A PROLOG IMPLEMENTATION OF A SUBSET OF
MARCUS’ PARSER AND ITS RELATION TO THE
HANDLING OF EXTRAGRAMMATICAL INPUT

By

MICHAEL SCARLETT DOROTICH

'B.Sc., University of ,:Saskfatchewan}, 1982

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

n

THE FACULTY OF GRADUATE STUDIES
(DEPARTMENT OF COMPUTER SCIENCE)

We accept this thesis as conforming

to the required standard

s ! -

THE UNIVERSITY OF BRITISH COLUMBIA
o August 1986
©Michael S. Dorotich, 1986

R

In presenting this thesis in partial fulfilment of the
requirements for an advanced degree at the University

of British Columbia, I agree that the Library shall make
it freely available for reference and study. I further
agree that permission for extensive copying of this thesis
for scholarly purposes may be granted by the head of my
department or by his or her representatives. It is
understood that copying or publication of this thesis

for financial gain shall not be allowed without my written

permission.

Department of Cowpitfer Sciemce
i

The University of British Columbia
1956 Main Mall

Vancouver, Canada

V6T 1Y3-

Date Auaust 20 198¢
)) /-

E-6 (3/81)

Abstract

In any system émploying a natural language interface, there is the problem
that, by means of a formal grammar, the system itself defines the language it will
accept. But, when using language, people will not always adhere to the rules of
this grammar; therefore, a natural language computer system should not siﬁlply
treat as incomprehensible any input bnot éonforming to its internai grammzir,
input we may call extragrammatical. The term extragramma.tncal refers to input
that is not necessarily incorrect in an absolute sense but only relative to the
formal scope of a system’s grammar. Before a truly robust system can be
developed, what is needed is a parsing mechanismv that enforces grammaticality
where possible, and this implies a deterministic épproach to natural language
parsing. This thesis discusses the importance of flexible natural language
interfaces; the notion of extragrammatical language and its connexion to robust
parsing; a deterministic parser, PARSIFAL, developed by Mitchell Marcus; and
a reimplementation, using logic programming, of a subset of Marcus’ system.
Programming was done with CProl_og on a VAX 11/750* running 4.2 BSD

UNIX.t

* VAX is a trademark of Digital Equipment Corporation.
t UNIX is a trademark of AT&T Bell Laboratories.

i

Table of Contents

ADSETACE «ieriiiiiiii ettt ce s eaes et e s rrr e e se e s e s se s ae s e n e an e senanasenannenn ii
List of Figures eeteeetetruttat——eaeaeatatatatetene e aeaeat et e e emen ettt asasateteeesensnananeeenene iv
Acknowledgementseeeeeiiiiiiuiiiiiiiiiiiiiiii i e v
Chapter.1 - Introductionc.oeeeieeiniiieeientit et 1
Chapter 2 - Natural Language Interfacesccccvvivinniiienninnonnennenniiiinnnnnnnne. 4
- 2.1 Flexible Natural Language Interfaces in Database Systems5

2.2 Flexible Natural Language Interfaces in CAI Systems 8

2.2.1 Language and Learningcoccceeeeeueieeeievrnneecennes [T 9

2.2.2 Tntelligent CAI ...ccocveueveeeneieireecerrereseesiesessesnes e 10

Chapter 3 - Extré.gra.mmaticality in Natural Language Interfaces
3.1 What is Meant by Extragrammaticality 7cccevieeeiiiirinnennnnne. 17

3.2 Where Extragrammaticality ATiSES ...cccceereriiereeicciiemecceerimecrereeanenns 20

3.3 Handling Extragrammatical Phenomenacceeeeeerereververeesennen. 21
Chapter 4 - Deterministic Parsing eeereseeeteesteeatas et e e e eteseae st e been e ereesnaane 28
4.1 Marcus’ Deterministic Parsercccccccecveereneniniiiinrincninnees ereereeeenenes 29

4.2 PARSIFAL’s Data Structures ...cccccccvvniiinniiiieicnmeioneimmemeirennnns 32

4.3 Structure and Interpretation of the Grammarcccceeeevucerrnninnnneens 36

4.4 Linguistic Generalizations Captured by PARSIFAL 45
Chapter 5 - Why Choose a Logic Programming Approach?ccccooveeenneene 49
Chapter 6 - A Prolog Implementation of PARSIFALccccoceiiiirniininnniinnn. 55
Chapter 7 - Limitations ...c.cccoccirieiiiiiiiiiieiiiiiiienriiircscstnc et cnsee e e 66
7.1 Limitations to PARSIFAL ..c.coovureurueeesereeresessessnsessenecascnces eveene 66

7.2 Limitations to the Current Implementationcc.c.ccoccceiiucininiinnne. 68
Chapter 8 - CONClUSIONS ..ccciiiiiiiiiiiieieiiiiieiiireeetetren s crres e esaar e ss s e eeneanes 73
0 (53 =) ¢ L= U 76
Appendix 1 - SoUTce Codeccuveeaiiiiiiiiiiiiiiieniiiiinercte e as s reeaseesee e 81
Appendix 2 - Sample Parsescccceveeeiiiiiiiiiiieniiiiiiinnine et e 119

iii

- List of Figures

Figure 4.1 - Parse tree with features on nodesccoouvvvvvenniiiiiniiiiinnnnnnnis 33
Figure 4.2 - Grammar rulecccoiiieiiiiiiiiiiiiiiii e e 37
Figure 4.3 - After MAJOR-DECL-S has run ettt nrens 39
Figure 4.4 - After the auxiliary has bee_n parsed 40
Figure 4.5 - After MAIN-VERB has run ettt st e b ae e e s rneeeeas 41
Figure 4.6 - After OBJECTS has run T PPPOURRPRPRY” § |
Figure 4.7 - Attention shifting rule SRR 44
Figure 4.8 - After DETERMINER has run 45
Figure 6.1 - Parse node SETUCHUTE cevvererernrecivenrecreenneesenad eeeresseessesreessessessnssiee 50
Figure 6.2 - Example SeSSiONcccccetrmeenerreennnniorernnnnsnnnsens vrerreeereereeeareaaeeean 65

iv

Acknowledgements

I would like to thank my supervisor, Harvey Abramson, for his suggestions
and comments throughout the writing of this thesis, and Richard Rosenberg for
his gracious consent to be: the second reader. I must express my ngatitude to the
‘National Sciences and Engineering Cguncil for ﬁnancial‘support.‘ Finally, I would
like to extend many thanks to Linda Plumb for her moral support and -

encouragement throughout my time as a Master’s student.

Chapter 1

Introduction

Considerable work has been done on the design of natural language man-
machine interfaces. In most informal settings, people use language without
adhering to strict grammadtical conventions+eVén if they have an .unéorvls,'cious
operative grammar in their minds—but deviati@ns, are inherent in spontaneous -
language use whatever the modality, even in highly coﬁstrained formal settings.
Now, if computers are to undeféta.nd ‘human language, they must parse as
robustly as humans do. A cdmputer system should not simply treat as
incomprehensible any input that does not conform to its internal grammar.

Systems in which this is a concern include da.tdbase and expert systems.

Natural Language Understanding (INLU) systems and Natural Language
Interfaces (INLI’s) are comprised of several components, the most fundamental
being the grammar used to describe input. Most systems, however, are not
equipped with mechanisms that attempt to handle input rejected by strict
grammatical processing. Nevertheless, people customarily communicate with less
than perfectly constructed sentences and naturally expect of computers some of
the skills in understanding they themselves exhibit. This may become
increasingly the case as artificial intelligence techniques, applied to user
interfaces, give these interfaces more and more the semblance of intelligence.
~When a system intelligently answers questions or offers criticism, a user wiil
naturé.lly assume intelligent conversational abilities of _the system. Problems a.ris:e
when the user does not accuratély perceive the limits of the system; therefore, a
systeﬁl shoﬁld present thé usef with a co_hs_istent inodel of its capaBilitieé.
Moredver, within an educational e;;pert sySf;em sgtting, _there are :certéjn
fundamental pedagogical reasons for having 5, sophisticated natural lahguage

interface.

2

In the mid 1970’s, NLU systems designers noted that ﬁnderstanding
requires some attempt to interpret, not merely reject, what seems to be ill-formed
input. Subsequently, work was done on. seeing how the then current natural
language parsing mechanisms might handle such input. Recently, a new tool for
designing NLI's has emerged: logic programming. It would be interesting to
investigate how an NLU system founded upon logic prdgramming might be made

to perform reasonably in the face of ill-formed input.

| In any NLU system, there is the problem that the grammar itself defines
the language the system accepts. Input may deviate from that which' is
acceptable either because it is wrong or because the grammar itself is wrong or
incbmblete. So the first requirement of an ENLU'system that handles seemingly
.ill-formed, or extragrarmhatical, input is a parse; that enforces grammaticality
where possible but behaves gracefully where not, accepting sentences that do not
fit the grammar and noting the ways in which they are deviant. In order to do
this, a parser must recognize immediately that a sentence has deviated from its
grammar. A standard top-down parser would not work. To see why not,
consider that when such a parser gets stuck it takes this to mean it has made an
incorrect decision earlier in the parse of a given sentence whereupon it backs up
and tries an alternate parse. Failing all possible parses, the parser simply gives
up and cannot tell where the difficulty lies. This -is a problem not only for
natural language parsersfbut also for formal computer language parsers. In fact,
this is what léd the early recursive descent:appro&:a,ch to be replaced by fop;down .
'LL;, or Bottom—up 'LR, deterministic appfoaches. What is needed, .thén, is a
deterministic _n’atﬁral lan‘gua.ge.parser and for this one may turh to thé work of

Mitchell Marcus.

' This thesis involves a survey of the literature pertinent to robust natural

language interfaces and a reimplementation in Prolog of a subset of Marcus’

deterministic parser, PARSIFAL. It is assumed that Prolog is already familiar
to the reader.! Likewise, the reader is assumed to be familiar with elementary

grammar theory.2

The importance of sophisticated _hatural language interfaces in data.baée and
computer assisted instruction systems is investigated in chapter two. Of major
significance to the design of a truly flexible na,tura.vl language understanding
system is ﬁhe handling of extragranvimaticaliinput,vinput that does not conform to
the system’s grammar. This is the subjéct of chapter three. .The first step
towards handling unexpécted input is a deterministic parser, and so the work of
Mitchell Marcus is discussed in chapter four. Chapter five gives a brief look at
logic p;og&amming, andv chapter six presénts a Prolog version of part of the
PARSIFAL system. Chapter seven discusses limitations both of this work and
that of Marcus’ on which it is based. Conclusions are drawn in the last chapter.

Source code and sample parses may be found in the appendices.

1 The standard reference is [CLO81].
2 This can be found in compiler writing books like [TRES5].

Chapter 2

Natural Language Interfaces

NLU systems usually fall into one of two categories: those for studying
_ natural language phenomena in general, and those tg.ilored as interfaces to a
particular task domain within da.tabase and expert systems..

Two inﬂuential: systems developed in the early 1970’s attempted to' tackle
both syntactic and fsema,:ntic aspects of natural language. SHRDLU [WIN73,
WINSO], representing thé first category, was designed to show that in order to
understand language, a program must integrate syntactic processing, semantic
processing, and reasoning.3 LSNLIS [WOO72], on fhe other hand, was designed -
to help geologiéts analyze moon rock samples using a database at the Natibnal '

Aeronautical and Space Agency.

Both of these systems are based on procedural representations of language.
The philosophy behind SHRDLU is that language activates procedures within
the hearer. Thus, syntax and meaning can be represented directly as executable
computer programs while reasoning corresponds to the actual execution of the
programs. LSNLIS, one of the first systems to employ augmented transition
networks (ATN’s) [WOO70|, operates by translating English queries into a
formal query language. The formalized query is then presented to the database
for an answer. Another such system is PLANES' [WALT78|.

Alternatives employed by other researchers are declarative representations of
which the most outstaﬁding are logic and semantic networks. Ideas behind
semantic networks have been employed in a number of NLU systems including

R-ENDEZVOUS [COD74] and LADDER [HENTS]. Li_ke -pr_ocedura.l

8 In [WIN80|, Winograd reviews SHRDLU and discusses further directions he has
taken in natural language understanding.

5

representation based systems, these also translate English queries into a data

sublanguage.

At one time there was a controversy among researchers as to whether
procedural or declarative ref)fesentations should be used. This has died, however,
but it is interesting to note that with the advent of logic programming both
procedural and declarative interpretations may _coexisf »[C_LO'81‘, KOW'ZQ,- '
ROBS3. | | | |

There are a few NLU systems——call them metasystems—that may be used
to aid building other systems which fall into either of the two categories
mentioned above. ProGrammar [SAL85| and. SAUMER [POi’84], for
example, may be used to build and test grammars that may in turn be used for
linguistic analysis. LIFER [HEN77], which includes a gramar editor, is a

utility for building natural language front ends targeted to any domain.

Discussion in this and subsequent chapters will refer mainly to application
systems and linguistic phenomena that arise in them.? This chapter discusses the
need for flexible natural language interfaces in database and educational expert

systems.

2.1 Flexible Natural Language Interfaces in Database Systems

The motivation one finds in the literature for_na,tural-la.nguage access to
databases isfsimilar from one system to another. Natural l:an'gua.ge is ;onvenient
and fa.miliar>to all and to' a casual f'user is an easier méans of making é. éuery than
some special férmal language or menu. | If the user:E wishés to ;display elements
satisfying sevéra,l predicates whiché réquiré logical 'combinati:ons of multiple files, a

menu is not even sufficient: a special data languagé is required. But learning

4 For a good overview of ‘all types of natural language understanding systems see
[BARRS82]. :

such a language or, at least, using someone as an intermediary presents an
obstacle to a nontechnical person. Not only might learning a new language be
difficult but, because a person is used to thinking in his native language, learning
to translate into the new la.ngua_,ge might be difficult too. A nontechnical person
cannot be expected to be knowledgeable about computers, programming, logic, or

relations and yet must be able to obtain information with a minimum of training.

In order for an NLI to Be of value it must have a large vocabulary of the
subject matter, aécept a widé range of grammatical constructs, feed back
understanding of requests, tolerate spelling and simple grammatical errors, and
allow addition of new wo;'ds and grammatical constructs to the knowledge base.
Furthermore, because a user will often ask several questions about the same
object, it is convenient that :he be allowed to enter elliptical constructs,"
incomplete input fragments, or pronominal references and that the system
interpret them in the context of previous input. While these are commonly set as
objectives by NLI designers, not all of them are met in all systems and there is

certainly room for further research into natural language understanding.

The RENDEZVOUS [COD74| system was designed with the intent of
having a user engage a relational database system in dialogue to attain mutual
agreement about the user’s needs. Codd, who designed the system, states that
earlier systems failed because they assumed that if a user’s English were beyond
the sys:tem’s limited understanding it was the user’s; responsibility:to restéte his
query. To prevent the ﬁegativé psychological impa:cf; upon a uéer ca.uséd by a
sYstem: rejecting a query; for apparently arbitrary reasons, Codd proposed some
improvements to interface design. The user should i)e presented with a jsi.mple
~data model because his view of the data influences the’ way he formula.tes queries.
Query'formulatibn should be képt’ separate from database .sea,rch.'until‘ the user

and the system agree upon the user’s intent. To achieve this, the user’s query is

translated by a semantic grammar mechanism into a precise internal language,
Alpha, based on relational calculus. In the translation process an intermediate
form, Inter-Alpha, is used. The user should be fed back a precise restatement
of his query that heA may vefify the system has understood his request. In the
case of any misunderstanding, the user should be enga.ged by the system in a
clarification dlalogue. While Codd clearly states the 1mportance of a good NLI
to databases, RENDEZVOUS is limited in its ability to deal with input that

doesn’t conform to its internal grammar.

The LIFER [HEN77] system has been used to build NLI’s for a medical
database and a computer-based expert system, but the most complex S):rstem
Ebeilt with it is LADDER [HEN78] which provides natural language access to a ».
large database of U.S. Navy information distributed over different comI-)uters:
across the United States. Users do not need to know where data is stored. Nor
do they need to know a special data query language. Instead, they use a subset
of English pertinent to the domain of discourse which LIFER translates into a
general database query. The rest of LADDER handles the specifics of the
query. The LIFER system, also employing semantic grammars, is an
improvement over RENDEZVOUS. LIFER contains a spelling correction
feature. It allows language extension through definition of new words and
syntactic structures in terms of old. It allows the missing constituents in
elliptical inputs to be deduced} from previous input. Lastly, it supports
interrogation of the underlying language definition threugh a grammar editor.’
Thus, language definition and pa:,rsing> can be intermixed. LIFER does have
" some limitations. Because it is aesigned to build interfaces that retrieve from
(ra.ther than update) databases, it does not handle assertions. Designed fer wh-:
’type questlons, LIFER does not support -many yes-no questlons Ahd L.I'FER‘

has trouble with input that displays syntactic or semantic ambiguity. For

example, in the request:

Name the ships from American home ports that are within 500 miles of Norfolk

it is not clear whether the relative clause should modify ships or ports.

- The designers of LSNLIS [WOO72] acknowledge that thelrs is one of the
ﬁrst usable natural language’ mterfaces and as such emphasxzes the translation
from English into a formal query language while ignoring the problem of input
tha‘p doesn’t follow a strict parse. |

The PLANES [WALTS| system is a large relational database of aircraft
- flight and maintenance data. Like LSNLIS, it too uses an ATN parser, but is
more tolerant of nongrammatical request's It handles ellipsis and several types of
pronoun reference, abbreviations, a.nd a variety of syntactic structures including
relative clauses. PLANES also feeds back to the user a precise representation of

its understanding of the user’s request. PLANES draws upon ideas put forth in
the design of LSNLIS and RENDEZVOUS.

This section has presented the motives of designers of some of the first non-
experimental NLI’s to database systems. While claiming success, the designers
generally note a shortcoming as the problem of handling unexpected input. The
success of NLI’s can be expected to increase as further techniques are developed

to make them more robust.

2.2 Fle)jcible Natural Language Interfaces in CAIFSystems

The flexible handling of linguistic phenomena has signiﬁce,nt implications
) wrthin Computer Assisted Instruction (CAI) environments. The first subsectlon
presents a pedagogical motive for designing sophlstlca,ted na.tural langua.ge
1nterfaces The second looks at recent work that has been done on 1mprov1ng
CAI and again reveals a need for further work on natural languagev

understanding.

2.2.1 Language and Learning

The analogy employed by designers of educational computer systems is that
of a socratic dialogue between student and tutor (the computer). The student is
assumed to have little understanding of some concept while the computer is
assumed to have the complete understanding of an expert. Through dialogue,
the computef tutor aids the student in acquiring _knowled_ge. But i_n.order for this
to happen, the communication must be ﬂexiblei |

Studies "have firmly shown the impact confmunication’ has on leafning
[BAR69, BAR75, BUL75, DOU79]. Authors writing about CAI courseware
[BORS80, NIE80] in particular have noted that CAI dialogue is similar to any
communication; consequently, one must consider what is communica.ted, :to
whom, and how. Learners are not merely passive recipients of knowledge, and if
computer tutorials are to achieve higher educational goals than one of rote

learning, they must employ the skills of effective educational dialogue.

As the form of communication changes, so will the form of what is learnt.
One kind of communication will encourage the memorizing of details, another
will encourage pupils to reason about the evidence. . . . From the
communication, they will also learn what is expected of them as pupils, . . .
whether they are expected to have ideas of their own or only remember what
they have been told, . . . to take part in the formulating of knowledge, or .
to act mainly as receivers.

Douglas Barnes
From Commaunication to Curriculum, p 15.

Concept learning involves processes of accommodation and assimilation.?

Briefly, new knowledge must be assimilated ;by a learner in terms of what he
‘already knows. Sometimes new knoéyledge conflicts with a learner’s world view in
‘which case .old knowledge must be festruqtured_ ‘to accommodate the new.

‘U_nfortunatelyA,.we tend to regard knowle_dgg as exisfing independently of someone

5 Pia.getian learning tlieory has been directly a:pplied to computerized education
environments. For a discussion of this, the reader is referred to Seymour Papert’s
Mindstorms [PAP80] in which the foundations of the LOGO system are presented.

10

who knows when, in fact, it must be brought to life afresh within every knower

by his own efforts—efforts primarily involving language.

Educational theorists have noted that if we consider language as a means of
learning then we are regarding the learner as an a.c‘tbive participant in the making
of meaning [BAR75]. Higher processes of thinking are achieved by the
interaction of language behaviourf with other mental and perceptual powers’
[BUL75]. Lz;,nguage is a continuous heuristic performed upon our experience of

the world in an effort to make it meaningful [DOUT9].

In the effort of acquiring and restructuring knowledge, a student will use free
form language: false starts, broken off utterances, anaphoric references,
pronominalizations, and so on. Burton [BURT79] argues in fa.\%our of NLI’s in
computér tutofing systems. The student must be free to concentrate on the tasic
at hand. Brown et al. [BRO82] note the importance of a system’s ability to
recognize alternate wordings of the same concept. But to go beyond this, a
computer tutor should be equipped with some means of interpreting less than
perfectly formed utterances which a student, ignorant of a concept, may be

incapable of making.

Significant progress was made when CAI authors realized that concept
learning cannot be done by rote, that tutoring is needed to promote
understanding. The success of CAI systems will increase as advances are made

in the flexibility of the tutorial dialogue.

2.2.2 Iﬁtelligent CAl
Reqently, :signi_ﬁcant a.dv#nces _Have been méde in CAI sysfems, and flexible
NLI’s a%re imp;)rta.nt even to different areas of res'eg.rch coﬁcentrafion.
Early CAI systems were déigﬁed‘ at beSt'—sometifnes they ‘were sim’piy

“electronic page turners”—as drill and practice monitors presenting problems

11

selected at a level of difficulty appropriate to an individual student’s
performance. For this reason, such systems were termed adaptive. Because of

the simplicity of the task domain, models of the student could be based on

parametric records of performance rather than explicit representation of

knowledge.

A driving goal behind the . application of Artificial Intelligence (‘AI)’. |
techniques to CAI was to extend both fhe task domains and the a.da.ptiVeness of
earlier systems. Some of the first intelligent CAI (ICAI) systems were termed
§enerative for their ability to generate problems from a database representing a
particular subject. But work went béyond this to create reactive learning
environments [BRO75, BROS82] with the sfudent actively engaged by the
instructional system in a tutorial dialogue gui&ed by the student’s interests and
misunderstandings. Recently, research has focused on facilitating learning by
doing to allow students to gain experiential knowledge through application of
factual knowledge. ICAI attempts to transform a student’s misconceptions into
constructive learning experiences. ICAI systems have been developed to tutor
various subjects, to create student-initiated learning environments, and to assist
diagnosis and assessment.® Mechanisms are being developed to analyze student
learning behaviour and to employ effective tutoring strategies, both of these in
terms of skills that should be learned [BARR77, BRO78, BUR82|. For this to be
.possible, a'system mu§t have extensive knowledge and problem solving expertise:, |
student ﬁiodeling an(i diagnostic capabilities, ba.nd a,. sophisticated'tﬁtoﬁng a.nd
-.expla;nation mechanism. ‘

T}’ms, :an -ICAI system can be seen as composed of three Vcomponent:s '
[BARRS2, CQL85]: an expertise 'mod:ule, a student model, a.n:d' a ._tutoring'

‘mechanism. The first component contains information on a particular subject or.

6 For a survey of ICAI see [BARR82] and for detailed discussion see [SLE82].

12

on problem solving skills relevant to that subject. The application specific
knowledge and inference mechanisms of this component resemble the expert
systems that have been developed for such areas as chemistry, medicine, and
geology. The second _‘ component must model not only the student’s
understanding, but misconceptions and difficulties as well. This information has
to be inferred from the student’s answers and ‘pr(}blém solving behaviour. In
addition to the stﬁdeht model, this component includes diagnostic algorithms to
determihe the studeﬂt’s unmastered skills. The t'hjrd component must make
decisions about what to teach and how. The system should be able to assess the
process by which a student derives his answers and then make judgements about
where he may be goir}1g a.stra.y in order that it may provide adequate help. It is

this component that most directly communicates with the student.

There are so many facets to overall learning systems that researchers
necessarily focus on certain aspects while ignoring others. AI applications to
CALI include natural language understanding, knowledge representation, inference
methods, and such specific applications as electronics trouble-shooting and
medical diagnosis. Nevertheless, despite the necessity of limiting the
concentration of research, flexible natural language capability is often an
important consideration. Handling ill-formed input is important to all three

components of ICAI systems.

If is the expert compoﬁent’s task to generaté problems and evaluate the
student’s solutions. One afea that h;as been investigated is that of spécia.l
purpose inference techniqués. The main pedagogica.l motive Behind the
| SOPHIE ‘systems> [BRO75, BR082] is that ;)f experiential learning. The student
‘is ‘engaged in a'probiem solving pfocess givjng rise to experieﬁces that structure
’vfa.ctual knowledge. An extension of mixed initiative student-computer dialbgu‘e,

SOPHIE is a reactive learning environment. Students learn from their

13

mistakes. A tutoring system should, therefore, allow an interactive one-to-one
relationship between student and expert wherein the student can experiment with
hypotheses during problem solving and receive feedback and criticism of his ideas.
Moreover, the student should be able to ask questions of the expert. Clearly, this
" requires that the student be able to communicate his ideas to the machine and
| tha,t? a dialogue mechanism ro‘bustly handle t.:‘he éonstructs 'that arise in
‘ comfefsat_ion. | | |

It 1s the student model Componeht’s .ta.sk to represent the student’s
understanding of a subjéct and perhaps diagnose the underlying cause of error in
some pro‘:cedural skill. Thus, another area of investigation has been that of
creating a model of the student fmﬁ his observa.Ble behaviour and .determinin'g
what subskills he has not mastered. A system to diagnose errors bin' a proéedufal
skill must distinguish between goals and méthods of achieving those goals, and it
must represent both the correct methods of achieving goals and the incorrect.
Given this, the diagnosis capable of such a system is determining what set of
incorrect methods, or perturbations. of correct methods, a student has employed

to obtain his results.

A system currently exists to diagnose procedural errors in Mathematics.
The DEBUGGY system [BRO78, BURS2|. examines é. student’s answers to
subtraction problems and attempts to deduce how a student’s algorithmic
behaviour differs from the correct procedural skill.j At the heart of the system is
theéBU(f;GY model. A student’s knowledge cannot be répresented just as ;a,
subéet of an expert’s because misconceptions are not a subset of c.orrecﬁ skills. -
The;reforé, Burton and Browxi _ posit the idea of a. berturbatidn construc't:;
miséoncei)tions é.re to be representéd as variants of cérrect skills. |

In determining a studenf;’s"arithmetic misconcepfions, BﬁGGY op'er'ates

under the assumption that errors are not random but are instead modifications of

14

correct procedures. An attempt is made to determine which internal incorrect
rules contained in the BUGGY model give results equal to the student’s answers
to subtraction problems; that is, the system tries to predict the student’s

responses.

B BUGGY’s knowledge base includes representations of about one hund_réd
aﬁd ten primitive arithmetic proéedural €ITOrS. T'he_ ;reSul.ts of applying these to
sﬁbtraction questiohs are compared to the studént’s ?.nswers. The system seleété
those bugs that account for at least one wrong a,nswer;. Heuristic devicés are then
employed to reduce this set. For example, procedural errors that are subsumed
by others are removed, or some errors may be con;bined to form compounds.
After errors have been iteratively removed or combined, thé remaining 6nes ;aré
classified according to how well they exi)la,ih the s:tudent’s answers and from

these the system tries to pick one as the best explanation.

While student modeling and misconception diagnosis in a domain such as
Mathematics may not require an elaborate NLU mechanism, one might conceive
of a diagnostic system for sentence misconstructions that does. Poor
understanding of English usage and basic sentence construction is quite common
[BAKS81]. A study done in secondary schools [DIE74] shows that the most
frequent errors can be classified into about twenty categories. One can find
-underlying causes of misunderstanding and suggestions for teaching correct usage
[GAT80 SHAU77 WE:A79]. An ICA1l sy'stem to.diagnose sentence construction
would be a useful educational tool and an 1nterest1ng area of 1nvest1ga,tlon NLU
systems tend to focus only on understa.ndmg 1ll—formed input, not determining
the cause of error. Educatlonal diagnosis sygtems, on the other hand, whlle "
foéusing on the cause of error, have not; bee_n?:appli:ed to _l;angua.ge. An expért
syétem to diagnose sentencé :ﬁiééonstruct'ions ﬁlust attempt to tie fhe two -

together.

15

It is the tutor component’s task to integrate curriculum, teaching
methodology, and dialogue. Research here is varied. It includes problem
selection, performance monitoring, and remedial material selection. It includes
issues such as whether the system should debug the student’s errors or the
student be encouraged to debug his own-a.nd,issues such as »whether coaching or
mixed-initiative is a better strategy. The BIP system [BARR77], vfor example,
employs .an adaptive instructional strategy wherein the sequence of instructional
é.ctions are a function of the student’s perforn:lance. Different areas of instruction
require different approaches to individualizing the tutorial. Some areas, such as
those requiring memorization, are describable as a linear M.arkov process, but this -
is “not so of others where facts must be acquired and integrated. BIP, thereforé,
describes each prdblem in terms of the skills it develops, -builds a model of the
student’s state of knowledge, and makes tutorial branching decisions on the basis
of a simple success-fail history. The aspect of this component relevant to this

paper is its direct communication with the student.

While ICAI designers have had success with their systems, there are some

commonly acknowledged shortcomings:

e Systems assume particular conceptualizations hence force a student’s
performance into this framework. Unable to work within a student’s
conceptual framework, these systems cannot diagnose misconceptions.

e Interaction is too constrained. A student’s expressiveness is limited;
consequently, so is the tutor’s diagnostic mechanism.

As discussed earlier, concept formation %nid communicé.tion are interrelated
fand the faét that- shortcomings have been identified by the ICAI designers
-.suggests a need to further artificial intelligence techniques to. enharjce robustness _
and responsiveness. Indeed, in the in‘trodliction to thei;'. sﬁrvey' of thve__most‘
:_sophisticarted‘. ICAI systems, Sleeman and Brdwnf[SLESZ] i&entify as one of_v the
-areaé of continui-lvlg r&seafch the implementation of fﬁéndly interfac-es' and

conversational systems.

16

Summary

To conclude this chapter, let us recapitulate some of the requirements of a

flexible natural language interface:

e The user must be able to obtain information without technical
knowledge of computers and with a minimum of training.

e The user must be free from consideration of a constrained interface, free .
. to concentrate on the task at hand in his native language. This means
keeping to a minimum both the amount of information a user must
make explicit in the words he chooses and the number of words he |

enters.

e The system should present a consistent model of its capa.blhtles with its
conversational ability at a level of sophistication equal to that of the
type of question it can answer.

e The system should employ clarifying dialogue to feed back its
understanding of a ‘user’s request and to ask questions about
constituents it doesn’t understand. :

e The user should be able to query the system both with questions about
the knowledge base and with metaquestions about information and the
language definition. :

e The user should be able to add new words and syntactic structures to
the knowledge base.

e The system should recognize alternate wordings of the same concept.

e The system should tolerate errors of spelling and grammar and suggest
corrections wherever possible.

e The system should recognize complex syntactic constructions including
abbreviations, context dependent anaphoric references, ellipses,
pronominalizations, relative clauses, and incomplete sentences.

Many of these requirements may be realized through a robust parsing
mechanism that accepts a wide range of input. This will be discussed in the next

chapter.

Chapter 3
Extragrammaticality in

Natural Language Interfaces

The last chapter discussed the importance of developing flexible natural
language interfaces. One of the major stumbling blocks has been how to handle

input that is not strictly correct, ihput that may be called extragrammatical.

3.1 What is Meant by Extragrammaticality ?
Why call input eztragrammatical rather than ungrammatical? A sentence is
:considered extragrammatical if it cannot be accounted for—if it is viewed as ill-

formed—by a particular grammar.

A grammar of a language is a model of the linguistic competence of a ;1$er of
the language [CHO65, RAD81|. There are two types of linguistic competence,
pragmatic and grammatical, but the former will not be pursued in this paper.”
Grammatical competence subsumes three types of linguistic ability: syntactic,
semantic, and phonological. Phonology is not of concern here as it pertains to
spoken language. Semantics is important to NLU systems such as database
front-ends where, for example, English sentencés are converted into an internal
logical representation for querying. Syntactic competence has two aspects:
judgment of well-formedness, and judgment of structure. Our intuitions about

well-formedness tell us a sentence like:

John likes fast cars

is. syntactically ‘correct and our intuitions about structure- tell us that fast

‘modifies cars and not likes. It is‘theée sorts of abilities that a grammar attempts

-7 Pragmatic c'ompe.tencev involves language as it is employed in conversation and is
often studied in the area of discourse analysis, but it may be embodied in certain NLU
systems that use scripts [BARR81, RIC83].

18

to model.

Now, if a sentence like the one above is grammatical or well-formed, what
type of sentence is considered ill-formed? The notion of ill-formedness is by no
means clear cut and one must take care to specify what aspects of it are being

considered.

It is necessary to distinguiéh between descriptive well-formedness and

prescriptive correctness; thaﬂ: is, sentences Iike:
I am bigger than what you are

cannot arbitrarily be called incdrrect because in some dialects they are perfectly
well-formed. However, problems of idiolects,'dialeéts, and sociolects are better

left to the study of sdciol'inguisti:cs.

Another problem with ill-formedness is deciding what might be wrong with a

sentence that sounds odd. Are we to call a phrase like:

The tree who we saw

ill-formed? Granted, it is a pragmatic oddity taken on its own, but in the
context of a story wherein plants are animate, the human-like qualities implied

by the relative pronoun who might be quite acceptable..

Radford notes that even ignoring pragmatic circumstances that might lead
one to accept sentences that appear linguistically ill-formed, there is still the
problem of whether a sentence is ill-formed by virtue of its syntax or its

semantics [RAD81]. A sentence like:
We respect herself

might be argued incorrect éynta?:tically because herself is a third person fé_minin’e '

singular reflexive prohoun disagreeirig in person and number with the first person

plural nonreflexive pronoun subject we. However, a reflexive pronoun like herself

19

can appear as the direct object in a sentence like

Mary respects herself

hence, there is no overall syntactic restriction in English against using herself as
the object of a transitive verb (p. 11) Instead, the sentence in question rﬁight be
argued incorrecf'on the semantic grounds that a réﬁeﬁdx}é pronoun :must‘ take its
reference from fsome compatible antecedent. Differences in how §ente’nces like'

these are viewed reflect differences in the organization of grammatical models. -

'The conclusion that this discussion leads to is that we ca.ant consider ill-

formedness in an absolute sense. Certainly we would call a sentence like:

The boy eat the apple

ungrammatical because the: subject and vérb disagree in number but in other
cases we cannot make such an easy judgement. It is not always clear whether a
sentence is wrong, or, if it is, why. For the sake of generality, we may consider
sentences ill-formed only relative to any grammar which attempts to model
language.

The notion of relative tll-formedness has important imélications to the
design of NLU systems. People regularly communicate through sentences that
are not strictly grammatical, yet NLU systems do not generally attempt to
accept input rejected by grammatical processing. Input may be a syntactically
invalid but, nevertheless, ;semanticjally meaningful 'c_bhstruct; it may be a
syntactically correct construct simplyj beyond the ca.pa.bi]ity of some system;. of it .
may be a correct, but incompleté,.: construcf. Kwasny ’[KWASO] suggest an
approach to héndling this sth.of iﬂput isito assume fhat just as a normative
‘grammar descriBing-" the struéture of-well-'forméd inputs can Be, specified, so can
the manner in which input rﬁa.y deviate be ;speciﬁed. Ti‘lis gives an NLU -syst'en'n

the appearance of of allowing a wider range of acceptable sentences when in fact

20

it is the case that sentences significantly close to acceptable ones are noted as
deviant and accepted as such. In all of these cases the input is ill-formed only
relative to the system and not the user. Hence, the term eztragrammatical,

rather than ungrammatical or incorrect, is used.

3.2 Where Extragrammaticality Arises

Extragfa.mmatical utterances may be found at different levels of linguistic

analysis: lexical, sentential, or dialogue. -

Dialogue problems are pragmatic and result from a violation of conversation
rules: answering a question with a question, making nonsequitur responses, and so
forth. By and large, dialogue -problems belong to the area of discourse analysis

and will not be pursued here.

Lexical problems are confined to individual words and include misspelling,

mistyping, incorrect segmentation, and unknown words.

Sentential problems are based on relationships between words and may be of
either a semantic or a syntactic nature. They may arise in a variety of situations.
For example, with a natural language data base access system a user may be
unwilling to change something that he has already typed, or he may believe that
the computer will understand a terse military style input. Contrasting with such
conscious grammatical violations, errors in normal written English are
unconscious, often arising from failure to grasp grammatical convéntions.
Semantic proBlems involjvve omission of necessary infofrilation. S)i(n_ta.ctic
‘ problems include faulty subject-véfb agreement, spuﬁous constifuénts, word order-
error;’ légitimate phrases a parser cannot deal with, broken .off utterances,
~ unknown words ﬁlliné a known érammétiml role, run on sentences, fragmeptary

input, elliptical input, and so on. |

21

3.3 Handling Extragrammatical Phenomena

This section presents some examples of extragrammaticality as defined in the
last section. The notion of a grammar as a model of linguistic competence was
mentioned earliier. Chomsky speaks of different types of linguistic competence. |
Similarly, he speaks of different levels of ling_uistic analysis. ‘Such ideas can be
used to qlassify how diﬁ'erent extragrammatical phenomena are ttl)ibe ‘handled,

that is, what level of linguistic analysis and grammatical representation are

needed:
e Lexical phenomena - a lexical representation such as a lexicon
containing - parts of speech, preferred meaning, roots, and so on is
required. ‘

e Syntactic phenomena.- a lexical and a syntactic representation such as
a parse tree are required. ' ﬁ

e Semantic phenomena - a lexical, a syntactic, and a semantic
representation such as extended first-order logic are required.

e Metalinguistic phenomena - a metalinguistic mechanism such as a
grammar editor or knowledge base modifier is required.

Although a detailed discussion is beyond the scope of this paper, it is useful

to look at a few phenomena and how they have been handled in various systems.

To deal with unexpected input, most robust parsers employ extensions of

existing methods, usually at a syntactic or semantic level.

Some work has been done at the level of words. Lexical disambiguation has
been handled with lexicons composed of words and associated semantic
information. As might be expected, such}_a, scheme ‘becomes cumbersome with
la.=rge lexicons but :can be iinproved bsr ranking the semantié information .
according to a WOr&’s pr-eferre:d usage. Ambiguities are resolved by using the
rming in conjunctibn with locé.i"coﬁtéxtual information. |

' Metaliﬂguistic_ bhenomena. are simply those that feside_ at a level above a
grammé.r. They iﬁvolve the techniques a writei' employs in .deVeloping a

grammar. The LIFER, SAUMER, and ProGrammar systems contain some

22
metalinguistic capabilities.

New Words and Phrases

Features for handling new words and phrases may be found in the LIFER
and PLANES systems. Such a featuretmay be 1exical or syntactic depending on
-how it is employed.

The first step in the PLANES system is to put all individual words info
cénonical fofm. Many words are replaced by fheir root fornﬁ and user defined
words are replaced with those words for which they are synonyms. A similar
process is carried out in LIFER. |

LIFER is unable to interpret new constructs the?ﬁrst time it sees 'thefn;
however, the sysvtem. does allow the user to iﬁteractively create personalized
syntactic constructs it then will continue to understand. If | the system
understands some construct B, the user can create a new construct, A, with a
statement of the form Let A be ke B. In LIFER, for example, the user can

enter:
Define Bill like William

and the system will continue to treat the two names as synonymous.

LIFER has another feature: paraphrase. With this feature, the user can

enter:

. Let “Describe John” be a paraphrase of “Print the height, weight, and age of John”

Given that the system recognizes the longer construct, then it would be able to

understand requests like:
Describe Matjy’s sister

To handle input like:

23

Define “new word’’ like “old word(s)”

a synonym table may be used with entries made when each new word is defined.
Whenever the new word is used again, it is simply replaced by another word or
words.

The ‘simple case in which a sing‘le»wdrd is ‘declared synbnymous' with an
existing word or phrase is é. lexical plélenoménon.' Syntactic analysis is required

for something of the form:

- Define “new phrase’ like “old phrase”

In the example, Descr:;be John Iﬁay bé pa.rséd to <imperative v;erb> <object>
and Print the height, weight, and ag?: of John to <imperative verb> <noun
‘modiﬁers> <object>. Since the object, John, is the same in both cases it may be
dropped leaving a correspondence between Describe andv Print the hetght, weight,
and age of. When an input like Deseribe Mary’s sister is entered the full

expansion can be got from the synonym table.

Ellipsis

Elliptic utterances are characterized by the omission of some sentential
constituent that can be easily subsumed in a particular sentence yet inferred from
the context of discourse. Two types of ellipsis may be identified: contextual and
telegraphic. Systems equipped for handlihg contextual ellipsis include LIFER,
PLANES, and SOPHIE. - |

Co’ntextua.l ellivpsis_ is icharacterizéd by the constituent being found in a
previous Esentencg. For example, the phrase: | » _

Tom has

makes little sense in isolation but is appropriate in the context of:

24

Who has taken my book?
Tom has.

What appears to be a sentence with an incomplete predicate is, nevertheless,

acceptable. Similarly, a solitary prepositional phrase:

To the thea,tre »

is an appropriate response to the question:
Where are you going?

Telegraphic ellipsis is characterized by the omission of wordsj that convey
little meaning. This occurs when the sentence follows a common form such as a

newspaper headline or a sign'in a shop:

Three chairs no waiting

Supporting both types of ellipsis in an NLU system allows a user to follow a

natural tendency to abbreviate. A hypothetical database system might allow:

> Who is the president of the company?
> The secretary?
> List profits each item

Ellipsis can generatly be handled syntactically. Contextual ellipsis can be
handled if the utterance replaces a constituent in the parse tree of a previous
utterance. For example, the elliptic utterance, the secrethry? 1s parsed as a noun |
phrase and ﬁtted in as the obJect m the parse tree of the prevmus uttera.nce
Now the elhptxc sentence can be mterpreted as ‘“Who is the secretary of the |
- company?”. Although the SOPHIE and LIFER systems employ semantlc

grammars, their approaches to ha.ndllng ellipsis are syntactlc

Consider two consecutive_»queries, that may be presented td SOPHIE:

25

What is the base emitter voltage of Q67
What about Q37

When the second query is processed, the appropriate grammar rule will contain
uninstantiated placeholders for constituents that depend upon context. The
context is provided by a history list of instantiated placeholders and grammar
rules used. | '

The appi‘oach: taken by LIFER is tozrsee if a contiguous: set of wordé is
. syntactically ahalogous to a contiguous subset of words in a previous input. The
elliptical phrase is then fitted into; the parse representation of the comp;lete
phrase. . However, using analogy pa.fterns derived from parse trees means an
elliptical utterance rﬁust match exéct?ly some constituent of a previous parse.and

so lacks generality. |

Another approach to ellipsis is found in PLANES. The system utilizes
ATN subnetworks, case frames, and special context registers. The registers are

used to supply missing constituents in elided sentences.

Disagreement

There are a number of extragrammatical phenomena involving disagreement
among constituents: disagreement in number, case, person, mood, or voice. The

sentences:

The two appie are mine

Socrates am mortal
exhibit number and person disagreement respectively. Sentences such as these
are cloSé_ enough to being grammatical that they are perfectly intelligible and
~ should be treated by an NLU system as less preferred variations of acceptéble

sentences.8

8 As a matter of interest, disagreement violations are found in certain dialects of
English. Nonstandard usage includes inflected plurals, double negatives, third person

26

Disagreement may be classified as a syntactic phenomenon. To handle
sentences of this category, Kwasny [KWA80, KWAS81] employs techniques of test
and category rela,xatlon In terms of an ATN parser, test relaxation occurs on
fallure at an arc containing a relaxable predicate. A predicate may be a.bsolutely
violable in which case a value of true is substituted for a failed predicate and
parsing éontinues. This would occur with the sentence The two apple are mine. -
.Other predicates are (fonditiénally tliolable in which case an alternate predicate is
tried upon failure. Category rela.;ta,tibn expands on Chomsky’s hierarchy of
categories. To the grammar are added a hierarchy of words, categories, and
phrase types. For example, Pronouns may be Demonstrative (this, that...),
Personal (he, she...), or Reflexive (yourself, themselves...). In give he a cookie, he
is the incorrect ptonoun but since it is found in one of the subcategories of

Pronoun, it is accepted.

Summary

Here are a few advantages to designing NLI’s that robustly handle

extragrammatical input:

e Both the amount of typing and the consequent number of typing
mistakes can be reduced.

e A user may choose the level of vocabulary and pronominalization that
suits him.

e The user finds an ease in performing similar tasks with fragmentary
input interpreted in terms of earlier input.

e The user may extend the range of syntactic structures recognized by the
system.

e The user is given freedom in hlS means of expressing concepts and.
making querles

These points and others take on considerable significance in light of the
discussion of the last chapter. The material presented in this :chaptér is far from

exhaustive and is itself an area for further research. Nevertheless, it should be

singulars, and so on.

27

clear that an NLU system capable of handling extragrammatical input, one
which will accept input beyond that made explicit in its grammar, goes a long

way in meeting the requirements of a truly flexible NLI.

Chapter 4

Deterministic Parsing

One constant difficulty faced by natural language systems is that. the
grammar itself defines the language the system accepts. An input sentence may
deviate from the accepf.ed language either because the user of the system hé,s :
made a mistake, or because the gfammaf itself is wrong of incOmplefé. The
origin of extragrammatical inf)ut as we have called it is irrelevant because,
whatever the case, a parser is faced with a choice: it must give up, or it must
assume the input is reasonable and find a way to deal with something unforeseen

by its own rules [KIN83].

‘““semi-grammatical’ in the

Charniak [CHAS83| sﬁggests a parser which is
sense that it takes a standard ‘correct’ grammar of English and applies it so long
as it can, but will accept sentences which do not fit the grammar, while noting

the ways in which the sentences are deviant” (p. 117). A parser which does not

check for verb-noun agreement, for example, would not distinguish between:

The fish is dying
The fish are dying

Before an NLU system can handle extragrammatical input, what is needed
is a parser that enforces grammaticality where possible but behaves gracefully
where not. An ATN parsing mechanism could not provide this. When a semi-
grammatical parser encounters an extragramma.tical_situa,tion, it must recognize .
‘that the inpvut devié.tes frbm what is describeci by the grammar and continue on.
A Backfracking‘parser like an ATN, on the other hand, when faced with an .
extragrafnmaticalitj, wm{ild take this as evidence it had made an incorrect.
‘decision a'_ﬁd ‘back up’ fo try alternate pa_fses.‘ Not 'ulrltilvsuch a parser has tried
unsuccessfully all possible parses of a given sentence does it know there is a

problem with the sentence. In other words, at the time it gets stuck, a

29

backtracking parser does not know why it has to back up. But with a
deterministic parser, failure of rules at a given point may be assumed to be
because something is amiss with the input. If a parser is detérministic, it may
assume that its input is correct up to the point where it blocks and make a guess
at what was intended in order to carry on. Here we turn to the work of Mitcheil

Marcus.

4.1 Marcus’ Deterministic Parser

The theory of parsing put forth by Marcus is an attempt to provide a
processing mechanism for current linguistic theory, something linguists
themselves have not done [SAMS83]. The essence of Marcus’ parser is that it
provides a model Which corresponds to psychological reality by being
deterministic. In this important way it is different from the other language
processing systems mentioned earlier. It is designed to model how human beings
process language—we do not repeatedly try different analyses of a sentence until
we find a correct one—rather than provide a tool for machine processing.

Consider the sentences:

Is the block sitting in the box?
Is the block sitting in the box red?

To analyze left—to—rightv the structure of the above sentences, however, most
parsers must simulate nondeterminism, trying one wrong parse, backing up, and
trying aga.in. This is the approach taken by ATN parsers. Not until it knows
whether theré are words after the phrase sitting in the qu doés a parser know if
the phrase functions as the corxiplémeﬁt of the verb is or as f.he modifier of the
noun block. -

Marcﬁs "[MARCSO] posits ia.».“D.etermirvlism'Hypéthésis”:

. . . the syntax of any natural language can be parsed by a mechanism which
operates ‘strictly deterministically’ in that it does not simulate a

30

nondeterministic machine. (p. 2)

Of course, he does add that “only the syntactic component operates stric‘tly
deterministically; . . . there is a clear necessity for a strictly deterministic parser
to ask questions of semantic-pragmatic components” (p. 3). Following this view,
Marcus proposes a parser thét never baqktra.cks; instead, it alw#ys_ takes the
right pé.th. | | |

Marcus’ approach is to p?nsé English with the weakest machine—and withinj
the most restricted fra.meworic—possible. This approach might not suffice in the
design of a large practical system such as one for translation or question
answering: the approach is theoretical, not practical [SAMS83|. Instead of
presenting a large general grammar, Marcus presents one that capturés a small

number of complex grammatical phenomena and their interactions.

Marcus discusses his deterministic parser in terms of a a grammar
interpreter, PARSIFAL, which allows simple rules to capture significant
linguistic generalizations: passives, yes-no questions, and imperatives, for
example. PARSIFAL’s operation is constrained in such a way that to parse
sentences which violate grammatical constraints proposed by linguists would

require complex, ad hoc grammatical rules.?

The operation of the grammar interpreter has some interesting properties.
For one, all syntactic substructures created during parsing are permanent. : This
implies that a backtracking simulation of determinism is impossible. For anbther,

all syntactic substructures created must be output as part of the overall syntactic

9 Berwick [BER83| notes that a stripped down Marcus parser can be characterized by
the LR(k,t) class of grammars. But Nogohoor-Farshi shows this is inadequate: He °
describes a new class of grammars, LRRL(k), for which deterministic, non-canonical,
bottom-up parsers can be derived and shows how grammars parsable by ‘Marcus’ system
are a subclass of this class [NOZ85a]. He also shows the set of sentences accepted by
PARSIFAL is a context-free language [NOZ85b).

31

structure. And this implies that the internal state of the interpreter may have no

temporary structures. Further, the parsing process itself has several properties:

e It is partially data-driven.

e It can have ezpectations based upon grammatical properties of partial
structures already built.

e It has a limited left-to-right lookahead facility.

The motivation for these properties can be found in the following sentences:

e Data-driven
' ‘John went to the store.
Did John go to the store?
Expectations
I called [yp John] (s to make Sue feel better].
I wanted [s John to make Sue feel better].
Look-ahead

Have |5 the boys take the exam today].
Have [yp the boys| [,p taken the exam today]?

These sentences have some important implications for the parsing process. First,
a deterministic parser cannot be strictly top-down. Top-down parsers are
hypothesis driven: they choose a goal and try to match the input to that goal.
But whether a sentence is a declarative or a yes-no question cannot be decided
without examination of the input as the first example above shows. Second, and
conversely, a deterministic parser cannot be strictly bottom-up. The second
example shows that the phrase John to make Sue feel better can be taken as an
infinitive complement or as two unrelated constituents. Bottom-up parsers are
data-driven: they look at the input and try to drive it towards some goal. A
' bottom—upi parser would fail to make the distinction in the given example. Third,
a deterministic parser cannot operate entirely left-to-right. The tiﬁrd exal_ilple
shows that the verb following the boys must be examined before the structure of

the sentence is known.

Marcus’ parser uses two important data structures: a stack of incomplete
constituents (partially built syntactic subtrees) called the active node stack, and a

buffer of complete constituents whose higher level function has not been

32

determined. The buffer is a list of five elements of which only a window of three
may be accessed at once. These data structures are acted upon by a grammar
consisting of pattern-action rules that are partially ordered and partitioned into
gfoups or packets. Patterns match elements of the buffer and the top of the
stack. The parser attaches buffer eléments to the constituent at the top of the

stack until that constituent is complete. and can be popped from the stack.

Returning to fhe properties of the parsing process, we see ‘tha,t theyvare
rgalized through the data struci;ures. Pattem-aﬁtion rules are triggered by
elements of the buffer, thus the parsér is partially data-driven. The parser only
considers rules belonging to the active packets. Packets are made active to
reflect the properties of the constituents in the active node stack. Thus the
parser reflects expectations derived from bpartial structures. Finally, by using a
buffer, the parser has a lookahead capability. The elements of the buffer, the
lookahead symbols, can be completed constructs as well as bare words. Note that
unlimited lookahead would make the notion of determinism vacuous; therefore,
Marcus’ system uses limited lookahead: no more than three elements can be in

the buffer.

Marcus’ parser is intended to handle robustly a range of fairly difficult
linguistic phenomena and their interactions. The following sections will examine

how this is done.

4.2 PARSIFAL’s Data Structures
Parse Nodes |

Parse nodes represent graMtica.l constituents, each node bging of a given
typeA such- as S (sentenée), NP (noun phrase), VP (verb phmée), etc. Tree
structures of pa.rsé nodes represenf grammatical structures. Each node has a list
of its own descendents and is itself attached to its parent. Associa.ted‘with‘ a

node is a set of grammatical features summarizing the represented constituent’s

33

properties. These are needed to decide upon a node’s grammatical role in a
larger constituent or upon a constituent’s overall grammatical behaviour. For
example, the behaviour of a verb phrase is affected by the types of complements
a verb takes. The parser builds éonstituent sf;ructures by attaching all
subco‘nstituents to the topmost node of ‘that constituent. It must be sure that all
dttachmen_’cs are correct because, as alréady ‘noted, _Structure buflding is
- permanent. Finally, each node haé a uniqué system generated name. Figure 4.1

is taken from [MARC80].

$20 (DECL MAJOR §)
NP47 (NS N1P PRON-NP NOT-MODIFIABLE NP)

1 .
AUX20 (FUTURE VSPL AUX)
WORD112 will
VP22 (VP)
WORD113 schedule
NP50 (NS INDEF DET NP)

a meeting
WORDI116 .

Figure 4.1 - Parse tree with features on nodes

The figure is not an exact example of the output produced by PARSIFAL;
rather, it is intended to show how the system analyses sentences. This is a
declarative, major sentence. The subject is a singular, first person noun phrase
which dominates a pronoun and is, therefore, not modifiable. The auxiliary verb
has future tense and will agree with any singular or plural subject. The object of

the verb phrase is a singular noun headed by an indefinite determiner.

Active Node Stack

The parser attempts to add constituents to the topr of the stack c-overing an
? incomplete constituent with other nodes while building the lower : level
| constituents that a?e its descendents. Comﬁleted, a node is popped from the

stack.

34

The parser may modify two elements of the active node stack: the top node
(the current active node) and the S or NP node closest to the top (the
dominating cyclic node).10 The parser may also examine, but not modify, the
descendents of these two: the nodes they dominate. In additidn “to na,me,:
features, and deSqendents, nodes on the stack have associated with them a list of

active rule packets (more on this later).

Buffer

When the parser pops the active node stack, the grammatical role of the
completed constituent may be as yet undetermined; that is, the current node may
have all its descendents attached but be unattached itself. In this case the node
is inserted into the buffer at the left. Of course, other elements of the buffér,
inserted at the right, are the unexamined words of an input sentence that are
retrieved when an active rule asks about the features of currently empty buffer
slots. Thus, each element of the buffer can be a grammatical constituent of any

type from a single word to a complete subordinate clause.

Often the p#rser, to decide what to do with the leftrhost buffer constituent,
must look at the second or third element. We have seen an example in the last
section where the word have functions either as an auxiliary, initiating a yes-no
question, or as a main verb, initiating an imperative, depending on constituents
to its right. Three operations are associated with the buffer: read, insert, and
delete. Insertion and deletion a.ré accompanied by right or left shifts to create or

fill space.

10-This is taken from generative grammar theory. S and NP nodes are special in that
transformations are applied cyclically to the constituents under them. A node which is
above another in a parse structure is said to dominate.

35

Operations on the Stack and Buffer
The parser has three fundamental operations:

e Attach a constituent to the current active node (stack top).
¢ Create a new active node and push it onto the stack.
e Drop a completed node from the stack.

A constituent involved in an attach operation may be a newly created node -
or an element of the buffer. One nodé is attached to another by beihg made the
rightmost element in its parent’s list of descendents. At the same time, if a

buffer element is being attached, the node is deleted from the buffer.

A new node is created whenever the parser decides the constituents in the
buffer actually begin a new constituent. If the parser knows the highef level role
of a node at the time of it’s creation, it may immediately a.fta.ch that node to the
old current active node. However, sometimes the parser may know that a new
higher level constituent is to be begun without knowing its higher level role as
when, for instance, it might attach either to the current active node or to some
predecessor of that node. We have already seen an example where a constituent

would be created without attachment. In the questions:

Is the block sitting in the box?
Is the block sitting in the box red?

the verb phrase sitting sn the boz can be attached either as a relative clause to
the block or as a verb phrase to the main clause itself. Being able to parse a
constituent before its éra.mmati_cal role can be dfeterm';ned is necessary for
handling such hondeterm_im'stic sentences. |

Whenevér the current’ active hdde i§ complet_ed, it is popped from the stack.
A node that was attac‘hed upon creaﬁon remaiﬁs atfache&. However, an
unattached ﬁode cannot remain in lirﬁbo s0 it is ‘inserl;ed .at the front of the V'buffér

at the same time as it is popped off the stack. This is all accomplished by the

36
composite operation: drop.

Why Both Stack and Buffer?

Marcus justifies using two data structures on the basis of combined top-

down and bottom-up parsing.

Top-down, hypothesis-driven, parsing such as that found in ATN
mechanisms, logic grammars (see chapter five), or recursive descent algorithms
adds subconstituents to a specific node in a parse tree by recursively postulating

subconstituents until a terminal symbol is reached that can be checked against

the input. The most natural data structure for this is a stack.

Bottom-up, data-driven, parsing attempts recursively to incorporate
contiguous sequences of constituents into higher level constituents until a root

symbol is reached. The most natural data structure for this is a buffer.

Marcus’ parser incorporates both top-down and bottom-up features and so
uses two data structures. A node is pushed onto the stack when the parser is
looking for its subconstituents. Rather than attempting to find these in a purely
top-down fashion, the parser uses its pattern-action rules to recognize, through
contiguous sequences in the buffer, subconstituents of the current active node.
Constituents may also be recognized bottom-up by rules that are active no
matter what the current active node; that is, some constituents may be
recogniza.ble;,no matter what the grammatical environment: for example, a noun
phrase. In short, the parser attempté, top-down, to find deécendents of the nodes

in the active node stack; bottom-up, to find ancestors of the nodes in the buffer.

4.3 Structure and Interpretation?of the Grammar
Gramrhar Rules
Each grammar rule consists of a pattern to be matched against elements of

the buffer and the current active node stack, and an action which operates upon

37

those elements. Rules are assigned a priority for arbitration amongst
simultaneous matches: the interpreter takes the action of the rule with highest
priority whose pattern matches. Before the interpreter will match a rule of a

given priority, all higher priority rules must have failed.

Rule patterns are lists of partial descriptions—up to five—to match against
each of the three nodes in the buffer as well as the current active node and’
dominating - cycllc node in the stack. Descnptlons are tests for grammatlcal

features. Rule actions build constltuent structures by:

e creating new parse nodes
e inserting lexical items into the buffer

‘attaching a newly created node, or one deleted from the buffer, to the
current active node or dominating cyclic node

e popping the current active node from the stack and dropping it into the
buffer if it cannot be attached

e assigning features to any of the five accessible nodes
e activating or deactivating rule packets (described below)

Consider, as an example, Marcus’ rule to detect the subject-auxiliary

inversion that marks a wh question.

{RULE AUX-INVERSION IN PARSE-SUBJ
[=auxverb] [=np] -->

Attach 2nd to c as np.

Deactivate parse-subj. Activate parse-aux.}

Figure 4.2 - Grammar rule

The name of this rulejis AUX-IN ;VERSION and it belongs to the PARSE—SUBiJ‘
packet. Its pattern tests the first two buffer positions to see if they have the
features Vau:‘cvcrb and np rgaspectiw}ely. If so, it takes the specified action. Thg
sécdnd buﬁ;ér element‘ lS deleted and attached to the current active node. The

' PARSE‘-SUBJ packet is deactivated and PARSE-A UX is activated.

38

Rule Packets

Rules are organized into rule packets which can be activated or deactivated
as a group, and each node in the active stack has associated with it at any given
time a set of rule packets. The signiﬁcance of fhis is that when a node becomes
the current active node, the rules in the packets associated with it dete_rmine
what the s_ystem do&s next. The interpfeter :only attempts to use ’fu_les_ in active
packets because .rﬁost are applicable only under particular circumstances
reflecting global pfoperties of structures already built. Note that sévefa.l related
packets may be active simultaneoﬁsly. For example, the verb seemé can take
infinitive complements (It seems to be) or tha_t-complgments (It seems that). The
packeting mechanism captures most of the left vcontext information about an
input sentence but some rules do examine fhe current active node; the
dominating cyclic node, and their descendents. Some of the more important rule

packets:

SS-START(Simple-Sentence-START)

These rules determine the type of a major clause.

PARSE-SUBJ
These rules pick out and attach the subject of various types of clauses

CPOOL(Clause-POOL?
These rules are always active whenever any clause-level constituent is
being parsed. They are used, for example, to pick out noun phrases.

PARSE-AUX,BUILD-AUX
These rules initiate building of auxiliaries and attach completed
auxiliaries to the dominating S node.

PARSE-VP A
These rules create a VP node and attach the main verb to it. When
the VP is complete, a later rule drops it from the stack and attaches it
to the main clause node.

SUBJ-VERB
These rules, involving the deep grammatical relation between the
surface subject of the clause and the verb, activate packets to parse
verb objects and complements. Some complements depend on the verb-
of the clause; some on the global prbperties of the clause.

SS-VP ’
These rules attach the verb’s objects in major clauses that are not wh
questions. :

WH-VP,EMBEDDED-S-VP
These rules parse objects of the verb plus VP-dominated PP’s. The

39

first packet is for clauses with wh heads such as wh questions or relative
clauses; the second, similar to SS-VP, for embedded clauses that are
neither relative clauses nor indirect questions.

INF-COMP,SUBJ-LESS-INF-COMP,TO-BE-LESS-INF-COMP
These rules pick up infinitive complements, complements of verbs like
want that do not require a subject, complements of verbs like seems
that may take infinitive complements without a preceding to be, and so
on. S

SS-FINAL
These rules attach clause level- modlﬁers such as prepositional phrases,
adverbs, etc. to simple sentences. ‘

EMBEDDED-S-FINAL

"~ These rules are like those in SS-FINAL except they make a semantic
decision whether a modifier is to be attached to the current embedded
clause or to be left for later attachment to a higher level constituent.

Example Parse

We may now look at how Marcus’ system carries out a parse and will

consider the sentence John has scheduled a meeting. For a more detailed look at -

how PARSIFAL operates, see [MARC80] or [SAM83].

Every parse begins with a call to INITIAL-RULE which creates an S node,

pushes it onto the stack, and activates the CPOOL and SS-START packets.

Amongst the rules belonging to SS-START is one, MAJOR-DECL-S, whose

pattern matches because the first two buffer elements are a noun phrase and

verb. The current active node, the S node, is labeled as declarative and major,

SS-START is deactivated, and PARSE-SUBJ is activated. Figure 4.3 shows the

state of the active node stack and buffer after the rule has run.

Active Node Stack .

S16 (DECL MAJOR S) / (CPOOL PARSE-SUBJ)

Buffer

NP40 (NP NAME NS N3P) : (John)

WORDI125 (*HAVE VERB AUXVERB PRES V38) : (has)

{RULE MAJOR-DECL-S IN SS-START
[=np| [=verb] -->
Label c s,decl,major.

Deactlvate ss-start. Actwa.te parse-subj }

Figure 4.3 - After MAJOR-DECL-S has run

40

The pa.rsé node on the active node stack has the system generated name s16, the
features decl, major, and s, no descendents, and the associated active rule packets
CPOOL and PARSE-SUBJ. Before the rule was run, the buffer was empty.
Because the fule asked about features of empty buffer slots, a slot filling
mechanism was triggered. The parse node in the seéond buffer position has not
been examined by' any grainmar rule; therefore, its name is simply word125, its
féatures are those obtained from the word’s entry in a IexicOn, and its only
descendent is the word has. The node in the first buffer p(z)sition has been -
examined and represents a fully parsed noun phrase, but we shall defer discussion

of this.

One of the rules in the PARSE-SUBJ packet, UNMARKED-ORDER,
matches next. It attaches the first buffer constituent to the current active node,
deactivates PARSE-SUBJ, and activates PARSE-AUX: the subject of the
sentence has been found and the parser will now look for an auxiliary verb. The
details of auxiliary parsing need not concern us here. Briefly, what happens is
that the verb has is attached to the current active node as a descendent labeled

auztliary, the PARSE-AUX packet is deactivated and PARSE-VP is activated.

Active Node Stack
516 (DECL MAJOR S) / (CPOOL PARSE-VP)

NP : (John)
AUX : (has)
Buffer

WORDI126 (*SCHEDULE COMP-OBJ VERB INF-OBJ VSPL PAST) : (scheduled)

Figure 4.4 - After the auxiliary has been paréed

Note that there is a node in the first buffer position.. This;is beéa.use, in parsing
the auiiliarf, PARSIFAL had té look ahead to see'if it was comprised of more
than one word as would haf)e beenv the éase in, for insfan(:é, .has b?en.

The next rule to match is MAIN- VERB which creates a new VP. node

(making it the current active node), pushes it onto the stack, and attaches the

41

main verb to it. The rule also examines the features of the verb to decide which
packets to activate to parse the verb’s complements. Only one complement-
initiating packet, INF-COMP, is made active since schedule can take an infinitive

complement as in Schedule the minister to give a talk.

Active Node Stack

S16 (DECL MAJOR S) / (CPOOL SS- FINAL)
NP : (John)
AUX : (has)

VP14 (VP) / (SS-VP INF-COMP CPOOL)
VERB : (scheduled)

Buffer

NP41 (NS INDEF DET NP) (a meeting)

WORDI133 (*. FINALPUNC PUNC) : (.)

Figure 4.5 - After MAIN-VERB has run

The next rule to match is OBJECTS. The state of the system after it has

run is indicated in figure 4.6.

Active Node Stack

S16 (DECL MAJOR S) / (CPOOL SS-FINAL)
NP : (John)
AUX : (has)

VP14 (VP) / (SS-VP INF-COMP CPOOL)
VERB : (scheduled)
NP : (a meeting)

Buffer

WORDI33 (*. FINALPUNC PUNC) : (.)

{RULE OBJECTS IN SS-VP
[=np] -->
Attach 1st to c as np.}

Figure 4.6 - After OBJECTS has run

The completion of the parse is simple' The default rule in SS-VP, VP-
DONE, runs. It pops the VP node from the actlve node stack a.nd attaches it as
a descendent of the S node which has once agam become the current a.ct;ve node.
This. makes the packet SS-FINAL active. It, too, contains a default r_ul‘e, SS-

DONE, which runs because there are no more constituents in the buffer except

42

for the final punctuation. The node representing the period is attached to the S

node and the parse is complete.

Attention Shifting Rules

. Marcﬁs proposes additional rules called attention shifting rules that extend
the basic grammar and cause the interpreter to shift attention, or mbve a
window; from the first buffer eiemént to a later one if it indicates the beginning
of another higher level constituent of some sort. The parser constructs the
detected constituent, leaves it Jin the buffer, and then shifts attention back to the

beginning of the buffer.

These specié,l rules enable other rules to treat constituents like noun phrases
as some;how' pri'mvitive. To understand the need for them, consider how the
system might operate without. A rule in the CPOOL packet could match if any
word which can start an NP is in the first buffer slot. This would activate
another packet to build the NP and drop it into the buffer. Unfortunately, this
isn’t general enough. Sometimes an NP must be constructed before its first word
reaches the first buffer slot. Moreover, while many words can begin an NP, they

don’t always do so.

To solve this problem, the attention shifting rules cause the parser to shift
its attention from the actual start of the buffer to a later buffer cell or virtual
buffer start. After the constituent tha.t triggered the attention shift is completed,
it is dropped into the buffer and the virtual buffer start is discarded. Then

higher level rules may run as if the constituent appeared fully formed.

Before the interpreter a.ttempts to match the pattern of any high level rule,
it first-checks to see if the ‘pattern of any attention shifting rule matches. If so—
and here let us suppose the constituent that triggers the attention shifting rule is

in the nth buffer positioxi—it shifts the virtual buffer start to the nth cell and

43

runs just the attention shifting rules until the complete constituent is parsed.

Marcus’ attention shifting mechanism supports his ‘“Determinism
Hypothesis”. Consider the ATN PUSH arc which is also used to parse
subordinate constituents. Thaf it may or I_ﬁay not succeed means it encodes the
top-down hypothesis that a constituent of a given type exists at a particular
point 1n the input. Whether the edge of a noun phrase, for instance, is clearly
indicated or nbt, a purely hyp.othesis-driven: parsef m’usf_ hypothesize the
existence of such a constituent at every point.af which it éoul;i occur. The
attention shifting rules, on the other hand, are data-driven. They allow Marcus’
parser to perform syntactic processing_that combines expectation-driven and
data-driven methods, and to take advantage 6f guides which are encoded in the

input itself.

Buffer Handling with Attention Shifting

To accommodate the attention shifting rules, the index given to the routines
read, insert, and delete refers not to the sth actual buffer cell, rather, to the sth
cell from the virtual buffer start which is computed as an offset from the actual
start of the buffer. The command offset(;) adds 5 to the previous offset (initially
zero) and pushes the result on a stack of offsets. One consequence of this is that
buffer elements to the left of the virtual buffer start are invisible. An attention

shift is dismissed by the command pop_offset.
The reason for keeping a stack of offsets is that there may be attention shifts

within attention shifts. Consider the phrases:

a hundred rocks
a hundred pound rock

In- the first case, a is part of the number phrase a hundred; in the second, it acts

as a determiner. The third constituent in the buffer must be examined to

44

determine the role of the first. ‘This means the number phrase must be
constructed before its leading edge reaches the front of the buffer, and this is -
accomplished by the attention shifting rules. However, this happens within the
parsing of an NP which itself triggered an attention shift. .
The provision of .af.tention shifting naturally implies the constituent buffer
must be more than just three ele_mehts long. Marcus makes two observations:
there ‘are no grammar rules that match a constituent in the fhird éell and that
must be constructed by attention ishifting rules; and nested attention shifts do
not result in even three shifts of the virtual buffer start. He, therefore, limitsb the
buffer to five cells and views the m;achaniém as a window of three cells sliding in

five.

Example Attention Shift

We look briefly at how PARSIFAL’s attention shifting mechanism works.
Suppose the system is at the point in the parse of John has scheduled a meeting
where the the rule OBJECTS is about to be run. Before the interpreter attempts
to match the pattern of OBJECTS—which looks at the first buffer position to see
if it contains a noun phrase—it first tries the patterns of any active attention

- shifting rules. The packet CPOOL contains one such rule: STARTNP.

{AS RULE STARTNP IN CPOOL
[=ngstart] -->

Create a new np node.

1If 1st is det then activate parse-det.
Activate npool.} :

Figure 4.7 - Attention shifting rule

. At the time this rule 1s triéd, the word a is in the first buffer position. A
determiner can start a noun group and so has the feature ngstart. Because the -
attention shifting rule triggers, the interpreter shifts attention to the cell occupied

by the constituent that triggered it. It does this by executing the command

45

offset(0) since the constituent is zero positions over from the current virtual
buffer start.ll Figure 4.8 shows the state of the system after the rule which parses

determiners has run.

Active Node Stack
816 (DECL MAJOR §) / (CPOOL S§- FINAL)
NP:: (John)
AUX : (has)
VP14 (VP) / (SS-VP INF-COMP CPOOL)
VERB : (scheduled)
NP41 (INDEF DET NP) / (PARSE-NOUN NPOOL)
DET : (a)
Buffer '
WORD128 (*MEETING NGSTART NOUN NS) (meeting)

{RULE DETERMINER IN PARSE-DET
[=det] ->

Attach 1st to c as det.

Label ¢ det.

Transfer the features indef,def,wh from 1st to c.
Deactivate parse-det. Activate parse-noun.}

Figure 4.8 - After DETERMINER has run

Subsequent rules, similar to those for parsing higher level constituents, finish
parsing the noun phrase. The attention shift is dismissed by the command
pop_offset. Completed, the NP node is popped from the stack and dropped
back into the buffer whence it will be picked up by the rule OBJECTS.

4.4 Linguistic Generalizations Captured by PARSIFAL

The last sectiQn discussed the structure of PARSIFAL’s grammar and how
the system parses. This section looks at the scopé of lzinguistic cdvera_,ge that
Ma.rcus_ intended to captur'ei

Ma.rcus claims- that : his parsing tec:hniqui_a c#ptures some of the

generalizations underlying English _gra,mma.r' and 'that; the structure of the

11 Were the parser looking at a phrase like isa meeting, the interpreter would shift
attention by offset(1).

46

grammar interpreter itself imposes some of the constraints on transformations

found in current generative grammar theory.

Features and. Traces

The general framework of the grammar is based on the notion of annotated
surface structure. Marcus borrows from Wmograd the 1dea of “‘surface structufe
annotated by the addition of a set of features to each node in a parse tree” (p.
90). From Chomsky he borrows the idea of “surface structure annotated by the
addition of an element called trace to iﬁdicate‘ the ‘underlying position’ of
‘shifted’ NP’s” (p. 90). The purpose is to represent grammatical information for
use in subsequent processing.

Features are wused to summarize the grammatical properties of a
constituent’s internal structure so that later syntactic and semantic analysis
routines can access them without actually examining that internal structure.
Note that functional information is not included in a constituent’s feature set

because such information is indicated by position in a parse tree.

One example of how Marcus’ parser uses information encoded in features has
to do with minor movement rules of generative grammar:12 the parser undoes
them. For instance, the inversion of a subject noun phrase and auxiliary verb
which mark a yes-no question is undone and a feature is added to the dominating

S node to indicate the sentence is a yes-no question.!3

Traces are used to indicate the position of constituents that have been
displaced by transformations from their underlymg logical posmons Followmg
current lmgulstlc theory, a trace is essentlally an empty noun phrase (a null-

deriving non-termma.l) in the surface structure of a sentence without d_escendents

12 The notion of extraposition has been investigated in [PER81].
13 Subject-auxiliary inversion is also undone by CHAT-80—see [PERS3, WAR82]

47

but bound to the noun phrase that filled that position at some level of deep
structure.l4 In other words, rather than treat a noun phrase as having been
shifted from its original place in a sentence’s deep structure, Marcus’ parser
leaves it Where it is and puts in a trace instead with a pointer to the surface NP.
" Examples of using traces include indicating the underlying position of the wh-
head of a question or relative clause and indicating the underlying position of the -
surface subject of a passiviz_ed élause. Another important use of traces in the
functiéning of the interpreter is this: if a trace has been pla.ce& in the buffer by a
rule, later rules will be unaware that the NP did not actually appear in the

input.1®

Yes-No Questions, Imperatives, and Passives

Section 4.3 showed how PARSIFAL handles a simple declarative sentence.

Special use of the buffer captures quite simply several linguistic phenomena:

e An element of the buffer other than the first may be removed allowing
discontinuous constituents to be reunited. Sometimes a structure
intervenes between two parts of one constituent as, for example, in a
yes-no qau&stion where the subject comes between two parts of a verb
cluster.!

e Specific lexical items may be inserted into the input stream permitting
the same rules to operate on superficially different cases.

e A trace may be inserted into the buffer rather than directly attached to
the parse tree.

In parsing yes-no, questions PARSIFAL employs only two rules different
from those used to parse declaratives. They essentially negate the noun phrase
auxiliary invefsion and s§ remove the need for the grammar .to use special rules
to handle the gdiscoﬁtinuity of the verb cluster. The inversion is undone merely

by f)icking out the subject of the clause found in the second buffer cell.

' 14 This idea originates in Chomsky’s “Extended Standard Theory”—see [RADS1].

15 The same use of traces can be found in the CHAT-80 system and in example
Gapping Grammars in [DAH84a, DAH84b).

16 The idea here is similar to that behind gapping rules — see [DAH84a , PERS],
POPS8S).

48

Parsing imperatives and declaratives differs only in one rule. A rule for
imperatives inserts into the buffer the word you, labels the sentence node as
imperative, and activates the rule packet to look for the subject. This puts the

parser in the same state as it would be in if given a declarative clause.

Parsing passive constructions involves using traces. A special rule adds the
feature np-pr'epovsed t6 the sentence node to indicate the senterice'has a preposéd
vsubject, creat%‘ a trace which is Bound :to the already found subject, and drops
the trace into the buffer. A later rule will attach the trace to.a verb so ﬂagging
the fact that what appears .to be the subject of a sentence bis in fact the

underlying object.

Summary

This chapter has shown that if an INLU system is to handle
extragrammatical input it must first detect it as such, and that this requires a
deterministic approach to natural language parsing. One such approach—that of
Mitchell Marcus—was discussed in some detail. The next chapter motivates the
use of logic programming as a tool for developing natural language systems, and
then a logic programming implementation of part of Marcus’ system is presented.
While further, and experimental, implementation is beyond the scope of this
thesis, chapter eight briefly mentions how a parser based on Marcus’

deterministic approach could handle extragrammatical input.

49

Chapter 5
Why Choose a Logic Programming Approac'h?

- In the work of Terry Winograd we can find much insight info ‘NLU systems.
Often theories of a mathematical or logical vstructure_: fail to create a. holistic
model of language understanding. There are four types of knowledge (synta‘ctic,
semantic, heuristic, and ;world) a person will employ in categorizing experiénce
along lines relevant to his his thought processes. These types of knowledge are
used in building intercoﬁnections in the mind between concepts. Utterances,
then, are programs that cause operations to be carried out in the hearer’s
cognitive system—operétions “which, through reference to concepts and-
interconnections, lead to understanding. With this view, Winograd designed his

SHRDLU system [WINS8O].

SHRDLU exhibits procedural embedding of knowledge: specific world facts
are encoded as procedures to operate on representation structures. Operations
are justified not by facts about language but by a correspondence between the
representation and the world being described. Winograd notes that this
correspondence is not founded upon universal truths, rather, it is mediated
through the programmer who builds the representation structures. And in
creating these structures corresponding to facts in a particular domain, the
programmer is guided by his ideas of what is true in that domain and his

perception of the structures that exist in the mind of the user of the system.

We can infer fr:om this that the understa.nciing ability of. any NLU system is-
véry much dependent ﬁpon what is made explicit—there is always a limit to
this—in the siystem; by the designer. Winograd admits that an expeft.s-yst,e:m is
not a surrogé.te 'éxpe’rt, ohly an in’te,rmediary,. and that there always exists a
pote.ntia,l for breakdown. A system .will fail when the assumptions undérlying its

specification are not appropriate for some situation in which it is used. How can

50

the user of -a. system find out what the relevant assumptions are? Perhaps
through the provision of a meta-knowledge facility. We can in fact find in some
NLU systems the ability to query not only the knowledge base, but the
underlying gramrhar and deductive mechanisms [HEN77, HEN78, PERLS2,
SALSS|.

Winograd goes on to say that only a small amount of huma,n‘r:ea-soning fits
the mold of deductive logic. He comments that word cvategoriza.tidn éannot Be
equated with a finite set of logical predicates, that a word’s applicaﬁility depends
on the purposes of the speaker and hearer. And so he steers away from a logical
deductive model of language. However, Winograd notes that these i)roblems are
not automatically solved by moving to a procedural representation, and

difficulties still exist.

It seems Winograd is talking about understanding language in a very general
sense. We may accept the limits of a logical deductive model to represent human
reasoning; and the dependency of understanding upon the purposes of speaker
and hearer; and even the constraints imposed by the perceptions of system
designers, especially if a meta-knowledge facility is available—we may accept all
this and still find within database and expert systems, by the fact that they are
of limited scope, no reason to reject a logical representation of language. In fact,
inépired by recent developments, researchers are again using logic in NLU

systems.

Able to describe logical consequeﬁces, traditional logic has:long been used tb
represent meaning. Extensions to pr_:ed_icate, calculus to represent the truth of
presuppositions and the subtleties of hatural language Quantif_ication have been
reported in [DAH79]. Using lbgic in database design for both data description
and query formalism is discussed in .[DAH8-2]. 'F-or a ti:mé, parsing knowledge,

semantic interpretation, and world knowledge had to be represented through

51

different formalisms and linked through _interfaceé. However, with the
development- of Prolog [CLO81, PER84|, programming in logic [DAHS83,
KOW79, ROB83| is now possible with logic being used throughout as knowledge
representation, programming language, data retrieval méchanism, meaning
representation, and even parsing mechanism. An important feature of Prolog is

that it allows natural language processors to be easily built.-

Developments in all of these areas were drawn upon in the implementafion'
of exﬁeri@ental natura.i language database query systems [,DAH81‘]. These have
s;>me poiﬁts in common with earlier systems such as LSNLIS and LADDER,
most notably the translation of English into an internal formal query language
and varia'ble-typing to deal with meaning and aid disambiguation during parsing.
The idea is :to associate a type with each domain and each element of that
domain in the knowledge base. Relations are represented as predicates whose
arguments are restricted to be elements of specific domains. Certain queries may
then be rejected on the basis of domain incompatibility. Logic provides a
particularly elegant means for doing this. In fact, logic programming can be

viewed as a generalization of relational databases with logic being used for data,

query language, and integrity constraints [FUC83|.

But while disambiguation through typing is a point in common, the
differences are more significant. A logic programming approach using type-
checking allows both semantic and syntactic features of natural langu{xge to be.
incorporated into a siﬁgle formalism without the need of an intérmedia.té:

sublanguage. 'For example, a reading of the question
What is the colour of the car [that is| parked down the street?
in which the antecedent of the relative clause is taken aé the colour of— the car

would be rejected immediately on the grounds of semantic anomaly because the

subject of the verb park cannot belong to the colour domain. Syntactic and

52

semantic control are further aided by the incorporation of domain specific
knowledge into a lexicon containing entries for each word to specify syntactic role
and semantic interpretation. Other systems, LSNLIS for instance, use several-
pass ana,lysis: first to map the surface structure onto a Chomsky-type deep
structure [CHO®65] considering only syntax, and then to perform semantic checks.

RENDEZVOUS, too, employs :_;m intermediate sublanguage.

In addition to the advantage of automatic parsing done by Prolog, a logic
programming appréach has ma.n& of the desirable features of earlier formalisms.
ATN’S were developed as a means 6f performing the type of analysis previously
only possible through difficult inversions of transformational grammars (TG’s).
TG’s were develoéed to explain how sentences with very different wordings can
have the same meaning while others with similar wordings can have different
meanings. Syntactic relationships between sentential constituents are
characterized by deep structures enumerated with context-free phrase structure
grammar rules. Sentences are generated by transformations applied to deep
structures. ATN’s solve the problem of reversing transformations. They include
structure building actions to create syntactic representations and are flexible in
the way they do this. The order in which the pieces are put together need not be
the order in which they are found. Simulating a non-deterministic machine, an
ATN is able to reflect the ambiguity inherent in English. Burton [BUR79] states
two advantages of semantic grammars a;s being their ability to cha.racterize the
sentences a system should };andle and ‘their ability to semantica.lly constrain
parsing so aiding éisamﬁiguation. All of this can be said of logic programmfng.
The ability to include arguménté in grammar symbols and procedure calls in
,pro&uctiori rules allows syntactic and semantic _agreénient fo be enforced and for

meaning-structures to be built.

The first work on logic based databases pioneered the way for further

53

research into logic .progra,mming as it applies to different aspects of natural
language database systems. Language analysis techniques were further
investigated in the CHAT-80 [PER83, WAR82] and MICROSIAL [PIQ82]
systems. SHADOW [HAD84] was expli:citly designed to investigate how certain
natural language phenomena translate into precise database queries. A bottom-
up parsing Strategy—contrasting with Prolog"s' normal top-down appfoax:h—that
~ allows left—r_ecﬁrsive grammar rules may be found in the BUP system [MATS3].
Increasingly, Prolog based natural language front-ends are being developed for
the Japanese Fifth Generation Computer Systems project [MAR84]. It is
interesting that both attribute grammars used for compiler writing and
generalized phrase structure grammaﬁ for lfnguistic analyéis can be seen as
variants of the Horn clause subset of logic '[FUCS3]. Logic grammars have been
applied to the speciﬁcation of data types [ABR84b|, the specification of formal
languages, the writing of compilers, and even the translation of English into
Spanish [DAHS81]. Lastly, considerable work has been done on linguistics and the

logic programming formalism itself.

Prolog facilitates the writing of logic grammars in which productions are
represented as facts and rules of inference, and parsing as a deductive process
carried out by Prolog itself. Starting with the first logic grammar formalism,
Metamorphosis Grammars, developed by Colmerauer in 1975, many new
- formalisms have developed. Definite Clause Grammars [PER80], inciuded in the
implementation of Prolog itself, boast ease of implemenf.ation. Definite Clause
Translation Grammars [ABR84a| exhibit autématié construction of parse trees
and internal representation, as do Modifier Structure .Gra.r-nmars which were
actually d_evéloped to treat -coofdinatibn problems. Applying gtammars such as '
,‘ these to a database NLI, it is possible coﬁcisély to specify tré.nslation into formal

query representation, syntactic analysis, and semantic checking all using a 'sihgle

54

formalism and without concern for implementation details. Another formalism
developed to handle a specific linguistic phenomenon, namely that of left
extraposition, is the Extraposition Grammar [PER81]. An extension of
Extraposition Grammars to allow both left and right extré.poéition, freé word
order, and reference to unspecified intermediate substrings has been developed
[DAH84a, DAH84b]; Gapping Gr’amnlaré, as they afe known, have most recently “
been exteénded as Unrestricted Gapping Gramniars [POP85] to allow mpfe concise
:description of broduction rules.. An excellent summa.i'y of ilogic grammars may be
found in [DAH85b] .a,nd a look at parser writing through logic programming in
[DAHS5a). |

Summary

The following points summarize the advantages of logic programming in the

design of natural language interfaces:

Truth and quantification represented through logic.
Declarative grammar representation.

Parsing concerns handled by language interpreter.
Single pass syntactic-semantic analysis.

Programming language, data, query and data retrieval mechanism,
parsing rules, semantic representation, and parsing mechanism all
represented with the same formalism.

As logic programming continues to grow, so will its use in building NLI’s.
In the 1970’s ATN’s and semantic grammars were developed and applied to
NLU systems:. Then work was done on making such systems more robust
[CAR83,; GRAS83, HAYS1, JEN83,_‘KWA80, KWAS81|. Now logic programming
and logi<_: grarhmars have been developed. Work has been done on extendix_ig
: grammafs themselves to describe natural language more easily, toi transiate
jinatural into 'fc;rmalgla.nguage, and so on.. It would be interésting. to see how: an
- NLI buii't'through logic pfogra;ﬁiming could Be made to handle extragrammatical

phenomena.

55

Chapter 6
A Prolog Implementation of PARSIFAL

This chapter discusses a Prolog implementation of a subset. of
PARSIFAL. It is not easy to reimplement a large program that grew without
'pvrior deﬁni'tvi_ox'l' or to design a speciﬁczition of its fugctional behaviour, and this is
a reéurring problem for those in AT who wish to blilild-dn'existing work [RIT83].
But Marcus has publighed a reasonably full defscriptéion of his grammar so it is at
'l.east possible to come up with a rough speciﬁca.tioin of a systém from that. Of
course, all the support routines to operate on data structures, which Marcus does
not discuss, had to be redesigned. Likewise, a lex:icon composed of words énd
their associated features had to be developed as did user interface i/o routines.
Here, however, we will assume their existence and concentrate primarily on the
grammar notation used in this Prolog implementation of Marcus’ parser. For

implementation details, the source code is provided in the appendices.

PARSIFAL was built of several components, but of concern here is the
grammar. It was written in a specification language, Pidgin,!” that resembles
English and must be translated into Lisp by an interpreter itself written in Lisp.
While this entails considerable processing overhead, the idea has certain practical
interest. In writing grammars for English, it is useful to write in a high level
‘notation; fur_ther, one may wish, as part of thg grammatical description, to define
how the parsing is té be done. Now, Prolog lends itself to :both these points;
and furthermore, Ritéhie [RIT83] suggests a simplér function-argument notation
could be used to implement PARSIFAL wﬁthout affecting the central-ideas.
:Using Proldg, it is i)ossible"to rewrite Ma,rti:us’ grammar rules in a predicate

‘notation run d.irectly;'by‘ the Prolog interpreter.

17 For a more complete description of Pidgin see [MARC80].

56

Gramrnar Rules

In the discussion of the grammar structure, it was noted that rules are
assigned priorities to control the order in which pattern matching is attempted.
In Prolog this is unnecessary and can be accomplished by carefully ordering the
rules and allowing the Prolog interpreter to do the rest. It was also noted Vtha.t
rules are grouped ir1t0' packets so fhat only those rules in the currently active
packets are even attempted. Using Prolog, packeting is captured by giving all
rules belonging to the same packet the same predicate name. For identification,
each individual rule name is retained as a cemmerlt. The format of rules is:

/* .
<rule name>

*/<packet name> -

<pattern>,
!

‘r
<action>, \.

Note the cut (!) after the pattern and action. PARSIFAL, in accordance with
Marcus’ “Determinism Hypothesis”, was designed to operate without
backtracking. But the Prolog interpreter is a backtracking system. Once a
rule’s pattern matches, its action is to be taken and the parser is not to come

back to this rule; hence, the cut.

Another point: it may seem odd to have both the pattern and action parts of
a grammar rule in the body of a Prolog rule. Prolog is founded upon the Horn
Clause class of logic which permitjs»buvt one cl;a,use in the head of a rule. A :
grammar rule pattern, on the other hand, may be compriéed of several goals, s0 it
has to be included in the body. Nevertheless, the placernent of the cut rerains :

the logic of, “If this pattern matchee, then take the following action.”

Rule Péttern's

Pidgin contains a number of ’wa.ys of expressing patterns to be matched in

57

grammatical rules. For example:
[* is verb| [=np]

which tests the first and second buffer positions for the features verb and np may

be written in Prolog as:
has_feature(1,verb), h:—_;s_feature(2,np), !
Similarly, a fest of the current active node for ithe feature np-quest, written as:
[**c; =np-quest)]
becomes:
has_feature(can,‘np-quest’), !
Some patterns cannot be expressed quite so simply. A pattern like:
[there is a whcomp and it is not utilized|

tests to see if there is a whcomp attached to the dominating cyclic S node and if
it has been utilized, that is, there has been a trace np bound to it. This becomes

in Prolog:

retrieve_dcn(s,(_,SNodeFeatures,_,Descendents)),
find_descendent(whcomp,Descendents,_),
not(member(utilized,SNodeFeatures)), !

The predicate retrieve_dcn looks back through the active node stack to find the
specified dominating cyclic node. Find_descendent searches a list of
descendents to find a specific one. Success indicates it ‘exists. The anonymous
variable is use.d,‘ as the third atgurﬁent because it is not necessary thg descendent
itself be .re'turneid. Finally, the mémber;_ predicate is used to check if the whecomp
- has beeﬁ-ﬂagged as utilized by looking at the node’s list of features.

The top of theA active-‘node stack, the currentv activé node-,_ may be exﬁmined by

using a predicate peek. Similarly, a read predicate examines elements of the

58

buffer.

Occasionally no test need be done in the pattern portion of a rule:

[t]
in Marcus’ grammar becomes:

1

in Prolog.

Parse Nodes

Parse nodes are represented in Prolog as structures. Each structure has no
principal functor but does have four components:!® an atomic nime, a list of
features, a list of descendents which may be individual words or further
structures, and, in the case of nodes on the stack, a list of active packets. In the
following figure, the S node has the name sI; the features decl, major, and s; the
active packets cpool and ss_final; and three descendents (npl, auzl, and vpl)

which are themselves structures.

18 Strictly speaking, there is a functor—the comma (,)—which acts as an infix opera-
tor. . |

59

(s1, [decl,major,s|, [cpool,ss_final],
[(npl, [name,ns,n3p,not-modifiable,np),

[(noun, [*john,ns,n3p,name,noun,propnoun,ngstart],

foha)]),
. (aux1,[perf,modal;vspl,past,aux],

[(modal, [*should,vspl,verb,auxverb,past,modal,
should),

(perf, [*have,v-3s,verb,auxverb,pres,tnsless],
have))),

(Vpl, [Vp], ’ . ’ : .
[(verb, [*schedule,vspl,verb,past,part,en,comp-obj,inf-obj],
scheduled),
(np2, [def,det,np|,
[(det, [*the,ns,npl,n3p,det,def,ngstart],
the),
(nbar, [ns,nbar],
(noun, [*meeting,ns,noun,ngstart],

meeting)))])])

Figure 6.1 - Parse node structure

The list of active packets is left out when the node is dropped from the stack into
the buffer.

Operations on Parse Nodes

Marcus’ system includes basic commands that act upon parse nodes. The

command for creating new parse nodes:
create a new <type> node
becomes:
create(<type>)

The operation to replace ‘“deleted” items such as the implicit subject you in an

imperative statement is:
insert the word ‘you’ into the buffer before 1st
In»Prok‘)g, this is written:

‘make_buffer_node(you,Node),
insert(1,node).

60

The predicate, make_buffer_node, takes a word, looks it up in a lexicon, and
returns a parse node structure which includes the type word, features from the

lexicon, and the word itself.
To attach a buffer element to the current active node, Marcus writes:
attach <cell>‘to c as <type>
This becomes:
attach(<cell>,<type>)
As mentioned, each node has a list of descendents. A node is attached to its
parent by being made the rightmost element of its parent’s list of descendents.

When the parser is finished with the current active node, it may pop the node

from the active node stack and insert it at the front of the buffer. The operation:
drop ¢

is written:
drop

There are a few special grammar rules in Marcus’ system that know at the time
of a new node’s creation it is to be attached to the current active node upon
completion. Rather than dropping the node into the buffer and immediately
attaching it, the node may be attached upon creation to its parent so that when
it is dropped it remains attached. The operation in Marcus’ system for
accomplishing this is: |
attach a new <type> node to c as <type‘>:

Be;:ause Prolog does not support pointers, a vparse node cannot sit bofh atop the
active node stack and on its parent’s>list of deséendenfs. 'ForAthis‘ feason_ it is :
necessary to attach these special nodé upon completion rather than upon their

creation. This is accomplished by:

61

drop_and_attach(<type>)

Note that doing the attachment at this time should not affect the overall parse.
Even using Pidgin, é. grammar writer must be aware of the attachment of the
current active node. Ritchie [RIT83| comments on an apparent problem in
Marcus’ system: dropping a node which is both current and attached leaves an
alr:ea.dy attached node in the buffer which some other rule .t.na.y- try again fo_
attach. He suggests ;eliminating the combined create and attach operation and.
adopting a style of gfamma.r writing in which a new node is created unattached
by one rule at the start of each new constituent, dropped on completion, and
attached by some other rule. This is in effect what has been done for this

Prolog implementation.

Another operation upon parse nodes is to test if a node has a descendent of a
given type. To test if the current active node has a det descendent, Marcus

writes:
if there is a det of ¢
In Prolog:

peek((_,_,_,Descendents)),
find_descendent(det,Descendents), !

To test if the noun descendent of the first buffer element is a proper noun,

Marcus writes:
if the noun of 1st is propnoun
In Prolog:

rea.d(l o _,Descendents))
find_descendent(noun,Descendents,(_,Fea.tures,_)),
member(propnoun,Features), !

To. look for a descendent of either the S or NP dominating cyclic node, Marcus

62

writes:

if there is a <type> of 8 (or np)
In Prolog:

retrieve_den(s,(_,_,_,Descendents)),
find_descendent(<type>,Descendents,_), !

:It is necessary to have a predicate that finds the dominating cyclic node by
‘searching back through the active node stack again because pointers are

unavailable in Prolog.

There are a number of operations that manipulate the features of nodes.

For example, to add features to the current active node, Marcus writes:
label ¢ <feature set>

to add a feature to the second buffer element:
label 2nd <feature>

or to label the current active node with the intersection of a given set of features

and those associated with the first buffer element:
transfer <feature set> from 1st to ¢

In Prolog these are written:

label([<feature set>])
label(2,<feature>)
transfer([<feature set>})

An examination of Marcus’ grammar shows commands such as:

attach 1st to c as <type>
attach a new <type> node to c as <type> .
attach a new <type> node labeled <feature set> to c as <type>

Rather than have operations that appear similar but take different numbers. of
‘ Varg'uments and have different effects, as Marcus does, it seems clearer to use just

~ the primitive operations create, attach, and label. Ritchie [RIT83] makes this

63

same observation.

At times Marcus uses conditional expressions:

if <boolean>
then <complex action 1>
else <complex action 2>

A <complex actionS can be a single action, a sequence of actions, or another
cdnditional expression. In Prolog, both boolean ex'pressiéns and actions are
predicates. Prolog has a special bperator, ->, which is useful for readability
when a set of predicates are intended to represent an if-then-else construct. So

we get:

<predicate> ->
<predicate 1>
; <predicate 2>

Of course, each of these predicates may be a conjunction of predicates separated

by commas.

Traces

Marcus defines a trace to be “an NP which has no daughters but which has
associated with it a binding register which can be set to point to another NP (p.
96). For a Prolog implementation, because there are no pointers, the interpreter
must look back through the active node stack to find the controlling NP. It then
extracts from that node and its descendents just the words and copies these as an

entire phrase into the trace NP node.

Control of Parsing

Next comes the issue of parser control. The parser tries to match the
patterns of only those rules that are applicable at any given point. It may use
the rules belonging to those packets that are currently active. Two predicates,i

activate(|<packet list>]) and deactivate([<packet list>]), add to and remove

64

from the current active node’s list of active packets. The parser operates through
a recursive procedure, call_packets, which looks at the list of active packets and
calls each element (a Prolog predicate) in turn. When the last one completes,
the list is examined again. The list may have changed according to whether any
tule action included a call to activate or deactivate. No rule may fail. Even if
no patterns match there is always a default cla,usg whi’ch may do nothing mofe
than succeed. When no packets remain active, ‘the parse is finished.
Call_packets is invoked by an initial rule that startis the parse of é.n’ entire
sentence but it may be invoked subsequently by an attention shifting rule to

parse a noun phrase.

Marcus permits rules to determine their own successors, avoiding the pattern

matching process, with an action like:

run <rule> next

This causes the rule’s pattern to be overlooked and its action taken. For those
grammar rules which are invoked by others in such a manner, it is possible in
Prolog to have the rule contain the pattern and, in place of the action, a call to
a separate goal. Those rules which want to avoid the pattern simply call the goal
which represents the grammar rule’s action. The decision to do it this way was

not save copying rule actions but to retain linguistic generalizations.

Accommodating attention shifting rules is straightforward. Whenever the
parsef examines the buffer, the routine for doing this first checks to see if any of
the attention shifting rules apply. All atténtion:shiftimg rules have the same
_ prediéate name: as_rule. Whlch packet t;, rule belongs to (for example, C’P0,0L)
is indicated by tht_a first argumeht; If cpobl is_ iﬁclud_ed in the current active
nOdé’s list of active packets, then all as_rule -clausa »v;/hose, first argumeﬁt is

cpool are tried.

65

Example Session

Here is an example of how the Prolog version of PARSIFAL works. After
the CProlog interpreter has consulted the source files, the user interface may be
invoked by the command tnput. The user is prompted for a sentence, given back

its parse, and asked if he wishés to continue. :

- C-Prolog version 1.5.

| ?- [startup].

buffer consulted 5856 bytes 2.1 sec.
grammar consulted 15448 bytes 7.96667 sec.
input consulted 968 bytes 0.550005 sec.
lexicon consulted 11420 bytes 4.53334 sec.
nodes consulted 1504 bytes 0.833341 sec.
stack consulted 5104 bytes 2.63334 sec.
sysutils consulted 476 bytes 0.183345 sec.
tokens consulted 3080 bytes 1.73334 sec.
utils consulted 3696 bytes 2.00001 sec.
startup consulted 47552 bytes 22.9167 sec.

yes
| ?- input.

Sentence to parse
> John should have scheduled the meeting.

s: [decl,major,s]
np: [name,ns,n3p,not-modifiable,np]
noun: john
aux: [perf,modal,vspl,past,aux]
modal: should
perf: have
vp: [vp]
verb: scheduled
np: [def,det,np]
det: the
nbar: [ns,nbar]
noun: meeting
finalpunc: .

Carryon? y/n: n

Figure 6.2 - Example session

bb

Chapter 7

Limitation_é

7.1 Limitations to PARSIFAL

Marcus’ PARSIFAL system has attracted some attention from others
involved in computational linguistics, mainly with respeét to the theoretical
claims .for its relevance to various linguistic phenoinena. It is purported to be a
deferministic implementation of “Extended Standard Theory” so it is on the

psychological claims that attention has been focused.

Marcus claims that PARSIFAL parses those sentences ‘“which a native
speaker can analyze without conscious effort’ (p.- 204) and that it fails only in
cases of psychological cbmplexity, viz., garden path sentences. Briscoe [BRI83]
contradicts this. He notes some problems with the design of PARSIFAL which
allows it to look ahead into a sentence far enough to resolve all temporary
ambiguities except those which are garden paths. NP’s can be processed in the
buffer because their leading edges can be detected. By the same reasoning that
allows this, Briscoe says, PP’s, too, could be processed in the buffer, and this
would permit the parsing of some garden path sentences. Briscoe makes a second
point: preprocessing NP’s gives PARSIFAL infinite lookahead at the word level
which translates into delayed processing. But people process language with

almost no delay.

PARSIFAL will sometimes fail on sentences other than garden paths and
require semantic supporf of syntax [SPA83]. Actually, Marcus does concede the
need for semantic processing at times and allows its interaction by only at the
request of the syntactic bcomponent.. DeJong [DEJ79] _’comménts that
PARSIFAL is in séme waysrsimilé.r fo SHRDLU in that neither permits
semantic context to help the syntactic parser. On the other hand, SOPHIE, he

says, uses context but embeds so much domain specific knowledge in its rules as

67

to be inflexible. DeJong proposes the integration of a parser into a system so as

to benefit from predictions the systém makes.

Sampson [SAMBS83| casts some doubt as to whether Marcus’ system is

completely deterministic:

. . . If ‘looking ahead’ and ‘backtracking’ are just two metaphors for the same
thing .. . then it may be all that Marcus can claim is that his system is
relatively deterministic because his lookahead is limited. . . . (p. 96)

Yet Marcus 'insists. his lookahead facility is not tantamount to nondeterminism:
for him the important point is that his system discards none of the structures it
creates. However, even given the definition of determinism in terms of no
building of unused structures, Marcus has been chal_lengéd as to whether, within

a strictly syntactic framework, parsing can be done deterministically.

An interesting drawback of Marcus’ system is a direct consequence of its
deterministic parsing method. If a prepositional phrase can be attached to a VP
node it is; otherwise, it is left to be picked up by clause level rules. This implies
that if a PP can serve as a Imodiﬁer of the object in a verb phrase, it will do so

even if it could also serve as a modifier of the entire clause. Thus, PARSIFAL

would produce only one parse of:

I saw the man with the telescope

in which the man has the telescope. It would miss the parse in which the
telescope is the instrument of seeing.

Marcus' claims that PARSIFAL does not handle lexical ambiguity but
deals instead with structural ambiguity (p. 26). But in light E_of' the .example_just
given, one begins:to doubt the strength of this claim. This problem with a
rigidly detefministic :pa.rsing method fs not limited _fo ambigubus .pre;iositiona,l :
- phrase attachment. Faced with a sentence which is globally ambiguous, for

instance:

68

The old men and women are muttering

Marcus’ system would not produce two alternate outputs taking old to be an

immediate modifier of men or of men and women.

PARSIFAL was designed to deal mainly with syntactic phenomena but
even within this class coverage is. not extensive. By Marcus’ owﬁ a.dmission,‘it'
does not handle phenomena that requiré éxtensivé sema.htic i)roétjessing'such as
conjunction, ellipsis, verb phase deletibn, ﬁronomina.liza.tion, or prepositional
phrase attachment. It dées not deal with centre embedded sentences like The
mouse the cat chased squeaks. Berwick [BER83| notes that it does not handle
right extraposition and only handles left extraposition through the use of traces.

He proposes some extensions to PARSIFAL to handle gapping.

Marcus intended PARSIFAL to handle robustly a range of fairly difficult
linguistic phenomena and their interactions, but here again some doubt has been
expressed. Ritchie [RIT83| notes that Marcus’ own test grammar relies heavily
on a semantic component and case frame handler (not well documented) to make
decisions so making it difficult to assess just the syntactic component despite the
fact that Marcus discusses his parser in those terms. This, combined with a
relatively restricted set of test sentences, Ritchie says, does not substantiate

Marcus’ “Determinism Hypothesis”.

7.2 Limitations to the Current Implementation

As indicated in the preceding chapter, only a subset of PARSIFAL has
been implemented for this current research. There are a number of reasons for
this. For one, inore exteﬁsive programﬁning is beyond the scopei of this thesis.
For another, there ai‘e_ parts_ of PARSIFAL,:nOt completely relevant to the idea

of writing a deterministic parser in Prolog.

69

PARSIFAL, in addition to its syntactic component, has a semantic case
frame interpreter. The published suﬁlmary of the component is very sketchy so
it is difficult to draw up a specification for it. Moreover, most of Marcus’
theoretical claims relate to just the synta‘ctic .component. Thus, the semantic

component has been left out of this irhplementation.

I_t. séems, however, that a .practvical system cannot <.:ompletely ignore
semantic processing. Consider, for instance, the. problem of prepositional phrase
attachment. This may well have to be addressed in a database;quéry NLI wheré
qualification is important. Prepositional phrase attachment is .an interesting
problem in that it exemplifies a situation in which the parser must analyze a
constituent before its higher level grammatical role can be determined. Consider

the sentences:

I saw the man with the red hair
I saw the man with the telescope

The word with indicates the start of a prepositional. phrase but the parser cannot
know immediately whether the phrase attaches as a modifier of the object or of
the entire main clause. Once the whole prepositional phrase has been found, a
semantic decision must be made as to where to attach it. In PARSIFAL, the
decision as to what to do with prepositional phrases like those above is left to the
rule packet SS- VP which is responsible for parsing verbs and complements. One
rule, PP-UNDER-VP-1, includes a semantic test to see if a PP can be attached a
given verb .or if the PP should be left to attach lg.ter as a general clause modifier.
One simple guideline is that PP’s servir_ig as place and time modifiers
generally :attach to an entire clause whilg those serving as other cases attach to a

verb phrase.. This is exemplified by the sentence:
Take out the garbage before 5 o’clock

But there are exceptions. The verb schedule can take a time PP as a modifier,

70

for example:

Schedule an appointment for John before 5 o’clock

One method of partially solving the problem is through the use of case
frames which work with the annotated surface structure produced by the parser.
Case frames contain the predicate/a,rgument relat‘fions in a sentence. However,

determining what case a phrase fills can be difficult. The most likely reading of:
The judgé présented the boy with the prize | |

is as a paraphrase 6f:
The judge presented the prize to the boy

But consider:
The judge presented the boy with the prize to the jury

The problem is that prepositions can mark more than one case. For example,

wtth marks commitative, instrument, manner, and neutral cases.

The little Marcus does say about case frames is that they consist of four
components: a predicate, which is the word associated with the case frame;
specifiers, which provide extra information, such as auxiliary verbs or determiners
preceding verbs or nouns; cases; and modifiers which are optional, modify an
entire case frame, and are case frames themselves. However, he does not discuss
how a decision is made as to whether a prepositional phrase is a case or a
modifier. In fact, he comments that the general problem of PP attachment
r_equires extremely complex semantic interaction and is not addressed it in his
| r&earc‘h. Since Marcus does not provide the code for his case frame interpreter
_and since none of his test sentences exemﬁlify PP attachment, it is nof clear that

PAR_SIFAL handles the problem.

For this thesis, much of the syntactic component of PARSIFAL has been

71

implemented but not all of it. What have been left out are bells and whistles
which do not add to the idea of deterministic syntactic parsing: grammar rules

for such things as quantifier phrases and numbers.

While chapter five argued for a logic programming approach to building a
natural language parser, as it stands, thls 1mplementa.t10n of PARSIFAL does

not follow the principles of clean logic progra.mrmng

The active node stack, buffer, and input sentence are implemented as facts
in the Prolog database and are changed by the database modification commands
assert and retract. However, changes could be made to carry all three from

rule to rule as logical variables.

One of the ramifications of such a change would be a complete change in the
processing mechanism. As in the original PARSIFAL, this implementation,
too, uses a packeting mechanism to decide which grammar rules to try at any
point in a parse. Packets are activated and deactivated by making changes to
the current active node using assert and retract. Processing is controlled by a
special goal, call_packets, which invokes itself recursively. It looks at the list of
active packets associated with the current active node, calls each member of the
list (simply a Prolog predicate), and then begins again. Since each rule
belonging to the same packet has the same predicate name, all of the relevant
rules are tried. Because a rule may change the active packet list, parsing

progresses.

A better approach woul.d involve having each rule invoke other rules as
goals, not only because this is cleaner logic p’rogx;a.mmihg but because it would be - -
nevcessa,ryv in order that the .stack, :buﬁ'er, and .input_'- be carried as arguments‘.
This could pbssibly be done with the_a seth predicate being used to make a list of
those rules which aré applicable at an& time. This is essentially. wha.ﬂ is done

with the active packet list but instead the Prolog interpreter itself would be

72

keeping track of what is active. A look at any of the papers describing logic
bgra.mma,rs will show that the flow of a parse may be controlled by the way
gfammar rules reference each other. Conceivably, then, Marcus’ grammar could
be rewritten folléwing such a methodology. In fact, an improvement which has
been _sugg(sted‘ by Ritchie [RIT83] is to connect the flow of processing to the
’ graﬁlmar rules so that. _explicit packet activation is not needed and sorﬁe sfrﬁctur’e

building can be handled automatically.

Another way of cleaning up the cﬁrrent impleméntation might be to use
Concurrent Prolog. A grammar rule’s pattern could .be represented by the
guard of a clause and its action by the body. The commit operator would replace
the sequential Prolog cut which follows:a rule’s pattern. Although Concurrent
Prolog tries the guards of all clauses with the same head in parallel, only one
would commit to its body because of the mutual exclusiveness of the rule

patterns; thus, determinism would be retained.

73

Chapter 8

Conclusions

This thesis has involved a literature survey and some programming. It has
shown the importance of designing very flexible interfaces to systems employing
natural langﬁage undérsta.nding. A major step_towards_ that goal is the design of
a robust parsing mechanism capé.ble of handling input hot completely anticipated
-by the system’s: internal gra’mrﬁar. Before a parser can deal with
eitra-grammatica.l input, it must first enforce grammaﬁca.lity ‘where it can, and
this implies a deterministic approach to natural language parsing. Such an
approach may be found in Marcus’ PARSIFAL system. Following the recent
growth logic programming as a tool for developing natural language parsers, this

thesis has also presented a Prolog implementation of PARSIFAL.

An obvious extension of the work would be the handling of
extragrammatical input. Some of the features of Marcus’ parser already lend
themselves to this. At any given point, not all of the grammar rules are tested,
in fact, most rules will be irrelevant. The packeting mechanism prevents
PARSIFAL from even considering more than just a few rules. Therefore, the
number of possible reasons for failure to parse is immediately limited. Another
thing: the attention shifting rules allow other rules to assume larger constituents
such as noun phrases have already been parsed. This might allow a correction
mechanisﬁl to operate in terms of constituents at a level higher than thét of

words alone.

Charniak [CHAS83] discusses a parser based Qri Marcus’ that haﬁdles
ungrammatical input. One way fha.t PARAGRAM differs from PARSIFAL_
1s thé.t rules, rather than being tested in order of priorify, are tested in “pa.ra.llel”.
Moreover, the result of a test is not a bihary decision, rather a goodness rating.

The rule with the highest rating is the one that runs next. A rating is the sum of

74

values returned by atomic tests. Charniak gives the following example:

Atomic Test Add if Succeed Subtract if Fail
category (e.g. np) 4 15
specific word (e.g. to) 6 15
semantics okay 0 ’ ' 8
other (e.g. agreement) 2 15

The idea is that suecessful tests raise the score while failed ones reduce it greatly.
Note that prioﬁties are not neeeseery to ensure more specific rules run befofe less
specific ones. A more specific rule, because ‘it has more tests, will get a better
goodness rating. Now, with respect to extragrammatical input, one rule will still
have the highest rating even though none of them exactly matches the input.
PARAGRAM’s ability to parse ungrammatical sentences stems from the
parsing mechanism itself. Furthermore, it can tell where a parse has broken
down since it is only then that the goodness rating drops below zero. Consider a

sentence like:
We is going to do it

After the subject we has been parsed, PARSIFAL activates the rule packet
PARSE-AUX. The rule START-AUX, which checks the first buffer element to
see if it is a verb, could have added to it an agreement test between the subject
and the verb. The sentence above would receive a rating of -11 (+4 for successful
category test, -15 for failed agreement). This would still be the highest rating of
all the rule patterns in the PARSE'-A UX packet. Parsing could continue as it
should and a note could be made that an agreement test had failed. Charniak
does admit there are rﬁa.ny ungrammatical, yet understa.l_ldable, constructs which
‘ PARAGRAM cannet cut%rently handle. Nonetheless, his ideas would be
interes_ting: to try, especially in a Concurrent Prolog implementation whence

rule pa.tterhs ‘would be:tr-ied in pa.re.llel.

Another enhancement that would increase the range of acceptable input

75

would be the inclusion of morphological analysis like that found in SAUMER
[POP84|.

It was mentioned in the last chapter that Marcus’ approach to parsing
effectively does away with ambiguity by choosing only one of several possible
" readings. This might: festrict its scope 6f applicability. It might be possible, using
Prolog, to overcome tilis problem through judi;iously removing the cut from
certain rules and allowing backtracking to produce alternate parses. .Given an
increased range of acceptable input axgld. a more robﬁst barsing mecha.ﬁism, a final
enhancement would be useful indeed. In an NLU bsystem it may be very
important the system be able to prqvide an explanation as to how a particular
parse was done, or, if it failed, why it failed. In order to give an explanation, the
system would have to record the path it takes to arrive at a solution. Ideas from
ProGrammar [SAL85] might be useful here. A parser capable of handling
extragrammatical input combined with an explanation facility could be applied to

several significant areas:

e A student engaged in a sentence construction tutorial could be told why
a sentence is incorrect.

e A database or CAI user could be aided in eliciting information.

e A grammar developer, given diagnostics for a sentence which is actually
correct, would find clues as to what is wrong with the grammar.

[ABR84a)

[ABR84b)

[BAKS1]
[BAR69)

[BARTS]

[BARRT7]

[BARRS1]
[BARRS2]

[BERS3]
[BRI83]

[BORS0]
[BROT5]
[BROTS]
[BROS2]

[BUL75]

[BURT9]

[BURS2]

76

References

Abramson, H., “Definite Clause Translation Grammars”,
Proceedings IEEE Logic Programming Symposium, Atlantic City,
1984, pp 233-240.

Abramson, H., “Definite Clause Translation Grammars and the

“Logical Spec1ﬁcatlon of Data Types as Unambiguous Context Free

Grammars”, TR 84-11 Department of Computer Science, University
of British Columbia, 1984.

Baker, S., The Practical Stylzsi New York Harper & Row, 1981.

Barnes, D Language, the Learner, and the School, Middlesex:
Penguin Books, 1969.

Barnes, D., From Communication to Curriculum, Middlesex: Penguin
Books, 1975

Barr, A., and R.C. Atkinson, ‘“Adaptive Instructional Strategies”, in
H. Spada and W.F. Kempf (eds.), Structural Models of Thinking and
Learning, Bern: Hans Huber, 1977, pp 83-112.

Barr, A., and E.A. Feigenbaum, The Handbook of Artificial
Intelligence, v1, Los Altos, California: William Kauffman Inc, 1981.

Barr, A., and E.A. Feigenbaum, The Handbook of Artificial
Intelligence, v2, Los Altos, California: William Kauffman Inc, 1982.

Berwick, R.C., ““A Deterministic Parser with Broader Coverage”,
Proceedings FEighth International Joint Conference on Artificial
Intelligence, Karlsruhe, West Germany, 1983, pp 710-712.

Briscoe, E.J., “Determinism and its Implementation is PARSIFAL”,
in K. Sparck Jones and Y. Wilks (eds.), Automatic Natural Language
Parsing, Chichester: Ellis Horwood Ltd., 1983, pp 61-68.

Bork, A., “Preparing Student-Computer Dialogues: Advice to
Teachers”, in R.P. Taylor (ed.), The Computer in the School: Tutor,
Tool, Tutee, New York: Teachers College Press, 1980, pp 15-52.

Brown, J.S., R.R. Burton, and A.G. Bell, “SOPHIE: A Step Toward
Creating a Reactive Learning Environment”, International Journal of
Man-Machine Studies, vind, Sept 1975, pp 675-696.

Brown, J.S., and R.R. Burton, “Diagnostic Models for Procedural
Bugs in Basic Mathematical Skills”’, Cognitive Science, 2, 1978, pp
155-192.

Brown, J.S., R.R. Burton, and J. DeKleer, “Pedagogical, Natural
Language and Knowledge Engineering Techniques in SOPHIE I, II
and III”, in D. Sleeman and -J.S. Brown (eds.), Intell:gent Tutormg
Systems, London: Academic Press, 1982, pp 227-282.

Bullock Committee, A Language for ‘Life, London: Her Majestys
Staionery Office, 1975.

Burton, R.R., and J.S. Brown, “Toward a Na.tural Language
Capability for Computer Assisted Instruction”, in H.F. O’Neil (edg :
Procedures for Instructional Systems. Dcvelopment New York: °
Academic Press, 1979, pp 273-313.

- Burton, R.R., “Diagnosing Bugs in a Simple Procedural Skill”, in D.

Sleeman and J.S. Brown (eds.), Intelligent Tutoring Systems,
London: Academic Press, 1982, pp 157-183.

[CARS3]
[CHAS83]

[CHOG65)
[CLOS1]

[COLSS]
~ [coD74]

[DAHT79]

[DAHSI]
[DAHS2|

[DAHS3]

[DAHS4a]
[DAH84b]

[DAHS85a]

[DAHS5b)

[DEJ79]

' DIE74
 [DOUT9)

[FUC83]

77

Carbonell, J.G., and P.J. Ha.yes, “Recovery Strategies for Parsing
Extragrammatlcal Language’, American Journal of Computational
Lingusstics, vOn3-4, July-Dec 1983, pp 123-146.

Charniak, E., “A Parser with Something for Everyone’’, in M. King
(ed.), Parsmg Natural Language, London: Academic Press, 1983, pp
117-149.

Chomsky, N. Syntact:c Structures, The Hague: Mouton & Co., 1965.

Clocksin, W. F ., and C.S. Mellish, Programmmg tn Prolog, Berlm
Springer-Verlag, 1981.

- Colbourn, M.J., ‘“‘Applications of Artificial Intelllgence Within

Education”, Internatzonal Journal of Computer Mathematics, to
appear April 1985.

Codd, E.F., “Seven Steps to Rendezvous with the Casual User”, in
J.W. Klimbie and K.L. Koffeman (eds.), Database Management,
Amsterdam: North Holland, 1974, pp 179-200.

Dahl, V., “Quantification in a Three-Valued Logic for Natural
Language Question-Answering Systems’’, Proceedings Sizth
International Jotnt Conference on Artifictal Intelligence, Tokyo,
1979, pp 182-187.

Dahl, V., “Translating Spanish into Logic Through Logic”,
American Journal of Computational Linguistics, vin3, July-Dec
1981, pp 147-164.

Dahl, V., “On Database Systems Development Through Logic”,
ACM Transactions on Database Systems, vinl, March 1982, pp
102-123.

Dahl, V., “On Logic Programming as a Representation of
Knowledge”, IEEE Computer, v16n10,0ct 1983, pp 106-111.

Dahl, V., and H. Abramson, “On Gapping Grammars’, Proceedings
Second Intematzonal Logic Programmmg Conference, Uppsala, 1984,
pp 77-88.

Dahl, V., “More on Gapping Grammars” Proceedings of the
International Conference on Fifth Generation Computer Systems,
Tokyo, 1984, pp 669-677.

Dahl, V., “Hiding Complexity from the Casual Writer of Parsers”, in
V. Dahl and P. Saint-Dizier (eds.), Natural Language Understanding,
New York: Elsevier, 1985.

Dabhl, V., “Logic Based Metagrammars for Natural Language
Analysis’®, TR 85-1, Computmg Science Department Simon Fraser
University, 1985.

DeJong, G., “Prediction and Substantiation: A New Approach to
Natural Language Processmg”, Cognitive Sctence, v3, 1979, pp 251-
273. . -

‘Diederich, P.B., Measuring Growth in English, Urbana, Ilhn01s
- National Counc11 of Teachers of English, 1974.

Doughty, P., “Language for. L1v1ng”, MeceGill Journal of Educatzon,

" vl4nl, 1979, pp 61-69.
' Fuchi, K., “The Direction the FGCS PI‘Q]eCt will Take, New

Generation Computing, vinl, 1983, pp 3-9.

[GATS0]

[GRA83)

[HAD84|

[HAY81]
[HEN77]

[HEN78]

[JEN83]

[KIN83]

[KOWT9)
[KWASO]

[KWAS1]

[MARS4]

[MARCS0]
[MATS3]
NIES0]
[NOZ85a]
[NOZ85b)]
[PAP80]
[PERSO]

78

Gatherer, W.A., A Study of English: Learning and Teaching the

.Language, London: Heinemann, 1980.

Granger, R.H., “The NOMAD System: Expectation-Based Detection
and Correction of Errors During Understanding Syntactically and
Semantically Ill-formed Text”, American Journal of Computational
Linguistics, vOn3-4, July-Dec 1983, pp 188-196.

Hadley, R.F., “SHADOW: A Natural Languge Query Analyser’”, TR
84-13, Computmg Science - Department, Simon Fraser Umver51ty,
1984.

Hayes, P.J., and GV Mouradian, “Flexible Parsing”, American
Journal of Computatzonal Lingusstics, vin4, Oct-Dec 1981, pp 232-
242.

Hendrix, G.G., “Human Engineering for Applied Natural Language
Processing”, Proceedings Fifth International Joint Conference on
Artificial Intelligence, Cambridge, Mass., pp 183-191.

Hendrix, G.G., E.D. Sacerdoti, D. Sagalowicz, and J. Slocum,
“Developing a Natural Language Interface to Complex Data’, ACM
Transactions on Database Systems, v3n2, June 1978, pp 105-147.

Jensen, K., G.E. Heidorn, L.A. Miller, and Y. Ravin, “Parse Fitting
and Prose Fixing: Getting a Hold on Ill-formedness”, American
Journal of Computational Linguistics, vOn3-4, July-Dec 1983, pp
147-160.

King, Margaret (ed.), Parsing Natural Language, London: Academic
Press, 1983.

Kowalski, R., Logic for Problem Solving, New York: Elsevier, 1979.

Kwasny, S.C., Treatment of Ungrammatical and Ezxtra-Grammatical
Phenomena tn Natural Language Understanding Systems,
Bloomington, Indiana: Indiana University Linguistics Club, 1980.

Kwasny, S.C., and Norman Sondheimer, ‘“Relaxation Techniques for
Parsing Grammatically Ill-formed Input in Natural Language
Systems”, American Journal of Computational Linguistics, vin2,
April-June 1981, pp 99-108.

Marayama, H., and A. Yonezawa, ‘“A Prolog Based Natural
Language Front-End System’”, New Generation Computing, v2nl,
1984, pp 91-99.

Marcus, Mitchell P., A Theory of Syntactic Recognition for Natural
Language, Cambridge: The MIT Press, 1980.

Matsumoto, Y., et. al.,, “BUP: A Bottom-Up Parser Embedded :in
Prolog”’, New G’eneratzon Computing, vin2, 1983, pp 145-158.

Nievergelt, J., “A Paradigmatic Introduction to Courseware De51gn ,

IEEE Computer, v13n9, Sept 1980, pp 7-21.-

Nozohoor-Farshi, R., “On Formalizations of Marcus Parser”,
Department of Computmg Science, University of Alberta, 1985.

Nozohoor-Farshi, R., “Context-freeness of the Language Accepted by

Marcus’ Pa.rser”, Depa.rtment of Computmg Science, University of

Alberta, 1985.
Papert, S., Mindstorms, New York: Basic Books, Inc 1980

Pereira, F.C.N., and D.H.D. Warren, “Definite Clause Grammars for
Language Analysxs——A Survey of the Formalism and a Comparison

[PERS1]
[PERS3]
[PERS4]

[PERLS2
[PIQ82]

[POP84]
[POPS85]

[RADS1]
[RIC83]
[RIT83]
[ROBS83]

[SALS5]

[SAMS3]
[SHAS3]
[SHAUT7)
[SLE82] -
[SPAS3)
- [TRESS]

[WALTS]

79

with Augmented Transition Networks”, Artifictal Intelligence,
v13n3, May 1980, pp 231-278.

Pereira, F.C.N., “Extraposition Grammars”, American Journal of
Computational Lingusistics, vind, 1981, pp 243-256.

Pereira, F.C.N., Logic for Natural Language Analysis, Menlo Park,
Ca.hforma. SRI Internatlonal 1983.

Pereira, F.C.N. (ed.), C-Prolog User’s Manual, SRI International,
Menlo Park, California, 1984. ‘

Pereira, L.M., P. Sabatier, and E. Oliveira, “ORBI: An Expert
System for Environmental Resource Evaluation Through Natural
Language”, Proceedings First International Logic Programming
Confcrcncc, Marseille, Sept 1982, pp 200-209.

Pique, J.F., and: P. Sabatier, “An Informa.tlve, Adaptable and
Efficient Natural Language Consultable Database System’, 1982
European Conference on Artificial Intelligence, Orsay, July 1982, PP
250-254.

Popowich, F., “SAUMER: Sentence Analysis Using MEtaRules’, TR
84-10, Computing Science Department, Simon Fraser University,
1984.

Popowich, F., “Unrestricted Gapping Grammars: Theory,

Implementations, and Applications”, M.Sc. Thests, Simon Fraser
University, 1985.

Radford, A., Transformational Syntaz, Cambridge: Cambridge
University Press, 1981.

Rich, E., Artificial Intelligence, New York: McGraw Hill, 1983.
Ritchie, G.D., “The Implementation of a PIDGIN Interpreter”, in K.

Sparck Jones and Y. Wilks (eds.), Automatic Natural Language
Parsing, Chichester: Ellis Horwood Ltd., 1983, pp 69-80.

Robinson, J.A., “Logic Programming—Past, Present, and Future”,
New Generation Computing, vin2, 1983, pp 107-124.

Salim, J.S., “An Expert System Shell for Processing Logic
Gra.mmars” M.Sc. Thests, University of British Columbia, May
1985.

Sampson, G., “Deterministic Parsing”, in M. King (ed.), Parsing
Natural Language, London: Academic Press, 1983, pp 91-116.

Shapiro, E., A Subset of Concurrent Prolog and its Interpreter,
ICOT Technical Report TR-003, February, 1983.

Shaughnessy, M.P., Errors and FEzpectations, New York: Oxford
University Press, 1977.

Sleema.n, D., and J.S. Brown (eds.), Iﬁtelligent Tutoring Systems,
London: Academic Press, 1982.

Sparck Jones, K., and Y. Wilks (eds.), Automatic Natural Language N

Parsing, Chichester: Ellis Horwood Ltd., 1983.
Tremblay, J.P., and P.G. Sorenson, The Theory and Practice of '

- Compiler Writing, New York: McGraw Hill, 1985..

Waltz, D.L., “An English Language Questlon-Answenng System for
a Large Relational Database™, C’ommumcat:ons of the ACM, v21n7,
July 1978, pp 526-539.

(WARS2]

[WEAT79)]

[WIN73]

[WINSL)] |
[WO070]

(WoOT2]

80

Warren, D.H.D., and F.C.N. Pereira, “An Efficient Easily Adaptable
System for Interpreting Natural Language Queries”, American
Journal of Computational Linguistics, v8n3-4, July-Dec 1982, pp

110-122.

Weaver, C., Grammar for Teachers, Urbana, Illinois: National
Council of Teachers of English, 1979. '

Winograd, T., “A Procedural Model of Language Understanding”, in
R.C. Schank and K.M. Colby (eds.), Computer Models of Thought
and Language, San Francisco: W.H. Freeman and Co., 1973, pp 152-
186. | » S o
Winograd, T., “What Does it Mean to Undérstand Language?”,
Cognitive Science, v4n3, July-Sept 1980, pp 209-241.

Woods, W.A., “Transition Network Grammars for Natural Language
Analysis”, CACM, v13n10, Oct 1970, pp 591-606.

Woods, W.A., R. Kaplan, and B. Nash-Webber, The LUNAR
Sctence Natural Language Information System: Final Report, BBN
Rep. No. 2378, Cambridge, Mass.: Bolt, Beranek and Newman, Inc.,
1972.

g1

Appendix 1

Source Code

/**************t*#*****/

/* GRAMMAR RULES */

/****************#t****/

/* _ A
This rule creates an S node and activates the packet of rules to decide on a
sentence’s type. It also activates the packet containing attention shifting rules that
are always active on the clause level. Any attention shifting rule that matches
always has priority over rules in other packets. A recursive procedure that controls
parsing, is started. Finally, the remaining node on the active node stack is popped
and returned. This is the initial S node which now contains the structure
representing the parse tree of the input sentence.

*/

initial_rule(Tree) :-
1
Q)
create(s),
activate([cpool,ss_start]), !,
call_packets,

pop(Tree), !.

/****t****#***#***********************t**t/

/* SS-START Packet -- Initiate major clauses */

/*******#**t#****t*****t*********#********/

/*

If a clause begins with a wh marker followed by a verb, it is a wh-question.

*/

/*

WH_QUEST

* [ss_start :-
has_feature(1,wh),has_feature(2,verb),
1
label([quest,’wh-quest’, major]),
read(1,(_Features,_}),
is_it_pp_or_np_quest(Features),
attach(1,whcomp),
deactivate([ss_start]},
activate([parse_subj}), !.

is_it_pp_or_np_quest(Features) :-
member(pp,Features),

: label([’pp-quest’}).

is_it_pp_or_np_quest(Features) :-

' member(np,Features),

label([’np-quest’]). '

is_it_pp_or_np_quest() :- I

/#

82

If a clause begins with an NP followed by a verb, it is a declarative.
*/
*
MAJOR_DECL_S
*[ss_start :-
has_feature(1,np),has_feature(2,verb),
L
label([decl,major]),
deactivate([ss_start]),
activate([parse_subj]), !.
, P
If a clause begins with an a.ux1ha.ry verb followed by an NP, it is a yes/no
question.

*/

/*
YES_NO_Q
* [ss_start :-
has_feature(1,auxverb),has_feature(2,np),

1
L)

yes_no_q action, !.

yes_no_q_action :-
label([quest,’yn-quest’,major]),
deactivate([ss_start]),
activate([parse_subj}), !.

/*
If a clause begins with a tenseless verb, it is an imperative. The implied subject
’you’ is inserted.

*/

IMPERATIVE !
* /ss_start :-

has_feature(1,tnsless),

!

‘)
imperative_action, !.

imperative_action :-
label([imper,major]},
‘make_buffer_node(you, Node)
.insert(1,Node},
:deactivate([ss_start]),
“activate([parse_subj]), !

/*
NP_UTTERANCE
"*/ss_start :- : : :
has_feature(1,np),has_feature(2,finalpunc),
] ‘

label([’np-utterance'}),

83

attach(1,np),
attach(1,finalpunc),
deactivate(all), 1.

/*
PP_UTTERANCE
* [s3_start :-

has_feature(1,pp),has_feature(2,finalpunc),
A
label(]’pp-utterance’]),
- attach(1,pp),
attach(1,finalpunc),

deactivate(all), 1.

/********t******t**#******#*#***#******/

/* PARSE-SUBJ Packet — Subject parsing */

/**************************************/

/*
SUBJ_QUEST
* /parse_subj :-
has_feature(1,verb),has_feature(can,’np-quest’},has_feature(2,np), -
' :
((not(has_feature(1,auxverb))
; not(has_feature(3,verb))) ->
(create(np),
label([trace,’not-modifiable’]),
bind(whcomp),
drop_and_attach(np),
label(s,[utilized]),
deactivate([parse_subj]),
activate(|parse_aux]))
; aux_inversion_action),
1

/*
This rule picks out the subject in clauses where an element of the auxiliary appears
before the subject.

*/

. AUX_INVERSION
* /parse_subj :-
has_feature(1,auxverb),has_feature(2,np),
I} .
1 .
aux_inversion_action, !. . . _

* aux_inversion_action :- .

attach(2,np),
deactivate([parse_subj|),
activate([parse_aux]), .

e

This rule picks out the subject in clauses where the subject appears before the

84

verb. This applies to both declaratives and imperatives.
*/
/*
UNMARKED_ORDER
* /parse_subj :-
has_feature(1,np),has_feature(2,verb),
8
attach(1,np),
deactivate([parse_subj]),
activate([parse_aux]), !.

/***t*****t***t********#************##*#***#tt**********t**********/

/* PARSE-AUX and BUILD-AUX Packets — Rules for building auxiliaries */

/****#***************t****t*************#ttt#*t*t********#*********/

/*
This rule creates a new node to contain the auxiliary construction and indicates its
person/number agreement and tense.

*/
/* -
START_AUX
* /parse_aux :-

has_feature(1,verb),

1

%

create(aux),

transfer([vspl,vls,’v+13s’,’vpl+2s’,’v-38’,v3s,
pres,past,future, tnsless]|),

activate([cpool,build_aux]), !.

/*
TO_INFINITIVE
*/parse_aux :-

has_feature(1,’*to’),has_feature(1,auxverb),has_feature(2,tnsless),
1

create(aux),

label([in]),

attach(1,to),
activate([cpool,build_aux]), .

/* ,
Attach a completed auxiliary to the dominating S node.
%/ ' .
/*
AUX_ATTACH
* /parse_aux :-
has_feature(1,aux),
(A :
bt] .
attach(l,aux),
deactivate([parse_aux]),
activate([parse_vp]), !.

/* BUILD-AUX Packet */
/*

PERFECTIVE

* /build_aux :-

. has_feature(1,’*have’),has_feature(2,en),
' .

‘attach(1,perf),
" label([perf]), !.
*
PROGRESSIVE
*/build_aux :- :
: has_feature(1,’*be’),has_feature(2,ing),
) |
attach(1,prog),
label([prog]), !
*

PASSIVE_AUX

* /build_aux :- .
has_feature(1,’*be’),has_feature(2,en),
8
attach(1,passive),
label([passive]),
label(1,[passive]), !.

/*

MODAL

* /build_aux :-
has_feature(1,modal),has_feature(2,tnsless),
5,
attach(1,modal),
label([modal)), !.

/*

FUTURE

* /build_aux :-
has_feature(1,’*will’),has_feature(2,tnsless),
8
attach(l,will), .
label([future]), !.

/" |

DO_SUPPORT

* /build_aux :-) : .
has_feature(1,”*do’),has_feature(2,tnsless),
. _
attach(1,do), 1.

/o |

BE_PRED

*/build_aux :-
has_feature(1,"*be’), not(has_feature(2,part)),

85

86

(has_feature(2,adj) ; has_feature(2,prep)),
I

attach(1,copula),
label(|copulal),
label(1,[verb, pred-verb’]), !.

*

AUX_COMPLETE
*/build_aux :-

drop, !.

/********************#*t**#***tt********#***********/

/* PARSE-VP and NO-SUBJ Packets -- Verb processing */

/*************#****************#********#t**********/

/*
This rule sets up the state of the S node, creates a VP node and attaches the main
verb to it, and activates the appropriate packets to parse objects and complements.
*/
/*
MAIN_VERB
* /parse_vp :-
has_feature(1,verb),
!
%
deactivate([parse_vp]),
activate_major_or_embedded_final,
create(vp),
read(1,(_,VerbFeatures, }),
attach(1,verb),
activate([cpool]),
check_inf_obj(VerbFeatures),
check_that_obj(VerbFeatures),
check_wh_comp,
check_passive(VerbFeatures), 1.

activate_major_or_embedded_final :-
(has_feature(can,major) ->
activate([ss_final])

; activate([embedded_s_final))),
! :

check_inf_obj(VerbFeatures) :-
member(’inf-obj’ ,Veereatures) ->
(check_to_less_inf_obj(VerbFeatures),
check_to_be_less_inf_obj(VerbFeatures), -
check_subj_less_inf_obj(VerbFeatures),
activate({inf_comp]), !)

;L
check_to_less_inf_obj(VerbFeatures) :-

member(’to-less-inf-obj’, VerbFeatures) ->
(activate([to_less_inf_comp]), !)

87

.
check_to_be_less_inf_obj(VerbFeatures) :-
member(’to-be-less-inf-obj’, VerbFeatures) ->
(activate([to_be_less_inf_comp]), !)
i | .

y e .

check_subj_less_inf_obj(VerbFeatures) :-
(member(’subj-less-inf-obj’, VerbFeatures) ->
activate([subj_less_inf_comp])
; check_no_subj(VerbFeatures)),
9N .

check_no__subj(Vei‘bFeatures) :-
member(’no-subj’,VerbFeatures) ->

(activate([no_subj]), !)

!

check_that_obj(VerbFeatures) :- '
member(’that-obj’, VerbFeatures) ->

(activate([that_comp]), !)

. |.

y

check_wh_comp :-
(wh_comp_not_utilized ->
activate({wh_vp|)
; end_major_or_embedded),
1

end_major_or_embedded :-
(has_feature(s,major) ->
activate([ss_vp|)

; activate([embedded_s_vp])),
.

check_passive(VerbFeatures) :-
member(passive, VerbFeatures) ->
(passive_action, !)
-t

/*
If the main verb is passive, then the dcn S is marked as np-preposed and and a
new trace NP node is created.

*/
/*
PASSIVE

* [passive_action :-
!
label(s,[’np-preposed’]),
create(np),
label([trace,’not-modifiable’]),
bind(up),
drop, !.

88

/* NO-SUBJ Packet */

/*
If an infinitive is encountered and the main verb can be subjectless, this is a
"seems” construction. Note the similarity to the passive case.

*/

/*

SEEMS

* /no_subj :- :
has_feature(1,’*t0’),has_feature(2,tnsless),

-) .

deactivate([no_subj)),
passive_action, !.

no_subj :- L.

/***#t*t*t**t****tt#***#**********/

/* WH-VP Packet — WH Placement */

/************tt**t#********##*****/

®

WH_RESOLVED

*/wh_vp :-
wh_comp_utilized,
1
]
deactivate({wh_vp]),
end_major_or_embedded, !.

/*
This rule captures sentences like ?What did John give to Mary?”
*/
/*
WH_WITH_PP_NEXT
*/wh_vp :-
has_feature(1,prep),has_feature(2,np},
1

‘y
create_wh_trace_action, !.

* .
This rule captures sentences like *Who did John give the book to?”
*/

*

WH_WITH_NP_PP_NEXT

*/wh_vp :- .
has_feature(1,np),has_feature(2,prep),
o,
.objects_action, !.
.t . ‘- .
WH_PP_BUILD

*/cpool :- _ :
has_feature(1,prep),not(has_feature(2,np)),

89

wh_comp_not_utilized,
!

create(pp),
attach(1,prep),
create(np),
label([trace]),
bind(whcomp),
label(s, [utilized]),
drop_and_attach(np),

" drop, .
* _ .
CREATE_WH_TRACE
*/wh_vp :- '

create_wh_trace_action, !.

create_wh_trace_action :-
create(np),
label([trace,’not-modifiable’]),
bind(whcomp),
label(s,|utilized]),
drop, !.

/*

This predicate succeeds if there is a whcomp attached to the dominating S node
and returns the dcn’s list of features so that a check may be made to see if the
whcomp has been utilized.

*/

wh_comp_exists{SNodeFeatures) :-
retrieve_dcn(s,(_SNodeFeatures, ,Descendents),_),
find_descendent(whcomp,Descendents,), !.

wh_comp_utilized :- '
wh_comp_exists(SNodeFeatures),
member(utilized,SNodeFeatures), !.

wh_comp_not_utilized :-
wh_comp_exists(SNodeFeatures),
not(member{utilized,SNodeFeatures)), !.

/**********#*****#t*tt********#*****#*****t*t*t/

/* THAT-COMP Packet - Parse that-complements */ .

/t******#t*t******#*#****************#*********/

/*
THAT_S_START
*/cpool :- ' :
has_feature(1,comp),has_feature(1,"*that’),
has_feature(2,np),has_feature(3,verb), ’
' .

]

create(s),

label([’comp-#’,’that-g’,sec|),

90

attach(1,comp),
attach(1,np),
activate([cpool,parse_aux]),
call_packets,
drop, !.
/*
THAT S_START_1
*/that_comp :-
has_feature(1,np),has_feature(2,verb),
t :
create(s),
label([’comp-’,’that~&’,sec]),
attach(1,np),
deactivate([that_comp]),
activate(|cpool,parse_aux]),
call_packets,
drop, !.

that_comp :-
deactivate([that_comp]), !.

%*

COMP_TO_NP

*/epool :-
has_feature(1,’comp-s’),
1
create(np),
label([’comp-np’,’not-modifiable’]),
attach(1,s),
drop, L

/*#**********#***tt***t**/

/* Infinitive Complements */
/************************/

*

INF_S_START

*/cpool :-
has_feature(1,”*for’),has_feature(2,np),has_feature(3,’*t0’),
1
)
create(s),
label([’comp-#’,’inf-8’,sec|),
attach(1,comp),
attach(1,np),
activate([cpool,parse_aux]),
call_packets,
drop,!.

/* INF-COMP Packet */

/* -
Note that when this rule matches, so will rules OBJECTS and
OBJ_IN_EMBEDDED_S. To ensuré its higher priority, it is called before either of

91

the others.

*/

/*

INF_S_ START_1
*/inf_comp :- : _
has_feature(1,np),has_feature(2,’*t0’),

has_feature(2,auxverb),has_feature(3,tnsless),
1
create(s),
label([sec,’comp-#’,’inf-s7]),
attach(1,np), :
activate([cpool,parse_aux]),
call_packets,
drop, !.
inf comp :-!.

/* TO-LESS-INF-COMP Packet */

/*

This rule handles verbs like ”help” which take infintive complements with an
implicit "to”. Note how, as in the case of imperative sentences, the implied word is
inserted.

*/

*
INSERT_TO
*/to_less_inf_comp :-

has_feature(1,np),has_feature(2,tnsless),
1

“

make_buffer_node(to,Node),
insert(2,Node),
deactivate([to_less_inf_comp]), !.

*
INSERT _TO_1
* /to_less_inf_comp :-
(has_feature(1,tnsless) ;
(has_feature(1,np),has_feature(2,finalpunc))),
i

*y

make_buffer_node(to,Node),
insert(1,Node),
deactivate([to_less_inf_comp]), !.

to_less_inf_comp :-
deactivate([to_less_inf_comp]), !.

/* TO-BE-LESS-INF-COMP Packet */

*

This rule handles verbs like "seems® which take infintive complements with an
implicit "to be”.

*/

92

/*
INSERT_TO_BE_1
*/to_be_less_inf_comp :-
(has_feature(1,en) ; has_feature(1,adj)),
\ .

make_buffer_node(to,ToNode),
make_buffer_node(be,BeNode),
insert(1,ToNode),

insert(2,BeNode),
deactivate([to_be_less_inf_comp]), !.

. to_be_iéss_inf_comp -
deactivate([to_be_less_inf_comp]), !.

/***********#t***##******#*****/

/* Infinitives with Delta Subjects */
JHERERRRR AR RS AR AR AR |

/*
This rule handles verbs like "want” which may have either an explicit or a delta
subject.

*/

/*
CREATE_DELTA_SUBJ_1
* /subj_less_inf_comp :-

has_feature(1,’*to’),has_feature(1,auxverb),has_feature(2,tnsless),
1

‘3

deactivate([subj_less_inf_comp]),

create(np),

label([trace,’not-modifiable’]),

drop, !.

subj_less_inf comp :-
deactivate([subj_less_inf_comp]), !.

/*********/

/* TIME */

/*********/

*

MONDAY
* /as_rule(cpool,BufferCell,Features) :-

member(noun,Features) ,member(dow,Features)
1

. Offset is BufferCell - 1
offset(Offset),
create(np),
label([time,dow]),
attach(1,noun),

"drop, '
pop._offset, .

/*#t*******tt***##tttt*******‘*i#t***t****t/

/* Pronouns, Proper Names, and Proper Nouns */
[RAEERERSSRERRARRSCR A ARESS SRR SR KRS |

/*

PRONOUN

* /parse_noun :-
has_feature(1,pronoun),
t
*r
label(|’pron-np’, not-modifiable’}),
transfer([ns,npl,nlp,n2p,n3p,whj),
read(1,(_Features,_)), '
is_it_relpron(Features),
attach(1,pronoun),
deactivate(all), 1.

is_it_relpron(Features) :-
member(relpron,Features) ->
(label([’relpron-np’]), !)
;L

*

PROPNAME

*/as_rule(cpool,BufferCell,Features) :-
member(name,Features),not(member(’not-modifiable’,Features)),
!

Offset is BufferCell - 1,
offset (O ffset),

create(np),
label({name,ns,n3p,’not-modifiable’]),
activate([build_name]),

call_packets,

drop,

pop_ofiset, !.

/*
TITLE
* /as_rule(cpool,BufferCell,Features) :-

member(title,Features),
1

Offset is BufferCell - 1,
offset(Offset),
create(np),
label([name,ns,n3p, not-modifiable’}),
attach(1,title),
does_period_follow,
activate([build_name]),
call_packets,

drop,

pop_offset, !.

does _-peridid’_follow - K
read(1,{_Features,)),
(member(**.’,Features) ->

(delete(1), 1)

93

i)

/*

NAME

*/build_name :-
has_feature(1,name),

attach(1,noun), !.
/*
END_OF_NAME
* /build_name :-

L

deactivate(all), !.

*

PROPNOUN
* /as_rule(cpool,BufferCell,Features) :-

member(propnoun,Features), not(member(name,Features)),
1

Offset is BufferCell - 1,

offset(Offset),

create(np),

label([’propn-np’,ns,n3p,’not-modifiable’]),

attach(1,noun),

drop,

pop_ofiset, !.

***************#******/

/* Mainline NP Parsing */

/*********************t/

*

START_NP
* /as_rule(cpool,BufferCell,Features) :-

member(ngstart,Features),
!

*

Offset is BufferCell - 1,

offset(Offset),

create(np),

(member(det,Features) ->
activate(|parse_det))

; activate([parse_adj))),

call_packets,

drop,

pop_offset, !.

/* PARSE-DET Packet */

%*

DETERMINER
*/parse_det :- _ ,
has_feature(1,det),
1

abel([det]),

transfer([indef,def,wh]),
attach(1,det),

deactivate([parse_det]),
activate([parse_adj)), !

/* PARSE-ADJ Packet */

/*

ADJ]

* /parse_adj :-

! '

(has_feature(1,adj) ->
attach(1,adj)

; (has_feature(1,’*,’) ->
attach(1,comma)

; (deactivate([parse_adj]),

‘ activate([parse_noun])}))),

/* PARSE-NOUN Packet */

/*

NOUN

* /parse_noun :-
has_feature(1,noun),
5
transfer([time,place]),
create(nbar),
transfer([time,ns,npl,n1p,n2p,n3p|),
attach(1,noun),
activate([cpool,nbar_complete]),
call_packets,

drop, L.

/*

NBAR

* /parse_noun :-
has_feature(1,nbar),
1

*
is_proper_noun,
attach(1,nbar),

deactivate(all), !.

is_proper_noun :-
read(1,(_,_Descendents)),
find_descendent(noun,Descendents, (_,Features,_)),
(member(propnoun,Features) ->
(la.bel([not-modifiable’]), !)

31

/****#***#*#****i*tt*t*#/

/* PP Attachment Rules */

/t“i*#***t*tt*tttt*tttt/

95

96

/*
PP
*/cpool :-
has_feature(1,prep),not(has_feature(1,’pred-verb’)),
has_feature(2,np),
(not(wh_comp_exists(_}) ; wh_comp_utilized),
!

*)
create(pp),
attach(1,prep),

transfer([time,place,wh]),
attach(1,np),
drop, L.

/*

OF PP

* /nbar_complete :-
has_feature(1,pp),read(1,(_,_,Descendents)),
find_descendent(prep,Descendents,(_Features,)),
(member{’*of’ ,Features) ; has_feature(2,pp)),
1

attach(1,pp), !
/*
NBAR_DONE
* /nbar_complete :-

4,

deactivate(all), L

*

These rules decide whether to attach a PP as a modifier of a main verb phrase, an
embedded verb phrase, an embedded sentence, or the main clause. Since the
general problem of PP attachment is semantically complex, the only rules used are
that time modifiers are attached not to a verb phrase but to an entire clause, and
that a PP is attached to the nearest constituent.

*/
/*
PP_UNDER_VP_1
*/ss_vp :-
has_feature(1,pp),
:
((not(has_feature(1,time)), not(has_feature(1,place))) ->
attach(1,pp)

; vp_done_action),
1

/*
PP_UNDER_VP_2
*/embedded_s_vp :-

ha.s feature(l,pp),

((not(ha.s feature(1,time)), not(has_j feature(l,place))) ->
attach(1,pp)
; embedded_vp_done_action),

*
PP_UNDER_S_1
*[ss_final :-

has_feature(1,pp),
1

attach(1,pp), .
/*
PP_UNDER_S_2

*/ embedded_s_final :-

has_feature(1,pp),
1

*

attach(1,pp), '
embedded_s_done_action,
!

/***************#*****/

/* Parse simple objects */
JHEERRE RS R A AR AR |

/* SS-VP Packet */

/*

OBJECTS
*/ss_vp :-
has_feature(1,np),
!‘,
objects_action, !.
ss_vp :-

has_feature(1,’comp-s’},
L

create(np),
label([’comp-np’}),
attach(l,s),

drop,

objects_action, !.

objects_action :-
attach(1,np), !

*

VP_DONE
*[ss_vp :-
’ ’ 1
*y
vp_done_action, 1.

vp_done_action :- . :
drop_and_attach(vp), !’

/* SS-FINAL Packet */

97

%
S_DONE
*/ss_final :-

has_feature(1,finalpunc),
.

attach(1,finalpunc),
deactivate(all), !.
/* EMBEDDED-S-VP Packet */

/o ,

This rule attaches an object as part of an embedded sentence.

*/

OBJ_IN_EMBEDDED_S

* /embedded_s_vp :-
has_feature(1,np),
!

)
attach(1,np), !

*

EMBEDDED_VP_DONE

* /embedded_s_vp :-
!
*3
embedded_vp_done_action, !.

embedded_vp_done_action :-
drop_and_attach(vp), .

/* EMBEDDED-S-FINAL Packet */

*

EMBEDDED_S_DONE

*/embedded_s_final :-
I

embedded_s_done_action, !.

embedded_s_done_action :-
deactivate(all), !.

/*

98

Even if no rules belonging to this packet match, a call must, nevertheless, succeed.

x/ -

cpool :- \.

99

/*************‘***‘****t*tt************t******‘**/

/* OPERATIONS ON THE ACTIVE NODE STACK */
/*****************“‘**‘*#**t********tt*»*#*““t*/

/*

Standard stack operations. Each element is kept as an assertion of the form
active_node_stack((<stack position>,<node>)) and the top of the stack is
indicated by the assertion top_of_stack(<top>). Each new stack element has a
position one greater than the previous top of stack.

*/

push(Node) :- _
' retract(top_of_stack(T)),
- T1isT + 1,
assert(top_of_stack(T1)),
asserta(active_node_stack((T1,Node))).

pop(Node) :-

top_of_stack(T1),

T1> 0,

retract(top_of_stack(T1)),

TisTi-1,

assert(top_of_stack(T)),

retract(active_node_stack((T1,Node))).

pop(_) :- '
writestring(” popping an empty stack”), fail.

peek(Node) :-
top_of_stack(T),
active_node_stack((T,Node)), !

/*
Create a new parse node of the given type and push it onto the active node stack.
Initially, a node has no features (save its type), active packets, or descendents.

*/

create(Type) :-
conname(Type,NewNodeName),
push((NewNodeName,[Type],[},[])), !

*
Add to the current active node’s list of active packets.
*/
activate(NewPackets) :- :
pop((NodeName,Features,OldPackets,Descendents)),

append(OldPackets,NewPackets,ActivePackets),
push((NodeName,Features,ActivePackets,Descendents)), !. -

*

Remove from the current active node’s list of active packets.

o e

deactivate(all) :-
pop((NodeName,Features, ,Descendents)),

100

push((NodeName,Features,|],Descendents)), !.

deactivate(InactivePackets) :- _
pop((NodeName,Features,OldPackets,Descendents)),
delete_all(InactivePackets,OldPackets,ActivePackets),
push((NodeName,Features,ActivePackets,Descendents)), !.

/*

Attach the constituent in the given buffer position as the rightmost descendent of
the current active node, indicate its type, and delete the contents of the buffer
position. ' ' '

*/

attach(BufferPosition, Type) :-
read(BufferPosition,(_,DescFeatures,OwnDescendents)),
pop((ParentName,ParentFeatures,Packets,D1)),
append(D1,[(Type,DescFeatures,OwnDescendents)],Descendents),
push((ParentName,ParentFeatures,Packets,Descendents)),
delete(BufferPosition}), !. -

/*
Drop an unattached completed constituent from the stack into the buffer. The list
of active packets for this node is no longer needed.

*/

drop :- pop({NodeName,Features,Packets,Descendents)),
insert(1,(NodeName,Features,Descendents)), !.

/*

Drop a completed constituent from the stack and immediately attach it to the now
current active node. This is used by grammar rules that know for certain the
constituent attaches to the node that immediately dominates it and not possibly to
some higher level constituent.

*/

drop_and_attach(Type) :-
pop((_,DescFeatures, ,OwnDescendents)),
pop((ParentName,ParentFeatures,Packets,D1)),
append(D1,{(Type,DescFeatures,OwnDescendents)],Descendents),
push((ParentName,ParentFeatures,Packets,Descendents)), !.

/*
Retrieve the dominating cyclic node: S or NP. This is done by searching backwards
through the nodes on the active node stack.

*/

retrieve_dcn(DCN,Node,Pos) :-
. top_of_stack(T),
find_dcn(DCN,Node,T,Pos), !.

find_den(L, T,) :-

T=<0, :

writestring(” cannot find dominating cyclic node”), !, fail.
find_dcn(DCN,(NodeName,Features,Packets,Descendents),T,T) :-

101

active_node_stack({T,(NodeName,Features,Packets,Descendents))),
member{DCN, Features), !.
find_dcn(DCN,Node,T1,Pos) :-
TisT1-1,
find_dcn(DCN,Node,T,Pos). .

/*
Find the descendent of the specified type in a node’s list of descendents.
*/

find descendent(Type [(Type,Features,Descs)|_], (Type,Fea.tures,Desés)) :-

ﬁnd descendent(Type [(__sDescs)|_],Descendent) :-
not{atom(Descs)),
find_descendent{Type,Descs,Descendent).

find_descendent(Type,|_|Rest],Descendent) :-
find_descendent({Type,Rest,Descendent).

/*

Bind the current active node, which will be a trace NP node, to the given type of
node which is a descendent of the current dominating cyclic node. Binding
amounts to attaching to the current active node a descendent whose associated
words are the same as those of the node above.

*/

bind(Type) :-
retrieve_dcn(s,(_,_,_,DCNsDescendents),),
find_descendent(Type,DCNsDescendents,(_,_,Descendents)),
pop{{NodeName,Features,Packets,D1)},
extract_words(Descendents,Words),
append(D1,[(’bound to’,{}, Words)],D2),
push((NodeName,Features,Packets,D2)), !.

/*
Extract just the words from a list of descendents.

*/

extract_words(Word, Word) :-
atom(Word).
extract_words({],[])-
extract_words([(_,_[])|Descendents],Words) :-
extract_words(Descendents,Words).
extract_words([(_,_,Word)|Descendents|,[Word|Words]) :-
atom(Word),
extract_words(Descendents,Words).
extract_words([(_,_,D1)|Descendents], Words) :-
extract_words(D1,W1),
extract_words(Descendents, W2},
append(W1,W2 Words).
extract_words([W1|W2],[W1|W3]) :-
: atom(W1),
extract_words(WZ, W3).

/t

Create an empty stack.

*/

make_empty_stack :-
-retract_all(active_node_stack{_)),

assert(active_node_stack((0,({],(.[,0)))),
retract_all(top_of_stack(_)),

assert(top_of_stack(0)).

*

-

call_packets :-
peek((_,_,Packets,)),
not(empty(Packets)),
call_each(Packets), !,
call_packets.
call_packets :- !

call_each([Rule|Rules]) :- !,
call{Rule), !,
call_each(Rules).
call_each(_) :- 1.

Invoke the rules associated with each currently active packet.

102

103

/ttt******t#*t*t#tttit‘*t‘**‘**********t“**tt#t#ttt

/* OPERATIONS ON THE CONSTITUENT BUFFER */

/*********#*#*tt*********t****#t**#*tt**‘#t‘**t#t***/

/*

Insert the given contents into buffer position I after first shxftmg right by one or
two positions to accommodate. The buffer is full if the third cell relative to the
current offset is occupied.

.*/

insert(I,Contents) :-
cell_namie(3, nghtCellName),
RightCell =.. [RightCellName,RightContents],
ca.ll(RightCell),
empty_node(RightContents),
retract(RightCell),
Jis3-1,
move_right(J),
cell_name(I,CellName),
Cell =.. [CellName,Contents],
assert(Cell), !.
insert(I,Contents) :-
putback(3),
insert(I,Contents), !.

move_right(0).

move_right(1}) :-
cell_name(2,SecondCellName),
SecondCell =.. [SecondCellName,Content2],
retract{SecondCell),
cell_name(3,ThirdCellName),
ThirdCell =.. [ThirdCellName,Content2),
assert(ThirdCell).

move_right(2) :
move_right(1),
cell_name(1,FirstCellName),
FirstCell =.. [FirstCellName,Contentl],
retract(FirstCell),
cell_name(2,SecondCellName),
SecondCell =.. [SecondCellName,Content1],
assert(SecondCell).

/*
Delete buffer position I then shift left to fill the vacated cell.

*/

* delete(I) :- '
cell_name(I,CellName),

Cell =.. [CellName,Contents],
ca.ll(Cell),

not(empty_ node(Contents))
retract(Cell),

Jis 3-],

move_left(J),

104

cell_ name(3,ThirdCellName),
EmptyCell =.. [ThirdCellName,([],[],[])],
assert(EmptyCell), 1.
delete() :- _
_ writestring(” deleting empty buffer slot”), !, fail.

move_left(0).

move_left(1) :-
cell_name(3,ThirdCellName),
ThirdCell =.. [ThirdCellName,Content3],
retract(ThirdCell),
cell_name(2,SecondCellName),
SecondCell =.. [SecondCellName,Content3|,
assert(SecondCell).

move_left(2) :-
move_left(1),
cell_name(2,SecondCellName),
SecondCell =.. [SecondCellName,Content2],
retract{SecondCell),
cell_name(1,FirstCellName),
FirstCell =.. [FirstCellName,Content2],
assert(FirstCell).

/*
Read the contents of the specified buffer cell. If the cell is empty, it is filled with
the next word in the input list.

*/

read(I,Contents) :-
cell_name(I,CellName),
Cell =.. {CellName,CurrentContents],
call(Cell),
fill{CellName,CurrentContents,Contents), !.

fill(CellName,CurrentContents,Contents) :-
empty_node(CurrentContents), !,
EmptyCell =.. [CellName,CurrentContents],
retract(EmptyCell},
retract(input_list(|Word|Rest})),
assert(input_list(Rest)),
make_buffer_node{(Word,Node),
FullCell =.. [CellName,Node],

assert(FullCell),
Contents = Node, !.

£11(_C,C) =- .

putback(CellNum) :-

) writestring(” warning: putting a word back into the input stream”),
nl, '

read(CellNum,(_, ,Word)),
retract(input_list(Words)),
assert(input_list (W ord|Words])),
delete(CellNum), !.

105

/*
Get the atomic cell name of the cell specified by I relative to the current offset in
the buffer. ' ‘

*/

cell_name(I,CName) :- -
offset_stack({Offset|_]),
CellNum is I + Offset,
name(cell,N1),
integer_name(CellNum,N2),
append(N1,N2,N), =
name(CName,N), .

/*
Given an input word, make a parse node for insertion into the buffer.

*/
make_buffer_node(Word,Node) :-

conname(word,NewNodeName),
lookup(Word, Features),
Node = (NewNodeName,Features,Word), !.

/*
Create an empty buffer.

*/

make_empty_buffer :-
retract_all(cell1(_)),
retract_all(cell2(),
retract_all(cell3(_)),
retract_all{cell4(_})),
retract_all(cell5(_)),
assert(eell1 ([, D)),
assext(celz(([[1.]))
assert{cels(([L 1))
assert(cell4(([1 1),
assert(cells([L1)-

/*
Start at a zero offset in the constituent buffer.

*/

zero_buffer_bffset -
retract_all(offset_stack(_)),
assert(offset_stack([0])).

*

. Push a new offset relative to the current one onto the offset stack. This results in
an attention shift to an effective buffer start to the right of the current buffer start.

)
offset(New) :-

retract(offset_stack([O1d|Rest])),
Current is New + Old,

106

assert(offset_stack([Current,Old|Rest])), .

/*
Pop the offset stack to shift back to the previous effective buffer start.

*/

pop_offset :-
offset_stack([_|Rest]),
not({empty(Rest)),
retract(offset_stack([_|Rest]}),
assert(offset_stack(Rest)), !.
pop_offset :- o

writestring(” cannot pop initial zero offset”), !, fail.

*

Check to see if any of the attention shifting rules match.

*/

check_as_rules(BufferCell,Features) :-
peek((_,_Packets,)),
clause_or_np_level(Packets,BufferCell,Features), !.

clause_or_np_level(Packets,BufferCell,Features) :-
member(cpool, Packets),
as_rule(cpool,BufferCell,Features), !.

clause_or_np_level(Packets,BufferCell,Features) :-
member(npool, Packets),
as_rule(npool,BufferCell,Features), !.

clause_or_np_level(_,_,) :- .

107

/*****************************##******t#*t###***#t******tt******/

/* OPERATIONS ON PARSE NODES IN THE BUFFER OR STACK */

/*********t****#*##*#*#*****t**#tt#*t**t************************/

/* .
Add to a node’s list of features. Since in most cases features are added to the
current active node, a call to ’label’ with no argument will refer to this node by

default. Features may also be added to the dominating cyclic node or to nodes in
the buffer.

*/

label(NewFeatures) :-
pop((NodeName,OldFeatures,Packets,Descendents)),
append(NewFeatures,OldFeatures,CurrentFeatures),
push((NodeName,CurrentFeatures,Packets,Descendents)), !.

label(BufferCell,NewFeatures) :-
integer(BufferCell),
cell_name(BufferCell,CellName),
Cell =.. [CellName,(NodeName,OldFeatures,Descendents)],
retract(Cell),
append(NewFeatures,OldFeatures,CurrentFeatures),
UpdatedCell =.. [CellName,(NodeName,CurrentFeatures,Descendents)],
assert(UpdatedCell), !.

label(DCN,NewFeatures) :-
retrieve_dcn(DCN,(NodeName,OldFeatures,Packets,Descendents),Pos),
append(NewFeatures,OldFeatures,CurrentFeatures),
retract(active_node_stack((Pos,_))),
assert(active_node_stack((Pos,
(NodeName,CurrentFeatures,Packets,Descendents)})), !.

/*

Check to see if the specified parse node has the given feauture. The node may be
the current active node (can), the dominating cyclic node (s or np), or an element
of the buffer. Note that every time the parser checks an element of the buffer, it
first checks to see if that element triggers any attention shifting rule,

*/

has_feature(can,Feature) :-
peek((_,Features,_,)}, !,
member({Feature,Features), !.

has_feature(BufferCell,Feature) :-
integer(BufferCell),
read(BufferCell,(_,Features,_)),
check_as_rules(BufferCell,Features),
read(BufferCell,(_,PossiblyChangedFeatures, }), !,
member{Feature,PossiblyChangedFeatures), !.-

hé.s_feature(DCN,Feature) :- .]
» retrieve_dcn(DCN,(_Features,_,),), !,
member(Feature,Features), !.

108

/*
Assign to the current active node whichever of the given possible features the first
element of the buffer has.

*/

transfer(PossibleFeatures) :-
read(1,(_Features,)),
intersection(Features,PossibleFeatures,CanFeatures),
label{(CanFeatures), !.

109

/***#*********####t*t*

/* INPUT ROUTINES */

/#****************#***/

/* .
The user is prompted to type in a sentence to be parsed. Readline gets every
character up to a carriage routine and leaves them as a list of characters in its
argument. Readlinel stops the recursion. The list will be passed to the routines
‘comprising the lexical analyzer to be transformed into a list of PROLOG atoms
representing each word. This list is asserted into the database for access by the
parser. Upon completion, what remains of the list (if anything) is retracted and the
user is asked whether he wishes to continue.

*/

input :-
5,
clear,
nl,write(’Sentence to parse’),
nlwrite(’ >),
readline(Chars),
sentence(Chars), !.

readline(Chars) :-
get0(Ch),
readlinel(Ch,Chars).

readlinel(10,{]) :- !
readlinel(Ch,[Ch|Chars]) :-
readline(Chars}, 1.

sentence(Chars) :-
tokens{Atoms,Chars,[]), !,
assert({input_list(Atoms)),
parse,
retract{input_list(_)), !,
nl;nl,
write(’Carry on? y/n :’),
get0(X),get0(10),
name(Ans,[X]),
again(Ans), L

again(y) :- input, .
again(_) :- L.

parse :- :
initial_rule(Tree),
print_tree(Tree).

110

/#******t**ti#ttt*ttttttt/

/* LEXICAL ANALYZER */

/*****#*t***ttt#tttttt*t*/

/*
The following definite clause grammar provides the scanning and tokenizing of a
sentence input as a list of characters and passes words and punctuation back as a

list of atoms.

*/4

tokens(Atoms) —> space, |, tokens(Atoms).
tokens([Atom|Atoms]) —> token(Atom), !, tokens(Atoms).
tokens([]) ‘ ->] '
token(Atom) --> word(Chars), !, { name(Atom,Chars) }
token(Integer) --> constant(Integer), !.
token(Punct) --> punctuation(Punct), !.
space -> 77
space --> [10]. /* carriage return */
num(N) —> number(Number), !, { name(N,Number) }.
number([D|Ds]) --> digit(D), digits(Ds).
digit(D) —> [D}, { is_digit(D) }.
is_digit(D) - D>47, D<58. /* 0-9 */
digits(|D|Ds]) -> digit(D), digits(Ds).
digits([]) =>]
word ([L|Ls]) --> letter(L), lords(Ls).
letter(L) --> [L1], { is_letter(L1,L) }.
is_letter(L,L) - L>96, L<123, . /* a-z */
is_letter(L1,L) :- upper_case{L1), L is L1432, ..
upper_case(L) - L>64, L<91. /* A-Z */
lords([L|Ls]) —> (letter(L)), lords(Ls).
lords([L|Ls]) --> (digit(L)), lords(Ls).
lords([]) -> |} .
constant{C) --> num(C), !
punctuation(’.’)) -->"." L
punctuation(’?’) --> *?" |

~ punctuation(””’) —> ", 1
punctuation(’)’)) -->7"” !

punctuation(’t’) > *I” /1

111

/t#tt#*t#tt#‘#*ltti#tt**/

/* UTILITY ROUTINES */

/t#t*t‘*tt‘t#******‘*t‘t/

append(|],L,L) :- !.
append([X|R],L,[X|R1]) :- append(R,L,R1).

*

Clear the database before a new parse.
*/ : '

clear :-
make_empty_buffer,
gero_buffer_offset,
make_empty_stack, .
retract_all(currnum(_,_}),
retract_all(input_list(_)).

/*
Create a new unique constituent name by concatenating the given type with a
unique number.

*/

conname(Type,Name) :-
get_num(Type,Num),
name(Type,Typechars),
integer_name(Num,Numchars),
append(Typechars,Numchars,Namechars),
name(Name,Namechars).

/*
Delete every occurrence of the first argument from the second (a list).
*/

delete(_,[],{]).

delete(X,[X|L],M) :- !, delete(X,L,M).
delete(X,[Y|L1],[Y|L2]) :- delete(X,L1,L2).

delete_all((],L,L).

delete_all((H|T],L,M) :-
delete(H,L,L1),
delete_all(T,L1,M).

empty([]).
. empty-_node(([],[l,{]))-_

e | |

Generate a unique number. .

* / : : o

get_num(Type,Num) -
retract(currnum(Type,Num1)), !,
Num is Numl+1,

asserta(currnum(Type,Num)).
get_num(Type,1) :-
asserta(currnum(Type,1)).

/*
Convert an integer to a list of characters

*/

integer_name(I,List) :-
integer_name(L,[],List).
integer_name(I,SoFar [C|SoFa.r])
1<10, !, C is I+48.
mteger name(I,SoFar,List} :-
Top is I//10,
Bot is I mod 10,
C is Bot+48, :
integer_name(Top,|C|SoFar],List).

/*
Find the intersection of two sets represented as lists.

*/

intersection([],X,]]).

intersection([X|R],Y,[X]Z]) :-
member(X,Y), !,
intersection(R,Y,Z).

intersection(|X|R],Y,Z) :-
intersection(R,Y,Z).

lookup(Word,Features) :-
lex(Word,Features), !.

member(X,{X|]) - .
member(X,[_|Y]) :- member(X,Y).

/*
Print out the final parse tree.

*/

print_tree(Tree) :-
nl,
pretty_print(Tree,0).

pretty_print((_,Features, ,Descendents),I}) :- !
spaces(I), .
write(s),
write(: ’),
print_features(Features),
I4isT + 4, :
print_g descendents(Descendents 14).

prmt descendents({1, =-

print_descendents([(Node, Fea.tures,Descendents)IRest],I) -

nl,

112.

113

spaces(I),

write(Node),

write(:),

print_words_or_own_descendents(Features, Descendents,]I),
print_descendents(Rest,I), !.

print_features([]) :- 1.
print_features(Features) :-
' spaces(1),
write(Features), !.

priht_Words__or_own_descéndents(Features,Word,_) :-
atom(Word),
nil_word(Word,Features), !.
print_words_or_own_descendents(Features,|Word|Words],) :-
atom(Word),
print_words(|Word|Words]), !.
print_words_or_own_descendents(Features,Descendents,]) :-
print_features(Features),
I4is 1+ 4,
print_descendents(Descendents,I4), !.

print_words([]) :- !.

print_words(|Word|Words]) :-
spaces(1),
write{Word),
print_words(Words), 1.

nil_word([],Features) :-
print_features(Features), !.

nil_word(Word,) :-
spaces(1}),
write(Word), !.

spaces(0) :- 1.

spaces(N} :-
write(’ 7),
NlisN-1,
spaces(N1).

retract_all{X) :-
retract(X), fail.
retract_all{_) :- 1.

writestring({]).

writestring ([N|Ns]) :- v
name(Name,[N}), -
write(Name),
writestring(Ns).

114

/*itt*t#t*****/

/* LEXICON */

/***********t*/

/*

The general form of an entry is:
lex(<word>,<features>)

<features> is a list containing the root of the word, its person/number, its part of
speech, its tense, the types of objects and complements it takes, and any other
necessary information. A list of the possible features is given elsewhere. .

*/
/* ADJECTIVES */

lex(happy,[’*happy’,adj]).

/* DETERMINERS */-

lex(a,[’*a’,ns,n3p,det,indef,ngstart}).
lex(an,|’*a’,ns,n3p,det,indef,ngstart]).
lex(the,[’*the’,ns,npl,n3p,det,def, ngstart]).

/* NOUNS */

lex(book,[*book’,ns,noun,ngstart]).
lex(cover,[’*cover’,ns,noun, ngstart|).
lex(exam,|’*exam’,ns,noun, ngstart|).
lex(executives,|["*executive’,npl,noun,ngstart)).
lex(lecture,|’*lecture’,ns,noun,ngstart|).
lex(meeting,[’*meeting’,ns,noun,ngstart|).
lex{tomorrow,|’*tomorrow’,ns,n3p,noun,ngstart, time}).
lex(yesterday,| *yesterday’,ns,n3p,noun,ngstart,time]).
Y Y

/* PREPOSITIONS */

lex(before,[’*before’,prep]).
lex(by,[’*by’,prep]).

lex(for, [*for’,prep,comp)).
lex(from, [*from’,prep]).
lex(in,["*in’,prep]).
lex(of,["*of ,prep]).
lex(on,[*on’,prep]).
lex(to,|’*to’,prep,auxverb]).
lex(with,[*with’,prep]).

/* PRONOUNS */

lex(i,{"*I’,ns,nlp,noun,pronoun,ngstart|).
‘lex(you,[*you’,ns,npl,n2p,noun,pronoun,ngstart|).
lex(he,[’*he’,ns,n3p,noun, pronoun,ngstart)).
lex(she,|"*she’,ns,n3p,noun,pronoun, ngstart|).
lex(it,[*it’,ns,n3p,noun,pronoun, ngstart|).

lex(we,{’*we’,npl,nlp,noun,pronoun,ngstart|).
lex(they,[’*they’,npl,n3p,pronoun,ngstart)).

lex(that,[’*that’,ns,npl,n3p,pronoun,relpron,comp]).
lex(what,[’*what’,ns,npL,n3p,np,pronoun,det,whj).
lex(when,[’*when’,ns,np,pronoun,wh,time|).
lex(who,|"*who’,ns,n3p,np,pronoun,relpron,wh]).

/* PROPER NOUNS */

lex(john,[’*john’,ns,n3p,name,noun,propnoun,ngstart]).
lex(mary,[”*mary’,ns,n3p,name,noun,propnoun,ngstart|).
lex(smith,["*smith’,ns,n3p,name,noun,propnoun,ngstart]).
lex(vancouver,[*vancouver’,ns,n3p,noun,place,ngstart)).
lex(wednesday,[’*wednesday’,ns,n3p,noun,dow,ngstart]).

/* PUNCTUATION */

lex(’,”,[’*,’,punc]).

Iex(”n, [’*” ’,puncl).
lex(’?’,[’*!", finalpunc]).
lex(*.,[*.’,finalpunc]).
lex(’?’,[’*?’,finalpunc]).

/* TITLES */

lex(mr,[**mr’,title]).
lex(mrs, [*mrs’, title}).

/* VERBS */

lex(be,[*be’,vspl,verb,auxverb,tnsless]).
lex(am,|[’*be’,v1s,verb,auxverb,pres}}.
lex{are,["*be’,’vpl+2s’,verb,auxverb,pres]).
lex(is,[’*be’,v3s,verb,auxverb,pres]).
lex(was,[’*be’,’v+13s’,verb,auxverb,past}).
lex(were,[*be’,’vpl+2s’,verb,auxverb, past|).
lex(been,[’*be’,vspl,verb, past,en]).
lex(being,[’*be’,vspl,verb, pres,part,ing]|}.

lex(do,[*d0’,’v-3s’,verb,auxverb,pres,tnsless]).
lex(does,[*do’,v3s,verb,auxverb,pres]).
lex(did,["*do’,vspl,verb,auxverb,past}).
lex(doing,["*do’,vspl,verb,auxverb,pres,ing]).
lex(done,[’*do’,vspl,verb,auxverb,past,part,en]).

lex(give,["*give’,’v-38’,verb,pres, tnsless,’inf-obj’, 't o-less-inf-obj’]).
lex(gives,|*give’,v3s,verb,pres,’inf-obj’,’to-less-inf-obj’]).
lex(gave,|"*give’,vspl,verb, past,’inf-obj’,’to-less-inf-obj’}).

lex(giving,[*give’,vapl,verb, pres,part,ing,’inf-obj’,’to-less-inf-obj’]).
lex(given,|’*give’,vspl,verb,past,part,en,’inf-obj’,’to-less-inf-obj’]). -

lex(have,[’*have’,’v-38’,verb,auxverb,pres, tnsless]).
lex(has,|’*have’,v3s,verb,auxverb,pres}).

115

116

lex(had,[’*have’,vspl,verb,auxverb,past,en]).
lex(having,["*have’,vspl,verb,auxverb,pres,part,ing]).

lex(help,[’*help’,’v-38’,verb,pres,tnsless,’inf-obj’,’to-less-inf-obj’,
’subj-less-inf-obj’]). '

lex(helps,[’*help’,v3s,verb,pres,’inf-obj’,’to-less-inf-obj’,
’subj-less-inf-obj’]).

lex(helped,[’*help’,vspl,verb,past,part,en,’inf-obj’,’to-less-inf-obj’,
’subj-less-inf-obj’]).

lex(helping,["*help’,vspl,verb ,pres,part, ing,’inf-obj’ ,’to—less—mf-obj ,
’subj-less-inf-obj’])

" lex(hit,|"*hit’,’v-3s’,verb, pres, tnsless,’comp-obj’]).
lex(hits,|’ *hit’,v3s,verb, pres,’comp-obj’]).
lex(hit,[**hit’,vspl,verb, past, part,en,’comp-obj’]).
lex(hitting,[’*hit’,vspl,verb, pres,part,ing,’comp-obj’]).

lex{ persuade,|’*persuade’,’v-3s’,verb,pres,tnsless, inf-obj’]).
lex(persuades,[’*persuade’,v3s,verb, pres,’inf-obj’}).
lex(persuaded,|’* persuade’,vspl,verb, past, part,en,’inf-obj’}).
lex(persuading,[’*persuade’,vspl,verb,pres,part,ing,’inf-obj’]}.

lex(say,[’*say’,’v-3s’,verb,pres,tnsless,’comp-obj’]).
lex(says,|’*say’,v3s,verb,pres,’comp-obj’]).
lex(said,|"*say’,vspl,verb,past,en,’comp-obj’]).
lex(saying,|**say’,vslp,verb, pres, part,ing,’comp-obj’]).

lex(see,[’*see’,’v-38’,verb, pres,tnsless,’comp-obj’]).
lex(sees,|[*see’,v3s,verb, pres,’comp-obj’}).
lex(saw,|"*see’,vspl,verb, past,’comp-obj’]).
lex(seeing,[’*see’,vspl,verb, pres, part,ing,’comp-obj’]).
lex(seen,|"*see’,vspl,verb,past,en,’comp-obj’}).

lex(seems,
[*seem’,v3s,verb,pres,’ no-subj’,’that-obj’,’inf-obj’,’to-be-less-inf-obj’]).

lex(schedule,[**schedule’,’v-3s’,verb,pres,tnsless,’comp-obj’,’inf-obj’}).
lex(schedules,["*schedule’,v3s,verb, pres,’comp-obj’,"inf-obj’]).
lex(scheduled,|"*schedule’,vspl,verb,past,part,en,’comp-obj’,’inf-obj’]).
lex{scheduling,["*schedule’,vspl,verb,pres,part,ing,’comp-obj’,’inf-obj’}).

lex(should,[*should’,vspl,verb,auxverb,past,modal}).

lex(take,['*take’,’v-38’,verb,pres,tnsless,’inf-obj’]).
lex(takes,[’*take’,v3s,verb,pres,’inf-obj’]).
lex(took,[*take’,vspl,verb,past,’inf-obj’]).
lex(taking,[*take’,vspl,verb,pres,part,ing,’inf-obj’]).
. lex(taken,[’*take’,vspl,verb,past,part,en,’inf-obj’]).

lex(tell [*tell’,’v-3s’,verb ,pres,tnsless;’inf-obj’]).
lex(tells, [’*tell’,v3s,verb,pres, inf-obj’]).
lex(told,["*tell’,vspl,verb,past,part,en,’inf-obj’]).
-lex(telling,[*tell’,vspl,verb, pres, part,ing,’inf-obj’]).

lex(want,|’*want’,’v-3s’,verb,pres,tnsless,’inf-obj’,’subj-less-inf-obj’}).
lex(wants,|’*want’,v3s,verb,pres,’inf-obj’, ’subj-less-inf-obj’]).
lex(wanted,[’*want’,vspl,verb,past, part,en,’inf-obj’,’subj-less-inf-obj’}).

lex(wanting,[’*want’,vspl,verb,pres,part,ing,’inf-obj’,’subj-less-inf-obj’}).

lex(will,["*will’,vspl,verb,auxverb]).

lex(would,["*would’,vspl,verb,auxverb,past,modal}).

lex(Word,_) :- _

' write(Word),

writestring(” is not in the lexicon”), nl, fail.
[HrrsEE A AR | '
/* FEATURES */
JRAEEE A AR |
/*
auxverb % auxiliary verb
comp % complement markers like "that” and ”for”
comp-np % NP node dominating a complement S
comp-obj % verb takes a complement as object
comp-s % S serving as a complement
copula % copular auxiliary
decl % declarative sentence
def % definite article or NP
det % determiner
dow % day of the week
en % verb with an "en” ending however spelled
finalpunc % final punctuation mark
future % future tense
imper % imperative sentence
indef % indefinite article or NP
inf % infinitive verb form
inf-obj % verb takes an infinitive complement as object
inf-s % infinitive S
ing % verb with "ing” ending however spelled
major % major S
modal % either a modal or aux with an attached modal; e.g. should
nlp % 1st person noun
n2p % 2nd person noun
n3p % 3rd person noun
name % a person’s name; e.g., John Smith
nbar % "N-bar” node
ngstart % anything that could start a noun group
noun % any noun .
no-subj % verbs w/ delta subjects (or ”it”); e.g., seems
not-modifiable % NP which cannot take restrictive modifiers
np % noun phrase
np-quest % question with a fronted NP
np-utterance % utterance consisting only of an NP
npl % plural noun or quantifier (e:g., some)
ns % singular noun, determiner (e.g., a), etc.
part % participle

passive % passive verb

117

past
perf
PP

pp-quest
pp-utterance

pred-verb
prep

pres

prog
pronoun
pron-np
propnoun
propn-np
relpron
relpron-np
quest

sec

% past tense

% perfective

% prepositional phrase

% question with a fronted PP

% utterance consisting only of a PP

% anything which can introduce a predicate after a copula

% preposition

% present tense

% progressive

% pronoun

% NP that dominates a pronoun; therefore, not modifiable

% proper noun ‘

% NP that dominates a proper noun; therefore, not modifiable
% relative pronoun

% NP that dominates a relative noun; therefore not modifiable
% any kind of question

% secondary S - not major - embedded

subj-less-inf-obj % verbs like want

that-obj
that-s
time
tnsless

% verb takes a tensed complement
% embedded finite complement

% time word or phrase

% tenseless verb

to-be-less-inf-obj% verb takes an infinitive w/o "to be”; e.g., seems

to-less-inf-ob)

trace
utilized
v+13s8
v-3s

vls

v3s
vpl4-2s
vspl
verb

vp

wh
whcomp
wh-quest
yn-quest

*/

% verb takes an infinitive w/o "to”; e.g., help

% NP which is a trace

% indicates the gap corresponding to a whcomp has been found
% verb agrees with a 1st or 3rd person singular noun

% verb matches any noun except 3rd person singular

% verb agrees only with 1st person singular noun; e.g., am
% verb agrees only with 3rd person singular noun; e.g., is
% verb agrees w/ any plural or 2nd sing. noun; e.g., are

% agrees with any noun, singular or plural

% any kind of verb

% verb phrase

% either a det with a wh marker or an NP with such a det
% any sort of wh phrase

% wh question

% yes/no question

118

1]

Appendix 2

Sample Parses

The following examples show ‘the types of sentences this Prolog:

implementaion of PARSIFAL is currently able to parse. They include the

linguistic generalizations discussed in chapter four which in some instances;

involve the use of traces.

/* Simple declarative sentence with prepositional phrase modifier */
> John Smith has scheduled the meeting for Wednesday.

s: [decl,major,s]
np: [name,ns,n3p,not-modifiable,np]
noun: john
noun: smith
aux: [perf,v3s,pres,aux]
perf: has
vp: [vp]
verb: scheduled
np: [def,det,np]
det: the
nbar: [ns,nbar]
noun: meeting
pp: [time,pp]
prep: for
np: [time,dow,np]
noun: wednesday
finalpunc: .

/* WH question : subject */
> Who scheduled the meeting?

s: [utilized,np-quest,quest,wh-quest,major,s]|
whcomp: who
np: [trace,not-modifiable,np]
bound to: who
aux: [vspl,past,aux|
vp: [vp]
verb: scheduled
np: [def,det,np]
det: the
nbar: [ns,nbar]
' noun: meeting
Finalpunc: ?

/* NP utterance */
> John.

s: [np-utterance,s]
np: [name,ns,n3p,not-modifiable,np|
noun: john
finalpunc: .

/* WH question : object */
> What did John schedule?

s: [utilized,np-quest,quest, wh-quest,major,s|
whcomp: what :
np: [name,ns,n3p,not-modifiable,np]

noun: john
aux: [vspl,past,aux]

do: did
vp: [vp]

verb: schedule

np: [trace,not-modifiable,np]

bound to: what

finalpunc: ?

/* NP utterance */
> A meeting.

s: [np-utterance,s|
np: [indef,det,np]
det: a
nbar: [ns,nbar]
noun: meeting
finalpunc: .

/* WH question : preposition */
> When did he schedule it for?

s: [utilized, pp-quest,quest,wh-quest,major,s]
whcomp: when
np: [ns,n3p,pron-np,not-modifiable,np]
pronoun: he
aux: [vspl,past,aux]
do: did
vp: [vp]
verb: schedule
np: [ns,n3p,pron-np,not-modifiable,np|
pronoun: it
pp: [pp]
prep: for
np: [trace,np]
bound to: when
finalpunc: 7 o

120

/* PP utterance */

> For Wednesday.

s: [pp-utterance,s] .

pp: [pp|
. prep: for
np: [time,dow,np)
noun: wednesday
finalpunc: .

/¥ WH question */

> What did he do?

: |utilized, np-quest,quest, wh-quest,major,s|
whcomp: what
np: [ns,n3p,pron-np,not-modifiable,np]
pronoun: he
aux: [vspl,past,aux|
do: did
vp: [vp]
verb: do
np: [trace,not-modifiable,np|
bound to: what
finalpunc: ?

/* Verb cluster with no auxiliary */
> John scheduled the meeting.

s: [decl,major,s]

np: [name,ns,n3p,not-modifiable,np}
noun: john
aux: [vspl,past,aux]
vp: [vp|
verb: scheduled
np: [def,det,np]
det: the
nbar: [ns,nbar]
poun: meeting
finalpunc: .

/* Modal, perfective auxiliary */

> John should have scheduled the meeting.

s: [decl,major,s]
np: {name,ns,n3p,not-modifiable,np]
noun: john
aux: [perf,modal,vspl,past,aux]
modal: should
perf: have
vp: [vp
verb: scheduled
np: [def,det,np]
det: the
nbar: [ns,nbar]
noun: meeting
finalpunc: .

121

/* Yes/No question with inversion of future auxiliary */
> Will Mary give a lecture in Vancouver?

s: [quest,yn-quest,major,s]
np: [name,ns,n3p,not-modifiable,np}
noun: mary
aux: [future,vspl,aux]
will: will
vp: [vp]
verb: give
np: (indef,det,np]
det: a '
nbar: [ns,nbar]
noun: lecture
pp: [place,pp]
prep: in
np: [place,np]
nbar: [ns,n3p,nbar]
noun: vancouver
finalpunc: ?

/* Yes/No question with inversion of perfective auxiliary */
> Has Mr. Smith scheduled the meeting?

s: [quest,yn-quest,major,s]
np: [name,ns,n3p,not-modifiable,np]
title: mr
noun: smith
aux: [perf,v3s,pres,aux]
perf: has
vp: [vp]
verb: scheduled
np: [def,det,np]
det: the
nbar: [ns,nbar]
noun: meeting
finalpunc: ?

/* Yes/No question with inversion of do-support’ auxiliary */
> Did Mrs. Smith schedule the meeting?

s: [quest,yn-quest,major,s]
np: [name,ns,n3p,not-modifiable, np]
title: mrs
noun: smith
aux: [vspl,past,aux]
do: did
vp: [vp]
verb: schedule
np: [def,det,np]
det: the
nbar: [ns,nbar]
noun: meeting
finalpunc: ?

122

/* Passive (trace feature) */
> The meeting has been scheduled.

s: [np-preposed,decl,major,s|
np: [def,det,np]
det: the
nbar: [ns,nbar]
noun: meeting
aux: [passive,perf,v3s,pres,aux|
perf: has
passive: been
vp: [vp]
verb: scheduled
np: [trace,not-modifiable,np]
bound to: the meeting
finalpunc: .

/* Y/N quest w/ subj separating 2 parts of a progressive aux */
> Is John scheduling a meeting for tomorrow?

s: [quest,yn-quest,major,s]
np: [name,ns,n3p,not-modifiable,np|
noun: john
aux: [prog,v3s,pres,aux|
prog: is
vp: [vp]
verb: scheduling
np: [indef,det,np]
det: a
nbar: [ns,nbar]
noun: meeting
pp: [time,pp]
prep: for
np: [time,np]
nbar: [ns,n3p,time,nbar]
" noun: tomorrow
finalpunc: ?

* Y/N quest w/ passive verb and subj separating 2 parts of progressive aux *
prog

> Is a meeting being scheduled?

s: [np-preposed,quest,yn-quest,major,s|
np: [indef,det,np]
det: a
nbar: [ns,nbar|
noun: meeting
aux: [passive,prog,v3s,pres,aux|
prog: is
passive: being
vp: [vp] 1
verb: scheduled
np: [trace,not-modifiable,np)
bound to: a meeting
finalpunc: ?

123

/* Imperative ("you” insertion) */
> Schedule a meeting for Wednesday!

s: [imper,major,s]
np: [ns,npl,n2p,pron-np,not-modifiable,np]
pronoun: you ,
aux: [v-3s,pres,tnsless,aux
vp: [vp]
verb: schedule
np: [indef,det,np]
. det: a ‘
nbar: [ns,nbar|
noun: meeting
pp: [time,pp]
prep: for
np: [time,dow,np]
noun: wednesday
finalpunc: !

/* Simple embedded complement */
> We wanted John to schedule the meeting.

s: [decl,major,s]
np: [npl,nlp,pron-np,not-modifiable,np|
pronoun: we
aux: [vspl,past,aux]
vp: [vp|
verb: wanted
np: [comp-np,np|
s: [sec,comp-s,inf-s,s]
np: [name,ns,n3p,not-modifiable,np]
noun: john
aux: [inf,aux]
to: to
vp: [vp]
verb: schedule
np: [def,det,np)
det: the
nbar: [ns,nbar]
noun: meeting

finalpunc: .

124

125

~ /* Passive construction with embedded complement */
> The meeting of the executives seems to have been scheduled for Wednesday.

s: |np-preposed,decl,major,s|
np: [def,det,np]
det: the
nbar: [ns,nbar]
noun: meeting
pp: [pp]
prep: of
np: [def,det,np]
det: the
nbar: [npl,nbar]
noun: executives
aux: [v3s,pres,aux|
vp: [vp]
verb: seems
np: [comp-np,np|
s: [np-preposed,sec,comp-s,inf-s,s]
np: [trace,not-modifiable,np]
bound to: the meeting of the executives
aux: [passive,perf,inf,aux]
to: to
perf: have
passive: been
vp: [vp]
verb: scheduled
np: [trace,not-modifiable,np]
bound to: the meeting of the executives
pp: [time,pp]
prep: for
np: [time,dow,np]
noun: wednesday
finalpunc: .

> Who did John see?

s: [utilized,np-quest,quest,wh-quest,major,s|
whcomp: who
np: [name,ns,n3p,not-modifiable,np]
noun: john
aux: [vspl,past,aux]
do: did
vp: [vp]
verb: see
np: [trace,not-modifiable,np]
bound to: who
finalpunc: ?

126

> Who saw Mary?

s: [utilized,np-quest,quest,wh-quest,major,s|
whcomp: who
np: [trace,not-modifiable,np]
bound to: who
aux: [vspl,past,aux|
vp: [vp|
verb: saw -
np: [name,ns,n3p,not-modifiable,np|
noun: mary
finalpunc: ?

/* Verb taking an infinitive complement without an explicit ”to” */
> I gave Mary a book.

s: [decl,major,s]
np: {ns,nlp,pron-np,not-modifiable,np]
pronoun: i
aux: [vspl,past,aux]
vp: [vp|
verb: gave
np: [name,ns,n3p,not-modifiable,np]
noun: mary
np: [indef,det,np]
det: a
nbar: [ns,nbar]
noun: book
finalpunc: .

> Who did John give the book to?

s: [utilized,np-quest,quest,wh-quest,major,s]
whcomp: who
np: [name,ns,n3p,not-modifiable,np)
noun: john
aux: [vspl,past,aux]
do: did
vp: [vp]
verb: give
np: [def,det,np]
det: the
nbar: [ns,nbar]
noun: book
pp: [pp]
prep: to
np: [trace,np)
bound to: who.
finalpunc: ?

/* Verb taking a complement with an implicit "to”; *to” inserted */

> What did John give Mary?
s: [utilized,np-quest,quest,wh-quest,major,s|
whcomp: what
np: [name,ns,n3p,not-modifiable,np]
noun: john
aux: [vspl,past,aux]
do: did
vp: [vp]
verb: give :
np: [trace,not-modifiable,np]
bound to: what :
pp: [pp)
prep: to
np: [name,ns,n3p,not-modifiable,np|
noun: mary
finalpunc: 7

> I saw the cover of the book.
s: [decl,major,s]
np: [ns,nlp,pron-np,not-modifiable,np]
pronoun: i
aux: [vspl,past,aux|
vp: [vp|
verb: saw
np: [def,det,np]
det: the
nbar: [ns,nbar]
noun: cover
pP: [pp)]
prep: of
np: [def,det,np]
det: the
nbar: [ns,nbar]
noun: book
finalpunc: .

> I hit Mary with a happy book.
s: [decl,major,s]
np: |ns,nlp,pron-np,not-modifiable,np]
pronoun: i
aux: [v-3s,pres,tnsless,aux]
vp: [vp]
verb: hit
np: [name,ns,n3p,not-modifiable,np)
noun: mary
pp: [pp]
prep: with
np: [indef,det,np]
det: a
"adj: happy
nbar: {ns,nbar]
, noun: book
finalpunc: .

127

/* Verb taking an infinitive object without to be” */

> John seems happy.

s: [np-preposed,decl,major,s]
np: [name,ns,n3p,not-modifiable,np]
noun: john
aux: [v3s,pres,aux]
vp: [vp|
verb: seems
np: [comp-np,np]
s: [sec,comp-s,inf-s,s] _
np: [trace,not-modifiable,np]
bound to: john
aux: [copula,inf,aux]
to: to
copula: be
vp: [vp]
verb: happy
finalpunc: .

> Schedule John to give a lecture on Wednesday.

s: [imper,major,s]
np: [ns,npl,n2p,pron-np,not-modifiable,np]
pronoun: you
aux: [v-3s,pres,tnsless,aux|
vp: [vp]
verb: schedule
np: [comp-np,np|
s: [sec,comp-s,inf-g,s]
np: [name,ns,n3p,not-modifiable,np|
noun: john
aux: [inf,aux]
to: to
vp: [vp]
verb: give
np: [indef,det,np]
det: a
nbar: [ns,nbar]
noun: lecture
pp: [time,pp]
prep: on
np: [time,dow,np]
noun: wednesday
finalpunc: .

128

129

/* That complement */
> It seems that a meeting has been scheduled.

s: [decl,major,s]
np: [ns,n3p,pron-np,not-modifiable, np]
pronoun: it
aux: [v3s,pres,aux|
vp: [vp|
verb: seems
; np: [comp-np,np|
s: [np-preposed,comp-s,that-s,sec,s|
comp: that
np: [indef,det,np]
det: a ‘
nbar: [ns,nbar]
noun: meeting
aux: [passive,perf,v3s,pres,aux|
perf: has
passive: been
vp: [vp]
verb: scheduled
np: [trace,not-modifiable,np]
bound to: a meeting
finalpunc: .

/* That complement without an explicit "that” */
> It seems a meeting has been scheduled.

s: [decl,major,s]
np: [ns,n3p,pron-np,not-modifiable,np|
pronoun: it
aux: [v3s,pres,aux]
vp: [vp|
verb: seems
np: [comp-np,np|
s: [np-preposed,comp-s, that-s,sec,s]
np: [indef,det,np)
det: a
nbar: [ns,nbar|
noun: meeting
aux: [passive,perf,v3s,pres,aux]
perf: has
passive: been
vp: (vp]
verb: scheduled
np: [trace,not-modifiable,np]
_ bound to: a meeting
- finalpunc: . ‘

130

/* Verb taking an infinitive embedded complement */
> I helped John to do it.

s: |decl,major,s]
np: [ns,nlp,pron-np,not-modifiable,np]
pronoun: i
aux: [vspl,past,aux]
vp: [vp]|
verb: helped
np: [comp-np,np]
- 8t [sec,comp-s,inf-s,s]
np: [name,ns,n3p,not-modifiable,np]
noun: john
aux: [inf,aunx]
to: to
vp: [vp]
verb: do
np: |ns,n3p,pron-np,not-modifiable,np]
pronoun: it

finalpunc: .

/* Verb taking an infinitive embedded complement without ”to”; *to” inserted */
> I helped John do it.

s: [decl,major,s]
np: [ns,nlp,pron-np,not-modifiable,np]
pronoun: i
aux: [vspl,past,aux]
vp: [vp]
verb: helped
np: [comp-np,np|
s: [sec,comp-s,inf-s,s]
np: [name,ns,n3p,not-modifiable,np|
noun: john
aux: [inf,aux]
to: to
vp: [vp]
verb: do
np: [ns,n3p,pron-np,not-modifiable,np]
pronoun: it
finalpunc: .

131

/* Verb taking an infinitive embedded complement without a subject */
> I helped to do it.

s: |decl,major,s]
'np: [ns,nlp,pron-np,not-modifiable, np]
pronoun: i .
aux: [vspl,past,aux|
vp: [vp]
verb: helped
np: [comp-1p,np|
s: [sec,comp-s,inf-s s]
np: [trace,not-modifiable,np]
aux: [inf,aux|
to: to
vp: [vp]
verb: do
np: [ns,n3p,pron-np,not-modifiable,np|
pronoun: it
finalpunc: .

/* Verb taking an infinitive embedded complement without ”to” or a subject */
> I helped do it.

s: |decl,major,s]
np: [ns,nlp,pron-np,not-modifiable,np|
pronoun: i
aux: [vspl,past,aux]
vp: [vp]
verb: helped
np: [comp-np,np]
s: [sec,comp-s,inf-s,s]
np: [trace,not-modifiable,np]
aux: [inf,aux]
to: to
vp: [vp]
verb: do
np: [ns,n3p,pron-np,not-modifiable,np]
pronoun: it
finalpunc: .

132

/* Verb taking an infinitive embedded complement without an explicit subject */
> [want to do it!

s: [decl,major,s]
np: [ns,nlp,pron-np,not-modifiable,np|
pronoun: 1
aux: [v-3s,pres,tnsless,aux|
vp: [vp]
verb: want
np: [comp-np,np|
s: [sec,comp-s,inf-s,s] ,
 np: [trace,not-modifiable,np]
aux: [inf,aux]
to: to
vp: [vp]
verb: do
np: [ns,n3p,pron-np,not-modifiable,np]
pronoun: it
finalpunc: !

i

