(['comp-npy not-modifiable']),
attach(l,s),
drop, !.

y************************j
/ * Infinitive Complements * / /̂************************y

/*
INF_S_START
*/cpool :-

hasjeaturefl.^foi^ihasjeature^npj.hasjeature^j^to'),
I
•J

create (s),
label(['comp-s','inf-s',sec]),
attach(l,comp),
attach(l,np),
activate([cpool,parse_aux]),
call_packets,
drop, !.

/ * INF-COMP Packet */. -

/ *
Note that when this rule matches, so will rules OBJECTS and
OBJ_IN_EMBEDDED_S. To ensure its higher priority, it is called before either of

91

the others.
7

/ * .
INF_S_START_1
*/inf_com'p :-

has_feature(l,np),has_feature(2,'*to'),
has_feat ure (2 ,auxverb), has_feat ure (3, tnsless),
I
•i

create(s),
label([sec,'comp-s','inf-s']),
attach(l,np),
ac tivate ([cpool,parse_aux]),
call_packets,
drop, !.

inf_comp :- !.

/ * TO-LESS-INF-COMP Packet * /

This rule handles verbs like "help" which take infintive complements with an
implicit "to". Note how, as in the case of imperative sentences, the implied word is
inserted.
V

/*
INSERTJTO
*/to_less_inf_comp :-

has_feature(l,np) ,has_feature(2,tnsless),
I
•>

make_bufFer_node(to,Node),
insert(2,Node),
deactivate([to_less_inf_comp]), !.

/*
INSERT_TO_l
*/to_less_inf_comp :-

(ha8_feature(l,tnsless) ;
(has_feature(l,np),has_feature(2,finalpunc))),

t
•>

make_buffer_node(to,Node),
insert(l,Node),
deactivate([to_less_inf_comp]), !.

to_less_inf_comp :-
deactivate([to_less_inf_comp]), !.

/ * TO-BE-LESS-INF-COMP Packet * /

/* . .
This rule handles verbs like "seems" which take infintive complements with an
implicit "to be".
V

92

/*
INSERT_T0_BE_1
*/to_be_les8_inf_comp :-

(has_feature(l,en) ; has_feature(l,adj)),
1
•i

make_buff«!r_node(to)ToNode),
make_buffer_node(be,BeNode),
insert(l,ToNode),
insert(2,BeNode),
deactivate([to_be_less_inf_comp]), !.

to_be_less_inf_comp :-
deactivate([to_be_less_inf_comp]), !.

^****************************** j
/ * Infinitives with Delta Subjects * /
^ *^

This rule handles verbs like "want" which may have either an explicit or a delta
subject.
7

/*
CREATE_DELTA_SUBJ_1
*/subj_less_inf_comp :-

has_feature(l,'*to'),has_feature(llauxverb),has_feature(2,tnsless),
I
•j

deactivate([subj_less_inf_comp]),
create(np),
label([trace, 'not-modifiable']),
drop, !.

subj_less_inf_comp :-
deactivate([subj_less_inf_compj), !.

^********* j
/ * TIME * /
j********* j

/*
M O N D A Y
*/as_rule(cpool,BufFerCell,Features) :-

member(noun,Features) ,member(dow,Features),
I
•i

Offset is BufferCell - 1,
offset(Offset),
create(np),
label([t ime, dow]),
attach(l,noun),
drop,
pop.offset, !.

^**j

93

/ * Pronouns, Proper Names, and Proper Nouns */
^**^

/*
PRONOUN
*/parse_noun :-

has_feat ure (1 .pronoun),
I
•>

la bel(['pron-np','not-modifiable']),
transfer([ns,npl,nlp,n2p,n3p,wh]),
read(l,(_,Features,_)),
is_it_relpron(Features),
attach(l,pronoun),
deactivate(all), !.

is_it_relpron(Features) :-
member(relpron.Features) ->

(label(['relpron-np']), !)
• i

/*
P R O P N A M E
*/as_rule(cpool,BufFerCelI,Features) :-

member(name, Features), not (member ('not-modifiable',Features)),
I
*i

Offset is BufferCell - 1,
offset (Offset),
create(np),
label([name ,ns, n3 p, 'not-modifiable']),
activate([build_name]),
call_packets,
drop,
pop_offset, !.

/*
TITLE
*/as_rule(cpool,BufferCell,Features) :-

member(title,Features),
I
•i

Offset is BufferCell - 1,
offset (Offset),
create(np),
label([name,ns,n3p,'not-modifiable']),
attach(l, title),
does_period_follow,
activate([build_name]),
call_packets,
drop,
pop_offset, !.

does_period_follow :-
read(1, (_,Features,_)),
(member('*.',Features) ->

(delete(l), !)

94

/*
N A M E
*/build_name :-

has_feature(l,name),
I
•i

attach(l,noun), !.

/*
E N D _ O F _ N A M E
*/build_name :-

1
deactivate(all), !.

/*
P R O P N O U N
*/as_rule(cpool,BufFerCell,Features) :-

member(propnoun,Features), not(member(name,Features)),
I
•»

Offset is BufferCell - 1,
offset (Offset),
create(np),
label(['propn-np' ,ns,n3p, 'not-modifiable']),
attach(l,noun),
drop,
pop_offset, !.

I ********************** J
I* Mainline N P Parsing * /
J**********************J

I*
S T A R T . N P
*/as_mle(cpool,BufferCell,Features) :-

member(ngstart,Features),
I
•>

Offset is BufferCell - 1,
offset(Offset),
create(np),
(member(det,Features) ->

activate([parse_det])
; activate([parse_adj])),
call_packets,
drop,

pop_offset, !.

/ * P A R S E - D E T Packet * /

/*
D E T E R M I N E R
*/parsejdet :-

has_feature(l ,det),
J
lkbel([det]),

transfer([indef,def,wh]),
attach(l,det),
deactivate([parse_det]),
activate([parse_adj]), !.

/ * P A R S E - A D J Packet * /

/ *

A D J
*/parse_adj :-

I
•i

(has_feature(l,adj) ->
attach(l,adj)

; (has_feature(l,'V) ->
attach(l,comma)

; (deactivate([parse_adj]),
act ivate([parse_noun])))),

/ * P A R S E - N O U N Packet * /

/ *

N O U N
*/parse_noun :-

has_feature(l,noun),
I

transfer([time,place]),
create(nbar),
transfer ([time,ns,npl)nlp)n2p,n3p]),
attach(l,noun),
activate([cpool,nbar_complete]),
call_packets,
drop, !.

/*
N B A R
*/parse_noun :-

has_feature(l,nbar),
I

is_proper_noun,
attach(l,nbar),
deactivate(all), !.

is_proper_noun :-
read(1, (_,_, Descendents)),
nnd_descendent(noun,Descendents,(_,Feat
(member(propnoun,Features) ->
(label(['not-modifiable']), !)

/ * P P Attachment Rules.*/
^ • • * ^

96

/ *
PP
*/cpool :-

has_feature(l,prep),not(has_feature(l,'pred-verb')),
has_feature(2,np),
(not(wh_comp_exists(_)) ; wh_comp_utilized),
I
•>

create(pp),
attach(l,prep),
transfer([time,place,wh]),
attach(l,np),
drop, !.

/ * .
OF_PP
*/nbar_complete :-

has_feature(1 ,pp) ,read(1, (_,_, Descendents)),
find_descendent (prep, Descendents, (_, Feat ures,_)),
(member('*of,Features) ; has_feature(2,pp)),
I
*i

attach(l,pp), !.

/*
NBAR_DONE
*/nbar_complete :-

I
•i

deactivate(all), !.

/*
These rules decide whether to attach a PP as a modifier of a main verb phrase, an
embedded verb phrase, an embedded sentence, or the main clause. Since the
general problem of PP attachment is semantically complex, the only rules used are
that time modifiers are attached not to a verb phrase but to an entire clause, and
that a PP is attached to the nearest constituent.

7

/*
PP_UNDER_VP_1
*/ss_vp :-

has_feat ure (1 ,pp),
I
•>

((not(has_feature(l,time)), not(has_feature(l,place))) ->
attach(l,pp)

i vp_done_action),
I.

/ * .
PP_UNDER_VP_2
*/embedded_s_vp :-

ha8_feature(l,pp),
i
•i

((not(has_feature(l,time)), not(has_feature(l,place))) ->
attach(l,pp)

; embedded_vp_done_action),

/*
PP_UNDER_S_1
*/ss_final :-

has_feature(l ,pp),
I

attach(l,pp), !.

/*
PP_UNDER_S_2
*/embedded_s_final:-

has_feature(l,pp),
t
•J

attach(l,pp),
embedded_s_done_action,
J.

^********************* j
I* Parse simple objects * /
^********************* j

I* SS-VP Packet */

/*
OBJECTS
*/ss_vp :-

has_feature(l,np),
1
*i

objects_action, !.

s_vp :-
has_feature(l,'comp-s'),
1
•>

create (np),
label(['comp-np']),
attach(l,s),
drop,
objects_action, !.

objects_action

/*
VP_DONE
*/ss_vp :-

attach(l,np), !.

1

vp_done_action, !.

vp_done_action :-
drop_and_attach(vp), !.

/ * SS-FINAL Packet * /

98

SJDONE
*/ss_final :-

has_feature(l, finalpunc),
t
• >

attach(l,finalpunc),
deactivate(all), !.

/ * EMBEDDED-S-VP Packet */

/ *

This rule attaches an object as part of an embedded sentence.
*/
/*
OB J_IN_EMBEDD ED_S
*/embedded_s_vp :-

has_feature(l,np),
!

attach(l,np), !.

/*
EMBEDDED_VP_DONE
*/embedded_s_vp :-

I

embedded_vp_done_action, !.

embedded_vp_done_action :-
drop_and_attach(vp), !.

/ * EMBEDDED-S-FINAL Packet */

/ *
EMBEDDED_S_DONE
*/embedded_s_finaI :-

I

embedded_s_done_action, !.

embedded_s_done_action :-
deactivate(all), !.

/*
Even if no rules belonging to this packet match, a call must, nevertheless, succeed.
V
cpool :- !.

99

y**j
I* OPERATIONS ON T H E A C T I V E NODE STACK * /
y *j
I*
Standard stack operations. Each element is kept as an assertion of the form
active_node_stack((<stack position>,<node>)) and the top of the stack is
indicated by the assertion top_of_stack(<top>). Each new stack element has a
position one greater than the previous top of stack.
V
push(Node)

pop(Node) :-

pop(_) :-

peek (Node)

retract(top_of_stack(T)),
T I is T + 1,
assert (top_of_st ack (T1)),
ass erta(activ e_node_stack((TI,Node))).

top_of_stack(Tl),
T I > 0,
retract(top_of_stack(Tl)),
T is TI - 1,
assert(top_of_stack(T)),
retract(active_node_stack((Tl,Node))).

writestringC popping an empty stack"), fail.

top_of_stack(T),
active_node_stack((T,Node)), !.

/*
Create a new parse node of the given type and push it onto the active node stack.
Initially, a node has no features (save its type), active packets, or descendents.
V

create(Type) :-
conname(Type,NewNodeName),
push((NewNodeName, [Type],[],[])),!.

/*
Add to the current active node's list of active packets.
V
activate(NewPackets) :-

pop((NodeName,Feature8,01dPackets,Descendents)),
append(01dPackets,NewPackets, ActivePackets),
push((NodeName,Features,ActivePackets,Descendents)), !.

/*
Remove from the current active node's list of active packets.
7
deactivate(all) :-

pop((NodeName,Features,_,Descendent8)),

100

push((NodeName,Features,[],Descendents)), !.

deactivate(InactivePackets) :-
pop((NodeName,Features,01dPackets,Descendents))>

delete_all(InactivePackets,01dPackets,ActivePackets),
push((NodeName,Features,ActivePackets,Descendents)), !.

/ *
Attach the constituent in the given buffer position as the rightmost descendent of
the current active node, indicate its type, and delete the contents of the buffer
position.
7

attach(BufferPosition,Type) :-
read(BufferPosition,(_1DescFeaturesIOwnDescendents))I

pop((ParentName,ParentFeatures,Packets,Dl)),
append(Dl,[(Type,DescFeatures,OwnDescendents)],Descendents),
push((ParentName,ParentFeatures,Packets,Descendents)),
delete(BufferPosition), !.

/*
Drop an unattached completed constituent from the stack into the buffer. The list
of active packets for this node is no longer needed.

7

drop :- pop((NodeName,Features,Packets,Descendents)),
insert(1, (NodeName, Fe atures,D escendents)), !.

/*
Drop a completed constituent from the stack and immediately attach it to the now
current active node. This is used by grammar rules that know for certain the
constituent attaches to the node that immediately dominates it and not possibly to
some higher level constituent.
7

drop_and_attach(Type) :-
pop((_,DescFeatures,_IOwnDescendents)),
pop((ParentName,ParentFeatures,Packets,Dl)),
appendfDl^Type^escFeatureSjOwnDescendentsJJjDescendents),
push((ParentName,ParentFeatures,Packets,Descendents)), !.

Retrieve the dominating cyclic node: S or N P . This is done by searching backwards
through the nodes on the active node stack.

7

retrieve_dcn(DCN,Node,Pos) :-
top_of_stack(T),
find_dcn(DCN,Node,T,Pos), !.

find_dcn(_,_,T,_) :-
T =< 0,
writestring(*cannot find dominating cyclic node"), !, fail.

find_dcn(DCN,(NodeName,Features,Packets,Descendents),T,T) :-

101

active_node_stack ((T, (NodeName ,Feat ures, Packets.D escendents))),
member(DCN,Features), !.

find_dcn(DCN,Node,Tl,Pos) :-
T is TI - 1,
find_dcn(DCN,Node,T,Pos).

/*
Find the descendent of the specified type in a node's list of descendents.
7

find_descendent(Type,[(Type,Features,Descs)|J,(Type,Features,Descs)) :-
J.

find_descendent(Type,[(_,_,Descs) |_],Descendent) :-
not(atom(Descs)),
find_descendent(Type,Descs,Descendent).

find_descendent(Type,[jRest],Descendent) :-
find_descendent(Type,Rest1Descendent).

/*
Bind the current active node, which will be a trace NP node, to the given type of
node which is a descendent of the current dominating cyclic node. Binding
amounts to attaching to the current active node a descendent whose associated
words are the same as those of the node above.
7

bind(Type) :-
retrieve_dcn(s, (_,_,_,DCNsDescendents),_),
find_descendent(Type,DCNsDescendents,(_,_,Descendents)),
pop((NodeName,Features,Packets,D 1)),
extract_words(Descendents, Words),
append(Dl,[('bound to',[],Words)],D2),
push((NodeName,Features,Packets,D2)), !.

/*
Extract just the words from a list of descendents.
7
extract_words(Word,Word) :-

atom(Word).
extract_words([], []).
extract_words([(_,_,[]) | Descendents],Words) :-

extract_words(Descendents, Words).
extract_words([(_,_,Word)|Descendents],[Word|Words]) :-

atom(Word),
extract_words(Descendents, Words).

extract_words([(_,_,Dl)|Descendents],Words) :-
extract_words(D 1, W1),
extract_words(Descendents, W2),
append(Wl,W2,Words).

extract_words([Wl|W2],[Wl|W3]) :-
atom(Wl),
extract_words(W2, W3).

/*

Create an empty stack.
7

make_empty_stack :-
retract_all(active_node_8tack(_)),
assert(active jiode_stack((0, ([],[], []>[])))) >
re trac t_all(top_of_stack (_)),
assert(top_of_stack(0)).

/ * • ; .
Invoke the rules associated with each currently active packet.
7

call_packets :-
peek((_,_,Packets,_)),
not (empty (Packets)),
call_each(Packets), !,
call_packets.

call_packets :- !.

call_each([Rule|Rules]) :- !,
call(Rule), !,
call_each(Rules).

call_each(_) :- !.

103

^/***j
I* OPERATIONS ON T H E CONSTITUENT BUFFER */
^/***^

Insert the given contents into buffer position I after first shifting right by one or
two positions to accommodate. The buffer is full if the third cell relative to the
current offset is occupied.
V

insert(I,Contents) :-
cell_name(3,RightCellName),
RightCell =.. [RightCellName.RightContents],
call(RightCell),
empty_node(RightContents),
retract(RightCell),
J is 3 - I,
move_right(J),
cell_name(I,CellName),
Cell =.. [CellName.Contents],
assert(Cell), !.

insert(I,Contents) :-
putback(3),
insert(I,Contents), !.

move_right(0).
move_right(l) :-

cell_name(2,SecondCellName),
SecondCell =.. [SecondCellName,Content2],
retract(SecondCell),
cell_name(3,ThirdCellName),
ThirdCell =.. [ThirdCellName,Content2],
assert(ThirdCell).

move_right(2) :-
move_right(l),
cell_name (1, FirstCellName),
FirstCell =.. [FirstCellName.Contentl],
retract(FirstCell),
cell_name(2,SecondCellName))

SecondCell =.. [SecondCellName,Contentl],
assert(SecondCell).

/*
Delete buffer position I then shift left to fill the vacated cell.
V
delete(I) :-

cell_name (I.CellName),
Cell =.. [CellName,Contents],
call(Cell),
not (empty_node(Contents)),
retract(Cell),
J is 3-1,
move_left(J),

104

cell_name (3 .ThirdCellN ame),
EmptyCell =.. [ThirdCellName,([],[],[])],
assert(EmptyCell)) !.

delete (_) :-
writestring(" deleting empty buffer slot"), !, fail.

move_left(0).
move_left(l) :-

cell_name(3, ThirdCellN ame),
ThirdCell =.. [ThirdCellName,Content3],
retract(ThirdCell),
cell_name(2,SecondCellName))

SecondCell =.. [SecondCellName,Content3],
assert(SecondCell).

move_left(2) :-
move_left(l),
cell_name(2,SecondCeIlName),
SecondCell [SecondCellName,Content2],
retract(SecondCell),
cell_name (1, FirstCellName),
FirstCell =.. [FirstCellName,Content2],
assert(FirstCell).

/*
Read the contents of the specified buffer cell If the cell is empty, it is filled with
the next word in the input list.
7
read(I, Contents) :-

cell_name(I,CellName),
Cell =.. [CellName,CurrentContents],
call(Cell),
fU^CellName.CuiTentContents.Contents), !.

fill(CellName,CurrentContents,Contents) :-
empty_node(CurrentContents), !,
EmptyCell =.. [CellName,CurrentContents],
retract(EmptyCell),
retract(input_list([Word|Rest])),
assert(input_list (Rest)),
make_buffer_node(Word,Node),
FullCell =.. [CellName.Node],
assert(FullCeU),
Contents = Node, !.

fill(_C,C) :- !.

putback(CellNum) :-
writestring("warning: putting a word back into the input stream"),

read(CellNum, (_,_, Word)),
iretract(input_list (Words)),
assert(input_list([Word| Words])),
delete(CellNum), !.

105

/*
Get the atomic cell name of the cell specified by I relative to the current offset in
the buffer.
7

cell_name(I,CName) :-
offset_stack([Offset|J),
CellNum is I + Offset,
name(cell,Nl),
integer_name(CellNum,N2),
append(Nl,N2,N),
name(CName,N), !.

/*
Given an input word, make a parse node for insertion into the buffer.
7

make_buffer_node(Word,Node) >
conname(word,NewNodeName),
look up (Word, Features),
Node = (NewNodeName,Features,Word), !.

/*
Create an empty buffer.
7

make_empty_buffer :-
retract_all(celll(J),
retract_all(cell2(J) ,
retract_all(cell3(J),
retract_all(cell4(J),
retract jdl(celI5(_)),
assert(celll(([],[],[]))))

assert(cell2(([],[],[]))),
assert(cell3(([],[])[]))))

assert(cell4(([],[],[]))),
assert(cell5(([]>[],[]))).

/*
Start at a zero offset in the constituent buffer.
V

zero_buffer_offset :-
retract_all(offset_stack(_)),
assert(offset_stack([0])).

/*
Push a new offset relative to the current one onto the offset stack. This results in
an attention shift to an effective buffer start to the right of the current buffer start.
V

offset (New) :-
retract(offset_8tack([01d|Rest])),
Current is New + Old,

assert(offset_stack([Current,OId[Rest])), !.

/*
Pop the offset stack to shift back to the previous effective buffer start.
7
pop_offset :-

offset_stack([jRest]),
not (empty (Rest)),
retract(offset_8tack([_|Rest])),
assert(offset_stack(Rest)), !.

pop_offset :-
writestring(" cannot pop initial zero offset"), !, fail.

/*
Check to see if any of the attention shifting rules match.
7

check_as_rules(BufferCell,Features) :-
peek((_,_,Packets,J),
clause_or_np_level(Packets,BufferCell,Features), !.

clause_or_np_level(Packets,BufferCell,Features) :-
member(cpool,Packets),
as_rule(cpooLBufferCell,Features), !.

clause_or_np_level(Packets,BufferCell,Features) :-
member(npool, Packets),
as_rule(npool,BufferCeU,Features), !.

clause_or_np_level(_,_,_) :- !.

107

/̂***y
/ * OPERATIONS ON PARSE NODES IN T H E BUFFER OR STACK */
^***^

Add to a node's list of features. Since in most cases features are added to the
current active node, a call to 'label' with no argument will refer to this node by
default. Features may also be added to the dominating cyclic node or to nodes in
the buffer.
7

label(NewFeatures) :-
pop((NodeName,01dFeatures,Packets,Descendents)),
append(NewFeatures,01dFeatures,CurrentFeatures),
push((NodeName,CurrentFeatures,Packets,Descendents)), !.

label(BufferCelLNewFeatures) :-
integer(BufferCell),
cell_name (BufferCell, CellName),
Cell =.. [CellName,(NodeName,01dFeatures,Descendents)],
retract(Cell),
append(NewFeatures,01dFeatures,CurrentFeatures),
UpdatedCell =.. [CellName,(NodeName,CurrentFeatures,Descendents)],
assert(UpdatedCell), !.

label(DCN,NewFeatures) :-
retrieve_dcn(DCN,(NodeName,01dFeatures,Packets,Descendents),Pos),
append(NewFeatures,01dFeatures,CurrentFeatures),
retract(active_node_stack((Pos,_))),
assert(active_node_stack((Pos,

(NodeName,CurrentFeatures,Packets,Descendents)))), !.

/*
Check to see if the specified parse node has the given feauture. The node may be
the current active node (can), the dominating cyclic node (s or np), or an element
of the buffer. Note that every time the parser checks an element of the buffer, it
first checks to see if that element triggers any attention shifting rule.
V

has_feature(can,Feature) :-
peek((_,Features,_,_)), !,
member(Feature,Features), !.

has_feature(BufferCell,Feature) :-
integer(BufferCell),
read(BufferCell,(_,Features,_)),
check jas_rules(BufferCelLFeatures),
read(BufferCell, (_,PossiblyChangedFeatures,_)), !,
member(Feature,PossiblyChangedFeatures), !.

has_feature(DCN,Feature) :-
retrievejdcnfDCN^jFeatures^J,.), !,
member(Feature,Features), !.

108

/* .
Assign to the current active node whichever of the given possible features the first
element of the buffer has.
7

transfer(PossibleFeatures) :-
read(1, (_,Features,_)),
intersection(Features,PossibleFeatures,CanFeatures),
label(CanFeatures), !.

109

/ * INPUT ROUTINES * /

The user is prompted to type in a sentence to be parsed. Readline gets every
character up to a carriage routine and leaves them as a list of characters in its
argument. Readline 1 stops the recursion. The list will be passed to the routines
comprising the lexical analyzer to be transformed into a list of PROLOG atoms
representing each word. This list is asserted into the database for access by the
parser. Upon completion, what remains of the list (if anything) is retracted and the
user is asked whether he wishes to continue.
7

input :-
I
•»

clear,
nl,write('Sentence to parse'),
nLwrite (' > '),
readline (Chars),
sentence (Chars), !.

readline(Chars) :-
getO(Ch),
readlinel (Ch,Chars).

readlinel(10,[]) :- !.
readlinel(Ch,[Ch|Chars]) :-

readline(Chars), !.

sentence(Chars) :-
tokens(Atoms,Chars,[]), !,
assert(input_list (Atom's)),
parse,
retract(input_list(_)), !,
nl,nl,
write('Carry on? y/n : '),
get0(X),get0(l0),
name(Ans,[X]),
again(Ans), !.

again(y) :- input, !.
again(J :- !.

parse :-
initial_rule (Tree),
print_tree(Tree).

110

^************************^
/ * L E X I C A L A N A L Y Z E R */
************ *********** j

The following definite clause grammar provides the scanning and tokenizing of a
sentence input as a list of characters and passes words and punctuation back as a
list of atoms.
7

tokens(Atoms) —> space, !, tokens(Atoms).
tokens([Atom|Atoms]) —> token(Atom), !, tokens(Atoms).
tokens([])

token(Atom)
token(Integer)
token(Punct)

—> word(Chars), !, { name(Atom,Chars) }.
-> constant(Integer), !.
--> punctuation(Punct), !.

space
space

num(N)

number([D|Ds])

digit(D)

is_digit(D)

digits([D|Ds])
digits([])

word([L|Ls])

letter(L)

is _letter(L,L)
is_letter(Ll,L)

upper_case(L)

lords([L|Ls])
lords([LJLs])
lords([])

constant(C)

—> [10]. / * carriage return */

—> number(Number), !, { name(N,Number) }.

-> digit(D), digits(Ds).

-> [D], { is_digit(D) }.

:- D>47, D<58. /* 0-9 */

-> digit(D), digits(Ds).
-> []•

-> letter(L), lords(Ls).

-> [LI], { is_letter(Ll,L) }.

:- L>96, L<123, !. /* a-z */
:- upper_case(Ll), L is Ll+32, !.

:- L>64, L<91. /* A-Z */

-> (letter(L)), lords(Ls).
~> (digit (L)), lords(Ls).

-> []•

—> num(C), !.

punctuation(V) -r> "." , !.
punctuation('?') -> "?" , !.
punctuation!"") -> " " » , !.
punctuation(',') —> , !•
punctuation('!'j - > " ! " , ! .

I l l

^***********************^
/ * UTILITY ROUTINES */

append([],L,L) :- !.

append([X|R],L,[X|Rl]) :- append(R,L,Rl).

/ *
Clear the database before a new parse.
7
clear :-

make_empty_buffer,
zero_buffer_ofFset,
make_empty_stack,
retrac^al^currnum^J),
retract_all(inputjist (_)).

/*
Create a new unique constituent name by concatenating the given type with a
unique number.
V

conname(Type,Name) :-
get_num(Type,Num),
name(Type,Typechars),
integer_name (Num, Numchars),
append(Typechars,Numchars,Namechars),
name(Name,Namechars).

/*
Delete every occurrence of the first argument from the second (a list).
7
deleteU],[]).
delete(X,[X|L],M) :- !, delete(X,L,M).
delete(X,[Y|Ll],[Y|L2]) :- delete(X,Ll,L2).

delete_all([],L,L).
delete_all([H|T],L,M) :-

delete(H,L,Ll),
delete_all(T,Ll,M).

empty([]).

empty_node(([],U,[])).
/*
Generate a unique number.
7
get_num(Type,Num) :-

retract(currnum(Type,Numl)), !,
Num is Numl+1,

asserta(curraum(Type)Num)).
get_num(Type,l) :-

a8serta(currnum(Type, l)).

/*
Convert an integer to a list of characters
V

integer_name(I,List) :-
integer_name(I,[],List).

integer_name(I,SoFar,(C|SoFar]) :-
I<10, !, C is 1+48.

integer_name(I,SoFar,List) :-
Top is I//10,
Bot is I mod 10,
C is Bot+48,
integer_name (Top, [C | S oFar], L ist).

/*
Find the intersection of two sets represented as lists.
V

intersection([],X,[]).
intersection([X|R],Y,[X|Z]) :-

member(X,Y), !,
intersection(R, Y,Z).

intersection([X|R],Y,Z) :-
in tersec tion(R,Y,Z).

lookup(Word,Features) :-
Iex(Word,Features), !.

member(X,[X|J) :- !.
member(X,[_|Y]) :- member(X,Y).

/*.
Print out the final parse tree.
V

print_tree(Tree) :-
nl,
pretty_print(Tree,0).

pretty_print((jFeatures,_,Descendents),I) :- !,
spaces(I),
write(s),
write(': '),
print_features(Features),
14 is I + 4,

print_descendents(De8cendents,I4).

print_de8cendents([],_) :- !.
print_descendents([(Node,Features,Descendents)|Rest],I)

nL

spaces(I),
write(Node),
write(:),
print_words_or_own_descendents(Features, Descendents,I),
print_descendents(Rest,I), !.

print_features([]) :- !.
print_features(Features) :-

spaces(l),
write(Features), !.

prmt_words_or_own_descendents(Features,Word,_) :-
atom(Word),
niI_word(Word,Features), !.

print_words_or_own_descendents(Features,[Word|Words],_) :-
atom(Word),
print_words([Word|Words]), !.

print_words_or_own_descendents(Features,Descendents,I) :-
print_features(Features),
14 is I + 4,
print_descendents(Descendents,I4), !.

print_words([]) :- !.
print_words([Word|Words]) :-

spaces(l),
write(Word),
print_words(Words), !.

nil_word([],Features) :-
print_features(Features), !.

nil_word(Word,_) :-
spaces(l),
write(Word), !.

spaces(O) :- !.
spaces(N) :-

write(' '),
NI is N - 1,
spaces(Nl).

retract_all(X) :-
retract(X), fail.

retract_all(_) :- !.

writestring([]).
writestring([N|Ns]) :-

name(Name,[N]),
write(Name),
writestring (Ns).

114

y************* j
I* L E X I C O N * /
^************* j

I*
The general form of an entry is:

lex(< word>, < features>)

<features> is a list containing the root of the word, its person/number, its part of
speech, its tense, the types of objects and complements it takes, and any other
necessary information. A list of the possible features is given elsewhere.
7

/ * ADJECTIVES */

lex(happy, [' * happy' ,adj]).

/ * DETERMINERS */

lex(a, [' * a', ns, n3p,det, indef, ngst art]).
lex(an, [' * a', ns, n3p,det, indef, ngst art]).
Iex(the,['*the',ns,npl,n3p,det,def,ngstart]).

/ * NOUNS */

lex(book, [' *book', ns, noun,ngst art]).
lex(cover,['*cover',ns,noun,ngstart]).
lex(exam,[,*exam',ns,noun,ngstart]).
lex(executives,['*executive',npl,noun,ngstart]).
lex(lecture, ['*lecture',ns,noun,ngstart]).
lex(meeting,['*meeting',ns,noun,ngstart]).
lex(tomorrow,]'* tomorrow',ns,n3p,noun,ngstart,time]).
lex(yesterday,['*yesterday',ns,n3p,noun,ngstart,time]).

/ * PREPOSITIONS */

lex(before, [' * before', prep]).
lex(by,['*by',prep]).
lex(for, [' * for', prep, comp]).
lex(from, ['* from', prep]).
lex(in,['*in',prep]).
lex(of,['*of,prep]).
lex(on,['*on',prep]).
lex(to, [' * to', prep, auxverb]).
lex(with,['*with',prep]).

/ * PRONOUNS */

lex(i, ['* I' ,ns, nip, noun.pronoun, ngstart]).
lex(you,['*you,,ns,npl,n2p,noun,pronoun,ngstart]).
lex(he,['*he',n8,n3p,noun,pronoun,ngstart]).
lex(she,['*8he',ns,n3p,noun,pronoun,ngstart]).
lex(it, [' *it ' ,n8, n3p,noun,pronoun, ngstart]).

lex(we,['*we',npl,nlp,noun,pronoun,ngstart]).
lex(they,['* they',npl,n3p,pronoun,ngst art]).

lex(that,['*that',ns,npl,n3p,pronoun)relpron,comp]).
lexJwhatjf^what'jnSjnpljiiSpjnp^ronounjdetjWh]).
lex(when)['*when',ns,np,pronoun,wh)time]).
lex(who)['*who')n8,n3plnp,pronoun,relpron,wh]).

/ * PROPER NOUNS * /

lex(john,[;'*john',ns,n3p,name,noun,propnoun,ngstart]).
Iex(mary,['*mary',ns,n3p,name,noun,propnoun,ngs tart]).
lex(smith, ['*smith',ns,n3p,name,noun,propnoun,ngstart]).
Iex(vancouver,[,*vancouver')ns,n3p,noun,place,ngstart]).
lex(wednesday,['*wednesday',ns,n3p,noun,dow,ngstart]).

/ * PUNCTUATION */

lex(',',['*,',punc]).
lex("",['*"',punc]).
lex('!',['*!',finalpunc]).
lex('.',['*.',finalpunc]).
lex('?',['*?',finalpunc]).

/ * TITLES */

lex(mr,['*mr',title]).
lex(mrs,['*mrs',title]).

/ * VERBS */

lex(be,['*be',vspl,verb,auxverb,tnsless]).
lex(am,[,*be',vls,verb)auxverb,pres]).
lex(are,['*be','vpl+2s',verb,auxverb,pres]).
Iex(is,[,*be,,v3s,verb,auxverb,pres]).
lex(was,['*be','v+13s',verb,auxverb,past]).
lex(were,['*be','vpl+2s',verb,auxverb,past]).
lex(been, ['* be' ,vspl, verb, past, en]).
lex(being, [' * be', vspL verb, pres, part, ing]).

lex(do,['*do','v-3s',verb,auxverb,pres,tnsless]).
lex(does,['*do',v3s,verb,auxverb,pres]).
lex(did,['*do', vspl, verb, auxverb, past]).
lex(doing, ['* do', vspl, verb, auxverb, pres, ing]).
lex(done,['*do',vspl)verb,auxverb,past)part,en]).

lex(give,['*give','v-3s',verb,pres,tnsle8s,'mf-obj','to-less-inf-obj']).
lex(gives,['*give',v38,verb,pres,'inf-obj','to-less-inf-obj']).
lex(gave,['*give',v8pl,verb,past,'inf-obj','to-less-inf-obj']).
lex(giving,['*give', vspl, verb, pres, part, mg,'inf-obj','to-less-ihf-obj']).
lex(given,['*give',v8pl,verb,past,part,en,'inf-obj','to-less-inf-obj']).

lex(have,['*haveyv-3s',verb,auxverb,pres, tnsless]).
Iex(has,['*have',v3s,verb,auxverb,pre8]).

lex(had, [' *have', vspl, verb, auxverb,past ,en]).
lex(having,['*have',vspLverb,auxverb,pres,part,ing]).

lex(help,['*help',,v-3s',verb,pres,tnsless,,inf-obj,,,to-less-inf-obj')

'subj-less-inf-obj']).
lexfhelpsJ^help'jVSsjVerb^res/inf-obj'.'to-less-inf-obj',

'subj-less-inf-obj']).
lex(helped,['*help',vspl,verb,past,part,en,'inf-obj','to-less-inf-obj',

'subj-less-inf-obj']).
lex(helping, ['*help',vspl,verb,pres,part,ing,'inf-obj','to-less-inf-obj',

'subj-less-inf-obj']).

lex(hit,['*hit','v-3s', verb, pres, tnsless,'comp-obj']).
lex(hits,['*hit',v3s,verb,pres,'comp-obj']).
lex(hit,['*hit',vspl, verb,past, part,en,'comp-obj']).
lex(hitting,['*hit',vspl,verb,pres,part,ing,'comp-obj']).

lex(persuade,['*persuade','v-3s',verb,pres,tnsless,'inf-obj']).
lex(persuades)['*persuade',v3s,verb,pres,'inf-obj']).
lex(persuaded,['*persuade',vspl,verb,past,part,en,'inf-obj']).
lex(persuading,['*persuade',vspl,verb,pres,part,ing,'inf-obj']).

lex(say,['*say','v-3s',verb,pres,tnsless,'comp-obj']).
lex(says,['*say',v3s,verb,pres,'comp-obj']).
lex(said,['*say',vspl,verb,past,en,'comp-obj']).
lex(saying,['*say',vslp,verb,pres, part,ing,'comp-obj']).

lex(see,['*see','v-3s',verb,pres,tnsless,'comp-obj']).
lex(sees,['*see',v3s, verb, pres, 'comp-obj']).
lex(saw,['*see',vspl,verb,past,'comp-obj']).
lex(seeing,['*see', vspl, verb,pres, part,ing,'comp-obj']).
lex(seen, ['*see',vspl, verb,past,en,'comp-obj']).

lex(seems,
['*seem',v3s,verb,pres,'no-subj','that-obj','inf-obj','to-be-less-inf-obj']).

lex(schedule,['*schedule','v-3s',verb,pres,tnsless,'comp-obj','inf-obj']).
lex(schedules, ['*schedule',v3s, verb, pres, 'comp-obj', 'inf-obj']).
lex(scheduled, ['*schedule', vspl, verb, past, part, en, 'comp-obj', 'inf-obj']).
lex(scheduling,['*schedule', vspl, verb.pres, part, ing,'comp-obj', 'inf-obj']).

lex(should,['*should',vspl,verb,auxverb,past,modal]).

lex(take, [' *take','v-3s' ,verb,pres,tnsless, 'inf-obj']).
Iex(takes,['*take',v3s,verb,pres,'inf-obj']).
lex(took, [' * take', vspl, verb,past,' inf-obj']).
lex(taking,['*take',vspl,verb,pres,part,ing,'inf-obj']).
lex(taken,['*take',v8pl,verb,past,part,en,'inf-obj']).

lex(tell,['*tell','v-3s',verb,pres,tnslessj'inf-obj']).
lex(tells,('*tell',v38,verb,pres,'inf-obj'j).
lex(told,['*tell',v8pl,verb,past,part,en,'inf-obj']).
lexftellingJ^tell'.vspLver^pres.part.ing.'inf-obj']).

117

lex(want,['*want','v-3s',verb,pres,tnsle8s,'inf-obj','subj-less-uif-obj']).
lex(wan ts,['*want',v3s,verb,pres,'inf-obj','subj-less-inf-obj']).
lex(wanted,['* want', vspl, verb, past, part, en,'inf-obj', 'subj-less- inf-obj']).
lex(wanting,['* want', vspl, verb,pres,part,ing,'inf-obj','subj-less-inf-obj']).

lex(will, [' * will' , vspl, verb, auxverb]).

lex(would,['*would',vspl,verb,auxverb,past, modal]).

lex(Word,J :-
write(Word),
writestring(" is not in the lexicon"), nl, fail. ***********y

/ * FEATURES */
^************** j

I*
auxverb % auxiliary verb
comp % complement markers like "that" and "for"
comp-np % NP node dominating a complement S
comp-obj % verb takes a complement as object
comp-s % S serving as a complement
copula % copular auxiliary
decl % declarative sentence
def % definite article or NP
det % determiner
dow % day of the week
en % verb with an "en" ending however spelled
finalpunc % final punctuation mark
future % future tense
imper % imperative sentence
indef % indefinite article or NP
inf % infinitive verb form
inf-obj % verb takes an infinitive complement as object
inf-s % infinitive S
ing % verb with "ing" ending however spelled
major % major S
modal % either a modal or aux with an attached modal; e.g. should
nip % 1st person noun
n2p % 2nd person noun
n3p % 3rd person noun
name % a person's name; e.g., John Smith
nbar % "N-bar" node
ngstart % anything that could start a noun group
noun % any noun
no-subj % verbs w/ delta subjects (or "it"); e.g., seems
not-modifiable % NP which cannot take restrictive modifiers
np % noun phrase
np-quest % question with a fronted NP
np-utterance % utterance consisting only of an NP
npl '; % plural noun or quantifier (e.g., some)
ns % singular noun, determiner (e.g., a), etc.
part % participle
passive % passive verb

118

past % past tense
perf % perfective
pp % prepositional phrase
pp-quest % question with a fronted PP
pp-utterance % utterance consisting only of a PP
pred-verb % anything which can introduce a predicate after a copula
prep % preposition
pres % present tense
prog % progressive
pronoun % pronoun
pron-np % NP that dominates a pronoun; therefore, not modifiable
propnoun % proper noun
propn-np % NP that dominates a proper noun; therefore, not modifiable
relprpn % relative pronoun
relpron-np % NP that dominates a relative noun; therefore not modifiable
quest % any kind of question
sec % secondary S - not major - embedded
subj-less-inf-obj % verbs like want
that-obj % verb takes a tensed complement
that-s % embedded finite complement
time % time word or phrase
tnsless % tenseless verb
to-be-less-inf-obj% verb takes an infinitive w/o "to be"; e.g., seems
to-less-inf-obj % verb takes an infinitive w/o "to"; e.g., help
trace % NP which is a trace
utilized % indicates the gap corresponding to a whcomp has been found
v+13s % verb agrees with a 1st or 3rd person singular noun
v-3s % verb matches any noun except 3rd person singular
vis % verb agrees only with 1st person singular noun; e.g., am
v3s % verb agrees only with 3rd person singular noun; e.g., is
vpl+2s % verb agrees w/ any plural or 2nd sing, noun; e.g., are
vspl % agrees with any noun, singular or plural
verb % any kind of verb
vp % verb phrase
wh % either a det with a wh marker or an NP with such a det
whcomp % any sort of wh phrase
wh-quest % wh question
yn-quest % yes/no question
V

H i

A p p e n d i x 2

Sample Parses

The following examples show the types of sentences this Prolog

implementaion of PARSIFAL is currently able to parse. They include the

linguistic generalizations discussed in chapter four which in some instances,

involve the use of traces.

/* Simple declarative sentence with prepositional phrase modifier */
> John Smith has scheduled the meeting for Wednesday.

s: [decl,major,s]
np: [name,ns,n3p,not-modifiable,np]

noun:John
noun: smith

aux: [perf,v3s,pres,aux]
perf: has

vp: [vp]
verb: scheduled
np: [def,det,np]

det: the
nbar: [ns,nbar]

noun: meeting
pp: [time.pp]

prep: for
np: [time,dow,np]

noun: Wednesday
finalpunc: .

/ * W H question : subject * /
> Who scheduled the meeting?

s: [utilized,np-quest,quest,wh-quest,major,s]
whcomp: who
np: [trace,not-modifiable,np]

bound to: who
aux: [vspl, past, aux]
vp: [vp]

verb: scheduled
np: [def,det,np]

det: the
nban [ns,nbar]

noun: meeting
Finalpunc: ?

/* N P utterance */
> John.

s: [np-utterance,s]
np: [name,ns,n3p,not-nioclifiabIe,np]

noun: John
finalpunc: .

/ * W H question : object */
> What did John schedule?

s: [utilized,np-quest,quest,wh-quest,major,s]
whcomp: what
np: [name,ns,n3p,not-modifiable,np]

noun:John
aux: [vspl,past,aux]

do: did
vp: [vp]

verb: schedule
np: [trace,not-modifiable,np]

bound to: what
finalpunc: ?

/ * NP utterance */
> A meeting.

s: [np-utterance,s]
np: [indef,det,np]

det: a
nban [ns,nbar]

noun: meeting
finalpunc: .

/ * W H question : preposition */
> When did he schedule it for?

s: [utilized,pp-quest,quest,wh-quest,major,s]
whcomp: when
np: [ns, n3p,pron-np,not-modifiable,np]

pronoun: he
aux: [vspl,past,aux]

do: did
vp: [vp]

verb: schedule
np: [ns,n3p,pron-np,not-modifiable,np]

pronoun: it
PP= [PP]

prep: for
np: [trace,np]

bound to: when
finalpunc: ?

/ * PP utterance * /
> For Wednesday.

s: [pp-utterance,s]
PP= [PP]

prep: for
np: [time,dow,np]

noun: Wednesday
finalpunc: .

/ * W H question * /
> What did he do?

s: [utilized,np-quest,quest,wh-quest,major,s]
whcomp: what
np: [ns,n3p,pron-np,not-modifiable,np]

pronoun: he
aux: [vspl,past,aux]

do: did
vp: [vp]

verb: do
np: [trace,not-modifiable,np]

bound to: what
finalpunc: ?

/ * Verb cluster with no auxiliary */
> John scheduled the meeting,

s: [decl,major,s]
np: [name,ns,n3p,not-modifiable,np]

noun:John
aux: [vspl,past,aux]
vp: [vp]

verb: scheduled
np: [def,det,np]

det: the
nbar: [ns,nbar]

noun: meeting
finalpunc: .

/ * Modal, perfective auxiliary */
> John should have scheduled the meeting,

s: [decl,major,s]
np: (name,ns,n3p,not-modifiable,np]

noun:John
aux: [perfjmodaLvspljpastjaux]

modal: should
perf: have

vp: [vp]
verb: scheduled
np: [def,det,np]

det: the
nbar: [ns,nbar]

noun: meeting
finalpunc: .

/ * Yes/No question with inversion of future auxiliary * /
> Wil l Mary give a lecture in Vancouver?

s: [quest,yn-quest,major,s]
np: [name,ns,n3p,not-modifiable,np]

noun: mary
aux: [future,vspl,aux]

will: will
vp: [vp]

verb: give
np: [indef,det,np]

det: a
nbar: [ns,nbar]

noun: lecture
pp: [place.pp]

prep: in
np: [place,np]

nbar: [ns,n3p,nbar]
noun: Vancouver

finalpunc: ?

/ * Yes/No question with inversion of perfective auxiliary * /
> Has Mr. Smith scheduled the meeting?

s: [quest,yn-quest,major,s]
np: [name.ns,n3p,not-modifiable,np]

title: mr
noun: smith

aux: [perf,v3s,pres,aux]
perf: has

vp: [vp]
verb: scheduled
np: [def,det,np]

det: the
nbar: [ns,nbar]

noun: meeting
finalpunc: ?

/ * Yes/No question with inversion of 'do-support' auxiliary *
> Did Mrs. Smith schedule the meeting?

s: [quest,yn-quest,major,s]
np: [name,ns,n3p,not-modifiable,np]

title: mrs
noun: smith

aux: [vspl,past,aux]
do: did

vp: [vp]
verb: schedule
np: [def,det,np]

det: the
nbar: [ns,nbar]

noun: meeting
finalpunc: ?

123

/* Passive (trace feature) * /
> The meeting has been scheduled.

s: [np-preposed,decl,major,8]
np: [def,det,np]

det: the
nbar: [ns,nbar]

noun: meeting
aux: [passive,perf,v3s,pres,aux]

perf: has
passive: been

vp: [vp]
verb: scheduled
np: [trace,not-modifiable,np]

bound to: the meeting
finalpunc: .

/ * Y / N quest w/ subj separating 2 parts of a progressive aux */
> Is John scheduling a meeting for tomorrow?

s: [quest,yn-quest,major,s]
np: [name,ns,n3p,not-modifiable,np]

noun:John
aux: [prog,v3s,pres,aux]

prog: is
vp: [vp]

verb: scheduling
np: [indef, det ,np]

det: a
nbar: [ns,nbar]

noun: meeting
pp: [time.pp]

prep: for
np: [time,np]

nbar: [ns,n3p,time,nbar]
noun: tomorrow

finalpunc: ?

/ * Y / N quest w/ passive verb and subj separating 2 parts of progressive aux * /
> Is a meeting being scheduled?

s: [np-preposed,quest,yn-quest,major,s]
np: [indef,det,np]

det: a
nban [ns,nbar]

noun: meeting
aux: [passive,prog,v3s,pres,aux]

prog: is
passive: being

vp: [vp]
verb: scheduled
np: [trace,not-modifiable,np]

bound to: a meeting
finalpunc: ?

/* Imperative ("you" insertion) */
> Schedule a meeting for Wednesday!

s: [imper,major,s]
np: [ns,npl,n2p,pron-np,not-modifiable,np]

pronoun: you
aux: [v-3s,pres,tnsless,aux]
vp: [vp]

verb: schedule
np: [indef,det,np]

det: a
nbar: [ns,nbar]

noun: meeting
pp: [time.pp]

prep: for
np: [time,dow,np]

noun: Wednesday
finalpunc: !

/ * Simple embedded complement */
> We wanted John to schedule the meeting.

s: [decl,major,s]
np: [npl,nlp,pron-np,not-modifiable,np]

pronoun: we
aux: [vspl,past,aux]
vp: [vp]

verb: wanted
np: [comp-np,np]

s: [sec,comp-s,inf-s,s]
np: [name,ns,n3p, not-modifiable, np]

noun:John
aux: [inf,aux]

to: to
vp: [vp]

verb: schedule
np: [def,det,np]

det: the
nbar. [ns.nbar]

noun: meeting
finalpunc: .

/ * Passive construction with embedded complement */
> The meeting of the executives seems to have been scheduled for Wednesday.

s: [np-preposed,decl,major,s]
np: [def,det,np]

det: the
nbar: [ns,nbar]

noun: meeting
PP: [PP]

prep: of
np: [def,det,np]

det: the
nbar: [npl,nbar]

noun: executives
aux: [v3s,pres,aux]
vp: [vp]

verb: seems
np: [comp-np,np]

s: [np-preposed, sec,comp-s,inf-s,s]
np: [trace,not-modifiable, np]

bound to: the meeting of the executives
aux: [passive,perf,inf,aux]

to: to
perf: have
passive: been

vp: [vp]
verb: scheduled
np: [trace,not-modifiable,np]

bound to: the meeting of the executives
pp: [time.pp]

prep: for
np: [time,dow,np]

noun: Wednesday
finalpunc: .

> Who did John see?

s: [utilized,np-quest,quest,wh-quest,major,s]
whcomp: who
np: [name,ns,n3p,not-modifiable,np]

noun: John
aux: [vspl,past, aux]

do: did
vp: [vp]

verb: see
np: [trace,not-modifiable,np]

bound to: who
finalpunc: ?

126

> Who saw Mary?

s: [utilized,np-quest,quest,wh-quest,major,s]
whcomp: who
np: [trace,not-modifiable,np]

bound to: who
aux: [vspl,past,aux]
vp: [vp]

verb: saw
np: [name,ns,n3p,not-modifiabIe,np]

noun: mary
finalpunc: ?

/ * Verb taking an infinitive complement without an explicit "to" */
> I gave Mary a book.

s: [decl,major,s]
np: [ns,nlp,pron-np,not-modifiable,np]

pronoun: i
aux: [vspl,past,aux]
vp: [vp]

verb: gave
np: [namejnSjnSp^ot-modifiable^p]

noun: mary
np: [indef,det,np]

det: a
nbar: [ns,nbar]

noun: book
finalpunc: .

> Who did John give the book to?

s: [utilized,np-quest,quest,wh-quest,major,s]
whcomp: who
np: [name,ns,n3p,not-modifiable,np]

noun: John
aux: [vspl,past,aux]

do: did
vp: [vp]

verb: give
np: [def,det,np]

det: the
nbar: [ns,nbar]

noun: book
PP= [PP]

prep: to
np: [trace,np]

bound to: who
finalpunc: ?

/ * Verb taking a complement with an implicit "to"; "to" inserted
> What did John give Mary?

s: [utilized,np-quest,quest,wh-quest,major,s]
whcomp: what
np: [name,ns,n3p,not-modifiable,np]

noun: John
aux: [vspl,past,aux]

do: did
vp: [vp]

verb: give
np: [trace,not-modifiable,np]

bound to: what
PP: [PP]

prep: to
np: [name,ns,n3p,not-modifiable,np]

noun: mary
finalpunc: ?

> I saw the cover of the book,
s: [decl,major,s]

np: [ns,nlp,pron-np,not-modifiable,np]
pronoun: i

aux: [vspl,past,aux]
vp: [vp]

verb: saw
np: [def,det,np]

det: the
nbar: [ns,nbar]

noun: cover
PP: [PP]

prep: of
np: [def,det,np]

det: the
nbar: [ns,nbar]

noun: book
finalpunc: .

> I hit Mary with a happy book,
s: [decl,major,s]

np: [ns,nip,pron-np,not-modifiable, np]
pronoun: i

aux: [v-3s,pres,tnsless,aux]
vp: [vp]

verb: hit
np: [name,ns,n3p,not-modifiable,np]

noun:, mary
PP: [PP]

prep: with
np: [indef,det,np]

det: a
adj: happy

nbar: [ns.nbar]
noun: book

finalpunc: .

/ * Verb taking an infinitive object without "to be"
> John seems happy.

s: [np-preposed,decl,major,s]
np: [name,ns,n3p,not-modifiable,np]

noun: John
aux: [v3s,pres,aux]
vp: [vp]

verb: seems
np: [comp-np,np]

s: [sec,comp-s,inf-s,s]
np: [trace,not-modifiable,np]

bound to: John
aux: [copula, inf,aux]

to: to
copula: be

vp: [vp]
verb: happy

finalpunc: .

> Schedule John to give a lecture on Wednesday.

s: [imper,major,s]
np: [ns, npl,n2p, pron-np,not-modifiable, np]

pronoun: you
aux: [v-3s,pres,tnsless,aux]
vp: [vp]

verb: schedule
np: [comp-np,np]

s: [sec,comp-s,inf-s,s]
np: [name,ns,n3p,not-modifiable,np]

noun:John
aux: [inf, aux]

to: to
vp: [vp]

verb: give
np: [indef,det,np]

det: a
nbar [ns,nbar]

noun: lecture
pp: [time,pp]

prep: on
np: [time,dow,np]

noun: Wednesday
finalpunc: .

/ * That complement */
> It seems that a meeting has been scheduled.

s: [decl, major, s]
np: [ns,n3p, pron-np,not-modifiable, np]

pronoun: it
aux: [v3s,pres,aux]
vp: [vp]

verb: seems
; np: [comp-np,np]

s: [np-preposed,comp-s,that-s,sec,s]
comp: that
np: [indef,det,np]

det: a
nbar: [ns,nbar]

noun: meeting
aux: [passive,perf,v3s,pres,aux]

perf: has
passive: been

vp: [vp]
verb: scheduled
np: [trace,not-modifiable,np]

bound to: a meeting
finalpunc: .

/ * That complement without an explicit "that"
> It seems a meeting has been scheduled.

s: [decl,major,s]
np: [ns,n3p,pron-np,not-modifiable, np]

pronoun: it
aux: [v3s,pres,aux]
vp: [vp]

verb: seems
np: [comp-np,np]

s: [np-preposed,comp-s,that-s,sec,s]
np: [indef,det,np]

det: a
nbar: [ns,nbar]

noun: meeting
aux: [passive,perf,v3s,pres,aux]

perf: has
passive: been

vp: [vp]
verb: scheduled
np: [trace,not-modifiable,np]

bound to: a meeting
finalpunc: .

130

/ * Verb taking an infinitive embedded complement */
> I helped John to do it.

s: [decLmajor,s]
np: [ns,nip,pron-np,not-modifiable, np]

pronoun: i
aux: [vspl,past,aux]
vp: [vp]

verb: helped
np: [comp-np,np]

s: [sec,comp-s,inf-s,s]
np: [name,ns,n3p,not-modifiable,np]

noun:John
aux: [inf.aux]

to: to
vp: [vp]

verb: do
np: [ns,n3p,pron-np,not-modifiable,np]

pronoun: it
finalpunc: .

/ * Verb taking an infinitive embedded complement without "to"; "to" inserted */
> I helped John do it.

s: [decl,major,s]
np: [ns,nlp,pron-np,not-modifiable,np]

pronoun: i
aux: [vspl,past,aux]
vp: [vp]

verb: helped
np: [comp-np,np]

s: [sec,comp-s,inf-s,s]
np: [name,ns,n3p,not-modifiable,np]

noun:John
aux: [inf,aux]

to: to
vp: [vp]

verb: do
np: [ns,n3p,pron-np,not-modifiable,np]

pronoun: it
finalpunc: .

/ * Verb taking an infinitive embedded complement without a subject */
> I helped to do it.

s: [decLmajor.s]
np: [ns,nlp,pron-np,not-modifiable,np]

pronoun: i
aux: [vspl,past,aux]
vp: [vp]

verb: helped
np: [comp-hp,np]

s: [sec,comp-s,inf-s,s]
np: [trace,not-modifiable, np]
aux: [inf,aux]

to: to
vp: [vp]

verb: do
np: [ns,n3p,pron-np,not-modifiable,np]

pronoun: it
finalpunc: .

/ * Verb taking an infinitive embedded complement without "to" or a subject */
> I helped do it.

s: [decl,major, s]
np: [ns,nlp,pron-np,not-modifiable,np]

pronoun: i
aux: [vspl,past,aux]
vp: [vp]

verb: helped
np: [comp-np,np]

s: [sec,comp-s,inf-s,s]
np: [trace,not-modifiable, np]
aux: [inf,aux]

to: to
vp: [vp]

verb: do
np: [ns,n3p,pron-np,not-modifiable,np]

pronoun: it
finalpunc: .

132

/* Verb taking an infinitive embedded complement without an explicit subject */
> I want to do it!

s: [decl,major,s]
np: [ns,nlp,pron-np,not-modifiable,np]

pronoun: i
aux: [v-3s,pres,tnsless,aux]
vp: [vp]

verb: want
np: [comp-np,np]

s: [sec,comp-s,inf-s,s]
np: [trace,not-modifiable, np]
aux: [inf, aux]

to: to
vp: [vp]

verb: do
np: [ns,n3 p,pron-np,not-modifiable,np]

pronoun: it
finalpunc: !

i i i

