ON THE IMPLEMENTATION OF MULTIGRID METHODS FOR THE
NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

By

ALLEN DANIEL DELANEY
B.Sc., McGill University, 1964

Ph.D., McGill University, 1969

A THESIS SUBMITTED IN PARTIAL FULFILIMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

in
THE FACULTY OF GRADUATE STUDIES

The Department of Computer Science

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA
November 1984

(:) Allen Daniel Delaney, 1984

22

In presenting this thesis in partial fulfilment of the
requirements for an advanced degree at the University

of British Columbia, I agree that the Library shall make
it freely available for reference and study. I further
agree that permission for extensive copying of this thesis
for scholarly purposes may be granted by the head of my
department or by his or her representatives. It is
understood that copying or publication of this thesis

for financial gain shall not be allowed without my written

permission.

Department of Computer Science

The University of British Columbia
1956 Main Mall

Vancouver, Canada

V6T 1Y3

Date 7@%@@7 (7, (TF

JE-6 (3/81)

Multigrid Methods

ABSTRACT

A number of experimental implementations of the
multigrid algorithm for the solution of systems
of partial differential equations have been pro-
duced. One program 1is applicable to simple non-
linear scalar equations, the others to 1linear
equations, scalar and systems, which may be
mildly stiff. All use nested grids and residual
extrapolation techniques to compute solution and
error estimates very economically. One version
implements list based adaptive grids to further
decrease both computation and storage needed for
comparable problems. Each experiment was demon-—
strated using a set of problems with known solu-—
tions and the program performance or non-
performance discussed. Several techniques were
examined to ensure that the system of difference
equations representing a given problem would be
convergent. The use of artificial viscosity was
found to be practical in the general case,
though for linear problems the use of one-sided
differencing may be superior.

(ii)

Multigrid Methods

TABLE OF CONTENTS

Abstract
Table of Contents
List of Tables
List of Figures
Acknowledgement
Introduction
1.1 The Method
1.2 Other Implementations
1;3 This Implementation
Method and Implementation
2.1 The Algorithm
2.2 Grid Implementations
2.2.1 Minimum storage
2.2.2 Minimum trouble
2.2.3 Adaptive grids
Numerical experiments and their results
3.1 Simple nonlinear scalar equations

3.2 Linear scalar equations with
possible mild stiffness

3.3 Linear systems with mild stiffness

3.4 Linear systems with adaptive meshes

ii

iiji

vi

vii

13

13

14

15

22

22

25

33

36

4,

Multigrid Methods

Discussion
4.1 what has been done

4,2 Take home message

) 4,3 Omissions from this work

References

Appendices

A. User instructions

B. Sample source code

C. A sample parameter file
D. A sample output file

E. Source for the central routines
solve, relax, and taufunc

44

44

45

46

48

50

50

52

54

55

57

(iv)

II.

III.

Iv.

VI.

VII.

VIII.

Multigrid Methods

LIST OF TABLES

Single nonlinear equations

One-sided differences with FAS
for linear single equations

One—sided differences with
residual corrections in
relaxations only

One—sided differences with
residual corrections in
relaxations and coarse
grid corrections

Artificial viscosity with FAS
in both relaxations and
coarse grid correction

Artificial viscosity with FAS
for systems of equations

The use of the adaptive grid
implementation with a very low
tolerance

Actual use of adaptive grids,
with a high error tolerance

24

28

31

32

34

36

37

38

(v)

10.

11.

12.

Multigrid Methods

LIST OF FIGURES

The Multigrid Algorithm
Finest grid examples
Coarsest grid examples
Composite of many grids
Adaptive interpolation
Sample problems (1) to (5)
Sample problems (6) to (12)
Sample problems (13) to (16)
Level 8 grid, example (15)
Level 16 grid, example (15)
Level 32 grid, example (15)

Level 64 grid, example (15)

16

17

18

20

23

26

35

40

41

42

43

(vi)

Multigrid Methods

ACKNOWLEDGEMENTS

My supervisor, Dr. Uri Ascher, deserves many
thanks for his patience, since I was so infre-
quent in my visits to discuss this project.
Also, I much appreciated the flexibility allowed
me by my employer, Dr. Ryk Ward, both in time
and in the use of computer facilities. The use
of the same system I normally work on was quite
a boon. Last, but not least, I must thank Tri-
cia for not 1letting me throw in the towel when
life got hectic and everything was taking too
long.

(vii)

Multigrid Methods (1)

1. Introduction

1.1. The method

The numerical solution of boundary value problems for partial
differential equations has traditionally been performed by the
discretization of the domain upon which the problem is defined and
the use of iterative solution methods for the resulting large sparse

system of linear equations.

Multigrid methods for the computation of solutions of such sys-—
tems have been discussed by many authors, e.q. [5-8, 15, 21]. The
idea behind such methods, as suggested by Brandt, [3,6] is to con-
sider the discretizations of the problem on a nested sequence of
grids and to exploit the relationships among the corresponding
discrete solutions. Thus we can divide the solution process into
three elements:

(1) removal of non-smooth error components from fine grids.

(2) improvement of smooth error by corrections computed on a
coarser grid.

(3) the use of nested iteration to provide initial estimates

for each finer grid.

The removal of non-smooth, i.e. high frequency, errors from fine
grids is normally achieved by one of the iterative relaxation tech-
niques often used alone for these problems, such as the Gauss Seidel
iteration. These relaxations have been shown to reduce high frequency
error components very effectively, but low frequency components much
less efficiently. In the multigrid process, only a few relaxation
cycles on the finest grid are required, and then coarse grid correc-

tions handle the rest of the error for that grid. Alternate

Multigrid Methods (2)

relaxation methods, such as the preconditioning incomplete LU decom—
position methods, have been shown by several authors, [16-18, 23, 24],

to be robust smoothing algorithms.

For the coarse grid corrections, what better way could be found
than to recursively apply the multigrid algorithm at the lower level.
Communication between grids at different levels 1is carried out by
restriction and prolongation operators. Suitable such operators are
discussed by Brandt and Mol[5, 19]. Eventually, of course, we reach a
coarsest grid on which the discretized problem must be solved
exactly. This grid is sufficiently small that the use of the relaxa-
tion technique for the accurate solution is an efficient alternative,
or the solution for this grid can be determined by direct methods
such as Gaussian elimination. Except for cases where convergence is
a problem, convenience dictates the use of the relaxation technique,

since it must already be available.

The third element of the full multigrid algorithm, nested itera-
tion, provides an efficient way to get an accurate starting value for
the finer grids. Once the difference system has been approximated as
well as possible on a given grid, the approximation is cubically
interpolated to the next finer grid and the multigrid process
repeated on the new level. The availability of this negted set of
grids allows us to use extrapolation and defect correction methods to
accelerate the convergence and improve the accuracy of the approxima-
tion of the differential solution [2, 10,14] to better than that of
the algebraic solution of the finest grid([3,5]. The iterative use of
nested grids and the use of coarse grid corrections in the multigrid
algorithm improve the efficiency of the multigrid process [6, 20, 22]

such that it becomes an O(N) algorithm, where N is the number of

Multigrid Methods (3)

grid points in the finest grid. This compares to O(N log N) for
the most favourable cases or O(IV3/2) for the more conventional

methods.

Multigrid methods have the added advantage that they are readily
amenable to adaptive refinement of grids, i.e., during the execution
of the algorithm the parts of the mesh which are sufficiently accu-
rate do not need to be considered on finer meshes, only those areas
of the grid which require more Qork are included in the more expen—

sive finer grids.

A disadvantage of the multigrid method is that the implementation
of the algorithm is much more complex than the usual iterative solu-
tion methods. It is this disadvantage which makes this thesis a pro-
fitable venture, that is, to provide a background or framework upon
which further experiments using the multigrid architecture can be
tried. In this work I have leaned heavily on Hemker's descrip-—
tion[15] of the recursive character of the multigrid algorithm,

rather than the iterative description of Brandt{s, 6].

1.2. Other Implementations

A few other groups have presented implementations of the mul-
tigrid method. Brandt has been the "father" of multigrid methods,
publishing very prolifically[3-10]. He and his colleagues have dis-—
cussed every aspect of the process, both theoretically and for
specific problems, and have published a software package claimed to
be effective for general problems. This package is a development
tool, providing an environment and data structure for further mul-
tigrid experiments. It suffers from the fact that much of the algo-

rithmic content of the package is devoted to working within the

Multigrid Methods (2)

confines of a Fortran environment.

Another work, by Dendy[1ll1l, 12], allows the user to code only the
rectangular matrix problem, leaving the grid manipulation to a "black
box". It seems, though, that there must be a new "black box" for each
class of problems, the ones dealt with by Dendy being symmetric and
nonsymmetric linear scalar equations. His package is more concerned

with dealing with arbitrary grids than with general problems.

Stuben and Trottenberg[21l] have produced a very extensive discus-
sion of the theory and application of multigrid methods and present a
demonstration of another multigrid package. This offering is an
example of the library approach as opposed to the "general package"
approach. Foerster and Witsch{13] have offered to distribute this
collection of programs for the solution of partial differential equa-

tions using multigrid methods.

1.3. This Implementation

The aim of this work, therefore, has been to produce an implemen-—
tation (program) of the multigrid method for the solution of partial
differential equations and to experiment with a variety of aspects
arising from such attempts. The package which has been produced is
applicable to systems of equations and does tackle the two major
problems in this area. These are the fact that simple discretizations
do not always lead to systems of equations which can be solved using
iterative techniques and that the size of the systems required for
partial differential equations may tax or exceed the available compu-—

tational space and time, virtual or otherwise.

The former problem requires the use of technigques such as one-

sided differences or artificial viscosity[l]. Both have been tried

Multigrid Methods (5)

and this work shows that the use of artificial viscosity is a practi-
cal approach. The use of one-sided differences has been found to be
useful, even superior to the viscosity approach, for linear problems,
but more work is needed before any conclusions concerning nonlinear

problems can be made.

The latter problem, computer time and space demands, requires
that some sort of adaptive mesh selection be used so that parts of
the domain which are "easy" can be solved with a coarse mesh, requir-
ing little storage space or computational time, and the "hard" areas
of the domain solved with a progressively finer mesh. An implementa-
tion presented with this thesis uses a 1list based data structure

which allows completely adaptive meshes to be used.

The choice of which language to use to best implement an algo-—
rithm is a question of general interest. Numerical analysts have
often favoured Fortran, because it is familiar to most other numeri-
cal analysts, it is widely available, and its compilers are often
very efficient. On the contrary side, Fortran's lack of data struc-
tures and of recursion severely restrict the programming style and
clarity of the code produced. An algorithmic, structured language
like Algol allows the production of clearer code, probably with less
programmer effort, particularly for 1list based and recursive algo-
rithms. Pascal 1s an Algol-like language which 1is beginning to
approach Fortran in popularity. With this popularity and with
hardware design beginning to favor recursive programming, the effi-
ciency of Pascal compilers and their code has become less of a disad-

vantage.

Multigrid Methods (6)

For +these reasons, Pascal was chosen as the implementation
language for this project. An early implementation was actually
coded in the C language, but then the decision to switch was made. C
has some advantages, particularly in the dynamic allocation of
arrays, but has disadvantages in code clarity and in the breadth of

its acceptance.

Although the later versions of the package are applicable only to
linear systems, the adaptation to nonlinear problems should not be
difficult. The basic algorithm was implemented in the earliest ver-
sion, and the transfer of these details to the final version should

be straightforward.

No attempt at optimizing performance has been made, but the
literature contains many examples of high frequency smoothing schemes
and low frequency correction techniques which might be tried in the
attempt to optimize performance for specific difficult problems. In
general the literature (7, 9,17, 19] deals with the theory of perfor-
mance and admits that practical problems require individual attention
to efficiency for each case. This package is designed as a framework
upon which to build the specialized systems for real problems; it is
modular and extensible. 0Of course a number of classes of problems are
solvable using the presented package, but the future user should be

able to add his own classes of problems with minimal difficulty.

As to efficiency, a major design goal for this program was to
allow flexible use of adaptive grids. This approach to efficiency
seems much more crucial than doing a few less relaxation sweeps on

full grids.

Multigrid Methods (7)

Consideration has not been given to problems with arbitrary boun-
daries, but the data structure used here could be adapted to the
irregular edges of a domain in a straightforward manner. The tech-
nique would involve adding finer and finer mesh points as the boun-
dary is approached until a giid point is sufficiently close to the
boundary, but is still part of the organized grid. These grid points
near the boundary would have to be flagged so they could be included

in all grids.

This thesis is actually a report on the evolution of a number of
experimental codes and the experience I have had with them. The next
section presents the general algorithm and discusses the implementa-
tion details for a sequence of programs, each with a different
emphasis, but each growing £from the previous. After that, some
results for each code are presented to demonstrate their performance,
or non—-performance. In the discussion I have tried to summarize what
I have done and outline the many avenues which could be traveled in a

continuation of this work.

Multigrid Methods (8)

2. A Multigrid Method and Its Implementation

2.1. The Algorithm

The numerical solution of a system of partial differential equa-
tions is generally accomplished by solving the system of difference
equations arising from a discretization of the domain into a set of
grid points, i.e., a mesh (or grid). One wishes to find an "optimal"
mesh whexre the error in the computed solution is satisfactorily
small, and the number of grid points is small enough to keep the com-
putational cost reasonable. One way of approaching this optimum is to
solve on very coarse grids, use the solution to approximate a start-
ing point for the next finer mesh, and repeat the cycle until the
estimate of the error is sufficiently low. The multigrid method
presented here does this and it uses the availability of multiple

grid solutions to improve both efficiency and accuracy.

This multigrid method is outlined in Figure 1. 1In this algorithm
Lh denotes the difference operator representing the system of equa-
tions on a grid with mesh size h. The letter n denotes the number of
divisions in one dimension of the grid, so h = 1/n on the unit
square., We will refer to n as the grid size. Lfi represents the
same operator, but working on the next coarser grid, with mesh size

H = 2h. The symbol f represents the right hand side of the sys-—

tem.

Several parameters and descriptive constants provide the limits
for the algorithm. The constants nmin and nmax are the grid sizes for
the coarsest and finest grids. 7 and a and EF are parameters depen-—
dent on the order of the discretization used. EF is the extrapola-

tion factor, which is always unity on correction grids, but may be

Multigrid Methods (9)

procedure multigrid;
let n = nmin
initialize v and f on the grid;
h h h

solve exactly L u = f ;

while n < nmax and an error estimate > an error tolerance do
begin

let n =2 n ;
interpolate v to level n from level n/2 ;

solve at level n the problem Lhuh = fh

~e

end ;

end multigrid;

procedure solve (at level n) ;

let Tn = o
whi}e T > Tn/z do
begin

while convergence < 7 do relax at level n

h H
1etrH=fH—EF/H(L”u"—/h HoH oy,
solve at level n/2 the problem LFf ufi = rH ;

H
let uh = uh + lh uH :

end;

end solve;

Figure 1: The Multigrid Algorithm

An algorithmic description of the multigrid method. See the text for
a discussion of the parameters defining and limiting the process.

greater than unity on top-level grids. It allows the over—-correction

Multigrid Methods (10)

of the residual to obtain higher order accuracy for smooth problems.

h H
The notation / and |/ refers to restriction and prolongation

H h
operators. In one part of the multigrid process residual estimates
computed using v values from the finer of a pair of grids must be
added to the u values of the coarser grid, and in another part a
correction computed on the coarser of the pair of grids must be added
to the finer grid. These two operators compute the v values for a
grid at the required level from the v values at the known level. 1In
this package restriction may be either injection, i.e., fine grid
values are merely copied to the corresponding locations of the coarse
grid, or an averaging of 9 points. Prolongation is linear interpola-

tion of points in the coarse grid to produce a fine grid, which is

equivalent to 9-point prolongation.

The relaxations used by this implementation in the solve routine
of the algorithm are Gauss Seidel iterations over the system of equa-
tions for the grid. For linear problems the system of linear equa-
tions at each grid point is solved using Gaussian elimination. If
the vergsion of the program handles nonlinear systems, the relaxations
actually do one or more Newton iterations to relax the nonlinear sys-—

tem at each grid point.

The heart of the multigrid system is the set of relaxations, and
the fact that these relaxations, though they have very poor conver-
gence properties overall, have an excellent, i.e. fast, convergence

rate for the highest frequency components of the error.

When working with discretizations, as we are now, it is appropri-—
ate, under certain conditions, to represent the error as a Fourier

series, i.e., a sum of trigonometric terms with differing

Multigrid Methods (11)

wavelengths. We can divide the error, then, into three groups of
components. The 1low frequency error components are those with
wavelengths less than h/2, the high frequency components are those
with wavelengths between h/2 and 2h, and the invisible components
are those with still higher frequencies. These invisible errors must

be avoided, rather than dealt with, as we shall see later.

The idea then, 1s to do a few relaxation cycles at the finest
grid level, until the convergence criterion returned by the relax
routine indicates that further relaxations are of 1little use, and
then to correct the 1low frequency errors by solving on the next
coarser grid. The program parameter 7 controls the definition of the
relaxation convergence criterion. When the ratio of the changes for

two consecutive relaxations is greater than 7, high frequency conver-

gence 1s said to be obtained.

This process is reéursively continued back down to the coarsest
grid level, which is solved exactly. In this way usually only two or
three relaxations are done at the finest level on each cycle and the

rest of the work is done on lower, cheaper levels.

The extrapolation factor is dependent on the order of the differ-
ence approximations used. If the grid has been solved accurately,
then this extrapolation increases the accuracy of a second order
difference solution to fourth order. The value used in the extrapo-
lation of the residual is an estimate of the residual, evaluated from
two grid computations as per Figure 1. This estimate, 7, is used to
decide when further coarse grid corrections are useless, and, if yes,
to go on to a finer grid. For second order differences, it can be

expected that the residual will decrease by a factor of one fourth

Multigrid Methods (12)

for each grid level.

The program parameter « is given the value of this expected
ratio and is used in the computation of the grid tolerance for the
estimated residual. This tolerance is « times that obtained for the

previous, coarser, grid.

Another constant often used in the multigrid analysis, &, is the
factor by which the error is expected to decrease for each grid
level. For a fourth order method this would be one sixteenth, and
the error estimate would be

6(uc-—uf)

1-6
My implementations are very consexvative, in that they do not use 0.

Instead the correction term uc—u is reported, thus overestimating

f
the error. The reader may note that that the value of & changes with
the order of differencing, and that & has little meaning when artifi-

cial viscosity is being useqd.

Extrapolation is only performed at the finest level. The function
of the lower level solves 1s to approximate the solution of the alge-—
braic system of equations at the next finer grid. The function of
the extrapolation is to improve the top level algebraic solution as

an approximation to the solution of the differential system.

The algorithm described in Figure 1, is known as the FAS algo-
rithm [5,6]. All grids in the algorithm are dealing with a similar
problem, an approximation of the problem being solved on the finest
grid. The cérrection tq be applied to the finer grid is computed, in
the FAS case, by subtraction from the best fine grid solution. This
contrasts with the residual correction approach, where the coarse

grids are used to solve a problem related to the error in the fine

Multigrid Methods (13)

grid, and the correction is directly calculated. The residual

correction approach is therefore applicable only to linear problems.

2.2. Grid Implementations

One property of multigrid processes is that they perform similar
operations on grids of varying size. In most of this study, the
largest grid size used was 64, and normally the minimum grid size was
4., During the course of a computation, only one of the finest grids,
with n = 64, is required. For the coarse grid corrections, though,
one grid of each size n = 4,8,16, and 32 are required. Interpola-
tion, prolongation, and restriction operations must use these dif-
ferent sized grids. I will discuss three possible data structures for

these grids.

2.2.1. Minimum storage

The obvious approach, if we are using only uniform grids, 1is to
define an array for each grid which will contain that grid and no

more. A grid with n = 4 would, in Pascal, be defined:
array [0..4] of array [0..4] of real;

and one with n = 8 as:

array [0..8] of array [0..8] of real;

This uses a minimum of storage, so long as full grids are used. The
disadvantage of this system is that the translation of the integer
indices i,j to the (x,y) values they represent changes from grid to
grid, and so the interpolation and restriction functions are more

complicated than is desirable.

Multigrid Methods (14)

From a strictly programming viewpoint, since Pascal was chosen as
the implementation 1language, problems of data typing and dynamic
array allocation make this type of data structure very inconvenient.
The Pascal procedures which work with grids will not allow grids of
different size to have the same type, and it is not straightforward
to give arrays of different size the same type. There are ways around
this problem, but they are unlikely to be portable, and portability
was one of the major reasons for choosing Pascal as the implementa-

tion language.

2.2.2. Minimum trouble

At a considerable sacrifice in storage, and given that we are
using uniform grids, all the disadvantages of the minimum storage
approach can be eliminated. Here all grids have the same type, and
the relation between (x,y) and (i,j) is the same regardless of the
grid size. We merely leave empty spaces for all the unused grid
points on a given level, and all grids occupy a maximum amount of

space.

The storage «cost can be easily computed. If we let
n1=logz(/nnax/nnﬂn) then, using the minimum storage data structure

the grids would require

m
2 ;
nmax~ Y. 0.5%" ¢ % nmavx2

1=0
If each grid required the full nmax2 grid locations, the propor-
tional cost of the minimum trouble grid relative to the minimum

storage grid would be

2
m nmax~ _ 3m
2

4 nmax
3

Figures 2 and 3 present pictures of the set of grids which would be

Multigrid Methods (15)

used by a computation with nmin=4, nmax=32. Every grid containsg all
the (x,y) co-ordinates which are present in the previous grid, thus
the coarsest grid points are present in all grids. With all four of
these grids superimposed, and with the respective grid points
represented by "-", "*", "+", 6 and "@", the representation becomes

Figure 4.

2.2.3. Adaptive Grids

A third data structure for the grids does not use arrays at all.
It uses a list oriented structure to hold the grid information. With
the exception of the overhead for pointers, the storage cost for this

data structure is the same as for the minimum storage array method.

Each grid point in Fiqures 1-4 is represented by a single node of
the data structure. This node contains the current value of u at that
point, the indices (/,j), from which the (x,y) values can be com-
puted, pointers to the nodes to the right and above, the value of the
right hand side for that node, and other information which is used in
the computation, such as error and residual estimates. The actual
pointer to the grid is the pointer to the lower left corner node of

the grid.

It would have simplified programming quite a bit if each node had
four pointers, one for each of its neighbors, but a decision to save
those eight bytes of memory per grid point was made. Hindsight indi-
cates that, at least for the prototype implementation, it would have
been more efficient of my time to work out the implementation using

four pointers and rewrite for efficiency later, if at all.

This type of data structure allows the flexibility required for

the implementation of adaptive grid algorithms. For problems which

Multiqgrid Methods

(16)

The n=32 grid

KEEKAEKXAXRELTAAL A AKX L AKX AA AKX KAKRKARAAKRK KKK
KEKKKKEKKKKKKXkKKXKkKkhkkkkhkhkkhkkkhkkx
LS SRR S SRS SRR AR LR SR SRR E S S
AEEKKKKKAKKKKRIAKKRKRKK kA khkkkkkhkkkkkXk
AEEEEEEEKEKEKEKXEXKXAXXKRARK A Ak XXXk k%
KEKEEKKKEKEEKEKKKEKKKKKKKRKKRKKKKKkKKKk)X)
KEKKEKEEKXKEEIKXKAEKRKRKRKXKXAKX kA Ak Ak khkx
AXEAKKAEKXA AT KA AR AR AR A A A Ak Ak hk %
KEKKKKEKKRKEKRKKKKRKKKEKKRKX Ak khk kXX k%x
AEEEKEEEAXEAEAKKAEEKAKRALAKR A AR R A AR KA XK
AEEKEKKKEEKKKKEKRKKRKKRKKKRKKKKR kA Xk K)k*kk
AEKEKKEKEKKKKEEKEKEKKKKEKKKKKEKRKKKKRKRKRK KK X
EEKEKEEKKEEXKKEEKEKEEKXKKKRKEAXRKKRKRKR KKK
LA SRR R AR R EE R REEEEEEEEEEEEEEEEEEE S
KEKEKXKKEKRKKEKKRRARKRKkRkKkhkhkkhkkhkhkkkkk
AEEAKETEARAKEELTALAA A KEAALLAKRE AR KRKL
AEKEEKKEKKEKXKKKRKAKXKAKKKXRKkKAkhkkhkhkkkkkk
KEKXKKKEKXKKKEKEKRKKKRKKKKKKRK Kk kkXkkk
AEEEKEKELAKAAEALALTEARATAKAKEEERR A AR AK
xS S S SR TSRS EEER S LR REERESEEESE ST
AEKEKKKKKKKKKEKXKKKkKkKkKkkkkhkhkhkkhkhkkkkxkk
AEKEEEEEEEEEXXEAKXLTKERAR AR ARk Ak Ak kXXX
(LRSS RS LTRSS EE RS S SR LR EEE S R
(2R E RS SR RS SRR RS SRR R LR S EEEEE RS RS
AEEEAEKEEEKXKEAAKEEKXKEAREAKAREKAKKEKARRAKK
AEEKEKEEKEKXKEEEKLAKXEAKEKKLKEKRAXKKRAKRKR RN)
KEKKEKKEKKKIEKKXKKIKRKKKAkKkAXKXhkhkkkkX%
KEXKKEKEKXAKKKAK KKK KKXKXKEKKREKRRKEKKRAKRKKRKX %
KEEKEKEEKXKEEXKKEEKEKEKEKKKKEEKKKRKR KA KX
KEEKEKKKEKEKKREKKERKKRKKAk KAk Kkhkhkkhkhkk*x
KEEEKEEKEKEEEKXKALTEKLEKEKEKEKRKEKRKKRKRKEKKRKRRKRK KK
KEKKEKKKKEKKKKKKRKKKKRKKKKKKKKkXkKkkX*%

AEAKXALXAKXEAAAAAAAAXAEKAARKR A AR AR AKX LK

X—>

Figure 2: Finest grid examples

n=16 grid

*

*

*

*

A diagram representing the grid points used at the

when nmax=32

x* %X *¥ ¥ x *x %X *x %

X—=>

two finest levels

Multigrid Methods (17)

The n=8 grid The n=4 grid
* * * * * *x* * * * *x* * * *
* * x* * * * * * x
* * * * * * * * * * * * *
* * * *x * * * * *
* * * * * * * x * * * x *
~
|
[}
* * * x * * * * * y
* * * * * * * * * * * * *
k3 x x * * * * * *
x * * x * x * * * * * * *
Xx-> X—>

Figure 3: Coarsest grid examples

A diagram representing the grid points used at the two coarsest lev-
els when nmin=4

Multigrid Methods (18)

X—>
Figure 4: Composite of many grids

A representation of a grid with size n=32. All points are members of
the finest grid. Only the "*" points are in the n=16 grid, the "+"
points are the n=8 grid, and the "@" points are the coarsest grid,
at n=4,

require very fine meshes in selected areas of the grid, it is essen-—

tial that the fine meshes need not encompass the entire domain. A

Multigrid Methods (19)

list oriented data structure allows us to allocate only those regions
of the grids for which error estimates indicate that more refinement

is necessary.

In the final version of the program presented with this thesis,
the error estimates at each grid point are used by the interpolation
procedure to decide which new points are needed at the next level.
Figure 5 shows a hypothetical pair of grids, demonstrating how the
adaptive interpolation proceeds. On the n=8 grid the "@” grid points
are those with large error estimates. These same grid points are
represented by "@" symbols again in the n=16 grid. On this finer
grid, there are two types of new points, in addition to all the
coarse grid points. The points represented by "x" characters are
those which will be relaxed on the fine grid. The other new points
are there merely to allow the relaxations to proceed on the "x"

points.

If any point has an error estimate larger than the tolerance for
the grid, all points within the square defined by the 9 point group
around the grid point in question will be placed in the resulting
grid. This kind of arrangement will lead to some grid points which do
not have the neighbors required for relaxation. Such grid points,
however, will always either have satisfactory error estimates, or be
the cubic interpolate of two such points. The relaxation sweeps cover
the entire grid each time, but the computations are done only on the

"x" and "@" grid points.

The reader may notice that there are seemingly unnecessary points
on the boundaries. These are not used for the computation, but are

needed for traversing the grid, ensuring orderly access to all the

Multigrid Methods (20)

The n=8 grid The n=16 grid

*x * *x* * * * * * * *¥ X % % % * * *x* * *
* * * * x * *x * * * * X * % *x kX %X *x X % %
* * X XXX XXX *

* * * * * @ * * * * * * *xxx@xxx*
~ * * X XXX XXX *

* * X X XX XXX *

* * * * * * * * * * * * x %X * %X *x * % % %

x * * * * X * * *x* * *x * * * * * *

* * * * * * * * * * kX X %X % X ¥ kX %k k¥ kx k %k %
X-> X->

Figure 5: Adaptive interpolation

A representation of a pair of grids, demonstrating the adaptive in-
terpolation procedure used to produce the next finer grid.

grid points.

Multigrid Methods (21)

During the course of this work, four program versions were imple-—
mented. The first three of these used the Minimum Trouble storage

method, the final version used the adaptive, list based, data struc-

ture.

Multigrid Methods (22)

3. Numerical experiments and their results

As mentioned before, several different multigrid implementations
were produced, each growing from the previous one. Here is a
description of the programs I have built, the problems incurred, the

strategies tried, and the results obtained.

3.1. Simple nonlinear scalar equations

This initial version of the package attacked the problem:

a u + -
Xx c uyy + d‘ ux + e Uy + g o]

where a, ¢, d, e, and g are scalar functions of x, y, and u.
Since g can be an arbitrary function of x, y, u, it was deemed
unnecessary to include a right hand side in the implementation. The
user was required to provide the functions for g(x,y,u) and its par-
tial derivative with respect to u, as well as a function specifying
the boundary values of the solution. Figure 6 lists some example
problems of this prototype which were used to demonstrate this first

implementation.

The motivation for presenting these particular results is to
demonstrate that at least one version of these implementations was
effective on nonlinear problems. Table I summarizes the results of
this gstudy. It can be seen that the convergence of the process is
close to fourth order for most cases. Example 2 is an exception, and
this is because the exact solution is a low orxder polynomial, hence
the coarse grid solutions are close to the exact one not just because
of small h. 1In all cases the convergence rate dropped off at a grid-
size of 64. This behaviour was caused by the parameter settings in

the program being tuned for efficiency, so a minimal number of relax-

Multigrid Methods (23)

Uy T uyy - u? = —sinz(x) e?Y (1)
Solution: u = sin(x) ey
Uex T Uyy-eu =4 - (2)
Solution: u = x2 + y2
Ut u - ut o+ 2w = - sinz(x) sinz(y) (3)
xx yy
Solution: v = sin(x) sin(y)
u, t uyy -u® to2u = - sina(x) sin3(y) (4)
Solution: u = sin(x) sin(y)
u Uxx + Uyy - eu + 2u = - e(sm(x)sm(y)) (5)

Solution: u sin(x) sin(y)

Figure 6: Sample problems (1) to (5)

Example problems 1 through 5. These were used in the demonstration of
the first implementation, which could handle nonlinear problems but
only for equations producing a diagonally dominant discretization ma-
trix.

ation sweeps were done on the finest grids. A readjustment of the
parameters to allow more multigrid cycles would improve the conver-—

gence at the cost of additional computation.

An attempt at adaptive grids was made with this version, and it
was very educational. The idea was to have two limits, SMALL and BIG.
All multigrid operations were performed on grids of size SMALL or
less. When it became necessary to go from the SMALL grid to that of
size 2*SMALL the grid was partitioned into four grids of size SMALL
and each grid was treated separately. Once the four grids were
solved, a region covering the boundaries between the grids was

relaxed a few times. If the error estimate on a given grid was

Multigrid Methods (24)

error

Problem grid error ratio
1 8 3.0e-5 16.6
16 2,4e-6 12.8

32 1.8e-7 13.1

64 2.7e-8 7.0

2 8 3.3e-7 8.2
16 6.4e—-8 5.2

32 5.1le-9 12.7

64 1.1e-9 4,6

3 8 l.1e-5 16.0
16 8.0e-7 13.8

32 6.4e—-8 12.5

64 l.4e-8 4.6

4 8 1.1le-5 16.0
16 8.0e-7 13.8

32 6.4e-8 12.5

64 1l.4e-8 4.6

5 8 l.1le-5 16.0
16 8.0e-7 13.8

32 6.4e-8 12.5

64 1l.4e-8 4.6

Table I: Single nonlinear equations

A summary of the errors obtained and the error ratio between adjacent
grids for several problems, using the original implementation which
was applicable to single nonlinear equations.

satisfactory, it was not necessary that it be solved.

If the error was concentrated in one or more of the corners, this

approach might have been feasible, but it was found that error on the

Multigrid Methods (25)

boundaries between subgrids did not improve with decreasing mesh
size. In retrospect this could have been expected, since the over-
lapping relaxations can remove only the high frequency error from the
subgrid boundaries, and there is no coarse grid correction to remove

the low frequency errors.

This approach was abandoned for a number of reasons: It is not
applicable to systems of equations, the use of adaptive meshes was
not successful, and no provision is made for problems which yield a
system of equations which is not diagonally dominant, which leaves
out many interesting problems. Also, the fineness of the mesh is
limited due to the very inefficient use of storage space for the
grids. This storage method was chosen for ease of programming, and it

severely limits practical grid size.

There were some accomplishments from this part of the project,
besides experience. It was demonstrated that the use of FAS and a
newton iteration in relaxation is a feasible way to approach nbn—
linear problems. Further, the accuracy obtained using the 7 extrapo-
lation method was demonstrated to be fourth order for the smooth test
problems. One approach to adaptive grids was eliminated from con-

sideration.

3.2. Linear scalar equations with mild stiffness

Proceeding in a stepwise fashion, the next program implementation
addressed the question of robustness. Several different approaches
were used for problems which, with the usual centered differencing,
did not yield a system of equations which had a diagonally dominant
matrix. To simplify programming, the same storage inefficient data

structure was used, and problems were limited to a single linear

Multigrid Methods (26)

equation. Thus the class of equations was

auxx+cuyy+dux+euy+fu=g

Again the user was required to provide the functions defining the
problem, but the function g(x,y.,u) described in the previous section
was split into g(x,y,u) = f(x,y) u - rhs(x,y). Since the problems
must be linear, no derivatives were necessary. The problems

approached with this package are shown in Figure 7.

Examples (8) to (12) have the same representation, using Re

value of 1, 8, 16, 32, and 64, To avoid overflow during computation

A
the solution in the last two cases was scaled by dividing by e €

With the values of mesh size h used here, the latter three problems
yielded systems of equations which were not diagonally dominant on
one or more of the coarsest grids when the usual centered differences

were used.

u_ +u - 2u =0 (6)
(xty) g vy
Solution: v = e
u, t uyy =0 (7)
Solution: u = sin(x) ey
uxx uyy
FtR Ty ty =o (8-12)
e e
xR -yR

(1-e %y1-e ©).

Solution: v

Figure 7: Sample problems (6) to (12)

The sample problems used to test the implementations which could

handle single linear equations. Examples (8) to (12) use Re
values of 1, 8, 16, 32, and 64.

Multigrid Methods (27)

Several methods were utilized in order to solve thié convergence
problem. Two new relaxation routines were implemented. One group of
methods utilized one—sided differences at grid points which do not
satisfy the diagonal dominance criterion. Another method utilized
only second order differences, but used artificial viscosity on the
grid points which required it. In the constant coefficient problems
examined here, where any part of a grid requires artificial viscos-—

ity, the entire grid would require it.

As a side issue in this study, two types of correction grid solve
routines were examined. The original such routine is different from
the top level solve in that relaxations are done both before and
after the coarse grid correction step. The other approach was to use
identical solve routines at both stages, but avoiding the 7 extrapo-
lation in the correction roufines. The latter involves fewer relaxa-
tion cycles in total, is less complicated in programming, and allows
more control of the correction cycles. My findings were that the
second approach was equivalent, if not slightly better, in accuracy,

than the first, so it was adopted for general use.

Using first order differences in the relaxations created some
significant problems. When, during the course of multigrid execu-—
tion, it became necessary to solve on a finer grid, this being the
first grid which 1is fine enough to use centered differencing, the
jump from a first order grid to a second order grid did not proceed
smoothly. It was desirable to use the FAS algorithm, since it is
needed for extension of the method to nonlinear problems but, with
FAS, the problem solved on each correction grid is a close approxima-—
tion to the original problem and the error on a first order correc-

tion grid was found to be too large to be useful as a starting point

Multigrid Methods (28)

for the next grid.

For linear problems, the use of the corrections to solve only the
residual problem allowed first order grids to be useful. In order to
preserve the fourth order convergence properties of the process, it

was necessary to use an extrapolated residual value on the finest

grid.
example n cgerr([n] err{n/2] ratio
6) 8 l.6e-5 4,9e—-4 31
16 l1.le-6 1.7e-5 15
7) 8 l.1le-5 3.2e—4 29
16 8.6e-7 1l.2e-5 14
8) 8 5.0e-6 8.3e-5 17 F?e =1
9) 8 3.8e-2 8.2e-1 22 Re=8
16 4.8e-3 1.0e-1 21
32 5.0e-4 5.5e-3 11
64 5.3e-5 5.0e—-4 9.4
10) 8 2.8e-1 1l.3e-1 0.5 Re=16
16 2.,4e-1 2.8e-1 1.1
32 2.4%e-1 2.4e-1 1.0
64 2,4e-1 2,4e~-1 1.0

Table II: One-sided differences with FAS
for linear single equations

Results for some of the sample problems from the implementation for
linear single equations which used one sided differencing when neces-—
sary, using the FAS correction scheme and using either centered or
one sided differences when computing 7 values. Presented in the
table are the example number, the grid level n, the maximum error on
the coarse grid at level n, the maximum error on the entire previous
grid, and their ratio. At the left are some descriptive comments
about some of the examples.

Multigrid Methods (29)

Tables II to VI present summaries of the results from some of the
combinations tried. In each of the tables are presented the error
found at a given grid level, the error found at the previous grid
level, and their ratio. Comparisons were made only at grid points
which occurred in both grids, since the newest gridpoints on the n-
level grid have no counterparts for comparison. A ratio of sixteen
would indicate fourth order convergence, four would indicate second

order convergence, and two first order.

The results in Table II are from a program which used first order
relaxation when necessary, but used centered differencing exclusively
when computing the value of 7. This being the case, extrapolation of
1.333 was used at the top level in all cases. Results were not too
encouraging, indicating that coarse grid errors in correction cycles
were propagated up to the fine grid levels. Results for the easy
problems, those which do not require the use of first order dif-

ferencing, were good, the others were not.

The problems (11) and (12), with Re of 32 and 64, were both very

similar to (10), with slightly higher errors.

Identical results were obtained from the implementation where
first order differences were used when necessary, and the computation
of 7 used first order differences when the fine grid required it.
Extrapolation of 1.333 was used for grid points which are fully
second order, and a value of 2.0 was used for grid points which were
first order, at the top 1level only. Again the easy problems were
fine, the more difficult problems had error which was not removed on
fine grids, and the results were essentially identical to those

presented above.

Multigrid Methods (30)

A third implementation used 1lst orxder differencing only in the
relaxations and only when necessary to obtain diagonal dominance, but
the coarse grid correction was a residual correction only. This is
not the FAS algorithm, but corresponds more closely to Brandt's cycle
C algorithm [5,10]. At the top level the residual computed is an
extrapoclated one, which improves the order of the top level accuracy
from second to fourth order. The results, presented in Table III,

are somewhat more encouraging.

Example problem (10) requires first order differencing only on
the grid at n = 4, (11) at n = 4 and n = 8 and (12) when n = 4,8,
and 16. Results are much improved over the first attempts. The
lowest grid is solved exactly, and this seems to yield a better error
than expected. After this grid, we seem to be getting approximately
first oxrder convergence until both grids involved in the transfer are

second order.

It is unfortunate that this residual correction is applicable
only to linear problems. The behaviour noted here is reasonable,
considering that the error generated on the coarse grids is O(h) in
the residual, which itself is O(h), so the total correction should
be O(hz). In the FAS case, each correction cycle solves a problem
very close to the original, and a subtraction is performed to get the
correction factor. If an O(h) error is generated on a coarse grid,

this entire error would be brought up with the correction.

In Table IV result summaries are presented for a method which
uses first order differencing when necessary, in both the relaxations
and in the computation of the residual. Comments about applicability

to linear problems only are relevant here as well.

Multigrid Methods

(31)

example n cgerr{n] err[n/2] ratio
6) 8 1.6e-5 4.9e-4 31
16 l.le—-6 1.7e-5 15
32 7.3e-8 l.le—-6 15
7) 8 1l,1le-5 3.2e-4 29
16 8.5e-7 1l.2e-5 14
32 5.7e-8 8.6e-7 15
8) 8 5.0e—-6 8.3e-5 17 Re=1
16 4,7e-7 6.2e-6 13
9) 8 3.8e-2 8.2e-1 22 Re=8
16 4,8e-3 1.0e-1 21
32 5.2e—4 5.5e-3 11
64 5.5e-5 5.2e—4 9.4
10) 8 3.2e-2 1.3e~-1 4.0 Re=16
16 4,9e-3 8.le-2 17
32 3.6e-4 1.0e-2 28
64 4,5e-5 9,9e-4 22
11) 8 l.5e-1 9.0e-2 0.6 Re=32
16 2,.7e-2 1.5e-1 5.6
32 5.0e-3 8.5e-2 17
64 3.6e-4 1.0e-2 28
12) 8 4,0e-2 5.0e-2 1.2 Re=64
16 2,0e-2 1l.3e-1 6.5
32 2.9e-2 1l.6e-1 5.5
64 5.0e-3 8.7e-2 17

Table III: One-sided differences with residual
corrections only in the relaxations

Results for some of the sample problems from the implementation using
first order differences when necessary,
to estimate residuals only.

using coarse grid corrections

Multigrid Methods (32)

example n cgerr{n] err[n/2] ratio

10) 8 3.2e-2 1l.3e-1 4,0 He=16
16 4,9e-3 8.1le-2 17
32 3.6e-4 1.0e-2 28
64 4,5e-5 9.9%9e—-4 22

11) 8 1.9%e-2 9,0e-2 4,7 Re=32
16 2.7e~2 1l.3e-1 4,8
32 5.0e-3 8.5e-2 17
64 3.6e—-4 1.,0e-2 28

12) 8 2.4e-2 5.0e-2 2.1 Re=64
16 1.7e~2 8.1e-2 4.8
32 2,7e-2 1.4e-1 5.2
64 5.0e-3 8.5e-2 17

Table IV: One-sided differences with residual
corrections in relaxations and in
coarse grid corrections.

Results for some of the sample problems from the implementation using
first order differences when necessary, in both the relaxations and
the coarse grid corrections. Here again the correction was a residual
correction only.

Problems (6) to (9) were identical to the above, since no first
- order differencing is used, and the results for the other three prob-

lems are in Table 1IV.

For problems (10),(1l1),and (12) the error was smoothed out over
the first order grids, but the end result when the second order grids
were reached was the same. This may imply that the extra effort of
doing first order coarse grid corrections may not be worth the trou-
ble. Enough experimentation has not been done to indicate whether
this approach would be preferable for even higher values for Re.

As far as the number of relaxations was concerned, this scheme

was observed to be slightly more expensive than the corresponding

scheme without the matching coarse grid corrections, and it would

Multigrid Methods (33)

have more overhead, in the testing and recomputing at first order

grid points.

Another implementation makes use of artificial viscosity to han-
dle the diagonal dominance requirement. Table V summarizes the
results for the problems of interest. Again results for examples (6)
to (9) were identical to those for the rest of the schemes. For
examples (10) to (12) the results in Table V show that the error is
not improving at all on the grids which require the use of artificial
viscosity, but convergence bounces back very well once that con-
straint is gone. This is actually reasonable, since at those grid

points different problems are being solved on the two grids.

For completeness, another experiment was done where relaxations
used artificial viscosity, as above, but the 7 computation and coarse
grid correction did not take this into account. As usual, results for
examples (6) to (9) were identical to previous results, but for the
other examples, results were terrible, the coarse grid correction
obviously spoiling things. This contrasts with the residual correc-
tion methods discussed above, where the matching of the coarse grid

correction with the relaxations seemed to be of little importance.

3.3. Linear systems with mild stiffness

After completing the experiments outlined in the previous sec-—
tion, it was time to modify the package to operate on systems of dif-
ferential equations. The class of problems handled by this version

ig:

a uxx + C Uyy + d ux + e uy + f u =g

Here, however, the coefficients are matrices, the right hand side and

Multigrid Methods (34)

example n cgerr[n] err[n/2] ratio

10) 8 1.8-2 l1.5e-2 0.83 He=16
16 5.0-3 l.1le-1 22
32 3.6e-4 1.0e-2 28
64 4.5e-5 1.0e-3 22

11) 8 3.4e-4 2.%e—-4 0.85 He=32
16 1l.8e-2 1l.8e-2 1.0
32 5.0e-3 1.2e-1 25
64 3.6e-4 1.0e-2 28

12) 8 1l.1le-7 9.8e-8 0.89 He=64
16 3.4e—4 3.3e—4 0.97
32 l.8e-2 1l.8e-2 1.0
64 5.1le-3 1l.2e-1 23.5

Table V: Artificial viscosity with FAS in both
relaxations and coarse grid correction

Results for some of the sample problems from the implementation using
artificial viscosity to ensure that the linear system representing
the problem is diagonally dominant. Centered differences are used in
both relaxations and in the computation of 7 for the coarse grid
correction.

solution are vectors. The example problems upon which this wversion
was tested are presented in Figure 8. Problem sample (14) used

Re = 1, sample (15) Re = 16, and sample (16) He = 32,

The only version of this program which has been implemented is
one using artificial viscosity when a grid point yields a system of
equations which does not meet the diagonal dominance criterion. At
each grid point the diagonal dominance test used was

a.. d..
ii ii
—_ D

h2 2h

Multigrid Methods (35)

= 13
ulxx + ulyy 0 (13)
uzxx + Uzyy-ulx - 2u2 = 0
Solution: ul = 4 cos(x) sinh(y)
u2 = 2x §sin(x) sinh(y)
_ = 14-16
1 T ulyy 2uy o ()
u
2XX 2yy _
—_ 4 -u,_ +u, =0
He He 2X 2y
Solution: ul = e(x+y)
XR -yR
u, = (1-e ®y1-e %)

Figure 8: Sample problems (13) to (16)

The sample problems used to test the implementations which could
handle systems of linear equations. Examples (14) to (16) used
Re values of 1, 16, and 32.

for each /.

Table VI presents the errors and convergences. Examples (13) and
(14) require no artificial viscosity and results are excellent. Exam-—
ples (15) and (16) give results very similar to the single equation
examples discussed above. The error is not improved on the grids
requiring artificial wviscosity, but the stability of the grids is

maintained until sufficiently fine grids are reached.

Multigrid Methods (36)

example n cgerr[n] err[(n/2] ratio
13) 8 l.6e-5 4,7e—4 29.4
16 1l.le-6 1l.6e-5 14.5
32 6.9e-8 l.le-6 15.9
16 4, 4e-9 6.9%e-8 15.7
14) 8 l.6e-5 4,9e—-4 30.6 He=l
16 l.le-6 1.7e-5 15.5
32 7.4e-8 l.1e-6 14.9
64 4,8e-9 7.4e-8 15.7
15) 8 1.8e-2 1.5e-2 0.83 Re=16
16 5.0e-3 l.2e-1 24
32 3.6e—-4 1.0e-2 28
64 4,5e-5 1.0e-3 22
16) 8 3.4e-4 4,9e—4 1.4 He=32
16 1l.8e-2 1.8e~2 1.0
32 5.le-3 1l.2e-1 23.5
64 3.6e—4 1.0e-2 28

Table VI: Artificial viscosity and FAS for
systems of equations

Results are presented for some sample problems from the implementa-—
tion which will handle systems of equations, and uses artificial
viscosity. This implementation is not adaptive and uses the ineffi-
cient storage method discussed in the text.

3.4. Linear systems, with adaptive meshes

One of the conclusions from the results so far obtained is that
grids finer than those used above will be necessary for many prob-—
lems. For this it is necessary that adaptive grids be implemented as
part of an adaptive program which will check erxror estimates on a
grid point basis, rather than on a whole grid basis, and make the
grid finer only in the regions which require this. The latest ver-
sion of this multigrid package has the ability to adaptively utilize

finer meshes only in regions where it is necessary.

Multigrid Methods (37)

The same set of problems was treated as in the previous section,
with a tolerance sufficiently low that full grids were used at all
levels. The results are tabulated in Table VII. Problem (13) is an
example of a problem which has a non-diagonal term in one of the
coefficient matrices. This example is smooth and this is reflected in

the excellent convergence result,

Results for problem (14) are approximately as expected, for (15)
and (16) there seems to be a "catch up" grid at the second grid which

does not use artificial viscosity. As long as the problem requires

example n cgerr(n] err[(n/2] ratio
13) 8 9.le-6 4,7e—-4 51.6
16 8.le~-7 l.6e-5 19.8
32 5.4e-8 1l.le-6 20.4
64 3.5e-9 6.8e-8 19.4
14) 8 1.7e-5 4,9e—-4 28.8 Re=l
16 1l.le-6 1.0e-5 9.1
32 5.9%9e-8 9.6e-7 16.3
64 3.8e-9 5.9e-8 15.5
15) 8 1.8e-2 1l.5e-2 0.83 Re=16
16 4.7e-3 1.2e-1 25.5
32 1.0e-4 1.0e-2 100
64 4,5e-5 9,9%9e-4 22.0
16) 8 3.4e-4 4,9%e—-4 1.4 Re=32
16 1l.8e-2 1l.8e-2 1.0
32 4,7e~-3 1.2e-1 25.5
64 l.le-4 1.0e-2 90.9

Table VII: The use of the adaptive grid implementation
with a very low tolerance

Results from the adaptive implementation, but with the tolerance set
low enough that no adaptive grid formations were used.

Multigrid Methods (38)

artificial viscosity, we cannot really expect an improvement in the
maximum error. What happens is that we get closer and closer to the

singularity and keep the error there reasonably small.

When the same problems are attacked with a low tolerance limit,
with the idea of sacrificing high accuracy to achieve better computa-
tion time, the accuracy results for example (14) are as in Table
VIII. Runs for the other examples terminated at grid sizes of 8 or
16 because their error estimates were sufficiently small. As can be
seen, once we reach the tolerance level, we see no improvement in the

actual error. As a matter of fact, there is some backward movement in

Problem (15) : AR _=16

e

n cgerr(n] err[n/2] ratio internal not proportional

points solved grid size
8 1.8e-2 1.5e-2 1.2 49 43 43/49 = 0.88
16 4,.8e-3 1l.2e-1 25.0 279 130 130/256 = 0.51
32 l.le—4 1.0e-2 90.9 789 368 368/1024 = 0.36
64 6.6e-3 9.9e—-4 0.16 2158 1169 1169/4096 = 0.29
128 1.8e-2 1.8e-2 1.0 6402 4887 4887/16384 = 0,30

Table VIII: Actual use of adaptive grids(high error tolerance)

Results from the adaptive implementation, using a tolerance low
enough that incomplete grids were used in some cases. Presented here
are the grid size n, the maximum error found on the coarse grid at
level n, the maximum error found on the grid at level n/2, which
corresponds to the coarse grid at level n, the ratio of these two er-
rors, the total number of grid points which exist in this grid, the
number of these grid points which are accurate enough that they will
not be interpolated to the finer grid, and the proportional grid size
relative to a full grid.

Multigrid Methods (39)

the error obtained. This may be due to some leverage of error from
points considered to be solved satisfactorily. This behaviour is the
sacrifice made for the computational savings. The last three columns
show the number of grid points existing in the grids at the various
levels, the number of grid points being relaxed, and the ratio of the
latter to the maximum number of points in the grid at that point.
This last value is approximately the proportional work being done at
that grid level relative to the non-—adaptive method. Since each suc-
cessive grid is four times the size of the previous, the relative

values on the finest grid are the most important.

In Figures 9 to 12 we give grid diagrams representing the grid
points at the four levels which were actually used in the adaptive
solution of example (14). The asterisks represent the grid points
where a solution was found to an estimated accuracy better than the
tolerance and the "@" characters represent those which were not.
These latter points are interpolated to provide the finer grid points
for the next level. As can be seen, only about a quarter of the
n = 64 grid needed interpolation, which has allowed the program to
proceed to even finer grids for the more difficult areas of the

domain.

Multigrid Methods (40)

Figure 9: Level 8 grid, example (15)

The grid at level n=8 used on example (15). This is a full grid, and
the error estimates on the asterisk points are less than the toler-
ance, while those on the "@" points are greater than the tolerance.

Multigrid Methods (41)

Figure 10: Level 16 grid, example (15)

The grid at level n=16 used on example (15). This is not a full
grid, and the error estimates on the asterisk points are less than
the tolerance, while those on the "@" points are greater than the
tolerance. The blank areas of the grid have no grid points allocated.

Multigrid Methods

(22)

%% % % oF b % A % % % % oF ok A o ok % ¥ % o % % F * A % X * * X * %
*

The grid at level n=32 used on example (15).

AKKKKEKKKKKKKKKKkKkKKKK

*XAXXX X **@QERACAAAA*
*kXkXkAKX% % *QQAAAAAARA X
*xAkX XXX XX *QQAAAEREAY
XXX XXX XX XQEAARARARAAY
*XkXAXX XXX *QAAAQAARRAAY*
*xkxkxk*r@ERACRRRERE*
*rxXX XXX *QPRACECRRREEA
*rxEX XXX *@EAACEERAQEE™*

R kb b A dclclclclclclelelclcleny

¥xrkxxxk¥v@EAAQARRARE
bbbt clclclalclelelclelelchy
*xkkXkxk ¥ *@EARRRAARRE*
bbbkt clclclclclelclelclclcny
rxxA XXX AQAQRAQCAERAREQE
**rxx¥*xr@ERAARAGRREE*
xkxxxxkxr@EEQREAERRE
bR R clclclclclclclelelelch
*rxxxAAXT@ERRRERRGRAY
rkxxxrxr@EARRAGREEAE
*kxxkkXX¥@EEAARARREEY
*kxkxXXXX@AERRRAAREGEY
LER R R R clclclclclclelelclclc
xr@E¥¥rEgeeeeeeereex
@RE@@geeeeeeeeear
***@QEAE@*eeeeeeeeeeex
*r@geeeeereereereeeeer
plafdclclelclclelclelelelelclclclelclchy
**¥*xr@geeeeeeeeeee@eax

*eeeeecreeeeeeeax

clelelelelelelelelelelelelelchg

*x@@*reeeeeeeeeex

AEKEKEKKEAKKXKXRA X AR AKX K

Figure 11: Level 32 grid, example (15)

This is not a full

grid, and the error estimates on the asterisk points are less than

the tolerance,

while those on the "@" points are greater than the

tolerance. The blank areas of the grid have no grid points allocated.

Multigrid Methods (43)

* * * * *x * K OAEAAAAEEAREEKELEEAKEE AL ELEKEEERKXAEXKEKRKKRKRRE TR KK
* Xk k k X *k X KX XXXKKXXXXXXQAAQARAAAX*
* *x* * * * X x*x * % % %k %k % *x % ****************@@@**
x X x* %X % * % %X % % ****************@@@@@@*
* * * * * * * kK Xk Xk kX Kk X X XK@XX@XXXXX¥XXXAXQAQAQAEA*
* * kK Kk ok X K Kk x KXXAXXXXXK XX XX XXAXQARARAAY
* * x * x * * * % % % % %X % ****************@@@@@@@@*
* * ok k k ok * kX k XAXXXXXXXXXX XXX AQRRAARARA*
x * * * * * *x %X kX %k % kx % % *@**************@@@@@@@@*
* Xk *k kX kX %X k kX K@REKXXXXKXKXX XX *QRAQAAARQAA*
* * * * * * * %k %k k kX k kX k X@AXKKAXAXAXXAXNAXQRAQARAEREA*
* X X X X X X Kk k *k@rAAAAkXAXAXAANQAQARAAARA¥
* * * * * * * X kX % k x *x *x *@XX@RAFFX¥¥***QRAAARREAAEAY
* X X * X %X % x % ***QQERAAX*****QAGEQAERRQA*
* * * * * * * X X X %X % % * **QQEARAAAA****QREREAEAEAEAERA*
* * * X * % % X *x **@EEEEEEEEE***@EReEeeEeEeE*
* * * * * * * %X % *k X % % % **QEEARAARAA***QEAREEAEEREREA*
* * k¥ x X X ¥ * * *QEEEEEEEEEEE*QeEeeReeee*
* % x X x x x x ¥ x ¥ ¥ ¥ * *Q@EEEEEECEeeE*@eeeeeeeea*
* * ¥ x x x ¥ * *x *QEREECEEEEEE*Qeeeeeeeee*
* x x X x x * x x *x x * *x * *QEeeeeeeeeeeeeeeeeeeeee*
* * % x x X ¥ *x * *QEEEEECEEEEEEEEEEEREeREE*
* kX Xk kX * XXXX*X* * * *QEEOCeCeeeeeeeeeeeeeeeer
* * * *@EEEE*** * *QEEEEELEEeREeReEeEeeReEe*
* x ¥ x x * * x *Q@EEEEE*****Qeeeeeeeeeceeeeeeeeeree*
* * ***QEECEERREEERECeeRRREeReeeeeReeRRREE
* * x x x x *QQCEEEERECCEEECECELERRAEERRREERAREERE*
* * ***QERECEEEEECRLEEEEEeeeREeErREeeeeeea*
* * % X ¥ % ¥ *r¥¥*QREEEERREEELEECReCeReeEeRReeRee*
* *@REEEEEEEEEEEeEee *AReEeeeeeeeee *
* *@REEEEEREEEEEEE * * *AEAeRRRRREREE *
* ***@@EEE* **@EE* X * * * *AQEQEEEREeee *
* * X * * * K AEAEAKELEETEEEAEEKKKKKEKKEXKEKXKRKKEKRKXKEXKKRKKRKKRKRKRKRK)Rk X

Figure 12: Level 64 grid, example (15)

The grid at level n=64 used on example (15). Only half of the rows
in this grid are displayed here, due to space limitations. The error
estimates on the asterisk points are less than the tolerance, while
those on the "@" points are more than the tolerance. The blank areas
of the grid have no grid points allocated. The width scale of the
diagram has been doubled for this diagram, to accommodate the larger
number of points displayed here relative to the previous diagrams.

Multigrid Methods (24)

4. Discussion

4.1. What has been done

Several implementations of the multigrid method for the solution
of systems of partial differential equations have been produced. The
family of problems to which the latest of these implementations may

be applied is written as

a u., + ¢ Uyy + d u, + e Uy + f u =g

where a,c,d,e, and f are matrices, g is a vector, and all are func-
tions of x and y. Some of these implementations use a data structurg
which is very wasteful of storage, but is simple to utilize. The
latest wversion uses a 1list based, space efficient data structure

which allows adaptive grid interpolations.

A variety of combinations of relaxations and coarse grid correc-—
tions were tried. Some of these were:
i) 2nd order differencing, FAS coarse grid correction (CGC)
ii) 1st order differencing when necessary, FAS CGC
iii) 1lst order differencing when necessary, residual CGC

iv) 2nd order differencing, with artificial viscosity

The last three options were used for mildly stiff problems. We
can define such a problem as one which, with the usual centered dif-
ferencing, would yield a difference system which does not meet the
diagonal dominance criterion on one or more of the grids, but which

does meet the criterion on at least the finest grid.

It was found that, though it is advantageous to use the FAS

method (it allows 7T extrapolation and easy adaptation to nonlinear

problems), difficulties arise when 1st order differencing is needed

Multigrid Methods (45)

on the correction grids, viz. the extra error is propagated from the
coarse dgrids up to the finest grid, ruining the convergence. If
residual correction is used instead of FAS, the error on the coarse
grids does improve according to theory, and it does not propagate and
ruin the fine grid convergence. The error which propagates in the
FAS case is 1l1lst order with respect to u, while the propagating error
in the residual correction case is 1st order with respeét to the
error in u. Fourth order accuracy 1is attainable with residual
correction, but adaptation +to nonlinear problems will not be

straightforward.

The use of artificial viscosity on the coarse grids was found to
work well, but the extrapolation cannot be expected to work at the
grid points using the viscosity, so the approximation and error
improvement on those gridpoints is poor. Whether this will become a
significant difficulty when entire grids need viscosity has yet to be
examined. One certainly must worry about the "leverage" of error,
where the error estimate on a given grid point may be sufficiently
low and may even be a correct estimate, but may cause a dispropor-
tionately large error in nearby grid points which are still being
processed. In this case the algorithm may proceed nicely but yield an

invalid result.

4.2, Take Home Message

The indications from this study are that the use of artificial
viscosity is a practical method for ensuring convergence in the solu-
tion of mildly stiff boundary value problems by the multigrid method.
It is easier to program than the one sided differences approach and

when used in conjunction with the FAS correction scheme, is more

Multigrid Methods (46)

robust with respect to the propagation of error from coarse to fine
grid. This possibility of using the FAS algorithm is a requirement

for extending the implementation to nonlinear systems.

For linear systems, the use of residual coarse grid corrections

seems to be preferable.

4.3. Omissions from this work

This project can be extended in a number of ways which, using

hindsight, are beyond the scope of this thesis:

(1) Tune up the adaptive strategy used by the package. If we limited
the proportion of grid points which could be interpolated at each
level, the total work to be done would be more predictable than

/
the present system of using a simple tolerance on the error esti-
mate. Also, the strategy should be more flexible, so the system

could change its mind about points that it once considered to be

solved.

(2) Implement a version using 1lst order differencing in combination
with the FAS algorithm, or demonstrate that this combination can-
not work. There should be some way of preventing the 1lst order
coarse grids from interfering with the finer 2nd order grids. It
may even be that I have not examined the distribution of error

over the breadth of the grid in sufficient detail.

(3) If (1) is impractical, implement a residual correction version
for use on linear problems. For some linear problems a one—sided
algorithm may be advantageous, and it 1is always preferable to

have the choice.

(4)

(5)

(6)

(7)

(8)

Multigrid Methods (47)

Implement a version for nonlinear problems. This would possibly
use the FAS correction scheme, and Newton iteration at each grid

point, as did the first implementation discussed in this thesis.

Implement some of the relaxation techniques suggested in the
literature, such as red-black ordering Gauss Seidel (RBGS), 1line
Gauss Seidel(LGS), and incomplete LU decomposition (ILU). One
might include in this category experiments in types of restric-
tions, prolongations, interpolations, and coarse grid correc-

tions, all components of the multigrid method.

Try some realistic problems, as opposed to ones I have con-
structed from known solutions. Some examples might be the Cauchy
Riemann problem, the Steady State Stokes system, and the Steady

State Incompressible Navier Stokes system.

Try 9 point averaging restriction for problems with oscillatory
behaviour. This could be considered to be a subset of the aspect
of trying out difficult problems to gauge the power of this
implementation. This type of restriction was implemented in
between the first two versions, but no conclusive results were

obtained, due to the nature of the test problems.

Extend the algorithm to handle arbitrary boundaries. This would
involve setting up boundary grid points by binary search until
the boundary was sufficiently close to a point, and then includ-

ing these boundary points in the coarse grids.

10.

11.

12.

13.

14.

15.

Multigrid Methods (48)

References

E. J. Asselt, The multigrid method and artificial wviscosity, in
Multigrid Methods Proceedings, Koln-Porz, November 1981, vol. 960,
W. Hackbush and U. Trottenberg (ed.), Springer-Verlag, Berlin,
1982,

W. Auzinger and H. J. Stetter, Defect Correction and multigrid
iterations, in Multigrid Methods Proceedings, Koln—-Porz, November
1981, vol. 960, W. Hackbush and U. Trottenberg (ed.), Springer-
Verlag, Berlin, 1982. ‘

A. Brandt, Multi-level adaptive technique (MLAT) for fast
numerical solution to boundary value problems. , in Proceedings
Third International Conference on Numerical Methods in Fluid
Mechanics, Paris, 1972, vol. 18, H. Cabannes and R. Teman (ed.),
Springer-Verlag, Berlin, 1973, 82-89.

A. Brandt, Multi-level adaptive techniques (MLAT) I. The Multi-
grid Method, Research Report RC 6026, IBM T.J. Watson Research
Center, Yorktown Heights, NY, 1976.

A. Brandt, Multi-level adaptive solutions to partial differential
equations - Ideas and Software, in Proceedings of Symposium on
Mathematical Software, J. Rice (ed.), Academic Press, New York,
March 1977, 277-318.

A. Brandt, Multi-level adaptive solutions to boundary value
problems, J. Math. Comp. 31, (1977), 333-390,.

A. Brandt, Multi-level Adaptive Techniques (MLAT) for Singular
Perturbation Problems, in Numerical Analysis of Singular
Perturbation Problems, P. W. Hemker and J. J. H., Miller (ed.),
Academic Press, London, 1979.

A. Brandt, Stages in Developing Multigrid Solutions, in Numerical
Methods for Engineering, E. BAbsi, R. Glowinski and P. Lascaux
(ed.), Dunod, Paris, 1980, 23-44.

A. Brandt and sS. Ta'asan, Multi-grid methods for highly
oscillatory problems, Regearch Report, Dept. of Applied
Mathematics, Weizmann Institute of Science, Rehovot, 1981.

A. Brandt, A Guide to Multigrid Development, in Multigrid Methods
Proceedings, Koln-Porz, November 1981, vol. 960, W. Hackbush and
U. Trottenberg (ed.), Springer—Verlag, Berlin, 1982.

J. E. Dendy, Black Box Multigrid, J. Comp. Phys. 48, 3 (1982),
366—386.

J. E. Dendy, Black Box Multigrid for NonSymmetric Problems, J.
Appl. Math. and Comp. 13, (1983), 261.

H., Foerster and K. Witsch, Multigrid Software for the Solution of
Elliptic Problems on Rectangular Domains, in Multigrid Methods
Proceedings, Koln—-Porz, November 1981, wvol. 960, W. Hackbush and
U. Trottenberg (ed.), Springer—-Verlag, Berlin, 1982.

W. Hackbusch, On Multigrid Iterations with Defect Correction, in
Multigrid Methods Proceedings, Koln—Porz, November 1981, vol. 960,
W. Hackbush and U. Trottenberg (ed.), Springer-Verlag, Berlin,
1982,

P. W. Hemker, On the Structure of an Adaptive Multi-level
Algorithm. BIT, , 1980.

l6.

17.

18.

19,

20,

21.

22,

23.

24,

Multigrid Methods (49)

P. W. Hemker, The Incomplete LU Decomposition as a Relaxation
Method in Multigrid Algorithms Boundary and Interior Layers -
Computational and Asymptotic Methods, Boole Press, Dublin, 1980,

R. Kettler, Analysis and comparison of relaxation schemes in
robust multigrid and preconditioned conjugate gradient methods.,
in Multigrid Methods Proceedings, Koln-Porz, November 1981, vol.
960, W. Hackbush and U. Trottenberg (ed.), Springer-Verlag,
Berlin, 1982.

W. J. A, Mol, Smoothing and Coaarse Grid Approximation Properties
of Multigrid Methods, NW 110/81, Department of Numerical
Mathematics, Stichting Mathematisch Centrum, Amsterdam, 1981.

W. J. A, Mol, On the Choice of Suitable Operators and Parameters
in Multigrid Methods, NW 107/81, Department of Numerical
Mathematics, Stichting Mathematisch Centrum, Amsterdam, 1981.

R. A. Nicolaides, On the observed rate of convergence of an
iterative method applied to a model elliptic defference equation,
Math. Comp. 32, (1978), 127-133..

K. Stuben and U. Trottenberg, Multigrid Methods: Fundamental
Algorithms, Model Problem Analysis, and Applications, in Multigrid
Methods Proceedings, Koin-Porz, November 1981, vol. 960, W.
Hackbush and U. Trottenberg (ed.), Springer—-Verlag, Berlin, 1982.

P. Wesseling, A convergence proof for a multiple grid method,
NA-21, Delft Technical University, Delft, The Netherlands., 1978.

P. Wesseling, Theoretical and practical aspects of a multigrid
method, NA-37, Department of Mathematics, Delft University of
Technology, Delft, 1980.

P. Wesseling, A Robust and Efficient Multigrid Method, in
Multigrid Methods Proceedings, Koln—-Porz, November 1881, vol. 960,
W. Hackbush and U. Trottenberg (ed.), Springer-Verlag, Berlin,
1982.

Multigrid Methods (50)

6. APPENDICES

Appendix A: User Instructions

The mgrid program is used to numerically solve systems of linear
elliptic partial differential equations, as:

a u + ¢ u +dwu +e u +f u =g
XX yy X y

where a,c,d,e,f are matrices, g is a vector, and all are functions
of x and y, The user must provide these functions as pascal functions
and link them together with the rest of the package(See appendix II
for sample source). The makefile and several function examples in
the package source code can act as examples.

A sample run command on the unix system used for development is :

mgrida title < prmfile > resultsfile

The title is printed on the output, and 1is optional. The
standard input contains the execution parameters, one per 1line, in
the following order:

nmin minimum grid size used (a multiple of 2)

nmax maximum grid size used (a larger multiple of 2)

alpha @, the ratio expected of tau from grid to grid (usually
0.25)

delta 6, the ratio expected of error from grid to grid (usually
use 0,125)

eta slow convergence criterion 7, usually use 0.5, (0 < eta <«
1)

tol tolerance on error estimate, an exit criterion.

tautol tolerance on the change in 7, an exit criterion within

the solve routine.

cyclelimit another exit criterion within the solve routine, if 7T
ratio does not reach alpha within this number of cycles,

solve stops trying, accepting the value of T so far

obtained.
extraptau the T extrapolation factor, usually set to 1.33
1bx the lower bound of the x component of the domain
ubx the upper bound of the x component of the domain
1by the lower bound of the y component of the domain
uby the upper bound of the y component of the domain

In the parameter file, comments may be placed on the line after the
value. Unlike this example, additional comment 1lines may not be
inserted.

Standard output contains the level by level summaries of the
process of the computation. The maximum values of 7 and error
estimates are printed each time they are computed at the fine grid
level.

At the conclusion of each grid level computation in the nested
set, a detailed output file is created with the name "grid.nnn",
where the "nnn" is the grid level. This file contains a record for
each grid point in the grid, with its x,y, and v values, as well as
the error estimates and the actual errors. This implementation
computes the actual error using a supplied function which computes

Multigrid Methods

the actual solution, a feature which would probably not
over into a production model, since in real life an
solution is rarely known.

Appendix B contains sample source for the required
appendix C a sample parameter file, and appendix 4 sample
that particular run.

(51)

be carried
analytical

functions,
output for

Multigrid Methods (52)

Appendix B: Sample Source Code

Below is a listing of an example of the source which must be
supplied by the user. Of course the problem must fit into the family
of problems to which this package may be applied, linear second order
systems of equations. The routines include a boundary value
function(fbc), a solution function(usol), and six functions defining
the problem, a, ¢, d, e, f, and g.

#include "defs.h"
#include "ext.h"

procedure fbc; { (x,y:real; var v : vector);}

const
Re = 16;
begin
v[1] := (exp(—-Re)—exp(Re*(x-1)))*(1l-exp(-Re*y));
v[2] := exp(x+t+y):;
end;

procedure usol; { (x,y:real; var v : vector);}

const
Re = 16;
begin »
v[1] := (exp(-Re)—exp(Re*(x-1)))*(1l-exp(—Re*y));

v[2] := exp(x+y);
end;

procedure a; {(x,y:real; var v:matrix);}

const
Re = 16;
begin
v(1][1] := 1/Re;
v[{1][2] := 0O;
v[2][1] := O;
v[2][2] := 1;
end;

procedure c¢; {(x,y:real; var v:matrix);}

const
Re = 16;
begin
v[1]1[1] := 1/Re;
v[1][2] := 0O;
v[2][1] := O;
vi2][2] := 1;

end;

Multigrid Methods (53)

procedure d; {(x,y:real; var v:matrix);}

begin
v[1][1] := -1;
v{1][2] := 0;
v[2]}[1] := 0;

v[i2][2] := O;
end;

procedure e; {(x,y:real; var v:matrix);}

begin
v{1][1] := 1;
v[1]{2] := 0;
vi2][1] := 0O;
vi2][2] := 0;
end;

procedure f; {(x,y:real; var v:matrix);}

begin
v[1][1] := 0O;
v[1][2] := O;
v[2][1] := 0O;
vi2][2] := -2;
end;

procedure g; {(x,y:real; var v:vector);}

begin

Multigrid Methods (54)

Appendix C: A Sample Parameter File

Below is a sample of a parameter file. This parameter file and
the source in the previous appendix were used to produce the results
in the next appendix.

4 nmin

32 nmax

0.25 alpha
.125 delta
.5 eta

.0e—-8 tol
.01 tolerance on the change in tau value
cyclelimit
.1 lowerbndx
.9 upperbndx
.1 lowerbndy
.9 upperbndy

QO O0OO0OWOH OO

Multigrid Methods

aAppendix D: A Sample Output File

Here 1is the descriptive output for the
previous 2 appendices:

the parameters were: delta=

1.250e-01, alpha=

(55)

run gpecified by the

2.500e-01,

Eta= 5.000e-01

error and tau tolerances: 1.000e-04 1.000e-02, limit on # cycles 3

nmin= 4, nmax= 32

The upper and lower bounds of x: 0.000e+00 1.000e+00

The upper and lower bounds of y: 0.000e+00 1.000e+00

printerr: n= 4, max error 1.,535e-02, at x= 7.500e-01, and y= 2.500e-01
printerr: n= 4, max cg error 4.478e-04, at x= 5.000e-01, and y= 5.000e-01
solve: n= 8 maximum tau value[l]3.2e-02, at x= 7.5e-01 y= 7.5e~01

solve: n= 8 maximum tau value[2]}3.4e-~-02, at x= 7.5e-01 y= 7.5e-01

solve: relaxation count(top level total) 7

solve: n= 8 maximum tau value{l]3.2e-02, at x= 7.5e-01 y= 7.5e-01

solve: n= 8 maximum tau value[2]3.4e-02, at x= 7.5e-01 y= 7.5e-01

gsolve: relaxation count(top level total) 9

solve: n= 8 maximum tau value{l])3.2e-02, at x= 7.5e-01 y= 7.5e-01

solve: n= 8 maximum tau value[2]3.4e-~02, at x= 7.5e-01 y= 7.5e-01

solve: relaxation count(top level total) 11

gsolve: tau tolerance attained

printerrest: for grid n= 4, max error correction is 3
printerrest: for grid n= 2, max error correction is 3
printerr: n= 8, max error 1.150e-01, at x= 8.750e-01
printerr: n= 8, max cg error 1.772e-02, at x= 7.500e-—-

solve: n=

solve: n=

16 maximum tau value[l]8.7e-01,

16 maximum tau value[2]1.8e-02,

at

at

solve: relaxation count(top level total) 2

solve: n=

solve: n=

16 maximum tau value[l]7.7e-01,

16 maximum tau value[2]1.1e-02,

at

at

solve: relaxation count(top level total) 5

X=

it

X

X=

X=

8.8e—01 y=

8.8e-01 y=

8.8e-01 y=

8.8e-01 y=

.959e-03
.959e-03

, and y= 2.500e-01
01, and y= 2.500e-01

3.8e-01

8.8e-01

5.0e-01

8.8e-01

Multigrid Methods (56)

solve: n= 16 maximum tau value[1]7.4e-01, at x= 8.8e-01 y= 8,8e-01

solve: n= 16 maximum tau value[2]1l,le-02, at x= 8.8e-0l1 y= 8.8e-01
solve: relaxation count(top level total) 7
solve: reached limit of numbexr of cycles

printerrest: for grid n= 8, max error correction is 1.025e-01
Printerrest: for grid n= 4, max error correction is 9.66le-02
printerr: n= 16, max error 1.007e~-02, at x= 9.375e-01, and y= 8.125e-01
printerr: n= 16, max cg error 4.789e-03, at x= 8.750e-01, and y= 5.000e-01

solve: n= 32 maximum tau value[l]4.le-01, at x= 9.4e-01 y= 6.3e-01

solve: n= 32 maximum tau value[2]1.2e+00, at x
solve: relaxation count(top level total) 4

5.0e-01 y= 8.8e-01

solve: n= 32 maximum tau value[1]4.0e-0l1, at x= 9.4e-01 y= 8.8e-01

solve: n= 32 maximum tau value[2]1l.1e+00, at x= 5.0e-0l1 y= 8.8e-01

solve: relaxation count(top level total) 6

solve: n= 32 maximum tau value[1l]4.0e—-01l, at X= 9.4e—-01 y= 6.3e-01

solve: n= 32 maximum tau value[2]1l.2e+00, at x= 5.0e-01 y= 8.8e-01

solve: relaxation count(top level total) 8

solve: reached limit of number of cycles

printerrest: for grid n= 16, max error correction is 8.108e-03
printerrest: for grid n= 8, max error correction is 8,069e-03

printerr: n= 32, max error 9.936e-04, at x= 9.688e~01, and y= 9.063e-01
printerr: n= 32, max cg erxrxor 5,366e—-04, at x= 5.000e-01, and y= 8.750e-01

mgrid: execution finished, using finest grid 32

Multigrid Methods (57)

Appendix E: Source for the central routines solve, relax, taufunc

If the user wishes to apply a new differential operator, or use a
different coarse grid correction algorithm, new versions of the
relaxation routine and the coarse grid correction routine would have
to be written. Possibly some changes would be required in the solve
routine as well, in the parts concerned with the coarse grid
correction routine. Here is the source for those three routines.
preceded by the definitions file used by all routines.

label 999;

const
TINY = 1.0e—-30;
BIG = 1.0el0;
GRIDSIZE = 16384; { max grid division : 2714 : keep i,j to 2 bytes }
VECTORSIZE = 2; { should be the only change for more equations }
FIELDSPERPAGE = 8; { just used for formatting output }
EXTRAPTAU = 1,3333333333333333; { extrapolation factor}
UNKNOWN = 1,0E35; { use this to test for unknown tau value}
type
positive = 1., .maxint;
nonnegative = 0. .maxint;
gridrange = 0..GRIDSIZE;
vector = array[l..VECTORSIZE] of real;

ivector = array[l..VECTORSIZE] of integer;
matrix = array[l..VECTORSIZE] of vector;
atvlist = ~vlist;
vlist = record

u : vector;

link: atvlist

end;

atgrid = ~gridtyp:;

gridtyp = record { grid is made of these nodes}
i,j : gridrange;
u, { the result vector}
grhs, { right hand side for this gridpoint}
tau, { tau value at last CGC, valid on coarse

grid, Value from the CCG (coarse coarse
grid, are to right of the CCG grid points }
errest : vector; { error estimate, could be flag or scalar
if we wanted to save memory?}
smrate, { smoothing rate, see if further relaxing
is needed. could be a flag?}

Multigrid Methods (58)

rlxchange : real; { last change which produced u in the
relaxations, also used as a flag
if negative, this point has not been
interpolated and should not be used for
further interpolation)}

tauflag : boolean; { is tau sufficient at this point?}
xlink,ylink : atgrid { pointers to right(x) and up(y) directions}
end;

longstring = array[l..100] of char;

var { the external declarations, signified by capital first letter
as opposed to constants which are all caps. }

Nmin,Nmax : 1l..GRIDSIZE;
Cyclelimit:nonnegative;
Alpha,Delta,Eta, Tol, Tautol,Lbndx, Ubndx, Lbndy, Ubndy,Hx ,Hy : real;
Zero : vector; { used for zeroing vectors}
Maingrid : atgrid; { points to gridpoint at x=Lbx,y=Lby}
Title : longstring;

{ Routine which does the main work of the multigrid method for
gsolving a discretized form of a boundary value ordinary
differential equation }

#include "defs.h"
#include "ext.h"

procedure solve;

{ (n:gridrange; gr:atgrid; corrgridflag:boolean});

}

var
X,Y,change,conv,t :real;
int2,int4, 1, count,cyclecount : nonnegative;
maxi,maxj : ivector;
subgr, nextx, nexty, subnextx, subnexty,below, above,right,left : atgrid;
ulist, savedgrid : atvlist;
first,tflag, returnflag,tauflag : boolean;
maxtau, prevtau : vector;

~

Multigrid Methods (59)

begin { 01}
if n=Nmin then solved(gr) { solve directly and to high accuracy }
else
begin { 11}
copytau(n,gr); { copy tau expectation on CCG to adjacent gridpoints
and initialize grid flags }
for 1:= 1 to VECTORSIZE do prevtau[l] := BIG;
cyclecount := 1; first:=true;
change:=BIG; { signal for first sweep }
int2 := 2*(GRIDSIZE div n); int4:=2*int2;
count :=0;
returnflag := false;
while not returnflag do
begin { 2}
change:=BIG; { signal for first sweep }
conv:=0;

while (conv < Eta) do
begin { 3}
relax (gr, n, change, conv); count:=count+l;
end; { 3}

taufunc(n,gr,first); { get tau for each grid point }
first:=false;

restrict (n,gr,subgr); { including the boundaries; create subgr}

for 1 := 1 to VECTORSIZE do maxtau[l] := O;
tauflag := true;
nexty:=gr”.ylink; subnexty:=subgr~.ylink; below:=gr;
while subnexty”.ylink <> nil do { boundary values not used later }
begin { 3}
while nexty~.i <> subnexty”.i do
begin below:=nexty;nexty:=nexty~”.ylink; { 4}
end; { ¢}
above:=nexty”.ylink;

if above~.i - below”.i = int2 then
begin { 4}
left:=nexty; nextx := nexty”.xlink; subnextx := subnexty”.xlink;
while subnextx”.xlink <> nil do
begin { 5}
while nextx”.j <> subnextx~.j do
begin left:=nextx; nextx:=nextx”.xlink; { 6 }
end; { 6}
while below”.j < nextx~.j do below:=below”.xlink;
if below”~.j = nextx”.j then
begin { 6}
above:=nextx”.ylink; right:=nextx”.xlink;

Multigrid Methods (60)

if (above~.i - below~.i = int2) and
(right~.j - left~.j = int2) then
begin { we are at a gridpoint in a fine grid region} { 7 }
if tauflag then
if (nextx”~.j mod int4 = 0) and (nextx~.i mod int4 = 0) then
for 1 := 1 to VECTORSIZE do
if (abs(nextx”.taufl]) > abs(nextx”.xlink”.tau[l])) then
tauflag:=false;
if corrgridflag then
for 1 := 1 to VECTORSIZE do
subnextx”.grhs[1l] := nextx~.taufl] + nextx~.grhs[1]
else
for 1 := 1 to VECTORSIZE do
subnextx”~.grhs[1] := EXTRAPTAU*nextx”.tau[l] + nextx”.grhs[1];
for 1:=1 to VECTORSIZE do
begin { 8 }
t := abs(nextx~.tau[l]):;
if t > maxtau[l] then
begin { 9 }
maxtau[l] := t;

maxifl] := nextx".i;
maxjfl] := nextx".j;
end; { 9 }

end; { 8 }

end; { 7}
end; { 6 }

subnextx := subnextx”.xlink;
end; { 5}
end; { 4}
subnexty:=subnexty”.ylink;

end; { 3}

savegrid (subgr,savedgrid); { save uH for ops after solving }
{ necessary if restriction is not injection }
{ merely copies grid u values into a list to be read back in again.
the grid structure will not change before it is used again}
if not corrgridflag then
for 1 := 1 to VECTORSIZE do
begin { 3}

X := Lbndx + maxj[l] * Hx;
y := Lbndy + maxi[l] * Hy:;
writeln;

writeln('solve: n= ',n:1,' maximum tau value{',1:0,']’,
maxtau[l]:4,', at x= ',x:4, ' y= ',y:4);
end; { 3}

solve(n div 2, subgr,true);

Multigrid Methods (61)

nexty:=subgr; ulist:=savedgrid;
while nexty<>nil do
begin { put the correction into the grid} { 3}
nextx:=nexty; { instead of the residual solution }
while nextx<>nil do
begin { ¢}
for 1 := 1 to VECTORSIZE do
nextx”.uf[l]:=nextx”.u[l] — ulist~.ufl];
ulist:=ulist~.link;
nextx:=nextx”,xlink;
end; { 4}
nexty:=nexty”.ylink;
end; { 3}

ulist:=savedgrid; { get rid of the save storage}

while ulist<>nil do
begin { 3}
savedgrid:=savedgrid~.link; dispose(ulist); ulist:=savedgrid;
end; { 3}

prolongrid(gr, subgr); { prolongate the grid to level n }

{ gr is used to ensure identical structure of both grids

for efficiency could avoid expanding subgr by doing the correction at the
same step, i.e. compute the fine grid corrections as one goes. This would
involve combining prolongrid and the following correction code}

nexty:=gr~.ylink; subnexty:=subgr”~.ylink;
while nexty”.ylink<>nil do { uH = O at boundaries, so don't add them }
begin { 3}
nextx:=nexty”.xlink; subnextx:=subnexty”.xlink;
while nextx”~.xlink<>nil do
begin { 4)
if nextx~.rlxchange >= 0 then { signal that this point }
{ is being relaxed}

for 1 := 1 to VECTORSIZE do
begin { 51}
nextx”~,u[l] := nextx~.,u[l] + subnextx~.u[l];

if not corrgridflag then
nextx”.errest[1l] :=
nextx”.errest[1l] + absg(subnextx~.u[l])/(1l+abs(nextx~.u[l]));
{ relative error for u >> 1 }
end; { 5}
subnextx:=subnextx”.xlink; nextx:=nextx”.xlink;
end; { ¢}
subnexty:=subnexty”.ylink; nexty:=nexty".ylink;
end; { 3}

disposegrid(subgr);

Multigrid Methods (62)

if not corrgridflag then
writeln('solve: relaxation count(top level total) ', count:1);

’

if tauflag then { successfully attained tau goal }
begin ~ { 3 }
if not corrgridflag then writeln('solve: tau goal attained');

returnflag := true;
end { 3}
else

begin { 3 }
tflag:=true;
for 1:= 1 to VECTORSIZE do
if abs(l-abs(maxtau[l]/prevtau[l])) > Tautol then tflag:=false;
if tflag then
begin { 4 }
if not corrgridflag then writeln('solve: tau tolerance attained');

returnflag := true;
end { 4}
else

if cyclecount = Cyclelimit then
begin { 4}
if not corrgridflag then
writeln('solve: reached limit of number of cycles');
returnflag:=true;
end { 4}
else
cyclecount := cyclecount+1l;
prevtau:=maxtau;
end; { 3}
end; { 2}
end; { 1}

end;

Multigrid Methods (63)

#include "defs.h"
#include "ext.h"

{

This is a routine to calculate the difference between one element

of the vector resulting from the application of the difference operator
on grid level n/2 and grid level n, on the vector u.

n is the fine grid level.

This function calculates the difference between the grid operator
vector product at a given grid point, between level n and level n/2.

hhh Hhh
Sotau (= —-I Lu +LIu
H H

The operator is the discretized operator corresponding to
the perturbed laplace equation

a*u + c*u + d*u + e*u + f*u =g
XX Yy X y

The operator does not use g, and in the difference the coefficient of
u, i.e. the f function, cancel, so they are not used here.

This routine presumes that the restriction operator is injection, so
it just uses the coarse grid values present, not computing them.

In this routine only fine grid regions are processed, i.e., coarse dgrid
points which are surrounded by fine grid points.
}
procedure taufunc;
{ (n : gridrange; gr:atgrid; first:boolean);
}
var
nexty,cbelow,below, above, cabove, left, cleft, right,cright, here : atgrid;
l,int,int2 : integer;
amatrix,camatrix,cmatrix, comatrix,dmatrix,ematrix : matrix;
tvect, tvectl, tvectz, txx, txxc, tyy, tyyc, tx, txec,ty,tyc : vector;
ta,tc,td,te,t : real;
X,y¥.hx,hy, hhx,hhy : real;
begin { 0 }

int := GRIDSIZE div n;
int2 := 2*int;
hx := int*Hx; hhx:=hx*hx;

hy := int*Hy; hhy:=hy*hy:;

{ need 5 in a fine grid row on the left boundary}
nexty:=gr;

cbelow:=nexty; below:=cbelow”.ylink; cleft:=below”.ylink;
above:=cleft”.ylink; cabove:=above”.ylink;

Multigrid Methods (64)

while cabove<s>nil do
begin { 1 }
if (above~.i - below~.i = int2) then { fine grid region}
begin left:=cleft~.xlink; here:=left~.xlink; right:=here~.xlink; { 2 }
cright:=right~.xlink; { x line is set up}
while cright<>nil do
begin { 3 }
if (right*.j — left~.j = int2) then { 5 in a row}
begin { 4 }
while cbelow”~.j < here~.j do cbelow:=cbelow”.xlink;
if (cbelow”~.j = here~.j) and (cbelow”.ylink <> here) then
begin above:=here~.ylink; below:=cbelow”.ylink; { 5 }
if (above~.i — below~.i = int2) then
begin cabove:=above~.ylink; { 6 }
y := here~.i*Hy+Lbndy;
X := here”,j*Hx+Lbndx;

for matrix computations procedures }
used below have prefixes: }

mt signifies matrix operation, }

vt signifies vector operation }

a(x,y,amatrix);
c(x,y,cmatrix);
d(x,y,dmatrix);
e(x,y,ematrix);

— - ——

mtcopy(amatrix, camatrix);
mtcopy(cmatrix, cecmatrix);
for 1 := 1 to VECTORSIZE do
begin { 7 }
ta := amatrix[1][1]}; tc := cmatrix[1l][1]:
td dmatrix[1][1]; te := ematrix[1][1l];
t := abs(td*hx/2);
if ta < 2*t then
camatrix[1][1] := 2*t;
if ta < t then
amatrix[1][1l] := t;
t := abs(texhy/2);
if tc < 2*t then
cematrix[1][1] := 2*t;
if tc < t then
cmatrix[1l][1]:=t;

txx[1] := (left~.u[l] - 2*here~.u[l] + right~.u[l])/hhx;

txxcf[l] := (cleft~.u[l] - 2*here~.u[l] + cright~.u{l])/(4*hhx);
tyy[l] := (below”~.u[l] - 2*here~.u[l] + above~.u[l])/hhy;
tyyc[l] := (cbelow”~.u[l] - 2*here~.u[l] + cabove~.u[l])/(4*hhy);

tx[1] := (right~.u[l] - left~.u[l])/(2*hx);
txc[1l] := (cright~.u[l] - cleft~.u[l])/(4*hx);
ty[l] := (above~.u[l] — below~.u[l])/(2*hy);
tyc[1l] := (cabove”~.u[l] - cbelow”.u[l])/(4*hy);
end; { 7}

Multigrid Methods

if first then right~.tau := here~
mtvtmult(camatrix, txxc,tvectl);
mtvtmult(amatrix, txx, tvect2);
vtsub(tvectl, tvect2,here~.tau);
mtvtmult(ccmatrix, tyyc,tvectl);
mtvtmult(cmatrix, tyy, tvect2);
vtsub(tvectl, tvect2, tvect);
vtadd(tvect,here~ . .tau,here~.tau);
vtsub(txc, tx, tvect);
mtvtmult(dmatrix, tvect, tvectl);
vtadd(tvectl,here~.tau,here~ . .tau);
vtsub(tyc, ty, tvect);
mtvtmult(ematrix, tvect,tvectl);
vtadd(tvectl, here~.tau, here~.tau);

end; { 6 }
end; { 5 }
end; { 4 }

if (left~.j-cleft”.j = int) then

begin

cleft:=here;

. tau;

if right <> nil then cright:=right~.xlink

else ¢
end

else

begin

cleft:=left; left:=here; here:=right;

right:=nil;

cright:=cright~.xlink;

end;
end; {
end; { 2

3}
}

if (nexty~.ylink~.i - nexty~.i = int) then

begin
cbelow

below:=cbelow”.ylink;

right:=cright;

:= nexty”.ylink".ylink; nexty:=cbelow;

if above<> nil then cabove:=above”.,ylink
else cabove:=nil;

end
else

begin

cbelow

+= nexty”.ylink; nexty:=cbelow;

(65)

left:=right; here:=cright; right:=cright”.xlink;

cleft:=below”.ylink; above:=cleft”.ylink;

below:=cbelow”.ylink; cleft:=below”.ylink; above:=cleft~.ylink;

cabove
end;

end; { 1 }

end;

{0}

t=above”.ylink;

Multigrid Methods (66)

#include "defs.h"
#include "ext.h"

{ routine which does one Gauss—Seidel relaxation sweep,
actually solving the necessary system of n equations for
the gridpoint for the n simultaneous pdes.

designed to be used in solving the general problem

au + cu + d*u + e*u + f*u =g
XX YY X Yy

where a,c,d,e,f, and g are functions of (x,y),
}
procedure relax;
{(gr:atgrid; n:gridrange; var change,conv : real);
}
var
nextx, nexty,right,left, above,below : atgrid;
1l : 1..VECTORSIZE;
int,int2 : gridrange;

tmp, newchg, thischange,hx, hy,hhx, hhy, x,y,tta, ttc,ttd, tte,h2x,h2y : real;

ta,tc,td, te,amatrix, cmatrix, dmatrix, ematrix, fmatrix : matrix;
betal,betal,betaz,beta3,betasd : matrix;
rhs,uprev,wl,w2,w3,wd : vector;

begin
newchg:=0; int:=GRIDSIZE div n; hx:=int*Hx; hy:=int*Hy;
hhx:=hx*hx; hhy:=hy*hy; h2x:=2*hx; h2y:=2*hy; int2:=2*int;
nexty:=gr”.ylink; below:=gr;
while nexty~.ylink<>nil do
begin
nextx:=nexty”.xlink; left:=nexty;
while nextx”.xlink<>nil do
begin
right:=nextx”.xlink; above:=nextx".ylink;
below:=below” .xlink;
if below~.ylink <> nextx then below:=belowlink(gr,nextx);

if (above~.i — below”.i = int2) and (right~.j - left”.j = int2) then

begin

vtcopy (nextx”.u,uprev);
X:=nextx".j*Hx+Lbndx; y:=nextx”.i*Hy+Lbndy;
a(x,y,amatrix);

c(x,y,cmatrix);

d(x,y,.dmatrix);

e(x,y,ematrix);

f(x,y, fmatrix);

Multigrid Methods

{ put in the artificial viscosity}

for 1 := 1 to VECTORSIZE do
begin
tta := amatrix[l][1l]/hhx; ttd := dmatrix[1l][1l]/h2x;
ttc := cmatrix[1l][{1l]/hhy; tte := ematrix{1][1]/h2y;

if tta < abs(ttd) then amatrix[1][1] := hhx*abs(ttd);
if ttc < abs(tte) then cmatrix[1][1] := hhy*abs(tte);

end;

scmtmult(—-2/hhx,amatrix, ta);
scmtmult(—-2/hhy,cmatrix, tc);
mtadd(ta,tc,betald);
mtadd(betao, fmatrix,betad);

{ beta0 is the matrix for our gridpoint }

scmtmult(0.5/hx,dmatrix, td);
scmtmult(1l/hhx, amatrix, ta);
mtadd(ta, td,betal);
mtsub(ta,td,beta2);
scmtmult(1/hhy, cmatrix, tc);
scmtmult(0.5/hy,ematrix, te);
mtadd(tc, te,beta3);
mtsub(tc,te,betas);

{ beta[1-4] are for the rhs of this grid point}

mtvtmult(betal,right”.u,wl);
mtvtmult(betaz, left~.u,w2);
mtvtmult(beta3,above”.u,w3);
mtvtmult(beta4,below”.u,wéd);

vtsub(nextx”~.grhs,wl,rhs);
vtsub(rhs,w2,rhs);
vtsub(rhs,w3,rhs);
vtsub(rhs,w4,rhs);

{ call the gaussian elimination routine to solve the system }

gauss (betaO,rhs, nextx~.u);

thischange := 0;
for 1 := 1 to VECTORSIZE do
begin
tmp := abs(nextx~.u[l] - uprev[l])/(l+abs(nextx~.u[l])):;

if tmp > thischange then thischange:=tmp;

end;

(67)

Multigrid Methods (68)

if nextx”~.rlxchange > O then
nextx”.smrate:=thischange/nextx”.rlxchange;

if nextx~.rlxchange »>= 0 then { don't muck up the boundary flag}
nextx”.rlxchange:=thischange;

if thischange > newchg then newchg:=thischange;

end;

left:=nextx; nextx:=nextx”.xlink;
end;
below:=nexty; nexty:=nexty~.ylink;

end;

if newchg=0 then
begin :
conv:=1;
writeln('relax: newchg = 0');
end
else
if (change > 1) or (newchg < 1) then conv:=newchg/change
else
if (change/newchg = 0) then
begin conv:=1;
writeln('relax: conv would have overflowed');

end
else
conv:=newchg/change;
change := newchg;

end;

