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Abstract

A resolution-based theorem prover (LRTP) has been built on
the PRQLOG/MTS system. The LRTP is designed for studying the
performance of three resolution strategies, namely; linear input
resolution, linear resolution, and ordered linear deduction. It
allows the wuser to perform experiments on the three strategies
in combination with others. Furthermore, the user has control
over the environment in which the theorem is proved. The number
of wunifications involved in the search for a proof is used as a

measure of performance.
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Chapter 1. Introduction |

When an AI system has a complete description of the
objects, proberties and relations of a problem situation, then
it can answer any question by evaluation. However, there are
some queries that require the system to be able to deduce
answers. For instance, suppose the systeﬁ was told that "All
birds have wings” and "All robins are birds". 1If we then ask it
"Do robins have wings ?", the system can answer ;he guery by
means of deduction, without - having to <check whether each

individual robin has wings or not.

It has been a central problem in AI research to make
computers deduce from given bodies of facts. Any attempts to
address this problem require choosing first, a representation
for the given facts and‘ secondly, methods for drawing
conclusions. McCarthy and Hayes[1969] divided the AI problem

into two parts: the epistemological part and the heuristic part.

The former part was defined as determining "what kinds of facts
about the world are available to an observer with given
opportunities to observe, how these facts can be represented in
the memory of a computer, and what rules permit legitimate
conclusions to be drawn from these facts" [McCarthy,1977]. The
latter part deals with the issue of processing, of using the

knowledge once a representation scheme has been chosen.

Throughout this article, first-order logic is used as the

representation scheme, whereas the resolution principle is used



as the rule of inference.

1.1 Historical Backgrounds Of Automatic Deduction

Automatic deduction, or mechanical theorem-proving, has
been an imporfant subject in. Al since its earliest day. 1In
fact, the desire to find a general decision procedure to prove
theorems dates back to Leibniz(1646—1716); it was further
revived by Peano and subsequently by Hilbert. The foundation of
mechanical theorem-proving was established by Herbrand in 1930,
however his method was impractical to apply until the invention
of computers. Gilmore[1960] was one of the persons who
attempted to implement He;brand's procedure on a computer. A
few ménths later, his method was improved by Davﬁs and

Putnam[1960], but their improvement was still insufficient.

A major breakthrough in the development of adtomatic
deduction techniques was made by Robinson in 1965. :In his
landmark paper, he introduced a simple and logically complete
method for proving theorems in first-order predicate calculus.
This method is much more efficient than the earlier procedures.
Since then, many refinements were proposed to further improve
its performance. Robinsoé's procedure and those refined ones

are called resolution procedures since all of them are based on

the same rule of inference, the resolution principle.

The early research of automatic theorem-proving was
considered as exercises in expert problem-solving: the Logic
Theorist proposed by Newell and Simon[1956] was regarded as an

expert in propositional logic and Gelernter's



theorem-prover[1963] an expert in elementary geometery.

However; with the introduction of resolution, attitudes toward
automatic -deduction was dramatically changed. This 1is because
the »resolution method was so powerful that it could be used to

build a completely domain-independent problem-solver.

1.2 Outline

This thesis involves implementing some refined proof
procedures, derived from the resolution principle, to prove

theorems in first-order logic.

Since first-order 1logic 1is wused as the representation
scheme for this thesis, Chapter 2 is devoted to the introduction
of logic; It consists of two parts: the first part decribes
propositional 1logic and the second part first-order logic

(extension of propositional logic).

Chapter 3 introduces the resolution principle. Again, it
has two major parts. The first part 1is concerned with the
resolution principle for propositional 1logic. And then, the

principle is extended to first-order logic in the second part.

Chapter 4 introduces the concept of refutation and how
various resolution strategies can be applied in a refutation

system.

Chapter 5 describes the crganization of the theorem-prover
(LRTP) being implemented, and then a comparison between the LRTP

and the Prolog system follow.



Chapter 6 concludes what has been implemented’in the LRTP

and gives suggestion for further research.



Chapter 2. Logic

The study of reasoning and knowledge originates with the
éncieﬁt Greeks. Following their early efforts, the study was
formalized in the latter half of the nineteenth century and has
since developed into the philosophical and mathematical study of

logic.

2.1 Propositional Logic

Propositional 1logic is the simplest form of logic. A

proposition is a declarative sentence that can be either true or

false, but not both. For exaﬁple,."The book is red" and "One
plus one equals two" are propositions. For convenience, symbols
can be used to denote propositions and are called atoms. We can
combine simple propositions to form compound propositions by
using five logical connectives. These connectives are: ~-(not),
V(or), A (and), -> (if..thén), and <-> (if and only if). The
meanings of the five connectives are as follows :

If G and H are formulas,

ﬂG is true iff G is false,

GVH is true iff either G or H is true or both are true,

GAH is true iff both G and H are true,

 G->H is true iff H is true or G is false,
G<->H is true iff both G and H are true or both are-

false.



Note that (GVH) and (GAH) are respectively, called the

disjunction and the conjunction of G and H. An expression that

represents a proposition or a compound proposition is called a

well-formed formula.

Definition. Well-formed formulas (wff), or formulas for

vshort, are defined recursively as follows :
1. An atom is a formula (atomic formula).
2. If G and H are formulas, then (-G), (GVH), (GAH),
(G->H), and (G<->H) are formulas.
3. All formulas are generated by applying the above

rules.

1f A1,A2,...,An are atoms occurring in a formula G, then an

interpretation of G is an assignment of truth values to Al,..,An
in which every Ai is assigned either T (truth) or F (falsehood),
but not both. Once the interpretation is detérmined, the truth

value of G can be evaluated. If it is evaluated to T, then G is

said to be true under (or in) the interpretation, otherwise G is

said to be false under the interpretation.

In mathematics as well as in daily life, we often have to
decide whether a statement follows from some other statements.
This leads to the concept of "logical consequence" which is

defined as follows:

Definition. Given formulas F1,F2,..,Fn and a formula G,

G is said to .be a logical consequence of Fi1,...,Fn (or G




logically follows from F1,..,Fn) if and only if for any

interpretation I in which FIAF2A.....AFn is true, G is

also true. F1,F2,...,Fn are called axioms (or premises)

of G.

Definition. If G is a logical consequence of F1,..,Fn,
the formula ((FIA...AFn)->G) is called a theorem , and G

is also called the conclusion of the theorem. (G is

sometimes referred to as a query in the context automatic
deduction). A demostration that a theorem is true is

called a proof of the theorem.

Logicians seem to be particularly interested 1in formulas
which are true wunder all interpretations and those which are
false under all interpretations. These two kinds of formulas

are respectively called valid formulas and unsatisfiable (or

inconsistent) formulas. We note that a.formula is valid if and

only if its negation is unsatisfiable.

In the resolution methods that will be discussed in later
chapters, it is necessary to transform a wff to its equivalent

conjunctive normal form which is defined as follows.

Definition. A literal is an atom or the negation of an

atom,

Definition. A clause is a disjunction of 1literals. A

clause 1is an unit clause if and only if it consists of




only one literal.

Definition. A formula 1is said to be 1in conjunctive

normal form if and only if it has the form L1A...ALn,

n21, where each L1,..,Ln is a clause.

We have established the background for propositional logic

and now we can extend it to first-order logic.

2.2 First-order Logic

First-order logic is an extension of propositional logic in
the sense that the framework of propositional logic is still
retained, but the notions of proposition is extended to include

predicates and quantifiers.

A predicate is a statement about specific objects (or
individuals) or relation between these objects. More precisely,
it is a mapping that maps a list of constants to T or F. For
example, LESS 1is a predicate. LESS(3,5) is T but LESS(5,3) is
F. Arguments of predicates are called terms , which is defined

recursively as follows :

‘1. A constant is a term.

2. A variable is a term.

3. If f 1is an n-place function symbol, and t1,..,tn are
terms, then f(t1,..,tn) is a term.

4, All terms are generated by applying the above rules.



We call a term containing no variables a ground term.

Throughout this article, we shall only use x, y, and z to

represent variables.

Having defined terms, we can now define an atom in
first-order logic as P(t1,..tn), where P is predicate symbol and
t1,..,tn are terms. We can build up more comple# formularusing
the five logical connectives given in Section 2.1. Furthermore,
variables in a predicate are characterized by two quantifiers,

namely the universal gquantifier and the existential quantifier.

If x is a variable, then (x) is read as "for all x" and (Ex) is
read as "there exists an «x". It should be noted that
first-order logic permits only quantification over individuals

but not predicates and functions.

The §gépg of a quantifier occurring in a formula is defined
as the forméla to which the quantifier applies. For example,
the scope o£ the universal qﬁantifier and existential quantifier
in the formula (x)‘(R(x)—>(Ey)Q(x,Y)) are (R(x)—>(EY)Q(x,y)) and

(Q(x,y)) respectively.

A formula W 1is said to be closed if and only if every
occurrence of a variable x in W is in the scope of (x) or (Ex).
Such an x is bound by the corresponding guantifier. A wvariable

is free if and only if it is not bound by any quantifiers.

We shall now define an interpretation of a formula in

first-order logic.

Definition. An interpretation of a formula W consists of
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a nonempty domain D and the following assignments:

1. Assignment of an element in D to each constant in W.
2. Assignment of a mapping, from D" to D, to each
n-place function symbol in W.

3. Assignment of a mapping, from p" to {T,F}, to each

n-place predicate symbol in W.

Having defined interpretation for first-order logic, we can
extend the rest of the definitions in Section 2.1 in a similar

way.

We shall <close this section by giving an example to
illustrate how deduction can be applied in the context of
first-order logic. Suppose we have the following two formulas
in our database,

(x) ROBIN(x) -> BIRD(x)

(x) BIRD(x) -> HASWINGS(x),
then.from these two formuias, we can cohclude,gAby means of
logical deduction, that the following formula must also be true:

(x) ROBIN(x) -> HASWINGS(x)

2.3 Logic As A Representation Scheme

The most important feature of logic-based representations
is that there is a set of infernece rules by which facts that
are known to be true can be used to derive other facts that must
also be true: As a result, deductions based on these rules are
guaranteed correct to an extent that other representation

schemes have not yet been able to do.



From the example presented at the eﬁd of the previous
section, it is not hard to realize that there is a specific rule
of inference that allows us to treat deductions as syntactiq
manipulations of logical formulas. This makes the derivation of

new formulas from old easily mechanizable.

Using logic as a representation scheme facilitates the
separation of representation and processing, since logic makes
no commitment to the kinds of processes that will actually make
deductions. In other words, logic-based representational system

allows knowledge to be represented independently of its use.

Another important property of logic is its modularity.
Logical assertions can be added to a database without affecting
each other, whereas in some other representational systems,
addition of a new fact might affect the kinds of deductions that
can be made. After all, logic is a precise and natural way to

express certain notions.

2.4 Descriptive Adequacy Of First-order Logic

A logic-based representation formalism allows us to express
many kinds of generalization. With a knowledge base éontaining
such generalizations and with the use of deduction, the system
‘can manipulate expressions in the representation formalism and
permit logically complex queries to be made, even when it cannot

evaluate a query directly.

In order to capture these kinds of generalizations, a

representational system must, at least, be powerful enough to do
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the following[Barr and Feigenbaum,1982]:
1. Say that some individual possesses a certain property
without specifying which individual it is: (Ex) P(x);
2. Say that all the individuals of a certain class share
a certain property without specifying = what those
individuals of that class are: (x) P(x)->Q(x);
3. Say that at 1least one of the two statements is true
without specifying the truth values of the statements:
PVQ;
4. Say explicitly that a statement is false, instead of

simply not saying that it is true: -P.

Any representation formalism that can capture these notions
will be at least an extension of classical first-order logic.
In other words, classical first-order 1logic 1is the minimal

language that possesses the necessary expressive power.

2.5 Decision Problem For First-order Logic

In propositional logic, the validity of a formula can be
easily determined by the truth table method in which the truth
values of the formula are evaluated for all possible

interpretations.

Unfortunately, in first-order 1logic, one cannnot always
cémpute whether or not a wff is valid when quantifiers occur.
It was proved by Church[1936] and Turing[1936] that there is no
general decision procedure to check the validity of formulas of

first-order logic; for this reason, first-order logic is said to
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be undecidable. However, there are proof p:ocedures (e.q.

resolution) which can verify that a formula is valid if indeed
it 1s wvalid. On the other hand, when these procedures are
applied to invalid formulas, they may never terminate. Thus,

first-order logic is said to be semidecidable.
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Chapter 3. The Resolution Principle

The resolution principle is a rule of inference that can be
used to derive the logicai cénsequences of two formulas which
are related in an‘ appropriaté Vway. Since 1its application
involves only syntactic manipulation of formulas, it provides us
with a useful tool to prove theorems in a purely mechanical way.
We shall first consider the resolution principle for
propositional logic, then we shall extend it to first-order

logic.

3.1 The Resolution Principle For Propositional Logic

Suppose P, Q, and R are propositions. A central rule of

inference in logic, modus ponens, says that if (P->Q) and P are
true then we can conclude that Q is true. An extension of this

is the chain rule, which says that if (P->Q) and (Q—>R) are

true, then we can conclude that (P->R) is true. Expressing
(P->Q), (0->R) and (P—>R) in clause form, we have (-PVv Q) and
("QVR) give rise to ("PVR). 1In terms of resolution, (-PVR)
is the resolvent of (-Pv Q) and ("QV R), and it is formed by the
disjunction of its parent clauses, namely (“PVQ) and (-QVR),

followed by the cancellation of the complementary pair Q and -Q.

In. general, the resolution principle is stated as follows:
"For any two clauses C1 and C2, if there is a literal L1 in C1
that is complementary to a literal L2 in C2, then delete L1 and

L2 from C1 and C2 respectively, and construct the disjunction of
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the remaining clauses. The constructed clause is a resolvent of

C1 and C2."

An important property of a resolvent is that any resolvent

of two clauses Ci1 and C2 is a logical consequence of C1 and C2.

3.2 The Resolution Principle For First-order Logic

In the previous section, we observe that two important
processes have to be performed when applying the resolution
principle to derive conclusions. The first process is the
conversion of first-order logic wffs to their logically
equivalent forms --- clauses. (Although not all resolution
pro;edures require the conversion to be done, many of them work
only with wffs in clause form). The next important process is
to find a literal in a clause which 1is complementary to a
literal 1in another clause. ‘Botﬁ of these processes, especially
the latter one, are very simple in the context of propositional
logic. Hbﬁever, due to the existence of quantifiers, these
processes become.more complicated in first-order logic and they

will be discussed in detail in the next two sections.

3.2.1 Conversion Of Wffs To Clauseé

A clause 1is disjunction of literals. The clause form of
wff was introduced by Davis and Putnam[1960]. It can shown that
each wff in first-order logic has a unique clause form and thus,

it is often referred to as the Standard form cf formulas. More

importantly, it can be proved that if a wff logically follows

from a set of wffs S, then it also logically follows from the
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set of clauses obtained by converting the wffs in S to clause
form.
Basically, the conversion process can be broken down 1into

the following sequence of steps [Nilsson,1980]:

1. Eliminate implication symbols

All occurrences of the -> and <-> symbols in a wff
are eliminated by making the substitution of -X1V X2 for

X1->X2 and (X1INAX2)V ("X1A-X2) for X1<->X2.

2. Reduce scopes of negation symbols

We make each negation symbol, -, to apply to at most
one atomic formula. This goal can be achieved by making

use of the following equivalences repeatedly:

~k~i) is equivélent to X

¥(x1Vxé) is equivalent to -~X1A-X2
~(X1A X2) is eqﬁivalent to ~X1V -X2
-(Ex)P(x) is equivalent to (x)-P(x)

~(x)P(x) is equivalent to (Ex)-P(x)

3. Standardize variables

Standardizing variables 1is to  rename variables
uniformly such that each quantifier has its own unique
variable. For example, we write (x)P(x)->(y)Q(y) instead

of (x)P(x)->(x)Q(x).

4, Eliminate existential quantifiers



17

To eliminate an existential quantifier with no-
universal quantifiers in front of it, we simply replace
the variable by a constant, for example, (Ex)P(x) is
replaced by P(a). That is, we instantiate the claim that
an x exists by choosing a particular constant a to take
its place. However, when we have a formula such as
(y)(Ex)P(x,y), then we cannot replace x by an arbitrary
constant because the x that exists might depend on the
value of y. We let this depéndence be explicitly defined
by some function of y which maps each value of y into x
that "exists". Such a function 1is called a Skolem
function. Thus, wé replace (x)(y)(Ez)P(x,y,2) by

(x)(y)P(x,y,£f(x,y)), where f is a Skolem function.

5. Convert to prenex normal form

A wff is in prenex normal form if and only if the

wif consists of a string of quantifiers called a prefix
followed by a quantifier-free formula called a matrix.

Since we have already removed all the existential
quantifiers by skolemization , so we only have to move

all the universal quantifiers to the front of the wff.

6. Eliminate universal quanfifiers

Since all the variables in the wffs must be bound,
we are assured that all the variables remaining at this
stage are universally QUantified; Thus, we may eliminate
the explicit occurrence of wuniversal quantifiers and

assume that all variables in the matrix are universally
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guantified.

7. Put matrix in conjunctive normal form

This can be done by repeatedly applying one of the
distributive laws, namely, by replacing expressions of

the form X1V (X2A X3) by (X1VX2)A(X1V«x3).

8. Eliminate A\ symbols

By repeatedly replacing expressions of the form
(X1A X2) with the set of wifs {X1,X2}, we will obtain a

finite set of wffs, each of which is a clause.

9., Rename variables

The last step, which is also called standardizing
variables apart, is to rename variable symbols so that no

variable symbol appears in more than one clause.

By following steps 1-7, we can successfully convert a wff
to 1its conjunctive normal form. By the commutative law of
conjunction(step 8), we can consider a wff in conjunctive normal
form as a set of clauses. Similarly, by the commutative law of

disjunction, we can view a clause as a set of literals.

3.2.2 Substitution And Unification

In proving theorems 'involving guantified formulas, it is
often necessary to make expressions identical by substituting

terms for variables. The process of finding such substitution



is extremely important in AI and 1is <called wunification. (We

note that wunification 1is more general than pattern-matching
because pattern-matching processes typically do not allow

variables to occur in both expressions).

A substitution is a finite set of ordered pairs

{t1/v1,..,tn/vn}, where every vi is a variable, every ti 1is a
terml different from vi, and no two elements in the set have the
same variable after the stroke symbol. (The substitution that

consists of no elements is called the empty substitution ). If

E is an expression and s={t1/vi,..,tm/vm} is a substitution,

then Es 1is a substitution instance of E which is obtained by

replacing simultaneously each occurrence of the variable vi in E
by the term ti. For example, let E=P(x,y,z) and s={a/x, f(b)/y,

c/z}, then Es=P(a,f(b),c).

The composition of two substitutions s1 and s2 1is denoted

by si1s2, which is that substitution obtained by applying s2 to
the terms of s1 and then adding any pairs of s2 having variables
not occurring among the variables of s1. Thus, {g(x,y)/z}

{a/x,b/y,c/w,d/z} = {g(a,b)/z,a/x,b/y,c/w}.

A set {E1,..,Ek} of expressions 1is wunifiable if there
exists a substitution s, called a unifier, such that
E1s=E2s=...Eks. Furthermore, a unifier u for a set {Et,..,Ek}

of expressions is a most general unifier if and only if for each

unifier s1 for the set, there i1s a substitution s2 such that
s1=us2. For example, consider the set {P(x),P(f(y))}, the most

general unifier u={f(y)/x} and if si={f(a)/x,a/y} then s2={a/y}.
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| There is an algorithm, . the unification
algorithm[Robinson,1965], which finds the most general unifier
of a set of unifiable expfessions or reports failure when the
- expressions are not wunifiable. In addition to the recursive
"matching" process, the algorithm also 1includes a check, an

occur check , to ensure that no variable can be substituted by a

term containing that same variable. The reason why occur check
is necessary can be 1illustrated by the following example.

Consider two expressions, P(x) and P(f(x)), in order to unify
them, we have to substitute x by f(x), which is f(f(x)), which
is f(f(f(x))), and so on. As a result, x has to bé substituted
by some kind of infinite structure. According to the formal
definition of wunification, this kind of "infinite term" should
never come to exist and this can be guaranteed by performing an

occur check.

3.2.3 Factoring

Having introduced the notions of unification, we can now

consider another important process called factoring. The
objective of factoring is to remove redundant literals in a
clause. Thus, if we consider a clause as a set of 1literals,
then factoriné is simply an application of unification to a

clause, since there is no redundant elements in a set.

Definition. If two or more literals (with the same sign)
of a clause C have a most general unifier g, then Cg 1is

called a factor of C. Furthermore, Cg is an unit factor

of C if Cg is an unit clause.
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two

literals have a most general wunifier g={f(y)/x}. Hence,

Cg=P(f(y))V Q(f(y)) is a factor of C. Sometimes a clause
have more than one factor. For example,
C=P(x)VP(f(x))V P(f(a)), then both P(f(a))v P(f(f(a))

P(a)V P(f(a)) are factors of C.

3.2.4 Definition Of Resolvent For First-order Logic

Having introduced the. concepts of wunification
factoring, we can now extend the resolution principle

propositional logic to first-order logic.

may
if

and

and

for

Definition. Let C1 and C2 be two clause (called parent

clauses) with no variables in common. Let L1 and L2

be

two literals in C1 and C2, respectively. If L1 and ~L2

have a most general unifier g, then the clause, or set of

literals

(C1g - Lig)U(C2g - L2g)

is called a binary resolvent of C1 and C2. The literals

L1 and L2 are called literals resolved upon.

Definition. A resolvent of (parent) clauses C1 and C2 is

one of the following binary resolvents:
1. a binary resolvent of Ct and C2,
2. a binary resolvent of C1 and a factor of C2,

2. a binary resolvent of a factor of C1 and C2,

4. a binary resolvent of a factor of C1 and a factor

of C2.
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For example, R(g(g(a))V Q(b) is resolvent of
"P(x) VP(f(y))VR(g(y)) and -P(£(g(a)))V Q(b). We note that the
resolvent defined above still preserves the important property

of being a logical consequence of its parent clauses.

'The resolution principle is for generating resolvents from
a set of clauses. Since a resolvent of two clauses is also a
logical consequence of them, the resolution principle can be

used as an inference rule for proving theorems.

Although the resolution principle is efficient and easy to
apply, unlimited applications of resolution may cause many
irrelevant clauses. to be generated. 1In the next chapter, we
shall examine some strategies which restrict the applicatidn of

resolution so as to improve its efficiency.
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Chapter 4. Resolution Refutations

If a formula G does logically follow from a set of axioms
A, then the set formed by the wunion of {-G} and A must be
unsatisfiable. That 1is, they must lead to a contradiction.
This contradiction 1is represented by an empty clause in

‘resolution. A resolution refutation, or proof by contradiction,

is a deduction of an empty clause (contradiction) using the

resolution principle as a rule of inference.

4,1 Basis Of Refutations

Before introducing the resolution algorithm, we shall
briefly consider some theorems which form the foundation of the
algorithm. The following theorems assume that Fi1,..,Fn, and G

are formulas.

Theorem. (Deduction Theorem)
G is a logical consequence of Ft,..,Fn if and only if the

formula ((F1A,..AFn)->G) is valid.

From the deduction theorem, we can derive the

following theorem.

Theorem.
G is a logical consequence of F1,..,Fn if and only if

((FIA..AFnA-G) is inconsistent.
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Theorem. (Completeness of Resolution Principle)
A set S of clauses is unsatisfiable if and only if there

is a deduction of the empty clause from S.

Thus, if we let S be the set of clauses obtained by
applying the procedures, described in section 3.2.1, to the
formula (FIN..AFnA~G), then we can conclude that G 1is a
logical ‘consequence of F1,..,Fn if and only if we can produce a
deduction of the empty clause from S by applying the resolution
principle. This forms the baéis of the resolution refutation

algorithm presented in the following section.

4.2 The Basic Algorithm For Resolution Refutation

A resolution refutation procedure 1is a procedure which
produces refutations by applying the resolution principle to an
unsatisfiable set of clauses. It involves generating new
clauses, called resolvents, from the set of clauses which is
obtained by converting the axioms and the negated conclusion of
the theorem to clause form. These resolvents are then added to
the set of clauses from which they have been derived, and new
resolvents are derived. This process is repeated until an empty

clause 1is found.

The following is a general resolution refutation
algorithm[Nilsson,1980] which will generate the empty clause if

the set S (the base set) of clauses is unsatisfiable.
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1. CLAUSES <- S

2. While the empty clause is not in CLAUSES

3. begin

4. Select a clause Ci, from CLAUSES

5. Select a clause Cj, from CLAUSES such that there is
a literal in Cj which is a complement to one in Ci

6. Compute a resolvent Rij of Ci. and Cj

7. CLAUSES <- CLAUSES U {Rij}

8. end.

Algorithm 4.1

It can be proved that the algorithm is §ggg§ (i.e. it will
not indicate that nontheorems are true). -Moreove}, it 1is
complete in the sense that it is guarénteed to derive the empty
‘clause from an unsatisfiable set of clauses. Hoﬁever, due to°
the inherent semidecidable property of firsf—order logic, the
resolution procedure may not terminate when .it is applied to
some satisfiable set of clauses. For example, consider
s={P(a), P(x)V P(f(x))}, the resolution procedure will generate
resolvents P(f(a)), P(f(f(a))), P(f£(f(f(a)))), and so on. In

this case, the procedure does not terminate and it 1is easy to

verify that S is satisfiable.

In the following section, we shall examine some resolution

strategies and we shall frequently refer to algorithm 4.1.
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4.3 Resolution Strategies

The resolution refutation algorithm presented in the last
section is a very general one because the selection criteria are
not stated in steps 4 and 5. If we perform thoSe selections on
a random basis, then the process of searching for a refutation
can be extremely time-consuming. In fact, the search space
generated in this manner grows exponentially with the number of

clauses in S, the base set.

Ever since the introduction of the resolution principle by
Robinsoh[1965], many resolution strategies (both complete and
incomplete) have been propbsed to reduce the search space by
defining some selection criteria for the clauses. A resolution
strategy is said to be complete if its use results in a
procedure that can always derive the empty clause from‘ an
unsatisfiable set of <clauses. In other words, a strategy is
complete if its application preserves the coﬁpieteness of the
basic resolution algorithm. (The completeness of a strategy
should not be confused with the 1logical completeness of the

resolution principle).

When - we consider a resolution strategy we would like it to
be complete. Nevertheless, efficiency 1is also important in
mechanical theorem—proving. Unfortunately, sometimes we can
achieve only one goal at the expense of 1losing, or severely
degrading, the other. 'However, if a refinement of resolution is
efficient and powerful enough to prove a large class of
theorems, even though it 1is not complete, it may still be

useful. We shall look at two such strategies in Section 4.3.4.
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In the following - sections, we shall examine a few
resolution strategies and some of them can be combined with
others. to further improve the performance. Examples of
resolution refutations, for illustrating the wuse of each
strategy, will be represented as a defivation graph (or
refutation tree). The nodes in such a graph are 1labelled by
clauses; initially, there is a node for every clause in the base
set S. When two clauses produce a resolvent, we create a new
node and label it by that resolvent. This new ﬁode ﬁave edges
linking it to the pair of nodes whose labels are the parent
clauses of the resolvent. (A refutation tree, which is part of

a derivation graph, has a root node labelled by NIL, the empty

clause).

Before we proceed to discuss various resolution strategies,
we give the following definition which will be wused 1in the

discussion.

Definition. A first-level resolvent is one between two

clauses in the base set. In general, an i-th level
resolvent is one whose deepest parent is an (i-1)-th
level resolvent. If the empty clause is one of the 1i-th

level resolvents, then i is the length of the proof, or

the height of the refutation tree.

4.3.1 Breadth-first Strategy

The breadth-first strategy is complete and it is guaranteed

to find the shortest proof if S is unsatisfiable, but
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unfortunately, it is grossly inefficient.

In this strategy, all the first-level resolvents are.
generated first, and if the empty clause is not among them, then
all the second-level resovlents will be generated, and so on.

Thus, this method is also known as the level-saturation method.

Figure 1 shows the'fefutation gragh produced by a breadth-first
strategy when S={-L(x,T)VH(x), ~L(x,V)VH(x), L(J,T)VL(J,V),
"H(J)}, and ~H(J) 1is the negation of the query. We note that

the empty clause NIL, is among the third-level resolvents,

4.3.2 Set-of-support Strategy

The set-of-support strategy was proposed by Wos, Robinson,
and Carson[1965]. 1In the breadth-first strategy as well as the
strétegies that will be discussed in the following sections, we
typically do not distinguish the negated query from the axioms
when we select a pair of clauses from S (in Steps 4 and 5 of
algorithm 4.1), But the set of axioms is usuélly satisfiable,
so the set-of-support strategy suggests at leés£ one parent of
each resolvent be chosen from the set of support which consists

of the negated query and the clauses that are dervied from it.

It can proved that the set-of-support strategy is complete.
Moreover, it is usually more efficient than the unconstrained
breadth-first strategy since it reduces the number of resolvents
being generated at each level, and consequently, the number of
clauses that can be resolved. This can be easily verified by
comparing figure 1 with figure 2. However, 1like most

restrictive strategies, the set-of-support strategy often
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increases the depth at which the empty clause is first produced.

H(9). LOGTIVE(K  SLOGWVH(D LI, TV L,V
> >
\<'
-L(J,T) RH(IVLI,V) H(J)V L(J,T)
V{é—‘»/ |
e -
H(I) | H(3) R HG) LT L,V L@,T  LE,V)
NIL

Figure 1 - Illustration of Breadth-first Strategy

~H(J)

-L(x,T)V H(x) ~L(x,V) VH(x) CL(J,T)VL(J,V)

H(J) NIL H(J) NIL

Figure 2 - Illustration of Set-of-support Strategy
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4.3.3 Linear Resolution

Linear resolution was independently proposed by
Loveland[1970] and Luckham[1970]. A linear resolution involves

selecting a clause, called top clause, resolves it against

another clause in S to obtain a resolvent, and resolves this
resolvent against some other clauses in S until the empty‘clause
is obtained. 1In terms of algorithm 4.1, once we have selected a
top clause, then for subsequent selections in step 4, we always
choose the "newest" resolvent as one of the parent clauses for
further derivation until an empty clause is obtained. We shall

call the top clause and all the resolvents center clauses, and

the rest of the clauses involved in the proof are called side

clauses.

In addition to the completeness of 1linear resolution,
linear deduction also has a very simple structure; Figure 3
shows a linear refutation for our example problem in section
4.3.1.. In fact, the refutation tree for linear resolution is so
simple that it can be further reduced to a path as shown in

figure 4.
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L(J,T)VL(J,V) ~L(x,T)V H(x) L(J,T)VL(J,V)

-L(x,T)V H(x)

\

L(J,V)VH(J) ~H(J) L(J,V)v H(J)
/ "H(J)
L(J,V) SL(x,V)V H(x) L(J,V)

-L(x,V)V H(x)

\

H(J) =H(J) H(J)
/ ~H(J)
NIL NIL
Figure 3. Figure 4.
Refutation tree produced by Simplified form of
' a linear resolution a linear deduction

Notice that we could also incorporate the set-of-support
strategy .into linear resolution by simply choosing the negated
query, ~H(J), as thé tbp clause (Figure 5). Once we have made
our tchoice of top cléuse; linear resolution allows us to remove
step 4 from the algorithm, which further restricts the number of
possible resolutions at any given time. Moreover, incorporation
of the set-of-support strategy does not destroy the completeness
of linear resolution, however, it still cannot produce the

shortest proof as in the breadth-first strategy.
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“H(J)

~L(x,T)V H(x)
~L(J,T)
L(J,T)VL(J,V)
L(J,V) |
SL(x,V)V H(x)
H(J)

~H(J)

NIL

Figure 5 - Incorporation of the set-of-support
into a linear resolution

4.3.4 Linear Input Resolution And Unit Resolution

All the strategies discussed in the previous sections are
complete, now we shall consider two incomplete but efficient
refinements of resolution: linear input resolution and unit

resolution.

Linear input resolution is a subcase of 1linear resolution
in the sense that it is the same as linear resolution except
that it does not allow previously derived resolvents to be wused
as side clauses in a refutation. In terms of the algorithm 4.1,
this simply means the removal of step 7, in addition to the
modification.made in the previous section. As a result, the
size of CLAUSES remains constant, and thus the number of
possible resolutions is greatly reduced. On the other hand, it

can be shown that linear input resolution is incomplete due to
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the fact that side clauses are restricted to members of the base
set. Figure 3 shows a linear input refutation of our example

problem.

Unit resolution is essentially an extension of the
one-literal rule of Davis and Putnam[1960], and it was
extensively wused by Wos, Carson, and Robinson[1964]. A unit
resolution is'a resolution in which a resolvent is obtained by
using at least one unit parent clause, or a unit factor of a
parent clause. The rationale behind it is that, in order to
derive an empty clause from a unsatisfiable set of clauses, one
must obtain successively shorter clauses, and unit resolution
provides a means for progressing toward shorter clauses rapidly.
It 1is perhaps important to note that wunit resolution is
equivalent to linear input resolution since theorems that can be
proved by one can also be proved by the other. Figufe 6 Shows a
refutation produced by means of unit resolution with the set of

clauses S={P(x)V-0(x,y)VR(f(x),y), ~P(a), Q(a,b), “R(f(a),b)}.

P(x)VQ(x,y)VR(f(x),y)
~P(a)
~Q(a,y)V R(f(a),y) '
“R(f(a),b)
~Q(a,b)

Q(a,b)

NIL

Figure 6 - Illustration of a unit resolution
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4.3.5 Ordered Linear Deduction

In the last section, we observe that linear input
resolution allows us to delete step 7 from algorithm 4.1 té
improve efficiency. Unfortunately, the removal of step 7
destroys fhe completeness of linear resolutioh. However, linear
resolution can be modified in a way that allows wus to attain
almost the same efficiency (by deleting step 7) while still
retaining its property of completeness. This method makes use
of the concept of ordered clause and.the information of resolved

literals.

An ordered clause is a sequence of distinct literals. As a

clause, an ordered clause is also interpretated as a disjunction
of all the literals in the ordered clause. The only difference
is that the order of literals in a clause is immaterial, while
the order of 1literals in an ordered clause is deliberately
specifiéd; With the concept of ordéred clause in mind, we can
now resolve the literals in a given clause one by one (say from
left to right). Since we only consider one literal at a time,
the number of clauses that can be resolved with the given clause
- is obviously reduced. Although the introduction of ordered
clause destroys the completeness of some resolution methods, it

does not affect linear resolution.

In resolution, when a resolvent 1is obtained, literals
resolved upon are deleted. But, Loveland[1968, 196%a, b, 1972}
and Kowalski and Kuehner[1971] discovered that these literals
can provide information to improve linear resolution. In fact,

by recording this information appropriately, we could define a
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necessary and sufficient condition under which a side clause

must be a center clause generated previously.

The algorithm that employs both the concept of ordered
clause and the information of resolved 1literals 1s called

OL-deduction (ordered linear deduction). Before presenting the

precise algorithm of OL-deduction[Chang and Lee,1973], we first
discuss the mechanism of recording the information of resolved

literals.

Suppose PV Q énd “"QVR are ordered clauses. Resolving them
produces an ordered resolvent PV R. Since the literals resolved
upon, namely Q and -Q, are complementary to each other, we need
only record one of them, say Q. Now we <can store the
information by representing th? ordered resolvent as RV’PVBQ.
The framed literal, [Q] in éthis case, does not participate in
‘resolution, it is merely for r;cording that Q has been resolved
upon. We shall delete a frameé literal if it is not preceded by
an unframed 1literal. Moreover, no tautology is allowed in

ordered linear deduction.

Returning to the example where S={-H(J), ~L(x,T)VH(x),
. "L(x,V)VH(x), L(J, T)VL(J,V)}. An ordered linear deduction is

shown in figure 7.
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~H(J)
-L(x,T)VH(x)

-L(J,T)V [H(I)]

L(J,T)VL(J,V)

L(J,v) vl-L(3,TIv[FH(T)

-L(x,V) VH(x)

H(J) vL(O NIvIEL (G, Dv[~a ()

reduction

NIL

Figure 7 - Illustration of a OL-deduction

Notice that i1f we remove the framed literals from the first
and second resolvents in figure 7, then they are exactly the

same as those in figure 5. However, the last ordered resolvent

H(I)VIL(I,VIV[L(3, T} vFH(J) is a special one because the first
literal of this <clause 1is complementary to one of its framed

literals. This kind of clause 1is called reducible ordered

clause. Whenever a reducible ordered clause is generated, we
can be sure that the first literal can be resolved by using a
center clause as the side clause (examine figure 5 to confirm
this). This means that, instead of searching for that center
clause to obtain the next resolvent, wé could simply delete the
first literal from the ordered clause to obtain it. As a
consequence, we do not have to store any resolvents being
generated, which obviously cuts down the number of possible
resolutions; while at the same time, the completeness of linear

resolution is still preserved. In terms of the algorithm 4.1,
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we can delete step 7, as in the linear input strategy.

We shall discuss the details of performing step 6 after

introducing the following definition.

Definition. If two or more unframed literals (with the
same sign) of an ordered clause C have a most general

unifier g, an ordered factor of C can be obtained from

the sequence Cg by removing all identical unframed
literals except the rightmost one, and by deleting every
framed literal not followed by an unframed literal in the

remaining clause.

Suppose a literal L1 in a center clause C1 is complementary
to a litefal L2 in a side claﬁse C2, then the ordered resolvent
is compuéed as follows :

- ébtain the clause R1, by appending C1 to C2,

- frame the literal L1 in R! and delete. L2 from R1 to
obtain R2,

- obtain the ordered factor of R2 if there is one,

- 1if the resulting clause 1is reducible, reduce it by
removing the leftmost 1literal and delete any framed

literals following it.

4.4 Deletion Strategies

From algorithm 4.1, we can observe that the number of
possible resolutions grows exponentially with the size of the

set CLAUSES. Thus, the smaller the set CLAUSES is, the more
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efficient the resolution is. Deletion strategies are strategies
which eliminate two kind of clauses, namely tautologies and
subsumed clauses. Although deletion strategies are complete
only if they are used with the breadth-first strategy,
lncorporating these strategies into other resolution methods
improves the performance of the methods significantly. Figure 8
shdws a search tree generated by applying algorithm 4.1 to the

set of clauses S={PVQ, "PVvQ, "PV-Q, PVvV-Q}.

PVQ
-‘PVV/PV—NV—‘Q
P 0V -Q

un &'\/EQ
/\pvw/PN\/ﬂQ
py- &v \ &

NIL, NIL,

Figure 8 - Search tree generated by resolution

4.4.1 Deletion Of Tautologies

A clause is a tautology if there is a complementary pair of
literals in the clause. For example, P(x)V -P(x)v Q(y) is a

tautology. Since tautologies are true under  all
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interpretations, removing them from a set will not affect the
unsatisfiability of the rest of the set. By examining figure 8,
one can observe that the rightmost subtree of the top clause

PVQ will not be generated if this deletion strategy is applied.

4.4.2 Subsumption

Subsumption is the process for discarding a clause that

duplicates or 1is 1less general than another clause. By
definition, a clause C subsumes another clause D if and only if
there is a substitution s such that Cs is a subset of D, and D

is called a subsumed clause. For instance, consider two clauses

P(x) and P(a), P(a) 1is subsumed by P(x) and thus it will be
deleted by subsumption. Again, refer to figure 8, we can
observe that the subtree, whose root is labelled by Q at the

third level, will not be generated if subsumption is applied.

The process of discarding resolvents which are subsumed by

clauses in the set CLAUSES 1is called forward subsumption,

whereas the process of discarding clauses in the set CLAUSES
which are subsumed by‘ newly generated resolvent 1is called

backward subsumption.

The next chapter describes the implementation of the
theorem-prover LRTP, and we shall see how these strategies are

applied in the LRTP.
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Chapter 5. The Linear Resolution Theorem Prover

The Linear Resolution Theorem Prover (LRTP), written 1in
Prolog, was intended to be an experimental tool for studying the
performance of three resolution strategies, namely, linear
resolution, 1linear input resolution, and ordered linear
deduction. in addition, it‘ also allows the user to perform
experiments on these strategies in cohbination with other

strategies.

In the LRTP, the performance of a strategy (or a
combination of strategies) is measured in terms of the number of
unifications required in the search of a refutation in a given
setting. THe performance: can be evaluated for three values,
which represent the number of unifications involved in
resolution and in the two deletion strategies.. In addition to-
these statistics, the proof (if there is one) is also printed.
On the other hand, if no proof «can be‘found in the given

setting, the LRTP will report failure.
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5.1 Organization Of The LRTP

"The LRTP is composed of a database and five modules which
include the command interpreter, the translator, the refutation

module, the deletion module, the unification module.

Translator

-

Command e / Data

Deletion

Interpreter

A\ Base

v

Refutation
Module

Module

Unification

Module

Figure 9 - Internal organization of the LRTP

The ihteraction between these modules and the database is shown
in Figure 9. The arrows indicate the directions of access,

invokation or dataflow.

5.1.1 The Database

There are two major components in the database.f The first
one consists of the information of the parameters required for
setting up the environment in which resolutions are performed.
The information 1is obtained from the user through interactions
with the command interpreter. Details of how the paramete?s
affect the resolutions performed in the LRTP will be discussed

in section 5.1.4,.
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The second component consists of the "set" of clauses S
which may or may not be unsatisfiable. (Notice that the LRTP
makes no distinction between the negated query and the axioms).
Each of the clauses in § is treated as an ordered clause, and
furthermore, the "set" S 1itself 1is treated as an ordered
database. In other words, the LRTP treats tﬁe set of ordered
clauses as a list of ordered clauses. The ordering of the
ordered clauses in the database matches the order in which they
are entered by the user through the translator. It is important
to note that the incorporation of the concept of ordered
database will not affect the completeness of resolution if the
search for refutation 1is aided by a backtracking mechanism
(which is provided by the PROLOG/MTS interpreter). After all,
treating S as an ordered database renders deterministic the

selection involved in step 5 of the algorithm 4.1.

5.1.2 The Command Interpreter

The command interpreter is an intérface with the user. 1Its
basic function is to accept commands from the user and executes
them, mostly by invoking other modules. Among these modules,
the most important one is the refutation module which performs
resolutions. By entering the appfopriate commands to the
command interpreter, the user can also access or modify the

information stored in the database.

5.1.3 The Translator

When the user issues the command to enter clauses into the
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database, the command interpreter will transfer control to the
translator[Clocksin and Mellish,1981] 1in which a wff will be
accepted and converted to its clause form wusing the algorithm
described in section 3.2.1. When the conversion is done, the
deletion strategies module will be invoked to filter any
tautologies or subsumed clauses. The remaining clauses are
treated as ordered clauses and are added to the ordered
database. The whole process is repeated until the user has no
more clauses to enter. Finally, control is transferred back to

the command interpreter.

5.1.4 The Refutation Module

This module is the most 1important part of the LRTP.
Basically, it is a refutation system which operates 1in an .
environment tailored by the wusers to meet their own needs.
Besides searching for the proof, this module also records the
number of unificétions involved in factoring and resolving
clauses. We shall now discuss the parameters involved in the

resolution environment.

5.1.4.1 Selection Of Resolution Strategies

There are three strategies incorporated in the refutation
system. These three strategies are linear ‘resolution, linear
input resolution, and ordered linear deduction. Although they
are built within the same framework, each of them works
independently; it is up to the wuser to select which one to

apply.
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5.1.4.2 Switches For Deletion Strategies

In addition to the selection of resolution stfétegies, the
user has the options of combining two deletion strategies,
deletion of tautologies and forward subsumption, with any one of
the three resolution strategies that the wuser has selected.
These bptions are provided to the user as two switches: one for
forward subsumption‘and the other for deletion of tautologies.
These switches are independent of each other and they can be
turned on or off at the discretion of the user. When the switch
for a deletion strategy 1is turned on, then that particular
strategy will be applied during the search for a refutation.
Howevef, the user should be aware of the incompleteness of

deletion strategies as mentioned in section 4.4.

5.1.4,.3 Choice Of Top Clause

One importaht feature "of the LRTP is that it allows the
user to choose the tép clause for the ‘linear deduction. As
discuésed in section 4.3.3, we can combine the set-of-support
strategy with linear deduction by simply choosing the top clause
from the set of support. Thus, even though the LRTP itself does
not distinguish between the negated query and the axioms, the
user can still employ the set-of-support strategy by selecting

an appropriate top clause.

5.1.4.4 Choice Of Depth Bound

Due to the semidecidable property of first-order logic, the

LRTP may not terminate when it is given an -invalid formula.
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Furthermore, since the LRTP adopts the depth-first strategy (as
is the PROLOG/MTS interpreter), it may not terminate even if the
given formula is valid. As an example of this, the leftmostv
branch of the tree shown in figure 8 can be infinite, and as a
result, an unbound depth-first search may not terminate. Thus,
in order to avoid the non-termination problem, we must provide a
depth bound for the tree searching. In the LRTP, the choice of
the depth bound 1is 1left to the user to allow maximum
flexibility. Furthermore, the depth bound is used to reduce the
search space by ensuring that the number of unframed literals in
a center clause C of a linear deduction is always less than the

difference between the depth bound and the level of C.

5.1.4.5 Switch For Shortest Linear Refutation

By examining the search tree in figure 8, one can easily
discover - that thefe are four branches (in fact there are more)
~léadihg to the empty clause. Suppose we call the ‘path leading
to NIL1, proof 1,>and the path leadihg to NIL,, proof 2, and so
on. Then proof 1 and proof 2 are of length 4, whereas proof 3
and proof 4 are of length 5 and 6 respectively. Thus, if the
user enters 6 for the depth bound of the search, then the LRTP
will return proof 4. If the depth bound is 4 then it will
return either proof t or proof 2, depending on the ordering of
the élauses in the-database. Thus, by decrementing the depth
bound, one can find the shortest 1linear refutation. However,
this requires the LRTP to repeatedly search over the same
branches that have been generated before. (Notice that this

shortest linear refutation 1is not necessarily the shortest
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refutation which can only be obtained by the breadth-first

strategy).

For the user's convenience, the LRTP has already aﬁtomated
this process and it- is provided to the wuser as an option
(switch). However;- it is automated in a way that is more
efficient than the one suggested in the previous paragraph.
When the switch for shortest linear refutation is turned on, the
LRTP will first try to find a proof within the given depth
bound. If one exists, it is recorded and then, the LRTP will
continue with the search, right at the point where the previous
proof is found, and simultaneously setting the depth bound to-

one less than the length of the most recent proof obtained.

When there is more than one shortest linear refutation, the
LRTP will simply return the first one that ié finds. 1In our
example, if the clause number>of PV -Q is smaller than that of
“P\/QQ; then proof 1 will be returned; otherwise proof 2 will be

returned instead.

5.1.5 The Deletion Module

The deletion module <can be invoked by the translator and
the refutation module. When the user is entering clauses, this
module will be invoked by the translator to eliminate any

tautologies and subsumed clauses. The order of performing the

required operations is: first, deletion of tautologies,
secondly, forward subsumption, and finally, backward
subsumption. We note that the application of backward

subsumption implies that a clause which has already been added



47

to the database may still be deleted if it is subsumed by a new

clause entered by the user.

During tﬂe search for a proof, the deletion module may be
invoked by the refutation module, depending on the status of the
switches as discussed 1in section 5.1.4.2. If one or both
switches are on, then the deletion module will be invoked, and
the number of wunifications involved will be recorded as a
measure ofvperformance. Regardless of whether the switches are
on or not, backward subsumption 1is not performed during

resolution.,

5.1.6 The Unification Module

Since unification done in the PROLOG/MTS interpreter does
not include the occurs check, the unification is rebuilt to

‘include this in the LRTP.

There are four occasions when unification is required. The
unification module is 1invoked by the refutation module for
factoring and resolving clauses duriﬁg resolution. Moreover,
unification is also involved 1in identifying tautologies and
subsumed clauses. This implies that the unification module is
invoked by the deletion module when one or both of the switches

for the deletion strategies are on.

5.2 The LRTP Versus The Prolog Interpreter

Although both the LRTP and the Prolog system are resolution

theorem-provers, they differ 1in many ways. A fundamental
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difference is that the LRTP is intended as an aid to study the
performance Cof resolution strategies, whereas the Prolog
interpreter is builf to provide a practical programming system.

In terms of evaluating the performance of resolution strategies,
the following features are lacking in the Prolog system but are

provided in the LRTP.

5.2.1 Completeness

The Prolog system is based on linear input resolution which
is an incomplete resolution strategy as discussed in section
4,3.4. Furthermore, the Prolog system is designed for
resolution with Horn clauses only. Horn élauses[Horn,1951] are
a subclass of wffs in first-order logié: it 1is the <class of

clauses with at most one unnegated literal.

On the othér hand, the LRTP offegs a variety of strategies
which can be either complete or incompiete. Moreover, any wffé
in first-order logic are legitimate expressions for the LRTP.
Consequently, existential quantification is allowea in the LRTP

(but not in the Prolog system).

5.2.2 Uﬁification

As already mentioned in section 5.1.6, the unification in
most Prolog implementations does not include the occurs check as
the formal definition of unification requires. While the LRTP
- is built on top of the PROLOG/MTS system, the unification in the
LRTP 1is rebuilt to 1include the occurs check for the sake of

?

completeness.
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5.2.3 Termination

Basically, Prolog adopts the unbound depth-first strategy.
As a result, the resolution may not terminate. On the other
hand, a depth bound 1is 1incorporated into the LRTP 'and

consequently, termination is gquaranteed.

5.2.4 Deletion Strategies

The LRTP allows any one of the three resolution strategies
being 1implemented to combine with any one or both of the two
deletion strategies, namely, deletion of tautologies and
subsumption. Furthermore, these two strategies are also applied
to filter any "impurities" in the wffs éntered by the user. On
the other hand, these strategies are not‘ implemented 1in the

Prolog system{

5.2.5 Measure Of Performance

As a tool for studying the performance of resolutions, the
LRTP reports the number of unifications involved 1in searching
for a refutation as a measure of performance; whereas no
quantitative measure of performance is provided in the Prolog

system.

5.2.6 Shortest Linear Refutation

The LRTP provides the user an option to obtain the shortest

linear refutation, which is not provided in the Prolog system.
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Chapter 6. Conclusion

The LRTP has been successfully implemented. It appears to
be a useful experimental tool for studying the performance of
the three linear resolution strategies: linear resolution,
linear input resolution, and ordered linear deduction, and their
combinations with other strategies, 1i.e. the set-of-support
strategy, subsumption and deletion of tautologies. Furthermore,
one can devise a large variety of experiments by manipulating

the parameters of the resolution environment.

One major drawback of the LRTP is that all wffs have to be
converted to clause form before resolutions can be performed.
Althoﬁgh the clause.form preserves the logical properties of the
original wff, the.control information for the search process 1is
lost after the conversion. 1In particular, the information which

guides the use of wfifs in a forward-chaining or or

backward-chaining manner is lost. For example, suppose we have

'a formula P->Q. If we use it in the forward—chaining manner,
~then the goal is to generate Q, given P is true. If it is ‘used
in a backward-chaining manner, as in.the Prolog interpreter,
then the goal is to generate P, given Q is true. 1In any case,
we proceed in one directidn only. However, if we convert it to
clause form, which is "Pyv Q, then the deduction process 1is a
bidirectional search process. As a result, the séarches

involved are highly redundant.

‘Thus, in order to perform resolution in a more efficient
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way, we have to incorporate some specific control information in
the resolution system to lead the search process in the "right"
direction. However, incorporation of specific control

information may destroy the domain-independent property of the

resolution system.
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Appendix A - LRTP User's Manual

1 Overview

The Linear Resolution Theorem Prover (LRTP) is built on top
of the PROLOG/MTS system. It is intended to be an experimental
tool for studying the performance of three resolution
strategies, namely, linear resolution, ordered linear deduction,
and linear input resolution. The first two are complete
strategies whereas the last one is incomplete. - In addition, the
LRTP also allows the user to perfofm experiments on the three
strategies in combination with others. Furthermére, the wuser

has control over the environment in which a theorem is proved.

If a‘ proof 1is ' found under the given setting, it will be
printed together with the number of unifications involved in the
search for the proof. This number is broken into three values
which represent the numbers of unifications involved in
resolution}and in the two deletion strategies. Based on these
statistics, one can evaluate the perfofmance of a strategy (or a
combination of strategies) 1in a designated setting. On the
other hand; the LRTP will report failure if no proof can Le

found.

For a detailed description of the internal organization of

the LRTP, the reader can refer to Chapter 5 of the thesis.
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2 Using The LRTP

The LRTP is an interactive theorem prover which can be
invoked by the following command: |
SSOURCE NHFC:LRTP
Once the LRTP 1is invoked, the command interpreter will prompt
the user to enter a command. (A command menu can be obtained by
.issuing the HELP command). All the responses to the command
interpreter will be converted to uppercase and all inputs to the

LRTP must end with a period.

The three commands by which the user exits the LRTP are:
PROLOG, MTS, and STOP. A detailed description of the three

commands can be found in section 4.4 of the manual.

The size of the workspace taken up by the LRTP is 256 MTS
virtual pages (1 page = 4K byteS). This workspace contains the
databasé of wffs in their élause -fofm,‘the derivation tree
constructed during the éearch for a prodf and fhe theorem'prover

itself.

The two user interfaces of the LRTP are the translator and
the command interpreter, and they will be discussed in the

following two sections.

3 The Translator

When the user enters the WFF (or the PROVE command when the
system is first loaded), control will be transferred to the
translator. The translator is responsible for converting wffs

to their clause forms and inserting them into the database if
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they are neither tautologies nor subsumed clauses. When a
clause is added to the database, it will be printed along with
its clause number. Since a clause number indicates the éurrent
position of a cléuse in the database, it may be affected by
backward subsumption. On the other hand, 1if a clause is a
tautology or a subsumed clause, it will not be added to the

database and a rejection message will be printed.

3.1 Clause Syntax In The LRTP

Apart from the notational differences, the concept of wffs
in the LRTP is the same as in predicate calculus. The following
summarizes the notational differences between the two. In this

summary, F, F1, and F2 represént any wifs and x any variable.

Predicate Calculus Syntax . : LRTP Syntax
| -F | . -F
F1AF2 , | F1' § F2
FI1VF2 _ . | | F1 # F2.
F1 -> F2 F1 => F2
Fi <-> F2 Fi = F2
(x) F all(*x,F)
(Ex) F . exists(*x,F)
For instance, (x)(animal(x)->(Ey)motherof(x,y)) in
‘predicate calculus is equivalent to

all(*x,animal(*x)=>exists(*y,motherof(*x,*y))) in the LRTP.

Since the LRTP does not perform any syntax checking, the
user should be very careful when entering a wff (use ATTN for

error recovery). In addition to the above syntax rules, each
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variable in the formula must be unique and bound. Furthermore,
function symbol fx and constant symbol <c¢s (where x is an
integer) should be avoided since these two types of symbols are

used in skolemization and subsumption check.

Finally, when NIL (follbwed by a period) is entered, the
translator will exit and a list of clauses in the database will
be printed. Notice that -fhére is no lowercase Eo uppercase
conversion done in the translator, thus the atom NIL should be

entered exactly as it is.

4 The Command Interpreter

The command interpreter is the major user interface through
which commands are interpreted. According to the functions of
the commands, we can divide them into three groups: database
commands, environment commands, and exit commands. In addition

to these three groups of commands, we also have the PROVE

command by which a theorem can be proved.

4.1 The PROVE Command And Auto-initialization Of Parameters

Of all the LRTP commands, the PROVE command is the most
imporﬁant since it is the one which actually initiates the
search for a proof. During the search, the LRTP frequently
interrogates the values of the six parameters of the environment
so as to assure that the refutation 1is performed in the
prespecified Qéy. The six parameters include the resolution
method, the top clause, the depth bound, and switches for

tautology check, subsumption check, and shortest linear
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refutation.

When the user issues the PROVE command, the LRTP will check
whether the six parameters have their own assigned values. If
not, it will repeatedly prompt the user to assign a value for -
each uninitialized parameter. Once every parameter has a value,
the LRTP will proceed to search for a proof 1in the specified
environment. wWhen the LRTP 1is first invoked, it 1is more
convenient to use the PROVE command to initialize the parameters
than to issue the six environment commands one by one (see
Section 4.3). Furthermore, if there 1is no clause in'the
database, the PROVE command will invoke the translator to accept

wifs from the user (see Section 3).

4.2 Database Commands

Database commands refer to the commands which maintain the

list of clauses in the database. There are four such commands:

WFF
This command invokes the translator to convert wffs to
clause forms and inserts them to the database. Details
of this command can be found in Section 3.

| DELETE

When this command 1is used, the system will prompt the
user to enter a clause number. Let this number be n.

The system will then remove the n-th clause (if it
exists) from the database. Since a clause number
indicates the <current position of the clause in the

database, removal of the n-th clause will cause all- the
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clause numbers which are greater than n to be decreased
by 1. To avoid deleting a clause by mistake, the user is
advised to check the clause number by the LIST command

(described below) before using the DELETE command.

LIST
This command prints the list of clauses in the database.
In addition to the clauses, their positions (clause
numbers) in the database are also indicated.

CLEAR |

This command removes all the the <c¢lauses from the

database.

4.3 Environment Commands

‘The environment commands are used for setting the
parameters of-the:environment in which refutation is performed.
There are -aifbgethéf. Six adjﬁstéble pafémeters in the
'environhent of the LRTP, and ﬁheir values can be disclosed by
the ENV command. For each parameter, there is a command whiéh
allows the user to adjust its §alue.

METHOD
When this command is entered, the system will prompt the
user to select one of the following methods for proving
the theorem:
FOLR - Ordered Linear Resolution using Frames to
record information of resolved literals
OLR - Ordered Linear Resolution (without frames)
LIR - Linear Input Resolution

' Note that if FOLR 1is chosen, the switch for tautology
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check will be turned on automatically since tautology 1is

not allowed to exist in this method.

This is the command to change the switch value for
tautology check. When this command 1is entered, the
system will prompt the user to respond with 'Y' or 'N',

Answers other than 'Y', 'YES', or 'ON' will be regarded
as 'N'. Note that, however, the system will not accept

'N' when FOLR has been chosen as the resolution method.

SUBSUME

TOP

SHORT

STEPS

The user can use this command to change the switch value
for subsumption check. Again, only 'Y', 'YES', or 'ON'
are considered as affirmative answers. Forward

subsumption will be performed when this switch is on.

This command causes the system to prompt the user for the
top clause number. -~ If that number corresponds to a
clause in the database, the clause will be wused as the

top clause in the deduction.

When »this command is entered, the system will prompt the
user to set the switch for obtaining the shortest 1linear
refutation (if there is one). To turn the switch on, one
has to enter 'Y', 'YES', or 'ON', any other response will

turn the switch off.

This command 1is used for setting the depth bound of the

search for the proof.
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4.4 Exit Commands

3

There are three commands that allow the user to exit the

LRTP and they are described below:

PROLOG

MTS

STOP

When this command 1is wused, the system will exit and
return to level of the PROLOG/MTS interpreter, leaving
the LRTP loaded, and the workspace intact. The LRTP can

be re-entered by using LRTP as a goal clause.

This command is equivalent to the PROLOG command except
that the system returns to the MTS command level rather
than the PROLOG/MTS interpreter level. Consequently, the

system can be re-entered with a MTS resta?t command.

The effect of this command is to release% all workspace
storage, and to unload both the LRTP and the PROLOG/MTS

interpreter.



5 Sample Terminal Session

$Sr plog:v2 prolog par=ws=256
#Execution begins
- PROLOG/MTS 0.2

Please enter a command: {Type "HELP" for assistance}
PROVE.

Enter a wff : {terminate input of wffs by NIL}
p#Q .

The wff has been converted to:

1: P#Q :

Enter a wif : {terminate input of wffs by NIL}
_p#Qc

The wff has been converted to:

2: -P#0Q

Enter a wff : {terminate input of wffs by NIL}
-P#-0Q.

The wff has been converted to:

3: -P$#-Q

Enter a wff : {terminate input of wffs by NIL}
P#-Q.

The wff has been converted to:

4: P#-Q

Enter a wff : {terminate input of wffs by NIL}
NIL. :

- Clause{s) in current database :-
1: P#Q
2: -P#Q

3: -P#-Q

4: P#-Q

Select one of the following methods:-
FOLR - Ordered Linear Resolution with Frame

OLR - Ordered Linear Resolution
LIR - Linear Input Resolution
OLR.

Tautology Check ? Y/N
Y.

Subsumption Check ? Y/N
N . )

Shortest linear proof ? Y/N
N.

Max. no. of steps :
6.



Top clause no.
1

(1) P#Q0 has been chosen as top clause

Proof: {length of proof = 6}
(1) P#Q
(2) -P#0Q
(6) Q <==FACTOR== (5) Q#Q.
(3) -P#-Q
(7) -pP
(1.) P#Q
(8)
(3) -P$#-Q
(9) -p
(4) P#-0Q
‘(10) -Q
(11) Q <==FACTOR== (5) Q#0Q -

NULL

No. of unifications involved in

Resolution Subsumption Checks
72 0

Tautology Checks
0



Command:
SHORT.

Shortest linear proof ? Y/N
Y.

Command:
PROVE.

Proof: {length of proof = 4}
(1) P#Q
(2) -P#Q

(6) Q.<==FACTOR== (5) Q#0Q

(3) -P#-0
(7) -P

(4) P$-Q
(8) -Q

(9) O <==FACTOR== (5) Q#Q

NULL

No. of unifications involved in
Resolution Subsumption Checks
197 0

Command:

STOP.

EXIT PROLOG/MTS 0.2
#Execution terminated

Tautology Checks
4

64
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Appendix B - Program Listing Of The LRTP

JhEkEkkkkkkkkkkkkkkkk% THE TRANSLATOR **kkkkkkkkkkkkkkkkkk /

op('=>"',RL,33).
OP(=,RL,33).
OP(#,RL,37).
OP($,RL,38).
OP(-,PREFIX,39).

/* Convert a formula to clausal form */

translate(*x,*x6)
<- implout(*x,*x1) &
negin(*x1,*x2) &
-skolem(*x2,*x3,NIL) &
univout (*x3,*x4) &
conjn(*x4,*x5) &
form_list(*x5,*x6).

/* Removing implications */

implout ((*p = *qg),((*pt $ *qg1) # (-*p1 $ -*q1)))
<- / & implout(*p,*pl1) & implout(*qg,*q1).

implout ((*p => *q), (-*p1 # *qg1))
<- / & implout(*p,*p1) & implout(*qg,*qgl).

implout(all(*x,*p),all(*x,*p1))
<~ / & implout(*p,*pl1).

implout (exists(*x,*p),exists(*x,*p1))
<- / & implout(*p,*p1).

implout ((*p $ *q),(*p1 $ *g1))
<- / & 1mplout(*p,*p1) & 1mplout(*q *q1)

implout((*p # *q),(*pt # *q1))
<- / & implout(*p,*p1) & implout(*q,*qgl).

implout ( (- *p) (-*p1))
<~/ & 1mplout(*p *p1).

implout (*p, *p).

/* Moving negation inwards */

negin((-*p),*p1)
<- / & neg(*p,*p1).

negin(all(*x,*p),all(*x,*p1))
<~ / & negin(*p,*p1).



negin(exists(*x,*p),exists(*x,*p1))
<- / & negin(*p,*pl).

negin((*p $ *q),(*pt $ *qg1))
<- / & negin(*p,*p1) & negin(*q,*qt).

negin((*p # *q),(*p1 ¢ *g1))
<~ / & negin(*p,*p1) & negin(*g,*q1).

negin(*p,*p).
neg((-*p),*p1)
<- / & negin(*p,*p1).

neg(all(*x,*p),éxists(*x,*p1))
<- / & neg(*p,*p1).

neg(exists(*x,*p),all(*x)*p1))
<- / & neg(*p,*p1).

neg((*p $ *q),(*p1 # *qg1))
<- / & neg(*p,*p1) & neg(*qg,*g1).

neg((*p # *q),(*p1 $ *q1))
<- / & neg(*p,*p1) & neg(*qg,*qgl).

neg(*p, (not (*p))).

/* Skolemising */

skolem(all(*x,*p),all(*x,*p1),*vars)
<- / & skolem(*p,*p1,*x.*vars).

skolem(exists(*x,*p),*p2,*vars)
<- / & gensym(f,*f) &
CONS(*f.*vars,*sk) &
substitute(*x,*sk,*p,*pl) &
skolem(*p1,*p2,*vars).

skolem((*p # *q),(*p1 # *g1),*vars)
<- / & skolem(*p,*p1,*vars) &
skolem(*q,*q1,*vars).
skolem((*p $ *q),(*p1 $ *q1),*vars)
<- / & skolem(*p,*p1,*vars) &
skolem(*q,*q1, *vars).

skolem(*p,*p,*).

/* Moving universal quantifiers outwards

*/
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univout (all(*x,*p), *p1)
<- / & univout(*p,*p1).

univout{((*p $ *q), (*p1 $ *q1))
<- / & univout(*p,*pi) &
univout (*q, *q1).

univout ((*p # *q), (*p1 # *q1))
<= / & univout(*p,*pl) &
univout (*q, *q1).

univout (*p, *p).

/* Distributing 'S$' over "§' */

conjn((*p % *q),*r)
<- / & conjn(*p,*pl1) &
conjn(*qg,*qgl) &
conjnl((*pt1 # *qgi1),*r).

conjn((*p $ *q), (*p1 $ *qg1))
<- / & conjn(*p,*pl1) &
conjn(*q,*q1).

conjn(*p,*p).
conjnl(((*p $ *q) # *r),(*pt § *qg1))

<- / & conjn((*p # *r),*p1) &
conjn((*g # *r),*q1).

coninl((*p # (*g $ *r)),(*p1 s *q1))
<~ / & conjn((*p # *q),*p1) &
conjn((*p # *r), *q1),

conjnl(*p,*p).

/* Convert to list form for resolution

form_list((*p $ *q),*r)
<~ / & form_list(*p,*pl) &
form_list(*q,*gl) &
combine(*p1,*qgl,*r).

form_list((*p # *g),(*r).NIL)
<- '/ & form_list(*p,(*pt1).NIL) &
form_list(*qg, (*q1).NIL) &
combine(*p1,*gl,*r).

form list(*p, (*p.NIL).NIL).
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/* Generate a unique symbol, *symbol, by concatenating
*letter with an integer, *integer */

gensym(*letter,*symbol)
<- newsnum(*integer) &
STRING(*integer,*intlist) &
STRING(*symbol,*letter.*intlist).

symcount(1).

newsnum(*integer)
<- symcount(*integer) &
add1(*integer,*next) &
set (symcount (*next),1).

/* Substitute each occurrence of *x in the 3rd arg
by *sk and return result in 4th arg */

substitute(*x,*sk,(*p # *q),(*pt # *q1))
<~ / & substitute(*x,*sk,*p,*pl) &
substitute(*x,*sk,*qg,*qgl).

subétitute(*x,*sk,(#p $ *q), (*p1 $ *q1t))
<~ / & substitute(*x,*sk,*p,*pl) &
: substitute(*x,*sk,*qg,*q1).

subStitute(*x;*sk,*p,*p1)
<- sub_skel(*x,*sk,*p,*p1) & /.

substitute(*,*, *p,6 *p),

/* Substitute *sk for each occurrence of *x in
structure *p and return result in *p2 */

sub_skel(*x,*sk,*p, *p2)
<- SKEL(*p) &
‘ CONS(*pred.*arglist,*p) &
subst (*x,*sk,*arglist,*p1) &
CONS(*pred.*p1,*p2).

/* Construct a new list, *m, made up from elements
of list, *1, except that any occurrences of *x
will be replaced by *a */

subst (*,* ,NIL,NIL).

subst (*x,*a,*var.*1,*a.*m)
<~ VAR(*var) &
samevar (*x,*var) & / &
subst (*x,*a,*1,*m).



subst (*x,*a,*s.*r,*s1.*r1)
<- sub_skel(*x,*a,*s,*s1) & / &
subst (*x,*a,*r,*r1).

subst (*x,*a,*y.*1, *y *m)
<- subst(*x,*a,*1,*m).

/* Check if *x and *y refer to the same variable */

SAME (FALSE) .
samevar (*x,*y)
<- bindtest(*x,*y) &
SAME (TRUE) &
set (SAME(FALSE), 1).

/* Check if *x and *y are the same by bindihg an atom
to *x, if they are the same, SAME is add to the db */

bindtest (*x,*y)
<- bind(*x) &
ATOM(*y) &
set (SAME(TRUE), 1) &
FAIL.

bindtest (*,6*).

bind(atom).



/***************** THE COMMAND INTERPRETER *************/
/* Initial values */

CONTROL (ATTN,ON) .
ERROR(N) .

STATUS(CMD) .
METHOD(NIL).
TAUT(NIL).
SUBSUME (NIL).

WFF (NIL).
TOP(0,NIL).
SHORT(NIL).

SHORT STEPS(0).
STEPS(NIL).
FROM(OTHERS) .
CURRNUM(0) .

PROOF (NIL,0).
CLAUSE(NIL).
UNIFY_COUNT(R,0).
UNIFY_COUNT(S,0).
UNIFY_COUNT(T,O0).

/* Command interpreter */

LRTP
<- setup &
READ(*input) &
execute(*input) &
ready_for_next &
continue.

/* Error recovery */

ERROR
<- set(ERROR(Y),1) &
LRTP.

/* Set up the LRTP */

setup
<- ERROR(N) & / &
prints('Please enter a command: {Type "HELP" for assistance}')
& setcase(CMD).

setup
<- set(ERROR(N),1) &
prints('Error has been recovered, please continue') &
ready_for_next.
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/* Convert all input to upper case when STATUS <> WFF */

setcase (WFF)
<- update (CONTROL (LOWER,OFF ) ,CONTROL (LOWER,ON)) & /.

setcase(*stat)
<- -~equ(*stat,WFF) &
update (CONTROL (LOWER,ON) ,CONTROL (LOWER,OFF)) & /.

setcase(*).

/* Replace *oldax by *newax */

update(*oldax, *newax)
<- DELAX(*oldax,*index) &
ADDAX (*newax,*index).

/* Process input according to current STATUS */

execute(*input)
<- STATUS(*stat) &
concatenate(process,*stat,*pred) &
CONS (*pred.*input.NIL, *process) &
*process & /.

/* Concatenate first two strings and return a 3rd string */

concatenate(*id1,*id2,*id3).
<= STRING(*id1,*idtlist) &
STRING(*id2,*id2list) &
.combine(*idi1list,*id2list,*id31list) &
STRING(*id3,*id31list).

/* Get ready to accept next input */

ready_for_next
<- STATUS(*stat) &
prompt (*stat) &
setcase(*stat).

/* Process command */

processCMD (HELP)
<- describe_cmd.

processCMD (PROVE)
<- set (FROM(PROVE), 1) &
initialize.

processCMD(*cmd)
<- member (*cmd,WFF .METHOD.TAUT.SUBSUME. TOP.SHORT



.STEPS .DELETE.PROLOG.NIL) &
set (STATUS (*cmd), 1).

processCMD(ENV)
<— printENV,

processCMD(LIST)
<- listCLAUSE,

processCMD(CLEAR)
<- flushCLAUSE(*) &
set (TOP(0,NIL),2) &
set (WFF(NIL),1).

processCMD(MTS)
<= MTS.

processCMD(STOP)
<- STOP.

processCMD( *)
<- print('Illegal command, type "HELP" for assistance').

/* Translate input wffs to clausal form and
store them in database */

processWFF (NIL)
<- prints('Clause(s) in current database :-') &
listCLAUSE &
initialize.

processWFF (*wff)
<- translate(*wff,*cl) &
print('The wff has been converted to:') &
assert(*cl).

processWFF (*)
<- print('Illegal wff, try again').

/* Select a method */

processMETHOD (*method)
<- member (*method,FOLR.OLR.LIR.NIL) &
set (METHOD (*method), 1) &
checkMETHOD(*method) &
initialize.

processMETHOD( *)
<= print('This method is not available in the LRTP').

/* Set the switch for tautology checks
according to user response */



processTAUT(*yes)
<- member (*yes,Y.YES.ON. NIL) &
set (TAUT(Y),1) &
initialize.

processTAUT(*)
<- -METHOD(FOLR) &
set (TAUT(N),1) &
initialize.

processTAUT(*)
<- print('Tautology is not allowed in FOLR') &
initialize.

/* Set the switch for subsumption checks
according to user response */

processSUBSUME (*yes)
<- member (*yes,Y.YES.ON.NIL) &
set (SUBSUME(Y),1) &
initialize.

processSUBSUME ( *)
<- set(SUBSUME(N),1) &
initialize.

/* Select top clause */

processTOP(*top)
<- INT(*top) &
AXN (CLAUSE, 2,CLAUSE (A, *topclause),*top) &
printcl(*top) &
print(' has been chosen as top clause') &
set (TOP(*top,*topclause),2) &
initialize.

processTOP(*)
<- print('Clause not in database, try again').

/* Set the switch for shortest linear refutation */

processSHORT(*yes)
<- member(*yes,Y.YES.ON.NIL) &
set (SHORT(Y),1) &
initialize.
processSHORT (*)

<- set(SHORT(N),1) &
initialize.

/* Enter max. no. of steps into database */



processSTEPS (*maxsteps)
<- INT(*maxsteps) &
set (STEPS (*maxsteps),1) &
initialize.

processSTEPS (*)
<~ print('Max. no. of steps must be an integer, try again').

/* Delete clause according to input clause no. */

processDELETE(*clnum)
<= INT(*clnum) &
printcl(*clnum) &
print(' has been deleted') &
DELAX(CLAUSE(*,*),*clnum) &
resetTOP(*clnum) &
set (STATUS(CMD), 1).

processDELETE (*)
<- print('Clause not in database') &
- set (STATUS(CMD), 1).

/* .Prompt user for initial values if there is one */

INIT(WFF).
INIT(METHOD) .
INIT(TAUT).
INIT(SUBSUME) .
INIT(SHORT).
INIT(STEPS) .

initialize
<- FROM(OTHERS) &
set (STATUS(CMD),1).

initialize
<- INIT(*stat) &
CONS(*stat .NIL.NIL,*null) &
*null & , :
set (STATUS(*stat),1).

initialize
<- TOP(0O,NIL) &
set (STATUS(TOP),1).

initialize
<~ set (FROM(OTHERS),1) &
set (STATUS(CMD), 1) &
getproof.
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/* Prompt user according to current STATUS */

prompt (CMD)
<- prints('Command:"').

prompt (WFF)
<~ prints('Enter a wff : {terminate input of wffs by NIL}').

prompt (METHOD)
<~ prints('Select one of the following methods:-') &
print (' FOLR - Ordered Linear Resolution with Frame') &
print(’ OLR - Ordered Linear Resolution') &
~print (' LIR - Linear Input Resolution').

prompt (TAUT)
<- prints('Tautology Check ? Y/Nf).

prompt (SUBSUME) ‘
<- prints('Subsumption Check ? Y/N').

prompt ( TOP)
<~-. prints('Top clause no. :').

prompt ( SHORT)
<- prints('Shortest linear proof ? ¥Y/N').

prompt(STEPS)
<- prints('Max. no. of steps :').

prompt(DELETE)
" <~ prints(' Clause no. :').

prompt(PROLOG)

/* Return to Prolog interpreter when STATUS=PROLOG */
continue
" <~ STATUS(PROLOG) &
set (STATUS(CMD),1).

/*¥ Print out the command menu */

describe cmd
<- prints('Commands available:') &

print(’ PROVE - prove a theorem') &
print ("’ WFF - enter wffs into database') &
print ("' METHOD - select a resolution method') &
print (' TAUT - change switch value of tautology check') &
print (' SUBSUME - change switch value of subsumptlon check') &
print (" TOP - select a top clause') &
print("' SHORT - change switch value for shortest linear proof
& print("’ STEPS - enter max. no. of steps (depth bound)') &

print(' . ENV - print parameter values of environment') &
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print ("’ LIST - list all clauses in database') &
print (' DELETE - delete clause(s) in database') &
print ("’ CLEAR - clear all clauses in database') &
print (' PROLOG - return to Prolog interpreter') &
print ("’ MTS - return to MTS') &

print(’ STOP - stop the theorem prover') &
print(’ HELP - print command menu') &

prints('Please enter one of the above commands').

/* Print out the values of parameters in the environment */

. printENV
<- METHOD(*method) &
TAUT(*yesnol) &
SUBSUME (*yesno2) &
TOP(*top, *topclause) &
form_clause(*topclause,*cl) &
SHORT(*yesno3) &
STEPS(*maxsteps) &
println('Method = '.*method.NIL) &
println('Tautology Check = '.*yesnol1.NIL) &
println('Subsumption Check = '.*yesno2.NIL) &
println('Top clause no. = '.*top.' ; Top clause = ',*cl,NIL) &
println('Shortest linear proof = '.*yesno3.NIL) &
S println('Max. no. of steps = '.*maxsteps.NIL).

/* List out all clauses in database */

1istCLAUSE : :
<- AXN(CLAUSE,2,CLAUSE(*,*cl),*n) &
display(*n,*cl) &
FAIL.

1istCLAUSE.

/* Flush clause(s) which are of *type */

f1ushCLAUSE (*type)
<- AXN(CLAUSE,2,CLAUSE(*type,*),*clnum) &
DELAX(CLAUSE(*type,*),*clnum) &
FAIL.

flushCLAUSE(*).

/* Add clauses to database */
assert(NIL).

assert(*cl1.*cl2)
<- screen(*cli1,0,*clist) &
set (WFF(NON_NIL),1) &
ADDAX(CLAUSE(A,*clt),*n) &
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display(*n,*clt) &
submsg(*clist) &
assert(*cl2).

assert(*.*cl)
<~ assert(*cl).

/* Display a clause and its no. */
display(*n,*cl)

<- form clause(*cl,*clause) &
println(*n.': '.*clause.NIL).

/* Print subsumption message if there is any */
submsg(NIL) <- /.
submsg(*clist)

<- print('which subsumes the following clause(s) in database:')
' & print_delete(*clist). '

/* Print out a list of subsumed clause(s) and delete them */
print_delete(NIL).

print_delete(*clnum.*clist)
<- printcl(*clnum) &
- print(' {being deleted}') &
- DELAX(CLAUSE(*,*),*clnum) &
print_delete(*clist).

/* Update *oldax when given *newax and its *arity */
set (*newax, *arity)
<- CONS(*pred.*,*newax) &
AXN(*pred,*arity,*oldax) &
update(*oldax,*newax) & /.
/* 1f METHOD=FOLR, tautology checks is compulsory */
checkMETHOD (FOLR)
<- set(TAUT(Y),1) &
print('Tautology checks = Y').

checkMETHOD(*) .

/* Reset top clause to null value when it is deleted */

resetTOP(*deleted)
<—- TOP(*deleted,*) &



set (TOP(0,NIL),2).

"resetTOP(*).

/* Set up COUNTs ,find a proof, print the proof o
and flush all clauses except those input by user */

getproof
<- reset &
findproof &
printproof &
f1ushCLAUSE(R) &
fl1ushCLAUSE(F).

/* Reset UNIFY _COUNTs to zero and copy STEPS to
SHORT_STEPS before resolving */

reset _
<- UNIFY_COUNT(*type,*) &
update (UNIFY_COUNT(*type, *),
UNIFY_COUNT(*type,0)) &
FAIL.

reset
<- STEPS(*maxsteps) &
set (SHORT_STEPS (*maxsteps),1).

/* Retrieve top clause and start proving */
findproof .
<- TOP(*topclnum,*topcl) &
set (PROOF (NIL,0),2) &
factoring(*topclnum,*topcl, *cclause,*cclnums) &

prove(*cclnums, *cclause,NIL,0).

findproof.

/* Print out the proof */

printproof
<= PROOF(NIL,*) &
"NEWLINE &
prints('Cannot be proved in given setting').
printproof
<- PROOF (*proof,*length) &
NEWLINE &
printin('Proof: {length of proof = '.*length.'}'.NIL)

printproof1(*proof) &
print ('NULL') &
NEWLINE &
printstatistics.

78



printproof1(NIL).

printproof1(*pf1.*pf2)
<- printproofi1(*pf2) &
printclpair(*pf1).

/*¥ Print out unification statistics */

printstatistics
<~ UNIFY_COUNT(R,*rcount) &
UNIFY_COUNT(S,*scount) &
UNIFY COUNT(T,*tcount) &
print{'No. of unifications involved in :') &
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print(' Resolution Subsumption Checks Tautology Checks') &

printlin(’ '.*rcount.' '.*scount
. '.*tcount .NIL).

/* Print out the two resolved clauses */

printclpair(*cclnums.*clnums)
<- printfactor(*cclnums) &
printbar(2) &
WRITECH(' | ') &
printfactor(*clnums) &
printbar(2).

/* Print a clause together with its factor if there is one

printfactor (*facnum.*clnum)
<- printpcl(*facnum) &

WRITECH(' <==FACTOR== ') &
printpcl(*clnum) &
NEWLINE.

printfactor (*clnum)
<- printpcl(*clnum) &
NEWLINE.

/* Print a clause as part of proof */

printpcl(0)
<= WRITECH('reduction').

printpecl(*clnum)
<~ AXN(CLAUSE, 1,CLAUSE(*cl),*clnum) &
form clause(*cl,*clause) &
printon('('.*clnum,')"'.*clause.NIL).

/* Print a clause */

*/



printcl(*clnum)
<- AXN(CLAUSE,2,CLAUSE(*,*cl),*clnum) &
form_clause(*cl,*clause) &
printon('('.*clnum.')'.*clause.NIL).

/* Form a clause from a list for output */

form_clause(*1it.NIL,*1it1)
<~ / & checknot(*1lit,*1it1).

form_clause(*lit.*cl,*lit1 # *cl1)
<= checknot(*1lit,*1lit1) &
form_clause(*cl,*cl1).

form_clause(NIL,NIL).

/* Replace 'not' by '-' */
checknot (not (*1it),-*1lit) <- /.

checknot (*1it,*1lit).

/* Print out '|' */
printbar(0) <- /.

printbar(*n)
<= print(' |') &
sub1(*n,*n1) &
printbar(*nt).

/* Print text utilities */

prints(*x)
<- NEWLINE &
print(*x).

print (*x)
<- WRITECH(*x) &
NEWLINE.

println(NIL)
" <— NEWLINE.

println(*hd.*tl)

<~ WRITECH(*hd) &
println(*tl).

printon(NIL).
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printon(*hd.*tl)
<- WRITECH(*hd) &
printon(*tl).
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/***************** THE REFUTATION MODULE *******************/

/* Prove a clause (2nd arg), its no. (1st arg), and return
the proof (3rd arg) and length (4th arg) of proof */

prove(* ,NIL, *proof,*length)
<- SHORT_STEPS(*maxsteps) &
LE(*length,*maxsteps) &
set (PROOF (*proof,*length),2) &
store_proof &
shortest_or_ist(*length).

prove (*cclnums, *cclause,*pfsofar,*lensofar)
<~ limitcheck(*cclause,*lensofar) &

resolve(*clnums,*cclause,*resolvent,*lensofar) &
store(R,*resnum, *resolvent) &
factoring(*resnum,*resolvent,*faccl,*facnums) &
screen(*faccl,*facnums,0) &
add1(*lensofar,*lenplusi) &
reduce_resolvent(*facnums,*faccl,*rednum, *redcl,
(*cclnums.*clnums),*pfsofar,*proof,*lenplusi,*newlen) &
prove(*rednum, *redcl, *proof,*newlen).

/* Store up all clauses involved in the proof */

store_proof
<- CLAUSE(*cl) &
DELAX(CLAUSE(*cl)) &
FAIL.

store_proof
<- CLAUSE(*,*cl) &
ADDAX(CLAUSE(*cl)) &
FAIL.

store_proof.

'/* Check if shortest or first proof is required */

shortest_or_ 1st(¥*)
<~ SHORT(N).

shortest _or_ 1st(*length)
<~ SHORT(Y) &
sub1(*length,*lenless1) &
set (SHORT_STEPS(*lenless1),1) &
ANCESTOR(*prove,2) &
RETRY(*prove).

/* Suceeds iff limit not exceeded */

limitcheck(*cclause, *lensofar)



<- =equ(*cclause,NIL) &
SHORT STEPS(*maxsteps) &
LT(*lensofar,*maxsteps) &
length(*cclause,*cclen) &
DIFF(*maxsteps,*lensofar,*stepsleft) &
GE(*stepsleft,*cclen).

/* Resolve a clause(2nd arg) with another clause whose

‘'no. is specified in 1st arg, and return resolvent
in 3rd arg */

resolve(*clnums,*lit.*cl,*resolvent,*lensofar)
<- negate(*1lit,*notlit) &
select (*clnum, *clause) &
factoring(*clnum, *clause,*factor,*clnums) &
resolvable(R,*notlit,*factor,*newclause) &
form resolvent(*newclause,*lit.*cl,*resolvent).

/* Store clause in database and remove it on failure */
store(*,* NIL) <- /.

store(*type,*clnum,*clause)
<- ADDAX(CLAUSE(*type, *clause),*clnum) &
set (CURRNUM(*clnum),1).

store(*type,*,*clause)
<- CURRNUM(*clnum) &
sub1(*clnum, *currnum) &
set (CURRNUM(*currnum),1) &
DELAX(CLAUSE(*type,*clause),*clnum) &
FAIL.

/* Factorise the clause(2nd arg) if possible and store
the factor(3rd arg) in database if it exists */

factoring(*clnum,*clause,*factor, (*facnum.*clnum))
<- factor(R,*clause,*ffactor) &
~equ(*clause,*ffactor) &
last_frame(*ffactor,*factor) &
store(F,*facnum,*factor).

factoring(*clnum,*clauSe,*clause,*clnum)
<- factor(X,*clause,*clause).
/* Reduce the resolvent if the method is FOLR */

reduce resolvent(*fnum,*f,*fnum,*f,*pr,*pf, *pr. *pf *len,*len)
<- SMETHOD(FOLR) & /.

reduce_resolvent (*fnum,*f,*rnum,*r,*pr,*pf, (*fnum.0) .*pr.*pf,
*len, *newlen)
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<-= limitcheck(*f,*len) &
reduce(R,*f,*r) &
sequ(*f,*r) &
store(R,*rnum, *r) &
addi(*len,*newlen).

reduce _resolvent(*fnum,*f,*fnum,*f, *pr,*pf,*pr.*pf,*len,*len)

<- reduce(X,*f,*f).

/* Negate 1st arg and return in 2nd arg for resolution
negate(not(*1lit),*1it) <- /.

negate(*lit,not(*1lit)).

/% Select a clause for resolving */

select(*cinum,*clause)
<- AXN(CLAUSE,2,CLAUSE(A,*c1ause),*clnum).

select(*clnum,*clause)
<- METHOD(OLR) &
AXN(CLAUSE, 2,CLAUSE(R, *clause), *clnum).

/* Resolvable iff 2nd arg is a member of 3rd arg
and return the resolved clause in 4th arg */

resolvable(*type,*1lit,FRAMED(*).*cl, *newcl)
<- / & resolvable(*type,*lit,*cl, *newcl).

resolvable(*type,*1it1,*1lit2.*cl,*cl)
<- unify(*type,*1lit1,*1it2),

resolvable(*type,*1lit,*1l.*cl,*1,.*newcl)
<- resolvable(*type,*1lit,*cl,*newcl).

/* Form resolvent according to method used */

form_resolvent(*clause,*lit.*cl,*resolvent)
<- METHOD(FOLR) & / &
combine(*clause ,FRAMED(*1it).*cl,*rescl) &
last_frame(*rescl,*resolvent).

form_resolvent(*clause,*lit.*cl,*resolvent)
<- METHOD(LIR) & / &
combine(*clause,*cl,*resolvent).
form_resolvent(*clause,*lit.*cl,*resolvent)
<- combine(*clause,*cl,*resolvent).

/* Merge common factor to the left */

*/
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factor(*,NIL,NIL).

factor(*type,FRAMED(*1it).*cl,FRAMED(*1it).*newcl)
<~ / & factor(*type,*cl,*newcl).

factor(*type,*lit.*cl,*factor)
<- member (*type,*1lit,*cl) &
factor(*type,*cl,*factor).

factor(*type,*lit.*cl,*1lit.*newcl)
<- factor(*type,*cl,*newcl).

/* Reduce goal clause if the last literal can be resolved
with a framed literal : _ *x/

reduce (*,NIL,NIL) <- /.

reduce(*type,*lit.*cl, *reduced)
<- negate(*lit,*notlit) &
memberf (*type,*notlit,*cl) &
last_frame(*cl,*reduced).

reduce(*,*1lit.*cl,*1lit.*cl)

<- negate(*lit,*notlit) &
-memberf (X,*notlit,*cl).

/* Remove the last literal if it is framed */

last frame(FRAMED(*) *cl *newcl)
<= / & last _frame(*cl,*newcl).

last_frame(*clause,*clause).

/* Length returns the length(2nd arg) of a clause(lst arg)
Framed literals are not counted

length(NIL,0).

length(FRAMED(*).*cl,*len)
<- / & length(*cl,*len).

length(*.*cl,*lenplusi)
<- length(*cl,*len) &
addi1(*len,*lenplusi).

/* Member succeeds iff 2nd arg is a member of 3rd arg
and the UNIFY COUNT is incremented according to *type;
notice that framed literal does not affect the count */

member (*type,*1it,FRAMED(*) .*cl)
<- / & member (*type,*1lit,*cl).



member (*type,*1it1,*1it2,%)
<- unify(*type,*lit1,*1it2).

member (*type,*1lit,*.*cl)
<- member (*type,*1lit,*cl).
/* Memberf succeeds iff the clause is reducible;

notice non-framed literal does not affect the count

memberf (*type,*1it1,FRAMED(*1it2).%)
<- unify(*type,*1it1,*1it2).

memberf (*type,*1lit,*.*cl)

<- memberf (*type,*1lit,*cl).
/* Increment UNIFY_COUNT by 1 according to *type.

No count is incremented if *type=X */
incrUNIFY_COUNT(X) <- /.
incrUNIFY_COUNT(*type)

<- UNIFY_COUNT(*type,*count) &

add1 (*count, *countplus1) &

update (UNIFY_COUNT(*type,*),
UNIFY_COUNT(*type,*countplusi)).

/* Combine 1st list with 2nd list to form a 3rd 1list

v

combine(NIL,*x,*x) <= /.

combine(*head.*tail,*x,*head.*newtail)
<- combine(*tail,*x,*newtail).

/* *x - 1 = *y */

sub1(*x,*y) <- DIFF(*x,1,*y).

/* *x + 1 - *y */

addi(*x,*y) <- DIFF(*x,'-1',*y).

/* Succeed iff 1st arg eguals to 2nd arg */

equ(*x,*x).

/* Succeed iff first arg is a member of second arg */

member (*1it,*lit.*cl) <- /.

- */
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member (*1it,*.*cl)
<- member(*1lit,*cl).

87



/****************** THE DELETION MODULE *******************/

/* Check if deletion strategies have to be applied */
screen(NIL,*,*) <- /,

screen(*cl,*facnums,*clist)
<~ taut_test(*cl) &
subsume_test1(*cl,*facnums) &
subsume_test2(*cl,*clist).

"/* Test if the clause is a tautology */

taut_test(*)
<- TAUT(N) &
“METHOD (FOLR) &
“STATUS(WFF) & /.

IS_TAUT(N).
taut _test(*cl)

<- set(IS TAUT(N),1) &
tautology(*cl) &
set (IS_TAUT(Y),1) &

FAIL,

taut_test(*)
<~ IS_TAUT(N) & /.

taut test(*taut)
<= 1S TAUT(Y) &
tautmsg(*taut) & / &
FAIL.

/* Test if the input clause is subsumed by
another clause in db %/

SUBSUME_CLAUSE (NIL).
SUBSUMED_CLAUSE(NIL).

subsume_test1(*, *)
<- SUBSUME(N) &
“STATUS(WFF) & /.

subsume test1(*fcl,*facnums)

<- set (SUBSUME CLAUSE(NIL) 1) &
remove frames(*fcl, *subc 1) &
ground(*subcl) &
set (SUBSUMED CLAUSE(*subcl) 1) &
subsumed(*subcl, *facnums,*clnum) &
set(SUBSUME_CLAUSE(*clnum) 1) &
FAIL.
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subsume test1(*,*)
<- SUBSUME_CLAUSE(NIL) & /.

subsume_test1(*subcl,*)
<- SUBSUME_CLAUSE(*clnum) &
submsg(*subcl, *clnum) & / &
FAIL,

/* Test if input clause subsumes any clause(s)
in db & delete them * /

subsume_test2(*,*)
<- "STATUS(WFF) & /.

subsume_test2(*cl,*)
<- set (SUBSUME_CLAUSE(NIL),1) &

AXN(CLAUSE, 2,CLAUSE(*, *clause),*clnum) &
ground(*clause) &
set (SUBSUMED_CLAUSE(*clause),1) &
subsumed_by(*clause, *cl) &
SUBSUME_CLAUSE(*clist) &
set (SUBSUME_CLAUSE(*clnum.*clist),1) &
FAIL.

subsume_test2(*,*clist)
<- SUBSUME_CLAUSE(*clist).

/* Succeeds iff the arg. is a tautolgy */

tautology (FRAMED(*) .*cl)
<~ / & tautology(*cl).

tautology(*lit.*cl)
<- negate(*lit,*notlit) &
member (T, *notlit,*cl) & /.

tautology(*.*cl)
<- tautology(*cl).

/* Replace all variables in the clause by distinctive
constants (atoms starting with a letter 'c') */

ground(NIL).

ground(*x,*y)
<- VAR(*x) &
gensym(c,*x) & / &
ground(*y).

ground(FRAMED(* ). *c1l)
<- / & ground(*cl).

ground(*x.*y)
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<- CONS(*,*arglist,*x) &
ground(*arglist) &
ground(*y) & /.

/* Removes all frames in 1st arg
and returns result in 2nd arg */

remove_frames(NIL,NIL).

remove frames(FRAMED(*).*cl,*newcl)
<~ / & remove frames(*cl,*newcl).

remove_frames(*lit.*cl,*lit.*newcl)
<~ remove_frames(*cl,*newcl),

/* Succeeds iff *subcl is subsumed by a clause
(whose no. is *clnum) in the current database */

subsumed(*subcl,*facnums,*clnum)

: <- AXN(CLAUSE,2,CLAUSE(*,*clause),*clnum) &
~itself (*clnum,*facnums) &
subsumed_by(*subcl, *clause) & /.

/* Succeeds iff 1st arg is subsumed by 2nd arg */
subsumed_by(*,NIL) <- /.
subsumed by (*lit.*,*clause)
<= resolvable(S,*lit,*clause, *resolvent) &
SUBSUMED_CLAUSE (*subcl) &
subsumed_by(*subcl, *resolvent).
subsumed_by(*.*cl,*clause)
<- subsumed_by(*cl,*clause).
/* Prevent checking subsumption with the clause itself
itself(*clnum,*clnum.*) <~ /.

itself(*clnum,*.*clnum) <- /.

itself (*clnum, *clnum).

/* Print message if clause is not accepted
during input of wffs */

tautmsg(*taut) |
<- STATUS(WFF) &
form_clause(*taut,*tautcl) & |
println(*tautcl.' which is a tautology '.NIL) &
print("’ -> not added into database').

*/
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tautmsg(*).

submsg(*subcl, *clnum)
<- STATUS(WFF) &
form_clause(*subcl,*subsumed) &
printon(*subsumed.' which is subsumed by '.NIL) &
printcl(*clnum) &
prints("' -> not added into database').

submsg(*,*).
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/****************** THE UNIFICATION MODULE ***************/ :

/* Unification with occurs check */

unify(*category, *x,*y)
<- incrUNIFY COUNT(*category) &
unifiable(*x,*y) &
equ(*x,*y) & /.

unifiable(*x,*y)
<- VAR(*x) &
VAR(*y) & /.

unifiable(*x,*y)
<- VAR(*x) & / &
occurscheck(*x,*y),

unifiable(*x,*y)
<- VAR(*y) & / &
occurscheck(*y, *x).

unifiable(*x,*y)
<- SKEL(*x) &
SKEL(*y) & / &
CONS(*x1list,*x) &
CONS(*ylist,*y) &
eglist(*xlist,*ylist).

unifiable(*,*),

occurscheck(*x,*y)
<- SKEL(*y) & / &
CONS(*.*arglist,*y) &
moccursin(*x,*arglist).

occurscheck(*,*).

eqlist(NIL,NIL).

egqlist(*hd1.*t1l1,*hd2.*tl2)
<- unifiable(*hd1,*hd2) &
eglist(*tl1,*t12).

occursin(*x,*hd.*)
<- VAR(*hd) &
samevar(*x,*hd).

occursin(*x,*hd.¥*)
<- SKEL(*hd) &
CONS(*.,*arglist,*hd) &

92



occursin(*x,*arglist).

occursin(*x,*.*t])
<= occursin(*x,*tl).
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