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A b s t r a c t 

Tuning a computer system effectively requires prior studies on the performance of 

the system. There are different types of tools available to measure a system: hardware, 

firmware and software. This thesis presents the design and implementation of an event 

monitor, which is one type of software tools. 

The event monitor was developed on a SUN1 workstation running UNIX 4.2bsd 

version 1.4. Six types of events were selected to be measured, namely transactions, 

logins/logouts, pageins, pageouts, disk I/Os and forks/exits. The operating system 

was modified to include probes to trap these events. For a final testing of the event 

monitor, it was ported and installed onto a SUN3 workstation running UNIX 4.2bsd 

version 3.2. Measurements collected were analyzed by a capacity planning package 

condenser. The results give an indication of the system workload and the system 

performance. Benchmarks were also set up to measure the overhead incurred by the 

event monitor. 
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C h a p t e r 1 

I n t r o d u c t i o n 

1.1 Thesis Motivations and Objectives 

The studies on Tuning, Measurements and Performance Evaluations of Computer 

Systems have gained recognition in Computer Science research. In most cases, tuning a 

system improves its performance, and sometimes the improvement can be considerable. 

However, in order to be able to tune a system effectively, the system must first be 

evaluated. We are specifically interested in the case where the system already exists 

and available to be measured. 

There are many types of tools which can be used to measure the performance of a 

system. Each type of tools has its merits as well as drawbacks, and hence the choice 

of tool depends entirely on the type of measurements desired. For system usage data, 

such as cpu and disk utilizations, it is most accurate to collect the relevant information 

as the events occur. This will require either a hardware measurement tool which can 

be quite expensive, or a piece of software, an event monitor, to be inserted into the 
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CHAPTER 1. INTRODUCTION 2 

operating system to monitor the activities of the system. The thesis deals with the 

design and implementation of a software event monitor. 

The UNIX 1 operating system is used extensively both in research and commercial 

environments. It is a very powerful operating system running on a range of computers 

from microprocessors to the mainframes. The operating system itself, however, does not 

maintain adequate measurements statistics. Consequently, performance evaluations on 

the UNIX operating system have been found difficult. However, unlike other operating 

systems, UNIX was written in the high level language C, which makes it easier to decode 

than other operating systems written in assembler language, and its source is available. 

In addition, the kernel of the operating system is fairly compact and manageable. 

This thesis was motivated by the preceding considerations. It was felt that an event 

monitor can be developed on a UNIX 4.2 bsd operating system, which will capture 

and record events as they occur. The data collected by such a monitor can be used 

to characterize the system's workload, and can be fed into other capacity planning 

packages to study system performance. 

Three of the key concerns in Performance Evaluations are the amount of interfer

ences added to the system, the amount of overhead incurred, and the accuracy of the 

data collected. When designing the event monitor, special attempts were made to cope 

with the above problems. In addition, the event monitor can be used interactively, 

1 UNIX is a trademark of A T & T Bell Laboratories 



CHAPTER 1. INTRODUCTION 3 

allowing users to turn it ON or OFF at will. It also provides users the flexibility to 

select the types of events to be measured, and the number and size of buffers to be 

used. Since the event monitor is implemented as a separate process, it can be ported 

to other versions of UNIX with ease. 

1.2 T h e s i s O u t l i n e 

The thesis is organized as follows. Following the introduction in Chapter 1, the 

reader is presented with the different techniques that are available for measuring com

puter systems in Chapter 2. The design and implementation of the event monitor 

developed for UNIX is described in Chapter 3. The installation of the event monitor 

including where to insert probes to trap some selected events is discussed in Chapter 

4. Measurements collected on a real system are presented in Chapter 5. Evaluations 

of the event monitor, and possible future enhancements conclude the thesis in Chapter 

6. Appendix A contains a sample session and thus can be used as a simple guide for 

first time users of the event monitor. Appendix B contains a detailed module design, 

which may be helpful for programmers who may want to modify the system. Appendix 

C contains the data structures of some pertinent UNIX system variables. 



Chapter 2 

Measurement Techniques 

There are three main categories of measurement tools: hardware, firmware and 

software. Each type of tools has its own characteristics, and is suitable for collecting 

different sets of data. Since the event monitor developed is one type of software tools, 

software measuring techniques are presented in details. Hardware and firmware tools 

are also presented for comparison. 

2.1 Criteria for a Good Measurement Tool 

Two of the most important criteria for a good measurement tool are its efficiency 

and accuracy. A measurement tool should be efficient, and should not impose too 

much extraneous load on the system. Equally important, the data collected by the tool 

should reflect accurately a system's workload. The accuracy of a tool is determined in 

part by its resolution, which is the maximum frequency at which events can be detected 

and correctly recorded. Inevitably, any measurement tool that does not use an external 

4 



CHAPTER 2. MEASUREMENT TECHNIQUES 5 

processor, no matter how perfect its design, will add to the system load, and the data 

collected will necessarily contain an error margin. Nevertheless, if the overhead is 

acceptable and can be measured, and the error margin is low, the measurement tool is 

still useful. Hardware tools, as discussed below, are superior to software and firmware 

tools in both efficiency and accuracy, though they are generally more expensive and 

difficult to use. One cannot, however, compare the different types of tools as if they 

have equivalent capabilities and applications. Even though some measurements can be 

taken by any one of the tools, one type is usually preferred. The characteristics of each 

type of tool are discussed in the following sections. 

2.2 H a r d w a r e T o o l s 

Hardware monitors are electronic devices connected to specific system points where 

they can detect voltage levels or pulses characterizing the events to be measured. Since 

they are completely external to the system, they do not interfere with the system's 

activities, or do they add to the system's workloads. The only energy consumption 

is at the point where the connection occurs, but the amount is usually considered 

negligible. Because of their negligible interference and high resolution - capable of 

detecting high frequency (lMHz or higher) events - their accuracy is generally higher 

than the other tools. 

Hardware monitors are connected to the system via probes. These probes are usually 
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circuits of high impedance, capable of detecting the change in voltage levels. Care must 

be taken when installing the probes, because at some critical points of the system, the 

addition of even a slight electrical load can introduce serious system disturbances. After 

the signals have been collected by the probes, they are sent through an event filter, a 

logic module which processes the signals. From the event filter, signals are then sent to 

a set of counters, one counter for each specific event. At the end of the measurement 

session, or periodically, depending on the duration, contents of the counters are written 

onto a mass storage device, usually disk or tape. The analysis of these data, a process 

known as data reductionis usually done off-line to produce reports for capacity planning. 

A hardware monitor is represented pictorially in Figure 2.1. 

Hardware monitors are more sensitive to changes of the system on a physical level, 

and since they hardly interfere with the system's activities, they are ideal for measur

ing microscopic events of high frequencies. Examples of such events are: the transfer 

rate of a channel, CPU and device utilizations and the seek activities of a disk unit. 

However, it may be difficult to relate the microscopic events to higher level events. 

Also, installation of a hardware monitor is usually very complicated, because it in

volves physical connections to the machine; hence, it will require good knowledge of 

the hardware architecture to be able to place the probes properly. 
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2.3 Firmware Tools 

Firmware tools are measurement tools that are micro-programmed into the system. 

They are not as common as either hardware or software tools. Their many character

istics, such as interference, accuracy, resolution and ease of use, are in between that 

of hardware and software tools. Installations of firmware tools are fairly complicated, 

and their costs are higher than those of software tools. 

2.4 Software Tools 

Software tools are programs inserted into the operating system to monitor its ac

tivities. This may be done in one of three ways: 

1. addition of a program 

2. modification of the software to be measured 

3. modification of the operating system 

The first method is generally preferred because it makes it easier to use the tool 

when required, and remove it when not needed. The integrity of the operating system 

is also preserved. The second method requires the insertion of codes at some critical 

points of the program to be measured. The last method is the most cumbersome, as it 
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involves rewriting part of the operating system, and is usually done because the existing 

O/S does not provide some of the necessary data. 

Since a software monitor competes for resources with the rest of the system, it 

introduces interferences. In particular, the data collected by the software monitor, 

which is generally large, has to be stored in main memory, and written out periodically 

onto secondary storage devices, and thus interrupting the normal I/O activities of 

the system. The collection and compilation of statistics also consume CPU time. The 

design of the software monitor can greatly influence the above factors. A good software 

tool should satisfy the following requirements: [Kole7l] 

• it should be able to extract quantitative and descriptive data from the system. 

• it should require as little modification to the operating system as possible. 

• its data collection techniques should not alter the workload characteristics and 

hence the performance of the measured system. 

• it should require as little memory as possible. 

Due to the amount of interference, software tools are only good when measuring 

events of a much lower frequency. It is appropriate for obtaining descriptive and quan

titative data, such as page table entries and file access information. Within the software 
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tools domain, there are two distinct measurement techniques: event detection and event 

sampling, which are discussed in the following sections. 

2.4.1 E v e n t D e t e c t i o n 

An event in the computer system is defined to be a change in the system's states. 

Examples of events can be the start and end of I/O operations, users logging on/off 

the system and the recognition of a page fault. 

In event detection, a piece of software, known as an event monitor, is inserted 

into the operating system, which is capable of collecting and compiling information 

when an event occurs. Special code, commonly known as probe or hook, are also placed 

strategically in various spots of the operating system. When an event of interest occurs, 

this code will cause control to be transferred to the monitor routine. Inside the monitor, 

relevant information are collected and written into a buffer area, which is a temporary 

storage. Depending on the size of the buffer, and the frequencies of events, the buffer 

is emptied periodically onto a secondary storage device. This technique preserves the 

order in which the events occur and provides the necessary data associated with each 

event. Detailed and accurate workload characterizations can thus be obtained. 

Since an event monitor usually deals with a large volume of data, buffer space is 

extremely critical. In most machines, buffer space is limited, and hence writing to 

secondary device has to be done frequently. When an event occurs, if the buffer is full 
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but the transfer of its contents has not been completed, then the question arises as to 

whether the system should wait for the completion of the transfer. If the system waits, 

it will be slowed down appreciably; if not, some event data may be lost. It is up to the 

implementor to decide how to handle this situation. 

2.4.2 E v e n t S a m p l i n g 

Event sampling is a statistical approach to measuring the behaviour of a computer 

system. Instead of measuring every event as it occurs, this method collects only se

lected samples for analysis from which one can usually estimate, with a high degree of 

accuracy, parameters that can characterize the activities of the computer system. 

The main advantage of sampling is that it produces a much smaller set of data, 

thus reducing the overhead and simplifying its analysis. The problem of buffer man

agement is also less critical. The amount of interference is comparably lower than event 

detection. 

There are two types of sampling techniques, count sampling and time sampling. In 

count sampling, a measurement routine is periodically invoked after a fixed number 

of predefined events have occurred. The more common technique is time sampling, 

where measurement routines are invoked at pre-specified time intervals. Sampling 

intervals can be constant or random. Random sampling is particularly useful when the 

distribution of the data is unknown. 



CHAPTER 2. MEASUREMENT TECHNIQUES 12 

Sample size has to be fairly large in order that the data collected be representative. 

Sample interval should be short such that the distribution of workload is homogeneous. 

Sampling is suitable for collecting resource usage data, and particularly those data in 

which the sequencing of events is unimportant. 



Chapter 3 

Event Monitor 

This chapter discusses the design and implementation of the event monitor for the 

UNIX operating system. Issues of importance are: the implementation environment, its 

buffer management scheme, data structures, process synchronization, critical sections, 

security measures, compatibility and dependability. For the purpose of brevity, the 

term monitor is henceforth used synonymously with event monitor. 

3 . 1 E n v i r o n m e n t 

3.1.1 Hardware 

The monitor was implemented on a 68000 based SUN workstation1 named ubc-

andrew. It is one of the early SUNl workstations which SUN Microsystems no longer 

manufactures. Even though the implementation did not involve the manipulation of 

the very low level machine architecture, a knowledge of its structure is useful when 
1 S U N Workstation is a trademark of Sun Microsystems Inc. 
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CHAPTER 3. EVENT MONITOR 14 

designing the monitor and making modifications to the UNIX kernel. 

The SUN 68000 Board uses two buses: an internal synchronous bus for communi

cating with local memory and I/O devices, and the Multibus system bus for referencing 

additional memory and offboard I/O devices. Seven levels of interrupts, numbered 1 

through 7, are recognized by the SUN processor. Level 7 has the highest priority, and 

level 1 has the lowest. Interrupts are acknowledged and processed for all priority levels 

greater than the current processor priority level contained in the 68000 status register. 

ubc-andrew has 1 Mbyte of main memory. There is a Memory Management Unit 

(MMU) in the workstation which provides address translation, protection, sharing and 

memory allocation for multiple processes executing on the 68000 CPU. The MMU 

consists of a context register, a segment map and a page map. Virtual address from 

the CPU are translated into intermediate addresses by the segment map and then into 

physical addresses by the page map. 

The page size is 2048 bytes, the segment size is 32K bytes (giving 16 pages per 

segment), and up to 16 contexts can be mapped concurrently. The maximum logical 

address space that can be mapped simultaneously is 2M bytes. 

3.1.2 Operating System 

Inasmuch as monitor is one type of software tools, it is to be inserted into the 

operating system. The target operating system is UNIX 4.2bsd. A very brief overview 
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of the relevant aspects of the operating system is presented below. 

The UNIX O/S provides the processes abstraction. A process is a program in 

execution. The system starts up with the init process as process 1, and the page 

daemon as process 2. New processes can be created by the system fork command. 

There are two types of processes: those that reside in the user space, and those that 

are within the kernel. These two types of processes do not share the same address 

space; hence, variables cannot be shared between the two layers. Kernel processes have 

access to all kernel variables, but each user process has its own stack for variables. 

Communication amongst user processes is via pipes and sockets, while communication 

between the layers is via system calls. Special kernel routines such as copyin and 

copyout are required to copy variables in and out of the kernel space. 

Associated with each process is a data structure called the process structure. (See 

Appendix C). The process structures of all running processes are linked together in a 

process table. Each process structure contains everything that is necessary to know 

about a process when it is swapped out, such as its unique process identifier (an integer), 

scheduling information and pointers to other control blocks. Associated with each user 

is a user structure, which contains information such a user id, group id and resource 

usages for each user. (See Appendix C). These two structures provide most of the 

required data for monitor. 

Memory of the system is available in the forms of buffers, linked up in three separate 
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queues. The first queue, which contains all the super blocks of the file system, must 

be kept permanently in main memory. The second queue contains the cache, while 

the third queue contains I/O buffers for different devices, and also some empty buffers. 

Buffers for monitor usage come from the third queue. The structure of a UNIX buffer 

can be found in Appendix C. 

3.1.3 Implementation Language 

The language used to develop monitor is the C programming language. The choice 

of this language is obvious, as almost the entire UNIX operating system is written in C. 

Initially, it was felt that parts of monitor may have to be coded in assembler language 

to increase efficiency, but as yet, it has not been found necessary. 

3.2 Structure of the Event Monitor 

3.2.1 Overall Design 

The monitor is implemented partly as a user process, and partly as a kernel process. 

Because most of the events of interest, such as page faults and disk I/Os, happen within 

the kernel, the processing of events is most appropriately done within the kernel. To 

improve efficiency, the large quantity of I/Os and buffer management, are also handled 

within the kernel. There is a user command interface at the user level, which processes 

user commands, and then does a context switch to pass parameters into the kernel 

portion of the monitor. Within the kernel, the probe routine awaits the occurrences of 
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events. The inter-relationship between monitor and the rest of UNIX is illustrated in 

Fig. 3.1. A detailed module design is given in Appendix B. 

3.2.2 Buffer Management 

Buffer management is handled entirely within the kernel. The monitor allows 

users to select the number and size of the buffers, but some knowledge of the hardware 

architecture is essential when optimal usage of buffers is desired. For instance, with the 

SUN architecture, blocks are always allocated in size of 2048 bytes. Hence, it is only 

sensible to choose buffer size to be multiples of 2048. The number of buffers should 

also be chosen wisely, such that there is always an overlap between filling buffers and 

writing them out onto secondary storage device. The amount of available memory on 

a machine also governs the number of buffers to be used. For example, with a machine 

that has only one megabyte of memory, it is not logical to allocate more than 16K bytes 

for monitor usage. With the preceding considerations in mind, monitor is designed to 

supply suitable default values for buffer size and number of buffers for users who do 

not have an in-depth knowledge of the machine architecture. 

At the outset of monitor, buffers are allocated and linked up cyclically within the 

kernel. The ring approach is chosen over maintaining two separate link lists of empty 

and full buffer queues, because it simplifies the task of pointer re-assignments when 

moving a buffer from the empty queue to full queue, and vice versa. Only three 
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pointers are maintained at any one time: pointer to the current buffer, pointer to the 

logical head of the entire buffer pool, and pointer to the logical head of the full buffer 

queue. The current pointer, mp, points to the buffer being used to collect data. The 

full pointer, fp, points to next buffer to be written out onto the secondary device. 

Pictorially, the buffer management system of monitor is represented in Fig. 3.2. 

Figure 3.2: Buffer Management Scheme of monitor 

The first 10 bytes of each buffer are reserved for administrative purposes. The 

actual data storage area is thus bufsize - 10. The administrative information required 

is summarized in the monitor_buf structure in Fig. 3.3. The filled field is a status flag, 
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struct monitor_buf { 
short filled; 
struct buf *nextbp; 
struct monitor_buf *nextmp; 

Figure 3.3: monitor_buf structure 

turned on when the buffer is full, and off when the buffer is empty. This flag tells 

the output routine if there are more buffers to write, and the probe routine if there 

are empty buffers to use. Two separate pointers are also required to point to the next 

buffer structure. The necessity of these two pointers may need some explanation. From 

Appendix C, it can be seen that the actual data area of a UNIX buffer is at the address 

pointed to by the field b.addr. The monitor buffer's administrative data starts at this 

address. The address of the entire buffer structure, however, must also be maintained, 

because the system needs the address when releasing the buffer storage. 

A buffer is written out onto disk or tape as soon as it gets filled. When the monitor 

is turned off, all buffers are deallocated and returned to the system for other usages. 

3.2.3 Data Structures 

The organization of data collected by monitor is illustrated in Fig. 3 . 4 . 

A header record is written for each invocation of the monitor. Its purpose is for 
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Figure 3.4: Layout of data collected by monitor 

identification of the system being measured, and to record the start time of monitor. 

This information is useful for the capacity planner when analyzing the event data. The 

structure of the header record is shown in Fig. 3.5. 

As each event occurs, an event record is written into the buffer storage. Structure 

for the event record is shown in Fig. 3.6. There are two parts to an event record, 

fixed and variable. The fixed portion contains pertinent information for each event, 

such as event id, user id, process id, real time and cpu time. The event id is com

puted as event_group*256+event_type, where event_group is one of the possible events; 

event_type is either the start or end of the event. (See Table 4.1). The event id is a 

compact way to represent the event_group and event_type. The variable portion is for 

auxiliary information, and varies for each type of event. A table of events measured on 

a SUN workstation and associated auxiliary information can be found in Chapter 4. 

The trailer record is another time stamp, indicating the termination time for mon-
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struct header_record { 
short month; 
short day; 
short year; 
short hour; 
short min; 
short sec; 
short userno; 
char username[32]; 
char version [16]; 
short cpuid; 
short memory; 
short nusers; 
short mon_version; 

Figure 3.5: The Header Structure 

struct event_record{ 
short len; 
short event_id; 
short user_id; 
short pid; 
unsigned long cpujime; 
unsigned long real_time; 
short *auxinfo; /* may or may not present */ 

Figure 3.6: The Event Record 
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itor. The difference between termination time and start time is the elapsed time for 

the monitor session. 

Associated with each monitor buffer is a 2-byte field, lost-event, which counts the 

number of events lost while waiting for the next available buffer. If lost.event is too 

high, the capacity planner may select to discard the buffer of event records for not 

being representative of the entire workload. 

3.3 P r o b e R o u t i n e 

The probe routine is the heart of monitor, awaiting the occurrences of events. 

There are two entry points to this routine: probe to be called from the user level, and 

sys-probe to be called from the kernel level. The two entry points are necessary, because 

one would like to trap user level events as well as kernel events. The tasks for probe 

can be summarized as follows: 

1. check that monitor is turned on. 

2. check that the particular event is selected to be monitored. 

3. if no empty buffers is available, increment lost.events. 

4. otherwise, fill an event_record and add to current buffer. 
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3.4 Process Synchronization 

For maximum efficiency, monitor strives to completely overlap the tasks of filling 

buffers with event records and writing buffers out onto secondary devices. There are 

two separate routines to assume the two tasks: sys_probe to fill buffers, and writeJbuf 

to invoke an output routine to write buffers out. The two processes are synchronized 

by two primitives sleep and makeup. Depending on the workload of the system, the 

type of events to be measured, the speed of I/O drivers, and the number of buffers 

available, one process may have to wait for signals from the other process before it 

can continue. For instance, if the events of interest occur at such a rapid pace that 

all available buffers are filled, then sysjprobe has to wait for empty buffer before it can 

collect more event records. The proper calling sequence for these primitives are: 

sleep(chan, prio) 

caddr_t chan; 

int prio; 

wakeup(chan ) 

caddr_t chan; 

The first argument of sleep is by convention the address of a kernel data structure, 

and the second argument is a scheduling priority. When a process goes to sleep, it 
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gives up the processor until a wakeup occurs, at which time the process enters the 

scheduling queue at priority prio. The priority, if negative, also prevents the process 

from being prematurely awakened by some exceptional event, such as a signal. Hence, 

when sysjprobe has to wait for empty buffers, it goes to sleep until it is waken up by 

write-buf when empty buffers become available. 

3.5 Critical Section 

The critical section problem arise when several processes try to asynchronously 

change the contents of a common data area. The updated area may not, in general, 

contain the intended changes if protection against contention of competing processes is 

not provided. In the case of monitor, the common data area is the buffer storage. To 

safeguard the buffer area from contention when it is being filled with an event_record, 

its interrupt level is raised to level 6, and the old level is restored when it is done. In 

UNIX 4.2bsd, the routines splO, spll, ... spl6 can be used to raise or lower the interrupt 

levels. 

3.6 Security Measures 

Presently, monitor is designed such that only the super-user of the system can 

invoke it. Of course, it can easily be modified to give access rights to any user. The 

potential danger of the second approach, however, cannot be overlooked. If the user 
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of monitor does not have a clear concept of the nature of the events being measured, 

system workload can increase appreciably and system performance will deteriorate. 

Since the main objective of monitor is to collect data for performance evaluation studies, 

it is best to grant access permission only to a user with the above objective in mind. 

3.7 Compatibility and Dependability 

The data collected by monitor is designed mainly to be used by the capacity plan

ning package condenser, developed by Jee Fung Pang as his master thesis for the 

Department of Computer Science, University of British Columbia [Pang86]. The event 

record may have to be modified if it is to be used by other packages, but the tasks 

should be minimal. 



C h a p t e r 4 

I n s t a l l a t i o n 

This chapter presents the installation procedures of the event monitor on a UNIX 

operating system running on a SUN workstation. To trap events, probes have to be 

inserted in strategic locations of the operating system. For illustrative purposes, six 

different types of events are selected to be measured and the locations of probes for 

those events are also discussed. 

4.1 Installation Procedures 

The event-monitor was developed on a 68000 based SUN workstation running 

UNIX 4.2 bsd, but it can easily be transported and installed in other compatible UNIX 

operating systems. The installation procedures are outlined as below: 

1. Copy the object modules for the event monitor, which includes both the user-

level and kernel portions, to the target machine. The object modules for these 

routines are collectively stored in a file monitor.o, with its associate source in file 
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monitor.c, and header file monitor.h. 

2. Make entries in the system entry table for the two kernel routines that are also 

callable by users from the user-level. These routines are setmonitor and probe, 

and they take 6 and 5 arguments respectively. 

3. Make entries in the system C library for the above two routines, such that they 

can be invoked from the user level of the operating system, which is written in 

C. 

4. Modify the kernel to trap the selected events. See Sec. 4.2. 

5. Recompile the UNIX kernel linking the resident kernel portion of the event mon

itor with the rest of the system. 

6. Install and load the new UNIX kernel. 

If the installation is successful, and the target machine meets the minimum memory 

requirement, then monitor is ready to be used. Refer to Appendix A for a user guide. 

4 . 2 P r o b e s 

In order to trap the selected events, probes have to be inserted at the precise loca

tions in the operating system where the events occur. As mentioned previously, there 

are two separate entry points to the probe routine: from the user level and from the 
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kernel level. The calling sequence to these two entry points are: 

probe (event-group, event-type, auxinfo, auxlen); 

int event-group; 

int event-type; 

short * auxinfo; /* pointer to auxiliary info */ 

int auxlen; /* length of auxiliary info */ 

sys-probe (event-group, event-type, auxinfo, auxlen, kern); 

int event-group; 

int event-type; 

short * auxinfo; 

int auxlen; 

int kern; /* 1 if it's kernal event; 0 otherwise */ 

There are flags within the kernel, such as KERN_FORK, KERN.PAGEIN, 

KERN_TRANS, which are set when the corresponding event is turned on. Before the 

sys_probe routine is invoked, the appropriate flag is checked to insure that the event to 

occur is selected to be measured. This way, unnecessary invocations of sys_probe can 

be avoided. For example, to trap a pagein, the following statements are inserted into 

the operating system at the precise location: 
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if ( K E R N J P A G E I N ) 

s y s _ p r o b e ( K E R N J P A G E I N , S T A R T _ E V E N T , & p f,2 , l ) ; 

4.3 E v e n t s t o b e M e a s u r e d 

For illustrative purpose, six different types of events are selected to be measured. 

They are transactions, logins/logouts, pageins, pageouts, disk I/Os and forks/exits. 

The events and their associated auxiliary information are summarized in Table 4.1. 

Event Group Event Description Associated Types Aux info Auxlen 

1 TRANSACTION start, end none 0 
2 LOGIN/LOGOUT start, end none 0 
3 PAGEINS start, end page no. 2 
4 PAGEOUTS start, end page no. 2 
5 DISK I/O start, end device no. 2 
6 FORK/EXIT start, end none 0 

Table 4.1: Event Descriptions and their Auxiliary Information 

The following sections give a brief description of how UNIX handles the different 

events, and the precise locations of the different probes. The descriptions are based on 

the system UNIX 4.2bsd. 
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4.3.1 Transactions 

A transaction is defined as an interaction with the system, whether it is input 

or output. For instance, when the user issues a shell command, he is initiating a 

transaction. When the command is acted upon by the system, the transaction is 

terminated. The system handles input differently, depending on the modes it is in. In 

NORMAL mode, such as within the shell, input is not processed until a carriage return 

is encountered. But in RAW and CBREAK modes, which are used within editors, 

input is processed a character at a time; character is also output without processing. 

The START_EVENT for NORMAL mode is therefore different from the other modes, 

and occurs when a carriage return is entered. The END_EVENT for all modes is the 

output of the first character. 

Probes are inserted in ttyJnput and tty^output in the file tty.c. The statistics col

lected at START J EVENT and END_EVENT can be used to calculate system response 

time and users' think times. 

4.3.2 Logins and Logouts 

On each terminal port available for interactive use, init forks a new process, which 

attempts to open the port for reading and writing. The open succeeds when the 

terminal is turned on, or a telephone call is accepted by a dial-up modem. The program 

getty is then executed by init. 
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Getty initializes terminal line parameters and prompts the user to type a login 

name. The login name is passed as an argument to another program, login. Login 

encryptes the typed password and compares it with the encrypted password string for 

the login name found in file /etc/passwd. If they are the same, login sets the uid of 

the process to that of the user logging in. The STARTJEVENT of the LOGINOUT 

probe is placed at the location after the uid is set, in file login, c. Login then executes 

a shell, a command interpreter. When the user logouts, the shell process dies. The 

END JE VENT of the LOGINOUT probe is placed in the routine goodbye (), in the file 

sh.c. 

The LOGINOUT probes are the only two probes that are placed in the user level. 

The login and logout events usually occur less frequently than the other events. 

4.3.3 Paging 

Memory pages are arranged into frames, which are represented by the core map or 

cmap. This map records the disk block corresponding to a frame that is in use by a 

process, and also maintains a free-list of frames that are not used by any process. 

UNIX 4-Sbsd uses a modified Global Clock Least Recently Used (LRU) algorithm for 

memory management [Quar85]. A software clock hand linearly and repeatedly sweeps 

all frames of main memory that are available for paging. The reference bit of a page 

is marked invalid, i.e., reclaimable, when the clock hand sweeps over it. If the page is 
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refereneced before the clock hand next reaches it, a page fault occurs, and the page is 

made valid again. However, if the page has not been referenced when the clock hand 

reaches it again, it is reclaimed for other use. Various software conditions are also 

checked before a page is marked invalid. 

Pagein occurs when a process need a page, and the page is not mapped into a 

memory frame. This causes the kernel to allocate a frame of main memory, map it 

into the appropriate process page, and read the proper data into it. Pageins do not 

necessarily mean a disk I/O. If the required page is still in the process' page table, but 

has been marked invalid by the last pass of the clock hand, it can be marked valid 

and used without any I/O transfer. Pages can similarly be retrieved from the memory 

free-list. If the page has to be fetched from disk, it must be locked during the I/O 

transfer to prevent data from being corrupted. The pagein probe is inserted in the 

pagein routine in the file vm_page.c. The probe is to catch only those pagins that 

involve a disk I/O. 

The pageout algorithm is the LRU clock hand, which was described earlier. The 

algorithm is implemented in the pagedaemon, which is process 2. The pagedaemon's 

purpose is to keep the memory free-list large enough, such that paging demands on 

memory will not exhaust it. This process spends most of its time sleeping, but a check 

is done several times per second to see if action is necessary. Whenever the number of 

free frames falls below a threshold, the process is awakened; thus, if there is always a 
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lot of free memory, the pagedaemon imposes no load on the system because it never 

runs. 

With systems having a large main memory, the clock hand may take a long time 

to complete a cycle. Thus the second encounter of the hand with a given page has 

little relevance to the first encounter, and the pagedaemon will have difficulty finding 

reclaimable page frames. In 4.3bsd, a second clock hand, which follows behind the first 

clock hand, reclaims pages that are marked invalid by the first hand, (see Fig. 4.1) 

4.2bsd clock hand 4.3bsd clock hands 

Figure 4.1: The LRU clocks hands for UNIX 4.2bsd and UNIX 4.3bsd 

The pageout probe has been placed to trap the reclamation of pages. It is inserted 

in the pageout() routine in the file vm_page.c. 
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4.3.4 Disk I/Os 

This category of events include I/O associated with the block devices, namely disk 

and magnetic tapes. Attached to each device driver is a list of buffers, with each buffer 

assigned a device name and a device address. This list of buffers also acts as a cache 

for the block devices, as it is always searched first for a desired block on a read request. 

If the block is found, the data is made avialable without any physical I/O. If the block 

is not found, the least recently referenced buffer is used for the transfer. On a write 

request, the correct buffer is located in the cache and marked "dirty". Physical I/O is 

deferred until the buffer is reclaimed for a read request. 

Buffer I/O routines are collectively stored in file ufsJ)io.c. Probes are inserted in 

bread(), breadaf), bwritef), and bdwritef). Only events that cause actual physical I/Os 

are being trapped. 

4.3.5 Forks and Exits 

Processes in UNIX are created by the fork system call. During a fork, a new entry 

is allocated in the process table. A process structure is created for the new process (the 

child process), and all relevant information are copied from the parent process. This 

copying of information preserves open file descriptors, user and group identifiers, signal 

handling, and other similar properties of a process. The process id of the child process, 

however, is different from that of its parent. Fork returns 1 to the child process, and 0 
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to the parent process. 

A process is terminated by the exit system cal l . When a process is to be terminated, 

its parent is not i f ied, its resource ut i l izat ion statistics are recorded, and al l resources 

al located are returned to the system. 

For our purpose of capacity p lanning, F O R K / E X I T is treated as a single event. 

The S T A R T J E V E N T is F O R K , and its probe is inserted in the forklf) routine in 

the file kernjork.c, after the process structure is allocated and information copied. 

The E N D J E V E N T is E X I T , and its probe is inserted in the exit() routine in the file 

kern.exit.c. Forks and exits of processes happen very frequently wi th in the UNIX 

operat ing system; hence, this event usual ly generates a large amount of event data. 



C h a p t e r 5 

T e s t i n g 

As a final testing of the event-monitor, it is ported from the development system, 

which is a SUN1 workstation running UNIX 4.2bsd version 1.4, and installed on a 

SUN3 running UNIX 4.2bsd version 3.2. The event-monitor was turned on to measure 

the system for approximately 6 hours. Data collected were analyzed by the capacity 

planning package condenser. In addition, benchmarks were set up to determine the 

interference of the monitor on the system. 

5 . 1 M e a s u r i n g a R e a l S y s t e m 

The system to be measured is a SUN3/260 running UNIX 4.2bsd version 3.2, known 

as ubc-csgrads. It is a production system that supports most of the research work of the 

graduate students in the Computer Science Department at UBC. The event-monitor 

was installed overnight, and was turned on between 9:00 a.m. to 3:00 p.m. on Monday 

April 6, 1987 to measure the six types of events as outlined in the previous chapter. 
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The results were analyzed by condenser, which reports system utilization on a per user 

basis, as well as overall system performance. Only overall system performance patterns 

and those of three classes of users (light, medium, heavy) of the ubc-csgrads are reported 

here. The following is a a brief description of the different types of statistics collected. 

For more in-depth discussions, refer to Jee Fung Pang's thesis [Pang86]. 

Definition of statistics: 

• Response time is the average response time for all interactive users in the class. 

• Think time is the average think time for all interactive users in the class. 

• True I/O are those I/O operations (including queue wait times) not caused by 

page faults. 

• True CPU are CPU usage excluding any CPU time for page faults. 

• Physical Page Fault is the number of page faults that actually cause one or more 

I/O operations. 

• Virtual Page Fault is the number of page faults that do not cause any I/O oper

ations at all. 

• Login is the average session length of a terminal user, or the average length of a 

child process. Logout is the average time between logins, i.e. the average time 

between two terminal sessions or the average time between two child processes. 
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• CPU Utilization is the percentage of time that the CPU is utilized during the 

measurement session. 

• Disk Utilization is the percentage of time that the Disk is utilized during the 

measurement session. 

• Page Fault Rate is the number of page faults per second. 
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The following is a summary of measured statistics for ubc-csgrads. 

Monitor started on 04/06/87 09:00:36 

Monitor Version: 1 on 4.2BSD 

Monitor User Name: schan Monitor User Number: 1022 

CPU: ubc-csgrads Memory: 8 Megabytes Maximum users: 12 

Elapsed time = 22377.760 seconds 

Number of events processed = 208536 

Total blocks/buffers read = 1804 

System Parameters Light Medium Heavy Overall 

Response time (sees) 2.748 6.946 6.870 3.312 
Think time (sees) 9.393 76.050 28.517 13.871 
True CPU (ms) 1.318 36.927 8017.077 3440.912 
True I/O (ms) 6411.319 6681.434 9972.275 9080.095 
Physical Page Fault (number) 0 0 2 2 
Virtual Page Fault (number) 198 130 301 629 
Login (sees) n/a n/a n/a 10.4142 
Logout (sees) n/a n/a n/a 131.6857 

Table 5.1: Summarized measurement results of ubc-csgrads 

The global statistics are given in table 5.2. They indicate that the bottleneck of 

the system is probably the disk, with a utilization of 57.9837 percent, as compared to 

the CPU, which has a utilization of only 43.4541 percent. The system has virtually 

no page faults (0.0282 page fault/sec), which is probably due to the relatively large 
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Statistic True Virtual Total 

CPU Utilization (percent) 
Disk Utilization(percent) 
Page Fault Rate (no. page faults/sec) 

43.4539 
57.9837 
0.0001 

0.0002 
0.0000 
0.0281 

43.4541 
57.9837 
0.0282 

Table 5.2: Global Statistics of ubc-csgrads 

physical memory of the machine (8 Megabytes). The workload of the system during 

the measurement session was considered heavier than normal, since it was end of term 

and students were finishing term projects and assignments. However, it should be noted 

that the statistics are the mean over the 6-hour session, including lunch hours. Peak 

loads during small intervals in the session will have much higher utilization figures. 

Nevertheless, the system was not saturated. The results suggest that the system can 

accommodate more users than its current maximum. The number of lines connected 

to ubc-csgrads via the switch can also be increased from the present 12. 

Classification of users into the three classes (light, medium and heavy) is based on 

CPU usage. One would expect response time will increase from light to heavy users. 

It is, however, not necessarily the case. In the execution of a fork, for example, the 

parent process has to wait for its child process to die, and hence a large response time, 

but it is not using any CPU. Similarly, any process that initiates a pipe also has to 

wait for the other process to complete before exiting. This will explain the average 
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response time for the medium user (6.946 sees) which is slightly higher than the heavy 

user (6.870 sees). 

The true I/O times collected included disk wait times. When calculating disk 

utilization the queuing times have been removed. 

5.2 Benchmarks 

Benchmarks are artificial and reproducible workloads processed by the system. 

They enable meaningful comparison of system performance before and after system 

changes by providing the same workload for each case. To measure the interferences 

added to ubc-csgrads due to the installation of monitor, two sets of benchmarks were 

executed on the system under three different conditions: 

1. monitor is not installed. 

2. monitor installed but not turned on. 

3. monitor installed and turned on with six events selected to be measured. 

The contents of the two benchmark files are : 

Benchmark I: 

• echo 'date' Begin MIXTEST 'NUSERS' 

• mtime "cc -DSYS3 -c driver.c" & 

• sleep 10 

• mtime -u2 "ed < edscript" &; 

• sleep 5 
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• mtime "sort -r words -o /dev/null" & 

• sleep 50 

• mtime "nroff -man nroff.l > /dev/null" &; 

• sleep 60 

• mtime "cp editor.c editor.cc" & 

• sleep 24 

• mtime "pwd" & mtime "cd /tmp" &: fork 5 &; 

• sleep 15 

• mtime "who" & mtime "tsh" & 

• sleep 17 

• mtime "cc -DSYS3 -c editor.c" & 

• mtime "cat driver.c | tr a — z A — Z > driver.cc" 

• wait 

• echo 'date' End MIXTEST 'NUSERS' 

Benchmark II: 

• date 

• mtime "cc -DSYS3 driver.c -o driver" & 

• mtime -u4 "ed < edscript" & 

• sleep 5 

• mtime "sort -r words -o /dev/null" &; 

• mtime "nroff-man nroff.l > /dev/null" & 

• mtime "cc -DSYS3 editor.c -o editor" & 

• sleep 4 
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• mtime "pwd" & mtime "cd /tmp" &; fork 2 0 & : 

• mtime "who" &; mtime "tsh" & 

• mtime "cp editor.c editor.cc" & 

• mtime "cat driver.c | tr a — z A — Z > driver.cc" Sz 

• wait 

• date 

The two benchmarks differ in the order in which the commands are executed, the 

number of users executing each command, and the time interval between each com

mand, mtime is a program written in C that will spawn subshells to time the execution 

of a given command by any number of users as given by the -u option. Each user is in

dependently running the command the number of times as indicated by the -r option. 

mtime is modelled after the standard UNIX time command, and enjoys comparable 

accuracy. Internally, /bin/sh is called to excecute the "command", and the subprocess 

times are returned via the system call time. 

The two sets of benchmarks were executed on a single-user S U N 3 machine, ubc-

csfs2, with no other workload on the system. Each benchmark was executed ten times, 

and the CPU time averages for each command were used in the comparison. Variability 

in response times is not reported, because response times depend largely on the timing 

and the order that the commands were executed in. Results of the benchmarks are 

summarized in table 5 .3. The three conditions that the benchmarks were executed in 

are as outlined earlier. 
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command condition 1 condition 2 condition 3 

cc -DSYS3 -c driver.c 7.832 7.836 7.835 
ed edscript 0.133 0.134 0.133 
sort -r words 0.149 0.150 0.152 

nroff -man nroff.l 3.967 3.967 3.968 
cp editor.c editor.cc 0.117 0.117 0.118 

pwd 0.084 0.083 0.089 
cd /tmp 0.017 0.016 0.015 
who 0.162 0.164 0.164 

cc -DSYS3 -c editor.c 12.048 12.047 12.049 
cat driver.c driver.cc 0.534 0.535 0.535 

Table 5.3: Variability in CPU time (sees) under the three conditions 

From the tabulated results, it can be seen that the largest increase in CPU time 

from conditon 1 to condition 3 is 5 msec, in the pwd command. In some commands, 

however, the CPU time in condition 3 is even lower than in condition 1. With most 

commands, whether it is a large compilation or text formatting job, or a simple shell 

command, there is hardly any variability at all. The accuracy of these results depends 

on the accuracy of the shell time command, but they are good indications that the 

event-monitor does not increase the system load noticeably. 



Chapter 6 

Concluding Remarks 

This thesis discusses the design and implementation of an event-monitor to be 

used in a UNIX operating system to trap and record events as they occur. The data 

collected is used for capacity planning. The event-monitor was developed on a SUN1 

workstation, and ported to a SUN3. The tool is evaluated based on four criteria: scope, 

interference, accuracy and portability. Suggestions for possible future enhancements 

conclude the thesis. 

6.1 T o o l E v a l u a t i o n 

6.1.1 Scope 

The scope of a measurement tool is the classes of events it can detect. Events can 

be macroscopic, for example, the number of users logging on, or microscopic, such as 

the utilization of disks and cpu. Obviously, the wider the scope of a measurement tool, 

the greater is its range of applications. As seen in the earlier chapters, the scope of 
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monitor is very wide. Probes can be inserted in any part of the kernel, as well as in user 

programs. The only limitation with monitor is that it cannot be used to probe events 

lower than the kernel layer, such as hardware events that occur at the instruction and 

macro layers. Being a software tool, it is also not suitable to measure events that occur 

with very high frequency. 

6.1.2 Interference 

Every measurement tool extracts energy from the system. Interference can be 

classified in terms of resources and memory utilization. For monitor, the amount of 

interference introduced depends heavily on the workload, and on the types of events 

selected. When designing monitor, special care was taken to allow the tool to make 

optimal use of resources available. For instance, user can select the number and size 

of buffers to suit the particular system. Output data can reside on disk if space is 

available, but they can also be stored on magnetic tape to conserve space. Interference 

introduced on ubc-csgrads was found to be minimal in the previous chapter. 

6.1.3 Accuracy 

The accuracy of a tool is often reflected by the error affecting the data collected. 

Due to the interference caused by the event-monitor, the time statistics - cpu time and 

real time - collected in the event record necessarily constitute an error margin, which 

fortunately should be constant for all types of events. Since events are always probed 
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in pairs, STARTJEVENT and ENDJEVENT, analysis performed using the differences 

in statistics between each pair of probes would eliminate the effect of the overhead. 

Generally, if probes are well-placed within the operating system, data collected by 

monitor is very accurate, since events are always trapped as they occur. 

6.1.4 Portability 

monitor is implemented mainly as an individual kernel process, which functions 

independently from the rest of the system. It does not depend on the very low level 

registers or machine architecture. As a result, monitor can easily be ported to other 

systems running compatible versions of UNIX. For this thesis, monitor was initially 

developed on a SUNl workstation running UNIX 4.2bsd version 1.4, but was later 

installed on a SUN3 running UNIX 4.2bsd version 3.2. 

6 . 2 F u t u r e E n h a n c e m e n t s 

This event-monitor is designed to run on a centralized system with a single pro

cessor. With the advent of distributed computing and computer systems with multiple 

cpus, there is a need for measurement tools for the more complicated systems, moni

tor can be adapted to collect statistics for systems with multiple cpus, and maybe to 

measure the traffic flow across networks. 
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Appendix A 

User Guide 

This appendix serves as a quick user guide to the user command monitor. An 

overview of the command line options is given, followed by a sample session with the 

monitor. 

The command line options for monitor are as follows: 

monitor -on | -off | -status | -help [-buffer nbufs bufsize] [-event evtnos] [-file fname] 

The meanings of the options are elaborated below. Options separated by commas 

are equivalence. 

-on | -off | -status, -s \ -help, -h 

One of the above options must be selected, otherwise the monitor command is void. 

-on is to turn monitor on, -off is to turn monitor off, -5 to query the status of the 

monitor, and -h prints out help information. 
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-buffer, -b nbufs bufsize 

This is an optional parameter. It takes two arguments, number of buffers (nbufs) 

and size of each buffer (bufsize) to be used by monitor. If not given, defaults suitable 

to the particular system is supplied. 

-events, -e evtnos 

This is also optional. Monitor can accommodate up to pre-defined maximum num

ber of events. Evtnos can be a list of event-groups separted by blanks. Currently, only 

events 1 to 6 are defined. They are, respectively, transaction, login/logout, pagein, 

pageout, disk I/O and forks/exits. Only those events of the corresponding evtnos are 

being monitored. 

-file, -f filename 

An optional parameter, which takes an output file name as an argument. If the 

output file exists the user will be queried before it is overwritten. If the file does not 

exist, it will first be created. The default output file is monitor.out. 

A sample session is given below. User's input is given in bold face. 

% monitor -on -b 2 2048 -e 1 3 

MONITOR version 1.0 - April 1987 

Number of buffers to be used : 2 
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Size of each buffer (bytes) : 2048 

Output file name : monitor.out 

Events to be monitored are : 

1. Transaction 

3. Pagein 

% monitor -on 

MONITOR is already turned on 

% monitor -s 

Status of MONITOR version 1.0 - April 1987 

Number of buffers being used : 2 

Size of each buffer (bytes) : 2048 

Events being monitored are : 

1. Transaction 

3. Pagein 

% monitor 

Usage: monitor -on | -off | -s | -h [-b nbufs bufsize] [-e evtnos] [-f filename] 

% monitor -off 

MONITOR is turned OFF 

Event data collected in file monitor.out 

% 



Appendix B 

Module Design 

This appendix gives a brief module design of the event-monitor. It may serve as a 

guide for programmers who may want to modify or update the system. 

There are two portions to the event-monitor, one residing in the user address space, 

and the other in the kernel address space. The relationship between the two parts is 

illustrated in Fig. 3.1. 

For the modules below, a design/execution level number is included to indicate the 

module's position in the monitor's hierarchical algorithm. A brief description of each 

module's algorithm is also included. 

User Level 

main(argc,argv) - level 0 

int argc; char **argv; 

The main program that acts as the interface between user and the kernel portion 
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of monitor. It records the startup time of the monitor, sets default values for the buffer 

size, number of buffers and the output file. It then processes the user command line, 

allowing user options to override the default values. It creates the output file if it does 

not exist, or it prompts the user if he likes the file to be emptied. If everything seems 

fine, it echoes the parameters and options of monitor that are in effect. It then forks 

a child process which does a context switch into the kernel. The parent process exits 

and dies. 

GetTime(tmbuf) - level 1 

struct timedat *tmbuf; 

It is called from the main program to return the time of day. It uses the system rou

tines gettimeofday and localtime to get and convert time to the form mm:dd:yy:hh:mm:ss. 

MapArg(arg) - level 1 

char *arg; 

It is called from the main program to return the next argument on the user com

mand line. A -1 is returned if it is an illegal argument. 

Kernel Level 
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setmonitor(tmbuf,fdes,nbuf,bsize,flag,event_on) - level 0 

struct timedat *tmbuf; 

int fdes, *nbufs, *bsize, flag, event.on; 

This is a system call, i.e., callable from the user level. It is invoked by the main 

routine in the user level. If the option is -status, the current values of mon.numbufs, 

mon.bufsize and kern_event_on are copied out to the user address space. If the option 

is -off, haltmonitor is called to stop the monitor. If the option is -on, then relevant 

system variables are set with values passed from the user level. Other routines are also 

invoked to allocate buffer storage, to write the header record, and to write out a full 

buffer when one is available. 

writebuf() - level 1 

As long as the monitor is turned on, this routine will make sure that any full buffers 

will get written out, by calling the routine dump .buffer_to_file. When the monitor is 

turned off, it also calls monitor_off to do the final clean up. 

clear_buffer(bp,bphead) - level 1 

struct buf *bp; 

struct monitor_buf *bphead; 

It clears the storage area pointed to by bp, such that it can be used for storing 
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event data. The position of the buffer within the cyclic buffer pool is preserved. 

dump_buffer_to_file() - level 2 

This routine calls the low level I/O routine rdwri to dump buffer onto a peripheral 

device, usually a disk file or a magnetic tape. The device is specified by the inode 

pointer. 

getstorageQ - level 1 

This routine transforms a UNIX buffer to a monitor buffer. The first 10 bytes of 

the monitor buffer is set aside for administrative purpose. The rest of the buffer is 

casted to type short. 

PutHeader(tm) - level 1 

timedat *tm; 

The header record is filled with the necessary information, and the sys^probe is 

invoked with HEADER as the event-group. 

haltmonitorQ - level 1 

This routine is invoked when the monitor is to be turned off. It writes the trailer 

record, resets all the kernel variables, and wakes up any buffers waiting to get filled. 
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monitor_on() - level 1 

This routine is invoked at the start of the monitor. Its main task is to allocate the 

specified storage buffers, and link them up into a cyclic pool. It initializes the current 

buffer pointer, mp, the full buffer pointer, fp, and the pseudo head of the buffer pool, hp. 

monitor_off() - level 1 

This routine is invoked at the end of the monitor session to return all the buffer 

storage areas to the system. 

probe(group,type,auxinfo,auxlen) - level 0 

int group, type, auxlen; 

short *auxinfo; 

This is another system call. It is designed to be invoked from the user layer, such 

that events of interest happening in the user address space can also be recorded. An 

example of such an event is login. 

This routine does not collect any statistics. It calls sys_probe to process the event. 

sys_probe(group,type,auxinfo,auxlen,kern) - level 1 

int group, type, auxlen, kern; 
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short *auxinfo; 

This is the central routine that processes an event-record. It first checks if buffer 

storage is available. If no buffer is available it increments the lost.events count and 

exits. It does not wait around for available buffer. If buffer is available, it collects the 

necessary information for the event_record and writes it into the buffer. When a buffer 

is filled, it wakes up the process sleeping on the full pointer fp if necessary. It then calls 

getstorage to get another buffer ready for event data. 



Appendix C 

System Data Structures 

This appendix gives the data structures of some UNIX system variables. 

/* The process structure 
* 
* One structure allocated per active 
* process. It contains a l l data needed 
* about the process while the 
* process may be swapped out. 
* Other per process data (user.h) 
* i s swapped with the process. 
*/ 

struct proc {. 
struct proc *p_link; /* linked l i s t of running processes */ 
struct proc *p_rlink; 
struct pte *p_addr; /* u-area kernel map address */ 
char p_usrpri; /* user-priority based on p_cpu and p_nice */ 
char p_pri; /* p r i o r i t y , negative i s high */ 
char p_cpu; /* cpu usage for scheduling */ 
char p_stat; 
char p_time; /* resident time for scheduling */ 
char p_nice; /* nice for cpu usage */ 
char p_slptime; /* time since l a s t block */ 
char p_cursig; 
int p_sig; /* signals pending to this process */ 
int p_sigmask; /* current signal mask */ 
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i n t p_sigignore; /* signals being ignored */ 
in t p_sigcatch; /* signals being caught by user */ 
in t p_flag; 
short p_uid; /* user i d , used to direct tty signals */ 
short p_pgrp; /* name of process group leader */ 
short p_pid; /* unique process i d */ 
short p_ppid; /* process i d of parent */ 
u_short p_xstat; /* Exit status for wait */ 
struct rusage *p_ru; /* mbuf holding exit information */ 
short p_poip; /* page outs i n progress */ 
short p_szpt; /* copy of page table size */ 
s i z e _ t p_tsize; /* size of text (clicks) */ 
s i z e _ t p_dsize; /* size of data space (clicks) */ 
s i z e _ t p_ssize; /* copy of stack size (clicks) */ 
s i z e _ t p_rssize; /* current resident set size i n c l i c k s */ 
size _ t p_maxrss; /* copy of u.u_limit[MAXRSS] */ 
s i z e _ t p_swrss; /* resident set size before last swap */ 
swblk_t p_swaddr; /* disk address of u area when swapped */ 
caddr_t p_wchan; /* event process i s awaiting */ 
struct text *p_textp; /* pointer to text structure */ 
struct pte *p_pObr; /* page table base POBR */ 
struct proc *p_xlink; /* linked l i s t of procs sharing same text */ 
short p_cpticks; /* ticks of cpu time */ 
long p_pctcpu; /* °/0cpu for this process during p_time */ 
short p_ndx; /* proc index for memall (because of vfork) */ 
short p_idhash; /* hashed based on p_pid for kill+exit+... */ 
struct proc *p_pptr; /* pointer to process structure of parent */ 
struct itimerval p_realtimer; 
struct quota *p_quota; /* quotas for this process */ 
#ifdef sun 
struct context *p_ctx; /* pointer to current context */ 
#endif 
>;. 

/* 
* The User Structure 
* 
*/ 
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struct user •( 
struct pcb u_pcb; 
struct proc *u_procp; /* pointer to proc structure */ 
in t *u_arO; /* address of users saved RO */ 
char u_comm[MAXCOMLEN + 1]; 

/* s y s c a l l parameters, results and catches */ 
int u_arg[8]; /* arguments to current system c a l l */ 
int *u_ap; /* pointer to a r g l i s t */ 
lab e l _ t u_qsave; /* for non-local gotos on interrupts */ 
char u_error; /* return error code */ 
union < /* s y s c a l l return values */ 
struct -C 
int R_vall; 
i n t R_val2; 
y u_rv; 
#define r _ v a l l u_rv.R_vall 
#define r_val2 u_rv.R_val2 
o f f _ t r _ off; 
time_t r_time; 
} u_r; 
char u_eosys; /* special action on end of sysc a l l */ 

/* 1.1 - processes and protection */ 
short u_uid; /* effective user i d */ 
short u_gid; /* effective group i d */ 
int u_groups[NGROUPS]; /* groups, 0 terminated */ 
short u_ruid; /* rea l user i d */ 
short u_rgid; /* real group i d */ 

/* 1.2 - memory management */ 
size_t u_tsize; /* text size (clicks) */ 
si z e _ t u_dsize; /* data size (clicks) */ 
siz e _ t u_ssize; /* stack size (clicks) */ 
struct dmap u_dmap; /* disk map for data segment */ 
struct dmap u_smap; /* disk map for stack segment */ 
struct dmap u_cdmap, u_csmap; /* shadows of u_dmap, u_smap, for 

use of parent during fork */ 
label _ t u_ssave: /* label variable for swapping */ 
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siz e _ t u_odsize, u_ossize; /* for (clumsy) expansion swaps */ 
time_t u_outime; /* user time at l a s t sample */ 

/* 1.3 - signal management */ 
int (*u_signal[NSIG])(); /* disposition of signals */ 
int u_sigmask[NSIG]; /* signals to be blocked */ 
int u_sigonstack; /* signals to take on sigstack */ 
int u_oldmask; /* saved mask from before sigpause */ 
int u_code; /* ''code*' to trap */ 
struct sigstack u_sigstack; /* sp & on stack state variable */ 
#define u_onstack u_sigstack.ss_onstack 
#define u_sigsp u_sigstack.ss_sp 

/* 1.4 - descriptor management */ 
struct f i l e *u_ofile[NOFILE]; /* f i l e structures for open f i l e s */ 
char u_pofile[NOFILE]; /* per-process flags of open f i l e s */ 
#define UF_EXCL0SE 0x1 /* auto-close on exec */ 
#define UF_MAPPED 0x2 /* mapped from device */ 
struct inode *u_cdir; /* current directory */ 
struct inode *u_rdir; /* root directory of current process */ 
struct t t y *u_ttyp; /* controlling t t y pointer */ 
dev_t u_ttyd; /* controlling t t y dev */ 
short u_cmask; /* mask for f i l e creation */ 

/* 1.5 - timing and s t a t i s t i c s */ 
struct rusage u_ru; /* stats for this proc */ 
struct rusage u_cru; /* sum of stats for reaped children */ 
struct itimerval u_timer[3]; 
int u_XXX[3]; 
time_t u_start; 
short u_acflag; 

/* 1.6 - resource controls */ 
struct r l i m i t u_rlimit[RLIM_NLIMITS] ; 
struct quota *u_quota; /* user's quota structure */ 
int u_qflags; /* per process quota flags */ 

/* BEGIN TRASH */ 
char u_segflg; /* 0:user D; 1:system; 2:user I */ 
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caddr_t u_base; /* base address for 10 */ 
unsigned i n t u_count; /* bytes remaining for 10 */ 
o f f _ t u_offset; /* offset i n f i l e for 10 */ 
union -C 

struct < /* header of executable f i l e */ 
int Ux_mag; /* magic number */ 
unsigned Ux_tsize; /* text size */ 
unsigned Ux_dsize; /* data size */ 
unsigned Ux_bsize; /* bss size */ 
unsigned Ux_ssize; /* symbol table size */ 
unsigned Ux_entloc; /*' entry location */ 
unsigned Ux_unused; 
unsigned Ux_relflg; 

> Ux_A; 
char ux_shell[SHSIZE]; /* #! and name of interpreter */ 

} u_exdata; 
#define ux_mag Ux_A.Ux_mag 
#define ux_tsize Ux_A.Ux_tsize 
#define ux_dsize Ux_A.Ux_dsize 
#define ux_bsize Ux_A.Ux_bsize 
#define ux_ssize Ux_A.Ux_ssize 
#define ux_entloc Ux_A.Ux_entloc 
#define ux_unused Ux_A.Ux_unused 
#define u x _ r e l f l g Ux_A.Ux_relflg 
caddr_t u_dirp; /* pathname pointer */ 
struct direct u_dent; /* current directory entry */ 
struct inode *u_pdir; /* inode of parent directory of dirp */ 
/* END TRASH */ 
struct uprof { /* p r o f i l e arguments */ 
short *pr_base; /* buffer base */ 
unsigned pr_size; /* buffer size */ 
unsigned pr_off; /* pc offset */ 
unsigned pr_scale; /* pc scaling */ 
} u_prof; 
struct nameicache { /* last successful directory search */ 
int nc_prevoffset; /* offset at which last entry found */ 
ino_t nc_inumber; /* inum of cached directory */ 
dev_t nc_dev; /* dev of cached directory */ 
time_t nc_time; /* time stamp for cache entry */ 
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} u_ncache; 
#ifdef sun 
int u_lofault; /* catch faults i n locore.s */ 
int u_memropc[12]; /* state of rope */ 
struct skyctx { 
unsigned usc_regs [ 8 ] ; /* the Sky registers */ 
short usc_cmd; /* current command */ 
short usc_used; /* user i s using Sky */ 
> u_skyctx; 
struct hole { /* a data space hole (no swap space) */ 
int u h _ f i r s t ; /* f i r s t data page i n hole */ 
int uh_last; /* l a s t data page i n hole */ 
} u_hole; 
#endif 
int u_stack[l]; 
>: 

/* 
* The UNIX buffer structure 
*/ 

struct buf 
< 
long b_flags; /* too much goes here to describe */ 
struct buf *b_forw, *b_back; /* hash chain (2 way street) */ 
struct buf *av_forw, *av_back; /* position on free l i s t i f not BUSY */ 
#define b_actf av_forw /* alternate names for driver queue */ 
#define b_actl av_back /* head - isn't history wonderful */ 
long b_bcount; /* transfer count */ 
long b_bufsize; /* size of allocated buffer */ 
#define b_active b_bcount /* driver queue head: drive active */ 
short b_error; /* returned after I/O */ 
dev_t b_dev; /* major+minor device name */ 
union { 

caddr_t b_addr; /* low order core address */ 
int *b_words; /* words for clearing */ 
struct fs *b_fs; /* superblocks */ 
struct csum *b_cs; /* superblock summary information */ 
struct eg *b_cg; /* cylinder group block */ 
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struct dinode *b_dino; /* i l i s t */ 
daddr_t *b_daddr; /* indirect block */ 

> b_un; 
daddr_t b_blkno; /* block # on device */ 
long b_resid; /* words not transferred after error */ 
#define b_errcnt b_resid /* while i/o i n progress: # re t r i e s 
struct proc *b_proc; /* proc doing physical or swap I/O */ 
int (*b_iodone)(); /* function called by iodone */ 
int b_pfcent; /* center page when swapping cluster */ 
#ifdef sun 
caddr_t b_saddr; /* saved address */ 
short b_kmx; /* saved kernelmap index */ 
short b_npte; /* number of pte's mapped */ 
#endif 
>; 


