EXPLORATIONS OF PROGRAMMING LEARNING BEHAVIOUR ,OF NOVICES
THROUGH COMPUTER-AIDED LEARNING

by

CHEE—KITZ&POI

BSc, Nanyang University, Singapore, 1980

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in
THE FACULTY OF GRADUATE STUDIES

Department- Of Computer Science

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

March 1984

© Chee-kit Looi, 1984

In presenting this thesis in partial fulfilment of the
requirements for an advanced degree at the University

of British Columbia, I agree that the Library shall make
it freely available for reference and study. I further
agree that permission for extensive copying of this thesis
for scholarly purposes may be granted by the head of my
department or by his or her representatives.' It is
understood that copying or publication of this thesis

for financial gain shall not be allowed without my written

permission.

Department of _ COmPu‘rer Sclence

The University of British Columbia
1956 Main Mall

‘'Vancouver, Canada

V6T 1Y3

Date Apr”q)lq84

DE-6 (3/81)

ii

Abstract

The goal of Computer-Aided Instruction (CAI) research is to
build iﬁstructional programs that 1incorporate well-prepared
course material in léssons that attempt to individualize
learning. The role of Artificial 1Intelligence (AI) 1is to
facilitate a new kind of learning environment that stresses a
learner-based paradigm instead of the teacher-based paradigm of
traditional CAI. Research in Intelligent Computer-Aided Learning
(ICAL) 1is focused on providing instruction.that is sensitive to
the student's strengths, weaknesses, and preferred style of
learning.

In this thesis, research milestones in ICAL are discussed.
An Interactive Computer-aided Testing program that seeks to
diagnose novices' misconceptions of the assignment statement in
Pascal is described. This program was also used to explore the

utility of providing explicit models as an aid to learning

programming.

iii

Table of Contents

Chapter 1. Introduction e

0000-0000001000-0.1

Chapter 2. A Survey of Intelligent Computer-Aided Learning

Systems
2.1 Historical PerspectivVe ...ceeececenososecss Ceesteeasnnee 3
2'2 Towards ICAL ® 8 5 6 ¢ 0 5 T 4 & 5 8 5 D S S 9 S S P E S S O S e 6 e 0P S 0 s e s ...5
2.3 Milestones in ICAL Research I |

2.3.1 Interacting with the Student in a Mixed-initiative
Dialogue .c.eeeesnerscconnonsss

..00.'.D0...."'00.10

2.3.2 Tutoring by the Socratic methodcevveeeeel12
2.3.3 Evaluating Student Hypothesis for Consistency with

Measurements taken ...ceiviintcerenesnossescanensns 15
2.3.4 Enumerating Bugs in Causal Reasoning ceeol?
2.3.5 Interpreting Student Behaviour in terms of Expert

Knowledge ..veereeeeesccnsasnessessasssnsnnecnssss 19
2.3.6 Codifying Discourse Procedures for Teaching23
2.3.7 Constructing Incorrect Plans or Procedures26
2.3.8 Relating Incorrect Procedures to a Generative

Theory ..eeeeecensess e eeesevresssrrre s es e . .30
2.3.9 Self-Improving Teaching Systemsoc0vevee..32
2.3.10 Building Learning Environmentsseesees0.0..34

2.4 Future prosSpectsS ...iscesencscnnseses teee s R ¥
2.5 The Evaluation ISSUE ..cveeeeeecsane P 3
2.6 Summary ce st s e v enesann s e e eea s ecesaseasannns eees43

Chapter 3. Computer-Aided Testing, Evaluation and Advice (CATEA)

3.1 An Experiment in Writing CAL SyStemceceveeooacas 44
3.2 Novices' Misconceptions of the Pascal Assignment
statement

3.2.1 Bayman and Mayer's WOLK ...uiveeeeessesoncesseassasdd
3.2.2 The Pascal Assignment statementcceeeeeesses.d?

Chapter 4. Design and Implementation of CATEA

4,1 Overall Structureccieeeeeecess
4.2 The Pascal Compiler e
4.3 The Diagnostic Modeliieeeveessosesssosescasseessadb
4.4 Implementationc.ccveunns .

e 6 6 0 8 0 060 00 0 00 u051

s & & & & 2 & o 0 5 0 @ 0 0 .'.00000055

oo-.---o.--o§‘oooo-o-u¢60

Chapter 5. An Empiriéal Study of CATEA

5.1 Description Of StUGY tueveeeveoccenssosssersssnsnsassasnabl
5.2 Results of Study‘...l‘l'.l....l....‘..'l'....l..‘ez
5.3 QUEeStionNNaire SUILVEY t..cesececoscsosonsosssnssssasesessbB

iv

Chapter 6. ConcluSion ...eceiceerocnonarnsoses

oo-o.ooot'onooont69

ReferenCes. .v..ceesvencnsscssasacs .

....... .0....‘0.“.'........72

Appendix Al e & 8 & ¢ & o s & 0 0 0 0o .‘Il......I....Q..l...'..l'..l.l.‘.77

Appendix B. .ci.ceerrcccocaan P -

Appendix C. ...vuieenens ceerseseassesesne s

List of Tables

Performance of the first two groups of 39 students63

Breakdown of students in first two groups who program
incorrectly ceieeeeeeecences

oo-no-ooconoot-oo.c..ooooo‘a--oo63

Performance of the third group of 9 studentsccees...66

Student evaluation

..-...........-.........-...-..-.-...-..68

vi

List of Figures

1 .

A Paradigm for TULOring ...eceeeeeeceocnoecocaness Y
Components O0f an ICAL SYStem ...ivieeseeoseeosnconssonsessesd
Three Problems tested by CATEAiviiierersonosscossnsoossd2
Structure of CATEA Ceesesenseessacesssannne X

Diagnostic 1oop Of CATEA .. ieerineeeceeossooaossoacnneseseesdd

vii

Acknowledgement

I would 1like to thank Dr. Richard Rosenberg for his
invaluable guidance and perspective in supervising my research.
Most of the material in Chapter 2 is based on a paper written
for CPSC 522 and I would like to thank Dr. Alan Mackworth for
his most helpful criticisms of that paper and for reading this

thesis.

Chapter 1. Introduction

The goal of Computer-Aided Instruction (CAI) research is to

build 1instructional programs that incorporate well-prepared
course material in 1lessons that attempt to individualize
learning. Early programs were either electronic 'page-turners',
which printed prepared text, or drill-and-practice monitors,
which printed problems and responded to the student's solutions
using prestored answers and remedial comments. The 1970's saw
the evolution of a new generation of CAI ©programs that
represented | course material independently of teaching
procedures, so that problems and remedial comments could be
generated differently for each student. Research 1in these

Intelligent Computer-Aided Learning (ICAL) programs is focused

on providing instruction that 1is sensitive to the student's
strengths, weaknesses, and preferred style of \learning. The role

of Artificial Intelligence (AI) in ICAL is to | make possible a

new kind of learning environment that stresses a learner-based

paradigm instead of the teacher-based paradigm of traditional

CAI.

An ICAL system generally incorporates three models : a
domain model, a teaching model and a student model., Much
research work has been done on the student model which makes
hypotheses about a student's misconceptions and suboptimal
strategies so that the teaching model can point them out,
indicate why.they are wrong, and suggest corrections.

In this thesis, we wish to specify a small domain of

interest and write 'a CAL program that seeks to diagnose

misconceptions in a student's understanding of that domain by
attempting some limited use of AI techniques. We choose as the
knowledge domain the concept of the assignment statement in the
Pascal programming language.

We begin in Chapter 2 with a broad survey of the research
milestones in ICAL which will provide a broad framework for the
rest of the thesis. In Chapter 3, we discuss the motivations for
writing our instructional program which we call Computer-Aided
Testing, Evaluation and Advice (CATEA). Central to the diagnosis
model, we enumerate the possible misconceptions novices hay have
with the assignment statement. In Chapter 4, we discuss the
design and implementation of CATEA. In Chapter 5, we describe
the results of an empirical study of CATEA conducted on students
of an introductory Pascal course. In Chapter 6, we summarise
-what - we have 1learned from the whole experiment of developing

CATEA.

Chapter 2. A Survey of ICAL Systems

2.1 Historical Perspective

In the 1960s the digital computer was envisaged to play a
key role in education through the development and widespread use
of programs that would 'teach’ topics drawn from a wide variety
of disciplines. Reinforced by earlier work on programmed
learning (by Pressey, Skinner, and Crowder amongst others), the

view that children 'learn by being told' was much more prevalent

at that time than it 1is today. Subsequent implementation of
computational teaching programs, in the persuasive advertising
jargon of education, claimed to individualize teaching, and so
facilitate learning. A profusion of acronyms resulted in
relation to the use of computers in education - CAI, CAL, CBE,
CBL, CMI, CFI, CMﬁ (where C=Computer, A=Aided or Assisted,
B=Based, M=Managed, I=Instruction, L=Learning, E=Education and
F=Furthered).

During the mid-60's, a number of generative CAI systems
(Suppes, 1971; Woods & Hartley, 1971; Uhr, 1969) were devised to
provide drill and practice 1in arithmetic and 1in vocabulary
recall, aﬁd to select problems at a level of difficulty
dependent upon and adjusted to the student's overall
performance. These systems use an algorithm to generate
teaching material as opposed to those programs where each piece
of teaching material 1is pre-stored. These systems are also
called adaptive and their sophistication 1lay in the task-

selection algorithms. In these systems, models of the students

are based more ‘on parametric summaries of behaviour than

explicit representations of their knowledge.

By the end of the decade, a group of Al research workers
gradually emerged who shared a very different belief about the
learning and thinking processes. The underlying assumption in
their work is that complex cognitive activities 1like seeing,
learning, thinking and using language are knowledge-based. One
of their chief concerns is how best to represent them in the
computér. The relevance to education 1is the belief that a
léarner, working in a particular domain, has to build the domain
specific knowledge into an active mental database, active in the
sense that the knowledge representation can be assessed and used
as the basis for new learning. This process of constructing such
a mental representation implies creative mentél behaviour on the

part of the learner. In this context of 'learning by doing', the

"role of the teacher is to structure a domain in such a way that
it facilitates the model-building activity. ﬁnderlying this
shift to a new paradigm in CAI is the belief that truly
individualized teaching systems could not be built until deep
conceptual problems , about such matters as knowledge
representation, student modelling and language understanding,
were better understood.

The domain of CAL is interpreted broadly (Zinn, 1978) to
include learning about computers, with computers, through
. computers, and computer-managed learning. In +this ‘thesis, ‘the

terms Intelligent Computer-aided Learning (1caL), 1ICAI and

Intelligent Tutoring Systems (ITS) will be taken to be

synonymous, and to include :

(1) learning through the computer (coaches, laboratory

instructors, consultants)
(a) drill and practice
(b) tutorial
(c) diagnostic testing;
(2) learning with the computer (problem-solving monitors)
(a) simulation and gaming
(b) problem-solving

(c) creative activities,

2.2 Towards Intelligent Computer-aided Learning

An ICAL system should in some sense model an intelligent
teacher, but we have only elementary notions why some human
teachers are good at teaching while others are not. As an
alternative strategy, we will select the most obvious
deficiencies of the traditional CAL approach, and look at AI
work which provides some insight into the wunderlying
difficulties. The 4 main limitations are

(1) inability to know or understand the subject being taught,
in the sense that the system cannot accept unanticipated
answers or answer guestions;

(2) inability to conduct dialogues with the student in natural
language;

(3) inability to understand the nature of the student's
mistakes or misconceptions;

(4) inability to profit from experience with students or to

experiment with the teaching strategy (0'Shea, 1979).

In contrast, to tutor well,

The [ICAL] system must have its own problem-

solving expertise, its own diagnostic or student
modelling capabilities and its own explanatory
cababilities. 1In order to orchestrate these
reasoning capabilities, it must also have explicit
control or tutorial strategies specifying when to
interrupt a student's problem-solving activity, what
" to say and how best to say it; all in order to
provide the student with instructionally effective
advice (Brown & Sleeman, p. 2, 1981).

ICAL programs use AI formalisms to separate out what they
intend to teach from their teaching strategy. This approach has
several virtues : it becomes possible to keep records of what
the student know, the teaching strategy can be generalized and
applied to multiple problems in multiple problem-domains, and a
model of student knowledge can be 1inferred from student
responses and used as a basis for tutoring (Clancey & Buchanan,
1982).

As a general paradigm for the field, a tutoring system
(Figure 1) should incorporate the following 3 models :

(1) a domain model «containing the knowledge or expertise we

want to teach (what is being taught?)

(2) a teaching model <containing the tutoring theory and

strategy to improve the student's performance (how shall we

teach?)

(3) a student model <containing the knowledge that the system

expects the student to have acquired (how much does the

student know?).

Within the tutoring system, a teaching model accesses the
student model to find out what the student knows and the domain
model for what remains to be learned. The system then decides
what task to pfesent to fhe student. Once a task 1is generated,

the student draws upon his current knowledde to do the task, and

presents this decision to the tutoring system. From the student
response, the system updates its student model and 1initiates a

new decision cycle.

Tutoring System

Domain Model Student
Teaching Model Knowledge
Student Model Decisions

Figure 1. A Paradigm for Tutoring (Osin, 1980)

Not all of the three models are fully developed in every
ICAL system. Because of the size and complexity of ICAL systems,
most researchers tend to concentrate their efforts on the
develépment of a single part of what would contribute to a fully
usable system (Barr & Feigenbaum, 1982). The greatest weakness
of current ICAL systems is possibly their elementary teaching
models. Clancey & Buchanan (1982, p. 4) note that
Almost invariably, most researchers have backed
off from initially focusing on the [second] question
- "How shall we teach?" - to reconsider the [last]
guestion,' building a model of the student's
knowledge. This follows from the assumption that the

student errors are not random, but reflect
misconceptions about the procedure to be followed or

facts in the problem domain, and the best teaching
strategy .is to directly address .the student's

‘misconceptions,

To assist research in building models of misconceptions, we
need a sounder understanding of the nature of knowledge and
expertise. Comparison studies of experts and novices are
revealing how the expert structures é problem; the very concepts
he uses for thinking about a problem, distinguish his reasoning
from the student's often formal bottom-up approach. These
studies suggest that we might convey to the student the kinds of
quick associations, patterns and reasoning strategies that
experts build wup tediously over long exposure to many kinds of
problems - the kind of knowledge that tends not to be written
down in basic textbooks (Clancey & Buchanan, 1982).

Following this premise that we can be better teachers by
better understanding expertise, expert systems research -becomes -
of keen interest in education. These knowledge-based programs
contain within them a large amount of fécts and inference rules
for solving problems in restricted domains of medicine, science
and engineering. They have special interest to Cognitive Science
research as simulation models that can be used as a "laboratory
workbench" for experimenting with knowledge structures and
control strategies.

Another natural application for expert systems in education
is to use them as the knowledge foundation for an ICAL system
(Figure 2). The teaching knowledge is an essential component as
an expert system in a particular domain is not necessarily an

expert teacher of the material (Barr & Feigenbaum, 1982).

Intelligent CAL System

Expert System

Domain Interpreter Teaching

Knowledge Base Knowledge

Figure 2 Components of an ICAL system (Clancey, 1981)

2.3 Milestones in ICAL Research

The well-known milestones in ICAL research include!' :

(1) interacting with the student in a mixed-initiative dialogue
(Carbonell, 1970)

(2) tutoring by the Socratic method (Collins, 1976)

(3) evaluating hypothesis for consistency with méasurements
taken (Brown et al, 1975)

(4) enumerating bugs in causal reasoning (Stevens, 1978)

(5) interpreting student behaviour in terms of expert knowledge
(Burton, 1979; Carr & Goldstein,‘1977; Clancey, 1979a)

(6) codifying discourse procedures for teaching (Clancey,
1979b) |

(7) constructing incorrect plans Qor procedures (Genesereth
1981; Brown, 1975)

(8) relating incorrect procedures to a generative theory

(Brown, 1980)

‘The list of milestones from 1 to 8 was taken from Clancey &
Buchanan, 1982. In attempting a comprehensive survey, I have
added 9 and 10.

10

(9) building self-improving teaching systems (0O'Shea, 1979)
(10) building learning envirdnments (Feurzeig & Papert, 1969).
Milestones 1,2,3,6,9 and 10 éddress the teaching model,
while 4,5,7 and 8 make contributions to student modelling. We
shall now proceed to delve into each milestone and describe its
contributions to ICAL research as well as some of its
limitations. One broad theme emerges from these milestones : the

incorporation of cognitive models of learning or/and teaching.

This means that in the near future all CAL courseware will be
cognitively-based, capable of diagnosis and remediation at the

cognitive level.

2.3.1 Interacting with the Student in a Mixed-Initiative

Dialogue

The CAI efforts of the 1960's can be classified into 3
broad categories (Bryan, 1969). In the first, ad-lib CAI, the
student is given access to the computer (including one or more
languages and perhaps a library of routines), but he is in full
control and his input is not controlled by the computer. A
typical example 1is Seymour Papert's LOGO Laboratory (ﬁapert,
1980; Abelson & diSessa, 1981). The second category is games and
simulation where the student has some initiative but is
constrained by the rules of the game or the logic of the
simulation.

In the first two categories, learning takes place as an
expected side effect. The third category makes an explicit
attempt to instigate and control 1learning. Drill-and-practice

and, 1in general, classic efforts to use the computer as a tutor

I

are included here. These efforts 1involve the construction of
frames of questions with anticipated correct and wrong answers
and perhaps keywords to be extracted from the student's answer.
As their sequencing 1is deterministic, Carbonell (1969) called
them 'ad-hoc frame-oriented' CAI systems and observed that
[In these systems], the student has limited or
no initiative; he cannot use natural language in his
responses, and systems usually look fairly rigid to
him... From a systems viewpoint, the system controls
the student but is in turn tightly ad-hoc programmed
by the teacher; the system has no real initiative or
decision power of its own; and, of course, it has no
real 'knowledge'.

Carbonell (1970) had these limitations in mind when he’
wrote a dialogue program, called SCHOLAR (the earliest of ICAI
systems), to teach facts about the geography of South America.
It is a "non-deterministic" CAI program where decisions are
probabilistic among dynamically determined alternatives, with
weights that are dynamically associated. Instead of storing
geographic information in the form of prewritten frames , the
program was organized around an associative database (semantic
network) of simple geographic facts about industries,
populations and capitals. It. was designed to manipulate its
database to generate factual questions, to check unanticipated
answers to these questions, and also to answer the student's
questions. Since control of the way in which the <conversation

could develop 1is shared between student and system, Carbonell

coined the term 'mixed-initiative' to describe this kind of

. interaction.
The semantic network is a collection of named nodes, called
concepts, with péirs of these nodes linked by relations. In the

database, a fact is represented as a pattern of linked concepts,

12

the pattern resembling a tree or network. A question, in effect,
is an 1incomplete pattern, and the task of the program's
retrieval procedures is to search in the database for a pattefn
which matcheé the question pattern, and to supply in its .answer
any additional relevant information about the topic which is
stored in the database.

This method works reasonably well provided that the
information required is explicitly represented in the database.
However, a great deal of information is encoded implicitly, and
this can only be retrieved by adding ad hoc inference rules to
the database, and by applying these rules during retrieval. For
example, the database might contain the rule 'To find the
products of a place find the products of the industry at a

)

place.' An obvious difficulty is that as the amount of knowledge
in the network ‘increases; - there will be a rapidly expanding
number of false paths associated with nodes 1like 1industry or

place, creating a significant search problem.

2.3.2 Tutoring by the Socratic method

This milestone considers conversations between a tutor and
a student as an important method of teaching. Collins (1976)
proposes that the best way to teach knowledge and the skills
necessary for applying that knowledge to new problems or

situations, 1is through the Socratic method of teaching . The

student of a Socratic dialogue is forced to reason for himself,
derive general principles from specific cases and apply the
general principles that he have learned to new cases. More

specifically, he learns 3 kinds of knowledge :

13

(1) specific information about a variety of cases;

(2) the <causal dependencies or principles that underlie these
cases;

(3) reasoning skills like forming hypotheses, testing
hypotheses, distinguishing between necessary and sufficient
conditions, and asking the right questions when there is
not enough information to make a prediction,.

Collins specifies and formulates the Socratic method as a
set of strategies or rules. An ICAL system can incorporate as
many of these strategies as possible in tutoring casual
knowledge and reasoning. The Socratic method has not been
previously considered feasible for education generally because
it 1is a one-to-one teaching strategy. Developing technologies
like distributed instructional systems make it possible to teach
many more studénts with such a tutoring strategy.

Collins examines a variety of Socratic dialogues
empirically to uncover those features that charaéterize the
tutor's behaviour. He formalizes the tutoring strategy as
production rules of the form "If in situation X, do Y." The
rules are this written in- a procedural formalism that is
independent of the particular context. 23 rules are derived, the
first two rules of which are listed below with an example in
tutoring cauéal factors affecting rice growing :

Rule 1 : Ask about a known case.

%%) it is the start of a dialogue

then .

(2) pick a well-known case and ask what the value of

the dependent variable (the variable that depends on
causal factors) is for that case.

Example : Ask the student "Do they grow rice in
China ?"

Reason for use of rule : It brings out any well-

¢

14

known facts the student knows about such as rice
growing in China.

Rule 2 : Ask for any factors.

I1f

(1) a student asserts that a case has a particular
value for the dependent variable,

then

(2) ask the student why.

Example : if the student says they grow rice in
China, ask why.

Reason for use : This determines what causal factors
or chains the student knows about..

A second-order theory of teaching strategy is needed to choose
what rules are most appropriate to 1invoke in different
situations.

This milestone proposes a psychological theory that will
account for behaviour in dialogue situations and a set of rules
for constructing effective instructional programs. For the rules
to Dbe édequate as a descriptive theory, it must be‘able to
successfully account for new dialogue protocols (Resnick, 13876).
In Collins' work, there is no specification of how many or what
kinds of dialogue protocols are accounted for. Many more
protocols will have to be analyzed before the generality of
Collins' rules can be estimated. For the rules to be adeguate as
a prescriptive theory, it should produce dialogues that look
like the real ones and that did promote some kind of learning.
Resnick -'suggested that the condition part of the rules should
also include, besides immediate -student responses, at least a
brief history of the student's responses and the tutor's
intentions during the dialogue itself. More empirical studies
are needed to judge whether the dialogués do actually teach.

The task of eventually building an automated dialogue

expert for tutoring is enormous and may not be realized for a

15

long time. However, the attempt itself, forcing attention as it
does to the details of natural dialogues, will help yield
greater understanding of the tutoring process between human

actors.

2.3.3 Evaluating Student Hypothesis for Consistency with

Measurements taken

An intelligent instructional system which reflects a major
attempt to extend Carbonell's notion of mixed-initiative CAL for
the purpose of encouraging a wider range of student initiatives
is SOPHIE (Brown et al, 1976). Unlike previous systems which
mimic the roles of a human teacher, SOPHIE tries to to create a
'reactive' environment in which the student learns by trying out

his ideas rather than by instruction.

SOPHIE acts as an elecggonics laboratory instructor who
helps the student transform his classroom knowledge of
electronics into an experiential, 1intuitive knowledge of 1its
meaning and application. It operates by presenting the student
with a circuit schemata of an electronic apparatus, into which
it has previously introduced a fault of some specified degree of
difficulty. The student's task is to trace this fault. He can
perform any sequence of measurements, ask specific Questions
about the implications of these measurements , and even ask for
advice about what to consider next, given what he has discovered
so far. At any time, SOPHIE may encourage the student to make a
guess as to what he thinks might be wrong given the measurements

he has made so far. If he does, SOPHIE will evaluate his

hypothesis. If the information the student should have been able

16

to derive from his current sét of measurements 1is logically
contradicted by his hypothesis, SOPHIE identifies and explains
these contradictions. SOPHIE can also judge the merits of any
particular measurement with respect to the prior sequence of
measurements he has made. For example, his new measurement may
be logically redundant in that no new information can be derived
from it.

SOPHIE's expertise is derived from an efficient and
powerful inferencing scheme that uses multiple representations
of knowledge including

(1) simulation models of its microcosm

(2) procedural specialists (of which the hypothesis evaluation
specialist 1s one) which contain 1logical skills and
heuristic strategies for using those models

(3) seﬁantic nets for encoding time-invariant factual knowledge

(Brown & Burton, 1979).

The power and generality of SOPHIE result from the synergism
obtained by focusing the diverse capabilities of the procedural
specialists on the intelligent manipulation, execution and
interpretation of its simulation models.

SOPHIE is a very large program, but the researchers claim
that the average response time to a question is 3 seconds. While
this 1is a satisfactory measure of the program's efficiency, we
lack evidence about 1its educational wvalue. One built-in
assumption 1is that the student must have some knowledge of the
basic electronic principles underlying the design and operation
of DC power supplies. The measurements he makes take on meaning

in the context of his mental model of the power supply, and this

17

enables him to put forward a hypothesis. But if his mental model
is wrong, his solution will probably be wrong too.
Unfortunately, SOPHIE is not sufficiently intelligent to explain

why it is wrong.

2.3.4 Enumerating Bugs in Casual Reasoning

This milestone works towards a theory of tutorial
interaction that enumerates the types of conceptual bugs
students have in their understanding of physical processes, and
tries to diagnose and correct these bugs from different
representational viewpoints. Stevens et al (1978) built a system
based on this theory, called WHY, which tutors the causes of
rainfall. The theory is formalized as a set of Socratic tutoring
rulesrandra ;q;ip;—like knowledge_structure (Schank & Abelson,
1977). The script structure represents the different temporal
and causal steps in processes that affect rainfall.

Although the first version of the WHY system 1is able to
carry on simple tutorial dialogues about the causes of rainfall,
interaction with it reveals that it can detect surface errors
like missing.steps in reasoning about the causes of rainfall{
but fail to diagnose the underlying misconception that the érror
reflects. The researchers believe that one of the major skills a
good teacher possesses 1s knowledge about the types of
conceptual bugs students are likely to have, the manifestations
of these bugs and methods for correcting them. So an important
component of an ICAL system 1is a method for representing,
diagnosing and correcting bugs.

To enumerate the bugs in students' causal understanding of

18

rainfall, a questionnaire survey was carried out. It asks 32
guestions about the cauées of heavy rainfall. From the
substantial body of data on errors and misconceptions gathered,
the researchers identified 16 different bugs that account for
72% of incorrect answers.

The next step is to represent these bugs in a diagnose-and-
correct goal structure. This requires a detailed formalism for
representing the knowledge taught. Script structures can be used
to represent ordered causal and temporal processes, but this
handles only a small number of bug representations and
viewpoints from which to discuss them. Collins proposes a
functional viewpoint which emphasizes the functional
relationship among the attributes of the various objects
involved in different processes. The basic unit is a description
of some process such as evaporation or cooling. Here 1is an

example of the functional relationship for evaporation :

Actors (with a role in the process)
Source : Large-body-of-water
Destination : Air-mass

Factors (which affect the process)
Temperature (Source)

Temperature (Destination)
Proximity (Source, Destination)

Functional-relationship (which hold amomg the
factors and result)

Positive (Temperature (Source))

Positive (Temperature (Destination))

Positive (Proximity (Source, Destination))
Result (of process)

Increase (Humidity (Destination))

19

Misconceptions are represented as meaningful ‘transformations of
the basic knowledge representation. For example, the

representation for the cooling-by-expansion bug is :

Actors
Source : Large-body-of-water
Destination : Air-mass
Factors

Pressure (Destination)
Proximity (Source, Destination)

Functional-relationship - .

Inverse (Pressure (Destination))
Positive (Proximity (Source, Destination))

Result (of process)
Increase (Humidity (Destination))
This bug consists of a substitution of‘pressure for temperature
as the relevant attribute of the destination in the normal
representation for evaporation. Bugs can show up in all parts of
the representation. Instead of viewing a student model as a
simplificafion of the expert's rules, this milestone treats it
as a set of 'semantically meaningful deviations' from an

expert's knowledge.

2.3.5 Interpreting Student Behaviour in terms of Expert

Knowledge

Past and current research on an theory of student modelling
has been focused on the notion that if one has an explicit,
well-formulated knowledge base of an expert for a given problem-

domain, then one can model a student's knowledge as a

20

simplification of the rules comprising the expert's procedures.

Goldstein (1977) has coined the term 'overlay model' to expand

this concept in his Computer Coach researéh. The main ideé is to
explain differences between the behaviour of the expert and the
student in terms of the lack, on the student's part, of some of
the expert's skills. Thus, an overlay model 1is a set of
hypotheses, each of which records the system's confidence that a
student possess a given skill.

Overlay modelling has been developed as part of the COACH
Project at MIT, whose concern is the Aevelopment of AI—basea CAI
programs for tutoring the skills required for successfully
playing various computer games (WUSOR 2 for playing WUMPUS and
WEST for the PLATO game "How the West has won"). The computer
serves as an assistant to a learner who is in the process of
acquiring the skills neceséary to play the game well.

Overlay modelling is embodied in a Psychologist model, the
component of the coach responsible for maintaining such models
of the player's current skills (the K model) and learning
preferences (the L model). These models are used by the Tutor
module to prune complex explanations generated by the expert.
Like a human speaker, the coach abbreviates 1its statements by
eliminating those facts that are already known by the listener
and those facts that are too complex.

The modelling is performed by a set of P rﬁles that <are
triggered by different sources of evidence, and whose effect is
to modify a set of hypotheses regarding the student's
familiarity with the expert's skills. A P critic monitors these

rules to detect discontinuities and inconsistencies in the

21

player's behaviour. Inconsistencies are evidence that the P
rules are failing to model the student properly, while
discontinuities indicate a change in the player's knowledge
state.

As no single source of evidence is a certain indicator of a
learner's knowledge, the Psychologist is provided with 4 sources
of evidence :

(1) implicit - The student's play indicates his mastery of
various skills. The assumption 1is that the player has
learned those skills involved in choosing his particular
move and rejecting its 1inferiors, and has yet to learn
those skills needed to recognize superior moves.

(2) structural - The expert's skills are structured into a

syllabus which is a network linking the skills in terms of

their complexities and dependencies. Structural knowledge =~

suggests conservatively that a student familiar with a
certain region of the syllabus (as 1indicated by the K
model) 1is more likely to acquire a new skill at the
frontier of this region rather than deep into unknown
territory.

(3) explicit - The tutor can obtain explicit evidence by asking
the student two types of questions : test cases and follow-
up questions.

(4) background - Every teacher has expectations about the
performance of a student on the basis of that student's
background. Thus skill levels are classified into various
levels, 1like "novice", '"amateur", or "expert", and

correspond to a different initialization for the overlay

22

model.
The contribution of overlay modelling 1is that it 1is

essentially a linguistic theory of the speakef (Carr, 1977).

Each of us, when formulating an explanation, abbreviates the
explanation in accord with our model of the speaker. This model
is based on our analysis of the listener's behaviour in terms of
the knowledge we know and the knowledge we believe he needs to
know. Overlay modelling performs a similar function for a
computer tutor. Indeed, a person or computer can only judge
another in terms of what he, she or it knows itself.

Overlay modelling rests on the assumption that the skills
employed by the student are a subset of those of an expert. This
is not inevitable for at least 3 reasons (Carr, 1977). First,
the student may be solving problems in a fashion completely
divergent from ﬁhe expert - there may be multiple paradigms fgr
the particular problem domain. Second, the student may be using
a non-optimal method for his own reasons. A computer game player
may be more concerned with finishing quickly than avoiding risk,
and choose to a move to a more informative position, despite
greater risk. Third, the student may possess a skill of the
expert in an incorrect form, perhaps using it"inappropriately.
Modelling will fail if the complete absence oﬁ a skill cannot be
distinguished from its inappropriate wuse. Thus it would be
better to have a general theory of learning that address
situations in which the student has an incorrect skill or an

alternative skill.

23

2.3.6 Codifying Discourse ‘Procedures for Teaching

So far, ICAL research has focused on the representation of
domain expertise, the construction of a ’student model, and
tutoring principles for correcting misconceptions. It has not
dealt directly with the problem of carrying on a coherent,
purposeful task-oriented dialogue with a student. In WEST and
WUMPUS, for example, the tutor's remarks are all interruptions
or reactions to the immediately preceding move taken by the
student.

Clancey (1979b) discusses a kind of mixed-initiative
dialogue that concerns a single, complex task to be solved by a
student wunder a program's guidance. Sequences of student/tutor

remarks are grouped into 'discourse situations', some typical

examples of which are : examining the student‘s understgnding
after he asks a question that shows‘ unexpected expértise, and
giving advice to the student after he makes an hypothesis about
a subproblem. Clancey calls the general problem of sharing
initiative with the student and having provisions to carry out

one's discourse goals as 'dialogue management'. He discussed it

using GUIDON, the first tutor built on top of a complex expert
system wusing MYCIN's 400 production rules and tables for
teaching medical diagnosis by the case method.

GUIDON was first ‘conceived as an extension of the
explanation system of the MYCIN consultation program. With this
foundation, a tutoring program would take MYCIN's solution to a
stored consultation problem, analyse it and use it as the basis
for a dialogue with a student trying to solve the same problem.

The student is given .some information about a patient expected

24

to have -an infectious disease, and is expected to request case
data, as he sees necessary to draw conclusions about the cause
of the infection. The topics of the dialogue are precisely the
goals that are determined by applying MYCIN's rules, like the
type of infection. As the dialogue proceeds, GUIDON is able to
collect information about the student's knowledge of the <case
and its domain using an overlay model. Tutorial remarks will be
given when appropriate to make the students aware of any gaps or
inconsistencies in his knowledge with respect to the underlying
expert rule base, and to correct these deficiencies. They range
from single pertinent remarks to prolonged presentations that go
beyond interruption and repetitive question/ answering.
Briefly, the framework of GUIDON incorporates

(1) domain knowledge in the form of MYCIN-like rule bése and
records from the consultation to be discussed with the
student{

(2) discourse knowledge in the form of several hundred domain-
independent tutoring rules , organised 1into discourse
procedures for carrying on the dialogue;

(3) a communication record for recordiné discourse goals and
the dynamic state of the tutorial.

Clancey represented the discourse knowledge in the form of a
transition diagram in which the nodes are discourse situations
and the 1links represent choice points that lead to alternative
dialogues dictated by domain logic, economy of presentation and
tutoring goals. These links represent the management decisions
in which the tutor takes the initiative to <control dialogue

situations. GUIDON also provides for student initiative by

25

allowing him to refer back to an early topic and gather more
details, to make a conclusion when he is ready, and to change
the dialogue topic.

One limitation of the GUIDON framework of discourse
procedures 1is that it can only discuss rule-based knowledge,
that is, topics that can be expressed as production rules. Also,
in the course of developing GUIDON some fundamental shortcomings
become clear. There are 2 kinds of explanations ‘that MYCIN
cannot give and GUIDON cannot teach : it cannot explain why a
particular rule is correct and it cannot explain the strategy
behind the design of its goal structure. MYCIN is aphasic - able
to perform, but wunable to talk about what it knows. A huﬁan
teacher can provide analogies, multiple views, and level of
explanations which are unknown to MYCIN. MYCIN did not capture
all that an expert knows, for example, how he organizes his
knowledge, how he remembers 1it, and strategies he uses for
solving problems. Clancey (1981) reports that many students were
unable to remember the rules, even after discussing a single
problem with GUIDON many times.

During 1979-80, a study was undertaken to determine how an
expert remembered MYCIN's rules and how he remembered to use
them. This study (outlined in Clancey, 1981) utilized several
common AI methods for knowledge acquisition, built wupon them
significantly through the development of an epistemological
framework for characterizing various kinds of knowledge. A new
comprehensible psychological model of medical diagnosis was
formulated and implemented in NEOMYCIN which is a consultation

rogram in which MYCIN's rules are reconfigured to make explicit
prog

26

distinctions that are important for teaching. The knowledge
representation separates out the inference rules (simple
data/hypothesis associations) from the structural and ;trategic
knowledge, that is, what a heuristic is from when it is‘ to Dbe
applied. The strategies and structure model how an expert
reasons. Separation of problem knowledge (inference rules) and
diagnostic strategy enables a tutorial program to present them
separately to a student, as well as 1look for them 1in his
behaviour. With 1its theoretical, epistemological underpinning,
NEOMYCIN is designed to present the subject material that a new
version of GUIDON, GUIDON2 can use to express important teaching
points. This provides an example of how work 1in ICAL has

contributed to new AI ideas and methods.

2.3.7 Constructing Incorrect Plans or Procedures

This milestone extends the work of Stevens et al (1978) in
diagnosing misconceptions in understanding. Each skill of the
expert is explicitly coded, along with a set of potential
misconceptions of that skill. The task of inferring a diagnostic
model then becomes one of discovefing which set of variations or
deviations best explains the surface behaviour of the student.
This view is also similar to but more structured than the
approach taken by -Self (1974) in which he models the student as
a set of modified procedures taken from a procedural expert
problem-solver.

Research 1in a diagnostic model of basic skills arose from
an investigation of the procedural skills necessary to solve

high school algebra problems (BUGGY, Brown et.al, 1877). To

27

illustrate the model, we consider an -example of teaching
arithmetic skills., Brown (1978) noted that it 1is no great
challenge té add or subtract 2 numbers, but diagnosing
misconceptions in these skills can be guite subtle.

Consider a case study in which we examine 5 "snapshots" of
a student's performance doing addition as might be seen on a
home work assignment :

41 328 989 66 216
+ 9 +917 + 52 +887 + 13

50 1345 1141 1053 229

Example 1

In computer terms, the student, after determining the carry,
forgets to reset the "carry register” to 0 and hence the amount
carried 1is accumulated across the columns. The bug is not so
absurd if one considers that a child might use his fingers to
remember the <carry and forget to bend back his fingers, after
each carry is added.

For a system to be capable of diagnosing student's
misconceptions such as above, the procedural skill being taught
must be fepresented in a form amenable to modelling incorrect as
well as correct subprocedures of that skill. Furthermore, the
representation must allow the intermixing of both the correct
and incorrect skills, so that the model can capture those parts
of a skill that are correct as well as wrong. The breakdown of
the skill into shared subskills can also account for the
recurrence of similar errors in different skills.

The representational technique for diagnostic models is a

procedural network. A procedural network model for a correct

28

skill consists of a collection of procedures with annotations in
which the control structure between procedures are made éxplicit
by appropriate 1links. Each procedure has 2 main parts.: a
conceptual part representing the intent of the procedure, and an
operational part consisting'of methods for «carrying out that
intent. The methods are programs that define how the results of
other procedures are combined to satisfy the intent of a
particular procedure. Any procedure can have more than one
method, thus providing a way to model different methods for
performing the same skill. The possible misconceptions in each
skill are represented 1in the network by incorrect methods
associated with subprocedures 1in 1its decomposition called
"bugs". Each buggy version contains incorrect actions taken in
place of the correct ones.

In Example 1;- we are provided with several surface
manifestations of a bug in the student's addition procedure. To
uncover those possible subprocedures which are at fault, we use
the procedural network to simulate the behaviour of buggy
subprocedures over the set of procedures over the set of
problems and note those which generate the same behaviour as
exhibited by the student. To catch a student's misconceptions
that involve more than one faulty subprocedure, we must be .able
to simulate various combinations of bugs.

A deep-structure model of the student's errors is a set of
buggy subprocedures that, when invoked, replicates those errors.
Each buggy version has associated information such as what the
underlying causes of the bug may have been, as well as specific

remediations, explanations, interactions, and examples of the

29

bug -~ all of which may be used by a tutoring system to help
correct the student's problem.

‘The first problem that naturally arises is whether or not
it 1is possible to formulate the modelling problem so that the
combinaﬁorics can be contained. Brown and Burton note that,
given a sizeable number of buggy procedures, the number of
combinations to be'considered is extremely large. Sleeman and
Smith (1981) propose several heuristics which reduce the size of
the search space. |

Another 1issue 1is the psychological validity of the skill
decomposition and buggy variants in the network - how well do
the procedures in the network correspond to the skills that we
expect people to learn? If the functional breakdown of the skill
is not correct, common bugs may be difficult to model while
those suggested Sy.the model may be judged to be "unrealiétic“.

We have also 1left open the entire issue of a semantic
theory of how procedures are understood and learned by a person
and why bugs arise in the first place. An interesting
theoretical framework that accounts for the entire collection of
empirically arrived at bugs will wundoubtedly provide insight
into how to correct the teaching procedures that produce them in
ﬁhe first place. Moreover, such a theory would be the next step
in a semantically-based generative theory of student modelling.
~In BUGGY, bugs have to be hand-coded into the network. One can
envision generatively producing bugs through inappropriate
analogy from other operations or incorrect generalization from

examples through a "semantic" theory.

30

2.3.8 Relating Incorrect Procedures to a Generative Theory

This milestone marks current efforts to form a generative
theory of bugs in procedural skills. Given a procedural skill,
it predicts which systématic errors or bugs will occur in the
behaviour of students learning the skill.

A child's errors are said to be systematic if there is a
procedure that produces his erroneous answers. BUGGY and more
recently DEBUGGY have been used to analyse thousands of
student's wbrk (Burton, 1981 ; Vanlehn & Friend, 1980). An
extensive data base of bugs was collected and found to be
converging in the sense that they cover a substantial number of
étudent errors and only a small number of new bugs are being
discovered. The researchers investigate the cause of these bugs

and the reasons they occur. Effort is focused on explaining
these known bugs in terms of a set of formal principles that
transform a procedural skill into all of its buggy variants. A
generative theory of bugs was developed that explains how bugs
arise as a result of systematic errors in performing a skill.
The theory must generate all the known or expected bugs for a
particular skill and if must generate no others.

The theory is motivated by the belief that when a student
has unsuccessfully applied a procedure to a given problem, he
will attempt a repair. Suppose he is missing a fragment of some
correct procedural skill, either because he never learned the
fragment or he has forgotten it. Instead of quitting because of

an impasse, he will often be inventive, invoking his problem-

solving skills in an attempt to repair the impasse so that he

31

can .proceedv to execute the proceduré,ralbeit in a potentially
erroneous way. The researchers believe that many bugs can best
be explained as "patches" derived'from repairing a proceduré,
that has encountered an impasse. Brown (1980) calls the theory

Repair Theory. In the theory, a bug's derivation has 2 parts.

The first is a series of operations that generate an 1incomplete
procedure, namely, a procedure that may reach an impasse on
certéiﬂ problems. The second part is a series of operations that
represent the repair of the procedure so that it can proceed.

Repair theory defines the sét of incomplete procedures by
applying a set of deletion principles to a formal representation
of the correct procedure for the given skill. The set of repairs
is defined by a set of repair heuristics and a set of critics.
When an incomplete procedure is applied to a problem and reaches
an impasse, a set of repairs is perfofmed by a generate and test
problem-solver. The set of repair heuristics suggest repairs and
generate bugs, and the critics filter out the "star-bugs" -
absurd bugs that expert diagnosticians agree will not be
observed.

The theory has been tested on the extensive database of
bugs for multidigit subtraction and not only generates the
observed bugs, but also make predictions about the -frequency and
stability of bugs (how often .a bug occurs in the students' work
and how 1long a student keeps a bug). While Repair theory has
been designed to be relatively domain-independent, it has not
been applied to domains other than place-value subtraction.
Brown (1980) afgues that Repair theory can be applied to other

domains and that it can be extended to provide a theory of

32

procedural learning that accounts for bug acquisition.

2.3.9 Self-Improving Teaching Systems

One of the ways in which CAL programs compare badly with
human teachers 1s that they do not benefit from their teaching
experience. A CAL program which teaches poorly in some way will
teach poorly 1in exactly the same way after teaching 10,000
students. This milestone addresses the 1issue of the 1lack of
learning capability in CAL programs. O'Shea (1979) reports only

three CAI programs in the literature that have a self-improving

capability - Smallwood's program (1962) that teaches geometry,
Kimball's tutor (1973) for integration and O'Shea's system for
teaching quadratic equations.

Self-improvement could take the form of improving its
internal representation of its teaching material. It would mean
learning new facts, concepts or skills from the students being
taught. For the most part, such learning 1is completely beyond»
the étate of the art because of the way domain-specific
knowledge is represented in such programs (0'Shea, 1981). The
only example of a CAI program that improves the internal
representation of its teaching material is that of Kimball's. In
his program, if a student's solution to an archive integration
problem 1is better (has fewer steps) than an archive solution,
then this student's solution is adopted and becomes the new
archive solution for that problem. So the program's ability to
carry out integration improves and hence 1its hints to the
students may change, but the extent (response-sensitivity) to

which it can adapt to the individualized learning needs of its

33

remains fixed.

‘O'Shea proposes a design for a self—improving teaching
system aimed at improving the quality of instruction by altering
and experimenting with those features of CAI programs which
relate to their response-sensitivity. Some specific examples of
such features are : |

(a) the best order to present a set of concepts to students who
have different styles

(b) the point at which a program monitoring a student
performing a problem-solving task should intervene.

The design has two components. One component is an adaptive
teaching program where the teaching strategy is expressed as a
set of production rules. The second component performs the self-
improving function of the system by making experimental changes
to the set of production rules. This component employs a
deduction procedure which operates on a theory of instruction
expressed as a set of modally qualified assertions. A theory of
instruction is concerned with optimising the learning process
and can be regarded as an action-driven production system where
the question to be answered by deductive inference on the
assertions 1is "What <change 1in teaching strategy will improve
teaching performance wrt educational objective x?". The cycle of
operations proposed for the system is as follows : select an
educational objective, make an experimental change in teaching
strategy, statistically evaluate the resulting performance, and
update Dboth thé set of production rules and the set of
assertions.

A self-improving system was implemented for the teaching of

34

quadratic eguations by the discovery method. The system was used
by 51! students, and executed 5 experimental changes on its
teaching strategy. This trial demonstrates that it was capable
of improving its performance as a result of experimentation.
Self-improvement is particularly applicable to those CAl
programs intended to run under very large multi-access systems
which affect very large number of students. These environments
provide considerable amounts of performance data which should
enable self-improving systems to make reliable modifications.
The principal contribution of O'Sﬁea's program has been to
demonstrate the feasibilty of constructing an response-sensitive
self-improving program. At present the system only makes changes
to its tutorial strategy. Future possible research could be done

on facilitating the expression and development of richer

theories of instruction. e

2.3.10 Building Learning Environments

Given the kinds of deep pedagogical problems of CAL and the
teacher's traditional dislike of machines in the classroom, we
can anticipate that expert systems in the shape of computerised
tutors will play a minor role for many years to come (Howe,
1979). An alternative approach to the use of computers in
education is to use the computer to simulate a modelling system
which a learner can use to carry out model-building experiments.
In the last five years, researchers have focused on supportive
learning environments which attempt to combine the problem-
solving experience and motivation of 'discovery' learning with

the -effective guidance of tutorial interactions.

35

Pioneering work has been done by Feurzeig and Papert in
mathematics learning. They emphasized the fundamental problem of
identifying and naming the concepts that a beginner needs to
enable him to express his thoughts in a clear way. With this in
mind, they invented a simple but powerful programming language
called LOGO which provides a child with a language for
describing procedures. The child will learn Eo invent and carry
out exciting projects by having access to computers and with
peripheral devices capable of producing on-line real-time action
(Papert, 1971). In doing so, he learns to use computers in a
masterful way which can change the way he learns everything
else. A sound Piagetian principle is brought into play - new
learning takes plaée in the framework of o0ld knowledge,
something the child alfeadybknows.

There are two views concerning the relevance of the
activity of model-building to education. Papert's view is that
the programming approach should emphasiie problem-solving skills
in the expectation that when a <child has work 1in several
different domains, he will recognize the similarities between
the methods used to make plans and to debug them. In this way,
he will build up genuine domain-independent\study skills. Others
take the view that these skills can only be appreciaged when a
person has extensive domain-specific knowledge, suggesting that
in the early stages of learning emphasis should be placed on
content learning.

Evidence of benefit of learning content or problem—solving
skills has been scanty. Some evaluation studies (Howe, 1979) has

shown that LOGO has been successful in teaching domain-specific

36

knowledge like mathematics and programming. When it comes to
teaching problem—solying skills, there 1is 1less evidence of
benefit. Statz (1973) records little improvement in <children's
ability to cope with problem-solving tasks after é year's
programming activity.

Work is also done at the Xerox Palo Alto Research Center in
California on designing learning activities for ‘'children' of
all ages. The aim 1is to provide powerful computational
facilities and techniques which can be applied to a diverse
range of tasks 1in school and in the office, by children and
adults alike (Kay, 1977). A new programming language called
Smalltalk was developed and in it, transactions take the form of
messages sent to, or received from, 'activities' in the system.
Every activity belong to a class, or family of activities, each
one of which has the ability to recognize and reply to messages.
Each class also has certain capabilities, such as drawing
pictures, making musical noises, or adding numbersi For example,
to program an airplane simulator in Smalltalk, one would define
a class called instrument, and create activities (instances) of
that class to draw the particular 1instruments on the display
screen. Each instrument would have 1its own position on the
screen, its own label and its own displayed value. Altering one
of the <controls would cause messages to be exchanged via the
class which locates the instances to obtain any value requested
or to make alternations to these values.

A number of features has been added to Smalltalk to build
Thinglab (Borning, 1979) which provides an object-oriented

environment for building simulations. Thinglab allows the user

37

to describe complex simulations easily by specifying all the
relations (called constraints) among the variéus objects that
must be satisfied and leaving it wup to the system to plan
exactly how the constraints aré to be satisfied. Although.the
interactions among the parts of simulation system may be
numerous, the usef can specify each relation without worrying
about the others. A Thinglab-style system might prove valuable
as part of a geometry curriculum, or as an adjunct to a physics
laboratory.

The learning environment is viewed by some investigators
such as Papert as a substitute for traditional classroom
teaching., Papert saw the <classroom as an artificial énd
inefficient 1learning environment and perceived that schools as
we know them today will have no place in the future (Papert,
1980). Others are less radical and are iﬁterested in adapting
the learning environmeﬁt to the existing classroom, instead of
abandoning the existing curricula and substituting the learning
environment for 1it. This raises the 1issue of educational

evaluation which we will discuss later.

2.4 Future Prospects

Two important areas which will surely influence ICAL are
natural language input and output, and technological advances.
Most ICAL systems have some form of natural language
input/output (I1/0), but the amount of language recognised is
rather 1limited. The wusual techniques are wused : filling in
templates, finding keywords or their synonyms, and a limited

degree of spelling correction. Recent work in natural language

38

research suggests that natural language interfaces of
considerable power may be available for CAL systems. Gable &
Page (1980) note that

The improvement in communication between the student

and the CAI system which occurs because of improved

language capability should not be underestimated. It

would seem fair to say that a CAI system without

extensive natural language capability 1is 1like a

tutor who speaks a langquage foreign to the student.

In the area of human factors engineering, intelligent
systems need to exchange information smoothly and efficiently
with the student; that 1is, they should be sensitive to the
needs, capacities and limitations of human beings. One
possibility is to include some part of the student's
psychological state into the student model in order to conduct a
more appropriate dialogue. The PARRY system of Colby (1973)
simulates a paranoid personality'and.constructs a model of the
person using it .in order to be ready to i;s;i;“ them later in
some telling way. In an ICAL system, one could analyze
unexpected or unrecognized inputs for signs of boredom or anger
in order to respond in some appropriate way. The paranoid aspect
of PARRY‘S personality might make it too human to be an
effective tutor. It may typically become 'impatient' or 'angry'
and terminates the session. But students might enjoy the
possibility of choosing the 'personality' of their tutorial
system. Some might prefer a mildly paranoid tutor to escape the
monotony of endless mechanical patience.

Visual aids have been used in education for many years. The
developing technology in video recording has extended the use of

recorded lectures and demonstrations in teaching. Video storage

technology has been greatly enhanced by the videodisk which has

39

the advantage of random access @and can store over 100,000
television pictures on a single disk. Costs for-storage of a
single picture are reduced 100 times over printing costs,
providing a significant incentive for wuse in ICAL systems.
Computers may be interfaced with the videodisk providing
selective access to video frames or sequences. The videodisk can
also be used to store sound, large amounts of text, or mixtures
of text, sound and moving pictures.

The use of videotex for education also holds much promise.
Videotex makes available computer-based information via visual
éisplay units, or appropriately adapted television sets, to a
dispersed and reasonably numerous audience. In interactive
videotex (like Prestel in U. K. and Telidon 1in Canada), users
can interact 1individually with the computer, instead of just
passively receiving information..

Increasing cheap CPU power to cheap imaging systems means
that we can supplement or alter the nature of ICAL systems from
text-based natural language I/0 to graphics or image-based 1I/0.
The advent of inexpensive microcomputers makes available speech,
sound, video and colour graphics at é cost significantly less
than many of the early expensive video display terminals. CAL
should be cost-effective, as one reason traditional CAI has not
proved to be as widely accepted, practised and disseminated is
that there has been no obvious financial advantages of CAI in
comparison to conventional educational methods (Fielden, 1977).

From another perspective, ICAL systems can be seen as
explorations into how the dramatic advances in computer

technology can be used to produce new kinds of 1learning

‘

40

environments. Future paradigms for using computers in education

need not be constrained by scarce computational resources.

2.5 The BEvaluation Issue

The raison d'etre of CAL is perhaps its ability to provide
effective individualized tutoring. To convince people other than
its creators that a CAL system is worthwhile, we have to look at
the evaluation issue, which poses two problems. On the one hang,
there 1s a current crisis in educational research (Howe, 1978)
over the question of what constitutes an acceptable form for an
educational evaluation. On the other, we have the problem of
evaluating CAL.

One purpose of educational evaluation 1s to provide
decision makers with information about the effectiveness of an
educational program, ‘product or procedure. Within this
perspective, evaluation is viewed as a process in which data are
obtained, analyzed, and synthesized into relevant information
for decision making. While these is basic agreement about this
fundamental role of evaluation in education, there |is
considerable variance in the conceptual framework, resulting in
numerous paradigms or models used by practitioners (Borich et
al, 1981). The task of evaluating a prototype ICAL 'system
becomes one of choosing the paradigm or model most appropriate
to the evaluation problem.

The generally high degree of specificity of CAL and 1its
potential for saving student responses offer possibilities for
adaption of instruction, and thus for evaluation that are not

practical with non-computer approaches. An ICAL system can

41

perform its own self evalution, called intrinsic evaluation.
Venezky (1983) proposed such a framework for evaluating ICAL
systems. The objective is to judge whether ICAL systems meet
instructional needs and 1is adaptable to the total curriculum.
These types of evaluative information will be needed :

(1) the range of student strategies the system 1is capable of
diagnosing;

(2) the probabilities of diagnosing each correctly;

(3) for each diagnosis, the effectiveness of the instruction
that follows, in terms of the achievement outcomes and the
time spent learning.

Venezky characterized ICAL programs as sequences of
assertions of the form (Si, I1ij, Sj), where Si is the learner's
current state, Sj 1s the next desired state, and Iij is the
instruction generated for moving from state--Si to state Sj.
Thus, a program asserts that, based on its own diagnosis, the
learner is in state Si. Furthermore, it asserts that instruction
Iij is sufficient to move the learner to state Sj. The role of
evaluation 1is to assess the wvalidity of both the state and
instruction assertions. To do this, evaluation procedures will
need to be designed as an integral part of the lesson itself.
ICAL systems should be adaptive and continually evaluate their
own behaviour and adjust their instructional paradigms and
teaching strategies accordingly. To evaluate such systems (like
O'Shea'e self-improving program) extrinsically, it will be
necessary to determine how the 1instructional approach changes
with student behaviour.

Another perspective in evaluating ICAL is to perceive it

42

through the expert versus the apprentice view of the automated
tutor. We ask this question of any ICAL system : is it aimed at
replacing the teacher or assisting him or is it more of a test-
bed for experimenting with theories of intelligence, learning or
teaching. These 3 approaches ‘use different means to achieve
their ends and thus should be evaluated on different criteria.
Indeed, a CAL system does not stand or fall on its own merits.
Rather, its utility depends on the manner in which it |1is
integrated 1into the <classroom setting and harmonized with
instructional objectives.

The apprentice view of an CAL system as a supplement to
traditional <classroom teaching is more fruitful than the expert
view of such a system superseding the teacher. The state-of-the-
art in AI is such that the task of modelling human intelligence
is still considerable. -There are not many examples of expert
systems whose performance consistently surpasses that of an
expert. Evaluation of traditional CAI has shown that CAI is more
effective if it supplements or 1is supplemented by human
instructors. A case in point is that when the TICCIT system was
used as a sole source of instruction in mathematics, the
'completioﬁ rate of the course dropped significantly over that of
traditionél classroom teaching (Kehler, 1982). -

ICAL research has abandoned CAl's early objective of
providing total courses, and has concentrated on building
systems which provide supportive environments for more limited
topics (Brown & Sleeman, 1981). Since the learning paradigm of
ICAL emphasizes learning by doing, it seems wunlikely that the

computer-based tutor will be able to handle all situations that

43

arise., It is probable that the main use of computers 1in the
classroom over the next decade will not be for delivery of
complete curricula but as an adjunct to a teacher-directed

curriculum.

2.6 Summary

Since 1its inception about a decade ago with an history not
relatively short for a computer-related field, ICAL research has
made some significant advances through the milestones described
above. Difficult conceptual 1issues still remain to be solved
before the use of ICAL systems can be of educational benefit.
Most of the ICAL programs are experimental and we can only
speculate whether or not these programs will find their way into
the classroom. In the short run, one of the key 1limitations to
the widespread use of ICAL systems is the heavy and exacting
demand placed on processing power, memory size and special
peripheral devices, compared to the ayailability of these
resources. In the long run, the technological context is 1likely
to change in ways which will facilitate the introduction of
complex systems at all levels in the educational system.

In the next few years what we can also expect to see |is
some further refinement of our information-processing models of
complex human activitieé such as seeing, learning and thinking.
ICAL as an application area for AI is likely to lead to the
further development of AI techniques. On the other hand,
exciting AI 1ideas, methods and techniques are percolating

through into the CAL field.

44

Chapter 3. Computer-Aided Testing, Evaluation and Advice (CATEA)

3.1 An Experiment in Writing a CAL System

We have seen that one of the main foci of ICAL research is
the diagnosis of misconceptions or bugs in understanding. One
obvious application of work done in this area is in the field of

interactive computer-aided testing (1caT, Cartwright &

Derevensky, 1976) in which the computer is used to administer a
test to a student, evaluate his answer and provide immediate
feedback after each test item. An ICAT system can thus be used
for teaching, learning, diagnosis and evaluation.

Research in the diagnosis of student errors has emphasized
the need to know the types of conceptual bugs students are
likely to have. Based on this notion, we wish to propose the
design and implementatioh of an ICAT érogram. The objectives of
writing such a CAL program are :

(1) to go through an experiéntial cycle of developing, testing
and evaluating a CAL program;
(2). to evaluate how enumerating bugs and representing them can
help in diagnosing a student's misconceptions; |
(3) to attempt some limited use of AI techniques in developing
the CAL program.
The domain of interest has to be restricted so that the task of
writing a CAL program is not overwhelming. |

We propose to consider the assignment statement in the
Pascal programming lénguage, explore the misconceptions students
have 1in learning the statement, and write a program to diagnose

these misconceptions. In the next section, we first look at the

45

difficulties novices have with the assignment statement.

3.2 Novices' Misconceptions of the Pascal Assignment Statement

3.2.1% Bayman and Mayer's work

In recent years, some work has been done on the subject of
how novices learn programming (Boulay & O'Shea, 1981; Soloway et
al, 1982; Bayman & Mayer, 1983; Joni et al, 1983). The general
objective of these works has been to study misconceptions in
understanding in the minds of novice programmers. Of particular
relevance to this thesis is the work done by Bayman and Mayer
which focuses on 'what is learned' when a student is exposed to
his first programming language such as BASIC or Pascal.

Bayman and Mayer postulate thét the outcome of learning can
be viewed in two distinct ways :

(1) Learning BASIC or Pascal involves the acquisition of new
information and new rules, such as how to use quotes in a
PRINT or WﬁITE statement;

(2) Learning BASIC or Pascal involves the acquisition of a
mental model, such as the idea of memory locations for
‘holding numbers.

They explore the 1idea that 1learning a programming language

involves more than just the acquisition of specific facts, rules

or skills. The beginning student also develops mental models for

the language in the process of learning the essentials of the
language. A mental model refers to the student's conception of
the 'invisible' information processing that occurs 1inside the

computer. Bayman and Mayer (p. 677) note that :

46

Most instructional effort is directed solely at .
helping the learner acquire the new information and
behaviours without giving much guidance to the
learner for the acquisition of useful mental models.

A study was carried out in which 30 undergraduate students
learned BASIC through a self-paced, mastery manual and
simultaneously had hands-on access to an Apple 2 computer. After
instruction, the students were tested on their mental models for
the execution of each of nine‘BASIC statements.’' The results
show that beginning programmers, although able to perform
adequately on mastery tests in program generation, pogsessed a
wide range of misconceptions concerning the statements fhey have
learned.

In a wider perspective, Honi (1983) provides a
categorization for the types of misconceptions that manifest
themselves as bugs in novice programmers' code :

(1) A clash between a student's preprogramming knowledge and
his budding computer knowledge resulting in a bug;
(2) Faulty/incomplete understanding of programming concepts.

This general category can be broken down into :

a. Overgeneralization of a concept : students have
difficulty discerning the specific context in which a
concept is appropriate;

b. Hazy understanding of a concept, that does not manifest
itself 1in simple programs, but comes to light only when

" more advanced topics are introduced;

'0f the nine statements, the assignment statement was the fourth
most difficult statement based on the proportion of incorrect
conceptions, after the INPUT, READ and IF statement.

47

é. Simply not knowing the rules of programming discourse
that guide the composition of programming plans into
understandable and executable programs;

(3) Difficulties arising from the coordination of multiple
constructs;
(4) Students may decompose the problem differently from that
which was intended.
In this thesis, by focusing on the learning of one programming
statement, we have excluded from discussion any consideration of

2c, 3 and 4.

3.2.2 The Pascal Assignment statement

The first statement a student learns in his first
programming language is most possibly the assignment . statement,
which is also the most frequently used statement in programming.
As one of the most common languages taught in first-year
computer science undergraduate curricula is Pascal, we decided.
to consider how the assignment statement in Pascal is taught,
learned, understood or misunderstood.

Appendix A shows how Programming in Pascal . (Grogono, 1980),

the text for Computer Science (CPSC) 114, "Principles of
Computer Programming I", taught at the University of British
Columbia, presents the assignment statement. It emphasizes that
execution of an assignment statement results in the left-hand

operand getting the value of the right-hand side. One might
think that the example "nextnumber := nextnumber+1" will force a
correct mental model of the assignment statement (not confusiﬁg

it with the algebraic statement). From their empirical study,

48

Soloway et al (1982) hypothesize that students might learn .or
memorize the counter variable update (I 2= 1I+1) ‘as an
indivisible wunit or pattern. In other words, they do not
decompose (I := I+1) into a left-hand wvariable which has its
value changed by the right-hand expression, and thus are not
viewing (I := I+1) as an example of the assignment statement.

Appendix B shows the 3 lecture slides used by instructors
of the same course for teaching the statement. We observe that
the slides' presentation is more comprehensive, in that they try
to answer many doubts or misunderstandings that may arise in the
mind of a student. By tabulating the values of variables before
and after execution of an assignment statement, they attempt to
illustrate vividly a correct model for the statement.

If we conceptualize the assignment statement as a 1list of
"transactions, a correct model for the assignment statement A :=
B involves the following transactions :

(1) Find the number in memory location B;.
(2) Erase the number in memory location A;
(3) Write the number found in (1) into memory location A,

An expert programmer may have developed an accurate
conception for a programming statement such as the assignmenf
statement. An novice may differ in his mental model for the samé
statement or he may lack a coherent mental model. It may be that
the beginning student starts off with an incorrect model and as
he acquires new programming knowledge or more programming
experience, he discovers, refines or corrects his 1incorrect
model on his own. We argue that the teaching process should

expedite the wearly formulation of a correct model in the

49

student's mind, 1instead of permitting him to harbour an
incorrect or incoherent one and leaving it to other
'"educational' media to rectify. How much training one needs to
acquire a mental model has not yet been explored in research. A
first step in addressing this 1issue 1is to study the novice
user's understanding of newly learned programming statements
(Bayman & Mayer, 1983).

Based on encounters with novices' programs, we attempt to
enumerate the possible bugs or misconceptions of the assignment
statement. The first bug is the interpretation of A := B to mean
assigning the value of variable A to variable B. We postulate
that this semantic bug is possible, though bizarre, as we have
seen manifestations of it in examinations of students who have
actually gone through half a term or one whole term of Pascal
programming.

The second bug reflects the confusion of the egual sign in
traditional algebra with the assignment operator (Soloway et al,
1981). Soloway et al (1982) observe = "that a possible
manifestation of this bug 1s writing a Running-Total update
using lines of code (Y := X + Z ; 2Z :=Y) 1instead of Jjust
(z := X + Z). While the presence of such statements as A := A+1
in a student's program may indic;te the lack of this bug, we
cannot conclude that the student has this bug from the absence
of such statements. We postulate that a clear 'manifestation of
this bug is the expectation that execution of the lines (A := 1;
A := B; B‘:'= 2) will result in both A and B attaining values of
2. |

The third bug possibly reflects a hazy understanding of the

50

assignment statement. Some students when first encountering the
task of swapping the v&lues of 2 variables often come up with
(P := Q; Q := P). They expect P to attain the value of Q, vyet
somehow retains its previous value. Conceivably, they have
extended the analogy of a variable as a mailbox that «can hold
one letter at a time to a mailbox that can hold several letters.
We conjecture that it is also possible that they have taken a
variable to mean a queue. Thus P := would remove the first
value of Q and append it to the qgueue of P. This could explain
how (P := Q; Q := P) can be expected to swap the values of P and
Q.

The fourth bug reflects a confusion of the mailbox with its
mail, Thus A := B is taken to mean that character B, not the
value of B, is put into variable A,

‘The first three bugs are used as the fqundation for a ICAT
program that will ask student fo write simple Pascal programs
that 1illustrate use of the assignment statemeht. The fourth bug
is not tested as students who have only Jjust learned the
assignment statement may not have known character types in
Pascal. The program will attempt to diagnose manifestations of
these bugs and possibly detect undiscovered bugs. An empirical
study of CATEA was carried out with some 47 volunteer students
of CPSC 114 who had just been taught the assignment statement in
class. In the next chaptef, we shall describe the design -and
implementation of CATEA. In Chapter 4, we shall describe the

results of the empirical study.

51

Chapter 4. Design and Implementation of CATEA

4.1 Overall Structure

The goal of CATEA as an ICAT program 1is twofold
evaluation and diagnosis. As an evaluation tool, CATEA tests the
ability of students to write simple introductory programs. As a
diagnostic tool, CATEA suggests misconceptions in the student's
mind which wunderlie 1incorrect programs. With the list of our
three enumerated bugs, each of which incorporates an incorrect
model of the assignment statement, we design three ostensibly
simple programming assignments (hereafter called problems) for
which the student has to write a program. The problems (Figure
3) are desigﬁed so as to entrap the student into manifesting
each of our enumerated bugs in their programs, should he pqssegs
the underlying misconception. 4

The structure of CATEA is shown in Figure 4. CATEA displays
a problem and the student's response»will be a typed-in program.
CATEA will attempt to compile the program; 1if there 1is
unrecoverable syntak error{(s), it will prompt the student to try
again. Otherwise, CATEA will execute the program. If correct,
the student receives a message to that effect and proceeds to

the next problem. If incorrect, the diagnostic 1loop will be

invoked.

52

Problem 1 :
Write a Pascal program that does the following :
(1) Declare X, Y as integer variables
(2) Assign X the value of 1
(3) Assign the value 2 to Y
(4) Assign X to Y
(5) Write out the values of X and Y.

Problem 2 :
Write a Pascal program that does the following :
(1) Declare A, B as integer variables
(2) Assign the value 1 to A
(3) Assign the value A to B
(4) Now, make A and B have the value 2
(5) Write out the values of A and B.

Problem 3 :
Write a Pascal program that does the following :
(1) Declare P, Q as integer variables
(2) Read in the value of P and Q
(3) Now, exchange the values of P and Q
(4) Write out the values of P and Q.

Figure 3. Three Problems tested by CATEA

The diagnostic 1loop (Figure 5) will attempt to detect the
underlying bug which causes the incorrect program. If it cannot,
it will display a 'Fail-to-diagnose' message and move on to the
next problem., If it can diagnose a bug, remedial advice
(prestored for each bug) will be displayed followed by a
multiple-choice test. The test 1is wused to find out if the
student has gained a better understanding, that is, become aware
of the bug. If the student's answer to the test is correct, he
will proceed to the next problem or he can retry the same
problem. If the student's answer 1is wrong, he will be offered a
choice. of more remedial advice or a second multiple-choice test.
Should he get this test wrong again, the diagnostic loop will

end with a warning that he has yet to correct his misconception

‘

53

ENTER

New
Problem

0ld
Problem

Feedback Response

Response 01lad

Correct

Analyse
Response

New or
Previous
Problem

Incorrect Finished

all
Problems

Diagnosis

Figure 4. Structure of CATEA

54

Incorrect
Response

Detect
Bug

Can Detect Cannot Detect

Display
'Fail to
Diagnose'

Display
Remedial
Advice

\

1st wrong > CONTINUE

Display
'Seek Help
Elsewhere'

2nd wrong

1st wrong

Display
More

Remedial
Advice

Figure 5. Diagnostic Loop of CATEA
(Blow-up of 'Diagnosis' bubble in Figure 4)

55

and advises him to try other remedial sources.

When all questions have been attempted or the student
decides he has had enough, ﬁe will receive a score which
indicates how many of the three problems he has coded correctly.
If CATEA decides that the student still has misconceptions, the
session ends with a summary of these misconceptions. In Appendix
C, we 1llustrate the diagnostic 1loop 1in greater detail by
tracing through a student's session as he attempts Problem 3
(see Figure 3).

Two {mportant components of CATEA are the Pascal compiler
and the diagnostic modei. They are described in the next two

sections.

4,2 The Pascal Compiler

As our focus is on programs that incorporate only the wuse
of the assignment statement, we consider a subset of standard
Pascal for our compiler. Thus, it will accept as wvalid only a
simple main program comprising READ, WRITE or/and assignment
statements. In the constant definition part, the only constants
considered valid are integer or boolean values. In the variable
declaration part, the only types considered valid -are INTEGER
and BOOLEAN.

The Pascal compiler 1is designed wusing the method of
recursive descent (Davis & Morrision, 1981). The method centres
around the syntax analysis phase which is divided into a number

of recognition procedures, each of which has the task of

checking whether a particular kind of phrase is present in the

input. Each recognition procedure can call upon the services of

56

other ones to recognise the appearance of subphrases.

The error diagnosis and recovery scheme is that of Turner
(1977) in which an error 1is detected when the compiler
encounters a symbol in the input that is not the goal symbol.
Syntax analysis continues by skipping the input until the next
goal symbol and the input symbol match; this balances the syntax
tree and the input. All syntax error messages have been written
to make them as lucid and precise as possible.

The target machine code will be LISP structures. For
example, the statement (X := 1) will be compiled into the LISP
list (ASSIGNSY X 1), which we call a clause. Thus a program will
be compiled into a list of such clauses which we call a clause-
list and will be the main object for the next phase of program
execution.

A spelling corrector is incorporated to detect and- correct
spelling errors of Pascal reserved words. Spelling checking of a
word from the input 1is done only against the set of reserved
words that can be expected to occur in that position of the
syntax tree. The spelling correction algorithm is taken from the
Ada implementation of a spelling corrector for an user interface
of Durham, et al (1983). The spelling errors it looks for are
transposition of two adjacent letters, one letter wrong, one
letter extra and one letter missing. As the number of reserved
words in our Pascal subset is very small, the spelling corrector
will match at most one candidate and so correction will be done

automatically.

57

4.3 The Diagnostic Model

For the diagnostic model, we draw upon the work of Brown &
Burton (1978). Brown & Burton use a sophisticated procedural
network model to represent the correct procedures of a skill. To
diagnose bugs, the network is used to simulate the behaviour of
buggy variants of the procedures in the network and note those
which generate the same behaviour as exhibited by the student
(BUGGY, Brown et al, 1977). In CATEA, we adopted a much
simplified diagnostic model. A procedural network is not deemed
necessary as understanding the assignment statement is unlike
understanding a procedural skill such as addition or
subtraction. To diagnose bugs, CATEA simulates the behaviour of
an 1incorrect model of the assignment statement to find out if
the model explains the surface -behaviour of the student's
program, that is, the student's mental model which leads h;h to
think that his program is correct when it is not. We feel that
this diagnostic strategy 1s adeguate for our purposes of
diagnosing bugs in our narrow domain area.

The output of the compilation phase will be a clause-list
containing a clause for each executable program statement. CATEA
will first execut¢ the program to find out if it is correct. It
will execute eacﬂ clause in the <clause-list sequentially,
assigning values to variables as specified by each assignment
statement or read statement. Program correctness will be
determined by matching the values of predetermined vafiables to
prestored values. For example, in Problem 2 a correct program

(A := 1; B :=A; A :=2; B

= 2) will put values of 2 into

variables A and B. If the student's program also put values of 2

58

into A and B, it will be deemed correct, otherwise incorrect.

| 'If a student's program is evaluated to be : incorrect, the
next task of CATEA will be to find out which of its enumerated
bugs can explain the behaviour of the program. CATEA will
simulate an 1incorrect model of the assignment statement and
execute the clause-list again. If this execution assigns values
to predetermined variables that match that of prestored ones;
then CATEA will postulate that the incorreét model is the source
of the bug. Thus, if a student indicates the presence of the
second enumerated bug, he may code (A := 1; B := A; A := 2) for
Problem 2 (see Figure 3, p. 52) which specifies that A and B
should attain wvalues of 2. He thinks that B := A is like an
algebraic statement and therefore A := 2 will also change the
value of B to 2. Let us see how CATEA simulates the second bug
in the student's program. Executing A := "1, it assigns 1 to A.
Executing B := A, it assigns the value of A, that is, 1 to B.
Executing A 1= 2, it assigns 2 to A, searches for preceding
assignment statement(s) that has A in its right-hand side, finds
the statement B := A, and assigns 2 to B as well. In the
student's mind, his program will end up with values of 2 in both
A and B, and therefore works.

If no model can explain an incorrect program's .behaviour,
then CATEA would have failéd to diagnose the underlying bug. The
three problems were designed so as to minimize the possibility
of more than one bug that can equally explain the behaviour of
an 1incorrect program. Problem 1 is designed to entrap the first
enumerated bug, Problem 2 thé second bug, and Problem 2 the

third bug. This also simplifies our diagnostic model by

59

obviating the need to consider interaction of two or more bugs.

The

guiding metaphor of CATEA's diagnostic model is

simulation of

bugs.

A

more sophisticated metaphor is pattern

matching at the plan level with a program solution, which is

used

in

MENO

-1I

(Soloway et al,

1981), an intelligent tutoring

system being developed for novice Pascal programmers. We posit

that

handle

diagnostic

the

very

simple

approach

non

all

simulation approach is sufficient for our purposes to

-looping programs., Moreover, this

ows CATEA to accept multiple ways of

doing a task. For example, in Problem 2 (see Figure 3), CATEA

will accept all these programs as correct :

(A
(A
(A
(A
(a

If th

e

= 1; B
= 1; B

B

1]

1; B
= 1; B

fourt

h

A; A

A; A

A; A

A; A

A; B

A+1; B:=A)

2*A; B:=2%*B)
A+1; B:=B+1)
B+1; B:=B+1)

B+1; A:=B)"

statement in each of these programs except the

last one is removed,the program will be a manifestation of the

second

enumerated bug. For Problem 3 (see Figure

accept these programs as

We also incorporate

first

(2 :=

demon

1

is invoked

correct :

P := P-Q)

= T1; P = T2)'.

two demons in the design

when redundant variables

3), CATEA will

of CATEA. The

are used as in

... X :=12) and Z is not used in the left-hand side of

'All of these programs
empirical stu

dy.

Bef

ar
ore

e actual students' programs 1in our
the study, we had not thought of such
programs as possible solutions to the problems.

60

any other assignment statement. A message will be displayed,
saying that this could be equivalently coded as (X := 1) without
introducing Z. The second demon checks for the incorrect use of
the third variable in Problem 3. Thus if a student attempts the
use of the third variable but does it 1incorrectly, CATEA will
remark that his program 1is 1incorrect, but at the same time
encourage him that he has correctly perceived the requirement of"

a third variable.

4.4 Implementation

CATEA is written in LISP/MTS (Wilcox & Hafnér, 1974) and

runs in 200K bytes (including the LISP interpreter) on an Amdahl
v/8.

61

Chapter 5. An Empirical Study of CATEA

5.1 Description of Study

An empirical study of CATEA was carried out with the
primary objective of exploring how well it can detect bugs in
students' misunderstandings of the assignment statement.
- Subjects were volunteers enlisted from the Fall 1983 class of
CPSC 114, Principles of Computer Programming I.

The first session of CATEA was administered to a group of-
20 students, who had just been taught the assignment statement
that very week. Feedback from these students and their session
protocols prompted improvements which were later incorporated
into CATEA. This modified version of CATEA was administered to a
second group of 19 studeﬁts, who had also been exposed to the
assignment statement in the previous week. All of these 39
students had yet to code their first programming assignment, and
so CATEA provided them an opportunity to write their first
Pascal programs. Feedback from this second session also
generated improvements in CATEA.

A week later, the third session of CATEA was administered
to 9 students who had done their first programming assignments.
Of these 9 students, one had tried CATEA before. This third
session did not prompt any further refinement to CATEA.

Subjects weré given a questionnaire survey form that
canvassed their opinion of their. interaction with CATEA. A
hardcopy protocol listing of each student's terminal session was
generated for subsequent évaluation purposes. In the next

section, we describe the results of the empirical study.

¢

62

5.2 Results of Study

In a session with CATEA, the student will be asked to write
programs as solutions to a set of problems. For scoring
purposes, based on his or her response for each problem, we
classify each student into one of these éategories :

(1) Those who program correctly. Their programs follow problem
specifications and assign values to predetermined variables
which match those of stored ones:;

(2) Those who did not program correctly. Either their programs
did not follow problem - specification or the values of
predetermined variables do not match those of prestored
ones. We further separate this category into two
subcategories :

(a) Those whose errors CATEA cén detect; that is, one of
CATEA's enumerated bugs 1is instantiated in their
programs;

(b) Those whose errors CATEA cannot detect;

(3) Those who give up after some futile attempts and opt for a
solution to be given;

(4) Those who did not attempt the problem and instead skipped

it.

Table 1 tabulates the results of the first two groups of 39
students. We observe that fewer than half the students got
Problem 1 or Problem 3 correct. Not surprisingly, Problem 3
which involves the swapping of variables' values proved the most
difficult.

Table 2 shows the breakdown of students who programmed

Table 1. Performance of the first two groups of 39 students

63

Problem 1

Problem 2 Problem 3

No. of students who 19 26 18
programmed correctly 48.7% 66.6% 46.0%
No. of students who 17 11 16
programmed incorrectly 43.6% 28.2% 41.0%
No. of students who opted 2 1 1
for solution to be given 5.1% 2.6% 2.6%
No. of students who 1 1 4
did not attempt 2.6% 2.6% 10.3%
Total no. of students 39 39 39

100% 100% 100%

Table 2. Breakdown of students in first two groups who program
incorrectly

No. of students whose 15 6 14
errors CATEA can detect 88% 55% 88%

No. of students whose 2 5 2
errors CATEA can't detect 12% 45% 12%
Total no. of students who 17 1 16
programmed incorrectly 100% 00% 100%

64

incorrectly into those whose errors CATEA can detect and those
whose errors CATEA cannot detect. 88% (15 students) of students
who did Problem 1 incorrectly coded the assignment of X to Y as
X := Y, manifestations of our first enumerated bug. Most of the
55% (6 students) of students who did Problem 2 incorrectly,
coded (A := 1; B := A; A := 2), manifestations of our second
enumerated bug. The majority of the 88% (14 students) of
students who did Problem 3 incorrectly coded (P := Q) or
(P := Q; Q := P). We believe that this is the surface behaviour
of our third enumerated bug, in which the students do not have a
correct mental model of the assignment statement.

As each problem has detailed steps on what to write for the
next statement, we feel that not all the errors are explainable
simply as momentary 'mental slips'. Thus, we believe that the
errors - indicate misconceptions that students have about the
assignment statement and cannot be accounted for by simply
saying, "They make silly errors." 1In Problém 3, some of the
students who code (P := Q) or (P := Q; Q := P) were given the
hint that a third variable is needed, but they still could not
produce the correct program. Some students were observed to
still have difficulty even after CATEA has explained and shown
them the correct way of swapping variables (R := P; P := Q;
Q := R). This 1is in spite of the fact that swapping variables
has already been taught to them 1in <c¢lass. It was introduced
immediately after the assignment statement was taught. One
possible explanation is that these students see only a pattern
of the three assignment statements, instead of the model (which

imprints more on the mind) behind the statements.

65

Let us look at those students' programs which contain
errors CATEA cannot detect. In the two cases of Problem 1, the
programs were (X := 1; Y := 2) which ignore assigning X to Y. We
fix CATEA to pattern match (ASSIGNSY Y X) in the clause-list so
that it can detect and pinpoint this omission. In two cases of
Problem 2, the programs were (A := 1; B := 2) and (A := 1; A :=

B; A := 2; B := 2). The second program assigns values of 2 to A
and B which matches prestored.answers and CATEA mistakenly took
it to be correct. We patch this by. detecting omission of the

assignment statement that assigns A to B. For the other 3 cases

of Problem 2, the programs were (A :=B), (A :=1; B := A;

A := 2%A:; B := 2*A) and (A := 1; B := A; B := 2). For these,

CATEA just offered its fail-to-diagnose apology and proceeded to
the next problem. We patch this 'so that CATEA can now give the
remedial hint that either (or both) A or B has not attained the
value of 2, as required. For the two cases of Problem 3, the
programs were (READ'(P,Q)). It seems that these two students
were at a loss of what to do. CATEA failed to say anything for
these programs. We change CATEA so that it will tell the student
that P has not attained the value of Q, and vice versa. The use
of a third wvariable 1is only suggested if the student has
attempted some more statements to swap values of P and ¢Q,
without using a third variable.

The results of the third group of 9 students are tabulated

X

in Table 3. 22% did Problem 1 incorrectly, about half that of
43.6% for the first 2 groups. 22% did Problem 2 incorrectly,
" less than 28.2% for the first 2 groups. 44% did Problem 3

incorrectly slightly more than 41.0% for the first 2 groups.

Table 3. Performance of the third group of 9 students

Problem 1 Problem 2 Problem 3

No. of students who 6 6 5
programmed correctly 67% 67% 55%
No. of students who 2 4
programmed incorrectly’ 22% 22% 44%
No. of students who opted 0 0 0
for solution to be given 0% 0% 0%
No. of students who 1 1 0
did not attempt 1% 1% 0%
Total no. of students 9 9 9

100% 100% 100%

'CATEA was able to detect all of the students' errors

67

While the small sample size of this last group makes the results
less statistically reliable, we feel that the results are
interesting in that they indicate students even after they have
written their first programs still harbour misconceptions. In
this last session, CATEA was able to detect all incorrect
programs and offer remedial hints or help. The students'
protocols of all three sessions revealed no novel bugs that we
have not enumerated, possibly because each of the problems is
tailored to catch one of the enumerated bugs.

One student was both in the first group and third group. In
her first session, she wrote (Q := P; P := Q) for Problem 3.
CATEA diagnosed this and showed her the correct way of doing it
(R := P; P := Q; Q := R). In her second session two weeks later,
she still got it wrong by attempting (Q := P; J := P; P := Q).
It seems that after her first session, she remembered a' pattern
of assignment statements that wuse a third variable but still.
could not conceptualize a correct model.

We summarize other observations we have gathered from the
'student sessions' protocols :

(1) Some students attempted using the multiple assignment
statement (A,B := 2 or A+B := 2 or A := B := 2), even
though they do not have any previous computing experience
(with programming languages 1like PL/1 that has such a
statement). One possible explanation is that the student
extends his mental model of the .assignment statement to
include multiple assignments, seeking his own repair to an
impasse on the problem (Repair Theory of Brown, 1980).

(2) Empirical studies of syntactic errors in wusers' Pascal

68

programs have been done elsewhere (Ripley & Druseikis,
1978; Pugh & Simpson, 1979). Our results (which apply to
novices) reiterate two of their main findings :
(a) The most error-prone construct 1in Pascal 1is the
(missing) semicolon;

(b) Spelling errors are fairly infrequent;

5.3 Questionnaire Survey

The results of the questionnaire survey are tabulated in

Table 4.

Do you think CATEA has helped you in better understanding
the assignment statement in Pascal ?

YES 76% NO 8% PROBABLY 16%

other features of Pascal ?
YES 62% NO 19% PROBABLY 139%
Do you feel more confident in writing Pascal programs ?

YES 65% NO 11% PROBABLY 24%

Table 4., Student Evaluation

On the whole, student reaction to CATEA has been
favourable. It appears that students feel that this experience
was Dbeneficial, especially in improving their understanding of
the assignment statement. The following questions were also in
the questionnaire :

In what ways do you think CATEA can be improved?

What extra capability do you wish CATEA to have?

Do you think CATEA has helped you in better understanding |- -

69

In response to these questions, 38% of the students suggest
better program editing capability. Currently, if a student's
program has unrecoverable syntax errors, he has to re-enter the
program. In the terminal on which CATEA was run, this
inconvenience can be partially alleviated by moving the cursor
up to the same 1line 1in the previous program, making the
modifications on that line, and then hitting <return> to enter
the 1line, instead of retyping the line. As most students do not
know how to make wuse of this keyboard feature, this might
account for some of the students' complaints. Nevertheless, we
learn something frém this; that 1is, in a CAL program, the
student do not 1like to be distracted by side-issues such as
inefficient human-tutor interfaces that have no important
bearing on the subject domain., Part of the students' energies
may be vented or coﬁsumed in coping with a bad ﬁuman-computer
interface, and this makes them less inclined to learn or perform
well the main tasks of the CAL program. Indeed, the interface
between the tutor and the student is an important component of
any CAL system,

Overall, evaluation of CATEA proved satisfactory as it was-
able to fulfill its limited objective of diagnosing
misconceptions in the students' understanding of the assignment

statement.

70

Chapter 6. Conclusion

While we did not set out in this thesis to examine a wide
range of issues directly relevant to education, our study
suggests some possibilities that are worth <considering 1in the
area of teaching novices programming. By looking at the kinds of
errors that students make, we have focused on the learning level
that they pass through as they learn the assignment.statement.
We feel that in the learning of any new topic, difficulties 1in
the form of misconceptions do arise, and if the sources of the
misconceptions are incorrect mental models, a good‘ aid to
learning is to provide correct explicit models. A good tutor
should adopt a teaching strategy that anticipates the kinds of
misconceptions that can arise and aids the formulation of
correct mental models.

By choosing a narrow kﬁowledge domain for our instructional
program, we have avoided many difficult conceptual questions and
assumptions that have arisen in the design of ICAL systems of
much gfeater sophistication. The design of CATEA is ostensibly
simple. In order to extend CATEA to be able to understand and
debug programming features beyond the assignment statement, such
as looping constructs, more sophisticated methods are needed.
Nevertheless, we believe that CATEA is a demonstration of the
potentiai tutorial skill which ICAL systems can manifest.

In sum, we have written an ICAT program which diagnoses a
student's incorrect program by simulating enumerated bugs in the
program and observing which bug explains its surface behaviour.

An empirical study of CATEA shows that it was able to realise

71

the objective of diagnosing misconceptions in a student's

understanding of the assignment statement.

72

References

Abelson, H. & diSessa, A. 1981. Turtle Geometry : The computer
as a medium for exploring mathematics. Cambridge, Mass. :
MIT Press.

Barr, A. & Feigenbaum, E. A, (eds) 1982. The Handbook of AI.
Volume 2, William Kaufmann, Inc.

Bayman, P. & Mayer, R. E. 1983. A D1a9n051s of Beginning
Programmers' Misconceptions of BASIC Programming Statements.
Sept 1983, CACM, Vol 26 No 9, 677-679.

Borich, G. D. & Jemelka, R. P. 1981. Evaluation. In O'Neill, H.F.
Jr. (ed), CBI. A State-of-the-Art Assessment. Academic
Press, -1981.

Borning, A. H. 1979. Thinglab - A constraint-oriented simulated
laboratory. Ph. D. Thesis, Stanford University.

Boulay, B. Du & O'Shea, T. Teaching Novices Programming. In M.

J. Coombs & J. L. Alty (eds), Computing Skills and the User
Interface. Academic Press, 1981.

Brown, J. S., Rubinstein , R & Burton, R. 1976. A reactive
learning environment for computer-assisted instruction. BBN
report No. 3314, Cambridge, Massachussetts.

Brown, J. S. & Burton, R. R. 1975, Multiple representations of
knowledge for tutorial reasoning. In D.G. Bobrow & A.
Collins (eds), Representation and Understanding, Academic
Press, 1875.

Brown, J. S. & Burton, R. R. 1977. A paradigmatic example of an
Al instructional system. First International Conference on
Applied Systems Research, New York , 1977,

Brown, J. S. & Burton, R. R. 1978. Diagnostic models for

procedural bugs in basic mathematical skills. Cognitive
Science 2(2), 1978, 155-192.

Brown, J. S. & Sleeman, D. H. 1981. 1Intelligent Tutoring
Systems. Academic Press, 1981. ’

Brown, J. S. & Vanlehn, K. 1980. Repair theory : A generative
theory of bugs in basic mathematical skills. Cognitive
Science 4(4), 1980, 379-426.

Burton, R. R. & Brown, J. SA An investigation of computer
coachlng for 1nforma1 learning activities. The International
Journal of Man-Machine Studies, 11, 1979, 5-24,

Burton, R, R. 1981. DEBUGGY : Diagnostic of errors in basic
mathematical skills. In D. H. Sleeman & J. S. Brown (eds)

73

Intelligent Tutoring Systems, Academic Press, 1981.

Carbonell, J., R. 1969, Interactive non-deterministic CAI.
International Symposium on Man-Machine Systems, 1969.

Carbonell, J. R. 1970. Mixed-initiative man-computer
instructional dialoques. Technical Report 1970, BBN, 1970.

Carr, B. & Goldstein, I. 1977. Qverlays : A theory of modelling
for CAI. AI Memo 406, MIT, 1977.

Cartwright, G. F. & Derevensky, J. L. 1976. ICAT : A feasibility
paper. Paper presented at the Annual Conference of the
Canadian Educational Research Association. Laval University,
Quebec.,

Clancey, W. J. 1979a. Tutoring rules for guiding a case method
dialogue. The International Journal of Man-Machine Studies
11, 1979, 25-49,

Clancey, W. J. 1979b. Dialogue management for rule-based
tutorials. In Proceedings of the Sixth IJCAI, 1979.

Clancey, W. J. 1979c. Transfer of rule-based expertise through a
tutorial dialogue., Ph. D. Thesis. STAN-CS-769, Stanford
University, 1979.

Clancey} W. J. 1981. Methodology for building an intelligent
tutoring system. STAN-CS-81-894, Stanford University, 1981.

Clancey, W. J. & Buchanan, B. 1982, Exploration of teaching and
problem-solving strategies, 1979-1982. STAN-CS-82-910,
Stanford University, 1982. ’

Colby, K.M. 1973, Simulations of belief systems. In Colby, K.M,
& et al (eds), Computer Models of Thought and Language. San
Francisco. ;

Collins, A. 1977. Processes 1in acquiring knowledge. In R.C.
Anderson & et al (eds), Schooling and the acquisition of
knowledge, Erlbaum Associates, 1977.

Davie, A. J. T. Recursive Descent Compiling. John Wiley & Sons,
1981.

Durham, 1I., Lamb, D. A, & Saxe, J. B. 1983. Spelling Correction
in User Interfaces. CACM, Oct. 1983, Vol 26, No 10.

Feurzeig, W. & Papert, S & et al, 1969. Programming languages as
a conceptual framework for teaching mathematics, Volumes 1
to 4, BBN, Cambridge.

Fielden, J. 1977. The financial evaluation of NDPCAL. British
Journal of Educational Technology, 8, 190-200.

Gable, A. & Page, C. V., 1980. The use of AI techniques in CAI :

74

an overview. The International Journal of Man-Machine
Studies , 12, 1980.

Genesereth, M. 1981. The role of plans in ITS. In D. H. Sleeman
& J. S. Brown (eds), Intelligent Tutoring Systems, Academic
Press.

Grogono, P. 1980. Programming in Pascal. Addison-Wesley, 1980.

Joni, S.-N., Soloway, E. et al, 1983. Just so stories : How the
program got that bug. SIGCUE Bulletin, Fall 1983.

Howe, J. A, M. 1978. AI and CAI : Ten years on. In N. Rushby
(ed), Selected Readings in CAL, Kogan Page, 1981,

Howe, J. A. M 1979. Learning through model-building. In D.
Mitchie (ed), Expert Systems in the Microelectronic Age.
Edinburgh Press.

Ray, A. C. 1977. Microelectronics & the personal computer.
Scientific American , 237.

Kehler, T. 1982. Future directions for Computer-assisted
education. In C. Hernandez-Logan & M. Lewis (eds), Computer
Support for Education. R & E Research Associates. 1982.

Kimball, R. B. 1973, Self-optimizing computer-assisted tutoring.
Theory & Practice. Technical Report 206. Institute for
Mathematical Studies in the Social Sciences, Stanford
University.

O'Shea, Tim 1979. Self-improving teaching systems. Ph. D.
Thesis, Birkhauser, 1981,

0'Shin, L. 1980. CAl 1in 1Israeli disadvantaged elementary
schools. Centre for Educational Technology, Ramat Aviv,
1980.

Papert, S. 1971, ~Teaching children thinking. MIT AI Lab Memo
247, 1971,

Papert, S. 1980. Mindstorms. Children, Computers and Powerful
Tools. Basic Books, 1980.

Pugh, J. & Simpson, D. 1979. Pascal errors - empirical evidence.
Computer Bulletin, 2, 26-28.

Resnick, L. B. 1977. Holding an instructional conversation. In
R.C. Anderson & et al (eds), Schooling and the Acquisition
of Knowledge , Erlbaum Associates, 1977.

Ripley, G. D. & Druseikis, F. C. 1978. Statistical analysis of
syntax errors. Computer Languages, 3, 227-240,

Schank, R. & Abelson, R. Scripts, Plans, Goals and
Understanding. Erlbaum Associates, 1977.

75

Self, J. A. 1974, Student models 1in CAI. The International
Journal of Man-Machine Studies 6, 1974.

Sleeman, D. H. & Smith, M. J. 1981. Modelling student's problem-
solving, AI 16,

Sleeman, D. H. 1975. A problem-solving monitor for deductive
reasoning tasks. The International Journal of Man-Machine
Studies 7, 1975, 183-212.

Smallwood, R. D, 1962, A decision structure for teaching
machines, Cambridge, Massachussetts : MIT Press.

Soloway, E., Lockhead, J., & Clement, J. Does computer
programming enhances problem solving ability? Some positive
evidence on algebra word problems. In R. Seidel, R. Anderson
& B. Hunter (eds), Computer Literacy, Academic Press, 1982.

Soloway, E., Ehrlich, K., et al, 1982. What do novices know
about programming? In A. Badre & B. Shneiderman (eds),
Directions in Human/Computer Interaction, 1982.

Soloway, E., Woolf, B. , et al., MENO-II : An intelligent
tutoring system for novice programmers. IJCAI, 1981,

Statz, J. 1973. Problem-solving in LOGO. Syracuse University
LOGO Project, New York. :

‘Suppes, P. 1967. Some theoretical models for Mathematics
Learning. Journal of Research & Development in Education, 1.

Stansfield, J. L. 1974. Programming a dialogue teaching
situation. Ph. D. Thesis, School of AI, University of
Edinburgh : Edinburgh (8).

Turner, D. A, 1977. Error diagnosis & recovery 1in one-pass
computers, Information Processing Letters, Aug 1977, 6, 4,
113-115.

Uhr L. 1969. Teaching machine programs that generate problems as
a function of interaction with students. Proceedings of 24th
ACM National Conference (8).

Wilcox, B. & Hafer, C. 1974. LISP/MTS User's Guide, Mental
Health Research Institute, Ann Arbour, 1874.

Woods, P. & Hartley, J. R. 1971. Some learning models for
arithmetic tasks and their use in CAL. British Journal of
Educational Psychology, 41, 1, 1971,

Vanlehn, K. & Friend, J. 1980. Results from DEBUGGY : An
analysis of systematic subtraction errors. Xerox Palo Alto
Science Center Technical Report, 1980.

Venezky, R. L. Evaluating CAI on 1its own' terms. 1In A.C.
Wilkinson (ed), Classroom Computers and Cognitive Science,

76

Academic Press, 1983.

Zinn, K. L. 1978. An overview of current developments in CAL in
the US. In N, Rushby (ed), Selected Readings in CAL, KXogan
Page, 1981.

77

Appendix A : How Programming in Pascal (Grogono, 1980) presents

the Assignment Statement

An assignment statement has the form

variable := expression

The assignment statement 1s asymmetric : right hand operand
answers the question 'what is the value?' and the left hand side
answers the question 'to what value is this value to be given?'

It is possible to write assignments statements such as

firstnumber := 1

circumference := 2 * pi * radius
and even
nextnumber := nextnumber + 1

which has the effect of increasing the value of nextnumber by 1.
It is not meaningful, however, to write statements like
1 := firstnumber

length * width := area

because the left hand sides of these statements cannot be

interpreted as a destination for a value.

78

Appendix B : How Lecture Slides used in CPSC 114 present the

‘Assignment Statement

ASSIGNMENT

The action of changing the value of (i.e. "contained by") a
variable.
This action 1is specified, 1in Pascal by an assignment

statement.

FORM :

variable := expression

ACTION : The value of 'expression' is computed and becomes
the new value of 'variable' (replacing any former

value).

Once a value is assigned to a variable, it retains that
value until another value is assigned to it in a subsequent

step of the program.

Expressions may contain variables as well as constant values.

The value represented by a variable is the value most recently

assigned to it.

Notes

Variables don't remember previous values

Read "a := 3" as "a becomes 3", or "a gets the value 3";

don't read it as "a equals 3".

Examples

2)

Note x := y and

a := 3;
Before
a ‘

X = X + 1;

After

s

After

X 83

(Try "x := x + 1" on a mathematician !)

x have different effects.

79

80

Appendix C : The Diagnostic Loop illustrated by tracing a

student's session as he attempts Problem 3

The following is part of an actual student's session protocol
annotated with explanatory notes, which can be distinguished by
a 'C' as the first character of their lines.

CATEA prompts input from the student with a '*'

Choose one of the following :
(1) Please display restrictions of the Pascal compiler.
(2) Try Problem 2 again for more practice.

(3) Proceed directly to the next problem.

Enter 1,2 or 3 :

Programming Assignment 3

Write a Pascal program that does the following
(1) Declare P, Q as integer variables
(2) Read in the value of P using READ (P);
(3) Read in the value of Q
(4) Now, exchange the values of P and Q
(5) Write out the values of P and Q

Now, enter your Pascal program :

PROGRAM TIRED;

VAR

P,Q :INTEGER;

BEGIN

READ (P,Q);

Q :=P;

P :=0Q;

WRITE (P,Q);
END.

CATEA will attempt to compile the program.

I1f there are unrecoverable syntax errors,

it will prompt the student to re-enter the program.

If a student still can not type in a program free of syntax
errors after six attempts, CATEA will ask if he wants to give
up and be provided with the solution.

Start of Compilation.
PROGRAM TIRED; .
VAR
P,Q :INTEGER;

VVVVOOOOOOOO**’****.***VV.VVVVVVVVVV *VVVVVVVVYVYV

BEGIN
READ (P,Q);
Q :=P;
P :=0Q;
WRITE (P,Q):
END.

No error detected.
End of Compilation.

Enter Y or N :

*V VVVVVVVVYVVYVYV

z

»

CATEA proceeds to execute it.

Start of Execution,
Executing READ (P, Q) ;
P

Enter input value for >

5 .
Enter input value for Q >

8
Executing Q := P ;
Executing P :=Q ;
Executing WRITE (P, Q) :
Program will print :

5 5
End of Execution.

the student's program is incorrect.

student's program.

Your program doesn't work as required.

VVVVOOOVY *MVVVVOOOOOOQAV VYV VVVY %%V $VVVVOOOQ %V V
»

Do you want to make any more changes to your program ?
To make changes, you have to enter the program again.

To continue, hit any key and then the <RETURN> key.

As the student's program is syntactically correct,.

CATEA realizes that as P and Q have not swapped variables,

It will then invoke its diagnostic model to find out which
of its stored bugs can explain the surface behaviour of the

Do you know what's wrong with your program ?
To continue, hit any key and then the <RETURN> key.
CATEA points out where the student's program is wrong.

P has NOT attained the value of Q, namely, 8

‘To continue, hit any key and then the <RETURN> key.

81

*x
>
C

C CATEA was able to diagnose the bug as its third stored

C enumerated bug.

C (prestored for each bug) which is most often

C an example followed by some discussion,

b

VVVVVVVVVVVVVVVVVVVVVVYVY *%$VVVVVVVVVVVVVVVVVVVYVYVVVQDO

Remedial Advice

It prints out a block of remedial advice

as in this case.

82

Look at the following assignment statements :
P := 1;
Q = 2;
P = 0Q;
Q := P;
p
P := 1 puts 1 into the variable P 1
Q := 2 puts 2 into the variable Q 1

P := Q puts the value of Q, that is, 2

into P, P and Q both has the value 2. 2
Note that P := Q destroys the old value

of P, namely, 1. To retain this old

value of P, we need a THIRD variable.

Q := P puts the value of P, that is, 2

into Q. BOTH P and Q have the value 2, - -2

To continue, hit any key and then the <RETURN>

Let me give you a test to see if you have a better

understanding.

Question

Consider the following program :
PROGRAM QUIZ;
CONST A=TRUE;
B=FALSE;
VAR X, Y : BOOLEAN;
BEGIN

L U
=
Lo e R d

 ee o0 oo oo

s

X, ¥)

w i S S

o1
2

What gets printed ?
{11 FALSE FALSE
{2} FALSE TRUE
{3} TRUE ‘FALSE

83

{a} TRUE TRUE
Type in your answer (1, .2, 3 or 4)

%V Vv
N

That's WRONG,
The answer is 1

If the student's answer is correct, CATEA will take it that
the student has become aware of the bug and proceed to the
next problem or allow the student to retry the same problem.

CATEA gives the student the choice of trying another test or
seeking more advice.

Choose one of the following by entering 1 or 2 :
{1} More advice
{2} Try another test

Now, enter 1 or 2 :

Remedial Advice
To exchange the values of 2 variables P and Q,
we use a third variable R in the following way :
R

P
Q
R

we weo we

P
Q
R is used to store the value of P,

so that P can then get the value of Q.

After that, Q gets the value of R,
which is the original value of P.

Can you observe that P and Q have exchanged values ?

To continue, hit any key and then the <RETURN> key.

CATEA gives another test to find out if the student has become
aware of the bug in his program.

Question

Consider the following program :
PROGRAM QUIZ;
CONST A=2;
B=4;
VAR P, Q, R : INTEGER;
BEGIN

VVVVVVVVVVVVOOOOVY *VVVVVVVVVVVVVVVVVY *VVVVVOOOOOOOQOVYVY

WO Y
W
U w >

P = Q;
Q := R;
WRITE (P, Q)
" END.,
What line of output gets printed ?
{1} 4 4
{2} 2 2
{3} 2 4
{4} 4 2

Type in your answer (1, 2, 3 or 4) :

That's RIGHT.
Let's proceed to the next problem.

This ends the diagnostic loop.

If the student's program answer is wrong, that is,

he has failed to do the two multiple-choice tests correctly,
CATEA will end the diagnostic loop with a warning that he has
yet to correct his misconception and advises him to try other
remedial sources.

To continue, hit any key and then the <RETURN> key.

Choose one of the following :
(1) Please display restrictions of the Pascal compiler.
(2) Try Problem 3 again for more practice.

(3) Proceed directly to the next problem.

VVVVVVVVVVYVY XVOOOQOQOOOOOOV VY *VVVVVVVYVVVYV

Enter 1,2 or 3 :

84

