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Abstract

This thesis examines the advantages and 'disadvantages
of using a high level I/0 protocol for device management. It
covers the implementation of this form of device management
as an addition to the Verex operating system, the problems

encountered, and their solutions.
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Chapter 1

Introduction

The subject of this thesis is the investigation of the
advantages and disadvantages of managing device
communication using a high level data communication
protocol, within the kernel of a message based operating
system. Of particular concern are the effects on opérating
system . portability, flexibility, and efficiency. The
research work involved in this thesis includes the design
and implementation of device handling routines using this

model.

This research was done in conjunction with related
research into data communication protocols at the University
of British Columbia Department of Computer Science. A
protocol of sufficient power and flexibility to handle a
wide wvariety of input and output tasks was developed, and a
subroutine package was written to provide convenient access
to .input and output services that conformed to the protocol

[10].

1.1 Objectives

The aim of this thesis is to examine the possibility of
using a high level 1I/0 interface for communicating with
peripheral devices. The expected advantages of this approach

to device handling are dynamic reconfigurability, more



efficient communication with devices, and the confinement of
privileged I/O instructions to the kernel. Also, more of the
machine dependancy in the system is confined to the kernel.
A possible problem is the increase in the amount of code
that is contained in the kernel. Determining the severity of

this problem is one of the objectives of this research.

Another objective of this thesis 1is to describe the
implementation of this form of device management as an
addition to Verex [1l], and to report on the problems

encountered and their solutions.

1.2 Motivation

One of the prime motivations for using an I/0 protocol
is the improvement of device management. Current schemes-are
unstructured and often inefficient. The inefficiency of
these schemes can severely limit real time applications due
to the inability to guarantee that interrupts will be

serviced within a certain time interval.

Implementing the protocol at the kernel level rather
than having a device handler process enables direct
communication between user processes and devices, thus
reducing the message passing overhead. The I/O protocbl
message to the device, as it is interéepted in the kernel,
is received immediately, eliminating the process switching
overhead that would otherwise be required to send a message

and receive a reply.



Verex device handling, 1largely inherited from Thoth
[4] , involves awakening a process té handle most interrupts.
This is costly, so costly in fact that the maximum rate that
a terminal can send characters to the c¢pu without any
characters being missed 1is only 1200 baud. Many modern
intelligent terminals éan transmit programmed strings or
screen readouts to the cpu, usually at the same rate as
characters are received from the cpu. To take advantage of
this facility on Verex, currently the terminals must be set
to a rate of 1200 baud, a severe limitation on their
performance. The Verex I/O protocol reads and writes in
blocks, enablihg a kernel implementation of this protocol to
buffer charactefs. Hence a kernel level implementation of
this protocol need not awaken a process for each interrupt.
As the blocks can vary in size, the block I/O0 allows single

character I/0 as well.

Verifiability is one of the objectives of Verex. On
many machines, I/0 operations are privileged. Limiting the
code which must run in privileged mode to the Kkernel
improves the verifiability of the operating system, as the
amount of damage that can be caused by a malfunctioning
procéss is much 1less if it is not running in privileged
mode. In particular, devices that access memory directly can
overwrite kernel code; so the kernel must supervise all such
devices to ensure its integrity. The original work done on
verifiability with Verex aimed to exclude I/0 operations
from the kernel, so that the kernel would not have to be

re-verified each time a device handler was added to the



system. Supervision of direct memory access transfers
requires knowledge of device function, hence excluding
device dependancy from the kernel is ‘impossible. Confining
I/0 operations to kernel code 1is also the major step in
isolating the kernel from the rest of the operating systenm,
whiéh currently runs in the same address space as the

kernel.

Above the kernel level, the kernel device management
system appears as a server process. This is in accord with
theoreticai models which regard devices‘ as external
processes [6]. The kernel device management system extends
Verex interprocess communication to these external

processes.



Chapter 2

Research Background

Although device ﬁanagement software forms an important
part of all operating systems, little has been written about
its design. Perhaps this is due to the hardware dependant
nature of device software. Brinch Hansen [6] referred to
devices as "hardware processes", yet little work has been

done in extending interprocess communication to devices.

2.1 Interprocess Communication

Interprocess communication has increased steadily in
sophistication with the development of modern operating
systems. Early operating systems provided very little in the
way of communication between processes, as all but the
lowest level system éode was restricted to one process per
program. As the idea of multiple processes per program
became more popular, the methods of interprocess

communication increased in power to meet the demand.

Interprocess communication serves th main purposes,
data transmission and synchronization. The simplest form of
data transmission is through the use of shared memory. Use
of shared memory must be coupled with a method of
synchronization, to avoid critical section problems.
Semaphores [11], are the most basic form of synchronization.

Message passing provides both synchronization and data



transmission.

Shared memory requires the processes sharing memory
have overlapping address spaces, which often incurs either
protection difficulties or high computational overheads. The
simplest method 1is to have the processes run in the same.
address space, but this limits all communicating processes
to one address space, and leaves each process dependant on
the correct behavior of all other processes. Less dangerous
methods either incur large computational overheads or

require special hardware [4].

The use of message passing for interprocess
communication has been growing as new operating systems are
developed. Message passing is a set of primitives for the
exchange of packets of data, called messages, between
processes. Message passing schemes can be divided into two
categoriés: synchronéus and asynchronous. Asynchronous
message passing allows a process to proceed with execution
after sending avmessage, whereas synchronous message passing
requires the sender to wait wuntil the receiver of the
message has received it and sent a reply. The advantage of
synchronous message passing is its simpler implementation,
as message buffers need not be dynamically allocated in the
kernel, resulting in greater reliability, since there is no
danger of running out of message buffers [41. Its
disadvantage is ‘the reduction of concurrency. However,
concurrency can be achieved by the creation of more

processes.
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Verex message passing uses sméll, fixed length messages
which are passed synchronously. The message passing
primitives consist of a routine to send a message, a routine
to receivé a message, and a routine to reply to a message. A
process sending a message blocks until that message has been
replied to, or the process sent to no longér exists. A
process may check to see if a message has arrived for it, or
it may block until a message arrives. A process may await a
message from a particular process, or from any process. The
reply primitive passes a message to a process that has sent

to the replying process, and unblocks the sending process.

2.2 Input/Output Protocols

Input/Output protocols are the subject of much research
currently with the great expansion of the use of computers
for communication. Standard protocols  increase the
portability and flexibility of the programs using them, as

their range of possible application is increased.

Madnick [12] details the advantages of having a ﬁniform
presentation of a file system. His arguments are easily
extended to providing a uniform interface to all types of
input and output. Most modern operating systems provide a

uniform file/device abstraction at the top level.
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Figure 2.1 -- Uniform Access Protocol

Cheriton [10] has developed a wuniversal file access
protocol using message passing. This protocol is based on
the client/server model, where a client process makes I/0
requests to a server process which manages the particular
file abstraction. As all servers communicate using the same
protocol, programs using. the protocol can be used with a

wide variety of file/device abstractions.

2.3 Verex Device Management

The device management philosophy in the original Verex
is to keep the <code in the kernel to a minimum, and have
processes handle the majority of the work. Hence the device

management interface to the kernel is low level.



The kernel provides one device interface function,
.Await_interrupt. A process uses this kernel operation to
await an interrupt at a particular interrupt level. When an
interrupt occurs at that level, the interrupt routine for
that interrupt 1level is invoked, some calculations are
performed, and the process awaiting the interrupt is
unblocked. A process is not necessarily unblocked each time
an interrupt is received. In this manner, interrupts that
request simple action can be handled by the interrupt
routine. After awaiting an interrupt and being unblocked,

the handler process then deals directly with the hardware.

Response to frequent interrupts is "hampered by the
limited rate at which processes can be unblocked and run.
This problem is avoided by putting code into the interrupt
routines to buffer incoming data, and adding kernel
operations to read the data. The problem with this method is
that each fast device requires its own device input/output

kernel operations.

2.4 Unix Device Management

Unix divides devices into two <classes, block and
character. Block devices must be random access, and must use
512 byte blocks. Character devices are devices that do not
fit into the "block" class. Devices are identified by a
sixteen Dbit number, which identifies the device driver, and

the particular device handled by that driver [5].
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Device driver software consists of the device's
interrupt routine, and interface procedures. Device driver
routines are accessed by using the upper eight bits of the
device identifier to 1index a table of device functions.
Character and block type devices use separate tables. Every.
device has an open and a close function. Character devices
each have in addition a read routine, a write routine, and a
special function routine. Block devices have a "strategy"
routine which perform read, write, and control functions in

a manner appropriate to the device.

Communication between the interrupt-driven part and the
procedure called part of the device driver uses common
variables, flags,  and queues, Synchronization is
accomplished through the use of interrupt priority 1levels,
and the wuse of sléep and wakeup routines which allow the
procedure to cause the calling process to block until it is

unblocked by the interrupt routine.

Unix maintains a pool of buffers and supplies software
for their management. These buffers are used by the block
type devices to keep copies of frequently used blocks in
 memory. All block type devices have chains of buffers that
are managed by the buffer management routines. Many routines
are provided to implement the different ways in which
buffered input and output can be done. Each buffer contains

information on its status and the information it contains,

Unix also contains some provisions for transfers

directly from devices into a users address space with
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non-standard block sizes. ‘These devices are set up to be

character devices which have their own buffers,.

A user program calls sﬁandard functions to perform I/O.
These functions access the system file table, which, among
other information, contains the offset into the file at
which the next I/0 will take place, and a pointer to' the
file's 1inode. The inode contains the device identifier,
which is then used to access the appropriate 'device driver

routine,

Unix device management provides many of the features
desired in device management systems, but 1is 1limited by
several problems. The device access protocol is fairly
uniform across all devices; all devices appear as files to
the users, even to the point of having a particular location
within the file system structure. The file access protocol
is quite limited, however, which means that some control
functions are difficult to make available at the application
level. The 1lack of suitable interprocess communication
forces device handlers to be within the kernel of the
operating system, which causes the kernel to grow quite
large. The device handling structure within the kernel is
gquite restrictive, which can cause difficulties in writing
device drivers for devices which do not match Unix's idea of

how devices should behave.



12

Chapter 3

Design

3.1 Design Criteria

The aim of this research 1is to examine the use of
high-level protocols for device management, hence the
primary design objective is to create a device management
system which communicates with processes using a high-level
I/0 protocol. Devices should appear to be files implemented
by a standard I/0 server, so that a device can be used

interchangably with another type of "file".

Another design aim is to provide a structured method of
implementing a device driver, so that adding a new device is
a simpler process. The device implementor should not be
required to be an expert on the operating system in general.
This enhances the portability of the operating system, as
porting to a new machine requires new device drivers to be

written.

The device interfaces should 1lose 1little of the
flexibility provided by low~level interfaces, The
implementation of a device driver for an unusual device
should not require the implementor to write complicated code
to outwit, or "program around”, the device management
system. This requires that the 1I/0 protocol chosen be

sufficiently flexible to accomodate widely varying types of
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input, output, and control information. For example, in the
original Verex operating system, the simple primitives for
device management were inadequate to control network
interfaces, forcing the impfementors to add kernel

operations to communicate with them.

Real time response and efficiency should not be lost in
achieving the " above aims. An inefficient device management
system is not likely to be used, especially if it cannot
give adequate response to the interrupts of the devices it
manages. For examble, device managment schemes which involve
scheduling a process to service an interrupt, a time
consuming operation, cannot service high frequency

interrupts.

Many operating systems require either regeneration or
recompilation when the hardware configuration of the system
is changed. Hardware configuration, as it 1is wused here,
defines the type of devices and interfaces connected to the
computer, and their arrangement in I/0 address space. This
device management system will attempt to eliminate the
necessity of recompilation or regeneration. Changing the
hardware configuration will only require editing a setup
file, as long as no device for which device drivers do not
exist are added. This contributes to the reliability of the
system, as compilers change with time, and there 1is no
guarantee that a recompiled version of a system will behave
correctly [2]. Modification of a setup file is also a much

simpler, faster, process than recompilation. This method of
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reconfiguration also saves disc space in some circumstances,
as operating systems which require recompilation to change
hardware configuration require that a separate core image of
the system be kept on file for each different hardware
configuration in which the system may be run. An example of
this 1is Data General's MRDOS operating system, where the
number and type of each device 1is specified to a system
configuration program, which generates a core image which

will only run with the given hardware configuration.

Some classes of devices have a number of different
modes in which they can operate, which require different
interface and interrupt routines. An example of this is some
terminal/network interfaces which can operate synchronously
or asynchronously. It is advantageous not to need to reboot
when a change of mode  is desired. This "dynamic
reéonfigurability“ “ is closely related to the

"regeneration-free" reconfiguration described above.

3.2 Environment

The device management system described here is designed
to work with kernel based multi-process operating systems
'with message based interprocess communication. The reason
for this restriction ié that a major element in the design
is the extension of interprocess communication to devices.
Systems with primitive interprocess communication would gain
little in having it extended to devices. The system is

particularly aimed at those systems that use a message based
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I/O0 protocol of the <client and server type, as they have
subroutines designed to take advantage of high level
communication with devices. Some aspects may be

transferrable to other types of operating systems.

3.3 Design

The design of the device management system is broken
into three parts: the services provided by the system, the
interface between processes and the system, and the internal

function of the system.

3.3.1 Services

The protocol uged defines, to a certain extent, the
nature of the services provided by the device management
system, Most protocols, however, allow a fair degree of
flexiblity in the exact operations performed by requests.
The desired behavior of the'system has been defined above in
the design «criteria. This sectioﬁ will detail the

functionality required to achieve the desired behavior.

3.3.1.1 Device Creation

In order to achieve a kernel that is independant of the
hardware configuration of its host computer, all hardware

configuration dependant information must be removed from the
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kernel. Devices, therefore must be initialized and activated
by requests from processes. In general, these device
creation requests will come from the system processes that
use the. particular devices, for example, the file server
will issue the device creation requests for its disk drives

and other devices.

As no hardware configuration dependant information is
contained in the kernel, the relevant information must be
contained in the device creation request. This information
wiil consist of such things as interrupt vector addresses,
device control register addresses, and other information
about devices which change with hardware configuration. The
exact nature of the information will depend on the hardware

I/0 structure of the host computer.

Device initialization and activation is a device
dependant operation. To allow the necessary flexibility to
implement a wide range of device types, each type of device
should have its own device creation routine. Selection of
the appropriate routine when a device is created must depend
on an indication of device type in the creation request. A
simple protocol 1is required to map device types onto
identifiers, which can be implemented as a set of constants
shared by the source code of the device management system
and vthe source code of the system processes using the

devices.
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3.3.1.2 Device Removal

Dynamic reconfigurability requires a method of
releasing devices so that their mode of operation can be
changed. When a device is released, the device management
system releases its data structures and reserved hardware
(see Protection, below), and terminates pending I/0 on the
released device. The device- removal will not always be
prompted by a request from a process, as a process may be
destroyed or abort, in which case any devices it owns should
be removed. This implies that the device management system
must detect process destruction. Process destruction
‘detection can take the form of periodic checking for
existance, or notification upon destruction. Notification
upon destruction is more difficult to implement, but is more
reliable as the device 1is removed as the process is
destroyed, not sometime later. Because of its greater
reliablity, the notification method was chosen for

implementation.

3.3.1.3 Protection

One of the basic assumptions when designing kernel
software 1is that processes are inherently unreliable, and
possibly malicious. For this reason, manipulation of devices

must be subjected to checks and restrictions.

One area that must be protected is interrupt vector
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locations. If a device is created with the same interrupt
vector location as a device that is already active, the new
interrupt routine would end up servicing interrupts from
both the old device and the new device. This would 1likely
cause confusion, hence the vector locations must be checked

at device creation time.

Some deviées, such as disc drives, contain precious
information, and should not be accessible to user processes,
whereas other‘forms of devicés, such as terminal intérfaces,
are less sensitive. When a creation request is received for
a sensitive device, the type of the process sending the
request should be checked. The request should be rejected if
the process does not meet some security criterion, such as

being a system process.

Similarly, some devices are insensitive to read and
write requests, hence read and write requests can be allowed
from any process. More sensitive devices, however, should
check each read and/or write request to ensure that it comes
from an acceptable process. The most useful acceptance
criterion for sensitive devices is that the request comes

from the same process who created the device.
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3.3.2 Interface

3.3.2.1 Communication

A basic component of the device management system is a
means of communication between processes and device software
via messages. To maintain compatibility with I/O library
routines, device communication must appear exactly the saﬁe
as interprocess communication. This requires that the kernel
primitives implementing message passing must detect hessages
that are intended for devices and pass them to the

appropriate code.

| The method used to determine if a message is intended
for a device or a process cannot depend on the contents of
the messagé, as message contents should be unrestricted.
This leaves the process identifier of the process to which
the message is sent as the only source of information to
discern the proper destination of a message. Therefore one
or more process identifiers must be reserved for device

communication.

There are a number of ways in which process identifiers
could be used to indicate that a message is intended for a
device. The primary factor influencing the selection of a
particular method is the amount of overhead added to the
message passing, as message based operating systems

generally have a high volume of message traffic [10].
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The simplest possible method is to reserve one unique
process identifier to indicate device communication. This
has the advantage of being easy and efficient to detect,
requiring only a single comparison. A disadvantage of this
method 1is that it eliminates any possibility of using
information in the process identifier for other purposes
such as device class selection. This disadvantage is
minimized by the fact that I/O protocols use fieids in the
message to identify a particular object. Two level systems,
which select both on the process identifier and the object

identifier in the message, are impossible with this scheme.

Another possible method is to reserve a group or range
of identifiers. The particular identifier in the group can
then be used to give some information about the device. This
allows greater flexibility in device specification, but

incurs a small performance penalty, and is more complicated.

The single reserved id method was chosen for
implementation, because of efficiency and simplicity
considerations., The two level selection possible using a
range of reserved process identifiers gives a wider range of
device selection, but requires more code and takes more
time. The object identification field in the message seems

to give sufficient device specification range.
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Figure 3.1 -- Process Device Communication

Oﬁce a message has been identified as being intended
for a device, the appropriate device handling code must be
selected. The selection of code depends on the type of

device being addressed, and the service being requested.
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3.3.2.2 1/0 Protocol

The remainder of the interface is largely defined by
the I/0 protocol chosen. Extensions will probably be
required to the protocol for the specification of the

hardware information in the device creation request.

3.3.3 Internal Design

A device driver can be separated into two distinct
parts: interrupt driven and request driven. Routines in the
request driven section are executed in response to an I/0
protocol request from a process, while interrupt driven
routines are executed 1in response to an interrupt from a
device. Communication between the two sections must be
through the wuse of shared data structures, as message
passing and process synchronization do not exist below the
kernel 1level. For example, in response to a read request,
the request driven section of a device driver might check a
buffer for data, and block the requesting process if there
was none. In reponse to an incoming data interrupt, the
interrupt driven section checks the shared data structure to
see 1if a process is blocked waiting for input, and unblocks

it if there is, otherwise buffering the data.
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3.3.3.1 Data Structures

In choosing the form of data structures wused, one
trades off flexibility against overhead. The more flexible
memory management schemes have a high space overhead, and an
even higher execution time overhead. At the kernel level, it
is important to minimize overhead, so the more compilcated
methods must be rejected. Static allocation has no overhead,
but rules out dynamic reconfiguration. A suitable compromise
between these two extremes is dynamic allocation of memory

in pieces of a few fixed sizes.

A data structure is required to describe the device to
the device management system, and to store device dependant
information. This data structure 1is used to select the
appropriate device dependant code to service I/0 requests
for the device. Access to this data structure should be
fast, as it must be accessed for every device request. This
suggests the use of a table of pointers to device state
vectors, Qith the file identifier of the dévice used to
select the element of the table. A simple indexing scheme is
undesirable,as it allows possible confusion between a device
recently removed, and a new one that has been c¢reated with
the same index. This problem can be avoided by using the low
~order bits of the file identifier as an index, and the high
order bits as a sequence number. The time required for the

sequence number to recycle makes confusion unlikely.

Certain requests in I/O protocols can be serviced with
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little reference to device specific information. These
requests do not require device specific routines, but can be
handled by general routine with a little device specific
information from the device state vector. Space must be
allocated in the state vector for the needed information.
The decision of which requests to implement in this fashion

is based on optimization of memory requirements.

The device state vector must also contain space for
dévice specific information storage. As the amount of needed
storage varies from device to device, and the state vector
size is fixed, deciding how much "extra" space to leave is a
problem., The best solution is one that minimizes the memory
space used, which can be determined experimentally. More
than one state vector can be allocated for those devices
which require more storage than is allowed in a single state

vector,

3.3.3.2 Request Driven Routines

As mentioned above, some requests require little in the
way of device specific information to be serviced. These
mainly take the form of simple querys and parameter changes.
Flexibility considerations  require the use of device
specific code to implement some I/O requests. These routines
are acceSSed through the device state vector, which contains
their addresses. The requests are likely to require device

specific code are those which perform the more complicated
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functions, i.e. data communication and device control. To
ensure flexibility it 1is better to err on the side of too
many device specific routines. The overhead of allowing a
routine to be device specific is only one address in the
device state ?ector, and a small time overhead to access the
descriptor and the address of the routine. Devices that have
similar requirements can share the same request service

code.

3.3.3.3 Interrupt Driven Routines

Very few restrictions should be placed on the way in
" which interrupt routines are written, as they must deal with
widely varying kinds of hardware, in as efficient a manner
as possible.' The only structure imposed 1is that of
communications, that the interrupt driven routines
communicate with the request driven routines through the

shared memory of the device state vectors and buffers.

3.3.3.4 Utility Routines

' To make the device management system easy for the
implementor, a wide range of wutility routines should be
provided. Use of wutility routines also increases the
reliability of the device drivers, as objects are handled in

a standardized, tested fashion.

Memory management is one area in which utility routines
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are important. Routines‘ éhould be provided for the
allocation and freeing of device descriptors and buffers.
Initialization of standard fields in the device descriptor
is another useful utility. Routines should be provided to
manage such "built in" data structures as interrupt vectors,
minimizing the machine dependant data that the implementer

must learn.

Many devices share common properties, which allow the
use of common routines for controlling them. For example,
most of the software used to map terminal interfaces onto
the I/0O protocol is common to all tefminals interfaces,
regardless of the hardware protocols used. The common parts
should be provided as utility routines and documented, to
minimize the work of implementing a driver for a new type of

terminal interface.

Another class of utility routines that should be
provided 1is no-operation (NOP) routines. These routines are
used to f£ill slots for device dependant request service
routines, when the particular service 1is impossible or
meaningless for a device. For example, performing a read
operation on a printer interface is, 1in general,
meaningless. In this case, the slot for read request service
would be filled with a pointer to a routine -that merely
returns a reply that indicates that the device is not

readable.

Processes that communicate with devices usually must be

synchronized in some fashion with the interrupts from the



devices. Routines
restart it after an
some form or oﬁher
may be used without

subsystem is added.
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must be provided to block a process and
event. These routines usually exist in
in any multiprocessing kernel, and often

modification when a device management
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Chapter 4

Environment

4.1 Verex Process Management & Communication

Verex is a message based operating system. Operations
for process creation, and interprocess communication are
provided by the Verex kernel. The kernel also provides

primitive process scheduling.
The two operations used for process creation are:
new_process id = .Create_process()
which allocates a process descriptor and returns its id; and
.Init_process( id, stack_size, ... )

which initializes the process descriptor and schedules it to

be run.

Interprocess communication wuses small, fixed size
message buffers, which reside inside the kernel. The kernel
provides operations to read and write the message buffers
from the process' address space. The basic communication

operations provided are:
receiver_id = .Send msg( id )

which sends a message to a process whose id is given as a

parameter, and awaits a reply;
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sender_id = .Receive_msg( [id] )

which receives a message from the specified process, or any
process if no id is given, if a message has been sent the id
of the sending process is returned, otherwise an indication

that no message has been sent is returned;
.Await msg( id )

which waits for a message to be sent to the invoking process
from the process specified, or any process if none is

specified, and then returns the id of the sending process;
.Reply msg( id )

which replies to the sender specified; and
.Forward msg( from_id, to_id )

which passes a message to the process specified by the
parameter "to id", as if it was sent by the process

specified by the parameter "from id".

Message passing is synchronous, as a sender must wait
until his message "has been received and replied to before

proceeding. The only asynchronous event possible is process

destruction:
.Destroy( id )

which destroys the process specified by id, if it has the
same user as the invoking process, or the wuser of the

invoking process is the system user.
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The kernel process scheduling maintains multiple
prioritized queues of processes, and ensures that the
highest ©priority ready process is always running. A process
being added to a queue of a given priority level is added at
the end, creating round-robin scheduling for process at the
same level. Higher level scheduling is done external to the

kernel, through modification of process priority.

At the kernel level, the routines .Block, .Unblock, and
.Block_and unblock are used to remove and add processes to
the ready queues. These routines are accessible to the

device management software to schedule processes waiting for

I/0.

4.2 The Verex I/0 Protocol

The Verex I/0 protocol is designed to provide standard
interaction with a wide variety of data storage and
communication facilities. The protocol is object based and

connectionless, using the client-server communication model.

All services using the protocol are mapped onto a
standard view of a "file". A standard file is made up of
"blocks" which may vary in length. Each block has associated
with it a number that defines its logical position. The way
in which the data is givided into blocks is not defined by
the I/0 protocol, and can be selected to match the

characteristics of the service.

Operations provided by the I/0 protocol are executed on

A
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"instances" of files. A file instance is a currently active
entity, identified by the identity of its server process,
and a file instance identifier provided by the server. The
main distinction between files and file instances is that
instances are dynamic, existing only for the duration of
some activity, whereas files may exist through many

instantiations,

To allow the use of widely differing I/0 facilities,
the protocol defines  standard descriptions of file
attributes. This allows the client to treat a file instance
in a manner appropriate to its type. These attributes define
the 1limitations on the operations that can be executed on
the file. For instance, the WRITEABLE attribute defines
whether a file can be written to, and can be used to

implement write protection on files,

The message as provided by the interprocess
communication primitives is the basic unit of the protocol.
The type of request is specified by the .REQ CODE field of
the message. This semanﬁics of the rest of the message is
defined according to the type of request. The request codes
defined by the I/0 protocol are: .CREATE INSTANCE,
.RELEASE INSTANCE, .QUERY_ INSTANCE, .READ INSTANCE,
.WRITE INSTANCE, and .SET_ INSTANCE OWNER. The reply message
from these requests has a standard .REPLY CODE completed, or

its reason for failure,

The .CREATE_INSTANCE request creates an instance of a

file and returns an instance identifier and the file's
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attributes. The nature of the instance created depends on
server dependant information wused to specify the file
- desired, and a standard "usage mode" which defines the

manner in which the file is to be used.

The .RELEASE_INSTANCE request informs the server that a
client is finished with a file instance. The server then
'performs whatever cleanup operation is associated with the
release of the file instance. A field in the release request
specifies the "release mode" of the instance. Use of this
information is server dependant, and is usually used to

indicate whether or not permanent data should be updated.

The .QUERY INSTANCE request returns the same
information as the .CREATE INSTANCE request, without
creating a new instance. The file instance queried is

specified by the files instance identifier.

The .READ INSTANCE and .WRITE INSTANCE requests are
used for data transfer between the client and the file
instance. The block number, the number of bytes to be’
transferred and the 1location of the data are specified by

fields the request message.

The .SET_INSTANCE OWNER request changes the owner of
the specified file instance Eo a new owner specified by a
field in the request message. This allows instance ownership
to be transferred from one process to another. This is
necessary as some servers allow certain operations on an

instance to be executed only by the instance's owner.
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Two additional requests used by some servers are the
.CONTROL and .QUERY requests, which are used to request
operations and server information not provided for by the
standard 1I/0 pronotcol. For example, the file server uses
these requests to perform such operations as track
formatting, and the terminal server to return information
about terminal characteristics. For a more complete

description, the reader is referred to Cheriton [10].

4.3 Verex I/0 Servers

Through the use of a standardized protocols, the Verex
operatiﬁg system has evolved to the point where all
operating system services, aside from the basic few provided
by the kernel, are provided by server processes. This has
resulted in a highly modular system, which is easily
reconfigured to suit its purpose, as the selection of
servers invoked when the system is starfed can be varied

simply by modification of a setup file.

The wuse of the I/O protocol has led to the creation of
many I/O servers which use it to interact 1in a standard
fashion. As all servers use the I/O protocol, the type of
file being used is transparent to the application, aside
from special control functions possible on some devices. The
protocol has been successfully applied to communication with
file servers, 1local and 1long haul networks, terminals,

inter-user mail, and pipes.
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A name server is used to relate the symbolic name of a
service to the process id of the server process. This
provides great flexibility in the redirection of the output
from programs. For example, the output from the editor can
be sent directly to the mail server, allowing the convenient
composition‘of mail messages with a visual editor, without

the use of an intermediate storage file.
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Chapter 5

Implementation

This chapter will discuss the implementation of the
ideas discussed in the previous chapters, as a part of the
Verex operating system running on the Texas Instruments
TI990/10. Device dependant code will be discussed in the
appendices. A guideline for device implementation will be

found Appendix A and an example device driver in Appendix B.

In order to implement kernelbdevices, changes must be
made to the original kernel code for process creation and
deletion, and message passing. Process creation must be
changed to insure that the special DEVICE_SERVER id is not
given to a process. The process destruction routine is
altered so that a device being written or read by a process
to be destroyed is returned to an idle state. The message
passing routines must be altered to route messages sent or
forwarded to the DEVICE SERVER to the device server routine.
Also, code must be added to the system initialization to set

up kernel device data structures.

The basic kernel device data structures are: a table of
device state descriptors; a buffer pool; and a table of the
device creation functions for different device classes. The
necessary routines for handling these data structures are:
device descriptor allocation/release routines; a routine for
mapping from device ids to descriptor addresses; buffer pooi

management routines; and a routine to call the device
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creation routine appropriate given its device class.

The device descriptor contains device independant
.information as well as space for device dependant
information. The device independant routine includes:
pointers to the code to be executed for read, write,
control, and release requests; pointers to code to restart
the device after power failure; information about the
device, such as its block size; and information about the

processes using the device.

The device descriptor allocation/release routines were
kept simple to minimize code. As device creation and
deletion are rare events, the routines need not be
particularly fast. The allocation algorithm used is a simple
sequential search through the device descriptor table for an
unused descriptor. If no wunused descriptor is :found, an
attempt is made to clean up resources allocated to devices

whose owner processes no longer exist.

The central routine to the dévice server code is
Send device, which interprets the kernel dévice request in a
manner similar to a standard server. The major difference is
that the sending process is not replied to, but is either
blocked or returned to depending on the device - and the
request, If tﬁe request is forwarded, the sending routine is
unblocked unless the .reply code 1is .NO_REPLY, and the
forwarder is always returned to, whereas if the request is
not forwarded, the sender is returned to unless the reply

code is .NO_REPLY, in which case it is blocked.
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Send device calls the routine appropriate to the
.REQUEST CODE of the message. Device requests conform to the
Verex I/O protocol, and are identical to standard server
requests, except in the case of the .CREATE_INSTANCE
request, where additional information must be specified. The
information required are: the service type, which specifies
the particular hardware device and how it is to be used; and
hardware location information, which in the casé of the
TI/990 consists of the interrupt level and CRU address. The
service type is used as an index into a table of functions
to select the appropriate device creation/initialization

routine,
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Chapter 6

Results

The impléméntation of the device managment system as a
part of the Verex operating system has proceeded to the
point where it can be used as part of a production system. A
version of the system incorporating the device management
system has been in everyday use for four months, and has

proved to be very reliable.

Not all devices have had their device drivers modified
to work with the new system, so ~current systems use a
combination where some devices are handled using the new
system, and others still wuse the old. Devices are being
converted to the new system as programmer time permits. The
system commonly in use uses thé device management system to
drive all terminal and printer interfaces, leaving only the
disc controller interface and the x.25 network interface

unconverted,

Response to interrupts.has been, as predicted, greatly
improved. The terminals interfaces can now send characters
to the cpu at 19200 baud, while dropping only the occasional
character. The reason for the characters dropping is not due
to the device management system, but to the fact that Verex
disables all interrupts when executing kernel code. A
possible future project is to modify Verex so that kernel
code can run with interrupts enabled. No characters are

missed at 9600 baud. The maximum rate of output to terminals
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has decreased by about ten percent. This is due to the small
output buffer size. This can be cured by enlarging the

output buffer size, and will be done when time permits,

As the terminal interfaces are now managed by the
device management system, the high-level terminal server has
been removed from the system address space. This has
resulted in a twenty percent decrease in the size of ‘the
system, which is a éreat advantage as the address space
limitation of the machine was beginning to make system
expansion difficult. Removal of the terminal server from the
system address space has allowed it much more room for

expansion.

The high level interface provided by the device server
has facilitated the addition of new features to the terminal

server, through the use of control requests.
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Chapter 7

Conclusions

The implementation of the device management system as a
part of the Verex operating system has démonstrated the
feasability and merit of communicating with devices using a
high-level I/O protocol. Device drivers were written for a
number of different device types, proving the flexibility of

the method.

The extensibility of the ideas has yet to be proven, as
Verex 1is the only operating system in which they have been
implemented. It is clear that this form of device management
could be applied to similar operating systems such as Thoth,
but whether operating‘syétems with primitive interprocess

communication can benefit from it remains an open question.

As 1is usually the case in implementation, unforseen
problems were encountered{ requiring modification of some of
the original ideas. It is 1likely that devices exist for
which a device driver would be difficult to implement with
this system. Fortunately, the implementation is easy to

modify.
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Appendix 1

Kernel Device Implementation Guideline

This appendix gives a step by step guideline for adding
a device driver to the Verex operating system kernel.
Familiarity with the Verex I/0 protocol and knowledge of how
to compile and boot a new system is ‘required of the
implementor. Other knowledge about the system and the kernel

should be unnecessary.

A device driver in this system consists logically of
two parts; the interrupt driven routines and the request
driven routines, which communicate through the shared device

state descriptor(s) and optionally through shared buffers.

Request Service Routines

When a request is sent to the device server
pseudo-process, the appropriate routine is called to service
that request. All request service routinés are sdbroutines
written in the Zzed language, with parameters as described
below. Some requests, such as .QUERY_INSTANCE are device
independant and are handled by device independant code. The
device dependant request service routines are identified in

the device's descriptor.

The exception to this pattern 1is the routine which
responds to the .CREATE INSTANCE request, which occurs

before the device descriptor is allocated. This routine uses
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the SERVICE TYPE field of the creation request as an index
into a static array of device creation routiﬁes. When a new
device is added, the assembler module Create function, is
modified and re-assembled. This module specifies the array
of device creation functions, and an external variable,
Max service type, which indicates the length of the array.
The name of the device creation function of the new device
is added to the end of the array, and Max service type is
increased by one. Note that a code for a device class can be
excluded from the system by commenting out its entry in the
Create_function table and replacing it with a zero word.
This will cause the routine Create device to return a reply
code of .ILLEGAL REQ to a device creation request for that

device class,

The device creation routine 1is called with two
parameters: a pointer to the requesting message, and a
pointer to the process descriptor (PD) of the requesting
process. Its function is to allocate and initialize all data
structures used by the device. This will include at least
one device descriptor, and possibly buffers provided by the
buffer support routines. The device descriptor is allocated
by the routine Alloc device, and freed by the routine
Free _device. The values of the fields in the descriptor are
initially wundefined and must be set by the device creation
routine. Buffers are allocated by the routiné Alloc buffer,
and freed by the routine Free buffer. The buffers have a

fixed size of 80 bytes.
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A device descriptor is defined by the Zed template:

template DEVICE STATE

word REGISTERO; \ RO in interrupt registers
word REGISTER], \ R1

REGISTER2, \ R2

REGISTER3, \ R3

REGISTER4, \ R4

REGISTERS, \ R5

REGISTERG, \ R6

REGISTER7, \ R7

REGISTERS, \. R8

REGISTERY, \ R9

REGISTER1O0, \ R10

REGISTER11, \ R1l1l

REGISTER12; \ R12
word RETURN WP([1]; \ R13 (reserved)
unsigned RETURN PC[] (), \ Rl4 (reserved)

RETURN_ST; \ R15 (reserved)
unsigned READ FUNCTIONI[] (

),
WRITE FUNCTIONI] (),
CONTROIL FUNCTIONI[] (),
RESTART FUNCTION([] (),
RELEASE_FUNCTION (] (),
READ CLEAR FUNCTIONI[] (),

WRITE CLEAR FUNCTION[] (),

FILE TYPE, \ for respones to

IN BLOCK SIZE, \ .QUERY INSTANCE requests
OUT BLOCK SIZE, B ‘
WRITER ID,

READER ID,

USED,

DEVICE_ OWNER,

FILLER: [2];

The "FUNCTION" fields <are initialized to point- to the
appropriate code to service the request., The fields
FILE TYPE, IN BLOCK SIZE and OUT BLOCK SIZE must be
initialized in accordance with the Verex 1I/0 protocol
specifications for the .QUERY INSTANCE request to ‘work
properly for the device. The field USED is used by the

device descriptor management routines and must not be
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altered. The fields READER ID and WRITER ID may be used for
keeping track of the ids of processes reading and writing
the device. The field FILLER is three words of uncommitted

space which may be used as the implementor desires.

The device creation routine must also initialize the
interrupt wvector, and 1initialize the device hardware. The
.interrupt vector is initialized with the routine Add device
which takes the device descriptor, the interrupt routine,

and the interfupt level as parameters.

The device dependant request service routines handle
the .READ INSTANCE, .WRITE_INSTANCE, .CONTROL, and
.RELEASE INSTANCE requests. The appropriate fields in the
device descriptor are initialized to point to these routines
at device creation time. The routines servicing these
requests are called with three parameters: a pointer to the
request message, a pointer to the device descriptor, and a

pointer to the PD of the requesting process.

Also needed are a RESTART FUNCTION, a
READ CLEAR_FUNCTION, and a WRITE CLEAR FUNCTION. The restart
function is called when the device is created, to initialize
its hardware, and after power failure to restart the device.
The read/write clear functions are used to notify the device
driver that a process reading or writing it has been
destroyed. These routines are called with the device
descriétor as a parameter., Standard routines for some of
these functions are provided as utility routines at the

kernel level.
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The path of communication with the device is through
its read, write, and control functions. Data transfer to and
from the device usually occurs after a device interrupts.
The data can be stored in a buffer while awaiting the
interrupt. The exact data transfer method is left up to the
implementor. The control function can be used for special
hardware functions, such as disk track formatting. Control
functions are device specific, hence their definition is

left to the implementor.

Utility Routines

Here is a detailed description of the utility routines

available:

Add_device

Definition:
Add_device( interrupt level, routine[] (), word devicel] )

Description:

Add _device initializes the interrupt vector so that the
routine pointed to by routine will be called with the
workspace pointer pointing to device when an interrupt a the
specified level occurrs. The parameter interrupt level the
machine handles.

Alloc_device

Definition:
unsigned Alloc device()

Description:

Alloc_device returns the number of a free device
descriptor, which is used as an index into the external
table Device table. If no device descriptors are available,
.MAX UNSIGNED is returned.
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Alloc _buffer

Definition:
word Alloc buffer () []

Description:

Alloc_buffer returns a pointer to a free buffer, 80
bytes 1in 1length. If there are no free buffers, .NULL is
returned. .

Free_ buffer

Definition: -
Free buffer ( word buffer([] )

Description:

Free buffer frees the buffer passed to it.

Not_ readable

Definition: : »
unsigned Not readable( word req[}], word device[], word sender[] )

Description:

A dummy routine to return .NOT READABLE to a
.READ INSTANCE request.
Not writeable

Definition: : .
unsigned Not writeable( word req[], word device[], word sender[] )

Description:

A dummy routine to return . NOT WRITEABLE to a
.WRITE_ INSTANCE request.
Illegal req

Definition:
unsigned Illegal req( word req[], word device[], word sender(] )

Description:

A dummy routine to return .ILLEGAL REQ to a
.READ INSTANCE request.
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Interrupt Routines

This section is machine dependant. The method described
here is for the TI990. The interrupt routine for a device is
called whenever an interrupt is received from that device.
On fhe TI, the code for an interrupt routine is called using
a simulation of a "blwp" instruction using an offset into
the interrupt vector. The workspace pointer that is loaded
in the instruction points to the device descriptor for that
device, hence the device state descriptor contains the
register set for the interrupt routine. This enables fast,
easy access to the device descriptor when an interrupt
occurs. To access the part of the device descriptor that is‘
not ih the register set, the "stwp" instruction can be used
to load the workspace pointer into a register, for use as a

base address for indexing.

The primary utility routine used by interrupt routines
is accessed through the external entry .Start handler entry.
This routine is used to unblock a process, and is called

with the branch instruction, i.e.:
b .Start handler entry \ unblock waiting process

The calling routine should have a pointer to the PD of the
process to unblock in register 9. To return from an
interrupt when a process is not unblocked, use the "rtwp"

instruction.

The use of the various registers is 1left up to the

. implementor. The routine .Start handler entry uses registers
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7, 8, and 11, hence they are usable only for temporary
storage. Registers 13, 14, and 15 are used to store the
return address, workspace pointer, and status, and cannot be

used for data.
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Appendix 2

Example Device Driver

This appendix contains the source code for a simple EIA
terminal interface. It is intended to be used as an example
‘to clarify the = device implementation guideline. An
explanation of the function of each routine is included

before the routines code.

template EIA_STATE

word EIA READER[]; \ RO in interrupt registers
unsigned IN BUF{}, \ R1l
IN BUF END{} \ R2
IN_PTR{ \ R3
OUT ' PTR I \ R4
OUT BUF \ R5
OUT BUF END{} \ R6
unsigned REGISTER7, \ R7
' REGISTERS, \ R8
REGISTERY; \ R9
word EIA WRITER[]; \ RI10
unsigned REGISTER1]; \ R1l1
unsigned CRU BASE: \ RI12
word RETURN _WP[]; \ R13
unsigned RETURN PC[] (), \ R1l4
RETURN_ST; \ R15
unsigned ' READ FUNCTION[] (

)
WRITE FUNCTIONI[] (),
CONTROL_FUNCTIONI[] (),
RESTART FUNCTIONI{] (),
RELEASE _FUNCTIONI] (),
READ_CLEAR FUNCTIONI[] (),

WRITE CLEAR FUNCTIONI[] (),

FILE TYPE, ~ \ for respones to
IN_BLOCK SIZE, \ .QUERY_ INSTANCE
OUT BLOCK SIZE, \ requests

WRITER ID,

READER_ID,

USED,

DEVICE OWNER,

DROPPED,

SPURIOUS;

)
]
]



50

This is the template which defines the device dependant

fields in the EIA device descriptor.

Eia create( word req[], word sender([] )

template EIA STATE, CREATE DEVICE REQUEST,
.CREATE_INSTANCE_REPLY, .PD;
extrn Eia read(), Eia write(), Not readable(), Eia_interrupt,

Not writeable(), Eia restart(),
Illegal req(), Device_table[][],
Mux read clear(), Mux write clear (), Mux_release();

word devicel[l;
unsigned device_id;
if( ( device id = Alloc device() ) == .MAX UNSIGNED )

return( NO_MEMORY );

device = Device_table[device_id];

DEVICE OWNER[device] = .ID[sender];

READ FUNCTION [device] = ( .FILE MODE[req] & .READ ) ?
&Eia read : sNot readable; ~

WRITE FUNCTION [device] = ( .FILE MODE[req] & .CREATE ) ?
sEia write : &Not writeable;

READ CLEAR FUNCTION [device] = &Mux read clear;

WRITE CLEAR FUNCTION [device] = &Mux write clear;

CONTROL FUNCTION [device] &Illegal req;

RELEASE FUNCTION [device] = &Mux_release;

RESTART FUNCTION [device] &Eia restart;

IN PTR[device] = OUT PTR[device] = IN_BUF[device] = Alloc_ buffer();

nu

IN BUF END[device] =

"IN BUF[device] + BUFFER SIZE - pun( unsigned([], 1 );
EIA READER[device] = EIA WRITER[device] = 0;
CRU BASE [device] = HARDWARE LOCATION [req];

Add device( INTERRUPT LEVEL[req], &Eia_interrupt, device );
Eia restart( device );

.FILE SERVER([req] = DEVICE_SERVER;

.FILE ID[req] = device_id;

FILE TYPE[device] = .FILE TYPE[req] = TERMINAL TYPE;

IN BLOCK SIZE[device] = OUT BLOCK SIZE[device] =

~ .FILE BLOCK SIZE[req] = 4 * ._BYTES PER WORD;

DROPPED [device] = SPURIOUS [device] = ~ =
.FILE_LAST BYTES [req]
.FILE LAST BLOCK[req]
.FILE NEXT BLOCK|[req]

return({ .OK );

This routine 1is called when a create instance request



is received for an EIA terminal
interface shares several device

Axis multiplexor (mux) terminal

Eia restart( devicel] )
\ Initialize an eia teminal

template EIA STATE;
unsigned base, chan;

base = CRU_BASE [device];
code( .MOV., "rl2", base ):;
code( .SBO., EIA DTR );
code( .SBO., EIA RTS );
code( .SBO., EIA_ENABLE ):

51

interface. Note that the EIA
dependant routines with the

interface.

interface.

This routine initializes the EIA hardware. It is called

when the device 1is created,

after a power failure.

and when the system recovers
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Eia write( word req[], word device[], word sender[] )

template EIA STATE, .IO REPLY, .IO REQUEST, .PD;
unsigned base, p{}, count;

if ( EIA WRITER[device] ) return( .BUSY );

p = &.I1I0_BUF [req];
count = .I0O_BUF LEN([req];
base = CRU BASE {device]:
code( .MOV., "rl2", base );
code( .TB., EIA XMTING ); \ Test if transmission in progress
code( .JEQ., setup );
output char:
code( .LDCR., 8, "ria6" );
-=count;
setup:
if( count )

.REPLY CODE[req] = .OK;

WRITER _ID[device] = .ID[ EIA WRITER[device] = sender ];
OUT_BUF [device] = p;

OUT__BUF_END [device] = p + pun( unsigned[], count );
.STATE [sender] = WRITING DEVICE;

.BLOCKED ON{[sender] = pun( unsigned, device );

return( .NO REPLY );

else return( .OK );:

This routine is called in response to a .WRITE_INSTANCE

request on an EIA interface.



53

Eia read( word req[], word device[], word sender[] )

template EIA STATE, .I0 REPLY, ,IO REQUEST, .PD;

iff OUT _PTR([device] == IN_PTR[device] )
if ( EIA READER[device] ) return( .BUSY );
READER ID[device] = .ID[ EIA READER[device] = sender ];
.STATE [sender] = READING DEVICE;
.BLOCKED ON[sender] = pun( unsigned, device );
return( .NO_REPLY );

Read circular( req, device );
return( .OK );

This routine 1is called in response to a .READ INSTANCE

request on an EIA interface.

unsigned Mux release( word req[], word device[], word sender([] )
template MUX CHAN STATE;

USED [device] = .FALSE;
Free buffer ( IN BUF [device] );

return( .OK );

}

A simple routine to release storage when device is removed,

in response to a .RELEASE_INSTANCE request.

Mux read clear( device )
template MUX CHAN_ STATE;

MUX READER[device] = 0;

Called when a process reading an EIA interface is destroyed

to inform the device handler.



Mu?_write_clear( device )
template MUX CHAN STATE;

MUX WRITER[device] = 0;

Called when a process writing an EIA interface is

to ihform the device handler.
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