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Abstract 

Reachability analysis is one of the earliest and most common techniques for 
protocol validation. It is well suited to checking the protocol syntactic properties since 
they are a direct consequence of the structure of the reachability tree. However, 
validations of unbounded protocols via reachability analysis always lead to the "state 
explosion" problem. To overcome this, a new approach in reachability analysis has 
been proposed by Vuong et al [Vuong 82a, 83a]. While not loosing any information 
on protocol syntactic properties, the T e a c h a b i l i t y tree constructed by the new approach 
for all non-FIFO and for a particular set of FIFO protocols (called well-ordered 
protocols) will become finite. This thesis is concerned with the implementation of an 
integrated package called VALIRA (VALIdation via Reachability Analysis) which bases 
on both the proposed technique and the conventional technique. Details and 
implementation of the various approaches used in VALIRA are presented in order to 
provide an insight to the package. Various features o f the package are demonstrated 
with e x a m p l e s on different types of p r o t o c o l s , such as the FIFO, the non-FIFO, and 
the priority protocols. The use of VALIRA was found to be practical in general, 
despite some limitations of the package. Further enhancements on the VALIRA are 
also suggested. 
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Chapter 1 

INTRODUCTION 

A protocol is a set of mutually agreed rules governing the interactions between 

different entities. Communication protocols play an important role in distributed systems 

and computer networks since they are essential for communications between entities of 

different conventions. 

Realistic protocols are usually complicated and it is hard to validate their total 

correctness. With the growth in protocol complexity, various protocol analysis techniques 

have been developed with respect to different types of protocol models [Sunshine 78]. 

These techniques are related to either protocol validation in the syntactic aspect or 

protocol verification in the semantic aspect 

In protocol validation, state transition techniques like protocol synthesis and 

reachability analysis are developed [Zafiropulo 78, 80]. Protocol synthesis can be used 

to aid developing a protocol in the early stages of design, or to validate a protocol 

via resynthesizing at a later stage. In an advanced state of development, validation via 

reachability analysis is more appropriate. Reachability analysis of protocol is done by 

exhaustively generating all global states of a protocol specification to allow the checking 

of syntactic design errors. This analysis procedure can be easily automated. However, 

the non-termination of an unbounded reachability tree due to unbounded channels has 

been a major problem in the analysis. With the algorithms proposed by Vuong et al 

[Vuong 82a, 83a], all unbounded non-FIFO protocols, and a particular set of 

unbounded FIFO protocols (called well-ordered protocols, to be defined in Chapter 3), 

can now be analysed with the reachability tree constructed always to be finite. In this 

thesis, we shall focus ourselves on the proposed approach and its implementation. 

1 
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1.1 THESIS OBJECTIVE AND CONTRIBUTION 

The objective of this thesis is to provide users with an automated protocol 
validation system which would eventually form part of a larger integrated automated 
system 1 for protocol processing. VALIRA, a validation tool, has been implemented for 
this purpose. Using VALIRA, various types of protocols specified in CFSM models 
with FIFO, non-FIFO, or priority channels can be analysed for potential design errors 
such as state deadlocks, state ambiguities, unspecified receptions, and non-executable 
interactions. 

1.2 THESIS OUTLINE 

This thesis describes mainly the background theories and the implementation of 
VALIRA. Chapter 2 is a brief review of the general background regarding the 
communicating finite state machine model used in reachability analysis. Chapter 3 
describes various algorithms of reachability analysis for protocol validation. Chapter 4 

provides the implementation details of VALIRA. Chapter 5 shows some simple but 
realistic examples in order to illustrate the particular features of the different 
approaches used in the system. Chapter 6 is the concluding chapter which includes a 
thesis summary and suggestions for future work. 

A user's manual is included in the appendix for those who are interested. 

1 Other parts of the system are under research within the department 



Chapter 2 

BACKGROUND STUDIES 

Protocol specifications can be formalized by various models. The existing 
modeling techniques can be classified into the following three main categories 
[Bochmann 80]: 
1. Transition models 

Transition models, such as the communicating finite state machine (CFSM) 
models [Bochmann 78] and the Petri nets [Merlin 76], have been the most 
commonly used models. They specify the control aspects of protocols well, but 
are poor in modeling their semantic aspects. The CFSM model, which is used 
throughout this thesis, will be described later in more details. 

2. Programming language models 
Programming language models, which use high-level prograiTiming 

languages for modeling, are natural representation of protocols. Though they have 
a full range of applicability, they are not as practical since automated validation 
is difficult Examples of this technique are the Gouda's model [Gouda 76] and 
some high-level programming models [stenning 76]. 

3. Hybrid models 
Hybrid models are a combination of the transition and the programming 

language models, so as to obtain their combined advantages. Numerical Petri net 
[Symon 80a, 80b] is one of the well known examples. 

Of the various models, the CFSM model is most applicable to reachability 
analysis. The remainder of the chapter presents a brief overview of the model and the 
various types of errors which could be handled. 

3 
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2.1 THE COMMUNICATING FTNTTE STATE MACHINE fCFSM) MODEL 
In reachability analysis, protocol specifications are normally formalized by CFSM 

models. A CFSM model is a state-event driven type of model. Essentially, it consists 
of a number of finite state machines (FSM's), with each FSM representing a process 
in the protocol specified. The FSM's communicate with each other by exchanging 
messages through single-directional, error-free channels. These channels may belong to 
one of the following classes: 
1. First-in-first-out (FIFO): messages are received in the order that they were 

sent 
2. Non-FIFO: messages may be received in any arbitrary order. 
3. Priority: messages in the channel are ordered by their associated priorities. The 

first message in the channel is always the next to be received. 

In practice, protocols which lie on top of a reliable and order-preserving 
transport service (provided by the lower level protocols) are considered to have FIFO 
channels. 

As an example, let us look at the Simple Access Authorization Protocol (SAAP) 
described by Zafiropulo et al [Zafiropulo 80]. The protocol consists of a requesting 
process and an authorizing process (Figure 2.1), each communicating with the other via 
FIFO channels (not indicated in the figure). In the CFSM model, each message 
transmission or reception is represented by a transition arc labled with a '-' 
(transmission) or a '+' (reception) sign followed by the message type. Processes in the 
model synchronize with each other by sending or receiving a message, which brings 
the process through the transition arc from one state to another. 

Semantically, the SAAP specifies that-whenever the requesting process requests 

for connection, the authorizing process can either refuse it, bringing both back to the 
idle states; or grant it, advancing both to the connect states. When the requesting 
process wants to discontinue the connection, it sends a release and hence returns both 
to idle. 
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R e q u e s t i n g 
p r o c e s s 

A u t h o r i z i n g 
p r o c e s s 

m e s s a g e s 

REQ: REQUEST 
REF: REFUSE 
GRA: GRANT 
REL: RELEASE 

Figure 2.1. A simple access authorization protocol (SAAP). 

In the later chapters, we shall see more examples of the CFSM model. 

2.2 TYPES OF DESIGN ERRORS 
With the CFSM model described in Section 2.1, a number of potential design 

errors can be handled. The four types of design errors, described by Zafiropulo et al 

[Zafiropulo 80], are informally defined as follows: 
1. State ambiguities 

In general, we say that an N-process 2 stable-state tuple <ŝ  ,...,ŝ  > 
exists when the states ŝ  ,...,ŝ  of processes P̂  ^, respectively, are reached 
with all channels empty. In such a casei all the states coexist stably with each 
other in the tuple. A state ambiguity exists when a process state appears in 
more than one stable-state tuple. Thus, when given such a process state, we can 
no longer determine the exact coexisting stable-state of the other processes. 

2 N is refered to as the number of processes throughout this thesis. 
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State ambiguities do not necessarily represent errors, but their semantic 
intents must be examined with caution. 

2. State deadlocks 

A state deadlock occurs at stably coexisting states where no transmissions 
are possible. Thus, the processes cannot make any move but to remain 
indefinitely in their existing states. 

State deadlocks usually represent errors, unless the protocol is designed to 
terminate in that manner. 

3. Unspecified receptions 

An unspecified reception occurs when there is possible reception of a 
message but the corresponding reception arc is not specified. 

Unspecified receptions are harmful since the subsequent interactions are 
unpredictable. 

4. Nonexecutable interactions 

A nonexecutable interaction is a reception specified but not possible to 
occur under normal operating conditions. A protocol is well-formed if and only if 
it contains no unspecified reception or any nonexecutable interaction. 

Nonexecutable interactions must be handled with great care since they 
might indicate the existence of design errors. 

As an example to illustrate the various types of design errors, an erroneous 
protocol in a CFSM model is shown in Figure 2.2. The protocol is a modified 
version of the SAAP, which also provides the following features: 

Instead of refusing the request from the requesting process, the authorizing 
process now issues a wait and enters a wait state until another request is 
received. The requesting process should return to idle when it receives a wait. 

The authorizing process returns to idle upon receiving a release while it is in 
the wait state. 
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The authorizing process can request for immediate connection when it is in the 
idle state. 

Figure 2.2. A modified SAAP. 

It is obvious that the modified SAAP consists of all the four types of design 
errors, as indicated below: 
1. State ambiguity: 

The idle state of the requesting process coexists stably with both the idle 
state and the wait state of the authorizing process. The latter happens when 
both processes start from the idle states, then the requesting process issues a 
request and the authorizing process responds with a wait. 

2. State deadlock: 
Furthermore, if now the requesting process goes to the request state by 

issuing another request, the authorizing process in the wait state will receive the 
request and proceed to the connect state. This results in a deadlock situation in 
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which both processes are waiting for messages from empty channels. 
3. Unspecified reception: 

If both processes issue a request simultaneously in their idle state, they 
both reach a state where the reception of the request message from the other 
process is not specified. 

4. Nonexecutable interaction: 
The reception of the release message in the wait state of the authorizing 

process is nonexecutable. This can be easily verfied using reachability analysis, as 
all executable interactions are included in the reachability tree. Interactions not 
appearing in the reachability tree are simply nonexecutable interactions. 

For most non-trivial protocols, the design errors discussed above are likely to 
exist, yet difficult to detect Automated validation tools thus play an important role in 
protocol validation. We shall see how the above erroneous protocol is validated using a 
reachability analysis system. 



Chapter 3 

REACH ABIT ITY ANALYSTS 

Protocol validation via reachability analysis is done by exhaustively generating all 
global states of a protocol forming a reachability tree to allow the checking of 
syntactic design errors. The chapter describes the reachability tree construction 
algorithms for non-FIFO, FIFO, and priority protocols. Proofs of Algorithm 1 and 3 
can be found in Vuong 82a, 83a. 

3.1 REACHABILITY ANALYSIS OF PROTOCOLS WITH NON-FTFO CHANNELS 
Before describing the algorithm for constructing a non-FIFO reachability tree, a 

few definitions have to be introduced. 

Definition 1 

A global state in the reachability tree is a configuration CF which is a pair 
<S;T> where 

S is a N-tuple <ŝ  ,...,ŝ. ŝy > with the local state s;. representing the current 
state of process i. 
T is a M-tuple <t̂  t̂  .t^ > where M is the total number of message 
types, and the message counter t̂  represents the number of type-k messages 
currently in the associated channel, say, ĉ.. The notation (t̂ Ô is used frequently 
instead of t̂ to give a more explicit representation. 

Definition 2 

Let move (CF, -x-y) or move (CF, +x,y) denotes a move from a given 
configuration CF by the execution of a transmission -x„ or a reception +x.j , 

respectively, from process i to process j to result in a new configuration CF'. Also, 
let succ (s, ~ xij) o r succ (s, + x̂.) denotes the state reached by a process after it 

9 
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has made the move to transmit or to receive message x in state s. Then, a valid 
move can be defined as follows: 
i. move (CF, -x..) is valid if and only if the state succ (s., -x..) is defined. 

The resulting configuration CF' is equal to CF in all elements except: 
ŝ. = succ (s., -x̂.) and 
(f..) = (t..) + 1 

ii. move (CF, + x „) is valid if and only if (t„ )x > 0. Thus, a valid reception 
move corresponds to an executable reception. If the state succ (ŝ., + x „) is 
defined, the valid move is said to be specified. The resulting configuration CF' 
is then equal to CF in all elements except: 

s'. = succ (s., +x..) and 
J J iJ 
(t'..) = (t..) - 1 Kij'x xij'x 

However, if succ (s., +x..) is not defined, the valid move (CF, +x..) is said 
J ij ij 

to be unspecified. Clearly, an unspecified move represents an unspecified 
reception. 

Definition 3 
A reachability tree consists of the following kinds of nodes: 

1. Frontier node — is a node created by a valid move. It will be renamed to 
one of the other types of nodes when it has been processed. 

2. Undefined node — is renamed from a frontier node if it is formed by an 
unspecified reception. 

3. Duplicate node (repeated node) — is renamed from a frontier node if it has 
the same configuration as any of the previously occured nodes. No further moves 
are necessary from the duplicate node as they will generate the same child 
nodes as the previously occured one. 

4. Terminal node — is renamed from a frontier node if no valid move can be 
initiated. For non-FIFO protocols, a terminal node should simultaneously have its 
message counters set at zeros (a stable node). In that case, it represents a state 
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deadlock. 
5. Interior node — is renamed from a frontier node after it has exhaustively made 

all valid moves. 

With the definitions stated above, an algorithm for constructing a non-FIFO 
reachability tree is now introduced. 

Algorithm 1 — Reachability tree construction for non-FIFO protocols 

0. The root of the reachability tree is initially defined to be a frontier node with 
the configuration CF̂  = <SQ ;T̂  > where represents the initial states of the 
processes and T̂ is the zero message counters. 

For each frontier node in the reachability tree, perform the following steps: 
1. If it satisfies the condition to be an undefined node, .rename it and stop 

processing the node. 
2. Likewise if it qualifies to be a duplicate node. 

3. Likewise if it qualifies to be a terminal node. 

4. Otherwise, for every valid move from the current configuration, create a new 
frontier node as the child of the current node with the new configuration 
CF' = <S';T'> set up as described in Definition 2. 

Futhermore, if the new node is a descendant of a node which has a 
configuration CF° = <S°;T°> such that CF' > CF°, which means S' = S° 
(all the corresponding states of CF' and CF° are equal) and T' > T° (all the 
message counter components of CF' are greater or equal to the ones of CF°), 
then those message counters t£ of CF' such that ̂  > t0^ ̂  0 are changed to 
t£ = OJ, where u is a symbol which represents an arbitrarily large number. 
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For any constant n, we define 
co + n = co ; 
co - n = co ; 

n < co ; and 
co < co 3 

5. If all valid moves from a frontier node had been made, the node is renamed 
as an interior node. 

The algorithm halts when all frontier nodes have been processed. 

The reachability tree constructed by the above algorithm was proved to be 
finite for both bounded and unbounded non-FIFO protocols [Vuong 82a]. In the 
bounded case, all message counters are bounded by the largest corresponding counter 
value ever found in the tree. If the symbol co appears in any message counter, it 
implies that the counter could contain up to an infinity number of the associated type 
of messages, and hence the corresponding channel must be unbounded. 

3.2 REACHABILITY ANALYSIS OF PROTOCOLS WITH FIFO CHANNELS 
Unlike the non-FIFO case, the reachability analysis of protocols with FIFO 

channels also requires the information of message sequencing. To include this 
information, we can use either the conventional approach which put the messages 
transmitted explicitly in queues, or the R-state approach which use a state pointer to 
keep track of the message sequence of each process. The two approaches are described 
in the rest of the chapter. 

3 In other words, if a message counter was set to co, a transmission or a reception 
of the associated message type would not change the value of the counter. This allows 
all arbitrarily large values to be represented by a single symbol. Thus, the 
configurations with the unbounded message counters being the only varied elements will 
all be mapped to a single configuration, with the unbounded message counters being 
set to co. In this way, the number of nodes generated will become finite. 
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3.2.1 THE CONVENTIONAL APPROACH 
Some definitions in the previous section are redefined so that they apply to 

the conventional approach of reachability analysis for FIFO protocols. 

Definition 4 

A global state configuration CF is a pair <S;C> where 
S has the same meaning as in Definition 1. 
C is an N(N-lV-tuple <c,~ c c.,.7 , >.. , A, .__. where c. is the 

v '  v 12 ij NN-1 ij=l,N; i^j ij 
message sequence from process i to process j. 

Definition 5 
A valid move in the conventional approach is defined as follows: 

i. move (CF, -x..) is valid if and only if the state succ (s., -x.) is defined. 
ij i ij 

The resulting configuration CF' is equal to CF in all elements except: 
s'. = succ (s., -x..) and 
I I IJ 
C'..= C.-.X.. 

U 'J 'J 

ii. move (CF, + x̂.) is valid if and only if x..is the first message in c.j. The 
reception is said to be specified if succ (ŝ., + x̂.) is defined, resulting in a 
configuration CF' equal to CF in all elements except: 

Sy= succ (Sj, 
and c'.and c.has the relation 

V V 

c..= x...c'.. 
IJ IJ IJ 

If succ (s., + x..) is not defined, the valid move (CF, + x..) is said to be 
J ij iJ J  

unspecified. 
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Algorithm 2 — Reachability tree construction for FIFO protocols: the conventional 
approach 

The reachability tree construction algorithm in this approach is similar to 
Algorithm 1 with the following exceptions: 

In step 0, the initial configuration should consist of <SQ > with SQ and CQ 
representing the initial states of the processes and the empty channels, 
respectively. 
In step 4, for every valid move from the current configuration, create a new 
frontier node as the child of the current node, with the new configuration 
CF' = <S';C> set up as described in Definition 5. 

Furthermore, if the number of messages contained in any channel of the 
new node exceeds a predefined channel bound, then the new node is renamed as 
an unbounded node which will be handled like a terminal node. 

This algorithm is mainly for bounded FIFO protocols. As for protocols with 
unbounded channels, the prespecified channel bound has to be set carefully so that 
only those repeated message sequences would be cut off. The channel bound is 
necessary because without it the unbounded reachability tree will keep expanding 
forever. 

Another way of stopping an unbounded reachability tree from expanding 
endlessly is to enforce a level limit This is not as applicable as the channel bound 
method, since an unbounded channel might appear at a lower level than other 
bounded branches. If such a condition happens, an overspecified level limit will lead 

- —to large amount of unnecessary nodes generated while an underspecified level limit will 
result in lost of information. 

Yet another alternative is to use a completely different approach called the 
R-state approach (a name given to the approach used in Vuong 83a). Basically, it 
uses the technique applied in Algorithm 1 (for non-FIFO protocols) along with an 
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additional set of state pointers which keep track of the message sequencing in the 
FIFO channels. The R- state approach is described in the following section. 

3.2.2 THE R-STATE APPROACH 
The R-state approach is basically an extension of the approach used in 

Algorithm 1 so that it also applies to FIFO protocols. In addition to the original 
<S;T> configuration, this approach uses a set of receive-state pointers (called r-states) 
which keep track of the message sequencing, with one r-state per channel. Some new 
definitions for this approach are introduced as follows: 

Definition 6 

A global state configuration CF is a triple <S;R;T> where: 
S has the usual meaning as in Definition 1. 
R is an N-tuple <R̂  .....R̂. ,...,R̂  > where R̂. represents a set of N-1 r-states 
<r.j r̂.,;..,̂  >̂. .that indicates which messages are to be received next from 
process i by every other processes. More precisely, r.. represents a state in 
process i which specifies the set of messages (denoted by %r „) that can be 
received next by process j. Message x is in %r„ if and only if succ ( r̂., -x) 
is defined for some r.. R-equivalent to r... 
T has the same meaning as in Definition 1. 

Definition 7 

Two r-states r.. and are said to be R-equivalent (receive-equivalent) with 
respect to process j, in notation, 

r..: = : r7.. 
if and only if 

T.J= succ (x X) or 
r..= succ (r... X) ij ij' 

for some sequence X which can be empty or contains no transmission of any message 
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to process j. 

Definition 8 

A valid move in the R-state approach is defined as follows: 
i. move (CF, -x..) is valid if and only if the state succ (s., -x..) is defined. 

IJ ' v 

The resulting configuration CF' is equal to CF in all elements except: 
s'. = succ (s., -x..) and 
(f..) = (t..) + 1 

ii. move (CF, +x̂.) is valid if and only if x e %r„(i.e. the message x..should be 
in the set of messages %r.. that process j can received) and (t„ )x > 0. A 
reception is said to be specified if succ (ŝ., + x „) is defined, resulting in a 
configuration CF' equal to CF in all elements except: 

s'. = succ (s., +x..) 
J J U 

r'..= succ (r.., -x.. ) for some r..: =: r..; and 
U V iJ . LJ iJ 

(f..) = (t..) - 1 
v ij'x  v ij'x 

If succ (s., +x..) is not defined, the valid move (CF, +x..) is said to be 
J . ij ij 

unspecified. 

Algorithm 3 — Reachability tree construction for FIFO protocols: the R-state approach 

The reachability tree construction algorithm in the R-state approach is identical 
to Algorithm 1 except: 

In step 0, the initial configuration also includes the initial r- states which are the 
initial state of their associated process. 
In step 4, the condition CF' > CF° requires not only 

S' = S° and 

but also 
R' : = : R° 
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In this approach, the reachability tree construction algorithm for non-FIFO 
protocols (Algorithm 1) is enhanced with the addition of the r-states so that message 
sequencing is maintained as with the channels in the conventional approach. It has an. 
advantage over the conventional approach in the sense that the reachability tree 
constructed will always be finite (as in the non-FIFO case). 

However, in some cases, the reachability tree of some protocols might contain 
configurations in which more than one valid reception (specified or unspecified) can be 
made. That is, there might exist a situation such that for some messages x and y, 
and processes i and j, 

x, y e %r.. and (t..) > 0 and (t..) > 0. 
ij JJ x lJy 

In such a case, the message sequencing is lost and the algorithm fails to provide a 
definite reachability tree. Protocols which lead to this kind of ambiguity are called 
non-well-ordered protocols. On the other hand, the complementary set of protocols are 
called well-ordered protocols. 

3.3 REACHABILITY ANALYSIS OF PROTOCOLS WITH PRIORITY CHANNELS 
The reachability analysis of protocols with priority channels can be performed 

using the conventional approach (Algorithm 2) with the following modification: 
In Definition 5, the relation 

c'.. = c. .x.. 
U U ij 

upon transmission of a message x.., should be changed to 
c'.. = insert (c., x..) 

where the insert function returns a message sequence with the message x̂. 
inserted in c.j according to its priority. 

An example of a reachability tree constructed using this algorithm will be 
presented in Chapter 5. 



Chapter 4 

IMPLEMENTATION OF THE VALIRA PACKAGE 

The VALIRA package is designed based on the algorithms described in the 
previous chapter. Besides the space and efficiency considerations, the system is 
implemented with the philosophy that: 

It must be modular, so that debugging and modifying would be easy. 
Its data structures must allow future extensions. 
It should be portable to any system that supports C. 

For simplicity, the CFSM models used in the system (and here-in-after) are 
labeled numerically. Processes and message types are numbered consecutively from T 
onwards, whereas the process states are numbered in a similar way but with the initial 
state of each process labeled as state 0. The two versions of SAAP in Figure 2.1 and 
Figure 2.2 thus become the ones shown in Figure 4.1 and Figure 4.2 respectively. 

P1 P2 
m e s s a g e s 

2 
3 
4 

s t a t e s 

2 
0 

REQUEST 
R E F U S E 
GRANT 
R E L E A S E 

i d l e 
r e q u e s t 
c o n n e c t 

Figure 4.1. The SAAP. 
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P1 P2 
m e s s a g e s 

s t a t e s 

2 
3 
4 
5 

0 

2 
3 

REQUEST 
R E F U S E 
GRANT 
R E L E A S E 
WAIT 

i d l e 
r e q u e s t 
c o n n e c t 
w a i t 

-4 + 4 

Figure 4.2. The modified SAAP. 

The VALIRA is intended to be a stand-alone protocol validation system, which 
can also form part of an integrated automated system for protocol processing. The 
entire package was implemented with approximately 2,000 lines of C, which take up 
36K bytes of memory. Currently, it is running under UNIX on a VAX 11/750, but it 
is easily portable to any system that supports C. 

The VALIRA is essentially composed of five modules, namely, the command 
interpreter, the transition editor, the execution module, the I/O-routine module, and the 
storage-allocation-routine module. The interaction between these modules is shown in 
Figure 4.3, with the arrows indicating the invocation of modules. 

4.1 SYSTEM OVERVIEW 
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transition 
editor 

I 0 
routines command 
I 0 

routines 
interpreter storage allocation 

rout ines 
storage allocation 

rout ines 

execution 
module 

Figure 4.3. Internal organization of the VALIRA. 

4.1.1 THE COMMAND INTERPRETER 
The command interpreter is the interface between the VALIRA and the user. It 

provides an environment in which the user can refine a protocol specification by 
invoking the transition editor and the execution module. When interfacing with the 
interpreter, the user will either be prompted to response with "y" or "n", or, be 
given a list of commands for selection. Detailed examples for using the system can be 
found in Appendix A. 

4.1.2 T H E TRANSITION EDITOR 

The transition editor, when being invoked by the command interpreter, provides 
primitive commands such as "replace", "delete", "insert", and "clear" for the user to 
make appropriate modifications on the set of input transition arcs. The transition arcs 
are internally kept as linked lists, with one list of transitions per process. Thus, 
modifications can be done easily on any list of transitions. The transition editor returns 
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control to the command interpreter when the stop command is received. 

4.1.3 THF EXECUTION MODI HP. 
The execution module is the main component of the VALIRA. Upon invocation, 

the execution module generates all global states of a given protocol, forming a 
reachability tree, and at the same time checks if there is any design error. 

The implementation details of the execution module will be described in 
Section 4.2. 

4.1.4 THE I/O-ROUTINE MODULE AND THF STORAGE- ALLOCATION-ROUTTNR 
M Q D J i L E 

The I/O-routine module and the storage-allocation-routine module both provide 
utility routines for all the other three modules. The I/O-routine module consists of all 
primitive input and output routines. These primitive routines are invoked frequently by 
other modules.' They may be tailored in other modules in order to fit any specific 
requirements. The storage-allocation-routine module consists of all storage allocation and 
storage release routines. All dynamic storage assignments are thus done by invoking the 
routines in this module. 

The usage of the routines in the two named modules are documented internally 
in the system source code. 

4.2 D E S I G N A N D I M P L E M E N T A T I O N Q F T H E E X E C U T I O N M O D U L E 

The execution module is basically a collection of routines implemented based on 
the algorithms described in Chapter 3. The main design issues of the module are on 
its data structure design and the implementation methods. The design and 
implementation details regarding these two aspects are discussed in the sections 
followed. 
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4.2.1 DATA STRUCT1JRES 

1. Data structure of the reachability tree 

The data structure of the reachability tree is simple and intuitive. Each 
node of the tree consists of some pointer fields and data fields, as shown in 
Figure 4.4. The pointer fields consist of pointers pointing to the parent, the 
child, and the sibling of the node; and also a pointer pointing to a global state 
configuration (represented as a list of states, channels or message counters) whose 
structure depends on the alogorithm used. 

r o o t 
l e v e l 0 

l e v e l 1 

node 0 
f c : |b 

node 1 

f |c : l b 

-> CF0 

f Ic lb 

l e v e l 2 

f : p o i n t i n g t o t h e p a r e n t 
c : p o i n t i n g t o the f i r s t c h i l d 
b : p o i n t i n g t o t h e f i r s t s i b l i n g 

Figure 4.4. Data structure of the reachability tree. 
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2. List structures 

The VALIRA uses a number of linked lists to store both user supplied 
information and self-generated data. The major list structures are described 
below: 
a. The transition lists: The transition arcs entered by the user are stored in 

the transition lists, with one transition list per process. Each node in the 
list stores information such as the initiating state, the message type 
(transmitted or received, indicated by the associated sign), and the resulting 
state of a transition. 

b. The stable-state list: The stable-state list carries pointers directing to the 
stable-state nodes in the reachability tree, with each node in the list 
earring a pointer pointing to a stable-state node. 

c. The state-deadlock list: Similar to the stable-state list, the state-deadlock 
list carries pointers directing to the state-deadlock nodes in the reachability 
tree, with one pointer per node. 

d. The r-state lists: The r-state lists sustain a record of the R-equivalent 
states and their associated set of messages %r„ for all process states in 
each process with respect to every other processes. There are N - 1 
r-state lists per process. Each r-state list is a set of state nodes for all 
states in the associated process. Each state node in the r-state list consists 
of: 

A state in the associated process, say, process i. 
A sublist of the R-equivalent states of the associated state, with 
respect to another process, say process j. 
A sublist of the messages %r „ receivable at process j from the 
associated state. The r-state succ (rV, of each message in %r̂ . 
is also kept with the message in the sublist. 

The r-state lists are used only in the R-approach. With all these 
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information, conditions such as 
x e %r.. and r..: = : r.., 

and expressions like 
succ (£".., -x..) 

v ij iJ ' 

can be evaluated easily by refering to the r-state lists. 
The construction of these r-state lists will be described in the next 

section. 

4.2.2 IMPLEMENTATION STRATEGIES 

1. Construction of the r- state lists 

The r-state lists are generated by the execution module before the 
construction of the reachability tree. The structure of the r-state lists was defined 
previously. The generation of the R-equivalent states and the sets %r„ 's 
associated with each process state are described below. 
a. Generation of the R-equivalent states (function "setrstates") 

The R-equivalent states of a given state, say, of process i, with 
respect to process j, are found by tracing all transition sequences X's which 
contain no transmission of any message to process j. The trace starts from 
the given state, and stops when either a message transmission to process j 
is encountered or a looping of transitions exists. The states reached by any 
of these sequences X's are the R-equivalent states of the given state. 

b. Generation of the set of messages %r„'s (function "getrstates") 
Recall that the notation %r„ denotes the set of messages associated 

to a given r-state in process i which can be received next by process j. 
Thus, the set of messages %r̂ . for a given r-state consists of all those 
messages which are transmitted to process j from the R-equivalent states 
of the given r-state. While generating the R-equivalent states, these set of 



25 

messages can be found at the same time. 
Furthermore, each of the r- states succ (r„, -x̂.) for a message 

x„ in are also generated and kept in the r-state list The r-state 
succ (r.j , -Xy ) of a given r-state r.. is generated according to the 
following steps: 
i. Move I., through the transition -x.. to the next state, say, x'.j 

(state 1 in Figure 4.5 (i), (ii), and (iii)). 
ii. Starting from rj„ , move along the transition until either: 

A transmission arc to process j is encountered (state 2 in 
Figure 4.5 (i)). The r-state succ (rV , -x„ ) is then set to 
the state where the trace stopped; 
or, a transition branching exists (state 1 in Figure 4.5 (ii) and 
(iii)). 

If any of the branches consists of a message 
transmission to process j, the r-state succ (r.. , -x.j ) is set 
to the branching state (state 1 in Figure 4.5 (ii)). 

Otherwise, follow the branches to a state where the 
branches join together (state 0 in Figure 4.5 (iii)), and repeat 
step ii, with f.. set to the state where the branches joined. 
However, if the branches do not join together (and they do 
not contain any message transmission to process j), the r-state 
succ (r.., -x..) stays at r'.. . 
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1D ID 
( i ) ( i i ) ( i i i ) 

Figure 4.5. Illustration of the r-state searching strategy. 

2. Construction of the reachability tree 

The construction of the reachability tree is done by the depth-first 
strategy. The configuration of the initial node of the reachability tree depends on 
the algorithm used, as defined in Chapter 3. The generation of child nodes from 
each frontier node is done systematically according to the following orders: 
i. Valid moves are checked at the current state of each process in a 

sequential order from process 1 to process N. 
ii. Of the valid moves, message transmissions are performed first, in the same 

order as were the transmission arcs entered by the user. Message receptions 
are performed next in the same manner. 
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The checkings of design errors and unbounded channels are performed 
while generating every new nodes according to the following sequence: 
i. Unspecified receptions 

Unspecified receptions are checked at the moment when a valid 
reception is performed. Note that the checking only applies to message 
receptions. 

ii. Unbounded channels 
The content of each message channel (used in Algorithm 2) or 

message counter (used in Algorithm 1 and 3) is checked every time a new 
node is aeated. For Algorithm 2, if the number of messages in any 
channel exceeds the prespecified channel bound, the new node will be 
terminated. For Algorithm 1 and 3, the unbounded message counters will 
be set to the value OJ, as described in the algorithms. 

iii. Duplicate (repeated) nodes 
The configuration of the newly generated node is checked 

throughout the entire reachability tree to see if there is repetition. The 
new node is terminated if it is repeated. 

iv. Stable nodes 
If the newly generated node has all its message channels or 

message counters empty, the node represents a stable state and is included 
in the stable-state list 

v. State deadlocks 
If the node is a stable node while no valid move can be initiated, 

the node represents a state deadlock and is included in the state-deadlock 
list 
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The manipulations of r-states in the R-state approach are done according 
to the following rules: 

The initial r-states of each process are set to state 0. 
A r-state does not move in the case of message transmission, unless the 
transmission is initiated in an empty channel. If a message x.j is 
transmitted from proess i to process j while the channel c.j is empty (or 
the associated message counters t̂. 's all equal zero), then the r-state i.. is 
set to the state s.where move (s., -x..) is the transmission that is taking 
place. 
The r-state r~ in process i moves to succ (r.. , -x.. ) when a reception 
of message x in process j takes place. The r-state succ (rv , -x.j ) is 
found by refering to the r- state list associated to the channel ĉ.. 

The reachability tree construction procedures mentioned above are 
implemented in functions "generate", "move", "setbound", "repeated", and "stable" 
of the execution module. 



Chapter 5 

RESULTS AND EVALUATION 

In order to illustrate the particular features of various approaches used in 
VALIRA, test runs of protocols with different properties are examined in this chapter. 
Each of the examples illustrated includes a protocol specification, represented by a 
CFSM model, and the corresponding reachability tree. The reachability tree will be 
printed horizontally from left to right For example, the tree: 

0 
/ \ 
4 1 

/ \ 
3 2 

will be printed as: 
0 1 2 

3 

For simplicity, the branches in the reachability tree will not be shown on the 
diagrams that appear later or on the actual reachability tree print out generated by 
the VALIRA. More detailed explanations on all representations will be given in 
Example 1. 

5.1 EXAMPLES 

The sample protocols given in this section are designed to illustrate the 
particular features of various approaches used in VALIRA, with as little complexity 
involved as possible. 

0 t o 6 : node numbers 
— : b r a n c h e s 

29 
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Example 1 — An unbounded non-FIFO protocol 
The protocol given in this example (Figure 5.1) is to demonstrate the 

competency of Algorithm 1 for unbounded non-FIFO protocols. In the given protocol, 
process 1 can keep sending a request message (message 1) until it is acknowledged by 
process 2 (via message 2). Since there is no limitation on the number of type 1 
message sent, c^ would be an unbounded channel. 

Figure 5.2 (i) on the following page shows the reachability tree generated for 
the protocol, with each global state in the tree represented by a node number. Each 
repeated node in the reachability tree is signified by a transition followed by the node 
number of the previous occured node. For example, (Pl-1)[ 1] in the first branch of 
the tree represents that node 1 is repeated through the transition "process 1 transmits 
message 1". The global state value where a numbered node represented can be found 
in its corresponding entry within the node table shown in Figure 5.2 (ii). Say, entry 0 
in the node table (i.e. (root)00000) corresponds to node 0; entry 1 (i.e. O(Pl-l)OOtoOO) 

corresponds to node 1, and so on. The first number in each entry (0 for entry 1) is 
the parent node number of the associated node. This is followed by a transition and 
the global state value of the node. For instance, (Pl-1) in entry 1 represents the 
transition "process 1 transmits message 1" initiated by the parent node (node 0). This 
results in a current global state value OOuOO. Recall that the configuration <S;T> is 

messages 
1 : REQUEST 
2 : GRANT 
3 : RELEASE 
states 
0 : idle 
1 : connect 

P1 P2 

Figure 5.1. An unbounded non-FIFO protocol. 
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used in Algorithm 1. Thus, in this protocol, OQwOO corresponds to <sl,s2;tl,t2;t3>, 
with message counter tl, t2, and t3 associated with message type 1, 3, and 2, 
respectively. Note that the symbol a> (generated according to the algorithm) in tl 
indicates that the type 1 message is unbounded and consequently c^ as well. Besides 
this, the protocol is validated to be free of any design error. 

l e v e l 
|0 |1 |2 |3 |4 |5 |6 |7 |8 |9 | 1 0 | 1 1 | 1 2 | 1 3 

0 1 ( P 1 - 1 ) [ 1] 
2 ( P 1 - 1 ) [ 2] 

3 4 ( P 1 - 1 ) [ 4] 
(P2+1)[ 4] 
(P2+3)[ 1] 

(P2+1)[ 3] 
(P2+1)[ 2] 

(P2+1)[ 1] 
5 ( P 1 - 1 ) [ 2] 

6 7 ( P 1 - 1 ) [ 4] 
(P2+3)[ 0] 

(i) The reachability tree 

0 (root)OOOOO 0(P1-1 )00CJ00 1 ( P 2 - 2 ) 0 1W 0 1 2 (P1+2) 1 IwOO 
4 3 ( P 1 - 3 ) 0 1 U 1 0 0(P2-2)01001 5(P1+2)11000 6(P1-3)01010 

c o n f i g u r a t i o n : < s 1 , s 2 ; t 1 , t 2 ; t 3 > 

c o u n t e r : t1 t 2 ; t 3 
message : 1 3 ; 2 

(ii) The node table 

Figure 5.2. The reachability tree for Example 1. 
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Example 2 — A bounded FIFO protocol 
In Section 2.2, an erroneous FIFO protocol was given as an example (Figure 

2.2, Figure 4.2) to illustrate the four types of design errors. Here, the protocol is 
validated using the conventional approach (Algorithm 2). The results obtained are 
shown in Figure 5.3 and 5.4. 

level 
|0 |1 12 13 14 15 16 17 |8 |9 |10|11|12|13 
0 1 2 (P1+1)[UR] 

(P2+1)[UR] 
3 4 5 6 7 (P2+4)[ 1] 

(P2+4)[ 0] 
8 9 10 11 

12 (PI-1)[ 2] 
(P1+1)[ 5] 

(i) The reachability tree 

0 (root)OOOOOOO 
3 1(P2+1)1100000 
6 5(P1-4)0201000 
9 8(P1+2)0300000 
12 0(P2-1 )020010'0 

0(PI-1) 1010000 
3(P2-3)1200010 
6(P1 -1)1211000 
9(P1- 1)1310000 

1(P2-1)1210100 
4(P1+3)2200000 
3<P2-2)1300001 
10(P2+1)1200000 

configuration : <s1,s2;t1,t2;t3,t4,t5> 
counter : t1 t2 ; t3 t4 t5 
message : 1 4 ; 1 3 2 

(ii) The node table 

Figure 5.3. The reachability tree for the modified SAAP. 

Figure 5.3 shows the reachability tree of the protocol. Unspecified receptions 
are denoted by [URj's, and with each [UR] preceded by the transition that was taken 
place. Also note that the- reachability tree generated by the R-state approach for the 
same protocol will be different from this one, since different node configurations are 
being used in the two approaches. 
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SUMMARY 
1. The list of deadlock node(s) :-

1 1 
2. Stable states :-

P1 P2 
0 0 (node 0) 
1 1 (node 3) 
2 2 (node 5) 
0 3 (node 9) 
1 2 (node 1 1 ) 

3. Non-executable instruction(s) :-
process 2 : 3 -> 0 +4 

4. The first unspecified reception is detected at node 2. 
The lowest level UR is detected at node 2 (level 3). 

5. The reachability tree is bounded at level 6. 
Max channel queue length = 2. 

Figure 5.4. An error summary for the modified SAAP. 

Figure 5.4 is an error summary generated by the VALIRA, in which state 
deadlocks and non-executable instructions in the protocol are reported. State ambiguities 
are revealed in the stable-state table in the error summary. If there exists a column 
such that two entries containing the same states, state ambiguity occurs. For example, 
the pair (0,0) and (0,3) in the stable-state table indicates that state 0 in process 1 
can coexist stably with either state 0 or state 3 in process 2. The above observation 
can be extended to the multi- process case. 

The results as noticed in the error summary are consistant with those discussed 
in Section 2.2. 
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Example 3 — An unbounded FIFO protocol 
A simple unbounded FIFO protocol is given here as an example to illustrate 

how Algorithm 3 (the r-state approach) works on the unbounded protocols. The 
protocol, as shown in Figure 5.5, consists of two states in each process. Since process 
1 can transmit message 1 and 2 repeatedly, o.^ *s clearly an unbounded channel. In 
this example, the r-state approach is applied, with the results shown in Figure 5.6. 

m e s s a g e s P1 P2 

Figure 5.5. An unbounded FIFO protocol. 
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0 |1 

0 1 

2 

2 

|3 4 
• level 
6 |7 |8 |9 |10 |11 |12 | 1 3 

3 ( P 1 - 2 ) [ 2 ] 
4 5 ( P 1 - 1 ) [ 4 ] 

( P 2 + 2 ) [ 2 ] 
( P 2 + 3 ) [ 3 ] 

( P 2 + 1 ) [ 5 ] 
7 8 ( P 1 - 2 ) [ 5 ] 

( P 2 + 1 ) [ 1 ] 
( P 2 + 2 ) [ 0 ] 

(i) The reachability tree 

0 (root)OOOOOO 
3 2 ( P 1 - 1 ) IOOOCJO) 
6 1 ( P 2 + 1 ) 1 1 0 0 0 0 

0 ( P 1 - 1 ) 1 0 0 0 1 0 
3 ( P 2 + 1 ) 1 1 10C«XJ 
6 ( P 1 - 2 ) 0 1 1 0 0 1 

1 ( P 1 - 2 ) 0 0 0 0 O J O J 
4 ( P 1 - 2 ) 0 1 1 OC X J 
7 ( P 1 - 1 ) 1 1 1 0 1 1 

configuration : < s 1 , s 2 ; r 1 2 ; r 2 1 ; t 1 , t 2 > 
counter 
message 

t1 t 2 
1 2 

(ii) The node table 

Figure 5.6. The reachability tree for Example 3. 
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Example 4 — An unbounded non-well-ordered FIFO protocol 
The protocol shown in Figure 5.7 is similar to the one discussed in Example 

3, but with an extra message transmitting at state 0 of process 1. It is obvious that 
the protocol is non-well-ordered for it is possible that both message 1 and message 3 
exist in the channel simultaneously. Thus, the conventional approach has to be applied. 
The reachability tree constructed by the conventional approach, with a prespecified 
channel bound of 3, is shown in Figure 5.8. The protocol is validated to be free of 
design errors. 

m e s s a g e s P1 P2 

Figure 5.7. An unbounded non-well-ordered FIFO protocol. 
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0 

0 

— level 
1 |2 |3 |4 |5 |6 |7 

3 
4 

|8 |9 | 10 |11 | 12 |13 
(P1-2)[UC] 
5 (P1-1)[UC] 

(P1-3)[UC] 
(P2+2)[ 2] 

(P2+2)[ 1] 
(P1-2)[UC] 

8 

(P2+1)[12] 
(P2+1)[14] 

(P1-3)[13] 

(P1-1)[UC] 
(P1-3)[UC] 

10 
1 1 
1 2 

13 (P1-2)[ 

(P1-2) 
(P2+3) 
(P1-2) 
(P2+3) 
(P1-1) 
(P1-3) 
(P2+2) 
9] 

14 (P1-2)[12] 

UC] 
4] 
UC] 
7] 
4] 
7] 
0] 

[UC] channel bound exceeded 

(i) The reachability tree 

0 (root)OOOOO 
4 3(P2+1)11101 
8 7(P1-2)01012 
12 9(P2+3)01001 

0(P1-1)10100 
4(P1-2)01102 
8(P2+2)00011 
7(P2+2)10010 

1(P1-2)00101 
2(PI-3)10111 
9(P1-1)10111 
13(P2+3)11000 

configuration : <s1,s2;t1,t2,t3> 
counter 
message 

t1 t2 t3 
1 3 1 

2(P1-1)10201 
6(P2+1)1101 1 
9(P1-3)10021 

(ii) The node table 

Figure 5.8. The reachability tree for Example 4. 
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Example 5 — A priority protocol 
The model shown in Figure 5.9 is a priority protocol with the priority of 

message 2 greater than that of message 1. The reachability tree generated is shown in 
Figure 5.10, with no error detected. 

Figure 5.9. A priority protocol. 
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level 
0 |1 |2 |3 |4 |5 |6 |7 
0 1 2 3 4 (P1+2)[ 1] 

5 6 7 

(P2-1)[14] 
(P2-1)[13] 

(P2+1)[15] 
(P2+1)[ 6] 

|8 |9 | 10 |11 |12 |13 

8 9 10 11 (P1+2)[ 0] 
12 (P1+1)[10] 

13 14 (P1-2)[ 8] 
(P1+1)[ 0] 

15 (P2-2)[ 5] 

(i) The reachability tree 

0 (root)OOOOOO 
3 2(P2+2)221000 
6 5(P1+2)110000 
9 8(P1+1)300100 
12 8(P1+2)220010 
15 7(P2+2)230000 

0(P1- 1)101000 
3(P2-2)201001 
6(P1-2)210100 
9(P2+2)320000 
12(P2-2)200011 

1(P1-2)201100 
4(P2+1)210001 
7(P2-1)200110 
10(P2-2)300001 
13(P1+2)100010 

configuration : <s1,s2;t1,t2;t3,t4> 
counter 
message 11 t2 2 t3 t4 1 2 

(ii) The node table 

Figure 5.10. The reachability tree for Example 5. 
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Example 6 — A multi-process FIFO protocol 
The three-process FIFO protocol shown in Figure 5.11 is a multi-process 

version of the SAAP, with process 1 and 2 being the requesting processes. Note that 
each message in the protocol is transmitting only to a single recipient, which is a 
limitation of the current implementation. In other words, multi-casting is not allowed 
in the current version of VALIRA. As a result of the non-multi-casting nature, 
unspecified receptions in the protocol can be handled in the same way as in the 
two-process case. 

The reachability tree generated for this protocol consists of twenty-one levels 
and includes up to eighty-one different global states. It is free of most design errors 
except for state ambiguities as shown from the stable-state table in figure 5.12. 

P1 P2 P3 

4 6 

m e s s a g e s s t a t e s 

2 
3 
4 
5 
6 
7 

r e q u e s t 1 
r e f u s e 1 
g r a n t 1 
r e l e a s e 
r e q u e s t 2 
r e f u s e 2 
g r a n t 2 

P r o c e s s 1 
0 : i d l e 
1 : r e q u e s t 1 
2 : c o n n e c t 

P r o c e s s 2 
0 : i d l e 
1 : r e q u e s t 2 
2 ; c o n n e c t 

P r o c e s s 3 
0 : i d l e 
1 : r e q u e s t 1 
2 : r e q u e s t 2 
3 : c o n n e c t 

Figure 5.11. A multi-process FIFO protocol. 
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S t a b l e s t a t e s :-

P1 P2 P3 

0 0 0 
0 1 2 
1 0 1 
2 0 3 
1 1 1 
0 1 0 
2 1 3 
1 2 3 
0 2 3 
1 1 2 
1 0 0 

(node 0) 
(node 6) 
(node 10) 
(node 13) 
(node 19) 
(node 21) 
(node 23) 
(node 54) 
(node 56) 
(node 70) 
(node 72) 

Figure 5.12. The stable-state table for Example 6. 

The print out of the tree and the node table is not included because of the 
size involved by the reachability tree. 

5.2 EVALUATION 

As an example to illustrate the performance of the current installation of 
VALIRA running on a VAX 11/750, the packet level of the CCITT Recommendation 
X.75 protocol was tested during light system-load period. The CFSM model of the 
X.75 protocol used in the validation followed the one given in Vuong 83b, which 
consists of twelve process states and ten message types in each of the two processes. 
Since the protocol is found to be both unbounded and non-well-ordered, the 
conventional approach was used instead of the R-state approach. With a channel 
bound of two, VALIRA created 1,232 different global states and went up to as high 
as level 121, within approximately 1,750 CPU sec, or two hours real time. The results 
obtained contain neither state deadlock nor non-executable interactions, but several 
unspecified receptions and state ambiguities exist as indicated in Vuong 83b. 
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In order to explore the physical limit of the current installation, the X.75 
model was run with a high channel bound until the available memory space was 
exhausted. This gave a total of approximately 15,000 different global states for the 
entire run. 

The above results only give a rough estimation of the global state limit when 
the conventional approach is applied. The actual global state limit, however, depends 
on a number of variables such as the number of processes and message types in the 
protocol. All these would affect the memory space required in each global state 
configuration. 

When considering the space and time issues, notice that the approach used in 
Algorithm 1 and 3 is superior to the conventional approach in the following aspects: 
1. Less space is required for each global state, as message counter is used instead 

of message channel. 
2. There is more efficiency in comparing two global state values because no channel 

queue is required. 

As a consequence, FIFO protocols are more desirable to be validated using the 
R-state approach. The conventional approach, however, is used in complement to the 
R-state approach whenever a given protocol is found to be non-well-ordered. 



Chapter 6 

CONCLUSIONS 

6.1 THESIS SUMMARY 
The VALIRA, a protocol validation package which based on the conventional 

approach and a newly developed approach in reachability analysis has been 
implemented. This package provides users with an automated protocol validation 
environment which can be used either for practical purposes or as an educational tool. 

The various approaches used in VALIRA have been described in Chapter 3 of 
the thesis. In summary, the completeness of the algorithms used with respect to each 
type of protocol is recapitulated in the table below: 

type of protocol algorithm/configuration completeness 

1. non-FIFO Algm 1 <S,T> complete 
2. FIFO (well-ordered) Algm 3 . <S,R,T> complete 
3. FIFO (non-well-ordered, bounded) Algm 2 <S,C> complete 
4. FIFO (non-well-ordered, unbounded) Algm 2 <S,C> no 
5. priority (bounded) Algm 2 <s,c> complete 
6. priority (unbounded) Algm 2 <s,c> no 

A reachability tree construction algorithm is "complete" with respect to a 
of protocol if and only if all possible global states of any given protocol of 
corresponding type can be generated by the algorithm within a finite bound. As 
noticed from the table, certain types of unbounded protocols cannot be completely 
validated. Their protocol syntactic properties have been known to be undecidable [Brand 
80, 81]. The level of completeness of these types of protocols, as validated via the 
conventional approach (Algorithm 2), thus depends on the value of the channel bound 
enforced in the analysis. In turn, this depends on the memory space available in the 
machine used. 
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When a protocol to be validated is large and complex, such as the X.75 
protocol, one can apply a decomposition technique as described in Vuong 82b, 83b. 
The decomposition technique splits a large and complex protocol into smaller 
components so that it becomes more manageable. Incorporation with this technique, the 
application of VALIRA is greatly extended. 

The competency of the reachability analysis system itself mainly depends on the 
memory space and the CPU time available. These two factors are always being 
considered to be the major barriers in reachability analysis. Nevertheless, with the 
trend of modern technology development, the two limitations should hopefully not be 
the dominating factors in the near future. 

6.2 FUTURE WORK 
Currently, VALIRA is running under UNIX on a VAX 11/750, yet it is 

portable to any system that supports C. Further enhancements of the system are 
possible, for instance: 
1. The current implemention can be extended to cover the multi-process 

multi-casting protocols. 
2. The R-state approach could be enhanced by introducing a reception counter D 

in the existing <S;R;T> configuration [Vuong 83a]. This would give an 
expansion to the set of well-ordered protocols. 

3. Since the system is designed to be portable, with slight modifications, it can be 
available as a commercial production system. 
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APPENDIX A - VATJRA USER'S M A N U A L 

I. INTRODUCTION 

VALIRA is a protocol validation package that takes the transitions of a 
protocol (specified in a CFSM model) and performs the validation via reachability 
analysis. The syntactic properties of the protocol, such as the state ambiguities, the 
state deadlocks, the unspecified receptions, the non-executable interactions, and the 
unbounded channels, will be analysed and reported. 

The commands used in VALIRA are self-explanatory. Basically, a user can 
apply the package without reading the command explanation part of the manual 
(however, the output representation part must be read). Commands can be entered in 
either upper or lower case. Illegal commands or inputs will be signalled by a "bid" 
sound for re-entering. 

This manual is intended as a user reference. As for the internal structures or 
background theories of VALIRA, interested users can refer to the corresponding part of 
the thesis. 

H. HOW TO RUN VALIRA 

VALIRA is currently installed on our department's CS VAX. It is invoked with 
the command 

/user/vuong/protoval/package 
VALIRA provides a two-level interactive environment which includes : 
I. The interpreting level, where, in general, the user can monitor the validation 

process. 
2. The editing level, where the user can use the editing commands provided to 

make changes on the entered transitions. The editing level is invoked on the 
interpreting level, so it is one level below. 
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A. The invocation phase 
Upon invocation of the package, the user automatically enters the interpreting 

level, and will be prompted by the interpreter to respond with either "y" or "n" for 
information required by the package. The examples below show the initial invocation 
phase for each type of protocols. 

Example A.1 Running a two-process priority protocol 

Execution begins 

How many processes ? 2 
Priority channels ? [y|n|q] y 
Please enter channel bound ? 3 

Example A.2 Running a two-process non-FIFO protocol 

Execution begins 

How many processes ? 2 
Priority channels ? [yln|q] n 
FIFO channels ? fy|n|qj n 

Example A.3 Running a two-process FIFO protocol 

Execution begins 

How many processes ? 2 
Priority channels ? ty[n|q] n 
FIFO channels ? [y|n|qj y 
Please enter channel bound ? 3 

At this point, the user can choose between using the R-state approach or 
the conventional approach. In general, the R-state approach should be applied, 
since it is more efficient However, the R-state approach cannot validate every 
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types of FIFO protocols. The message "non-well-ordered protocol" will appear if 
the R-state approach fails to work. In that case, the conventional approach has 
to be used. 

B. The input phase 

When the queries in the invocation phase have responded, the interpreter will 
enter the input phase where the user is prompted to input the transitions for each 
process. 

Enter transitions for process 1 :->0 1 -1 >1 0 1 > 

The prefix character in the input phase is a ">", and the transitions are entered in 
the form: 

0 1 -1 

where 
0 is the initiating process state of a transition 
1 is the resulting process state of a transition 
- 1 is the transition arc between the two process states 

Thus, the above input corresponds to the transition: 
-1 

0 > 1 

The input phase is terminated by entering a null line. 
The input of the process states and the message types have the following 

restrictions: 
process state: must be numbered from 0 upto at the maximum of 35. Note that 
the initial state of each process must be state 0. 
message type: must be numbered within 1 and 35. 
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C. The editing phase 

Every time an input phase is terminated, the interpreter will automatically 
invoke the transition editor so that changes are possible. The prefix character given by 
the transition editor is a which is followed by entering one of the following 
commands: 

h ... p r i n t t h e message 
s ... s t o p e d i t i n g 
c ... c l e a r a l l t r a n s i t i o n s 
p ... p r i n t a l l t r a n s i t i o n s 
r n . r e p l a c e t r a n s i t i o n n 
d n . d e l e t e t r a n s i t i o n n 
i n . i n s e r t t r a n s i t i o n ( s ) a f t e r t r a n s i t i o n n 

The usage of the above commands is like in any simple line editor. 

D. The execution phase 

The interpreter starts the execution phase when the transitions of all. processes 
are entered. The information entered are echoed to the user, followed by the 
queries : 

E n t e r node l i m i t o f t h e t r e e : 

Do y o u want t h e r e a c h a b i l i t y t r e e p r i n t e d ? [ y | n | q ] : 

They should be replied accordingly. The node limit entered would be used as the 
global state limit of the reachability tree. 

The generation of the reachability tree starts at this point Shown on the 
screen will be the print out of a reachability tree, a node table, and an error 
summary. Some special notations used in the output will be explained futher in 
section III. 
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E. The command phase 

The interpreter enters the command phase after the execution on generating the 

reachability tree. A list of commands will be printed for selection, as shown below: 

1. P r i n t the r e a c h a b i l i t y t r e e 
2. P r i n t the node t a b l e 
3. P r i n t the summary 
4. E d i t t r a n s i t i o n s 
5 . Run 
6 . Quit 

Item number ? 

These commands provide the user with an environment in which the protocol entered 

can be modified and rerun. The commands are selected by entering its item number. 

Say, if "4" is entered, the interpreter will prompt 

p roce s s number ? 

The process number of the desired process Should then be entered. The transition 

editor (Section II C) will be invoked to edit the transitions of that process. Upon 

termination (by the "s" command in the transition editor), the control will be returned 

to the interpreter in the command phase. 
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EEL Output representations 
This section describes the representations used in printing the reachability tree, 

the node table, and the error summary. To illustrate this, the sample run of an 

erroneous protocol (Figure A.1) is shown in Figure A.2. 

Figure A . l . An erroneous protocol. 



Figure A.2. A sample terminal session. 

E x e c u t i o n b e g i n s 

V A LIRA V e r s i o n 1 

How many p r o c e s s e s ? 2 
P r i o r i t y c h a n n a l s ? [ y | n | q ] n 
F I F O c h a n n e l s ? [ y | n | q ] y 
Do y o u want t h e R - s t a t e a p p r o a c h ? [ y | n | q ] n 
P l e a s e e n t e r c h a n n e l b ound ? 3 
E n t e r t r a n s i t i o n s f o r p r o c e s s 1 :-
Sample i n p u t : 0 1 -1 
( t e r m i n a t e w i t h a n u l l l i n e ) 
> 0 1 -1 
> 0 2 1 
> 1 0 2 
> 1 2 3 
> 2 0 -4 
> 
: s 
E n t e r t r a n s i t i o n s f o r p r o c e s s 2 :-
Sample i n p u t : 0 1 -1 
( t e r m i n a t e w i t h a n u l l l i n e ) 
>0 1 1 
>0 2 -1 
>1 2 -3 
>1 3 -2 
>3 0 4 
>3 2 1 
>2 0 4 
> 
: s 

R e a c h a b i l i t y a n a l y s i s o f p r o t o c o l w i t h F I F O c h a n n e l s 

P r o c e s s 1 : 
0 -> 1 -1 
0 -> 2 +1 
1 -> 0 +2 
1 -> 2 +3 
2 -> 0 -4 

P r o c e s s 2 : 
0 -> 1 +1 
0 -> 2 -1 
1 -> 2 -3 
1 -> 3 -2 
3 -> 0 +4 
3 -> 2 +1 
2 -> 0 +4 

p r o c e s s 1 t r a n s m i t s 2 m e s s a g e ( s ) : 1 4 
p r o c e s s 2 t r a n s m i t s 3 m e s s a g e ( s ) : 1 3 2 



E n t e r node l i m i t o f t h e t r e e : 100 
Do y o u want t h e r e a c h a b i l i t y t r e e p r i n t e d ? [ y | n | q ] y 

l e v e l 
|0 | 1 |2 |3 |4 |5 |6 |7 |8 |9 | 10 

0 1 2 ( P 1 + 1 ) [ U R ] 
(P2+1)[UR] 

3 4 5 6 7 (P2+4)[ 1] 
( P 2 + 4 ) [ 0] 

8 9 10 11 
12 ( P 1 - 1 ) [ 2] 

(P1 + 1 )[. 5] 

T h e r e a r e a t o t a l o f 12 d i f f e r e n t n o d e s 
Do y o u want t h e node t a b l e ? [ y | n | q ] y 

Node r e p r e s e n t a t i o n : 
( s i , s 2 ; t 1 , t 2 ; t 3 , t 4 , t 5 ) 

M e s s a g e c o u n t e r : t 1 t 2 t 3 t 4 t 5 
A s s o c i a t e d message t y p e : 1 4 1 3 2 

0 
3 
6 
9 

12 

( r o o t ) 0 0 0 0 0 0 0 0 ( P 1 - 1 ) 1 0 1 0 0 0 0 1 ( P 2 - 1 ) 1 2 1 0 1 0 0 
1 ( P 2 + 1 ) 1 1 0 0 0 0 0 3 ( P 2 - 3 ) 1 2 0 0 0 1 0 4 ( P 1 + 3 ) 2 2 0 0 0 0 0 
5 ( P 1 - 4 ) 0 2 0 1 0 0 0 6 ( P I - 1 ) 1211000 3 ( P 2 - 2 ) 1 3 0 0 0 0 1 
8 ( P 1 + 2 ) 0 3 0 0 0 0 0 9 ( P 1 - 1 ) 1 3 1 0 0 0 0 1 0 ( P 2 + 1 ) 1 2 0 0 0 0 0 
0 ( P 2 - 1 ) 0 2 0 0 1 0 0 

E R R O R S U M M A R Y 

1. The l i s t o f d e a d l o c k n o d e ( s ) 
1 1 

2. S t a b l e s t a t e s :-

PI P2 

0 0 (node 0) 
1 1 (node 3) 
2 2 (node 5) 
0 3 (node 9) 
1 2 (node 11) 

3. N o n - e x e c u t a b l e i n s t r u c t i o n ( s ) :-
p r o c e s s 2 : 3 -> 0 +4 

4. The f i r s t u n s p e c i f i e d r e c e p t i o n i s d e t e c t e d a t node 
The l o w e s t l e v e l UR i s d e t e c t e d a t node 2 ( l e v e l 3 ) , 

5. The r e a c h a b l i t y t r e e i s b o u n d e d a t l e v e l 6. 

Max c h a n n e l queue l e n g t h = 2. 
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Choose one item from the list below : 
1. Print the reachablisty tree 
2. Print the node table 
3. Print the summary 
4. Edit transitions 
5. Run 
6. Quit 
Item number ? 6 
End of run 

A. Representation of the reachability tree 
As noted in Figure A.2, the reachability tree is printed horizontally from left 

to right, with each node in the tree represented by a node number. Figure A.3' shows 
the same reachability tree along with branches connecting between every pair of parent 
and child nodes. For simplicity, these branches are not shown in the actual print out 

level 

10 | 1 12 13 14 15 16 17 18 19 | 10 
0 1 2 (P1 + 1)[UR] 

I (P2+1)[UR] 
I 3 4 5 6 7 (P2 + 4) [ 1] 

I (P2 + 4)[ 0] 
I 8 9 -1 0—1 1 

1 12—(PI —1 ) [ 2] 
1 (P1 + 1)[ 5] 

Figure A.3. A reachability tree with branches shown. 

In most cases, the reachability tree printed would go beyond the right margin. 
To solve this problem, the portions which go beyond the right margin will be 
restarted printing from the left margin, on a new level scope. An example of this is 
shown in Figure A.4 and Figure A.5. 



0 

0 

1 |2 |3 I — level -
4 |5 |6 

(P1+1)[UR] 
(P2+1)[UR] 
4 5 6 7 

15 16 17 
20 (PI-1)[ 2] 

(P1+1)[ 5] 
18 19 

|7 

m a r g i n — > 
8 |9 | 10 

9 10 11 12 13 
1 4 

Figure A.4. A reachability tree that goes beyond the right margin. 

level 

0 | 1 12 13 |4 |5 |6 |7 |8 |9 |10 
0 1 2 ' (P1 +1)[UR] (P2+1)[UR] 3 4 5 6 7 8 9 1011 level 
11 I 12 I13 I14 I15 I16 I17 I18 I19 I 20 |21 
12 13 
1 4 

Xgvel * 
0 |1 |2 |3 |4 |5 |6 |7 |8 |9 |10 

15 16 17 18 19 
20 (P1-1)[ 2] 

(P1+1)[ 5] 

Figure A.5. A reachability tree printed in different scopes of levels. 
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To represent the different kind of nodes in the reachability tree, the following 
notations are being used: 
1. Unspecified node 

An unspecified node indicates an unspecified reception. It is represented 
by the notation: 

(Pi+m)[UR] 
where i is the process number, m is the message type, and (Pi+m) represents 
the transition that initiates the unspecified reception. For example, the 
"(Pl + l)[UR]n node shown in Figure A.3 represents that "process 1 receives 
message 1 leading to an unspecified reception". 

2. Repeated nodes 
A repeated node is represented by the notation: 

(Pi + m)[ n] 
where n is the node number of the duplicated node, and (Pi+m) has the same 
meaning as in the unspecified node representation. Thus, the node "(Pl-1)[ 2]" 
. represents that "process 1 transmits message 1 resulting in a duplicated node 
having the same global state value as node 2". 

3. Unbounded nodes 
An unbounded node appears when the number of messages in a channel 

exceeds a prespecified channel bound. It is represented by the notation: 
(Pi-m)[uq 

where (Pi-m) has the same meaning as in the unspecified node representation. 
Thus, the node "(P1-2)[UC]" represents that "process 1 transmits message 2" 
resulting in the channel bound being exceeded". 

4. Others 
Other than the above, all the nodes in the reachability tree are 

represented by sequentially ordered node numbers. The global state value of these 
nodes can be found in its corresponding entry within the node table, as will be 
described shortly. 
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B. Representation of the node table 
It is assumed the user has a general understanding of the following terms: 4 

configuration <S;T> = <ŝ  ,...,ŝ  ;tj ,-XM > 

where N is the total number of processes and M is the total 
number of message types, 

local state s.— is the current state of process i. 
message counter t^— is the number of type-k messages. 

As noticed from Figure A.2, the node table consists of all the nodes in the 
reachability tree. They are ordered according to their node numbers, from node 0 (root 
node) to the last node. Each node entry in the node table is composed of three 
parts: 

<parent node numberXtransitionXglobal state> 
For example, node 1 in Figure A.2: 

0(P1-1)1010000 
represents the transition "process 1 transmits message 1" initiated at node 0 resulting 
in a global state 1010000. 

The configuration of the global states is printed right above the node table. In 
this case, the configuration <sl,s2;tl,t2;t3,t4,t5> is used. To avoid confusions, the local 
States and message types are limited to a maximum number of 35. The numbers from 
10 to 35 are printed as A to Z, respectively. Thus, a global state having si=11 and 
s2 = 2 will be printed with sl,s2 = B2 rather than sl,s2 = 112 which is ambiguous. The 
message type associated with each message counter is also printed as in Figure A.2. 

When the R-state approach is used, there will be an extra set of state 
pointers — the r-state pointers — included in the configuration (i.e.<S;R;T>). Each 
message channel, in this case, is associated to a r-state pointer. A r-state pointer 
indicates the next message to be received at the corresponding channel by pointing to 
4 To avoid considerable overlappings, the terms mentioned are not explained in this 
manual. However, users are urged to refer to Chapter 3 of the thesis for complete 
explanations. 
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the state where the message was sent 
As a final note, if the symbol o> appears in a message counter, the message 

counter are detected to be unbounded and consequently the corresponding channel as 
well. 

C. The error summary 
The error summary is self-explanatory, yet attention is required to the 

stable-state table. If there exists a column in the stable-state table such that two 
entries containing the same state, then state ambiguity occurs. For example, the pair 
(0,0) and (0,3) in the stable-state table shown in Figure A.2 indicates that state 0 in 
process 1 can coexist stably with either state 0 or state 3 in process 2. The above 
observation can be extended to the muti-process case. 

— THE END — 


