
BIDIRECTIONAL HEURISTIC SEARCH AND SPECTRAL S-BOX
SIMPLIFICATION

FOR THE CRYPTANALYSIS OF THE NBS DATA ENCRYPTION STANDARD

by

E r i c Alexander G u l l i c h s e n
B.Sc.(Hons.), U n i v e r s i t y of Manitoba, 1981

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

i n

THE FACULTY OF GRADUATE STUDIES

DEPARTMENT OF COMPUTER SCIENCE

We accept t h i s t h e s i s as conforming

to the r e q u i r e d standard

THE UNIVERSITY OF BRITISH COLUMBIA

February 1983

(c) E r i c Alexander G u l l i c h s e n , 1983

In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f the
requirements f o r an advanced degree a t the U n i v e r s i t y
of B r i t i s h Columbia, I agree t h a t the L i b r a r y s h a l l make
i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and study. I f u r t h e r
agree t h a t p e r m i s s i o n f o r e x t e n s i v e copying o f t h i s t h e s i s
f o r s c h o l a r l y purposes may be granted by the head of my
department o r by h i s or her r e p r e s e n t a t i v e s . I t i s
understood t h a t copying or p u b l i c a t i o n o f t h i s t h e s i s
f o r f i n a n c i a l g a i n s h a l l not be allowed without my w r i t t e n
p e r m i s s i o n .

Department of Computer Science

The U n i v e r s i t y o f B r i t i s h Columbia
1956 Main Mall
Vancouver, Canada
V6T 1Y3

Date March 3, 1983.

DE-6 (3/81)

ABSTRACT

D e t a i l s o f t h e N a t i o n a l B u r e a u o f S t a n d a r d s D a t a E n c r y p

t i o n S t a n d a r d (DES) a r e e x a m i n e d , and t h e s t r e n g t h o f t h e

c r y p t o s y s t e m f o u n d t o l i e i n i t s s u b s t i t u t i o n box (S - b o x)

c o m p o n e n t s . An u n s u c c e s s f u l a t t e m p t i s made t o d i s c o v e r sym

m e t r i e s i n t h e S-box f u n c t i o n s u n d e r p e r m u t a t i o n a n d / o r com

p l e m e n t a t i o n of v a r i a b l e s .

The p r o b l e m o f c r y p t a n a l y z i n g DES i s t h e n shown t o be

e q u i v a l e n t t o a p r o b l e m o f t r e e s e a r c h . T e c h n i q u e s w h i c h

c a n r e d u c e t h e number o f t r e e n o d e s w h i c h n e e d be v i s i t e d t o

e f f e c t a c r y p t a n a l y s i s a r e , i n v e s t i g a t e d . The l i n e a r i z a t i o n

o f t h e S-box f u n c t i o n s by c o e f f i c i e n t t r a n s l a t i o n s i n t h e

Hadamard s p e c t r a l d o m a i n i s f o u n d t o be h i g h l y e f f e c t i v e i n

r e d u c i n g s e a r c h t r e e s i z e . F o r a b i d i r e c t i o n a l t r e e s e a r c h

w h i c h e m p l o y s t h e l i n e a r i z e d S - b o x e s , t h e number o f n o d e s

w h i c h n e e d be v i s i t e d t o c r y p t a n a l y z e DES i s shown t o be on

t h e o r d e r o f t h e key s p a c e s i z e . The u s e o f an AND/OR

s e a r c h t r e e s t r u c t u r e w i t h key b i t c o n s t r a i n t s s t o r e d a t t h e

l e a v e s e n s u r e s t h a t e a c h node n e e d be v i s i t e d o n l y o n c e .

G i v e n t h a t t h e work i n v o l v e d i n v i s i t i n g a node i s l e s s

t h a n t h a t r e q u i r e d f o r a k e y t r i a l , t h i s key s e a r c h method

r e p r e s e n t s an i m p r o v e m e n t o v e r t h e c r y p t a n a l y t i c t e c h n i q u e

o f e x h a u s t i v e key s e a r c h .

T h e s i s S u p e r v i s o r

- i i -

CONTENTS

ABSTRACT i i

Chapter page

I. INTRODUCTION 1

I I . S-BOX COMPLEXITY: STRENGTH OF DES 6

I I I . AN INVESTIGATION OF S-BOX GROUP PROPERTIES 10

Theory: Permutation and Complementation
o p e r a t o r s 10

Implementation f o r DES 17
A p p l i c a t i o n to DES 22

IV. CRYPTANALYSIS BY S-BOX APPROXIMATION 24

V. QUINE-MCCLUSKEY MINIMIZATION OF S-BOXES 27

Quine-McCluskey: Implementation 27
S e l e c t i o n of A l t e r n a t i v e Terms by REDUCE . . . 30
I n d i v i d u a l Term C o n t r i b u t i o n : RANK-TERMS . . . 33

VI. SELECTION OF THE BEST SUM-OF-PRODUCT TERMS 35

C o m b i n a t o r i a l l y Exhaustive Best-Set D i s c o v e r y . 35
A H i e r a r c h i c a l Approach to Best Set D i s c o v e r y . 41
N-ary Tree Implementation 45

V I I . SPECTRAL DOMAIN S-BOX ANALYSIS 53

Orthogonal Transformations t o the S p e c t r a l
Domain: Theory 53

S-Box complexity i n the S p e c t r a l Domain 59
S p e c t r a l T r a n s l a t i o n s 61
Implementation f o r DES 63

V I I I . UNIDIRECTIONAL CRYPTANALYTIC SEARCH 69

Search S t r a t e g y 78
Nodes i n the Search Tree 82

D e s c r i p t o r Node: SUPER 82
Data Node: RNODE 84
Data Node: FNODE 85
Data Node: XNODE 89

- i i i -

The P L / I P r o c e d u r e : SEARCH 90
The R_EXPAND p r o c e d u r e 92
The F_EXPAND p r o c e d u r e 94
The X_EXPAND p r o c e d u r e 95
The BACKTRACK p r o c e d u r e 96

A p p l i c a t i o n t o a 2-Round DES 99

I X . KEY SEARCHES OF GREATER SOPHISTICATION 102

C o m p u t a t i o n a l C o m p l e x i t y and B i d i r e c t i o n a l
S e a r c h 102

D i g r e s s i o n : S e a r c h a s t h e S o l u t i o n o f B o o l e a n
E q u a t i o n s 109

S y m b o l i c S i m p l i f i c a t i o n M e t h o d s 114
E x p r e s s i o n S i z e 114
P r o b l e m s o f S i m p l i f i c a t i o n 115
A PROLOG S y m b o l i c S i m p l i f i e r 117

A M o d i f i e d , K n o w l e d g e - I n t e n s i v e Key S e a r c h . 120
AND/OR E x p r e s s i o n T r e e F o r m a t i o n 122

I m p l e m e n t a t i o n o f t h e T r e e F o r m a t i o n
A l g o r i t h m 125

AND/OR E x p r e s s i o n T r e e T r a v e r s a l 129
OR- m e r g i n g o f S u m - o f - P r o d u c t s

E x p r e s s i o n s 130
AND-merging o f S u m - o f - P r o d u c t s

E x p r e s s i o n s 135

X. CONCLUSIONS 137

REFERENCES 143

LIST OF TABLES v

LIST OF FIGURES v i

APPENDIX A 164

APPENDIX B 1 7 0

APPENDIX C 1 8 0

APPENDIX D 1 9 6

APPENDIX E 2 0 5

APPENDIX F 2 1 3

APPENDIX G 2 3 0

APPENDIX H 2 3 3

APPENDIX I 240
- i v -

LIST OF TABLES

PAGE #

1. ^^inimal Sum-of-Products terms f o r each S-box
and Output 1 4 5

2. C(f) C a i p l e x i t y M e t r i c f o r S-boxes Before and
A f t e r T r a n s l a t i o n 153

- v -

LIST OF FIGURES

Page #

1. Exhaustive Tree Search Using No S-box Reduction 154

2. Complete Pa r t i t i on ing o f a Matrix 155

3. Essent ia l and A l t e rna t i ve Sum-of-Product Terms 156

4. Representation of Quasi-Best Set Search Tree 157

5 . Permutation Cutof f During N-ary Tree Expansion 158

6. Pa r t i a l Search Tree fo r 2-Round DES 159

7. Nodes in the Cryptana ly t i c Search Tree 160

8. B id i r e c t i ona l Search Tree 161

9. 2-Round Search Tree of Uniform Structure 162

10. Stages in the Development of the AND/OR Search Tree 163

- vi -

ACKNOWLEDGEMENTS

The author wishes to thank the f o l l o w i n g people, without

whom the gen e r a t i o n of t h i s t h e s i s would have been impossi

b l e : Dr. R.G. Stanton and NSERC f o r remuneration i n v a r i o u s

forms; Dr. Paul Gilmore, f o r a c c e p t i n g my t h e s i s q u i c k l y ,

and my a d v i s o r Dr. C y r i l Leung, for not a c c e p t i n g my t h e s i s

q u i c k l y ; Dr. D.M. M i l l e r , my surrogate t h e s i s a d v i s o r at the

U n i v e r s i t y of Manitoba, f o r many i n v a l u a b l e and e s o t e r i c

ideas about the m a n i p u l a t i o n and m i n i m i z a t i o n of Boolean

f u n c t i o n s ; Dr. Hugh W i l l i a m s f o r wry p s y c h o l o g i c a l encour

agement and a d v i c e . F i n a l l y , I wish to acknowledge M i c a e l a ,

who helped i n her own ways.

- v i i -

Chapter I

INTRODUCTION

In January of 1977, the N a t i o n a l Bureau of Standards

(NBS) of the U n i t e d S t a t e s of America proposed a data en

c r y p t i o n standard (DES) which they recommended be adopted

fo r the purposes of c r y p t o g r a p h i c p r o t e c t i o n of commercial

and n o n - m i l i t a r y governmental data [26], The standard i s

designed to be implemented i n hardware, and may be employed

fo r the purposes of both p r i v a c y and the a u t h e n t i c a t i o n of

messages [3,4].

An i n t e g r a l p a r t of the s p e c i f i c a t i o n of any cryptosystem

i s some i n d i c a t i o n of the nature of the s e c u r i t y t h r e a t

which the system i s designed to s u c c e s s f u l l y r e s i s t . The

types of a t t a c k to which any system may be exposed are usu

a l l y d i v i d e d i n t o three c a t e g o r i e s [3,4]. The l e a s t potent

of these i s the " c i p h e r t e x t o n l y " a t t a c k , i n which the c r y p -

t a n a l y s t has i n h i s p o s s e s s i o n only encrypted data, with no

d i r e c t knowledge concerning the p l a i n t e x t . Cryptosystems un

a b l e to r e s i s t such an a t t a c k are very f e e b l e , and not i n

modern use. The " p l a i n t e x t " a t t a c k i s more d i f f i c u l t f o r a

cryptosystem to r e s i s t . Here, the c r y p t a n a l y s t has knowledge

of the b l o c k s of p l a i n t e x t which correspond to the blocks of

encrypted t e x t . In t h i s case, only the e n c r y p t i o n key, K,

- 1 -

2

remains to be d i s c o v e r e d . F i n a l l y , the most powerful of a l l

a t t a c k s to which any given cryptosystem may be exposed i s

the "chosen p l a i n t e x t a t t a c k " , i n which the c r y p t a n a l y s t has

po s s e s s i o n of corres p o n d i n g b l o c k s of p l a i n t e x t (P) and c i -

p h e r t e x t (C), as i n the case of the p l a i n t e x t a t t a c k , and

furthermore that the P are s e l e c t e d by the c r y p t a n a l y s t .

Although s i t u a t i o n s of known or chosen p l a i n t e x t a t t a c k

on a cryptosystem may tend to a r i s e f a i r l y i n f r e q u e n t l y i n

the r e a l world, DES was designed to r e s i s t even such an a t

tack. In f a c t , NBS cl a i m s that

"... no technique other than t r y i n g a l l p o s s i b l e
keys using known input and output f o r DES w i l l
guarantee f i n d i n g the chosen key." [26]

NBS co n t i n u e s i t s d i s c u s s i o n of the s e c u r i t y of DES and

i n d i c a t e s that there e x i s t a very l a r g e number of p o s s i b l e

keys of 56 b i t s (about 7 x l 0 1 6) as used i n DES, i n order t o

a s s e r t that the s e c u r i t y of the system i s adequate and w i l l

c o n tinue to be so, given the c u r r e n t s t a t e of computer t e c h

nology, with the standard to be reviewed i n f i v e y e a r s .

In the author's view such s u p e r f i c i a l reasoning i s poten

t i a l l y dangerous, and appears tantamount to a s s e r t i n g that a

simple s u b s t i t u t i o n c i p h e r as a p p l i e d to a n a t u r a l language

i s q u i t e secure, s i n c e there are 26! p o s s i b l e keys which

must be t r i e d , to guarantee breaking the system. To put

f o r t h such a naive c l a i m i n d i c a t e s that one i s e i t h e r over

l o o k i n g or p u r p o s e f u l l y i g n o r i n g a wide range of f a c t o r s

which may indeed be of a s s i s t a n c e i n breaking the c i p h e r

3

system, such as an u n d e r l y i n g s t a t i s t i c a l s t r u c t u r e to the

language being encrypted [2 1] , or a f e a s i b l e means of a l g o r -

i t h m i c a l l y or h e u r i s t i c a l l y " i n v e r t i n g " the e n c r y p t i o n a l

gorithm i n order to sol v e f o r the key K from the given P-C

p a i r s . The former may be of i n t e r e s t with respect to the

c r y p t a n a l y s i s of t e x t of known s t r u c t u r e encrypted with the

DES a l g o r i t h m . However, t h i s t h e s i s w i l l d e a l p r i n c i p a l l y

w ith p a r t i c u l a r h e u r i s t i c techniques f o r the purposes of an

" i n v e r s i o n " of the DES e n c r y p t i o n a l g o r i t h m .

I t i s r e a l i z e d that at present there e x i s t no good theo

r e t i c a l t o o l s f o r pr o v i n g the i m p o s s i b i l i t y of breaking a

given p r a c t i c a l cryptosystem, and that the demonstration of

the s e c u r i t y of any such system i s u s u a l l y p r o v i d e d by the

i n a b i l i t y of expert c r y p t a n a l y s t s to perform a s u c c e s s f u l

c r y p t a n a l y s i s . Indeed, with the exce p t i o n of e n c r y p t i o n s

based on the Vernam system or i t s v a r i a n t s , no cryptosystems

are t h e o r e t i c a l l y secure, but are simply d i f f i c u l t t o break

given the best known a l g o r i t h m s f o r performing v a r i o u s tasks

[2 1] .

In the m a j o r i t y of i n s t a n c e s , the most e x p l i c i t q u a n t i f i

c a t i o n of s e c u r i t y of a cryptosystem which can be pr o v i d e d

i s to i n d i c a t e that breaking the system w i l l be "at l e a s t as

hard as" some task assumed to be of s u b s t a n t i a l time com

p l e x i t y as a f u n c t i o n of i n s t a n c e l e n g t h . For i n s t a n c e , the

d i f f i c u l t y of breaking the well-known p u b l i c key c r y p t o s y s

tem of R i v e s t e t . a l . [2 0] i s assumed to be at l e a s t as hard

4

as f a c t o r i n g a very l a r g e number chosen f o r use i n the sys

tem.

With respect to the above d i s c u s s i o n , NBS may now be

c r i t i c i z e d on at l e a s t two accounts. F i r s t l y , NBS has r e f

used to provide any t h e o r e t i c a l j u s t i f i c a t i o n f o r the sup

posed s e c u r i t y of DES, and has only i n d i c a t e d that about 17

man-years of e f f o r t were expended i n the c e r t i f i c a t i o n of

the standard and that the system i s thus secure. N e i t h e r

NBS, nor the N a t i o n a l S e c u r i t y Agency (NSA) which p a r t i c i

pated i n t h i s c e r t i f i c a t i o n p r o c e s s , have r e l e a s e d any de

t a i l s of the study which a p p a r e n t l y i n d i c a t e d the s t r e n g t h

of the system. S i m i l a r l y , no e x p l a n a t i o n f o r the s t r u c t u r e

of the e n c r y p t i o n a l g o r i t h m has been o f f e r e d . Such a n o t i c e

a b l e omission of i n f o r m a t i o n has l e d some authors [2,5] to

s p e c u l a t e that DES has concealed w i t h i n i t some "trap-door"

i n f o r m a t i o n which would allow those i n p o s s e s s i o n of such

d e t a i l s (i . e . , the NSA) to break the system with r e l a t i v e

ease.

Secondly, v a r i o u s attempts at c r y p t a n a l y s i s of DES have

i n d i c a t e d t h at the NBS c l a i m that a l l p o s s i b l e keys must be

t r i e d to ensure breaking the system i s exaggerated. Heilman

e t . a l . [5] d i s c o v e r e d a symmetry under complementation of

P, C, and K which r e s u l t s i n a 50% time saving i n cryptana

l y s i s over exhaustive key search. Elsewhere [6] , Heilman

a l s o d e s c r i b e s how a f t e r i n i t i a l exhaustive c r y p t a n a l y s i s ,

D E S - l i k e systems may be broken f o r subsequent P-C p a i r s i n

5

time on the order of the square root of the key space s i z e .

Other authors [2] have suggested that i t i s t e c h n o l o g i c a l l y

f e a s i b l e to c o n s t r u c t a s p e c i a l - p u r p o s e machine with a m i l

l i o n d i s t i n c t p rocessor elements which would be capable of

s o l v i n g f o r K from any P-C p a i r i n l e s s than 24 hours.

H o p e f u l l y , the above serves to i n d i c a t e that the DES sys

tem may not be as secure f o r many a p p l i c a t i o n s as e i t h e r NBS

or the NSA would p r e f e r that people b e l i e v e .

/

Chapter II

S-BOX COMPLEXITY: STRENGTH OF DES

It w i l l be u s e f u l f o r both purposes of f a m i l i a r i z a t i o n of

the reader with some d e t a i l s of DES, and to i n d i c a t e i n

which areas of the a l g o r i t h m the s t r e n g t h s of the system

l i e , to examine the e n c r y p t i o n a l g o r i t h m with some p r e c i

s i o n . F u l l d e t a i l s of the a l g o r i t h m are p u b l i c a l l y a v a i l a b l e

in the a p p r o p r i a t e NBS documents [26],

In i t s most common mode of o p e r a t i o n , DES serves as an

" e l e c t r o n i c code book", e n c r y p t i n g 64-bit b l o c k s P to form

64-bit b locks C, us i n g 56 b i t s of a 64-bit key K. For a g i v

en K, DES may be thought of as a one-to-one mapping of a

64-dimensional v e c t o r space over GF(2) i n t o i t s e l f . To a i d

in a s s u r i n g the s e c u r i t y of the cryptosystem t h i s mapping

should be h i g h l y n o n - l i n e a r . Examination of the i n t e r n a l

s t r u c t u r e of the DES a l g o r i t h m i n d i c a t e s t h a t i t f o l l o w s

Shannon's advi c e of a l t e r n a t i n g l a y e r s of permutation and

s u b s t i t u t i o n , i n order to r e s p e c t i v e l y p r o v i d e d i f f u s i o n and

c o n f u s i o n [4,21].

F o l l o w i n g an i n i t i a l permutation, the P block i s s u b j e c t

ed to 16 rounds of an e n c r y p t i o n process, where each round

c o n s i s t s b a s i c a l l y of a s u b s t i t u t i o n of b i t s f o l l o w e d by a

simple permutation, and i s preceeded by an XORing of b i t s of

- 6 -

7
K s e l e c t e d i n a permuted f a s h i o n as a f u n c t i o n of l a y e r with

a permutation of the c u r r e n t b i t s i n the de v e l o p i n g c i p h e r -

t e x t . At each l a y e r of e n c r y p t i o n , t h i s o p e r a t i o n i s per

formed on only the rightmost 32 b i t s of the de v e l o p i n g c i -

p h e r t e x t , but the r i g h t and l e f t h alves of t h i s block are

transposed at each l e v e l . A f t e r these 16 l a y e r s of encryp

t i o n , the r e s u l t i n g block i s sub j e c t e d to another a p p l i c a

t i o n of the i n i t i a l permutation, i n v e r t e d , to y i e l d C. In

the case of a known p l a i n t e x t a t t a c k , as i s our assumption,

the a p p l i c a t i o n s of the p u b l i c a l l y - k n o w n i n i t i a l permutation

add no d i f f i c u l t y to the c r y p t a n a l y t i c t a s k .

I t may c l e a r l y be seen a t t h i s p o i n t that the s t r e n g t h of

DES r e s t s i n the process of s u b s t i t u t i o n of b i t s at each

round, as performed by the S-boxes. A l l other o p e r a t i o n s i n

the e n c r y p t i o n procedure: the XORing, the permutation, and

the expansion, are l i n e a r i n b i n a r y a r i t h m e t i c . Were the

s u b s t i t u t i o n s performed by the S-boxes a l s o l i n e a r , the en

t i r e e n c r y p t i o n procedure would be l i n e a r , and

C=AP + BK

for C, P and K c o n s i d e r e d as bi n a r y v e c t o r s . In such a case,

chosen p l a i n t e x t c r y p t a n a l y s i s would be e q u i v a l e n t to per

forming the i n v e r s i o n of a 56x56 b i n a r y matrix, as from the

above e q u a t i o n :

BK = C - AP
K = B" 1 (C - AP)

8

I t i s thus t r i v i a l to c a l c u l a t e K when P and C are known;

the A and B ma t r i c e s come from the e n c r y p t i o n a l g o r i t h m . I t

has been shown [5] that the S-boxes as employed i n DES are

n e i t h e r l i n e a r nor a f f i n e (a case which would y i e l d almost

as simple a c r y p t a n a l y t i c procedure), although there e x i s t s

s p e c u l a t i o n as to whether or not the S-boxes co n c e a l l e s s

o v e r t trap-door i n f o r m a t i o n such as p a r i t y .

That i t i s t h i s n o n - l i n e a r i t y of the S-boxes which leads

to e x t e n s i v e d i f f i c u l t i e s i n a " s e a r c h - t r e e " exhaustive ap

proach to c r y p t a n a l y s i s may e a s i l y be p e r c e i v e d when the

search f o r K from a known P-C p a i r i s represented g r a p h i c a l

l y . (F i g u r e 1, Exhaustive Tree Search) The search f o r K may

be represented as an AND/OR t r e e t r a v e r s e d i n a top-down f a

s h i o n . At l e v e l 1 i n the t r e e , the valu e s f o r C i n a l l 64

b i t p o s i t i o n s are known. L e v e l 0 i s represented by an AND

node, as a l l of i t s s u c c e s s o r s must be t r u e , as a r e s u l t of

p r e c i s e knowledge of a l l b i t s of C. At the leaves of the

t r e e , the valu e s of P i n a l l b i t p o s i t i o n s are s i m i l a r l y

known. T h i s search procedure i s presented more f o r m a l l y i n

Chapter V I I .

When one c o n s i d e r s the f i r s t 1 branch to t h i s t r e e , i t may

be seen that there are two ways to make the 64th b i t of the

C block l . 2 One such p o s s i b i l i t y i s that the p o s i t i o n a l l y

c o r r e s p o n d i n g b i t of L15 and that of f(R15,K16) are both 0.

1 employing a standard preorder t r e e t r a v e r s a l
2 or 0, without l o s s of g e n e r a l i t y

9

As a consequence of the s t r u c t u r e of the S-boxes, there are

32 ways i n which t h i s c o n d i t i o n may be s a t i s f i e d , i f the S-

boxes are u t i l i z e d i n the manner i n which they are presented

i n the DES l i t e r a t u r e [26]. Of the sf6=64 p o s s i b l e input

c o n f i g u r a t i o n s f o r any S-box, p r e c i s e l y h a l f of these (32)

r e s u l t i n the value of some s p e c i f i e d S-box output being 1;

the other 32 cause the S-box output to have a value of 0.

Thus, when the process of e n c r y p t i o n i s i n v e r t e d , i t may be

seen that any of 32 p o s s i b l e inputs can have caused some

s p e c i f i c S-box output to have a c e r t a i n v a l u e .

Due to t h i s very high t r e e branching f a c t o r , an exhaus

t i v e t r e e search f o r K would be no more e f f i c a c i o u s than ex

h a u s t i v e c r y p t a n a l y s i s by t r y i n g a l l p o s s i b l e K's and d e t e r

mining t h e i r c o r r e c t n e s s by use of DES i n the forward

d i r e c t i o n . In f a c t , there would be f a r more nodes i n such a

search t r e e than there are p o s s i b l e keys of 56 b i t s .

The f a c t that the 32 c o n d i t i o n s which l e a d to the same f

output are d i s j u n c t i v e makes i t s i m i l a r l y i m possible to d i s

cover K by h e u r i s t i c a l l y pruning mutually incompatible but

n e c e s s a r i l y c o n j u n c t i v e c o n d i t i o n s from the same l e v e l of

the t r e e . A l l of the input c o n d i t i o n s l e a d i n g to,the S-box

es p r o d u c t i o n of a 1 output i n the given b i t p o s i t i o n would

have to be i n c o n s i s t e n t with that of another AND path before

the subtree growing at such a p o i n t c o u l d be d i s r e g a r d e d .

The search f o r such c o n d i t i o n s throughout the e n t i r e t r e e to

h e u r i s t i c a l l y guide search f o r K would be more c o s t l y than

b r u t e - f o r c e exhaustive key t r i a l s .

Chapter III

AN INVESTIGATION OF S-BOX GROUP PROPERTIES

3.1 THEORY: PERMUTATION AND COMPLEMENTATION OPERATORS

In an attempt to discover potential r e g u l a r i t i e s within

the structure of the DES S-boxes, a method devised by

McCluskey [12] was employed to ascertain whether or not any

of the Boolean functions represented by the actual S-boxes

employed in the DES system possess any properties of group

invariance. As i s described below, i t i s convenient to i n

terpret each of of the 8 S-boxes as a set of 4 Boolean func

tions of 6 variables. Each of the 8x4=32 outputs of the

bank of S-boxes i s a d i f f e r e n t function of 6 variables. It

i s our concern here to discover which, i f any, of these

functions are invariant under the permutation and/or comple

mentation of input variables. The set of a l l permutation

and complementation operators forms a mathematical group,

hence the term "group invariance" of a function.

As they are represented in the DES algorithm in tabular

form, the S-boxes are exceedingly d i f f i c u l t to work with:

conventional Boolean algebra provides no formalisms for

dealing with such structures. Consequently, each S-box was

interpreted as 4 Boolean functions, each of 6 independent

variables, one such function for each of the S-box outputs.

- 1 0 -

11

With l i t t l e d i f f i c u l t y , i t i s possible to obtain a

Boolean function whose value i s equivalent to that of a

spe c i f i e d output b i t of any desired S-box. This function i s

in the form of a l o g i c a l sum of elementary product terms

(p-terms) where each such p-term i s a l o g i c a l product of the

values of the 6 input variables to the chosen S-box.

By examining a binary representation of the contents of

an S-box, i t i s possible to discover for which 32 of the 2'

= 64 possible input configurations to the S-box a chosen out

put b i t w i l l be on. The row and column index of the S-box

entry with a 1-bit in the chosen output position are used to

determine which input configuration i s responsible for the

selection of t h i s entry causing the 1 output. Each of the

32 entries for which the desired output b i t w i l l be on w i l l

correspond to a p-term in the Boolean function form for that

S-box - output b i t pair: a 0 in a position of the binary

representation of a S-box entry corresponds to a complement

ed l i t e r a l in the p-term in the corresponding p o s i t i o n ,

whereas a 1 corresponds to an uncomplemented l i t e r a l . For

instance, i f S-box 1 output 1 is on for the configurations

of input variables: 000000, 000001, ... ,' 111110 then the

p-term Boolean function for that S-box and output may be

written as:

X1,X2'X3'X4,X5'X6' + XI'X2'X3'X4'X5'X6 + ... + X1X2X3X4X5X6'

Such functions may be obtained for each of the 4 outputs

of each of the 8 S-boxes, and may be represented as 32x6 b i -

12
nary m a t r i c e s . Each row i n such a r e p r e s e n t a t i o n w i l l c o r

respond to a s i n g l e c o n j u n c t i v e p-term. F o l l o w i n g the t e r m i

nology of McCluskey [1 2] , these matrices w i l l be r e f e r r e d to

as t r a n s m i s s i o n m a t r i c e s , T.

What i s of i n t e r e s t with respect to S-box s t r u c t u r e i s

the group i n v a r i a n c e (or lack t h e r e o f) of these Boolean

f u n c t i o n s . D i s c o v e r y of the group p r o p e r t i e s with which we

concern o u r s e l v e s at t h i s p o i n t i s e q u i v a l e n t to the d e t e r

mination of whether or not there e x i s t any permutation and/

or complementation o p e r a t i o n s which leave the f u n c t i o n s un

changed when these o p e r a t i o n s are a p p l i e d to the input

v a r i a b l e s . I f any such group p r o p e r t i e s are d i s c o v e r e d

w i t h i n the S-boxes, the symmetries they represent may be

used to reduce the s i z e of the search space i n v o l v e d i n the

search f o r the e n c r y p t i o n key when c r y p t a n a l y z i n g i n s t a n c e s

of the a p p l i c a t i o n of DES. The d i s c o v e r y of any symmetries

i n the S-box f u n c t i o n s w i l l make i t p o s s i b l e to repr e s e n t

these f u n c t i o n s i n a more compact form, and hence reduce the

branching f a c t o r i n the search f o r K. C l e a r l y , i t i s of

great i n t e r e s t to be a b l e to d i s c o v e r any p o s s i b l e means of

reducing the s i z e of the i n e v i t a b l y l a r g e search t r e e formed

to uncover the key used t o encrypt known p l a i n and c i p h e r -

t e x t b l o c k s .

As a simple example of how a d i s c o v e r y of f u n c t i o n a l i n

v a r i a n c e under the permutation of input v a r i a b l e s a l l o w s a

more s u c c i n c t r e p r e s e n t a t i o n of a f u n c t i o n , c o n s i d e r the

f u n c t i o n :

13
f(Xl,X2) = X1X2 + XI'X2 + X1X2'

If i t i s known that f i s symmetric in XI and X2, then

f(X2,Xl) = X2X1 + X2'X1 + X2X1'= f(Xl,X2)

and i t may be concluded that f(Xl,X2) = XI + X2.

We s h a l l use McCluskey's notation of SiT to represent

some permutation of the Boolean transmission function T

where the i subscript represents the s p e c i f i c permutation.

NjT s h a l l be used to represent a complementation of the i n

put variables of T which correspond to a 1 in the binary

representation of the subscript j . For example,

Si(XI X2 X3 X4 X5 X6) = (X2 XI X3 X4 X6 X5) for i=213465

and

Nj(Xl X2 X3 X4 X5 X6)=(X1 X2 X3' X4 X5' X6') for j=001011

We are interested in determining, for each T, the values of

i and j such that SiNjT=T.

Even for our application, which involves a r e l a t i v e l y

small number, n=6, of independent variables in the T func

tions, an exhaustive search for group invariants may e a s i l y

be shown to be intractable. There are n! possible Si opera

tors, and 2fn possible Nj operators, hence n!2 n possible

SiNj operators. When the T functions involve 6 independent

variables, t h i s means there exist 6!2' =46080 possible SiNj

operators. A brute-force determination of the invariance of

T under these operators would involve operating on T with

each of the operators, and then determining i f there i s some

1 4

row permutation of the binary matrix which represents SiNjT

which would make SiNjT i d e n t i c a l to T's matrix representa

t i o n . (If an SiNj operator leaves T unchanged, then the only

possible effect of applying the operator to T i s to change

the order of the rows of T, analogous to changing the order

of the disjunction of conjunct terms in the elementary p-

term expression). As our T functions involve 32 rows each,

up to 32!=2.6xl0 3 S permutations of SiNjT might have to be

tested for each of the 46080 SiNj operators. To circumvent

such blatant computational i n t r a c t a b i l i t y , some considera

tion of the c h a r a c t e r i s t i c s of the s p e c i f i c T functions i s

required.

For an Si operator to have no e f f e c t , the columns of T

exchanged by the Si must have equal numbers of l ' s , as per

muting the rows cannot vary the t o t a l number of l ' s in any

column. For an Nj operator to have no e f f e c t , either the

single primed column of T must have an equal number of l ' s

and 0's, or else there must exist two primed columns, where

the f i r s t has as many l ' s as the second has 0's. Following

McCluskey, i f one transforms T into a standard matrix D, the

SiNj operators leaving T invariant may be determined d i r e c t

ly from the Si operator which leave D i n v a r i a n t . 3 (SiD=D). D

is formed from T by priming a l l columns with more l ' s than

0's.

3 Actually, which leave invariant either D or any D' formed
by priming suitable combinations of columns of T with
equal numbers of l ' s and 0's. This consideration of Ni op
erators w i l l be deferred u n t i l l a t e r .

15

As D has columns with at least as many O's as l ' s , one

need only consider permutations of columns with equal num

bers of O's. For t h i s reason, D i s partitioned into column

p a r t i t i o n s where each column present in any given p a r t i t i o n

has the same number of O's. Thus, one need only consider Si

operators which switch columns within the same column p a r t i

tions. Rows may also be partitioned in an i d e n t i c a l fashion:

Only rows from within the same row p a r t i t i o n may be permuted

to i d e n t i f y SiD with D.

It can be reasoned that t h i s process of p a r t i t i o n i n g

should be further c a r r i e d out on the submatrices of D formed

by the i n i t i a l p a r t i t i o n i n g . As McCluskey indicates:

"In general, only rows which have the same weight in each
submatrix can be interchanged. Priming columns of the same
p a r t i t i o n does not change the weight of the rows in the
corresponding submatrices" [12: p.1448]

The p a r t i t i o n i n g process i s c a r r i e d out recursively on

the submatrices formed by prior p a r t i t i o n i n g s of D u n t i l a

matrix results in which each row and column of each subma

t r i x has the same number of O's. Assuming that the p a r t i

tions are r e l a t i v e l y small, even an exhaustive approach to

the determination of which row and column permutations leave

D unchanged should be tractable, as only permutations i n

volving rows or columns from within the same p a r t i t i o n need

be considered. That i s , for each possible permutation of

each of the column p a r t i t i o n s in the f u l l y - p a r t i t i o n e d D,

permutations of row p a r t i t i o n s are applied to restore D to

i t s o r i g i n a l form. If the column p a r t i t i o n s of D are very

16

small, the number of possible column permutations i s d r a s t i

c a l l y l i m i t e d . In the t r i v i a l case where each column i s in

a p a r t i t i o n by i t s e l f , where submatrices have di f f e r e n t c o l

umn weights for a l l columns of D, i t can be concluded that

no Si exists such that SiD=D.

After D has been f u l l y partitioned and the Si permuta

tions which leave D invariant have been discovered, we must

consider the D'. Recall that as defined, our D may possess

some columns with an equal number of 0's and l ' s . In t h i s

eventuality, we must form a set of possible special standard

matrices D', by priming certain combinations of the columns

of D which have th i s equal number of 0's and l ' s . These

primings w i l l determine the j superscripts of possible Nj

operators. i f we form D'=NjD, and SiD'=D' as determined by

the p a r t i t i o n i n g and column and row permutations of D', we

can deduce the SiNjT=T represented by t h i s invariance.

Not a l l possible combinations of primings of these c o l

umns of D need be considered; special c h a r a c t e r i s t i c s of D

w i l l permit the a p r i o r i elimination of some D'. If some

row of D i s a l l 0 (or 1) and after priming, D'=NjD does not

also have a row of a l l 0 (or 1) we know there cannot exist

an Si such that SiNjD=D. No amount of column switching can

allow us to form a row of a l l 0 (or 1) i f such a row does

not already exist in D'.

After the elimination of some potential D' in th i s man

ner, we form the D' and p a r t i t i o n them recursively as was

17

done for the D matrix, to form submatrices of the D' with

the property that each row (column) of each submatrix has

the same number of O's. If any of these D' matrices has the

same p a r t i t i o n i n g as D, permutations of columns within c o l

umn p a r t i t i o n s are examined to determine i f any such column

permutation, followed by a row permutation of rows within

the same p a r t i t i o n (s) can restore the SiD' to D'. If such

permutations e x i s t , we have determined SiNj operators such

that SiNjD=D. (Nj i s the priming of D to form D'). From the

i n i t i a l primings used to transform the transmission matrix T

into the standard matrix D, the SiNjT=T invariances may be

d i r e c t l y determined.

3.2 IMPLEMENTATION FOR DES

The language f i r s t chosen for the implementation of thi s

algorithm, and some subsequent experimentation with DES was

APL, due to i t s pseudo-parallel array processing c a p a b i l i

t i e s , i t s power with respect to both Boolean and matrix ma

nipulations, and i t s interactive nature. The code for a l l

APL functions referred to in t h i s chapter may be found in

Appendix A. Unfortunately, i t was discovered that the compu-

ationa l cost overhead incurred by the fact that APL i s an

interpreted language l i m i t s i t s a p p l i c a b i l i t y to problems of

a r e l a t i v e l y small s i z e . For later programs involving compu

tations of a combinatorially large nature, the compiled lan

guage PL/I was employed.

1 8

The p a r t i t i o n i n g procedure d e s c r i b e d i n the preceeding

s e c t i o n was implemented as a r e c u r s i v e APL r o u t i n e ,

PARTITION. The r o u t i n e i s passed a standard matrix, as de

f i n e d e a r l i e r , with rows and column both permuted i n order

of i n c r e a s i n g number of 1 - b i t s . The i n i t i a l p a r t i t i o n i n g of

rows and columns i s determined by examining at which p o i n t s

the next row (column) has more l ' s than the preceeding row

(column). Such p o s i t i o n s i n d i c a t e p a r t i t i o n p o i n t s i n the

standard matrix.

T h i s i n i t i a l p a r t i t i o n i n g i s d i s c o v e r e d by means of c a l l

to the r o u t i n e INITPARTIT. Given a b i n a r y r e p r e s e n t a t i o n of

a standard matrix, the r o u t i n e INITPARTIT r e t u r n s a 2xN i n

teger matrix of p o i n t e r s i n t o the standard m a t r i x . Each

p o i n t e r i n d i c a t e s a p a r t i t i o n p o i n t of the standard m a t r i x :

a p o i n t before which the matrix should be d i v i d e d t o form a

submatrix. The f i r s t row of the matrix of p o i n t e r s r e t u r n e d

from the INITPARTIT r o u t i n e r e f e r s t o d i v i s i o n s between rows

of the standard matrix, while the second row r e f e r s to c o l

umn d i v i s i o n s .

A f t e r having c a l l e d INITPARTIT to determine the i n i t i a l

p a r t i t i o n i n g of the standard matrix as determined by where

the number of l ' s i n rows and columns changes, PARTITION

c a l l s the r e c u r s i v e r o u t i n e PARTITCALL with both the i n i t i a l

p a r t i t i o n i n g and the standard matrix as arguments.

I t i s t h i s PARTITCALL r o u t i n e which may be c o n s i d e r e d the

c e n t r a l r o u t i n e i n the p a r t i t i o n i n g system. The r o u t i n e i s

19
passed both the standard matrix, and the p a r t i t i o n points

which divide that matrix into the f i r s t l e v e l of submatric

es. Employing two nested loops, PARTITCALL iterates through

a l l of the i n i t i a l submatrices of the standard matrix by

columns. For each of these submatrices, INITPARTIT i s

c a l l e d to obtain the i n i t i a l p a r t i t i o n i n g of that submatrix,

and PARTITCALL i s recursively invoked to further p a r t i t i o n

the submatrix. PARTITCALL returns a matrix of pointers con

taining a l l p a r t i t i o n points discovered for either the i n i

t i a l matrix with which i t was invoked, or any recursively-

discovered submatrices of that matrix.

During the debugging of t h i s system of routines, i t was

discovered that the above recursion was i n s u f f i c i e n t as im

plemented to discover the complete p a r t i t i o n i n g of a binary

matrix. (Where as defined e a r l i e r , a completely partitioned

matrix i s one in which a l l rows (columns) within any p a r t i

tion have the same number of l ' s) . The reason for thi s was

that p a r t i t i o n s made in one submatrix at a s p e c i f i c l e v e l of

recursion are not known to other submatrices at the same

le v e l of recursion during their p a r t i t i o n i n g .

Consider, for instance, the following case which acutally

occured during the p a r t i t i o n i n g of the standard matrix rep

resenting the Boolean function for S-box 1, output 1. Sup

pose that 2 has already been discovered as a column p a r t i

tion point for the top l e v e l matrix as a result of the

pa r t i t i o n i n g of some submatrix occuring higher in the same

20

column as the submatrix currently being processed. That i s ,

a p a r t i t i o n should exist between columns 1 and 2 of the

standard matrix. Suppose also that the submatrix now occur-

ing lower in the column i s :

011110
101011

Application of the recursive p a r t i t i o n i n g routine to th i s

submatrix would result in the following p a r t i t i o n i n g :

01 | 1 | 1 | 1 | 0

10 | 0 | 1 | 1 | 1

Each of the submatrices formed as a result of t h i s p a r t i

tioning indeed s a t i s f i e s the property of each row (column)

having an equal number of l ' s . However, as a d i v i s i o n exists

in the top l e v e l matrix of which t h i s i s a submatrix as a

result of an e a r l i e r p a r t i t i o n i n g of another submatrix, the

top l e v e l matrix may not be f u l l y partitioned, even after

a l l submatrices have been partitioned in t h i s manner. The

d i v i s i o n existing between the f i r s t and second columns im

p l i e s that within the i l l u s t r a t e d submatrix, two 2x1 subma

t r i c e s exist which do not have an equal number of l ' s in

their rows.

As a consequence of t h i s ignorance of each submatrix con

cerning the p a r t i t i o n i n g of the other submatrices at i t s

same l e v e l , to f u l l y p a r t i t i o n the standard matrix i t does

not s u f f i c e to simply c a l l PARTITCALL once. Consequently,

the PARTITION routine c a l l s PARTITCALL i t e r a t i v e l y . On the

f i r s t c a l l to PARTITCALL, the p a r t i t i o n i n g of the standard

21

matrix supplied i s that returned by INITPARTIT. Subsequent

l y , PARTITCALL i s c a l l e d with the i n i t i a l p a r t i t i o n i n g set

to be the complete p a r t i t i o n i n g as returned from the pr e v i

ous c a l l to PARTITCALL. In t h i s manner, the par t i t i o n i n g s of

each submatrix are made known to other submatrices at the

same l e v e l . With reference to our example, the fact that a

p a r t i t i o n exists between the f i r s t and second columns is

known globally when PARTITCALL i s i t e r a t i v e l y reinvoked from

PARTITION, so the two 2x1 submatrices with unequal numbers

of l ' s in their rows would be further p a r t i t i o n e d during

th i s c a l l . The process of p a r t i t i o n i n g terminates when no

further p a r t i t i o n i n g s are discovered as a result of repeated

c a l l s to PARTITCALL.

Another routine, PRINT-PARTIT, was devised to display the

p a r t i t i o n i n g of a matrix. When c a l l e d with a matrix and i t s

p a r t i t i o n points as arguments, the matrix i s printed with

spaces between i t s submatrix components.

An i l l u s t r a t i o n of the operation of these p a r t i t i o n i n g

routines may be seen in Figure 2, Complete P a r t i t i o n i n g of a

Matrix. A 9x6 binary matrix i s partitioned, and the r e s u l t

ing p a r t i t i o n i n g displayed by c a l l to the PRINT-PARTIT rou

t i n e . This matrix i s the same as that used by McCluskey

[12: p.1447]. From t h i s example, i t may c l e a r l y be seen that

each row (column) of the f u l l y p a r t i t i o n e d matrix has an

equal number of l ' s .

22
3.3 APPLICATION TO DES

As the discussion of the algorithm for detecting group

symmetries in Boolean functions indicated, after a standard

matrix has been formed, only columns from within the same

column p a r t i t i o n may be permuted, i f the matrix i s to be re

stored by means of row permutations. Thus, the f i r s t step

towards the discovery of possible symmetries in the trans

mission functions which represent the DES S-boxes i s to f u l

l y p a r t i t i o n the standard matrices for such transmission

functions.

For t h i s purpose a driver routine, PARTITION-ALL, was im

plemented, to c a l l PARTITION with standard matrices repre

sentative of the transmission functions for each of the 32

possible S-box - output p a i r s . This driver routine forms a l l

of these transmission matrices T from S-box data, and puts

T into standard form by priming a l l columns which contain

more l ' s than 0's. The rows and columns of each standard ma

t r i x are then permuted in order of increasing l ' s .

The purpose of t h i s routine was to obtain some approxi

mate idea of how small the column p a r t i t i o n s of the standard

matrices would be, to determine the t r a c t a b i l i t y of an ex

haustive approach to the permutations of columns within the

same column p a r t i t i o n s . As usual, the numbers indicative of

the p a r t i t i o n points are positions before which the matrix

should be divided.

23

As may be seen in the table of output from t h i s routine,

somewhat surprising results were obtained. A l l 32 matrices

p a r t i t i o n so that there i s only one row and one column in

each submatrix; submatrices are a l l l x l in s i z e . Such a

structure implies that for these functions, no SiNj exist

such that SiNjT=T. There i s no possible way to complement

and/or permute the inputs to any S-box and leave the S-box

functionally invariant. This approach to the discovery of

S-box symmetry i s consequently of no use in reducing the

search space size during cryptanalysis.

Subsequent discussion of the problem of symmetry detec

tion with Dr. D.M. M i l l e r led to the idea of the use of Rad-

macher-Walsh spectral techniques for the detection of any

p a r t i a l two or multi-variable symmetries which may be pres

ent in the Boolean functions for the S-boxes [14,17]. A l

though i t i s not possible to permute and/or complement any

S-box inputs and leave the function of any S-box invariant,

i t may be possible that for some S-boxes such symmetries as:

f (0 , l , . . .) = f (l , 0 , . . .)

do e x i s t . The existence of even such p a r t i a l symmetries in

the S-boxes could allow us to reduce the size of the seach

tree for the encryption key. The application of such tech

niques to the S-box functions has not as yet been pursued,

and remains as an interesting problem for future research.

Chapter IV

CRYPTANALYSIS BY S-BOX APPROXIMATION

Given that the core of the problem of cryptanalysis of

DES rests in the complexity of the S-boxes, i t was decided

that one p o t e n t i a l l y successful means of attack of DES could

conceivably be through approximation of the S-boxes. P-term

expressions for the Boolean functions embodied in the S-box

es have already been obtained as a result of the analysis of

the preceeding chapter. Other advantages may result from

obtaining some sort of "minimal" sum-of-products expression

for each S-box output, as a function of the 6 input v a r i

ables or their complements. Such a representation may be

amenable to making some as-yet unnoticed S-box structure

more apparent. A more compact expression for the action of

the S-boxes should reduce the e f f e c t i v e branching factor of

the search tree, and should also a s s i s t in increasing the

t r a c t a b i l i t y of the operation of pruning t h i s search tree.

For these reasons, we s h a l l wish to obtain sum-of-product

expressions for each output of every S-box which contain the

minimal number of Boolean l i t e r a l s required to express the

function which represents that S-box - output pai r .

More s p e c i f i c a l l y , having the S-boxes in such a form may

permit the Boolean functions performed by the S-boxes to be

- 24 -

25
approximated in such a manner as to allow a valuable trade

off between the accuracy of the approximated S-boxes and the

cost of the solution for K from P and C in such an approxi

mate system. Suppose for instance that some approximation

to the S-boxes as could be achieved by considering the sum

of only the 3 most s i g n i f i c a n t conjunctive terms in the

sum-of-products expression for each S-box - output pair

y i e l d s a system which may be simply inverted, and i t i s pos

s i b l e to tractably solve for K, from P and C. 4

Unfortunately, i f the functions which represent the S-

boxes are only approximate, and are thus not correct for a l l

possible input configurations, the K obtained from search

with a P-C pair may also be incorrect. If the K we obtain

as a solution has a p r o b a b i l i t y of being correct of only

1/n, then on average we must solve for K using n/2 P-C pairs

before the re s u l t i n g K:P->C under the " r e a l " DES algorithm.

However, i f the time required to discover a K in the approx

imate DES system i s a factor of more than n/2 less than that

required when accurate S-box functions are employed (weight

ed by the cost of the n/2 encryption t r i a l s to ascertain i f

the K i s c o r r e c t) , then t h i s cryptanalytic technique should

be of some merit.

* The solution need not be a n a l y t i c a l , but may well involve
h e u r i s t i c search of a tree s i m p l i f i e d in the sense of i t
having a reduced branching factor r e s u l t i n g from the use
of the s i m p l i f i e d S-box expressions.

26
In summary, we wish to approximate the Boolean f u n c t i o n s

which represent the S-boxes, and search f o r K from P-C

p a i r s , an u n l i m i t e d amount of which are a v a i a l b l e to us. As

the S-box f u n c t i o n s are o n l y approximate, such K may be i n

c o r r e c t . Any p o t e n t i a l l y - c o r r e c t K d i s c o v e r e d may be q u i c k

l y v e r i f i e d by seeing i f i t does map P to C. We continue to

produce a p o t e n t i a l K by using, the search procedure with

with d i f f e r e n t P-C p a i r s u n t i l a c o r r e c t K i s produced.

G e n e r a l l y , i t would be of i n t e r e s t to examine the charac

t e r i s t i c s of the t r a d e o f f between the degree of S-box ap

proximation, and the time r e q u i r e d f o r c r y p t a n a l y s i s . As

one c o n t i n u e s to s i m p l i f y the S-box approximating e x p r e s s i o n

i n some r e g u l a r f a s h i o n , the e n c r y p t i o n employing these ex

p r e s s i o n s w i l l continue to l o s e accuracy, although an ana

l y t i c a l or s e a r c h - t r e e s o l u t i o n f o r K should become more

simple. E x a c t l y how optimal a s i m p l i f i c a t i o n may be

achieved, from the p e r s p e c t i v e of c r y p t a n a l y t i c c o s t , i s an

other t o p i c f o r f u t u r e r e s e a r c h . T h i s t h e s i s w i l l be more

concerned with the r e d u c t i o n of the s i z e and complexity of

the f u n c t i o n s r e p r e s e n t e d by the S-boxes without any compro

mise i n t h e i r accuracy.

Chapter V

QUINE-MCCLUSKEY MINIMIZATION OF S-BOXES

5.1 QUINE-MCCLUSKEY: IMPLEMENTATION

Several c l a s s i c a l methods exist in the f i e l d of d i g i t a l

logic design for the minimization of Boolean functions.

These include the Karnaugh map method and the Quine-McClus-

key (QM) procedure [13], th i s l a t t e r procedure being more

suited to computerized implementation. Both are designed to

minimize the Boolean function in . question as a sum-of-prod-

ucts expression. The Reed-McClennan technique i s occasional

l y employed as an alternate procedure, to minimally express

any given Boolean function by means of XOR operations.

While such a minimization algorithm may be of use as the S-

boxes could be as heavily XOR-oriented as the remainder of

the DES algorithm, the reliance of the Reed-McClennan algor

ithm on highly topological methods makes i t clumsy to imple

ment. Chapter VII w i l l be concerned with alternatives to

the Reed-McClennan technique for the extraction of XORs.

The QM algorithm may be seen to have two d i s t i n c t phases:

that of discovering a l l prime implicants, and that of form

ing non-redundant sums. A prime implicant of an n-variable

Boolean function f i s a product term B consisting of m

(which i s not greater than n) l i t e r a l s , such that B->f, but

- 27 -

28
that any B' formed by deleting a l i t e r a l from B no longer

implies f. A l i t e r a l i s a Boolean variable or the complement

of a Boolean variable. It i s not of substantial interest to

discuss the d e t a i l s of the QM procedure here, as the algor

ithm referred to may be found in McCluskey's paper [13], or

in any standard textbook concerned with d i g i t a l logic design

[16].

An implementation of the QM algorithm was devised and ap

p l i e d to the S-boxes of the DES system. The code for the

routines referred to in t h i s section may be found in Appen

dix B. As previously mentioned, i t i s possible to view the

bank of S-boxes in the DES encryption algorithm as 32 sepa

rate Boolean functions, each of 6 independent variables.

Both these functions and th e i r complements were minimized by

the QM procedure. The requirement for minimal forms for the

complements of the S-box functions, i . e . minimal forms to

describe the input conditions for which an output of the S-

bank i s 0, i s elaborated upon in Chapter VIII. The require

ment i s connected to the fundamental asymmetry in the number

of ways a sum-of-products form and the corresponding prod-

uct-of-sum form generated by DeMorgan complementation may be

instantiated to produce a functional output of 1.

The routine ANALYZE c a l l s QM i t e r a t i v e l y for each of the

32 possible S-box - output pair combinations. QM c a l l s the

function PRIMIMP in order to determine the prime implicant

terms for the various inputs. Complemented and uncomple-

29

merited forms of the S-boxes themselves are represented as a

global 3-dimensional matrix consisting of a lamination of

the tables as supplied in the DES l i t e r a t u r e [26]. The func

tion BINARY converts the decimal representation of the S-

boxes to binary, and the ON function, also c a l l e d from

ANALYZE, returns the 32x6 matrix of p-term inputs for which

the s p e c i f i e d output of the s p e c i f i e d S-box is on, i . e . 1.

By means of the ANALYZE procedure, global tables of es

s e n t i a l and a l t e r n a t i v e products of input l i t e r a l s for each

of the 32 S-box - output pairs were constructed. At t h i s

point, exact expressions for the S-boxes had s t i l l not been

discovered. The e s s e n t i a l terms are those which must be i n

cluded; the table of alternatives indicates what options are

available in selecting the remainder. For the purposes of

v i s u a l inspection to detect some overt S-box structure,

these tables were printed by the DUMP-SP routine. One such

table may be seen in Figure 3t Essential and Alternative

Sum-of-Products Terms.

Each row of the table of terms corresponds to a single

p-term, where the p-terms are in a notation known as "cube"

notation 5 as developed by Roth [10]. In t h i s notation, the

presence of a 1 in some position of a p-term indicates that

the corresponding l i t e r a l i s to remain uncomplemented; a 0

indicates complementation i s to occur. The presence of an X

5 Named for the topological interpretation in which each
variable of an n-variable function corresponds to a vertex
of an n-dimensional cube.

30
indicates that the value i s a "don't care", and the input

variable may be ignored. The rather sparse occurence of

don't care inputs i s remarkable. In the alternatives table,

the integer to the right of the term indicates the class to

which that product term belongs, and only one term from each

class need be chosen from the set of a l l choices, when com

bined with the essential terms, to form a f u l l y accurate

representation of the S-box.

In order to v e r i f y that the QM minimizations performed

are accurate, the PROB-CORR function was used to check that

the minimal Boolean expression for each S-box returns the

same value for every possible input configuration as does

the r e a l tabular S-box. This function was also l a t e r used to

determine the p r o b a b i l i t y of correctness of some approximate

forms of the S-boxes.

5.2 SELECTION OF ALTERNATIVE TERMS BY REDUCE

After the Quine-McCluskey minimization procedure had been

applied to the Boolean functions represented by the S-box

tables, i t was necessary to select one conjunct term from

each of the classes of impli c a t i o n a l l y equivalent terms, in

order to be able to represent the output of each of the S-

boxes in a closed form as a sum-of-products expression.

After some r e f l e c t i o n , i t became apparent that there ex

isted techniques for the selection of such a class represen

tative which were in some ways superior to simply picking

31
the p o s i t i o n a l l y f i r s t member of each class as the conjunc

ti v e term representative of that c l a s s , a simpleminded

strategy f i r s t followed by SELECT-SP in forming the sum-of-

products expression used by PROB-CORR to v e r i f y the correct

ness of the minimization as mentioned in the preceeding sec

t i o n . Referring to Figure 3 again, one may notice that

there exist terms which appear in more than one c l a s s . Cer

t a i n l y , the selection of such a term as a class representa

tive would eliminate the need for selecting any member of

the other class(es) in which i t appears, hence reducing the

number of terms in the sum-of-products expression without

losing any accuracy. Such an a b i l i t y i s c l e a r l y advanta

geous .

The APL routine REDUCE employs t h i s strategy in a relaxa

t i o n - l i k e fashion, to p o t e n t i a l l y reduce the number of

classes prior to the selection of terms as class representa

t i v e s . A comparison of each alt e r n a t i v e term with a l l other

alternative terms i s performed to detect the existence of

i d e n t i c a l terms in d i f f e r e n t classes. Beginning with the

term which most often appears i n t e r - c l a s s , as the same term

could appear in more than two d i s t i n c t classes, and i t e r a

t i v e repeating the process on the alt e r n a t i v e terms which

remain after t h i s reduction, the REDUCE routine serves to

constrain potential choices of a l t e r n a t i v e s .

As the above technique cannot serve to completely con

s t r a i n the choice of class representative terms except in

32
the most radic a l of circumstances, where a l l classes contain

some term also occuring in another c l a s s , a case which never

occurs in DES, the problem remains of choosing the "best"

representative of each class from the remaining terms. The

REDUCE routine h e u r i s t i c a l l y and somewhat a r b i t r a r i l y se

l e c t s as class representative the term which contains the

most don't care (X) values. It was hoped that such a selec

tion c r i t e r i o n could serve to simplify future operations

which involve the sum-of-products expressions.

It i s clear that the h e u r i s t i c of selecting class repre

sentatives having the most don't care inputs may not be op

timal for reasons which pertain to the applications of our

minimal functions. As the minimal sum-of-products expres

sions are to be used in the tree search procedure for K, i t

w i l l be desirable to have expressions for the S-boxes with a

maximal number of terms in common, to allow pruning across

subtrees during search tree growth. For th i s reason, the i n

teractions between the functions which represent the S-boxes

may prove to be of si g n i f i c a n c e . Thus, i t may eventually be

necessary or advantageous to perform a simultaneous mini

mization of a l l functions for the entire bank of S-boxes.

The sum-of-product terms res u l t i n g from the application

of REDUCE to the tables of essential and alternative terms

are stored in a global 4-dimensional matrix, SPTERMS, whose

space and plane coordinates respectively represent S-box and

output b i t choices. The sum-of-product terms produced by

REDUCE may be seen in Table 1, where these p-terms are in

cube notation. The minimal sum-of-product expressions for

the S-box outputs contain between 14 and 23 terms depending

on the function. This may be seen as a s i g n i f i c a n t reduction

from the 32 terms involved in the elementary p-term expres

sion for each function.

5.3 INDIVIDUAL TERM CONTRIBUTION: RANK-TERMS

After having obtained such a minimal expression for each

S-box and output pair, i t was desired to ascertain which of

the terms of each expression was most important, i . e . which

of the terms contributed the most to the pro b a b i l i t y of cor

rectness of the expression. One may speak of each term as

possessing an associated p r o b a b i l i t y of correctness value,

Pcorr, which indicates the pro b a b i l i t y that the single term

produces the same output for each possible input configura

tion as does the S-box in whose approximation the term ex

i s t s .

Knowledge of t h i s quantity was o r i g i n a l l y considered nec
essary in order to rank the terms in importance, to allow
the selection of the "best" n terms to approximate the exact
sum-of-products form. A scheme of greater sophistication
was actually employed for t h i s purpose, as elaborated in the
succeeding chapter.

To accomplish t h i s estimation of the importance of i n d i

vidual conjunctive terms, the RANK-TERMS procedure was de-

34

vised. This program calculates the contribution of each

term to the correctness of the expression, and accordingly

reorders the terms in SPTERMS for each S-box and output. The

routine CONTRIB calculates the "contribution" of a single

term, by assuming that the S-box i s represented by the s i n

gle conjunctive term which the routine receives as an argu

ment and c a l c u l a t i n g the percentage of the 64 possible i n

puts to that S-box which produce the correct output b i t . For

most terms, the calculated contribution value i s s l i g h t l y

above .5, i . e . the term in question "turns on" for several

input configurations.

RANK-TERMS it e r a t e s over a l l S-box - output pairs, and

c a l l s CONTRIB to ascertain the contribution of each term.

The terms in SPTERMS are ranked in decreasing order of con

t r i b u t i o n . Table 1 displays the ranked terms, together with

their associated Pcorr values.

Chapter VI

SELECTION OF THE BEST SUM-OF-PRODUCT TERMS

6.1 COMBINATORIALLY EXHAUSTIVE BEST-SET DISCOVERY

When one approximates something, i t i s often useful to

have a precise quantitative measure of the q u a l i t a t i v e

"goodness" of the approximation, where "goodness" must be

accurately defined. In our situ a t i o n which pertains to the

formation of sum-of-product expressions to approximate the

output of an S-box, the precision of the expressions may

ea s i l y be quantified. The Pcorr of a sum-of-products ex

pression i s defined as the fr a c t i o n of the number of inputs

for which the result of the expression has the same value as

the output of the S-box which i t approximates. Notice that

these Pcorr w i l l always l i e in the range {.5,1}. In the

t r i v i a l case where the approximation consists of 0 terms,

the approximate expression's output w i l l always be 0, as

w i l l that of the S-box for half of the input configurations.

An increase in the number of terms in the approximation can

only increase the Pcorr. As the conjunct terms were ob

tained from a QM minimization of the S-box output values,

the approximating expression can never return a 1, when the

actual S-box output should be 0.

- 35 -

36

The p r i n c i p a l q u e s t i o n to be answered a t t h i s p o i n t i n

our d i s c u s s i o n i s : Given the chance to s e l e c t n sum-of-prod

uct terms to approximate an S-box output, what terms should

be chosen t o guarantee the best p o s s i b l e approximation? T h i s

r a i s e s a r e l a t e d c o n s i d e r a t i o n , the answer to which i s not

evident a p r i o r i : Denote by Bn a set of n conjunct terms

which have a c o r r e c t n e s s v a l u e at l e a s t as hig h as any other

p o s s i b l e s e l e c t i o n of n terms. I f one i s only p e r m i t t e d to

change the approximating e x p r e s s i o n by the monotonic a d d i

t i o n of terms, w i l l such an ex p r e s s i o n always be a most c o r

r e c t approximation? That i s , w i l l there always be a set

Bn+1 such that t h i s Bn+1 c o n t a i n s a Bn, f o r a l l n?

To attempt t o address the preceeding two q u e s t i o n s , a

system of PL/I r o u t i n e s was w r i t t e n , as may be seen i n Ap

pendix C. Although the author f i n d s PL/I to be a p r i m i t i v e

and clumsy computer language t o use, i t was chosen f o r i t s

reasonably h i g h speed of e x e c u t i o n . C o m b i n a t o r i a l l y l a r g e

problems tend to be co m p u t a t i o n a l l y i n t r a c t a b l e i n APL, due

to APL's i n t e r p r e t e d nature. Two small APL r o u t i n e s ,

DUMPTERMS and DUMPONS, were w r i t t e n to c r e a t e PL/I-accessa-

b l e d a t a s e t s which c o n t a i n both the complete sum-of-products

r e p r e s e n t a t i o n f o r each S-box - output p a i r , and the v e c t o r s

of input v a r i a b l e v a l u e s f o r which the corresp o n d i n g S-box

outputs were on.

The output which r e s u l t e d from running the r o u t i n e s on

the p-terms d i s c o v e r e d by Quine-McCluskey m i n i m i z a t i o n of

37

S-box 1, output 1 may be seen in Appendix C, following the

program l i s t i n g . Page xxx l i s t s t h i s minimal set of p-

terms, together with a l i s t of the 32 input configurations

for which t h i s p a r t i c u l a r S-box function returns a 1.

The PL/I system operates in three d i s t i n c t steps. F i r s t ,

the 23x32 binary "contribution table" i s formed, as may be

seen on page 188. Each row of t h i s table corresponds to a

p a r t i c u l a r p-term; the corresponding p-terms may be seen to

the l e f t of the table. The binary entries in a row of the

table indicate i f that p-term i s "on" for a p a r t i c u l a r input

configuration which causes the function to be 1. There are

32 columns in th i s table, as for each S-box output there are

prec i s e l y 32 input configurations which cause that output to

be 1. In t h i s sense, the matrix indicates the contribution

of each term. S p e c i f i c a l l y , a p a r t i c u l a r term i s on for a

given input configuration i f an ORing of the don't care i n

put positions of the term with the XOR of the complemented

(0) positions of the term with the input s t r i n g y i e l d s a

s t r i n g of a l l l ' s . The rows of CONTRIB correspond to terms.

As mentioned at the end of section 5.2, an exact sum-of-

products expression for any given S-box - output pair re

quires at most 23 conjunctive terms, which explains the d i

mensioning of the CONTRIB matrix. Within a row of CONTRIB,

l ' s indicate for which of the 32 inputs the term i s on in

the sense indicated above.

38
Next, the COVER t a b l e i s c r e a t e d , u s i n g CONTRIB. COVER i s

an Mx23 b i n a r y matrix, formed to c o n t a i n an i n d i c a t i o n of

which of the conjunct terms to s e l e c t t o get the best ap

proximation to the S-box, given that one i s r e s t r i c t e d to

s e l e c t i n g p r e c i s e l y k=l,2,...,n of these terms. A p o r t i o n

of t h i s (r a t h e r lengthy) t a b l e appears from pages 189 to

193. I t i s i n the c r e a t i o n of COVER that most of the compu

t a t i o n a l complexity of the system r e s i d e s . In order to de

termine the best s e l e c t i o n of k terms, a l l c h o i c e s of k

terms s e l e c t e d from a set of n p o s s i b l e terms must be exam

ined. In i t e r a t i v e l y d etermining the best s e l e c t i o n of k

terms as k ranges form 1 to n terms, a t o t a l of 2fn s e l e c

t i o n s must be c o n s i d e r e d . As n may be as l a r g e as 23, t h i s

computation i s f a r from t r i v i a l .

Due to the a s s o c i a t e d expense, only the terms f o r the

f i r s t output of the f i r s t S-box were searched i n t h i s man

ner, p r i o r to de v e l o p i n g a more s o p h i s t i c a t e d technique f o r

d i s c o v e r i n g best s e t s . To perform the a n a l y s i s f o r output 1

of S-box 1 r e q u i r e d 788 seconds of execution time, on the

AMDAHL 470/V8 at U.B.C. The improved a l g o r i t h m of the next

s e c t i o n subsequently reduced t h i s execution time by a f a c t o r

of more than 40.

The cover t a b l e i s p a r t i t i o n e d i n t o n s e t s of b e s t - s e t s ,

where n i s the number of p-terms i n the S-box approximation

(n=17 i n the example f o r S-box 1, output 1). The p a r t i t i o n

ing of the t a b l e i s i n d i c a t e d i n the output by blank l i n e s .

39

The cover t a b l e a n a l y s i s t a b l e at the top of page 189 i n d i

c a t e s the number of b e s t - s e t s i n each p a r t i t i o n . For i n

stance, there are 2 ways to s e l e c t the best set B l , which

c o n t a i n s 1 p-terms; only 1 way to s e l e c t B2; 12 ways to se

l e c t B3; and so f o r t h . For each of the n se t s of these

b e s t - s e t s , a Pcorr value may be seen i n the cover t a b l e

a n a l y s i s s e c t i o n of the output produced by the PL/I r o u t i n e .

For a p a r t i c u l a r b e s t - s e t k, t h i s value denotes the c o r r e c t

ness of the approximation i f any set from that set of best

s e t s i s chosen as the approximation to the S-box. That i s ,

the Pcorr value denotes what f r a c t i o n of the p o s s i b l e inputs

are mapped to the c o r r e c t output v a l u e . I t i s t r i v i a l to no

t i c e that as k i n c r e a s e s , the a s s o c i a t e d c o r r e c t n e s s value

s t r i c t l y i n c r e a s e s . ' For ease of r e a d a b i l i t y , the dump of

the COVER t a b l e shows the t a b l e p a r t i t i o n e d i n t o the d i f f e r

ent s e t s of b e s t - s e t s . I t i s c l e a r that w i t h i n a row of t h i s

t a b l e a value of 1 i n d i c a t e s that the term i n the c o r r e

sponding b i t p o s i t i o n i s to be chosen as pa r t of the approx

imation. (The 23 columns i n the t a b l e correspond to the 23

p-terms i n an S-box f u n c t i o n) .

The c r e a t i o n of the COVER t a b l e served to answer the

p r i n c i p a l q u e s t i o n posed at the beginning of t h i s s e c t i o n . A

best approximation to an S-box, where the approximation i s

r e s t r i c t e d to p o s s e s s i n g k terms, i s found by s e l e c t i n g any

element from the kth set of best s e t s i n the COVER t a b l e .

6 I f i t d i d not, t h i s would imply that our QM m i n i m i z a t i o n
procedure was f a u l t y , and had produced redundant terms.

40
The correctness value for such an approximation i s known.

The l a s t purpose of the system of routines i s to perform

a search of the cover table to see i f there exists a way to

select one member of each set of best sets, such that the

set of terms indicated by each selection i s a subset of the

terms indicated by the selection from the next set of sets.

The search was implemented as a standard top-down search of

the COVER table, with backtracking on f a i l u r e . As may be

seen on page 195 of the output, t h i s search was successful

for S-box 1, output 1.

This term selection table is a cumulative record of the

sum-of-product terms chosen at each l e v e l . One new 1 appears

in each successive row of the table; i t s position corre

sponds to the one new term added to the previous terms to

form the new, more correct, approximation. The corresponding

correctness values for these successive selections are re

peated in t h i s table. An alternative representation of t h i s

data i s provided below the table, for the sake of conven

ience, with the terms l i s t e d in order of decreasing value.

That i s , to form a best approximation to the S-box output

using k terms, one should select the f i r s t k terms of t h i s

l i s t .

It should be apparent at t h i s point why the RANK-TERMS

procedure was used to put the terms in decreasing order of

their individual contribution to S-box correctness. By hav

ing the best terms appear f i r s t , considerable backtracking

41

during the search of the COVER table was avoided. As t h i s

table was of substantial si z e , the rather minimal e f f o r t i n

volved in ranking the terms i n d i v i d u a l l y was deemed worth

while.

6.2 A HIERARCHICAL APPROACH TO BEST SET DISCOVERY

Due to the computational expense inherent in the combina-

t o r i a l l y exhaustive approach to the discovery of the "best

sets" which was described in the preceeding section, a more

sophisticated technique was la t e r devised in order to reduce

the expense of th i s operation within reasonable bounds.

The 788 seconds of CPU time required for the best set de

termination for output 1 of S-box 1 was considered to be i n

dicat i v e of the i n f e a s i b i l i t y of using such an exhaustive-

search program on a l l of the 32 S-box - output p a i r s . This

p a r t i c u l a r S-box - output pair has a complete approximation

containing 17 terms, hence 2 1 7 selections are involved in a

complete exhaustive search for best sets of size l . . . n . To

apply such an approach to an S-box output whose approxima

tion contains 23 terms would require 2 2 3 comparisons. This

i s a factor of 64 times more than that required for output 1

of S-box 1, and could be expected to require almost 800

hours of CPU time, to perform exhaustively.

For S-box 1, output 1, i t was empirically demonstrated by

use of the exhaustive search PL/I system that the property

of monotonic addition of sum-of-product terms did hold,

42

i . e . , i t was true that there existed a Bi+1 which contained

a Bi for a l l i = l,2, ...,n-1, where Bi i s a best set formed by

the disjunction of i sum-of-product terms.

That such a property i s not necessarily true for every

possible c o l l e c t i o n of sum-of-product terms may be i l l u s

trated by a simple counter-example. Suppose that the follow

ing 3 b i t strings represent how these terms "contribute" to

the coverage of some hypothetical s i t u a t i o n involving 2' =64

possible input configurations:

1) 101011

2) 110001

3) 001110

The f i r s t b i t s t r i n g connotes that the result w i l l be on i f

input b i t s 1,3,5, and 6 are on and input b i t s 2 and 4 are

o f f . One may see that the only possible BI consists of a

set containing term 1 alone. Term 1 has 4 b i t s on, which i s

the largest number of any term. The only possible B2, how

ever, i s formed as the union of terms B2 and B3 and has a l l

6 b i t s on. There are no other possible selections for BI or

B2 which could allow BI B2 ; a l l other choices of two terms

from the given set of terms have s t r i c t l y less than 6 b i t s

on.

Accordingly, given that one i s w i l l i n g to s l i g h t l y com

promise the optimality of the approximations obtained for a

given S-box's output, but that one i n s i s t s that such an "op

timal" approximation involving n sum-of-product terms be a

43
subset of some "optimal" approximation of n+1 terms, a com

putationally tractable algorithm to discover such "quasi-

best sets", denoted B i ' , has been devised and implemented.

In the cases where the sum-of-product terms and the real S-

box are such that a monotonic addition of terms to form the

Bi sets i s possible, as was the case for the f i r s t output of

S-box 1 , then our algorithm w i l l return Bi'=Bi for each qua

si-best set B i ' .

This algorithm used to form the Bi' i s as follows: Clear

l y the Bl' are those single sum-of-product conjunctive terms

which are "on" for the largest number of input configura

tions for which the s p e c i f i c output of the S-box under con

sideration i s also on. These B l ' , which are always the same

as the actual best sets B l , are thus e a s i l y determined by

counting the b i t s on in the b i t st r i n g which represents the

contribution of the term to the correctness of the output.

Note that there may be more than one B l ' ; more than one term

may have a maximal number of b i t s on.

Given the B i ' , form the B i + 1 ' as follows. For each B i ' ,

add to the set of terms comprising t h i s B i ' the one new

sum-of-products term which has a contribution b i t s t r i n g

which i s on for the most input configurations for which the

disjunction of terms in the B i ' are o f f , to form a potential

B i + 1 ' . Note that more than one such potential B i + 1 ' may be

formed for each B i ' . If the t o t a l number of input configura

tions for which th i s potential B i + 1 ' i s on i s as great as

44
that f o r any p o t e n t i a l B i + 1 ' formed from any other B i ' , then

the p o t e n t i a l q u a s i - b e s t set B i + 1 ' i s t o be r e t a i n e d as an

a c t u a l B i + 1 ' .

T h i s process i s repeated u n t i l some Bn' i s on f o r a l l of

the input c o n f i g u r a t i o n s f o r which the r e a l S-box i s .

(I . e . , u n t i l a Bn' has a c o n t r i b u t i o n b i t s t r i n g a l l of

whose b i t s are on). At such a p o i n t , one may t r a c e back

through the a d d i t i o n of terms which r e s u l t e d i n the forma

t i o n of that Bn', i n order to uncover the sequence of q u a s i -

best s e t s : BI',B2',...,Bn'. As a consequence of the manner

in which the B i ' were produced, the p r o p e r t y of monotonic

a d d i t i o n of terms holds f o r t h i s sequence. With some good

f o r t u n e , the p r o b a b i l i t y of c o r r e c t n e s s v a l u e s of approxima

t i o n s to the S-box formed by the d i s j u n c t i o n of the sum-of

product terms i n such q u a s i - b e s t s e t s should not be s i g n i f i

c a n t l y lower than the corres p o n d i n g v a l u e s f o r the r e a l best

s e t s , which c o u l d only be d i s c o v e r e d through c o m b i n a t o r i a l l y

exhaustive search.

The preceeding a l g o r i t h m may be viewed as the breadth-

f i r s t c o n s t r u c t i o n o f , and subsequent trace-back through, an

n-ary t r e e . The t r e e w i l l possess as many l e v e l s as there

are sum-of-product terms r e q u i r e d f o r a p e r f e c t (Pcorr=l)

approximation to the given S-box output. During t r e e growth,

the open nodes of t h i s t r e e at any l e v e l i w i l l correspond

to nodes from which the development i n p a r a l l e l of a l l of

the q u a s i - b e s t s e t s B i + 1 ' may occur. C u t o f f s w i l l occur at

45

lev e l i for branches leading to potential Bi+1' which are

superseded by the discovery of other potential Bi+1' with

better Pcorr values.

The algorithm was implemented as a system of PL/I proce

dures compiled by the IBM PL/I Optimizing compiler. (See

Appendix D). It i s worthy of mention that these procedures

managed to discover the quasi-best sets for S-box 1, output

1 (for which the property of monotonic addition happened to

hold) in less than 33 seconds of CPU time, on the University

of Manitoba AMDAHL 470/V7. This represents an improvement

in speed over the exhaustive search algorithm by a factor of

more than 40.

6.3 N-ARY TREE IMPLEMENTATION

The n-ary tree formed for each S-box - output pair to

discover the quasi-best sets contains data nodes with a

variable number of pointers. Each node at l e v e l i repre

sents a quasi-best set B i ' and contains: the number of the

sum-of-products term added to form th i s B i ' from i t s father

Bi-1', a pointer to th i s father node, a f i e l d (ORMASK) con

taining a 32-bit s t r i n g with l ' s in positions corresponding

to S-box input configurations for which the Bi' approxima

tion i s on, and a pointer to a linked l i s t of c h i l d point

ers. (See Figure 4, Representation of the Quasi-Best Set

Search Tree).

46
I t i s r e q u i r e d t h a t one m a i n t a i n s a l i n k e d l i s t of c h i l d

p o i n t e r s f o r each d a t a node, as each such B i ' node may have

up t o n - i c h i l d r e n , g i v e n t h a t t h e r e a r e n sum-of-product

terms i n the complete a p p r o x i m a t i o n t o the o u t p u t under con

s i d e r a t i o n . C l e a r l y , such a case would o n l y o c c u r when the

a d d i t i o n of any new term t o B i ' t o form Bi+1' would r e s u l t

i n an e q u a l l y good a p p r o x i m a t i o n t o the S-box. For r e a s o n s

of e f f i c i e n t memory u t i l i z a t i o n such a v a r i a b i l i t y of

b r a n c h i n g f a c t o r i m p l i e s t h e use of l i n k e d l i s t s t o c o n t a i n

each node's c h i l d p o i n t e r s .

For each of the 32 S-box - output p a i r s , p r o c e s s i n g be

g i n s as i t d i d f o r the c o m b i n a t o r i a l l y e x h a u s t i v e b e s t s e t

s e a r c h : by the f o r m a t i o n of the b i n a r y c o n t r i b u t i o n m a t r i x

(CONTRIB) which i n d i c a t e s , f o r each term, f o r which of the

32 i n p u t c o n f i g u r a t i o n s where the r e a l S-box i s on the term

i s a l s o on. In t h i s f a s h i o n , each term may be r e p r e s e n t e d as

a b i t s t r i n g where a 1 i n p o s i t i o n k i n d i c a t e s t h a t an ap

p r o x i m a t i o n c o n t a i n i n g t h i s term w i l l be on f o r the k t h i n

put f o r which the r e a l S-box s h o u l d be on.

The t o p l e v e l of the s e a r c h t r e e i s then formed, from

terms whose c o r r e s p o n d i n g c o n t r i b u t i o n v e c t o r has a maximal

number of l ' s . As was mentioned i n the p r e c e e d i n g s e c t i o n ,

such terms must comprise t h e b e s t s e t s B I . The t o p p o i n t e r

t o t h i s f i r s t t r e e l e v e l a c t u a l l y p o i n t s t o a l i n k e d l i s t of

l i n k nodes, each of whose son p o i n t e r f i e l d s p o i n t t o the

r e s p e c t i v e d a t a nodes a c t u a l l y c o n t a i n i n g the sum-of-product

47

term numbers and o t h e r a s s o c i a t e d f i e l d s . D u r i n g t r e e

growth, a v e c t o r (OPEN) of p o i n t e r s i s m a i n t a i n e d . The e l e

ments of t h i s v e c t o r p o i n t t o t r e e nodes from which f u r t h e r

growth i s p o s s i b l e . A l l t o p l e v e l nodes a r e i n i t i a l l y p l a c e d

i n t h i s OPEN v e c t o r .

The f o l l o w i n g p r o c e s s then i t e r a t e s t o g e n e r a t e the t r e e

i n a b r e a d t h - f i r s t f a s h i o n , and c o n t i n u e s u n t i l a complete

sequence B l ' , B 2 B n ' of q u a s i - b e s t s e t s has been formed.

W i t h i n t h i s i t e r a t i o n t o produce new t r e e l e v e l s , the a l g o r

ithm l o o p s t h r o u g h a l l nodes i n the OPEN v e c t o r i n o r d e r t o

produce a new OPEN v e c t o r which i s t o be used i n the g e n e ra

t i o n of the next t r e e l e v e l .

For each node i n the OPEN v e c t o r , i t i s d e t e r m i n e d what

would be the b e s t term t o add t o the B i ' i n t h a t node t o

form the p o t e n t i a l B i + 1 ' w i t h a maximal c o n t r i b u t i o n t o the

c o r r e c t n e s s of t h i s new a p p r o x i m a t i o n . I t i s p o s s i b l e t h a t

t h e r e may be more than one such term which c o u l d be added t o

g e n e r a t e a p p r o x i m a t i o n s w i t h the same degree of c o r r e c t n e s s .

I f the new p o t e n t i a l B i + 1 ' i s a b e t t e r a p p r o x i m a t i o n t o the

S-box than any o t h e r p o t e n t i a l B i + 1 ' y e t formed a t t h i s l e v

e l i , a l l of t h e s e o t h e r p o t e n t i a l B i + 1 ' a r e d i s c a r d e d and

a r e superseded by t h i s newly-formed p o t e n t i a l B i + 1 ' . Even i f

t h i s supersedence does not o c c u r , i f the new B i + 1 ' i s as

good or b e t t e r than o t h e r p o t e n t i a l B i + 1 ' y e t d i s c o v e r e d , i t

might be added t o the t r e e as a c h i l d of the c u r r e n t B i ' be

i n g examined.

48
Whether or not the algorithm i s to add t h i s new potential

quasi-best set to the tree depends on whether or not there

has yet been added to the tree a quasi-best set which con

tains the same terms as th i s new quasi-best set. Once terms

have been added to the tree at the end of some path, one

term being added at each tree l e v e l , the order of addition

of terms i s i r r e l e v a n t . Neglect of t h i s fact w i l l lead to

redundancy of sets in the tree, and vast associated computa

t i o n a l expense. Consider, for instance, the case where there

exist two BI, sum-of-product terms #1 and #2, both of which

have contribution vectors with more l ' s than those of any

other terms, and where a l l l ' s of the respective vectors

are in d i f f e r e n t positions. Such a case actually occurs for

S-box 1, output 1, where terms #6 and #7 both have 4 l ' s .

One potential B2' consists of terms #1 and #2. However, to

form another potential B2' consisting of term #2 then term

#1, by expanding from l e v e l 1 the node containing term #2 i s

not a reasonable operation to perform. (See Figure 5, Per

mutation Cutoff).

To avoid these permutations of order of addition of terms

when following d i f f e r e n t paths in traversing the tree, prior

to adding a new c h i l d to the tree at l e v e l i+1 the algorithm

examines the new OPEN vector containing pointers to the

nodes added so far at t h i s new l e v e l , to see i f the c o n t r i

bution vector of this new potential Bi+1' i s the same as

that for a term already added. If th i s i s the case, one may

49

be assured that the addition of thi s new potential Bi+1' i s

redundant, and represents a quasi-best set already added to

the tree. One need not even follow back-links to ascertain

that precisely the same terms are included in some di f f e r e n t

permutation in another path to le v e l i+1 i f the ORMASK vec

tor i s redundant at th i s l e v e l . This i s so, as since a l l

sum-of-product terms are unique, to arrive at the same

ORMASK at the same l e v e l of the tree, one must have used the

same terms to form that ORMASK, unless the addition of one

or more terms had no eff e c t at a l l on the ORMASK. The l a t t e r

condition i s impossible, as i f this were the case, the term

causing an increase in the number of l ' s in the ORMASK would

not have been added to the tree. In summary, i f the ORMASK

of the potential quasi-best set to be added i s not redundant

at the current l e v e l of tree expansion, the new node added

to form th i s set i s added to the tree.

After a l l nodes in the current OPEN vector have been pro

cessed, any c h i l d nodes which remain as potential quasi-best

sets for l e v e l i+1 are indeed the quasi-best sets for that

l e v e l as there are no better sets. The new OPEN vector of

pointers to the le v e l i+1 nodes becomes the OPEN vector, and

the process iterates u n t i l some Bn' covers a l l input for

which the real S-box i s on.

When such a Bn' i s produced, one can follow i t s father

l i n k s back to tree l e v e l 1, to trace-back and recover the

sequence of quasi-best sets B l ' , B 2 B n ' . As has been

50
stated, because of the fashion in which these sets are

formed, that Bi' Bi+1' i s assured.

There exists another feature of the implementation of

th i s search-tree algorithm which contributes to i t s e f f i

ciency with respect to both memory and processor u t i l i z a

t i o n . This feature i s tantamount to a depth-first component

of the tree search which i s activated under certain s p e c i f i c

conditions.

In general, the n-ary tree i s generated in a b r e a t h - f i r s t

fashion. That i s , a l l nodes are generated at some l e v e l i ,

prior to any of the l e v e l i+1 nodes being formed. This i s

es s e n t i a l , as we wish to be guaranteed that the quasi-best

set sequence we ultimately discover i s optimal in the sense

defined e a r l i e r for such quasi-best sets. If the tree was

not generated breadth-first in p a r a l l e l , the s a t i s f a c t i o n of

this condition would e n t a i l a rather complex backtracking

operation. Some path would be produced depth-first to l e v e l

n, and exhaustive backtrack exploration of every junction at

every l e v e l would be required, to ensure that some other

complete path from the root to l e v e l n did not contain some

Bi' at l e v e l i which was a better quasi-best set than that

discovered on the former path. Such a depth-first expansion

would generate the complete tree, as we have just seen to be

required to assure the optimality of the sequence

Bl',B2',...,Bn', and would also involve the additional com

putational expense associated with the backtracking opera

tions.

51

Nothwithstanding the preceeding argument, there i s indeed

a requirement for some depth-first component in our search

algorithm. I n i t i a l implementations of the search which neg

lected to consider t h i s feature expanded a vast number of

nodes at the lower lev e l s (large i) of the tree for certain

S-box - output p a i r s . Analysis of the factors which pro

duced such an undesirable situation resulted in the i n c l u

sion of the following modifications to the basic search a l

gorithm.

At some point in the breadth-first generation of the

search tree, a l l nodes at l e v e l i+1 w i l l be such that they

represent an approximation to the actual S-box which i s cor

rect for exactly one more S-box input than any of the nodes

in the preceeding tree l e v e l i . The crux of the matter i s

that since the tree i s formed in a b e s t - f i r s t fashion, with

the algorithm adding at e a r l i e r tree levels the terms whose

contributions add more l ' s to the ORMASK contribution of the

B i ' , once a time i s reached where only one more 1 b i t i s

added to the approximation of the preceeding tree l e v e l , no

later term choice may subsequently add more than 1 b i t per

l e v e l . As each sum-of-product term must contribute some

thing to the correctness of the o v e r a l l approximation in or

der to have been returned by the Quine-McCluskey minimiza

tion routines, i t must be that a l l as-yet-unused terms w i l l

add exactly one b i t to the correctness of the approximating

expression. Thus, at t h i s point, the algorithm need no

52
longer expand the tree breadth-first, but can penetrate im

mediately in a depth-first manner to l e v e l n, adding as-yet-

unused terms in an a r b i t r a r y order to any node in the OPEN

vector to form the desired B l ' , B 2 B n ' sequence.

More e x p l i c i t l y , once i t has been discovered at l e v e l k

that only terms "adding" one b i t of correctness to the ap

proximating expression remain unused, only one path in the

n-ary tree from l e v e l k+l to l e v e l n need be formed in order

to ensure that the nodes on the res u l t i n g path form a se

quence of optimal quasi-best sets.

Applied to the DES S-box functions, t h i s set of routines

was capable of discovering these quasi-best set sequences in

reasonable time. As mentioned at the end of Chapter IV how

ever, the p r i n c i p a l d i r e c t i o n of t h i s thesis has been to

work with accurate expressions for the S-boxes, as the so

phisticated techniques described in the following chapter

permitted the size of the S-box functions to be reduced suf

f i c i e n t l y to allow a special type of search to be (marginal

ly) tractable, without the need to use approximations to the

S-box functions. The p o t e n t i a l applications of approxima

tions to the S-box functions as have been produced by the

routines of t h i s chapter remains a topic for future re

search.

Chapter VII

SPECTRAL DOMAIN S-BOX ANALYSIS

7.1 ORTHOGONAL TRANSFORMATIONS TO THE SPECTRAL DOMAIN:
THEORY

Our previous attempts at minimization of the Boolean

functions embodied in the S-boxes have not proven very use

f u l . One conventional technique of Boolean minimization, the

Quine-McCluskey method, has allowed us to reduce the number

of p-terms in accurate sum-of-products expressions for the

S-boxes and their complementation from 32, to between 14 and

23, depending on the S-box - output p a i r . While t h i s does

represent a s i g n i f i c a n t decrease in the e f f e c t i v e branching

factor of the search tree for K when compared with that of

32 i f the elementary p-term expressions for the S-boxes were

employed, as may be seen from the pr o b a b i l i t y of correctness

values in the table on page 145, nearly a l l of these minimal

p-terms must be retained in an S-box approximation, for the

approximation to have a high (>.9) pro b a b i l i t y of correct

ness value. As a result of thi s indication that the use of

approximations to the S-boxes may not have many applications

towards cryptanalysis, we turn instead to methods which are

capable of minimizing certain classes of Boolean functions

more e f f e c t i v e l y than can the Quine-McCluskey procedure.

- 53 -

54

Discussions with an expert in the f i e l d of d i g i t a l logic

design led to experimentation with a number of more recent

ly-developed Boolean function manipulation and minimization

techniques, as are employed in the f i e l d of logic design for

hardware applications. S p e c i f i c a l l y , such techniques refer

to the use of suitable transforms to permit the manipulation

of Boolean functions in a "spectral" domain, analogous to

the use of the Fourier transform to allow manipulation of

real functions in a frequency domain. For a more comprehen

sive treatment of the subject than can be included in thi s

thesis, the reader i s referred to several excellent recent

works on the subject by Hurst [7,8] and Karpovsky [10].

Consider a Boolean function of n variables defined by a

vector of 2fn b i t s , which represent the output values of the

function for each of the 2fn possible input configuations.

Let us term t h i s the s p e c i f i c a t i o n vector, Fs. Knowledge of

any p a r t i c u l a r b i t of Fs does not decrease the entropy, in

an information-theoretic sense, of any other b i t of Fs, un

less other a p r i o r i knowledge of some c h a r a c t e r i s t i c s of the

function i s aval i a b l e . We wish to represent Fs in some oth

er domain in which any co r r e l a t i o n between the outputs of

the Boolean function and i t s inputs w i l l be more evident.

That s p e c i f i c members of a set of elements of Fs have the

same value i s often ind i c a t i v e of some structure of the

function, yet t h i s structure i s not made e x p l i c i t by the Fs

vector representation. As a dramatic i l l u s t r a t i o n of th i s

55
fact, consider the following s p e c i f i c a t i o n vector for a

function of 4 variables.

Fs=(0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0)

Notice that Fs contains 2*=16 entries, one for each possible

input configuration 0000 to 1111 for the function. In t h i s

representation, i t i s not at a l l clear that the function i s

a c t u a l l y

f(Xl,X2,X3) = XI © X2 © X3

In fact, this high degree of structure i s quite obscured by

i t s representation as the vector Fs. While topological

methods such as the Karnaugh map technique [16] are capable

of making some types of structure more e x p l i c i t , these meth

ods are d i f f i c u l t to program.

If the function were represented in a d i f f e r e n t domain,

the detection of any symmetries possessed by the function

may be more e a s i l y accomplished. There exist several well-

known techniques which permit the mapping of any Fs to t h i s

a l t e r n a t i v e spectral domain, where these transformations may

be accomplished by means of a matrix m u l t i p l i c a t i o n [7,8].

These transformations w i l l be i n v e r t i b l e ; the information

content of the s p e c i f i c a t i o n vector i s preserved when map

ping from one domain to the other. The representation of

Boolean functions in the spectral domain w i l l use numbers

not confined to the range {0,1}.

Square 2j*n x 2fn orthogonal matrices with entries +1 and

-1 are used to indicate the mappings between the Boolean and

56

spectral domains. The "spectral domain" refers simply to a

domain in which d i f f e r e n t basis functions are used to repre

sent any desired function, just as sine and cosine basis

functions of varying frequency are used to represent real

functions in the Fourier domain. In thi s Boolean spectral

domain, the basis functions employed w i l l be XOR functions

of various variables, the functions being s p e c i f i e d in the

rows of the transform matrix, T [8] . The mapping from the

conventional functional Boolean domain to the spectral do

main can be defined by t h i s orthogonal mapping matrix T.

(T" 1 i s the inverse mapping, from the spectral to the Boole

an domain. T~ 1 w i l l always e x i s t , and T" 1 =T', as T i s or

thogonal) .

For the matrix m u l t i p l i c a t i o n to preserve the information

content of the s p e c i f i c a t i o n vector, the mapping to the

spectral domain i s ac t u a l l y a mapping of a modified speci

f i c a t i o n vector with entries from a d i f f e r e n t range. The

vector F i s ac t u a l l y mapped, where the entries f i of F cor

respond to the entries f s i of Fs through the equation:

f i = l - 2 f s i for a l l i=l...n

Thus, +1 corresponds to the usual Boolean 0, while -1 corre

sponds to the usual Boolean 1. This new representation i s

required, as the presence of O's in the mapped vector would

result in the matrix m u l t i p l i c a t i o n procedure (over the real

f i e l d) causing a loss of information, as the m u l t i p l i c a t i o n

of 0 with either 0 or 1 returns the same r e s u l t .

57

Mapping with t h i s new s p e c i f i c a t i o n vector F results in a

spectrum R of the function whose s p e c i f i c a t i o n vector i s Fs.

Mathematically:

R=TF

and F=T~1R

The entries of the vector R, r i for i=0...2f(n-1), are

termed the spectral c o e f f i c i e n t s of the function.

These r i are commonly interpreted as the c o e f f i c i e n t s of

the c o r r e l a t i o n between the outputs Fs of the Boolean func

t i o n , and XOR's of various combinations of the input v a r i

ables [7]. In order to explain what i s meant by t h i s , con

sider the c o e f f i c i e n t r5 of a 4 variable function, f. As 5

i s 0101 in binary, the r5 c o e f f i c i e n t gives the co r r e l a t i o n

of Fs with X20X4, where X2 and X4 are the 2nd and 4th input

variables to the function. (These variables corrspond to

the Is in the binary representation of the c o e f f i c i e n t num

ber). By "co r r e l a t i o n " i s meant the number of times the out

put of the basis function X2©X4 equals the output of f, mi

nus the number of times i t d i f f e r s . Clearly, i f i t happens

that f=X2@X4, then r5=2*, i t s maximum possible value. Thus,

each r i gives some aspect of global information about the

entire function.

There exist many possible variants of orthogonal trans

formations T which are nonetheless a l l the same, independent

of row permutations. These bear d i f f e r e n t names, as they

were developed independently, and include the: Hadamard,

58
Walsh-Kacmaz and Rademacher-Walsh transforms. We s h a l l em

ploy the former, defined recursively [8] as:

With t h i s choice of T, we may divide the r i into three

d i s j o i n t sets on the basis of the quantity whose co r r e l a t i o n

with the Boolean function s p e c i f i c a t i o n vector Fs they rep

resent. Each spectral c o e f f i c i e n t i s c l a s s i f i e d into one of

the sets on the basis of i t s order, where the order of a

spectral c o e f f i c i e n t r i , denoted | | r i | | , i s defined as the

number of Is in the binary number representation of i t s sub

s c r i p t i .

The zero-ordered c o e f f i c i e n t , ro, provides only a measure

of the number of +l's and - l ' s in F. Each of the r i for

which the binary representation of i has exactly one 1

(there are n such r i) are termed the primary spectral coef

f i c i e n t s , and measure the co r r e l a t i o n of each of the inde

pendent Boolean variables x i , for i=l...n, with the Fs vec

tor of function outputs. The remaining (2*fn)-n+l spectral

c o e f f i c i e n t s constitute the secondary spectral c o e f f i c i e n t s .

These represent the co r r e l a t i o n of fs with a l l other possi

ble XOR combinations of the input variables. For an example

in which n=6, r7=r000111 measures the co r r e l a t i o n of Fs with

the function X4©X5ffiX6. Negative values for any spectral

59

c o e f f i c i e n t indicate c o r r e l a t i o n with the complement of the
Boolean function.

Computationally, there exist techniques to calculate the

spectral c o e f f i c i e n t s R which are less expensive than an or

dinary matrix m u l t i p l i c a t i o n . The ca l c u l a t i o n of R by mul

t i p l y i n g T by F en t a i l s 1(2^)^3) m u l t i p l i c a t i o n operations

for an n variable function, as the size of T i s (2fn)x(2'fn).

Various " f a s t " transforms are well-known in the l i t e r a t u r e

on the subject [7,8], and operate in 0(n2fn) time. However,

such fast transforms w i l l not be employed in the following

analysis of the DES S-box spectra, as for t h i s case where

n=6, the very simple matrix m u l t i p l i c a t i o n procedure i s of

adequate speed, as only 64 3 m u l t i p l i c a t i o n s are required.

7.2 S-BOX COMPLEXITY IN THE SPECTRAL DOMAIN

One of our concerns involves the complexity of the Boole

an functions which represent the action of the S-boxes. The

complexity of AND/OR c i r c u i t r y required to r e a l i z e the ef

fect of the S-boxes corresponds d i r e c t l y to the degree of

branching in the search tree at the point where the action

of the S-box i s functionally inverted during search for the

encryption key, K. In order to be able to e f f e c t i v e l y mini

mize the complexity of any Boolean function, i t is necessary

to define a metric capable of usefully measuring th i s com

pl e x i t y . Algorithmic procedures may then be devised to mini

mize the value of thi s complexity function.

60

One c l a s s i c a l l y useful metric for Boolean function com

pl e x i t y , employed in the conventional Boolean domain, has

been found to be a count of the number of adjacent pairs of

input variable assignments for which the function f has the

same output values for both assignments [16]. Geometrically,

th i s corresponds to a count of pairs of adjacent l ' s and O's

in the Karnaugh map representation of the function. The

higher the value of such a complexity metric for a function,

the more ea s i l y that function may be synthesized using con

ventional AND and OR gates.

It has recently been shown [9] that the same metric may

ea s i l y be computed in the spectral domain from the inner

product of the square of the spectrum R, and the correspond

ing orders of the spectral c o e f f i c i e n t s in R. Following

Hurst et. a l . [9] we s h a l l use the spectral domain complexi

ty estimator:

n 1 2
C(f) = n2 / | | v | | rv

n-2
2 "*°

where the order of the vth spectral c o e f f i c i e n t rv i s ||v||.

If the spectral c o e f f i c i e n t s of some function f are domi

nated by the primary c o e f f i c i e n t s , i . e . the largest magni

tude c o e f f i c i e n t s are among the primary c o e f f i c i e n t s , then

C(f) w i l l be high and the function may be represented as a

sum-of-product expression with few terms. Otherwise, i f the

largest magnitude c o e f f i c i e n t s are among the secondary coef

f i c i e n t s , C(f) w i l l be low and the function may only be rep

resented by a more complex sum-of-products expression.

61
Considered informally, t h i s l a t t e r situation w i l l tend to

occur when the function i s heavily "XOR-oriented", and may

be more e a s i l y realized by means of XOR operations than by

AND and OR operations. As s h a l l be described, in such a case

the use of certain spectral t r a n s l a t i o n operations to s h i f t

the largest magnitude spectral c o e f f i c i e n t s into the primary

range may be advantageous. The C(f) complexity estimator

w i l l prove to be of use in measuring the degree of s i m p l i f i

cation of the function f effected by such translations.

7.3 SPECTRAL TRANSLATIONS

It i s possible to manipulate any Boolean function in the

spectral domain so as to maximize the value of the C(f) com

ple x i t y metric for that function. Groups of spectral trans

l a t i o n operations are performed on the rv vector in order to

permute t h i s vector in such a manner as to s h i f t the largest

magnitude spectral c o e f f i c i e n t s into positions of primary

c o e f f i c i e n t s . The "core" function f which remains after

a l l translations have been performed and the translated

function i s mapped back to the conventional domain by apply

ing T" 1 to i t s permuted rv vector is conjectured [10] to be

of maximum possible s i m p l i c i t y . C l a s s i c a l minimization

techniques, such as the Quine-McCluskey method, may then be

applied to the core function to produce a minimal sum-of-

products form.

62
Following Karpovsky [10: p.69], the required spectral

translations may be seen to be of the form:

f(xl,x2,...,xn) = f'(xl,x2,...,xi-l,xi©xj,xi+l,...,xn),
£ U,n}

Inputs to the function f are replaced by XORs of inputs, to

form the translated function, f . By a repeated application

of such translations, the complexity present in any function

can be factored out into a tree of XOR gates through which

inputs to the s i m p l i f i e d core function are conditioned.

Translations of t h i s nature are performed u n t i l a l l of the n

primary spectral c o e f f i c i e n t positions of the n-variable

function are occupied by the c o e f f i c i e n t s of the largest

magnitude.

In practice, the tree of XORs which condition the inputs
to the function f may be represented by a basis matrix B of
l ' s and 0's through which any input to f' must be multi p l i e d
under GF(2) to simulate the eff e c t of the XORing on the
functional inputs. Schematically, the following s i t u a t i o n
e x i s t s :

(a) Before t r a n s l a t i o n :
f

input x vector => output b i t
(b) After t r a n s l a t i o n :

B f'
input x vector => modified inputs => output b i t

where B i s the matrix through which the x inputs are
multiplied, and f i s the s i m p l i f i e d function which
results from a conventional minimization of the
translated function as returned to the functional domain

63
Any input vector x i s mapped to the same output value by e i

ther the o r i g i n a l function f, or by the combined action of

the B matrix and the s i m p l i f i e d f . The technique of spec

t r a l t r a n slation i s exemplified in the following section.

7.4 IMPLEMENTATION FOR PES

APL routines were devised to follow Karpovsky's algorithm

[10] to perform these translations for the production of the

mapping B and s i m p l i f i e d f , and were applied to the 32

functions which represent the DES S-boxes. The routines d i s

cussed in t h i s section may be found in Appendix E.

The routine SPECTRUM maps a function's s p e c i f i c a t i o n vec

tor to the spectral domain, by application of the appropri

ately-dimensioned Hadamard transform matrix, T. FUNC ap

p l i e s the inverse mapping T" 1 to a vector of spectral

c o e f f i c i e n t s to return the representation to the convention

a l functional domain. Both of these routines c a l l the func

tion TRANS, which recursively builds the required orthogonal

Hadamard transform matrix. The function COMPLEXITY applies

the formula for computation of the C(f) complexity metric to

a vector of spectral c o e f f i c i e n t s .

After the spectrum of an S-box function has been formed

by application of SPECTRUM to the Fs s p e c i f i c a t i o n vector

for that function, the BASIS routine i s c a l l e d with the

spectral c o e f f i c i e n t s , to determine the translations re

quired to maximize the primary c o e f f i c i e n t s . These t r a n s l a -

64

tions are represented in the form of a matrix BAS, which

when transposed and inverted under GF(2) w i l l serve to i n d i

cate how the rv vector must be permuted. That i s , the map

ping matrix B referred to in the previous section i s simpli

fy the transpose of the inverse of the matrix BAS, whose

creation s h a l l now be discussed. For a complete understand

ing of the procedure, the interested reader i s referred to

Karpovsky [10].

In BASIS, the largest c o e f f i c i e n t in rv i s discovered,

and i t s corresponding position v, represented as a binary

number, i s added as a new row of the init i a l l y - e m p t y BAS ma

t r i x . Elements in rv whose position corresponds to any pos

s i b l e linear (XOR) combinations of rows which already exist

in BAS are then deleted, to remove them from further consid

eration as large-magnitude c o e f f i c i e n t s . After BAS has ac

quired n rows, at which time a l l entries in rv should have

been zeroed by the above process as a l l linear XOR combina

tions of the rows of the complete BAS must span then entire

spectral space, i t i s transposed and inverted under GF(2) to

form the basis matrix for the permutation of rv. The matrix

BAS i s the mapping B discussed in the preceeding section

through which inputs to the new f' must be mapped.

For the purposes of i l l u s t r a t i o n of t h i s techniques, l e t

us consider the function f of 4 variables:

f = X1X2' + XI'X2 + X3X4' + X3'X4 + X1X2X3'X4'

65

Inspection reveals that t h i s function is heavily XOR-orient-

ed. In fact

f = (X1©X2) + (X3©X4) + X1X2X3'X4'

The s p e c i f i c a t i o n vector Fs for f i s found to be

F s = (0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0)

and m u l t i p l i c a t i o n into the 16x16 transform matrix T produc

es a spectrum

R = (13 1 1 -3 -1 -1 -1 -1 -1 -1 -1 -1-3 1 1 -3)

When the BASIS function i s invoked to produce a basis matrix

for the translation of these c o e f f i c i e n t s r i , the following

operations occur, in accordance with the preceeding descrip

tion of the translation algorithm. The largest element in R

(not considering rO) i s found in r3. Thus, the row (0 0 1

1), for "3" in binary i s catenated as a new row of the

(o r i g i n a l l y empty) basis matrix. A l l linear (XOR) conbina-

tions of rows in the basis are formed, and positions of R

corresponding to these combinations are zeroed. As in this

case the basis has only one row so far, only position 3 of R

is zeroed.

The largest element of t h i s new R i s then located at r l 2 .

As a re s u l t , the new row (1 1 0 0) i s added to the basis.

Positions 3 and 12 of R are zeroed as a result of consider

ing combinations of the vectors in the basis taken one-at-a-

time. Position 15 of R i s also zeroed as a result of combi

nations of the rows of the basis considered 2-at-a-time. 7

7 As (0 0 1 1)©(1 1 0 0)=(1 1 1 1) , or 15.

66
The largest element of t h i s modified R i s now in r l (only

Is remain unzeroed in R). The basis vector (0 0 0 1) i s add

ed, and positions of R corresponding to a l l possible XOR

combinations of the 3 rows in the basis are zeroed. The pro

cess i s repeated once more to add (0 1 0 0) to the basis ma

t r i x , at which point the entire basis has been formed (and

a l l elements of R are 0).

MAXPRIM i s a routine which accepts the basis matrix and

the c o e f f i c i e n t s rv, and returns rv permuted by the mapping

implied by the basis. In MAXPRIM, the 2[n possible input

configurations for f are mapped through the basis, and the

resulting sequence of configurations taken to define a per

mutation of the o r i g i n a l inputs. This permutation, when ap

p l i e d to rv, produces the vector of spectral c o e f f i c i e n t s

for the s i m p l i f i e d f , where a l l of the largest magnitude

c o e f f i c i e n t s occupy primary positions.

To continue our e a r l i e r 4-variable example, the required

permutation of the spectrum R according to the basis matrix

formed by the BASIS routine i s

R' = (13 -1 1 -1 -3 -1 1 -1 -3 -1 1 -1 -3 -1 1 -1)

Mapping th i s permuted spectrum through the inverse Hadamard

transform T" 1 y i e l d s a s p e c i f i c a t i o n vector Fs 1 for the new

"core" function f

F s ' = (0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1)

As may be simply discerned from a Karnaugh map, t h i s corre

sponds to a function
f = X3 + X4 + X1X2'

67

which i s evidently far more minimal than was the o r i g i n a l f.

The complexity of the function f attributable to XORs has

been removed.

The inverse (over GF(2)) of the transpose of the basis

matrix may be found to be

/0 0 1 1 \
B = / 1 1 0 0]

0 0 0 1 I
1 0 0/

Any input mul t i p l i e d through t h i s matrix and then subjected

to f w i l l be found to have a value i d e n t i c a l in a l l cases

to that of the same input subjected to the o r i g i n a l f.

Results of the application of these s i m p l i f i c a t i o n rou

tines to the DES S-box functions are remarkable. Table 2

presents the C(f) complexity measure for each of the 32

functions both before and after the s i m p l i f i c a t i o n by means

of spectral t r a n s l a t i o n s . The average complexity prior to

translation was 139. Following t r a n s l a t i o n , the core func

tions exhibited much greater s i m p l i c i t y , with an average

measure of 247. This means that in a Karnaugh map represen

tation for the S-box functions, there are on average approx

imately twice the number of adjacent c e l l s containing the

same value as there were prior to the spectral translation

procedure. This has a great impact on the s i m p l i c i t y of min

imizations of the new "core" functions by conventional

Quine-McCluskey techniques.

68
The translated f were returned to the functional domain

and subjected to the Quine-McCluskey minimization. The func

tions that resulted had between 9 and 13 p-terms per func

t i o n . These are far fewer than the 14 to 23 p-terms of the

Quine-McCluskey minimized S-box functions (Chapter V). The

o v e r a l l average number of l i t e r a l s per p-term decreased f o l

lowing the spectral s i m p l i f i c a t i o n to 3.57, from a value of

4.96 prior to s i m p l i f i c a t i o n . The ramifications of t h i s

substantial improvement in s i m p l i c i t y for the key search i s

discussed in Chapter IX.

Chapter VIII

UNIDIRECTIONAL CRYPTANALYTIC SEARCH

I t has been s t a t e d that our aim i s to f u n c t i o n a l l y " i n

v e r t " the DES e n c r y p t i o n a l g o r i t h m , so as to be a b l e to de

termine the v a l u e s of a l l b i t p o s i t i o n s of the e n c r y p t i o n

key K used as a mapping between the known cor r e s p o n d i n g

p a i r s of p l a i n t e x t P and c i p h e r t e x t C. T h i s p a r t i c u l a r cho

sen p l a i n t e x t a t t a c k may c o n v e n i e n t l y be viewed as a problem

of s e a r c h : Given the c o n s t r a i n t s imposed by the b i t s of P

and C and the d e t a i l s of the DES a l g o r i t h m , a search may be

conducted to determine the assignments to the b i t p o s i t i o n s

of K which s a t i s f y these c o n s t r a i n t s .

As i s t y p i c a l f o r problems of t h i s nature, a search t r e e

may be c o n s t r u c t e d and t r a v e r s e d i n the course of the d e t e r

mination of the K b i t v a l u e s . A t r e e i s d e f i n e d to be a

l o o p - f r e e d i r e c t e d graph with a d i s t i n g u i s h e d node of inde-

gree 0 (the r o o t) . A subtree i s any subset of the nodes of a

t r e e which themselves form a t r e e . A node i s s a i d t o be

" s a t i s f i e d " i f the assignments to b i t s of K which are r e

q u i r e d by the complete development of the subtree from that

By "key b i t h y p o t h e s i s " i s meant an assignment of a value
from {0,1} to a s p e c i f i c b i t p o s i t i o n of K which i s not
c o n t r a d i c t e d by any other assignments to key b i t s r e q u i r e d
so f a r d u r i n g the development of the search t r e e .

- 69 -

70

node are compatible with current key b i t hypotheses 8 for K.'

The search tree w i l l contain both "and" and "or" nodes,

where the former i s the r o o t 1 0 of a subtree, a l l of whose

immediate children must be s a t i s f i e d , and the l a t t e r i s the

root of a subtree, any of whose immediate children must be

s a t i s f i e d for the node i t s e l f to be s a t i s i f i e d [17]. Where

as a l l children of an "and" node w i l l be developed breadth-

f i r s t in p a r a l l e l , only one c h i l d of any "or" node w i l l be

present in the search tree at any given time. A contra

d i c t i o n in key b i t hypotheses w i l l cause a recursive back

track to the most recent "or" node for which alternative

children s t i l l remain, and cause the selection of such an

a l t e r n a t i v e branch at that node.

Within our p a r t i c u l a r search tree, constraints w i l l re

side at both the top l e v e l of the tree and at the l e a v e s . 1 1

This occurs as both the image and preimage of the K mapping

are known, in accordance with the assumptions of a chosen

plaintext attack. Inversion of the action of t h i s K mapping

as driven by the DES algorithm comprises the body of the

9 If no hypothetical assignments for relevant key b i t s yet
e x i s t , any assignments engendered by the development of
the subtree for a node by selection of the f i r s t disjunc
t i v e p o s s i b i l i t y at each choice point w i l l seem correct,
and w i l l remain as hypotheses u n t i l the development of a
d i f f e r e n t node leads to contradictory hypothetical assign
ments for some b i t of the key.

1 0 The root of a tree i s the node with indegree 0, i . e . the
node with no edges entering.

1 1 Leaves of a tree are nodes with outdegree 0, i . e . nodes
from which no edges emanate.

71

search tree. At the top of the tree, the value of each b i t

in the ciphertext block C i s known. At the leaves, the b i t s

in the corresponding plaintext block P are known. In working

back through the encryption procedure from round 15 to round

0 to ascertain how the p a r t i c u l a r b i t s of C came to have

their respective values, various hypotheses concerning the

values of the b i t s of K w i l l be generated.

U n t i l the search procedure i s completed, these key b i t

assignments w i l l only be hypothetical and may be contradict

ed by further search tree development. The presence of OR

nodes in the search tree w i l l allow backtracking throughout

the tree to permit alternatives in tree development which

could lead to d i f f e r e n t key b i t assignments, in the event

that contradictions occur in key hypotheses during tree

growth. For an i l l u s t r a t i o n of one variant of the AND/OR

search tree discussed in t h i s chapter, see Figure 6, P a r t i a l

Search Tree for 2-Round DES.

As Figure 6 embodies a l l of the s i g n i f i c a n t features of a

tree search, we s h a l l attempt to p r e c i s e l y explain i t s char

a c t e r i s t i c s . At the root are situated the (known) 64 b i t s of

the ciphertext C. In the tree, nodes with arcs below them

are "and" nodes. A l l subtrees which descend from an "and"

node must be s a t i s f i e d , for the "and" node to be s a t i s i f e d .

For t h i s reason, in an implementation of t h i s tree search,

the expansion of subtrees from an "and" node w i l l occur in a

breadth-first manner. There i s no advantage to delaying the

72

construction of these subtrees, as a l l must be expanded at

some time.

• Nodes without arcs are "or" nodes. "Or" nodes are s a t i s

f i e d i f any of their children are s a t i s f i e d . For t h i s rea

son, "or" nodes w i l l be expanded in a depth-first manner in

an implementation of thi s search. There i s no need to expand

in several directions simultaneously, when expansion of a

single subtree s u f f i c e s . Alternative "or" paths are expanded

only i f the search down one "or" path f a i l s , and backtrack

to the "or" node necessitates the selection of an alterna

t i v e path.

An expansion of any node in t h i s search tree constitutes

an "inversion" of some aspect of the encryption procedure.

Various points in the search tree of Figure 6 are numbered

with the c i r c l e d d i g i t s (1) through (6), to aid the follow

ing description of the process of formation of this tree.

At (1), i t can be seen that the leftmost b i t of C, that

i s , b i t position 2 of the L block at encryption round 2, has

a value of 1. It follows that b i t position 32 of the R

block at round 1 must also have had the value 1, as Ln=Rn-l

by the f i r s t of the two DES equations [26].

It i s the second of the two DES equations [26]

Rn = Ln-1 © f(Rn-l,Kn)

which accounts for the expansion of the subtree from (2).

From (2) i t may be reasoned that either L at round 0 posi

tion 32 was 1 and b i t 32 of the output of the f function op-

73
erat ing on RO and K l was 0; or e lse that the L was 0 and the

f funct ion was 1. This is because the XOR operator i n d i

cates non-equivalence. Assuming .the former of the two pos

s i b i l i t i e s (since (2) was an "or " node, these two d i s junc

t i ve p o s s i b i l i t e s for subtrees from (2) are explored

one-at-a-time) the node marked (3) is to be expanded.

If the output from the f function at pos i t ion 32 was 0,

th i s implies that the value of S-box 6, output 1 was 0, as

32 mapped back through the inverse of the P permutation of

DES i s 21, and the 21st output of the bank of S-boxes re fers

to th i s pa r t i cu l a r S-box - output pa i r .

Knowledge concerning th i s value of the output thus con

s t ra ins what the inputs to S-box 6 could have been. In F i g

ure 6, i t is reasoned that i f th i s output of the S-box was

0, then the DeMorgan complement of our minimal expression

for the Boolean function which represents S-box 6 output 1

must have been 1. While th i s is t rue, such reasoning can

lead to the expansion of more nodes than are necessary, as a

minimization of the complements of the S-box functions would

permit an "o r " of "ands" to extend from (3), instead of the

"and" of "o rs " which Figure 6 dep ic t s . Nevertheless, as F i g

ure 6 appears, at (4) we must construct "o r " subtrees to

permit xl=0, x2=0, and x3=l, where the xi for i = l , 2 , . . . , 6

are the 6 input var iab les to S-box 6.

At (5) we consider the problem of how to make a given S-

box input have a cer ta in value. From the spec i f i c a t i on of

74
the DES algorithm [26], i t may be seen that inputs to the

S-boxes are formed by an XOR of b i t s of K with E-permuted

b i t s of R from the previous l e v e l . U t i l i z i n g d e t a i l s of the

key selection algorithm, and mapping the position of the

f i r s t input to the S-box 6 through the inverse of the E per

mutation, i t may be concluded that the quantities XORed to

produce the f i r s t input to S-box 6 are key b i t 5 and b i t po

s i t i o n 16 of the R block at round 0.

At (6) i t i s realized that as the R block i s at encryp

tion round 0, i t corresponds to a b i t of plai n t e x t , whose

value i s known by our attack assumptions. As discussed l a t

er, i f either our assignment of a value to the b i t of K, or

the discovery of the value of the b i t of R by t h i s process

of inversion constitutes a contradiction with respect to

what has already been discovered, backtrack occurs, to ex

plore d i f f e r e n t disjunctive paths. This procedure i s ex

plained further in section 8.1.

It should be noted that for reasons of computational

t r a c t a b i l i t y , we s h a l l be considering a 2-round DES encryp

tion algorithm throughout t h i s chapter. Techniques which

serve to reduce cryptanalytic time for such a s i m p l i f i c a t i o n

of the DES algorithm may be applied to the actual 16-round

DES algorithm to achieve a similar time saving. Such a sim

p l i f i c a t i o n of DES by a reduction of the number of encryp

tion rounds i s frequently employed to permit inexpensive ex

perimentation with cryptanalysis [5]. In addition, the IP

75
and IP" 1 permutations are not being considered in our model,

as they are of no cryptanalytic significance under the con

di t i o n s of a known plaintext attack.

Exhaustive key search is a technique in which a l l possi

ble values of K are used to map the plaintext block P to see

i f the expected C i s the image of the mapping. The desir

a b i l i t y of a search tree cryptanalytic approach r e l a t i v e to

t h i s brute-force procedure of exhaustive key t r i a l s may be

seen to be a function of the degree of s i m p l i c i t y of the S-

box representations as they are embodied in the DES f func

t i o n . Indeed, the choice of S-box representation i s the only

variable parameter of the search. The DES equations:

Ln = Rn-1
and Rn = Ln-1 © f(Rn-l,Kn)

lead to constant branching factors in the search tree of 1

and 4, 1 2 respectively. The branching factor of a tree i s de

fined to be the average outdegree of nodes in the tree.

S i m i l a r l y , the branching factors caused by the E and P per

mutations, the KS key schedule function, and the XORing of

the KS output with an R block to form the S-box inputs are

a l l constant. There i s no apparent way to reduce their asso

ciated branching factors by any alternative representations

of the operations they embody. Consequently, reduction of

the search tree size must be effected by the compact repre-

1 2 For an XOR of two terms to have the value 1 either the
f i r s t term must have the value 1 and the second the value
0, or vice versa, which implies that up to 4 paths may
have to be expanded to s a t i s f y a node. Similar reasoning
applies for an XOR which must have the value 0.

76

sentation of the S-boxes, perhaps coupled with the clever

use of h e u r i s t i c s to accomplish tree pruning prior to or

during development, or to guide tree t r a v e r s a l . For i n

stance, should the elementary p-term expressions for the S-

boxes as discussed in Chapter 3 be employed as the represen

tation of the S-boxes during the search for K, the search

tree would possess a branching factor of 32x6=192 at each

point in the search where the action of the function f oper

ating on some arguments needed to be inverted. This i s the

case, as when the S-boxes are represented in the elementary

p-term form, the value of any given output of a s p e c i f i c S-

box i s sp e c i f i e d by a disjunction of 32 terms, each of which

i s a conjunct of 6 l i t e r a l s .

A simple c a l c u l a t i o n w i l l show that in t h i s event, the

complete search tree w i l l possess far more nodes than there

are t r i a l s in an exhaustive key s e a r c h 1 3 (2 5 S). From F i g

ure 6 i t may be seen that the following expression c o n s t i

tutes an upper bound on the number of nodes in the search

tree.

15

\ i
64 x / (2 t 1)

i = l
where: t=maximum number of conjunctive terms in any s-box

representation
l=maximum number of l i t e r a l s in any conjunctive term

1 3 The v a l i d i t y of comparing number of key t r i a l s to tree
size i s discussed in the f i r s t section of the next chap
ter .

77

There are 64 subtrees at the f i r s t l e v e l of the tree, a l l

of which have the same worst-case maximum possible number of

nodes. At each of the subsequent 15 tree l e v e l s , each node

has at most (2 t 1) children, where the 2 constant arises

from the XOR, and the t and 1 variables from the sizes of

the minimal expressions discovered for the S-box functions.

For the elementary p-term S-box expressions, t=32 and

1=6, so the above expression has the value of 1.2xl0 4 S >>

2 s 6, the key space s i z e .

It should however be borne in mind that in practice, such

a complete search tree would never be grown. Some subtrees

may be pruned on the basis of mutual incompatibility of nec

e s s a r i l y conjunctive conditions within those subtrees. As

well, a l l n subtrees from an OR node are only developed i f

the f i r s t n-1 subtrees cannot be s a t i s f i e d , a condition

which i s highly unlikely to occur for a l l OR nodes in the

entire search tree.

Due to such factors, i t i s d i f f i c u l t to a n a l y t i c a l l y pre

d i c t how concise the S-box expressions must be for a search

tree approach to cryptanalysis to be superior to exhaustive

key search, although a "worst case" analysis of the s i t u

ation i s attempted l a t e r .

78
8.1 SEARCH STRATEGY

The top-down search 1* for K w i l l be performed in a manner

which u t i l i z e s a combination of breadth-first and depth-

f i r s t search strategies [17]. Since for a 2-round DES core

memory constraints on the number of nodes in the tree are

not s i g n i f i c a n t , and as a l l branches from AND nodes must be

followed eventually, a breadth-first parallel-expansion d i s

c i p l i n e i s followed at AND nodes. At OR nodes, which may be

considered "choice points" in the search, the expansion i s

d e p t h - f i r s t , as i f any branch from an OR node is s a t i s i f i e d ,

so i s the OR node. It i s not reasonable to expand a l l a l t e r

native branches simultaneously, when the s a t i s f a c t i o n of

only one branch i s required. Backtracking to these choice

points upon f a i l u r e at lower tree l e v e l s w i l l allow us to

attempt the s a t i s f a c t i o n of other alternatives should t h i s

be required. That the conjunctive terms in the sum-of-prod-

ucts expressions for the S-boxes were ordered by their con

t r i b u t i o n to expression correctness, as discussed in Chapter

6, adds a h e u r i s t i c element to t h i s search. At a l l choice

points, the search tree i s expanded in a "best f i r s t " f a

shion. As an implementation consideration, father pointers

are maintained in each node, to f a c i l i t a t e the backtracking

to the most recently expanded OR node in the event of the

f a i l u r e to s a t i s f y some subtree.

1 4 A top-down search is a search which commences at the root
(top) of a tree, and proceeds downwards towards the
leaves.

79
That i s , i f some choice as manifested by the expansion of

the tree from some s p e c i f i c branch of an OR node necessi

tates that a certain b i t position of K be assigned a value

when i t already possess a d i f f e r e n t value, then either our

most recent choice to follow t h i s p a r t i c u l a r branch from the

OR node, or the choice which had previously resulted in the

assignment to the key b i t , i s incorrect. The two choices are

mutually incompatible. Recursive backtracking techniques can

be used to undo the most recent choices f i r s t .

If no disjunctive a l t e r n a t i v e at the most recent choice

point (OR node) may be expanded without the resu l t being an

inconsistency of key b i t s , then an e a r l i e r choice must be in

error, and backtracking must occur to re-make t h i s e a r l i e r

choice. If accurate representations of the S-boxes are em

ployed, then there must exist some selection of OR node

paths which permit a unique assignment to a l l key b i t s . If

this i s not possible, an error must be present in either the

search procedure or the correspondence between the P and C

blocks. However, i f the search i s employing approximations

to the S-boxes, the procedure may backtrack a l l the way to

the root of the search tree, a condition which indicates

that another P-C pair should be used in the search. If thi s

a r i s e s , the use of approximations to the S-boxes has led to

ir r e c o n c i l a b l e inconsistencies in what the key b i t s must

have been.

80

In summary, there are three types of conditions whose oc

curence leads to backtracking in the search:

1. If the search has reached the bottom l e v e l of the

tree through some path, which implies that the entire

process of encryption has been inverted for some b i t

of the plaintext, the value of the actual known pl a

intext at the corresponding b i t position must agree

with t h i s b i t of the round 0 encryption block uncov

ered by the search. As such b i t s of "plaintext" are

produced by the search, i f they f a i l to agree with

the corresponding position in the known plaintext,

backtrack must occur, to follow disjunctive paths in

the search other than those which led to t h i s errone

ous development.

2. Secondly, i f during the inversion of an encryption

operation which set some position in the vector of

inputs to an S-bank to a certain value, i t i s re

quired that a b i t of K be assigned a cert a i n value

and i t is the case that t h i s position of K has a l

ready been assigned a d i f f e r e n t value, then backtrack

must occur to remake e a r l i e r erroneous path-selection

decisions.

3. F i n a l l y , i f i t happens that no more alte r n a t i v e ex

pansions exist for a node which must be expanded in a

new way as a result of the search backtracking to

that node, the backtracking i s invoked recursively,

to backtrack yet higher in the tree.

81

It should be noted that with our 2-round s i m p l i f i e d DES,

th i s search procedure may not establish the values of a l l 56

b i t s of K, as not a l l of these key b i t s are produced by the

permutations and selections of K provided by the f i r s t three

cycles of the KS algorithm. Consequently, the assignments

made to b i t s of K which are not used in our s i m p l i f i c a t i o n

of the DES algorithm are a r b i t r a r y .

At t h i s point in the discussion, i t should be noted that

the use of a b i d i r e c t i o n a l search [17,18] to discover K

seems i n t u i t i v e l y appealing, as the cryptanalytic task i n

volves constraints at both the root and leaf nodes, and as

the encryption and decryption algorithms are i d e n t i c a l . It

should be possible to drive the search backwards from the

ciphertext towards the plaintext as the above discussion has

described while at the same time, one i s dr i v i n g forwards

from the known plaintext. For a known plaintext cryptanaly

s i s of a f u l l 16-round DES, one would search 8 rounds for

wards from the plaintext, and 8 rounds backwards from the

ciphertext and join the two search trees in the middle. The

existence of constraints at both ends of the search tree,

and the symmetry of encryption and decryption make thi s ap

proach possible. A more formal argument which indicates why

the b i d i r e c t i o n a l scheme i s viable may be seen in the next

chapter.

82

8.2 NODES IN THE SEARCH TREE

The approach employed in our search requires the exis

tence of 3 major d i s t i n c t types of data nodes in the search

tree, in addition to a descriptor type of node which i s as

sociated with every other type of node and which contains

information common to a l l node types. Each type of data node

possesses a unique structure, i s expanded d i f f e r e n t l y from

the other types of nodes, and requires a d i f f e r e n t response

i f backtracking reaches the node. This heterogeneity of

nodes i s necessitated by the fact that the DES encryption

algorithm involves a number of d i f f e r e n t operations in each

round. A thorough discussion of these types of nodes and

the i r c h a r a c t e r i s t i c s follows. (See Figure 7, Nodes in the

Cryptanalytic Search Tree).

8.2.1 Descriptor Node: SUPER

Two factors necessitate the inclusion of a descriptor

node structure associated with the actual data portion of

each of the 3 major types of data nodes in the search tree.

F i r s t l y , such a structure, known as the based-storage struc

ture SUPER in the PL/I routines which perform the search,

permits data common to a l l types of nodes to be factored out

of these nodes. This a b i l i t y serves to simplify the struc

ture of the actual data nodes.

More importantly, the PL/I language does not permit

pointer reference to based-storage data, unless the symbolic

83

name of the based variable i s known. This in turn implies

that during the traversal of an exis t i n g tree structure, as

occurs during recursive backtrack, one must know what type

of node one has linked to, before i t i s possible to access

the l i n k f i e l d s in that node. As we are dealing with a tree

structure with heterogeneous nodes which may be linked in a

wide variety of ways, i t i s c r u c i a l to be able to link to a

node without knowing i t s type a p r i o r i . A f i e l d in SUPER

which contains the type of the data node for which the SUPER

node i s a descriptor permits traversal in thi s fashion.

The SUPER node contains 6 f i e l d s . As mentioned, there i s

a single character type f i e l d , which allows the search rou

tine to determine for which of the 4 types of data nodes i t

is a descriptor. A position f i e l d contains an integer in the

range {1,32} to indicate which b i t of the current ciphertext

block i s represented by the value in the data node. Simi

l a r l y , a l e v e l f i e l d contains an integer from {1,16} to i n

dicate at which l e v e l in the 16-round encryption procedure

the block in which the b i t occurs i s contained. A father

pointer points to the SUPER node associated with the immedi

ate ancestor of the current node in the tree. There i s a

pointer to the actual data node which i s described by the

SUPER node. F i n a l l y , there i s a pointer to the node on the

queue of nodes which are "open" for further development

which points to the SUPER node. If i t i s the case that the

SUPER node has already been expanded and i s not s t i l l a tern-

84

porary leaf of the expanding tree, t h i s OPENQ pointer i s

n u l l . The need for such a pointer i s discussed in the sec

tion pertaining to the BACKTRACK routine.

8.2.2 Data Node; RNODE

The RNODE structure permits representation of the knowl

edge that at some s p e c i f i c l e v e l in the encryption process a

s p e c i f i c b i t position in an R-block possessed a certain b i t

v a l u e . 1 5

The position and l e v e l information for the RNODE resides

in i t s descriptor. In the actual RNODE, there exist f i e l d s

to represent the b i t value of the RNODE, a count f i e l d from

{0,2} to indicate how many times the node has previously

been expanded, and two c h i l d pointers. Where these c h i l d

pointers must point may be deduced through the examination

of the second of the DES encryption equations:
Rn=Ln-l © f(Rn-l,Kn)
=Rn-2 © f(Rn-l,Kn) (see footnote)

If the RNODE being expanded has a value 1, then i t s two

children (the RNODE at l e v e l n-2 and the FNODE) must have

respective values 1 and 0, or 0 and 1, as a result of the

XOR. These 2 p o s s i b i l i t e s are dis j u n c t i v e . The f i r s t i s de-

1 5 No analogous node to represent knowledge about L-blocks
i s required. As Ln=Rn-l by the DES algorithm, i t i s
known immediately that instead of representing some b i t
position p of an L-block at l e v e l 1 of encryption which
possesses a value v, the RNODE which must have been the
predecessor to the LNODE during encryption may immediate
ly be created. This RNODE w i l l represent b i t position p
at l e v e l 1-1 and have the value v.

85

veloped the f i r s t time the RNODE i s expanded (when i t s count

f i e l d i s 0), and the second i s developed as an a l t e r n a t i v e

should backtrack ever reach the RNODE, as a r e s u l t of the

occurence of some key b i t c o n t r a d i c t i o n .

Otherwise, should the RNODE being expanded have the value

0, i t s two c h i l d r e n must both have the value 0, or both have

the value 1. The count f i e l d i s maintained i n the RNODE only

to a llow the search a l g o r i t h m to determine i t s s t a t e of ex

pansion, should b a c k t r a c k i n g r e q u i r e other p o s s i b i l i t e s f o r

the RNODE to be developed.

8.2.3 Data Node: FNODE

Should i t be d e s i r e d to employ minimized forms f o r only

the uncomplemented S-box f u n c t i o n s , i . e . t o c h a r a c t e r i z e i n

put v a r i a b l e c o n f i g u r a t i o n s which r e s u l t i n a s p e c i f i e d out

put of the S-bank having a value of 1, then the expansion of

nodes which embody knowledge concerning the value of the

output of the DES f f u n c t i o n at some e n c r y p t i o n l e v e l and

b i t p o s i t i o n would be i n t r i n s i c a l l y asymmetric, f o r nodes of

d i f f e r i n g v a l u e . Given that QM-minimized e x p r e s s i o n s f o r

only the uncomplemented S-box f u n c t i o n s are a v a i l a b l e , forms

fo r the corresponding complemented S-box f u n c t i o n s c o u l d be

produced by the DeMorgan complementation [16] of the p o s i

t i v e sum-of-products forms. While the process of complemen

t a t i o n i t s e l f i s t r i v i a l , the complexity r e q u i r e d i n the

search procedure to handle the asymmetry i n t r o d u c e d by the

use of product-of-sum forms i s s i g n i f i c a n t .

86

While an FNODE whose value i s captured by a

sum-of-products expression may be s a t i s f i e d by a l t e r n a t i v e l y

attempting to s a t i s f y each of the conjunctive terms, an

FNODE whose value i s expressed in a product-of-sum form has

far more p o t e n t i a l l y - s a t i s f y i n g input variable configura

tions. To s a t i s f y the l a t t e r form, one X l i t e r a l from each

of the disjunctive terms need be s a t i s f i e d .

Consider as a s i m p l i f i e d example the case where an S-box

function f has the following minimized form:

f = x l x2 x3' x4' x5' x6 + x2 x3 x4 x6'

then by DeMorgan complementation:

V = (x l 1 + x2' + x3 + x4 + x5 + x6')(x2' + x3' + x4' + x6)

To attempt to s a t i s f y the former uncomplemented form, at

most 2 disjunctive p o s s i b i l i t i e s w i l l have to be explored,

each of which i s a conjunct of a number of X l i t e r a l s . The

number of p o t e n t i a l l y - s a t i s f y i n g l i t e r a l i n s t a n t i a t i o n s for

the l a t t e r complemented form of the f function may be seen

to be a product of the number of l i t e r a l s in disjunction in

each conjunctive term, i . e . 6x4=24. S p e c i f i c a l l y , each l i n e

of the following table provides an ins t a n t i a t i o n of X l i t e r

a l s which causes f'=l:
xl=0 x2=0
xl=0 x3=0
xl=0 x4=0
xl=0 x6=l

x2=0 x2=0
x2=0 x3=0
x2=0 x4=0
x2=0 x6=l

x3=l x2=0

87

Although i t i s possible to eliminate certain i n s t a n t i a

tion configurations a p r i o r i , as, for instance, the possi-

b i l t y that x3=l (s a t i s f y i n g the f i r s t conjunctive term) and

x3'=l (s a t s i f y i n g the second such term) cannot be realized

simultaneously, there are s t i l l exponentially many more ways

to p o t e n t i a l l y s a t i s f y the DeMorgan complementation of a po

s i t i v e S-box function than there are to s a t i s f y a sum-of-

products form. As a consequence of t h i s , despite e a r l i e r

experimentation with a form of the search procedure which

act u a l l y complemented the QM-minimized expressions for the

p o s i t i v e S-box functions, the complemented S-box functions

were themselves minimized by the QM procedure, and these

sum-of-products forms for the f used in the search.

Recall that the sum-of-product expression for an S-box,

or i t s complement, as obtained by the Quine-McCluskey mini

mization technique, consists of the disjunction of up to 23

p-terms, each of which i s a conjunct of up to 6 l i t e r a l s .

(The l i t e r a l s constitute the input to the S-box). For an

FNODE at some point in the search to have a value of 1, any

of the p-terms in the appropriate sum-of-products expression

for the uncomplemented S-box function must be "on". Such a

term w i l l be "on" only i f a l l l i t e r a l s in the term possess

the appropriate values. S i m i l a r i l y , for an FNODE to have

the value 0 at some point, any of the p-terms in the appro

priate sum-of-products expression for f must be "on", as a

88

result of a l l l i t e r a l s in t h i s p-term possessing appropriate

values.

Consequently, a based structure known as an FNODE i s used

in the search tree to represent knowledge that at some en

cryption l e v e l , some f function must have a spec i f i e d Boole

an output value. The FNODE structure contains an integer

count f i e l d from {1,23} which indicates the number of the

p-term which the search currently assumes i s responsible for

turning the f function "on". There i s a value b i t , which i n

dicates whether the FNODE i s to represent an S-bank output

with a value of 0 or 1. This value determines whether the

QM-minimized forms for the complemented or uncomplemented

S-box function, respectively, are to be used. Also in the

FNODE are 6 pointer f i e l d s which contain l i n k s to the appro

priate XNODEs which possess the values required to turn the

p-term on. 1 6 This expansion paradigm introduces a h e u r i s t i c

component into the search, as the p-terms occur in the sum-

of-products expression in b e s t - f i r s t order, and t h i s i s the

order in which they are expanded.

Should backtrack occur to an FNODE, i t s count f i e l d i s

examined, and the next p-term in the appropriate sum-of-

products expression for t h i s function (or i t s complement,

depending upon the value of the value b i t within the FNODE)

is assumed to be the term responsible for making the f func-

1 6 If the p-term considered has some "don't care" values in
some l i t e r a l positions, the corresponding pointers in the
FNODE w i l l be n u l l .

89

tion output 1 (or 0). If no p-term in the appropriate

sum-of-products expression can have a value of 1 without the

consequences resulting in key b i t contradictions, backtrack

continues past the FNODE to previous nodes in the search

tree.

8.2.4 Data Node: XNODE

The structure of the XNODE type i s very similar to that

of the RNODE, as the values of a pa r t i c u l a r position of an

R-block and of an X variable are both formed as a result of

an XOR operation. In t h i s discussion, inputs to the S-boxes

are referred to as variables by the name of X. Such XNODEs

contain 3 f i e l d s .

As for RNODES, there i s a count f i e l d which contains an

integer from {0,2} to record the number of times the XNODE

has previously been expanded. There is also a value f i e l d to

contain a b i t indicating whether the X variable i s to have

the value 0 or 1. The t h i r d f i e l d contained in an XNODE i s

a pointer to the RNODE of appropriate l e v e l , value, and po

s i t i o n which caused the production of the par t i c u l a r X value

during encryption.

An X variable at some pa r t i c u l a r position and l e v e l ob

tains i t s value during the encryption procedure by means of

application of the following DES formula:

X = KS(p,n) © Rn-1

90

The f i r s t term represents the output of the DES key schedule

function at l e v e l n, position p. If the value of the XNODE

being developed i s 1, then the two possible disjunctive cas

es are that the KS output and the pa r t i c u l a r position of the

R-block were respectively either 1 and 0 or 0 and 1. As in

the case of the RNODE, should the value of the XNODE have

been 0, both the KS output and R-block b i t would have to

possess the same value, for the XNODE to be s a t i s f i e d . (Both

0 or both 1).

Only one c h i l d pointer extends from an XNODE, as the re

quirement that a key b i t possess a certain value does not

imply any further tree development. If i t is known that the

output of the KS function must have a certain value in a

certain position at a certai n l e v e l , a key b i t hypothesis

may be immediately formed and posted in the global variable

containing the developing key. The key schedule function i s

inverted to determine which b i t of K i s produced in position

p at the given round of encryption, and thi s b i t of K i s as

signed the appropriate value. Should backtrack occur to the

XNODE, the key b i t hypothesis must be deleted.

8.3 THE PL/I PROCEDURE: SEARCH

The implementation of the search strategy described ear

l i e r was ca r r i e d out in PL/I. The actual code for the rou

tines to be discussed may be seen in Appendix F. Although

the strategy employed for the purposes of un i d i r e c t i o n a l

9 1

search for K has already been discussed at some length, cer

tain features of the PL/I implementation are noteworthy. In

p a r t i c u l a r , attention w i l l be paid to the techniques used

for node expansion and backtracking during the search.

Tree development i s controlled by a queue of nodes which

are "open" for further development, where the c h a r a c t e r i s t i c

common to a l l such open nodes is that they are not yet sat

i s f i e d . Their subtrees require further development. Where

as a similar queue maintained for the purpose of breadth-

f i r s t expansion of the n-ary tree to discover the best

sum-of-product terms (as discussed in Chapter VI) was im

plemented using an array of pointers to open nodes, here a

linked l i s t of pointers i s maintained. Tree development i s

accomplished by expanding the subsequent open node on t h i s

queue, deleting i t from the queue of open nodes, and then

moving on to expand the next open node. This procedure con

s t i t u t e s the mainline of the search procedure, and continues

u n t i l the open queue i s empty.

The reason that a l i n k e d - l i s t implementation was chosen

for the open queue involves the need to be able to choose

whether the expansion is to be depth-first or bread t h - f i r s t .

An array implementation may be seen to make the a b i l i t y to

support the former expansion c a p a b i l i t y p r o h i b i t i v e l y ex

pensive. As the tree development i s accomplished by expand

ing nodes in the open queue successively, to grow the tree

in a breadth-first manner one adds new nodes to the end of

92

the queue, where they w i l l be expanded a f t e r a l l other nodes

i n the queue. Adding new nodes to the queue i n a p o s i t i o n

immediately f o l l o w i n g the node c u r r e n t l y being expanded

means th a t these new nodes w i l l be expanded next, before

others i n the queue, and that the expansion of the t r e e w i l l

occur i n a d e p t h - f i r s t f a s h i o n . In an a r r a y implementation

of the open queue, the i n s e r t i o n of e n t r i e s i n the middle of

the queue would e n t a i l the " s h u f f l i n g " of elements, and a

great a s s o c i a t e d computational expense.

When a node p o i n t e d to by an element on t h i s open queue

i s to be expanded, the EXPAND r o u t i n e i s c a l l e d , from the

m a i n l i n e . I t s e l e c t s and invokes one of the r o u t i n e s :

R_EXPAND, F_EXPAND, or X_EXPAND, depending on the value of

the type f i e l d of the node being expanded, f o r R_NODEs,

FNODEs, and XNODEs, r e s p e c t i v e l y .

8.3.1 The R EXPAND procedure

The r o u t i n e R_EXPAND commences by checking the e n c r y p t i o n

l e v e l of the RNODE to be expanded. I f i t i s the case t h a t

the RNODE i s from e n c r y p t i o n round 0 or - l 1 7 the bottom of

the t r e e has been reached, and the va l u e of the RNODE may be

compared with the value r e q u i r e d f o r such a node, as b i t s i n

the R block at l e v e l s 0 and -1 correspond to b i t s of the

known p l a i n t e x t . Should the RNODE have the c o r r e c t v a l u e ,

1 7 No L nodes are e x p l i c i t l y represented i n the t r e e , but
t h e i r presence i s accounted f o r by RNODEs of the preceed
ing l e v e l . Hence an RNODE at l e v e l -1 corresponds to a
l e v e l 0 L node.

9 3

R_EXPAND r e t u r n s without adding any new nodes to the open

queue. • However, i f the value of t h i s RNODE as produced by

the i n v e r s i o n of the e n c r y p t i o n process i s i n c o r r e c t , the

BACKTRACK procedure i s c a l l e d to remake c h o i c e s e a r l i e r i n

the t r e e which l e d to the p r o d u c t i o n of t h i s erroneous

RNODE.

If round 0 of the e n c r y p t i o n has not yet been reached,

the count f i e l d w i t h i n the RNODE i s examined. T h i s f i e l d

c o n t a i n s a value from { 0 , 2 } to i n d i c a t e how many times the

node has a l r e a d y been expanded. There are only 2 p o s s i b l e

ways to expand any RNODE, corresp o n d i n g to the 2 p o s s i b l e

i n puts to an XOR f u n c t i o n which can cause the f u n c t i o n to

a t t a i n a s p e c i f i e d v a l u e . I f the count f i e l d i s 2, no f u r

ther expansion p o s s i b i l i t i e s remain f o r the RNODE, and

BACKTRACK i s c a l l e d .

I f the count f i e l d i s other than 2, a p p r o p r i a t e l e f t and

r i g h t c h i l d nodes are c r e a t e d and added to the end of the

OPEN queue, a f t e r any e x i s t i n g subtrees have been destroyed

and t h e i r r a m i f i c a t i o n s removed. The l e f t c h i l d i s always

another RNODE of l e v e l 2 l e s s than the RNODE being expand

e d . 1 8 The value of t h i s c h i l d RNODE i s as s i g n e d as 1 upon

the f i r s t expansion of the f a t h e r RNODE, and 0 f o r the sub

sequent expansion. The r i g h t c h i l d i s an FNODE of value 0 or

1 , depending on both the value of the parent RNODE and the

number of times which the parent has been expanded. To be

1 8 T h i s RNODE re p r e s e n t s the v i r t u a l LNODE at l e v e l 1 l e s s
than the RNODE being expanded.

94

s p e c i f i c , an FNODE of value 1 i s the r i g h t c h i l d i f and only

i f the parent RNODE has a count f i e l d which i s e q u i v a l e n t to

the number of times the RNODE has p r e v i o u s l y been expanded.

(Both 0 or both 1) . Otherwise, an FNODE of value 0 i s c r e a t

ed. Before l e a v i n g the R_EXPAND r o u i t n e , the count f i e l d of

the RNODE being expanded i s incremented.

8.3.2 The F EXPAND procedure

The F_EXPAND r o u t i n e i s invoked by the EXPAND d r i v e r to

expand an FNODE. As mentioned, a l l s i m u l t a n e o u s l y d i s j u n c

t i v e paths from a p a r t i c u l a r node i n the t r e e e x i s t only

v i r t u a l l y : The FNODE s t r u c t u r e at any given time has c h i l

dren which c o n s i s t of the set of XNODEs engendered by the

assumption that a s i n g l e p a r t i c u l a r p-term i n the sum-of-

products e x p r e s s i o n f o r the S-box i n q u e s t i o n w i l l cause the

s a t i s f a c t i o n of the FNODE.

When i t i s necessary to expand an FNODE, i t i s f i r s t de

termined through the examination of the value b i t w i t h i n the

FNODE whether the sum-of-products form f o r the complemented

or uncomplemented S-box f u n c t i o n i s to be employed i n the

expansion. The procedure then a s c e r t a i n s whether there yet

remain any p-terms i n the a p p r o p r i a t e S-box e x p r e s s i o n c o r

responding to the S-bank output under c o n s i d e r a t i o n , the

consequences of which have not yet been e x p l o r e d . To accom

p l i s h t h i s , the count f i e l d maintained w i t h i n the FNODE i s

compared with the number of p-terms i n the a s s o c i a t e d sum-

95

o f - p r o d u c t s e x p r e s s i o n . T h i s f i e l d i s incremented each time

an expansion of the FNODE i s performed. As no Quine-McClus

key minimized S-box ex p r e s s i o n s c o n t a i n s more than 23 p-

terms, t h i s count f i e l d has a value from {0,23}. A l t e r n a

t i v e l y s t a t e d , s a t i s f a c t i o n of any FNODE can be attempted at

most 23 times before backtrack continues higher i n the t r e e .

If a l l p-terms have been exhausted, BACKTRACK i s c a l l e d . In

such a case, no p o s s i b i l i t i e s remain to expand the FNODE

without the consequences of the expansion c a u s i n g some con

t r a d i c t i o n .

If u n t r i e d p-terms s t i l l remain i n the a p p r o p r i a t e sum-

of- p r o d u c t s e x p r e s s i o n , c h i l d r e n corresponding to the X l i t

e r a l s i n t h i s next p-term are c r e a t e d and added to the OPEN

queue. In p r a c t i c e , the e x i s t i n g c h i l d r e n of the FNODE are

re p l a c e d only i f the value of the X l i t e r a l they represent

d i f f e r s i n value from the corresponding X l i t e r a l i n the new

p-term. I f the values do not d i f f e r , the o l d XNODE c h i l d i s

r e t a i n e d along with the subtree of which i t i s the r o o t .

8.3.3 The X EXPAND procedure

The expansion of an XNODE i s somewhat analogous to that

of an RNODE, as both of these s t r u c t u r e s are formed as a r e

s u l t of an XOR o p e r a t i o n . To expand an XNODE, i t s count

f i e l d i s f i r s t examined. I f t h i s f i e l d has reached 2,

BACKTRACK i s c a l l e d , as no p o s s i b i l i t i e s f o r expansion r e

main.

96

XNODES have only one c h i l d i n the search t r e e , the other

component of the XOR producing an XNODE i s a b i t of K. I f

the number of times the XNODE has been expanded i s equiva

l e n t to i t s v a l u e , as i n the expansion of an RNODE, an RNODE

of value 0 i s c r e a t e d as a c h i l d at the preceeding round of

e n c r y p t i o n , and i s added to the OPEN queue. An RNODE with

value 0 i s c r e a t e d i f the equi v a l e n c e does not occur.

Based on the count f i e l d , a hypothesis f o r the value of

the b i t of K i s produced. The p o s i t i o n of the b i t w i t h i n K

i s determined through knowledge of the key schedule permuta

t i o n . Beore p o s t i n g t h i s hypothesis f o r the b i t of K, the

c u r r e n t hypotheses are examined to ensure that a c o n t r a d i c

t o r y h y p o t h e s i s f o r the same b i t does not e x i s t . I f such a

hypothesis a l r e a d y e x i s t s , BACKTRACK i s c a l l e d to r e s o l v e

the c o n t r a d i c t i o n . I f no hypothesis yet e x i s t s f o r the b i t

under c o n s i d e r a t i o n , the new hypothesis i s posted and

X_EXPAND r e t u r n s , a f t e r having incremented the count f i e l d

w i t h i n the XNODE.

8 . 3 . 4 The BACKTRACK procedure

The BACKTRACK r o u t i n e has been mentioned e x t e n s i v e l y i n

the preceeding d i s c u s s i o n , although i t s c h a r a c t e r i s t i c s have

not yet been examined. I t i s invoked when no d i s j u n c t i v e a l

t e r n a t i v e s f o r expansion remain f o r the node whose expansion

i s c u r r e n t l y being attempted by the t r e e search procedure.

A l l p o s s i b l e expansions have l e d to a c o n t r a d i c t i o n , e i t h e r

97
of key b i t hypothesis, or between what has been produced as

plaintext by inversion of the encryption process and what

the plaintext i s known to be.

If such a condition a r i s e s , i t must be the case that an

erroneous choice of some disjunctive path to follow has oc

cured e a r l i e r in the tree, and such a choice must be re

made .

BACKTRACK f i r s t deletes the current node. This i s accom

plished by setting to n u l l any pointer in the father of the

node which points to that node, as well as removing from the

OPEN queue any references to the node.

The need for the l a t t e r action may be seen from the f o l

lowing example. Consider a subtree of the search tree, con

s i s t i n g of an RNODE at encryption round 2, and i t s 2 c h i l

dren: a round 0 RNODE, and an FNODE at l e v e l 1. Suppose that

the RNODE at l e v e l 0 i s the node currently being developed

and that the FNODE i s the next on the OPEN queue. Should the

check with the known plaintext indicate that the value of

the l e v e l 0 RNODE i s incorrect, backtrack occurs to re-ex

pand i t s father, the l e v e l 2 RNODE. This re-expansion w i l l

cause the creation of new l e f t and right c h i l d r e n . In par

t i c u l a r , i f the l e v e l 2 RNODE may be re-expanded, a new

FNODE c h i l d with a value d i f f e r e n t from the previous right

c h i l d i s produced. Clearly, the old FNODE must be removed

from the OPEN queue to prevent such a node, which now does

not belong in the tree, from ever being developed.

98

It i s for t h i s reason that the OPENQ f i e l d e x ists in each

SUPER node. This f i e l d conatins a pointer to the queue node

which points to the SUPER node. E s s e n t i a l l y , the OPEN queue

references are backlinked to permit the immediate location

of a p a r t i c u l a r queue node for deletion. If such a f i e l d

were not provided, i t would be necessary to search the OPEN

queue l i n e a r l y for any references to the node being deleted,

each time any open node was to be removed from the tree. As

the OPEN queue may be as long as the maximum width of the

search tree, such a procedure would be computationally

wasteful. Clearly, the OPENQ f i e l d points to nodes on the

OPEN queue only for nodes which are s t i l l open for further

expansion. The f i e l d i s set to n u l l when a node i s expanded

by the EXPAND routine. After these references are deleted,

BACKTRACK c a l l s EXPAND for the father of the deleted node,

to attempt an alternative expansion of thi s e a r l i e r node.

It should be noted that t h i s process i s recursive, and

w i l l continue the expansion and backtrack u n t i l a l l 64 of

the round 16 root nodes are s a t i s f i e d , and a l l positions of

the results of our encryption inversion agree in value with

what the plaintext P i s known to be, with no contradictions

in what the b i t s of K must have been. At such a point, the

encryption key K has been uncovered.

99

8.4 APPLICATION TO A 2-ROUND DES

For the purposes of testing these u n i d i r e c t i o n a l key

search procedures, a set of APL routines were written to

perform 2-round DES encryption of randomly-chosen plaintext

b i t s under a randomly-chosen key, and store the resul t i n g

P-C pairs in f i l e s accessable to the search routines. These

APL routines may be found in Appendix G.

Experimentation with the PL/1 search routines quickly

demonstrated the i n t r a c t a b i l i t y of a un i d i r e c t i o n a l search

approach to the discovery of the encryption key, even for a

DES algorithm of only 2 rounds. Computer time l i m i t s of up

to 30 minutes on the University of Manitoba AMDAHL 470/V8

were exceeded during the course of execution of the search,

and further experimentation with such searches had to be

cu r t a i l e d due to the computational expense. The search tree

i t s e l f was constructed down to the plaintext leaf l e v e l

f a i r l y rapidly, but the process of backtracking to remake

choices in the tree to get the known plaintext to agree with

what had been generated as a result of the posted key b i t

hypotheses continued in a l l t r i a l s u n t i l the processing time

l i m i t imposed upon the program had been exceeded.

Examination of the causes of the f a i l u r e of thi s approach

to cryptanalysis led to a d i r e c t i o n of further research d i f

fering in two components: An analysis of the use of process

ing time by the search procedure showed that a considerable

amount of time was wasted by both the dynamic a l l o c a t i o n and

100

freeing of storage from the heap by PL/1 during execution,

and by the continual paging of (4k byte) segments of the

large (384k) search tree during the search. While the for

mer problem could have been avoided through exploitation of

the r e a l i z a t i o n that the tree, in a somewhat altered repre

sentation space, i s s t a t i c and thus a l l required memory may

be pre-allocated and need never be freed, the l a t t e r seems

regrettably inavoidable due to the scattered d i s t r i b u t i o n of

key b i t use throughout the encryption. The regularity of

structure of the properly-viewed search tree w i l l be further

discussed in the following chapter.

Aside from these implementation considerations, upon

proper r e f l e c t i o n i t must be concluded that the unidirec

t i o n a l search approach i s destined to be computationally

intractable, as i t is e s s e n t i a l l y a "generate and t e s t " ap

proach. In the algorithm presented, not a l l of the available

data i s e f f e c t i v e l y used to guide the search. While the c i

phertext i s employed to determine the growth of the tree,

the known plaintext i s used in an i n e f f i c i e n t manner, to

simply v e r i f y that the tree has grown properly, and to cause

backtrack for the purposes of correction, i f i t has not.

Algorithms of t h i s type are known in the f i e l d of comput

er science as the " B r i t i s h Museum" approach for their ex

haustive and somewhat foolhardy nature. Our u n i d i r e c t i o n a l

approach i s analogous to employing exhaustive bottom-up gen

eration of a l l possible facts in order to prove a theorem,

101

instead of using the goal, i . e . the theorem to be proven, to

guide the search in a top-down goal-directed fashion.

What seems required i s an a b i l i t y to e f f e c t i v e l y use a l l

available knowledge, both P and C at once, to guide the key

search and thus e f f e c t i v e l y l i m i t the search time. The next

chapter discusses such a b i d i r e c t i o n a l approach from a con

ceptual viewpoint as a problem of search, and then i d e n t i

f i e s the problem of the search of a tree of fixed structure

with that of the symbolic solution to a set of Boolean equa

tions. After an unsuccessful attempt to program methods to

symbolically simplify the Boolean equations which constrain

the values of the b i t s of K which maps between a given P-C

pair, a new type of AND/OR tree search i s developed. This

new search benefits from a l l of the minimizations performed

on the S-box functions, and has the additional advantage of

not requiring any backtrack.

Chapter IX

KEY SEARCHES OF GREATER SOPHISTICATION

9.1 COMPUTATIONAL COMPLEXITY AND BIDIRECTIONAL SEARCH

Certain properties of the DES encryption procedure make

i t vulnerable to an attack by the methods of b i d i r e c t i o n a l

search, under the assumption of a known plaintext attack.

It has been mentioned that the knowledge possessed by the

cryptanalyst under th i s assumption i s situated at both the

root and the leaves of the cryptanalytic search tree.

The u n i d i r e c t i o n a l search of the previous chapter at

tempted to invert the encryption process through the con

struction of a search tree beginning at the (known) b i t s of

ciphertext. Hypotheses concerning the values of key b i t s

and b i t s in e a r l i e r blocks of developing ciphertext were

forwarded, based on knowledge of the values of b i t s in

blocks formed la t e r in encryption. The known plaintext b i t s

were reached after a l l l e v e l s of encryption had been invert

ed. Backtrack to attempt alternative disjunctive paths in

tree development occured when either plaintext b i t s did not

agree in value with what the b i t values should have been on

the basis of how the encryption was inverted, or when re

quired assignments of key b i t values were contradictory.

- 102 -

103
In addition, during t h i s search, a single key hypothesis

was maintained in a variable globally available for a l l sub

tree expansions to update. In retrospect, the "thrashing"

behavior of the u n i d i r e c t i o n a l search may be seen to result

at least p a r t i a l l y from the design of the search algorithm

which required such a unique hypothesis to be maintained. In

the AND/OR search which i s discussed in section 9.4, t h i s

requirement i s removed to allow the search to proceed by

building an expression tree top-down, and then traverse the

tree in a bottom-up fashion, without the need for any back

tracking.

It i s possible to obtain an estimate of the e f f i c a c y of

t h i s search procedure by comparing the worst case number of

t r i a l s in an exhaustive key t r i a l approach to DES cryptana

l y s i s (2 s * or on the order of 10 1 7) to the greatest possible

number of nodes which would have to be developed in the tree

during the search-approach to encryption key discovery. This

comparison i s not altogether reasonable, as exhaustive key

t r i a l s would probably be performed in special-purpose hard

ware [2], while the search techniques discussed would at

f i r s t be implemented in software. However, i t would not be

impossible to b u i l d a hardware device to perform the opera

tions involved in the search procedure. As a 16-round DES

encryption requires far more basic operations than the ex

pansion and t r a v e r s a l of a single search tree node, the

i d e n t i f i c a t i o n of these heterogeneous quantities errs to-

104

wards the conservative. It is c r u c i a l to the success of the

attack methods presented here that one accept t h i s idea that

i t i s reasonable to compare key space size with number of

tree nodes.

A simple argument w i l l quickly demonstrate that the use

of a un i d i r e c t i o n a l search for cryptanalysis as attempted in

the preceeding chapter i s destined to f a i l u r e , even apart

from considerations of backtracking. (I.e., even i f each

node in the tree i s v i s i t e d only once, a un i d i r e c t i o n a l

search w i l l f a i l) . For such a search to be useful, the re

quired branching factor engendered by the S-boxes i s so

small so as to be unattainable by means of known Boolean

minimization techniques.

The top l e v e l of the search tree contains 64 nodes, one

for each b i t of ciphertext. In proceeding from one l e v e l of

the search tree to the next, each node which represents a

b i t in a block of developing ciphertext can require the i n

version of two instances of the function f. If some b i t po

s i t i o n of some R-block has a value of 1, then the values of

the same b i t position of the f function which operates on

the R block of the preceeding l e v e l and that of the L block

at the preceeding l e v e l must d i f f e r , as an XOR indicates

non-equivalence. (See Figure 6, position (2)). would be i n

vestigated, i f the search ever backtracked to the node. As

the (Quine McCluskey) representation for any S-box i s a p-

term expression of at most 23 p-terms, each of which is a

105

conjunct of at most 6 l i t e r a l s , the expansion of an FNODE

once in the search, can engender a branching factor of up to

23x6 in the search tree. As two such expansions may be re

quired per node per l e v e l of the search tree (i f the f i r s t

expansion f a i l s) , the worst case number of nodes in the uni

d i r e c t i o n a l search tree using QM S-box representation for

the inversion of a 16-round DES w i l l be approximately:

15

\ i i 38 17
64 x / (2 x 23 x 6) = 2.6x10 » 10

i = l

It may also be calculated that for the number of nodes in

the search tree to be less than the number of possible keys,

again under the highly conservative assumption that a l l pos

s i b l e disjunctive paths in the search tree must be followed,

the branching factor caused by the S-boxes must be less than

5. Even the spectral minimization techniques do not allow

such a small expansion factor to be achieved.

Nevertheless, the use of b i d i r e c t i o n a l search techniques

[18,19] may be shown to upper-bound the number of nodes in

the search tree, even under worst case assumptions, to a

number which i s on the order of the key space s i z e . As en

cryption and decryption procedures are v i r t u a l l y i d e n t i c a l

in the DES algorithm, i t i s then possible to expand the tree

"backwards" from the known plaintext towards the ciphertext,

at the same time as one i s expanding the tree forwards, from

the ciphertext. Key b i t hypotheses are generated during the

106

course of the expansion in both d i r e c t i o n s , and standard re

cursive backtrack occurs within either search (or within

both searches) i f mutually incompatible key b i t hypotheses

are generated either within one "half" of the search tree,

or i f some incompatible hypotheses exist when the union i s

taken of the two generated sets of hypotheses. The matching

of the two halves of the tree between rounds 7 and 8 i s not

d i f f i c u l t . However, i t does imply that to implement the b i

d i r e c t i o n a l search for a f u l l 16-round DES, enough memory

capacity i s avaliable to store the entirety of the middle

(widest) layer of the tree. This layer contains 64(2x13x5) 7

nodes.

It i s not d i f f i c u l t to show how the use of such a b i d i

r e c t i o n a l search reduces the number of nodes in the tree.

What the approach achieves may be seen schematically in F i g

ure 8, B i d i r e c t i o n a l Search Tree. The search i s driven

forwards from both the top and bottom simultaneously, and

meets in the middle of the tree. It i s only possible to do

th i s because the encryption and decryption procedures are

the same, and the attack assumptions include knowledge of

the pl a i n t e x t .

The search now consists of two symmetric searches, each

of which continues for 7 level s beyond the f i r s t l e v e l at

which the 64 nodes representing the known b i t s of p l a i n or

cipher text are established. A t o t a l of 8 level s are

searched in each half of the search. Using the same QM S-

107

box approximations as seen in the preceeding c a l c u l a t i o n ,

the worst case number of nodes in the b i d i r e c t i o n a l search

tree i s found to be:

7

\ i 19
2 x 64 x / (2 x 23 x 6) = 1.6x10

i = l

Should t h i s search employ the spectrally-minimized S-box

representations, even in the worst case the t o t a l number of

nodes expanded in the search tree would be on the order of

the key space si z e :

7

\ i 16
2 x 64 x / (2 x 13 x 5) = 8.9x10

i = l

It i s important to r e a l i z e that a l l of the above rough

calc u l a t i o n s have assumed worst case conditions for the

search. That i s , i t has been assumed that a l l possible d i s

junctive alternatives of a l l OR nodes must be expanded in

the course of the search, and furthermore that a l l such ex

pansions e n t a i l in a l l places the maximum number of branch

es. In fact, only one S-box has as many as -13 p-terms in

i t s s p e c t r a l l y minimized form. The mean number of p-term i s

about 11. In addition, the fact that p-terms are ordered in

the sum-of-products expressions in a "best f i r s t " manner

lends a h e u r i s t i c component to the search; the alternatives

108

most l i k e l y to succeed 1 9 are chosen for expansion f i r s t .

It may be possible to quanti t a t i v e l y estimate the advan

tages of the b i d i r e c t i o n a l search technique by s l i g h t l y re

laxing the worst case assumptions. If the expected branching

factor of the search tree i s based upon the average number

of l i t e r a l s per p-term (3.57) instead of the maximum possi

ble number of such l i t e r a l s (5), the expected number of

nodes in the search tree decreases to 7.68xl0 1 5. This i s a

factor of 10 less than the key space s i z e . The unidirec

t i o n a l search of Chapter 8 was never actually implemented in

the b i d i r e c t i o n a l manner described so far in thi s section. A

r e a l i z a t i o n that the structure of the search tree would also

be uniform, regardless of the p a r t i c u l a r P-C pair cryptana-

lyzed, led to the digression of the next section, in which

the cryptanalytic problem i s shown to be equivalent to the

s i m p l i f i c a t i o n of a set of Boolean equations. While experi

mentation with th i s technique was limited by the i t s re

quirement for very large amounts of memory, t h i s next view

of the cryptanalytic problem was of use, in that i t eventu

a l l y led to the development of a more sophisticated type of

search, in which backtracking i s unnecessary.

1 9 This i s somewhat simpleminded, as th i s considers only the
p-terms which "turn on" the S-box functions by them
selves, and ignores interactions with other branches in
the tree.

109
9.2 DIGRESSION: SEARCH AS THE SOLUTION OF BOOLEAN

EQUATIONS

During the course of development of the un i d i r e c t i o n a l

search procedures, i t was rea l i z e d that should i t be desired

to invert the action of the DES encryption in making the

output of some f function 0 at some round and position, to

expand the product-of-sums expressions r e s u l t i n g from DeMor-

gan inversion of the QM-minimized S-box functions would make

the search intractable. As a consequence, complements of

the S-boxes were minimized in order to possess sum-of-prod

ucts expressions for use in such circumstances. 2 0

What was only r e a l i z e d later was that the use of such

minimizations of the complements of the S-boxes during the

inversion of encryption implied that the structure of the

re s u l t i n g search tree was always the same, independent of

what P-C pair was used. 2 1 RNODEs always have another RNODE

(of l e v e l 2 less than their father) as a l e f t c h i l d , and an

FNODE as a right c h i l d . FNODEs have up to 6 XNODE children,

depending on the number of "don't care" positions in the

conjunct term currently being expanded. Each XNODE has an

RNODE as an only c h i l d . Expansion of an XNODE also causes

the posting of a key b i t hypothesis as a si d e - e f f e c t . (See

2 0 Quite c l e a r l y , a sum-of-products expression of the gener
a l form a r i s i n g for DES may be p o t e n t i a l l y s a t i s f i e d in
far fewer ways than the corresponding product-of-sums ex
pression re s u l t i n g from i t s complementation, due to the
presence of more disjuncts in the l a t t e r .

2 1 This i s not e n t i r e l y accurate. An FNODE in the f i n a l
state of the tree^may have less than 6 XNODE children, i f
the corresponding p-term contains "don't-care" values.

110
Figure 9, 2-Round Search Tree of Uniform Structure).

As the morphology of the tree would thus be constant, re

gardless of the actual P-C pair for which K was being d i s

covered, there was no longer any need to al l o c a t e subtrees

dynamically through the use of the PL/I ALLOC and FREE func

tions. The entire tree structure could be pre-allocated, and

the f i e l d s in i t s nodes simply f i l l e d in to r e f l e c t the tree

contents at any moment. In addition to the resultant time

saving, memory space could also be saved as a result of th i s

r e a l i z a t i o n , as pointers are only r e a l l y needed to refer to

a c h i l d when the location of the c h i l d cannot be determined

when the father i s created. With the entire tree structure

known a p r i o r i , pointer locations could be determined by ad

dress c a l c u l a t i o n , and not e x p l i c i t l y stored with the nodes.

An even more important revelation which followed from

t h i s discovery i s that when the form of the tree i s predet

ermined, the entire tree structure can be collapsed into a

set of equations, where the key b i t s are the unknowns, and

the p l a i n and ciphertext b i t s are constants. In such a rep

resentation, the search tree would be present only v i r t u a l

l y , i m p l i c i t in the expression-tree structure of the equa

tions. The problem of b i d i r e c t i o n a l key search i s

isomorphic to that of solving for the key b i t s in the equa

tions implied by the search tree structure.

Furthermore, the process of cryptanalysis by such a meth

od could be partitioned neatly into a (lengthy) symbolic

I l l

precomputation procedure, followed by a (fast) application

of the results of t h i s precomputation for the cryptanalysis

of s p e c i f i c P-C pa i r s . In the precomputation phase, the

constraint equations which contain the key b i t variables and

the constants for P and C as symbolic constants would be

s i m p l i f i e d through the application of algebraic transforma

tions. Such a computation would only ever have to be done

once. After these symbolically-simplified equations are pro

duced, to discover K for any s p e c i f i c P-C pair, one would

substitute the known values for P and C for the symbolic

constants, then simplify the equations further, to discover

the actual values for the b i t s of K.

The idea of such a separation of components of a crypta-

n a l y t i c process has been proposed elsewhere [6]. This meth

od of cryptanalysis would also benefit from a l l of the

search space size reductions which aris e from the functional

and spectral S-box minimizations discussed in Chapters V and

VII.

S p e c i f i c a l l y , the approach to be considered here i s as

follows: From the d e t a i l s of the DES encryption algorithm

together with the minimized representations for the S-boxes,

a set of 64 equations involving ORs, ANDs, and NOTs with the

56 key b i t s as unknowns and the 64 positions of P and 64 po

s i t i o n s of C as symbolic constants may be formulated. It

should be observed that for an n-round DES, these equations

have 2n+l AND and OR l e v e l s , where the number of levels

112

possessed by a Boolean equation may be defined as the number

of l e v e l s in the correponding n-ary 2 2 expression tree.

The symbolic s i m p l i f i c a t i o n of t h i s set of 64 equations,

one for each b i t of C, by means of the application of theo

rems of Boolean algebra or some other similar s i m p l i f i c a t i o n

technique would constitute the precomputation phase of the

cryptanalysis.

S i m p l i f i c a t i o n , in t h i s context, involves the " f l a t t e n

ing" of the i m p l i c i t expression tree into a 2-level sum-of-

products form, with the removal of redundant terms, and

w i l l be discussed more thoroughly in the following section.

The fashion in which t h i s s i m p l i f i c a t i o n should be c a r r i e d

out in order that i t not require undue amounts of memory or

processing time i s not at a l l evident. One of the central

problems which must be addressed is that the tradeoff which

exists between the advantages of moving negation "inwards"

in the expressions, and those of applying theorems (such as

the absorption or consensus theorems [16]) to reduce the

number of terms in the expression.

If negation i s moved inwards by application of the DeMor-

gan theorems in a careless manner, the fact that a complex

subexpression and i t s complement exist together in conjunc-

2 2 OR and AND operators w i l l not be r e s t r i c t e d to 2 argu
ments, but may operate on n arguments. This convention
w i l l permit an expression a+b+c to be represented in one
expression tree l e v e l , as "+" operating on 3 arguments.
Were we forced to consider "+" as a binary predicate, 2
tree le v e l s would be required, to represent the expres
sion as a+(b+c) or (a+b)+c.

113

tion or disjunction may be overlooked, a sit u a t i o n which

wastes memory space, and eventually processing time as well.

However, the detection of instances in which theorems such

as the absorption theorem are applicable seems to require

complex and computationally expensive pattern-matching pro

cedures. In what sequence to apply these s i m p l i f i c a t i o n

techniques i s not evident.

It has been mentioned that the preprocessing phase of the

cryptanalysis consists of the symbolic s i m p l i f i c a t i o n of the

set of 64 equations r e l a t i n g the variables in K and the con

stants in the known P to each of the 64 b i t s of C, respec

t i v e l y . After these equations have been s i m p l i f i e d , to d i s

cover K for any known P-C pair, the Boolean constants 1 and

0 are substituted in the equations for the symbolic P and C

constants, and each of the 64 equations i s further simpli

f i e d as much as possible.

F i n a l l y , as the 64 equations themselves must necessarily

be s a t i s f i a b l e together, they are put into conjunction, and

th i s conjunct further s i m p l i f i e d , by the same s i m p l i f i c a t i o n

process. What must re s u l t , for a 16-round DES, i s the uni

que conjunction of key b i t s and complements of key b i t s

which equals l . 2 3 This y i e l d s the encryption key, K.

2 3 For a DES of less than 16 rounds, possibly a disjunction
of such conjunctions may r e s u l t . This corresponds to the
si t u a t i o n where more than one key performs a s p e c i f i c
P->C mapping in a 2-round DES. It i s unknown i f t h i s can
occur in a f u l l 16-round DES.

114

9.3 SYMBOLIC SIMPLIFICATION METHODS

A number of potential methods were examined, for the

s i m p l i f i c a t i o n of the sets of Boolean equations which are

seen to represent in a new form the cryptanalytic search

tree of the preceeding chapter. As i t has been realized

that the expression tree i s of fixed structure, i t i s possi

ble to calculate the size of such a tree for an n-round DES.

The number of leaf nodes in such a tree i s the same as the

number of l i t e r a l terms in the (unsimplified) expression i t

represents, and w i l l vary as a function of the qu a l i t y of

the S-box minimization employed.

9.3.1 Expression Size

It i s of some interest to determine the t h e o r e t i c a l maxi

mum size of the 64 expressions which result from the f l a t

tening of the search tree, as their size w i l l determine the

a p p l i c a b i l i t y of various s i m p l i f i c a t i o n techniques. The

number of l i t e r a l s which w i l l be present in any expression

is i d e n t i c a l to the number of leaf nodes in the correspond

ing expression tree, as any Boolean expression i s simply an

expression tree with the structure obscured.

With reference to Figure 9, the number of l i t e r a l s in un-

s i m p l i f i e d expressions for a 2-round DES may be seen to be:

2(1+ (23)(6)(2(1+ (23)(6)))) = 148326

for each of the 32 subtrees from the leftmost 32 b i t s of C,

using the conventionally QM-minimized S-boxes, and:

2(l+(23)(6)) = 396

115

for the 32 subtrees from the rightmost 32 b i t s of C.

9.3.2 Problems of S i m p l i f i c a t i o n

In view of the large size of the equations involved in

the problem, the s i m p l i f i c a t i o n methods to be employed must

be c a r e f u l l y chosen and implemented to be compuatationally

tractable, even for a 2-round simulation.

Immediately, a Quine-McCluskey s i m p l i f i c a t i o n may be seen

to be inappropriate. The QM method requires that a l l prime

implicants for the function be generated, and the resultant

combinatorial explosion renders t h i s impossible in our

56-variable case. For QM to be used, the expressions to be

s i m p l i f i e d must f i r s t be multiplied out into a 2-level sum-

of-products form prior to s i m p l i f i c a t i o n . While such a form

is the ultimate goal form for our equations, a feasible a l

gorithm should not expand any expression p r i o r to exhausting

a l l p o s s i b i l i t i e s to reduce i t s size, due to the already un

wieldy size of these expressions.

Very l i t t l e information exists in the l i t e r a t u r e concern

ing the automated symbolic s i m p l i f i c a t i o n of Boolean expres

sions. A manual application of the theorems of Boolean a l

gebra to an expression w i l l t h e o r e t i c a l l y result in i t s

reduction to some form of maximal s i m p l i c i t y , i f these math

ematical operations are c a r r i e d out in the correct order.

One problem with the automation of such a procedure i s that

the correct order in which to apply the algebraic theorems

i s often not at a l l c l e a r .

116

The only attempt known to the author at an algorithmic

s p e c i f i c a t i o n of how such a s i m p l i f i c a t i o n might proceed i s

that of Zissos [25]. Zissos presents a somewhat vague "re

search algorithm" for the symbolic minimization of Boolean

expressions. This algorithm, while not producing a minimal

form in a l l circumstances, has the advantage that i t does

not e n t a i l expansion of the o r i g i n a l expression. Its disad

vantage i s that the algorithm presented i s somewhat obtuse,

and does not seem well suited to computerized implementa

tion .

In order to carry out the required Boolean s i m p l i f i c a

tions for the reduction of the equations embodied in the

search tree, an admittedly ad hoc system of PROLOG (PROgram-

ming in LOGic) routines was devised and implemented under

UNIX on a DEC PDP 11-45 minicomputer.

PROLOG i s a very high-level theorem proving language,

with c a p a b i l i t e s of automatic recursive backtracking and

pattern-directed procedure invocation. In PROLOG, control i s

decoupled from the logic of a program, i s b u i l t - i n to. the

PROLOG interpreter, and so need not be e x p l i c i t l y s p e c i f i e d .

A user of PROLOG simply provides truths to the interpreter

in the form of Horn cla u s e 2 * axioms and implications, in a

notation similar to that of f i r s t - o r d e r logic [23]. The

theorem whose proof i s requested i s sp e c i f i e d in a similar

form, perhaps with some unbound variables, the values of

2* A Horn clause i s a conjunct of l o g i c a l predicates which
involve no negations.

117

which are determined in the course of s a t i s f a c t i o n of the

theorem.

The linear-input resolution theorem-proving methods of

Robinson [21] are then used by PROLOG to affirm the theorem

by the syntactic manipulation of the facts to derive what i s

known as the "empty clause." A more detailed description of

the operation of the PROLOG interpreter would serve l i t t l e

purpose here, and the reader i s directed to the l i t e r a t u r e

on the subject [23,24].

9.3.3 A PROLOG Symbolic S i m p l i f i e r

For the purposes of exploring the p o s s i b i l i t y of crypta

nalysis by means of solving the Boolean equations r e l a t i n g

P,C,and K for the unknowns K, a set of PROLOG axioms and im

p l i c a t i o n s were developed which were capable of simplifying

a r b i t r a r y m u l t i - l e v e l Boolean expressions involving ANDs,

ORs, and NOTs into a 2-level sum-of-products form. Appendix

H l i s t s these routines, and a small example of the i r a p p l i

cation appears on page 239.

The s i m p l i f i c a t i o n system r e l i e s heavily on the pattern-

matching c a p a b i l i t i e s b u i l t - i n to the PROLOG interpreter to

determine the a p p l i c a b i l i t y of various s i m p l i f i c a t i o n theo

rems. The feature of PROLOG which permits the user to define

new operators was employed to permit the PROLOG interpreter

to parse well-formed Boolean formulae which contain t i l d e s

(for negation), ampersands (for conjunction) and backslashes

(for d i s j u n c t i o n) .

118

To simplify an expression, the predicate "simplify"

i t e r a t i v e l y c a l l s the "simp" predicate, u n t i l no further

simplifying transformations may be effected. The "simp"

predicate attempts to apply some simplifying transformation

d i r e c t l y to the expression. If t h i s i s not possible, i t re-

cusively attempts to do the same for subexpressions of the

o r i g i n a l expression, u n t i l the l i t e r a l s of the expression

are reached.

These simplifying transformations are a PROLOG encapsula

tion of the pertinent rules of Boolean Algebra, and are rep

resented by the "s" and "s2" predicates which are activated

by the "simp" predicate. The f i r s t two "s" predicates rep

resent the t r i v i a l case of the recursive s i m p l i f i c a t i o n of

expressions, a bottoming-out on l i t e r a l atoms which can be

si m p l i f i e d no further.

If these are not s a t i s f i e d , the next "s" predicate checks

whether the expression to be s i m p l i f i e d i s a one-level ex

pression, i . e . whether i t consists of a conjunct of d i s -

juncts of l i t e r a l s . This check was added late in the devel

opment of the s i m p l i f i c a t i o n system, as a measure to prevent

the excessive use of stack space by the PROLOG interpreter

in recursing down to the atomic l e v e l for a l l formulae. The

l i t e r a l s in the expression are sorted alphabetically by a

quicksort, and scanned to eff e c t the transformations:

a&-"a -> 0 a&a -> a a|a -> a a ^ a -> 1

119

Should the expression not be of a single l e v e l , the next

"s" predicate checks for the a p p l i c a b i l i t y of the involution

law, and the next two attempt to apply the 2 DeMorgan laws

to move negation inwards. The la s t "s" predicate activates

the "s2" transformation predicates to match, 2-at-a-time,

the top l e v e l terms in the expression to be s i m p l i f i e d

against the forms of the remaining s i m p l i f i c a t i o n theorems.

These "s2" s i m p l i f i c a t i o n predicates include the theorems

of: idempotency, complementarity, d i s t r i b u t i v i t y (

(a|b)&(a|c)->a|(b&c)), absorption, consensus, and the other

d i s t r i b u t i v i t y theorem (a&(b|c)->a&b | a&c). The system at

tempts to apply t h i s l a t t e r d i s t r i b u t i v i t y theorem to multi

ply conjuncts only i f a l l other s i m p l i f i c a t i o n theorems f a i l

to be applicable, as i t i s thi s l a s t theorem which can make

expressions larger.

It i s unfortunate that despite their sophisticated na

ture, these s i m p l i f i c a t i o n predicates f a i l e d to be of much

use in the cryptanalysis of DES. The fact that the PROLOG

interpreter tends to be very i n e f f i c i e n t in i t s u t i l i z a t i o n

of memory space r e s t r i c t e d the application of t h i s elegant

s i m p l i f i c a t i o n system to problems of a small "toy" nature.

Despite careful use of the PROLOG cut operator (!) to remove

choice points to which backtrack should never return and

thereby save stack space, the very small core memory space

available on the PDP 11-45 upon which the system was imple

mented (approximately 256k bytes) made i t impossible to ap-

120

ply the system to equations whose size was even a factor of

100 smaller than those involved in a 2-round DES.

As a consequence of t h i s regrettable fact, the PROLOG

system was abandoned in favour of a more sophisticated

search technique, implemented in a conventional language.

The idea of the formulation of Boolean equations which con

s t r a i n the values which the b i t s of K are free to assume, as

presented above, i s central to t h i s new search technique.

9.4 A MODIFIED, KNOWLEDGE-INTENSIVE KEY SEARCH

Another version of a key-search procedure was developed

to once again attempt to empirically demonstrate the f e a s i

b i l i t y of the attack method which involves the S-box mini

mizations which have been discussed. This approach u t i l i z e d

some of the features of the u n i d i r e c t i o n a l search of the

preceeding chapter, combined with a better use of the a v a i l

able knowledge concerning P and C, to l i m i t the search tree

size, and thereby decrease the time required for such a

search to within the l i m i t of computer time a v a i l a b l e . A

l i s t i n g of the routines discussed in t h i s section may be

found in Appendix I.

Viewed from a high l e v e l of abstraction, the decryption

procedure involves two phases. An n-ary Boolean expression

tree containing AND and OR nodes i s consrtucted for each of

the 64 b i t s of C, to represent the Boolean algebraic combi

nation of b i t s of K required to produce the known value for

121

each of the b i t s . This tree construction i s performed in a

top-down fashion from knowledge of value of the b i t of C be

ing considered, the pa r t i c u l a r known plaintext block P, and

the d e t a i l s of the DES encryption algorithm.

The expression tree i s then evaluated bottom-up, where in

the course of the evaluation the leaves contain the re

s t r i c t i o n on K currently required, in a sum-of-products form

represented as a matrix containing values '1', '0', and 'X'.

Each row of such a matrix corresponds to a single p-term, in

which a '1' corresponds to the presence of an uncomplemented

variable, 'C to the presence of a complemented variable,

and an 'X' to a "don't care", or the absence of a variable.

This representation has been discussed e a r l i e r in section

5.1, and w i l l henceforth be referred to as cube notation.

ORs are evaulated by performing a s p e c i f i c type of "union"

of the key r e s t r i c t i o n s , while ANDs are evaluated by an " i n

tersection".

The single sum-of-products expression which results from

such a traversal of the expression tree represents the d i s

junctive alternatives which constrain the values of the b i t s

of K which perform the required P->C mapping under the DES

algorithm. As mentioned in section 9.2, the f i n a l sum-of-

products expression w i l l consist of a single p-term i f and

only i f a K which maps P->C for the given P-C pair analyzed

is unique. With a DES of only 2 encryption rounds, i t i s

possible that many di f f e r e n t K could perform the required

mapping.

122

9.4.1 AND/OR Expression Tree Formation

Given the values of the b i t s in a plaintext block P, and

the value of a pa r t i c u l a r b i t in some known position of C,

i t i s possible to construct an AND/OR expression tree at the

leaves of which reside the necessary constraints on a key K

so that K:P->C. If 64 such expression trees are constructed,

one for each b i t position in C, and the key constraints im

p l i e d by each are ANDed, the key K required to map the 64

bi t quantity P to the 64 b i t quantity C i s uncovered. A de

sc r i p t i o n of the technique whereby each of these 64 trees

may be produced through knowledge of the d e t a i l s of the en

cryption process follows.

Consider some b i t position of the ciphertext, such as the

la s t b i t , 64. Assuming our usual model of a 2-round DES with

no IP or IP" 1 permutations, and QM-minimized representation

of the S-boxes and their complements, th i s i s the 32nd b i t

of the R block at encryption round 2, which we s h a l l denote

R2 3 2. Using the DES equation r e l a t i n g R at some round n to L

and R at round n-1, we see that:
R 2 3 2 = L 1 3 2 Q f»*(Rl,R2)

= RO 3 2 © f 3 2 (R l , K 2) (1)

by the other DES equation, where f 3 2 denotes the 32nd b i t of

output from the f function as described in Figure 2 of Fips

Publication 46 [26], Rearranging equation (1) y i e l d s :

f 3 2 (R l , K 2) = R2 3 2 © RO 3 2 (2)

where the right hand side of t h i s equation i s known, as RO 3 2

i s just the 32nd b i t of the R block of the plaintext P.

123

To determine which inputs X to the bank of S-boxes f i x

the output of the f function, the inverse of the DES P per

mutation 2 5 and the structure of the bank of S-boxes must be

considered. Bit position 32 mapped through the inverse of

the P permutation y i e l d s 25, which indicates that output 25

of the bank of S-boxes i s involved. This i s the 1st output

of S-box 7. The value of t h i s S-box function may be seen to

be controlled by inputs X 3' to X 4 1 of the bank of S-boxes.

The (known) b i t value 1 or 0 of the right hand side of

equation (2) determines whether the minimal representation

for S-box 7 output 1 of the representation for i t s comple

ment should be employed, respectively. Whichever should be

used, the f i r s t 2 leve l s (OR, then AND) of the AND/OR tree

to be constructed can now be established. For the purposes

of t h i s i l l u s t r a t i v e example, assume that the right hand

side of equation (2) has the value 1. The QM-minimized rep

resentation of S-box 7 output 1 (uncomplemented) begins (in

cube notation):
010100
011101
111100
X10000

•

This implies that:

X2 3 6'X2 3 7X2 3 8'X2 3'X2 4 0'X2 4 1' +

2 5 Do not confuse the permutation P of the outputs of the
S-boxes with the 64 b i t block of plaintext P. When P the
permutation i s meant, the word "permutation" w i l l always
be s p e c i f i e d .

124
X2 3 " X 2 3 7X2 3 8X2 3 9X2 4 6' X2 4 1 +
X2 3'X2 3 7X2 3 8X2 3 9X2 4 0'X2 4 1' +
X2 3 7X2 3 8 'X23 "X2 4 0*X2 4 1' + ... + ... (3)

This expression may be represented as an AND/OR tree of 2

le v e l s , with the X l i t e r a l s currently at the leaves of the

tree. (Figure 10 (b)).

Examination of DES to ascertain how the value of an input

to the S-boxes, such as X2 3 4' i s determined , in order to

further expand the X variables currently at the leaves of

the developing tree reveals that such Xs are the result of

the XOR of a pa r t i c u l a r b i t of RI with a b i t of K. Applica

tion of the inverse of the DES E permutation shows that R I 2 1

i s XORed with the b i t of K produced by the key schedule gen

erator in round 2, position 36 (which happens to be K 7), to

produce X2 3 6', i . e . key b i t 7. Thus, X2 3 6'=l implies:

(R I 2 1 © K 7)' =1
or R1 2 1K 7 + R1 2 1'K 7' = 1 (4)

Equation (4) allows the construction of another 2 level s

of the AND/OR expression tree. The X2 3' 1 variable currently

occupying a leaf of the developing tree i s replaced by the

OR of two ANDs, with R I 2 1 and R I 2 1 ' as new variables now at

the leaves of the tree, and K 7 as a key b i t constraint at

what w i l l remain a leaf of the tree (Figure 10 (c)) .

R I 2 1 and the other RI variables which appear at the

leaves of the tree as a result of expanding other X v a r i

ables are then themselves expanded by the same method as was

used to expand the o r i g i n a l R2 variable.

125

This process of tree expansion terminates after a l l XI

variables, i . e . representations of inputs to the S-boxes at

encryption round 1, are expanded. To c l e a r l y perceive why

this i s so, suppose X I 3 6 i s at a leaf of the expanding

AND/OR tree. As X1 3 S=1 implies:

RO 2 1 © K7 = 1

and as the values of a l l positions of RO are known (RO is

simply the right half of the block of plaintext P), the v a l

ue of K 7 i s thus fixed, and the variable X I 3 6 may be re

placed by the key b i t constraint which fixes forever K7=0.

Through the application of such an expansion procedure, a l l

leaves of the AND/OR search tree are eventually made to con

tain key b i t constraints, and a tree as in Figure 10 (d) i s

formed.

9.4.1.1 Implementation of the Tree Formation Algorithm

The above procedure for producing the AND/OR expression

tree corresponding to a p a r t i c u l a r b i t of C was implemented

as a recursive APL procedure, BUILDSUB. (Appendix I, page

240). As Figure 10(d) i l l u s t r a t e s , the search tree for a b i t

of C encrypted through 2 DES rounds has only 7 l e v e l s , and

so should be b u i l t in a dep t h - f i r s t , as opposed to a

breadth-first fashion, as such a tree may have a branching

factor as high as 23 in some p l a c e s . 2 '

2 6 Recall that S-box approximations have up to 23 disjunc
t i v e p-terms.

126

In order to maximize the speed of execution, the

recursive tree building routine was written as a single pro

cedure instead of as a set of mutually-recursive modules.

The BUILDSUB routine i s passed a character type code to i n

dicate what structure i s being expanded, as well as the

round of encryption at which the structure occurs (2 or 1,

for our s i m p l i f i e d DES), and the position in the p a r a l l e l

vectors representing the tree at which the structure i s to

be placed. Upon entry into the routine, a branch i s taken to

the section of the program corresponding to the type of

structure being expanded: output from the S-bank, input to

an S-box, etc.

APL was chosen as the language for these tree routines,

as e a r l i e r experience had demonstrated that the capacity to

perform interactive debugging of programs which deal with

large and complex tree structures was invaluable. The fact

that APL lacks a b u i l t - i n capacity for the i n d i r e c t r e f e r

encing of memory locations (pointer types) did not cause any

problems in the implementation of the routines to handle the

AND/OR tree construction and t r a v e r s a l , as these algorithms

require no subsequent modifications to the i n i t i a l structure

of these trees.

The tree nodes are represented in APL across correspond

ing f i e l d s of a set of p a r a l l e l vectors. When BUILDSUB cre

ates a tree in a depth-first top-down recursive manner, gaps

are l e f t in the required places in the vectors, to be f i l l e d

i n , l a t e r in the recursion.

127

For example, suppose an AND node i s to be created, to

point to 6 children corresponding to non-don't-care posi

tions in some p-term. The next free slot in the set of par

a l l e l vectors i s located, and the global "free" pointer for

these vectors incremented by 6 positions. Depth-first recur

sion then occurs to expand the f i r s t of the non-don't-care

l i t e r a l s in what was formerly the f i r s t free s l o t . Eventual

l y , when thi s recursion returns, a loop continues, to expand

the second l i t e r a l in the s l o t immediately af t e r what was

o r i g i n a l l y the free s l o t . The automatic stacking of l o c a l

variables permits the former "free" location to be retained,

while the depth-first recursion i s building parts of the

tree at lower l e v e l s .

Although the above description indicates that the entire

AND/OR tree i s b u i l t in memory prior to i t s t r a v e r s a l , there

i s no reason why the tree could not be traversed depth-

f i r s t , while i t i s being b u i l t . Such an implementation,

while conceptually more complex than the method presented

above, would have the advantage of requiring far less memory

space.

The results of executing BUILDSUB to bui l d the AND/OR ex

pression tree which captures the required key b i t con

s t r a i n t s on b i t 1 of the ciphertext C which results from en

crypting a plaintext block which consisted e n t i r e l y of

0-bits under a key of 56 0-bits i s somewhat remarkable. The

routine required just over 4 minutes of CPU time on an Am-

128

dahl 470/V8 using the IBM program IKJETF01 for batch APL ex

ecution, and produced an AND/OR tree containing 20082 nodes,

16382 of which were leaves (which contain single key b i t hy

potheses). Although no s t a t i s t i c a l analysis of the s i t u

ation was attempted, due to the extremely complex non-uni

form discrete d i s t r i b u t i o n nature of the problem, the size

of t h i s tree was s i g n i f i c a n t l y less than the maximum possi

ble size of 148326 nodes (section 9.3.1) engendered by the

worst-case branching factor of 23. Further t r i a l s of search

tree formation has indicated that an AND/OR tree size on the

order of 20000 nodes i s t y p i c a l for a 2-round DES, when us

ing Quine-McCluskey-minimized S-boxes. This means that in

practice, search tree sizes on the order of one seventh of

the t h e o r e t i c a l worst-case maximum size may be expected. If

i t i s granted that key t r i a l e f f o r t i s comparable to that

needed for the expansion and traversal of a tree node, the

cryptanalytic method of tree search presented here i s faster

than exhaustive key search.

The processing time requirements for th i s tree construc

tion rendered i t impossible to construct trees for each of

the 64 b i t s of C, using these APL routines. PL/I procedures

are currently being devised, for these purposes.

129

9.4.2 AND/OR Expression Tree Traversal

Once a tree as in Figure 10 (d) has been constructed, i t s

recursive traversal to simplify the embodied constraint ex

pression on K i s a t r i v i a l matter. As the tree may be seen

to possess only 7 levels for a 2-round DES (although i t i s

quite wide), a standard dep t h - f i r s t recursive traversal for

the purposes of evaluating the key constraints described in

the tree i s computationally tractable. As the tree i s eval

uated, key constraints expressed in cube notation must be

ORed and ANDed together. E f f i c i e n t algorithms for performing

such l o g i c a l operations on 2-level sum-of-product forms were

developed, and are presented in the following sections.

The APL routine TRAVERSE constitutes a conventional im

plementation of the technique of de p t h - f i r s t tree t r a v e r s a l .

The routine i s passed a single argument: the location in the

p a r a l l e l vectors at which the node to be expanded i s locat

ed. If the node represents a key b i t constraint, i . e . the

node i s a leaf of the tree, the constraint i s returned as

the r e s u l t . Otherwise, i f the node i s an AND or OR node, re

cursion occurs to apply the required l o g i c a l operation to

a l l children of the node.

An example of the traversal of a small (63 node) AND/OR

tree (printed out by the PP function) may be seen at the end

of Appendix I, page 249.

130

9.4.2.1 OR-merging of Sum-of-Products Expressions

An OR-merging of a pair of Boolean expressions A and B in

sum-of-products form i s performed by considering a l l p-terms

in either expression as a single set, and removing from th i s

set those p-terms which are redundantly represented. 2 7 A p-

term i s said to be redundant i f removing i t from the cover C

of the switching function in which i t i s a p-term does not

a l t e r C's status as a cover of the function. The algorithm

assumes that no p-terms in either A or B are redundant to

begin with. S p e c i f i c a l l y , within either of the expressions

to be merged, no 2 p-terms exist which d i f f e r only by one

having X(s) (don't care(s)) where the other has Is or 0s.

For example, i t would be impossible for p-terms X01 and 101

to both exist in one expression; the l a t t e r i s redundant, as

b'c+ab'c = b'c.

When the 2 sets of p-terms are unioned to form the OR of

expressions A and B, redundant p-terms must be removed from

the union, to make the resu l t i n g sum-of-products expression

minimal. To accomplish t h i s , a special representation of

the p-terms was discovered, and employed together with the

algorithm of Mott [15] for discovering consensus terms. We

c a l l some p-term c the consensus term for terms a and b i f

c->a|b.

2 7 A special case for "don't cares" also requires the modi
f i c a t i o n of some p-terms which are retained during the
merge.

131

Mott's algorithm for consensus terms may be employed to

OR two Boolean expressions in the following manner. The set

of a l l p-terms in either expression i s a (non-minimal) ex

pression for the required OR. Form a l l possible consensus

terms obtainable from pairs of p-terms in either function,

and replace one or both of these p-terms with any consensus

term which covers it/them. "This process of attempting to

form consensus terms is repeated for a l l pairs of p-terms

selected such that one p-term comes from each of the 2 ex

pressions to be ORed, and continues u n t i l no more consensus

terms can be formed.

By using a representation for p-terms d i f f e r e n t from the

cube notation discussed e a r l i e r , both processing time and

memory space may be conserved. Since any variable in a p-

term i s in one of 3 d i f f e r e n t states ('1','0', or 'X'), i t

i s wasteful to use a character representation (1 byte) to

store such variables. Two b i t s s u f f i c e to d i s t i n g u i s h be

tween 4 states, and i f the assignment of b i t configurations

to such variable states i s done c l e v e r l y , substantial compu

ta t i o n a l time savings may be achieved when ORing and ANDing

expressions in th i s notation. Such time savings result from

the a b i l i t y of a computer based on a k b i t wide processor to

OR or AND together 2 strings of k b i t s in a single processor

cycle.

Let '0' be represented by the pair of b i t s (0,1), '1' by

(1,0), and 'X' by (0,0). Any p-term of k variables may then

132

be represented as 2 p a r a l l e l b i t strings of length k: nl to

represent the b i t s occuring f i r s t in each pair, and n2 to

represent the b i t s occuring second. As an example of t h i s

scheme, the p-term x='010X1' may be represented by 2 b i t

strings of length 5, x nl=01001 and x n2=10100.

To form the OR of expressions A and B, compare each p-

term a i in A with each p-term bi in B, where each these p-

terms i s represented as a pair of b i t strings nl and n2 as

described above. I n i t i a l l y , a l l p-terms in either A or B are

considered to be terms present in the OR, but terms are re

moved or modified during the process of the pairwise compar

ison by means of the following algorithm to be applied for

each pair a i , b i :

1. Form the potential consensus term c where the s t r i n g

nl for c i s produced by ORing the corresponding b i t s

in the nl strings for a i and b i , and the n2 s t r i n g

for c i s formed as an OR of the n2 s t r i n g s . That i s :

c n l = ai nl | bi nl

c n2 = a i n2 | bi n2

2. If c i s i d e n t i c a l to a i in a l l b i t positions in both

strings nl and n2, 2 8 then a i may be deleted from the

OR as a i i s redundant with respect to b i ; bi covers

a i . The symmetric si t u a t i o n exists i f c<=>bi. This

can only occur when the differences between the p-

terms a i and bi are such that a i has X's wherever bi

2 8 We s h a l l write t h i s as c<=>ai.

133

has l i t e r a l s . In such a case, a i covers b i .

Consider ai='0XXl'

bi='0101'

Using our new representation,

a i nl=0001 a i n2=1000

bi nl=0101 bi n2=1010

so c nl=0101 c n2=1010

and we see that c<=>bl; ai covers b i .

3. Otherwise, check to see i f c i s a consensus term. If

the bitwise AND of c nl with c n2 contains exactly

one 1-bit, then c i s a consensus term. The examina

tion of a b i t s t r i n g to determine i f that b i t s t r i n g

has precisely one 1-bit may be performed in a compu

t a t i o n a l l y e f f i c i e n t manner by seeing i f (c nl & c

n2) & ((c n l & c n2)-l) = 0. For example, l e t :

ai='010'

bi='000'

Then in the new notation:

a i nl = 010 a i n2=101.

bi nl=000 bi n2=lll

so:

c nl=010 c n2=lll

c nl & c n2 = 010

As t h i s s t r i n g has precisely one 1-bit, c i s a con

sensus term. If c i s not a consensus term, i t i s

134

known immediately that both a i and bi must be re

tained so far in the OR-merge.

If c has been discovered to be a consensus term, i t

must be determined which of the p-terms a i and bi (i f

any) th i s consensus term covers. The b i t s t r i n g (c n l

& c n2) i s subtracted from both c n l and c n2 to

"turn o f f " b i t s related to the consensus variable.

When performed on the above example, c i s l e f t as c

nl=000 c n2=101.

The o r i g i n a l operation of ORing nl and n2 b i t strings

(as described in step 1) i s then applied again be

tween th i s modified c and both the o r i g i n a l ai and

the o r i g i n a l bi to form 2 new pairs of strings, a i '

and b i ' respectively.

(a) If ai'<=>ai and bi'<=>bi, then remove a i and re

place bi with c. This si t u a t i o n arises when the p-

terms ai and bi d i f f e r in exactly one b i t po s i t i o n ,

and neither p-term i s 'X' in that p o s i t i o n .

(b) Else i f ai'</>ai and bi'<=>bi, then replace bi
with c.

(c) Else i f ai'<=>ai and bi'<^>bi then replace a i
with c.

(d) Otherwise, retain both a i and b i .

135

The i t e r a t i v e application of thi s algorithm between a l l

pairs of p-terms a i and bi produces a minimal OR of the ex

pressions A and B. An APL implementation of thi s algorithm

may be found in Appendix I, under the name 'OR'.

9.4.2.2 AND-merging of Sum-of-Products Expressions

In order to be able to AND together Boolean expressions

in sum-of-products form, i t i s necessary to be able to AND

p-terms. It i s convenient that the b i t - s t r i n g representa

tion for p-terms developed in section 9.4.2.1 above permits

a computationally-efficient method for this ANDing. To AND

p-terms a i and b i , we form:

c nl = a i nl | bi nl

c n2 = a i n2 | bi n2

by a bitwise OR as i s done in step 1 of the OR algorithm. If

there i s a 1-bit in any b i t position of the b i t s t r i n g (c nl

& c n2), then the AND of p-terms a i and bi i s n u l l , as in

some position a i (in cube notation) has a '1' where in the

same position bi has a '0' (or vice versa), and as for any

x, x & x'=0. Otherwise, c represents the new p-term r e s u l t

ing from the AND of ai and b i , and i s to be retained.

In ANDing two sum-of-products expressions, the above pro

cedure to AND a pair of p-terms i s employed together with

the previously-discussed OR algorithm, in the following man

ner. The AND of expressions A and B i s the AND of p-term a l

with the expression B, ORed with the and of a2 with B, and

so forth. A l g e b r a i c a l l y :

AB=

(al+a2+...+an)B =

alB+a2B+...+anB

The AND of a term a i with an expression B may be seen

s i m i l a r l y to be the AND of a i with b l , ORed with the AND of

ai with b2, etcetera. That i s :

aiB = ai(bl+b2+...+bn) = aibl+aib2+ +aibn

As a consequence of t h i s , the AND procedure c a l l s the OR

procedure repeatedly. The APL implementation of thi s algor

ithm may be seen in Appendix I, under the function name

' AND' .

Chapter X

CONCLUSIONS

The DES cryptographic system has been investigated, and

the strength of the cipher found to l i e in the S-box compo

nents. The S-boxes were examined for the existence of struc

t u r a l symmetries by the methods of McCluskey [12], and none

were discovered.

The p r i n c i p a l d i r e c t i o n of t h i s thesis has been to map

the cryptanalytic problem into a domain for which powerful

algorithmic and h e u r i s t i c methods e x i s t . S p e c i f i c a l l y , the

discovery of the b i t s of K under known plaintext attack as

sumptions has been viewed as a problem in search, for which

conventional search trees may be constructed and traversed.

The worst-case size of a bidirectionally-searched AND/OR

tree which stored key hypotheses at the leaves to avoid

backtrack was shown t h e o r e t i c a l l y in section 9.1 to be" on

the order of the key space si z e . The results of experimenta

tion with such trees for a 2-round DES model (section

9.4.1.1) has indicated that in practice, tree sizes on the

order of one seventh of the worst case t h e o r e t i c a l maximum

can be expected. If i t i s accepted that the amount of e f f o r t

to expand a node i s less than that involved in a key t r i a l

in exhaustive key search, and given that s u f f i c i e n t memory

- 137 -

138

capacity exists to store the mating halves of the b i d i r e c

t i o n a l search tree, the cryptanalytic technique of b i d i r e c

t i o n a l tree search represents an improvement over that of

exhaustive key search.

In the course of developing a tractable search procedure

for K, compact representations for the functions embodied by

the S-boxes have been developed. At f i r s t , conventional

functional-domain l o g i c a l minimization techniques such as

the Quine-McCluskey procedure [13,16] were applied to the

S-boxes. The minimized S-box functions which resulted were

t h e o r e t i c a l l y shown to permit a small (and not large enough)

reduction in the search tree s i z e . More sophisticated spec

tral-domain minimization techniques [7,8,9,10] were then

programmed and applied to the S-boxes, and these resulted in

a far greater degree of s i m p l i f i c a t i o n of the S-box func

tions .

Several attempts to demonstrate the usefulness of such

minimal S-box representations in l i m i t i n g the time required

to uncover K through the upper-bounding of the search tree

branching factor in a 2-round model of DES were programmed,

in a variety of computer languages.

The f i r s t of these, a u n i d i r e c t i o n a l key search procedure

written in PL/I, f a i l e d to operate in tractable time on even

a 2-round DES. Even when an i n i t i a l oversight concerning

the expansion of a subtree to represent the output of the

DES f function with a value of 0 was corrected, the program

139

s t i l l could not discover K within reasonable computer time
l i m i t s .

It was eventually discovered that the f a i l u r e of t h i s

i n i t i a l approach to key search could be attributed to two

independent aspects of the search procedure. F i r s t l y , even

the l i n e a r i z a t i o n of the S-boxes did not s u f f i c i e n t l y reduce

the search tree branching factor to make a u n i d i r e c t i o n a l

key search tractable. Secondly, the maintenance of a single

globally-posted hypothesis for K which was modified as con

t r a d i c t i o n s in key b i t values arose anywhere in the tree

caused an excessive backtrack "thrashing" behavior in the

search procedure.

It was demonstrated that the former problem could be

overcome by searching the tree b i d i r e c t i o n a l l y to greatly

reduce the number of nodes which would have to be expanded.

The l a t t e r problem was avoided by u t i l i z i n g a more s o p h i s t i

cated search tree structure, the AND/OR tree. With key con

s t r a i n t s stored l o c a l l y at the tree leaves, backtracking was

avoided as each node was v i s i t e d only once as the tree was

traversed.

After a theore t i c a l investigation of the potential advan

tages of a b i d i r e c t i o n a l search procedure to expand the

search tree in two d i r e c t i o n s , from both P and C, simultane

ously, a r e a l i z a t i o n of the uniform structure of the search

tree led to an a b i l i t y to formulate the cryptanalytic prob

lem as a set of Boolean equations to be solved. E s s e n t i a l -

140

l y , the search tree could be "flattened", to reduce the

problem of the discovery of K to that of the symbolic sim

p l i f i c a t i o n of Boolean equations.

Although t h i s approach i n i t i a l l y appeared a t t r a c t i v e due

to i t s mathematical flavour, i t was only useful insofar as

i t led to the development of the AND/OR tree methods. The

connection between these two methods may be c l e a r l y per

ceived i f one views an AND/OR tree as a pre-parsed Boolean

expression containing only the Boolean constants 1 and 0 (no

var i a b l e s) . In retrospect, i t may be seen as foolhardy to

fla t t e n a tree and remove i t s structure in order to repre

sent i t mathematically, when the structure must be recov

ered, in order to symbolically simplify the expressions rep

resented by the tree. ,

Before t h i s was real i z e d , a series of PROLOG routines

were written to symbolically apply rules of Boolean algebra

to simplify Boolean expressions which contain variables,

ANDs, ORs, and NOTs. I n i t i a l l y , i t was believed that the

constraints on b i t s of K required for a b i t of C to have the

appropriate value, when formulated as a Boolean expression,

could be reduced by thi s PROLOG system to produce K. Unfor

tunately, the very limited non-virtual memory of the DEC ma

chine on which the routines were implemented led to a f a i l

ure of t h i s approach to provide any useful r e s u l t s . In view

of the recursive implementation of PROLOG, a vast amount of

memory would be required in order to simplify the key con

st r a i n t expressions for even a 2-round DES.

141

From ideas about key c o n s t r a i n t made evi d e n t by the

PROLOG approach, a m o d i f i c a t i o n of the o r i g i n a l search pro

cedure was produced, w r i t t e n i n APL. T h i s approach generated

an AND/OR ex p r e s s i o n t r e e f o r the key c o n s t r a i n t e x p r e s s i o n s

mentioned above, and then t r a v e r s e d t h i s t r e e i n a r e c u r s i v e

top-down f a s h i o n , m a i n t a i n i n g key hypotheses l o c a l l y at the

leaves as the t r e e was being t r a v e r s e d . These hypotheses

were OR-merged or AND-merged by f a s t a l g o r i t h m s at a p p r o p r i

ate nodes, to accomplish the e v a l u a t i o n of the search t r e e

and uncover K.

In a number of t r i a l s , t h i s method (employed u n i d i r e c -

t i o n a l l y) managed to d i s c o v e r the key K used f o r e n c r y p t i o n

with a 2-round DES. T h i s AND/OR t r e e search b e n e f i t s from

the r e d u c t i o n i n branching f a c t o r r e s u l t i n g from the use of

the l i n e a r i z e d S-boxes, and a l s o c o u l d be performed i n a b i

d i r e c t i o n a l f a s h i o n , although t h i s was never programmed.

Even more s i g n i f i c a n t l y , experimentation with t h i s search

procedure i n d i c a t e d that such t r e e s tend to possess a p p r o x i

mately one seventh of the worst-case maximum p o s s i b l e number

of nodes.

At l e a s t i n the case of a 2-round model, the p o t e n t i a l

v u l n e r a b i l i t y of DES to methods of key search combined with

a p p r o p r i a t e S-box r e p r e s e n t a t i o n s has been e m p i r i c a l l y dem

o n s t r a t e d . Work con t i n u e s towards the development of more

c o m p u t a t i o n a l l y - e f f i c i e n t r o u t i n e s w r i t t e n i n l o w e r - l e v e l

languages to experiment more f u l l y with 2-round DES decryp

t i o n s .

142

It i s recommended that the DES algorithm be strengthened

in one or more of the following simple ways, to reduce i t s

s u s c e p t i b i l i t y to the attacks outlined in t h i s thesis. In

creasing the number of layers of encryption in the algorithm

by even a few should make the search tree s u f f i c i e n t l y large

to render key search as intractable as exhaustive key t r i

a l s , as the tree grows exponentially in the number of layers

of encryption, and i t i s only marginally small enough in i t s

current form to permit our search methods to be applicable.

A more complex use of the b i t s of K in the course of encryp

tion would also present d i f f i c u l t i e s to the attack presented

in t h i s thesis. For instance, a concatenation of b i t s of K

with developing L and R blocks at each l e v e l could serve to

confound our method of cryptanalysis, by introducing far

more complex constraint conditions on K. F i n a l l y , as other

researchers in the area have indicated [2], increasing the

length of K would also make DES more resistant to cryptana-

l y t i c attack. However, t h i s would only cause the tree size

to grow l i n e a r l y with the increase in K size , whereas the

addition of further rounds of encryption engenders an expo

nential growth in search tree s i z e .

i

REFERENCES

1. Coppersmith, D. & Grossman, E. Generators for Certain
Alternating Groups with Applications to Cryptography.
SIAM J . Appl. Math. 29, #4, Dec. 1975, pp.624-627.

2. D i f f i e , W. & Heilman, M. Exhaustive Cryptanalysis of
the NBS DES Computer #10, June 1977.

3. D i f f i e , W. & Heilman, M. New Directions in
Cryptography IEEE Trans, on Info. Th. IT-22 #6, Nov.
1976, pp.644-654.

4. F e i s t e l , H. Cryptography and Computer Privacy
S c i e n t i f i c American, Vol. 228, May 1973, pp. 15-23.

5. Heilman, M. et. a l . Results of an I n i t i a l Attempt to
Cryptanalyze the NBS DES Tech. report SEL 76-042,
Stanford University, 1976.

6. Heilman, M. A Cryptanalytic Time-Memory Tradeoff IEEE
Trans, on Info. Th., 1980.

7. Hurst, S.L. (ed.) Conference: Recent Developments in
D i g i t a l Logic Design Conference Proceedings, University
of Bath, Claverton Down, Bath, Sept. 1977, pp.1.0-2.19.

8. Hurst, S.L. Logical Processing of D i g i t a l Signals
Crane Russak, New York, 1978.

9. Hurst, S.L., M i l l e r , D.M. & Muzio, J.C. Spectral
Method of Boolean Function Complexity Electronics
Letters, Vol. 18, #13, June, 1982. pp. 572-573.

10. Karpovsky, M.G. F i n i t e Orthogonal Series in the Design
of D i g i t a l Devices John Wiley & Son, New York, 1976.

11. Knuth, D.E. The Art of Computer Programming: Sorting
and Searching Addison-Wesley, Mass., 1969.

12. McCluskey, E. J . Determination of Group Invariance or
Total Symmetry of a Boolean Function BSTJ Vol. 35, #5,
Nov. 1956, pp. 1445-1453.

13. McCluskey, E. J. Minimization of Boolean Functions
BSTJ Vol. 35, #5, Nov. 1956, pp. 1417-1444.

- 143 -

144

14. M i l l e r , D. M. & Muzio, J.C. Detection of Symmetries in
T o t a l l y Specified or P a r t i a l l y Specified Combinational
Functions Computers and D i g i t a l Techniques, Vol. 2, #5,
Oct. 1979 pp.203-209.

15. Mott, T.H. Determination of the Irredundant Normal
Forms of a Truth Function by Iterated Consensus of the
Prime Implicants IRE Transactions on Electronic
Computers, June, 1960, pp.245-252.

16. Mowle, F. J . A Systematic Approach to D i g i t a l Logic
Design Addison-Wesley, New York, 1976.

17. Muzio, J . C , M i l l e r , D.M. & Hurst, S.L. Multi-variable
Symmetries and Their Detection Unpublished.

18. Nilsson, N.J. Problem-Solving Methods in A r t i f i c i a l
Intelligence McGraw H i l l , New York, 1971.

19. Pohl, I. B i d i r e c t i o n a l and Heuristic Search in Path
Problems Stanford Linear Accelerator Center Report,
#104, May, 1969.

20. Rivest, R. L. et. a l . A Method for Obtaining D i g i t a l
Signatures and Public Key Cryptosystems CACM Vol. 21,
#2, Feb. 1978, pp. 120-126.

21. Robinson, J.A. A Machine-Oriented Logic Based on the
Resolution P r i n c i p l e JACM Vol. 12, #1,.January 1965,
pp. 23-41.

22. Shannon, C. E. Communication Theory of Secrecy Systems
BSTJ Vol. 28, Oct. 1949, pp. 656-715.

23. Van Emden, M.H. & Kowalski, R.A. The Semantics of
Predicate Logic as a Programming Language JACM Vol. 23,
1976, pp.733-742.

24. Warren, D. Pereira, L.M., & Pereira, F., PROLOG- The
Language and i t s Implementation Compared with LISP
SIGPLAN Notices (ACM), Vol. 12, #8.

25. Zissos, D. & Duncan, F.G. Boolean Minimization B r i t i s h
Computer Journal, Vol. 16, #2, 1972, pp. 174-179.

26. Federal Information Processing Standards Publication.
Announcing the Data Encryption Standard FIPS PUB 46,
Jan. 1977.

TABLE 1 - MINIMAL SUM OF PRODUCT TERMS FOR EACH S-BOX AND OUTPUT.
- terms are ' ranked ' by weight of c o n t r i b u t i o n to cor rect s-box output

S-BOX NUMBER 1

- - output 1 - -
TERM CONTR.

X1X010 0 . 562
X 1 X 1 1 1 o . 562
000X00 0 .531
X00011 0 . 531
X11001 0 .531
10X011 0 . 531
001X01 0. .531
001X10 0. 531
00X100 0. 531
010X01 0. 53 1
010X IO 0. 53 1
100X01 0. 531
1001x0 0. 531
X01110 0. 531
1 10XOO 0. 53 1
11001X 0. 531
101000 0. 516

- - output 2 - -
TERM CONTR.

XOOXOO 0.562
0X010X 0.562
1X000X 0.562
10XOOX 0.562
01X110 0.531
01X011 0.531
11110X 0.531
1X1111 0.531
00X010 0.531
000X11 0.531
001X01 0.531
X00011 0.531
1010X0 0.531
110X10 0.531
11011X 0.531
011000 0.516

- - output 3 - -

TERM CONTR
0010XX 0 . 562
0100XX 0 . 562
X10X11 0 . 562
010XOO 0 . 531
10X100 0 . 531
X11101 0 . 53 1
11011X 0 . 531
00X000 0 .531
00X011 0. . 531
001X00 0. 531
10X 1 1 1 o. 531
101X10 0. 531
11XOOO 0. 531
1101X1 0. 531
11100X o. 531
1X1010 0. 531
000101 0. 516
100001 0. 516
01 1 1 10 o. 516

- - output 4 - -

TERM CONTR
00X10X 0 . 562
X1X000 0 . 562
0110XX 0 . 562
11XX00 0 . 562
110X0X 0 . 562
X011X1 0 . 562
0001xo 0 . 531
0X1010 0. .531
ix1000 0. 531
1X0001 0. 531
01 1X 10 0. 531
1101X0 0. 531
1100X1 0. 531
10111X 0. 531
101X 1 1 0. 531
1X1111 0. 53 1
0X1101 0. 531
OOOO11 0. 516
100010 0. 516
010111 0. 516

TERMS IN OUTPUT 1 = 17
OUTPUT 2 = 16
OUTPUT 3 = 19
OUTPUT 4 = 20

S-BOX NUMBER 2

-- output 1--
TERM CONTR.

XOOO11 o . 53 1
001X01 0 . 53 1 1X0010 0 . 531 101XOO 0. . 531
100X01 0. .531
0011X1 0. 531
10X011 0. 531
oooxoo 0. 531
OX0110 0. 531
o1x000 0. 531
X10001 0. 531
X101 11 0. 531
X11101 0. 531
X11 1 10 0. 531
X00110 0. 531
X11000 0. 531
1 1 1 1 1X 0. 531
001010 0. 51G
110100 0. 516
011011 0. 516

-- output 2--
TERM CONTR.

OX100X 0 . 562
OOX11X 0 . 562
1 101XX 0 . 562
OOXOOO 0 .531
O10X10 0. . 531
011xoo 0. .531
OOOX11 0. .531
0001X1 0. 531
O1X001 0. 531
10X010 0. 531
110X00 0. 531
OX 1 1 1 1 0. 531
11X1 10 0. 531
10X100 0. 531
1X1011 0. 531
1X1101 o. 531
110X 1 1 0. 531
100001 0. 516

-- output 3--
TERM CONTR

OOXOOX 0 . 562
0010XX 0 . 562
X0100X 0 . 562
X01X11 o . 562
001X00 o .531
100X10 o. 531
0X0111 0. 531
11OOX1 0. .531
X11 1 10 0. . 531 111x10 0. . 531
00011X 0. 531
011X01 0. 531
10010X 0. 531
11X101 0. 531
1X0110 0. 531
11 1 1X0 0. 531
010010 0. 516
010100 0. 516

-- output 4--
TERM CONTR

X0X001 0 . 562
10X1X0 0 . 562
X 1 1X 1 1 0 .562
0X00X0 0 .562
1 1 1 X 1 X 0 . 562
00X010 0. . 531
010X10 0 . 531
OOOX11 0. .531
OX 1100 0. 531
01X101 0. .531
XOO111 0. 531 1010x1 0. .531
11X000 0. 531 110x01 0. 531

TERMS IN OUTPUT 1 = 20
OUTPUT 2 = 18
OUTPUT 3 = 18
OUTPUT 4 = 14

1 cz O l to u> 1 i— ID D ro ^> z o in in IT) in i n i n i n m m i n i n m L o m i n i n i n in
3 (J O O O O OOOOOOOOOOOO O O
a £ O O .- O O — — >-x*- — O—OO''-O O 3 or X O o O •̂ •̂ OOO-- — - -O--0 tu o — o *~ x x x — O x x x x O O O t— O X X OOOX — '-O"- — O — -O i O o o — OO — "-0"-0-xO — o X o o X OO'-O'-'-'-OO'-xx

l a O l O l O l io io l y~ to 1 0 ID CD z
Q

in in in in LninminLninminiriinmin in in
•h 3 (J O OOOOOOOOOOOOOOO O O

£OOxxOO*-0-----0»-0 — — O--aOOOOO — <-0-0-*-'--0-0-U J X — — — O — Ox — OO-OOOxOO t-- — — xxOOO — - ---OxO — - O — xxx-OxO-OOO-Oxx---Oxo — OOX"-xxxx — ̂- — — OO

* 1

* 1

tx • •w-
L U •

m * -H
* * a 2 * +-*

* D
X * 0 o * i i * i IS)

• O l — — — - — — - — - ^ - r - , - , - — , - . - (0 atDcnnnnronnonronnnron —
K i n m i n u i u i i r m u i i n i n i n i n K i i n i n i n i n

OOOOOOOOOOOOOOOOOO
_x O - 0 - 0 - 0 - O x O - - 0 - -E x O x - - — 00—-OOOX—-0 a-xOOOOxx — - — x — O — OO ujO — Oxxx — — ••-x — OOOxx — 1--OO-OO — — xOOOx — — - O 0O000--0-''-0O-----^

• — — — — -T- T - -T- - r - ^) (f l J£ annriDnnnnnnnnnionnnnp)--'-'-
K i n i n i f l i n t n i n i n i n i n t n i n i n i n i n i n i n i n i n i n i n i n i n

o
xOOOxx — — — OO — — O — — O — OO — 20000-0-00--OOX--<-0--0-aO"0O0'-xO'-O'-'"O0OO'-'-wOxOOO-x--0*-xOOOxxxO — T - -l - O O x x - - 0 - - x x O x O x - 0 0 - - - -000"-OOOOx — — - 000'--'-xO*- —

oi i ^ oo co
oi — — T-

ii ii it n
* - O l CO TJ-

CL CL a. a.
h l - l - l -3 3 3 D OOOO

z or ui
r-

S - B O X N U M B E R 4
* * * * * * * * * * * * * * *

- - o u t p u t 1 --
T E R M C O N T R .

X 1 X 1 1 1 0 . 5 6 2
0 1 1X 1X 0 . 5 6 2
O O O O 1 X 0 . . 5 3 1
0 X 0 1 0 0 0 . . 5 3 1
0 1 1 0 X 0 0 . 5 3 1
X O O O 1 1 0 . 5 3 1
0 1 1 1 X 1 0 . 5 3 1
1 1 0 1 1 X 0 . 5 3 1
0 0 0 X 0 1 0 . 5 3 1
0 X 1 0 1 1 0 . 5 3 1
0 0 1 1 xo 0 . 5 3 1
1 0 0 X 0 0 0 . 5 3 1
1 0 1 0 X 0 0 . 5 3 1
101x01 0 . 5 3 1
1 0 1 1 1X 0 . 5 3 1
1 1 0 0 0 X 0 . 5 3 1
1 X 1 0 0 1 0 . 5 3 1
1 1 1 1 0 0 0 . 5 1 6

- - o u t p u t 2 - -

T E R M C O N T R .
X 1X 1 1 0 0 . 5 6 2
O O O X O O o . 5 3 1
1 1 X 0 0 0 0 . . 5 3 1

0 1 1 1 0 X 0 . 5 3 1
1 0 1 1 0 X 0 . . 5 3 1

0 0 X 0 0 1 0 . 5 3 1
0 0 X 0 1 0 0 . . 5 3 1
0 X 0 1 1 1 0 . 5 3 1
0 0 1 0 1 X o. 5 3 1
0 1 0 0 X 1 0 . 5 3 1
O X 1 0 1 0 0 . 5 3 1
1000ix 0 . 5 3 1
X 0 0 1 1 1 0 . 5 3 1
1 0 1 X 0 0 0 . 5 3 1
1 0 1 1 X 0 0 . 5 3 1
1 1 X 0 1 1 0 . 5 3 1
1 1 1 0 0 X 0 . 5 3 1
1 1 1 1 1X 0 . 5 3 1
1 1 0 1 0 1 0 . 5 1 6

- - o u t p u t 3 - -

T E R M C O N T R
0 0 1 X 1 X 0 . 5 6 2
1 0 0 0 X X o . 5 6 2

0 1 0 0 1 X 0 . 5 3 1
O X 1 1 1 0 0 . 5 3 1
0 0 0 X 0 0 0 . 5 3 1
0 X 0 1 0 1 0 . 5 3 1
O O O 1 X 0 0 . . 5 3 1
X 0 1 0 0 1 0 . . 5 3 1
X 1 1 0 1 1 0 . 5 3 1
X 1 1 1 0 1 0 . . 5 3 1
1 X 0 1 1 1 o. 5 3 1
1 X 1 0 1 0 0 . 5 3 1
1 1 0 X O O 0 . 5 3 1
1 1 0 1 X 0 0 . 5 3 1
1 1 X 1 1 1 0 . 5 3 1
0 1 1 0 0 0 0 . 5 1 6
1 0 1 1 0 0 0 . 5 1 6

- - o u t p u t 4 - -

T E R M C O N T R
X 1 X 0 0 0 0 . 5 6 2
1 1 0 X 0 X 0 . 5 6 2
X 0 1 1 0 0 0 . 5 3 1
0 1 1 0 0 X 0 . 5 3 1
1 1 0 0 X 0 0 . 5 3 1
1 0 1 1 0 X 0 . 5 3 1
1 X 1 0 1 1 0 . . 5 3 1
1 1 0 1 X 1 0 . . 5 3 1

0 0 0 0 X 0 0 . 5 3 1
0 0 0 X 0 1 0 . 5 3 1
O X 0 1 1 0 0 . 5 3 1
O O X 1 1 1 0 . 5 3 1
0 0 1 X 1 1 0 . 5 3 1
0 1 1 1 1X 0 . 5 3 1
1 0 0 0 X 1 0 . 5 3 1
1 X 0 1 0 0 0 . 5 3 1
1 0 1 X 1 0 0 . 5 3 1

0 1 0 0 1 1 0 . 5 1 6

T E R M S I N O U T P U T 1 = 1 8
O U T P U T 2 = 1 9
O U T P U T 3 = 17
O U T P U T 4 = 18

S-BOX NUMBER 5
• i t * * * * * * * * * * * * - *

output 1 - - output 2--
TERM CONTR. TERM CONTR.

XOOOX1 0 . 562 0X0010 0 . 53 1
0X110X 0 . 562 1X0000 0 . 53 1
101X 1X 0 . 562 011XOO 0 . 53 1
1010X0 0 .531 001X01 0 531
110X00 0 . 531 010X01 0 53 1
100X01 0 .531 X00111 0. .531
10X1 10 0. .531 10101X 0 53 1
00X010 0. .531 1001x1 0. .531
OX011 1 0. 531 11X110 0. 531 01x000 0. 531 00X001 0. 531
0101X1 0. 531 OX 10OO 0. 531
01X 1 10 0. 531 0010X1 0. 531
11001X 0. 531 010X 10 0. 531
X101 1 1 0. 531 10X 1 1 1 0. 53 1
X 1 1 1 10 0. 531 1100X1 0. 53 1
01 1011 0. 516 110XOO 0. 531
1 1 1001 o. 5 16 X11000 0. 53 1

1X1011 0. 531
OOO1oo 0. 5 16
001110 0. 516
101100 0. 516
011111 0. 516
1 11101 0. 516

TERMS IN OUTPUT 1 = 17
OUTPUT 2 = 23
OUTPUT 3 = 17
OUTPUT 4 = 17

- - output 3 - - - - output 4 - -

TERM CONTR. TERM CONTR
001XX0 0 . 562 XX0110 0 . 562
0101XX 0. . 562 X10X10 0 . 562
1 1X00X 0. 562 110X1X o. . 562
X01XOO 0. 562 1XX 1 1 1 0 562
100X10 0. 531 00X01 1 0 531
X01011 0. 531 1100X0 0. . 531
X11001 0. 531 10X001 o. 531
10011X 0. 531 01X110 0. 531
10110X 0. 531 1X1010 0. 531
11OOX1 0. 531 1111X1 0. 531
OOOOOX 0. 531 001X00 0. 531
OOOOX1 0. 531 001 1X 1. 0. 531
OOOXO1 0. 531 010X01 0. 531
OX 1100 0. 53 1 0101X0 0. 531
X 1 1 1 1 1 0. 531 01100X 0. 531
X00001 0. 531 OX 1011 0. 531
111X10 0. 53 1 10X 100 o. 531

70 3

OOOO
(Z <z <z c
H H H H TJ TJ T3 13

c c c c
-I H -t H
Ji U U -.
II II II II

— io ro —

CJl U U -J

— O — OOOO — — — — OxO — x — — — O — XOOO — Ox — O X X O X H 0 0 0 — — XOxO — — O — — — O — m
- - x - - - x - x o - x o o x o o 3
OOOX-O----O--O-OX
OOOOOOOOOOOOOOOOOO
oiuiuic^oiaioiuioiuioioiuiaiuiuiui?
k.0J(JCJCJ(JCJGJCJCJCJCJCJCJ)fflcT)7:
01 <T) — — — — — — ^ - a ^ u w u .

- - O - - - - 0 0 0 0 0 - - X O - - 0 0 0 0
- 0 0 - - 0 0 - - - X X - 0 0 0 - 0 - O X O H
- 0 0 - - 0 0 - O X - 0 0 - - - 0 0 0 - O x m OOO — x — — O — O — — x — o x x x x o — OX3
0 0 0 - - - X X - - 0 - - 0 - - 0 - 0 X 0 - 3 - - O X O X O O X O O O - X - - O O - - - -
OOOOOOOOOOOOOOOOOOOOOOO
— — — CJCJ(J0JCJCJCOtJCJCJCOCJCJ0JCJCJUCJtJ33

on
1 1 * i ! 1 ca

* o i 0 X
1 c * 1 f+ * 2 I TJ * c i c * 1 rt 03 * m 1 -t * 73 1 | 1 1 * CD

*

O- — — - - - O X O O O - - 0 - - 0 0 0 0 0 - 0 - X X O O - - X O O - - - - 0 - X O X O ~ ' - ^ x O - - 0 - 0 0 0 0 - X - 0 0 - - x O X H - 0 - 0 - - - x - 0 - x - 0 0 0 0 0 0 0 - - r r i
° S A " J x o ; - ' O X j) < 0 ' 0 ' X - O O O 5

— OO — O — XO — — O — O — XXXOO — 0 0 3
OOOOOOOOOOOOOOOOOOOOOOO

o
- ' - U U U Q U Q U U U U U U U U U U Q U O m
< ' i a i - - - - - - - - - - - - - - - - ' - - - - - ; o

TJ
c

x x — - — - O x o - — O O x o O ----OO-OO-OOOO--- - O x x O - O O x x - - - x x n — O x o o x x o x — — — o x — om O-OO — o - - - — — XOOO — ;o OO — O — OO — O — O — x — X X 2

OOOOOOOOOOOOOOOOO
O oioioiuioioiuiuioiaiaiaiuiuiuiuiz

u o u g u u u u u u y u u j i o i o i H
— — — — — — — — — — — — — foioro^3

XI c

150

S-BOX NUMBER 7 ****************

-- output 1-- -- output 2--
TERM CONTR. TERM CONTR.

XOX110 0 . 562 ooxoox 0 . 562
1001XX 0 . 562 XOX110 o . 562
1X011X 0 562 0X011X 0 . 562
X01000 0 531 XIX 1 1 1 0 562
1OOX11 0 .531 011X00 0 .531
10X101 0. .531 100X01 o. 53 1
11X001 0. .531 11X010 0. 531
X101 1 1 0. .531 011X11 0. 531
11X111 o. 531 101X11 0. 531
OOOX01 0. 531 010X01 0. 531
0X0010 0. 531 010X10 0. 531
OO1X11 0. 531 100X10 0. 531
001xoo 0. 531 101XOO 0. 531
0X0001 0. 531 110X11 0. 53 1
01101X 0. 531 110100 0. 516
1100X0 0. 531 111001 0. 516
01010O 0. 516
011101 o. 516
1 1 1 100 0. 516

TERMS IN OUTPUT 1 = 19
OUTPUT 2 = 16
OUTPUT 3 = 18
OUTPUT 4 = 23

-- output 3-- -- output 4--
TERM CONTR. TERM CONTR

0001XX 0 . 562 OX 1000 0 . 53 1
01XOX1 0 . 562 OOOX01 0 . 53 1
X110X1 0 . 562 100X00 0 .531
1011XX 0 . 562 OOO1X1 0 .531
OOOX10 0 531 00X101 0 .531
0X0110 0 . 531 1001X0 0 53 1
1100X0 0. . 531 OX 1 1 10 0 531
1000X1 0. 531 OX 1011 0. 531
01101X 0. 531 1X1010 0. 531
101X10 0. 531 1X0011 0. 531
1X1110 0. 531 1100X1 0. 531
OX 1 1 1 1 0. 531 11110X 0. 531
01000X 0. 531 110X11 0. 531
1XO1oo 0. 531 010X00 0. 531
1X1101 0. 531 01X011 0. 531
001OOO 0. 516 01010X 0. 531
011100 0. 516 0101X0 0. 531
110111 0. 516 XOO101 0. 531

10X100 0. 531
11X010 0. 531
OOOO10 0. 516
101001 0. 516
101111 0. 516

30
3

O O O O
c c c c TJ TJ TJ TJ
c c c c
J> GJ IO —

O O - - - - — O O O x x O — O — - O x — O — — — O O - - — O O O — - X O O O

— — X X O X — X X O O — O — X O O - O
O
cjiuicjiuicjiuiuiuiuiuiuiuiuiuiuiuiuiuiui — — U (J (J U U U U U U C J U U U U U U U 0)01- — — — — — — — — — -. —

* 1 • 1 H 1 * CD rn * O XI 0 * X 3 c * r+ * Z TJ c Cl C 3 O * CD z * m H — • 33 73 1 * 1 * CO *
— - - - - O O X O O - O X O X X X
O - O O O - X O O O - X O x — — _ i H l — O X O O X O — X X — O - O x o . m O x — — x — — — — o — o o - o o X 70 0 O - O X O - O - O O O o 3 c — O O - O O - - - O X - o o - - o
o o o o o o o o o o o o o o o o o o z

UIUIUIUIUIUIUIUIUI Ol 01 Ul CJ1 01 Ul - i ro CJCJCJCJCJCJCJCJCJ CJ U CJ 01 si CD 70 i IO IO ro i

- - - - - 0 - - x x o O O O O
- - - X O X O O O O O - - X 0 0 - 0 - - O O x O X H - 0 0 0 0 0 - - 0 — X — X O m 0 X O — O x — x x — o O - X O 73 c - X O - 0 - - 0 - O O X X X X 3 r+ TJ
o o o o o o o o o o o o O O O O C

r+ O UIUIUIUIUIUIUIUIUI Ol Ul 01 cn Ul Ul z CJ COCJCJCJtJGJCJCJCJ CJ CJ CD cn CD cn -t 1 IO ro ro 73 1

O — - O O O O O — - - O O O X O - -— X O O O O O O — — X — x x — — O — O — X — — O X O O — OO — — — OO — — — o — x x O O x x — x — — O O x o 0 - O X - 0 - 0 0 0 - - 0 - 0 - - X O — O O O — - x — O O - — O O x x x

O O O O O O O O O O O O O O O O O O O o
CJIUIUIUIUIUIUIUIUIUIUIUIUIUIUIUIUIUIZ
— cjcocjcjcjcjcjcjcjcjcocjcjcjcjcncOH cn — — — — — — — — — — -. — — _._roro53

152

= >
- T A B L E 2. C C F) M E T R I C F O R S - B O X E S B E F O R E & A F T E R T R A N S L A T I O N

O U T P U T #

1 2 3 4
b e f , a f t b e f , a f t b e f , a f t b e f , a f t

CU 1 4 8 2 5 2 1 5 6 2 4 4 1 4 4 2 4 8 1 3 6 2 6 0
C 2) 1 2 0 2 5 2 1 3 2 2 6 4 1 4 4 2 3 2 1 6 8 2 5 2
C 3 D 1 1 2 2 6 0 1 2 8 2 5 2 1 5 2 2 3 2 1 2 8 2 3 6

B O X C 4 D 1 4 8 2 4 8 1 4 8 2 5 2 1 4 8 2 5 2 1 4 8 2 4 8
C 5 D 1 4 8 2 4 8 1 1 2 2 4 4 1 5 2 2 4 4 1 5 2 2 2 4

C 6 D 1 3 2 2 5 2 1 2 0 2 4 4 1 2 8 2 3 6 1 5 6 2 5 6
C 7) 1 3 6 2 4 4 1 4 8 2 6 8 1 3 6 2 4 0 1 0 8 2 5 2
C 8 D 1 4 0 2 2 8 1 4 4 2 5 2 1 5 2 2 4 4 1 4 0 2 4 4

A V E R A 6 E C O M P L E X I T Y B E F O R E T R A N S L A T I O N : 1 3 9

A V E R A G E C O M P L E X I T Y A F T E R T R A N S L A T I O N : 2 4 7

C(f) is a spectral-domain measure of function complexity equal to the
classical functional-domain complexity measure which counts the
number of topologically adjacent pairs of assignments for which f
takes the same value for both assignments in the pair.

153

FIGURE 1 Exhaustive Tree Search Using No S-Box Reduction

Illustrative of how the nonlinear
S-boxes used to compute f cause
a branching factor so large as
to make key search
intractable.

(ciphertext bit 64)

- - - level 0

r 6 3 _ l r 6 2 _ l
L - "0 1 .~0

.1 1 •- level 1

L15 U

R6 4-0 R J 4-0

c64
(R 1 5 ' K 1 6) = ^

/ / / - I

L 6 4 = l L15 1
r64

(R15' K16) :fi? •- level 2
/ / / - A

L i 3 © f 6 4 (R 1 3 > K 1 4) = 0

There exists a branching factor of 32 at
each of these points in the tree, based on
the relationship between 6 bits of R1(-
and 6 bits of K as defined by the
S-boxes.

Notational Notes: - superscripts indicate bit position in block.
- subscripts indicate encryption round O s r s 16 - - - level 16
- after selection fromfav . ^ -, -, ,

^ a d e at level 1 node, select same position for subtree.

FIGURE 2 Complete Partitioning of a Matrix

- an example of the partitioning of a matrix, from'McCluskey [7 p.1447]

The matrix X:

0 0 0 1 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 1 0 1
0 0 0 1 1 0
0 0 1 0 0 1
0 0 10 10
1 1 0 0 0 0
0 1 1 1 1 1

- transcribed results of running the APL routine PARTITION on X:

Row and column slice points:
1 3 4 8 9
12 3 5

Partitioned matrix:

0 0 01 00
0 0 10 00

1 0 00 00

0 0 01 01
0 0 01 10
0 0 10 01
0 0 10 10

1 1 00 00

0 1 11 11

x 3 s

155

FIGURE 3 Essential and Al ternat ive Sum-of-Product Terms

FOR S-BOX 1 OUTPUT 3:

Essential :

000101
100001
011110
010X00
10X100
X11101
11011X
0010XX
0100XX
X10X11

i . e . : X 1 X 2 X 3 X 5 X g

X 4 is a "don't care"

A l ternat ive :

00X000 1
0X0000 1
00X011 4
0X0011 4
001X00 8
X01100 8

d S x T J T) 25T
1X0111 25
X01010 28
101X10 28
1X1010 28
101X10 31
1011X0 31
10111X 31
10111X 32

pLOXlTD 3 2 1

X10000 33
11X000 33
1101X1 37
11X101 37
11X000 38
1110X0 38
11100X 38
11100X 39
111X01 39
1X1010 40
1110X0 40

Note inter-class
occurences of the
same p-term.

Example of one of
the many a l ternat ive
"c lasses" . One
member of each must
be chosen as a p-term
in the minimal
representation.

156

FIGURE 4 Representation of Quasi-Best Set Search Tree

S~ indicates a pointer reference

TREE

•term added
current ORMASK] is

IOI-IIO 4 OU-Q| 4

to other level 1 nodes
(not shown)

= 5
—•> — > » 4

loo- (OlO

father pointer
to node at
previous level

4

o

o

157

FIGURE 5 P e r m u t a t i o n C u t o f f D u r i n g N-ary T r ee E x p a n s i o n

TREE

S-box 1 o u t p u t 1, bo th p-terms 6 and 7
have 4 b i t s o n , i n " d i s j o i n t " p o s i t i o n s .

CUTOFF d u r i n g
t r e e g rowth

T h i s node i s n e v e r a c t u a l l y grown
as i t s ORMASK w o u l d be' i d e n t i c a l
t o t h a t o f a n o t h e r ORMASK
a l r e a d y e x i s t i n g a t l e v e l 2 .

158

FIGURE 6 Partial Search Tree for 2-Roimd DES

tree root is a conjunct of
64 nodes, representing
values of bits of C

eg: C=10*'"Ol'"'1

32 P"1 P e n \
S-box 6,
output 1

^ (R Q . K J H I

L^O R 2̂=l

bit position
encryption round

KS(26,1)(RJ6=1) KS(26,l)f Rn6=0
. =0

 K ^ L ^ - , =1 V U y

K5=0 K5=l
/L. -»

key bit hypotheses, as produced
by X node expansion

suppose S-box_6 output 1 has
function x-^x^ + X3 X4 X5

then by DeMorgan, for the
output to be 0, it_must be:
(x1+x2+x3)(x3+x4+x5)

bit position, as determined by
the application of E"1 permutation

NOTES
1) AND nodes labelled

with arcs.
2) OR paths exist simultan-

eoulsy only conceptually.
Alternatives developed i f f
backtrack.

3) Circled nodes are search
tree leaves, which may
cause backtrack.

159

FIGURE 7 Nodes in the Cryptanalytic Search Tree

1) SUPER descriptor node

R'
12

4

- type code, this is a descriptor for a type 'R' node
- position from f1,32] in R block
- round efl, 16) in encryption
- father pointer

- pointer to RNODE

2) Node of type 'RNODE'

'O'B

1

— » —

- value of RNODE from [0,l]

- count, i . e . , # of times node expanded from [0,2}

^pointer to RNODE 2 levels before
pointer to an FN0DE1 or an FNODEO''

3) Node of type 'FN0DE1'

count from fl,23? which conjunct term in sum-of-product
representation is currently used

f I j l n i l f If
j * ^ i, ,/ v to 6 XNODES, expanded in parallel

4) Chain of type 'FNODEO' nodes

SUPER of type 'FNODEO'

v £ 23 in parallel on linked l i s t

1 -literal number from ^1,6}

pointers to XNODEs

5) Node of type 'XNODE'

value of XNODE from £0,1}
count, i . e . , # of times node expanded from f0,2}

l'B

pointer to an RNODE. (a virtual 2nd pointer affects key bit hypothesis)

160

FIGURE 8 Bidirectional Search Tree

(a) unidirectional search tree

C

P (plaintext bits)

(b) bidirectional search tree

- cross-hatched area is an area existing in the unidirectional
search tree, which need never be developed in the bidirectional tree.

- bidirectional search techniques make linear what is exponential.

161

FIGURE 9 2-Round Search Tree of Uniform Structure

note: bit positions (superscripts) not explicitly shown

162

FIGURE 10 Stages in the Development of the AND/OR Search Tree

(a) R2 32

(b)

X2 3 6 ' X2 3 7

(c) OR

AND AND

OR

AND AND

AND AND
/\ /\

RI 2 1 K7 RI 2 1 , K7'

(d)

AND AND AND AND

OR OR OR OR OR OR
' \ /v A r\ ,>

AND AND AND

4

AND AND
/ \ / \

OR K7 OR K7'
/\ —

AND

K7 K 3 4

163

APPENDIX A

APL CODE FOR THE DETECTION OF GROUP INVARIANCE OF A
BOOLEAN FUNCTION BY MCCLUSKEY ALGORITHM.

164

V Z+BINARY DECBOX
[1] a TO CONVERT AN SBOX INTO BINARY FORM
[2] Z-<- 3 1 2 ^ 2 2 2 2 T DECBOX

7

V Z+DUPKILL V
[] Z«-((\pV)=V\V)/V

7

7 Z+INITPARTIT M; RWT ;CWTRSLIC E; CSLICE
[1] ft TO INITIALLY PARTITION A MATRIX INTO SUBMATRICES
C 2] RWT-+/M
[3] CWT+++M
[4] -(l=pRWT)/ROWVEC
[5] RSLICE+lll.*/ ~1 0 +((" l + i p i ? k T) < t > (2 p p i ? t V r) p / ? V r) [; i 2]) / i pfiiv'T)
l + l + p,V
[6] +J0IN1
[7] ROWVEC:RSLICE+l ; 1 + l t p A f
[8] J O I f f 1 :-»•(l = p C V D ICOLVEC
[9] CSLICE+Ul.*/ " l 0 +((~ l M p C V 2 ,) 4 > (2 p p C (V ; T) p C . V 7) L " ; i 2]) / i p i ? v r)
l + ' l + p M
[1 0] -+JOIN2
[1 1] COLVEC-.CSLICE+l , l + " l t p / V
[1 2] J O I A ' 2 : Z«- ((1 + [/ pM) T RSLICE) , [0 . 5] (l + [/ p A /) T C SLICE

7

7 Z+IOTA X
[1] ft F0J? ENUMERATION OF INCLUSIVELY BOUNDED INTEGER LIST
[2] ->-U[2]<;J[l]) /SC>4£.
[3] Z«-X[l] + " l + i 1+ |
[4] - 0
[5] 5 C i 4 £ : Z * , X [I]

7

7 Z-BITPOS ON S
[1] ft GIVEN AN SBOX AND OUTPUT BIT POSITION, RETURN THE 3 2 x 6
[2] ft MATRIX OF BINARY INPUTS FOR WHICH THE OUTPUT BIT IS 1
[3] Z«-(16 16) T Z « - ~ l + (, Z) / I x / p z « - S [; ;BITPOS]
tH] Z+- 3 1 2 ^ 2 2 2 2 T Z
[5] Z ^ Z [1 ; ; 3] , Z [2 ; ;] , Z [1 ; ; ' +]

7

165

V Z+SLICES PARTITCALL M; RSLIC E iCSLICE; NEWRSL-, N EWC SL ; RCTR; C
CTR'.SUBiP
C 1] n
[2] n RECURSIVE FUNCTION TO FURTHER PARTITION A MATRIX M,
[3] fl GITEtf >5 CURRENT STATE OF PARTITIONING, SLICES.
[4] n SLICES IS A MATRIX WITH 2 /?CW£, WHERE FIRST ROW CONTAINS
[5] a POINTERS BEFORE WHICH ROW SLICES OCCUR, SECOND ROW SAME F
OR COLS.
[6] R

C 7] - * (a / 1 1 -pM)/TRIV
[8] RSLICE+iSLICESll;]*0)/SLICESll;]
[9] C5LICF-(S£IC£S[2;]*0)/SLIC£S[2;]
[1 0] Af/Ŵ C pRSLICE) [pCSLICE
[1 1] Z«- 0 1 +((MAXfRSLICE) , [0 . 5] MAXiCSLICE) , 2 1 pO
[1 2] - * (a / a / (2 2 + Z) = <S(1 + p.V) , [0 . 5] 0 0)/TRIV
[1 3] n
[1 4] fl ITERATE THROUGH EACH SUBMTX, RECURSIVELY SLICING
[1 5] NEWRSL*-NEWCSL-\0
[1 6] CCTRo-1
[1 7] CLOOPiRCTR+l {

[1 8] RLOOP-.SUB+MIIOTA 0 " l +RSLICELRCTR+ 0 1];I077! 0 " l +CSLICEL
CCTR+ 0 1]]
[1 9] RECURSE:P-(.INITPARTIT SUB) PARTITCALL SUB
[2 0] NEWRSL+NEWRSL,~1+RSLICEIRCTR1+Pll;]
[2 1] NEVCSL-NEWCSL,~l+CSLICE[CCTRl+Pi 2;]
[2 2] -•((RCTR-RCTR+l)<pRSLICE)/RLOOP
[2 3] -((CCTR-CCTR+l)<pCSLICE)ICLOOP
[2 4] n
[2 5] n I F A/CT /5T TCP LEVEL, JUST RETURN NEWRSL, NEWCSL
[2 6] -*•(~v/RECURSE=DLC) /TOPLEVEL
[2 7] Z+lMAXtRSLICE) , [0 . 5] (AM**-(pRSLICE) [pCSLICE) iCSLICE
[2 8] Z*- 0 "l + 0 1 + Z
[2 9] *0
[3 0] TOPLEVEL-.
[3 1] NEWRSL-([/ p,V) + (NEWRSL< l\pM) / NEWRSL-*-NEWRSL [&N EW RSL+-DUPKI LI N
EWRSL,RSLICE3
[32] NEWCSL-([/pM) + (NEWCSLH~ 1*pM) /NEWCSL*-NEWCSLi k.NEWCSL+DUPKILL
NEWCSL ,CSLICE'S
[3 3] Z«-A/EW?S£.[0. 5] NEWCSL
[3 4] -*0
[3 5] JTTiTiZ*- 2 0 pO

7

166

V Z+PARTITION M\OLDZ
[1] n
[2] * TO FULLY PARTITION A MATRIX, M.
[3] ft DIVIDE INTO ROWS AND COLUMNS SUCH THAT ALL ROWS/COLS IN A
SUBMATRIX
[1] ft HAVE AN EQUAL NUMBER OF l'S.
[5] ft RETURN PARTITION POINTS AS A LIST OF POINTERS INTO M BEFO
RE WHICH
[6] ft DIVISIONS SHOULD OCCUR
[7] ft
[8] OLDZ+ilNITPARTIT AO PARTITCALL M
[9] L00P:-+(*/*/0LDZ = Z+-(0LDZ, 2 1 pl + pM) PARTITCALL AO/0
[10] OLDZ-Z
[11] +L00P

V

V PARTITIONHALL;BOXiBITiSTDiTR;P
[1] ft
[2] ft TO PARTITION STANDARD TRANSMISSION MATRICES REPRESENTING
[3] ft ELEMENTARY PRODUCT TERM BOOLEAN FNS FOR EACH OF THE 3 2
[4] ft S-BOX - OUTPUT PAIRS'.
[5] ft
[6] BOX-1
[7] BOXLOOP-.BIT-rl
[8] BITLOOP-.TR-BIT ON BINARY SBOXL BOX ; ;]
[9] ft FORM STANDARD MATRIX:
[10] STD*-TR*(pTR) pFLIP-(0 . 5 x l + pTR) < + JTR
[11] nRANK SO l'S INCREASE IN DIRECTIONS •* AND +
[12] STD"-STD[i + /STD:']
[13] STD+STDlU+JSTD]
[14] ft PARTITION THIS MATRIX:
[15] P-PARTITION STD
[16] "
[17] 'FOR S-BOX ',(wB0X),' BIT: ',lBIT
[18] 'ROW SLICES: ' , 3 0 T (P[1;]>0)/P[1;]
[19] 'COL SLICES: ',3 0 T(Pi 2;]>0)/PL 2;]
[20] ((lfpT/f)= + /P[l;]>0)/'//(7 POSSIBLE ROW PERMUTATIONS1

[21] (("lTpr/?) = + /P[2;]>0)/'A/0 POSSIBLE COL PERMUTATIONS'
[22] +((BIT<-BIT+l)<.k)/BITLOOP
[23] (B0X-B0X+1)<B)/B0XL00P

V

167

V Z+PARTIT PRINTbPARTIT M;R;C;EX
[l] A GIVEN PARTITION POINTS FOR A MATRIX M,
[2] A PRINT THE MATRIX IN PARTITIONED FORM.
[3] A LEAVE BLANK ROWS/COLUMNS BETWEEN SUBMATRICES
C 4] A
[5] PARTIT
[6] Z-(A/ [l ;] * ' ')/M+TM
[7] C^(P/3tfnr[2;]*0)/P/?/fTIT[2;]
[8] EA>((pC)+~l+pZ)pl
[9] EX[~l+C+\pOO
[io] z-«-mz
[11] >7^(P>iffri7 ,[l;]*0)/P/iv7'ir[l;]
[12] FAX (p/?) + l + pZ)pl
[13] EXl'l+R+xpRl-O
[14] Z+FXHZ

V

V Z-RAND
[1] «
[2] a TO GENERATE RANDOM 3 2x6 BINARY MATRICES IN STANDARD FOE:-'
[3] A
[4] Z«-"l + ? 32 6 p2
[5] A PUT INTO STD FORM AND RANK :
[6] Z*Z*(pZ)p(0.5xi + pZ)< + j'Z
[7] Z«-ZU + /Z;]
[8] Z*Z[;l+yz]

7

168

V SYM
[1] n TR*-1 ON BINARY SBOXl
[2] STD*-TR*(.pTE) pFLIP<-(O.Sxl + pTR)< + JTR
[3] EQUAL*-(Q .5*l+pSTD) = + SSTD
[4] R EXCHG ROWS SO NO. l 'S INCREASES • /A'P *
C 5] STD*-STD_ k+/STD%]
[6] STD*-STD [; PFtfA?- A + /527? 3
[7] PRIM.ING*-EQUAL\ " l 0 4 $ ((+/EQUAL)p2)Ti2*+/EQUAL
[8] R PRIMING IS MTX WHOSE ROWS INDICATE POSSIBLE WAYS COLS
[9] R OF STD CAN BE PRIMED
[10] R
[11] R PARTITION THE STD MATX
[12] PART-PARTITION STD
[13] R ELIMINATE SOME OF THE POSSIBLE PRIMING OPERATIONS:
[14] R IF SOME ROW IS ALL 0/1 AND NO ROW AFTER PRIMING IS 0/1.E
[15] fl THE PRIMING IS NOT POSSIBLE
[16] CONST-0
[17] ELIM: KEEPER IMROW*- (1 i p PRIM ING) pi
[18]
[19] REM1 :KEEPPRIMROWlK]«-~(v /AJCONST=STD)A~V /AJC0NST=STD* (pSTZ?) p
PEIMINGlK;]
[20] -»•((.K+K+l)*l*pPRIMING)/REMl
[21] PRIMING*-KEEPPRIMROWf PRIMING
[22] ->-((C0NST+-CONST+ 1)£1)/ELIM
[23] R
[24] R ELIMINATE PRIMINGS IF PRIMED MTX DOES NOT PARTITION AS
[25] R DOES THE STD MTX.
[26] R 5/WF TO COLUMN PERMUTATIONS REQD FOR 1' 5 •+
[27] SAVEPERNS-(. pSTD)P0
[28] K+l
[29] KEEPPRIMROW*-{ 1 + p PRIM ING) p 1
[3 0] syW£wr;r««-(o.pS27>)po
[31] REM2 : POSSM+STD* (pS2T) pPRIMINGlK;]
[32] POSSM-POSSMJi k + /POSSM\]
[33] POSSM*-POSSMl ; 5/W EPERMSlK ;]«-W POSSMl
[34] SAVEMTX-SA VEMTX . [1] P0SSA?
[35] KEEPPRIMROW[_Kl*-*/*/PART= PARTITION POSSM
[36] + () < 1 +pPRIMING)I REM 2
[37] PR IM ING*-KEEPER IM ROW-f PRIMING
[38] S AV E PERM S*-KEEP PRIM ROW J SAV E PERMS
[39] fl FC/? 57/) + F/SCtf RETAINED PRIMING, CHECK VAR PERM:
[40] SI*-PART PERMUTE STD
[41] PR IN T hiNV ARIAN T\~li pSAV EPERM
[42] fl
[43] K+l
[44] GOLOOP:SI*-PART PERMUTE SAVEMTXlK', ;]
[45] PRINTL\INVARIANT SAVEPERMiK;]
[46] -+((K*-K+l)<l + pPRIMING)/GOLOOP

V

169

APPENDIX B

APL CODE FOR QUINE-MCCLUSKEY MINIMIZATION OF S-BOXES.

170

V Z*-ALT BOXINP
C l] ft GIVEN BOX NUMBER AND OUTPUT, RETURN TABLE OF ALTERNATE SP'
s
[2] IND<-B0XINP£2_] + Hx~l + B0XINPL~n
[3] Z«- (~a/» ' = Z) -rZ*-ALLALT[IOTA ,ALLPTR[IND+ 0 1 ; 2] ;]

V

7 ANALYZEiSBOXCNT;OUTBIT
[l] ft
[2] * TO CALC AND SAVE THE ESSENTIAL AND ALTERNATIVE SP TERMS
[3] a FOR EACH SBOX AND OUTPUT, IN INDEXED MATRICES ALLESS
[4] n AND ALLALT, RESPECTIVELLY
[5] ALLALT*- 0 10 p' •
[6] ALLESS*- 0 6 p» '
[7] ALLPTR*- 1 2 p 1 1
[8] SBOXCNT*-!
[9] BOX LOOP: OUTBIT*-!
[1 0] BITLOOP-.QM PRIMIMP OUTBIT ON BINARY SBOXlSBOXCNT; ;]
[1 1] ALLESS*-ALLESS,[l] ES
[1 2] ALL ALT*-ALLALT, [l] ((l + p<4Zi).10H/3L
[1 3] ALLESS*-ALLESS, [1] 6p' '
[1 4] ALLALT*-ALLALT, [l] 10p« '
[1 5] 4LLPTi?-/5L£P : r/F.[l](l + p4Z,Z;£SS) , !\p ALLALT
[1 6] (OUTBIT-OUTBIT+!)<k)/BITLOOP
[1 7] •+((.SB0XCNT*-SB0XCNT+!)<8)/BOXLOOP

V

V Z*-BINARY DECBOX
[1] ft T<? CONVERT AN SBOX INTO BINARY FORM
[2] Z - < - 3 1 2 < * 2 2 2 2 i DECBOX

V

V Z*-ONETERM CONTRIB BOXOUTSP-, ONFOR; OFFOR
[1] ft TO DETERMINE CONTRIBUTION TO OVERALL BOX OF ONE SP TERM
[2] ft
[3] SP*-(32 6) pONETERM
[4] ONFOR*-BOXOUTl2l ON BINARY SBOXlBOXOUTl 1] ; ;]
[5] OFFO R*-<H(*S~0 NFOR* . = ALL) /ALL*-(ep2)r~! + \&k
[6] . Z*-+ / a / (5 P = F X1) v (5 P = ' 0')*ONFOR
[7] Z-<-Z + + / ~ a / (S P * « X •) A (S P = ' 0')*OFFOR
[8] Z - Z * 6 4

V

171

V DUMPONSiBOX;BITiTERM;ONTERMS;T
- [1] DUM-100 DSVO 'TSO'

I 2] TS0-'ALLOC DA (.DES. ONFOR) OLD FILE(ONFOR) '
[3] OUT-'ONFOR(APL)'
[4] CTL—' ON FOR (CTL) '
[5] 111 DSVO 2 3 o'OUTCTL'
[6] DUM-OUT
[7] B0X-<-l
[8] BOX LOOP:BIT-1
[9] ONTERMS-BIT ON BINARY SBOXlBOX;;]
[1 0] BITL00P:TERM-1
[1 1] TERML00P:0UT-(T*' '.) / T-vONTERMSlTERM;]
[1 2] (TERM-TERM+1) 5 32) / TERM LOOP
[1 3] +((BIT-BIT+l)<H)/BITLOOP
[1 4] -»-((B O ^ S C Z + l)<8)/BOXLOOP
[1 5] /J>L/A>rj5iV/? 'Of/r'
[1 6] TSO-'FREE F(ONFOR)'

7

V Z-DUPKILL MAT',T
[1] A REMOVES ANY DUPLICATE ROWS FROM MAT
[2] Z-(KILL-h/ (MATv . x$MAT)vTo . <;2Vi l + pAMT) / A M r

7

7 BOXINP;IND
[1] n GiTffA/ 5 0 * NUMBER AND OUTPUT, RETURNS TABLE OF ESSENTIAL
s

[2] I/'/Z?-<-/30^J/lrTP[2] + 4 x " i + s c ' j j ^ p [1]
[3] Z « - (~ A / « ' =Z)SZ-ALLESSII0TA,ALLPTRIIND+ 0 1 ; 1] ;]

7 Z ^ - A M r / f l * FINDCOORDS SUB STRING ; MATCH; COORD
[1] A FJtfZ? OF COORDS, ONE ROW FOR EACH OCCURENCE OF SUESTRIN
G
[2] n IA7 Ttfi? 7?0(V5 0 F MATRIX
[3] COORD-*j ($ (<J>~ 1 + pAM 7t?#) p -Die?- i p , SUBSTRING) <H</1 lY?//*- (. SUBSTRING)
° . = MATRIX
[4] Z ^ n i O + ^ (p C ? O C i ? C)T - D l O - (,C00RD)/\p ,COORD

- 7

172

V Z-IOTA X
[l] n FOR ENUMERATION OF INCLUSIVELY BOUNDED INTEGER LIST
[2] Z-Xtll+~l+\l+\-/X

V

V Z-PI MC2 PITiEiAiM;V;C;NCiNZ
[.1] fi THIS FUNCTION FINDS A MINIMAL COVER FROM A PRIME IMPLICAN
T TABLE.
[2] Z-(O.AOpO
C 3] LI : Z-*-Z , [1] (E—PITv .Al=+/[i] P I T) / l l] PI
[4] - (~ v IE)/PET
C 5] -*-(0 = x/pPir<-(~v/[l] F/[l] PIT)/(-£)/[1] PID/O
[6] P I«- (~f f)/ [l] PI
C 7] p iTM-v/c i] ^A~((XAf)o .si,v^"i + pPir)A/)A<S(>i^(~t i)pj?)A.vpjr)/pir
[8] P i r^ (^v/P JD/ [l] PIT
r 9] P I < - I V [I] P I
[10] V-~v/A*~{ (i) ° .Si M—l + pPIT) A A ̂ G^A-*- (V ° . £ V—+ / 2 > P I) A (~PIT) A . VISJPI
[11] PI:7>y/[l] PIT
[12] -^Il,OpPI-kv/[l] PI
[13] PET: IM (P P IT [; l i 4 + /Cl3 PII])/I.M-«-1TPPII) ,0pC?-^100
[14] SL:+(C<NC-+/+/2>E-PI MC2 PIT,Vll]=\M)/EL
[15] C- NC,OpNZ*-E
[16] ££:-••(0*pV<-l + V)/SL
[17] Z-Z.[l] tfZ

V Z-BITPOS ON S
[1] fl 6*1 VEN AN SBOX AND OUTPUT BIT POSITION, RETURN THE 32x6
[2] fl MATRIX OF BINARY INPUTS FOR WHICH THE OUTPUT BIT IS 1
[3] Z*-(16 16)TZ«-" l + (, Z) / I */pZ*-Sl ; -.BITPOS]
[4] Z<- 3 1 2 S 2 2 2 2 TZ
[5] Z - Z [1 ; ; 3] , Z [2 ; ;] , Z [1 ; ; 4]

V -

173

V PIM T2iC;DiNXT'tV;T
. . [l] A TAB IS TABLE OF NINTERMS IN BINARY

[2] A N IS NUMBER OF VARIABLES IN FN. PASSED GLOBALLY
[3] A THIS FUNCTION FINDS THE PRIME IMPLICANTS OF A TABLE OF MIN
TERMS.

- [>] PI-(0.N)p0,0pT-T2
" [5] Ll:NXT-(OtN)pO,V-(l+pT)pO

[6] L2:A-(~v/(dZ>)° . >\D-li pA) *A* . =<*A)/[l] A-{2*C/[1] D) [(C-l- + /D
-T*{pT)pTl\\1)/Cl] T
[7] / / ^ r - » - / / J ! T 1 , [l] (~ v / [l] ^TA.=tSj^)/Cl] /I
[8] -(o*pv-nwc,(opT- i o *r) , opp r«-p i , [i] (((~ i *nAO=+/c) ,ff)pr[i
;]) / L 2
[9] + (o* i tpW/*T)/ L I
[0] P i T « - $ ((~ T 2) a . v $ P I * 0) a 7 2 a . v $ P I * 1

V

174

file:///D-li

V Z+PRIMIMP IN i Ti BND ; K ; P I ; P2 ; C MATCH; NOPREVMATCH; NEW IN
[1] ft
C 2] fl FOR QUINE+MCCLUSKEY MINIMIZATION OF BOOLEAN FUNCTIONS:
[3] fl RETURNS PRIME IMPLICANTS OF GIVEN N*G INPUT MATRIX
C 4] Z + (0 , ~ l + pIAOpO
T 5] fl NUMON IS VECTOR PARALLEL TO IN MTX, INDICATING NUMBER OF
[6] A BITS ON IN IN ENTRIES. IN SORTED i IN BITS ON
[7] A BND IS MTX INDICATING DIVISIONS BETWEEN K AND K+l BITS ON

[8] ITER:IN<-INlT+-*NUMON+-+ /IN=1 ;]
[9] T-(NUM0N*1$NUM0N) /\ pBND-NUMON*-NUMONlTl
[1 0] BND*-(2.pBND)pl
[1 1] -(0=pT)/JUST1CLASS
[1 2] BND+-<$(ltl + ~l*T) , [0 . 5] T
[1 3] JUST1CLASS: NEWIN*-{ 0 , "l + pIN) p 0
[1 4] K+l
[1 5] A
[1 6] N0PREVMATCH+-(pIOTA ,BNDll ;]) p l
[17] MATCH LOOP: Pl<-INlIOTA , BNDlK;] ;]
[1 8] P2+I/I7[I0:7\4 %BNDiK+l ;] ;]
[1 9] A//?:Z,C,ff+l=Pl + .*$P2
[2 0] A 4#Y flOtf O F P I WI NO MATCHES IS A PRIME IMPLICANT:
[2 1] Z+Z,[1l(NOPREVMATCHA~v/MATCH)fPl
[2 2] C*-MATCH FINDCOORDS 1
[2 3] N OPREVMA TCH-*— v -/MA TCH
[2 4] NEWIN-NEWIN,[l]("l " l 0 " l 1) [3 + P 1 [C l ; 1] ;] + P 2 [C l ; 2] ;]]
[2 5] -((K<-K+l)<l*pBND) IMATCHLOOP
[2 6] A ADD UNMATCHED ELTS OF LAST P2 TO RESULT
[2 7] Z + Z . [l] N0PREVMATCHfP2
[2 8] -*•(1 < l*pIN*-NEWIN) I ITER
[2 9] A ADD LAST POSSIBLE IMPLICANT FROM P2:
[3 0] Z + Z , [l] P 2 [l + p P 2 ;]
[3 1] A REMOVE POTENTIAL DUPLICATION:
[3 2] Z-DUPKILL Z

V

V Z + S P PROBhCORR ONFOR
[1] Z+0
[2] K+l
[3] L O O P : Z + Z + V / A / (S P = ' * ') v (S P = ' 0 ') * (pSP) pONFORlK;]
[4] -»•((K+K+l)^1\ pONFOR) I LOOP
[5 3 Z + Z * l I p O N F O R

v

175

V Z-QM MIN;N
[1] A QM MINIMIZATION, GIVEN MINTEEM NUMBERS IN DECIMAL
[2] PIM*((N+\.l + 2®MINllMMIN])p2)TMIN
[3D Z-'01X'll+PI MC2 PIT]

V

V REDUCE\SBOXCNT;OUTBIT
[1] A
[2] A T O FO/rW rtfff GLOBAL HD MAT SPTERMS (8 x 4 x 3 0 x 6) . WHICH GIVES
[3] A MINIMAL SP FORMS FOR EACH SBOX AND OUTPUT BIT, USING REDU
CEbALTS
[•+] A
[5] SPTERMS- 8 4 30 6 p» »
[6] SBOXCNT-1
[7] BOXLOOP'.OUTBIT-l
[8] BITLOOPiSPTERMSlSBOXCNTiOUTBIT; -,]- 30 6 tREDUCEhALTS SBOXCN
T,0UTBIT
[9] •+{ (0UTBIT-0UTBIT+l)m)/BITLOOP
[1 0] •*((SB0XCNT-SB0XCNT+1)<8)/BOXLOOP
[1 1] SPTERMS-(B 4 ,(+ / v / v / v •/SPTERMS*' ') , 6) \ SPTERMS

V

176

V Z—REDUCEbALTS BOXOUT;A;TI CLASS;TAB;FREQ;MOSTFREQ;KILL\KI
LLPOS;CLASS;GRP
[1] a

[2] A TO PICK ALTERNATIVES FOR ACCURATE SP EXPRESSION FOR SBOX
[3] A 1) CHOOSE TERMS MOST FREQUENTLY APPEARING INTER-CLASS
[4] A 2) PICK CLASS REP. AS REMAINING TERM WITH MOST DCS
C 5] A
[6] CLASS-l. 0 7 *A*-ALT BOXOUT
[7] TAB*-TA.=<*T"-Alil + pAi 16]
[8] REDUCELLOOP:-*•(. l=MOSTFREQ-*~[/FREQ-*-* /TAB) /OUT
[9] KILLPOS-iT*.=$TIFREQ\M0STFREQ;1)/\l+pT
[1 0] KILL*-(~CLASSeCLASSlKILLPOS]) v (i pOL/15.9) = 1 +KILLPOS
[1 1] TAB-KILL/KILL/TAB
[1 2] T-KILL/T
[1 3] CLASS-KILL/CLASS
[1 4] -+REDUCELL0OP
[1 5] Oi/T: A SELECT REPRESENTATIVE FROM EACH CLASS
[1 6] Z«-ffSS BOXOUT
[1 7] SELECT&LOOP:NUMDCS<-+/' X' =GRP->-(X»-CLASS=l*CLASS)/T
[1 8] Z-«-Z,[l] GRPlNUMDCS\[/NUMDCS;]
[1 9] T*-(~X)/T
[2 0] L ? I > 1 . 5 5 - » - (~ ^) / L 7 Z ; ^ 5 S
[2 1] •+(O^pC LASS) /SELECTLLOOP

V

V SELECTLSP BOXOUT;AL;ES
[1] A

[2] A jPt9 SELECT THE FIRST PRECISE SP EXPRESSION FOR. GIVEN SBOX
[3] a AND OUTPUT FROM QM MINIMIZED EXPRESSION
[4] ES-ESS BOXOUT
[5] AL-ALT BOXOUT
[6] 0/DUPKILL 0 7
[7] S P « - E S , [1] fCILZ://1L[I I T P / I L ; \ 6]
[8] 5 P - (~ A / « » = 5 P) / 5 P

V

177

V Z+SELECTL\ALTS;T;CLASS;TAB;FHEQ;MOSTFREQ;KILL;KILLPOS;CLA
SS;GRP
I 11 A
[2] fl TO PICK ALTERNATIVES FOR ACCURATE SP EXPRESSION FOR SBOX
[3] fl 1) CHOOSE TERMS MOST FREQUENTLY APPEARING INTER-CLASS
[4] A 2) PICK CLASS REP. AS REMAINING TERM WITH MOST DCS
[5] A
[6] +(0 = l+pAL)/HO ALTS
[7] CLASS+-1, 0 7 *AL
I 8] TAB4-T*.=$T+-AL{\l*r,AL;\§~\
[9] REDUCEhLO OP :•*•{. 1 -MOSTFREQ-*-\ /FREQ+-+ / TAB) / OUT
[10] KILLPOS-*- (T A . =§T[FREQ \M0STFREQ ;]) / i l + pT
[11] KILL+(~CLASSeCLASSlKILLPOSl)v(\pCLASS) = 1 + KILLPOS
[12] TAB-KILL/KILL/TAB
[13] T+-KILL+T
[14] CLASS-KILL/CLASS
[15] -REDUCEM00P
[16] 0#r: fl SELECT REPRESENTATIVE FROM EACH CLASS
[17] Z + £ 5
[18] SELECTt.L00P:NUMDCS-+ /' X' =GRP+-(X*-CLASS=1+CLASS) fT
[19] Z + Z , C l] GRPlNUMDCS\[/NUMDCS;!
[20] T+(~X)rT
[21] CLASS+-{~X) /CLASS
[22] -(0*pCLASS)/SELECT&L00P
[23] 'NUMBER OF P-TERMS: ' . f l t p Z
[24] +0
[25] NOALTS-.Z+-ES

V

178

file:///M0STFREQ

V SPDUMP;BOX;BIT;TERM
C l] DUM-100 USVO 'TSO'
[2] TSO-'ALLOC DA(DES.SPTERMS) OLD FILE(SPF)'
[3] OUT-'SPF(APL)'
[4] CTL-'SPF(CTL)'

C 5] 111 DSVO 2 3 p'OUTCTL'

• C 6] DUM-OUT

C 7] BOX-1

C 8] BOXLOOP'.BIT-l
[9] BITLOOP-.TERM-l
[1 0] TERM LOOP:OUT-SPTERMSlBOX;BIT;TERM;]
[1 1] -((TERM-TERM+1)S23)/TERM LOOP
[1 2] •*•((BIT-BIT+1)<H)/BITLOOP
[1 3] (BOX-BOX+l)<S) IBOXLOOP
[1 4] DUM-USVR 'OUT'
[1 5] TSO-'FREE F(SPF)'

V

END OF APPENDIX

179

APPENDIX C

PL/I CODE AND OUTPUT FOR COMBINATORIALLY-EXHAUSTIVE
APPROACH TO BEST-SET DISCOVERY.

180

/* BEST-TERM SELECTION FOR S-BOX APPROXIMATION | E.GULLICHSEN
/ + * + ********* + ** + * + * + **+- + * + + .+ * + + ***+**** + *********+-* + + + *+• + * + * + + +
/*
/* CONTRIB PROC OPERATES IN 3 PHASES:
/• 1) FORM ARRAY CONTR18(23.32), INDICATING HOW EACH TERM,
/* CONSISTING OF A CONJUNCT OF S-BOX INPUTS 'COVERS' THE 32
/* TERMS FOR WHICH THE SBOX SHOULD BE ON.
/• 2) USING PROC CHOOSE TO TRY ALL COMBINATIONS OF S.P. TERMS.
/* BUILD THE ARRAY COVER(5000,23) CONTAINING INDICATION OF
/* WHICH S.P. TERMS TO TAKE, TO GET BEST APPROX. TO S-BOX, IF
/* RESTRICTED TO 1,2,...,23 TERMS
/* 3) SEARCH THE COVER TABLE. TO SEE IF THE SET OF 'BEST N'
/* TERMS IS A SUBSET OF BEST N-1 TERMS

CONTRIB: PROC OPT IONS(MA IN):
DCL (NUM_TERMS,TERMCNT,INPCNT,LEVEL,DIFF.NEXTERM) FIXED BIN(15)
DCL TERMS(23,6) CHAR(1); /* S.P. TERMS AS READ FROM FILE */
DCL 0NF0R(32,6) B I T (1) ; /* INPUTS FOR WHICH S-BOX SHOULD BE ON
DCL C0VER(5000.23) B I T (1) ;
DCL COVERPROB(23) FIXED BIN(15);
DCL (C0VERPTS,SEARCHPTS)(24) FIXED BIN(15);
DCL CURR(23) BIT(1) ;
DCL X0R_RES(6) B I T (1) ;
DCL AND RETURNS(BIT(1)) : /* ANDING ROUTINE */
DCL ZER06(6) CHAR(1) INIT((6) (1) 'O');
DCL XSTR6(6) CHAR(1) INIT((6) (1) 'X');
DCL (GO,FAIL) B I T (1) ; /* LOOP FLAGS */
DCL CUMUL_TERMS(23) B I T (1) ;

COVER(*,*)='O'B;
/+ TITLE */
PUT SKIP FILE(SPRI NT)
EDIT('BEST-TERM SELECTION FOR S-BOX APPROXIMAT ION' , (4 3) ' * ')
(2 (A , S K I P)) ;

/* READ IN STUFF FOR S1, OUTPUT 1 FROM FILES */
CALL READIN;

CONTRIB_CALC: BEGIN;
/* CREATE TABLE OF CONTRIBUTIONS, INDICATING WHICH TERMS ARE

ON FOR WHICH INPUTS */

DCL CONTRIB(NUM_TERMS,32) B I T (1) ;

DO INPCNT=1 TO 32;
DO TERMCNT=1 TO NUM_TERMS;

/* SINGLE S.P. TERM IS A CONJUNCT, HENCE 'ALL'.
FLIP BITS WHICH CORR. TO A O IN THE TERM;
OR WITH 1'S FOR D C S (X'S) IN TERMS */

CALL XOR(ONFOR(INPCNT ,*) , (ZER06 = TERMS(TERMCNT,*))
, XOR_RES);

CONTRIB(TERMCNT,INPCNT)=
AND((XSTR'6 = TERMS (TERMCNT , *)) | XOR_RES);

END;
END;

/• DUMP THE CONTRIBUTION TABLE '/
PUT PAGE FILE(SPRINT) LIST(' *** CONTRIBUTION TABLE ***'):
PUT SKIP(2) FILE(SPRINT) ED IT('T E RM IS ON FOR INPUT', 'SP TERM',

(I DO 1 = 1 TO 32) , (7) '*' . (96)' ")
(COL(40) ,A,SK J P,A,X(2) ,32 F(3) ,SKIP.A,X(2) ,A);

PUT SKIP FILE(SPRINT) ED I T((TERMS(I, *).CONTRIB(I,*)
DO 1=1 TO NUM_TERMS))(6 A(1),X(5),32 6(3),SKIP);

/* CREATE COVER TABLE */
COVERPTS(1)-1;
PUT PAGE FILE(SPRINT) LIST(' *** COVER TABLE ANALYSIS **•')
PUT SKIP(2) FILE(SPRINT) EDIT('# SPTERMS','H OF BEST SETS',

'CORRECTNESS',(9)'*',(14)'*'.(1t)'+')
(2 (A,COL(15) .A.COL(35),A,SKIP)) ;

DO TERMCNT=1 TO NUM_TERMS;
COVER_CALC: BEGIN;

DCL (NEW,OLD)(TERMCNT) FIXED BIN(15)
DCL NUMON FIXED BIN(15)
DCL MOST- INIT(O) FIXED BIN(15)
DCL SAVE(3000.TERMCNT) FIXED BIN(15)
DCL SAVEPTR INIT(1) FIXED BIN(15)
DCL TEMPBITS(32) BIT(1);
/* SETUP OLD FOR 1ST CALL TO CHOOSE */
DO 1=1 TO TERMCNT; NEW(I)=I; END;
DO WHILE(NEW(1) -< = o) ;

/+ CALC SUM OF OR OF TERMS CHOSEN */
TEMPBITS(*)='O'B;
DO 1=1 TO TERMCNT;

TEMPBITS(*)= TEMPBITS(*) | CONTRIB(NEW(I),*);
END;
NUMON=0;
DO 1=1 TO 32;

IF TEMPBITS(I) THEN NUMON=NUMON+1;
END;
IF NUMON > MOST THEN DD;

MOST=NUMON;
SAVE(1,*)=NEW(*);
SAVEPTR=2;

END :
ELSE IF NUMON = MOST THEN DO;''

SAVE(SAVEPTR,*)=NEW(*);
SAVEPTR=SAVEPTR+1;

END ;
OLD=NEW;
CALL CHOOSE(NUM_TERMS,TERMCNT,OLD,NEW); END;

/* PUT THE BEST COMBINATIONS (AS SAVED IN THE SAVE ARRAY) INTO
THE COVER TABLE •/'

/* SELECTION INDICES
/* MAX OF ABOVE */

COVERPROB(TERMCNT)=MOST;

CN 00 rH

00 1=0 TO SAVEPTR-2;
DO J=1 TO TERMCNT;

COVER(COVERPTS(T ERMCNT) + I,SAVE(I+1,J)) = '1'B;
END ;

END;
PUT SKIP FILE(SPRINT) EDIT(TERMCNT,SAVEPTR- 1, .5 + M0ST/64.)

(X(2) ,F(4) .COL(15).F(5).C0L(38),F(7.3));
COVERPTS(TERMCNT+1)=COVERPTS(TERMCNT)+SAVEPTR-1;

END COVER_CALC;
END;
/* SEARCH COVER TABLE, TO DET. MONOTONICITY */
PUT SKIP(3) FILE(SPRINT) LIST(' *** COVER TABLE * * * ') ;
0 = 2;
DO 1=1 TO COVERPTS(NUM_TERMS+1)-1;
PUT SKIP FILE(SPRINT) ED IT(I, ') ' .COVER(I , +))

(F(5),A,X(2),23 B(U);
/* SKIP LINES BETWEEN 'GROUPS' */
IF COVERPTS(0)- 1 = 1 THEN DO;

PUT SKIP FILE(SPRINT);
J=d+1;

END ;
END;
SEARCHPTS(*)=COVERPTS(*) ;
LEVEL=1;
FAIL='0'B;
PUT PAGE FILE(SPRINT) EDIT('COVER TABLE SEARCH' ,(18) '*')

(2 (A,SKIP));
DO WHILE(LEVEL < NUM_TERMS S -FAIL);
PUT SKIP(2) FILE(SPRINT) EDIT('CONSIDERING ROW ' ,SEARCHPTS(LEVEL)

' AT LEVEL ',LEVEL)(A,F(5).A,F(3));
CURR(*)=COVER(SEARCHPTS(LEVEL) , *) ;
LEVEL=LEVEL+1;
G0='1'B;
DO I=COVERPTS(LEVEL) TO COVERPTS(LEVEL+1)- 1 WHILE(GO);

/* IF DIFF BETWEEN CURR AND COVER(I,*) EXACTLY ON BIT, THEN
WE HAVE GOT THE TERM NEEDED IN THIS NEXT LEVEL: */

DIFF=0;
DO J=1 TO NUM_TERMS;

IF CURR(J) -•= COVER(I.J) THEN DlFF =DIFF+ 1 ;
END;
IF DIFF = 1 THEN G0='0'B;/*•QUIT, WE HAVE MATCH AT LEVEL */

END;
/* IF NONE FOUND AT THIS LEVEL, THEN BACKTRACK */
IF GO THEN DO;

PUT SKIP FILE(SPRINT) EDIT('NO MATCH FOR CURR AT LEVEL '.LEVEL)
(A,F(3));

LEVEL = LEVEL-1 ;
SEARCHPTS(LEVEL)=SEARCHPTS(LEVEL)+1;
IF SEARCHPTS(LEVEL)=C0VERPTS(LEVEL+1) THEN DO;

PUT SKIP(2) FILE(SPRINT) EDIT('* * LEVEL '.LEVEL,' EXHAUSTED')
(A,F(3),A);

DO I=LEVEL TO 1 BY -1 WHILE(SEARCHPTS(I)+1 >= C0VERPTSU+1

ro
rH

SEARCHPTSI I)=CDVERPTS(I) ;
END ;
LEVEL= 1 + 1 ;

PUT SKIP F ILE (SPRINT) ED IT('BACKTRACK TO LEVEL ' , L EVEL) (A , F (3)
SEARCHPTS(LEVEL)=SEARCHPTS(LEVEL) + 1 ;

/ * IF FAILED ALL THE WAY BACK TO 1ST LEVEL * /
IF L E VE L = 1 & SEARCHPTS(LEVEL) = COVERPTS(LEVEL+1) THEN

DO ;

FA IL=' 1'B ;
PUT PAGE F ILE (SPRINT) L I S T (' * * * SEARCH FAILED * *• ') ;
PUT F ILE (SPRINT) DATA(SEARCHPTS,COVERPTS.CURR.COVERPROB):
PUT SKIP (3) F ILE (SPRINT) L IST ('COVER T A B L E ') ;
DO 1=1 TO COVERPTS(NUM_TERMS);

PUT SKIP F ILE (SPRINT) EDIT(I ,COVER(I , *)) (F (6) , X (2) ,23 B I D) ;
END ;

END ;

END ;
END;

/ * ELSE CURR DID MATCH */
ELSE DO;

SEARCHPTS(LEVEL) = 1 - t ;
PUT SKIP F ILE(SPRINT) EDIT('CURR MATCHES WITH COVER TERM '

1-1 , ' AT LEVEL ' , L E V E L) (A , F (5) . A , F (3)) ;

END;
END;

/* SEARCH WAS SUCCESSFUL, PRINT THE RANKED TERMS */
IF -FAIL THEN DO;

PUT PAGE F ILE (SPR INT) L I S T (' * * * SEARCH SUCCESSFUL *• * ') ;
PUT SKIP (2) F ILE (SPRINT) EDITf ' t f TERMS INCLUDED',

'TERM SELECTION' , 'CORRECTNESS' ,(16) ' * ' , (14) ' * ' , (1 1) '* ')
(2 (A , C O L (2 2) , A , C O L (4 5) , A , S K I P)) ;

DO 1 = 1 TO NUM_T E RMS;
PUT SKIP F ILE (SPRINT) ED I T (I ,COVER (SEARCHPTS (I) , *) ,

.5+C0VERPR0B(I)/64.)
(F (8) , C O L (18) ,23 B(1) .COL (48) , F (7 . 3)) ;

END ;

PUT SKIP (2) F ILE (SPRINT)
ED IT ('TERMS IN THE ORDER OF THEIR ADDITION: ') (A) ;
CUMUL_TERMS(*)= 'O 'B ; /* ACCUM BIT POSNS FROM COVER */
DO 1=1 TO NUM_TERMS;

NEXTERM=0;
DO u=1 TO 23 WHILE(NEXTERM=0);

IF CUMUL_TERMS(J)='0 'B ft COVER (SEARCHPTS (I) . J)= '1 ' B
THEN NEXTERM=J;

END;
PUT SKIP F ILE (SPRINT) ED IT(TERMS(NEXTERM,*)) (X (8) , 6 A (1)) ;
CUMUL_TERMS(•)=CUMUL_TERMS(*) | COVER(SEARCHPTS (I) , *) ;

END;

END;

END CONTRIB_CALC;

/• XOR PROC, TO F.XCLUSIVE-OR 2 BINARY VECTORS '/

XOR: PROC(A,B,RES) ;
DCL (A,B,RES) (*) BIT(1) ;
RES = (A|B)M-.(AftB)) :

END XOR;

/* AND, RETURNS 1 IFF ALL ALTS IN ARGUMENT ARRAY ARE 1 +/

AND: PROC(BOOL_VEC) RETURNS(BIT(1)) ;
DCL (RES,BOOL_VEC(*)) BIT(1);
DCL I FIXED BIN(15) ;
RES =' 1 'B;
DO 1 = 1 TO HBOUND(BOOL_VEC, 1) WHILE(RES) ;

IF -•BOOL_VEC(I) THEN RES='0'B;
END;
RETURN(RES);

END AND;
/+******************************•******#*******+***********+******+***/
/• V
/* INPUT ROUTINE, to READ THE S.P. TERMS FOR A GIVEN S-BOX, OUTPUT, */
/* AND THE 32 INPUTS FOR WHICH THE OUTPUT IS 1, FROM SEQUENTIAL */
/* MTS FILES "SP" AND "ON", REPECTIVELY */
/* */

READIN : PROC ; CO
DCL (SPFILE.ONFILE) FILE STREAM; "H
CALL ATTACH('SPFILE=SP');
CALL ATTACH*'ONFILE=ON');
OPEN F I LE(ONFILE),FILE(SPFILE);
NUM_TERMS=0;
DO 1=1 TO 23; /* MAX H S.P. TERMS FOR ANY SBOX, OUTPUT IS 23 */

GET FILE(SPFILE) EDIT(TERMS(I,*)) (G A(1),SKIP);
IF TERMS(I,1) ">= ' ' THEN NUM_TERMS = NUM_TERMS+1 ;

END;
GET FILE(ONFILE) EDIT(((ONFOR(I,J) DO u=1 TO 6) DO 1=1 TO 32))

(6 B(1) .SKIP);
PUT SKIP FILE(SPRI NT) LIST('SP TERMS:'):
PUT SKIP(2) FILE(SPRINT) EDIT((TERMS*I,*) DO 1=1 TO NUM_TERMS))

(G A(1) .SKIP) ;
PUT SKIP(3) FILE(SPRINT) LIST('OUTPUT SHOULD BE ON FOR INPUTS:');
PUT SKIP(2) FILE(SPRINT) EDIT(ONFOR)(6 B(1),SKIP);
CLOSE FILE(ONFILE) ;
CLOSE FILE(SPFILE) ;
END READIN;

/* THE CHOOSE ROUTINE RETURNS A NEW COMBINATION OF R ITEMS */
/* CHOSEN FROM A COLLECTION OF N. GIVEN THE PREVIOUS COMB, */
/* OLD. THE NEW COMBINATION RETURNED IS A VECTOR OF FIXED BIN */
/* QUANTITIES. E.G., N=5 R=3 OLD=1 2 4. NEW=>1 2 5 "/
/• */

CHOOSE: PROC(N,R.OLD.NEW);
DCL(N,R. I . J) FIXED B INM5) ;
DCL(OLD.NEW)(*) FIXED BIN(15);
DCL GO BIT(1) ;
NEW=OLD;
GO='1'B;

• DO I=R TO 1 BY -1 WHILE(GO);
/* IF ANY POSN AT ITS MAX. INCREASE PREV POSN */
IF OLD(I) ->= N-R+I THEN DO;

GO = ' O' B ;
NEW(I)=NEW(I)+1 ;
DO J=I+1 TO R;

NEW(J)=NEW(J-1)+1 ;
END ;

END;
END ;
IF GO THEN NEW(1)=0; /* IF NO MORE COMBS */

END CHOOSE;

END CONTRIB;

OO

B E S T - T E R M S E L E C T I O N FOR S-BOX A P P R O X I M A T I O N
* + + + + + + * + f + *t + * * + f + * k + + f + + + + + + + *#

SP TERMS: fOT S-bOX 1, Output 1
X1X010
X1X1 1 1
000X00
XOOO1 1
X 1 1001
10X01 1
001X01
001X1o
OOX100
010X01
010X 10
100X01
10Q1XO
X01 1 10
110XOO
1 1001 X
101000

OUTPUT SHOULD BE ON FOR INPUTS:
OOOOOO
000100
001010
001100
0011 10
010010
0101 10
011010
OOOO11
001001
0011O1
010001
010101
0101 1 1
011001
011111
100100
1001 10
101000
101110
110000
110010
110100
111010
100001
100011
100101
101011
11001 1
110111
111001
111111

_ i X o o o o o X X o X X l/l
o —* - I o o o o o o o o o TI o o o o o o X X -~ o o X X o o X X X X X X o o o X o * -1 * o o X o _ * o o o o o * m o X o o o —» o o o —. - I o o * XI *

2 o o * z * —1 o o o o o o o o o o o o o o — o o + - * XI
<

CO o o o o o o o o - * o o o o o. o o * M c
* -1

o o o o o o o o o —» o o o o o o o * CJ o
* z

o o o o o o o o -* o o o o o o o o
* >
* CO o o o o o o o o o o o o o o o Ul t—
* rn

9 o o o o o - * o o o o o o o o o - <n +

o o o o o o o o o o o o o o o o
o o o o o o o o o o o o o o o o - 00
o o o o o o o o o o o o o - o o o * to
o o o o o o o o o o o o o o o o •*

i o
* -1 m o o o o o o o o o o o o o o o o _k JJ

•* 2 * o o o o o o o o o o o o o o o o ro * on * o o o o o o o —» o o o o o o o o o -* to O * Z 4 o o o o o o o o o o o o o o o o Ti

a XI

o o o o o o o o o o o o o o o o Ol -*
* z o o o o o o o o o o o o o o o o cn "0 * c

-H o o o o - * o o o o o o o o o o o o -*
* ~J

o o o o - o o o o o o o o o o o o
*
-* 00

- o o o o o o o o o o o o o o o o * CO

o o o — o o o o o o o o o o o o o * o
ro o o - * o o o o o o o o o o o o o o -* -ro o o o o o o o o o o o o o o o — * ro

* ro o o o o o o o o o o o o o o o o * u
* ro o o o o o o o o o o o o o o o o —

ro o o o o o o o o o o o o o o o o + Ul
-* ro o o o o o o o o o o o -- o — o o o * cn
* ro o o o o o — o o o o o o o o o o o ~ l

ro o o o o o o o o o o o — o. o o o o * 03
ro o o o o o o o o o o o o o o o o CO
CJ o o o o o o o o o o o o o o o — o o
CJ o o o o o o o o o o o o - o o o o -CO o o o o o o o o o o o o o o o o ro

188

681

LO
LO *
UJ
2 *

1- *-
CJ •»
UJ *• a
a : •
o
C J *•

*
(/) * LO \-

•—1 LU * LO LO * > * -J (- * <' LO
2 LU
< 03 * * LU LL
_) o *-
CO *
< * t -

U J
> o LO * o * •
¥ LU

*
* a * LO •

*

roiricDcocnO-cr?rrLO<£c\icoc')CT)«?-0 ccoiinco — IT. co — 'jr^OCNr'iiniDcoO LOcccDcor̂ r̂ r̂ cocDa)Cf)CT>CT)Cocn(j>0
O O O O O O C O O O O O O O O O -

c\ — c^oO"cor--coOeocDCD'T)'T)Cr)
— CO(I!CPLOr--(7)C0 m cc CD o

L U * — CNCO^lDCDr-COCDO — C N o ^ L O CO r~

o o o O O O O O O O O O O O O O O a O
L U O
> o o o
U O

ca

o

o o o o o
O O O
o o o o o o o o o . o o o o o o o O O O O O O O o O O O O O O O " O O O O O O " O O o o o o o o

o o o o o o _ . . o O O O O O O O -O O - O O - O O - O O O

O O o o

o o o o o o O -O - o - o o o o o o o o O O O O O O

O o o -o - o o o o - o o O

O O O O Q Q

- o o o o o o o o o o o o o
88 o o o o o o

o

o o o o o -- o

O o o -o - o - o o O O O O O O

O O
o o o o

o o o o o o o -o o - o o o
88
88
o o

O - o o - o o - O O " O —
- - - o

o o o o

o o o o o o o o o o o o o o o -- o o o o o

o-o o o o o o o o o o -- o o o o o o o o o

O O O O O o o o o Q O O O O O O O O O O O O O O O O O O O -o - o - o o o o o O O O O O O O O O O O O O O O O O O
O O O O O O O

T j L O c D r ^ c o c o O — CM r > * r L O cor-cocTiO — CNOiiniot^cccDO — n n
— — — — OJOIOJCNCNOIOJCNCNCNrOrOCOCT)

3 4) 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
3 5) 11OO11OOOOOOOOOOOOOOOOO
3 6) 11001O1OOOOOOOOOOOOOOOO
3 7) 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 8) 1 1 0 0 1 O O O 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 9) 11001OOOO1OOOOOOOOOOOOO
4 0) 11001OOOOOO1OOOOOOOOOOO
4 1) 11OO1OOOOOOO1OOOOOOOOOO
4 2) 11001OOOOOOOO1OOOOOOOOO
4 3) 11OO1OOOOOOOOO1OOOOOOOO
4 4) 1100011OOOOOOOOOOOOOOOO
4 5) 1 1 0 0 0 1 O 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 6) 110001OO1OOOOOOOOOOOOOO
4 7) 11OOO1OOO1OOOOOOOOOOOOO
4 8) 110001OOOOO1OOOOOOOOOOO
4 9) 110001OOOOOO1OOOOOOOOOO
5 0) 110001OOOOOOO1OOOOOOOOO
5 1) 110001OOOOOOOO1OOOOOOOO
5 2) 11OOOO11OOOOOOOOOOOOOOO
5 3) 11OOOO1O1OOOOOOOOOOOOOO
5 4) 11OOOO1001OOOOOOOOOOOOO
5 5) 11OOOO1OOOO1OOOOOOOOOOO
5 6) 11OOOO1OOOOO1OOOOOOOOOO
5 7) 11OOOO1OOOOOO1OOOOOOOOO
5 8) 11OOOO1OOOOOOO1OOOOOOOO
5 9) 11OOOOO11OOOOOOOOOOOOOO
6 0) 11OOOOO1O1OOOOOOOOOOOOO
6 1) 11OOOOO10001OOOOOOOOOOO
6 2) 11OOOOO1OOOO1OOOOOOOOOO
6 3) 11OOOOO1OOOOOO1OOOOOOOO
6 4) 11OOOOOO11OOOOOOOOOOOOO
6 5) 11OOOOOO1001OOOOOOOOOOO
6 6) 11OOOOOO10001OOOOOOOOOO
6 7) 11OOOOOO1OOOO1OOOOOOOOO
6 8) 11OOOOOO1OOOOO1OOOOOOOO
6 9) 11OOOOOOO1O1OOOOOOOOOOO
7 0) 11OOOOOOO1001OOOOOOOOOO
7 1) 11OOOOOOO1OOO1OOOOOOOOO
7 2) 11OOOOOOO1OOOO1OOOOOOOO
7 3) 11OOOOOOOOO11OOOOOOOOOO
7 4) 11OOOOOOOOO101OOOOOOOOO
7 5) 11OOOOOOOOO1OO1OOOOOOOO
7 6) 11OOOOOOOOOO11OOOOOOOOO
7 7) 11OOOOOOOOOO101OOOOOOOO
7 8) 11OOOOOOOOOOO11OOOOOOOO

7 9) 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0) 1111OO1OOOOOOOOOOOOOOOO
8 1) 11110001OOOOOOOOOOOOOOO
8 2) 1111OOOOO1OOOOOOOOOOOOO
8 3) 1111OOOOOOO1OOOOOOOOOOO
8 4) 1111OOOOOOOO1OOOOOOOOOO
8 5) 1111OOOOOOOOO1OOOOOOOOO
8 6) 1111OOOOOOOOOO1OOOOOOOO

. 8 7) 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 8) 111O101OOOOOOOOOOOOOOOO
8 9) 111O1001OOOOOOOOOOOOOOO
9 0) 11101OOOO1OOOOOOOOOOOOO
9 1) 11101OOOOOO1OOOOOOOOOOO
9 2) 11101OOOOOOO1OOOOOOOOOO

1766) 11OO11101101

1767) 1111 11111101
1768) 1111 11110111
1769) 1111 111101O1
1770) 1111 11110101
177 1) 1111 11110101
1772) 1111 11101101
1773) 1111 1110011 1
1774) 1111 111001O1
1 775) 1111 11100101
1776) 1111 10111111
1777) 1111 10111101
1778) 1111 10111101
1779) 1111 10111101
1780) 1111 10110111
1781) 1111 10110111
1782) 1111 10110111
1783) 1111 10110101
1.784) 1111 10110101
1785) 1111 10110101
1786) 1111 10101111
1787) 1111 10101101
1788) 1111 10101101
1789) 1111 1010011 1
1790) 1111 10100111
1791) 1111 10100101
1792) 111011111111
1793) 1 1 1011111101
1794) 1 1 1011111101
1795) 1 11011111101
1796) 111011110111
1797) 111011110111
1798) 1 1 1011110111
1799) 1 1 1011110101
1800) 1 1 1011110101
1801) 1 11011110101
1802) 111011101111
1803) 1 11011101101
1804) 1 11011101101
1805) 1 11011100111
1806) 11101110011 1
1807) 111011100101
1808) 1 101 11111111
1809) 1 101 11111101
18 10) 1 101 11111101
1811) 1 101 11111101
1812) 1101 1110111 1
1813) 1 101 11101101
1814) 1 101 11101101
1815) 1 101 10111111
1816) 1 101 10111111
1817) 1 101 10111111
1818) 1 101 10111101
1819) 1 101 10111101
1820) 1 101 10111101
1821) 1101 10101111
1822) 1 101 10101111
1823) 1 101 10101101
1824) 11001 1111111

11101OOOOOO

1O1OOOOOOOO
101OOOOOOOO
1 110OOOOOOO
10110000000
10101000000
1 110OOOOOOO
1 110OOOOOOO
1111OOOOOOO
1 1101000000
101OOOOOOOO
1 110OOOOOOO
1011OOOOOOO
10101000000
1 1 10OOOOOOO
1011OOOOOOO
10101000000
1111OOOOOOO
11101OOOOOO
10111OOOOOO
11100000000
1 1110000000
11101OOOOOO
1 1110000000
1 1101OOOOOO
11111OOOOOO
1O10OO00O0O
1 110OOOOOOO
10110000000
10101000000
1 1 10OOOOOOO
10110000000
10101000000
1111OOOOOOO
1 1 101000000
10111000000
1 110OOOOOOO
1 1110OOOOOO
1 11O10O0000
1111OOOOOOO
1 1101000000
11111000000
10100000000
1 110OOOOOOO
1011OOOOOOO
10101000000
1 110OOOOOOO
1 1110000000
1 1 101OOOOOO
1 110OOOOOOO
1011OOOOOOO
10101OOOOOO
1111OOOOOOO
1 1101000000
10111000000
11110000000
11101OOOOOO
11111000000
1 110OOOOOOO

1825) 11001111111110110000000
1826) 11001111111110101000000
1827) 11001111110111110000000
1828) 11001111110111101000000
1829) 11001111110110111000000
18 30) 11001110111111110000000
183 1) 11001110111111101000000
1832) 11001110110111111000000

1833) 11111111111110100000000
1834) 11111111110111100000000
1835) 11111111110110110000000
1836) 11111111110110101000000
1837) 11111111011111100000000
1838) 11111111011110110000000
1839) 11111111011110101000000
1840) 11111111010111110000000
184 1) 11111111010111101000000
1842) 11111111010110111000000
1843) 11111110111111100000000
1844) 11111110110111110000000
1845) 11111110110111101000000
1846) 11111110011111110000000
1847) 11111110011111101000000
1848) 1111111O01O111111000000
1849) 111110111111111O0000O00
1850) 11111011111110110000000
1851) 11111011111110101000000
1852) 11111011110111110OO000O
1853) 11111011110111101000000
1854) 11111011110110111000000
1855) 11111011011111110000000
1856) 11111011011111101000000
1857) 11111011011110111000000
1858) 1111101.1010111111000000
1859) 11111010111111110000000
1860) 11111010111111101000000
1861) 11111010110111111000000
1862) 11111010011111111000000
1863) 11101111111111100000000
1864) 111011 1 1 11 1 1 10110000000
1865) 11101111111110101000000
1866) 11101111110111110000000
1867) 11101111110111101000000
1868) 11101111110110111000000
1869) 11101111011111110000000
1870) 11101111011111101000000
1871) 11101111011110111000000
1872) 11101111010111111000000
1873) 11101110111111110000000
1874) 11101110111111101000000
1875) 11101110110111111000000
1876) 11101110011111111000000
1877) 11011111111111100000000
1878) 11011111111110110000000
1879) 11011111111110101000000
1880) 11011111110111110000000
188 1) 11011111110111101000000
1882) 11011111110110111000000
1883) 11011110111111110000000

1 8 8 4) 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0
1 8 8 5) 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0
1 8 8 6) 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
1 8 8 7) 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0
1 8 8 8) 1 1 0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0
1 8 8 9) 1 1 0 1 1 0 1 1 1 1 0 1 1 1 11 1 0 0 0 0 0 0
1 8 9 0) 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
1 8 9 1) 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
1 8 9 2) 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0
1 8 9 3) 1 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0
1 8 9 4) 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0
1 8 9 5) 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

1 8 9 6) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 8 9 7) 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0
1 8 9 8) 1 1 1 1 11 1 1 1 1 1 1 1 0 1 0 1 0 0 0 0 0 0
1 8 9 9) 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 O
1 9 0 0) 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 0 0 0 0 0 0
1 9 0 1) 1 1 1 11 1 1 1 1 1 0 1 1 0 1 1 1 0 0 0 0 0 0
1 9 0 2) 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0
1 9 0 3) 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 O 1 O 0 0 0 0 O
1 9 0 4) 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 0 0 0
1 9 0 5) 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 0 0 0 0 0
1 9 0 6) 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 O 0 0 0 0 0 0
1 9 0 7) 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 O 1 O O O 0 O O
1 9 0 8) 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0
1 9 0 9) 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0
1 9 1 0) 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
1 9 1 1) 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 O 0 O 0
1 9 1 2) 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0
1 9 1 3) 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 O
1 9 1 4) 1 1 1 1 1 O 1 1 O 1 1 1 1 1 1 1 1 O O O O O O
1 9 1 5) 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
1 9 1 6) 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
1 9 1 7) 1 1 l O I 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 O
1 9 1 8) 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0
1 9 1 9) 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0
1 9 2 0) 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 O 0 0 0 O 0
1 9 2 1) 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
1 9 2 2) 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
1 9 2 3) 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 O 1 0 0 0 O O O
1 9 2 4) 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0
1 9 2 5) 1 1 0 1 11 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0
1 9 2 6) 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 O O O O O O
1 9 2 7) 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
1 9 2 8) 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

1 9 2 9) 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
1 9 3 0) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0
1 9 3 1) 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0
1 9 3 2) 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 O O O O O O
1 9 3 3) 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0
1 9 3 4) 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
1 9 3 5) 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
1 9 3 6) 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
1 9 3 7) 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 O O 0 0 O O

1 9 3 8) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 O O O O O O

ro

COVER TABLE SEARCH
* + •* + * * * + *• + * * * + * * *

CONSIDERING ROW 1 AT LEVEL 1

CURR MATCHES WITH COVER TERM 3 AT LEVEL 2

CONSIDERING ROW 3 AT LEVEL 2
CURR MATCHES WITH COVER TERM 4 AT LEVEL 3
CONSIDERING ROW 4 AT LEVEL 3
CURR MATCHES WITH COVER TERM 16 AT LEVEL 4
CONSIDERING ROW 16 AT LEVEL 4

CURR MATCHES WITH COVER TERM 79 AT LEVEL 5

CONSIDERING ROW 79 AT LEVEL 5
CURR MATCHES WITH COVER TERM 269 AT LEVEL 6
CONSIDERING ROW 269 AT LEVEL 6
CURR MATCHES WITH COVER TERM 632 AT LEVEL 7
CONSIDERING ROW 632 AT LEVEL 7
CURR MATCHES WITH COVER TERM 1088 AT LEVEL 8

CONSIDERING ROW 1088 AT LEVEL 8
CURR MATCHES WITH COVER TERM 1465 AT LEVEL 9

CONSIDERING ROW 1465 AT LEVEL 9
CURR MATCHES WITH COVER TERM 1663 AT LEVEL 10

CONSIDERING ROW 1663 AT LEVEL 10
CURR MATCHES WITH COVER TERM 1723 AT LEVEL 11

CONSIDERING ROW 1723 AT LEVEL 11
CURR MATCHES WITH COVER TERM 1731 AT LEVEL 12

CONSIDERING ROW 1731 AT LEVEL 12
CURR MATCHES WITH COVER TERM 1767 AT LEVEL 13

CONSIDERING ROW 1767 AT LEVEL 13
CURR MATCHES WITH COVER TERM 1833 AT LEVEL 14

CONSIDERING ROW 1833 AT LEVEL 14
CURR MATCHES WITH COVER TERM 1896 AT LEVEL 15

CONSIDERING ROW 1896 AT LEVEL 15
CURR MATCHES WITH COVER TERM 1929 AT LEVEL 16

CONSIDERING ROW 1929 AT LEVEL 16
CURR MATCHES WITH COVER TERM 1938 AT LEVEL 17

(Ti

- - x o o - o -- o - o O O - x o - - -O X o o

83
X X
- o

8-

— — — O O O x x o x x
- o o - o o - o o - -
O O O O - — - O O x x i
X — X X X X O O X O X O O - O O - O
0 . 0 - - 0 - - - 0

— O rn
O O
TJ
o

-JcnUl-UCOfO — OC0C0^JJ101i*C0fO —

- - - - - - - _ - _ o o
- - - - - - - - - O O O - - - - - - - - O O O O - O O O O O O O O O O O - - - - - - - O O O O O - - - - - - O

* *
-* *
* »
* m * 73

s m * > * XI * Cl
z I * o r~ C/l + C C * o n m o * O m i/i to -n C r-* H * rn * Xl * 3 *

— — _* o o o o o o o o o o o o o m > o o o o o o o o r-O o o o o o o o o o * m a — — — O O O O O o o o o o o o o o * o o o o o o o o o o o Ht —1 H — — o c O O O o o o o o o o o o o Ht h—
t-H

— o o O O O O o o o o o o o o o o * o o o o o O O O O o o o o o o o o o o Ht z z o o o O O O O o o o o o o o o o o o o o O O O O o o o o o o o o o o o o o O O O O o o o o o o o o o o o o o o O O O o o o o o o o o o o o o o o O O O o o o o o o o o o o

+ o * o * XI
nt 73

- O O O O O O O O O O O O O O O O * Ci
OtDcocDcocotDracoco^^^iricriaiui * z O O J f f i u i g u O ^ f i - O D i n - ' i i i o i u o i * m O t i o u o o M d i u i i i u - . Oiflcoenuico * o

195

APPENDIX D

PL/I CODE FOR N-ARY TREE APPROACH TO BEST-SET DISCOVERY.

196

//DES JOB ' , ,,T=10M,L=10, 10=20, R=10 24K' , 'ERIC GULLICHSEN',C L A S S =1
// EXEC PL10CLG,SIZE=1024K
//PL1.SYSIN DD * •

/* DISCOVERY OF SETS OF BEST TERMS FOR S-BOX APPROXIMATION */

CNOSTRG,NOSUBRG): BEST: PROC OPTIONS(MAIN) ;

/ * * * * * * * * * * * * * * * * * * * ̂
/ * * /
/* FOR EACH OF THE 4 OUTPUTS FOR EACH OF THE 8 S-BOXES, */
/* WHAT IS THE *BEST* S.P. APPROXIMATION USING N TERMS TO */
/* THE REAL S-BOX. */
/* IS THERE ALWAYS A BEST SET OF N TERMS WHICH IS A SUBSET */
/* OF A BEST SET OF N+1 TERMS?? */
/ * * /
/* ALGORITHM: FORM THE COVER TABLE, INDICATING WHICH OF */'
/* THE 32 INPUTS FOR WHICH THE OUTPUT SHOULD BE ON THE OUTPUT*/
/* IS INDEED ON FOR A SINGLE GIVEN TERM. */
/* THEN SEARCH THIS TABLE USING PARALLEL TREES, TO ATTEMPT */
/* CFOR EACH OUTPUT OF EACH S-BOX) TO FORM A SEQUENCE OF */
/* BEST SETS OF SIZE 1...N [N<=23 FOR ALL OUTPUTS) TO PROVE */
/* THAT A BEST SET EXISTS AT ALL SIZES 1...N UNDER THE */
/* PROPERTY OF MONOTONIC ADDITION OF TERMS. */

DCL C SBOX,OUTBIT) FIXED BINC15); /* SBOX & BIT COUNT */
DCL CSPFILE,ONFILE) FILE STREAM INPUT,
DCL SYSPRINT FILE STREAM OUTPUT PRINT;

DCL (NUMTERMS, /* # S.P. TERMS IN APPROX */
INPCNT, /* IDX 1..32 FOR ON-INPUTS */
TERMCNT) FIXED BINC15); /* IDX 1..N <=23 FOR TERMS */

DCL (I,J) FIXED BINC15), /* LOOP COUNTERS */
DCL SRCH_EXIST FIXED BIN[15);

DCL 0NF0RC32,6) B I T C 1) ; /* INPUTS WHERE SBOX IS ON */
DCL TERMSC23,6) CHARflJj /* INPUTS WHERE SBOX IS ON */
DCL C0NTRIBC23) BITC32) ALIGNED; /* CONTRIBUTION TABLE */

DCL MASK BITC32);
DCL COMPMASK BITC32) ALIGNED,
DCL SAVEMASK(2 3) BITC32) ALIGNED;
DCL MASKVECC32) B ITf l) DEFINED MASK;
DCL TERMUSED C 2 3) BITCDJ

DCL NUMONC23) FIXED BINC153;
DCL CMAXON,BITSON,BESTON,OLDBESTON) FIXED BINC15);

197

PAUSE :
DCL SAVEBITSONC23] FIXED BIN(15} j
/* VECTOR OF PTRS TO NODES STILL AVAIL FOR EXPANSION */
DCL (OPEN,NEWOPEN3C20000) PTRj
DCL COPENHI,NEWOPENHI) FIXED BINC15);
DCL ZER06C6) CHARC1) INITCC6) CD '0 ') j
DCL XSTR6C6) CHAR(1) INITCC6) CD *X')J
DCL X0RESC6) BIT C13;
DCL TEMPBIT BITCDJ

/* ORDER IN WHICH TO MONOTONICALLY ADD TERMS */
DCL 0RDERC8,4, 23) FIXED BINC15);
DCL CUMONC 2 3) FIXED BINC15); /* # BITSON IN ORDER */
DCL PRTMASK C 2 3) BIT C 32) ALIGNED;

DCL CP, TOP, CURR, NEW, PREV, FIND PTR;

/* N-ARY TREE NODE STRUCTURES: */
/* LINK NODE STRUCTURE FOR LIST OF POINTERS */
DCL 1 LKNODE BASED,

2 SON PTR,
2 LINK PTR;

/* NODE STRUCTURE TO CONTAIN A TERM */
DCL 1 NODE BASED,

2 TERM FIXED BINC15), /* TERM # */
2 ORMASK BITC32), /* CUMUL OUTPUTS COVERED */
2 FATHER PTR, /* TO FATHER NODE */
2 LINK PTR;

DCL CGO, FIRST, NOTFND) BITCH); /* FLAGS */

DCL CSUBSTR,NULL,SUM,EMPTY,ALL,HBOUND,FLOAT) BUILTIN;

/* AREA IN WHICH TO BUILD THE TREE */
DCL TREE AREAC512000);

1
ON AREA BEGIN;

PUT SKIPC2) FILECSYSPRINT) LISTC'*** AREA OVERFLOW ***'};
STOP;

END;
OPEN FILECSPFILE) TITLEC'SPFILE'D;
OPEN FILECONFILE) TITLEC'ONFILE');

/* LOOP FOR EACH OF THE 4 OUTPUTS OF EACH SBOX */
DO SB0X=1 TO 1;
DO 0UTBIT=1 TO 4;

198

CALL READIN; /* READ IN SPTERMS AND ONFOR */
/* FOR TABLE OF CONTRIBUTIONS, INDICATING WHICH TERMS
ARE ON FOR WHICH INPUT */
NUMONC*D=Q;
DO INPCNT=1 TO 32;

DO TERMCNT=1 TO NUMTERMS J
CALL XORCONFORCINPCNT,*) , CZER06=TERMS(TERMCNT,*)) , XORES

. TEMPBIT=AND(CXSTR6=TERMSCTERMCNT,*)) I XORES);
SUBSTRCCONTRIBCTERMCNT),INPCNT,1)=TEMPBIT;
IF TEMPBIT THEN NUMONCTERMCNT) = NUMONCTERMCNT) + 1;

END;
END;

/* DUMP THE CONTRIBUTION TABLE */
PUT PAGE FILECSYSPRINT} LISTC' *** CONTRIBUTION TABLE***') ;
PUT SKIP C 2) FILECSYSPRINT) EDITC'SP TERM', 'INPUT COVER' , C7) ' * ' ,

C32)'* ')CA,COLC23),A,SKIP,A,COLC12),A);
PUT SKIP FILECSYSPRINT) EDITCCTERMSCI,*),CONTRIBCI),NUMON(I)

DO 1=1 TO NUMTERMS))C6 AC1),XC5),BC32),FC6),SKIP) ;

/* FORM TOP LEVEL OF TREE FROM SINGLE TERMS WITH MOST 1*S */
OPENHI=l; /* SET HI PTR FOR OPEN NODES */
MAXON=LARGESTCNUMON);
FIRST='1'B;
DO 1=1 TO NUMTERMS;

IF MAXON=NUMONCI) THEN DO;
ALLOC LKNODE SETCCURR) INCTREE);
IF FIRST THEN DO;

FIRST='O'B;
PREV,TOP=CURR;

END;
ALLOC NODE SETCP) INCTREE);
P->NODE.TERM=I;
P->NODE.FATHER=NULL; /* NO FATHER FOR TOP LEVEL */
P- >NODE . ORMASK = CONTRIB CI j" J
CURR->LKNODE.SON=P;
OPENCOPENHI)=P; /* PUT INTO OPEN VECTOR */
OPENHI = OPENHI + l;
PREV->LKNODE.LINK=CURR;
PREV=CURR;

END;
END;
CURR->LKNODE.LINK=NULL; /* LAST LINK POINTER SET NULL */

1/ * PROCESS ALL NODES IN OPEN VECTOR TO GET TO NEXT LEVEL IN TREE

199

PAUSE
OLDBESTON=Q;
60='1 1B J
DO WHILE t GO D J

BESTON=0;
DO 1=1 TO OPENHI-l; /* FOR ALL NODES IN OPEN VECTOR */

FIRST='1'Bj
/* FIND OUT HOW MANY ON IN ORMASK,

GIVEN NEXT BEST TERM CHOICE */
COMPMASK=OPENCID->NODE.ORMASK;
MAXON=0;
DO J=l TO NUMTERMS;

SAVEMASKCJ),MASK = COMPMASKICONTRIBCJD;
SAVEBITSONCJD,BITSON=SUMfMASKVECDJ
IF BITSON > MAXON THEN MAXON=BITSON;

END;
/* IF BETTER THAN ANYTHING YET ON NEWOPEN, RESET NEWOPEN *

/
IF MAXON > BESTON THEN DO;

BESTON=MAXON;
NEW0PENHI=1;

END;

1 /* IF BETTER OR AS GOOD, ADD TO NEWOPEN LIST */
IF MAXON >= BESTON THEN DO;

PREV=OPENCID;
DO J=l TO NUMTERMS;

IF SAVEBITSONCJD = MAXON THEN DO;
/* EXAMINE NEWOPEN POINTER VECTOR TO DETERMINE IF

MASK TO BE ADDED HAS ALREADY BEEN ADDED AT THIS LEVEL
IF NOT, ADD IT TO THE TREE */

NOTFND='1'B;
DO SRCH_EXIST=1 TO NEWOPENHI-1 WHILECNOTFNDD;

IF SAVEMASKCJD=NEWOPEN[SRCH_EXISTD->NODE.ORMAS
K

THEN NOTFND='0'B;
END;
/* ADD IT, IF NOT FOUND */
IF NOTFND THEN DO;

ALLOC LKNODE SETCCURRD INCTREEDJ
/* PREV MAY PT TO NODE OR LKNODE: */
IF FIRST THEN DO;

FIRST='0'B;
PREV->NODE.LINK=CURR;

END;
ELSE PREV->LKNODE.LINK=CURR;
PREV=CURR;

2 0 0

PAUSE: ALLOC NODE SETCPD INC TREE)J
CURR->LKNODE.SON=Pj
P->NODE.TERM= J ;
P->NODE.ORMASK = SAVEMASKC JD;
P->NODE.FATHER=OPENCID;
/* SEE IF DONE YET */
IF SAVEBITSONCJ 3 = 3 2 THEN DO;

60='O'B;
FINI=P; /* LAST NODE FOR TRACEBACK */

END;
/* INSERT INTO NEWOPEN LIST */
NEWOPENCNEWOPENHI)=P;
NEW0PENHI=NEW0PENHI+1;

END;
END; /* OF SAVEBITSON IF */

END; /* OF J FORLOOP */
CURR->LKN0DE.LINK=NULL;

END;
END;

/* TRANSFER NEWOPEN TO OPEN */
DO 1=1 TO NEWOPENHI-l;

OPENCI) = NEWOPENCID J
END;
OPENHI=NEWOPENHI;

1
/* DEPTH-FIRST SHORTCUT:

IF ONLY ONE BIT ADDED TO ANY ORMASK DURING THIS ITERATION
TO GENERATE NEW TREE LEVEL, WE MAY IMMEDIATELY PENETRATE
D1ST TO END OF TREE, ADDING ANY TERM NOT YET ON A BEST
PATH */
IF OLDBESTON+1 = BESTON THEN DO,

GO='0'B; /*ST0P THE SEARCH */
CURR=NEWOPEN(1);
/* FORM MASK TO TERMS USED IN BEST PATH SO FAR */
TERMUSED C * D ='O'B;
DO WHILECCURR ~= NULL];

TE RMUSED C CURR->NODE.TERM)=' 1'B;
CURR=CURR->NODE.FATHER;

END;
/* FORM A D1ST PATH TO LEVEL N */
COMPMASK = NEWO!'ENC ID - >NODE . ORMASK;
CURR=NEWOPENC1);
DO J=l TO NUMTERMS;

IF ~TERMUSEDCJ) THEN DO;
ALLOC NODE SETCPD INC TREE},

201

PAUSE:
P->NODE.TERM= J ;
P->N0DE.0RMASK=C0MPMASKICONTRIBCJ3;
COMPMASK=P->NODE.ORMASK j
P->NODE.FATHER=CURR;
CURR=P;

END;
END;
FINI=CURR; /* SET LAST POINTER */

END;
ELSE OLDBESTON=BESTON; /* ELSE CONTINUE TREE BUILDING */

END; /* WHILE LOOP FOR PROCESSING TREE */

1 /* WHILE LOOP TERMINATED AS SOME ORMASK WAS ALL 111...1
TRACEBACK FROM FINI BY FATHER LINKS */

CURR=FINI;
DO I=NUMTERMS TO 1 BY -1;

ORDERCSBOX,OUTBIT,I3=CURR->NODE.TERM;
PRTMASKCID,MASK=CURR->NODE.ORMASK; /* SAVE THE COVER */
CUMONCID=SUMCMASKVEC);
CURR=CURR->NODE.FATHER;

END;

/* PRINT TERMS IN ORDER OF ADDITION, TOGETHER WITH THE
VALUES INDICATING PROBABILITY OF CORRECTNESS */

PUT PAGE FILECSYSPRINTD EDITC"# TERMS INCLUDED',' INPUT COVER',
'CORRECTNESS ' , C 16 3 ' * ' , C143 ' * ' , C 11) ' * ' 3
C2 CA,COLC 253,A,COLC55), A, SKIP)D;

DO 1=1 TO NUMTERMS;
PUT SKIP FILECSYSPRINT) EDITCORDERCSBOX,OUTBIT,I3,PRTMASKCI 3,

.5 +FLOATCCUMONC 1 3 , 63/64.3 CFC83,COLC213,BC 32 3 ,COLC56),FC7,3 3
3;

END;

PUT SKIPC23 FILEC SYSPRINT3 LISTC+ + + END OF TABLE + + +'3J

TREE=EMPTY; /* FREE ENTIRE TREE BY EMPTYING AREA */
END; /* OUTBIT LOOP */
END; /* SBOX LOOP */

CLOSE FILECONFILE3,FILECSPFILE3:

1
/* * /

202

£0Z

TCJNV 0N3

rcs3d)Nyni3y
'0N3

ra.o.=s3a NSH± C I)03A"iooa~ d i
r(S3yD31IHn C l '03A1008]ONDOaH 01 x= i oa

' B i l l =S3d
r c s D N i a 0 3 x u i noa

r m n a c c*)03Anooa'S3a) i o a
r c m n a) S N y n i 3 y co3Aiooa)ooyd :QNV

* * * * * ***/

i 3yv A v y y v iN3wn9av NI s n v n v d d i x SNynisy ONV */

**/
i

s w yai HOIHM 9 N i i v o i a N i ' s N o n n a i y i N o o do 3 i a v i yod */
'NiaV3y 0N3

r c d i x s r C i j a 9D c y o d N O i i a s c i N i y d S A s m i d U D d i x s i n d
: s i n d N i yod NO 38 ainoHs i n d i n o , n s n C i N i y d S A s) 3 " i i d c e j d i x s i n d

r c d i x s ' C i) v 9)
ccswy3iwnN o i I = I oa c * ' n s w u a i J) i i a 3 C i N i y d S A S) 3 i i d U D d i x s i n d

'C,:swyai i o n a o y d - d o - w n s • D i s n C i N i d d s x s) 3 ~ i i d c e D d i x s i n d
r c c c e) d r v)

no', n a i n d i n o ,'xoas', xoa-s a o d . m a s C i N i y d S A S) 3 i i d 39Vd i n d
/* indNI 3H1 0H03 */

r c d i x s ' C i) a 9)
c u e o i x=i oa C9 o i x=r oa cr ' n a o d N o n n i a a C 3 i i d N o) 3 i i d 139

T0N3
' i+swa3iwnN=swy3iwnN N3H1 . , =~ c i ' D s w a a i d i

r c d i » s ' c n v 9) C C * ' D s w a a i J i i a g C3"iidds)3-iid 139
• zz 01 1=1 oa

/* xoyddv SIHI NI swd3i do # */ ro=swy3iwnN
r o o y d :Niav3y

/ Ĥ He ne He He He He He He He He He He He He He Ĥ He
/ * */
/* • A i i v i i N 3 n b 3 s ' s y i v d i n d i n o ONV xoa-s */
/* 3HI y o d 'NO 3a ainoHS i n d i n o 3Hi HOIHM yod s3niv A i n d N i */
/* zz do 13S 3Hi ONV swyai d s 3Hi avsy o i '3Niinoy indNI */

/* RETURN LARGEST ELEMENT IN A FIXED BIN VECTOR
/**************** ̂

LARGEST: PROCCFBVECD RETURNSCFIXED BINC15DD;
DCL CI,BIG,FBVECC*n FIXED BINC15);
BIG=FBVECC UJ
DO 1 = 2 TO HBOUNDfFBVEC, 1 } ;

IF FBVECCU > BIG THEN BIG=FBVECCID;
END;
RETURNCBIG);

END LARGEST;
/********************** ̂
/* XOR PROC TO XOR 2 BINARY VECTORS */
/ * * * * * * * * * * * * * * * * * * * ^

XOR:PROCCA,B,RES D;
DCL (A,B,RESD C*D BITC1D J
RES=CAI BD&CCA&BD D;

END XOR;

END BEST;
//GO.SPFILE DD DSN=GULL ICH.DES.SPTERMS,DISP=SHR
//GO.ONFILE DD DSN=GULL ICH.DES.ONFOR,DISP=SHR

204

APPENDIX E
APL ROUTINES FOR BOOLEAN MINIMIZATION
BY SPECTRAL TRANSLATION

205

V B-BASIS SiBIGiPOSiNiK
[1] ft
[2] ft GIVEN VECTOR S OF SPECTRAL COEFFICIENTS, RETURN BASIS MTX
. B
[3] ft INDICATING REQUIRED SPECTRAL TRANSLATIONS TO MAXIMIZE PRI
MARY
[4] ft COEFFICIENTS
[5] B«-(0 , W ^ 2 ® p 5) p O
[6] S<-\S
[7] S [1 > 0
C 8] n
[9] ft LOOP UNTIL VE HAVE N BASIS VECTORS
[1 0] ft
[1 1] L00P:BIG*-{/S
[1 2] SlP0S<-S\BIGl-0
[1 3] B-B.Zl] P0S<-(Np2)j~l+P0S
[1 4] n
[1 5] n REMOVE ALL LINEAR (XOR) COMBS OF BASIS VECTORS
[1 6] n FROM FURTHER POSSIBLE CONSIDERATION
[1 7] K-l
[1 8] i ? f f « : 5 [l + 2 i ^ * / [2] BtK COMB I T p S ;] > 0
[1 9] -»•((Ko-K+l)<l\pB)/REM
[2 0] + (i » * l t p B) / L O O P
[2 1] ft TRANSPOSE AND INVERT TO GET BASIS
[2 2] B-INVERSE<S)B

7

7 /?•«-# (TCWfl N
[1] •*(M=1 ,N)/L1 ,R1
[2] R+1 + (0,(M-1) COMB A ' - l) , [l] M COMB N-l
[3] •+0
[4] Ll:R-(xN)o.xxi
[5]
[6] Rl:R-(i l j o . x ^

7

7 Z-COM PL EXITY SPECTRUM;N;ORDER
[1] N*-2&p SPECTRUM
[2] 0RDER*-+j(6p2)T~ 1 + I 2*6
[3] . Z->-(Nx2*N)-(i2*N-2)x0RDER+ .xSPECTRUM*2

7

206

V F-FUNC R',P
Cl] A
[2] n GIVEN SPECTRAL COEFFS, RETURN CORR. MINTERMS NUMBERS
[3] A
O] F<-(l*pR)x(TRANS 29pR)+.xR
[5] F-F/~l+\pR

V

V Z-HAD N;K
C l] Z M 1 p i
[2] /c>0
[3] LOOP:+(K=N)/0
C4] Z « - (Z . Z) . [l] Z.-Z
[5] K-K+l
C6] -»-£Cc9P

V

207

V R—INV ERSE MAT
[1] A THIS FUNCTION WILL TAKE ANY MATRIX AND RETURN :
[2] A 1) THE INVERSE OF THE MATRIX IF IT EXISTS
[3] A 2) A 0 MATRIX OTHERWISE
I 4] A CHECK 3 EXIT CONDITIONS :
[5] A 1) MATRIX=0
[6] fl 2) MATRIX IS NOT SQUARE
[7] n 3) MATRIX IS SCALAR OR NOTHING
C 8] ->(~((A/h/nCT> \MAT)v ({l + pMAT)*Cl*pMAT))v(0 = ppMAT)))/START
[9] A RETURN THE 0x0 MATRIX
[10] Jf* 0 0 pO
[11] +0
[12] n NOW WE KNOW THAT MAT IS SQUARE AND * 0
[13] A SAVE DIMENSIONS
[14] START:N-lipMAT
[15] A CATENATE IDENTITY TO MAT
[16] MAT-MAT,((\N)°.=\N)
[17] A REDUCE MAT TO REDUCED ROW ECHELON FORM, WHICH IN A SQUARE
MATRIX

[18] A IS EQUIVALENT TO TRIANGULATION.
[19] MAT-N REDROWECH MAT
[20] A CHECK THAT THERE ARE NO 0 ROWS IN FIRST N COLUMNS
[21] A I.E. RANK(MAT)=N
[22] A FOR NON-SINGULARITY
[23] -(N=MATRANK((N,N)iMAT))/OKAY
[24] A FLSF. RETURN THE 0x0 MATRIX
[25] i?+ 0 0 pO
[26] -»-0
[27] 0O7:it«-(0 ,N) *MAT

V

V R-MATRANK MAT
[1] fl TtflS FUNCTION WILL DETERMINE THE RANK OF A GIVEN MATRIX
[2] n PUT MATRIX IN ROW ECHELON FORM
[3] MAT-CltpMAT) ROWECH MAT
[4] R-+/v/(UCT<MAT)
[5] -0

V

208

7 NEWLS-BAS MAXPRIM S
ill ft GIVEN A BASIS MTX. AND VECTOR OF SPECTRAL COFFFS <?

[3] NEWL\S-SLH + 2IB AS*. A (6 P 2) T " 1 + I 6 4] ' V

V /?-<-# RED ROW ECH MAT
[l] ft T#IS FUNCTION WILL REDUCE ANY GIVEN MATRIX TO A
I 21 ft REDUCED ROW ECHELON FORM.
C 3] ft REDUCE MATRIX TO ROWECH FIRST
[4] MAT-N ROWECH MAT
[5] ft CHECK 3 CONDITIONS TO EXIT :
[6] P I 1) VECTOR
[7] ft 2) KATRIX-0
[8] ft 3) SCALAR OR NOTHING
[9] n
[1 0] - (- ((l=ppMAT)v(*/*/DCT>\MAT)v (0 = ppMAT)))/ROWCHK
[1 1] i?«-AMr
[1 2] -*0
[1 3] ft CHECK LAST ROW : I F =0 RECURSE ON SMALLER
[I t] ft MATRIX OF M-l ROWS, N COLUMNS
[1 5] ROWCHK:-(*/UCT> \MATllfpMAT;xNl)/RECURSE
[1 6] ft ELSE START REDUCING THIS ROW
[1 7] n ALL THE ELEMENTS ABOVE THE IS
[1 8] n FIND COLUMN NUMBER WHERE FIRST NON ZERO ELEMENT IS.
[1 9] NZC—((UCT<|MATL1ipMAT;\Nl))\1
[2 0] ft ZERO OUT ELEMENT ABOVE THIS 1 JUST FOUND
[2 1] TEMP-(((" l + l + p A M D . (""ltpAfdT)) p , ((-AMT[x ~1 + 1 + pAM!T; tfZc?]) o . xMA TlUpMAT'.D)
[2 2] MAT[\ ~ 1 + 1 +pM AT ;l-2\ M ATI \ ~ 1 + 1 +pM AT', 1 + TEMP
[2 3] ft RECURSE ON SMALLER MATRIX
[2 4] RECURSE:R-(N REDROWECH (. (. C 1 + 1+pMAT) ,(~l + pMAT)) +MAT)) , [1] (A M
!T[l ^ p A ^ T ;])
[2 5] ft

7

209

file:///MATllfpMAT

V R+N ROWECH MAT
[1] A THIS FUNCTION WILL ACCEPT ANY MATRIX AND PUT THE FIRST
[2] fl N COLUMNS IN ROW-ECHELON FORM.
C 3] n
[4] fl CHECK 2 EXIT CONDITIONS :
[5] A 1) MATRIX=0
[6] -*(~A/A/rjCT> | (((UpMAT) ,N)\MAT))/NEXT
[7] R+MAT
C 8] -»-0
[9] n 2) A^T 15 A SCALAR OR NOTHING AT ALL
[10] NEXT:-*(~0 = ppMAT) /START
[11] fl-'-AMT
[12] -»-0
[13] fl
[14] fl CHECK THAT THE NUMBER OF COLUMNS PROCESSED IS <N
[15] START:+(.N=0)/0
[16] fl
[17] fl FIND FIRST NON-ZERO ELEMENT :
[18] fl NZC - NON ZERO COLUMN INDEX
[19] n NZR - NON ZERO ROW INDEX
[20] NZC+-(v/UCT< | ({{UpMAT) ,N)+MAT))xl
[21] NZR-{UCT<\MATl-,NZC]) xl
[22] n SWITCH TO PUT ELEMENT AlNZR,NZC] INTO All,NZC]
[23] MATll,NZR',]-MATiNZR ,1;]
[24] fl MAKE All,NZC]-l
[25] MATHi]-MATll;]iMATll;NZC]
[26] R MAKE COL=NZC ALL ZEROES UNDER All,NZC]
[27] MATl l + i ~ l + l tpAMT;]«-2 I MATl 1 + x ~l + l + pMAT;] + (-A7M2"[1 + x ~1 +1 + p MAT; A/ZC])» . xMATl 1;]
[28] fl RECURSE ON SMALLER MATRIX
[29] /?*Af/r[l;].Cl](0,((W-l) ROWECH (1 1 +AMD))
[30] n

V

,210

file:///MATl

7 SPECTRALLMIN;BOX;BIT;S;NEWSiF-.BAS;SPFORM
[1] COMPLOLD-COMPLNEW-xO
[2] NTERMSLOLD-NTERMSLNEW-xO
[3] NDCOLD-NDCNEW-0
I 4]
[5] BOXLOOP'.BIT-l
[6] BITLOOP:'»
[7] 'FCtf - , (f f l O *) . ' OUTPUT '.iBIT
[8] » •
[9] 1 '
[1 0] 'MINTERMS:'
[1 1] (B I T OUTPUT SBOXtBOX;;])/"l+t64
[1 2] •»
[1 3] 'Qtf MINIMIZATION:1

[1 4] «3W PRIMIMP BIT ON BINARY SBOXlBOX;;]
[1 5] Q-SPFORM-SELECTLALTS
[1 6] NTERMS LOLD-NTERMSLOLD,HpSPFORM
[1 7] NDC0LD-NDC0LD++/+I1X1-SPFORM
[1 8]
[1 9] "
[2 0] 'SPECTRUM:1

['21] US-SPECTRUM BOX .BIT
[2 2] C0MPL0LD-C0MPL0LD.COMPLEXITY S
[2 3] 'COMPLEXITY: 1,1~1+C0MPL0LD
[2 4] •«
[2 5] •»
[2 6] 'SPECTRAL TRANSLATION BASIS (g<$) '
[2 7] ••Bi45*fl>I5I5 5
[2 8] "
[2 9] ' '
[3 0] 'TRANSLATED SPECTRUM:'
[3 1] D-NEWS-BAS MAXPRIM S
[3 2] C OM P LN EW—C OM P LN EW.COMPLEXITY NEWS
[3 3] 'COMPLEXITY: ' , l ~ l + COMPLNEW
[3 4] "
[3 5] 'MINTERMS 'FOR TRANSLATED FUNCTION:'
[3 6] 0-F-FUNC A/£VS
[3 7]
[3 8] ' CA/ MINIMIZATION FOR TRANSLATED FUNCTION:'
[3 9] fiA/ PRIMIMP<S)(6p2)TF
[4 0] D—SPFORM—SELECTLALTS
[4 1] N TERMS LN EW—NTERMS LNEW.lfpSPFORM
[4 2] " NDCNEW-NDCNEW++/+/'X'=SPFORM
[4 3] 5 p r j T C [2]
[4 4] n
[4 5] •+UBIT-BIT+DSH)/BITLOOP
[4 6] -*-((B O X « - B 0 X + 1)<8)/B0XLOOP
[4 7] 'NUMBER OF P-TERMS PER FUNCTION BEFORE:'

211

[4 8]
[4 9]
[5 0]
[5 1]
[5 2]
[5 3]

NTERMSAOLD
^AVG. NUMBER OF DC PER P-TERM ' , •(+/NTERMSLOLD)iNDCOLD

'NUMBER OF P-TERMS PER FUNCTION AFTER-'
NTERMSANEW
^AVG. NUMBER OF DC PER P-TERM '(+/NTERMSLNEW)*NDCNEW

[1]
[2]
[3]

V
A

R+-SPECTRUM BOXOUT-,F

A GIVEN S-BOX AND OUTPUT BIT, RETURN THE 64 SPECTRAL COEFFS
R*-(TRANS 2*pF) + .xF-B0X0UTl2_] OUTPUT SBOXl BOXOUTl 1] ; ;]

V Z-TRANS N-.Q
[1] Z - (l , l) p l
[2] - (A / < l) / 0
[3] Q-TRANS N-l

[4] Z+(C.e).[l](C.-«3)
V

V Z-XOR VEC
[1] A RETURN XOR OF THE BITS IN VECTOR VEC
[2] Z«-0*2 \ +/VEC

V •

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]

V Z-B XORMAP INPS'.R-,C
A TO MAP N*S MTX OF INPUTS THROUGH TREE OF XORS
A AS REPRESENTED BY TRANSLATION MATRIX B
Z+(pINPS)pO
R-l
RLOOP-.C-l
CLOOP:ZlR;Cl+-XOR BlC;]/INPSlR;]
•+((C+-C+1)<6)/CL00P
•+(. (R+-R+1)41 + pINPS) IRLOOP
V

END OF APPENDIX

212

APPENDIX F

PL/I ROUTINES FOR UNIDIRECTIONAL KEY SEARCH

213

//DES JOB ' , , , T = 5M, l_=15, 10=20, R=768K ' , ' ERIC GULL I CHSEN ' , CC AS S= 1
// EXEC PL10CG,SIZE=768K
//PLI .SYSIN DD *

/* SEARCH TREE APPROACH TO GIVEN PLAINTEXT DES ATTACK */
/* RECURSIVE BACKTRACK SEARCH TREE TO DISCOVER K FROM KNOWN P-C

PAIRS. BIST EXPANSION OF NECESSARILY CONJUNCTIVE CONDITIONS,
VIRTUAL D1ST EXPANSION AT CHOICE POINTS WITH FATHER POINTERS T

0
ENABLE BACKTRACKING ON FAILURE. 6 TYPES OF NODES, TO
REPRESENT THE VARIOUS STRUCTURES IN THE DES ENCRYPTION A*/

SEARCH: PROC OPTIONSCMAIN) REORDER,

DCL TREE AREAC 384000); /* AREA FOR TREE GROWTH */

/* FILES */
DCL SYSPRINT FILE STREAM OUTPUT PRINT;
DCL CSPFILE,SPCFILE,KSFILE,PCFILED FILE STREAM INPUT;

/* Q OF POINTERS TO "OPEN" NODES I.E. THOSE REQ. EXPANSION */
DCL C OPEN,OPENEND) PTR; /* TO START AND END OF Q */
DCL (OPENCURR,OPENPREV) PTR;
DCL 1 OPENNODE BASED,

2 NODE PTR,
2 LINK PTR;

/* DES BLOCKS */
DCL KEYC64D CHARCU INIT C C64) (1) ' ') ; /* K TO DISCOVER IN SEARC

H */

DCL (PTEXT,CTEXTD[64) BIT C 1 D J /* KNOWN P-C PAIR */

DCL NUMNODES FIXED BINC31) INITIO); /* # OF NODES EXPANDED */

DCL SPTERMSC32, 23, 6) CHARC13; /* S.P. APPROX. TO S-BOXES */
DCL SPCTERMSC32,23,6) CHARCl); /* S.P. APPROX. TO S-BOX COMPL */
DCL MAXPTERMS FIXED BINC15D INITCO); /* MAX PTE RMS IN ANY SP FORM

*/
DCL KEYPERMC16,48D FIXED BINC 15); /* KEY BIT SELECTION INDICES

*/
/* INVERSES OF PERMUTATIONS IN DES ALGO */
DCL E_PERM_INVC48) FIXED BINC15]

IN ITC32,1 ,2 ,3 ,4 ,5 ,4 ,5 ,6 ,7 ,8 ,9 ,8 ,9 , 10, 11, 12, 13, 12, 13, 14, 15, 16, 17,
16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25, 24, 25, 26, 27, 28, 29,
28, 29, 30, 31, 32, 1 };

DCL P_PERM_INVC32D FIXED BINC15D
INITC16,7,20,21, 29, 12,28, 17, 1,15,23,26,5, 18,31, 10,2,8, 24, 14,

32, 27, 3,9, 19, 13,30,6,22, 11,4,25);

214

PAUSE

DCL [NULL,TRUNC,REPEAT,MAX) BUILTINj

/* TREEDUMP */ DCL T0PC64) PTRj /* PTRS TO TREE TOP LEVEL */
/* HOW MANY DES ROUNDS WERE USED TO GENERATE CTEXT? */
DCL NUM_ENCRY_RNDS FIXED BINC15) INITC2);

1
/* DECLARATIONS OF TYPES OF NODES IN SEARCH TREE */

/* 'SUPER' NODE IS A SET OF DESCRIPTOR FIELDS ASSOCIATED WITH
EACH NODE IN THE SEARCH TREE. CONTENTS INCLUDE A TYPE CODE,
POINTER TO ACTUAL NODE, AND FIELDS COMMON TO ALL TYPES */

DCL 1 SUPER BASED ,
2 TYPE CHAR C1D, /* NODE TYPE */
2 POS FIXED BINC15), /* POSITION [1,32] IN BLOCK */
2 LVL FIXED BINC15), /* LEVEL IN ENCRYPTION */
2 FATHER PTR, /* FATHER POINTER */
2 OPENQ PTR, /* -> TO OPENNODE */
2 NODE PTR; /* -> TO ACTUAL NODE */

DCL 1 RNODE BASED , /* TYPE ' R ' NODE */
2 VAL BITC1), /* VALUE OF NODE FROM [0,1] */
2 COUNT FIXED BINC 15 D INITCO), /* # TIMES EXPANDED [0,2] */
2 LPTR PTR INITCNULL),
2 RPTR PTR INITCNULL);

DCL 1 FNODE BASED , /* TYPE ' F ' NODE */
2 VAL B I T C 1 D,
2 TERMNUM FIXED BINC15) INITCO), /* # OF SP TERM CONSIDERED

*/
2 XPTRC6) PTR INITCC6) NULL); /* ->'S TO X NODES OF SP TE

RM */

DCL 1 XNODE BASED , /* TYPE 'X' NODE */
2 VAL BITC1),
2 COUNT FIXED BINC15) INITCO),
2 RPTR PTR INITCNULL);

ON ERROR BEGIN;
PUT FLOW; /* FOR CHECKOUT */
CALL TREEDUMPCTOP); /* DUMP ENTIRE SEARCH TREE */

215

PAUSE: STOP;
END;
1 -
/* MAINLINE r */

CALL SETUP; /* PERFORM READS AND CREATE TREE TOP LVL */
OPENCURR=OPEN;
DO WHILECOPENCURR~=NULL); /* PROCESS Q WHILE IT IS NOT EMPTY */

CALL EXP AND COPENCURR->OPENNODE. NODE); /* EXPAND CURR NODE */-
OPENCURR=OPENCURR->OPENNODE.LINK; /* LOOK AT NEXT NODE */

FREE OPEN->OPENNODE; ./* DESTROY PROCESSED NODE POINTER */
OPEN=OPENCURR; /* MOVE START POINTER ALONG */

END;

/* PRINT RESULTS */
PUT SKIPC2) FILEC SYSPRINT) EDITC'TOTAL # OF NODES EXPANDED ' ,NUMN

ODES)
C A, F C 9));

PUT SKIPC2) FILECSYSPRINT) ED ITC'ENCRYPTI ON KEY DISCOVERED: ',KEY,
. (64) ' . ') [A,SKIP,XC10),64 A,SKIP,XC10),A);

CALL TREEDUMP(TOP); /* PRINT COMPLETED SEARCH TREE */

/* */
1
/* SELECTION FUNCTION, TO CALL PROPER EXPANSION ROUTINE, BASED ON

THE TYPE OF THE NODE TO BE EXPANDED.
INPUTS: CURR = POINTER TO SUPER NODE FOR NODE TO EXPAND */

EXPAND: PROCCCURR) RECURSIVE;
DCL CURR PTR,
/* DEBUG */ CALL DUMPCCURR);

CURR->SUPER.OPENQ=NULL; /* REMOVE ITS REF. TO Q NODE */

SELECTCCURR->SUPER.TYPE);
WHENC'R') CALL R_EXPANDCCURR);
WHENC'F') CALL F_EXPANDCCURR);
WHENC'X') CALL X_EXPANDCCURR);

END;
END EXPAND;

1
/* DEBUG */ DUMP: PROCCCURR); /* DUMP SUPER DATA ABOUT NODE CURR)

*/
DCL CURR PTR;
DCL COUNT FIXED BINC31) STATIC INIT C 0 D J /* # NODES EXPANDED */

216

IF CURR=NULL THEN PUT SKIP FILECSYSPRINT] LISTC' NULL ---');
ELSE DO;

PUT SKIP FILECSYSPRINT) ED ITCCOUNT, 1)','TYPE.',CURR->SUPER.TY
' POS: ',CURR->SUPER.POS,' LVL: ',CURR->SUPER.LVL)
CFC6),A,XC5),A,XC1),A,A,FC4),A,FC5)) ;

COUNT=COUNT+l;
END;

END DUMP,
/* TREEDUMP: A ROUTINE TO PRINT THE ENTIRE SEARCH TREE, BY

RECURSIVE INORDER TRAVERSAL. USED FOR DIAGNOSTIC PURPOSES
ON ERROR */

TREEDUMP: PROCCTOPD;
DCL T0PC64D PTR; /* POINTERS TO TREE TOP LEVEL */
DCL CK,LEVEL} FIXED BINC15};

DCL SIZE FIXED BINC31}; /* # OF NODES IN TREE */

SIZE=Q;
PUT PAGE FILECSYSPRINT} ED ITC'TREEDUMP', C8}'*' }C2 (XC50},A,SKIP }
PUT SKIPC2) FILECSYSPRINT) ED ITC'ENCRYPTI ON KEY: ' ,KEY, C64) ' - ')

C65 A,SKIP,XC16),A);
DO K=l TO 64; /*FOR ALL TOP LEVEL NODES IN TREE */

LEVEL = 0;
PUT SKIPC3) FILECSYSPRINT) ED IT('FROM CIPHERTEXT BIT: ' ,

K, C 23 3'- ')CA,FC2),SKIP,A);
CALL NODEPRT C TOP C K)) ;

END;
PUT SKIPC2) FILECSYSPRINT) LISTC'@@@@@ TOTAL # OF NODES IN TREE:

SIZE);

/* NODEPRT: PRINT NODE POINTED AT BY P, THEN RECURSIVELY
EXPAND THE SUBTREE FROM P */

NODEPRT: PROCCP) RECURSIVE;
DCL CP,Q,ACTUAL) PTR;
DCL I FIXED BINC15),

IF P=NULL THEN RETURN; /* TRIVIAL CASE */
LEVEL=LEVEL+l; /* ARE PROCESSING ONE LEVEL DOWN IN TREE */
SIZE=SIZE+l; /* INCREMENT TREE SIZE COUNTER */
PUT SKIP FILECSYSPRINT) ED ITCLEVEL,REPEATC' ',3*LEVEL),P->SUPER.

217

PAUSE:
TYPE,

LVL : ',P->SUPER.LVL, 1 POS: 1 , P->SUPER. POS D C F C 3 D, 3 A,FC2),A,F
C2)D;

ACTUAL=P->SUPER.NODE;
SELECTCP->SUPER.TYPED;

WHENC'R' D DO;
PUT SKIPCOD FILECSYSPRINTD ED ITCRE PEATC' ' ,2 5+ 3*LEVEL),

' VAL:1,ACTUAL->RNODE.VAL,' COUNT:1,ACTUAL->RNODE.COUNTD
C2 A,BC1D,A,FC2DDJ

CALL NODEPRT[ACTUAL->RNODE.LPTR); /* RECURSE ON CHILDS */
CALL NODEPRTCACTUAL->RNODE.RPTR);

END;

WHEN['F') DO;
PUT SKIPCOD FILECSYSPRINTD ED ITCREPEATC' ',25+3*LEVEL],

•TERM NUMBER: ',ACTUAL->FNODE.TERMNUM,
' VALUE: ',ACTUAL->FNODE.VALDC2 A,FC3),A,BC1));

DO 1=1 TO 6;
IF ACTUAL->FNODE.XPTRCID ~= NULL THEN

CALL NODEPRTCACTUAL->FNODE.XPTR CID D J
END;

END;

WHENC'X"D DO;
PUT SKIPCOD FILECSYSPRINTD ED ITCRE PEATC1 ',41 + 3*LEVEL],

'VALUE: 1,ACTUAL->XNODE.VAL,
'COUNT: ',ACTUAL->XNODE.COUNT,

'=>KEYC',KEYPERMCP->SUPER.LVL,P->SUPER.POS),')=' ,
ACTUAL->XNODE.COUNT=1D
CA,A,BC1),XC2),A,FC3],XC2D,A,FC2D,A,BC1DDJ

CALL NODEPRTCACTUAL->XNODE.RPTR D;
END;

END;

LEVEL=LEVEL-l; /* AFTER RECURSION, POP UP 1 LVL */

END NODEPRT;
END TREEDUMP;

1
/* BACKTRACK: ATTEMPT EXPANSION OF OTHER DISJUNCTIVE ALTERNATIVES

OF THE FATHER OF THE CURRENT NODE. CALLED WHEN A CONTRACTICT10
N

IN KEY HYPOTHESES ARISES.
N.B. THE .EXPAND ROTUINES MUST THEMSELVES CALL BACKTRACK TO
BACKTRACK HIGHER IN THE TREE IF THEY HAVE NO FURTHER ALTERNATI

218

PAUSE:
VE

POSSIBILITIES * /

BACKTRACK: PROCCCURR) RECURSIVE;
DCL [CURR,DAD) PTR;
DAD=CURR->SUPER.FATHER;
IF DAD=NULL THEN DO;

PUT SKIPC2) FILECSYSPRINT) EDITC+++ ERROR + + +' ,
'HAVE BACKTRACKED PAST ROOT NODE OF TREE, AT ROOT B I T : 1)
(A,SK IP,A) ;

CALL DUMPCCURR);
STOP;

END;

CALL DELETECCCURR)); / * ? * /
/*ZOOM*/ PUT SKIP FILECSYSPRINT) LI STC'BACKTRACK TO REEXPAND: ');
CALL EXPAND C DAD) ;

END BACKTRACK;
1

/ * CREATE: GIVEN NODE TYPE CHARACTER CODE, CREATE SUCH A NODE
[BOTH THE SUPER AND DATA COMPONENT) AND RETURN A POINTER TO IT

INPUT: NODE_TYPE = 1 CHAR CODE.
OUTPUT: P = PTR TO SUPER COMPONENT OF NEW NODE * /

CREATE: PROCCNODE_TYPE) RETURNSCPTR),
DCL NODE_TYPE CHARC1);
DCL CP,Q) PTR;

ON AREA BEGIN; / * IF NO SPACE LEFT FOR TREE * /
PUT SKIPC2) FILECSYSPRINT) L I S T C ' * * * OVERFLOW IN TREE * * * ' ,

' TOTAL # OF NODES ALLOCATED: ',NUMNODES),
CALL TREEDUMPCTOP);
STOP;

END;

ALLOC SUPER INCTREE) SETCP);
NUMNODES=NUMNODES+l; / * INCR GLOBAL MAX NODE CTR * /
P->SUPER.TYPE=NODE_TYPE; / * SET NODE TYPE * /

/ * ALLOCATE DATA NODE OF PROPER TYPE * /
SELECTCNODE_TYPE);

WHEN C 'R') ALLOC RNODE
WHENC'F') ALLOC FNODE
WHENC'X') ALLOC XNODE

END;

INCTREE) SET(Q)
INCTREE) SET C Q)
INCTREE) SET C Q)

P->SUPER.NODE=Q;

219

PAUSE :
RETURN(P)J

END CREATE;
1
/* TO CREATE A NODE OF TYPE R AND INITIALIZE THE FIELDS/

INPUTS: POS = POSITION [1,32] IN BLOCK
LVL = LEVEL [0,3] IN ENCRYPTION
VAL = VALUE [0,1] OF RNODE

OUTPUT: P = PTR TO SUPER OF THE NEW NODE */
CREATE_RNODE: PROC(POS,LVL,VAL) RETURNSCPTR);

DCL [POS,LVL) FIXED BINf15)J
DCL VAL BITC1DJ
DCL P PTR,

P = CREATE C'R' D J /* CREATE THE NODE */
/* FILL IN THE FIELDS */
P->SUPER.POS=POS;
P->SUPER.LVL=LVL;
P->SUPER.NODE->RNODE.VAL=VALj
RETURN C P D J

END CREATE_RNODEJ
1
/* SETUP CAUSES DATA TO BE READ IN FROM 3 FILES AND BUILDS THE

TOP LEVEL OF THE SEARCH TREE FROM RNODES BASED ON KNOWN CIPHER
*/

SETUP: PROC;
DCL K FIXED BIN C15 3 J
DCL P PTR;

CALL READIN; /* READIN 3 FILES */

/* SET UP THE TOP LEVEL OF THE SEARCH TREE, ADD NODES TO OPEN */
ALLOC OPEN.NODE SET C OPEN};
OPENPREV,OPENCURR=OPEN;

DO K=l TO 64;

IF K <= 32 THEN P = CREATE_RNODECK , NUM_ENCRY_RNDS , CTEXT t K])

ELSE P=CREATE_RNODECK-32 , NUM_ENCRY_RNDS-1 , CTEX
T (K));

/* TREEDUMP "*/ TOPCKD = P; /* SET TOP LEVEL PTR */
P->SUPER. FA">'HER=NULL; /* TOP LEVEL NODES ARE FATHERLESS */
OPENCURR->OPENNODE.NODE=P;
OPENPREV->OPENNODE.LINK=OPENCURR; /* CHAIN TO OPEN LIST */
OPENPREV=OPENCURR;

220

ALLOC OPENNODE SETCOPENCURR D;
END;

FREE OPENCURR->OPENNODE;
OPENPREV->OPENNODE.LINK=NULL;
OPENEND=OPENPREV;

/* READIN: TO READIN DATA FROM 3 FILES:
ID S.P. APPROXIMATIONS FOR S-BOXES FROM SPFILE.
2D SCHEDULE OF KEY INDICES BY LEVEL FROM KSFILE.
3D P-C PAIR FROM PCFILE.
ALL ARE PLACED IN GLOBAL VARIABLES */

READIN: PROC;
DCL [K,OUTPUTS,MAX] FIXED BIN(15D;

OPEN FILECSPFILED,FILECKSFILED,FILE(PCFILED,FILE(SPCFILEDJ
MAX=0;
/* READIN S.P. TERMS FOR S-BOX FNS UNCOMPLEMENTED */
DO OUTPUTS=l TO 32;

DO K=l TO 23;
GET FILECSPFILED EDITCSPTERMS(OUTPUTS,K,*DDC6 ACID,SKIP];
IF SPTERMSCOUTPUTS,K, ID ~= ' ' THEN MAX= K;

END;
IF MAX >MAXPTERMS THEN MAXPTERMS = MAX;

END;

/* READIN S.P. TERMS FOR S-BOX FNS UNCOMPLEMENTED */
DO OUTPUTS=l TO 32;

DO K=l TO 23;
GET FILECSPCFILED ED ITCSPCTERMSCOUTPUTS,K,*DDC6 ACID,SKIP]

IF SPCTERMSCOUTPUTS,K, ID ~= ' 1 THEN MAX = K;
END;
IF MAX >MAXPTERMS THEN MAXPTERMS = MAX;

END;

/* READIN KEY SCHEDULE */

GET FILECKSFILED ED ITCKEYPERMDC48 FC3D,SKIPDJ

/* READIN C1STD P-C PAIR */
GET FILECPCFILED EDITCPTEXT,CTEXT)C64 BC1D,SKIPD,
PUT FILECSYSPRINTD EDITC'DES KEY SEARCH',C14D '*'DC2 CX(40D,A,SKI
PUT SKIPC2D FILECSYSPRINTD EDITC'PLAINTEXT: ',PTEXT,

'CIPHERTEXT: ',CTEXTDC2 CA,64 BC1D,SKIPDD;
PUT SKIP FILECSYSPRINTD LI ST C'NUMBER OF ENCRYPTION ROUNDS:',

NUM_ENCRY_RNDSD;

221

PAUSE

CLOSE FILE(KSFILE}, FILE(SPFILE},FILE(PCFILE},FILE(SPCFILE};

END READINJ

END SETUP;
1
/* ADD_TO_OPEN: TO ADD A NODE WHOSE SUPER IS POINTED TO BY P TO T

HE
END OF THE OPEN Q FOR EVENTUAL EXPANSION.
INPUT: P = POINTER TO THE NODE'S SUPER. */

ADD_TO_OPEN: PROCCPD;
DCL CNEW,Pj PTR;

ALLOC OPENNODE SET(NEW};
NEW->OPENNODE.NODE=P;
NEW->OPENNODE.LINK=NULL;
OPENEND->OPENNODE.LINK=NEW;
OPENEND=NEW;

/* A FIELD IN THE NODE -> TO THE Q NODE WHICH -> IT */
P->SUPER.OPENQ=NEW;

END ADD_TO_OPEN;
1
/* DELETE: TO DELETE THE SUBTREE WHOSE ROOT IS POINTED AT BY CURR

1} SET THE FIELD IN THE FATHER OF CURR WHICH NOW POINTS TO CUR
R

TO BE NULL.
2} RECURSIVELY DELETE THE SUBTREE FROM CURR */

DELETE: PROC(CURR},
DCL (CURR,P} PTR;
DCL K FIXED BIN(15};

/* BASED ON THE TYPE OF CURR NODE, DECIDE WHAT TYPE ITS FATHER
COULD BE, AND NULL THE PROPER FIELD OF THE FATHER ACCORDINGLY

*/

IF CURR=NULL THEN RETURN;
/*ZOOM*/ PUT SKIP FI LE (S Y S PRINT } L'. S T (' ***DELETE FOR NODE:'};
/*ZOOM*/ CALL DUMP(CURR};
SELECT(CURR->SUPER.TYPE};

/* IF TYPE 'R', FATHER IS R OR X */

222

WHENC ' R ') IF CURR->SUPER.FATHER->SUPER.TYPE='R'
THEN CURR->SUPER.FATHER->SUPER.NODE->RNODE.LPTR=NULL;
ELSE CURR->SUPER.FATHER->SUPER.NODE->XNODE.RPTR=NULL;

/ * IF TYPE ' F ' FATHER IS TYPE 'R' * /
WHENC'F 1) CURR->SUPER.FATHER->SUPER.NODE->RNODE.RPTR=NULL;

/ * IF TYPE 'X ' FATHER IS TYPE ' F ' * /
WHENC' X ')

/ * ONLY RESET TO NULL THE ONE PARTICULAR XPTR * /
DOJ

P=CURR->SUPER.FATHER->SUPER.NODE;
DO K=l TO 6 WHILECP->FNODE.XPTRCK] ~= CURR); END;
P->FNODE.XPTRCK)=NULL;

END;

END; / * SELECT * /

CALL DELETE.SUBCCURR); / * RECURSIVELY DELETE SUBTREE * /

/ * DELETE_SUB: GIVEN POINTER TO A NODE, DESTROY IT AND ITS
SUBTREE OF DESCENDANTS. CALLED FROM DELETE AFTER THE
FATHER'S SON POINTER HAS BEEN NULLED
INPUT: CURR = POINTER TO SUBTREE TO DESTROY * /

DELETE_SUB: PROCCCURR) RECURSIVE;
DCL CCURR,P,ACTUAL,PREV) PTR;
DCL GO BITC1);
DCL K FIXED BINC15);

IF CURR=NULL THEN RETURN; / * TRIVIAL CASE * /

/ * IF THE NODE TO BE DELETED IS ON THE OPEN QUEUE,
IT MUST BE REMOVED, TO AVOID TRYING TO EXPAND A
NODE WHICH NO LONGER EXISTS. * /

/ * IF IT WAS 1ST ON Q, WILL BE KILLED IN MAINLINE ANYHOW * /
/ * IF NODE IS ON THE OPEN Q, I.E. IF WE ARE DELETING AN

UNEXPANDED NODE * /
IF CURR->SUPER.OPENQ ~= NULL THEN DO;

/*ZOOM*/ K=0;
PREV=OPENCURR;
DO P=OPENCURR REPEAT P->OPENNODE.LINK

WHILECP ~= CURR->SUPER.OPENQ);
PREV=P;
/*ZOOM*/ K=K+l;

END;

223

PREV->OPENNODE.LINK=P->OPENNODE.LINK;
FREE P->0PENN0DEJ
/* ZOOM*/ PUT SKIP FILECSYSPRINTD LISTC
/*ZOOM*/ 'NODE REMOVED FROM OPEN, ' , K , ' ENTRIES EXAMINED');

END;
1

/* DELETE THE NODE AND ITS CHILDREN */

ACTUAL=CURR->SUPER.NODE; /* ACTUAL IS PTR TO DATA PART OF NODE

SELECTCCURR->SUPER.TYPED;

WHENC'R"D DO;
CALL DELETE,SUBCACTUAL->RNODE.RPTRD j
CALL DELETE_SUBCACTUAL->RNODE.LPTRD j
FREE ACTUAL->RNODE IN C TREE D j

END;
WHENC'F'D DO;

DO K=l TO 6;
CALL DELETE SUB C ACTUAL->FNODE . XPTR C K D D

END;
FREE ACTUAL->FNODE INCTREED J

END;
WHENC'X'D DO;

/* REMOVE KEY BIT HYPOTHESIS */
KEYCKEYPERMCCURR->SUPER.LVL,CURR->SUPER.POSDD=' ' ;
CALL DELETE_SUBCACTUAL->XNODE.RPTRD j
FREE ACTUAL->XNODE INC TREE D J

END;
END; /* SELECT */

FREE CURR->SUPER INC TREED J /* FREE THE SUPER NODE */
END DELETE_SUB;

END DELETE;
1

/* R_EXPAND: TO EXPAND AN RNODE WHOSE SUPER IS POINTER TO BY CURR
IF THE LEVEL OF THE RNODE IS 0 OR - 1 , HAVE HIT BOTTOM OF SEARC

TREE, AND MUST CONFIRM KEY HYPOTHSIS VS. KNOWN PLAINTEXT,
BACKTRACK ON CONTRADICTION.
IF RNODE HAS ALREADY BEEN EXPANDED 2 TIMES, NO DISJUNCTIVE

224

PAUSE:
ALTERNATIVES REMAIN, AND WE MUST BACKTRACK. * /

R_EXPAND: PROCCCURR) RECURSIVE;
DCL CP,CURR,ACTUAL) PTR;
DCL BITPOS FIXED BINC15);

IF CURR->SUPER.LVL <= 0 THEN DO;
/ * HAVE HIT BOTTOM OF TREE. CHECK KEY HYPOTHESIS * /
/ * DECIDE WHAT PLAINTEXT BIT IS REPRESENTED.

(NOTE R3,R1,R-1 FOR LEFT BLOCK OF CIPHERTEXT */•
BITPOS=CURR->SUPER.POS;
IF CURR->SUPER.LVL=0 THEN BITPOS=BITPOS+32;

/ * CHECK WITH PTEXT, BACKTRAVK ON =><= * /
IF CURR->SUPER.NODE->RNODE.VAL ~= PTEXTCBITPOS) THEN

CALL BACKTRACKCCURR);
RETURN;

END;

ACTUAL=CURR->SUPER.NODE; / * SET ACTUAL TO PT TO THE NODE * /

/ * IF NO EXPANSION ALTERNATIVES REMAIN, BACKTRACK * /
IF ACTUAL->RNODE.COUNT = 2 THEN CALL BACKTRACKCCURR);

ELSE DO; / * NODE HAS BEEN EXPANDED O i l TIMES * /

/ * CREATE NEW LEFT SUBTREE * /
IF ACTUAL->RNODE.COUNT=0

THEN P=CREATE_RNODECCURR->SUPER.POS,CURR->SUPER.LVL-2, 11'BO;
ELSE DO;

/ * DELETE OLD RAMIFICATIONS * /
CALL DELETECCACTUAL->RNODE.LPTR)};
CALL DELETEC CACTUAL->RNODE.RPTR));
P=CREATE_RNODECCURR->SUPER.POS,CURR->SUPER.LVL-2, 'O'B);

END;

P->SUPER.FATHER=CURR; / * CHAIN LPTR INTO TREE * /
ACTUAL->RNODE.LPTR=P;
CALL ADD_TO_OPENCP);

/ * ALLOC AN F NODE OF VAL AS RPTR FROM RNODE.
VALUE OF THE FNODE DEPENDS ON THE RNODE COUNT FIELD * /

P = CREATE C ' F ');
IF ACTUAL->RNODE.VAL = ACTUAL->RNODE.COUNT

THEN P->SUPER.NODE->FNODE.VAL='l'B;
ELSE P->SUPER.NODE->FNODE.VAL='O'B;

/ * INIT FIELDS OF THE F NODE * /

225

PAUSE

*/

URR D

ERM */

D,KDD

P->SUPER.POS=P_PERM_INV(CURR->SUPER.POSD;
P->SUPER.LVL=CURR->SUPER.LVLj
P->SUPER.FATHER=CURRj

/* CHAIN THE RIGHT SUBTREE TO THE NEW RNODE */
ACTUAL->RNODE.RPTR=P;
CALL ADD_TO_OPENCP);
ACTUAL->RNODE.COUNT=ACTUAL->RNODE.COUNT+lJ

END;

END R_EXPAND;
1
/* F_EXPAND: TO EXPAND AN FNODE. THIS MAY BE TRIED AS MANY TIMES

AS THERE ARE CONJUNCT TERMS IN THE SP APPROX FOR THE S-BOX
FUNCTION CORRESPONDING TO THE POSITION OF THE FNODE */

F_EXPAND: PROCCCURRDJ
DCL [ACTUAL,CURR,P D PTR;
DCL [TERM,K,BITPOS D FIXED BIN(15);
ACTUAL=CURR->SUPER.NODE;
/* LOOK AT NEXT DISJUNCTIVE POSSIBILITY FOR THE NODE */
TERM,ACTUAL->FNODE.TERMNUM=ACTUAL->FNODE.TERMNUM+1;

/* ESTABLISH WHICH OF THE 32 S-BANK OUTPUTS IS BEING CONSIDERED

BITPOS=P_PERM_INV(CURR->SUPER.POSD;

/* IF THE VALUE OF THE FNODE IS 1, WE USE THE S.P.
REPRESENTATIONS FOR THE UNCOMPLEMENTED S-BOXES */

IF ACTUAL->FNODE.VAL='l'B THEN DO;

/* CHECK FOR NO DISJUNCTIVE POSSIBILITIES LEFT */
IF TERM >2 3 I SPTERMS[BITPOS,TERM,1D=' ' THEN CALL BACKTRACK[C

ELSE DO K=l TO 6;
/* DO NOT CHANGE THE XNODE SUBTREE IF:

ID SPTERM AT POSITION K IS A D.C. OR
2D SPTERM AT POSITION K IS THE SAME AS IT WAS IN LAST T

IF SPTERMS[BITPOS,TERM,KD~='X' &
(TERM=1 I SPTERMSCBITPOS,TERM,KD~=SPTERMS[BITPOS,MAX[1,TERM-1

THEN DO;

226

PAUSE :

TREE*/

CURR D

ERM */

1], K] }

TREE*/

IF ACTUAL->FNODE.XPTRCK]~=NULL THEN /*KILL XNODE SUB
CALL DELETECCACTUAL->FNODE.XPTRCK)D)j

P = CREATE C'X' D;
ACTUAL->FNODE.XPTRCK)=P;
P->SUPER.FATHER=CURR;
P->SUPER.POS = K+ 6*TRUNCC CBITPOS-1)/4DJ
P->SUPER.LVL=CURR->SUPER.LVL;
IF SPTERMSCBITPOS,TERM,K 3 = ' 1 '

THEN P->SUPER.NODE->XNODE.VAL='1'B;
ELSE P->SUPER.NODE->XNODE.VAL='0'B;

CALL ADD_TO_OPENCP)J
END,

ELSE IF SPTERMSCBITPOS,TERM,K 3 ='X' &
ACTUAL->FNODE.XPTRCK]~=NULL

THEN CALL DELETECCACTUAL->FNODE.XPTRCK333;

END;
END;

1
/* ELSE THE FNODE HAS VALUE 0, AND WE USE THE S.P.

REPRESENTATIONS FOR THE COMPLEMENTED S-BOXES */

ELSE DO;

/* CHECK FOR NO DISJUNCTIVE POSSIBILITIES LEFT */
IF TERM >2 3 I SPCTERMSCBITPOS,TERM, 1)=' ' THEN CALL BACKTRACK C

ELSE DO K=l TO 6;
/* DO NOT CHANGE THE XNODE SUBTREE IF:

13 SPCTERM AT POSITION K IS A D.C. OR
2) SPCTERM AT POSITION K IS THE SAME AS IT WAS IN LAST T

IF SPCTERMSCBITPOS,TERM,K)~='X' &
C TERM=1 I SPCTERMSCBITPOS,TERM,K3~=SPCTERMS(BITPOS,MAXC1,TERM-

THEN DO;

IF ACTUAL->FNODE . XPTRCK3~=NULL THEN /*K I LL XNODE SUB

CALL DELETECCACTUAL->FNODE.XPTRCKDDD;
P = CREATE C 1X');
ACTUAL->FNODE.XPTRCKD=P;
P->SUPER.FATHER=CURR;
P->SUPER.POS = K+ 6*TRUNCC CBITPOS-1]/4D;

227

PAUSE:
P->SUPER.LVL=CURR->SUPER.LVL;
IF SPCTERMSCBITPOS,TERM,K) ='1'

THEN P->SUPER.NODE->XNODE.VAL='l'Bj
ELSE P->SUPER.NODE->XNODE.VAL='0'B;

CALL ADD_TO_OPENCPDJ
END;

ELSE IF SPCTERMSCBITPOS,TERM,K) ='X' &
ACTUAL->FNODE.XPTRCK]~=NULL

THEN CALL DELETECCACTUAL->FNODE.XPTRCK)))j

END;
END;

END F_EXPAND;
1
/* X_EXPAND: TO EXPAND AN X NODE. 2 CHOICES FROM XOR ANALOGOUS TO

RNODE EXPANSION, WITH THE EXCEPTION THAT ONLY ONE SUBTREE
GROWS FROM AN XNODE, THE OTHER IS IN THE FORM OF A KEY BIT
HYPOTHESIS */

X_EXPAND: PROCCCURR) RECURSIVE;
DCL CCURR,ACTUAL,P) PTR;
DCL BITPOS FIXED BINC15);
DCL HYPSET CHARC13;

ACTUAL=CURR->SUPER.NODE;
/* CHECK FOR NO MORE DISJUNCTIVE POSSIBILITIES */
IF ACTUAL->XNODE.COUNT=2 THEN CALL BACKTRACKCCURR);

ELSE DO;
/* IF ONE EXISTS, DELETE OLD SUBTREE */
IF ACTUAL->XNODE.COUNT=l THEN CALL DELETECCACTUAL->XNODE.RPT

IF ACTUAL->XNODE.VAL = ACTUAL->XNODE.COUNT
THEN P=CREATE_RNODECE_PERM_INVCCURR->SUPER.POS) ,

CURR->SUPER.LVL-1, '0 'B) ;
ELSE P=CREATE_RNODECE_PERM_INVCCURR->SUPER.POS) ,

CURR->SUPER.LVL-1,'1'B);

P->SUPER.FATHER=CURR; /* CHAIN NEW NODE INTO TREE */
ACTUAL->XNODE.RPTR=P;

/* MAKE THE KEY HYPOTHESIS */

/* DETERMINE POSITION OF AFFECTED KEY BIT */
BITPOS=KEYPERMCCURR->SUPER.LVL,CURR->SUPER.POS);
/* DETERMINE WHAT KEY BIT SHOULD BE, BASED ON COUNT */

228

IF ACTUAL->XNODE.COUNT=0 THEN HYPSET='Q1;
ELSE HYPSET=' 1 ' J

ACTUAL->XNODE.COUNT=ACTUAL->XNODE.COUNT + l j
/* BACKTRACK IF THIS REPRESENTS A KEY BIT CONTRADICTION
IF KEYCBITPOSj~=' ' & KEYCBITPOS) ~ = HYPSET

THEN CALL X_EXPAND C CURR D J /* RETRY EXPANSION, COUNT
ELSE DO;

KEY(BITPOSD=HYPSET; /* SET KEY BIT */
CALL ADD_TO_OPEN[P); /* ADD NODE TO OPEN Q */

END J
END;

END X_EXPAND;

END SEARCH;
//GO.SPFILE DD DSN=GULL ICH.DES.SPTERMS,DISP=SHR
//GO.SPCFILE DD DSN=GULL ICH.DES.SPTERMSC,DISP=SHR
//GO.KSFILE DD DSN=GULLICH.DES.KEYSCHED,DlSP=SHR
//GO.PCFILE DD DSN=GULL ICH.DES.PCPAIRS,DISP=SHR

229

APPENDIX G

APL ROUTINES FOR DES ENCRYPTION

230

CT-KEY DES&ENCRYPT PT;LVL;ROUNDS;L;R;KNEW;LNEW
NOTE: NO IP OR IPINV PERMUTATIONS APPLIED.

ARE ALL 64 BIT BINARY VECTORS

V
[I] fl
[2] fl KEY, PT AND CT
C 3] ft
[4] ROUNDS+2
[5] LVL-1
[6] L-32iPT
[7] R-~32*PT
[8] LOOP:LNEW-R
[9] RNEW+L*R F KEYlKEYSCHEDiLVL;]]
[1 0] L-LNEW
[I I] R+-RNEV
[1 2] •+((LVL+-LVL+1)^ROUNDS) I LOOP
[1 3] CT-R,L

V

[1]
[2]
[3]
[4]
[5]
[6]

V Z-R F K;X;CT
Z«-i0
X+K*R[E]
CT+1
SL00P:Z+Z,(Hp2)TSB0Xl[CTi6;l+2LXlCT+ 0 5] ; l + 2 l X i C T + x 4]]
-»•((CT-*-CT+ 6) < 4 9) / SLOOP
Z-ZlPl
V

V Z-*-GENLKEYSCHED ; KIDX; ROUND
[1] fl TO GE/V 16x4 8 MTX OF INDICES FOR KEY BIT SELECTION
[2] Z*- 0 48 pO
[3] KIDX+XSH
[4] KIDX+KIDXlPCll
[5] ROUND+1
[6] LOOP: fl LEFT SHIFTS
[7] x2B]*-NUMLS[ROUND]4>KIDXZ x 2 8]
[8] KiTJ^L 28 + ! 2 8 1-NUMLSlROUND]$KIDXl 28+ i 28]
[9] Z « - Z , [l] AT£*[PL ? 2]
[0] (ROUND-*-ROUND+l)<16) / LOOP

V

2 3 1

V GEN LPCPAIRS;K;KEYS;KEY;PT;CT;T
[1] PCPAIRS-KEYS— 0 64 p ' »
[2] K+l
[33 L O O P : K F Y + ~ l + ? 6 4 p 2
[4] P r + " l + ? 6 4 p 2
[5 3 CT-KEY DES LENCRYPT PT
[6 3 n
[7] n SAVE INTO GLOBAL SCHEDULES
[83 PC PAIRS—PCPAIRS,[13(' '*T)/T-vPT
[93 'PLAINTEXT1

[10 3 PPRINT PT
[1 1 3 PCPAIRS-PCPAIRS,[13(' '*T)/T-vCT
[1 2 3 ' IA/T0 CIPHERTEXT'
[13 3 PPRINT CT
[143 K F Y S + K F Y S , [l 3 (» '*T)/T-vKEY
[153 ' B Y K F Y : »
[16 3 PPRINT KEY
[173 » '
[183 (K+K+l) £ 5)/L00P
[193 »»
[2 0 3 ' K F Y S : '
[2 1 3 • »
[22 3 (5 3 p 3 0 T i 5) , ' '\KEYS

V

V PPRINT BIN; 7
[1 3 A TO PRETTY-PRINT A BINARY VECTOR IN BIN AND HEX
[23 ((• '*T)/T-VBIN) .' ' , « 0 1 2 3 4 5 6 7 8 9 / ! B O / ; F F ' [l - r l 6 T 2 x $ 1 6 4 pBI / /]

FA/£> O F APPENDIX

232

file:///KEYS

APPENDIX H

PROLOG SYSTEM FOR THE SYMBOLIC S IMPLIF ICATION OF
BOOLEAN EXPRESSIONS

233

/* PROLOG axioms and i m p l i c a t i o n s */
/* t o s i m p l i f y a r b i t r a r y b o o l e a n e x p r e s s i o n w i t h ANDs C&),

ORs C\) , and NOTs C~) i n t o 2 l e v e l s u m - o f - p r o d u c t s */

/* top l e v e l s i m p l i f i c a t i o n d r i v e r .
p a t t e r n match w i t h an s s i m p l i f i c a t i o n p a t t e r n , r e p e a t e d l y */

/* o p e r a t o r d e c l a r a t i o n s */

?-opC8, fx,~) . /* l o g i c a l n e g a t i o n */
?-opC9 ,xfx ,&) . /* c o n j u n c t i o n */
? - o p C 1 0 , x f x , \) . /* d i s j u n c t i o n */

s imp 1 i f y C E x p) :- s impCExp ,SExp) ,
p r i n t s t r i n g C ' S E x p : "), n l , w r i t e [S E x p D , n l , d i s p l a y C S E x p) , n l , n l ,

CCExp=SExp , w r i t e C E x p)) J
C ! , s i m p l i f y C S E x p))) .

s impCExp ,SExp) :- sCExp , SExp)
s i m p C L a r g \ R a r g , R e s) :- s i m p C L a r g , S L a r g) , s impCRa rg , SRarg) ,

C CLarg\Rarg = SLarg\SRarg , ! , b i n d C R e s , L a r g \ R a r g 1)
C ! , s i m p C S L a r g \ S R a r g , R e s))) .

s impCLa rg&Ra rg ,Res] :- s i m p C L a r g , S L a r g) , s i m p (R a r g , S R a r g) ,
C CLarg&Rarg = SLarg&SRarg , ! , b i n d C R e s , L a r g & R a r g]] ,
C ! , s impCSLa rg&SRarg ,Res))) .

/* bot tom out on t r i v i a l cases */
/* l i t e r a l atoms can be s i m p l i f i e d no f u r t h e r */
s (X , X) :- a tomicCX) , ! .
sC~X,~X) :- a tomicCX) , ! .

/* n e i t h e r can t o p - l e v e l & or \ composed o n l y of l i t e r a l s */
/* o rde r the l i t e r a l s by q u i c k s o r t to d e t e c t and t r a n s f o r m :

a&a->a a&~a->0 a\a->a a\~a->l */

sCX ,Y) :- m k l i s t C X , O p , L i s t) ,
a l l i t e r a l C L i s t) , ! , /* X
s o r t l l C L i s t , S l i s t , []) ,
s c a n C O p , S 1 i s t , R e d l i s t) , /*
m k 1 i s t l C Y , O p , R e d l i s t) . /*

must be a o n e - l e v e l exprn */
form reduced l i s t , R e d l i s t *

back to e x p r e s s i o n form */

/* i s a l i s t a l l l i t e r a l s ? */
a l1 i t e r a l ([X I Y]) :- ! , l i t e r a l C X) , ! , a l l i t e r a l C Y)
a l l i t e r a l C X) :- l i t e r a l C X) .
l i t e r a l C X) :- a tomicCX) , ! .
l i t e r a l C ~ X) :- a tomicCX) .

/* t o s o r t a l i s t of l i t e r a l s */

234

s o r t l l C [H I T] , S , X } :- sp 1 i t C H, T, A, B D , ! ,
s o r t l l C A , S , [H I Y] D ,
s o r t l l C B , Y , X D .

s o r t l l C [] , X , X D .

s p l i t C H , [A I X] , [A l Y] , ZD :-
s p l i t C H , [A l X] , Y , [A lZ]D :-
s p l i t C . , [] , [] , []] .

o rde r [A ,HD , sp 1 i t C H , X , Y , ZD .
orderCH,AD , sp1 i t C H , X , Y , Z D .

o rde r p r e d i c a t e d e t e r m i n e s i f 2 l i t e r a l s are
as name f a i l s f o r i n t e g e r s 0 and 1 */

/*
/*
o r d e r (X , 1D
o r d e r [X , 0)
o r d e r C 0,XD
o r d e r C l , X D
o rde rC~X ,~Y D
o rde r C~X,YD
o rde r CX,~YD
orderCX ,YD :

i n c o r r e c t o rde r */

_ j

j

i

f a i l .
f a i l .
, a l e s sCX ,YD

a l e s s C X , Y D .
a l e s s C X , Y D .

- a l e s s C X , Y D .
/* a l p h a b e t i c l e s s - t h a n p r e d i c a t e f o r atoms */
a l e s s C X , YD : - nameCX,l_D , nameCY,MD , a l e s s x C L , M D .
a l e s s x C C D , [_ . _]) .
a l e s s x C C D , []D •
a l e s s x C [HI X] , [HI Y]D :- ! , a l e s s x C X, Y D
a l e s s x C [X I _] , [Y I _] D :- X=<Y.

/* s c a n : t o l ook at s o r t e d top l e v e l atoms 2 - a t - a - t i m e ,
and p e r f o r m a p p r o p r i a t e r e d u c t i o n s */

scanC&, C~AD.A ._ , [0]) :- ! .
scanCN, C~AD• A. _ , [1] D :- » .
sc an C & , A . 0 . _ , [0] D :- ! .
s c a n C \ , A . 1 . _ , [1 3 D :- ! .
s c a n C O p , A . A . X , Y D :- ! , s c a n C O p , A . X , Y D .
s c a n C O p , A . X , A . Y D :- ! , s c anCOp ,X ,YD .
s c a n C _ , A , A] ~: - atomicCAD-

/* i n v o l u t i o n */

sC~C~XD,YD :- ! , s i m P C X , Y D .

/* demorgan */

sC ~CX\YD , ZD :- ! , simpC~X&C~YD , ZD.
sC r CX&Y D ,ZD :- ! , s im P C~X\C~YD , ZD.

/* d r i v e r r o u t i n e to match c o m b i n a t i o n s of top l e v e l \ or &
2 terms at a t ime a g a i n s t p a t t e r n s i n s2 i m p l i c a t i o n s */

sCX,YD :- m k l i s t C X , O p , L i s t D , /* break f o r m u l a X i n t o a l i s t */

235

c o m b 2 C L i s t , T 1 , T 2 , R e m l i s t) , /* s e l e c t 2 t e r m s f r o m l i s t */
P o s s =.. [0 p , T l , T 2] , s 2 [P o s s , S i m p] ,
! , a p p e n d C [S i m p] , R e m l i s t , S i m p l i s t) ,
m k l i s t l f Y , O p , S i m p l i s t) .

/* t o b r e a k an e x p r e s s i o n w i t h \ or & i n t o a l i s t */
m k l i s t C ~ A , X , X) :- ! , f a i l ,
mk 1 i s t C E x p , O p , L i s t) :-

/* make t o p l v l i n t o a l i s t */
m k l i s t l C E x p , O p , T o p l i s t) ,
m k l i s t s u b [T o p l i s t , L i s t , O p) .

m k l i s t s u b [[X] , [X] , O p) :- a t o m i c C X) , ! .
m k l i s t s u b C C X] , [X] , O p] :- ! , mk 1 i s t 1 C X , O p 2 , _) , 0 p \ = 0p2
m k l i s t s u b C [X I Y] , R e s , O p) :- m k 1 i s t C X , O p , L 1) , ! ,

mk 1 i s t s u b C Y , L 2 , O p) , ! ,
a p p e n d C L l , L 2 , R e s) .

/* t e r m i n a t o r i f X c a n n o t be f u r t h e r done: */
m k l i s t s u b C [X I Y] , [X I L 2] , O p) :- ! , m k 1 i s t s u b C Y , L 2 , O p) .

/* t o p l e v e l l i s t b r e a k e r */
mk 1 i s t l C A & B , & , A . R) :- m k 1 i s t 1 C B , a , R) .
m k l i s t l C A \ B , \ , A . R) :- m k 1 i s t 1 C B , \ , R) .
m k l i s t l C X , & , [X]) .
m k l i s t l C X , \ , [X]) .

/* f o r c e p a t t e r n m a t c h * /
b i n d C X , X) .

/* t o s e l e c t a l l t r a n s p o s i t i o n s o f c o m b i n a t i o n s
of o b j e c t s f r o m a l i s t */

c o m b 2 C L i s t , E l , E 2 , R e s t) :- m e m b e r C E 1 , L i s t , P o s 1) ,
m e m b e r C E 2 , L i s t , P o s 2) ,
P o s l \= P o s 2 ,
r e m e l t C E l , L i s t , T e m p) ,
r e m e l t C E 2 , T e m p , R e s t) .

/* t o remove e l e m e n t f r o m a l i s t */

r e m e l t C X , [] , []) : - ! .
r e m e l t C X , [X I Y] , R) :- ! , r j m e 1 t C X , Y , R) .
r e m e l t C X , [A l Y] , [A l R]) :- ! , reme I t C X , Y , R) .

/* l i s t m e m b ership p r e d i c a t e , i n c l u d i n g p o s i t i o n */

member CX, [X l _] , 1) .
memberCX, [_ l Y] , P I) :- memberCX,Y,P) , PI i s P + l .

236

/* l i s t append f u n c t i o n */

append C [3 , L , L D•
append C[X I L 1] , L 2 , [XI L3] D a p p e n d C L l , L 2 , L 3]

/* 2-a t-a- t ime p a t t e r n match i m p l i c a t i o n s */

s2C X\Q , YD
s2C X \ l , ID
s2C X&l , YD
s2C X&O , 0)

! , s i m p (X , Y)

! , s impCX.YD

/* idempotent */

s2C X\X , YD
s2C X&X , YD

! , s impCX .Y)
! , s impCX.YD

/* c o m p l e m e n t a r i t y */

s2C X&C~XD , 0D
s2C X\[~XD , ID

/* d i s t r i b u t i v i t y 1 * /

s2C (A\BD&CA\C) , YD
s2C (B\AD&CA\CD , YD
s2C CA\BD&CC\AD , YD
s2 (CB\AD&CC\AD , YD

simpC A\CB&CD , YD
simpC AXCB&CD , YD
simpC A\[B&CD , YD
simpC AVCB&CD , YD

/* a b s o r p t i o n */

s2C A&B\A&["B D , YD
s2C B&A\A&C~BD , YD
s2 [A&B\C~BD&A , YD
s2C B&A\C~BD&A , YD

s imp C A,Y D
simpCA,YD
s imp C A,Y D
s imp C A,Y D

s2C A\A&B
s2C AXB&A

YD
YD

s imp C A,YD
s imp C A,Y D

s2C A& C A\B D , YD
s2C A&CB\AD , YD

s imp C A,Y D
s imp(A ,YD

s2C A&C~BD\B , Y)
s2 [C~BD&A\B , YD

s impCAXB,YD.
s impCAXB,YD.

/* consensus [o n l y 1- t h a t w i t h 2 terms on l h s */

237

s 2 ((X\YD&C~X\ZD , A) :- ! , simp(X&Z\(~XD&Y , AD.
s2C CY\XD&C~X\ZD , AD :- ! , s imp(X&Z\(~XD&Y , AD.
s2C (X\Y)&CZ\C~XDD , AD :- ! , s i m p (X & Z \ (~ X) & Y , A) .
s2C (Y\XD&CZ\C~XDD , AD :- ! , simp(X&Z\(~XD&Y , AD.

/* d i s t r i b l i t i v i t y 2- l a s t as i t makes more t e r m s */

s2C X&CYNZD , AD :- ! , simp(X&Y\X&Z , A] .

/*zoom a&b&c \ a&b&x&c -> a&b&c k l u d g e */

s2(A\B,SD :-

s u b s e t ([] , Y D :- ! .
s u b s e t C [A l X] , Y D :- mem(A,YD > s u b s e t (X , Y D .

mem(X,[XI_]D :- ! .
memCX, [_ l Y] D :- mem(X, YD .

/* u t i l i t i e s */
p r i n t s t r i n g ([] D•
p r i n t s t r i n g C [H I T] D putCHD > p r i n t s t r i n g (T D •

t e s t l :- s i m p l i f y C ~ ((~ (a \ b D D \ (~ (c \ d D D \ C ~ (e \ f D D D D -

t e s t 2 :- s i m p l i f y (~ (~a&(~bD \ (~c&(~dDD DD.

t e s t 3 :- s i m p l i f y C Ca&C~bD&c&[~dD&e \
C~a]4[~b)&C~eD&f \
C~aD&C~bD&c&(~dD D &

(a&(~dD \
C~aD&C~bD&c&C~dD \
(~aD&b&C~cD&d&(~fD DD-

/* e d i t o r u t i l i t y */
ed : - s h e l l C ' e d m i n " D , [$ m i n] .

m k 1 i s t CA,&,A1 D
m k l i s t C B , & , BID
((s u b s e t [A l , B 1 D
(s u b s e t (B 1 , A l D

a l l i t e r a K A l D ,
a l l i t e r a K B I D ,
! , simp(A,SDD;

! , s i m p (B , S D D D •

238

TEST OF SYMBOLIC BOOLEAN SIMPLIFIER
* ** * * * * * * * * * * *

$ prolog

PROLOG Vers ion NU7. 1
?- [min].

min consulted.

yes

?- 1 i s t ing[test 1] .

t e s t l
:- s impl i fyC~C~ta\b)\~Cc\d)\~Ce\ n n .

yes

?- t e s t l .

SExp :
a&c&e\b&c&e\a&d&e\b&d&e\a&c&f\b&c&f\a&d&f\b&d&f
NCVCXC&Ca.&Cc.eDD.&Cb^&Cc.eDDJ.NC&Ca.aCd.eDD.&Cb.&Cd.eDDDD,
\C\C&Ca,&Cc,fDD,&Cb,&Cc,fDDD,\C&Ca,aCd,f)D,&[b,aCd,fD)Dn
SExp :
aacae\bacae\aadae\badae\aacaf\bacaf\aadaf\badaf
\C\C\CaCa,aCc,eDD>aCb,aCc,eDDD,\CaCa,aCd,e]],aCb >aCd,e)]]),
\C\C&Ca,&Cc , f)D,&Cb,&Cc , f j)D,\C&Ca,&Cd , fn ,&Cb,&Cd , f)D)D)
a&c&e\bacae\aadae\badae\a&c&f\bacaf\aadaf\badaf
yes .
?- 1 i s t ing Ctest2] .

test2
:- simp 1 ifyC~C~aa~b\~ca~d)D.

yes

?- test2.

SExp :
aac\bac\a&d\bad

\C\CaCa,cD,aCb,cDD,\caCa,d),a(b,dDD)

SExp :
aac\bac\aad\bad
\C\CaCa,cD,aCb,cD),\CaCa,dD,a[b,dD)D
aac\bac\aad\bad
yes

239

APPENDIX I

APL CODE FOR AND/OR TREE FORMATION AND TRAVERSAL

240

V Z*-X AND Y\XMAX\YMAX\XC\YC\NEW\ONEXWITHY
[1] +{0*(pX)l2])/NOTNULLX
[2] Z+Y
[3] *0
[4] NOTNULLX-.XMAX-i pX)i 2]
[5] YMAX+lpY)[2]
[6] Z^(2,0,~l+pZ)pO
[7] XC-1
[8] *L00P :0f fm^Tffy*(2 .O,~l*pJr)pO
[9] YC+-1
[10] IL00Pi+(v/AfNEW+Xl i tXC;]vY[; ,YC-.])/NEXTY
[11] ONEXWITHY+ONEXWITHY OR NEW
[12] NBXTYi-+((YC4-YC+l)*YMAX)/YL00P
[13] -*-(0 = (pONEXWITHY) [2])/NEXTX
[14] Z+-Z 0/7 ONEXWITHY
[15] NEXTX-.+i (XC+XC+1)<XMAX) IXL00P

V

V Z+-X AND1 Y
[] Z+TOL1XO(TOLBIT X) AND TO LBIT Y

V

241

V TYPE BUILDSUB ATLLVL;AT;LVL;VAL;SP;NUMSP;TERMNUM;T;K;LOC
TERM;POSN
[1] AT-ATLLVLlll
I 2] LVL-ATLLVL12]
[3] fl CHOOSE TYPE OF NODE TO EXPAND
C 4] -*-((1+TYPE)='T' . 'P' . ' X' , 'R') / TOP , PTERM, XTERM, RTERM
[5] ft
[6] fl INITIALIZE GLOBAL TREE IN PARALLEL VECS
[7] TOP; TREELTYPE— 10000 2 pO
C 8] TPPFAPTP-'-lOOOOpO
[9] TREEtNKIDS-lOOOOpO
[1 0] FREE-2
[1 1] VAL-CTEXTlP0S+32xNR0UNDS=2]*PTEXTlP0S+32*NR0Ur!DS=2l
[1 2] RPOS-POS
[1 3] -*R EXPAND
[1 4] ft
[1 5] fl - - -
[1 6] PTERM:TREE LTYPElAT;1—LAND
[1 7] TREELPTRlATI-FREE
[1 8] TREE LN KIDSlAT~S—+ /TERM* ' X'
[1 9] POSN-FREE
[2 0] FREE-FREE**/TERM*'X'
[2 1] ft L00P POP /ILL LITERALS IN TERM
[2 2] Jf-«-0
[2 3] LOCTERM-TERM
[2 4] LITLOOP:+(LOCTERMlK+ll='X')INEXTLIT
[2 5] ft S E T P i 4 / W S FO/? TO SP EXPANDED
[2 6] RPOS-ElSBOXINP+Kl
[2 7] AW UM-KEYSCHEDILVL;SB OX INP*K]
[2 8] XlML^L0C• :^Ef iM[A'+l]= , 1'
[2 9] 'XTERM' BUILDSUB(POSN+K) tLVL
[3 0] NEXTLIT(.K-K+l) <6) / LITLOOP
[3 1] -+0
[32] ft
[3 3] ft - -
[3 4] XTERM; -»(LV L=l) / BOTTOMOUT
[3 5] T P F F A T T P F ^ Z ' ; >A07?
[3 6] TREE LPT Rl AT"]—FREE
[3 7] TREELNKIDSi ATI—2
[3 8] ft LEFT SUBTREE OF XOR
[3 9] TREELTYPElFREE;~]—LAND
[4 0] TREELPTRlFREE]-FREE*2
[4 1] TREE LNKIDSlFREEl—2
[4 2] ft RIGHT SUBTREEE OF XOR
[4 3] TREE LTYPElFREE*! ; ~]—LAND
[4 4] TREELPTRlFREE+11-FREE+k
[4 5] TREELNKIDSIFREE+11-2
[46] FREE—FREE+6
[47] POSN-FREE

242

[4 8] fl EXPAND RTERMS
[4 9] RVAL-1
[5 0] * RTERM' BUILDSUB(POSN-k).LVL-1
[5 1] tfl//3Z>0
[5 2] 'RTERM' BUILDSUB(P0SN-2).LVL-1
[5 3] n SETtfP KEY HYP FROM LEFT SUBTREE
[5 4] TREEtTYPElP0SN-3 il-L\KEY
[5 5] rtf£F^Pr/?[P05//-3]-«-l + (p A : £ T) [2]
[5 6] KEY-KEY.121 2 64 pO
[5 7] KEYl ',(pKEY)l2l;KNUMl-~XVAL ,~XVAL
[5 8] n S£T£/F KEY HYP FROM RIGHT SUBTREE
[5 9] TREE&TYPEIP0SN-1;1-hKEY
[6 0] TREEbPTRlPOSN-11-1 +(pKEY)I 21
[6 1] KEY-KEY,[2] 2 64 pO
[6 2] # £ T [; (p # E T) [2] -.KNUMl-XVAL ,~XVAL
[6 3] -"-0
[6 4] BOTTOMOUT:TREE&TYPElAT;1-AKEY
[6 5] IF ^ i?APrtf [- , 4 r>l + (p A : £ T) [2]
[6 6] KEY-KEY,[2] 2 64 pO
[6 7] KEYl ; (p # £ T) [2] ;KNUMl-T.~T-PTEXTlRPOS+ 32]
[6 8] -+0
[6 9] Ft

[7 0] n -
[7 1] n RPOS ESTAB IN PTERM OR TOP
[7 2] RTERM:VAL-RVAL*PTEXTlRPOSl
[7 3] REXPAND:-+(~VAL) /COMPL
[7 4] SP-SPTERMSl [PlRPOSl * 4 ; 1 + 4 | P [i ? P 0 5] - l ; ;]
[7 5] +JOIN
[7 6] C0#P£:SP^SPCrFtt¥5[[P[/?P0S]*4 ; 1 + 4 \PlRP0Sl-l; ;]
[7 7] JOIN:NUMSP-+/' • * S P [; l]
[7 8] TflEEAryPEL ' i lT ; 3>A0J?
[7 9] TREELPTRlATI-FREE
[8 0] TREE LNKIDSlATl—NUMSP
[8 1] POSN-FREE
[8 2] FREE-FREE+NUMSP
[8 3] 5B0A-JWP+-l + 6x[(P[/?P0S] -1) * 4
[8 4] TERMNUM—0
[8 5] TERM LOOP:TERM-SPlTERMNUM+1;]
[8 6] 'PTERM' BUILDSUB(POSN+TERMNUM).LVL
[8 7] -+((TERMNUM—TERMNUM+1)<NUMSP)/TERMLOOP
[8 8] -*0

7

243

file:///PlRP0Sl-l

V KEY-DECRYPT PCPAIR;POS;TOP\MASK\NROUNDS;PTEXT;CTEXT
[1] PTEXT-PCPAIRllil
[2] CTEXT-PCPAIR12',]
[3] A LEFTMOST 32 512*5 tfiWE' ££EW ENCRYPTED IN 2 ROUNDS
[4] NROUNDS-2

[5] KEY*- 2 0 64 pO
[6] ft B171 LA TRAVERSE AND I OR TREE FOR EACH BIT OF CTEXT
[7] P05«-l
[8] LOOP:'TOP' BUILDSUB 1,NROUNDS
[9] MASK-TRAVERSE 1
[10] KEY-KEY AND MASK
[11] P05*-P05+l
[12] NR0UNDS-NR0UNDS-P0S=33
[13] P05«-P05-32xP05=3 3
[14] ->-(P05<64)/LOOP

7

V 7J>£WP
[1] PI DUMP ALL TREE PARALLEL VECTORS

[2] K-l

[3] LOOP:TREE K
[4] -+((K-K+l)<pTEEELPTR)/LOOP

7

7

[] X-'OIX*[?((l+?3),4)p3]
7

7 Z-MIN1 INTERSECT MIN2
[1] fl 5£T INTERSECTION OF 2 VECTORS OF MINTERM NUMBERS
[2] Z-{v/MINlo.=MIN2)/MINl

7

244

V Z-X OR Y',XMAX;YMAX;XTAKE;YTAKEiXC',YCiXCUBE;YCUBEiCiCYiCX
;CXEQX;CYEQY
[1] * (0 * (p X) l 2 1) / N O T N U L L X
[2] Z-Y
[3] -*-0
[4] NOTNULLX:+{3=ppX)/OKX
[5] (l t p X) , l . ' l t p *) pX
[6] OKX:+(3 = pp7) /OA'7
C 7] y«-((i + P y) , i , ~ i + P y) P y
[8] ' OKY:XMAX-(pX)l2]
[9] y ^ ^ (p y) [2 3
[1 0] XTAKE-XMAXpl
[i i] y r ^ ^ ^ y w / u p i
[1 2] fl
[1 3] XC-1
[1 4] XLOOP:XCUBE-Xl \XC\]
[i s] y c « - i
[1 6] YLOOP:-(~YTAKE[YCj)/NEXTY
[1 7] y c z / / i £ v y [; y c ? ;]
[18] C-XCUBEvYCUBE
[19] fl CtfFC/X I F C 5,4tfF .45 EITHER ORIGINAL CUBE
[20] -*•(~ A / h / C-XCUBE) ICHECKY
[21] X S M A ^ X O O
[2 2] +NEXTX
[23] CHECKY:-(~*/*/C=YCUBE)/CONSENS
[2 4] IZTIKEL y c] « - o
[25] -+NEXTY
[26] n CHECK IF C IS A CONSENSUS TERM:
[27] CONSENS: -»•(1*+/T-*/C) /NEXTY
[28] c ? [l ; > C [l ;] - ! F
[29] C , [2 ;]<-t?[2 ;] - !r
[30] CX-CvXCUBE
[3 1] CY-CvYCUBE
[32] CXEQX-*/A/CX=XCUBE
; 3 3] CYEQY-A/A/CY=YCUBE
: 3 4] -+(~CXEQX*CYEQY)/Al
!35] X . I i ' l A ' F ^ O O
:36] y [; y c ;] ^ c
!37] -+NEXTX
;38] / 3 1 : - * (~ (~ C X F ^) A C , y F f i y) / > 1 2
:39] y [; y C ;] * C
:40] . -*NEXTY
.41] / ? 2 : ^ (~ C ^ F C ^ A ~ C , y F C y) / A , F A ' 2 ' y
4 2] *[>C"
43] n XCUBE-Xi iXC;]-C -+XL00P ?
44] NEXTY: •+((y O - y C + 1)syAf/3A-)/YLOOP
45] NEXTX:-((XC-XC+1)<XMAX)/X LOOP
46] Z < - U 2 M K F / [2] *) , [2] y 2 M A : £ / [2] y

V

245

v z*-x ORI y
CD Z-TOA1XO(T06BIT X) ORVERB TO&BIT Y

V

V PP
CD o PPI i

7 INDENT PPI AT;K
[1] -*-(TREEhTYPEiAT',] A.= 2 4 p l 0 1 0 0 1 1 0) / AND ,OR .KEY,NULL
C 2] AND_: (INDENTp* ') .'AND*
C 3] -*-</0.TW
[4] OR: UNDENTp' '),'0R'
[5] JOItf: fi DIST RECURSE
[6] i¥«-0
[7] LOOP:(INDENT+3) PPI TREE&PTEiATl+K
C 8] •+((K<-K+l)<TREE&NKIDSlATl)/LOOP
[9] +0
[1 0] KEY:(.INPENTp' ') , r , ' A'EY BIT ' , • (' X' *T«-, TO A 1 X 0 KEYL TREE t^PT
RlATl ;]) i l
[1 1] +0
[1 2] NULL:(INDENTp' •).' V

V TESTAND\XiY;R
[1] n-X-GETI,
[2] •»
[3] D-Y+-GEN
[4]
[5] /?«•-* AND1 Y
[6] "
[7] 'RESULT OF AND:'
[8] R
[9] fi TEST THAT RESULT IS INTERSECTION OF THE 2 COVERS
[0] (^/(ONFOR R)-(0NF0R X) INTERSECT 0NF0R Y) / ' * * * SUCCESS ***'

V

246

V TESTOR;X',YiR
[l] B-X+GEN
[2]
[3] U-Y+GEN
[4]
[5] R«-X 0R1 Y
[6]
[7] 'RESULT OF OR: '
[8]
[9] n TEST THAT RESULT IS UNION OF THE 2 COVERS
[0] {*/(0NF0R R)-(0NF0R X) UNION 0NF0R Y)/'*** SUCCESS ***'

V

V Z-T0bBIT X
[] Z«-U=» l 1) ,[0.5] 0»

V

V Z-TOLMXO X
[1] *(3=pp^)/0X
[2] fl HAVE BEEN GIVEN JUST 1 CUBE
[3] *«-((l i p *) , l , " l + p^)pX
[4] O A : : X [2 ; ;] ^ [2 ; ;] v Z [i ; ;]
[5] Z+'X01' [1 + + /X]

V

247

V RES-TRAVERSE ROOT;NUMKIDS;K
[1] ' fl TO TRAVERSE AND/OR TREE AND RETURN KEY CONSTRAINT
[2] TYPE-TREELTYPElROOT;]
[3] ->•(*/TYPE=bAND) I AND
[4] -»•(̂ /TYPE-LOR) 10R_
[5] -*•(̂ ITYPE-hKEY) I KEY
[6] 'ERRONEOUS TREE TYPE'
[7] 0*0
[8] AND'.NUMKIDS-TREELNKIDSlROOTl
[9] K«-0
[1 0] 2 0 64 pO
[1 1] AND LOOPiRES-RES AND TRAVERSE TREELPTRlROOTl+K
[1 2] -»•((K-K+1)<NUMKIDS) IANDLOOP
[1 3] -»>0
[1 4] OR:NUMKIDS-TREELNKIDSlROOTl
[1 5] K-O
[1 6] i?£S<- 2 0 64 pO
[1 7] ORLOOP:RES-RES OR TRAVERSE TREELPTRlROOTl+K
[1 8] -*•((K—K+l) <NUMKIDS) / ORLOOP
[1 9] -*0
[2 0] KEY;RES- 2 1 64 pKEYl;TREELPTR[ROOT];]

V

V Z-TREE L
[1] fl PRINTOUT ONE SLICE OF THE PARALLEL
[2] n VECTORS WHICH REP THE TREE
[3] Z«-(. (TREELTYPElL;]A.= 2 4 P 1 0 1 0 0 1 1 0) T < 4 3-p'ANDOR KE
Y<S) '),' ' , (wTREELPTRlL']) , ' ' ,lTREE LNKIDSl L]

V

V Z-MIN1 UNION MIN2
[1] n SET UNION OF 2 VECTORS OF MINTERM NUMBERS
[2] Z-ZlkZ-MINl,MIN2l
[3] Z«-((Z i Z) = i p Z) / Z

V

END OF APPENDIX

248

EXAMPLE OF TREE TRAVERSAL

V S A P L

CLEAR WS
DLOAD SEARCH

SAVED 23:18:53 02/05/83
WSSIZE IS 1890896

/* DISPLAY THE TREE STRUCTURE */

PP
OR.

AND
OR

AND

XXXXXXXXXXXXXXXXXXXXXXXXXXX1XXXXXXXXXXXXXXXXXXXXXXXXXXXX C 28)
"XX1XC 55)
XXXOXXXXXXXXC 48)
KXXO(56)
XXXXXXXX1XXXC9)
XXXXXXXXXXXXXXXXXXXXXXOXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXC 23) AND
XXXOXXXXXXXXXXXXC 44)
XXXXXXXXXXXXXXXXXXXXXXXXXX1XXXXXXXXXXXXXXXXXXXXXXXXXXXXXC 27)
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXOXXXXXXXXXXXXXXXXXXXX C 36)
XXC57D
XXXXXXXXXXXXXXXOXXC16)
XXXXXXXXXX1XXXC11)

XXOXXXXXXXXXXXC 45 3
XXXX1XXX C 5)
XXX0XXXXXXXXC48)
XXX1XXC 54)
XXXOXXC 54)
XXXXXXXXXXXXXXXXXXXXX1XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXC 2 2)
D
XXX1XXXXXXXXC 48 3
XXXXXXXXXXXXX1XXC14]
XX C 57)
XXOX C 55)
XXC 57)
XXOXXXXXXXXXXXXX C 43)

OR
~SAND

249

©
V\ AND

XXXXXXXXXXXXXXXXXXXXXXX1XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXC 24)
XXXXXXXXXXXXXXXXXXXXXX1XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXC 2 3 3
XX C 57)
XXXXXXXXXXXX1XXXC13]
XXOXXXXXXXXXC 47 3
XXOXC 55)

ND
XXXXXXXXXXXXXXXXXXXXXXXOXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX(24)
XXX1XXXXXXXXXXXXXXC42)
XXXXXXXXXXXXXXXXXXXXXXXOXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXC 24 3
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXOXXXXXXXXXXXXXXXXXXXXXC 35 3
XXC 57 3
QXXXC13

OR
AND

XXXXXXXOXXC 8)
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX1XXXXXXXXXXXXXXXXXC 39 3
XXC 57 3
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX1XXXXXXXXXXXXXXXXX C 39 3
XXXXXXXXOXXXC9]
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXOXXXXXXXXXXXXXXXXXXXXXC 35)

AND
XXXXOXXX15)
XXXXXXXXXXX1XXC12)
XXXOXXXXXXXXXXXXXXC 42 3
XXOXC 55)
XXC 57)
XXXXXXXXXXXX1XXX[133

/* TRAVERSE THE TREE */

TO_1XO TRAVERSE 1
XXXXXXXX1XXXXXXXXXXXX10XXXX1XXXXXXXXXXXXXXXXXXXOXXXXXX10
XXXXXXXX1XXXXXXXXXXXXXOXXXX1XXXXXXXXXXXXXXOXXXXOXXXXXX10
XXXXXXXXXX1XXXXOXXXXX1XXXX1XXXXXXXXOXXXXXXXOXXXXXXXXXXXX
XXXXXXXXXX1XXXXOXXXXXXXXXX1XXXXXXXXOXXXXXXOOXXXXXXXXXXXX
XXXXXXXOOXXX1XXXXXXXXX11XXXXXXXXXXOXXX1XXXXXXXOXXXXXXXOX
XXXXOXXXXXX11XXXXXXXXX11XXXXXXXXXXXXXXXXXOXXXXOXXXXXXXOX
OXXXXXXOOXXXXXXXXXXXXXXOXXXXXXXXXXOXXX1XX1XXXXXXXXXXXXXX

)OFF

250

