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ABSTRACT 

The past decade has seen a growing interest in computer stereo vision: the 

recovery of the depth map of a scene from two-dimensional images. The main 

problem of computer stereo is in establishing correspondence between features or 

regions in two or more images. This is referred to as the correspondence problem. 

One way to reduce the difficulty of the above problem is to constrain the 

camera modeling. Conventional stereo systems use two or more cameras, which 

are positioned in space at a uniform distance from the scene. These systems use 

epipolar geometry for their camera modeling, in order to curb the search space to 

be one-dimensional - along epipolar lines. 

Following Jain's approach, this thesis exploits a non-conventional camera 

modeling: the cameras are positioned in space one behind the other, such that 

their optical axes are collinear (hence the name coaxial stereo), and their distance 

apart is known. This approach complies with a simple case of epipolar geometry 

which further reduces the magnitude of the correspondence problem. 

The displacement of the projection of a stationary point occurs along a 

radial line, and depends only on its spatial depth and the distance between the 

cameras. Thus, to simplify (significantly) the recovery of depth from disparity, 

complex logarithmic mapping is applied to the original images. The logarithmic 

part of the transformation introduces great distortion to the image's resolution. 

Therefore, to minimize this distortion, it is applied to the features used in the 
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matching process. 

The search for matching features is conducted along radial lines. Following 

Mokhtarian and Mackworth's approach, a scale-space image is constructed for 

each radial line by smoothing its intensity profile with a Gaussian filter, and 

finding zero-crossings in the second derivative at varying scale levels. Scale-space 

images of corresponding radial lines are then matched, based on a modified uni

form cost algorithm. The matching algorithm is written with generality in mind. 

As a consequence, it can be easily adopted to other stereoscopic systems. 

Some new results on the structure of scale-space images of one dimensional 

functions are presented. 
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CHAPTER 1 

PREFACE 

1.1. INTRODUCTION 

Vision is the process, as performed by human beings, in which visible 

light is passively sensed to produce an understanding of the physical environ

ment. Computational vision is a field in artificial intelligence, which pursues 

this goal of constructing an explicit and meaningful three dimensional descrip

tion of objects from their projection onto retinal images. A major thrust 

towards reaching this goal is provided by computational stereo. The objective 

of computational stereo is to determine the three dimensional structure of the 

physical environment from two or more retinal images obtained at a given spa

tial interval. Monocular approaches to computing depth from images tend to 

use photometric or statistical assumptions. Stereo, on the other hand, uses 

mostly direct image measurements, and hence, its attractiveness. 

Some of the main applications of computational stereo are in the areas of 

interpreting aerial images for cartography and surveillance, robotics for assem

bly line tasks as well as for autonomous vehicle navigation, and systems simu

lating biological stereopsis systems pursuing the enhancement of their under

standing. 

The key problem in computational stereo is the correspondence problem, 

which is the matching of corresponding elements in the given images. One way 

to ease the problem is to constrain the camera configuration such that the 



search space is reduced to one dimension. Another approach is to match 

acquired features in groups rather than individually. In existing systems, these 

groups of features represent edges in the scene. This approach is justified by 

the continuity assumption about the physical world: objects are cohesive and 

usually opaque. 

In this project, we propose a different grouping approach based on filter

ing the images in a range of different spatial frequencies, which are quantized 

in a scale space. 

1.2. OVERVIEW OF THIS DOCUMENT 

The first part of chapter 2 introduces the reader to the world of stereo. 

The notion of stereoscopic disparity is defined. Each phase in a five fold pro

cedure to determine depth from stereo is-described. This procedure character

izes all stereoscopic systems. The second part of this chapter provides the 

reader with a survey of existing stereoscopic and related motion systems. 

Chapter 3 describes the principles and geometrical aspects of coaxial 

stereo. We define coaxial disparity and the notion of' focus-of-expansion, and 

explain the optical flow generated by motion-in-depth. The notion of complex 

logarithmic space is described and its advantages and disadvantages discussed. 

Chapter 4 is devoted to scale-space images of one dimensional functions. 

A scale-space image of a one dimensional intensity profile is obtained by con

volving it with the second derivative of a Gaussian filter at varying levels of 

detail, and extracting zero-crossings at each level. A theoretical analysis of 

such scale-space images is presented. The analysis brings to light some new 

observations about open contours. We show that such functions contain in 



their scale-space image between one and five open contours. We prove that 

functions with finite energy contain exactly two open contours which are 

asymptotic to two imaginary straight lines diverging symmetrically in a 45 0 

angle. We prove the validity of incidents which violate claims that a scale-

space image has a hierarchical structure, i.e. that no contours cross each other. 

We will show that closed contours may be intersected by an open contour or 

by another closed contour. 

Chapter 5 discusses the difficulties in establishing correspondence between 

the two scale-space images. It describes the matching algorithm which is based 

on the A algorithm. This algorithm matches contours in the scale-space 

image in a coarse to fine order and uses height to find the order in which con

tours will be matched. This approach enables this algorithm to be easily 

adopted to other stereoscopic systems. 

Chapter 6 explains the implementation of the theory described in the 

preceding chapters. The computational part of the system was implemented in 

C. That includes the image transformation, building the scale-space images 

and representing them. The matching algorithm and depth computations have 

been implemented in Franz LISP. 

Chapter 7 describes a series of experiments conducted with synthetic 

images. A two dimensional scene is constructed and used for error analysis of 

the system. A depth map is computed for three dimensional scenes. An exam

ple, demonstrating how occlusion and loss of information influence a scale-

space image, is given. 

Chapter 8 gives some conclusive remarks about the various subject 

matters covered in this thesis. A look at some follow-up research avenues 



concludes this project. 
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CHAPTER 2 
A REVIEW OF COMPUTATIONAL STEREO 

2.1. INTRODUCTION 

The basis for computational stereo is in the disparity measurements. The 

notion of binocular disparity was first introduced by Sir Charles Wheatstone 

to the Royal Society of London, in 1832. He invented an apparatus, he called 

the stereoscope (which is much the same today), through which pairs of stereo

grams were easily fused into a single image that appeared to the viewer as 

extending in depth. Disparity is defined as the angular difference (or displace

ment in position) of the projection of a scene element onto the two retinal 

images, relative to some fixed point. It varies for each point in the scane 

depending on the spatial position of each scene element and the camera 

configuration. 

In human binocular stereo, for example, disparities arise because the eyes 

converge slightly to fixate on some point a in the scene (fig. 2.1), called the 

b 
8' 

ancillary lines 

5 

F i g u r e 2.1: t h e g e o m e t r y o f c o n v e n t i o n a l s t e r e o . 



fixation point. The position of each eye is referred to as a vantage point [Gib

son 1950]. The viewing axis is termed ancillary line [Pirenne 1970]. It always 

casts a point at the center of the retinal image. A neighboring point 6 in the 

scene is projected onto the retina at some distance 8 from the center of vision. 

This distance is different for each eye, a difference to which we refer as dispar

ity. 

Determining depth from stereo is a five step procedure: 

1. image acquisition - type of images used. 

2. camera modeling - the spatial geometry of the cameras. 

3. feature acquisition - the projection of one or more scene elements must 

be selected from one image. 

4. matching - the corresponding image element(s) in the other retinal image 

must be identified. 

5. determining depth - the distance between the camera and scene 

element(s) is calculated from the disparity measured between two 

corresponding image elements. 

Obtaining a match between two corresponding image elements is by far, com

putationally, the most difficult task in computational stereo. 

The stereo paradigm can be viewed as a case in the concept of motion or 

optical flow. In conventional stereo, two images are obtained simultaneously 

by two cameras of known displacement. In motion, a single camera records a 

sequence of images, while moving in an arbitrary path. 



2.2. IMAGE ACQUISITION 

There are three principal considerations involved in image acquisition: 

- type of scene. 

- image resolution. 

- camera modeling. 

A scene can be classified into two types: natural scenes and man-made 

scenes. Images of natural scenes reflect natural terrain and cover: land, water, 

rolling mountains, rivers, trees, snow and so on. Man-made scenes refer to 

cities, buildings, streets, roads, machines and their parts and so on. The 

difficulty that often arises with natural scenes, is the lack of details and homo

geneity. Such are images of forests, oceans, prairies and others. The difficulty 

introduced by man-made scenes, is high repetition and occlusions. Such is the 

case for crisscross streets and roads, buildings and building windows, and so 

on. 

The camera configuration and the resolution of the images depend on the 

application. The cameras may be positioned at various distances from each 

other. They may be rolled, tilted or panned, all with respect to their optical 

axis [Bernnard and Fischler, 1982]. If they are rolled or tilted, it is normally in 

the same direction and by the same amount. Panning is employed either 

inwards or outwards by the same amount. 

Aerial images involve a variety of terrain types and are usually of low 

resolution. That is, each pixel represents a relatively large area in the scene. 

The cameras are set parallel to one another. 

In applications in which the human visual system is model, a wide range 

of resolutions is used. Grimson [1981] used in his system highly repetitive 



random-dot stereograms, which offer no monocular clues. 

In robotics, high resolution images are used. In system for autonomous 

vehicle navigation, the cameras are either parallel or panned inwards. 

2.3. CAMERA MODELING 

The key problem in computational stereo is the correspondence problem. 

It involves matching the projections of scene elements upon two or more image 

planes. Constraining the camera configuration can drastically reduce the mag

nitude of the problem. In its worst case, the search space has a two dimen

sional (2D) neighborhood. The search space can be reduced to one dimension 

by using epipolar geometry [Gimel'farb et al 1972, Mori et al 1973, Henderson 

et al 1979, Moravec 1980, Gennery 1980, Arnold 1983, Baker 1982, Lowrie 

1984, Bernard and Fischler 1982]. 

Fig. 2.2 depicts epipolar geometry as applied in a conventional binocular 

stereo configuration. The line connecting the focal points of the cameras is 

called the stereo baseline. Any plane containing the stereo baseline is an epi

polar plane. The intersection of an epipolar plane with an image plane is 

called epipolar line. In a camera configuration which complies with epipolar 

geometry, the search for corresponding points needs only be done along 

(known) corresponding epipolar lines, and hence, it is reduced to be ID. 

If the cameras are panned inwards, as is the case for human eyes, the epi

polar lines in each image are not parallel, but fanning outwards [Lowrie 1984] 

(fig. 2.3b). If the two image planes are coplanar, the images are said to be 

rectified [Baker and Binford 1981]: all epipolar lines are parallel (fig. 2.3a) and 

coincide with the scan line of the images. 



P (object point) 

p o i n t 

F i g u r e 2.2.: e p i p o l a r g e o m e t r y o f b i n o c u l a r s t e r e o 

a 

F i g u r e 2.3: e p i p o l a r l i n e s w i t h p a r a l l e l a r e a s (a) 
a n d w i t h p a n n e d c a m e r a s ( b ) . 
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In a non-conventional stereo configuration, as suggested by O'Brien and 

Jain [1984], the two cameras are positioned in space such that their optical 

axes are collinear. Hence the name coaxial stereo. The system developed in 

this project, proposes a similar geometry. We shall elaborate on this 

configuration in chapter 3. 

One should notice the potential for parallel processing, when epipolar 

geometry is employed, as there is no interline dependence. 

2.4. FEATURE ACQUISITION 

Featureless areas of nearly homogeneous intensity cannot be matched 

with confidence. Thus, some distinguishable features must be present in both 

images, in order to be able to match them. The more such features exist, the 

more accurate will the yielding depth map be. 

It is assumed that a sharp gradient in intensity corresponds to physically 

significant events in the scene, and it is those events which are of interset. 

However, it should be noted that some intensity changes may have no physical 

significance. 

The properties of a feature depend mostly on local monocular intensity 

patterns. They can be summarized as follows: 

- size; spatial frequency. 

- contrast: in intensity. 

- semantic content: what does it represent. 

- density: the more features the more accurate is the depth map. 

- ease to measure: less computation time. 
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- distinguishability: can be easily matched. 

In general, an image function is represented by a gray-level array. A sharp 

intensity change in the gray-level array gives rise to an extremum, when the 

image function is convolved with the first derivative of a Gaussian distribution 

function. In the second derivative, it corresponds to a zero-crossing (ZC): a 

location where the second derivative crosses zero as it falls from positive values 

to negative ones, or rises from negative to positive. An extensive discussion on 

the properties of such features can be found in Hildreth [1980], Marr [1982], 

Koenderink and van Doom [1980], Yuille and Poggio [1983a, 1983b], Yuille 

[1984]. 

Basically, there are two types of features which are used for matching: 

point-like and edge-like. Point-like features are nondirectional, and hence, can 

be detected in any direction. Edge-like features, which can be constructed by 

connected ZCs, are directional, and therefore will not be detected if the direc

tion of the search coincides with the direction of the edge. Edge-like features 

require less matching activity. However, the camera model needs to be known 

and the features must be oriented across the epipolar lines. 

One may also use semantic features, which are based on physical proper

ties or spatial geometry. Such features are occluding edges, vertices of linear 

structures and prominent surface markings. They are not widely used as they 

are difficult to determine. 

The features selected for any particular system is closely related to the 

matching scheme used, which is discussed next. 
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2.5. MATCHING 

We have seen that the key problem of computational stereo is the 

correspondence problem. It is the problem of matching elements in the two 

images, which correspond to the same location in the scene, without the recog

nition of objects or their parts. 

There may be several elements in one image which could correspond to a 

particular element in the other image. Most of those possible matches do not 

represent corresponding elements, and are called false targets [Marr and Poggio 

1979, Marr 1982] or ghosts [Mayhew and Frisby 1981]. They represent the 

ambiguity in the correspondence between the two images. 

Two implicit assumptions about the visual world are made to constrain 

the correspondence problem: 

Uniqueness - a given point on a physical surface has only one position in 

space at any one time. Thus, each element in either image has a unique 

disparity and can match only one element in the other image. 

Continuity and opacity - physical objects are cohesive and usually opaque. 

Thus, the disparity varies smoothly over the image (variation in depth are 

generally smooth in the sense that the surface variations are very small 

compared with their distance from the camera), except at object boun

daries. 

The level of difficulty in applying the uniqueness and continuity con

straints, is determined by the density of the features to be matched and the 

disparity range over which a match is sought. The greater this range the 

greater the number of false targets, and the greater the density the greater the 

potential for false targets. Thus, to avoid false targets, one should reduce 



- 13 -

either the disparity range or density. But then, it is desired both to be able to 

compute depth over a large disparity range and to obtain a fine detailed depth 

map of the scene. 

There are two main techniques which are used to maintain both high den

sity and a wide disparity range: relaxation methods and coarse-to-fine 

methods. The relaxation approach uses the 3D continuity assumption, which is 

applied to disparities in the images. The coarse-to-fine approach finds coarse 

disparities at low resolution (low density and wide range) but with low accu

racy. These rough disparities are then used to guide the search for more pre

cise disparities at finer resolution (high density and narrow range). Clark and 

Lawrence [1984] have implemented a coarse-to-fine process in hardware. 

Existing stereo systems employ two main approaches to matching: area 

matching and feature matching. Area matching is the matching of regularly 

sized neighborhood around a pixel. It is justified by the continuity assump

tion. The matching proceeds by selecting an area in one image and correlating 

it with the other image using local information. The interest operator 

[Moravec 1980] is widely used in area matching. This operator detects regions 

in an image which are of high variance in four directions (horizontal, vertical 

and diagonals), over a 3 by 3 pixel neighborhood. 

Feature matching is the matching of point-like or edge-like features, usu

ally in the form of ZCs or peaks. 

The survey in § 2:8 places an emphasis on the matching method used in 

each system. 
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2.6. DETERMINING DEPTH 

Once the correspondence problem has been solved, the disparity between 

each pair of matching image elements can be measured. Depending on the 

camera geometry, the depth of each scene element, that gave rise to a particu

lar disparity, can be calculated using triangulation. 

An interpolation step, based on the uniqueness and continuity assump

tions, can be applied to interpret occluding features and dissolve final ambigui

ties left from the matching process. 

2.7. MOTION 

Motion can be viewed as a generalization of stereo. In motion analysis, a 

sequence of images are analyzed. In stereo analysis, two or more "snap shots" 

of that sequence, with a known interval, are considered. 

Many studies have been conducted in recent years on the subject of 

motion, and there seems to be a confusing interchange in the usage of the 

terms motion and optical flow. We would like to take this opportunity and 

make a distinction between the two. An optical flow field is the measurement 

of the continuous change in the brightness of an image. Usually, it is a conse

quence of a moving object or a translating observer. But it can also be gen

erated by other means - a moving light source, for example. A motion field is a 

2D change in the retinal position of the projection of a point in the scene. It is 

caused by either motion of that scenic point, or translation of the observer, or 

both. 

We will inspect some systems that are of relevance to this project: sys-
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tems concerning motion-in-depth. A more general review on motion can be 

found in Ballard and Brown [1982] and Ullman [1981]. 

It has been observed as early as one hundred and fifty years ago [Wheat-

stone, 1838] that by changing the size of an object, an impression is produced 

that the object is moving in depth. Hence, motion-in-depth is associated with 

an environment in which a camera moves along it optical axis. The change in 

size of the perceived image is directly related to the instantaneous distance 

separating the object from the camera. Motion-in-depth has been referred to 

by various names. We chose to use the term motion-in-depth [Ullman 1979, 

Regan et al 1979a, 1979b]. A more common name used is looming [Schiff 1965, 

Gibson 1979, Marr and Ullman 1979, Marr 1982, Regan and Beverley 1978, 

Richards 1983]. Other terms used are time-to-collision [Lee 1974, 1976, Ull

man 1981, Ballard and Brown 1982] and rectilinear motion [Lee 1980]. O'Brien 

and Jain [1984] referred to it as axial motion stereo. 

Both stereo and motion systems have some deficiencies when used to 

recover a 3D structure. Richards [1983] showed that when the two methods are 

combined, only two stereo images and three points are needed to ensure the 

recovery of the 3D structure. 

2.8. SURVEY 

2.8.1. Stereoscopic Systems 

2.8.1.1. Marr etal (MIT AI Lab.) 

A group of researchers led by David Marr, have developed two systems to 

model human stereopsis, the first of which they rejected because of 
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neurophysiological reasons. 

Bela Julesz at the AT&T Bell Laboratories, showed [1971] that two reti

nal images of random dot stereograms are compared by the human visual sys

tem point-by-point, before referring to it as a whole. This implies that the 

human visual system can fuse stereoscopic disparity into 3D information, with 

no monocular clues. For that reason, the MIT group chose to use random dot 

stereograms as test data for their systems.. 

In their first system [Marr and Poggio 1976], a cooperative computational 

model was developed. It is a relaxation scheme which employs the uniqueness 

and continuity constraints. A point is assigned multiple disparities which inhi

bit each other. Local collections of similar disparities, on the other hand, excite 

one another. 

Although the system was successful, it was rejected as a model for human 

stereopsis. Instead, a system based on varying spatial scale was proposed 

[Marr and Poggio 1977, 1979, Marr 1982], implemented [Grimson 1981] and 

refined [Poggio 1984, Grimson 1984]. In this later approach, they suggested 

that tHe human visual system uses a coarse-to-fine scheme to detect and fuse 

disparities, and is accomplished by a convergent eye movement. Matches esta

blished at a large spatial scale were used to guide the matching analysis at a 

finer scale, resulting in less false targets and more accuracy. 

The convolution employed a 2D Laplacian of a Gaussian mask. It is a dis

tribution function shaped like a Mexican hat, which assigns weights to the 

neighborhood of each pixel in the image: as the distance increases the impor

tance of the neighboring pixel decreases. It is (approximately) a band-limited 

operator which blurs the image by an amount dependent on its scale, given by 
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the size of its central diameter. The convolution was performed on a LISP 

machine, speeded up by special hardware designed for that project. 

It was believed, at that time, that the human visual system uses four spa

tial channels, which are roughly one octave apart. Hence, their coarse-to-fine 

analysis used four different scales with a size ratio of approximately 1:2. 

i The information recorded about a ZC includes its location, size and orien

tation of the segment in which it was contained. These descriptions were com

puted for each of the eight images. In Grimson's implementation, the orienta

tion at a point on a ZC segment was computed as the direction of the gradient 

of the convolution values across that segment, and recorded in increments of 

30 °. Horizontally oriented segments of the ZC contours were ignored because 

they coincided with the scan line, and hence, did not have a well defined 

disparity. 

Marr and Poggio [1979] have shown statistically that given a ZC, the pro

bability of another ZC of the same sign occurring within half the central diam

eter is less than 5% (hence the usage of successive filters which are one octave 

apart). 

The matching at each scale proceeded independently. After a ZC was 

selected in one image, its corresponding ZC in the other image was searched 

for. The search is conducted in a region with a disparity range the size of the 

central diameter of the mask, and centered at the expected disparity obtained 

at the previous, coarser filtering step (the initial disparity may be taken as 

zero). 

If only one match with the same sign and approximate orientation was 

found, it was taken to be a valid match. If more than one match was found, 
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the continuity constraint was applied comparing the disparity of each candi

date match to the dominant disparity in the immediate neighborhood. If still 

more than one match prevailed, they were carried over to be disambiguated at 

a finer scale. If no match was found, the search area was doubled reducing the 

probability of obtaining a good match to 5 0 % . 

2.8.1.2. Mayhew and Frisby (University of Sheffield) 

This team, for the most part, followed up on the MIT line of work. They 

argued [1981] that, in human stereopsis, the activity at each scale is not 

independent, and suggested that cross-channel activity is taking place. They 

also claimed that features used for the matching process include peaks (max

ima in the second derivative) as well as ZCs. 

The rest of the systems described below disassociate themselves from 

human stereopsis, allowing the exploration of a variety of camera 

configurations. 

2.8.1.3. Moravec (Stanford University) 

Moravec's study [1980] is concerned with autonomous vehicle navigation. 

His aim was not to build a depth map, but to obtain information about the 

vehicle movement. 

A sequence of images was obtained in increments of one meter, which 

were then analyzed to deduce the vehicle movement. He employed in his work 

the interest operator which he had developed earlier and is widely used in the 

field. Features were selected and then searched, using his binary correlator, in 

a coarse-to-fine process. A low resolution correlation determined a best match 
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location for a selected feature, and reduced the area in the second image that 

must be searched at the next higher resolution. 

The correlation, which was repeated for each resolution level, was 

reported to have had about 1 0 % error rate. To reduce false matches, a 

sequence of 9 equally spaced images was used. A feature in one image was 

located in the other 8 views. The distances computed from the 36 possible 

image pairings, at each resolution, were statistically analyzed to provide the 

best estimate. 

2.8.1.4. Bernard and Thompson (University of Minnesota) 

They proposed [1980] a relaxation technique to solve the correspondence 

problem. Moravec's interest operator was used to select point-like features in 

each image. Each such point is assigned a list of possible matches based on a 

threshold value representing a maximal disparity. Each possible match in each 

list is given a weight probability, indicating the "goodness" of the match. The 

probabilities are then refined based on the consistency of the disparity values 

of its neighbors. At each iteration, the probabilities below some threshold 

value are discarded, while others above another threshold are accepted as 

valid. This process is repeated until a steady state is reached, which is 

reported to be around ten iterations. 

2.8.1.5. Hannah (Stanford University, Lockheed) 

Hannah [1974,1980] has developed a similar system to that of Moravec. 

He modified the interest operator to consider ratios of variance in the four 

directions, as well as intensity values over larger area. This modification ren-



- 20-

dered a better selection of features to be matched. 

2.8.1.6. Gennery (Stanford University) 

In his autonomous vehicle navigation system [1980], Gennery employed 

cross-correlation, as well as Moravec's interest operator, to deduce a depth 

map. The search for corresponding matches proceeded from left to right along 

an epipolar line; using local context of previous matches to suggest tentative 

match sites. 

2.8.1.7. Henderson, Miller and Grosch (Control Data Corporation) 

This group developed [1979] the broken segment matcher to construct 3D 

modeling of man-made scenes for aerial imagery. It combined edge and area 

based techniques, with the edges serving to bound regions in which correlation 

is based on image intensities. 

The matching is based on intersections of edges and epipolar lines in the 

two images. Edge match information is propagated from line to line and edited 

automatically as some edges end and others begin. 

The system assumes rectilinear structures, implying that all edges are 

straight and surfaces have one of three orthogonal orientations. In a later 

report produced by CDC [DeGryse and Panton 1980], the system was 

described to be "noisy", "fragmented" and "unstable". 

2.8.1.8. Arnold (Stanford University) 

Arnold proposed [1978, 1983] a feature based edge matching scheme. 

Edges are matched based on orientation, side intensities and the continuity of 
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two adjacent edges. In its early version, the system used unlinked edge ele

ments (edgels). It succeeded in correctly correlating about 90% of the edgels in 

the image. In its latest version, this was extended to link the edgels. It used a 

Viterbi dynamic programming algorithm [Forney, 1973], which employs a 

finite-state Markov process. 

The camera geometry used, in order to constraint the search space, is epi

polar geometry with coplanar image planes (see § 2.3). 

2.8.1.9. Baker (Stanford University) 

Baker has implemented [Baker and Binford 1981, Baker 1982] a stereo 

system which combines several ideas used in other systems, and employs an 

edge matching scheme. 

The camera modeling uses epipolar geometry with coplanar image planes. 

The images are convolved with a low-pass linear filter. The search technique is 

based on a Viterbi algorithm and engages a coarse-to-fine process in which 

resolution is doubled at successive steps. 

An edge is defined to have a position, contrast, slope and intensity to 

either side (splitting the edge to a left and a right halves). Links are kept to 

nearest neighbors below, above and to the sides. Edges are matched by com

paring their slope, side intensities, relative disparity obtained at a lower resolu

tion, and interval compression implied by the correspondence. 

The continuity constraint is used as a connectivity constraint in a 

cooperative procedure across epipolar lines, which removes edges that violate 

surface continuity. Another edge matching process is applied in an attempt to 

match unassigned edges, which are bound by pairs of matched edges. A final 



intensity correlation produces the desired depth map. 

2.8.1.10. Ohta and Kanade (CMU) 

This system [1983] improves on Baker's [1982] edge based system by 

interacting the cooperative procedure with the matching process. This implied 

a 3D search space, consisting of the row (scanline) and the column position in 

each image. 

First, isolated edges are detected from the image intensity profile. Then, 

the isolated edges form connected edges. An inter-scanline search is used to 

match the connected edges and to maintain consistency between the rows. 

The system is reported to be effective in matching the isolated edges, but 

slows down considerably as the number of edges increases. 

2.8.1.11. Lowrie and Crowley (CMU) 

This system [Lowrie 1984] uses coplanar epipolar geometry as well. The 

convolution employs a set of ID band-pass filters, similar to Marr's DOG filter 

[Marr and Hildreth 1980], which they named the ID difference of low-pass 

(DOLP) transform [Crowley and Stern 1982]. 

They use peaks in the second derivative, rather than ZCs, as features for 

the matching process. This choice was made for the sake of matching features 

of surfaces rather than those of edges. The positive and negative peaks, at 

multiple resolutions, were connected to form edge-paths. 

The search and matching proceed similarly to that of Ohta and Kanade's 

[1983] system. 
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2.8.2. Motion Systems 

2.8.2.1. Regan, Beverley and Cynader (Dalhousie University) 

Psychologists gave the perception of motion-in-depth early attention 

[Wheatstone 1838, Gibson 1950, 1966, 1979, Schiff 1965], but the most exten

sive work was conducted recently by Regan et al. They produced a series of 

reports [1973, 1978, 1979a, 1979b] in which they suggest the existence of a 

motion-in-depth channel, which is distinct from the sideways motion channel 

and from the position in depth channel. They brought forward some psycho

logical evidence that this channel is fed by two types of channels: stereoscopic 

motion channels and changing size channels. The stereoscopic motion channels 

are fed by the relative velocities between the left and right images of a moving 

object. The changing size channels are channels which are distinct from the 

channels sensitive to static size. 

They noted that changing size, is a. monocular cue and is available to one 

eye alone. For that reason pilots and baseball players, who have lost vision in 

one eye, can continue their activities effectively. 

Schwartz [1980b] argued against these findings, suggesting that the 

retinoscopic complex logarithmic mapping (CLM) of the strait cortex (area 17) 

dismisses the need for channels sensative to changes in size. This subject 

matter will be elaborated on in chapter 3. 

2.8.2.2. Lee (university of Edinburgh) 

Lee's work [1974, 1976, 1980] is concerned with the time it takes for an 

approaching observer to collide with an object positioned on his path, as in the 

case of a driver who is attempting to brake. 
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He argued that the absolute velocity at which the camera approached an 

object and the absolute distance between them, cannot be recovered from the 

velocity of the optical flow alone. What can be computed is their ratio, which 

in turn yields the time to collision. 

2.8.2.3. Jain (General motors, Ann Harbor University) 

Jain [1983a] put forward algorithms to directly compute the focus of 

expansion (FOE). He employed them to assist in the analysis of optical flow, 

and separate stationary objects from dynamic ones [1984]. He suggested 

[1983b] to apply CLM to the images with their FOE placed at the center. This 

approach is based largely on Schwartz' studies [1977, 1980a, 1981, 1982] and 

Weiman and Chaikin's investigation [1979] of this transformation. 

In a recent publication, O'Brien and Jain [1984] proposed a stereo system 

similar to the one developed in this project. In that system, the camera model

ing consists of a camera moving and gazing along its optical axis, with two (or 

more) frames being recorded at given spatial intervals. The environment in 

which the camera moves may consist of both stationary and dynamic objects 

(see chapter 3). 

The search space is ID advancing radially from the FOE outwards. 

O'Brien and Jain claimed that as a consequence of the camera modeling and 

the CLM: "correspondence of the points from one stereo picture map to the other is 

extremely simple". Although the search space is ID and directional, matches 

still must to be obtained. The problem is simplified, but definitely not elim

inated. 
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CHAPTER3 
THE GEOMETRICAL ASPECTS OF COAXIAL STEREO 

3.1. C A M E R A CONFIGURATION 

The camera configuration of coaxial stereo (fig. 3.1) consists of two cam

eras which are situated in space one behind the other. Their optical axes are 

collinear and their roll angle is the same. This forms a unique case of epipolar 

geometry (see § 2.3) in which all epipolar planes contain the optical axes of the 

cameras, and are perpendicular to the image planes. This implies that the 

intersection of an epipolar plane with the two image planes form two parallel 

lines. If we superimpose a conventional cartesian grid onto the image planes, 

with the origin at their intersection with the optical axis, the two intersection 

lines will form the same angle with the X-axis. Hence, two corresponding 

image points lie along corresponding radial lines. 

a b 

c ' 
d' 

a 

d c 

F i g u r e 3.1: t h e g e o m e t r y o f c o a x i a l s t e r e o . 

The coaxial camera configuration is equivalent to having a single camera 

which moves along its optical axis by a known interval. This is referred to as 
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motion-in-depth (see § 2.7). As the camera approaches the fixation point, the 

angle at which any other point in the scene is conceived, widens (fig. 3.1). The 

rate at which this angle increases gives rise to a stereoscopic disparity. 

Motion-in-depth projects rectilinear optical flow upon the image plane 

(fig. 3.2). The radial lines which extend outward (as the camera moves for

ward) from the focus of expansion (FOE) [Ballard and Brown 1982, Prazdny 

1980, Williams 1980, Lawton 1982, Jain 

1983, 1984] are the one dimensional lines 

along which one seeks to resolve the 

correspondence problem. The direction 

of the optical flow implies that for each 

point projected onto a close image plane, 

its corresponding point projected onto a 

farther image plane is always closer to 

the FOE. The epipolar geometry implies 
F i g u r e 3.2: FOE 

that the projection of a scenic point 

moves along a radial line. To eliminate 

the effect that the distance of an image point from the fixation point has on 

the depth computations, the transformation described below is applied. 

3.2. C O M P L E X LOGARITHMIC MAPPING 

3.2.1. Introduction 

The size and rotation invariance of complex logarithmic mapping (CLM) 

appealed to several recent vision researchers, in both biological [Schwartz 1977, 
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1980a, 1981, 1982, Cavanagh 1978, 1981, Casasent and Psaltis 1976] and com

putational [Funt 1976, Weiman and Chaikin 1979, Sandini and Tagliasco 1980, 

Schenker et al 1981, Jain 1983, O'Brien and Jain 1984] image analysis. 

Schwartz, in a series of papers, has suggested that the retinoscopic map

ping of the strait cortex (area 17) performed by the human visual system, is a 

CLM. Furthermore, he suggested the existence of the same mapping in three 

other areas of the brain which perform visual analysis tasks. He also pointed 

out [1981] the projection invariance of CLM. By projection he meant the 

sequence of projective changes which a stimulus fixed in the environment 

would undergo as an organism approaches a fixation point. This holds true 

[Jain 1983, 1984, Lancia and Nicholson 1979] only if the directions of motion 

and gaze are collinear. 

Cavanagh disputed some of Schwartz standings, stating that the size and 

rotation invariances hold only when measurements are made with respect to 

the origin of the CLM. This implies that the origin of the CLM should coincide 

with the FOE. 

3.2.2. The Mathematical Aspects of CLM 

Conventionally, images are sampled in cartesian coordinates. We view the 

cartesian image plane as a complex plane, with the X-axis being the real axis 

and the Y-axis being the imaginary axis (fig. 3.3). 

A complex number is defined as 

z = x + iy (1) 

where i =\/-l. The length of the vector from the origin to z is denoted by 
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| z | and referred to as the modulus. The angle that the vector forms with 

the X-axis is called the argument and is denoted by Arg (z). The complex 

number z can be specified in polar form as 

z = re'9 = r(cos 9 + i sin0) (2) 

where r = | z | and 9 = Arg(z). 

Y (imaginary a x i s ) 
4 (X'Y> 

X ( r e a l a x i s ) 

F i g u r e 3 . 3 : c o m p l e x i m a g e p l a n e , z = x + i y 

Under conventional cartesian coordinates 

r = v V + y2 (3) 

and 

0 = tan"1 (4) 

Functions which involve complex numbers, w=f (z), are called mapping 

functions. The z-plane (complex cartesian coordinates) is their domain and the 

w-plane (complex polar coordinates) their range. 

With real variables, CLM is given by 

w = \i\z (5) 
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and with complex variables by 

w — u(z) + i v(z). 

From (2) and (5) we can write 

w = In (re<9) = In r + t 9 

Hence, the mapping given by (5) can be written as 

u (r ,9) — In r 

v(r,9) = 9 

(6) 

(7) 

(8) 

(9) 

A scene point Po(x0,y0,z0) and its projection upon the image plane 

•Pil^i.^i-l) (%• 3.4), are given by 

(10) 

y-i (ii) 

The (x1,yl) plane is assumed to be parallel to the (x0,t/0) plane. 

P (x ,y , z ) 
0 0 0 0 

P <x ,y , 1) 
l i i 

F i g u r e 3 .4: 3 D projection space 
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Motion-in-depth of the camera results in 

drx dyjx? + y? 

dz0 dz0 

From (10), (11) and (12), we can write 

drx dyjxfi + y$ dr{ 

dz0 dzQ z0 dz0 z{ 

The CLM horizontal displacement can be expressed as 

du du ^ r i 

From (8) we have 

dzQ dri dz0 

du. _ 1 
dr r\ 

and from (14), (13) and (15) we obtain 

du 1_ 

dz0 z0 

The CLM vertical displacement can be expressed as 

dv dv dd 
dz0 dO dz0 

(12) 

(13) 

(14) 

(15) 

(16) 

= 0 (17) 

It can be observed (17) that the 'looming' of a camera generates no verti

cal displacement of P{ upon the image plane. Equation (16) implies that from 

the horizontal displacement and from the (known) movement of the camera, 

the depth of the point PQ can be determined. 
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3.2.3. Geometrical Features of CLM 

The attraction of CLM is in its various geometrical features. Concentric 

circles map into vertical lines, and rotation in the z-plane corresponds to verti

cal displacement in the w-plane. Logarithmic spirals map into inclined straight 

lines. Radial lines map into horizontal lines, while magnification corresponds to 

horizontal displacement in the w-plane. This implies that in an environment of 

stationary objects, if a camera move along its optical axis, all projected images 

are invariant in size and exhibit horizontal displacement only. This fact plays 

an important role in simplifying the extraction of depth from motion-in-depth. 

Note that this is a feature of polar space and is independent of the logarithmic 

part of CLM. 

Weiman and Chaikin [1979] pointed out that congruent square cells in the 

z-plane, are transformed in the w-plane into curvelinear bounded cells which 

are mutually similar (fig. 3.5). The inverse of CLM in which rectangular 

regions are mapped into annular regions is known as the exponential mapping 

[Kober 1952, Churchill 1960], and guarantees the mapping to be conformal 

[O'Brien and Jain 1984]. 

Y q 

x p 

F i g u r e 3 . 5 : t h e e x p o n e n t i a l m a p p i n g 
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3.2.4. Practical Deficiencies of CLM 

Mathematically, when mapping an image from cartesian space into polar 

space, each point in one space corresponds to exactly one point in the other. 

But when storing these points and their intensity values in a finite state 

machine, they must be quantized into picture elements (pixels). 

There are several difficulties one must consider when mapping an image 

from cartesian space to polar space (fig. 3.6). O'Brien and Jain [1984] pointed 

out that a direct interpolation, where the intensity value of each pixel in the 

cartesian image is assigned to a corresponding pixel in the polar image, pro

duces discontinuities and result in a broken image. An inverse interpolation, 

where each pixel in the polar image is set to an interpolated intensity value of 

the corresponding position in the cartesian image, renders much smoother 

results. 

4 Y 

P (X,V) 
P (x,y) P (r, 9 ) i i i 2 2 2 

P (r, e ) 
1 1 1 

F O E X r 
FOE 

F i g u r e 3.6: c a r t e s i a n t o p o l a r mapping 

Cartesian space is conventionally tessellated by a square grid which 

implies that all pixels are of even size and shape. In polar space, pixels 

preserve shape only in a retina-like mapping [Sandini and Tagliasco, 1980, 
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Funt, 1976]. The pixels width always grow in size as their distance from the 

origin increases. The rate at which it grows is constant, since it depends only 

on the interval chosen between two consecutive 0's. This brings about two 

related problems. High resampling density is generated around the origin 

(FOE), which is maximized as we get closer to the origin. In the periphery, a 

problem of opposite nature emerges. The density of new sampled points 

decreases as we approach the boundary of the polar image. 

The rate at which the depth of a polar pixel changes depends on the 

scheme selected for r. The two schemes considered here are logarithmic 

(exponential) spacing and even spacing. In the first case the depth of the pixels 

grows exponentially as we move away from the origin, and in the second one it 

remains the same. A logarithmic mapping enhances both the high density 

problem around the origin and the low density problem at the periphery. 

Hence, the uniform resolution of a cartesian image is lost when it is 

transformed into CLM space. Instead, we obtain a retina-like image, with 

very high resolution at the center and low resolution in the periphery [Sandini 

and Tagliasco, 1980]. 

An even interval mapping, on the other hand, avoids both these problems 

in the depth direction. Furthermore, selecting an interval equal in size to a 

cartesian image pixel, keeps the resolution of the two images closely related. 

Thus, it was implemented. Since the logarithmic mapping is desired for simpli

fying the computation of depth from disparity, it is postponed to the stage 

where the actual depth is computed. Notice that additional computational sav

ings are made as the logarithmic transformation is applied only to selected 

feature points, rather than to all pixels of the image. 
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CHAPTER 4 

SCALE-SPACE IMAGES 
OF ONE DIMENSIONAL FUNCTIONS 

4.1. INTRODUCTION 

Scale-space images are used in this project as a representation for point

like features which are extracted and matched to obtain the local disparities. 

In this chapter we take a slight digression from the main subject to dis

cuss scale-space images (SSIs) of ID functions. Some new results on the struc

ture of such SSIs are presented. 

4.1.1. The Scale-Space Image Concept 

The concept of SSIs was first introduced by Stansfield [1980] but was not 

pursued at that time. It was reintroduced by Witkin [1983], who made some 

interesting observations about the nice behavior of contours in a SSI. 

A SSI of a ID function is a complete coarse-to-fine description of that 

function. It is obtained when a function is convolved with the second deriva

tive of a Gaussian filter, at constantly increasing scales. The reason for con

volving a. signal with the second derivative of a Gaussian filter is to enhance 

abrupt value changes. At each scale level the convolution produces a smoothed 

function whose degree of smoothness is expressed by features called zero-

crossings (ZCs) (see § 2.4). The accumulation of these ZCs, extracted at 

different scale levels, forms nicely behaved contours which are referred to as 
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scale-space contours. 

There are two types of contours which may appear in a complete SSI of a 

continuous ID function: open contours and the more common closed contours. 

The major differences between the two lies in the fact that closed contours are 

of finite height and have a single peak, while open contours extend to infinity 

and have no peaks. 

4.1.2. Some New observations 

In this chapter, we present some new observations about the structure of 

contours in a SSI of ID functions. 

One observation made by Witkin [1983] was the hierarchical structure of 

a SSI to which he referred to as "interval trees". Mokhtarian and Mackworth 

. [1984] based their matching algorithm on this hierarchical structure, stating 

that for their application scale-space contours may never intersect each other. 

Yuille and Poggio stated [1983a] in their investigation into the properties of 

these contours, that it is never empirically observed that three open contours, 

commencing at a fine a level, merge into one such contour at a coarser scale 

(cr) level. We will show that scale space contours may in fact intersect each 

other. But before doing so, we discuss some of the conditions that give rise to 

open contours, look at some of their properties and their relations with their 

corresponding functions. 

There are two primitive signals which generate two primitive types of 

open scale-space contours. They are the Dirac delta function and the single 

step function (which we assume to be continuous). The single step function 

generates the spike contour which is a straight line extending upward and 



- 36-

composed of ZCs that are independent of a. The Dirac delta function produces 

the 45° rabbit-ears contour which is composed of two straight lines diverging 

symmetrically about the function's origin in a 45 ° angle. 

All contours begin to climb in the fine to coarse {x,a) plane as open con

tours. Most of these open contours join one of their nearest open neighbors, 

form a closed contour and cease to exist as a increases in value. Others just 

continue their infinite way up the (x,o~) plane. In some special cases, three 

open contours will merge into one and form a closed contour which is inter

sected by an open contour. That open contour may then either proceed alone, 

join with another open contour and form a closed contour (which intersects 

another closed contour) or merge with another two open contours into one, 

and so on and so forth. 

4.1.3c Approach and Assumptions 

The five assumptions made by Yuille and Poggio [1983a] about the Gaus

sian filter, guide this investigation as well. They are as follows: 

- filtering is linear and shift-invariant and, hence, a convolution; 

- the filter has no preferred scale length; 

- the filter recovers the whole image at sufficiently small scales; 

-the position of the center of the filter is independent of <r; 

- the filter goes to zero as x —• oo and as cr —+ oo. 

We make the following assumptions about the ID functions: 

a function is continuous; 

the domain of a function is infinite; 
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a function is monotonically asymptotic to a constant value as ar —* ±00 
(but not necessarily the same at both +00 and -00). 

In other words, although functions are continuous and infinite, they may have 

arbitrary value fluctuations only inside some defined domain interval. Outside 

that interval, when smoothed with a Gaussian filter with a large enough tr, the 

function's values must change monotonically and it becomes asymptotic to 

some constant value as ar —>• ±00. The sin and sine functions are examples 

of signals that do not satisfy these constraints. 

A function has four values which effect the behavior of contours in its 

SSL They provide us with a means by which functions can be categorized, 

and are as follows: 

a) the initial value of a function: init = lim / (x). 
* —•-00 

b) the final value of a function:, fin = lim / (x ). 
* —•+00 

c) the maximum value of a function: fmax > / (ar). 

d) the minimum value of a function: fmin < / (ar). 

In case (1) we attend to signals whose initial and final values are equal. In 

case (2) we attend to signals whose initial and final values are not equal. To 

simply our analysis we assume that fin > init = 0 and that fmax > 0. 

4.2; ON THE GENERATION OF OPEN CONTOURS 

4.2.1. Case 1: signals where fin = init 

This category is concerned with signals whose initial and final values are 
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equal. If we assume for a moment that the signals wrap around, then they can 

be viewed as closed planar curves. Mokhtarian and Mackworth [1984] 

observed that the SSI of such curves contain only closed contours. Contours 

that appear to be open are assumed to represent curves about which only par

tial information is available. Since we are interested not in wrap-around func

tions but in infinite functions, the "openness" of the functions allows for open 

contours to be valid scale-space contours. 

4.2.1.1. Case 1.1: signals where 
a 

fmin = init = 0 . 

The most primitive signal which complies __ 

with the given constraints is the impulse or 

Dirac delta function (fig. 4.1a), <$(x), which is given by 

S(x ) = 0 x 7 ^ x0±e 

—00 2g-€ 

where e is an arbitrarily small number greater than 0 . 

The impulse is the identity function under convolution. This is expressed 

by 
„ CO 

6{x) ® f(x) = 8(t) f (x-t)dt = f(x-t)\ t = 0 = / (ar) (19) 

Thus, convolving b\x ) l with the second derivative of a Gaussian filter renders 
1. Although <5(x) is not a continuous function, we could treat it as a concept in the theory of distribution [Gup

ta, 1966, Rees et al, 1981] in order to enhance our level of mathematical rigor. But this would only complicate 

the notations used while producing the same results. Thus, for practical reasons, we treat the impulse as a con

tinuous function. 
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5 (X) 

x 

(a) (b) 

Figure 4.1: The Dirac delta (<5) function (a) and its scale-space image (b), composed 
of the rabbit-ears contour. 

f (X) 

X X X y 
r 0 1 A 

(a) (b) 

Figure 4.2: A pulse function (a) and its scale-space image (b). 
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the filter itself, centered at the impulse function position. The accumulation 

of the filter's ZCs, extracted at incrementing a values, forms the SSI in figure 

4.1b: two straight open contours that extend diagonally in a 45° angle (when 

the c interval is 1) in each direction. This pair of open contours is referred to 

as the 45 8 rabbit-ears contour. 

Notice that if we have at i 7^ x0 ± e 

where c is a constant, then the same SSI is generated. Signals such that 

(fig. 4.2a), contain in their SSI two open contours which eventually converge to 

be asymptotic to an imaginary 450 rabbit-ears contour, whose origin is mid

way between xt and xr (fig. 4.2b). Furthermore, we prove that signals in case 

(1.1) contain in their SSI exactly two open contours. The complete proof is 

given in appendix HI, case A l . 

4.2.1.2. Case 1.2: signals where 

We can distinguish here two sub-cases: \—J 

functions that approach ± 0 0 with the same 

sign and those which approach ± 0 0 with opposite signs. 

Functions that approach ± 0 0 with the same sign resemble case (1) 

above. They have either two or four open contours in their SSI. This is proved 

b\x) = c , 

/ ( * ) 

C X<X[ 

c x > a r r 

v V>C, Xi<X<Xr 

fmin < init = 0. 
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and discussed in appendix HI, case A3. 

Functions that approach ± 0 0 with opposite signs have either three or 

five open contours in their SSI. This is proved and discussed in appendix IH, 

case A4. A simple example that illustrates this sub-case is given in figure 4.3. 

It shows a signal composed of one cycle of a squared wave (fig. 4.3a). Its SSI is 

composed of exactly three open contours. Two open contours are asymptotic 

to an imaginary 45° rabbit-ears contour, and the third one extends straight 

up midway between the "ears" (fig. 4.3b). It is referred to as the spike con

tour. If the above wave signal is asymmetric (fig. 4.4a) the open contours bend 

towards the side of the signal, relative to the location where it crosses the zero, 

which encloses a smaller area under its curve (fig. 4.4b). However, the basic 

pattern of three diverging open contours is preserved. This is proven in appen

dix III, case A2. 

While in case A4 of appendix HI we show that functions may contain five 

open contours in their SSI, we have not empirically observed any one function 

that generates more than five open contours in its SSI. 

4o2.2. Case 2: signals where fin > init = 0 

This category is concerned with signals whose initial and final values are 

not equal in value. We concentrate our discussion on functions whose values at 

any given location are boundeded by their initial and final values. 



t f (X) 
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4.2.2.1. Case 2.1: signals where 
fmax > fin and/or fmin < init 

fin 

This case is similar to cases (1.1) and (1.2) •• init 

above. The imbalance between the initial and 

final values will force all contours to bend towards the side of the (x,<r) plane 

that correspond to that end in the generating function which show a smaller 

value change. 

4.2.2.2. Case 2.2: signals where 
fmax = fin and fmin = init ™ * 

contour in their SSI. This is proven in appendix 

HI, case A5. This contour is either a spike contour, or an open contour which 

eventually converges to be asymptotic to an imaginary spike contour, arising 

midway between xt and xT where / (x) = init for all x<Cxt, and 

/ (x) = / in for all x~>xr. 

We confine our discussion to step signals, although. most observations 

apply to signals containing both steps and troughs. As in the case of the Dirac 

delta function, we treat this basic signal as a continuous function. The 

mathematical definitions of step functions are given in appendix I. 

Convolving a single step signal (fig. 4.5a) with a Gaussian filter produces 

a SSI consisting of just the spike contour (fig. 4.5b). The SSI of a double step 

signal contains one open contour and one closed contour. If the two steps are 

of uneven size, the open contour will be on the side of the SSI as is the larger 

All such functions have exactly one open 
#*• i n i t 
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Figure 4.6: Two double step function of uneven steps. This is to illustrate the 
change in position of the closed contour with respect to the open one, as the two steps 
change in size. 
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step in the generating function (fig. 4.6). If the steps are of even size, the open 

contour will intersect the closed contour in the middle (fig. 4.7). This 

corresponds to the situation where the open contour crosses over from one side 

of the closed contour to its other, as the smaller step becomes the larger one. 

We will elaborate on this phenomenon in § 4.3. 

In general, multi step signals, say of n steps, generate SSIs containing one 

open (spike) contour, n-1 closed contours and 2n-l ZCs at a fine a level (i.e. 

before any closed contours are formed). The positioning of the spike contour 

on the X-axis of the (x,cr) plane, depends on the dimensions of the different 

steps and may intersect any closed contour as it moves about the X-axis. 

4.3. CROSSING: CONTOURS 

We have established the validity of open contours in a complete SSI of 

several one dimensional functions. These contours, as we have seen, tend to 

change their position on the X-axis of the (X,<T) plane as values in the generat

ing function change their relative value. In doing so, they may "skip over" 

some closed contours. In such instances when an open contour moves from one 

side of a closed contour to its other, an intersection of the closed contour by 

the open contour occurs. 

4.3.1. The Even Double Step signal 

A most primitive signal that illustrates this phenomenon is the even dou

ble step (EDS) signal. It is composed of two steps of equal size (fig. 4.7a) and 

generates a SSI containing a symmetric closed contour which is intersected in 
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the middle by a spike contour (fig. 4.7b). This instantiates a state of equili

brium between the two possible cases of an uneven double step signal (fig. 

4.6). Notice that this particular SSI appears in the list of SSIs that "are never 

empirically observed when the filter is a Gaussian", in a paper by Yuille and 

Poggio [1983a] that outlines scale-space theorems for ZCs. 

f (X) 

l 

2 

" x„ x . X 
o o 0 

• x x x 
o o 0 

(a) (b) 

Figure 4.7: An even double step function (a) and its scale-space image (b). 

The validity of the SSI of an EDS signal, can be proven as follows: 

p r o o f 

Let the one dimensional function be f(x), the one dimensional Gaussian 

filter g(x,o~) and the convolved function h(x,<r). From (Al.6) in appendix I we 

can write 

h[x,a) = g-'(X+XQ) + g '(*-*„). (20) 
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a) 

- x X 
o o 

t h e smoothed i n d i v i d u a l s t e p s 
t h e i r sum 

Figure 4.8: The three stages of consructing a SSI of an even double step function: 
(a) the three zero-crossings at a fine a (a<x0); 
(b) the three zero-crossings merge into one ( < T = Z 0 ) ; 

(c) only one zero-crossing emerges when a is large (o~>x0). 
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The scale-space contours are generated by 

h(x,<r)=0. (21) 

Figure 4.8 shows three critical convolution stages, in the formation of this 

SSI. 

From (20), (21) and (A2.2) in appendix II, we can write 

0 = 
\X-T-XQ) -,„2 (x-x0) 

- ( * r * o ) 2 

(22) 

-(*2+*0
2) 

-L e 2<r2 
a 2 

-2X2 o 2** 0 

2a 2 \„l£r 

{x+x0)e z < r + {x-x0)e (23) 

hence 

0 = x { e a + e ° J + x0 {e * - e 
-2 X 

(24) 

and 

0 = x cosh j •— | - x0 sinh 1 (25) 

Thus, the equation 

x' = X A tanh x- (26) 

represent the SSI of f(x). 

One solution for equation (26) is x =0 which corresponds to the spike 

contour in the SSI. The other two solutions correspond to the closed contour 

in the SSI. They are shown graphically in figure 4.9. The ZCs are the points of 

file:///X-T-Xq
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Figure 4.10: A triple step function containing an EDS (a) that generates crossing 
closed contours in its SSI (b). 
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intersection between the various curves and the line y=x. It can be observed 

that if <T>XQ only one ZC is generated, while for a < ar0 three ZCs are 

generated. 

4.3 d . l . Multi step signals which contain one or more EDSs 

Interesting SSIs can be generated by functions containing EDSs. We refer 

to situations where each segment of a function which contains an EDS, forms 

crossing contours without any interference by either neighboring steps or 

smaller steps situated between the two steps of the EDS. 

Take, for example, a triple step signal composed of one step which is 3a 

units wide and 26 units high, and of an EDS each of size a by 6 (fig. 4.10a). 

It generates a SSI (fig. 4.10b) containing one open contour and two closed con

tours which intersect each other! 

The validity of this SSI can be proven as done for the EDS signal. 

The signal in figure 4.11a contains a pair of EDSs which are sufficiently 

separated. It produces a SSI shown in figure 4.11b the validity of which can be 

proven as before. 

This of course can be extended to an infinite variety of such pyramids 

that can be generated by a variety of signals containing one or more EDSs. 

4.3 .2. Wave signals 

The phenomenon of crossing contours is not limited to just signals con

taining EDSs, but might occur in the SSI of any signal which generates one or 

more open contours. 
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Figure 4.12: A wave function of five cycles (a) and its SSI (b). 
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The SSI of a squared wave signal which is composed of a single cycle is 

given in figure 4.3b. It contains a spike contour and a rabbit-ears contour. A 

signal with two cycles, generates an additional closed contour in the middle of 

the SSI which is intersected by the spike contour. 

In general, a wave signal of n cycles, generates a SSI which contains three 

open contours, n-1 closed contours and 2n+l ZCs at a fine a level. If all the 

cycles are complete, are of even size and form a continuous wave, then one 

open contour is the spike contour positioned in the middle of the SSI, and the 

other two are of the rabbit-ears. contour, one on each side of the SSI. One 

closed contour is the parent of all the other closed contours, which are distri

buted symmetrically under its umbrella. This parent contour is always inter

sected by the spike contour. When the number of cycles is odd so is the 

number the children closed contours. The middle child contour is intersected 

by the spike contour. A squared wave signal of five cycles (figures 4.12a and 

4.12b) is given as an example: 

As in the case of the even double step signal, a variety of crossing con

tours can be generated with different combinations of this signal. A wave sig

nal containing two even double cycles (fig. 4.13a) and its SSI (fig. 4.13b) are 

given as an example. 

4 . 3 . 3 . O t h e r cases 

Another group of signals which render similar results are signals composed 

of strings of pulses with intermittent sign change. One pair of such pulses (fig. 

4.14a) produces a SSI (fig. 4.14b) similar to that of a two cycled wave signal. 

The only difference is in the curvature and height of the closed contour. A sig-
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4 f (x) 

X 

(a) (b) 

Figure 4.13: A function composed of two even double cycle wave signals (a) and its SSI (b). 

f (X) 

X 

(a) (b) 

Figure 4.14: A function composed of two pulses of opposite signs (a) and its SSI (b). 
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nal of several pulses with intermittent sign change and its SSI are shown in 

figures 4.15a and 4.15b. 

So far we have seen crossing contours which are formed by spike type 

open contours. Open contours belonging to a rabbit-ears contour, can also 

cross a closed contour. We have seen that a pulse signal yields a SSI contain

ing a pair of diverging open contours (fig. 4.2b). Two pulses of equal sign gen

erate an additional closed contour, whose placement in the SSI depends on the 

size ratio between the two pulses and their distance apart (fig. 4.16). If the 

pulses are of equal or almost equal values, the closed contour will be situated 

between the two open contours. If one is sufficiently smaller than the other, 

then the closed contour appears on the side of the SSI as is the smaller pulse 

in the signal. So again, there is a state of balance in which an open contour 

crosses a closed one. An example is given in figure 4.17. 

4.4. BINARY SCALE-SPACE IMAGES 

One should note that locally, when two contours cross each other, the 

point of juncture is always formed by four lines. This suggests that SSIs can 

be viewed as binary images (fig. 4.18). Should this information be made expli

cit, it might prove to be the necessary additional information needed to con

front difficulties created by the phenomenon of crossing contours. It may also 

resolve the breaking down of the fingerprints theorems [Yuille and Poggio, 

1983b], when a spike contour is present in the SSI. For example, a non-binary 

SSI containing just a spike contour proposes two ambiguous step signals that 

may generate it. Should the SSI be binary, the unique and correct signal can 
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Figure 4.15: A multi-pulse function of intermittent sign change (a) and its SSI (b). 
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Figure 4.16: A signal composed of two pulses of various relative energy and their 
corresponding SSIs. This is to illustrate the positining of the closed contour with 
respect to the open contours as these energies change. 



Figure 4.18: The scale-space image of an even double cycled wave signal (a) and its 
binary form (b). 
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be recovered. The same can be observed for all SSIs that contain a straight 

spike contour and are symmetric about this contour. 

Since a SSI is formed by individual ZCs, whose direction is available at 

computation time, and since all the ZCs that form a particular contour have 

compatible direction, a binary SSI can be easily computed. This idea requires 

more work and is currently being studied. 

4.5. CONCLUSION 

In this chapter, we have analyzed the structure of SSIs of some selective 

basic signals, concentrating on the formation and behavior of open contours. 

We proved that ID functions contain in their SSIs at least one and empir

ically observed no more than five open contours. Signals which obey 

lim / (x) = lim / (x) = c where c is a constant, contain in their SSI at 
X —*-oo * —.+00 

least two diverging open contours. If the values of a signal at any given loca

tion stay either above or below c there are exactly two open contours in the 

SSI. These contours converge to be asymptotic to an imaginary 45 0 rabbit-

ears contour. 

In the category of signals where lim f (x) j£ lim / (x), we concen-
00 X -*-(-00 

trated on step signals which at some coarse 0* value contain in their SSI just 

one open contour. This contour is either the spike contour or converges to be 

asymptotic to an imaginary spike contour. There can be only one such contour 

in a SSI. 

We proved the validity of the crossing contours phenomenon. We ela-
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borated on the even double step signal whose SSI, at a fine a level, contains 

three open contours which merge into one, at a coarser <r level. In doing so, it 

forms a closed contour which is intersected by an open contour. This gives rise 

to other step signals which in turn can generate in their SSI closed contours 

that intersect each other. We have also explored other signals, such as wave 

signals, which generate crossing contours. 
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CHAPTER 5 
SCALE-BASED MATCHING 

5.1. INTRODUCTION 

Mokhtarian and Mackworth [1984] have pointed out that the invariant 

properties of SSIs entail the desirability of carrying out the matching process 

in this, space domain. Their invariance under uniform scaling is essential for 

coaxial stereo matching, while their invariance under translation is essential 

for conventional stereo matching. Furthermore, in a coaxial stereo system, the 

invariance of SSIs under rotation may prove very helpful in detecting and 

correcting camera, rotation between frame taking. 

Yuille and Poggio have shown [1983b] that an intensity profile of an 

image can be recovered from its SSI (up to an equivalent class of linear varia

tion). In other words, such a SSI is a complete description of an intensity 

profile and of its intensities inter-relationships. Thus, matching SSIs is pre

ferred to matching at specific scales. Each such scale represent a horizontal 

slice of the SSI and contains only partial information. Moreover, when select

ing a specific scale, it is not clear which scale is "best" since it may vary for 

different intensity profiles. 

5.2. APPROACH CONSIDERATIONS 

Pairs of corresponding rows in the polar images are matched in sequence. 

A SSI is built for each row. The left edge of a SSI corresponds to the FOE. 
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The right edge corresponds to the frame boundary of the respective radial line 

in the cartesian image. 

The goal of the matching process is to establish correspondence between 

contours in two SSIs. In coaxial stereo we have, inherently, an established 

correspondence for one point in the scene: the fixation point (the FOE in the 

images). In other words, the left edges of both SSIs always match. This 

presents a great advantage that most other stereoscopic systems lack. Hence, 

one can start the matching process at this point and proceed with all other 

scale-space contours in sequential order. 

However, such an approach would weaken the generality of the matching 

process since it cannot be applied to most other visual expert systems, and 

conventional stereo in particular. Another deficiency of this approach is in the 

degree of robustness. In the case of highly textured images, especially, around 

the fixation point, the process will begin by matching small contours which 

may prove unreliable. Furthermore, such contours appearing in the SSI of the 

closer image (the closer SSI, here on) may not show in the SSI of the farther 

image (the farther SSI, here on). 

Hencê  we took the approach of matching the contours top-down. The 

process starts with matching the highest closed contours in each SSI, which 

usually represents the sharpest intensity change in the images. Notice, that by 

starting with the highest closed contour in the closer SSI, a match for it must 

exist in the farther SSI. 

5.3. THE DIFFICULTIES IN ESTABLISHING CORRESPONDENCE 

In an ideal situation, all contours will match left to right in sequential 
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er. However, one must be aware of the following potential problems: 

As an observer approaches an object in the scene, more and more details 

of that object are revealed and recorded on the retinal image. This may 

result in extra small contours in the closer SSI. 

Some features observed at one distance may be occluded at a different 

range (usually a closer range). This will result not only in iless features in 

that SSI, but in a drastic change in its structure. Thus, straight forward 

SSI matching is no longer possible. However, it might be possible to esti

mate the potential for changes the SSI might undergo. This problem is 

not addressed in this project and is left for future work. 

A scenic area projected onto a fixed size image plane is bounded, among 

other things, by the distance separating it from the camera. As the cam

era moves away from the scene, more area is projected onto the image 

plane. This results in additional information in the farther image, which 

translates into extra contours on the right hand side of its SSI. This prob

lem is resolved by directing the matching process from the closer SSI to 

the farther one. 

The formation of closed contours is highly sensitive to changes in the bal

ance of the image intensities. Figure 5 .1 illustrates this problem. The syn

thetic images in (a) and (b) show three flat annular shapes as viewed from 

two distances. Their polar transformations are shown, respectively, in (c) 

and (d). The SSIs shown in (e) and (f) are of the first rows in the polar 

images. Although these rows correspond, the structure of their SSIs is 

different. Hence, two images of the very same scene, taken from different 

distances, may in fact render SSIs that cannot be directly matched. 



Figure 5 .1 : An illustration of the sensitivity of scale-space contours to the balance of 
intensities in the image. 
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(e) As a result of problem (d) above, contours have a tendency to move about 

the X-axis of the SSI. This is especially true for spike contours. In such 

cases (fig. 5.2), a careful analysis of the SSIs is required. This problem as 

well is left for future work. 

(f) A consequence of problem (e) above is the possible formation of crossing 

contours. A broad discussion of this phenomenon is given in chapter 4. To 

deal with this problem, we suggest a two-tone binary SSI (fig. 3.18). The 

contours in this type of a SSI are the peripheral lines that enclose two 

types of regions: those that render convolution values less or equal to 0, 

and those with values greater than 0. This approach eliminates the prob

lem of crossing, contours by changing the status of crossing contours to 

distinguishable touching contours. We have not integrated this suggestion 

into our current system. 

0 1 2 3 4 S x 0 1 2 3 4 5 

Figure 5.2: movement of an open contour. 
these two SSIs exemplify the problems involved when a spike contour is moving 
about the X-axis. The numbers marked on the X-axis reflect actual matching 
points. While matches between points 0, 1 and 2 can be obtained by direct contour 
matching, it is not the case for points 3, 4 and 5. 
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5.4. THE MATCHING ALGORITHM 

A ID SSI is a coarse-to-fine hierarchical representation of the intensity 

profile of a ID image. An imaginary super-contour exists at the root of this 

tree. This contour contains all the real contours in the SSI. Each real contour 

has zero or more children, i.e., contours which exist inside it, and zero or more 

siblings, i.e., contours which share the same parent. Every closed contour has a 

peak, a right branch and a left branch. Open contours have only one branch. 

While rabbit-ears contours may appear to have a peak, a spike contour can 

proceed upward indefinitely, and is truncated at an arbitrary height (above the 

rest of the contours). 

In principle, our algorithm is similar to that implemented by Mokhtarian 

and Mackworth [1984]. It is a modified Uniform Cost algorithm [Nilsson, 1971]. 

It finds the lowest cost match between contours in the two SSIs. In most cases, 

the two tallest closed contours in each SSI will match. An exception will occur 

when a higher contour exists on the right hand side of the farther SSI (see §5.3 

(b)). The sequential order of the contours and several parameters correspond

ing to uniform scaling and translation are used for the measurement of the 

"goodness" of a match. 

5.4.1. Establishing the Initial Matching Nodes 

The algorithm starts out by selecting the highest closed contour in the 

closer SSI, and pairs it up with all closed contours of the farther SSI, in height 

order. Each such pair is exploited and evaluated in terms of the cost of the 

match. There are two scale space transformation parameters mapping one con

tour to another which need to be computed for each node. These two are the 
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scale k and shift d parameters. The relationship between the old coordinates, 

x and <T, and the new coordinates, x' and a', is as follows: 

x' — k x + d 

o~' = ka 

Only one pair of points is needed to compute k and d. These can be 

computed using the coordinates of the peaks of the two contours since peaks 

provide a pair of points on the contours which correspond to each other. Since 

for open contours peaks are not reliable, these parameters are computed for 

the x-coordinate of their single branch. 

The contours of the farther SSI are always mapped onto those of the 

closer SSI. As a result, contours don't shrink and matching errors are better 

accounted for. The same set of parameters is used to match the next pair of 

contours when a node is expanded. 

The cost of match between two contours is defined as the average dis

tance between them after one of them has been transformed. The average dis

tance between two contours is the average of the distances between the peaks, 

the right branches and the left branches. To reduce the computational cost of 

finding the lowest cost node, an initial cost is assigned to each node. This 

"penalty" is base on prior knowledge about the system (and thus, will be 

different for conventional stereo). Specifically, we make use of the following 

two observations: 

(a) In an ideal case, all contours will match in sequential (along the X-axis) 

order. Thus, if the two candidates do not bare the same sequential order, 

the node is penalized. The size of this portion of the initial cost is a linear 

function of the gap in sequence. 
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(b) In most cases, the magnification in height of corresponding closed con

tours is roughly the same ratio as that between their positions along the 

X-axis. If the two ratios differ, a- penalty, directly proportional to that 

difference, is added to the initial cost. 

Open contours are ignored at the initial state of creating the queue of 

nodes. However, if the closer SSI does not contain a closed contour, the sys

tem will try to match existing open contours. 

. 5.4.2. Expanding a node 

The algorithm proceeds by finding the lowest cost node from the queue of 

initial nodes and expanding it. The cost the expanded node is computed and 

added to the previous cost. Then the new node is added to the queue and this 

process is repeated until the lowest cost node can not be expanded any more. 

The correct match is assumed to be the one indicated by this node. 

In order to expand a node, the next pair of contours in the SSIs to be 

matched must be selected. This is done in sequential order, both directions of 

the top contour of the node. As the contours are paired up, they are edited as 

follows: 

(a) Check for corresponding parents. If this is not the case, it is assumed that 

the contour of the closer SSI represents extra detail and thus is ignored. 

One should note that this can also occur due to occlusion which is not 

allowed in this project. 

(b) Having established that their parents correspond, check if the contours 

are of compatible types. If they are not, two possibilities are considered: 
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(i) As in case (a), we have an occurrence of extra detail in the closer SSI. 

The same action is taken. 

(ii) It is the case where a spike contour is moving about the X-axis of the 

SSI (see §5.3 (e)). An appropriate error message is printed. 

(c) Having established that their parents and type correspond, check if the 

peak ratio of the candidate pair is bellow some threshold value in com

parison with the top pair of the node.' If so, the candidate contour from 

the closer SSI is considered extra detail and is ignored. 

If none of the above is encountered, the two candidate contours are accepted 

as a pair and the next two in line become the new candidates. When all the 

contours in the closer SSI are accounted for, the individual pairs are matched 

and the cost of the match is added to the node total. 

Once the lowest cost node is selected, the individual disparities can be 

extracted and the depth computed. 

5.4.3. Attending to Skipped Open. Contours 

We recall that in the stage of setting up the initial nodes only closed con

tours, if any exist, are considered. Hence, we must retrieve those skipped open 

contours, if any, pair them up, extract the appropriate disparities and compute 

the depth. 
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CHAPTER6 
IMPLEMENTATION 

6.1. COMPUTER SYSTEM 

The programs which realize the underlying theory were implemented on a 

VAX* 11/780, running a UNIX* 4.2 BSD Operating system. 

6.2. A COLLECTION OF PROGRAMS 

The system is implemented as a collection of independent programs, each 

of which performs a task logically separating it from* the others. The obvious 

advantage is that any of the programs can be run, tested, debugged and 

modified without having to touch any of the other programs. Programs should 

have well-defined input and output so that it is easy to make one program 

interact with another. Moreover, these programs can be available as public 

programs on the computer system on which they were implemented. Any other 

user of the system who is working on a topic which requires similar tasks to be 

carried out, might be able to use one or more of these programs. 

6.3. PROGRAMMING LANGUAGES 

The programming languages C and LISP were used to implement all the 

programs which realize this thesis. C was chosen for programs which have 

• V A X is a Trademark of D E C . 

t UN IX is a Trademark of Bell Laboratories. 
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numeric flavor: transforming the images into polar or complex logarithmic 

space, constructing the SSIs and building a representation for a SSI. Since a 

large portion of the computation time is spent doing convolutions (construct

ing a SSI), it seemed that C would provide the desired efficiency. It is also a 

language which is well-supported by UNIX. 

Since the matching algorithm used has a more symbolic flavor, that por

tion of the system was implemented in Franz LISP, a dialect of LISP running 

on UNLX. 

6.4. SYSTEM DESCRIPTION 

6.4.1. System Flow 

The system is engaged in four major tasks (fig. 6.1): 

(1) Transforming the images from cartesian space to either complex loga

rithmic or polar space. 

(2) Constructing a SSI for each row in a transformed image, and build a 

representation for it. 

(3) Matching the SSIs of corresponding rows. 

(4) Computing depth from the extracted disparities. 

6.4.2. Image Transformation 

As pointed out in chapter 3, it is desired to transform the original images, 

which are conventionally sampled in cartesian space, into polar space. This 

task is carried out by program polar. Optionally, the original images can be 
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obtain closer 
cartesian image 

obtain farther 
cartesian image 

transform to 
CLM space 

construct a 
SSI for each 
ra d i a l l i n e 

transform to 
CLM space. 

construct a 
SSI for each 
ra d i a l l i n e 

match scale-
space contours 

compute 
depth 

Figure 6.1: the system flow 
1) the raw cartesian images are transformed into polar space. 
2) a SSI is constructed for each radial line (row in the polar image). 
3) corresponding SSIs are matched. 
4) depth is computed for matching features. 

F i g u r e 6.2 : C a r t e s i a n - t o - P o l a r m a p p i n g . 
A rectangular image in cartesian space maps into a fin-like image in polar space. The 4 
spines correspond to the 4 corners. The center of the cartesian image corresponds to 
the left hand column of the polar image. At the end of each polar row an extra pixel 
is added to indicate its actual length. 
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transformed into complex logarithmic space, a task carried out by program 

elm. 

A transformed image has a standard image format with the radial dis

tance, r, aligned with the conventional X-axis and the angle, 9, with the con

ventional Y-axis. Since a rectangular cartesian image does not map into a rec

tangular image in polar space (fig. 6.2), the polar rows do not have uniform 

length. Hence, each row in the polar image is given an extra pixel, attached to 

its end, indicating its actual length. The number of columns in the output 

image is a function of the resampling interval along the radial lines, and the 

number of rows depends on the angle interval separating two neighboring 

radial lines. This angle can be controlled by the user (the default is 1 °) . 

For reasons given in §3.2.4, the logarithmic part of the transformation is 

postponed until after correspondence between features has been established. 

Then, it is applied to these features. Hence, our system employs the program 

polar to perform the transformation task. The sampling interval along a radial 

line is taken to be the size of an input pixel. This keeps the resolution of the 

output image closely related to that of the input image. Figure 6.3 gives an 

example of these two options of transforming a cartesian image. 

Two optional interpolation schemes are provided to the user. The first one 

utilizes cubic convolution which introduces some noise around sharp edges but 

gives good results elsewhere. The second option, which is pursued in this pro

ject, follows the interpolation scheme proposed by O'Brien and Jain[1984]. In 

this scheme, a window of 3 by 3 pixels around the point in polar space is 

superimposed on the corresponding location in the cartesian image. The por

tions of the cartesian pixels covered by the window are added up and divided 
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by the window size. Fig 6.4 gives an interpolation example. 

In polar space the width of a pixel grows as its distance from the FOE 

increases (see chapter 3). When it grows to be larger than two cartesian pixels, 

an adjustment can be optionally made: each neighboring pixel along a line per

pendicular to the median is computed and given, a weight. A one dimensional 

Gaussian distribution function is employed to assign these weights. 

6.4.3. Constructing: SSIs 

This phase of the system consists of four programs, each of which is 

assigned a different task. 

6.4.3.1. Program scale-space 

Program scale-space is the most substantial one of the four. It takes as 

input a ID image (function) or a specified row in a transformed image, and 

produces two SSIs in a standard image format. To obtain a SSI, a Gaussian 

mask with a scale cr = 1.0 is convolved with the function and locations of 

ZCs are found. The value of a is then repeatedly increased by a small incre

ment, ACT (controllable by the user), and the new filters are convolved with the 

function. In order to increase the efficiency of the program the filter is con

volved with the function only in neighborhoods where ZCs were previously 

detected. This decreases the CPU requirements of the program significantly. 

ZCs are extracted from a ID convolved image. If the intensity of a pixel 

in the convolved image is zero and its neighbors are of opposite sign, then the 

location of the ZC is well defined. But, for two neighboring pixels which carry 

intensities of opposite signs, the position of the resulting ZC needs to be 
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interpolated. In this project, two SSI pixels are designated for each input pixel. 

This minimizes the growth in size of the SSI. The extent of the interpolation 

has a direct effect on the accuracy of the computed depth. Therefore, in a pro

duction system, a finer interpolation scheme must be applied. 

One SSI produced is an unsigned binary image which shows, for varying 

values of <r, the compounded locations of the ZCs. The second SSI has the fol

lowing additional information: 

the ZCs are signed to indicate their direction. 

their magnitude, which indicates the slope of the convolved function, is 

specified. 

Convolving a ID image with a Gaussian filter brings up the issue of how 

to evaluate pixels near the function's end points, for which the filter extends 

beyond the function domain. There are three basic assumptions one can make 

about these unknown intensities: 

(a) Assume they are zero. Making such an assumption on both ends of the-

function introduces three major side effects: 

two artificial ZCs are placed at the frame boundaries. These ZCs will 

(usually, but not always) compound into a rabbit-ears contour. 

all other contours are forced to be closed (see chapter 4), assuming 

that all image intensities are positive. 

the shape of these contours can be drastically distorted, depending 

on the intensity value at each end point of the function. This can 

bring about some difficulties in obtaining a correct match by the 

matching algorithm used in this project. However, it will have no 

effect on the positioning of the contours on the X-axis which is vital 
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to the depth computations. 

(b) Use the intensity of each end point, repeatedly. This ensures that no new 

edges are introduced and minimizes the SSI distortion. This is the course 

taken by our system. 

(c) Assume that the function wraps-around. Although this option is not 

applicable to our domain, it is added for completeness. 

One should notice, that when convolving a row of a polar image, intensi

ties beyond the end point representing the FOE (the left hand side of the row) 

are known. The system allows the user to take advantage of this information, 

and only when the periphery of the original image is reached, should one of 

the above options be selected. 

Other option available in the program to the user are: 

control of the increment value for a, Ao* (default is 1.0). 

set the initial scale (default is 1.0). 

extend the SSI on either side (default is 0). 

control the height at which a spike contour is truncated (default is 20 

rows above the next highest contour). 

control the height at which a rabbit-ears contour is truncated (default is 

120 rows above the next highest contour). 

Since a SSI is built in a coarse-to-fine procedure, the image is, aestheti

cally, upside-down. Thus, it should be flipped before using it as input to other 

programs. 
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6.4.3.2. Filling Gaps in a SSI 

Gaps can appear in contours when the change in its slope is large. This 

happens specially near the peak of closed contours and it is an undesirable 

feature since a contour must be connected everywhere in order to be recog

nized correctly. One solution is to use very small increments for a but this 

method runs into serious problems with CPU and storage requirements. The 

solution adopted was to fill such gaps. This ad hoc task is carried out by pro

gram ss-fill-gaps. A gap is filled by simply joining two loose ends. A loose end 

is a 1 pixel in a SSI which complies with one of the following conditions: 

has no neighboring 1 pixels. 

has one 1 neighboring pixel with, the exception of the first and last rows. 

has two 1 neighboring pixels with whom it forms an L shape and posi

tioned, at one end of this shape. 

When a loose end is discovered, a search for another loose end starts in a very 

small neighborhood (two pixels away). This neighborhood is gradually 

expanded if no other loose ends are found. The search is abandoned when a 

threshold value of the neighborhood size is reached and no loose ends found. 

6.4.3.3'. Building a Representation for a SSI 

Program ss-rep produces a representation for a binary SSI in a hierarchi

cal, top-down order. It starts with the highest contour in the SSI and ends 

with the smallest. The following information about each contour in the SSI is 

computed and stored in the representation: 

x-peak The height of the peak of the contour. 

y-peak The x-coordinate value of the peak of the contour. 
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x-rbase The x-coordinate of the base of either a right branch of a closed 

contour or the left 'ear' of a rabbit-ears contour. 

x-lbase The x-coordinate of the base of either a left branch of a closed 

contour or a spike contour or the right 'ear' of a rabbit-ears con

tour. 

partial 0 if the contour is closed; 1 if the it is a left 'ear' of a rabbit-ears 

contour; 2 if the it is a right 'ear' of a rabbit-ears contour; 4 if it is 

a spike contour. 

seq The sequential order of the x-coordinate of the left branch of the 

contour (lbase). If no left branch then its right one (rbase). 

parent The number of the contour on top of this contour. If no such con

tour exists, super-contour is assumed to be the parent (contour 

number 1). 

children The contours which are inside this contour. 

y-min The minimum x-coordinate value of any point on the contour. 

y-max The maximum x-coordinate value of any point on the contour. 

x-rb The heights of the points on the right branch of the contour as 

traveled from the peak to the end of that branch. 

y-rb The x-coordinate value of the points on the above right branch. 

x-lb The heights of the points on the left branch of the contour. 

y-lb , The x-coordinate value of the points on the above left branch* 

Additional information about the SSI is recorded in the super contour: 

corr-seq-num A list of corresponding contour numbers (hierarchical order) 

and their sequential order. 

last-cont The total number of contours in the SSI. 
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log 1 if the image transformation is logarithmic; 0 if equally 

spaced. 

angle The angle interval used in the image transformation. 

xyctr The cartesian coordinates of the FOE. 

The output representation is written in LISP format to be readable by the 

matching routines. 

6.4.3.4. Constructing A Two-Tone Binary SSI 

Program binary-ss takes the signed SSI produced by scale-space, and 

computes a different SSI: all pixels preceding a negative ZC (inclusive) are set 

to 1, and those preceding a positive ZC (exclusive) are set to 0. For an exam

ple, see figure 4.18. This SSI is proposed for-dealing with the problem of cross

ing contours (see §5.3(f)). Currently, it is not used in the system. 

6.4.4. Matching 

Program ss-match matches the scale-space representations (SSR) of 

corresponding rows in the closer and farther SSIs. Initially, it creates a queue 

of nodes which correspond to all possible matches between the highest closed 

contour in the closer SSR and all closed contours in the farther SSR. A match 

value is computed for each- node and always the node which has the lowest 

cost of match of all is removed from the queue, expanded one step and added 

to the queue again. This process is repeated until no further expansion is pos

sible. See chapter 5 for more details about the matching algorithm. 

A node carries certain information which makes it unique and makes it 
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possible to expand that node if it is selected. That information is the following: 

contours The numbers of the two contours (one from the closer SSR, 

one from the farther SSR) whose possible match is being con

sidered. 

seq The sequential order of the x-coordinate of the left branch of 

the above contours. If no left branch then its right one. 

match The cost of match for this node so far. 

parameters The parameters that take contours in the farther SSR to the 

contours in the closer SSR. In addition, parameters needed to 

extract disparities are specified. 

second-pairs A list of other paired contours of the expanded node, their 

sequential order and their corresponding parameters. Since 

only closed contours are considered at the initial stage, once a 

match is established, skipped open contours, if any, and their 

corresponding parameters are added to this list. 

cpath The path from the root contour of the closer SSR to the last 

contour in that SSR which was matched in the last time this 

node was expanded. 

/path The path from the root contour of the farther SSR to the last 

contour in that SSR which was matched in the last time this 

node was expanded. 

cskip-path The path of open contours of the closer SSR that have been 

skipped so far, and not yet been retrieved and added to 

second-pairs. 

fskip-path The path of open contours of the farther SSR that have been 

skipped so far, and not yet been retrieved and added to 
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second-pairs. 

cnum The number of the contour pairs that have been matched 

inside this node so far. 

cc-relevant The path of contours of the closer SSR yet to be matched 

and added to second-pairs. 

fc-relevant The path of contours of the farther SSR yet to be matched 

and added to second-pairs. 

6.4.5. Computing depth 

Program coaxial-stereo takes the minimum cost node selected by ss-

match and computes the depth for each pair of matching contours. The depth 

is computed from the parameters associated with each pair for each branch of 

the matching contours. Closed contours have two such points and open con

tours one. 

If the transformation of the images was logarithmic, the depth is com

puted directly from the x-coordinate shift of a projected scenic point from its 

position in the farther SSI to that in the closer SSI (see chapter 3). The dis

tance by which the camera has traveled is taken to be a single distance unit 

(Az 0=l). A factor is substracted, since the calculated depth is that of 
it 

the average distance between the object and the two camera positions. If the 

transformation was not logarithmic, a logarithmic transformation is applied to 

the selected projection points, and then, the depth is computed as above. 

Optionally, for polar transformation, the depth can be computed by tri-

angulation, given the distance the camera has moved between the frames and 

its focal length. 



CHAPTER 7 
EXPERIMENTS 

7.1. INTRODUCTION 

The lack of access to suitable imaging equipment, capable of complying 

with the particulars of coaxial stereo geometry, forced us to construct several 

synthetic images in order to test the system. Appendix IV provides the formu

lae used to build these images. 

Note that the depth-map of a scene is always computed for the closer 

image. In all of the described experiments, an angle interval of 5° is used 

when transforming images from cartesian to polar space. Hence, all generated 

polar images have 72 rows. 

7.2. A TWO DIMENSIONAL SCENE 

We chose to start with a set of 2D images (fig. 7.1), which allows us to 

carry out an error analyze of the system. A spatial resolution of 384 by 384 

was used for these images. 

The scene is composed of three rings each of which is 5cm wide. A gap of 

10cm separates the rings. The inner rim of the first ring is placed 10cm from 

the center. The image in figure 7.1a is taken from a distance of 80cm, the one 

in 7.1b from 100cm and that in 7.1c from 120cm. The results of transforming 

these images into polar space are shown in figure 7.2. 



Figure 7.1: the cartesian images of 
the 2D scene. 

Figure 7.2: the polar images of the 
2D scene. 
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7.2.1. Experiment #1 

Images 7.2a and 7.2b were selected for the first experiment. Figure 7.3 

shows the ZCs at scale 1.0 selected for the closer image. The intensities of 

these pixels were set to the computed depth. The resultant depth-map com

puted for the scene is illustrated in figure 7.4. Figure 7.4a shows the depth-

map with a tilt of 90 °, and 7.4b with a tilt of 400. 

The SSIs of all the radial line in this particular scene are, theoretically, 

identical. Variations occur due to resolution limitations in plotting the original 

images. Figure 7.5 shows a typical set of SSIs of two corresponding radial lines. 

The depth values computed after matching these SSIs are summarized in table 

7.1. 

SCALE SPACE 
computed 
d e p t h 

a c t u a l 
d e p t h e r r o r (%) 

c o n t o u r num c o n t o u r s e q b r a n c h b r a n c h b r a n c h 

c l o s e | f a r c l o s e | f a r l e f t | r i g h t l e f t | r i g h t l e f t | r i g h t 

2 1 2 1 1 1 | 78 | N I L 80 | N I L 2.5 | N I L 

5 I 3 4 | 4 | 80 | N I L 80 | N I L 0 1 N I L 

4 I 3 1 3 1 80 1 79 | 80 1 80 | 0 | 1.25 

3 | 4 2 | 2 1 80 1 79 | 80 1 80 | 0 | 1.25 

Table 7.1: the results of matching the SSIs in experiment #1 (see text). 



Figure 7.5: a typical set of SSIs. 
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7.2.2. E r r o r A n a l y s i s 

Picture elements must be quantized when stored in a digital machine. As 

a result of this limitation, the original images are plotted with a ±— pixel 
2 

accuracy. Since depth is computed from the shift in pixels' position, an error 

may occur. The error magnitude is inversely proportional to the image resolu

tion. The image transformation to polar space is done inversely (see § 3.2.4 

and § 6.4.2). Errors can be introduced due to the smoothing effect of the inter

polation performed on the intensity values of pixels in the cartesian image. 

However, this is difficult to measure or estimate and, thus, is not taken into 

account in this analysis. Another error may take place because of the poor 

interpolation ratio used in setting the ZCs locations when the SSI is con

structed. This error does not add up to the other errors and, hence, does not 

effect the range of possible errors. 

Since each pixel in a radial line is represented by two columns of pixels in 

the SSI, it implies that each scale-space branch is allowed to move about the 

X-axis no more than ± 1 pixel. Hence, when a small shift in position translates 

to a large change in depth (close to the FOE) a large error can occur. 

Let us go back to the example given in figure 7.5 and table 7.1. If we 

take the first pair of contours in the table (both of sequence 1), they 

correspond to a pixel placed 40 pixels away from the center in the closer image 

and 32 pixels away in the farther image. In the corresponding SSIs this 

translates to the pair (80,64), and computes to a depth of 80cm (79.63). This is 

also the actual depth. To compute the whole range of possible error in the 

computed depth, we allow each branch to move 1 pixel away from each other. 

Thus, to obtain the error range for this example, we compute the depth for the 
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pair (81,63) which is 70cm (69.58) and for the pair (79,65) which is 93cm 

(92.53). Hence, the error range for this location, which is near the FOE, is 

quite large: from +16.25% to -12.5%, a total of 28.75% of the actual depth. 

As we move away from the FOE, this improves at a rate of —, where r is 

the distance from the FOE. Let us take the contour sequenced 4 in the above 

example. This contour should be placed 360 pixels to the right of ithe origin in 

the closer SSI and 288 pixels in the farther one. This again renders a depth of 

80cm (79.63). The maximum error will occur for the pairs (361,287) which 

gives a depth of 77cm (77.19), and the pair (359,289) with a depth of 82cm 

(82.21). So the errors allowed are reduced significantly to range from +2.5% to 

-3.75%, a total of 6.25% of the actual depth. 

7.2.3. Experiment #2 

Images 7.2a and 7.2c were selected for the next experiment, in which we 

examine the impact of increasing the distance from which the farther image is 

taken. 

As in experiment #1, we will analyze the same two pairs of contours. The 

first contour should be places 53.63 pixels to the right of the origin in the 

farther SSI. It is placed 54 pixels to the right and, hence, we get an error in 

the computed depth: 82cm (81.77). The smallest possible depth is computed 

from the pair (81,53): 74cm (74.30), and the largest from the pair (79,55): 90cm 

(90.46). Hence, compared with experiment #1, the error allowed is reduced to 

range from +12.5% to -7.5%, a total of 20% of the actual depth. Still bad, 

but nevertheless, better. 
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The other contour (sequence 4) is placed 242 pixels to the right of the 

farther SSI (should be at 241.32 pixels). This translates to a depth of 81cm 

(80.71). The smallest possible depth is computed from the pair (361,241): 79cm 

(78.99), and the largest from the pair (359,243): 82cm (82.496). So again, the 

error allowed is reduced to range from +2.5% to -1.25%, a total of 3.75% of 

the actual depth. 

Hence, moving the camera farther away to obtain the second image 

reduces the possible error range. Notice that the improvement is similar for 

features close to the FOE and for those farther away from it. 

7.2.4. Experiment #3 

Images 7.2b and 7.2c were selected for this experiment, in which we exam

ine the impact of selecting a deeper point in the scene relative to the two cam

era positions. 

Again the same analysis is followed. The first pair of contours are set at 

(64.54) . The depth rendered is 108cm (107.72). The smallest possible depth is 

computed from the pair (65,53): 88cm (97.99), and the largest from the pair 

(63.55) : 137cm (137.27). So, the error allowed ranges from +37% to -12%, a 

total of 4 9 % of the actual depth. This is a considerable increase compare to 

the results of experiment #1. 

For the other contour (sequence 4) we have the pair (288,242) which 

translates to a depth of 105cm (104.93). The smallest possible depth is gen

erated by the pair (289,241): 100cm (100.11), and the largest by the pair 

(287,243): 110cm (110.18). Again, the error allowed is increaseded to range 

from +10% to 0%, a total of 1 0 % of the actual depth. 
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Hence, by comparing this experiment and the first one, we can conclude 

that as the depth of an object increases so does the range of possible errors. 

The increase is similar for regions close to the FOE and those farther away 

from it. A comparison with the second experiment suggests that a larger dis

tance between the two camera position yields much better results. 

7.2.5. Conclusions 

To minimize the possible error range, one should: 

maximize the resolution of the original images, 

minimize the distance of the closer camera position, 

maximize the distance between the two camera positions. 

7.3. T H R E E DIMENSIONAL SCENES 

7.3.1. Round Cake Scene 

For the next experiment a round cake composed of four layers was con

structed. The images are 350 by 350 pixels. The scene dimensions and viewing 

axis are illustrated in figure 7.6. 

One image was taken from a distance (d) of 60cm and the other from 

80cm. The images and their corresponding polar transformations are shown in 

figures 7.7 and 7.8 respectively. A typical set of SSIs is shown in figure 7.9 and 

the depth computed by matching these SSIs is summarized in table 7.2. A 

complete depth map is given in figure 7.10. The depth map is tilted 90° in 

figure 7.10a, 30° in figure 7.10b and 45° in 7.10c. 
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Figure 7.7: the cartesian images of the round cake scene. 
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(b) (c) 

Figure 7.10: the depth map tilted 90° in (a), 45° in (b) and 30° in (c). 



- 91 -

An interesting side result can be observed in this particular experiment. 

The SSIs in figure 7.9 show five ZCs at a fine a value (i.e., before any closed 

contours are formed). The radial lines that gave rise to these SSIs contain only 

four intensity changes. This phenomenon characterizes step functions (see 

chapter 4) and the 'extra' ZC is referred to as the phantom zero-crossing. 

SCALE SPACE 
computed 
depth 

actual 
depth error (%) 

contour num contour seq branch branch branch 
close| far close| far l e f t |right l e f t | r i g h t l e f t | righ t 

2 1 2 3 1 3 NIL | NIL 0 | NIL 0 | NIL 

4 I 4 2 1 2 101 | 119 100 | 120 1 1 0.83 

3 1 3 1 1 1 62 | 82 60 | 80 3.33| 2.5 

Table 7.2: the results of matching SSIs generated in the round cake scene exper
iment (see text). 

This ZC proved to be phantom in our system as well: as the camera 

moved along its optical axis no shift along the X-axis was recorded in the posi

tion of the branch containing these ZCs. This interprets to a depth value of 

zero, and having no depth means being phantom. 

7.3.2. Inverted Square Cake Scene 

An inverted square cake was constructed for this experiment. Its dimen

sions are illustrated in figure 7.11. 



- 92 -

Figure 7.12: the cartesian images of the square cake scene. 
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In the previous experiments round objects were used because a circle, 

whose center is at the FOE, transforms into a straight line in polar space. 

However, any arbitrary shaped objects can be processed by the system just as 

well. This scene gives an example to this effect. 

Following the concluding remarks of the analysis of the 2D scene (in § 

7.2), we worsen the conditions in this experiment compared to the previous 

one. That is, edges located closer to the FOE are set to have a greater depth. 

Hence, the error range in this region is quite large, while in the periphery it is 

quite small. 

SCALE SPACE 
computed 
depth 

actual 
depth error (%) 

contour num contour seq branch branch branch 

close| far close| far l e f t | right l e f t |right l e f t | rig h t 

2 1 2 4 I 4 60 | NIL 60 | NIL 0 I NIL 

4 | 4 2 | 2 113 | 110 100 | 100 13 | 10 

5 I 5 1 | 1 NIL | 125 NIL | 120 NIL | 4.16 

3 1 3 3 1 3 1 82 | 84 80 1 80 1 2.5 | 5 

Table 7.3: the results of matching SSIs generated in the square cake scene 
experiment (see text). 

The pair of input images are assumed to be taken from 60cm (fig. 7.12a) 

and 90cm (fig. 7.12b). Their corresponding polar images are shown in figure 

7.13. The SSIs of the first row in each polar image (angle 0 ° ) are given in 
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(a) (b) 

Figure 7.13 the polar images of the square cake scene. 

(b) 

Figure 7.15: the depth map tilted 90° in (a) and 45° in (b). 
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figure 7.14, and the results of their match-up is summarized in table 7.3. The 

depth map is depicted in figure 7.15 in two tilted displays, one at 90° and the 

other at 45 0 . 

7.3.3. Occlusion and Loss of Information 

For this experiment the scene illustrated in figure 7.16 was constructed. 

Images are taken from one of each of the following distances: 90cm, 60cm, 

40cm, 30cm (fig. 7.17). Their corresponding polar transformations are shown in 

figure 7.18. The scene contains four visible (i.e. not occluded) edges. They give 

rise to four ZCs in the SSI, at a fine a level. The edges are denoted as follows: 

El : the top edge of the filled cylinder. 

E2: the inside bottom edge of the ring. 

E3: the inside top edge of the ring: 

E4: the outside top edge of the ring. 

We denote the instantaneous projections of each of the edges upon the image 

plane by Pi, P2, P3, and P4, respectively. 

The initial distance of the camera from the nearest point in the scene is 

90cm. All four edges are visible (fig 7.17a). As the camera moves along its opti

cal axis towards the scene, the projections of the edges upon the image plane 

move outwards relative to the FOE (=optical flow). The projection of points 

which are closer to the camera generate a faster optical flow velocity than 

points that are farther away from it. Hence, P i has the fastest optical flow 

velocity, P3 and P4 have a slower rate and P2 the slowest. Thus, as the cam

era motion persists, Pi moves closer to P2. At a distance of 60cm Pi and P2 



Figure 7.17: the cartesian images of the ring and cylinder scene. 



Figure 7.18: the polar images of the ring and cylinder scene. 



- 98 -

are very close, but still distinguishable (fig. 7.17b). Shortly after that, the two 

projections overlap and E2 becomes occluded to the viewer. Only three edges 

remain in view, a situation which is captured in the image viewed from 40cm 

(fig. 7.17c). As the camera continuous to move, P i closes in on P3 and P4. In 

the image taken from 30cm (fig. 7.17d), E3 is no longer visible. 

As projection points move outwards, they are bound to move out of the 

image frame at some close distance to the scene. In figure 7.17d we see that 

E4 is recorded only in the corner regions of the image. So, at angle 45 0 two 

edges are showing while at angle 0 ° only one. 

If we look at the SSIs constructed for row 0 in each of the polar images 

(fig. 7.19), we see a different one for each of them. That is, no SSI can be 

matched correctly to any of the others. Furthermore, when we compute the 

SSI for row 9 (angle 45 °) of the image in figure 7.18d, we see yet another SSI 

that cannot be matched correctly with either of the others. 

The SSI in figure 7.19a is not compatible with that in figure 7.19b because 

the change in the balance of intensities triggered the open contour to move 

about the X-axis. Figure 7.19c reflects the occlusion of edge E2. Hence, the 

left branch of the closed contour cannot be matched correctly. The single 

open contour in figure 7.19d cannot be matched correctly either. In figure 

7.19e, it should be noted, one branch in the SSI represents an invisible edge 

(step function) and, hence, it cannot be matched correctly as well. 



Figure 7.19: the SSIs for the images. 
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C H A P T E R 8 

EXTENSIONS AND CONCLUSIONS 

8.1. EXTENSIONS TO TfflS PROJECT 

The lack of access to suitable imaging equipment, capable of complying 

with the particulars of coaxial stereo geometry, forced us to construct several 

synthetic images in order to test the system. Further research will require the 

usage of real images. 

8.1.1. A Different Matching Algorithm 

We have used in our implementation a top-down algorithm to match 

SSIs. To minimize distortions in the shape of the scale-space contours, we 

assumed a repetition of the end point intensities when the frame of an image is 

reached. 

A different approach, which has a stabilizing effect on the sensitivity of 

scale-space contours to the balance of intensities in the input image, is worth 

while investigating. In this approach one assumes zero intensities for locations 

outside the image frame. Such an assumption introduces two zero-crossings at 

the end point positions. These zero-crossings form a rabbit-ears contour in the 

SSI, which can be ignored in the matching process. All other contours are 

forced to be closed. The shape of these contours may be distorted consider

ably, but the vital information for the computation of depth remains intact. 

Closed contours are easier to match but a different matching algorithm needs 
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to be developed which will tolerate distortions in the shape of the contours. 

One may reduce the above distortion by assuming zero intensities for 

locations outside the end points, while adding some high constant to all image 

intensities. This may enable the usage of the matching algorithm as is. 

8.1.2. Application to Other Stereo Systems 

The matching algorithm, as implemented, can be easily adopted to serve 

conventional stereo systems as well as other visual expert systems. 

8.1.3. Multiple Input Images 

It would be more efficient to perform a parallel process on several pairs of 

input images rather than expanding the matching algorithm to handle more 

than two images at one time. 

8.1.4. Occlusion 

This problem, which characterizes most computational vision systems, is 

not addressed in this project. However, it might be possible to estimate the 

probability of changes in the structure of a SSI when occlusion occurs. The 

problem can be eased by matching scale-space branches rather than contours. 

8.1.5. Moving Contours 

The sensitivity of contours in a SSI to the balance of intensities in the 

image weakens the robustness of the matching algorithm. By viewing each 

branch of a closed contour as an open contour that terminates at the contour 

peak, one can improve that robustness. By matching scale-space branches 
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rather than contours, the problem can be avoided in most cases. 

8.1.6. Two-Tone SSIs 

This type of SSI, as suggested in chapter 4, can resolve difficulties that 

the phenomenon of crossing contours can bring about. This suggestion is not 

integrated in the current system. 

8.2. SUMMARY AND CONCLUDING REMARKS 

This project tries to shed some light on issues concerning coaxial stereo 

and the usage of the scale-space concept to address the correspondence prob

lem. 

We have examined a general procedure to compute depth from stereo and 

looked at some-existing stereoscopic and related motion systems. 

We described the principles and geometrical aspects of coaxial stereo. 

This geometry provides better physical constraints than other stereo systems 

do: 

one solution to the correspondence problem is given (FOE), providing a 

reference point. 

usually, occlusion will occur only as the camera moves towards the scene. 

This may take exception if the scene contains a hidden surface, which is 

revealed as the camera moves in (the inner walls of the hole of a torus, for 

example). 

all the scenic area captured on the closer image is also recorded on the 

farther one. 
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The main deficiency of this configuration is that the depth of the scenic point 

corresponding to the FOE in the images cannot be determined. In addition to 

that, the probability for error in the computed depth for points in the images 

located close to the FOE is quite large. 

Complex logarithmic space was reviewed. It provides a simple means to 

compute depth from the extracted disparities, and is independent of the cam

era specifications. Ways to utilize its advantages and avoid its disgrations were 

discussed. 

We provided an analysis on the structure of scale-space images of one 

dimensional functions. We showed that such functions contain in their scale-

space image between one and five open contours, and proved the validity of 

crossing contours in such SSIs. 

We went on to examine the difficulties involved in establishing correspon

dence between two SSIs. A top-down matching algorithm was outlined. This 

algorithm was adopted from Mokhtarian and Mackworth [1984], and was 

modified for this application. 

The last example (§ 7.3.3) shows that, although the basic concepts of 

coaxial stereo are sound, the top-down scale-space matching algorithm is not 

always the most appropriate matching algorithm to use. Modifications along 

the lines of § 8.1.5 (and perhaps others) are required. 

We described a system implemented to deduce depth from coaxial stereo. 

The system employs delayed complex logarithmic mapping and a scale-space 

matching algorithm. 

A series of experiments were conducted with synthetic images. We showed 

that the potential for errors is by far larger for regions closer to the FOE than 
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for those located near the frame boundaries. In addition, we concluded that 

one should minimize the distance between the scene and the closer camera 

position, and maximize the distance interval between the two camera posi

tions. These are limited by the focal length of the camera, the dimensions of 

the analyzed scene and the resolution of the images. As is true for most com

putational vision tasks, higher image resolution reduces the magnitude of 

occurring errors. 
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APPENDLX I 

Step Signals 

A single step signal (fig. Al.l) is a function which is discontinuous at 

some x = x0. It is given by 

and by its integral property 

CO CO 

f / (X-XQ) V(X) dx = y,f v(x) dx (Al.2) 

where v(x) is an arbitrary function. 

This definition can be extended to multi step functions, say n steps, by 

viewing such functions as a stack of single steps (fig. A1.2) adjacent to each 

other. Its integral property is then defined as 

CO * j * 2 

/ f [x) v(x-t) dt = yxj v[x-t)dt+y2J v{x-t)dt + 
—CO ^ 0 1 

yj v{x-t) dt + ••• +ynf v {x-t) dt (A1.3) 

If v(x) is taken to be the second derivative of an one dimensional Gaus

sian filter, g " (x), as defined in appendix II, then the resulting convolution is 

h(x,<r) = yxS 1 g " {x-t) dt + y2J g"{x-t)dt + 

X~ CO 

yzJ g"(x-t)dt+ •••+ynL g"(x-t)dt (A1.4) 
* 2 x* -1 

= Vi(-0 + 9'{x-Xo)) + y2{-g'(x-x2) + g'ix-xj) + 

y-A-g'ix-x^-r g'{x-x2))+ • • • + yn (-0 + g '(x-x^J) (AirSf 
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hence 

h{x,<r) = yig'{x-x0) + (y2 - Vi)g ' + 

4 f (x) 

Figure A l . l : a s i n g l e s t e p s i g n a l 

y -
3 

y -

f (X) 

r 

Figure A 1 . 2 : a m u l t i s t e p s i g n a l 



APPENDLX H 

The Gaussian Filter and its Derivatives 

A one dimensional Gaussian is given by 

I \ 1 In 2  

9 (* ,<?) = y ^ e x p 

its first derivative by 

g'{x,a) = ~ g(x,a) 

its second derivative by 

g " (x ,a) = -i — g (x ,<r) 

its third derivative by 

g '" (x ,<r) = -i -

and its forth derivative by 

g ""{x ,a) = — ~ -X g (x ,<T) 
0s 

6 9(*,<r) 

Notice also the following relations 

and 

?(-|,^) = kg{x,kcr) 

g{kx,ka) = ^g{x,a) 



APPENDIX IH 

Proofs Concerning Open Contours 

One dimensional signals can be grouped using some features that charac

terizes them. We prove for particular groups that the contain in their SSI, a 

particular number of open contours. Five groups are identified and addressed 

separately. We use the following notations for the features used to group the 

functions: 

a) the initial value of a function init = lim / (x). 
* —•-00 

b) the initial value of a function f i n = lim / (ar). 
X. —•+00 

c) the maximum value of a function fmax > / (x). 

d) the minimum value of a function / m i n < / (x). 

We assume, for convenience, the following: 

fin > init = 0. 

fmax > 0. 

Case Alt Signals where 

fc x< a 
>b 

and fmin = fin = init, have exactly 

two open contours in their SSI. 

The one dimensional Gaussian function and its derivatives are defined in 

appendix II. The convolution of a function / (i) with the Gaussian filter, is 
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expressed by 

h(x,<r) = f (x) © g(x,ff) (A3.1) 

, +°° 
= / / (t) g{x-t ,<x) dt (A3.2) 

-00 

Suppose that / (x) = 0, for x <a and x >6. 

Hence, we can write 

A (x ,o-) = J f {t) g{x-t ,<T) dt (A3.3) 

substituting a = x-£ renders 

A (x .rx) = / f {x-s)g{s ,a) ds. (A3.4) 
X—0 Let 

c = max( | a | , | b | ) (A3.5) 

hence 

h (x ,o-) = J / (x-s ) £ (s ,<r) da. (A3.6) 
* -e 

We now show that for a large enough a the 2 n d derivative of the con

volved function, h(x,a), has only two zero-crossings: 

h " {x,(?) = f (t) g " (x-t,<r) dt (A3.7) 

= f ~ f(*-») 9 "(*,*) ds- (A3.8) 

= f*+e f (x-s) g " {s ,<r) ds (A3.9) 

substituting « = — renders 

x+e 
a 

h"{x,a) = aj _ f {x-<yu) g " {au ,a) du (A3.10) 
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from (A2.3) and (A2.7) in appendix II we have 

g " (o~u ,cr) = (g U ~ °^ g (au ,a) (A3.ll) 

u* - 1 
I 7 ( « , l ) (A3.12) 

hence 

x +e 

h "(x,a) = 4T / (z-<ru)(w2-l) t7(«,l) du. (A3.13) or2 *-«• 

Since 

( « 2 - l ) « / ( « , ! ) = ? " ( « , ! ) (A3.14) 

and from Taylor's formula we have 

< ? " ( « , l ) = g"(-,i) + ( « - - ) <7 " ' ( - , l ) . + ( « - - ) < 7 " " ( - , i ) + 

(A3.15) 

we obtain 

h"{x,a) = 

+ ! / ' " ( - , 1) / " f (x-vu )(«--) du + 
ff x ~e (T 

(A3.16) 

si—*1) 
du -

http://A3.ll
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* +e 
(X -3X0"-) r o . / w X.j 

L I / [x-au ){u—-) du + .(A3.17) 

x-t 
Since « = and t = x-au , we can write 

x±e_ 
(T f " / (x-au) du = — \  € f it) dt (A3.18) 

and 

/ {x-au )(u-f) du = ~L £ * / (t) <ft (A3.19) 

both of which are independent of x. 

Since / (t) > 0, we can write 

< il f{t)dt=±Lf- fl f (t) dt (A3.20) 
a -e 

hence 

h "{x,a) 09 {*,<?) 
~3 

(x2-a2) {xZ-Zxa2) 

a2 a* 
0{e) 

x+e 
a 

/ , . , / ( « ) « (A3.21) 

0" 
(A3.22) 

Hence, setting 

h "{x,a) = 0 (A3.23) 

renders zero-crossings at 

x — ±o\ (A3.24) 
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Hence, given a function which is zero outside some finite interval and 

whose activity within that interval is either all positive or all negative, then 

convolving it with a Gaussian function with a large enough a, will result in a 

smoothed Gaussian-like function. For such a a, the 2nd derivative of this 

function has two zero-crossings (i.e. the function has two fluctuation points). 

Note that this entails one zero-crossing in its 1**' derivative (i.e. the function 

has one extremum). 

Case A2; Signals where 

f(x) = 

init x<a 
fin x>c 
0 x—b , a<b<c 
non-0 elsewhere 

and f(x) at a<x<b is opposite in sign to f(x) at b<x<c, and obey 

fin = init, and fmin < 0, have exactly three open contours in their 

SSI. 

The function / (x) can be broken into two: 

f(x) = fl(x) + f2(x). 

Hence, the convolved function can be expressed by 

+ 00 
h(x,a) =/ [/1(0 + /2(0] dt 

(A3.25) 

(A3.26) 

= hx{x,(r) + h2(x,a) (A3.27) 

From case (Al) above, one can conclude that both hx(x ,cr) and h2(x,cr), at a 

large enough <r, are Gaussian-like functions of opposite signs. Since the single 
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extremum of hx(x,a) is located left of 6, and the that of h2(x,cr) is right of 

b , h(x ,a) must have a third zero-crossings between these two extrema (fig. 

A3.1). As a increases in value, this third zero-crossing (in h " (x ,<r)) moves 

towards an imaginary rectilinear line midway between a and c . 

h(x,<r) 

Figure A3.1: The sum of the two smoothed functions hx and h2 renders a func 
tion h which contains exactly three fluctuation points (4), for a large enough a. 

Case A 3 ; Signals where 

f(x) = 

init x<a 
fin x>d 
0 x=b, a<b<c<d 
0 x=c, a<b<c<d 
non-0 elsewhere 
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and f(x) at a<x<b and c<x<d, is opposite in sign to f(x) at b<x<c, 
and obey fin = init, and fmin < 0, have two or four open contours in 
their SSI. 

We follow the same approach as in case 3 above: 

f (x) = f ,(*) + f2(x) + fz{x) 

hence, the convolved function can be expressed by 

„ +CO 
h (x = / [fl(t) + f2(t) + fz(t)]g(x-t,cj)dt 

= h^x,^) + h2{x,(j) + hz{x,cj) 

(A3.28) 

(A3.29) 

(A3.30) 

Figure A3.2: The sum of the three smoothed functions h\h2 and A 3 renders a 
function h which, in this example, contains four fluctuation points (<j>), for a large 
enough a. 
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Equations (A3.21) and (A3.22) suggest that the outcome of the convolu

tion operation depends on the area enclosed under the function's graph. 

Let 

c! = max ( | a \ ,\b | ) 

c 2 = max ( | b \ , \ c | ) 

c 3 = max{ | c "j , | d | ) 

(A3.31) 
(A3.32) 
(A3.33) 

Since at any given time the functions / l f / 2 , and / 3 are convolved with 

an identical mask, we can expand equation A3.22 to read 

h "(x,a) 
(x2-o-2) , , 

J A 9 (x P) f ! f i ( t ) d t + 

a 

x-e2 

x +e. 

(A3.34) 

/ 2(t) < 0. Therefor, if 

x +e. 

J f 2 ( t ) d t 
* —c 2 

> /, e fi(*)dt+J f , ( t ) d t (A3.35) 

then h " (x ,<r) will be negative, implying that its minimum is negative. This 

minimum must be between b and c . Hence, h (x ,<r) will have three extrema 

points: two maxima and a minimum between them, and the SSI will contain 

four open contours. 

If 

J f 2 ( t ) d t 
x -e 2 

x+e. 

>!x_ei f i ( * ) * f z ( t ) d t (A3.36) 
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then h " (x ,er) will be positive, implying that its minimum is positive. Hence, 

a situation conforming case (Al) above is at hand. Thus, the function will 

have two open contours in its SSI. 

The example in figures e illustrates the above results. In figure A3.3a we 

have A x + A 2 > A z where Ax, A 2 and A 3 are the areas enclosed by the 

function's curve. The SSI in figure A3.3b is obtained, where two open contours 

are generated. In figure A3.3c , A X+A 2 < A 3 . The SSI in figure A3.3d is 

obtained, where four open contours are generated. 

Case A4; Signals where 

f(x) = 

init x<a 
fin x>e 
0 x=b, a<b<c<d<e 
0 x=c, a<b<c<d<e 
0 x=d, a<b<c<d<e 
non-0 elsewhere 

and f(x) at a<x<b and c>x>d is opposite in sign to f(x) at b<x<c 

and d<x<e, and obey fin = init, and fmin < 0, have three or five 

open contours in their SSI. 

Following the same approach we have: 

f(x) = f1(x) + f2(x)+fz(x) + f4(x) 

and 

h(x,o) = hi{x ,a) + h2(x,cr) + hs(x,a) + A4(x,o*) 

Figure A3.4 illustrates the formation of h (x ,cr). 

(A3.37) 

(A3.38) 
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Figure A3.3: A signal that crosses the zero twice, generates two (a,b) or four (c,d) 
open contours in its SSI. 
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As is for segment (b,c) in case (A3) above, the area under the function 

curve for segments (b,c) and (c,d) has a crucial influence on the number of 

open contours in the SSI of the function. If either 

\h2{x,a)\ < \h1{xttr) +hz(xta) + hA{xttr)\ (A3.39) 

or 

| hz{x,cr) | < | h^x-.tr) + h2{x ,o) + A4(x,o-) | (A3.40) 

for any cr, we will obtain a function that comply with case (A2) above and, 

hence, three open contours will be formed. Otherwise, five open contours will 

be formed. The example in figure A3.5 illustrates this fact. 

Figure A3.4: The sum of the two smoothed functions A j h2 A 3 and A4 renders 
a function A which, in this example, contains five fluctuation points (<f>), for a large 
enough 0*. 
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Figure A 3 . 5 : A signal that crosses the zero three times, generates three (c,d) or five 
(a,b) open contours in its SSI. 



Case A5 ; Signals where 
• 

{ init x<a 
fin x>b 

and fmax = fin > fmin = init = 0, have 

exactly one open contour in their SSI. 

If for all points in the function's domain its curve has a slope s >0, then 

taking its 1"* derivative produces a function which complies with functions in 

case (Al) above. Since the 1*' derivative of functions obeying the constraints 

of case (Al), convolved with a Gaussian filter, have exactly one zero-crossing, 

it is also the case for the 2 n d derivative of functions in this case with s >0 

and convolved with a Gaussian filter. 

If s at any point on the curve is negative, then taking its 1'* derivative 

produces a function which complies with functions in case (A3) above. Since 

the function always approaches points a and b with a positive slope, a simi

larity to case (A4) above is ruled out. 

Since / in. > init, the total length of the function's segments that have 

positive or zero slope is larger than that of segments with negative slope. 

Thus, for / '(ar), the total area under the function's curve is larger for seg

ments with positive or zero slope than that for segments with negative slope. 

In case (A3) above we proved that such functions have exactly two open con

tours in their SSI. In other words, for a large enough <r0, functions in this case 

will be smoothed to have only positive or zero slope implying exactly one 

zero-crossing. Hence, for all cr >r/0 one zero-crossing is obtained compounding 

to a single open contour in the SSI. 

fin 
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APPENDIX IV 

Synthetic Image Construction 

The thin lens equation is used to compute the locations of scene points 

projected onto an image plane. A lens with a focal length of 50mm is assumed 

in all calculations. The FOE is always taken to be at the center of the image. 

The thin lens equation is given by 

(A4.1) 

where / is the focal length, d is the distance of the object from the lens and 

x is the distance of image plane from the lens (see fig. A4.1). 
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From triangulation we have 

x = -d. (A4.2.) 

Substituting (A4.2) into (A4.1) renders 

J_ = i+d 
f d i 

and 

(A4.3) 

i. = -f— (A4.4) f 1 

After i is obtained, x can be computed using (A4.2). 

For the farther image, having o and x and knowing the change in d, the 

new i is computed by 

i = ~o (A4.5) 
a 

as in (A4.2). 
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APPENDLX V 

Manual pages of a few programs in the public library 

This appendix contains the manual pages for programs binary-ss, elm, 

polar, scale-space, ss-fill-gaps, ss-rep. These manual pages are available on

line on the LCV's VAX computer. 

The programs were developed as part of the work towards an M.Sc. 

degree and are part of the public library of programs on the above system. 



BINARY-SS ( 1-UBC ) UNIX Programmer's Manual BINARY-SS ( 1-UBC ) 

NAME 
binary-ss - constructs a binary (two-tone) scale-space image from a signed scale-space image. 

SYNOPSIS 
ss-rep [input scale-space image] [output scale-space image] 

DESCRIPTION 
Ss-rep produces a binary (two-tone) scale-space image from a signed scale-space image as pro
duced by program scale-space (see scale-space (1-UBC). All pixels preceding a negative ZC 
(inclusive) are set to 1, and those preceding a positive ZC (exclusive) are set to 0. 

AUTHOR 
Itzhak Katz 

LIMITATIONS 
The scale-space image produced by scale-space is up-side-down, and should be flipped before 
using it as input (see yfiip (1-UBC)). 

The input must be a signed scale-space image. 
SEE ALSO 

scale-space(l-UBC), yflip(l-UBC) 

UNIX 4.2BSD UBC - 8/22/85 1 



CLM ( 1-UBC ) 
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UNIX Programmer's Manual CLM ( 1-UBC ) 

NAME 
elm - transforms an image from cartesian space to complex logarithmic mapping (CLM) space. 

SYNOPSIS 
elm [-a] [input-image] [output image] 

DESCRIPTION 
elm transforms an image from cartesian space to complex logarithmic space, which is a polar 
space with logarithmic spacing along radial lines.The center of the cartesian image is taken to be 
the origin of the CLM image coordinates. Each row in the CLM image represents a radial line in 
the cartesian image. 

The following options are interpreted by dm : 

—SLdlpha 

alpha is the angle interval between two consecutive radial lines. The default value is 1. 

-cubic cubic is a flag indicating that cubic convolution should be used for the resampling process. 
Else, a 4x4 window is used for an extended bi-linear interpolation. The later is the 
default. 

AUTHOR 
Itzhak Katz 

LIMITATIONS 
360/ alpha should be an integer. 

The input image should not exceed 512 x 512. 
SEE ALSO 

polar(l-UBC), image(l-UBC) 

UNIX 4.2BSD UBC - 8/22/85 1 



POLAR ( 1-UBC ) 
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UNIX Programmer's Manual POLAR ( 1-UBC ) 

N A M E 
polar - transforms an image from cartesian space to polar space. 

SYNOPSIS 
polar [-a -j] [input-image] [output image] 

DESCRIPTION 
polar transforms an image from cartesian space to polar space. The center of the cartesian image 
is taken to be the origin of the polar image coordinates. Each row in the polar image represents a. 
radial line in the cartesian image. 
The following options are interpreted by polar : 

—Sialpka 

alpha is the angle interval between two consecutive radial lines. The default value is 1. 

-cubic cubic is a Sag indicating that cubic convolution should be used for the resampling process. 
Else, a 4x4 window is used for an extended bi-linear interpolation. The later is the 
default. 

-jadj if adj is none-0, an adjustment is made to the.intensity value of pixels when the width of 
the sector grows to be larger than two cartesian pixels. The adjustment process uses a 
Gaussian Distribution function. The default value is 0. 

A U T H O R 
Itzhak Katz 

LIMITATIONS 
360/ alpha should be an integer. 
The input image should not exceed 512 x 512. 

SEE ALSO 
clm(l-UBC), image(l-UBC) 

UNIX 4.2BSD UBC - 8/22/85 1 



SCALE-SPACE ( 1-UBC ) UNIX Programmer's Manual SCALE-SPACE ( 1-UBC ) 

N A M E 

scale-space - compute a scale-space image of a one dimensional function. 

SYNOPSIS 
scale-space [options] [input-image] [signed+magnitude scale-space image] [binary scale-space 
image] 

DESCRIPTION 
Scale-space generates two scale-space images (SSIs) in standard image format. The first one is 
signed and the magnitude of the zero-crossings (slope of the function) indicated. The second one is 
binary - zero-crossings are marked as 1 and the rest of the image is 0. 

The input can be either a ID image or a 2D polar image (see polar (UBC-l), elm (UBC-1)). 

In the convolution process, values for post boundary pixels must be assumed. There are three pos
sible assumptions for pixels located beyond the image frame ( -be and -be options): 

0 - use zeroes as the pixel's value. 
1 - encore the last pixel. 
2 - wrap around the image frame. 

If the input image is polar, then the left edge of the image frame corresponds to the center of the 
original cartesian image (FOE). In such a case the intensities of pixels to the left of this edge are 
known (until the boundary of the cartesian image is reached). This allows us to optionally use 
these known intensities for the left edge of the polar image ( -be option) and then, as before: 

3 - use zeroes as the pixel's value. 
4 - encore the last pixel. 
5 - wrap around the image frame. 

The default value for pixels past the right end-point ( -be ) is 1, and for the left end-point ( -be ) 
is 4. 

The following additional options are interpreted by scale-space : 

—a sigma 
sigma is the initial scale value, a parameter of the Gaussian function. It must be >\/2. 
The default value is 1.0. 

—rrow row is a row in a polar image for which the SSI will be computed. The default value is 0. 

-lint int is the interval in value between two consecutive sigmas. The default value is 1.0. 

-Imaxni 
if only one zero-crossing is generated at some large sigma value, terminate the process 
after nl such zero-crossings are produced. The default value is 20. 

-dlmaxn£ 
if only two zero-crossings are generated at some large sigma value, terminate the process 
after nl such pairs of zero-crossings are produced. The default value is 120. 

-xlncoll 

extend the SSI to the left by ncoll columns. The default value is 0. 

-xrncol2 
extend the SSI to the right by ncol2 columns. The default value is 0. 

UNIX 4.2BSD UBC - 8/22/85 1 



SCALE-SPACE ( 1-UBC ) UNIX Programmer's Manual SCALE-SPACE ( 1-UBC ) 

AUTHOR 
Itzhak Katz 

LIMITATIONS 
The scale-space image produced is up-side-down, and should be nipped before using it (see yflip 
(1-UBC)). 
Sigma should not be less than ̂/2. 
The input image should not exceed 360 x 724 (corresponds to a cartesian image of 512 x 512). 
The scale-space image can grow to be very large and time consuming (cpu) to compute. This can 
be controlled by the size of the sigma interval, -1 , and the truncation values of open contours, -
Imax and -dlmax . 

SEE ALSO 
polar(l-UBC), clm(l-UBC), ss-fill-gaps(l-UBC), ss-rep(l-UBC), binary-ss(l-UBC), image(l-UBC), 
yflip(l-UBC) 

BUGS 
The wrap around option for -I has not been thoroughly tested and should be used with caution. 
There can be gaps at the top of contours in the scale-space image due to quantization errors. Pro
gram ss-fill-gaps trys to 'fill' these gaps (see sa-fill-gaps (1-UBC)). 

UNIX 4.2BSD UBC - 8/22/85 2 



SS-FILL-GAPS ( 1-UBC ) UNIX Programmer's Manual SS-FILL-GAPS ( 1-UBC ) 

N A M E 

ss-fill-gaps - attempts to 'fill' gaps in contours of a scale-space image. 

SYNOPSIS 

ss-fill-gaps [input scale-space image] [output scale-space image] 

DESCRIPTION 
There can be gaps at the top of contours in the scale-space image due to quantization errors. Ss-
fill-gaps trys to 'fill' these gaps: for each 'loose-end' found another 'loose-end' is searched for in its 
nearest neighborhood, which grows gradually to a certain limit. 

A U T H O R 
; Itzhak Katz 
LIMITATIONS 

The scale-space image produced by scale-space is up-side-down, and should be flipped before 
using it as input (see yflip (1-UBC)). 

If the gap is too big it may fail to close it. 

SEE ALSO 
seale-space( 1-UBC), ss-rep(l-UBC), image(l-UBC), yflip(l-UBC) 

BUGS 
There may be situations where legitimate openings are wrongly filled. 

UNIX 4.2BSD UBC - 8/22/85 1 
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SS-REP ( 1-UBC ) UNIX Programmer's Manual SS-REP ( 1-UBC ) 

NAME 
ss-rep - constructs a LISP representation of a scale-space image. 

SYNOPSIS 
ss-rep [-i] [input scale-space image] [output file] 

DESCRIPTION 
Ss-rep reads in a binary scale-space image, as constructed by programs scale-space and ss-fill-gaps 
(see scale-space (1-UBC), ss-fill-gaps (1-UBC)), and creates a LISP list which contains information 
found in that image. 
The option -i can be used for the input image, else it is read from standard input. 

AUTHOR 
Itzhak Katz 

LIMITATIONS 
contours in the scale-space image should not contain gaps. 
A contour should not exceed 500 pixels. 
The maximum input image is 1000 x 725. 
This list is designed for a LISP program (ss-matck) and addresses the needs of the coaxial stereo 
matching process. Hence, it may lack information required by other applications. 

SEE ALSO 
scale-space(l-UBC), ss-fill-gaps( 1-UBC) 

UNIX 4.2BSD UBC - 8/22/85 1 


