
PROTOCOL VALIDATION VIA REACHABILITY ANALYSIS:
AN IMPLEMENTATION

by

DANIEL HANG-YAN HUI
B.C.S., Concordia University, 1983

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

THE FACULTY OF GRADUATE STUDIES
Department Of Computer Science

We accept this thesis as conforming
to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA
April 1985

Daniel Hang-Yan Hui, 1985

In presenting this thesis in partial fulfilment of the requirements for an advanced
degree at the The University of British Columbia, I agree that the Library shall make
it freely available for reference and study. I further agree that permission for extensive
copying of this thesis for scholarly purposes may be granted by the Head of my
Department or by his or her representatives. It is understood that copying or
publication of this thesis for financial gain shall not be allowed without my written
permission.

Department of Computer Science

The University of British Columbia
2075 Wesbrook Place
Vancouver, Canada
V6T 1W5

Date: April 1985

Abstract

Reachability analysis is one of the earliest and most common techniques for
protocol validation. It is well suited to checking the protocol syntactic properties since
they are a direct consequence of the structure of the reachability tree. However,
validations of unbounded protocols via reachability analysis always lead to the "state
explosion" problem. To overcome this, a new approach in reachability analysis has
been proposed by Vuong et al [Vuong 82a, 83a]. While not loosing any information
on protocol syntactic properties, the T e a c h a b i l i t y tree constructed by the new approach
for all non-FIFO and for a particular set of FIFO protocols (called well-ordered
protocols) will become finite. This thesis is concerned with the implementation of an
integrated package called VALIRA (VALIdation via Reachability Analysis) which bases
on both the proposed technique and the conventional technique. Details and
implementation of the various approaches used in VALIRA are presented in order to
provide an insight to the package. Various features o f the package are demonstrated
with e x a m p l e s on different types of p r o t o c o l s , such as the FIFO, the non-FIFO, and
the priority protocols. The use of VALIRA was found to be practical in general,
despite some limitations of the package. Further enhancements on the VALIRA are
also suggested.

ii

Table of Contents
Abstract ii
List of Figures v
Acknowledgement vi
1. Introduction 1

1.1 Thesis Objective and Contribution 2
1.2 Thesis Outline 2

2. Background Studies 3
2.1 The Conimunicating Finite State Machine (CFSM) Model 4
2.2 Types of Design Errors 5

3. Reachability Analysis 9
3.1 Reachability Analysis of Protocols with Non-FIFO Channels 9
3.2 Reachability Analysis of Protocols with FIFO Channels 12

3.2.1 The Conventional Approach 13
3.2.2 The R-state Approach 15

3.3 Reachability Analysis of Protocols with Priority Channels 17
4. Implementation of the VALTRA Package 18

4.1 System Overview 19
4.1.1 The Command Interpreter 20
4.1.2 The Transition Editor 20
4.1.3 The Execution Module 21
4.1.4 The I/O-Routine Module and the Storage-Allocation-Routine

Module 21
4.2 Design and Implementation of the Execution Module 21

4.2.1 Data Structures 22
4.2.2 Implementation Strategies 24

5. Results and Evaluation 29
5.1 Examples 29

iii

5.2 Evaluation 41
6. Conclusions 43

6.1 Thesis Swrimary 43
6.2 Future Work 44

BIBLIOGRAPHY 45
APPENDIX A - VALIRA USER'S MANUAL 48

iv

List of Figures

Figure 2.1 A simple access authorization protocol (SAAP) 5
Figure 2.2 A modified SAAP 7
Figure 4.1 The SAAP 18
Figure 4.2 The modified SAAP 19
Figure 4.3 Internal organization of the VALIRA 20
Figure 4.4 Data structure of the reachability tree 22
Figure 4.5 Illustration of the r-state searching strategy 26
Figure 5.1 An unbounded non-FIFO protocol 30
Figure 5.2 The reachability tree for Example 1 31
Figure 5.3 The reachability tree for the modified SAAP 32
Figure 5.4 An error summary for the modified SAAP 33
Figure 5.5 An unbounded FIFO protocol 34
Figure 5.6 The reachability tree for Example 3 • 35
Figure 5.7 An unbounded non- well-ordered FIFO protocol 36
Figure 5.8 The reachability tree for Example 4 37
Figure 5.9 A priority protocol 38
Figure 5.10 The reachability tree for Example 5 39
Figure 5.11 A multi-process FIFO protocol 40
Figure 5.12 The stable-state table for Example 6 41
Figure A.1 An erroneous protocol 53
Figure A.2 A sample terminal session 54
Figure A.3 A reachability tree with branches shown 56
Figure A.4 A reachability tree that goes beyond the right margin 57
Figure A.5 A reachability tree printed in different scopes of levels 57

v

Acknowledgement

I would like to thank Dr. Son T. Vuong, my supervisor, for his guidance and
our many long discussions. Special thanks to Dr. Sam T. Chanson for reading and
commenting on the final draft and to Dr. Alan K. Mackworth for the financial
support of a research assistantship.

vi

Chapter 1

INTRODUCTION

A protocol is a set of mutually agreed rules governing the interactions between

different entities. Communication protocols play an important role in distributed systems

and computer networks since they are essential for communications between entities of

different conventions.

Realistic protocols are usually complicated and it is hard to validate their total

correctness. With the growth in protocol complexity, various protocol analysis techniques

have been developed with respect to different types of protocol models [Sunshine 78].

These techniques are related to either protocol validation in the syntactic aspect or

protocol verification in the semantic aspect

In protocol validation, state transition techniques like protocol synthesis and

reachability analysis are developed [Zafiropulo 78, 80]. Protocol synthesis can be used

to aid developing a protocol in the early stages of design, or to validate a protocol

via resynthesizing at a later stage. In an advanced state of development, validation via

reachability analysis is more appropriate. Reachability analysis of protocol is done by

exhaustively generating all global states of a protocol specification to allow the checking

of syntactic design errors. This analysis procedure can be easily automated. However,

the non-termination of an unbounded reachability tree due to unbounded channels has

been a major problem in the analysis. With the algorithms proposed by Vuong et al

[Vuong 82a, 83a], all unbounded non-FIFO protocols, and a particular set of

unbounded FIFO protocols (called well-ordered protocols, to be defined in Chapter 3),

can now be analysed with the reachability tree constructed always to be finite. In this

thesis, we shall focus ourselves on the proposed approach and its implementation.

1

2

1.1 THESIS OBJECTIVE AND CONTRIBUTION

The objective of this thesis is to provide users with an automated protocol
validation system which would eventually form part of a larger integrated automated
system 1 for protocol processing. VALIRA, a validation tool, has been implemented for
this purpose. Using VALIRA, various types of protocols specified in CFSM models
with FIFO, non-FIFO, or priority channels can be analysed for potential design errors
such as state deadlocks, state ambiguities, unspecified receptions, and non-executable
interactions.

1.2 THESIS OUTLINE

This thesis describes mainly the background theories and the implementation of
VALIRA. Chapter 2 is a brief review of the general background regarding the
communicating finite state machine model used in reachability analysis. Chapter 3
describes various algorithms of reachability analysis for protocol validation. Chapter 4

provides the implementation details of VALIRA. Chapter 5 shows some simple but
realistic examples in order to illustrate the particular features of the different
approaches used in the system. Chapter 6 is the concluding chapter which includes a
thesis summary and suggestions for future work.

A user's manual is included in the appendix for those who are interested.

1 Other parts of the system are under research within the department

Chapter 2

BACKGROUND STUDIES

Protocol specifications can be formalized by various models. The existing
modeling techniques can be classified into the following three main categories
[Bochmann 80]:
1. Transition models

Transition models, such as the communicating finite state machine (CFSM)
models [Bochmann 78] and the Petri nets [Merlin 76], have been the most
commonly used models. They specify the control aspects of protocols well, but
are poor in modeling their semantic aspects. The CFSM model, which is used
throughout this thesis, will be described later in more details.

2. Programming language models
Programming language models, which use high-level prograiTiming

languages for modeling, are natural representation of protocols. Though they have
a full range of applicability, they are not as practical since automated validation
is difficult Examples of this technique are the Gouda's model [Gouda 76] and
some high-level programming models [stenning 76].

3. Hybrid models
Hybrid models are a combination of the transition and the programming

language models, so as to obtain their combined advantages. Numerical Petri net
[Symon 80a, 80b] is one of the well known examples.

Of the various models, the CFSM model is most applicable to reachability
analysis. The remainder of the chapter presents a brief overview of the model and the
various types of errors which could be handled.

3

4

2.1 THE COMMUNICATING FTNTTE STATE MACHINE fCFSM) MODEL
In reachability analysis, protocol specifications are normally formalized by CFSM

models. A CFSM model is a state-event driven type of model. Essentially, it consists
of a number of finite state machines (FSM's), with each FSM representing a process
in the protocol specified. The FSM's communicate with each other by exchanging
messages through single-directional, error-free channels. These channels may belong to
one of the following classes:
1. First-in-first-out (FIFO): messages are received in the order that they were

sent
2. Non-FIFO: messages may be received in any arbitrary order.
3. Priority: messages in the channel are ordered by their associated priorities. The

first message in the channel is always the next to be received.

In practice, protocols which lie on top of a reliable and order-preserving
transport service (provided by the lower level protocols) are considered to have FIFO
channels.

As an example, let us look at the Simple Access Authorization Protocol (SAAP)
described by Zafiropulo et al [Zafiropulo 80]. The protocol consists of a requesting
process and an authorizing process (Figure 2.1), each communicating with the other via
FIFO channels (not indicated in the figure). In the CFSM model, each message
transmission or reception is represented by a transition arc labled with a '-'
(transmission) or a '+' (reception) sign followed by the message type. Processes in the
model synchronize with each other by sending or receiving a message, which brings
the process through the transition arc from one state to another.

Semantically, the SAAP specifies that-whenever the requesting process requests

for connection, the authorizing process can either refuse it, bringing both back to the
idle states; or grant it, advancing both to the connect states. When the requesting
process wants to discontinue the connection, it sends a release and hence returns both
to idle.

5

R e q u e s t i n g
p r o c e s s

A u t h o r i z i n g
p r o c e s s

m e s s a g e s

REQ: REQUEST
REF: REFUSE
GRA: GRANT
REL: RELEASE

Figure 2.1. A simple access authorization protocol (SAAP).

In the later chapters, we shall see more examples of the CFSM model.

2.2 TYPES OF DESIGN ERRORS
With the CFSM model described in Section 2.1, a number of potential design

errors can be handled. The four types of design errors, described by Zafiropulo et al

[Zafiropulo 80], are informally defined as follows:
1. State ambiguities

In general, we say that an N-process 2 stable-state tuple <ŝ ,...,ŝ >
exists when the states ŝ ,...,ŝ of processes P̂ ^, respectively, are reached
with all channels empty. In such a casei all the states coexist stably with each
other in the tuple. A state ambiguity exists when a process state appears in
more than one stable-state tuple. Thus, when given such a process state, we can
no longer determine the exact coexisting stable-state of the other processes.

2 N is refered to as the number of processes throughout this thesis.

6

State ambiguities do not necessarily represent errors, but their semantic
intents must be examined with caution.

2. State deadlocks

A state deadlock occurs at stably coexisting states where no transmissions
are possible. Thus, the processes cannot make any move but to remain
indefinitely in their existing states.

State deadlocks usually represent errors, unless the protocol is designed to
terminate in that manner.

3. Unspecified receptions

An unspecified reception occurs when there is possible reception of a
message but the corresponding reception arc is not specified.

Unspecified receptions are harmful since the subsequent interactions are
unpredictable.

4. Nonexecutable interactions

A nonexecutable interaction is a reception specified but not possible to
occur under normal operating conditions. A protocol is well-formed if and only if
it contains no unspecified reception or any nonexecutable interaction.

Nonexecutable interactions must be handled with great care since they
might indicate the existence of design errors.

As an example to illustrate the various types of design errors, an erroneous
protocol in a CFSM model is shown in Figure 2.2. The protocol is a modified
version of the SAAP, which also provides the following features:

Instead of refusing the request from the requesting process, the authorizing
process now issues a wait and enters a wait state until another request is
received. The requesting process should return to idle when it receives a wait.

The authorizing process returns to idle upon receiving a release while it is in
the wait state.

7

The authorizing process can request for immediate connection when it is in the
idle state.

Figure 2.2. A modified SAAP.

It is obvious that the modified SAAP consists of all the four types of design
errors, as indicated below:
1. State ambiguity:

The idle state of the requesting process coexists stably with both the idle
state and the wait state of the authorizing process. The latter happens when
both processes start from the idle states, then the requesting process issues a
request and the authorizing process responds with a wait.

2. State deadlock:
Furthermore, if now the requesting process goes to the request state by

issuing another request, the authorizing process in the wait state will receive the
request and proceed to the connect state. This results in a deadlock situation in

8

which both processes are waiting for messages from empty channels.
3. Unspecified reception:

If both processes issue a request simultaneously in their idle state, they
both reach a state where the reception of the request message from the other
process is not specified.

4. Nonexecutable interaction:
The reception of the release message in the wait state of the authorizing

process is nonexecutable. This can be easily verfied using reachability analysis, as
all executable interactions are included in the reachability tree. Interactions not
appearing in the reachability tree are simply nonexecutable interactions.

For most non-trivial protocols, the design errors discussed above are likely to
exist, yet difficult to detect Automated validation tools thus play an important role in
protocol validation. We shall see how the above erroneous protocol is validated using a
reachability analysis system.

Chapter 3

REACH ABIT ITY ANALYSTS

Protocol validation via reachability analysis is done by exhaustively generating all
global states of a protocol forming a reachability tree to allow the checking of
syntactic design errors. The chapter describes the reachability tree construction
algorithms for non-FIFO, FIFO, and priority protocols. Proofs of Algorithm 1 and 3
can be found in Vuong 82a, 83a.

3.1 REACHABILITY ANALYSIS OF PROTOCOLS WITH NON-FTFO CHANNELS
Before describing the algorithm for constructing a non-FIFO reachability tree, a

few definitions have to be introduced.

Definition 1

A global state in the reachability tree is a configuration CF which is a pair
<S;T> where

S is a N-tuple <ŝ ,...,ŝ. ŝy > with the local state s;. representing the current
state of process i.
T is a M-tuple <t̂ t̂ .t^ > where M is the total number of message
types, and the message counter t̂ represents the number of type-k messages
currently in the associated channel, say, ĉ.. The notation (t̂ Ô is used frequently
instead of t̂ to give a more explicit representation.

Definition 2

Let move (CF, -x-y) or move (CF, +x,y) denotes a move from a given
configuration CF by the execution of a transmission -x„ or a reception +x.j ,

respectively, from process i to process j to result in a new configuration CF'. Also,
let succ (s, ~ xij) o r succ (s, + x̂.) denotes the state reached by a process after it

9

10

has made the move to transmit or to receive message x in state s. Then, a valid
move can be defined as follows:
i. move (CF, -x..) is valid if and only if the state succ (s., -x..) is defined.

The resulting configuration CF' is equal to CF in all elements except:
ŝ. = succ (s., -x̂.) and
(f..) = (t..) + 1

ii. move (CF, + x „) is valid if and only if (t„)x > 0. Thus, a valid reception
move corresponds to an executable reception. If the state succ (ŝ., + x „) is
defined, the valid move is said to be specified. The resulting configuration CF'
is then equal to CF in all elements except:

s'. = succ (s., +x..) and
J J iJ
(t'..) = (t..) - 1 Kij'x xij'x

However, if succ (s., +x..) is not defined, the valid move (CF, +x..) is said
J ij ij

to be unspecified. Clearly, an unspecified move represents an unspecified
reception.

Definition 3
A reachability tree consists of the following kinds of nodes:

1. Frontier node — is a node created by a valid move. It will be renamed to
one of the other types of nodes when it has been processed.

2. Undefined node — is renamed from a frontier node if it is formed by an
unspecified reception.

3. Duplicate node (repeated node) — is renamed from a frontier node if it has
the same configuration as any of the previously occured nodes. No further moves
are necessary from the duplicate node as they will generate the same child
nodes as the previously occured one.

4. Terminal node — is renamed from a frontier node if no valid move can be
initiated. For non-FIFO protocols, a terminal node should simultaneously have its
message counters set at zeros (a stable node). In that case, it represents a state

11

deadlock.
5. Interior node — is renamed from a frontier node after it has exhaustively made

all valid moves.

With the definitions stated above, an algorithm for constructing a non-FIFO
reachability tree is now introduced.

Algorithm 1 — Reachability tree construction for non-FIFO protocols

0. The root of the reachability tree is initially defined to be a frontier node with
the configuration CF̂ = <SQ ;T̂ > where represents the initial states of the
processes and T̂ is the zero message counters.

For each frontier node in the reachability tree, perform the following steps:
1. If it satisfies the condition to be an undefined node, .rename it and stop

processing the node.
2. Likewise if it qualifies to be a duplicate node.

3. Likewise if it qualifies to be a terminal node.

4. Otherwise, for every valid move from the current configuration, create a new
frontier node as the child of the current node with the new configuration
CF' = <S';T'> set up as described in Definition 2.

Futhermore, if the new node is a descendant of a node which has a
configuration CF° = <S°;T°> such that CF' > CF°, which means S' = S°
(all the corresponding states of CF' and CF° are equal) and T' > T° (all the
message counter components of CF' are greater or equal to the ones of CF°),
then those message counters t£ of CF' such that ̂ > t0^ ̂ 0 are changed to
t£ = OJ, where u is a symbol which represents an arbitrarily large number.

12

For any constant n, we define
co + n = co ;
co - n = co ;

n < co ; and
co < co 3

5. If all valid moves from a frontier node had been made, the node is renamed
as an interior node.

The algorithm halts when all frontier nodes have been processed.

The reachability tree constructed by the above algorithm was proved to be
finite for both bounded and unbounded non-FIFO protocols [Vuong 82a]. In the
bounded case, all message counters are bounded by the largest corresponding counter
value ever found in the tree. If the symbol co appears in any message counter, it
implies that the counter could contain up to an infinity number of the associated type
of messages, and hence the corresponding channel must be unbounded.

3.2 REACHABILITY ANALYSIS OF PROTOCOLS WITH FIFO CHANNELS
Unlike the non-FIFO case, the reachability analysis of protocols with FIFO

channels also requires the information of message sequencing. To include this
information, we can use either the conventional approach which put the messages
transmitted explicitly in queues, or the R-state approach which use a state pointer to
keep track of the message sequence of each process. The two approaches are described
in the rest of the chapter.

3 In other words, if a message counter was set to co, a transmission or a reception
of the associated message type would not change the value of the counter. This allows
all arbitrarily large values to be represented by a single symbol. Thus, the
configurations with the unbounded message counters being the only varied elements will
all be mapped to a single configuration, with the unbounded message counters being
set to co. In this way, the number of nodes generated will become finite.

13

3.2.1 THE CONVENTIONAL APPROACH
Some definitions in the previous section are redefined so that they apply to

the conventional approach of reachability analysis for FIFO protocols.

Definition 4

A global state configuration CF is a pair <S;C> where
S has the same meaning as in Definition 1.
C is an N(N-lV-tuple <c,~ c c.,.7 , >.. , A, .__. where c. is the

v ' v 12 ij NN-1 ij=l,N; i^j ij
message sequence from process i to process j.

Definition 5
A valid move in the conventional approach is defined as follows:

i. move (CF, -x..) is valid if and only if the state succ (s., -x.) is defined.
ij i ij

The resulting configuration CF' is equal to CF in all elements except:
s'. = succ (s., -x..) and
I I IJ
C'..= C.-.X..

U 'J 'J

ii. move (CF, + x̂.) is valid if and only if x..is the first message in c.j. The
reception is said to be specified if succ (ŝ., + x̂.) is defined, resulting in a
configuration CF' equal to CF in all elements except:

Sy= succ (Sj,
and c'.and c.has the relation

V V

c..= x...c'..
IJ IJ IJ

If succ (s., + x..) is not defined, the valid move (CF, + x..) is said to be
J ij iJ J

unspecified.

14

Algorithm 2 — Reachability tree construction for FIFO protocols: the conventional
approach

The reachability tree construction algorithm in this approach is similar to
Algorithm 1 with the following exceptions:

In step 0, the initial configuration should consist of <SQ > with SQ and CQ
representing the initial states of the processes and the empty channels,
respectively.
In step 4, for every valid move from the current configuration, create a new
frontier node as the child of the current node, with the new configuration
CF' = <S';C> set up as described in Definition 5.

Furthermore, if the number of messages contained in any channel of the
new node exceeds a predefined channel bound, then the new node is renamed as
an unbounded node which will be handled like a terminal node.

This algorithm is mainly for bounded FIFO protocols. As for protocols with
unbounded channels, the prespecified channel bound has to be set carefully so that
only those repeated message sequences would be cut off. The channel bound is
necessary because without it the unbounded reachability tree will keep expanding
forever.

Another way of stopping an unbounded reachability tree from expanding
endlessly is to enforce a level limit This is not as applicable as the channel bound
method, since an unbounded channel might appear at a lower level than other
bounded branches. If such a condition happens, an overspecified level limit will lead

- —to large amount of unnecessary nodes generated while an underspecified level limit will
result in lost of information.

Yet another alternative is to use a completely different approach called the
R-state approach (a name given to the approach used in Vuong 83a). Basically, it
uses the technique applied in Algorithm 1 (for non-FIFO protocols) along with an

15

additional set of state pointers which keep track of the message sequencing in the
FIFO channels. The R- state approach is described in the following section.

3.2.2 THE R-STATE APPROACH
The R-state approach is basically an extension of the approach used in

Algorithm 1 so that it also applies to FIFO protocols. In addition to the original
<S;T> configuration, this approach uses a set of receive-state pointers (called r-states)
which keep track of the message sequencing, with one r-state per channel. Some new
definitions for this approach are introduced as follows:

Definition 6

A global state configuration CF is a triple <S;R;T> where:
S has the usual meaning as in Definition 1.
R is an N-tuple <R̂ R̂. ,...,R̂ > where R̂. represents a set of N-1 r-states
<r.j r̂.,;..,̂ >̂. .that indicates which messages are to be received next from
process i by every other processes. More precisely, r.. represents a state in
process i which specifies the set of messages (denoted by %r „) that can be
received next by process j. Message x is in %r„ if and only if succ (r̂., -x)
is defined for some r.. R-equivalent to r...
T has the same meaning as in Definition 1.

Definition 7

Two r-states r.. and are said to be R-equivalent (receive-equivalent) with
respect to process j, in notation,

r..: = : r7..
if and only if

T.J= succ (x X) or
r..= succ (r... X) ij ij'

for some sequence X which can be empty or contains no transmission of any message

16

to process j.

Definition 8

A valid move in the R-state approach is defined as follows:
i. move (CF, -x..) is valid if and only if the state succ (s., -x..) is defined.

IJ ' v

The resulting configuration CF' is equal to CF in all elements except:
s'. = succ (s., -x..) and
(f..) = (t..) + 1

ii. move (CF, +x̂.) is valid if and only if x e %r„(i.e. the message x..should be
in the set of messages %r.. that process j can received) and (t„)x > 0. A
reception is said to be specified if succ (ŝ., + x „) is defined, resulting in a
configuration CF' equal to CF in all elements except:

s'. = succ (s., +x..)
J J U

r'..= succ (r.., -x..) for some r..: =: r..; and
U V iJ . LJ iJ

(f..) = (t..) - 1
v ij'x v ij'x

If succ (s., +x..) is not defined, the valid move (CF, +x..) is said to be
J . ij ij

unspecified.

Algorithm 3 — Reachability tree construction for FIFO protocols: the R-state approach

The reachability tree construction algorithm in the R-state approach is identical
to Algorithm 1 except:

In step 0, the initial configuration also includes the initial r- states which are the
initial state of their associated process.
In step 4, the condition CF' > CF° requires not only

S' = S° and

but also
R' : = : R°

17

In this approach, the reachability tree construction algorithm for non-FIFO
protocols (Algorithm 1) is enhanced with the addition of the r-states so that message
sequencing is maintained as with the channels in the conventional approach. It has an.
advantage over the conventional approach in the sense that the reachability tree
constructed will always be finite (as in the non-FIFO case).

However, in some cases, the reachability tree of some protocols might contain
configurations in which more than one valid reception (specified or unspecified) can be
made. That is, there might exist a situation such that for some messages x and y,
and processes i and j,

x, y e %r.. and (t..) > 0 and (t..) > 0.
ij JJ x lJy

In such a case, the message sequencing is lost and the algorithm fails to provide a
definite reachability tree. Protocols which lead to this kind of ambiguity are called
non-well-ordered protocols. On the other hand, the complementary set of protocols are
called well-ordered protocols.

3.3 REACHABILITY ANALYSIS OF PROTOCOLS WITH PRIORITY CHANNELS
The reachability analysis of protocols with priority channels can be performed

using the conventional approach (Algorithm 2) with the following modification:
In Definition 5, the relation

c'.. = c. .x..
U U ij

upon transmission of a message x.., should be changed to
c'.. = insert (c., x..)

where the insert function returns a message sequence with the message x̂.
inserted in c.j according to its priority.

An example of a reachability tree constructed using this algorithm will be
presented in Chapter 5.

Chapter 4

IMPLEMENTATION OF THE VALIRA PACKAGE

The VALIRA package is designed based on the algorithms described in the
previous chapter. Besides the space and efficiency considerations, the system is
implemented with the philosophy that:

It must be modular, so that debugging and modifying would be easy.
Its data structures must allow future extensions.
It should be portable to any system that supports C.

For simplicity, the CFSM models used in the system (and here-in-after) are
labeled numerically. Processes and message types are numbered consecutively from T
onwards, whereas the process states are numbered in a similar way but with the initial
state of each process labeled as state 0. The two versions of SAAP in Figure 2.1 and
Figure 2.2 thus become the ones shown in Figure 4.1 and Figure 4.2 respectively.

P1 P2
m e s s a g e s

2
3
4

s t a t e s

2
0

REQUEST
R E F U S E
GRANT
R E L E A S E

i d l e
r e q u e s t
c o n n e c t

Figure 4.1. The SAAP.

18

19

P1 P2
m e s s a g e s

s t a t e s

2
3
4
5

0

2
3

REQUEST
R E F U S E
GRANT
R E L E A S E
WAIT

i d l e
r e q u e s t
c o n n e c t
w a i t

-4 + 4

Figure 4.2. The modified SAAP.

The VALIRA is intended to be a stand-alone protocol validation system, which
can also form part of an integrated automated system for protocol processing. The
entire package was implemented with approximately 2,000 lines of C, which take up
36K bytes of memory. Currently, it is running under UNIX on a VAX 11/750, but it
is easily portable to any system that supports C.

The VALIRA is essentially composed of five modules, namely, the command
interpreter, the transition editor, the execution module, the I/O-routine module, and the
storage-allocation-routine module. The interaction between these modules is shown in
Figure 4.3, with the arrows indicating the invocation of modules.

4.1 SYSTEM OVERVIEW

20

transition
editor

I 0
routines command
I 0

routines
interpreter storage allocation

rout ines
storage allocation

rout ines

execution
module

Figure 4.3. Internal organization of the VALIRA.

4.1.1 THE COMMAND INTERPRETER
The command interpreter is the interface between the VALIRA and the user. It

provides an environment in which the user can refine a protocol specification by
invoking the transition editor and the execution module. When interfacing with the
interpreter, the user will either be prompted to response with "y" or "n", or, be
given a list of commands for selection. Detailed examples for using the system can be
found in Appendix A.

4.1.2 T H E TRANSITION EDITOR

The transition editor, when being invoked by the command interpreter, provides
primitive commands such as "replace", "delete", "insert", and "clear" for the user to
make appropriate modifications on the set of input transition arcs. The transition arcs
are internally kept as linked lists, with one list of transitions per process. Thus,
modifications can be done easily on any list of transitions. The transition editor returns

21

control to the command interpreter when the stop command is received.

4.1.3 THF EXECUTION MODI HP.
The execution module is the main component of the VALIRA. Upon invocation,

the execution module generates all global states of a given protocol, forming a
reachability tree, and at the same time checks if there is any design error.

The implementation details of the execution module will be described in
Section 4.2.

4.1.4 THE I/O-ROUTINE MODULE AND THF STORAGE- ALLOCATION-ROUTTNR
M Q D J i L E

The I/O-routine module and the storage-allocation-routine module both provide
utility routines for all the other three modules. The I/O-routine module consists of all
primitive input and output routines. These primitive routines are invoked frequently by
other modules.' They may be tailored in other modules in order to fit any specific
requirements. The storage-allocation-routine module consists of all storage allocation and
storage release routines. All dynamic storage assignments are thus done by invoking the
routines in this module.

The usage of the routines in the two named modules are documented internally
in the system source code.

4.2 D E S I G N A N D I M P L E M E N T A T I O N Q F T H E E X E C U T I O N M O D U L E

The execution module is basically a collection of routines implemented based on
the algorithms described in Chapter 3. The main design issues of the module are on
its data structure design and the implementation methods. The design and
implementation details regarding these two aspects are discussed in the sections
followed.

22

4.2.1 DATA STRUCT1JRES

1. Data structure of the reachability tree

The data structure of the reachability tree is simple and intuitive. Each
node of the tree consists of some pointer fields and data fields, as shown in
Figure 4.4. The pointer fields consist of pointers pointing to the parent, the
child, and the sibling of the node; and also a pointer pointing to a global state
configuration (represented as a list of states, channels or message counters) whose
structure depends on the alogorithm used.

r o o t
l e v e l 0

l e v e l 1

node 0
f c : |b

node 1

f |c : l b

-> CF0

f Ic lb

l e v e l 2

f : p o i n t i n g t o t h e p a r e n t
c : p o i n t i n g t o the f i r s t c h i l d
b : p o i n t i n g t o t h e f i r s t s i b l i n g

Figure 4.4. Data structure of the reachability tree.

23

2. List structures

The VALIRA uses a number of linked lists to store both user supplied
information and self-generated data. The major list structures are described
below:
a. The transition lists: The transition arcs entered by the user are stored in

the transition lists, with one transition list per process. Each node in the
list stores information such as the initiating state, the message type
(transmitted or received, indicated by the associated sign), and the resulting
state of a transition.

b. The stable-state list: The stable-state list carries pointers directing to the
stable-state nodes in the reachability tree, with each node in the list
earring a pointer pointing to a stable-state node.

c. The state-deadlock list: Similar to the stable-state list, the state-deadlock
list carries pointers directing to the state-deadlock nodes in the reachability
tree, with one pointer per node.

d. The r-state lists: The r-state lists sustain a record of the R-equivalent
states and their associated set of messages %r„ for all process states in
each process with respect to every other processes. There are N - 1
r-state lists per process. Each r-state list is a set of state nodes for all
states in the associated process. Each state node in the r-state list consists
of:

A state in the associated process, say, process i.
A sublist of the R-equivalent states of the associated state, with
respect to another process, say process j.
A sublist of the messages %r „ receivable at process j from the
associated state. The r-state succ (rV, of each message in %r̂ .
is also kept with the message in the sublist.

The r-state lists are used only in the R-approach. With all these

24

information, conditions such as
x e %r.. and r..: = : r..,

and expressions like
succ (£".., -x..)

v ij iJ '

can be evaluated easily by refering to the r-state lists.
The construction of these r-state lists will be described in the next

section.

4.2.2 IMPLEMENTATION STRATEGIES

1. Construction of the r- state lists

The r-state lists are generated by the execution module before the
construction of the reachability tree. The structure of the r-state lists was defined
previously. The generation of the R-equivalent states and the sets %r„ 's
associated with each process state are described below.
a. Generation of the R-equivalent states (function "setrstates")

The R-equivalent states of a given state, say, of process i, with
respect to process j, are found by tracing all transition sequences X's which
contain no transmission of any message to process j. The trace starts from
the given state, and stops when either a message transmission to process j
is encountered or a looping of transitions exists. The states reached by any
of these sequences X's are the R-equivalent states of the given state.

b. Generation of the set of messages %r„'s (function "getrstates")
Recall that the notation %r„ denotes the set of messages associated

to a given r-state in process i which can be received next by process j.
Thus, the set of messages %r̂ . for a given r-state consists of all those
messages which are transmitted to process j from the R-equivalent states
of the given r-state. While generating the R-equivalent states, these set of

25

messages can be found at the same time.
Furthermore, each of the r- states succ (r„, -x̂.) for a message

x„ in are also generated and kept in the r-state list The r-state
succ (r.j , -Xy) of a given r-state r.. is generated according to the
following steps:
i. Move I., through the transition -x.. to the next state, say, x'.j

(state 1 in Figure 4.5 (i), (ii), and (iii)).
ii. Starting from rj„ , move along the transition until either:

A transmission arc to process j is encountered (state 2 in
Figure 4.5 (i)). The r-state succ (rV , -x„) is then set to
the state where the trace stopped;
or, a transition branching exists (state 1 in Figure 4.5 (ii) and
(iii)).

If any of the branches consists of a message
transmission to process j, the r-state succ (r.. , -x.j) is set
to the branching state (state 1 in Figure 4.5 (ii)).

Otherwise, follow the branches to a state where the
branches join together (state 0 in Figure 4.5 (iii)), and repeat
step ii, with f.. set to the state where the branches joined.
However, if the branches do not join together (and they do
not contain any message transmission to process j), the r-state
succ (r.., -x..) stays at r'.. .

26

1D ID
(i) (i i) (i i i)

Figure 4.5. Illustration of the r-state searching strategy.

2. Construction of the reachability tree

The construction of the reachability tree is done by the depth-first
strategy. The configuration of the initial node of the reachability tree depends on
the algorithm used, as defined in Chapter 3. The generation of child nodes from
each frontier node is done systematically according to the following orders:
i. Valid moves are checked at the current state of each process in a

sequential order from process 1 to process N.
ii. Of the valid moves, message transmissions are performed first, in the same

order as were the transmission arcs entered by the user. Message receptions
are performed next in the same manner.

27

The checkings of design errors and unbounded channels are performed
while generating every new nodes according to the following sequence:
i. Unspecified receptions

Unspecified receptions are checked at the moment when a valid
reception is performed. Note that the checking only applies to message
receptions.

ii. Unbounded channels
The content of each message channel (used in Algorithm 2) or

message counter (used in Algorithm 1 and 3) is checked every time a new
node is aeated. For Algorithm 2, if the number of messages in any
channel exceeds the prespecified channel bound, the new node will be
terminated. For Algorithm 1 and 3, the unbounded message counters will
be set to the value OJ, as described in the algorithms.

iii. Duplicate (repeated) nodes
The configuration of the newly generated node is checked

throughout the entire reachability tree to see if there is repetition. The
new node is terminated if it is repeated.

iv. Stable nodes
If the newly generated node has all its message channels or

message counters empty, the node represents a stable state and is included
in the stable-state list

v. State deadlocks
If the node is a stable node while no valid move can be initiated,

the node represents a state deadlock and is included in the state-deadlock
list

2 8

The manipulations of r-states in the R-state approach are done according
to the following rules:

The initial r-states of each process are set to state 0.
A r-state does not move in the case of message transmission, unless the
transmission is initiated in an empty channel. If a message x.j is
transmitted from proess i to process j while the channel c.j is empty (or
the associated message counters t̂. 's all equal zero), then the r-state i.. is
set to the state s.where move (s., -x..) is the transmission that is taking
place.
The r-state r~ in process i moves to succ (r.. , -x..) when a reception
of message x in process j takes place. The r-state succ (rv , -x.j) is
found by refering to the r- state list associated to the channel ĉ..

The reachability tree construction procedures mentioned above are
implemented in functions "generate", "move", "setbound", "repeated", and "stable"
of the execution module.

Chapter 5

RESULTS AND EVALUATION

In order to illustrate the particular features of various approaches used in
VALIRA, test runs of protocols with different properties are examined in this chapter.
Each of the examples illustrated includes a protocol specification, represented by a
CFSM model, and the corresponding reachability tree. The reachability tree will be
printed horizontally from left to right For example, the tree:

0
/ \
4 1

/ \
3 2

will be printed as:
0 1 2

3

For simplicity, the branches in the reachability tree will not be shown on the
diagrams that appear later or on the actual reachability tree print out generated by
the VALIRA. More detailed explanations on all representations will be given in
Example 1.

5.1 EXAMPLES

The sample protocols given in this section are designed to illustrate the
particular features of various approaches used in VALIRA, with as little complexity
involved as possible.

0 t o 6 : node numbers
— : b r a n c h e s

29

30

Example 1 — An unbounded non-FIFO protocol
The protocol given in this example (Figure 5.1) is to demonstrate the

competency of Algorithm 1 for unbounded non-FIFO protocols. In the given protocol,
process 1 can keep sending a request message (message 1) until it is acknowledged by
process 2 (via message 2). Since there is no limitation on the number of type 1
message sent, c^ would be an unbounded channel.

Figure 5.2 (i) on the following page shows the reachability tree generated for
the protocol, with each global state in the tree represented by a node number. Each
repeated node in the reachability tree is signified by a transition followed by the node
number of the previous occured node. For example, (Pl-1)[1] in the first branch of
the tree represents that node 1 is repeated through the transition "process 1 transmits
message 1". The global state value where a numbered node represented can be found
in its corresponding entry within the node table shown in Figure 5.2 (ii). Say, entry 0
in the node table (i.e. (root)00000) corresponds to node 0; entry 1 (i.e. O(Pl-l)OOtoOO)

corresponds to node 1, and so on. The first number in each entry (0 for entry 1) is
the parent node number of the associated node. This is followed by a transition and
the global state value of the node. For instance, (Pl-1) in entry 1 represents the
transition "process 1 transmits message 1" initiated by the parent node (node 0). This
results in a current global state value OOuOO. Recall that the configuration <S;T> is

messages
1 : REQUEST
2 : GRANT
3 : RELEASE
states
0 : idle
1 : connect

P1 P2

Figure 5.1. An unbounded non-FIFO protocol.

31

used in Algorithm 1. Thus, in this protocol, OQwOO corresponds to <sl,s2;tl,t2;t3>,
with message counter tl, t2, and t3 associated with message type 1, 3, and 2,
respectively. Note that the symbol a> (generated according to the algorithm) in tl
indicates that the type 1 message is unbounded and consequently c^ as well. Besides
this, the protocol is validated to be free of any design error.

l e v e l
|0 |1 |2 |3 |4 |5 |6 |7 |8 |9 | 1 0 | 1 1 | 1 2 | 1 3

0 1 (P 1 - 1) [1]
2 (P 1 - 1) [2]

3 4 (P 1 - 1) [4]
(P2+1)[4]
(P2+3)[1]

(P2+1)[3]
(P2+1)[2]

(P2+1)[1]
5 (P 1 - 1) [2]

6 7 (P 1 - 1) [4]
(P2+3)[0]

(i) The reachability tree

0 (root)OOOOO 0(P1-1)00CJ00 1 (P 2 - 2) 0 1W 0 1 2 (P1+2) 1 IwOO
4 3 (P 1 - 3) 0 1 U 1 0 0(P2-2)01001 5(P1+2)11000 6(P1-3)01010

c o n f i g u r a t i o n : < s 1 , s 2 ; t 1 , t 2 ; t 3 >

c o u n t e r : t1 t 2 ; t 3
message : 1 3 ; 2

(ii) The node table

Figure 5.2. The reachability tree for Example 1.

32

Example 2 — A bounded FIFO protocol
In Section 2.2, an erroneous FIFO protocol was given as an example (Figure

2.2, Figure 4.2) to illustrate the four types of design errors. Here, the protocol is
validated using the conventional approach (Algorithm 2). The results obtained are
shown in Figure 5.3 and 5.4.

level
|0 |1 12 13 14 15 16 17 |8 |9 |10|11|12|13
0 1 2 (P1+1)[UR]

(P2+1)[UR]
3 4 5 6 7 (P2+4)[1]

(P2+4)[0]
8 9 10 11

12 (PI-1)[2]
(P1+1)[5]

(i) The reachability tree

0 (root)OOOOOOO
3 1(P2+1)1100000
6 5(P1-4)0201000
9 8(P1+2)0300000
12 0(P2-1)020010'0

0(PI-1) 1010000
3(P2-3)1200010
6(P1 -1)1211000
9(P1- 1)1310000

1(P2-1)1210100
4(P1+3)2200000
3<P2-2)1300001
10(P2+1)1200000

configuration : <s1,s2;t1,t2;t3,t4,t5>
counter : t1 t2 ; t3 t4 t5
message : 1 4 ; 1 3 2

(ii) The node table

Figure 5.3. The reachability tree for the modified SAAP.

Figure 5.3 shows the reachability tree of the protocol. Unspecified receptions
are denoted by [URj's, and with each [UR] preceded by the transition that was taken
place. Also note that the- reachability tree generated by the R-state approach for the
same protocol will be different from this one, since different node configurations are
being used in the two approaches.

33

SUMMARY
1. The list of deadlock node(s) :-

1 1
2. Stable states :-

P1 P2
0 0 (node 0)
1 1 (node 3)
2 2 (node 5)
0 3 (node 9)
1 2 (node 1 1)

3. Non-executable instruction(s) :-
process 2 : 3 -> 0 +4

4. The first unspecified reception is detected at node 2.
The lowest level UR is detected at node 2 (level 3).

5. The reachability tree is bounded at level 6.
Max channel queue length = 2.

Figure 5.4. An error summary for the modified SAAP.

Figure 5.4 is an error summary generated by the VALIRA, in which state
deadlocks and non-executable instructions in the protocol are reported. State ambiguities
are revealed in the stable-state table in the error summary. If there exists a column
such that two entries containing the same states, state ambiguity occurs. For example,
the pair (0,0) and (0,3) in the stable-state table indicates that state 0 in process 1
can coexist stably with either state 0 or state 3 in process 2. The above observation
can be extended to the multi- process case.

The results as noticed in the error summary are consistant with those discussed
in Section 2.2.

34

Example 3 — An unbounded FIFO protocol
A simple unbounded FIFO protocol is given here as an example to illustrate

how Algorithm 3 (the r-state approach) works on the unbounded protocols. The
protocol, as shown in Figure 5.5, consists of two states in each process. Since process
1 can transmit message 1 and 2 repeatedly, o.^ *s clearly an unbounded channel. In
this example, the r-state approach is applied, with the results shown in Figure 5.6.

m e s s a g e s P1 P2

Figure 5.5. An unbounded FIFO protocol.

35

0 |1

0 1

2

2

|3 4
• level
6 |7 |8 |9 |10 |11 |12 | 1 3

3 (P 1 - 2) [2]
4 5 (P 1 - 1) [4]

(P 2 + 2) [2]
(P 2 + 3) [3]

(P 2 + 1) [5]
7 8 (P 1 - 2) [5]

(P 2 + 1) [1]
(P 2 + 2) [0]

(i) The reachability tree

0 (root)OOOOOO
3 2 (P 1 - 1) IOOOCJO)
6 1 (P 2 + 1) 1 1 0 0 0 0

0 (P 1 - 1) 1 0 0 0 1 0
3 (P 2 + 1) 1 1 10C«XJ
6 (P 1 - 2) 0 1 1 0 0 1

1 (P 1 - 2) 0 0 0 0 O J O J
4 (P 1 - 2) 0 1 1 OC X J
7 (P 1 - 1) 1 1 1 0 1 1

configuration : < s 1 , s 2 ; r 1 2 ; r 2 1 ; t 1 , t 2 >
counter
message

t1 t 2
1 2

(ii) The node table

Figure 5.6. The reachability tree for Example 3.

36

Example 4 — An unbounded non-well-ordered FIFO protocol
The protocol shown in Figure 5.7 is similar to the one discussed in Example

3, but with an extra message transmitting at state 0 of process 1. It is obvious that
the protocol is non-well-ordered for it is possible that both message 1 and message 3
exist in the channel simultaneously. Thus, the conventional approach has to be applied.
The reachability tree constructed by the conventional approach, with a prespecified
channel bound of 3, is shown in Figure 5.8. The protocol is validated to be free of
design errors.

m e s s a g e s P1 P2

Figure 5.7. An unbounded non-well-ordered FIFO protocol.

37

0

0

— level
1 |2 |3 |4 |5 |6 |7

3
4

|8 |9 | 10 |11 | 12 |13
(P1-2)[UC]
5 (P1-1)[UC]

(P1-3)[UC]
(P2+2)[2]

(P2+2)[1]
(P1-2)[UC]

8

(P2+1)[12]
(P2+1)[14]

(P1-3)[13]

(P1-1)[UC]
(P1-3)[UC]

10
1 1
1 2

13 (P1-2)[

(P1-2)
(P2+3)
(P1-2)
(P2+3)
(P1-1)
(P1-3)
(P2+2)
9]

14 (P1-2)[12]

UC]
4]
UC]
7]
4]
7]
0]

[UC] channel bound exceeded

(i) The reachability tree

0 (root)OOOOO
4 3(P2+1)11101
8 7(P1-2)01012
12 9(P2+3)01001

0(P1-1)10100
4(P1-2)01102
8(P2+2)00011
7(P2+2)10010

1(P1-2)00101
2(PI-3)10111
9(P1-1)10111
13(P2+3)11000

configuration : <s1,s2;t1,t2,t3>
counter
message

t1 t2 t3
1 3 1

2(P1-1)10201
6(P2+1)1101 1
9(P1-3)10021

(ii) The node table

Figure 5.8. The reachability tree for Example 4.

38

Example 5 — A priority protocol
The model shown in Figure 5.9 is a priority protocol with the priority of

message 2 greater than that of message 1. The reachability tree generated is shown in
Figure 5.10, with no error detected.

Figure 5.9. A priority protocol.

39

level
0 |1 |2 |3 |4 |5 |6 |7
0 1 2 3 4 (P1+2)[1]

5 6 7

(P2-1)[14]
(P2-1)[13]

(P2+1)[15]
(P2+1)[6]

|8 |9 | 10 |11 |12 |13

8 9 10 11 (P1+2)[0]
12 (P1+1)[10]

13 14 (P1-2)[8]
(P1+1)[0]

15 (P2-2)[5]

(i) The reachability tree

0 (root)OOOOOO
3 2(P2+2)221000
6 5(P1+2)110000
9 8(P1+1)300100
12 8(P1+2)220010
15 7(P2+2)230000

0(P1- 1)101000
3(P2-2)201001
6(P1-2)210100
9(P2+2)320000
12(P2-2)200011

1(P1-2)201100
4(P2+1)210001
7(P2-1)200110
10(P2-2)300001
13(P1+2)100010

configuration : <s1,s2;t1,t2;t3,t4>
counter
message 11 t2 2 t3 t4 1 2

(ii) The node table

Figure 5.10. The reachability tree for Example 5.

40

Example 6 — A multi-process FIFO protocol
The three-process FIFO protocol shown in Figure 5.11 is a multi-process

version of the SAAP, with process 1 and 2 being the requesting processes. Note that
each message in the protocol is transmitting only to a single recipient, which is a
limitation of the current implementation. In other words, multi-casting is not allowed
in the current version of VALIRA. As a result of the non-multi-casting nature,
unspecified receptions in the protocol can be handled in the same way as in the
two-process case.

The reachability tree generated for this protocol consists of twenty-one levels
and includes up to eighty-one different global states. It is free of most design errors
except for state ambiguities as shown from the stable-state table in figure 5.12.

P1 P2 P3

4 6

m e s s a g e s s t a t e s

2
3
4
5
6
7

r e q u e s t 1
r e f u s e 1
g r a n t 1
r e l e a s e
r e q u e s t 2
r e f u s e 2
g r a n t 2

P r o c e s s 1
0 : i d l e
1 : r e q u e s t 1
2 : c o n n e c t

P r o c e s s 2
0 : i d l e
1 : r e q u e s t 2
2 ; c o n n e c t

P r o c e s s 3
0 : i d l e
1 : r e q u e s t 1
2 : r e q u e s t 2
3 : c o n n e c t

Figure 5.11. A multi-process FIFO protocol.

41

S t a b l e s t a t e s :-

P1 P2 P3

0 0 0
0 1 2
1 0 1
2 0 3
1 1 1
0 1 0
2 1 3
1 2 3
0 2 3
1 1 2
1 0 0

(node 0)
(node 6)
(node 10)
(node 13)
(node 19)
(node 21)
(node 23)
(node 54)
(node 56)
(node 70)
(node 72)

Figure 5.12. The stable-state table for Example 6.

The print out of the tree and the node table is not included because of the
size involved by the reachability tree.

5.2 EVALUATION

As an example to illustrate the performance of the current installation of
VALIRA running on a VAX 11/750, the packet level of the CCITT Recommendation
X.75 protocol was tested during light system-load period. The CFSM model of the
X.75 protocol used in the validation followed the one given in Vuong 83b, which
consists of twelve process states and ten message types in each of the two processes.
Since the protocol is found to be both unbounded and non-well-ordered, the
conventional approach was used instead of the R-state approach. With a channel
bound of two, VALIRA created 1,232 different global states and went up to as high
as level 121, within approximately 1,750 CPU sec, or two hours real time. The results
obtained contain neither state deadlock nor non-executable interactions, but several
unspecified receptions and state ambiguities exist as indicated in Vuong 83b.

42

In order to explore the physical limit of the current installation, the X.75
model was run with a high channel bound until the available memory space was
exhausted. This gave a total of approximately 15,000 different global states for the
entire run.

The above results only give a rough estimation of the global state limit when
the conventional approach is applied. The actual global state limit, however, depends
on a number of variables such as the number of processes and message types in the
protocol. All these would affect the memory space required in each global state
configuration.

When considering the space and time issues, notice that the approach used in
Algorithm 1 and 3 is superior to the conventional approach in the following aspects:
1. Less space is required for each global state, as message counter is used instead

of message channel.
2. There is more efficiency in comparing two global state values because no channel

queue is required.

As a consequence, FIFO protocols are more desirable to be validated using the
R-state approach. The conventional approach, however, is used in complement to the
R-state approach whenever a given protocol is found to be non-well-ordered.

Chapter 6

CONCLUSIONS

6.1 THESIS SUMMARY
The VALIRA, a protocol validation package which based on the conventional

approach and a newly developed approach in reachability analysis has been
implemented. This package provides users with an automated protocol validation
environment which can be used either for practical purposes or as an educational tool.

The various approaches used in VALIRA have been described in Chapter 3 of
the thesis. In summary, the completeness of the algorithms used with respect to each
type of protocol is recapitulated in the table below:

type of protocol algorithm/configuration completeness

1. non-FIFO Algm 1 <S,T> complete
2. FIFO (well-ordered) Algm 3 . <S,R,T> complete
3. FIFO (non-well-ordered, bounded) Algm 2 <S,C> complete
4. FIFO (non-well-ordered, unbounded) Algm 2 <S,C> no
5. priority (bounded) Algm 2 <s,c> complete
6. priority (unbounded) Algm 2 <s,c> no

A reachability tree construction algorithm is "complete" with respect to a
of protocol if and only if all possible global states of any given protocol of
corresponding type can be generated by the algorithm within a finite bound. As
noticed from the table, certain types of unbounded protocols cannot be completely
validated. Their protocol syntactic properties have been known to be undecidable [Brand
80, 81]. The level of completeness of these types of protocols, as validated via the
conventional approach (Algorithm 2), thus depends on the value of the channel bound
enforced in the analysis. In turn, this depends on the memory space available in the
machine used.

43

44

When a protocol to be validated is large and complex, such as the X.75
protocol, one can apply a decomposition technique as described in Vuong 82b, 83b.
The decomposition technique splits a large and complex protocol into smaller
components so that it becomes more manageable. Incorporation with this technique, the
application of VALIRA is greatly extended.

The competency of the reachability analysis system itself mainly depends on the
memory space and the CPU time available. These two factors are always being
considered to be the major barriers in reachability analysis. Nevertheless, with the
trend of modern technology development, the two limitations should hopefully not be
the dominating factors in the near future.

6.2 FUTURE WORK
Currently, VALIRA is running under UNIX on a VAX 11/750, yet it is

portable to any system that supports C. Further enhancements of the system are
possible, for instance:
1. The current implemention can be extended to cover the multi-process

multi-casting protocols.
2. The R-state approach could be enhanced by introducing a reception counter D

in the existing <S;R;T> configuration [Vuong 83a]. This would give an
expansion to the set of well-ordered protocols.

3. Since the system is designed to be portable, with slight modifications, it can be
available as a commercial production system.

BIBLIOGRAPHY

[Bochmann 78]
Bochmann, G. V., "Finite State Description of Communication Protocols,"
Computer Networks, pp. 361-372 (October 1978).

[Bochmann 80]
Bochmann, G. V. and Sunshine, C, "Formal Methods in Communication Protocol
Design," IEEE Trans, on Communications COM-28(4). pp. 624-631 (April 1980).

[Brand 80]
Brand, D. and Zafiropulo, P., "Synthesis of Protocols for Unlimited Number of
Processes," Proc. Trends and Applications: 1980 Computer Network Protocols,

NBS, (May 1980).
[Brand 81]

Brand, D., "On Communicating Finite-State Machines," IBM Research Report RZ
1053 (January 1981).

[Gouda 76]
Gouda, M. G. and Manning, E. G., "On the Modeling, Analysis, and Design of
Protocols - A Special Class of Software Structures," Pro. 2nd International

Computer on Software Engineering, (October 1976).
[Merlin 76]

Merlin, P. M. and Farber, D. J., "Recoverability of Communication Protocols -
Implementations of a Theoretical Study," IEEE Trans. Communications COM-24(9)
pp. 1036-1043 (September 1976).

[Rudin 78]
Rudin, H., West, C, and Zafiropulo, P., "Automated Protocol Validation: One
Chain of Development," Computer Networks, pp. 373-380 (October 1978).

[Schwabe 81]
Schwabe, D., "Formal Specification and Verification of a Connection Establishment
Protocol," Proceedings, Seventh Data Communications Symp., Mexico City

45

46

(October 1981).
[Stenning 70]

Stenning, N. V., "A Data Transfer Protocol," Computer Networks, (1) pp. 99-110
(1976).

[Sunshine 78]
Sunshine, C. A., "Survey of Protocol Specification and Verfication Techniques,"
Computer Networks, (October 1978).

[Symons 80a]
Symons, F. J. W., "Introduction to Numerical Petri Nets, A General Graphical
Method of Concurrent Processing Systems," Australian Telecommunication Research

14(1) pp. 28-32 (1980).
[Symons 80b]

Symons, F. J. W., "The Verification of Communication Protocols Using Numerical
Petri Nets," Australian Telecommunication Research 14(1) pp. 34-38 (1980).

'[Vuong 82a]
Vuong, S. T. and Cowan, D. D., "Reachability Analysis of Protocols with
non-FIFO Channels," Proc. COMPCON Fall 82, (September 1982).

[Vuong 82b]
Vuong, S. T. and Cowan, D. D, "A Decomposition Method for the Validation
of Structured Protocols," Proc. INFOCOM Conference, (April 1982).

[Vuong 83a]
Vuong, S. T. and Cowan, D. D, "Reachability Analysis of Protocols with FIFO
Channels," Proc. ACM SIGCOMM '83 Symp. on Communications Architecture

and Protocols, (March 1983).
[Vuong 83b]

Vuong, S. T. and Cowan, D. D., "Automated Protocol Validation via Resynthesis:
The CCITT X.75 Packet level Recommendation as an Example," Journal of

Telecommunication Networks, pp. 153-176 (Summer 1983).

47

[West 78]
West C. H. and Zafiropulo, P., "Automated Validation of a Communication
Protocol: The CCITT X.21 Recommendation," IBM J. Research and Development

22 pp. 60-71 (January 1978).
[Zafiropulo 78]

Zafiropulo, P., "Protocol Validation by Dulogue-Matrix Analysis," IEEE Trans.

Communications pp. 1187-1194 (August 1978).
[Zafiropulo 80]

Zafiropulo, P., West, C. H., Cowan, D. D. and Brand, D., "Towards Analyzing
and Synthesizing Protocols," IEEE Trans. Communications COM-28(4) pp. 651-660
(April 1980).

APPENDIX A - VATJRA USER'S M A N U A L

I. INTRODUCTION

VALIRA is a protocol validation package that takes the transitions of a
protocol (specified in a CFSM model) and performs the validation via reachability
analysis. The syntactic properties of the protocol, such as the state ambiguities, the
state deadlocks, the unspecified receptions, the non-executable interactions, and the
unbounded channels, will be analysed and reported.

The commands used in VALIRA are self-explanatory. Basically, a user can
apply the package without reading the command explanation part of the manual
(however, the output representation part must be read). Commands can be entered in
either upper or lower case. Illegal commands or inputs will be signalled by a "bid"
sound for re-entering.

This manual is intended as a user reference. As for the internal structures or
background theories of VALIRA, interested users can refer to the corresponding part of
the thesis.

H. HOW TO RUN VALIRA

VALIRA is currently installed on our department's CS VAX. It is invoked with
the command

/user/vuong/protoval/package
VALIRA provides a two-level interactive environment which includes :
I. The interpreting level, where, in general, the user can monitor the validation

process.
2. The editing level, where the user can use the editing commands provided to

make changes on the entered transitions. The editing level is invoked on the
interpreting level, so it is one level below.

48

49

A. The invocation phase
Upon invocation of the package, the user automatically enters the interpreting

level, and will be prompted by the interpreter to respond with either "y" or "n" for
information required by the package. The examples below show the initial invocation
phase for each type of protocols.

Example A.1 Running a two-process priority protocol

Execution begins

How many processes ? 2
Priority channels ? [y|n|q] y
Please enter channel bound ? 3

Example A.2 Running a two-process non-FIFO protocol

Execution begins

How many processes ? 2
Priority channels ? [yln|q] n
FIFO channels ? fy|n|qj n

Example A.3 Running a two-process FIFO protocol

Execution begins

How many processes ? 2
Priority channels ? ty[n|q] n
FIFO channels ? [y|n|qj y
Please enter channel bound ? 3

At this point, the user can choose between using the R-state approach or
the conventional approach. In general, the R-state approach should be applied,
since it is more efficient However, the R-state approach cannot validate every

50

types of FIFO protocols. The message "non-well-ordered protocol" will appear if
the R-state approach fails to work. In that case, the conventional approach has
to be used.

B. The input phase

When the queries in the invocation phase have responded, the interpreter will
enter the input phase where the user is prompted to input the transitions for each
process.

Enter transitions for process 1 :->0 1 -1 >1 0 1 >

The prefix character in the input phase is a ">", and the transitions are entered in
the form:

0 1 -1

where
0 is the initiating process state of a transition
1 is the resulting process state of a transition
- 1 is the transition arc between the two process states

Thus, the above input corresponds to the transition:
-1

0 > 1

The input phase is terminated by entering a null line.
The input of the process states and the message types have the following

restrictions:
process state: must be numbered from 0 upto at the maximum of 35. Note that
the initial state of each process must be state 0.
message type: must be numbered within 1 and 35.

51

C. The editing phase

Every time an input phase is terminated, the interpreter will automatically
invoke the transition editor so that changes are possible. The prefix character given by
the transition editor is a which is followed by entering one of the following
commands:

h ... p r i n t t h e message
s ... s t o p e d i t i n g
c ... c l e a r a l l t r a n s i t i o n s
p ... p r i n t a l l t r a n s i t i o n s
r n . r e p l a c e t r a n s i t i o n n
d n . d e l e t e t r a n s i t i o n n
i n . i n s e r t t r a n s i t i o n (s) a f t e r t r a n s i t i o n n

The usage of the above commands is like in any simple line editor.

D. The execution phase

The interpreter starts the execution phase when the transitions of all. processes
are entered. The information entered are echoed to the user, followed by the
queries :

E n t e r node l i m i t o f t h e t r e e :

Do y o u want t h e r e a c h a b i l i t y t r e e p r i n t e d ? [y | n | q] :

They should be replied accordingly. The node limit entered would be used as the
global state limit of the reachability tree.

The generation of the reachability tree starts at this point Shown on the
screen will be the print out of a reachability tree, a node table, and an error
summary. Some special notations used in the output will be explained futher in
section III.

52

E. The command phase

The interpreter enters the command phase after the execution on generating the

reachability tree. A list of commands will be printed for selection, as shown below:

1. P r i n t the r e a c h a b i l i t y t r e e
2. P r i n t the node t a b l e
3. P r i n t the summary
4. E d i t t r a n s i t i o n s
5 . Run
6 . Quit

Item number ?

These commands provide the user with an environment in which the protocol entered

can be modified and rerun. The commands are selected by entering its item number.

Say, if "4" is entered, the interpreter will prompt

p roce s s number ?

The process number of the desired process Should then be entered. The transition

editor (Section II C) will be invoked to edit the transitions of that process. Upon

termination (by the "s" command in the transition editor), the control will be returned

to the interpreter in the command phase.

53

EEL Output representations
This section describes the representations used in printing the reachability tree,

the node table, and the error summary. To illustrate this, the sample run of an

erroneous protocol (Figure A.1) is shown in Figure A.2.

Figure A . l . An erroneous protocol.

Figure A.2. A sample terminal session.

E x e c u t i o n b e g i n s

V A LIRA V e r s i o n 1

How many p r o c e s s e s ? 2
P r i o r i t y c h a n n a l s ? [y | n | q] n
F I F O c h a n n e l s ? [y | n | q] y
Do y o u want t h e R - s t a t e a p p r o a c h ? [y | n | q] n
P l e a s e e n t e r c h a n n e l b ound ? 3
E n t e r t r a n s i t i o n s f o r p r o c e s s 1 :-
Sample i n p u t : 0 1 -1
(t e r m i n a t e w i t h a n u l l l i n e)
> 0 1 -1
> 0 2 1
> 1 0 2
> 1 2 3
> 2 0 -4
>
: s
E n t e r t r a n s i t i o n s f o r p r o c e s s 2 :-
Sample i n p u t : 0 1 -1
(t e r m i n a t e w i t h a n u l l l i n e)
>0 1 1
>0 2 -1
>1 2 -3
>1 3 -2
>3 0 4
>3 2 1
>2 0 4
>
: s

R e a c h a b i l i t y a n a l y s i s o f p r o t o c o l w i t h F I F O c h a n n e l s

P r o c e s s 1 :
0 -> 1 -1
0 -> 2 +1
1 -> 0 +2
1 -> 2 +3
2 -> 0 -4

P r o c e s s 2 :
0 -> 1 +1
0 -> 2 -1
1 -> 2 -3
1 -> 3 -2
3 -> 0 +4
3 -> 2 +1
2 -> 0 +4

p r o c e s s 1 t r a n s m i t s 2 m e s s a g e (s) : 1 4
p r o c e s s 2 t r a n s m i t s 3 m e s s a g e (s) : 1 3 2

E n t e r node l i m i t o f t h e t r e e : 100
Do y o u want t h e r e a c h a b i l i t y t r e e p r i n t e d ? [y | n | q] y

l e v e l
|0 | 1 |2 |3 |4 |5 |6 |7 |8 |9 | 10

0 1 2 (P 1 + 1) [U R]
(P2+1)[UR]

3 4 5 6 7 (P2+4)[1]
(P 2 + 4) [0]

8 9 10 11
12 (P 1 - 1) [2]

(P1 + 1)[. 5]

T h e r e a r e a t o t a l o f 12 d i f f e r e n t n o d e s
Do y o u want t h e node t a b l e ? [y | n | q] y

Node r e p r e s e n t a t i o n :
(s i , s 2 ; t 1 , t 2 ; t 3 , t 4 , t 5)

M e s s a g e c o u n t e r : t 1 t 2 t 3 t 4 t 5
A s s o c i a t e d message t y p e : 1 4 1 3 2

0
3
6
9

12

(r o o t) 0 0 0 0 0 0 0 0 (P 1 - 1) 1 0 1 0 0 0 0 1 (P 2 - 1) 1 2 1 0 1 0 0
1 (P 2 + 1) 1 1 0 0 0 0 0 3 (P 2 - 3) 1 2 0 0 0 1 0 4 (P 1 + 3) 2 2 0 0 0 0 0
5 (P 1 - 4) 0 2 0 1 0 0 0 6 (P I - 1) 1211000 3 (P 2 - 2) 1 3 0 0 0 0 1
8 (P 1 + 2) 0 3 0 0 0 0 0 9 (P 1 - 1) 1 3 1 0 0 0 0 1 0 (P 2 + 1) 1 2 0 0 0 0 0
0 (P 2 - 1) 0 2 0 0 1 0 0

E R R O R S U M M A R Y

1. The l i s t o f d e a d l o c k n o d e (s)
1 1

2. S t a b l e s t a t e s :-

PI P2

0 0 (node 0)
1 1 (node 3)
2 2 (node 5)
0 3 (node 9)
1 2 (node 11)

3. N o n - e x e c u t a b l e i n s t r u c t i o n (s) :-
p r o c e s s 2 : 3 -> 0 +4

4. The f i r s t u n s p e c i f i e d r e c e p t i o n i s d e t e c t e d a t node
The l o w e s t l e v e l UR i s d e t e c t e d a t node 2 (l e v e l 3) ,

5. The r e a c h a b l i t y t r e e i s b o u n d e d a t l e v e l 6.

Max c h a n n e l queue l e n g t h = 2.

56

Choose one item from the list below :
1. Print the reachablisty tree
2. Print the node table
3. Print the summary
4. Edit transitions
5. Run
6. Quit
Item number ? 6
End of run

A. Representation of the reachability tree
As noted in Figure A.2, the reachability tree is printed horizontally from left

to right, with each node in the tree represented by a node number. Figure A.3' shows
the same reachability tree along with branches connecting between every pair of parent
and child nodes. For simplicity, these branches are not shown in the actual print out

level

10 | 1 12 13 14 15 16 17 18 19 | 10
0 1 2 (P1 + 1)[UR]

I (P2+1)[UR]
I 3 4 5 6 7 (P2 + 4) [1]

I (P2 + 4)[0]
I 8 9 -1 0—1 1

1 12—(PI —1) [2]
1 (P1 + 1)[5]

Figure A.3. A reachability tree with branches shown.

In most cases, the reachability tree printed would go beyond the right margin.
To solve this problem, the portions which go beyond the right margin will be
restarted printing from the left margin, on a new level scope. An example of this is
shown in Figure A.4 and Figure A.5.

0

0

1 |2 |3 I — level -
4 |5 |6

(P1+1)[UR]
(P2+1)[UR]
4 5 6 7

15 16 17
20 (PI-1)[2]

(P1+1)[5]
18 19

|7

m a r g i n — >
8 |9 | 10

9 10 11 12 13
1 4

Figure A.4. A reachability tree that goes beyond the right margin.

level

0 | 1 12 13 |4 |5 |6 |7 |8 |9 |10
0 1 2 ' (P1 +1)[UR] (P2+1)[UR] 3 4 5 6 7 8 9 1011 level
11 I 12 I13 I14 I15 I16 I17 I18 I19 I 20 |21
12 13
1 4

Xgvel *
0 |1 |2 |3 |4 |5 |6 |7 |8 |9 |10

15 16 17 18 19
20 (P1-1)[2]

(P1+1)[5]

Figure A.5. A reachability tree printed in different scopes of levels.

58

To represent the different kind of nodes in the reachability tree, the following
notations are being used:
1. Unspecified node

An unspecified node indicates an unspecified reception. It is represented
by the notation:

(Pi+m)[UR]
where i is the process number, m is the message type, and (Pi+m) represents
the transition that initiates the unspecified reception. For example, the
"(Pl + l)[UR]n node shown in Figure A.3 represents that "process 1 receives
message 1 leading to an unspecified reception".

2. Repeated nodes
A repeated node is represented by the notation:

(Pi + m)[n]
where n is the node number of the duplicated node, and (Pi+m) has the same
meaning as in the unspecified node representation. Thus, the node "(Pl-1)[2]"
. represents that "process 1 transmits message 1 resulting in a duplicated node
having the same global state value as node 2".

3. Unbounded nodes
An unbounded node appears when the number of messages in a channel

exceeds a prespecified channel bound. It is represented by the notation:
(Pi-m)[uq

where (Pi-m) has the same meaning as in the unspecified node representation.
Thus, the node "(P1-2)[UC]" represents that "process 1 transmits message 2"
resulting in the channel bound being exceeded".

4. Others
Other than the above, all the nodes in the reachability tree are

represented by sequentially ordered node numbers. The global state value of these
nodes can be found in its corresponding entry within the node table, as will be
described shortly.

59

B. Representation of the node table
It is assumed the user has a general understanding of the following terms: 4

configuration <S;T> = <ŝ ,...,ŝ ;tj ,-XM >

where N is the total number of processes and M is the total
number of message types,

local state s.— is the current state of process i.
message counter t^— is the number of type-k messages.

As noticed from Figure A.2, the node table consists of all the nodes in the
reachability tree. They are ordered according to their node numbers, from node 0 (root
node) to the last node. Each node entry in the node table is composed of three
parts:

<parent node numberXtransitionXglobal state>
For example, node 1 in Figure A.2:

0(P1-1)1010000
represents the transition "process 1 transmits message 1" initiated at node 0 resulting
in a global state 1010000.

The configuration of the global states is printed right above the node table. In
this case, the configuration <sl,s2;tl,t2;t3,t4,t5> is used. To avoid confusions, the local
States and message types are limited to a maximum number of 35. The numbers from
10 to 35 are printed as A to Z, respectively. Thus, a global state having si=11 and
s2 = 2 will be printed with sl,s2 = B2 rather than sl,s2 = 112 which is ambiguous. The
message type associated with each message counter is also printed as in Figure A.2.

When the R-state approach is used, there will be an extra set of state
pointers — the r-state pointers — included in the configuration (i.e.<S;R;T>). Each
message channel, in this case, is associated to a r-state pointer. A r-state pointer
indicates the next message to be received at the corresponding channel by pointing to
4 To avoid considerable overlappings, the terms mentioned are not explained in this
manual. However, users are urged to refer to Chapter 3 of the thesis for complete
explanations.

60

the state where the message was sent
As a final note, if the symbol o> appears in a message counter, the message

counter are detected to be unbounded and consequently the corresponding channel as
well.

C. The error summary
The error summary is self-explanatory, yet attention is required to the

stable-state table. If there exists a column in the stable-state table such that two
entries containing the same state, then state ambiguity occurs. For example, the pair
(0,0) and (0,3) in the stable-state table shown in Figure A.2 indicates that state 0 in
process 1 can coexist stably with either state 0 or state 3 in process 2. The above
observation can be extended to the muti-process case.

— THE END —

