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Abstract 

Object representation is the backbone of any solid modelling system. Hierarchical spatial 
decompositions of objects called octrees introduced very efficient algorithms for boolean set 
operations and some restricted classes of geometric transformations. Linear octrees, a compact 
encoding of the octrees, result in a significant reduction of storage requirements, and lead to 
simpler algorithms for most modelling operations. 

This thesis investigates some properties of linear octrees with emphasis on object genera
tion. By interpreting linear octree node digits as binary numbers, some simple conversion and 
node trimming algorithms are found, which when combined with a node enumeration algorithm, 
generate the linear octrees of cuboidal volumes efficiently. A simple and uniform approach is 
devised to perform arbitrary geometric transformations by means of cuboid generation. Exper
iments shows these algorithms maintain the efficiency of special cases while degrading linearly 
with the number of intermediate nodes generated. 
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Chapter 1 

Introduction 

Solid modelling refers to the theory and practice for computing the properties of and ma

nipulating solid objects represented by some abstract data structures. It is becoming popu

lar in many computer graphics applications. Evolving throughout the past decade, the tech

nology has now been transferred from the stage of research projects to production systems 

[REQU82,REQU83]. Areas such as engineering design, manufacturing, architecture, and medi

cal imagery are using solid modelling as a standard tool. In recent years, even the advertisement 

and movie industries are using the technology to achieve special effects. 

Object representation [REQU80] is the basic foundation of any solid modelling system. Un

til now, most systems used boundary representation and/or primitive instancing as their basic 

building blocks. Such schemes provide a good approximation of real solids and allow exact ge

ometric transformations, but make boolean set operations, a necessity in solid modelling, and 

geometric and topological property calculations somewhat difficult. To overcome these, a spa

tial enumeration scheme called octreet [JACK80,MEAG82] was introduced, which decomposes 

hierarchically the three-dimensional Euclidean space (2JS) and expresses the objects residing 

in it in the form of ordered 8-ary trees. However, octrees often require excessive amounts of 
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CHAPTER 1. INTRODUCTION 2 

storage for their nodes and pointers even for moderately complex objects. The linear octree 

[GARG82] was devised to reduce the storage requirement dramatically by storing only the leaf 

nodes using a special encoding scheme. 

This thesis takes a different look at linear octrees to take full advantage of their mathemat

ical properties. Efficient algorithms were derived that extensively use bitwise operations. A 

complete set of modelling operations is also described. Chapter 2 gives a brief overview of var

ious solid representation schemes. Chapter 3 describes the linear octree as used in this thesis, 

on which new operations, such as node trimming, and object generation algorithms are derived. 

The standard geometric transformations—translation, (arbitrary) scaling, and rotations, which 

make use of the new object generation algorithms, are discussed in Chapter 4. Boolean set 

operations—union, intersection, and difference—and rendering techniques are also included for 

completeness. An experimental implementation is described in Chapter 5, along with some 

evaluations on the solid modelling package. Chapter 6 summarizes this work, lists unsolved 

problems, and suggests possible extensions and future work. 



Chapter 2 

Object Representations 

2.1 Solid Objects 

The primary interest of solid modelling is manipulation of solid "physical" objects. More 

precisely, these objects are subsets of E 3 that are well-behaved, represent able, and occupy 

non-zero volume; curves and surfaces are not considered valid solids in this context. In addi

tion, boolean set operations are regularized so as to maintain closure. The following sections 

briefly outline 3ome of the common solid representation schemes and lists their advantages and 

disadvantages. A thorough survey can be found in [REQU80]. 

2.2 Primitive Instancing 

Primitive solids such as cubes, spheres, and prisms can be represented easily and exactly by 

just a few parameters. Most mechanical parts can be constructed by applying set operations on 

instances of these primitives, such as the object in Figure 2.1. Set operations can be simplified 

since intersections of object surfaces can be solved analytically. However, the restricted class of 

solids makes primitive instancing difficult to extend to a wider range of applications. Production 

systems do not rely solely on primitive instancing, but rather include it as a means for input. 

3 



CHAPTER 2. OBJECT REPRESENTATIONS 4 

Figure 2.1: Construction of an object by set operations on primitive instances. 

2.3 Boundary Representation 

Boundary representation is a very versatile scheme since it can be used to represent (al

most) any solid that is of interest to solid modellers. Extant systems such as Build 2, Romulus 

[HILL82], PADL-2 [BROW82], and GMSolid [BOYS82] are all based on boundary representa

tion. Under this scheme, an object is bounded by planar polygonal surfaces, which are denned 

by their bounding edges, each of which is defined by two vertices. Each distinct vertex is stored 

by its actual coordinate values. The surface-edge-vertex relations can be built up by "pointer" 

structures. Non-planar surfaces can always be approximated by a (usually) large number of 

planar polygons, but higher order surface patches can also be introduced to the scheme. 

A major difficulty arises when performing set operations on objects in boundary repre

sentation. Determining the intersection of two objects requires solving virtually every pair 

of polygonal surfaces from the objects for the intersecting lines that become part of the new 

boundary. An improved algorithm was introduced in [MANT83] to achieve efficient boundary 

intersections with execution time linear in the number of faces. Nevertheless, a large amount 
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of computation is still required compared to other geometric transformations on the same ob

jects. Moreover, the result of set operations may not be "unique''. For example, the union of 

the two objects in Figure 2.2 leaves superfluous edges in the middle of several planar surfaces. 

Unwanted 
edges 

Figure 2.2: Unwanted edges produced from union of two objects. 

Removing such unwanted edges may be quite time consuming. 
Boundary representation may also yield "impossible" objects such as the one shown in 

Figure 2.3 which contains intersecting surfaces. This can be avoided if the input facility performs 

Figure 2.3: An "impossible" object from boundary representation. 

some validity checks and refuses to handle such objects. Also, computation and analysis of mass 
properties is not trivial in boundary representation since the volume has to be deduced from 
bounding surfaces. 
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2.4 Spatial Enumeration 

Spatial enumeration is a partition of a subset of Es into "addressable" cells, called voxels 
(volume elements), to form a spatial array. An object is "digitized* in this discrete space—a 
voxel is either part of the object or it is not. Such a scheme has many favourable mathemati
cal properties (over boundary representation). All objects in the subspace are valid solids (no 
impossible objects exists; all occupy finite volume,) and their representations are unique. Com
putation of mass properties becomes trivial since such properties of an object as a whole can 
be derived from the same properties of the voxels comprising the object, which are well known 
because the voxels are regular cubes. 
The major advantage of spatial enumeration lies in performing boolean set operations. 

Union, intersection, and difference of two objects can be carried out simply by comparing the 
individual voxels of the objects to determine their inclusion and exclusion in the resulting object. 
No solving of equations is required; in fact no numerical computation is needed. 
There is, however, an enormous number of voxels even in a moderate decomposition of 

an object in the spatial array. The amount of data is directly proportional to the object's 
volume. The discrete nature of this scheme also makes it unfavourable for industrial designs 
which often require high precision. It is therefore more suitable for highly irregular objects such 
as tomographic scans of biological organs, which would otherwise require even more complex 
polyhedra using boundary representation. 

2.5 Octrees 

To overcome the problem of excessive storage required in spatial enumeration, a scheme call 
octree encoding was devised [JACK80,MEAG82] to take advantage of the spatial coherence of 
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voxels in objects—adjacent voxels are grouped to form larger units to reduce the data volume. 
The idea is an extension of the two-dimensional quadtree [HUNT79] to three dimensions. 

Unlike spatial enumeration, the domain (a subset of E 3) is divided into eight octants. Then 
each of the octants is further divided into eight smaller octants. This recursive subdivision 
continues until the final size of an octant reaches some desired resolution. An 8-ary tree is 
used to represent the subdivisions. The root is the entire domain. Then its eight child nodes 
represent the eight octants of the first division, and each of the children has eight children for 
further subdivisions. 
An object in the octree domain is expressed by labelling the nodes of the 8-ary tree with 

"colours* white, grey, and black. If a node (an octant) at some level is completely filled by the 
object, it will be labelled black. If the node does not belong to any part of the object, it will 
be labelled white. Otherwise it must be partly filled by the object, and will be labelled grey. A 
black or white node does not have any descendent since there is no need to further subdivide 
the octant to determine occupancy. A grey node, on the other hand, must have (exactly) eight 
children for the converse reason (see Figure 2.4). Observe that all leaves of an octree are either 

Figure 2.4: An object and its octree representation, 

black or white, and a set of eight siblings is never all black or all white, because otherwise that 
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would be the colour of their parent and they would not exist. 
Octrees show promising applications in boolean set operations, interference detection (e.g. 

[AHUJ84]), and even ray-tracing [GLAS84]. The advantages of octrees on other applications 
have yet to be explored. 
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Linear Octree Representation 

3.1 The Linear Octree 

In practice, the pointers and records of an octree will require a large amount of storage, 
since (virtually) only the leaves of the tree constitute the actual object. The internal nodes 
accounting for the majority of the structure do not represent "real* data. The linear quadtree 

and the linear octree [GARG83,GARG82] are representations which reduce a tree structure to 
contain only leaf nodes. Each leaf node is expressed as a string of extended base-4 and base-8 
digits which identifies the path from which this node is reached starting at the root. Thus an 
octree can be represented "linearly* by a list of node numbers embedding the underlying tree 
structure. 
The linear octree to be described here is structurally identical to Gargantini's, except for 

the conventions and notations used. Octants are numbered rather than using compass bearings, 
and their positions are reassigned. Conversion between nodes and voxels is (hopefully) clearer 
and easier under this numbering scheme. 

9 
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3.2 Terms and Notations 

Domain resolution 

The resolution specifies the number of levels of an octree or linear octree object domain. 
A domain of resolution r contains (2r)3 voxels defined by the set of triples 

{(x,y,z) | (x,y,z) € Is, 0 < x,y,z < 2r - 1}. 

(The restriction that x, y, and z are integers is obvious in context and will be omitted 
unless an ambiguity arises.) 

Linear octree nodes 

The nodes in a linear octree correspond to the leaf nodes (full or black nodes) in the 
8-ary tree of the explicit octree. Since internal nodes only appear in explicit octrees, the 
term "node" will not be ambiguous when referring to linear octrees. 

Node level 

The level of a linear octree node ranges from 0 to r. The level 0 node has a size equal 
to the entire octree domain. A level r node is the smallest "addressable" volume having 
the size of a voxel. 

Linear octree encoding 

A linear octree node is identified by an r-digit "octal" number using 9 distinct symbols. 
The digits 0 to 7 are naturally adopted for the eight octants of each level as shown in 
Figure 3.1. The ninth symbol, F, is a filler for a full node (hence the letter F) at a 
level I < r where fewer than r O-to-7's are required to identify the node—the trailing 
{r — l) digits are F's. For example, the level 2 node occupying suboctant 7 of octant 4 in a 
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y 

Figure 3.1: Digit assignments for linear quadtrees and linear octrees, 
resolution 3 domain is encoded as 47F. The assignments of 0 to 7 were deliberately chosen 
such that the three-bit binary numbers of 0 to 7 have their bit positions correspond to 
the x, y, and z-axis from least to most significant bit respectively. This becames an 
important property for conversion between nodes and voxel coordinates. 

Node Ordering 

All nodes in an octree-encoded object are unique and disjoint; their union comprises 
the object. The explicit octree implies an ordering of sibling nodes which linear octree 
nodes must preserve. However, while the notion of order in an octree applies to each 
set of sibling nodes separately, the order of nodes in a linear octree applies to all r-digit 
node numbers globally. The usual numerical order of 0 to 7 is used, with the addition 
of defining F greater than 7. Figure 3.2 is a quadtree-encoded circular disk with its 
quadtree node numbers (digit assignment as in Figure 3.1) listed in order. Note that 
the most significant digits distinguishing two node numbers (from the same object) are 
never F's, since otherwise one would be the descendent of the other. The definition F > 7 

is critical for the node comparisons used in boolean set operations in Section 4.2. 
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--

0013 0202 103F 200F 231F 321F 
0023 0203 1120 201F 2321 3220 
003F 021F 1122 2021 2330 3221 
0101 022F 1123 2023 2331 3300 
0102 023F 12FF 203F 30FF 
0103 03FF 130F 21FF 310F 
011F 100F 1312 2210 3110 
012F 1012 132F 2211 3112 
013F 1013 1330 2213 312F 
0201 102F 1332 230F 320F 

Figure 3.2: A circular disk of diameter 15 in a domain of resolution 4 consists of 54 nodes. 
Lowest and Highest Order Voxels of a Node 

Each black node is a cube consisting of multiple voxels (except for a level r node which 
consists of a single voxel). The two corner voxels (zo.Vĉo) and (zi,yi,zi) completely 
determine the volume of space 

{{x,y,z) | x0 < x < xi, y0<V<Vi, *o < z < *i} 

occupied by the node. If all the voxels in a node are expressed as level r nodes and listed 
in the order described above, the node representing the voxel (xo, 1/0,20) will be the first 
one in the sequence while the node for (zi,Vi,Zi) will be the the last. Therefore these 
two voxels are designated the lowest order and highest order voxels respectively. 

3.3 Basic Operations 
3.3.1 Conversion of a node to its lowest and highest order voxel coordinates 

An interesting observation is that the linear octree encoding of a voxel (its node number) is 
an alternative interpretation of the binary numbers of its z, y, and z-components of its spatial 
coordinate (x,y,z). This property allows straight forward and low cost conversion between a 
node and its corner (voxel) coordinates. The procedure is best illustrated by the examples in 
Figure 3.3. 
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(a) Node 5643 fleveW 
5643 

x 100 1 9 < 
y 0 10 1 5 

1110 14 

Bits of node digits 

- least significant -

- most significant -

(b) N o d e 65FF (\evt\2) 

6500 
• x 0 100 4 

y 1000 8 
fc. z 1100 12 

Lowest order voxel = (9,5,14) 
Highest order voxel = (9,5,14) 

Lowest order voxel = (4,8,12) 

6577 
0 111 
10 11 
1111 

7 
11 
15 

Highest order voxel = (7,11,15) 

Figure 3.3: Conversion of octree nodes to their corner voxels. 
3.3.2 Conversion to the largest node from its lowest order voxel coordinate 

Conversion to a node from its lowest order voxel coordinate is not an exact inverse of the 

conversion operation of Section 3.3.1 because two nodes at different levels can share the same 

lowest order voxel. Thus, a given voxel will not generate a unique octree node unless the desired 

level is specified. Generating the largest (lowest level number) node will be of interest in object 

generation discussed in later sections. Figure 3.4 shows the inverse conversions of the nodes 

from Figure 3.3. 

3.3.3 Sequential node generation 

With the foregoing notion of node sequencing, it is desirable to enumerate all the nodes of 
the entire octree domain. The three sequences 

(a) 000, 001, 002, ...,007, 010, 011, ...,776, 776, 777 

(b) OFF, IFF, 2FF,..., 7FF 

(c) 000, 001, 002, ..., 007, 01F, 02F, ..., 07F, IFF, 2FF, ..., 7FF 

file:///evt/2


CHAPTER 3. LINEAR OCTREE REPRESENTATION 14 

(a) Voxel (9.5.U) 
Bits of voxel coordinates 

(b) Voxel (4,8,12) 

zy x zy x 
0 1 1 
100 
1 1 0 
1 0 1 

3 <# 
4 
6 
5 -< most significant 

least significant 000 
000 
10 1 
1 1 0 

0 
0 
5 
6 

Largest node is 5643 of level 4 Largest node is 65FF of level 2 
(650F if specified level 3) 
(6500 if specified level 4) 

Figure 3.4: Conversion to octree nodes from their lowest order voxels. 
enumerate the nodes in a domain of resolution 3. But as demonstrated, there is not a unique 
sequence of disjoint nodes comprising the domain. The reason lies in the fact that a node such 
as 725 is included in 72F which is in turn included in 7FF. This non-uniqueness also introduces 
the ambiguity in determining what should be the tucceeeor of a node, say, 377—should it be 
37F?, 3FF?, 400?, or 4FF? 
As an essential part in object generation, a node and its successor must be disjoint, and the 

successor must have a maximal size, hence 4FF is the successor of 377. Therefore the successor 
of a node is defined to be the next sibling node if there is one, or the successor of its parent node 
if it is the last child node. The recursive property of this definition may result in a successor 
several levels higher than the node itself. As an extreme case, the nodes 777, 77F, 7FF, and 
FFF do not have a successor in the resolution 3 domain. 

It is interesting to find that 'successor of is a many-to-one relation. For example, 177, 17F, 
and IFF all have the successor 2FF. Thus the notion of predecessor could not be easily defined 
since it would be a one-to-many relation. Being of no further interest, 'predecessor of will be 
left undefined in this discussion. 
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3.3.4 Trimming against a lower bound 

A node is trimmed against a given bound by expanding it into its children nodes and, if 
necessary, further expanding its children nodes until no descendent node crosses the bound. 
The first node (with respect to node ordering) in this expanded list satisfying the bound will 
be the result of the trimming operation. 

For trimming against a lower bound, the resulting node will have its lowest order voxel 
coordinate no less than the given bound. The algorithm compares the F's in the node with the 
corresponding binary digits of the lower bound and replaces some of these F's by 0's, or l's (1 
for z-bound, 2 for y-bound, 4 for 2-bound) according to the following rule: From the position of 
the leftmost F to that of the rightmost 1-bit of the bound, a 0-bit converts that F to a 0, and a 
1-bit to a 1 (or 2 or 4 for y and z respectively). If the rightmost 1-bit locates on the left of the 
leftmost F, then the node would not be affected by the trimming. Figure 3.5 shows an example 

Node 2 F F F 
8 y> 1 (H 0 

Result 2 0 2 F 

o 
0 8 

Figure 3.5: Node 2FFF trimmed by lower bound y = 10. 

of this algorithm applied to a quadtree. For quadtrees there is, of course, no z-boundary to 
consider. 
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3.3.5 Trimming against an upper bound 

Trimming against an upper bound results in a node with its highest order voxel coordinate 
not greater than the given bound. A similar yet significantly different rule applies: from the 
position of the leftmost F to that of the first 1-bit of the bound on the right of this F, change 
all F's to O's. If all bits are 1 after this 1-bit, the last F should not be changed. If there is no 
1-bit to the left of the leftmost F, then all F's would be changed to O's. All other digits remain 
unchanged. Two examples in Figure 3.6 illustrate the rule. It should be noted that the upper 

Node 3 F F F Node 3 F F F 
(a) x< 1 QJ. 0 (b) x< 1 flj. 1 

Result 3QJ)F Result 3 0_FF 

Figure 3.6: Node 3FFF trimmed by upper bounds x = 10 (a), and x = 11 (b). 

bound of the resulting node does not necettarily touch the given bound. This operation is very 
asymmetrical to 'trimming against a lower bound' because it only expands the node to its first 
descendent node that satisfies the requirement. 
The two trimming algorithms described above work only if the node is known to cross the 

trimming bounds. Therefore a preliminary test is necessary by comparing the corner voxel 
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coordinates of the node with the given bound. Incorrect result would occur if this rule is not 
obeyed. 

3.3.6 Normalizing an object 

The octree representation of an object is not unique if all sibling nodes at some part of the 
tree are black. For example, instead of having one node 52F, there are eight nodes 520, 521, 
..., 627 that occupy the same space. This may result from modelling operations on objects 
described later. It is possible to normalize these nodes by sorting them in order and condensing 
them to a minimum number such as the circle in Figure 3.2. (Note that not all groups of four 
nodes forming a square make a larger node, the circle it in fact normalized.) Although being 
in unnormalized form does not affect an object's geometrical properties, it is necessary to have 
objects normalized in order to carry out modelling operations efficiently. 

3.4 Ob jec t G e n e r a t i o n 

3.4.1 Parametrically defined objects 

Many simple geometric solids such as cuboids (or parallelepipeds), spheres, prisms, and 
cones are defined by just a few parameters such as length, height, width, or radius!. Most 
manufactured parts are built by combinations of these solids; and in fact many existing solid 
modelling systems support only this family of solids since they require little amount of storage, 
and modelling operations can be performed quite easily. Generating such objects in an octree 
domain is, however, not as easy as it seems. Boundary following algorithms such as [SAME80] 
generate quadtree representations of regions from chain-coded boundaries. For a parametrically 
defined solid, this means that one must digitize the surfaces of the solid and apply a similar 
surface-following algorithm to generate the octree of the enclosed space. This technique can 
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be applied to general solids, concave or convex.1 But in most situations, only convex primitive 
solids need to be considered. (At least the four geometric solids mentioned above are all convex.) 
Complex objects can be built by modelling operations on convex primitives. In addition, while 
generating nodes of an explicit tree structure in any order does not affect its properties, it is 
critical to generate nodes of a linear octree in some sorted order to avoid the normalization 
process which is dominated by the time-consuming sorting step. Facing these considerations, a 
simple trial and error algorithm has been devised: 

1. The level 0 node is tested for inclusion inside the parametrically defined surface. 

2. If the test returns "inside", then the node is part of the object and will be accepted. 

3. If the node is outside, then it will be discarded. 

4. Otherwise the node must be partially inside and outside. In this case, the node is expanded 
into its eight children and all are tested, beginning with the first one. 

5. When one node is done, try its successor as defined in Section 3.3.3. 

The restriction to convex objects is imposed to make the inclusion tests easier. Inclusion of 
all vertices of a node implies the inclusion of the entire node. (Exclusion of all vertices, however, 
does not imply exclusion of the node.) 

3.4.2 Cuboid 

A cuboid with its sides parallel to the principal axes is the simplest object to generate. 
It can be filled exactly by octree nodes of different levels. The two vertices (xo,Vo,*o) and 
(zi,tfi,zi) where XQ < xi, yo < yi, and Zo < Zi completely define the cuboid. 

'All lines joining two different points inside a convex solid lie completely inside that solid. 
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Assuming a domain of resolution 4, the above algorithm can be applied by initiating the 
node sequence with FFFF to be tested for acceptance. A better choice is to start with the largest 
node which has its lowest order voxel at (zo,Vo,2o)- Immediate acceptance and rejection can 
be determined by a few comparisons with XQ, VO, *b> *i> Vi, ̂ d Zi. 

When a node crosses a boundary, it could be expanded into its eight descendents simply by 
changing the leading F to 0. The following nodes will be generated sequentially by finding the 
successor of each one, which again requires the changing of (usually) one octree digit. This is 
virtually an in-order traversal of the tree without using any recursion or stack—the digits in 
the current node are actually the information that the stack would have saved. 

Incidentally, expanding and retrying a node one level at a time is not very attractive. 
"Trimming'' a node against a given bound as described in Sections 3.3.4 and 3.3.5 will expand 
the node to the appropriate level in one step. As are window clipping algorithms, the node 
trimming here should be applied to each of the six bounds of the cuboid in a pipelined fashion. 
As one can see, the sequential node generation algorithm, combined with the trimming 

operations, provide an efficient method to generate the normalized linear octree of any volume 
in the octree domain. It also becomes apparent why the resulting linear octree is normalized, 
since all nodes are introduced in order, and a node is always considered before its descendent. 

3.4.3 Ellipsoid 

The ellipsoid is of interest because it is the generalized form of the sphere, and it is also a 
typical solid with non-planar surfaces. The same basic algorithm can be applied to the ellipsoid, 
except that the trimming algorithms are no longer useful since they only apply to planes parallel 
to the principal axes. There remains the one-level-at-a-time expansion algorithm. A more 
general trimming algorithm could be applied to parametrically defined surfaces, but is likely 
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to involve complicated equations solving for the desired level of expansion. The benefit gained 
may not be worth the effort. 

Nevertheless, some provision can be made to improve the ellipsoid generation algorithm. 
Since generating the linear octree of a cuboid is relatively cheap, the smallest enclosing cuboidal 
volume of the ellipsoid is found and generated first. Next, the nodes in this volume are enumer
ated and the algorithm is applied once again to the ellipsoid, using the level-by-level expansion 
scheme. This suggests a two stage trimming algorithm—trim against the smallest bounding 
volume, then against the object's boundaries. 

In practice, the two stages are combined into a trimming-pipeline. A node accepted by 
the first stage is immediately fed into the second stage for the inclusion test. As will be seen 
below, this trimming algorithm is also applicable for geometric transformations, in particular, 
rotation, since they can be viewed as object generation as well. 

3.5 O t h e r sol ids 

With the established object generation algorithms, it should be straight-forward to generate 
convex solids such as cones and cylinders. An algorithm to convert a boundary representation to 
a linear octree was given in [TAMM84] using a connected components labelling technique. Thus 
it is possible to generate linear octrees of general solids expressed in boundary representations 
for most applications. In the meantime, we have enough capability to generate simple objects 
to show some other important features of the linear octree representation. 



Chapter 4 

Modelling Operations 

4.1 Geometric Transformations 

The basic capability of any solid modeller iB to perform the common geometric transfor
mations translation, scaling, and rotation. Because of their discrete nature, octree encodings 
often lead to non-numerical algorithms that require only manipulation of data structures. With 
linear octrees, these manipulations can be further simplified to operations on octal digits and 
bits. As one will expect, there are some tradeoffs. Due to the restriction to discreteness, it 
is difficult to perform the geometric transformations arbitrarily, particular rotations which are 
used often. The algorithms to be described here will apply to arbitrary translation, scaling, and 
rotations up to the limited resolution of the octree domain, yet at the same time will maintain 
the efficiency of some specific transformations characteristic to linear octrees. 

4.1.1 Translation 

Translation of an object within the octree domain does not affect its physical properties, but 
can result in a drastic change in its octree representation. This phenomenon can be observed 
by considering the translation of a single (large) node. A node at level / has sides of length 2" 
where n = r — / and r is the resolution of the domain. A displacement by multiples of 2 m where 

21 
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m> n leaves the node in one piece—simply relocated. If m < n, however, the translation will 
fracture the node into lower levels, hence smaller nodes to fill the displaced volume. For the 
quadtree example shown in Figure 4.1, the node 12FF (1 = 2, n = r — / = 2), when translated 

Node 1 2 F F Translated by (-8,4) Translated by ( 2 , - 1 ) 

Figure 4.1: Translation of a node by different multiples of 2. 

by (—8,4) results in a single node 20FF since — 8 and 4 are multiples of 2s and 22 respectively. 
In contrast, translation by (2,-1) breaks the node into 10 smaller ones since 2 and —1 are 
multiples of 21 and 2° respectively (but not 2m for larger m's). 
Fujimura et al. [FUJI83] described a translation algorithm that treated these two cases 

separately. Here, a far simpler algorithm is used. Each node will be translated individually 
(which is what most other algorithms do). A node is "moved* to its target position simply 
by adding the translation vector to its lowest and highest order voxel coordinates. The two 
translated voxels then define a cuboid in the octree domain, whose octree will be generated by 
the cuboid generation algorithm described in Section 3.4.2. After all nodes are translated, the 
resulting nodes are sorted and condensed into a normalized linear octree. This additional step, 
of course, is not required for algorithms operating on explicit octrees; it is a tradeoff between 
the two schemes. 
The question on how the algorithm distinguishes between m > n or m < n may arise. 
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The interesting fact is that it is not necessary to make such a distinction. Since the cuboid 
generation algorithm enumerates nodes in the octree domain sequentially, the target will be 
filled by a normalized linear octree regardless of how many nodes it is composed of. If the 
translation is good (m > n), then only one node will be generated. If it is bad (m < n), then 
the trimming algorithms will expand large nodes into smaller ones efficiently. 
The worst situation occurs when an octree of low complexity (with a few nodes) undergoes 

a bad translation that breaks it into numerous small nodes. Each node will give rise to a linear 
octree which contains a number of nodes proportional to the surface area of the original node 
[MEAG82], causing an "explosion" of nodes. (Some improvement will occur after normalizing 
the linear octree.) For some physical objects consisting of a single component, it is preferable 
to determine the boundary of the entire object, translate it, and then regenerate a new octree. 
Surface detection algorithms would be required, however, which are beyond the scope of this 
thesis. 

4.1.2 Scaling 

Scaling of an object by 2m on all principal directions is particularly simple for octrees. For 
m > 0, the top m levels of the octree will be deleted making one of the level m subtrees the 
new root. (Which subtree to choose depends on the enlarged octant which becomes the new 
domain.) For m < 0, |m| new levels will be introduced to the top of the tree, pushing the old 
root downward to level |m|; branches below level |m| in this new octree will be pruned. In 
linear octrees, these operations reduce to shifting of octree digits. Each node number will be 
shifted left m places with F's replacing the least significant m digits for m > 0, and shifted 
right |mj digits for m < 0. 

Arbitrary scaling, however, is the real problem. The same if not a worse fragmentation 
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problem as for translation exists. Scaling a node by a factor other than a power of 2 will result 
in generating a large number of nodes as exemplified in Figure 4.2. A simple and uniform 

I I I I I I I I I I ' l l l l l lHll l l I 

A square region Scaled by (0.75,0.5) Scaled by (1.5,1.75) 

Figure 4.2: Scaling a node by different factors. 

approach will be to scale each node of the object exactly (probably using real arithmetic) and 
regenerate the octree in the resulting cuboid, similar as translation is handled. Different scaling 
factors will be treated identically, but the advantage of the 2TO-case will remain in effect. 

It is worth noting that a scaling factor of less than 1 will cause a loss of information, since 
re-sampling occurs over a smaller grid at the same resolution. A node could be scaled to nil, 
resulting in a degenerated cuboid. In this case, the cuboid generation algorithm will simply 
return a null linear octree—the empty node set. 
A point of reference must be defined for the scaling operation. In R3 this is the origin. In 

an octree domain, the zero point would not be a practical choice since there are no negative 
axes, and a translation of objects to this point will be truncated. As no other point presents 
itself as a natural choice, it was decided, ad hoe, to choose the center of an octree domain, i.e. 
the common vertex shared by the eight level-1 nodes, to be the invariant point. 
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4.1.3 Rotations 

The center of rotation is taken to be the center of an octree domain, as for scaling, and for 
the same reasons. Rotations about the x, y, and z-axes1 are identical in all respects. Without 
loss of generality, it is sufficient to consider only rotation about the 2-axis, and hence the 
following discussion will be restricted to two-dimensional rotation on quadtrees. 

Rotations by multiples of 90° will be considered good. All other angles will cause severe 
fragmentation, as shown in Figure 4.3. There is no intermediate "badness"—10° is just as bad 

A square region Rotated by 10' Rotated by 45' 

Figure 4.3: Severe fragmentation results for almost any angle of rotation. 

as 45°. For rotation by 90°, it is only necessary to permute the eight children of each node in 
the explicit octree [MEAG82], or apply a permutation function on all octal digits in each node 
of the linear octree [GARG82]. 
A rotation by an arbitrary angle 6 can always be normalized such that 0° < 6 < 360°, and 

then decomposed into a multiple of 90° plus <f> where 0° < ̂  < 90°. Each (linear octree) node 
can be pre-rotated through 90°'s by permutation as given in [GARG82], then the rotation of 
the remaining angle <f> can be carried out. 

'Actually axes parallel to the three principal axes origin ed at the center of the octree domain. 
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Each target node is bound by four rotated planes from the original node and by two unro-
tated ones which are perpendicular to the axis of rotation (r-axis). Projecting the node onto 
the zy-plane will result in a 2-D rotation of four straight lines forming a square. To regenerate 
a quadtree for this rotated node (square), each pixel can be mapped onto a new one inside the 
target. By replacing each pixel by the point at its center, we could rotate this point and declare 
the pixel on which it lies the result of the mapping. This forward mapping, however, is not 
1-1. It could map two pixels onto one or leave some pixels in the target unmapped as shown 
in Figure 4.4. Alternatively, each scanline can be rotated as a group rather than as individual 

X-l X x+1 x-1 x x+1 

(x,y) not mapped by any pixel. (x,y) being mapped twice. 

Figure 4.4: Holes and duplicates resulting from forward mapping. 

pixels. Braccini et al. [BRAC80] studied an optimal line drawing algorithm and encountered a 
similar problem of holes between adjacent scanlines. They proposed a suboptimal algorithm to 
maintain continuity but some points would be "plotted" twice. Rotating the entire node would 
not result in much improvement since the same problems would arise between adjacent nodes. 
The implication of these problems on octrees is rather serious. Unmapped holes change the 
topology of an object and greatly complicate its octree structure. The possibility of multiple-



CHAPTER 4. MODELLING OPERATIONS 27 

mapped voxels requires that a test for existence must be carried out for each new voxel before 
it is added to the result—a very expensive operation. 
A backward mapping can be used to overcome the above problems. The target is represented 

by the four rotated boundaries of the node. Pixels are re-sampled by determining whether the 
center of each lies inside the target. Each point (pixel) can belong to at most one target because 
nodes are disjoint, and no holes will be created since adjacent nodes transform into continuous 
target boundaries (Figure 4.5). Similar arguments follow if this mapping is applied to octree 

y+i 

y-i 

y+l 

y-1 

X-1 X x+1 
(x,y) and (x,y+l) both map onto D 

.,: D , , 
C B 
" " O X 

x-1 x+1 
(x,y) only maps onto C 

(x,y+l) and (x+l,y+l) both map onto D 

Figure 4.5: Re-sampling of pixels in target under backward mapping. 

nodes by considering their corner voxels. Hence the same object generation algorithm as for 
ellipsoids (Section 3.4.3) can be employed. 
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The lowest and highest order pixels (xo, yo) and (xii Vi) °f a node determine the boundary 
equations 

x = x0 

V = Vo 

x = aji + l = XQ + d 

v = vi + i = vo + d 

where d = 2r_' with r = domain resolution and / = node level enclosing the region R occupied 
by the node as shown in Figure 4.6. Rotating a point (u,t>) through 4> gives (u',t/') where 

u' = ucoŝ -wsin̂ , 
v' = u &'m <{> + v cos <f>. 

yo+d 

y o 

xo xo+d x 

^ = {(*! y) \ x0 < x < x0 -\- d, y0 < y < yo + d} 

Figure 4.6: Region occupied by a node of size d x d. 



CHAPTER 4. MODELLING OPERATIONS 29 

Two lines with slopes tan <f> and —^— passing through (u', v') have equations 
tan <p 

(y — v') — (x — u') tan̂  = 0 or (y — v') cos 4> — (z — u') sin $ = 0 

and (y - v') tan̂  + (x — u') = 0 or (y - v') sin ̂  + (z - u') cos ̂  = 0 

respectively, which, when expressed in terms of u and w, simplify to 

y cos <f> — x sin ̂  = u sin ̂  cos ̂ + « cos2^ — u cos $ sin ̂ + u sin2^ = t; 

and ysin̂  + zcoŝ  = u sin2^ + v cos<j> sin<f> + o cos2^ — v sin̂  coŝ  = u. 

Substituting (u, v) by (zo,yo), (z0 + yo), and (zo,l/o + d), the rotated region i?' will be 

R' = {(x, y) | zo < y sin <f> + z cos ̂  < zo + yo < y cos ̂  — x sin ̂  < yo + d}. 

Inclusion of a point (z,y) in R' can be tested by substituting it into the four inequalities 

ysin̂  + xcoŝ  > XQ (4.1) 

y sin 4> + z cos4> < zo + d (4.2) 

ycoŝ  —zsin^ > zo (4.3) 

ycos^-zsin^ < XQ + d. (4.4) 

For each target, d will be fixed; so the right hand sides can be kept constant, leaving four 
multiplications per inclusion test. Dividing Inequalities 4.1 to 4.4 by coŝ  when 0 < <f> < 45° 
and sin <f> when 45° < 4> < 90° results in two different groups of tests which can reduce the 
number of multiplications by half. 
A node may be expanded to one level lower during the inclusion test. Since octrees have 

fixed size nodes, the highest order voxel coordinates of the expanded node can be computed 
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from those of the lowest order voxel by simple addition, which means only two multiplications 
are required to test each enumerated node from the smallest bounding rectangle of the target. 
As stated earlier, the center of rotation is actually the center of the octree domain, which means 
all voxel coordinates must be translated by {-D, -D,-D) where D = 2 r _ 1 before applying the 
inclusion test. This pre-translation, when incorporated into the equations above, however, will 
not affect the complexity of the test; it still needs only two multiplications to test an enumerated 
node. 

4.1.4 Compound Transformations 

A reasonable extension of simple transformations is to allow combinations of any number 
of them to form a single transformation. Compound transformations on points in E s can 
be easily handled using homogeneous coordinates and 4x4 transformation matrices. Such 
manipulations on octrees, however, are not as straight forward as matrix multiplications. Doing 
each transformation separately will not give satisfactory result since "rounding errors* will build 
up at each step due to re-sampling. Being relatively "exact", combinations of translations and 
scaling operations can be carried out by transforming each node using the ordinary homogeneous 
coordinate method, and then regenerate the linear octree for the target volume. Rotations are 
exceptionally difficult. A compound rotation about different axes will rotate all six faces of a 
node, which means a new set of inclusion tests must be designed involving equations of planes 
rather than lines in the xy-plane. 

4.2 B o o l e a n Set O p e r a t i o n s 

Perhaps the greatest advantage of octrees occurs when performing boolean set operations on 
octree-encoded objects. The operations union, intersection, and difference must be regularized 
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according to Tilove [TILO80] such that no "invalid" object will result. This is a particularly 
difficult problem for boundary representations because it requires extra attention to maintain 
regularity. Algorithms such as Franklin's [FRAN82] classify all edge segments (original and 
generated) to be included as results of different operations. While such an algorithm computes 
all set operations at once, it is rare in practice that more than one operation is required for 
the same objects. Octrees provide regularity naturally without additional effort, since "invalid" 
objects such as faces and line segments are simply not representable. (For this reason, the 
regularized union (U* ) , intersection ((Y), and difference (\*) will be written as ' U ' , TV, and '\' 
in the following sections.2) 
The octree approach to set operations is basically a pairwise comparison of two black nodes, 

one from each object. As nodes are spatially sorted, it is not necessary to compare every pair 
of black nodes. An in-order traversal of the two trees in parallel will be sufficient to carry 
out a merge sort-like algorithm to determine which black node to include in the result of the 
set operation. For linear octrees, the merging algorithm is further facilitated by the fact that 
the objects are already in the form of two sorted lists of nodes, making the tree traversal step 
trivial. The major task lies in a node comparison operation which depends on the particular 
set operation. Each of the union, intersection, and difference operation is sufficiently different 
to be implemented separately as a "stand alone* algorithm. 

4.2.1 Union 

Two linear octree nodes Ni and #2 are either disjoint, or equal, or one is the descendent of 
the other. That is, either Ni D N2 = 0, or Ni C AT2, or Nt D N2 if a node is considered as a set 

'Some authors use '—*' and '—' for the difference operation. 
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of points. It follows that 

Ni U N2 = 
N2 if Ni C N2 

Ni if ^ D N2 

Ni + N2 otherwise 
where Ni + N2 denotes Ni U N2 given that Ni f"l AT2 = 0. Thus the union of two objects Si and 
52 can be determined locally by comparing the nodes Ni € Si and N2 € S2 as follows: 

1. If Ni C AT2, discard ty. 

2. Else if JVi D iV2, discard JV2. 

3. Else if Ni < N2, add Ni to the result. 

4. Else if Ni y N2, add N2 to the result. 

The symbols '-<' and V apply to the ordering of node numbers as denned in Section 3.2. 
Ni and N2 will be enumerated sequentially from Si and S2 respectively. Whenever a node is 
discarded or accepted, a new one will be retrieved from the corresponding object. When one 
object is exhausted, all the nodes from the other object will be added to the result. Since it 
is possible to group nodes from the two objects to form larger nodes, normalization should be 
carried out by condensing the collected nodes to produce the final result. Sorting is not required 
since the merging algorithm ensures resultant nodes to be sorted. This "clean up" step can be 
performed in parallel while nodes are being accepted. 
The four cases can be determined by a digit-by-digit comparison between two node numbers: 

scanning from the most significant digits, locate the first different pair. If one digit is F, the 
node containing this digit has the other node as its descendent. Otherwise, the numerical order 
of the digits reflects the order of the nodes themselves. Two node numbers are equal if and 
only if all their digits are equal. 
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4.2.2 Intersection 

Closely resembling the union operation, the intersection of Ni and N2 is defined as 

and the pairwise node comparison becomes: 

1. If Ni C N2, add Ni to the result. 

2. Else if Ni D N2, add N2 to the result. 

3. Else if Ni < N2, discard Ni. 

4. Else if N i > N2, discard N2. 

Nodes are retrieved as in union operation. However, when one object is exhausted, the remaining 
nodes of the other object will be discarded since they will not be part of the exhausted one. 
The major difference in intersection is that no normalization is needed because the resulting 
object cannot contain more nodes then either of the original objects, assuming that they are 
normalized in the first place. 

4.2.3 Difference 

The difference Ni \ N2 is defined as the set of all points belonging to Ni but not N2. More 

where expand(7V1, N2) gives a minimal list of nodes expanded from Nt which contains 7Y2. 
As the example in Figure 4.7 shows, this expansion is always possible since Ni D N2 implies 

NiC\N2= < 
Ni if Ni C N2 

N2 if Ni D N2 

0 otherwise 

precisely, 
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Node 2FFF Expand(2FFF,213F) 

Figure 4.7: Partition of 2FFF under expand(2FFF, 213F). 
that N2 is a descendent of /Vi. The '—' operation "removes" N2 from the expanded list. The 
algorithm for the difference operation is significantly different from union and intersection as 
shown below: 

1. If Nx C N3, discard Nx. 

2. Else if Ni D N2, expand Ni one level down, make Ni the first node of the expanded list, 
and return to step 1. 

3. Else if Ni •< N2, add Ni to the result. 

4. Else if Ni >- N2, discard N2. 

The expansion algorithm is identical to the one used in ellipsoid generation described in Sec
tion 3.4. Bauer [BAUE85] suggested a queue to store all the nodes expanded from a large one. 
Here, the expanded nodes are enumerated by the successor function defined in Section 3.3.3. A 
flag will be set while expansion is underway to indicate that no actual retrieval should take place 
for the object Si. Instead, nodes will be "retrieved" by finding the successor of the discarded or 
accepted node. Successor generation will terminate when all the expanded nodes are listed, i.e. 
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when the successor of the original Ni is reached. The flag will then be reset and actual retrieval 
will resume. No additional information is required to keep track of the expanded nodes except 
a flag and the terminating node. 
When Si is exhausted, all nodes in S2 will be discarded since they will not contain points 

belonging to Si. If S2 is exhausted first, all nodes in Si will be added to the result since they 
will not interfere with S2. Again, no normalisation is needed as the difference cannot have more 
nodes than Si. 



Chapter 5 

Implementation and Results 

5.1 A Solid Modelling Package 

A solid modelling package based on linear octrees has been implemented in C under UNIX1 on 
a VAX 1 1 / 7 5 0 . 2 It consists of a function library and a set of drivers available as UNIX commands. 
The function library contains modules that manage the internal data structure, conversions be
tween different formats of data, basic operations on linear octree nodes, input/output routines, 
etc., and the six independent modelling operations (see Figure 5.1). The set of driver programs 
provides high-level object generation and modelling operations. All data are transferred using 
the standard UNIX input/output conventions. Interface with the internal octree structure is 
completely transparent to the user. The flexibility of the function library allows building of 
special purpose programs with little effort. 
'UNIX is a trademark of AT&T Bell Laboratories. 
'VAX is a trademark of Digital Equipment Corporation. 

36 
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User Interface 

Function Library 

Input/Output 

Packing 

UNIX Storage Node-Voxel Clipping Sorting 
System Calls Conversions 

Condensation 

Figure 5.1: An overview of the solid modelling package. 
5.2 Representation of Linear Octrees 
5.2.1 Internal Representation 

One of the original motivations to use linear octrees is to significantly reduce the storage 
requirement of the pointer-structured explicit octrees. Recent studies by Lauzon [LAUZ85] 
show that it is possible to condense quadtrees even further by using a run-encoding scheme; 
a similar method should apply to octrees. However, the more compact octrees are stored, the 
more difficult it is to unveil the encoded object, decreasing the efficiency of accessing the nodes 
of the tree. The spectrum ranges from high speed access on one end to compact storage on the 
other. 

In the current implementation, an active linear octree node will have its octal digits stored 
individually in addressable units (char's or int's in C) as an array since the conversion and 
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trimming algorithms require octal digits to be decomposed further into bit fields. For an actual 
object with thousands of nodes, however, such underutilization of memory will not be sensible— 
only 4 bits (for 9 symbols) in one byte or word (32 bits) are used. A compression (or packing) 
scheme is employed to store nodes as base-9 numbers, treating the digit F as 8. The unsigned 
integer available in C with 32 bits on a VAX is capable of storing [log9 2S2J = 10 base-9 digits 
in one word, which gives an octree domain with a maximum of (210) = 1024s voxels, adequate 
for high-resolution objects. More importantly, this packed format allows nodes to be compared 
as unsigned integers rather than numerical strings and greatly improves the time-consuming 
sorting process. For simplicity, it was decided to store all nodes this way in unaigned's for any 
domain resolution up to 10. Higher resolutions are not currently supported. 
Lookup tables are used to avoid multiplication in base-9 conversions. A resolution r node 

number can be packed into one word with r additions, one for each digit. Unpacking a node 
takes r[log2 9] = 4r additions since each digit can be determined by testing the 8, 4, 2, and 1 
multiples of a power of 9. The packed nodes are stored in dynamically allocated array blocks 
each containing a maximum of 125 nodes (this number was chosen arbitrarily; some particular 
value may optimize memory allocation). A linear octree encoded object is represented by the 
data structure shown in Figure 5.2. It is possible to add more attributes such as colour and/or 
composition as additional fields to an object. The linear octree only describes the topology of 
the object. 

5.2.2 External Representation 

An object can be stored externally in files or can be piped to another command for further 
processing. UNIX supports stream-oriented input/output; thus an object has to be transformed 
into a string of bytes for external storage. The following format is designed for this purpose: the 
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Object 

Resolution 

Linear Octree 

Other 
Attributes 

Unfilled area 

Blocks of linear octree nodes 

• • • 

# Nodes # Nodes 

<node> <node> 

<node> 

* 
• 

• 
• 
• * 

• 
<node> 

* 
• 
* 
• 

<node> 

# Nodes 

<node> 

Figure 5.2: Data structure of an object, 
first byte will contain the resolution of the object; to be followed by sets of four bytes (32-bits), 
each representing an unsigned base-9 octree node number. Within a 4-byte field, the format of 
the unsigned number is not defined, as it depends on the specific input/output operation used 
to produce it. 
The packed format is not intended to be used for high level access. If the user wants to input 

octree nodes manually, he can prepare a file with the first line stating the resolution, followed 
by one linear octree node number on each line, and convert this file to the packed format for 
further processing. Details are covered in Appendix A. 

5.2.3 Input/Output 

All object manipulation functions operate only on the internal linear octree format; therefore 
any object in the packed external format must be "read" in and transformed to the internal 
data structure described above. Results of these operations can be output in packed external 
format. The input/output module is the only means for this transformation. 
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5.2.4 Node Ret r i e v a l 

Nodes in the internal format can be randomly accessed. Sequential node retrieval and 
insertion is provided by using a "pointer* (named indicator in the code) independently of 
the linear octree structure to indicate the next position, similar to sequential file read/write. 
Random node deletion is not supported since there is no immediate need. Each function 
accessing this structure requires passing the indicator as an extra parameter. A retrieved node 
is considered active and is always unpacked into an array of digits, with element 0 the most 
significant digit of the node. The packing scheme is completely hidden from the conversion and 
trimming algorithms. 

5.2.5 No r m a l i z a t i o n 

The data structure only acts as internal storage; it does not impose any ordering of the 
nodes—it simply stores nodes according to the given indicator. Sorting and condensation must 
be executed explicitly by separate functions in order to keep a linear octree normalized. A 
heapsort is implemented to work on the data structure. 
The condensation algorithm operates directly on the packed format (i.e., without unpacking 

a node into octal digits), using the fact that two consecutive nodes at level / differ by 9r_'. An 
array of r integers is used for stacking consecutive nodes before releasing the condensed node. 
The condensation module can be used for condensing only one linear octree at a time since 
external variables are used to improve efficiency. 

5.3 Operations on linear octree nodes 

Two modules, node-pixel conversion and trimming, form the basis of the linear octree pack
age. Both modules implement the algorithms exactly as described in Section 3.3. Bitwise 
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operations of C are used extensively, hence ideally such low level algorithms should be imple
mented in assembler or even hardware. 

5.4 Modelling Operations 
5.4.1 Translation 

Translation, scaling, and rotations accept float (real) arguments to maintain consistency 
since arbitrary scaling and rotations are allowed. The octree domain can be viewed as 

{{x,y,z)\{x,V,z)eR>, 0 < z , y , z < 2 r - l } . 

Results of transformations are trimmed against this volume. 
For translation, the displacement vector components are rounded to the nearest integers 

before adding to each node of the object. As noted previously, fragmentation caused by a bad 
translation will seriously affect performance. Each component of the displacement vector con
tributes to the problem. Thus it is reasonable to determine the badness of each component and 
handle them in some order so as to avoid fragmentation. Performance does not depend solely 
on the components. Table 5.1 indicates the relations of good and bad objects (low complexity), 

Component 
Object Good Bad 

Good Good Bad 

Good Bad B a d or Bad 

Table 5.1: Badness of objects vs. badness of translation components, 

translation components, and results (complexity, hence performance). A bad object might be 
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the result of a bad translation in the first place and could therefore be "recovered* to a good 
one. In general, however, it is not possible to know the complexity of an object; after all, the 
modelling operations do not depend on that information. 
Based on the translation components, there is a better chance to get a good object by 

working with a good component first. Experiments show that the cutoff point of good and bad 
is at multiples of 4—translation components of multiples of 1 and 2 are far worse than those of 
4, 8, etc., the latter ones tend to perform equally well in the resolution 10 (and less) domain. 
In fact, the performance of the 1 and 2-cases degrade so sharply from the good ones that 
they dominate the overall translation. It seems reasonable to handle these bad components as 
separate translations according to the following rule: translate each bad component separately, 
but good components can be grouped together and "piggy-backed* on one of the bad ones. 
This rule is implemented in the translate command at the user level while the library version 
is kept general. 

5.4.2 Scaling 

Arbitrary scaling requires real multiplications. Rather than multiplying each node by the 
scaling factors, a lookup table is pre-computed to map each voxel coordinate onto its scaled 
(integer) value. For a resolution 10 domain, 512 short int's are needed for each of the x, y, 

and z scaling factors. The other 512 units are the negative side with respect to the center of 
scaling and can be computed from the same tables. Initializing these tables takes approximately 
0.1 CPU seconds, negligible compared to octree regeneration, although extra memory is needed. 
Negative scaling factors can not be handled with this table, since they would reverse the roles 
of lowest and highest order voxels of each node. 



CHAPTER 5. IMPLEMENTATION AND RESULTS 43 

5.4.3 Rotations 

Rotations about the x, y, and z-axes are identical except for some zyz-permutations on line 
equations, but they are kept separate for simplicity and efficiency. Again, lookup tables are 
set up for 2't where 0 < I < r and t being the six trigonometric functions sin̂ , coŝ , tan̂ , 
esc <f>, sec <f>, and cot <f>, since they are fixed for each rotation. The permutation functions for 
90° rotations are defined in static lookup tables. Many computations are exactly identical for 
all three rotations, and are therefore grouped into a "main* function, which calls a specific 
rotation depending on the given x, y, or z code. 

Rotations are the only operations that require real comparisons since the target is bound by 
line equations. Particular attention must be paid to ensure the accuracy of these line equations; 
a slight rounding error can cause mis-mapping of voxels that leads to duplicated nodes which the 
condensation module cannot handle. To maintain high accuracy, all lookup tables are declared 
double and all computations are carried out in double as a characteristic of C, but all values are 
rounded to float (single precision) before comparisons. Slight errors will then be "smoothed 
out" when rounded. Tiny values will be rounded to 0 by adding and then subtracting a larger 
quantity from it. 

5.4.4 N o r m a l i z a t i o n 

All geometric transformations require normalization of their result. It is not sensible to 
sort all the resulting nodes in one step, particularly after a bad transformation where up to 
ten times the number of nodes in the original object would be generated and most of them 
can be grouped into larger nodes. Thus partial sorting is carried out on every 1000 nodes 
generated (some manageable amount), then merged and condensed into the node list of the 
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final result. Since nodes in a linear octree are processed sequentially, they tend to operate 
regionally within an octant at some level, which means that a partial list is more likely to be 
merged into a localized segment in the final list. This observation prompts for a fast merging 
that skips blocks of nodes in the final list and locates the block where actual merging occurs. 
Complete condensation is thus not guaranteed, therefore a slower node-by-node merging must 
be carried out when all nodes are collected. A flag is used to select the mode of the merging 
function. Because condensation occurs continuously, the memory allocation can be kept close 
to minimal. 

5.4.5 Boolean Set Operations 

The union, intersection, and difference operations are structurally very similar. Nodes 
are retrieved simultaneously from two input objects for comparisons. Two symmetrical loops 
control the retrieval of one object while anchoring a node of the other. When a retrieved node 
number is larger than that of the anchored node, processing will be switched to the other ioop 
where the roles of the two objects are exchanged. An infinite loop encloses these two control 
loops to achieve the switching. Condensation is performed in one step on the result of a union 
since the worst case does not have more nodes than the total of the original objects. 

5.5 Auxiliary Library Functions 
5.5.1 Object Generation 

Object generating functions should be considered as an input facility of the solid modelling 
package and not part of the standard library. New object generators can be added if necessary 
to enhance input using the basic operations such as trimming and condensation. Only the 
cuboid and ellipsoid generators are currently implemented. They accept integer parameters 
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specifying the lowest order voxel coordinates and the x, y, and z-dimensions of the object. Real 
comparisons are used for ellipsoid generation to determine node inclusion. 

5.5.2 Rendering 

Similarly, rendering is an output facility of the package. Hidden surface removal is straight 
forward with octrees since nodes are spatially sorted. Two approaches exist [FRIE85]: the 
back-to-front method displays nodes from farthest to nearest with respect to the view point. 
This can be easily achieved by displaying the far octants before the near ones recursively for 
each level of the octree [DOCT81], which means a pre-order traversal of the tree where the 
order is denned according to the octant of the view point. The front-to-back method displays 
the near part of the octree first and proceeds towards the far side. Nodes obscured by previous 
displays will be ignored and not output. Although complex, this method will be more efficient 
since traversal of some octants can be bypassed if known to be hidden. 

For this thesis, rendering was not studied in depth, although a primitive back-to-front 
algorithm is implemented for linear octrees. It re-sorts the nodes in a linear octree according to 
the viewing octant by applying a permutation on each octal digit, sorts them, and then applies 
a reverse permutation to restore them back to the original nodes. Quicksort is used since the 
nodes appear quite randomly after the first permutation. (But no sorting should be carried out 
if the traversal leaves the order unchanged or in exact reverse order, which are the worst cases 
for quicksort.) The visible vertices of all nodes are then output to be displayed on a particular 
device. An object can currently be "drawn" on an image file to be viewed on the Jupiter 7 
graphics terminal under MTS5 following a fairly tedious procedure described in Appendix A—it 
is barely usable. 

'Michigan Terminal System of DBC Computing Center. 
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5.6 User Commands 

All input/output, modelling operations, and rendering functions are available as U N I X com
mands. Parameters of these functions are supplied as command-line arguments on U N I X and 
objects are read and written via at din and •tdoat, thus output from one operation can pipe 
into another as input. For example, to generate a 30 x 20 x 50 cuboid at the center of a res
olution 10 domain rotated 30° about the y-axis, to be stored in file simple-object, issue the 
command 

cuboid 497 502 487 30 20 50 10 I rotate y 30 > simple-object 

from the shell. Only a few primitive error checks are implemented at this time to prevent the 
package from crashing by invalid inputs. All error messages (even though not too informative) 
are produced by the user program on stderr; the library functions never print error messages 
but return error codes instead. 

5.7 Results and Evaluation 

Formal proofs of algorithm efficiencies are not provided in this thesis, although some eval
uations were performed regarding execution times and storage requirements. Execution times 
are the 'user' times obtained by the U N I X command /bin/tine which shows the ( V A X 11/750) 
C P U time (in seconds) used by the user programs, excluding system calls. Storage requirements 
(in bytes) for both internal and external formats are about 4 times the number of nodes in the 
linear octree since each node is packed into one word. 

Table 5.2 shows that the time required to generate the linear octree of a cuboidal volume is 
basically linear to the number of nodes generated for the good cases, and is proportional to the 
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intermediate nodes created in the bad cases due to fragmentation; these effects are not shown 
in the tables since their linear octrees are normalized. Slight increases are observed when the 
same number of nodes are generated at higher order regions of an octree domain or at higher 
resolutions, but do not seem to dominate the overall times. Ellipsoids involve real arithmetic 
and are thus slower. 
Times for translation, scaling, and rotations are given in Tables 5.3 to 5.5. Two resolution 10 

objects, a cube with lowest-order corner at (480,480,480) and extending 64 units towards all 
three positive axes, and a sphere enclosed in the same volume, are used for the tests. Note that 
the identity transformations are not implemented as no-ops. In all cases, the times directly 
reflect the fragmentation of nodes due to bad transformations as explained in Section 4.1. 
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Solid X V z Ax Al/ Az Resolution Seconds Nodes 
Cuboid 0 0 0 16 16 16 4 0.0 1 
Cuboid 0 0 0 16 16 15 4 0.2 340 
Cuboid 0 0 0 16 15 15 4 0.5 590 
Cuboid 0 0 0 15 15 15 4 0.7 778 
Cuboid 0 0 0 15 15 15 6 0.8 778 
Cuboid 0 0 0 15 15 15 9 0.9 778 
Cuboid 0 0 0 15 15 15 10 0.9 778 
Cuboid 1 1 1 15 15 15 4 0.5 778 
Cuboid 0 0 0 64 64 64 10 0.0 1 
Cuboid 0 0 0 64 64 63 10 6.5 5460 
Cuboid 0 0 0 64 63 63 10 13.0 10542 
Cuboid 0 0 0 63 63 63 10 18.4 15288 
Cuboid 1 1 1 63 63 63 10 15.8 15288 
Cuboid 479 479 479 63 63 63 10 17.8 15288 
Cuboid 960 960 960 63 63 63 10 18.3 15288 
Ellipsoid 0 0 0 64 64 64 10 33.1 12496 
Ellipsoid 0 0 0 63 63 63 10 50.1 11987 
Ellipsoid 480 480 480 64 64 64 10 33.0 12496 
Ellipsoid 480 480 480 64 63 64 10 38.4 12048 
Ellipsoid 480 480 480 63 64 63 10 45.1 12244 
Ellipsoid 480 480 480 63 63 63 10 49.9 11987 

Table 5.2: Execution times for object generations. 
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Cube-64 Sphere-64 
tf U Seconds Nodes Seconds Nodes 

0 0 0 0 . 0 8 43.4 12496 
128 128 128 0 . 0 8 43.5 12496 

04 64 64 0.0 8 44.6 12496 
32 32 32 0 . 0 1 42.8 12496 
16 16 16 0.4 57 49.7 12489 

8 8 8 1.5 316 48.7 12503 
4 4 4 7.7 1499 50.9 12237 
2 2 2 34.8 6546 96.5 12300 
1 1 1 164.7 27385 387.6 12356 

- 4 8 0 - 4 8 0 - 4 8 0 0.0 1 44.6 12496 
- 5 1 2 - 5 1 2 - 5 1 2 • 0.0 1 42.2 1562 

544 0 o • 0.0 0 12.1 0 
* Nodes moved outside of the octree domain are truncated. 

Table 5 .3: Execution times for translation by {tx,t9,tz). 

Cube-64 Sphere-64 
** ** Seconds Nodes Seconds Nodes 

1 1 1 0.1 8 50.1 12496 
2 2 2 0.1 8 53.8 12496 
4 4 4 0.1 8 54.3 12496 
0.5 0.5 0.5 0.1 8 27.4 3064 
0.25 0.25 0.25 0.1 8 16.5 808 
1.1 1.1 1.1 96.6 35112 253.8 14464 
0.9 0.9 0.9 58.5 20672 148.8 9872 
0 1 1 * 0.0 0 1.5 0 
* Scaling table of zeroes signals an object to be nullified 

Table 5.4: Execution times for scalings by («*,«r,«*). 
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Cube-64 Sphere-64 
Axis 6 Seconds Nodes Seconds Nodes 

X 0 0.0 8 34.2 12496 
X -90 0.0 8 43.1 12496 
V 10 105.8 12384 510.7 12944 
z 45 110.2 11280 569.8 12928 

Table 5.5: Execution times for rotations by $ degrees. 

Finally, the union, intersection, and difference operations are timed and listed in Table 5.6. 
The efficiency of boolean set operations using linear octrees becomes prominent when compared 
to that of the geometric transformations. The rendering procedures described in Appendix A 
use an existing graphics package not designed for viewing linear octrees and are too slow to 
give meaningful timings. 

Operation Seconds Nodes 
sue 8.3 8 
s n c 14.6 12496 
S\C 8.8 0 
C\S 20.2 12936 
SUS 25.8 12496 
s n s 23.9 12496 
s\s 17.9 0 
FuS 8.3 1 
Fns 14.8 12496 
F\S 20.8 13160 
S\F 8.3 0 
HUS 12.5 6252 
Hns 10.7 6248 
H\S 13.5 6580 
S\H 11.2 6248 

C = Cube-64 
S = Sphere-64 
F = Cuboid(0,0,0,1024,1024,1024,10) 

(entire domain) 
H = Cuboid(0,0,0,512,1024,1024,10) 

Table 5.6: Execution times for boolean set operations. 
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Conclusion 

6.1 Summary 

The linear octree structure as an object representation for solid modelling is studied. The 
linear representation interprets leaf nodes as octal numbers that are closely related to the 3-D 
coordinates of voxels, leading to a reduction in storage requirements as compared to explicit 
octrees. By using a consistent numbering scheme for the eight octants, and interpreting the 
node numbers in binary form, several new algorithms have been developed. 
Conversion between nodes and voxel coordinates reduce to a regrouping of bits of their 

binary representations. The notion of successor of a node and the node trimming operations 
are denned for generating the normalized linear octree of a cuboidal volume; both require only 
manipulations on octal digits and bits. 
The cuboid generation algorithm leads to unified translation and scaling operations. Nodes 

are translated and scaled into cuboidal targets to be generated as partial objects and merge 
into the final results. All cases are handled identically, while special ones such as translation 
by powers of 2 and scaling by factors of 2 are kept efficient naturally as a result of their simple 
octree structures. Arbitrary rotations are designed as an extension of the 90°-rotations that 
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only involve permutation of octal digits. A backward mapping algorithm is used to ensure 
spatial continuity and node uniqueness of the rotated object. 
The union and intersection operations are just variations of the familiar merging algorithm 

for two sorted lists of numbers. The difference operation, however, results in expansion of large 
nodes into its smaller descendents. With the successor generator, no extra memory is needed 
to keep expanded node lists. 

All basic operations are implemented as a complete solid modelling library package accom
panied by a set of interface programs. Though not formally proved, the algorithms exhibit 
execution times which are linear to the number of nodes in the resulting linear octree for most 
cases. 

6.2 Future Work 

The sorting component of the normalization process is the bottleneck of the geometric 
transformations. Generating normalized targets during these operations have not been fully 
taken advantage of. Better sorting algorithms for partially sorted lists should outperform the 
heapsort currently used. 

For objects at higher resolutions, a large number of nodes inside the same octant will have 
identical leading digits, which waste space. A hybrid octree structure would be preferable. The 
top few levels can be kept as a pointer-structured tree, while the lower level subtrees can be 
"linearized" into a list of nodes. Such a structure would also lead to more efficient searching 
algorithms used by rendering and interference detection. 
Furthermore, there are useful operations such as neighbourhood determination and surface 

detection algorithms, yet to be designed, that require only bit manipulations. Applying these 
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operations to image processing and robotic vision may explore other advantages of linear octrees. 
The conversion and trimming algorithms used extensively throughout the package induce a 

lager amount of overhead and hence are very suitable to be executed by hardware. It is possible 
to build such a linear octree processor with the advent of VLSI technology. Since most octree 
algorithms are highly parallel in nature, a linear octree multi-processor could support real-time 
solid modelling for computer-aided design and manufacturing. 
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Appendix A 

The Solid Modelling Package 

A.l The Linear Octree Library 
The solid modelling package is implemented in C under ubc-cs, a VAX 11/750 running 

4.2 BSD UNIX. All sources, library, and executable codes are residing under the directory 
" h o / l o t / l i b (userid ho). Library functions are archived (ar(D) in l i b l o t . a and should be 
loaded by including it in c c ( l ) or l d ( l ) , while their source codes are stored in files beginning 
with lower case letters ( [a-z]* .c). The files README and Makefile contain more information 
on how to use the library. 

The major functions will be described here. #include <lot.h> must appear at the be
ginning of the source file before referencing these functions. Functions that are not explicitly 
typed are of type int in C, but here untyped functions do not return useful values and should 
be considered only as procedures. Most abbreviations used for composing names follow the 
conventions listed below: 

St... struct name 
Ty...: typedef 'ed name 
p. . .: pointer, pointer-to 
i . . .: index, index-of 
Blc: block of storage 
LUT: lookup table 
Obj: solid object 
LOT: linear octree 
Bn: linear octree node (black node of the "tree") 
Vox: voxel 
Ind: indicator 
Pkd: packed 
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Basic Operations and Conversions: 
int BnLeveK Bnode, Resoln ) 
TyBnode Bnode; in t Resoln; 

Returns the node level of Bnode at resolution Resoln. 

BnToVoC Bnode, Resoln, Level , pLoVoz, pHiVox ) 
TyBnode Bnode; i n t Resoln, Level ; TyVox *pLoVox, *pHiVox; 

Returns the lowest and highest order voxels *pLoVox and *pHiVox of level Level node 
Bncde of resolution Resoln. 

LVoToHVoC LoVox, Resoln, Level , HiVox ) 
TyVox LoVcx, HiVox; int Resoln, Level ; 

A macro expansion to compute the highest order voxel HiVox from the lowest order voxel 
LoVox given its node level Level and resolution Resoln. 

HVoToLVoC HiVox, Resoln, Level , LoVox ) 
TyVox LoVox, HiVox; int Resoln. Level ; 

A macro expansion to compute the lowest order voxel LoVox from the highest order voxel 
HiVox given its node level Level and resolution Resoln. 

LVoToBnC pLoVox, Resoln, pLevel, Bnode ) 
TyVox *pLoVox; in t Resoln, *pLevel; TyBnode Bnode; 

Returns the largest node Bnode and its level *pLevel given its lowest order voxel *pLoVox 
at resolution Resoln. 

VoToBnlC pVox, Resoln, Bnode ) 
TyVox *pVox; int Resoln; TyBnode Bnode; 

Returns a level Resoln node Bnode (smallest node) representing the voxel *pVox, i.e., a 
direct conversion from voxel to node number is carried out. 

Boolean SuccBnC Bnode, pLevel ) 
TyBnode Bnode; in t *pLevel; 

Replaces the level *pLevel node Bnode by its successor and updates *pLevel. Returns 
TRUE unless Bnode does not have a successor. Note that the resolution parameter is 
irrelevant since the Level will only "rise*' towards 0. 

Trimming: 
TrinBnLoC Bnode, Resoln, pLevel. Coord, OcPos ) 
TyBnode Bnode; i n t Resoln, *pLevel, Coord, OcPos; 

Trims a level *pLevel node Bnode at resolution Resoln against a lower bound Coord. 
OcPos specifies the bit position of an x, y, or 2 coordinate within the octree digit, thus 
specifying the x, y, or z-bound. *pLevel will be updated. 
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TrimBnHi( Bnode, Resoln, pLevel, Coord ) 
TyBnode Bnode; int Resoln, *pLevel. Coord; 

Trims against a higher bound similar to TrimBnLo, but identically for all x, y, and z-
bound. 

Storage and Node Retrieval: 

Boolean GetObjC pDbjFile, pObj ) 
FILE *pObjFile; TyObj pObj; 

Reads an object *pObj from file *pObjFile. Returns FALSE on bad external object file 
format or insufficient memory. 

PutCbjC pObjFile. pObj ) 
FILE *pObjFile; TyObj pObj; 

Writes an object *pObj onto file *pObjFile. 

PackBnC Bnode. Resoln. pPkdBn ) 
TyBnode Bnode; int Resoln; unsigned *pPkdBn; 

Packs the node Bnode at resolution Resoln into *pPkdBn. 

UnpackBnC PkdBn, Resoln. Bnode ) 
unsigned PkdBn; int Resoln; TyBnode Bnode; 

Unpacks the packed node PkdBn of resolution Resoln into Bnode. 

Boolean GetMextBnC pObj, plnd. Bnode ) 
TyCbj *pObj; Tylnd *plnd; TyBnode Bnode; 

Returns the next node Bnode of object *pObj using indicator *plnd and advances it to 
"point to" the next node. Returns FALSE when last node was retrieved. To start up a 
sequential retrieval, pInd->pLOTBlc must be set to p0bj->p.L0T and pInd->iL0T31c to 
0. 

Boolean DelNextBnC pObj, plnd, Bnode ) 
TyObj *p0bj; Tylnd *plnd; TyBnode Bnode; 

Identical to GetNextBnC) except that a block will be freed as soon as *plnd moves away 
from it. 

Boolean InsertBnC Bnode, pObj, plnd ) 
TyBnode Bnode; TyObj *p0bj; Tylnd *plnd; 

Inserts the node Bnode into object *p0bj after the position "pointed to" by *plnd. *plnd 
will advance to the current position. Returns FALSE on insufficient memory. To initialize 
the appending mode, *pInd->pL0TBlc must be set to NULL. 

Boolean DupObjC pObjl, p0bj2 ) 
TyObj *p0bjl, *p0bj2; 

Duplicates object *p0bjl as *p0bj2. Returns FALSE on insufficient memory. 
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NullObjC pObj ) 
TyObj *pObj; 

Nullifies the object *pObj by freeing all its node blocks. 
Normalization: 
Boolean SortLOTC ppLOTBlc ) 
TyLOTBlc **ppL0TBlc; 

Sorts the nodes in the linear octree blocks heading with **ppL0TBlc into increasing 
order and condenses them. Returns FALSE on insufficient memory. (This may happen 
since blocks are reallocated, but unlikely.) 

Boolean MergeLQTC pqLOTBlc, ppLOTBlc. Fast ) 
TyLOTBlc *pqL0TBlc. *ppL0TBlc; Boolean Fast 

Merges the linear octree *pqL0TBlc into *ppL0TBlc and condenses the result. If Fast 
is TRUE, not every node will be compared for merging and condensation, instead, blocks 
unchanged will simply be re-linked. *pqL0TBlc will be NULL upon return. Returns FALSE 
on insufficient memory. 

Boolean CollectBnC PkdBn ) 
unsigned PkdBn; 

Collects a packed node PkdBn onto an internal stack for condensation. Returns FALSE 
on insufficient memory returned from the internal function ReleaBeSnQ. CollectBnC) 
must be called sequentially with a sorted list of PkdBn's after an initial call to CdlnitO, 
and must signal the termination of the sequence by a call to CdDoneO. 

Boolean CdlnitC ppLOTBlc ) 
TyLOTBlc **ppL0TBlc; 

Initializes the internal memory for condensing nodes into linear octree *ppL0TBIc. Re
turns FALSE on insufficient memory. 

Booleen CdDoneO 
Inserts all pending nodes collected for condensation into the current linear octree. Re
turns FALSE on insufficient memory. 

Object Generation and Modelling Operations: 
Boolean CuboidC zO. yO, zO, dz. dy, dz, Resoln, pObj ) 
int zO. yO, zO, dz, dy, dz, Resoln; TyObj *pObj; 

Returns the cuboid *pObj of resolution Resoln with lowest order corner at (zO.yO.zO) 
and dimensions dz x dy x dz. Returns FALSE on insufficient memory. 
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Boolean El1ipsoid( xO, yO. zO, dx, dy, dz. Resoln, pObj ) 
int xO, yO, zO. dx, dy, dz, Resoln; TyObj *p0bj; 

Returns the ellipsoid *p0bj of resolution Resoln enclosed in the cuboid with lowest 
order corner at (x0,y0,z0) and dimensions dx x dy x dz. Returns FALSE on insufficient, 
memory. 

Boolean Translate( pObj, tx, ty, tz ) 
TyObj *pObj; float tx. ty, tz; 

Translates the object *p0bj by (tx,ty,tz). Returns FALSE on insufficient memory. 
Boolean ScaleC pObj, B X , sy, sz ) 
TyObj *p0bj; float sx. sy, sz; 

Scales the object *p0bj by sr, sy, sz times along the x, y, and z-axis respectively, 
centering at the center of the object's octree domain. Returns FALSE on insufficient 
memory. 

Boolean Rotate( pObj, Axis, thetaD ) 
TyObj *p0bj; char Axis; float thetaD; 

Rotates the object *p0bj by thetaD degrees about the axis parallel the Axis-axis and 
passing through the center of the object's octree domain. Axis can have one of the values 
'x', 'y', or 'z*. Returns FALSE on insufficient memory. 

Boolean Union( pObjl, p0bj2 ) TyObj *p0bjl, *p0bj2; 
Returns the union of objects *p0bjl and *p0bj2 and keep the result in *p0bjl. *p0bj2 
will be nullified. Returns FALSE on insufficient memory. 

Boolean Intersect( pObjl, p0bj2 ) 
TyObj *p0bjl, *p0bj2; 

Returns the intersection of objects *p0bjl and *p0bj2 and keep the result in *p0bjl. 
•pObj 2 will be nullified. Returns FALSE on insufficient memory. 

Boolean Subtract( pObjl, p0bj2 ) TyObj *p0bjl, *p0bj2; 
Returns the difference of object *p0bj2 from *p0bj 1 and keeps the result in *p0bj 1. (i.e., 
subtract *p0bj2 from *p0bjl.) *p0bj2 will be nullified. Returns FALSE on insufficient 
memory. 

Rendering: 
View( Dev, pParFile ) 
TyDev Dev; FILE *pParFile; 

Sets up viewing parameters from data in file *pParFile for device Dev. 
DisplayC pObj ) 
TyObj *p0bj; 

Displays the object *p0bj on the selected device under the current viewing parameter 
settings. 
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Boolean DepthSortC pObj, Octant ) 
TyObj *pObj; int Octant; 

Rearranges the nodes in object *pObj into a depth-sorted order when viewed from octant 
Octant. Returns FALSE on insufficient memory. 

PutVertexC pObj. Octant ) 
TyObj *pObj; int Octant; 

Outputs the 7 vertices of the 3 visible surfaces of each node in object *pObj as viewed 
from octant Octant to stdout. 

A.2 User Programs 
A set of driver programs are available as ordinary UNIX commands in the directory "ho/lot. 

The syntax of these commands are described below. Most of them reads and writes objects via 
stdin and stdout using the external object file format as described in Section 5.2.2. All errors 
generated are written onto stderr. 

The object generation commands 
cuboid zo yo ZQ A Z Ay Az resolution 

ellipsoid zo yo z<> Az Ay Az resolution 

are identical to their library counterparts with objects written out onto stdout. 
The command unpack reads an object from stdin and dumps all the nodes in printable 

octal digits to stdout, suitable for debugging, pack does the exact inverse of unpack, which 
can be used for building a linear octree-encoded object manually. There is also an analyze 
command that reads an object from stdin and prints a tally of its nodes onto stdout. 

The three geometric transformations 
translate tx t9 tz 

scale ss Bv st 

rotate axis theta 

read an object from stdin and writes the result onto stdout; they all accept real arguments. 
The boolean operations 
union [/»7el] file2 

intersect [filel] filei 

subtract [filel] file2 

have identical syntax, accepting two objects. If only one file name is given, it will be taken as 
the second object, and the first object will be read from stdin. Results will be written onto 
Btdout as usual. 
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Rendering is not completely implemented. An object in file file can be displayed on the 
Jupiter 7 terminal under MTS using viewing parameters from file u»eu;par by following the 
tedious procedure below: 

1. Issue the command 
see v i r t u a l viewpar file >lot 

where v i r t u a l is the only device supported currently, and the file l o t must be specified 
exactly. 

2. Issue 
seelot >image 

which reads the faces from file l o t and generates a 256 x 192 grey level image onto file 
image. For compatibility with MTS, image contains 257 x 192 8-bit pixels with 8 grey 
levels, decimal values 65 to 72. Each 256-byte scanline is terminated by the newline 
character, decimal 10. All other values are unused. 

3. Transfer the file image to MTS. Currently only t i p ( l ) seems to work well, except for its 
low speed—be patient. Use 2400 baud and the " i command of t i p , and make sure to use 
the binary format. The receiving MTS file must be created before the transfer. 

4. Signon to MTS from the Jupiter 7 terminal. Then issue 
run j 7 . s e e l o t * * j u p l i b 0=j7imagc 

to see the result assuming image is transferred to jUmage. 

The following is a sample session to create the object shown in figure A.l. A different 
procedure was taken to put all six images onto the Raster Technologies One/25 in the UBC 
Laboratory for Computational Vision. 

cuboid 464 512 480 96 24 64 10 >brick 
(a parallelepiped at the center of a resolution 10 domain) 

rotate y 60 <brick I i n t e r s e c t b r i c k >rhombus 
rot a t e y -60 <brick I i n t e r s e c t rhombus >hexegon 

(intersecting the three cuboids results in a hexagonal prism) 
e l l i p s o i d 472 500 472 80 36 80 10 I i n t e r s e c t hexagon >head 

(the bolt's head) 
cuboid 506 620 480 12 16 64 10 >slice 
union head c y l i n d e r I subtract s l i c e >bolt 

(c y l i n d e r is actually a scale-up of a 1 voxel thick ellipsoid—a disc) 
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see v i r t u a l vplO bolt >lot 
(file vplO already set up to view center part of a resolution 10 domain) 

seelot >image.jupi 
Send to Jupiter 7 or Raster Technologies One/25 for viewing. 

Figure A . l : Various stages in creating an object. 


