
SOLID MODELLING USING LINEAR OCTREE REPRESENTATION

By

SHEUNG-LAI SUNNY HO

B.Math (Hons.), University of Waterloo, 1983

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

(DEPARTMENT OF COMPUTER SCIENCE)

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

October 1985

© Sheung-Lai Sunny Ho, 1985

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

Department of COH?0T£R SCIENCE

The University of British Columbia
1956 Main Mall
Vancouver, Canada
V6T 1Y3

Date O C T O B E R 2 . ,

Abstract

Object representation is the backbone of any solid modelling system. Hierarchical spatial
decompositions of objects called octrees introduced very efficient algorithms for boolean set
operations and some restricted classes of geometric transformations. Linear octrees, a compact
encoding of the octrees, result in a significant reduction of storage requirements, and lead to
simpler algorithms for most modelling operations.

This thesis investigates some properties of linear octrees with emphasis on object genera
tion. By interpreting linear octree node digits as binary numbers, some simple conversion and
node trimming algorithms are found, which when combined with a node enumeration algorithm,
generate the linear octrees of cuboidal volumes efficiently. A simple and uniform approach is
devised to perform arbitrary geometric transformations by means of cuboid generation. Exper
iments shows these algorithms maintain the efficiency of special cases while degrading linearly
with the number of intermediate nodes generated.

ii

Contents

Abstract ii

Contents iii

List of Figures vi

List of Tables vii

Acknowledgement viii

1 Introduction 1

2 Object Representations 3
2.1 Solid Objects 3
2.2 Primitive Instancing 3
2.3 Boundary Representation 4
2.4 Spatial Enumeration 6
2.5 Octrees 6

S Linear Octree Representation 9
3.1 The Linear Octree 9
3.2 Terms and Notations 10
3.3 Basic Operations 12

3.3.1 Conversion of a node to its lowest and highest order voxel coordinates . . 12
3.3.2 Conversion to the largest node from its lowest order voxel coordinate ... 13
3.3.3 Sequential node generation • • 13
3.3.4 Trimming against a lower bound • • 15
3.3.5 Trimming against an upper bound 16
3.3.6 Normalizing an object • • 17

3.4 Object Generation • • 17
3.4.1 Parametrically defined objects 17
3.4.2 Cuboid 18

iii

3 . 4 . 3 Ellipsoid 19
3.5 Other solids '. 20

4 Modelling Operations 21
4.1 Geometric Transformations 21

4.1.1 Translation 21
4.1.2 Scaling 23
4.1.3 Rotations 25
4.1.4 Compound Transformations 30

4.2 Boolean Set Operations 30
4.2.1 Union 31
4.2.2 Intersection 33
4 . 2 . 3 Difference 33

5 Implementation and Results 36
5.1 A Solid Modelling Package 36
5.2 Representation of Linear Octrees 37

5.2.1 Internal Representation 37
5.2.2 External Representation 38
5.2.3 Input/Output 39
5.2.4 Node Retrieval 40
5.2.5 Normalization 40

5.3 Operations on linear octree nodes 40
5.4 Modelling Operations 41

5.4.1 Translation 41
5.4.2 Scaling 42
5.4.3 Rotations 43
5.4.4 Normalization 43
5.4.5 Boolean Set Operations 44

5.5 Auxiliary Library Functions , 44
5.5.1 Object Generation 44
5.5.2 Rendering 45

5.6 User Commands 46
5.7 Results and Evaluation 46

6 Conclusion 51
6.1 Summary 51
6.2 Future Work 5 2

Bibliography 5 4

iv

A The Solid Modelling Package 56
A.l The Linear Octree Library 56
A.2 User Programs 61

v

List of Figures

2.1 Construction of an object by set operations on primitive instances 4
2.2 Unwanted edges produced from union of two objects 5
2.3 An "impossible" object from boundary representation 5
2.4 An object and its octree representation 7
3.1 Digit assignments for linear quadtrees and linear octrees 11
3.2 A circular disk of diameter 15 in a domain of resolution 4 consists of 54 nodes. . 12
3.3 Conversion of octree nodes to their corner voxels 13
3.4 Conversion to octree nodes from their lowest order voxels 14
3.5 Node 2FFF trimmed by lower bound y = 10 15
3.6 Node 3FFF trimmed by upper bounds x = 10 (a), and x = 11 (b) 16
4.1 Translation of a node by different multiples of 2 22
4.2 Scaling a node by different factors 24
4.3 Severe fragmentation results for almost any angle of rotation 25
4.4 Holes and duplicates resulting from forward mapping 26
4.5 Re-sampling of pixels in target under backward mapping 27
4.6 Region occupied by a node of size d x d 28
4.7 Partition of 2FFF under expand(2FFF, 213F) 34
5.1 An overview of the solid modelling package 37
5.2 Data structure of an object 39
A.l Various stages in creating an object 63

vi

List of Tables

5.1 Badness of objects vs. badness of translation components 41
5.2 Execution times for object generations 48
5.3 Execution times for translation by (ta,t9,tz) 49
5.4 Execution times for scalings by (s„, s9, »x) 49
5.5 Execution times for rotations by $ degrees 50
5.6 Execution times for boolean set operations 50

vii

Acknowledgement

I would like to thank my supervisor, Dr. Gunther F. Schrack for his guidance and suggestions

for this thesis, and to thank Dr. Robert J. Woodham for reading the final draft.

The variety of computing facilities at UBC has added fun to the serious academic work. Spe

cial thanks are directed to all fellow graduate students who have been very helpful in answering

questions.

viii

Chapter 1

Introduction

Solid modelling refers to the theory and practice for computing the properties of and ma

nipulating solid objects represented by some abstract data structures. It is becoming popu

lar in many computer graphics applications. Evolving throughout the past decade, the tech

nology has now been transferred from the stage of research projects to production systems

[REQU82,REQU83]. Areas such as engineering design, manufacturing, architecture, and medi

cal imagery are using solid modelling as a standard tool. In recent years, even the advertisement

and movie industries are using the technology to achieve special effects.

Object representation [REQU80] is the basic foundation of any solid modelling system. Un

til now, most systems used boundary representation and/or primitive instancing as their basic

building blocks. Such schemes provide a good approximation of real solids and allow exact ge

ometric transformations, but make boolean set operations, a necessity in solid modelling, and

geometric and topological property calculations somewhat difficult. To overcome these, a spa

tial enumeration scheme called octreet [JACK80,MEAG82] was introduced, which decomposes

hierarchically the three-dimensional Euclidean space (2JS) and expresses the objects residing

in it in the form of ordered 8-ary trees. However, octrees often require excessive amounts of

1

CHAPTER 1. INTRODUCTION 2

storage for their nodes and pointers even for moderately complex objects. The linear octree

[GARG82] was devised to reduce the storage requirement dramatically by storing only the leaf

nodes using a special encoding scheme.

This thesis takes a different look at linear octrees to take full advantage of their mathemat

ical properties. Efficient algorithms were derived that extensively use bitwise operations. A

complete set of modelling operations is also described. Chapter 2 gives a brief overview of var

ious solid representation schemes. Chapter 3 describes the linear octree as used in this thesis,

on which new operations, such as node trimming, and object generation algorithms are derived.

The standard geometric transformations—translation, (arbitrary) scaling, and rotations, which

make use of the new object generation algorithms, are discussed in Chapter 4. Boolean set

operations—union, intersection, and difference—and rendering techniques are also included for

completeness. An experimental implementation is described in Chapter 5, along with some

evaluations on the solid modelling package. Chapter 6 summarizes this work, lists unsolved

problems, and suggests possible extensions and future work.

Chapter 2

Object Representations

2.1 Solid Objects

The primary interest of solid modelling is manipulation of solid "physical" objects. More

precisely, these objects are subsets of E 3 that are well-behaved, represent able, and occupy

non-zero volume; curves and surfaces are not considered valid solids in this context. In addi

tion, boolean set operations are regularized so as to maintain closure. The following sections

briefly outline 3ome of the common solid representation schemes and lists their advantages and

disadvantages. A thorough survey can be found in [REQU80].

2.2 Primitive Instancing

Primitive solids such as cubes, spheres, and prisms can be represented easily and exactly by

just a few parameters. Most mechanical parts can be constructed by applying set operations on

instances of these primitives, such as the object in Figure 2.1. Set operations can be simplified

since intersections of object surfaces can be solved analytically. However, the restricted class of

solids makes primitive instancing difficult to extend to a wider range of applications. Production

systems do not rely solely on primitive instancing, but rather include it as a means for input.

3

CHAPTER 2. OBJECT REPRESENTATIONS 4

Figure 2.1: Construction of an object by set operations on primitive instances.

2.3 Boundary Representation

Boundary representation is a very versatile scheme since it can be used to represent (al

most) any solid that is of interest to solid modellers. Extant systems such as Build 2, Romulus

[HILL82], PADL-2 [BROW82], and GMSolid [BOYS82] are all based on boundary representa

tion. Under this scheme, an object is bounded by planar polygonal surfaces, which are denned

by their bounding edges, each of which is defined by two vertices. Each distinct vertex is stored

by its actual coordinate values. The surface-edge-vertex relations can be built up by "pointer"

structures. Non-planar surfaces can always be approximated by a (usually) large number of

planar polygons, but higher order surface patches can also be introduced to the scheme.

A major difficulty arises when performing set operations on objects in boundary repre

sentation. Determining the intersection of two objects requires solving virtually every pair

of polygonal surfaces from the objects for the intersecting lines that become part of the new

boundary. An improved algorithm was introduced in [MANT83] to achieve efficient boundary

intersections with execution time linear in the number of faces. Nevertheless, a large amount

CHAPTER 2. OBJECT REPRESENTATIONS 5

of computation is still required compared to other geometric transformations on the same ob

jects. Moreover, the result of set operations may not be "unique''. For example, the union of

the two objects in Figure 2.2 leaves superfluous edges in the middle of several planar surfaces.

Unwanted
edges

Figure 2.2: Unwanted edges produced from union of two objects.

Removing such unwanted edges may be quite time consuming.
Boundary representation may also yield "impossible" objects such as the one shown in

Figure 2.3 which contains intersecting surfaces. This can be avoided if the input facility performs

Figure 2.3: An "impossible" object from boundary representation.

some validity checks and refuses to handle such objects. Also, computation and analysis of mass
properties is not trivial in boundary representation since the volume has to be deduced from
bounding surfaces.

CHAPTER 2. OBJECT REPRESENTATIONS 6

2.4 Spatial Enumeration

Spatial enumeration is a partition of a subset of Es into "addressable" cells, called voxels
(volume elements), to form a spatial array. An object is "digitized* in this discrete space—a
voxel is either part of the object or it is not. Such a scheme has many favourable mathemati
cal properties (over boundary representation). All objects in the subspace are valid solids (no
impossible objects exists; all occupy finite volume,) and their representations are unique. Com
putation of mass properties becomes trivial since such properties of an object as a whole can
be derived from the same properties of the voxels comprising the object, which are well known
because the voxels are regular cubes.
The major advantage of spatial enumeration lies in performing boolean set operations.

Union, intersection, and difference of two objects can be carried out simply by comparing the
individual voxels of the objects to determine their inclusion and exclusion in the resulting object.
No solving of equations is required; in fact no numerical computation is needed.
There is, however, an enormous number of voxels even in a moderate decomposition of

an object in the spatial array. The amount of data is directly proportional to the object's
volume. The discrete nature of this scheme also makes it unfavourable for industrial designs
which often require high precision. It is therefore more suitable for highly irregular objects such
as tomographic scans of biological organs, which would otherwise require even more complex
polyhedra using boundary representation.

2.5 Octrees

To overcome the problem of excessive storage required in spatial enumeration, a scheme call
octree encoding was devised [JACK80,MEAG82] to take advantage of the spatial coherence of

CHAPTER 2. OBJECT REPRESENTATIONS 7

voxels in objects—adjacent voxels are grouped to form larger units to reduce the data volume.
The idea is an extension of the two-dimensional quadtree [HUNT79] to three dimensions.

Unlike spatial enumeration, the domain (a subset of E 3) is divided into eight octants. Then
each of the octants is further divided into eight smaller octants. This recursive subdivision
continues until the final size of an octant reaches some desired resolution. An 8-ary tree is
used to represent the subdivisions. The root is the entire domain. Then its eight child nodes
represent the eight octants of the first division, and each of the children has eight children for
further subdivisions.
An object in the octree domain is expressed by labelling the nodes of the 8-ary tree with

"colours* white, grey, and black. If a node (an octant) at some level is completely filled by the
object, it will be labelled black. If the node does not belong to any part of the object, it will
be labelled white. Otherwise it must be partly filled by the object, and will be labelled grey. A
black or white node does not have any descendent since there is no need to further subdivide
the octant to determine occupancy. A grey node, on the other hand, must have (exactly) eight
children for the converse reason (see Figure 2.4). Observe that all leaves of an octree are either

Figure 2.4: An object and its octree representation,

black or white, and a set of eight siblings is never all black or all white, because otherwise that

CHAPTER 2. OBJECT REPRESENTATIONS 8

would be the colour of their parent and they would not exist.
Octrees show promising applications in boolean set operations, interference detection (e.g.

[AHUJ84]), and even ray-tracing [GLAS84]. The advantages of octrees on other applications
have yet to be explored.

C h a p t e r 3

Linear Octree Representation

3.1 The Linear Octree

In practice, the pointers and records of an octree will require a large amount of storage,
since (virtually) only the leaves of the tree constitute the actual object. The internal nodes
accounting for the majority of the structure do not represent "real* data. The linear quadtree

and the linear octree [GARG83,GARG82] are representations which reduce a tree structure to
contain only leaf nodes. Each leaf node is expressed as a string of extended base-4 and base-8
digits which identifies the path from which this node is reached starting at the root. Thus an
octree can be represented "linearly* by a list of node numbers embedding the underlying tree
structure.
The linear octree to be described here is structurally identical to Gargantini's, except for

the conventions and notations used. Octants are numbered rather than using compass bearings,
and their positions are reassigned. Conversion between nodes and voxels is (hopefully) clearer
and easier under this numbering scheme.

9

CHAPTER 3. LINEAR OCTREE REPRESENTATION 10

3.2 Terms and Notations

Domain resolution

The resolution specifies the number of levels of an octree or linear octree object domain.
A domain of resolution r contains (2r)3 voxels defined by the set of triples

{(x,y,z) | (x,y,z) € Is, 0 < x,y,z < 2r - 1}.

(The restriction that x, y, and z are integers is obvious in context and will be omitted
unless an ambiguity arises.)

Linear octree nodes

The nodes in a linear octree correspond to the leaf nodes (full or black nodes) in the
8-ary tree of the explicit octree. Since internal nodes only appear in explicit octrees, the
term "node" will not be ambiguous when referring to linear octrees.

Node level

The level of a linear octree node ranges from 0 to r. The level 0 node has a size equal
to the entire octree domain. A level r node is the smallest "addressable" volume having
the size of a voxel.

Linear octree encoding

A linear octree node is identified by an r-digit "octal" number using 9 distinct symbols.
The digits 0 to 7 are naturally adopted for the eight octants of each level as shown in
Figure 3.1. The ninth symbol, F, is a filler for a full node (hence the letter F) at a
level I < r where fewer than r O-to-7's are required to identify the node—the trailing
{r — l) digits are F's. For example, the level 2 node occupying suboctant 7 of octant 4 in a

CHAPTER 3. LINEAR OCTREE REPRESENTATION 11

y

Figure 3.1: Digit assignments for linear quadtrees and linear octrees,
resolution 3 domain is encoded as 47F. The assignments of 0 to 7 were deliberately chosen
such that the three-bit binary numbers of 0 to 7 have their bit positions correspond to
the x, y, and z-axis from least to most significant bit respectively. This becames an
important property for conversion between nodes and voxel coordinates.

Node Ordering

All nodes in an octree-encoded object are unique and disjoint; their union comprises
the object. The explicit octree implies an ordering of sibling nodes which linear octree
nodes must preserve. However, while the notion of order in an octree applies to each
set of sibling nodes separately, the order of nodes in a linear octree applies to all r-digit
node numbers globally. The usual numerical order of 0 to 7 is used, with the addition
of defining F greater than 7. Figure 3.2 is a quadtree-encoded circular disk with its
quadtree node numbers (digit assignment as in Figure 3.1) listed in order. Note that
the most significant digits distinguishing two node numbers (from the same object) are
never F's, since otherwise one would be the descendent of the other. The definition F > 7

is critical for the node comparisons used in boolean set operations in Section 4.2.

CHAPTER 3. LINEAR OCTREE REPRESENTATION 12

--

0013 0202 103F 200F 231F 321F
0023 0203 1120 201F 2321 3220
003F 021F 1122 2021 2330 3221
0101 022F 1123 2023 2331 3300
0102 023F 12FF 203F 30FF
0103 03FF 130F 21FF 310F
011F 100F 1312 2210 3110
012F 1012 132F 2211 3112
013F 1013 1330 2213 312F
0201 102F 1332 230F 320F

Figure 3.2: A circular disk of diameter 15 in a domain of resolution 4 consists of 54 nodes.
Lowest and Highest Order Voxels of a Node

Each black node is a cube consisting of multiple voxels (except for a level r node which
consists of a single voxel). The two corner voxels (zo.Vĉo) and (zi,yi,zi) completely
determine the volume of space

{{x,y,z) | x0 < x < xi, y0<V<Vi, *o < z < *i}

occupied by the node. If all the voxels in a node are expressed as level r nodes and listed
in the order described above, the node representing the voxel (xo, 1/0,20) will be the first
one in the sequence while the node for (zi,Vi,Zi) will be the the last. Therefore these
two voxels are designated the lowest order and highest order voxels respectively.

3.3 Basic Operations
3.3.1 Conversion of a node to its lowest and highest order voxel coordinates

An interesting observation is that the linear octree encoding of a voxel (its node number) is
an alternative interpretation of the binary numbers of its z, y, and z-components of its spatial
coordinate (x,y,z). This property allows straight forward and low cost conversion between a
node and its corner (voxel) coordinates. The procedure is best illustrated by the examples in
Figure 3.3.

C H A P T E R 3. L I N E A R O C T R E E R E P R E S E N T A T I O N 13

(a) Node 5643 fleveW
5643

x 100 1 9 <
y 0 10 1 5

1110 14

Bits of node digits

- least significant -

- most significant -

(b) N o d e 65FF (\evt\2)

6500
• x 0 100 4

y 1000 8
fc. z 1100 12

Lowest order voxel = (9,5,14)
Highest order voxel = (9,5,14)

Lowest order voxel = (4,8,12)

6577
0 111
10 11
1111

7
11
15

Highest order voxel = (7,11,15)

Figure 3.3: Conversion of octree nodes to their corner voxels.
3.3.2 Conversion to the largest node from its lowest order voxel coordinate

Conversion to a node from its lowest order voxel coordinate is not an exact inverse of the

conversion operation of Section 3.3.1 because two nodes at different levels can share the same

lowest order voxel. Thus, a given voxel will not generate a unique octree node unless the desired

level is specified. Generating the largest (lowest level number) node will be of interest in object

generation discussed in later sections. Figure 3.4 shows the inverse conversions of the nodes

from Figure 3.3.

3.3.3 Sequential node generation

With the foregoing notion of node sequencing, it is desirable to enumerate all the nodes of
the entire octree domain. The three sequences

(a) 000, 001, 002, ...,007, 010, 011, ...,776, 776, 777

(b) OFF, IFF, 2FF,..., 7FF

(c) 000, 001, 002, ..., 007, 01F, 02F, ..., 07F, IFF, 2FF, ..., 7FF

file:///evt/2

CHAPTER 3. LINEAR OCTREE REPRESENTATION 14

(a) Voxel (9.5.U)
Bits of voxel coordinates

(b) Voxel (4,8,12)

zy x zy x
0 1 1
100
1 1 0
1 0 1

3 <#
4
6
5 -< most significant

least significant 000
000
10 1
1 1 0

0
0
5
6

Largest node is 5643 of level 4 Largest node is 65FF of level 2
(650F if specified level 3)
(6500 if specified level 4)

Figure 3.4: Conversion to octree nodes from their lowest order voxels.
enumerate the nodes in a domain of resolution 3. But as demonstrated, there is not a unique
sequence of disjoint nodes comprising the domain. The reason lies in the fact that a node such
as 725 is included in 72F which is in turn included in 7FF. This non-uniqueness also introduces
the ambiguity in determining what should be the tucceeeor of a node, say, 377—should it be
37F?, 3FF?, 400?, or 4FF?
As an essential part in object generation, a node and its successor must be disjoint, and the

successor must have a maximal size, hence 4FF is the successor of 377. Therefore the successor
of a node is defined to be the next sibling node if there is one, or the successor of its parent node
if it is the last child node. The recursive property of this definition may result in a successor
several levels higher than the node itself. As an extreme case, the nodes 777, 77F, 7FF, and
FFF do not have a successor in the resolution 3 domain.

It is interesting to find that 'successor of is a many-to-one relation. For example, 177, 17F,
and IFF all have the successor 2FF. Thus the notion of predecessor could not be easily defined
since it would be a one-to-many relation. Being of no further interest, 'predecessor of will be
left undefined in this discussion.

CHAPTER 3. LINEAR OCTREE REPRESENTATION 15

3.3.4 Trimming against a lower bound

A node is trimmed against a given bound by expanding it into its children nodes and, if
necessary, further expanding its children nodes until no descendent node crosses the bound.
The first node (with respect to node ordering) in this expanded list satisfying the bound will
be the result of the trimming operation.

For trimming against a lower bound, the resulting node will have its lowest order voxel
coordinate no less than the given bound. The algorithm compares the F's in the node with the
corresponding binary digits of the lower bound and replaces some of these F's by 0's, or l's (1
for z-bound, 2 for y-bound, 4 for 2-bound) according to the following rule: From the position of
the leftmost F to that of the rightmost 1-bit of the bound, a 0-bit converts that F to a 0, and a
1-bit to a 1 (or 2 or 4 for y and z respectively). If the rightmost 1-bit locates on the left of the
leftmost F, then the node would not be affected by the trimming. Figure 3.5 shows an example

Node 2 F F F
8 y> 1 (H 0

Result 2 0 2 F

o
0 8

Figure 3.5: Node 2FFF trimmed by lower bound y = 10.

of this algorithm applied to a quadtree. For quadtrees there is, of course, no z-boundary to
consider.

CHAPTER 3. LINEAR OCTREE REPRESENTATION 16

3.3.5 Trimming against an upper bound

Trimming against an upper bound results in a node with its highest order voxel coordinate
not greater than the given bound. A similar yet significantly different rule applies: from the
position of the leftmost F to that of the first 1-bit of the bound on the right of this F, change
all F's to O's. If all bits are 1 after this 1-bit, the last F should not be changed. If there is no
1-bit to the left of the leftmost F, then all F's would be changed to O's. All other digits remain
unchanged. Two examples in Figure 3.6 illustrate the rule. It should be noted that the upper

Node 3 F F F Node 3 F F F
(a) x< 1 QJ. 0 (b) x< 1 flj. 1

Result 3QJ)F Result 3 0_FF

Figure 3.6: Node 3FFF trimmed by upper bounds x = 10 (a), and x = 11 (b).

bound of the resulting node does not necettarily touch the given bound. This operation is very
asymmetrical to 'trimming against a lower bound' because it only expands the node to its first
descendent node that satisfies the requirement.
The two trimming algorithms described above work only if the node is known to cross the

trimming bounds. Therefore a preliminary test is necessary by comparing the corner voxel

CHAPTER 3. LINEAR OCTREE REPRESENTATION 17

coordinates of the node with the given bound. Incorrect result would occur if this rule is not
obeyed.

3.3.6 Normalizing an object

The octree representation of an object is not unique if all sibling nodes at some part of the
tree are black. For example, instead of having one node 52F, there are eight nodes 520, 521,
..., 627 that occupy the same space. This may result from modelling operations on objects
described later. It is possible to normalize these nodes by sorting them in order and condensing
them to a minimum number such as the circle in Figure 3.2. (Note that not all groups of four
nodes forming a square make a larger node, the circle it in fact normalized.) Although being
in unnormalized form does not affect an object's geometrical properties, it is necessary to have
objects normalized in order to carry out modelling operations efficiently.

3.4 Ob jec t G e n e r a t i o n

3.4.1 Parametrically defined objects

Many simple geometric solids such as cuboids (or parallelepipeds), spheres, prisms, and
cones are defined by just a few parameters such as length, height, width, or radius!. Most
manufactured parts are built by combinations of these solids; and in fact many existing solid
modelling systems support only this family of solids since they require little amount of storage,
and modelling operations can be performed quite easily. Generating such objects in an octree
domain is, however, not as easy as it seems. Boundary following algorithms such as [SAME80]
generate quadtree representations of regions from chain-coded boundaries. For a parametrically
defined solid, this means that one must digitize the surfaces of the solid and apply a similar
surface-following algorithm to generate the octree of the enclosed space. This technique can

CHAPTER 3. LINEAR OCTREE REPRESENTATION 18

be applied to general solids, concave or convex.1 But in most situations, only convex primitive
solids need to be considered. (At least the four geometric solids mentioned above are all convex.)
Complex objects can be built by modelling operations on convex primitives. In addition, while
generating nodes of an explicit tree structure in any order does not affect its properties, it is
critical to generate nodes of a linear octree in some sorted order to avoid the normalization
process which is dominated by the time-consuming sorting step. Facing these considerations, a
simple trial and error algorithm has been devised:

1. The level 0 node is tested for inclusion inside the parametrically defined surface.

2. If the test returns "inside", then the node is part of the object and will be accepted.

3. If the node is outside, then it will be discarded.

4. Otherwise the node must be partially inside and outside. In this case, the node is expanded
into its eight children and all are tested, beginning with the first one.

5. When one node is done, try its successor as defined in Section 3.3.3.

The restriction to convex objects is imposed to make the inclusion tests easier. Inclusion of
all vertices of a node implies the inclusion of the entire node. (Exclusion of all vertices, however,
does not imply exclusion of the node.)

3.4.2 Cuboid

A cuboid with its sides parallel to the principal axes is the simplest object to generate.
It can be filled exactly by octree nodes of different levels. The two vertices (xo,Vo,*o) and
(zi,tfi,zi) where XQ < xi, yo < yi, and Zo < Zi completely define the cuboid.

'All lines joining two different points inside a convex solid lie completely inside that solid.

CHAPTER 3. LINEAR OCTREE REPRESENTATION 19

Assuming a domain of resolution 4, the above algorithm can be applied by initiating the
node sequence with FFFF to be tested for acceptance. A better choice is to start with the largest
node which has its lowest order voxel at (zo,Vo,2o)- Immediate acceptance and rejection can
be determined by a few comparisons with XQ, VO, *b> *i> Vi, ̂ d Zi.

When a node crosses a boundary, it could be expanded into its eight descendents simply by
changing the leading F to 0. The following nodes will be generated sequentially by finding the
successor of each one, which again requires the changing of (usually) one octree digit. This is
virtually an in-order traversal of the tree without using any recursion or stack—the digits in
the current node are actually the information that the stack would have saved.

Incidentally, expanding and retrying a node one level at a time is not very attractive.
"Trimming'' a node against a given bound as described in Sections 3.3.4 and 3.3.5 will expand
the node to the appropriate level in one step. As are window clipping algorithms, the node
trimming here should be applied to each of the six bounds of the cuboid in a pipelined fashion.
As one can see, the sequential node generation algorithm, combined with the trimming

operations, provide an efficient method to generate the normalized linear octree of any volume
in the octree domain. It also becomes apparent why the resulting linear octree is normalized,
since all nodes are introduced in order, and a node is always considered before its descendent.

3.4.3 Ellipsoid

The ellipsoid is of interest because it is the generalized form of the sphere, and it is also a
typical solid with non-planar surfaces. The same basic algorithm can be applied to the ellipsoid,
except that the trimming algorithms are no longer useful since they only apply to planes parallel
to the principal axes. There remains the one-level-at-a-time expansion algorithm. A more
general trimming algorithm could be applied to parametrically defined surfaces, but is likely

CHAPTER 3. LINEAR OCTREE REPRESENTATION 20

to involve complicated equations solving for the desired level of expansion. The benefit gained
may not be worth the effort.

Nevertheless, some provision can be made to improve the ellipsoid generation algorithm.
Since generating the linear octree of a cuboid is relatively cheap, the smallest enclosing cuboidal
volume of the ellipsoid is found and generated first. Next, the nodes in this volume are enumer
ated and the algorithm is applied once again to the ellipsoid, using the level-by-level expansion
scheme. This suggests a two stage trimming algorithm—trim against the smallest bounding
volume, then against the object's boundaries.

In practice, the two stages are combined into a trimming-pipeline. A node accepted by
the first stage is immediately fed into the second stage for the inclusion test. As will be seen
below, this trimming algorithm is also applicable for geometric transformations, in particular,
rotation, since they can be viewed as object generation as well.

3.5 O t h e r sol ids

With the established object generation algorithms, it should be straight-forward to generate
convex solids such as cones and cylinders. An algorithm to convert a boundary representation to
a linear octree was given in [TAMM84] using a connected components labelling technique. Thus
it is possible to generate linear octrees of general solids expressed in boundary representations
for most applications. In the meantime, we have enough capability to generate simple objects
to show some other important features of the linear octree representation.

Chapter 4

Modelling Operations

4.1 Geometric Transformations

The basic capability of any solid modeller iB to perform the common geometric transfor
mations translation, scaling, and rotation. Because of their discrete nature, octree encodings
often lead to non-numerical algorithms that require only manipulation of data structures. With
linear octrees, these manipulations can be further simplified to operations on octal digits and
bits. As one will expect, there are some tradeoffs. Due to the restriction to discreteness, it
is difficult to perform the geometric transformations arbitrarily, particular rotations which are
used often. The algorithms to be described here will apply to arbitrary translation, scaling, and
rotations up to the limited resolution of the octree domain, yet at the same time will maintain
the efficiency of some specific transformations characteristic to linear octrees.

4.1.1 Translation

Translation of an object within the octree domain does not affect its physical properties, but
can result in a drastic change in its octree representation. This phenomenon can be observed
by considering the translation of a single (large) node. A node at level / has sides of length 2"
where n = r — / and r is the resolution of the domain. A displacement by multiples of 2 m where

21

CHAPTER 4. MODELLING OPERATIONS 22

m> n leaves the node in one piece—simply relocated. If m < n, however, the translation will
fracture the node into lower levels, hence smaller nodes to fill the displaced volume. For the
quadtree example shown in Figure 4.1, the node 12FF (1 = 2, n = r — / = 2), when translated

Node 1 2 F F Translated by (-8,4) Translated by (2 , - 1)

Figure 4.1: Translation of a node by different multiples of 2.

by (—8,4) results in a single node 20FF since — 8 and 4 are multiples of 2s and 22 respectively.
In contrast, translation by (2,-1) breaks the node into 10 smaller ones since 2 and —1 are
multiples of 21 and 2° respectively (but not 2m for larger m's).
Fujimura et al. [FUJI83] described a translation algorithm that treated these two cases

separately. Here, a far simpler algorithm is used. Each node will be translated individually
(which is what most other algorithms do). A node is "moved* to its target position simply
by adding the translation vector to its lowest and highest order voxel coordinates. The two
translated voxels then define a cuboid in the octree domain, whose octree will be generated by
the cuboid generation algorithm described in Section 3.4.2. After all nodes are translated, the
resulting nodes are sorted and condensed into a normalized linear octree. This additional step,
of course, is not required for algorithms operating on explicit octrees; it is a tradeoff between
the two schemes.
The question on how the algorithm distinguishes between m > n or m < n may arise.

CHAPTER 4. MODELLING OPERATIONS 23

The interesting fact is that it is not necessary to make such a distinction. Since the cuboid
generation algorithm enumerates nodes in the octree domain sequentially, the target will be
filled by a normalized linear octree regardless of how many nodes it is composed of. If the
translation is good (m > n), then only one node will be generated. If it is bad (m < n), then
the trimming algorithms will expand large nodes into smaller ones efficiently.
The worst situation occurs when an octree of low complexity (with a few nodes) undergoes

a bad translation that breaks it into numerous small nodes. Each node will give rise to a linear
octree which contains a number of nodes proportional to the surface area of the original node
[MEAG82], causing an "explosion" of nodes. (Some improvement will occur after normalizing
the linear octree.) For some physical objects consisting of a single component, it is preferable
to determine the boundary of the entire object, translate it, and then regenerate a new octree.
Surface detection algorithms would be required, however, which are beyond the scope of this
thesis.

4.1.2 Scaling

Scaling of an object by 2m on all principal directions is particularly simple for octrees. For
m > 0, the top m levels of the octree will be deleted making one of the level m subtrees the
new root. (Which subtree to choose depends on the enlarged octant which becomes the new
domain.) For m < 0, |m| new levels will be introduced to the top of the tree, pushing the old
root downward to level |m|; branches below level |m| in this new octree will be pruned. In
linear octrees, these operations reduce to shifting of octree digits. Each node number will be
shifted left m places with F's replacing the least significant m digits for m > 0, and shifted
right |mj digits for m < 0.

Arbitrary scaling, however, is the real problem. The same if not a worse fragmentation

CHAPTER 4. MODELLING OPERATIONS 24

problem as for translation exists. Scaling a node by a factor other than a power of 2 will result
in generating a large number of nodes as exemplified in Figure 4.2. A simple and uniform

I I I I I I I I I I ' l l l l l lHll l l I

A square region Scaled by (0.75,0.5) Scaled by (1.5,1.75)

Figure 4.2: Scaling a node by different factors.

approach will be to scale each node of the object exactly (probably using real arithmetic) and
regenerate the octree in the resulting cuboid, similar as translation is handled. Different scaling
factors will be treated identically, but the advantage of the 2TO-case will remain in effect.

It is worth noting that a scaling factor of less than 1 will cause a loss of information, since
re-sampling occurs over a smaller grid at the same resolution. A node could be scaled to nil,
resulting in a degenerated cuboid. In this case, the cuboid generation algorithm will simply
return a null linear octree—the empty node set.
A point of reference must be defined for the scaling operation. In R3 this is the origin. In

an octree domain, the zero point would not be a practical choice since there are no negative
axes, and a translation of objects to this point will be truncated. As no other point presents
itself as a natural choice, it was decided, ad hoe, to choose the center of an octree domain, i.e.
the common vertex shared by the eight level-1 nodes, to be the invariant point.

CHAPTER 4. MODELLING OPERATIONS 25

4.1.3 Rotations

The center of rotation is taken to be the center of an octree domain, as for scaling, and for
the same reasons. Rotations about the x, y, and z-axes1 are identical in all respects. Without
loss of generality, it is sufficient to consider only rotation about the 2-axis, and hence the
following discussion will be restricted to two-dimensional rotation on quadtrees.

Rotations by multiples of 90° will be considered good. All other angles will cause severe
fragmentation, as shown in Figure 4.3. There is no intermediate "badness"—10° is just as bad

A square region Rotated by 10' Rotated by 45'

Figure 4.3: Severe fragmentation results for almost any angle of rotation.

as 45°. For rotation by 90°, it is only necessary to permute the eight children of each node in
the explicit octree [MEAG82], or apply a permutation function on all octal digits in each node
of the linear octree [GARG82].
A rotation by an arbitrary angle 6 can always be normalized such that 0° < 6 < 360°, and

then decomposed into a multiple of 90° plus <f> where 0° < ̂ < 90°. Each (linear octree) node
can be pre-rotated through 90°'s by permutation as given in [GARG82], then the rotation of
the remaining angle <f> can be carried out.

'Actually axes parallel to the three principal axes origin ed at the center of the octree domain.

CHAPTER 4. MODELLING OPERATIONS 26

Each target node is bound by four rotated planes from the original node and by two unro-
tated ones which are perpendicular to the axis of rotation (r-axis). Projecting the node onto
the zy-plane will result in a 2-D rotation of four straight lines forming a square. To regenerate
a quadtree for this rotated node (square), each pixel can be mapped onto a new one inside the
target. By replacing each pixel by the point at its center, we could rotate this point and declare
the pixel on which it lies the result of the mapping. This forward mapping, however, is not
1-1. It could map two pixels onto one or leave some pixels in the target unmapped as shown
in Figure 4.4. Alternatively, each scanline can be rotated as a group rather than as individual

X-l X x+1 x-1 x x+1

(x,y) not mapped by any pixel. (x,y) being mapped twice.

Figure 4.4: Holes and duplicates resulting from forward mapping.

pixels. Braccini et al. [BRAC80] studied an optimal line drawing algorithm and encountered a
similar problem of holes between adjacent scanlines. They proposed a suboptimal algorithm to
maintain continuity but some points would be "plotted" twice. Rotating the entire node would
not result in much improvement since the same problems would arise between adjacent nodes.
The implication of these problems on octrees is rather serious. Unmapped holes change the
topology of an object and greatly complicate its octree structure. The possibility of multiple-

CHAPTER 4. MODELLING OPERATIONS 27

mapped voxels requires that a test for existence must be carried out for each new voxel before
it is added to the result—a very expensive operation.
A backward mapping can be used to overcome the above problems. The target is represented

by the four rotated boundaries of the node. Pixels are re-sampled by determining whether the
center of each lies inside the target. Each point (pixel) can belong to at most one target because
nodes are disjoint, and no holes will be created since adjacent nodes transform into continuous
target boundaries (Figure 4.5). Similar arguments follow if this mapping is applied to octree

y+i

y-i

y+l

y-1

X-1 X x+1
(x,y) and (x,y+l) both map onto D

.,: D , ,
C B
" " O X

x-1 x+1
(x,y) only maps onto C

(x,y+l) and (x+l,y+l) both map onto D

Figure 4.5: Re-sampling of pixels in target under backward mapping.

nodes by considering their corner voxels. Hence the same object generation algorithm as for
ellipsoids (Section 3.4.3) can be employed.

CHAPTER 4. MODELLING OPERATIONS 28

The lowest and highest order pixels (xo, yo) and (xii Vi) °f a node determine the boundary
equations

x = x0

V = Vo

x = aji + l = XQ + d

v = vi + i = vo + d

where d = 2r_' with r = domain resolution and / = node level enclosing the region R occupied
by the node as shown in Figure 4.6. Rotating a point (u,t>) through 4> gives (u',t/') where

u' = ucoŝ -wsin̂ ,
v' = u &'m <{> + v cos <f>.

yo+d

y o

xo xo+d x

^ = {(*! y) \ x0 < x < x0 -\- d, y0 < y < yo + d}

Figure 4.6: Region occupied by a node of size d x d.

CHAPTER 4. MODELLING OPERATIONS 29

Two lines with slopes tan <f> and —^— passing through (u', v') have equations
tan <p

(y — v') — (x — u') tan̂ = 0 or (y — v') cos 4> — (z — u') sin $ = 0

and (y - v') tan̂ + (x — u') = 0 or (y - v') sin ̂ + (z - u') cos ̂ = 0

respectively, which, when expressed in terms of u and w, simplify to

y cos <f> — x sin ̂ = u sin ̂ cos ̂ + « cos2^ — u cos $ sin ̂ + u sin2^ = t;

and ysin̂ + zcoŝ = u sin2^ + v cos<j> sin<f> + o cos2^ — v sin̂ coŝ = u.

Substituting (u, v) by (zo,yo), (z0 + yo), and (zo,l/o + d), the rotated region i?' will be

R' = {(x, y) | zo < y sin <f> + z cos ̂ < zo + yo < y cos ̂ — x sin ̂ < yo + d}.

Inclusion of a point (z,y) in R' can be tested by substituting it into the four inequalities

ysin̂ + xcoŝ > XQ (4.1)

y sin 4> + z cos4> < zo + d (4.2)

ycoŝ —zsin^ > zo (4.3)

ycos^-zsin^ < XQ + d. (4.4)

For each target, d will be fixed; so the right hand sides can be kept constant, leaving four
multiplications per inclusion test. Dividing Inequalities 4.1 to 4.4 by coŝ when 0 < <f> < 45°
and sin <f> when 45° < 4> < 90° results in two different groups of tests which can reduce the
number of multiplications by half.
A node may be expanded to one level lower during the inclusion test. Since octrees have

fixed size nodes, the highest order voxel coordinates of the expanded node can be computed

CHAPTER 4. MODELLING OPERATIONS 30

from those of the lowest order voxel by simple addition, which means only two multiplications
are required to test each enumerated node from the smallest bounding rectangle of the target.
As stated earlier, the center of rotation is actually the center of the octree domain, which means
all voxel coordinates must be translated by {-D, -D,-D) where D = 2 r _ 1 before applying the
inclusion test. This pre-translation, when incorporated into the equations above, however, will
not affect the complexity of the test; it still needs only two multiplications to test an enumerated
node.

4.1.4 Compound Transformations

A reasonable extension of simple transformations is to allow combinations of any number
of them to form a single transformation. Compound transformations on points in E s can
be easily handled using homogeneous coordinates and 4x4 transformation matrices. Such
manipulations on octrees, however, are not as straight forward as matrix multiplications. Doing
each transformation separately will not give satisfactory result since "rounding errors* will build
up at each step due to re-sampling. Being relatively "exact", combinations of translations and
scaling operations can be carried out by transforming each node using the ordinary homogeneous
coordinate method, and then regenerate the linear octree for the target volume. Rotations are
exceptionally difficult. A compound rotation about different axes will rotate all six faces of a
node, which means a new set of inclusion tests must be designed involving equations of planes
rather than lines in the xy-plane.

4.2 B o o l e a n Set O p e r a t i o n s

Perhaps the greatest advantage of octrees occurs when performing boolean set operations on
octree-encoded objects. The operations union, intersection, and difference must be regularized

CHAPTER 4. MODELLING OPERATIONS 31

according to Tilove [TILO80] such that no "invalid" object will result. This is a particularly
difficult problem for boundary representations because it requires extra attention to maintain
regularity. Algorithms such as Franklin's [FRAN82] classify all edge segments (original and
generated) to be included as results of different operations. While such an algorithm computes
all set operations at once, it is rare in practice that more than one operation is required for
the same objects. Octrees provide regularity naturally without additional effort, since "invalid"
objects such as faces and line segments are simply not representable. (For this reason, the
regularized union (U*) , intersection ((Y), and difference (*) will be written as ' U ' , TV, and '\'
in the following sections.2)
The octree approach to set operations is basically a pairwise comparison of two black nodes,

one from each object. As nodes are spatially sorted, it is not necessary to compare every pair
of black nodes. An in-order traversal of the two trees in parallel will be sufficient to carry
out a merge sort-like algorithm to determine which black node to include in the result of the
set operation. For linear octrees, the merging algorithm is further facilitated by the fact that
the objects are already in the form of two sorted lists of nodes, making the tree traversal step
trivial. The major task lies in a node comparison operation which depends on the particular
set operation. Each of the union, intersection, and difference operation is sufficiently different
to be implemented separately as a "stand alone* algorithm.

4.2.1 Union

Two linear octree nodes Ni and #2 are either disjoint, or equal, or one is the descendent of
the other. That is, either Ni D N2 = 0, or Ni C AT2, or Nt D N2 if a node is considered as a set

'Some authors use '—*' and '—' for the difference operation.

CHAPTER 4. MODELLING OPERATIONS 32

of points. It follows that

Ni U N2 =
N2 if Ni C N2

Ni if ^ D N2

Ni + N2 otherwise
where Ni + N2 denotes Ni U N2 given that Ni f"l AT2 = 0. Thus the union of two objects Si and
52 can be determined locally by comparing the nodes Ni € Si and N2 € S2 as follows:

1. If Ni C AT2, discard ty.

2. Else if JVi D iV2, discard JV2.

3. Else if Ni < N2, add Ni to the result.

4. Else if Ni y N2, add N2 to the result.

The symbols '-<' and V apply to the ordering of node numbers as denned in Section 3.2.
Ni and N2 will be enumerated sequentially from Si and S2 respectively. Whenever a node is
discarded or accepted, a new one will be retrieved from the corresponding object. When one
object is exhausted, all the nodes from the other object will be added to the result. Since it
is possible to group nodes from the two objects to form larger nodes, normalization should be
carried out by condensing the collected nodes to produce the final result. Sorting is not required
since the merging algorithm ensures resultant nodes to be sorted. This "clean up" step can be
performed in parallel while nodes are being accepted.
The four cases can be determined by a digit-by-digit comparison between two node numbers:

scanning from the most significant digits, locate the first different pair. If one digit is F, the
node containing this digit has the other node as its descendent. Otherwise, the numerical order
of the digits reflects the order of the nodes themselves. Two node numbers are equal if and
only if all their digits are equal.

CHAPTER 4. MODELLING OPERATIONS 33

4.2.2 Intersection

Closely resembling the union operation, the intersection of Ni and N2 is defined as

and the pairwise node comparison becomes:

1. If Ni C N2, add Ni to the result.

2. Else if Ni D N2, add N2 to the result.

3. Else if Ni < N2, discard Ni.

4. Else if N i > N2, discard N2.

Nodes are retrieved as in union operation. However, when one object is exhausted, the remaining
nodes of the other object will be discarded since they will not be part of the exhausted one.
The major difference in intersection is that no normalization is needed because the resulting
object cannot contain more nodes then either of the original objects, assuming that they are
normalized in the first place.

4.2.3 Difference

The difference Ni \ N2 is defined as the set of all points belonging to Ni but not N2. More

where expand(7V1, N2) gives a minimal list of nodes expanded from Nt which contains 7Y2.
As the example in Figure 4.7 shows, this expansion is always possible since Ni D N2 implies

NiC\N2= <
Ni if Ni C N2

N2 if Ni D N2

0 otherwise

precisely,

CHAPTER 4. MODELLING OPERATIONS 34

Node 2FFF Expand(2FFF,213F)

Figure 4.7: Partition of 2FFF under expand(2FFF, 213F).
that N2 is a descendent of /Vi. The '—' operation "removes" N2 from the expanded list. The
algorithm for the difference operation is significantly different from union and intersection as
shown below:

1. If Nx C N3, discard Nx.

2. Else if Ni D N2, expand Ni one level down, make Ni the first node of the expanded list,
and return to step 1.

3. Else if Ni •< N2, add Ni to the result.

4. Else if Ni >- N2, discard N2.

The expansion algorithm is identical to the one used in ellipsoid generation described in Sec
tion 3.4. Bauer [BAUE85] suggested a queue to store all the nodes expanded from a large one.
Here, the expanded nodes are enumerated by the successor function defined in Section 3.3.3. A
flag will be set while expansion is underway to indicate that no actual retrieval should take place
for the object Si. Instead, nodes will be "retrieved" by finding the successor of the discarded or
accepted node. Successor generation will terminate when all the expanded nodes are listed, i.e.

CHAPTER 4. MODELLING OPERATIONS 35

when the successor of the original Ni is reached. The flag will then be reset and actual retrieval
will resume. No additional information is required to keep track of the expanded nodes except
a flag and the terminating node.
When Si is exhausted, all nodes in S2 will be discarded since they will not contain points

belonging to Si. If S2 is exhausted first, all nodes in Si will be added to the result since they
will not interfere with S2. Again, no normalisation is needed as the difference cannot have more
nodes than Si.

Chapter 5

Implementation and Results

5.1 A Solid Modelling Package

A solid modelling package based on linear octrees has been implemented in C under UNIX1 on
a VAX 1 1 / 7 5 0 . 2 It consists of a function library and a set of drivers available as UNIX commands.
The function library contains modules that manage the internal data structure, conversions be
tween different formats of data, basic operations on linear octree nodes, input/output routines,
etc., and the six independent modelling operations (see Figure 5.1). The set of driver programs
provides high-level object generation and modelling operations. All data are transferred using
the standard UNIX input/output conventions. Interface with the internal octree structure is
completely transparent to the user. The flexibility of the function library allows building of
special purpose programs with little effort.
'UNIX is a trademark of AT&T Bell Laboratories.
'VAX is a trademark of Digital Equipment Corporation.

36

CHAPTER 5. IMPLEMENTATION AND RESULTS 37

User Interface

Function Library

Input/Output

Packing

UNIX Storage Node-Voxel Clipping Sorting
System Calls Conversions

Condensation

Figure 5.1: An overview of the solid modelling package.
5.2 Representation of Linear Octrees
5.2.1 Internal Representation

One of the original motivations to use linear octrees is to significantly reduce the storage
requirement of the pointer-structured explicit octrees. Recent studies by Lauzon [LAUZ85]
show that it is possible to condense quadtrees even further by using a run-encoding scheme;
a similar method should apply to octrees. However, the more compact octrees are stored, the
more difficult it is to unveil the encoded object, decreasing the efficiency of accessing the nodes
of the tree. The spectrum ranges from high speed access on one end to compact storage on the
other.

In the current implementation, an active linear octree node will have its octal digits stored
individually in addressable units (char's or int's in C) as an array since the conversion and

CHAPTER 5. IMPLEMENTATION AND RESULTS 38

trimming algorithms require octal digits to be decomposed further into bit fields. For an actual
object with thousands of nodes, however, such underutilization of memory will not be sensible—
only 4 bits (for 9 symbols) in one byte or word (32 bits) are used. A compression (or packing)
scheme is employed to store nodes as base-9 numbers, treating the digit F as 8. The unsigned
integer available in C with 32 bits on a VAX is capable of storing [log9 2S2J = 10 base-9 digits
in one word, which gives an octree domain with a maximum of (210) = 1024s voxels, adequate
for high-resolution objects. More importantly, this packed format allows nodes to be compared
as unsigned integers rather than numerical strings and greatly improves the time-consuming
sorting process. For simplicity, it was decided to store all nodes this way in unaigned's for any
domain resolution up to 10. Higher resolutions are not currently supported.
Lookup tables are used to avoid multiplication in base-9 conversions. A resolution r node

number can be packed into one word with r additions, one for each digit. Unpacking a node
takes r[log2 9] = 4r additions since each digit can be determined by testing the 8, 4, 2, and 1
multiples of a power of 9. The packed nodes are stored in dynamically allocated array blocks
each containing a maximum of 125 nodes (this number was chosen arbitrarily; some particular
value may optimize memory allocation). A linear octree encoded object is represented by the
data structure shown in Figure 5.2. It is possible to add more attributes such as colour and/or
composition as additional fields to an object. The linear octree only describes the topology of
the object.

5.2.2 External Representation

An object can be stored externally in files or can be piped to another command for further
processing. UNIX supports stream-oriented input/output; thus an object has to be transformed
into a string of bytes for external storage. The following format is designed for this purpose: the

CHAPTER 5. IMPLEMENTATION AND RESULTS 39

Object

Resolution

Linear Octree

Other
Attributes

Unfilled area

Blocks of linear octree nodes

• • •

Nodes # Nodes

<node> <node>

<node>

*
•

•
•
• *

•
<node>

*
•
*
•

<node>

Nodes

<node>

Figure 5.2: Data structure of an object,
first byte will contain the resolution of the object; to be followed by sets of four bytes (32-bits),
each representing an unsigned base-9 octree node number. Within a 4-byte field, the format of
the unsigned number is not defined, as it depends on the specific input/output operation used
to produce it.
The packed format is not intended to be used for high level access. If the user wants to input

octree nodes manually, he can prepare a file with the first line stating the resolution, followed
by one linear octree node number on each line, and convert this file to the packed format for
further processing. Details are covered in Appendix A.

5.2.3 Input/Output

All object manipulation functions operate only on the internal linear octree format; therefore
any object in the packed external format must be "read" in and transformed to the internal
data structure described above. Results of these operations can be output in packed external
format. The input/output module is the only means for this transformation.

CHAPTER 5. IMPLEMENTATION AND RESULTS 40

5.2.4 Node Ret r i e v a l

Nodes in the internal format can be randomly accessed. Sequential node retrieval and
insertion is provided by using a "pointer* (named indicator in the code) independently of
the linear octree structure to indicate the next position, similar to sequential file read/write.
Random node deletion is not supported since there is no immediate need. Each function
accessing this structure requires passing the indicator as an extra parameter. A retrieved node
is considered active and is always unpacked into an array of digits, with element 0 the most
significant digit of the node. The packing scheme is completely hidden from the conversion and
trimming algorithms.

5.2.5 No r m a l i z a t i o n

The data structure only acts as internal storage; it does not impose any ordering of the
nodes—it simply stores nodes according to the given indicator. Sorting and condensation must
be executed explicitly by separate functions in order to keep a linear octree normalized. A
heapsort is implemented to work on the data structure.
The condensation algorithm operates directly on the packed format (i.e., without unpacking

a node into octal digits), using the fact that two consecutive nodes at level / differ by 9r_'. An
array of r integers is used for stacking consecutive nodes before releasing the condensed node.
The condensation module can be used for condensing only one linear octree at a time since
external variables are used to improve efficiency.

5.3 Operations on linear octree nodes

Two modules, node-pixel conversion and trimming, form the basis of the linear octree pack
age. Both modules implement the algorithms exactly as described in Section 3.3. Bitwise

CHAPTER 5. IMPLEMENTATION AND RESULTS 41

operations of C are used extensively, hence ideally such low level algorithms should be imple
mented in assembler or even hardware.

5.4 Modelling Operations
5.4.1 Translation

Translation, scaling, and rotations accept float (real) arguments to maintain consistency
since arbitrary scaling and rotations are allowed. The octree domain can be viewed as

{{x,y,z)\{x,V,z)eR>, 0 < z , y , z < 2 r - l } .

Results of transformations are trimmed against this volume.
For translation, the displacement vector components are rounded to the nearest integers

before adding to each node of the object. As noted previously, fragmentation caused by a bad
translation will seriously affect performance. Each component of the displacement vector con
tributes to the problem. Thus it is reasonable to determine the badness of each component and
handle them in some order so as to avoid fragmentation. Performance does not depend solely
on the components. Table 5.1 indicates the relations of good and bad objects (low complexity),

Component
Object Good Bad

Good Good Bad

Good Bad B a d or Bad

Table 5.1: Badness of objects vs. badness of translation components,

translation components, and results (complexity, hence performance). A bad object might be

CHAPTER 5. IMPLEMENTATION AND RESULTS 42

the result of a bad translation in the first place and could therefore be "recovered* to a good
one. In general, however, it is not possible to know the complexity of an object; after all, the
modelling operations do not depend on that information.
Based on the translation components, there is a better chance to get a good object by

working with a good component first. Experiments show that the cutoff point of good and bad
is at multiples of 4—translation components of multiples of 1 and 2 are far worse than those of
4, 8, etc., the latter ones tend to perform equally well in the resolution 10 (and less) domain.
In fact, the performance of the 1 and 2-cases degrade so sharply from the good ones that
they dominate the overall translation. It seems reasonable to handle these bad components as
separate translations according to the following rule: translate each bad component separately,
but good components can be grouped together and "piggy-backed* on one of the bad ones.
This rule is implemented in the translate command at the user level while the library version
is kept general.

5.4.2 Scaling

Arbitrary scaling requires real multiplications. Rather than multiplying each node by the
scaling factors, a lookup table is pre-computed to map each voxel coordinate onto its scaled
(integer) value. For a resolution 10 domain, 512 short int's are needed for each of the x, y,

and z scaling factors. The other 512 units are the negative side with respect to the center of
scaling and can be computed from the same tables. Initializing these tables takes approximately
0.1 CPU seconds, negligible compared to octree regeneration, although extra memory is needed.
Negative scaling factors can not be handled with this table, since they would reverse the roles
of lowest and highest order voxels of each node.

CHAPTER 5. IMPLEMENTATION AND RESULTS 43

5.4.3 Rotations

Rotations about the x, y, and z-axes are identical except for some zyz-permutations on line
equations, but they are kept separate for simplicity and efficiency. Again, lookup tables are
set up for 2't where 0 < I < r and t being the six trigonometric functions sin̂ , coŝ , tan̂ ,
esc <f>, sec <f>, and cot <f>, since they are fixed for each rotation. The permutation functions for
90° rotations are defined in static lookup tables. Many computations are exactly identical for
all three rotations, and are therefore grouped into a "main* function, which calls a specific
rotation depending on the given x, y, or z code.

Rotations are the only operations that require real comparisons since the target is bound by
line equations. Particular attention must be paid to ensure the accuracy of these line equations;
a slight rounding error can cause mis-mapping of voxels that leads to duplicated nodes which the
condensation module cannot handle. To maintain high accuracy, all lookup tables are declared
double and all computations are carried out in double as a characteristic of C, but all values are
rounded to float (single precision) before comparisons. Slight errors will then be "smoothed
out" when rounded. Tiny values will be rounded to 0 by adding and then subtracting a larger
quantity from it.

5.4.4 N o r m a l i z a t i o n

All geometric transformations require normalization of their result. It is not sensible to
sort all the resulting nodes in one step, particularly after a bad transformation where up to
ten times the number of nodes in the original object would be generated and most of them
can be grouped into larger nodes. Thus partial sorting is carried out on every 1000 nodes
generated (some manageable amount), then merged and condensed into the node list of the

CHAPTER 5. IMPLEMENTATION AND RESULTS 44

final result. Since nodes in a linear octree are processed sequentially, they tend to operate
regionally within an octant at some level, which means that a partial list is more likely to be
merged into a localized segment in the final list. This observation prompts for a fast merging
that skips blocks of nodes in the final list and locates the block where actual merging occurs.
Complete condensation is thus not guaranteed, therefore a slower node-by-node merging must
be carried out when all nodes are collected. A flag is used to select the mode of the merging
function. Because condensation occurs continuously, the memory allocation can be kept close
to minimal.

5.4.5 Boolean Set Operations

The union, intersection, and difference operations are structurally very similar. Nodes
are retrieved simultaneously from two input objects for comparisons. Two symmetrical loops
control the retrieval of one object while anchoring a node of the other. When a retrieved node
number is larger than that of the anchored node, processing will be switched to the other ioop
where the roles of the two objects are exchanged. An infinite loop encloses these two control
loops to achieve the switching. Condensation is performed in one step on the result of a union
since the worst case does not have more nodes than the total of the original objects.

5.5 Auxiliary Library Functions
5.5.1 Object Generation

Object generating functions should be considered as an input facility of the solid modelling
package and not part of the standard library. New object generators can be added if necessary
to enhance input using the basic operations such as trimming and condensation. Only the
cuboid and ellipsoid generators are currently implemented. They accept integer parameters

CHAPTER 5. IMPLEMENTATION AND RESULTS 45

specifying the lowest order voxel coordinates and the x, y, and z-dimensions of the object. Real
comparisons are used for ellipsoid generation to determine node inclusion.

5.5.2 Rendering

Similarly, rendering is an output facility of the package. Hidden surface removal is straight
forward with octrees since nodes are spatially sorted. Two approaches exist [FRIE85]: the
back-to-front method displays nodes from farthest to nearest with respect to the view point.
This can be easily achieved by displaying the far octants before the near ones recursively for
each level of the octree [DOCT81], which means a pre-order traversal of the tree where the
order is denned according to the octant of the view point. The front-to-back method displays
the near part of the octree first and proceeds towards the far side. Nodes obscured by previous
displays will be ignored and not output. Although complex, this method will be more efficient
since traversal of some octants can be bypassed if known to be hidden.

For this thesis, rendering was not studied in depth, although a primitive back-to-front
algorithm is implemented for linear octrees. It re-sorts the nodes in a linear octree according to
the viewing octant by applying a permutation on each octal digit, sorts them, and then applies
a reverse permutation to restore them back to the original nodes. Quicksort is used since the
nodes appear quite randomly after the first permutation. (But no sorting should be carried out
if the traversal leaves the order unchanged or in exact reverse order, which are the worst cases
for quicksort.) The visible vertices of all nodes are then output to be displayed on a particular
device. An object can currently be "drawn" on an image file to be viewed on the Jupiter 7
graphics terminal under MTS5 following a fairly tedious procedure described in Appendix A—it
is barely usable.

'Michigan Terminal System of DBC Computing Center.

CHAPTER 5. IMPLEMENTATION AND RESULTS 46

5.6 User Commands

All input/output, modelling operations, and rendering functions are available as U N I X com
mands. Parameters of these functions are supplied as command-line arguments on U N I X and
objects are read and written via at din and •tdoat, thus output from one operation can pipe
into another as input. For example, to generate a 30 x 20 x 50 cuboid at the center of a res
olution 10 domain rotated 30° about the y-axis, to be stored in file simple-object, issue the
command

cuboid 497 502 487 30 20 50 10 I rotate y 30 > simple-object

from the shell. Only a few primitive error checks are implemented at this time to prevent the
package from crashing by invalid inputs. All error messages (even though not too informative)
are produced by the user program on stderr; the library functions never print error messages
but return error codes instead.

5.7 Results and Evaluation

Formal proofs of algorithm efficiencies are not provided in this thesis, although some eval
uations were performed regarding execution times and storage requirements. Execution times
are the 'user' times obtained by the U N I X command /bin/tine which shows the (V A X 11/750)
C P U time (in seconds) used by the user programs, excluding system calls. Storage requirements
(in bytes) for both internal and external formats are about 4 times the number of nodes in the
linear octree since each node is packed into one word.

Table 5.2 shows that the time required to generate the linear octree of a cuboidal volume is
basically linear to the number of nodes generated for the good cases, and is proportional to the

CHAPTER 5. IMPLEMENTATION AND RESULTS 47

intermediate nodes created in the bad cases due to fragmentation; these effects are not shown
in the tables since their linear octrees are normalized. Slight increases are observed when the
same number of nodes are generated at higher order regions of an octree domain or at higher
resolutions, but do not seem to dominate the overall times. Ellipsoids involve real arithmetic
and are thus slower.
Times for translation, scaling, and rotations are given in Tables 5.3 to 5.5. Two resolution 10

objects, a cube with lowest-order corner at (480,480,480) and extending 64 units towards all
three positive axes, and a sphere enclosed in the same volume, are used for the tests. Note that
the identity transformations are not implemented as no-ops. In all cases, the times directly
reflect the fragmentation of nodes due to bad transformations as explained in Section 4.1.

CHAPTER 5. IMPLEMENTATION AND RESULTS

Solid X V z Ax Al/ Az Resolution Seconds Nodes
Cuboid 0 0 0 16 16 16 4 0.0 1
Cuboid 0 0 0 16 16 15 4 0.2 340
Cuboid 0 0 0 16 15 15 4 0.5 590
Cuboid 0 0 0 15 15 15 4 0.7 778
Cuboid 0 0 0 15 15 15 6 0.8 778
Cuboid 0 0 0 15 15 15 9 0.9 778
Cuboid 0 0 0 15 15 15 10 0.9 778
Cuboid 1 1 1 15 15 15 4 0.5 778
Cuboid 0 0 0 64 64 64 10 0.0 1
Cuboid 0 0 0 64 64 63 10 6.5 5460
Cuboid 0 0 0 64 63 63 10 13.0 10542
Cuboid 0 0 0 63 63 63 10 18.4 15288
Cuboid 1 1 1 63 63 63 10 15.8 15288
Cuboid 479 479 479 63 63 63 10 17.8 15288
Cuboid 960 960 960 63 63 63 10 18.3 15288
Ellipsoid 0 0 0 64 64 64 10 33.1 12496
Ellipsoid 0 0 0 63 63 63 10 50.1 11987
Ellipsoid 480 480 480 64 64 64 10 33.0 12496
Ellipsoid 480 480 480 64 63 64 10 38.4 12048
Ellipsoid 480 480 480 63 64 63 10 45.1 12244
Ellipsoid 480 480 480 63 63 63 10 49.9 11987

Table 5.2: Execution times for object generations.

CHAPTER 5. IMPLEMENTATION AND RESULTS 49

Cube-64 Sphere-64
tf U Seconds Nodes Seconds Nodes

0 0 0 0 . 0 8 43.4 12496
128 128 128 0 . 0 8 43.5 12496

04 64 64 0.0 8 44.6 12496
32 32 32 0 . 0 1 42.8 12496
16 16 16 0.4 57 49.7 12489

8 8 8 1.5 316 48.7 12503
4 4 4 7.7 1499 50.9 12237
2 2 2 34.8 6546 96.5 12300
1 1 1 164.7 27385 387.6 12356

- 4 8 0 - 4 8 0 - 4 8 0 0.0 1 44.6 12496
- 5 1 2 - 5 1 2 - 5 1 2 • 0.0 1 42.2 1562

544 0 o • 0.0 0 12.1 0
* Nodes moved outside of the octree domain are truncated.

Table 5 .3: Execution times for translation by {tx,t9,tz).

Cube-64 Sphere-64
** ** Seconds Nodes Seconds Nodes

1 1 1 0.1 8 50.1 12496
2 2 2 0.1 8 53.8 12496
4 4 4 0.1 8 54.3 12496
0.5 0.5 0.5 0.1 8 27.4 3064
0.25 0.25 0.25 0.1 8 16.5 808
1.1 1.1 1.1 96.6 35112 253.8 14464
0.9 0.9 0.9 58.5 20672 148.8 9872
0 1 1 * 0.0 0 1.5 0
* Scaling table of zeroes signals an object to be nullified

Table 5.4: Execution times for scalings by («*,«r,«*).

CHAPTER 5. IMPLEMENTATION AND RESULTS 50

Cube-64 Sphere-64
Axis 6 Seconds Nodes Seconds Nodes

X 0 0.0 8 34.2 12496
X -90 0.0 8 43.1 12496
V 10 105.8 12384 510.7 12944
z 45 110.2 11280 569.8 12928

Table 5.5: Execution times for rotations by $ degrees.

Finally, the union, intersection, and difference operations are timed and listed in Table 5.6.
The efficiency of boolean set operations using linear octrees becomes prominent when compared
to that of the geometric transformations. The rendering procedures described in Appendix A
use an existing graphics package not designed for viewing linear octrees and are too slow to
give meaningful timings.

Operation Seconds Nodes
sue 8.3 8
s n c 14.6 12496
S\C 8.8 0
C\S 20.2 12936
SUS 25.8 12496
s n s 23.9 12496
s\s 17.9 0
FuS 8.3 1
Fns 14.8 12496
F\S 20.8 13160
S\F 8.3 0
HUS 12.5 6252
Hns 10.7 6248
H\S 13.5 6580
S\H 11.2 6248

C = Cube-64
S = Sphere-64
F = Cuboid(0,0,0,1024,1024,1024,10)

(entire domain)
H = Cuboid(0,0,0,512,1024,1024,10)

Table 5.6: Execution times for boolean set operations.

C h a p t e r 6

Conclusion

6.1 Summary

The linear octree structure as an object representation for solid modelling is studied. The
linear representation interprets leaf nodes as octal numbers that are closely related to the 3-D
coordinates of voxels, leading to a reduction in storage requirements as compared to explicit
octrees. By using a consistent numbering scheme for the eight octants, and interpreting the
node numbers in binary form, several new algorithms have been developed.
Conversion between nodes and voxel coordinates reduce to a regrouping of bits of their

binary representations. The notion of successor of a node and the node trimming operations
are denned for generating the normalized linear octree of a cuboidal volume; both require only
manipulations on octal digits and bits.
The cuboid generation algorithm leads to unified translation and scaling operations. Nodes

are translated and scaled into cuboidal targets to be generated as partial objects and merge
into the final results. All cases are handled identically, while special ones such as translation
by powers of 2 and scaling by factors of 2 are kept efficient naturally as a result of their simple
octree structures. Arbitrary rotations are designed as an extension of the 90°-rotations that

51

CHAPTER 6. CONCLUSION 52

only involve permutation of octal digits. A backward mapping algorithm is used to ensure
spatial continuity and node uniqueness of the rotated object.
The union and intersection operations are just variations of the familiar merging algorithm

for two sorted lists of numbers. The difference operation, however, results in expansion of large
nodes into its smaller descendents. With the successor generator, no extra memory is needed
to keep expanded node lists.

All basic operations are implemented as a complete solid modelling library package accom
panied by a set of interface programs. Though not formally proved, the algorithms exhibit
execution times which are linear to the number of nodes in the resulting linear octree for most
cases.

6.2 Future Work

The sorting component of the normalization process is the bottleneck of the geometric
transformations. Generating normalized targets during these operations have not been fully
taken advantage of. Better sorting algorithms for partially sorted lists should outperform the
heapsort currently used.

For objects at higher resolutions, a large number of nodes inside the same octant will have
identical leading digits, which waste space. A hybrid octree structure would be preferable. The
top few levels can be kept as a pointer-structured tree, while the lower level subtrees can be
"linearized" into a list of nodes. Such a structure would also lead to more efficient searching
algorithms used by rendering and interference detection.
Furthermore, there are useful operations such as neighbourhood determination and surface

detection algorithms, yet to be designed, that require only bit manipulations. Applying these

CHAPTER 6. CONCLUSION 53

operations to image processing and robotic vision may explore other advantages of linear octrees.
The conversion and trimming algorithms used extensively throughout the package induce a

lager amount of overhead and hence are very suitable to be executed by hardware. It is possible
to build such a linear octree processor with the advent of VLSI technology. Since most octree
algorithms are highly parallel in nature, a linear octree multi-processor could support real-time
solid modelling for computer-aided design and manufacturing.

Bibliography

[AHUJ84] Ahuja, N. and Nash, C, "Octree Representations of Moving Objects," Computer

Vision, Graphics, and Image Processing, 26 (2), May 1984, pp. 207-216.
[BAUE85] Bauer, M. A., "Set Operations on Linear Quadtrees," Computer Vision, Graphics,

and Image Processing, 29 (2), February 1985, pp. 248-258.
[BOYS82] Boyse, J. W. and Gilchrist, J. E., "GMSolid: Interactive Modeling for Design and

Analysis of Solids," IEEE Computer Graphics and Applications, 2 (2), March 1982,
pp. 27-40.

[BRAC80] Braccini, C. and Marino, G., "Fast Geometrical Manipulations of Digital Images,"
Computer Graphics and Image Processing, 13 (2), June 1980, pp. 127-141.

[BROW82] Brown, C. M., "PADL-2: A Technical Summary," IEEE Computer Graphics and

Applications, 2 (2), March 1982, pp. 69-84.
[DOCT81] Doctor, L. J. and Torborg, J. G., "Display Techniques for Octree-Encoded Ob

jects," IEEE Computer Graphics and Applications, 1 (3), July 1981, pp. 29-38.
[FRAN82] Franklin, W. R., "Efficient Polyhedron Intersection and Union," Graphics Interface

'82, 1982, pp. 73-80.
[FRIE85] Frieder, G., Gordon, D., and Reynolds R. A., "Back-to-Front Display of Voxel-

Based Objects," IEEE Computer Graphics and Applications, 5 (1), January 1985,
pp. 52-60.

[FUJI83] Fujimura, K., Toriya, H., Yamaguchi, K., and Kunii, T. L., "Oct-tree Algorithms
for Solid Modeling," Proceedings of InterGraphics '83, 1983, pp. 96-110.

[GARG82] Gargantini, I., "Linear Octtrees for Fast Processing of Three-Dimensional Ob
jects," Computer Graphics and Image Processing, 20 (4), December 1982, pp. 3C5-
374.

£

[GARG83] Gargantini, I., "Translation, Rotation and Superposition of Linear Quadtrees,"
International Journal of Man-Machine Studies, 18 (3), March 1983, pp. 253-263.

54

[GLAS84] Glassner, A. S., "Space Subdivision for Fast Ray Tracing," IEEE Computer Graph

ics and Applications, 4 (10), October 1984, pp. 15-22.
[HILL82] Hillyard, R. C, "The Build Group of Solid Modelers," IEEE Computer Graphics

and Applications, 2 (2), March 1982, pp. 43-52.
[HUNT79] Hunter, G. M. and Steiglitz, K., "Operations on Images Using Quad Trees,"

IEEE Transaction on Pattern Analysis and Machine Intelligence, PAMI-1 (2),
April 1979, pp. 145-153.

[JACK80] Jackins, C. L. and Tanimoto, S. L., "Oct-Trees and Their Use in Representing
Three-Dimensional Objects," Computer Graphics and Image Processing, 14 (3),
November 1980, pp. 249-270.

[LAUZ85] Lauzon, J. P., Mark, D. M., Kikuchi, L., and Guevara, J. A., "Two-Dimensional
Run-Encoding for Quadtree Representation," Computer Vision, Graphics, and

Image Processing, 30 (1), April 1985, pp. 56-69.
[MANT83] Mantyla, M. and Tamminen, M., "Localized Set Operations for Solid Modeling,"

ACM Computer Graphics, 17 (3), July 1983, pp. 279-288.
[MEAG82] Meagher, D., "Geometric Modeling Using Octree Encoding," Computer Graphics

and Image Processing, 19 (2), June 1982, pp. 129-147.
[REQU80] Requicha, A. A. G., "Representations for Rigid Solids: Theory, Methods, and

Systems," ACM Computing Surveys, 12 (4), December 1980, pp. 437-464.
[REQU82] Requicha, A. A. G. and Voelcker, H. B., "Solid Modeling: A Historical Sum

mary and Contemporary Assessment," IEEE Computer Graphics and Applica

tions, 2 (2), March 1982, pp. 9-24.
[REQU83] Requicha, A. A. G. and Voelcker, H. B., "Solid Modeling: Current Status and

Research Directions," IEEE Computer Graphics and Applications, 3 (7), Octo
ber 1983, pp. 25-37.

[SAME80] Samet, H., "Region Representation: Quadtrees from Boundary Codes," Commu

nications of the ACM, 23 (3), March 1980, pp. 163-170.
[TAMM84] Tamminen, M., "Efficient Octree Conversion by Connectivity Labeling" ACM

Computer Graphics, 18 (3), July 1884, pp. 43-51.
(TILO80] Tilove, R. B., "Set Membership Classification: A Unified Approach to Geomet

ric Intersection Problems," IEEE Transactions on Computers, C-29 (10), Octo
ber 1980, pp. 874-883.

55

Appendix A

The Solid Modelling Package

A.l The Linear Octree Library
The solid modelling package is implemented in C under ubc-cs, a VAX 11/750 running

4.2 BSD UNIX. All sources, library, and executable codes are residing under the directory
" h o / l o t / l i b (userid ho). Library functions are archived (ar(D) in l i b l o t . a and should be
loaded by including it in c c (l) or l d (l) , while their source codes are stored in files beginning
with lower case letters ([a-z]* .c). The files README and Makefile contain more information
on how to use the library.

The major functions will be described here. #include <lot.h> must appear at the be
ginning of the source file before referencing these functions. Functions that are not explicitly
typed are of type int in C, but here untyped functions do not return useful values and should
be considered only as procedures. Most abbreviations used for composing names follow the
conventions listed below:

St... struct name
Ty...: typedef 'ed name
p. . .: pointer, pointer-to
i . . .: index, index-of
Blc: block of storage
LUT: lookup table
Obj: solid object
LOT: linear octree
Bn: linear octree node (black node of the "tree")
Vox: voxel
Ind: indicator
Pkd: packed

56

APPENDIX A. THE SOLID MODELLING PACKAGE 57

Basic Operations and Conversions:
int BnLeveK Bnode, Resoln)
TyBnode Bnode; in t Resoln;

Returns the node level of Bnode at resolution Resoln.

BnToVoC Bnode, Resoln, Level , pLoVoz, pHiVox)
TyBnode Bnode; i n t Resoln, Level ; TyVox *pLoVox, *pHiVox;

Returns the lowest and highest order voxels *pLoVox and *pHiVox of level Level node
Bncde of resolution Resoln.

LVoToHVoC LoVox, Resoln, Level , HiVox)
TyVox LoVcx, HiVox; int Resoln, Level ;

A macro expansion to compute the highest order voxel HiVox from the lowest order voxel
LoVox given its node level Level and resolution Resoln.

HVoToLVoC HiVox, Resoln, Level , LoVox)
TyVox LoVox, HiVox; int Resoln. Level ;

A macro expansion to compute the lowest order voxel LoVox from the highest order voxel
HiVox given its node level Level and resolution Resoln.

LVoToBnC pLoVox, Resoln, pLevel, Bnode)
TyVox *pLoVox; in t Resoln, *pLevel; TyBnode Bnode;

Returns the largest node Bnode and its level *pLevel given its lowest order voxel *pLoVox
at resolution Resoln.

VoToBnlC pVox, Resoln, Bnode)
TyVox *pVox; int Resoln; TyBnode Bnode;

Returns a level Resoln node Bnode (smallest node) representing the voxel *pVox, i.e., a
direct conversion from voxel to node number is carried out.

Boolean SuccBnC Bnode, pLevel)
TyBnode Bnode; in t *pLevel;

Replaces the level *pLevel node Bnode by its successor and updates *pLevel. Returns
TRUE unless Bnode does not have a successor. Note that the resolution parameter is
irrelevant since the Level will only "rise*' towards 0.

Trimming:
TrinBnLoC Bnode, Resoln, pLevel. Coord, OcPos)
TyBnode Bnode; i n t Resoln, *pLevel, Coord, OcPos;

Trims a level *pLevel node Bnode at resolution Resoln against a lower bound Coord.
OcPos specifies the bit position of an x, y, or 2 coordinate within the octree digit, thus
specifying the x, y, or z-bound. *pLevel will be updated.

APPENDIX A. THE SOLID MODELLING PACKAGE 58

TrimBnHi(Bnode, Resoln, pLevel, Coord)
TyBnode Bnode; int Resoln, *pLevel. Coord;

Trims against a higher bound similar to TrimBnLo, but identically for all x, y, and z-
bound.

Storage and Node Retrieval:

Boolean GetObjC pDbjFile, pObj)
FILE *pObjFile; TyObj pObj;

Reads an object *pObj from file *pObjFile. Returns FALSE on bad external object file
format or insufficient memory.

PutCbjC pObjFile. pObj)
FILE *pObjFile; TyObj pObj;

Writes an object *pObj onto file *pObjFile.

PackBnC Bnode. Resoln. pPkdBn)
TyBnode Bnode; int Resoln; unsigned *pPkdBn;

Packs the node Bnode at resolution Resoln into *pPkdBn.

UnpackBnC PkdBn, Resoln. Bnode)
unsigned PkdBn; int Resoln; TyBnode Bnode;

Unpacks the packed node PkdBn of resolution Resoln into Bnode.

Boolean GetMextBnC pObj, plnd. Bnode)
TyCbj *pObj; Tylnd *plnd; TyBnode Bnode;

Returns the next node Bnode of object *pObj using indicator *plnd and advances it to
"point to" the next node. Returns FALSE when last node was retrieved. To start up a
sequential retrieval, pInd->pLOTBlc must be set to p0bj->p.L0T and pInd->iL0T31c to
0.

Boolean DelNextBnC pObj, plnd, Bnode)
TyObj *p0bj; Tylnd *plnd; TyBnode Bnode;

Identical to GetNextBnC) except that a block will be freed as soon as *plnd moves away
from it.

Boolean InsertBnC Bnode, pObj, plnd)
TyBnode Bnode; TyObj *p0bj; Tylnd *plnd;

Inserts the node Bnode into object *p0bj after the position "pointed to" by *plnd. *plnd
will advance to the current position. Returns FALSE on insufficient memory. To initialize
the appending mode, *pInd->pL0TBlc must be set to NULL.

Boolean DupObjC pObjl, p0bj2)
TyObj *p0bjl, *p0bj2;

Duplicates object *p0bjl as *p0bj2. Returns FALSE on insufficient memory.

APPENDIX A. THE SOLID MODELLING PACKAGE 59

NullObjC pObj)
TyObj *pObj;

Nullifies the object *pObj by freeing all its node blocks.
Normalization:
Boolean SortLOTC ppLOTBlc)
TyLOTBlc **ppL0TBlc;

Sorts the nodes in the linear octree blocks heading with **ppL0TBlc into increasing
order and condenses them. Returns FALSE on insufficient memory. (This may happen
since blocks are reallocated, but unlikely.)

Boolean MergeLQTC pqLOTBlc, ppLOTBlc. Fast)
TyLOTBlc *pqL0TBlc. *ppL0TBlc; Boolean Fast

Merges the linear octree *pqL0TBlc into *ppL0TBlc and condenses the result. If Fast
is TRUE, not every node will be compared for merging and condensation, instead, blocks
unchanged will simply be re-linked. *pqL0TBlc will be NULL upon return. Returns FALSE
on insufficient memory.

Boolean CollectBnC PkdBn)
unsigned PkdBn;

Collects a packed node PkdBn onto an internal stack for condensation. Returns FALSE
on insufficient memory returned from the internal function ReleaBeSnQ. CollectBnC)
must be called sequentially with a sorted list of PkdBn's after an initial call to CdlnitO,
and must signal the termination of the sequence by a call to CdDoneO.

Boolean CdlnitC ppLOTBlc)
TyLOTBlc **ppL0TBlc;

Initializes the internal memory for condensing nodes into linear octree *ppL0TBIc. Re
turns FALSE on insufficient memory.

Booleen CdDoneO
Inserts all pending nodes collected for condensation into the current linear octree. Re
turns FALSE on insufficient memory.

Object Generation and Modelling Operations:
Boolean CuboidC zO. yO, zO, dz. dy, dz, Resoln, pObj)
int zO. yO, zO, dz, dy, dz, Resoln; TyObj *pObj;

Returns the cuboid *pObj of resolution Resoln with lowest order corner at (zO.yO.zO)
and dimensions dz x dy x dz. Returns FALSE on insufficient memory.

APPENDIX A. THE SOLID MODELLING PACKAGE 60

Boolean El1ipsoid(xO, yO. zO, dx, dy, dz. Resoln, pObj)
int xO, yO, zO. dx, dy, dz, Resoln; TyObj *p0bj;

Returns the ellipsoid *p0bj of resolution Resoln enclosed in the cuboid with lowest
order corner at (x0,y0,z0) and dimensions dx x dy x dz. Returns FALSE on insufficient,
memory.

Boolean Translate(pObj, tx, ty, tz)
TyObj *pObj; float tx. ty, tz;

Translates the object *p0bj by (tx,ty,tz). Returns FALSE on insufficient memory.
Boolean ScaleC pObj, B X , sy, sz)
TyObj *p0bj; float sx. sy, sz;

Scales the object *p0bj by sr, sy, sz times along the x, y, and z-axis respectively,
centering at the center of the object's octree domain. Returns FALSE on insufficient
memory.

Boolean Rotate(pObj, Axis, thetaD)
TyObj *p0bj; char Axis; float thetaD;

Rotates the object *p0bj by thetaD degrees about the axis parallel the Axis-axis and
passing through the center of the object's octree domain. Axis can have one of the values
'x', 'y', or 'z*. Returns FALSE on insufficient memory.

Boolean Union(pObjl, p0bj2) TyObj *p0bjl, *p0bj2;
Returns the union of objects *p0bjl and *p0bj2 and keep the result in *p0bjl. *p0bj2
will be nullified. Returns FALSE on insufficient memory.

Boolean Intersect(pObjl, p0bj2)
TyObj *p0bjl, *p0bj2;

Returns the intersection of objects *p0bjl and *p0bj2 and keep the result in *p0bjl.
•pObj 2 will be nullified. Returns FALSE on insufficient memory.

Boolean Subtract(pObjl, p0bj2) TyObj *p0bjl, *p0bj2;
Returns the difference of object *p0bj2 from *p0bj 1 and keeps the result in *p0bj 1. (i.e.,
subtract *p0bj2 from *p0bjl.) *p0bj2 will be nullified. Returns FALSE on insufficient
memory.

Rendering:
View(Dev, pParFile)
TyDev Dev; FILE *pParFile;

Sets up viewing parameters from data in file *pParFile for device Dev.
DisplayC pObj)
TyObj *p0bj;

Displays the object *p0bj on the selected device under the current viewing parameter
settings.

APPENDIX A. THE SOLID MODELLING PACKAGE 01

Boolean DepthSortC pObj, Octant)
TyObj *pObj; int Octant;

Rearranges the nodes in object *pObj into a depth-sorted order when viewed from octant
Octant. Returns FALSE on insufficient memory.

PutVertexC pObj. Octant)
TyObj *pObj; int Octant;

Outputs the 7 vertices of the 3 visible surfaces of each node in object *pObj as viewed
from octant Octant to stdout.

A.2 User Programs
A set of driver programs are available as ordinary UNIX commands in the directory "ho/lot.

The syntax of these commands are described below. Most of them reads and writes objects via
stdin and stdout using the external object file format as described in Section 5.2.2. All errors
generated are written onto stderr.

The object generation commands
cuboid zo yo ZQ A Z Ay Az resolution

ellipsoid zo yo z<> Az Ay Az resolution

are identical to their library counterparts with objects written out onto stdout.
The command unpack reads an object from stdin and dumps all the nodes in printable

octal digits to stdout, suitable for debugging, pack does the exact inverse of unpack, which
can be used for building a linear octree-encoded object manually. There is also an analyze
command that reads an object from stdin and prints a tally of its nodes onto stdout.

The three geometric transformations
translate tx t9 tz

scale ss Bv st

rotate axis theta

read an object from stdin and writes the result onto stdout; they all accept real arguments.
The boolean operations
union [/»7el] file2

intersect [filel] filei

subtract [filel] file2

have identical syntax, accepting two objects. If only one file name is given, it will be taken as
the second object, and the first object will be read from stdin. Results will be written onto
Btdout as usual.

APPENDIX A. THE SOLID MODELLING PACKAGE 62

Rendering is not completely implemented. An object in file file can be displayed on the
Jupiter 7 terminal under MTS using viewing parameters from file u»eu;par by following the
tedious procedure below:

1. Issue the command
see v i r t u a l viewpar file >lot

where v i r t u a l is the only device supported currently, and the file l o t must be specified
exactly.

2. Issue
seelot >image

which reads the faces from file l o t and generates a 256 x 192 grey level image onto file
image. For compatibility with MTS, image contains 257 x 192 8-bit pixels with 8 grey
levels, decimal values 65 to 72. Each 256-byte scanline is terminated by the newline
character, decimal 10. All other values are unused.

3. Transfer the file image to MTS. Currently only t i p (l) seems to work well, except for its
low speed—be patient. Use 2400 baud and the " i command of t i p , and make sure to use
the binary format. The receiving MTS file must be created before the transfer.

4. Signon to MTS from the Jupiter 7 terminal. Then issue
run j 7 . s e e l o t * * j u p l i b 0=j7imagc

to see the result assuming image is transferred to jUmage.

The following is a sample session to create the object shown in figure A.l. A different
procedure was taken to put all six images onto the Raster Technologies One/25 in the UBC
Laboratory for Computational Vision.

cuboid 464 512 480 96 24 64 10 >brick
(a parallelepiped at the center of a resolution 10 domain)

rotate y 60 <brick I i n t e r s e c t b r i c k >rhombus
rot a t e y -60 <brick I i n t e r s e c t rhombus >hexegon

(intersecting the three cuboids results in a hexagonal prism)
e l l i p s o i d 472 500 472 80 36 80 10 I i n t e r s e c t hexagon >head

(the bolt's head)
cuboid 506 620 480 12 16 64 10 >slice
union head c y l i n d e r I subtract s l i c e >bolt

(c y l i n d e r is actually a scale-up of a 1 voxel thick ellipsoid—a disc)

APPENDIX A. THE SOLID MODELLING PACKAGE G3

see v i r t u a l vplO bolt >lot
(file vplO already set up to view center part of a resolution 10 domain)

seelot >image.jupi
Send to Jupiter 7 or Raster Technologies One/25 for viewing.

Figure A . l : Various stages in creating an object.

