BIDIRECTIONAL HEURISTIC SEARCH AND SPECTRAL S-BOX
SIMPLIFICATION
FOR THE CRYPTANALYSIS OF THE NBS DATA ENCRYPTION STANDARD

by

Eric Alexander Gullichsen
B.Sc.(Hons.), University of Manitoba, 1981

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in
THE FACULTY OF GRADUATE STUDIES

DEPARTMENT OF COMPUTER SCIENCE

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

February 1983

(c) Eric Aiexander Gullichsen, 1983

In presenting this thesis in partial fulfilment of the
requirements for an advanced degree at the University

of British Columbia, I agree that the Library shall make
it freely available for reference and study. I further
agree that permission for extensive copying of this thesis
for scholarly purposes may be granted by the head of my
department or by his or her representatives. It is
understood that copying or publication of this thesis

for financial gain shall not be allowed without my written

permission.

Department of __ Computer Science

The University of British Columbia
1956 Main Mall

Vancouver, Canada

V6T 1Y3

Date March 3, 1983.

DE-6 (3/81)

ABSTRACT

Details of the National Bureau of Standards Data Encryp-
tion Standard (DES) are examined, and the strength of the
cryptosystem found to lie in 1its substitution box (S-box)
components, An unsuccessful attempt is made to discover sym-
metries in the S-box functions under permutation and/or com-
plementation of variables.

The problem of cryptanalyzing DES is then shown to be
equivalent to a problem of tree search. Techniques which
can reduce .the number of tree nodes which need be visited to
effect a cryptanalysis are, investigated. The linearization
of the S-box functions by coefficient translations 1in the
Hadamard spectral domain is found to be highly effective in
reducing search treevsize. For a bidirectional tree search
which employs the ‘linearized S-boxes, the number of nodes
which need be visited to cryptanalyze DES is shown to be on
the order of the key space size. The use of an AND/OR
search tree structure with key bit constraints stored at the
leaves ensures that each node need be visited only once.

Given that the work involved in visiting a node is less
than that required for a key trial, this key search method
represents an improvement over the cryptanalytic technique

of exhaustive key search.

Thesis SUPEIVISOr ..iuiicirernsoseonnscesensssasasasnsenns

ii

ABSTRACT L) . . . L] L]

CONTENTS

Chapter
I . I NTRODUCTI ON . L L L] . . L] L) - . . . * L] L] L] * °
II. S-BOX COMPLEXITY: STRENGTH OF DES « . .
III. AN INVESTIGATION OF S-BOX GROUP PROPERTIES . . .
Theory: Permutation and Complementation
operators . - L] L] L) L] . L] L] . L . L] *
Implementation for DES e e e e s e e s e & s
Application tO DES . 4+ v v &« ¢ ¢ o« o o o o
Iv. CRYPTANALYSIS BY S-BOX APPROXIMATION
V. QUINE-MCCLUSKEY MINIMIZATION OF S-BOXES
Quine-McCluskey: Implementation
Selection of Alternative Terms by REDUCE . .
Individual Term Contribution: RANK-TERMS . .
VI. SELECTION OF THE BEST SUM-OF-PRODUCT TERMS . . .
Combinatorially Exhaustive Best-Set Discovery
A Hierarchical Approach to Best Set Discovery
N-ary Tree Implementation«
VII.‘ SPECTRAL DOMAIN S-BOX ANALYSIS . « ¢ &+ ¢ « o o .
Orthogonal Transformations to the Spectral
Domain: TheOory .+ « « « o o o o o o o &
S-Box complexity in the Spectral Domain . . .
Spectral Translations . .« « o « « ¢« + & o « &
Implementation for DES . . . ¢ v « « o o o &
VIII. UNIDIRECTIONAL CRYPTANALYTIC SEARCH

Search Strategy

Nodes in the Search Tree
Descriptor Node: SUPER
Data Node: RNODE . . .
Data Node: FNODE . . .
Data Node: XNODE . . .

e o o e o o
* o o e o o
e o e s o o
e e e o o @
e ® & o o @
e o o s o o
® o o e o o
. » e & o
e e o o ¢ =
* o o e ¢ o

- 1ii -

The PL/I Procedure: SEARCH «. « . . « 90
The R_EXPAND procedure 92
The F_EXPAND procedure . . . « . « « « . . o 94
The X EXPAND procedure e s s e+ e « « « o o« 95
The BACKTRACK procedure « « . . 96
Application to a 2-Round DES 99
I1X. KEY SEARCHES OF GREATER SOPHISTICATION 102
Computational Complexlty and Bidirectional
Search « « « . 102
Digression: Search as the Solution of Boolean
Equations . . e« o « « « . 109
Symbolic S1mp11f1cat10n Methods B A R
Expression Size+ . « + .+ . . 114
Problems of Simplification 115
A PROLOG Symbolic Simplifier 117
A Modified, Knowledge-Intensive Key Search . 120
AND/OR Expression Tree Formation 122
Implementation of the Tree Formation
Algor1thm e e e e e e o+ o+ o« o 125
AND/OR Expression Tree Traversal e« « . 129
OR-merging of Sum-of-Products
Expre551ons e e e e . « + « « . 130
AND-merging of Sum-of- Products
Expressions« . . 135
X. CONCLUSIONS . . « ¢ o « o o« o o o o o o = .« .« 137
REFERENCES . - - L] . . . L L] L] . . . » 143
LIST OF TABLES v
IIST OF FIGURES . . & ¢ & o o o o « o s s o o o o s o o » . vi
APPENDIX A , 164
APPENDIX B 170
APPENDIX C .. c .. . : . 180
APPENDIX D . . 196
APPENDIX E 205
APPENDIX F 213
APPENDIX G . . 230
APPENDIX H , . . 233
APPENDIX I . . 240

LIST OF TABLIS

PAGE #
. Minimal Sum—of-Products terms for each S-~box
and(_)utput.......................145
. C(f) Camplexity Metric for S-hoxes Before and ‘
After Translation . .+ . ¢ v ¢ ¢ ¢ ¢ « &+ & o « o o« + + = 153

- v -—

10.

LIST OF FIGURES

Exhaustive Tree Search Using No S-box Reduction.
Complete Partitioning of a Matrix.

Essential and Alternative Sum-of-Product Terms.
Represéntation of Quasi-Best Set Search Tree. .
Permutation Cutoff During N-ary Tree Expansion.
Partial Search Tree for 2-Round DES.

Nodes in the Cryptanalytic Search Tree.
Bidirectional Search Tree.

2-Round Search Tree of Uniform Structure.

Stages in the Development of the AND/OR Search Tree.

Page #

. 154
. 155.
156
157
158
. 159
160
. 161
162

. 163

ACKNOWLEDGEMENTS

The author wishes to thank the following people, without
whom the generation of this thesis would have been impossi-
ble: Dr. R.G. Stanton and NSERC for remuneration in various
forms; Dr. Paul Gilmore, for accepting my thesis quickly,
and my advisor Dr, Cyril Leung, for not accepting my thesis
quickly; Dr. D.M. Miller, my surrogate thesis advisor at the
University of Manitoba, for many invaluable and esoteric
ideas about the manipulation and minimization of Boolean
functions; Dr. Hugﬁywilliams for wry psychological encour-
agement and advice. Finally, I wish to acknowledge Micaela,

who helped in her own ways.

- vii -

Chapter I

INTRODUCTION

In January of 1977, the National Bureau of Standards
(NBS) of the United States of America proposed a data en-
cryption standard (DES) which they recommended be adopted
for the purposes of cryptographic protection of commercial
and non-military governmental data [26]. The standard is
designed to be implemented in hardware, and may be employed
for the purposes of both privacy and the authentication of
messages [3,4].

An integral part of the specification of any cryptosystem
is some indication of the nature of the security threat
which the system 1is designed to successfully resist. The
types of attack to which any system may be exposed are usu-
ally divided into three categories [3,4]. The least potent
of these is the "ciphertext only" attack,vin which the cryp-
tanalyst has in his possession only encrypted data, with no
direct knowledge concerning the plaintext. Cryptosystems un-
able to resist such an attack are very feeble, and not in
modern use. The "plaintext" attack is more difficult for a
cryptosystem to resist. Here, the cryptanalyst has knowledge
of the blocks of plaintext which correspond to the blocks of

encrypted text. In this case, only the encryption key, K,

2
remains to be discovered. Finally, the most powerful of all
attacks to which any given cryptosystem may be exposed is
the "chosen plaintext attack"™, in which the cryptanalyst has
possession of corresponding blocks of plaintext (P) and ci-
phertext (C), as in the case of the plaintext attack, and
furthermore that the P are selected by the cryptanalyst.

Although situations of known or chosen plaintext attack
on a cryptosystem may tend to arise fairly infrequently in
the real world, DES was designed to resist éven such an at-
tack. In fact, NBS claims that

"

... no technique other than trying all possible
keys using known input and output for DES will
guarantee finding the chosen key." [26] '

NBS continues its discussion of the security of DES and
indicates that there exist a very large number of possible
keys of 56 bits (about 7x10'¢) as used in DES, in order to
assert that the security of the 'system is adequate and will
continue to be so, given the current state of computer tech-
nology, with the standardvto be reviewed in five years.

In the author's view such superficial reasoning is poten-
tially dangerous, and appears tantamount to asserting that a
'simple substitution cipher as applied to a natural language
is quite secure, since there are 26! possible keys which
must be tried, to guarantee breaking the system. To put
forth such a naive claim indicates that one is either over-

looking or purposefully ignoring a wide range of factors

which méy indeed be of assistance in breaking the cipher

3
system, such as an underlying statistical structure to the
language being encrypted [21], or a feasible means of algor-
ithmically or heuristically "inverting" the encryption al-
gorithm in order to solve for the key K from the given P-C
pairs. The former may be of interest with respect to the
cryptanalysis of text of known structure encrypted with the
DES algorithm. However, this thesis will deal principally
with particular heuristic techniques for the purposes of an
"inversion" of the DES encryption algorithm.

It is realized that at present there exist no good theo-
retical tools for proving the 1impossibility of breaking a
gi&en practical cryptosystem, and that the demonstration of
the security of any such system is usually provided by the
inability of expert cryptanalysts to perform a successful
cryptanalysis. Indeed, with the exception of encryptions
based on tﬁe Vernam system or its variants, no cryptosystems
are theoretically secure, but are simply difficult to break
given the best known algorithms for performing various tasks
[21].

In the majority of instances, the most explicit quantifi-
cation of security of a cryptosystem which can be provided
is to indicate that breaking the system will be "at least as
hard as" some task assumed to be of substantial time com-
plexity as a function of instance length. For instance, the
difficulty of breaking the well-known public key cryptosys-

tem of Rivest et. al. [20] is assumed to be at least as hard

4
as factoring a very large number chosen for use in the sys-
tem.

With respect to the above discussion, NBS may now be
criticized on at least two accounts. Firstly, NBS has ref-
used to provide any theoretical justification for the sup-
posed security of DES, and has only indicated that about 17
man-years of effort were expended 1in the certification of
the standard and that the system is thus secure. Neither
NBS, nor the National Security Agency (NSA) which partici-
pated in this certification process, have released any de-
tails of the study which apparently indicated the strength
of the system. Similarly, no explanation for the structure
of the encryption algorithm has been offered. Such a notice-
able omission of information has led some authors [2,5] to
speculate that DES has concealed within it some "trap-door"
information which would allow those 1in possession of such
details (i.e., the NSA) to break the system with relative
ease.

Secondly, various attempts at cryptanalysis of DES have
indicated that the NBS claim that all possible keys must be
tried to ensure breaking the system is exaggerated. Hellman
et. al. [5] discovered a symmetry under complementation of
P, C, and K which results in a 50% time saving in cryptana-
lysis over exhaustive key search. Elsewhere [6], Hellman
also describes how after initial exhaustive cryptanalysis,

DES-like systems may be broken for subsequent P-C pairs in

5
time on the order of the square root of the key space sizé.
Other authors [2] have suggested that it is technologically
feasible to construct a special-purpose machine with a mil-
lion distinct processor elements which would be capable of
solving for K from any P-C pair in less than 24 hours.

Hopefully, the above serves to indicate that the DES sys-
tem may not be as secure for many applications as either NBS

or the NSA would préfer that people believe.

Chapter 1II

S-BOX COMPLEXITY: STRENGTH OF DES

It will be useful for both purposes of familiarization of
the reader with some details of DES, and to indicate in
which areas of the algorithm the strengths of the system
lie, to examine the encryption algorithm with some preci-
sion. Full details of the algorithm are publically available
in the appropriate NBS documents [26].

In its most common mode of operation, DES serves as an
"electronic code book", encrypting 64-bit blocks P to form
64-bit blocks C, using 56 bits of a 64-bit key K. For a giv-
en K, DES may be thought of as a one-to-one mapping of a
64-dimensional vector space over GF(2) into itself. To aid
in assuring the security of the cryptosystem this mapping
should be highly non-linear. 'Examination of the internal
structure of the DES algorithm indicates that it follows
Shannon's advice of alternating layers of permutation and
substitution, in order to respectively provide diffusion and
confusion [4,21].

Following an initial permutation, the P block is subject-
ed to 16 rounds of an encryption process, where each round
consists basically of a substitution of bits followed by a

simple permutation, and is preceeded by an XORing of bits of

7
K selected in a permuted fashion as a function of layer with
a permutation of the current bits in the developing cipher-
text. At each layer of encryption, this operation is per-
formed on only the rightmost 32 bits of the developing ci-
phertext, but the right and left halves of this block are
transposed at each level. After these 16 layers of encryp-
tion, the resulting block is subjected to another applica-
tion of the initial permutation, inverted, to yield C. In
the case of a known plaintext attack, as is our assumption,
the applications of the publically-known initial permutation
add no difficulty to the cryptanalytic task. |
It may clearly be seen at this point that the strength of
DES rests 1in the process of substitution of bits at each
round, as- performed by the S-boxes. All other operations in
the encryption procedure: the XORing, the permutation, and
the expansion, are linear in binary arithmetic. Were the
substitutions performed by the S-boxes also linear, the en-
tire encryption procedure would be linear, and
C=AP + BK
for C, P and K considered as binary vectors. In such a case,
chosen plaintext cryptanalysis would be equivalent to per-
forming the inversion of a 56x56 binary matrix, as from the
above equation:

BK = C - AP
K = B-! (C - AP)

8
It is thus trivial to calculate K when P and C are known;
the A and B matrices come from the encryption algorithm. It
has been shown [5] that the S-boxes as employed in DES are
neither linear nor affine (a case which would yield almost
as simple a cryptanalytic procedure), although there exists
speculation as to whether or not the S-boxes conceal less
overt trap-door information such as parity.

That it is this non-linearity of the S-boxes which leads
to extensive difficulties in a "search-tree" exhaustive ap-
proach to cryptanalysis may easily be perceived when the
search for K from a known P-C pair is represented graphical-
ly. (Figure 1, Exhaustive Tree Search) The search for K may
be represented as an AND/OR tree traversed in a top-down fa-
shion. At level 1 in the tree, the values for C in all 64
bit positions are known. Level 0 1is represented by an AND
node, as all of its successors must be true, as a result of
precise knowledge of all bits of C. At the leaves of the
tree, the wvalues of P in all bit positions are similarly
known. This search procedure is presented more formally in
Chapter VII.

When one considers the first! branch to this tree, it may
be seen that there are two wayé to make the 64th bit of the
C block 1.2 One such possibility is that the positionally
corresponding bit of L15 and that of f£(R15,K16) are both 0.

* employing a standard preorder tree traversal

* or 0, without loss of generality

9
As a consequence of the structure of the S-boxes, there are
32 ways in which this condition may. be satisfied, if the S-
boxes are utilized in the manner in which they are presented
in the DES literature [26]. Of the sT6=64 possible input
configurations for any S-box, precisely half of these (32)
result in the value of some specified S-box output being 1;
the other 32 cause the S-box output to have a value of 0.
Thus, when the process of encryption is inverted, it may be
seen that any of 32 possible inputs can have caused some
specific S-box output to have a certain value.

Due to this very high tree branching factor, an exhaus-
tive tree search for K would be no more efficacious thanvex—
haustive cryptanalysis by trying all possible K's and deter-
mining their correctness by use of DES in the forward
direction. 1In fact, there would be far more nodes in such a
search tree than there are possible keys of 56 bits.

The fact that the 32 conditions which lead to the same f
output are disjunctive makes it similarly impossible to dis-
cover K by heuristically pruning mutually incompatible but
necessarily conjunctive conditions from the same level of
the tree. All of the input conditions leading to .the S-box-
es production of a 1 output in the given bit position would
have to be inconsistent with that of another AND path before
the subtree growing at such a point could be disregarded.
The search for such conditions throughout the entire tree to
heuristically guide search for K would be more costly than

brute-force exhaustive key trials.

Chapter III

AN INVESTIGATION OF S$-BOX GROUP PROPERTIES

3.1 THEORY: PERMUTATION AND COMPLEMENTATION OPERATORS

In an attempt to discover potential regqularities within
the structure of the DES S-boxes, a method devised by
McCluskey [12] was employed to ascertain whether or not any
of the Boolean functions represented by the actual S—boxeé
employed in the DES system possess any properties of group
invariance. As is described below, it is convenient to in-
terpret each of of the 8 S-boxes as a set of 4 Boolean func-
tions of 6 variables. Each of the 8x4=32 outputs of the
bank of S-boxes is a different function of 6 variables. It
is our concern here to discover which, 1if any, of these
functions are invariant under the permutation and/or comple-
mentation of input variables. The set of all permutation
and complementation operators forms a mathematical group,
hence the term "group invariance" of a function.

As they are represented in the DES algorithm in tabular
form, the S-boxes are exceedingly difficult to work with:
conventional Boolean algebra provides no formalisms for
dealing with such structures. Consequently, each S-box was
interpreted as 4 Boolean functions, each of 6 independent

variables, one such function for each of the S-box outputs.

..10_

11

With little difficulty, it 1is possible to obtain a
Boolean function whose value is equivalent to that of a
specified output bit of any desired S-box. This function is
in the form of a logical sum of elementary product terms
(p?terms) where each such p-term is a logical product of the
values of the 6 input variables to the chosen S-box.

By examining a binary representation of the contents of
an S-box, it is possible to discover for which 32 of the 2°¢
=64 possible input configurations to the S-box a chosen out-
put bit will be on. The row and column index of the S-box
entry with a 1-bit in the chosen output position are used to
determine which input cohfiguration is responsible for the
selection of this entry causing the 1 output. Each of the
32 entries for which the desired output bit will be on will
correspond to a p-term in the Boolean function form for that
S-box - output bit pair: a 0 1in a position of the binary
representation of a S-box entry corresponds to a complement-
ed 1literal in the p-term in the corresponding position,
whereas a 1 corresponds to an uncomplemented literal, For
instance, if S-box 1 output 1 1is on for the configurations
of input variables: 000000, 000001, ... , 111110 then the
p-term Boolean function for that S-box and output may be
written as:

X1'X2'X3'X4'X5'X6"' + X1'X2'X3'X4'X5'X6 + ... + X1X2X3X4X5X6'

Such functions may be obtained for each of the 4 outputs

of each of the 8 S-boxes, and may be represented as 32x6 bi-

12
nary matrices. Each row in such a representation will cor-
respond to a single conjunctive p-term. Following the termi-
nology of McCluskey [12], these matrices will be referred to
as transmission matrices, T.

What is of interest with respect to S-box structure is
the group 1invariance (or lack thereof) of these Boolean
functions. Discovery of the group properties with which we
concern ourselves at this point 1is equivalent to the deter-
mination of whether or not there exist any permutation and/
or complementation operations which leave the functions un-
changed when these operations are applied to the input
variables. If any such group properties are discovered
within the S-boxes, the symmetries they represent may be
used to reduce the size of the search space involved in the
search for the encryption key when cryptanalyzing instances
of the application of DES. The discovery of any symmetries
in the S-box functions will make it possible to represent
these functions in a more compact form, and hence reduce the
branching factor in the search for K. Clearly, it is of
great interest to be able to discover any possible means of
reducing the size of the inevitably large search tree formed
to uncover the key used to encrypt known plain and cipher-
text blocks.

As a simple example of how a discovery of functional in-
variance under the permutation of input variables allows a
more succinct representation of a function, consider the

function:

13
f(X1,X2) = X1X2 + X1'X2 + X1x2'

If it is known that f is symmetric in X1 and X2, then
f(X2,X1) = X2X1 + X2'X1 + X2X1'= f(X1,X2)

and it may be concluded that £f(X1,X2) = X1 + X2.

We shall wuse McCluskey's notation of SiT to represent
some permutation of the Boolean transmission function T
where the 1 subscript represents the specific permutation.
NjT shall be used to represent a complementation of the in-
put variables‘ of T which correspond to a 1 in the binary
representation of the subscript j. For example,

Si(X1 X2 X3 X4 X5 X6) = (X2 X1 X3 X4 X6 X5) for i=213465
and

Nj(X1l X2 X3 X4 X5 X6)=(X1 X2 X3' X4 X5' X6') for j=001011
We are interested in determining, for each T, .the values of
i and j such that SiNjT=T.

Even for our application, which involves a relatively
small number, n=6, of independent variables in the T func-
tions, an exhaustive search for group invariants may easily
be shown to be intractable. There are n! possible Si opera-
tors, and 2Tn possible Nj operators, hence n!2 n possible
SiNj operators. When the T functions involve 6 independent
variables, this means there exist 6!2¢ =46080 possible SiNj
operators., A brute-force determination of the invariance of
T under these operators would involve operating on T with

each of the operators, and then determining if there is some

14
row permutation of the binary matrix which represents SiNjT
which would make SiNjT identical to T's matrix representa-
tion. (If an SiNj operator leaves T unchanged, then the only
possible effect of applying the operator to T 1is to change
the order of the rows of T, analogous to changing the order
of the disjunction of conjunct terms in the elementary p-
term expression). As our T functions involve 32 rows each,
up to 32!=2.6x10°° permutations of SiNjT might have to be
tested for each of the 46080 SiNj operators. To circumvent
such blatant computational intractability, some considera-
tion of the characteristics of the specific T functions is
required.

For an Si operator to have no effect, the columns of T
exchanged by the Si must have equal numbers of 1's, as per-
muting the rows cannot vary the total number of 1's in any
column. For an Nj operator to have no effect, either the
single primed column of T must have an equal number of 1's
and 0's, or else there must exist two primed columns, where
the first has as many 1's as the second has 0's. Following
McCluskey, if one transforms T into a standard matrix D, the
SiNj operators leaving T invariant may be determined direct-
ly from the Si operator which leave D invariant.® (SiD=D). D
is formed from T by priming all columns with more 1's than

0's,

* Actually, which leave invariant either D or any D' formed
by priming suitable combinations of columns of T with
equal numbers of 1's and 0's. This consideration of Ni op-
erators will be deferred until later.

15

As D has columns with at least as many 0's as 1's, one
need only consider permutations of columns with equal num-
bers of 0's. For this reason, D is partitioned into column
partitions where each column present in any given partition
has the same number of 0's. Thus, one need only consider Si
operators which switch columns within the same column parti-
tions. Rows may also be partitioned in an identical fashion:
Only rows from within the same row partition may be permuted
to identify SiD with D.

It can be reasoned that this process of partitioning
should be further carried out on the submafrices of D formed
by the initial partitioning. As McCluskey indicates:

"In general, only rows which have the same weight in each
submatrix can be interchanged. Priming columns of the same
partition does not change the weight of the rows in the
corresponding submatrices" [12: p.1448]

The partitioning process is carried out recursively on
the submatrices formed by prior partitionings of D until a
matrix results in which each row and column of each subma-
trix has the same number of 0's. Assuming that the parti-
tions are relatively small, even an exhaustive approach to
the determination of which row and column permutations leave
D unchanged should be tractable, as only permutations in-
volving rows or columns from within the same partition need
be considered. That 1is, for each possible permutation of
each of the column partitions in the fully-partitioned D, .

permutations of row partitions are applied to restore D to

its original form. If the column partitions of D are very

16
small, the number of possible column permutations is drasti-
cally limited. In the trivial case where each column is in
a partition by itself, where-submatrices have different col-
umn weights for all columns of D, it can be concluded that
no Si exists such that $iD=D.

After D has been fully partitioned and the Si permuta-
tions which leave D invariant have been discovered, we must
consider the D', Recall that as defined, our D may possess
some columns with an equal number of 0's and 1's. 1In this
eventuality, we must form a set of possible special standard
matrices D', by priming certain combinations of the columns
of D which have this equal number of 0's and 1's. These
primings will determine the j superscripts of possible Nj
operators. if we form D'=NjD, and SiD'=D' as determined by
the partitioning and column and row permutations of D', we
can deduce the SiNjT=T represented by this invariance.

Not all possible combinations of primings of these col-
umns of D need be considered; special characteristics of D
will permit the a priori elimination of some D'. If some
row of D is all 0 (or 1) and after priming, D'=NjD does not
also have a row of all 0 (or 1) we know there cannot exist
an Si such that SiNjD=D. No amount of column switching can
allow us to form a row of all 0 (or 1) if such a row does
not already exist in D'.

After the elimination- of some potential D' in this man-

ner, we form the D' and partition them recursively as was

17
done for the D matrix, to form submatrices of the D' with
the property that each row (column) of each submatrix has
the same number of 0's. If any of these D' matrices has the
same partitioning as D, permutations of columns within col-
umn partitions are examined to determine if any such column
permutation, followed by a row permutation of rows within
the same partition(s) can restore the §SiD' to D'. 1If such
permutations exist, we have determined SiNj operators such
that SiNjD=D. (Nj is the priming of D to form D'). From the
initial primings used to transform the transmission matrix T
into the standard matrix D, the SiNjT=T invariances may be

directly determined.

3.2 IMPLEMENTATION FOR DES

The language first chosen for the implementation of this
algorithm, and some subsequent experimentation with DES was
APL, due to its pseudo-parallel array processing capabili-
ties, 1its power with respect to both Boolean and matrix ma-
nipulations, and its interactive nature. The code for all
APL functions referred to in this chapter may be found in
Appendix A. Unfortunately, it was discovered that the compu-
ational cost overhead incurred by the fact that APL is an
interpreted language limits its applicability to problems of
a relatively small size. For later programs involving compu-
tations of a combinatorially large nature, the compiled lan-

guage PL/I was employed.

18

The partitioning procedure described 1in the preceeding
section was implemented as a recursive APL routine,
PARTITION, The routine is passed a standard matrix, as de-
fined earlier, with rows énd column both permuted in order
of increasing number of 1-bits. The initial partitioning of
rows and columns is determined by examining at which points
the next row (column) has more 1's than the preceeding row .
(column). Such positions indicate partition points in the
standard matrix.

This initial partitioning is discovered by means of call
to the routine INITPARTIT. Given a binary representation of
a standard matrix, the routine INITPARTIT returns a 2xN in-
teger matrix of pointers into the standard matrix. Each
pointer indicates a partition point of the standard matrix:
a point before which the matrix should be divided to form a
submatrix. The first row of the matrix of pointers returned
from the INITPARTIT routine refers to divisions between rows
of the standard matrix, while the second row refers to col-
umn divisions.

After having called INITPARTIT to determine the initial
partitioning of the standard matrix as determined by where
the number of 1's in rows and columns changes, PARTITION
calls the recursive routine PARTITCALL with both the initial
partitioning and the standard matrix as arguments.

It is this PARTITCALL routine which may be considered the

central routine in the partitioning system. The routine is

19
passed both the standard matrix, and the partition points
which divide that matrix into the first level of submatric-
es. Employing two nested loops, PARTITCALL iterates through
all of the initial submatrices of the standard matrix by
columns. For each of these submatrices, INITPARTIT is
called to obtain the initial partitioning of that submatrix,
and PARTITCALL is recursively invoked to further partition
the submatrix. PARTITCALL returns a matrix of pointers con-
taining all partition points discovered for either the ini-
tial matrix with which it was invoked, or ény recursively-
discovered submatrices of that matrix.

During.the debugging of this system of routines, it was
discovered that the above recursion was insufficient as im-
plemented to discover the complete partitioning of a binary
matrix. (Where as defined earlier, a completely partitioned
matrix is one in which all rows (columns) within any parti-
tion have the same number of 1's). The reason for this was
that partitions made in one submatrix at a specifié level of
recursion are not known to other submatrices at the same
level of recursion during their partitioning.

Consider, for instance, the following case which acutally
occured during the partitioning of the standard matrix rep-
resenting the Boolean function for S-box 1, output 1. Sup-
pose that 2 has already been discovered as a column parti-
tion point for the top 1level matrix as a result of the

partitioning of some submatrix occuring higher in the same

20
column as the submatrix currently being processed. That is,
a partition should exist between columns 1 and 2 of the
standard matrix. Suppose also that the submatrix now occur-
ing lower in the column is:

011110
101011
Application of the recursive partitioning routine to this
submatrix would result in the following partitioning:
01 J]1|1]1]60
100111
Each of the submatrices formed as a result of this parti-
tioning indeed satisfies the property of each row (column)
having an equal number of l1's. However, as a division exists
in the top 1level matrix of which this is a submatrix as a
result of an earlier partitioning of another submatrix, the
top level matrix may not be fully partitioned, even after
all submatrices have been partitioned in this manner. The
division existing between the first and second columns im-
plies that within the illustrated submatrix, two 2x1 subma-
trices exist which do not have an equal number of 1's in
their rows.

As a consequence of this ignorance of each submatrix con-
cerning the partitioning of the other submatrices at 1its
sahe level, to fully partition the standard matrix it does
not suffice to simply call PARTITCALL once. Consequently,
the PARTITION routine calls PARTITCALL iteratively. On the

first call to PARTITCALL, the partitioning of the standard

21
matrix supplied is that returned by INITPARTIT. Subsequent-
ly, PARTITCALL is called with the initial partitioning set
to be the complete partitioning as returned from the previ-
ous call to PARTITCALL. In this manner, the partitionings of
each submatrix are made known to other submatrices at the
same level. With reference to our example, the fact that a
partition exists between the first and sécond columns is
known globally when PARTITCALL is iteratively reinvoked from
PARTITION, so the two 2x1 submatrices with unequal numbers
of 1's in their rows would be further partitioned during
this call. The process of partitioning terminates when no
further partitionings are discovered as a result of repeated
calls to PARTITCALL.

Another routine, PRINT-PARTIT, was devised to display the
partitioning of a matrix. When called with a matrix and its
partition points as arguments, the matrix is printed with
spaces between its submatrix components.

An illustration of the operation of these partitioning
routines may be seen in Figure 2, Complete Partitioning of a
Matrix. A 9x6 binary matrix is partitioned, and the result-
ing partitioning displayed by call to the PRINT-PARTIT rou-
“tine. This matrix is the same as thaf used by McCluskey
[12: p.1447]). From this example, it may clearly be seen that
each row (column) of the fully partitioned matrix has an

equal number of 1's.

22
3.3 APPLICATION TO DES

As the discussion of the algorithm for detecting group
symmetries in Boolean functions indicated, after a standérd
matrix has been formed, only columns from within the same
column partition may be permuted, if the matrix is to be re-
stored by means of row permutations. Thus, the first step
towards the discovery of possible symmetries in the trans-
mission functions which represent the DES S-boxes is to ful-
ly partition the standard matrices for such transmission
functions.

For this purpose a driver routine, PARTITION-ALL, was im-
plemented, to call PARTITION with standard matrices repre-
sentative of the transmission functions for each of the 32
possible S-box - output pairs. This driver routine forms all
of these transmission matrices T from S-box data, and puts
T into standard form by priming all columns which contain
more 1's than 0's. The rows and columns of each standard ma-
trix are then permuted in order of increasing 1l's.

The purpose of this routine was to obtain some approxi-
mate idea of how small the column partitions of the standard
matrices would be, to determine the tractability of an ex-
haustive approach to the permutations of columns within the
same column partitions. As usual, the numbers indicative of
the partition points are positions before which the matrix

should be divided.

23

As may be seen in the table of output from this routine,
somewhat surprising results were obtained. All 32 matrices
partition so that there is only one row and one column in
each submatrix; submatrices are all 1xl in size. Such a
structure implies that for these functions, no SiNj exist
such that SiNjT=T. There is no possible way to complement
and/or permute the inputs to any S-box and leave the S-box
functionally invariant. This approach to the discovery of
S-box symmetry 1is consequently of no use in reducing the
search space size during cryptanalysis.

Subsequent discussion of the problem of symmetry detec-
tion with Dr. D.M. Miller led to the idea of the use of Rad-
macher-Walsh spectral techniques for the detection of any
partial two or multi-variable symmetries which may be pres-
ent in the Boolean functions for the S-boxes [14,17]. Al-
though it is not possible to permute and/or complement any
S-box inputs and leave the function of any S-box invariant,
it may be possible that for some S-boxes such symmetries as:

£(0,1,...) = £(1,0,...)
do exist. The existence of even'such partial symmetries in
the S-boxes could allow us to reduce the size of the seach
tree for the encryption key. The application 6f such tech-
niques to the S-box functions has not as yet been pursued,

and remains as an interesting problem for future research.

Chapter IV

CRYPTANALYSIS BY S-BOX APPROXIMATION

Given that the core of the problem of cryptanalysis of
DES rests in the complexity of the S-boxes, it was decided
that one potentially successful means of attack of DES could
conceivably be through approximation of the S—boxés. P-term
expressions for the Boolean functions embodied in the S-box-
es have already been obtained as a result of the analysis of
the preceeding chapter. Other advantages may result from
obtaining some sort of "minimal" sum-of-products expression
for each S-box output, as a function of the 6 input vari-
ables or their complements. Such a representation may be
amenable to making some as-yet unnoticed S-box structure
more apparent. A more compact expression for the action of
the S-boxes should reduce the effective branching factor of
the search tree, and should also assist in increasing the
tractability of the operation of pruning this search tree.
For these reasons, we shall wish to obtain sum-of-product
expressions for each output of every S-box which contain the
minimal number of Boolean literals required to express the
function which represents that S-box - output pair.

More specifically, having the S-boxes in such a form may

permit the Boolean functions performed by the S-boxes to be

24

25
approximated in such a manner as to allow a valuable trade-
off between the accuracy of the approximatea S-boxes and the
cost of the solution for K from P and C in such an approxi-
mate system, Suppose for instance that some approximation
to the S-boxes as could be achieved by considering the sum
of only the 3 most significant conjunctive terms in the
sum-of-products expression for each S-box - output pair
yields a system which may be simply inverted, and it is pos-
sible to tractably solve for K, from P and C.*

Unfortunately, if the functions which represent the §S-
boxes are only approximate, and are thus not correct for all
possible input configurations, the K obtainea from search
with a P-C pair may also be incorrect. If the K we obtain
as a solution has a probability of being correct of only
1/n, then on average we must solve for K using n/2 P-C pairs
before the resulting K:P->C under the "real” DES algorithm.
However, if the time required to discover a K in the approx-
imate DES system is a factor of more than n/2 less than that
required when accurate S-box functions are employed (weight-
ed by the cost of the n/2 encryption trials to ascertain if
the K is correct), then this cryptanalytic technique should

be of some merit.

* The solution need not be analytical, but may well involve
heuristic search of a tree simplified in the sense of it
having a reduced branching factor resulting from the use
of the simplified S-box expressions.

26
In summary, we wish to approximate the Boolean functions
which represent the S-boxes, and search for K from P-C
pairs, an unlimited amount of which are avaialble to us. As
the S-box functions are only approximate, such K may be in-
correct. Any potentially-correct K discovered may be quick-
ly verified by seeing if it does map P to C. We continue to
produce a potential K by using. the search procedure with
with different P-C pairs until a correct K is produced.
Generally, it would be of interest to examine the charac-
teristics of the tradeoff between the degree of S-box ap-
proximation, and the time required for cryptanalysis. As
one continues to simplify the S-box approximating expression
in some regular fashion, the encryption employing these ex-
pressions will continue to lose accuracy, although an ana-
lytical or search-tree solution for K should become more
simple. Exactly how optimal a simplification may be
achieved, from the perspective of cryptanalytic cost, is an-
other topic for future research. This thesis will be more
concerned with the reduction of the size and complexity of
the functions represented by the S-boxes without any compro-

mise in their accuracy.

Chapter V

QUINE-MCCLUSKEY MINIMIZATION OF S-BOXES

5.1 QUINE-MCCLUSKEY: IMPLEMENTATION

Several classical methods exist in the field of digital
logic design for the minimization of Boolean functions.
These include the Karnaugh map method and the Quine-McClus-
key (QM) procedure [13], this latter procedure being more
suited to computerized implementation. Both are designed to
minimize the Boolean function in . question as a sum-of-prod-
ucts expression. The Reed-McClennan technique is occasional-
ly employed as an alternate procedure, to minimally express
any given Boolean function by means of XOR operations.
While such a minimization algorithm may be of use as the S-
boxes could be as heavily XOR-oriented as the remainder of
the DES algorithm, the reliance of the Reed-McClennan algor-
ithm on highly topological methods makes it clumsy to imple-
ment. Chapter VII will be concerned with alternatives to
the Reed-McClennan technique for the extraction of XORs.

The OM algorithm may be seen to have two distinct phases:
that of discovering all prime implicants, and that of form-
ing non-redundant sums. A prime implicant of an n-variable
Boolean function £ 1is a product term B consisting of m

(which is not greater than n) literals, such that B->f, but

27.

28
that any B' formed by deleting a literal from B no longer
implies f. A literal is a Boolean variable or the complement
of a Boolean variable. It is not of substantial interest to
discuss the details of the QM procedure here, as the algor-
ithm referred to may be found in McCluskey's paper [13], or
in any standard textbook concerned with digital logic design
[16].

An implementation of the QM algorithm was devised and ap-
plied to the S-boxes of the DES system. The code for the
routines referred to in this section may be found in Appen-
dix B. As previoﬁsly mentioned, it is possible to view the
bank of S-boxes in the DES encryption algorithm as 32 sepa-
rate Boolean functions, each of 6 independent variables.
Both these functions and their complements were minimized by
the QM procedure. The requirement for minimal forms for the
complements of the S-box functions, i.e. minimal forms to
describe the input conditions for which an output of the S-
bank is 0, is elaborated upon in Chapter VIII. The require-
ment is connected to the fundamental aéymmetry in the number
of ways a sum-of-products form and the corresponding prod-
uct-of-sum form generated by DeMorgan complementation may be
instantiated to produce a functional output of 1.

The routine ANALYZE calls QM iteratively for each of the
32 possible S-box - output pair combinations. QM calls the
function PRIMIMP in order to determine the prime implicant

terms for the various inputs. Complemented and uncomple-

29
mented forms of the S-boxes themselves are represented as a
global 3-dimensional matrix consisting of a lamination of
the tables as supplied in the DES literature [26]. The func-
tion BINARY converts the decimal representation of the S-
boxes to binary, and the ON function, also called from
ANALYZE, returns the 32x6 matrix of p-term inputs for which
the specified output of the specified S-box is on, i.e. 1.

By means of the ANALYZE procedure, global tables of és-
sential and alternative products of input literals for each
of the 32 S-box - output pairs were constructed. At this
point, exact expressions for the S-boxes had still not been
discovered. The essential terms are those which must be in-
cluded; the table of alternatives indicates what options are
available in selecting the remainder. For the purposes of
visual inspection to detect some overt S-box structure,
these tables were printed by the DUMP-SP routine. One such
table may be séen in Figqure 3, Essential and Alternative
Sum-of-Products Terms.

Each row of the table of terms corresponds to a single
p-term, where the p-terms are in a notation known as "cube"
notation® as developed by Roth [10]. 1In this notation, the
presence of a 1 in some position of a p-term indicates that
the corresponding literal is to remain uncomplemented; a 0

indicates complementation is to occur. The presence of an X

* Named for the topological interpretation in which each
variable of an n-variable function corresponds to a vertex
of an n-dimensional cube.

30
indicates that the wvalue is a "don't care", and the input
variablebmay be ignored. The rather sparse occurence of
don't care inputs is remarkable. 1In the alternatives table,
the integer to the right of the term indicates the class to
which that product term Belongs, and only one term from each
class need be chosen from the set of all choices, when com-
bined with the essential terms, to form a fully accurate
representation of the S-box. |

In order to verify that the QM minimizations performed
are accurate, the PROB-CORR function was used to check that
the minimal Boolean expression for each S-box returns the
same value for every possible input configuration as does
the real tabular S-box. This function was also later used to
determine the probability of correctness of some approximate

forms of the S-boxes.

5.2 SELECTION OF ALTERNATIVE TERMS BY REDUCE

After the Quine-McCluskey minimization procedure had been
applied to the Boolean functions represented by the S-box
tables, it was necessary to select one conjunct term from
each of the classes of implicationally equivalent terms, in
order to be able to represent the output of each of the S-
boxes in a closed form.as a sum-of-products expression.

After some reflection, it became apparent that there ex-
isted techniques for the selection of such a class represen-

tative which were in some ways superior to simply picking

31
the positionally first member of each class as the conjunc-
tive term representative of that class, a simpleminded
strategy first followed by SELECT-SP in forming the sum-of-
products expression used by PROB-CORR to verify the correct-
ness of the minimization as mentioned in the preceeding sec-
tion. Referring to Figure 3 again, one may notice that
there exist terms which appear in more than one class. Cer-
tainly, the selection of such a term as a class representa-
4tive would eliminate the need for selecting any 'member of
the other class(es) in which it appears, hence reducing the
number of terms in the sum-of-products expression without
losing any accuracy. Such an ability is clearly advanta-
geous.

The APL routine REDUCE employs this strategy in a relaxa-
tion-like fashion, to potentially reduce the number of
classes prior to the selection of terms as class representa-
tives. A comparison of each alternative term with all other
alternative terms 1is performed to detect the existence of
identical terms in different claéses. Beginning with the
term which most often appears inter-class, as the same term
could appear in more than two distinct classes, and itera-
tive repeating the process on the alternative terms which
reméin after this reduction, the REDUCE routine serves to
constrain potential choices of alternatives.

As the above technique cannot serve to completely con-

strain the choice of class representative terms except in

32
the most radical of circumstances, where all classes contain
some term also occﬁring in another class, a case which never
occurs in DES, the problem remains of éhoosing the "best"
representative of each class from the remaining terms. The
REDUCE routine heuristically and somewhat arbitrarily se-
lects as class representative the term which contains the
most don't care (X) values. It was hoped that such a selec-
tion «criterion could serve to simplify future operations
which involve the sum-of-products expressions.

It is clear that the heuristic of selecting class repre-
sentatives haQing the most don't care inputs may not be op-
timal for reasons which pertain to the applications of our
minimal functions. As the minimal sum-of-products expres-
sions are to be used in the tree search procedure for K, it
will be desirable to have expressions for the S-boxes with a
maximal number of terms in common, to allow pruning across
subtrees during search tree growth. For this reason, the in-
teractions between the functions which represent the S-boxes
may prove to be of significance. Thus, it may eventually be
necessary or advantageous to perform a simultaneous mini-
mization of all functions for the entire bank of S-boxes.

The sum-of-product terms resulting from the application
of REDUCE to the tables of essential and alternative terms
are stored in a global 4-dimensional matrix, SPTERMS, whose
space and plane coordinates respectively represent S-box and

output bit choices. The sum-of-product terms produced by

33
REDUCE may be seen in Table 1, where these p-terms are in
cube notation. The minimal sum-of-product expfessions for
the S-box outputs contain between 14 and 23 terms depending
on the function. This may be seen as a significant reduction
from the 32 terms involved 1in the elementary p-term expres-

sion for each function.

5.3 INDIVIDUAL TERM CONTRIBUTION: RANK-TERMS

After having obtained such a minimal expression for each
S-box and output pair, it was desired to ascertain which of
the terms of each expression was most important, i.e. which
of the terms contributed the most to the probability of cor-
rectness of the expression. One may speak of each term as
possessing an associated probability of correctness value,
Pcorr, which indicates the probability that the single term
produces the same output for éach possible input configqura-
tion as does '~ the S-box in whose approximation the term ex-
ists.

Knowledge of this quantity was originally considered nec-
essary in order to rank the terms in importance, to allow
the selection of the "best" n terms to approximate the exact
sum-of-products form. A scheme of greater sophistication
was actually-employed for this purpose, as elaborated in the
succeeding chapter.
| To accomplish this estimation of the importance of indi-

vidual conjunctive terms, the RANK-TERMS procedure was de-

34
vised. This program calculates the contribution of each
term to the correctness of the expression; and accordingly
reorders the terms in SPTERMS for each S-box and output. The
routine CONTRIB calculates the "contribution" of a single
term, by assuming that the S-box is represented by the sin-
gle conjunctive term which the routine receives as an argu-
ment and calculating the percentage of the 64 possible in-
puts to that S-box which produce the correct output bit. For
most terms, the calculated contribution value 1is slightly
above .5, 1i.e. the term in question "turns on" for several
input configurations. |

RANK-TERMS iterates over all S-box - output pairs, and
calls CONTRIB to ascertain the contribution of each term.
The terms in SPTERMS are ranked 1in decreasing order of con-
tribution. Table 1 displays the ranked terms, together with

their associated Pcorr values.

Chapter VI

SELECTION OF THE BEST SUM-OF-PRODUCT TERMS

6.1 COMBINATORIALLY EXHAUSTIVE BEST-SET DISCOVERY

When one approximates something, it is often wuseful to
have a precise gquantitative measure of the gqualitative
"goodness" of the approximation, where "goodness" must be
accurately defined. In our situation which pertains to the
formation of sum-of-productvexpressions to approximate the
output of an S-box, the precision of the expressions may
easily be quantified. The Pcorr of a sum-of-products ex-
pression is defined as the fraction of the number of inputs
for which the result of the expression has the same value as
the output of the S-box which it approximates. Notice that
these Pcorr will always 1lie in the range {.5,1}. In the
trivial case where the approximation consists of 0 terms,
the approximate expression's output will always be 0, ‘as
will that of the S-box for half of the input configurations.
An increase in the number of terms in the approximation can
only increase the Pcorr. As the conjunct terms were ob-
tained from a QM minimization of the S-box output values,
the approximating expression can never return a 1, when the

actual S-box output should be 0.

36

The principal question to be answered at this point in
our discussion is: Given the chance to select n sum-of-prod-
uct terms to approximate an S-box output, what terms should
be chosen to guarantee the best possible approximation? This
raises a related consideration, the answer to which is not
evident a priori: Denote by Bn a set of n conjunct terms
which have a correctness value at least as high as any other
possible selection of n terms. If one is only permitted to
change the approximating expression by the monotonic addi-
tion of terms, will such an expression always be a most cor-
rect approximation? That is, will there always be a set
Bn+l such that this Bn+l contains a Bn, for all n?

To attempt to address the preceeding two questions, a
system of PL/I routines was written, as may be seen in Ap-
pendix C. Although the author finds PL/I to be a primitive
and clumsy‘computer language to use, it was chosen for its
reasonably high speed of execution. Combinatorially large
problems tend to be computationally intractable in APL, due
to APL's interpreted nature. Two small APL routines,
DUMPTERMS and DUMPONS, were written to create PL/I-accessa-
ble datasets which contain both the complete sum-of-products
representation for each S$-box - output pair, énd the vectors
of input variable values for which the corresponding S-box
outputs were on.

The output which resulted from running the routines on

the p-terms discovered by Quine-McCluskey minimization of

37
S-box 1, output 1 may be seen in Appendix C, following the
program listing. Page xxx lists this minimal set of p-
terms, together with a list of the 32 input configurations
for which this particular S-box function returns a 1.

- The PL/I system operates in three distinct steps. First,
the 23x32 binary "contribution table" 1is formed, as may be
seen on page 188. Each row of this table corresponds to a
particular p-term; the corresponding p-terms may be seen to
the left of the table. The binary entries in a row 6f the
table indicate if that p-term is "on" for a particular input
configuration which causes the function to be 1. There are
32 columns in this table, as for each S-box output there are
precisely 32 input configurations which cause that output to
be 1. In this sense, the matrix indicates the contribution
of each term. Specifically, a particular term is on for a
given input configuration if an ORing of the don't care in-
put positions of the term with the XOR of the complemented
(0) positions of the term with the input string yields a
string of all 1's. The rows of CONTRIB correspond to terms.
As mentioned at the end of section 5.2, an exact sum-of-
products expression for any given S-box - output pair re-
quires at most 23 conjunctive terms, which explains the di-
mensioning of the CONTRIB matrix. Within a row of CONTRIB,
1's indicate for which of the 32 inputs the term is on in

the sense indicated above.

38

Next, the COVER table is created, using CONTRIB. COVER is
an Mx23 binary matrix, formed to contain an indication of
which of the conjunct terms to select to get the best ap-
proximation to the S-bo#, given that one 1is restricted to
selecting precisely k=1,2,...,n of these terms. A portion
of this (rather lengthy) table appears from pages 189 to
193. It is in the creation of COVER that most of the compu-
tational complexity of the system resides. 1In order to de-
termine the best selection of k terms, all choices of k
terms selected from a set of n possible terms must be exam-
ined. In iteratively determining the best selection of k
terms as k ranges form 1 to n terms, a total of 2Tn selec-
tions must be considered. As n may be as large as 23, this
computation is far.from trivial.

Due to the associated expense, only the terms for the
first output of the first S-box were searched in this man-
ner, prior to developing a more sophisticated technique for
discovering best sets. To perform the analysis for output 1
of S-box 1 required 788 seconds of execution time, on the
AMDAHL 470/V8 at U.B.C. The improved algorithm of the next
section subsequently reduced this execution time by a factor
of more than 40.

The cover table is partitioned into n sets of best-sets,
where n is the number of p-terms in the S-box approximation
(n=17 in the example for S-box 1, butput 1). The partition-

ing of the table is indicated 1in the output by blank lines.

39
The cover table analysis table at the top of page 189 indi-
cates the number of best-sets in each partition. For in-
stance, there are 2 ways to select the best set Bl, which
contains 1 p-terms; only 1 way to select B2; 12 ways to se-
lect B3; and so forth. For each of the n sets of these
best-sets, a Pcorr value may be seen 1in the cover table
analysis section of the output produced by the PL/I routine.
For a particular best-set k, this value denotes the correct-
ness of the approximation if any set from that set of best
sets is chosen as the approximation to the S-box. That is,
the Pcorr value denotes what fraction of the possible inputs
are mapped to the correct output value. It is trivial to no-
tice that as k increases, the associated correctﬁess value
strictly increases.® For ease of readability, the dump of
the COVER table shows the table partitioned into the differ-
ent sets of best-sets. It is clear that within a row of this
tgble a value of 1 indicates that the term in the corre-
sponding bit position is to be chosen as part of the approx-
imation. (The 23 columns in the table correspond to the 23
p-terms in an S-box function).

The creation of the COVER table served to answer the
principal question posed at the beginning of this section. A
best approximation to an S-box, where the approximation is
restricted to possessing k terms, 1is found by selecting any

element from the kth set of best sets in the COVER table.

¢ If it did not, this would imply that our QM minimization
procedure was faulty, and had produced redundant terms.

40
The correctness value for such an approximation is known.

The last purpose of the system of routines is to perform
a search of the cover table to see if there exists a way to
select one member of each set of best sets, such that the
set of terms indicated by each selection is a subset of the
terms indicated by the selection from the next set of sets.
The search was implemented as a standard top-down search of
the COVER table, with backtracking on failure. As may be
seen on page 195 of the output, this search was successful
for S-box 1, output 1.

This term selection table is a cumulative record of the
sum-of-product terms chosen at each level. One new 1 appears
in each sucéessive row of the table;‘ its position corre-
sponds to \the one new term added to the previous terms to
form the new, more correct, approximation. The corresponding
correctness values for these successive selections are re-
peated in this table. An alternative representation of this
data is provided below the table, for the sake of conven-
ience, with the terms listed in order of decreasing value.
That is, to form a best approximation to the S-box output
using k terms, one should select the first k terms of this
list._ |

It should be apparent at this point why the RANK-TERMS
procedure was used to put the terms in decreasing order of
their individual contribution to S-box correctness. By hav-

'ing the best terms appear first, considerable backtracking

41
during the search of the COVER table was avoided. As this
table was of substantial size, the rather mihimal effort in-
volved in ranking the terms individually was deemed worth-

while.

6.2 A HIERARCHICAL APPROACH TO BEST SET DISCOVERY

Due to the computational expense inherent in the combina-
torially exhaustive approach to the discovery of the "best
sets" which was described in the preceeding section, a more
sophisticated technique was later devised in order to reduce
the expense of this operation within reasonable bounds.

The 788 seconds of CPU time required for the best set de-
termination for output 1 of S-box 1 was considered to be in-
dicative of the infeasibility of using such an exhaustive-
search program on all of the 32 S-box - output pairs. This
particular S-box - output pair has a.complete approximation
containing 17 terms, hence 2’ selections are involved in a
complete exhaustive search for best sets of size l...n. To
apply such an appréach to an S-box output whose approxima-
tion contains 23 terms would require 22° comparisons. This
is a factor of 64 times more than that required for output 1
of S-box 1, and could be expected to require almost 800
hours of CPU time, to perform exhaustively.

For S-box 1, output 1, it was empirically demonstrated by
use of the exhaustive search PL/I system that the property

of - monotonic addition of sum-of-product terms did hold,

42
i.e., it was true that there existed a Bi+l which contained
a Bi for all i=1,2,...,n-1, where Bi is a best set formed by
the disjunction of i sum-of-product terms.

That such a property is not necessarily true for every
possible collection of sum-of-product terms may be illus-
trated by a simple counter-example. Suppose that the follow-
ing 3 bit strings represént how these terms "contribute" to
the coverage of some hypothetical situation involving 2¢ =64
possible input configurations:

1) 101011

2) 110001

3) 001110
The first bit string connotes that the result will be on if
input bits 1,3,5, and 6 are on and input bits 2 and 4 are
off. One may see that the only possible Bl consists of a
set containing term 1 alone. Term 1 has 4 bits on, which is
the largest number of any term. The only possible B2, how-
ever, ié formed as the union of terms B2 and B3 and has all
6 bits on. There are no other possible selections for Bl or
B2 which could allow Bl B2 ; all other choices of two terms
from the given set of terms have strictly less than 6 bits
on.

Accordingly, givenvthat one is willing to slightly com-
promise the optimality of the approgimations obtained for a
given S-box's output, but that one insists that such an "op-

timal" approximation involving n sum-of-product terms be a

43
subset of some "optimal" approximation of n+l terms, a com-
putationally tractable algorithm to discover such "quasi-
best sets", denoted Bi', has been devised and implemented.
In the cases where the sum-of-product terms and the real S-
box are such that a monotonic addition of terms to form the
Bi sets is possible, as was the case for the first output of
S-box 1, then our algorithm will return Bi'=Bi for each qua-
si-best set Bi'.

This algorithm used to form the Bi' is as follows: Clear-
ly the Bl' are those single sum-of-product conjunctive terms
which are "on" for the 1largest number of input configura-
tions for which the specific output of the S-box under con-
sideration is also on. These Bl', which are always the same
as the actual best sets Bl, are thus easily determined by
counting the bits on in the bit string which represents the
contribution of the term to the correctness of the output.
Note that there may be more than one Bl'; more than one term
may have a maximal number of bits on.

Given the Bi', form the Bi+l' as follows. For each Bi',
add to the set of terms comprising this Bi' the one new
sum-of-products term which has a contribution bit string
which is on for the most input configurations for which the
disjunction of terms in the Bi' are off, to form a potential
Bi+l'. Note that more than one such potential Bi+l' may be
formed for each Bi', If the total number of input configura-

tions for which this potential Bi+l' 1is on is as great as

44
that for any potential Bi+l' formed from any other Bi', then
the potential quasi-best set Bi+l' is to be retained as an
actual Bi+l'.

This process is repeated until some Bn' is on for all of
the 1input configurations for which the real S-box is.
(I.e., wuntil a Bn' has a contribution bit string all of
whose bits are on). At such a point, one may trace back
through the addition of terms which resulted 1in the forma-
tion of that'Bn', in order to uncover the sequence of quasi-
best sets: Bl1',B2',...,Bn'. As a consequence of the manner
in which the Bi' were produced, the property of monotonic
addition of terms holds for this sequence. With some good
fortune, the probability of correctness values of approxima-
tions to the S-box formed by the disjunction of the sum-of
product terms in such quasi-best sets should not be signifi-
cantly lower than the corresponding values for the real best
sets, which could only be discovered through combinatorially
exhaustive search.

The preceeding algorithm may be viewedAas the breadth-
first construction of, and subsequent trace-back through, an
n-ary tree. The tree will possess as many levels as there
are sum-of-product terms requiredv for a perfect (Pcorr=1l)
approximation to the given S-box output. During tree growth,
the open nodes of this tree at any level 1i will correspond
to nodes from which the development 1in parallel of all of

the quasi-best sets Bi+l' may occur. Cutoffs will occur at

45
level i for branches leading to potential Bi+l' which are
superseded by the discovery of other potential Bi+l' with
better Pcorr values.

The algorithm was implemented as a system of PL/I proce-
dures compiled by the IBM PL/I Optimizing compiler. (See
Appendix D). It is worthy of mention that these procedures
managed to discover the quasi-best sets for S-box 1, output
1 (for which the property of monotonic addition happened to
hold) in less than 33 seconds of CPU time, on the University
of Manitoba AMDAHL 470/V7. This represents an improvement
in speed over the exhaustive search algorithm by a factor of

more than 40,

6.3 N-ARY TREE IMPLEMENTATION

The n-ary tree formed for each S-box - output pair to
discover the guasi-best sets contains data nodes with a
variable number of pointers. Each node at 1level i repre-
sents a quasi-best set Bi' and contains: the number of the
sum-of-products term added to form this Bi' from its father
Bi-1', a pointer to this father node, a field (ORMASK) con-
taining a 32-bit string with 1's in positions corresponding
to S-box input configurations for which the Bi' approxima-
tion is on, and a pointer to a linked list of child point-
ers. (See Figure 4, Representation of the Quasi-Best Set

Search Tree).

46

It is required that one maintains a linked list of child
pointers for each data node, as each such Bi' node may have
up to n-i chilaren, given that there are n sum-of-product
terms in the complete approximation to the output under con-
sideration. Clearly, such a case would only occur when the
addition of any new term to Bi' to form Bi+l' would result
in an equally good approximation to the S-box. For reasons
of efficient memory wutilization such a variability of
branching factor implies the use of linked lists to contain
each node's child pointers.

For each of the 32 S-box - output pairs, processing be-
gins as it did for the combinatorially exhaustive best set
search: by the formation of the binary contribution matrix
(CONTRIB) which indicates, for each term, for which of the
32 input configurations where the real S-box is on the term
is also on. In this fashion, each term may be represented as
a bit string where a 1 in position k indicates that an ap-
proximation containing this term will be on for the kth in-
put for which the real S-box should be on.

The top 1level of the search tree is then formed, from
"terms whose corresponding contribution vector has a maximal
number of 1's, As was mentioned in the preceeding section,
such terms must comprise the best sets Bl. The top pointer
to this first tree level actually points to a linked list of
link nodes, each of whose son pointer fields point to the

respective data nodes actually containing the sum-of-product

47
term numbers and other associated fields. During tree
growth, a vector (OPEN) of pointers is maintained. The ele-
ments of this vector point to tree nodes from which further
growth is possible. All top level nodes are initially placed
in this OPEN vector.

The following process then iterates to generate the tree
in a breadth-first fashion, and continues until a complete
sequence Bl',B2',...,Bn' of quasi-best sets has been formed.
Within this iteration to produce new tree levels, the algor-
ithm loops through all nodes in the OPEN vector in order to
produce a new OPEN vector which is to be used in the genera-
tion of the next tree level.

For each node in the OPEN vector, it is determined what
would be the best term to add to the Bi' in that node to
form the potential Bi+l' with a maximal contribution to the
correctness of this new approximation. It is possible that
there may be more than one such term which could be added to
generate approximations with the same degree of correctness.
If the new potential Bi+l' is a better approximation to the
S-box than any other potential Bi+l' yet formed at this lev-
el i, all of these other potential Bi+l' are discarded and
are superseded by this newly-formed potential Bi+l'. Even if
this supersedence does not occur, if the new Bi+l' 1is as
good or better than other potential Bi+l' yet discovered, it
might be added to the tree as a child of the current Bi' be-

ing examined.

48

Whether or not the algorithm is to add this new potential
quasi-best set to the tree depends on whether or not there
has yet been added to the tree a quasi-best set which con-.
tains the same terms as this new quasi-best set. Once terms
have been added to the tree at the end of some path, one
term being added at each tree 1level, the order of addition
of terms is irrelevant. Neglect of this fact will lead to
redundancy of sets in the tree, and vast associated computa-
tional expense. Consider, for instance, the case where there
exist two Bl, sum-of-product terms #1 and $#2, both of which
have contribution vectors with more 1's than those of any
other terms, and where all 1's of the respective vectors
are in different positions. Such a case actually occurs for
S-box 1, output 1, where terms #6 and 47 both have 4 1l's.
One potential B2' consists of terms #1 and #2. However, to
form another potential B2' consisting of term #2 then term
#1, by expanding from level 1 the node containing term $2 is
not a reasonable operation to perform. (See Figure 5, Per-
mutation Cutoff).

To avoid these permutations of order of addition of terms
when following different paths in traversing the tree, prior
to addihg a new child to the tree at level i+l the algorithm
examines the new OPEN vector containing pointers to the
nodes added so far at this new level, to see if the contri-
bution vector of this new potential Bi+l' 1is the same as

that for a term already added. 1If this is the case, one may

49
be assured that the addition of this new potential Bi+l' is
redundant, and represents a quasi-best set already added to
the tree. One need not even follow back-links to ascertain
that precisely the same terms are included in some different
permutation in another path to level i+l if the ORMASK vec-
tor is redundant at this level. This is so, as since all
sum~of-product terms are wunique, to arrive at the same
ORMASK at the same level of the tree, one must have used the
same terms to form that ORMASK, unless the addition of one
or more terms had no effect at all on the ORMASK. The latter
condition is impossible, as if this were the case, the term
causing an increase in the number of 1's in the ORMASK would
not have been added to the tree. In summary, if the ORMASK
of the potential quasi-best set to be added is not redundant
at the current level of tree expansion, the new node added
to form this set is added to the tree.

After all nodes in the current OPEN vector have been pro-
cessed, any child nodes which remain as potential guasi-best
sets for level i+l are indeed the quasi-best sets for that
level as there are no better sets. The new OPEN vector of
pointérs to the level i+l nodes becomes the OPEN vector, and
the process iterates until some Bn' covers all input for
which the real S-box is on. |

When such a Bn' is produced, one can follow its father
-links back to tree level 1, to trace-back and recover the

sequence of quasi-best sets B1',B2',...,Bn'. As has been

50
stated, because of the fashion in which these sets are
formed, that Bi' Bi+l' is assured. |

There exists another feature of the implementation of
this search-tree algorithm which contributes to its effi-
ciency with respect to both memory and processor utiliza-
tion. This feature is tantamount to a depth-first component
of the tree search which is activated under certain specific
conditions.

In general, the n-ary tree is generated in a breath-first
fashion. That is, all nodes are generated at some level i,
prior to any of the level i+l nodes being formed. This is
essential, as we wish to be guaranteed that the quasi-best
set sequence we ultimately discover 1is optimal in the sense
defined earlier for such quasi-best sets. If the tree was
not generated breadth-first in parallel, the satisfaction of
this condition would entail a rather complex backtracking
operation. Some path would be produced depth-first to level
n, and exhaustive backtrack exploration of every junction at
every level would be required, to ensure that some other
complete path from the root to 1level n did not contain some
Bi' at level 1i which was a better quasi-best sef than that
discovered on the former path. Such a depth-first expansion
would generate the complete tree, as we have just seen to be
required to assure the optimality of the sequence
B1',B2',...,Bn', and would also involve the additional com-
putational expense associated with the backtracking opera-

tions.

51

Nothwithstanding the preceeding argument, there is indeed
a requirement for some depth-first component in our search
algorithm. Initial implementations of the search which neg-
lected to consider this feature expanded a vast number of
nodes at the lower levels (large i) of the tree for certain
S-box ‘- output pairs. Analysis of the factors which-pro—
duced such an undesirable situation resulted in the inclu-
sion of the following modifications to the basic search al-
gorithm,

At some point in the breadth-first generation of the
search tree, all nodes at level i+l will be such that they
represent an approximation to the actual S-box which is cor-
rect for exactly one more S-box input than any of the nodes
in the preceeding tree level i. The crux of the matter is
that since the tree is formed in a best-first fashion, with
the algorithm adding at earlier tree levels the terms whose
contributions add more 1's to the ORMASK contribution of the
Bi', once a time is reached where only one more 1 bit is
added to the approximation of the preceeding tree level, no
later term choice may subsequently add more than 1 bit per
level. As each sum-of-product term must contribute some-
thing to the correctness of the overall approximation in or-
der to have been returned by the Quine—MéCluskey minimiza-
tion routines, it must be that all as-yet-unused terms will
add exactly one bit to the correctness of the approximating

expression. Thus, at this point, the algorithm need no

52
longer expand the tree breadth-first, but can penetrate im-
mediately in a depth-first manner to level n, adding as-yet-
unused terms in an arbitrary order to any node in the OPEN
vector to form the desired Bl1l',B2',...,Bn’ sequence,

More explicitly, once it has been discovered at level k
that only terms "adding" one bit of correctness to the ap-
proximating expression remain unused, only one path in the
n-ary tree from level k+1 to level n need be formed in order
to ensure that the nodes on the resulting path form a se-
quence of optimal quasi-best sets.

Applied to the DES S-box functions, this set of routines
was capable of discovering these quasi-best set sequences in
reasonable time. As mentioned at the end of Chapter IV how-
ever, the principal direction of this thesis has been to
work with accurate expressions for the S-boxes, as the so-
phisticated techniques described in the following chapter
permitted the size of the S-box functions to be reduced suf-
ficiently to allow a special type of search to be (marginal-
ly) tractable, without the need to use approximations to the
S-box functions. The potential applications of approxima-
tions to the S-box functions as have been produced by the
routines of this chapter remains a topic for future re-

search.

Chapter VII

SPECTRAL DOMAIN S-BOX ANALYSIS

7.1 ORTHOGONAL TRANSFORMATIONS TO THE SPECTRAL DOMAIN:
THEORY

Our previous attempts at minimization of the Boolean
functions embodied in the S-boxes have not proven very use-
ful. One conventional technigue of Boolean minimization, the
Quine-McCluskey method, has allowed us to reduce the number
of p-terms 1in accurate sum-of-products expressions for the
S-boxes and their complementation from 32, to between 14 and
23, depending on the S-box - output pair. While this does
represent a significant decrease 1in the effective branching
factor of the search tree for K when compared with that of
32 if the elementary p-term expressions for the S-boxes were
employed, as may be seen from the probability of correctness
values in the table on page 145, nearly all of these minimal
p-terms must be retained in an S-box approximation, for the
approximation to have a high (>.9) probability of correct-
ness value. As a result of this indication that the use of
approximations to the S-boxes may not have many applications
towards cryptanalysis, we turn instead to methods which are
capable of minimizing certain classes of Boolean functions

more effectively than can the Quine-McCluskey procedure.

54
Discussions with an expert in the field of digital logic
design led to experimentation with a number of more recent-
ly-developed Boolean function manipulation and minimization
techniques, as are employed in the field of logic design for
hardware applications. Specifically, such techniques refer
to the use of suitable transforms to permit the manipulation
of Boolean functions 1in a "spectral" domain, analogous to
the use of the Fourier transform to allow manipulatién of
real functions in a frequency domain. For a more comprehen-
sive treatment of the subject than can be included in this
thesis, the reader is referred to several excellent recent
works on the subject by Hurst [7,8] and Rarpovsky [10].
Consider a Boolean function of n variables defined by a
vector of 2Tn bits, which represent the output values of the
function for each of the 2Tn possible input configuations.
Let us term this the specification vector, Fs. Knowledge of
any particular bit of Fs does not decrease the entropy, in
an information-theoretic sense, of any other bit of Fs, un-
less other a priori knowledge of some characteristics of the
function is avaliable. We wish to represent Fs in some oth-
er domain in which any correlation between the outputs of
the Boolean fﬁnction and its inputs will be more evident.
That specific members of a set of elements of Fs have the
same value is often indicative of some structure of the
function, yet this structure is not made explicit by the Fs

vector representation. As a dramatic illustration of this

55
fact, consider the following specification wvector for a
function of 4 variables.

Fs=(0110100110010110)

Notice that Fs contains 2%=16 entries, one for each possible
input configuration 0000 to 1111 for the function. In this
representation, it is not at all clear that the function is
actually

£(X1,X2,X3) = X1 & X2 & X3
In fact, this high degree of structure is quite obscured by
its representation as the vector Fs. While topological
methods such as\the Karnaugh map technique [16] are capable
of making some types of structure more explicit, these meth-
ods are difficult to program.

If the function were represented in a different domain,
the detection of any symmetries possessed by the fupction
may be more easily accomplished. There exist several well-
known techniques which permit the mapping of any Fs to this
alternative spectral domain, where these transformations may
be accomplished by means of a matrix multiplication [7,8].
These transformations will be invertible; the information
content of the specification vector is preserved when map-
ping from one domain to the other. The representation of
Boolean functions in the spectral domain will wuse numbers
not confined to the range {0,1}.

Square 2Tn x 2Tn orthogonal matrices with entries +1 and

-1 are used to indicate the mappings between the Boolean and

56
spectral domains. The "spectral domain" refers simply to a
domain in which different basis functions are used to repre-
sent any desired function, Jjust as sine and cosine basis
functions of varying frequency are used to represent real
functions in the Fourier domain. 1In this Boolean spectral
domain, the basis functions employed will be XOR functions
of various variables, the functions being specified in the
rows of the transform matrix, T [8]. The mapping from the
conventional functional Boolean domain to the spectral do-
main can be defined by this orthogonal mapping matrix T.
(T-* is the inverse mapping, from the spectral to the Boole-
an domain. T-! will always exist, and T"* =T7', as T is or-
thogonal).

For the matrix multiplication to preserve the information
content of the specification vector, the mapping to the
spectral domain is actually a mapping of a modified speci-
fication vector with entries from a different range. The
vector F is actually mapped, where the entries fi of F cor-
respond to the entries fsi of Fs through the equation:

fi=1-2fsi for all i=l...n
Thus, +1 corresponds to the usual Boolean 0, while -1 corre-
sponds to the wusual Boolean 1. This new representation is
required, as the presence of 0's in the mapped vector would
result in the matrix multiplication procedure (over the real
field) causing a loss of information, as the multiplication

of 0 with either 0 or 1 returns the same result.

57

Mapping with this new specification vector F results in a
spectrum R of the function whose specification vector is Fs.
Mathematically:

R=TF
and F=T 'R
The entries of the wvector R, ri for i=0...2T(n—l); are
termed the spectral coefficients of the function.

These ri are commonly inferpreted as the coefficients of
the correlation between the outputs Fs of the Boolean func-
tion, and XOR's of various combinations of the input vari-
ables [7]. In order to explain what is meant by this, con-
sider the coefficient r5 of a 4 variable function, f. As 5
is 0101 in binary, the r5 coefficient gives the correlation
of Fs with X26X4, where X2 and X4 are the 2nd and 4th input
variables to the function. (These variables corrspond to
the 1s in the binary representation of the coefficient num-
ber). By "correlation" is meant the number of times the out-
put of the basis function X2@6X4 equals the output of f, mi-
nus the number of times it differs. Clearly, if it.happens
that £=X26X4, then r5=2*¢, its maximum possible value. Thus,
each ri gives some aspect of global information about the
entire function. |

There exist many possible variants of orthogonal trans-
formations T which are nonetheless all fhe same, independent
of row permutations. These bear different names, as they

were developed independently, and include the: Hadamard,

58
Walsh-Kacmaz and Rademacher-Walsh transforms. We shall em-

ploy the former, defined recursively [8] as:

To=[1]
Tn-1 Tn-1

Tn=
Tn-1 -Tn-1

With this choice of T, we may divide the ri into three
disjoint sets on the basis of the quantity whose correlation
with the Boolean function specification vector Fs they rep-
resent. Each spéctral coefficient is classified into one of
the sets on the basis of its order, where the order of a
spectral coefficient ri, denoted ||ri||, 1is defined as the
number of 1ls in the binary number representation of its sub-
script i.

The zero-ordered coefficient, ro, provides only a measure
of the number of +1's and -1's in F. Each of the ri for
which the binary representation of i has exactly one 1
(there are n such ri) are termed the primary spectral coef-
ficients, and measure the correlation of each of the inde-
pendent Boolean variables xi, for i=l...n, with the Fs vec-
tor of functioﬁ outputs. The remaining (2Tn)-n+l spectral
coefficients constitute the secondary spectral coefficients.
These represent the correlation of fs with all other possi-
ble XOR combinations of the input variables. For an example
in which n=6, r7=r000111 measures the correlation of Fs with

the function ZX46X58X6. Negative values for any spectral

59
coefficient indicate correlation with the complement of the
Boolean function.

Computationally, there exist techniques to calculate the
spectral coefficients R which are less expensive than an or-
dinary matrix multiplication. The calculation of R by mul-
tiplying T by F entails ((2Tn)7T3) multiplication operations
for an n variable function, as the size of T is (2Tn)x(27Tn).
‘Various "fast" transforms are well—khown in the literature
on the subject [7,8], and operate in O(n2Tn) time. However,
such fast transforms will not be employed in the following
analysis of the DES S-box spectra, as for this case where
n=6, the vefy simple matrix multiplication procedure is of

adequate speed, as only 64° multiplications are required.

7.2 S—-BOX COMPLEXITY IN THE SPECTRAL DOMAIN

One of our concerns involves the complexity of the Boole-
an functions which represent the action of the S-boxes. The
complexity of AND/OR circuitry required to realize the ef-
fect of the S-boxes corresponds directly to the degree of
branching in the search tree at the point where the action
of the S-box is functionally inverted during search for the
encryption key, K. Ih order to be able to effectively mini-
mize the complexity of any Booléan function, it is necessary
to define a metric capable of usefully measuring this com-
plexity. Algorithmic procedures may then be devised to mini-

mize the value of this complexity function.

60

One classically useful metric for Boolean function com-
plexity, employed in the <conventional Boolean domain, has
been found to be a éount of the number of adjacent pairs of
input variable assignments for which the function f has the
same output values for both assignments [16]. Geometriéally,
this corresponds to a count of pairs of adjacent 1's and 0's
in the Karnaugh map representation of the function. The
higher the value of such a complexity metric for a function,
the more easily that function may be synthesized using con-
ventional AND and OR gates.

It has recently been shown [9] that the same metric may
easily be computed in the spectral domain from the inner
product of the square of the spectrum R, and the correspond-
ing orders of the spectral coefficients in R, Following
Hurst et. al. [9] we shall use the spectral domain complexi-

ty estimator:

n 1 2
C(f) = n2 - —-====—- :E: [|v|| v

wvhere the order of the vth spectral coefficient rv is ||v]].

If the spectral coefficients of some function f are domi-
nated by the primary coefficients, 1i.e. the largest magni-
tude coefficients are among the primary coefficienté, then
C(f) will be high and the function may be represented as a
sum-of-product expression with few terms. Otherwise, if the
largest magnitude coefficients are among the secondary coef-
ficients, C(f) will be low and the function may only be rep-

resented by a more complex sum-of-products expression.

61

Considered informally, this latter situation will tend to
occur when the function is heavily "XOR-oriented", and may
be more easily realized by .means of XOR operations than by
AND and OR operations. As shall be described, in such a case
the use of certain spectral translation operations to shift
the largest magnitude spectral coefficients into the primary
range may be advantageous. The C(f) complexity estimator
will prove to be of use in measuring the degree of simplifi-

cation of the function f effected by such translations.

7.3 SPECTRAL TRANSLATIONS

It is possible to manipulate any Boolean function in the
spectral domain so as to maximize the value of the C(f) com-
plexity metric for that function. Groups of spectral trans-
lation operations are performed on the rv vector in order to
permute this vector in such a manner as to shift the largest
magnitude spectral coefficients into positions of primary
coefficients. The "core" function f' which remains after
all translations have been performed and the translated
function is mapped back to the conventional domain by apply-
ing T"* to its permuted rv vector is conjectured [10] to be
of maximum possible simplicity. Classical minimization
technigues, such as the Quine-McCluskey method, may then be
applied to the <core function to produce a minimal sum-of-

products form.

62
Following Karpovsky [10: p.69], the required spectral
translations may be seen to be of the form:

f(x1,x2,...,xn) = £'(x1,x2,...,xi-1,xi®xj,xi+l,...,xn),
i,j3,i#3, € {1,n}

Inputs to the function f are replaced by XORs of inputs, to
form the translated function, f'. By a repeated application
of such translations, the complexity present in any function
can be factored out into a tree of XOR gates through which
inputs to the simplified core function are conditioned.
Translations of this nature are performed until all of the n
primary spectral coefficient positions of the n-variable
function are occupied by the coefficients of the largest
magnitude.

In practice, the tree of XORs which condition the inputs
to the function f' may be represented by a basis matrix B of
1's and 0's through which any input to f' must be multiplied
under GF(2) to simulate the effect of the XORing on the
functional inputs. Schematically, the following situation

exists:

(a) Before translation:

i Fh

input x vector > output bit
(b) After translation:
B £

input x vector => modified inputs => output bit
where B is the matrix through which the x inputs are
multiplied, and f' is the simplified function which
results from a conventional minimization of the
translated function as returned to the functional domain -

63
Any input vector x is mapped to the same output value by ei-
ther the original function £, or by the combined action of
the B matrix and the simplified f'. The technique of spec-

tral translation is exemplified in the following section.

7.4 IMPLEMENTATION FOR DES

APL routines were devised to follow Karpovsky's algorithm
[10] to perform these translations for the production of the
mapping B and simplified f', and were applied to the 32
functions which represent the DES S-boxes. The routines dis-
cussed in this section may be found in Appendix E.

The routine SPECTRUM maps a function's specification vec-
tor to the spectral domain, by’application of the appropri-
ately-dimensioned Hadamard transform matrix, T. FUNC ap-
plies the inverse mapping T-! to a vector of spectral
coefficients to return the representation to the convention-
al functional domain. Both of these routines call the func-
tion TRANS, which recursively builds the required orthogonal
Hadamard transform matrix. The function COMPLEXITY applies
the formula for computation of the C(f) complexity metric to
a vector of spectral coefficients.

After the spectrum of an S-box function has been formed
by application of SPECTRUM to the Fs specification vector
for that function, the BASIS routine 1is called with the
~ spectral coefficients, to determine the translations re-

quired to maximize the primary coefficients. These transla-

64
tions are represented in the form of a matrix BAS, which
when transposed and inverted under GF(2) will serve to indi-
cate how the rv vector must be permuted. That is, the map-
ping matrix B referred to in the previous section is simpli-
fy the transpose of the inverse of the matrix BAS, whose
creation shall now be discussed. For a complete understand-
ing of the procedure, the interested reader is referred to
Karpovsky [10].

In BASIS, the largest coefficient in rv 1is discovered,
and its corresponding position v, represented as a binary
number, is added as a new row of the initially-empty BAS ma-
trix. Elements in rv whose position corresponds to any pos-
sible linear (XOR) combinations of rows which already exist
in BAS are then deleted, to remove them from further consid-
eration as large-magnitude coefficients. After BAS has ac-
quired n rows, at which time all entries in rv should have
been zeroed by the above process as all linear XOR combina-
tions of the rows of the complete BAS must span then entire
spectrai space, it is transposed and inverted under GF(2) to
form the basis matrix for the permutation of rv. The matrix
BAS is the mapping B discussed 1in the preceeding section
through which inputs to the new f' must be mapped.

For the purposes of illustration of this techniques, let
us consider the function f of 4 variables:

f = X1X2' + X1'X2 + X3X4' + X3'X4 + X1X2X3'X4'

65

Inspection reveals that this function is heavily XOR-orient-
ed. In fact

f = (X1ex2) + (X38X4) + X1X2X3'X4'
The specification vector Fs for f is found to be

Fs = (01 10111111111110)
and multiplication into the 16x16 transform matrix T produc-
es a spectrum

R=(1311-3-1-1-1-1-1-1-1-1-311 -3)
When the BASIS function is invoked to produce a basis matrix
for the translation of these coefficients ri, the following
operations occur, in accordance with the preceeding descrip-
tion of the translation algorithm. The largest element in R
(not considgring r0) is found in r3. Thus, the row (0 0 1
1), for "3" in binary is catenated as a new row of the
(originally empty) basis matrix. All linear (XOR) conbina-
tions of rows 1in the basis are formed, and positions of R
corresponding to thesg combinations are =zeroed. As in this
case the basis has only one row so far, oniy position 3 of R
is zeroed.

The largest element of this new R is then located at rl2.
As a result, the new row (1 1 0 0) 1is added to the basis.
Positions 3 and 12 of R are =zeroed as a result of consider-
ing combinations of the vectors in the basis taken one-at-a-
time. Position 15 of R is also zeroed as a result of combi-

nations of the rows of the basis considered 2-at-a-time.’

"As (001 1)®(1100)=(1111), or 15.

66

The largest element of this modified R is now in rl (only
1s remain unzeroed in R). The basis vector (0 0 0 1) is add-
ed, and positions of R corresponding to all possible XOR
combinations of the 3 rows in the basis are zeroed. The pro-
cess is repeated once more to add (0 1 0 0) to the basis ma-
trix, at which boint the entire basis has been formed (and
all elements of R are 0).

MAXPRIM is a routine which accepts the basis matrix and
the coefficients rv, and returns rv permuted by the mapping
implied by the basis. In MAXPRIM, the 2|n possible input
configurations for f are mapped through the basis, and“the
resulting sequence of configurations taken to define a per-
mutation of the original inputs. This permutation, when ap-
plied to rv, produces the vector of spectral coefficients
for the simplified f', where all of the largest magnitude
coefficients occupy primary positions.

To continue our earlier 4-variable example, the required
permutation of the spectrum R according to the basis matrix
formed by the BASIS routine is

R'" = (13-11-1-3-11-1-3-11-1-3-11-1)
Mapping this permuted spectrum through the inverse Hadamard
transform T-' yields a specification vector Fs' for the new
"core" function f'

Fs' = (0100111111111111)

As may be simply discerned from a Karnaugh map, this corre-
sponds to a function

f' = X3 + X4 + X1X2'

67

which is evidently far more minimal than was the original f.

The complexity of the function £ attributable to XORs has
been removed.

The inverse (over GF(2)) of the transpose of the basis

matrix may be found to be

OO+-O
HORFO
OO O+
O OH

Any input multiplied through this matrix and then subjected
to f' will be found to have a value identical 1in all cases
to that of the same input subjected to the original f.
Results of the application of these simplification rou-
tines to the DES S-box functions are remarkable. Table 2
presents the C(f) complexity measure for each of the 32
functions both before and after the simplification by means
of spectral translations. The average complexity prior to
translation was 139. Following translation, the core func-
tions exhibited much greater simplicity, with an average
measure of 247. This means that in a Karnaugh map represen-
tation for the S-box functions, there are on average approx-
imately twice the number of adjacent cells containing the
same value as there weré prior to the spectral translation
procedure. This has a great impact on the simplicity of min-
imizations of the new "core" functions by conventional

Quine-McCluskey techniques.

68

The translated f' were returned to the functional domain
and subjected to the Quine-McCluskey minimization. The func-
tions that resulted had between 9 and 13 p-terms per func-
tion. These are far fewer than the 14 to 23 p-terms of the
Quine-McCluskey minimized S-box functions (Chapter V). The
overall average number of literals per p-term decreased fol-
lowing the spectral simplification to 3.57, from a value of
4.96 prior to simplification. The ramifications of this
substantial improvement in simplicity for the key search is

discussed in Chapter IX.

Chapter VIII

UNIDIRECTIONAL CRYPTANALYTIC SEARCH

It has been stated that our aim is to functionally "in-
vert" the DES encryption algorithm, so as to be able to de-
termine the values of all bit positions of the encryption
key K used as a mapping between the known corresponding
pairs of plaintext P and ciphertext C. This particular cho-
sen plaintext attack may conveniently be viewed as a problem
of search: Given the constraints imposed by the bits of P
and C and the details of the DES algorithm, a search may be
conducted to determine the assignments to the bit positions
of K which satisfy these constraints.

As is typical for problems of this nature, a search tree
may be constructed and traversed in the course of the deter-
mination of the K bit wvalues. A tree 1is defined to be a
loop-free directed graph with a distinguished node of inde-
gree 0 (the root). A subtree is any subset of the nodes of a
tree which themselves form.a tree. A node is said to be
"satisfied" if the assignments to bits of K which are re-

quired by the complete development of the subtree from that

® By "key bit hypothesis" is meant an assignment of a value
from {0,1} to a specific bit position of K which 1is not
contradicted by any other assignments to key bits required
so far during the development of the search tree.

_69..

70
node are compatible with current key bit hypotheses® for K.°
The search tree will contain both "and"™ and "or" nodes,
where the tormer 1is the root!° of a subtree, all of whose
immediate children must be satisfied, and the latter is the
root of a subtree, any of whose immediate children must be
satisfied for the node itself to be satisified [17]. Where-
as all children of an "and" node will be developed breadth-
first in parallel, only one child of any "or" node will be
present in the search tree at any given time. A contra-
diction in key bit hypotheses will cause a recursive back-
track to the most recent "or" node for which alternative
children still remain, and cause the selection of such an
alternative branch at that node.

Within our particular search tree, constraints will re-
side at both the top level of the tree and at the leaves.!'?
This occurs as both the image and preimage of the K mapping
are known, in accordance with the assumptions of a chosen
plaintext attack. Inversion of the action of this K mapping

as driven by the DES algorithm comprises the body of the

* If no hypothetical assignments for relevant key bits yet
exist, any assignments engendered by the development of
the subtree for a node by selection of the first disjunc-
tive possibility at each choice point will seem correct,
and will remain as hypotheses until the development of a
different node leads to contradictory hypothetical assign-
ments for some bit of the key.

** The root of a tree is the node with indegree 0, i.e. the
node with no edges entering.

11 Leaves of a tree are nodes with outdegree 0, 1i.e. nodes
from which no edges emanate.

71
search tree. At the top of the tree, the value of each bit
in the ciphertext block C is known. At the leaves, the bits
in the corresponding plaintext block P are known. In working
back through the encryption procedure from round 15 to round
0 to ascertain how the particular bits of C came to have
their respective values, various hypotheses concerning the
values of the bits of K will be generated.

Until the search procedure is completed, these key bit
assignments will only be hypothetical and may be contradict-
ed by further search tree development. The presence of OR
nodes in the search tree will allow backtracking throughout
the tree to permit alternatives 1in tree development which
could lead to different key bit assignments, in the event
that contradictions occur 1in key hypotheses during tree
growth., For an illustration of one variant of the AND/OR
search tree discussed in this chapter, see Figure 6, Partial
Search Tree for 2-Round DES.

As Figure 6 embodies all of the significant features of a
tree search, we shall attempt to precisely explain its char-
acteristics. At the root are situated the (known) 64 bits of
the ciphertext C. 1In the tree, nodes with arcs below them
are "and" nodes. All subtrees which descend from an "and"
node must be satisfied, for the "and" node to be satisifed.
For this reasdn, in an implementation of this tree search,
the expansion of subtrees from an "and" node will occur in a

breadth~first manner. There is no advantage to delaying the

72
construction of these subtrees, as all must be expanded at
some time.

- Nodes without arcs are "or" nodes. "Or" nodes are satis-
fied if any of their children are satisfied. For this rea-
son, "or" nodes will be expanded in a depth-first manner in
an implementation of this search. There is no need to expand
in several directions simultaneously, when expansion of a
single subtree suffices. Alternative "or" paths are expanded
only if the search down one "or" path fails, and backtrack
tc the "or" node necessitates the selection of an alterna-
tive path.

An expansion of any node 1in this search tree constitutes
an "inversion" of some aspect of the encryption procedure.
Various points in the search tree of Figure 6 are numbered
with the circled digits (1) through (6), to aid the follow-
ing description of the process of formation of this tree.

At (1), it can be seen that the leftmost bit of C, that
is, bit position 2 of the L block at encryption round 2, has
a value of 1. It follows that bit position 32 of the R
block at round 1 must also have had the value 1, as Ln=Rn-1
by the first of the two DES equations [26].

It is the second of the two DES equations [26]

Rn = Ln-1 ® f(Rn-1,Kn)
which accounts for the expansion of the subtree from (2).
From (2) it may be reasoned that either L at round 0 posi-

tion 32 was 1 and bit 32 of the output of the f function op-

73
erating on RO and K1 was 0; or else that the L was 0 and the
f function was 1. This is because the XOR operator indi-
cates non-equivalence. Assuming the former of the two pos-
sibilities (since (2) was an "or" node, these two disjunc-
tive possibilites for subtrees from (2) are explored
one-at-a-time) the node marked (3) is to be expanded.

If the output from the f function at position 32 was 0,
this implies that the value of S-box 6, output 1 was 0, as
32 mapped back through the inverse of the P permutation of
DES is 21, and the 21st output of the bank of S-boxes refers
to this particular S-box - output pair.

Knowledge concerning this value of the output thus con-
strains what the inputs to S-box 6 could have been. 1In Fig-
ure 6, it is reasoned that if this output of the S-box was
0, then the DeMorgan complement of our minimal expression
for the Boolean function which represents S-box 6 output 1
muét have been 1. While this is true, such reasoning can
lead to the expansion of more nodes than are necessary, as a

minimization of the complements of the S-box functions would

permit an "or" of "ands" to extend from (3), instead of the
"and" of "ors" which Figure 6 depicts. Nevertheless, as Fig-
ure 6 appears, at (4) we must construct "or" subtrees to
permit x1=0, x2=0, and x3=1, where the xi for i=1,2,...,6
are the 6 input variables to S-box 6.

At (5) we consider the problem of how to make a given S-

box input have a certain value. From the specification of

74
the DES algorithm [26], it may be seen that inputs to the
S-boxes are formed by an XOR of bits of K with E-permuted
bits of R from the previous level. Utilizing details of the
key selection algorithm, and mapping the position of the
first input to the S-box 6 through the inverse of the E per-
mutation, it may be concluded that the quantities XORed to
produce the first input to S-box 6 are key bit 5 and bit po-
sition 16 of the R block at round 0.

At (6) it is realized that as the R block is at encryp-
tion round 0, it corresponds to a bit of plaintext, whose
value is known by our attack assumptions. As discussed lat-
er, if either our assignment of a value to the bit of K, or
the discovery of the value of the bit of R Dby this process
of inversion constitutes a contradiction with respect to
what has already been discovered, backtrack occurs, to ex-
plore different disjunctive paths. This procedure 1is ex-
plained further in section 8.1.

It should be noted that for reasons of computational.
tractability, we shall be considering a 2-round DES encryp-
tion algorithm throughout this chapter. Techniques which
serve to reduce cryptanalytic time for such a simplification
of the DES algorithm may be applied to the actual 16-round
DES algorithm to achieve a similar time saving. Such a sim-
plification of DES by a reduction of the number of encryp-
tion rounds is frequently employed to permit inexpensive ex-

perimentation with cryptanalysis [5]. In addition, the IP

75
and IP- ! permutations are not being considered in our model,
as they are of no cryptanalytic significance under the con-
ditions of a known plaintext attack.

Exhaustive key search is a technique in which all possi-
ble values of K are used to map the plaintext block P to see
if the expected C is the image of the mapping. The desir-
ability of a search tree cryptanalytic approach relative to
this brute-force procedure of exhaustive key trials may be
seen to be a function of the degree of simplicity of the S-
box representations as they are embodied in the DES f func-
tion. Indeed, the choice of S-box representation is the only
variable parameter of the search. The DES equations:

Ln
and Rn

Rn-1
Ln-1 & f(Rn-1,Kn)

I u

" lead to constant branching factors in the search tree of 1
and 4,'? respectively. The branching factor of a tree is de-
fined to be the average outdegree of nodes 1in the tree.
Similarly, the branching factors caused by the E and P per-
mutations, the KS key schedule function, and the XORing of
the KS output with an R block to form the S-box inputs are
all constant. There is no apparent way to reduce their asso-
ciated branching factors by any alternative representations
of the operations they embody. Consequently, reduction of

the search tree size must be effected by the compact repre-

*?2 For an XOR of two terms to have the value 1 either the
first term must have the value 1 and the second the value
0, or vice versa, which implies that up to 4 paths may
have to be expanded to satisfy a node. Similar reasoning
applies for an XOR which must have the value 0.

76
sentation of the S-boxes, perhaps coupled with the clever
use of heuristics to accomplish tree pruning prior to or
during development, or to guide tree traversal. For in-
stance, should the elementary p-term expressions for the S-
‘boxes as discussed in Chapter 3 be employed as the represen-
tation of the S-boxes during the search for K, the search
tree would possess a branching factor of 32x6=192 at each
point in the search where the action of the function f oper-
ating on some arguments needed to be inverted. This is the
case, as when the S-boxes are represented in the elementary
p-term form, the value of any given output of a specific S-
box is specified by a disjunction of 32 terms, each of which
is a conjunct of 6 literals.

A simple calculation will show that in this event, the
complete search tree will possess far more nodes than there
are trials in an exhaustive key search®?® (2%¢), From Fig-
ure 6 it may be seen that the following expression consti-
tutes an upper bound on the number of nodes in the search
tree.

15
\ i
64 x / (2 t 1)
ie1
wvhere: t=maximum number of conjunctive terms in any s-box

representation ,
l=maximum number of literals in any conjunctive term

'3 The validity of comparing number of key trials to tree
size is discussed in the first section of the next chap-
ter.

77

There are 64 subtrees at the first level of the tree, all
of which have the same worst-case maximum possible number of
nodes. At each of the subsequent 15 tree levels, each node
has at most (2 t 1) children, where the 2 constant arises
from the XOR, and the t and 1 variables from the sizes of
the minimal expressions discovered for the S-box functions.,

For the elementary p-term S-box expressions, t=32 and
1=6, so the above expression has the value of 1,2x10%*% >>
2%¢, the key space size.

It should however be borne in mind that in practice, such
a complete search tree would never be grown. Some subtrees
may be pruned on the basis of mutual incompatibility of nec-
essarily conjunctive conditions within those subtrees. As
well, all n subtrees from an OR node are only developed if
the first n-1 subtrees cannot be satisfied, a condition
which is highly unlikely to occur for all OR nodes in the
entire search tree.

Due to such faétors, it is difficult to analytically pre-
dict how concise the S-box expressions must be for a search
tree approach to cryptanalysis to be superiorvto exhaustive
key search, although a "worst case" analysis of the situ-

ation is attempted later.

78
8.1 SEARCH STRATEGY

The top-down search'* for K will be performed in a manner
which utilizes a combination of breadth-first and depth-
first search strategies [17]. Since for a 2-round DES core
memory constraints on the number of nodes in the tree are
not significant, and as all branches from AND nodes must be
followed eventually, a breadth-first parallel-expansion dis-
cipline is followed at AND nodes. At OR nodes, which may be
considered "choice points" in the search, the expansion is
depth-first, as if any branch from an OR node is satisified,
so is the OR node. It is not reasonable to expand all alter-
native branches simultaneously, when the satisfaction of
only one branch 1is required. Backtracking to these choice
points upon failure at lower tree levels will allow us to
attempt the satisfaction of other alternatives should this
be required. That the conjunctive terms in the sum-of-prod-
ucts expressions for the S—boxgs were ordered by their con-
tribution to expression correctness, as discussed in Chapter
6, édds a heuristic element to this search. At all choice
points, the search tree is expanded in a "best first" fa-
shion. As an implementation consideration, father pointers
are maintained in each node, to facilitate the backtracking
to the most recently expanded OR node in the event of‘the

failure to satisfy some subtree.

14 A top-down search is a search which commences at the root
(top) of a tree, and proceeds downwards towards the
leaves.

79

That is, if some choice as manifested by the expansion of
the tree from some specific branch of an OR node necessi-
tates that a certain bit position of K be assigned a value
when it already possess a different value, then either our
most recent choice to follow this particular branch from the
OR node, or the choice which had previously resulted in the
assignment to the key bit, is incorrect. The two choices are
mutually incompatible. Recursive backtracking techniques can
be used to undo the most recent choices first.

If no disjunctive alternative at the most recent choice
point (OR node) may be expanded without the result being an
inconsistency of key bits, then an earlier choice must be in
error, and backtracking must occur to re-make this earlier
choice. If accurate representations of the S-boxes are em-
ployed, then there must exist some selection of OR node
paths which permit a unique assignment to all key bits. 1If
this is not possible, an error must be present in either the
search procedure or the correspondence between the P and C
blocks. However, 1if the search is employing approximations
to the S-boxes, the procedure may backtrack all the way to
the root of the search tree, a condition which indicates
that another P-C pair should be used in the search. 1If this
arises, the use 6f approximations to the S-boxes has led to
irreconcilable inconsistencies in what the key bits must

have been.

80

In summary, there are three types of conditions whose oc-

curence leads to backtracking in the search:

l.

If the search has reached the bottom level of the
tree through some path, which implies that the entire
process of encryption has been 1inverted for some bit
of the plaintext, the value of the actual known pla-
intext at the corresponding bit position must agree
with this bit of the round 0 encryption block uncov-
ered by the search. As such bits of "plaintext" are
produced by the search, 1if they fail to agree with
the corresponding position in the known plaintext,
backtrack must occur, to follow disjunctive paths in
the search other than those which led to this errone-
ous development.

Secondly, if during the inversion of an encryption
operation which set some position 1in the vector of
inputs to an S-bank to a certain value, it 1is re-
quired that a bit of K be assigned a certain value
and it 1is the case that this position of K has al-
ready been assigned a different value, then backtrack
must occur té remake earlier erroneous path-selection
decisions. '

Finally, 1if it happens that no more alternative ex-
pansions exist for a node which must be expanded in a
new way as a result of the search backtracking to
that node, the backtracking 1is invoked recursively,

to backtrack yet higher in the tree.

81

It should be noted that with our 2-round simplified DES,
this search procedure'may not establish the values of all 56
bits of K, as not all of these key bits are produced by the
permutations and selections of K provided by the first three
cycles of the KS algorithm. Consequently, the assignments
made to bits of K which are not used in our simplification
of the bES algorithm are arbitrary.

At this point in the discussion, it should be noted that
the use of a bidirectional search [17,18)] to discover K
seems intuitively appealing, as the cryptanalytic task in-
volves constraints at both the root and leaf nodes, and as
the encryption and decryption algorithms are identical. It
should be possible to drive the search backwards from the
ciphertext towards the plaintext as the above discussion has
described while at the same time, one is driving forwards
from the known plaintext. For a known plaintext cryptanaly-
sis of a full 16-round DES, one would search 8 rounds for-
wards from the .plaintext, and 8 rounds backwards from the
ciphertext and join the two search trees in the middle. The
existence of constraints at both ends of the search tree,
and the symmetry of encryption and decryption make this ap-
proach possible. A more formal argument which indicates why
the bidirectional scheme 1is viable may be seen in the next

chapter.

82
8.2 NODES IN THE SEARCH TREE

The approach employed in our search requires the exis-
tence of 3 major distinct types of data nodes in the search
tree, 1in addition to a descriptor type of node which is as-
sociated with every other type of node and which contains
information common to all node types. Each type of data node
possesses a unique structure, is expanded differently from
the other types of nodes, and requires a different response
if backtracking reaches the node. This heterogeneity of
nodes is necessitated by the fact that the DES encryption
algorithm involves a number of different operatidns in each
round. A thorough discussion of these types of nodes and
their characteristics follows. (See Figure 7, Nodes in the

Cryptanalytic Search Tree).

8.2.1 Descriptor Node: SUPER

Two factors necessitate the inclusion of a descriptor
node structure associated with the actual data portion of
each of the 3 major types of data nodes in the search tree.
Firstly, such a structure, knpwn as the based-storage struc-
ture SUPER in the PL/I routines which perform the search,
permits data common to all types of nodes to be factored out
of these nodes. This ability serves to simplify the struc-
ture of the actual data nodes.

More importantly, the PL/I 1language does not permit

pointer reference to based-storage data, unless the symbolic

83
name of the based variable is known. This 1in turn implies
that during the traversal of an existing tree structure, as
occurs during recursive backtrack, one must know what type
of node one has linked to, before it is possible to access
the link fields in that node. As we are dealing with a tree
structure with heterogeneous nodes which may be linked in a
wide variety of ways, it is crucial to be able to link to a
node without knowing 1its type a priori. A field in SUPER
which contains the type of the data node for which the SUPER
node is a descriptor permits traversal in this fashion.

The SUPER node contains 6 fields. As mentioned, there is
a single character type field, which allows the search rou-
tine to determine for which of the 4 types of data nodes it
is a descriptor. A position field contains an integer in the
range {1,32} to indicate which bit of the current ciphertext
block is represented by the value 1in the data node. Simi-
larly, a level field contains an integer from {1,16} to in-
dicate at which 1level in the 16-round encryption procedure
the block in which the bit occurs is contained. A father
pointer points to the SUPER node associated with the immedi-
ate ancestor of the current node in the tree. There is a
pointer to the actual data node which is described by the
SUPER node. Finally, there is a pointer to the node on the
gueue of nodes which are "open" for further development
which points to the SUPER node. If it is the case that the

SUPER node has already been expanded and is not still a tem-

84
porary leaf of the expanding tree, this OPENQ pointer is
null, The need for such a pointer is discussed in the sec-

tion pertaining to the BACKTRACK routine.

8.2.2 Data Node: RNODE

The RNODE structure permits representation of the knowl-
edge that at some specific level in the encryption process a
specific bit position in an R-block possessed a certain bit
value,?!*®

The position and level information for the RNODE resides
in its descriptor. In the actual RNODE, there exist fields
to represent the bit value of the RNODE, a count field from
{0,2} to 1indicate how many times the node has previously
been expanded, and two child pointers. Where these child
pointers must point may be deduced through the examination
of the second of the DES encryption equations:

Rn=Ln-1 & f(Rn-1,Kn)
=Rn-2 & f(Rn-1,Kn) (see footnote)

If the RNODE being expanded has a value 1, then its two
children (the RNODE at level n-2 and the FNODE) must have
respective values 1 and 0, or 0 and 1, as a result of the

XOR. These 2 possibilites are disjunctive. The first is de-

® No analogous node to represent knowledge about L-blocks
is required. As Ln=Rn-1 by the DES algorithm, it is
known immediately that instead of representing some bit
position p of an L-block at level 1 of encryption which
possesses a value v, the RNODE which must have been the
predecessor to the LNODE during encryption may immediate-
ly be created. This RNODE will represent bit position p
at level 1-1 and have the value v.

85
veloped the first time the RNODE is expanded (when its count
field is 0), and the second is developed as an alternative
should backtrack ever reach the RNODE, as a result of the
occurence of some key bit contradiction.

Otherwise, should the RNODE being expanded have the value
0, its two children must both have the value 0, or both have
the value 1. The count field is maintained in the RNODE only
to allow the search algorithm to determine its state of ex-
pansion, should backtracking require other possibilites for

the RNODE to be developed.

8.2.3 Data Node: FNODE

Should it be desired to employ minimized forms for only
the uncomplemented S-box functions, i.e. to characterize in-
put variable configurations which result in a specified out-
put of the S-bank having a value of 1, then the expansion of
nodes which embody knowledge concerning the wvalue of the
output of the DES f function at some encryption 1level and
bit position would be intrihsically asymmetric, for nodes of
differing value. Given that QM—minimized expressions for
only the uncomplemented S-box functions are available, forms
for the corresponding complemented S-box functions could be
produced by the DeMorgan complementation [16] of‘the posi-
tive sum-of-products forms. While the process of complemen-
tation itself is trivial, the complexity required in the
search procedure to handle the asymmetry introduced by the

use of product-of-sum forms is significant.

86
While an FNODE whose = value is captured by a
sum-of~products expression may be satisfied by alternatively
attempting to satisfy each of the conjunctive terms, an
FNODE whose value is expressed 1in a product-of-sum form has
far more potentially-satisfying input variable configura-
tions. To satisfy the latter form, one X literal from each
of the disjunctive terms need be satisfied.
Consider as a simplified example the case where an S-box
function f has the following minimized form:
f = x1 x2 x3' x4' x5' x6 + x2 x3 x4 x6'
then by DeMorgan complementation:
f£' = (x1' + x2' + x3 + x4 + x5 + x6')(x2' + x3' + x4' + x6)
To attempt to satisfy the former uncomplemented form, at
most 2 disjunctive possibilities will have to be explored,
each of which is a conjunct of a number of X literals. The
number of potentially-satisfying 1literal instantiations for
the latter complemented form of the f function may be seen
to be a product of the number of literals in disjunction in
each conjunctive term, i.e. 6x4=24. Specifically, each line
of the following table provides an instantiation of X liter-

als which causes f'=1:

x1=0 x2=0
x1=0 x3=0
x1=0 x4=0
x1=0 x6=1
x2=0 x2=0
x2=0 x3=0
x2=0 x4=0
x2=0 x6=1

87

Although it 1is possible to eliminate certain instantia-
tion configurations a priori, as, for instance, the possi-
bilty that x3=1 (satisfying the first conjunctive term) and
x3'=1 (satsifying the second such term). cannot be realized
simultaneously, there are still exponentially many more ways
to potentially satisfy the DeMorgan complementation of a po-
sitive S-box function than there are to satisfy a sum-of-
products form. As a consequence of this, despite earlier
experimentation with a form of the search procedure which
actually complemented the QM-minimized expressions for the
positive S-box functions, the complemented S-box functions
were themselves minimized by the QM procedure, and these
sum-of-products forms for the f' used in the search.

Recall that the sum-of-product expression for an S-box,
or its complement, as obtained by the Quine-McCluskey mini-
mization technique, consists of the disjunction of up to 23
p-terms, each of which is a conjunct of up to 6 literals.
(The literals constitute the input to the S-box). For an
- FNODE at some point in the search to have a value of 1, any
of the p-terms in the appropriate sum—of—products expression
for the uncomplemented S-box function must be "on". Such a
term will be "on" only if all literals in the term possess
the appropriate values. Similarily, for an FNODE to have
the value 0 at some point, any of the p-terms in the appro-

priate sum-of-products expression for f£' must be "on", as a

88
result of all literals in this p-term possessing appropriate
values.

Consequently, a based structure known as an FNODE is used
in the search tree to represent knowledge that at some en-
cryption level, some f function must have a specified Boole-
an output value. The FNODE structure contains an integer
count field from {1,23} which indicates the number of the
p-term which the search currently assumes is responsible for
turning the f function "on". There is a value bit, which in-
dicates whether the FNODE is to represent an S-bank output
with a value of 0 or 1. This value determines whether the
OM-minimized forms for the complemented or uncomplemented
S-box function, respectively, are to be used. Also in the
FNODE are 6 pointer fields which contain links to the appro-
priate XNODEs which possess the values required to turn the
p-term on.'® This expansion paradigm introduces a heuristic
component into the search, as the p-terms occur in the sum-
of-products expressioh in best-first order, and this is the
order in which they are expanded.

Should backtrack occur to an FNODE, 1its count field is
examined, and the next p-term in the appropriate sum-of-
products expression for this function (or its complement;
depending upon the value of the value bit within the FNODE)

' is assumed to be the term responsible for making the f func-

1¢ If the p-term considered has some "don't care" values in
some literal positions, the corresponding pointers in the
FNODE will be null.

89
tion output 1 (or 0). If no p-term in the appropriate
sum-of-products expression can have a value of 1 without the
consequences resulting in key bit contradictions, backtrack
continues past the FNODE to previous nodes in the search

tree.

8.2.4 Data Node: XNODE

The structure of the XNODE type is very similar to that
of the RNODE, as fhe values of a particular position of an
R-block and of an X variable are both formed as a result of
an XOR operation. In this discussion, inputs to the S-boxes
are referred to as variables by the name of X. Such XNODEs
contain 3 fields.

As for RNODES, there is a count field which contains an
integer from {0,2} to record the number of times the XNODE
has previously been expanded. There is also a value field to
contain a bit indicating whether the X variable 1is to have
the value 0 or 1. The third field contained in an XNODE is
a pointer to the RNODE of appropriatée level, value, and po-
sition which caused the production of the particular X value
during encryption.

An X variable at some particular position and level ob-
tains its value during the encryption procedure by means of
application of the following DES formula:

X = KS(p,n) ® Rn-1

90
The first term represents‘the output of the DES key schedule
function at level n,'position p. If the value of the XNODE
being developed is 1, then the two possible disjunctive cas-
es are that the KS output and the particular position of the
R-block were respectively either 1 and 0 or 0 and 1. As in
the case of the RNODE, should the value of the XNODE have
been 0, both the KS output and R-block bit would have to
possess the same value, for the XNODE to be satisfied. (Both
0 or both 1).

Only one child pointer extends from an XNODE, as the re-
guirement that a key bit possess a certain value does not
imply any further tree development. If it is known that the
output of the KS function must have a certain value in a
certain position at a certain level, a key bit hypothesis
may be immediately formed and posted in the global variable
containing the developing key. The key schedule function is
inverted to determine which bit of K is produced in position
p at the given round of encryption, and this bit of K is as-
signed the appropriate valué. Should backtrack occur to the

XNODE, the key bit hypothesis must be deleted.

8.3 THE PL/I PROCEDURE: SEARCH

The implementation of the search strategy described ear-
lier was carried out in PL/I. The actual code for the rou-
tines to be discussed may be seen in Appendix F. Although

the strategy employed for the purposes of wunidirectional

91
search for K has alreaay been discussed at some length, cer-
tain features of the PL/I implementation are noteworthy. 1In
particular, attention will be paid to the techniques used
for node expansion and backtracking during the search.

Tree development is controlled by a gqueue of nodes which
are "open" for further development, where the characteristic
common to all such open nodes is that they are not yet sat-
isfied. Their subtrees require further development. Where-
as a similar queue maintained for the purpose of breadth-
first expansion of the n-ary tree to discover the best
sum-of-product terms (as discussed in Chapter VI) was im-
plemented using an array of pointers to open nodes, here a
linked list of pointers is maintained. Tree development is
~accomplished by expanding the subsequent open node on this
gueue, deleting it from the queue of open nodes, and then
moving on to expand the next open node. This procedure con-
stitutes the mainline of the search procgdure, and continues
until the open queue is empty.

The reason that a linked-list implementation was chosen
for the open queue involves the need to be able to choose
whether the expansion is to be depth-first or breadth-first.
An array iﬁplementation may be seen to make the ability to
support the former expansion capability prohibitively ex-
pensive. As the tree development is accomplished by expand-
ing nodes in the open queue successively, to grow the tree

in a breadth-first manner one adds new nodes to the end of

92
the queue, where they will be expanded after all other nodes
in the queue. Adding new nodes to the queue in a position
immediately following the node currently being expanded
means that these new nodes will be expanded next, before
others in the queue, and that the expansion of the tree will
occur in a depth-first fashion. In an array implementation
of the open queue, the insertion of entries in the middle of
the queue would entail the "shuffling" of elements, and a
great associated computational expense.

When a node pointed to by an element on this open queue
is to be expanded, the EXPAND routine is called, from the
mainline. It selects and invokes one of the routines:
R_EXPAND, F_EXPAND, or X_EXPAND, depending on the value of
the type field of the node being expanded, for R_NODEs,

FNODEs, and XNODEs, respectively.

8.3.1 The R EXPAND procedure

The routine R_EXPAND commences by checking the encryption
level of the RNODE to be expanded. If it is the case that
the RNODE is from encryption round 0 or -1'’ the bottom of
the tree has been reached, and the value of the RNODE may be
compared with the value required for such a node, as bits in
the R‘block at levels 0 aﬂd -1 correspond to bits of the

known plaintext. Should the RNODE have the correct value,

'7 No L nodes are explicitly represented in the tree, but
their presence is accounted for by RNODEs of the preceed-
ing level. Hence an RNODE at level -1 corresponds to a
level 0 L node.

93
R_EXPAND returns without adding any new nodes to the open
queue. - However, 1if the value of this RNODE as produced by
the inversion of the encryption process is 1incorrect, the
BACKTRACK procedure is called to remake choices earlier in
the tree which 1led to the production of this erroneous
RNODE.

If round O of the encryption has not yet been reached,
the count field within the RNODE is examined. This field
contains a value from {0,2} to indicate how many times the
node has already been expanded. There are only 2 possible
ways to expand any RNODE, corresponding to the 2 possible
inputs to an XOR function which can cause the function to
attain a specified value. 1If the count field is 2, no fur-
ther expansion possibilities remain for the RNODE, and
BACKTRACK is called.

If the count field is other than 2, appropriate left and
right child nodes are created and added to the end of the
OPEN queue, after any existing subtrees have been destroyed
and their ramifications removed. The 1left child is always
another RNODE of 1level 2 less than the RNODE being expand-
ed.!® The value of this child RNODE is assigned as 1 upon
the first expansion of the fathervRNODE, and 0 for the sub-
sequent expansion. The right child is an FNODE of value 0 or
1, depending on both the value of the parent RNODE and the

number of times which the parent has been expanded. To be

¢ This RNODE represents the virtual LNODE at level 1 less
than the RNODE being expanded.

94
specific, an FNODE of value 1 is the right child if and only
if the parent RNODE has a count field which is equivalent to
the number of times the RNODE has previously been expanded.
(Both 0 or both 1). Otherwise, an FNODE of value 0 is creat-
ed. Before leaving the R_EXPAND rouitne, the count field of

the RNODE being expanded is incremented.

8.3.2 The F EXPAND procedure

The F_EXPAND routine 1is invoked by the EXPAND driver to
expand an FNODE. As mentioned, all simultaneously disjunc-
tive paths from a particular node in the tree exist only
virtually: The FNODE structure at any given time has chil-
dren which consist of the set of XNODEs engendered by the
assumption that a single particular p-term in the sum-of-
products expression for the S-box in question will cause the
satisfaction of the FNODE.

When it is necessary to expand an FNODE, it is first de-
termined through the examination of the value bit within the
FNODE whether the sum-of-products form for the complemented
or uncomplemented S-box function is to be employed 1in the
expansion. The procedure then ascertains whether there yet
remain any p-terms in the appropriate S-box expression cor-
responding to the S-bank output under consideration, the
consequences of which have not yet been explored. To accom-
plish this, the count field maintained within the FNODE is

compared with the number of p-terms in the associated sum-

95
of-products expression. This field is incremented each time
an expansion of the FNODE is performed. As no Quine-McClus-
key minimized S-box expressions contains more than 23 p-
terms, this count field has a value from {0,23}. Alterna-
tively stated, satisfaction of any FNODE can be attempted at
most 23 times before backtrack continues higher in the tree.
If all p-terms have been exhausted, BACKTRACK is called. 1In
such a case, no possibilities remain to expand the FNODE
without the consequences of the expansion causing some con-
tradiction.

If untried p-terms still remain in the appropriate sum-
of-products expression, children corresponding to the X lit-
erals in this next p-term are created and added to the OPEN
queue, In practice, the ;xisting children of the FNODE are
replaced only if the value of the X literal they represent
differs in value from the corresponding X literal in the new
p-term. If the values do not differ, the old XNODE child is

retained along with the subtree of which it is the root.

8.3.3 The X EXPAND procedure

The expansion of an XNODE is somewhat analogous to that
of an RNODE, as both of these structures are formed as a re-
sult of an XOR operation. To expand an XNODE, its count
field 1is first examined. If this field has reached 2,
BACKTRACK is called, as no possibilities for expansion re-

main.

96

XNODES have only one child in the search tree, the other
component of the XOR producing an XNODE 1is a bit of K. If
the number of times the XNODE has been expanded is equiva-
lent to its value, as in the expansion of an RNODE, an RNODE
of value 0 is created as a child at the preceeding round of
encryption, and is added to the OPEN queue. An RNODE with
value 0 is created if the equivalence does not occur.

Based on the count field, a hypothesis for the value of
the bit of K is produced. The position of the bit within K
is determined through knowledge of the key schedule permuta-
tion. Beore posting this hypothesis for the bit of K, the
current hypotheses are examined to ensure that a contradic-
tory hypothesis for the séme bit does not exist. If such a
hypothesis already exists, BACKTRACK is called to resolve
the contradiction. 1If no hypothesis yet exists for the bit
under consideration, the new hypothesis 1is posted and
X_EXPAND returns, after having incremented the count field

within the XNODE.

8.3.4 The BACKTRACK procedure

The BACKTRACK routine has been mentioned extensively in
the preceeding discussion, although its characteristics have
not yet been examined. It is invoked when no disjunctive al-
ternatives for expansion remain for the node whose expansion
'is currently being attempted by the tree search procedure.

All possible expansions have led to a contradiction, either

97
of key bit hypothesis, or between what has been produced as
plaintext by inversion of the encryption process and what
the plaintext is known to be.

If such a condition arises, it must be the case that an
erroneous choice -of some disjunctive path to follow has oc-
cured earlier in the tree, and such a Choice,must be re-
made.

BACKTRACK first deletes the current node. This is accom-
plished by setfing to null any pointer in the father of the
node which points to that node, as well as removing from the
OPEN queue any references to the node.

The need for the latter action may be seen from the fol-
lowing example. Consider a subtree of the search tree, con-
sisting of an RNODE at encryption round 2, and its 2 chil-
dren: a round 0 RNODE, and an FNODE ét level 1. Suppose that
the RNODE at level 0 is the node currently being developed
and that the FNODE is the next on the OPEN queue. Should the
check with the known plaintext indicate that the value of
the level 0 RNODE is incorrect, backtrack occurs to re-ex-
pand its father, the level 2 RNODE. This re-expansion will
cause the creation of new left and right children. 1In par-
ticular, if the level 2 RNODE may be re-expanded, a new
FNODE child with a value different from the previous right
child is produced. Clearly, the old FNODE must be removed
from the OPEN queue to prevent such a node, which now does

not belong in the tree, from ever being developed.

98

It is for this reason that the OPENQ field exists in each
SUPER node. This field conatins a pointer to the qgueue node
which points to the SUPER node. Essentially, the OPEN gqueue
references are backlinked to permit the immediate location
of a particular queue node for deletion. If such a field
were not provided, it would be necessary to search the OPEN
queue linearly for any references to the node being deleted,
each time any open node was to be removed from the tree. As
the OPEN queue may be as long as the maximum width of the
search tree, such a procedure would be computationally
wasteful.- Clearly, the OPENQ field points to nodes on the
OPEN queue only for nodes which are still open for further
expansion. The field is set to null when a node is expanded
by the EXPAND routine. After these references are deleted,
BACKTRACK calls EXPAND for the father of the deleted node,
to attempt an alternative expansion of this earlier node.

It should be noted that this process is recursive, and
will continue the expansion and backtrack unﬁil all 64 of
the round 16 root nodes are satisfied, and all positions of
the results of our encryption inversion agree in value with
what the plaintext P is known to be, with no contradictions
in what the bits of K must have been. At such a point, the

encryption key K has been uncovered.

99

8.4 APPLICATION TO A 2-ROUND DES

For the purposes of testing these unidirectional key
search procedures, a set of APL routines were written to
perform 2-round DES encryption of randomly-chosen plaintext
bits under a randomly-chosen key, and store the resulting
P-C pairs in files accessable to the search routines. These
APL routines may be found in Appendix G.

Experimentation with the PL/1 search routines quickly
demonstrated the intractability of a wunidirectional search
approach to the discovery of the encryption key, even for a
DES algorithm of only 2 rounds. Computer time limits of up
to 30 minutes on the University of Manitoba AMDAHL 470/V8
were exceeded during the course of execution of the search,
and further experimentation with such searches had to be
curtailed due to the computational expense. The search tree
itself was constructed down to the plaintext leaf level
fairly rapidly, but the process of backtracking to remake
choices in the tree to get the known plaintext to agree with
what had been generated as a result of the posted key bit
hypotheses continued in all trials until the processing time
limit imposed upon the program had been exceeded.

Examination of the causes of the failure of this approach
to cryptanalysis led to a direction of further research dif-
fering in two components: An analysis of the use of process-
ing time by the search procedure showed that a considerable

amount of time was wasted by both the dynamic allocation and

100
freeing of storage from the heap by PL/1 during execution,
and’by the continual paging of (4k byte) segments of the
large (384k) search tree during the search. While the for-
mer problem could have been avoided through exploitation of
the realization that the tree, 1in a somewhat altered repre-
sentation space, 1is static and thus all required memory may
be pre-allocated and need never be freed, the latter seems
regrettably inavoidable due to the scattered distribution of
key bit wuse throughout the encryption. The regularity of
structure of the properly-viewed search tree will be further
discussed in the following chapter.

Aside from these implementation considerations, upon
proper reflection it must be concluded that the unidirec-
tional search approach 1is destined to be computationally
intractable, as it is essentially a "generate and test" ap-
proach. In the algorithm presented, not all of the available
data is effectively used to guide the search. While the ci-
phertext is employed to determine the growth of the tree,
the known plaintext is used in an inefficient manner, to
simply verify fhat the tree has grown properly, and to cause
backtrack for the purposes of correction, if it has not.

Algorithms of this type are known in the field of comput-
er science as the "British Museum" approach for their ex-
haustive and somewhat foolhardy nature. Our unidirectional
approach is analogous to employing exhaustive bottom-up gen-

eration of all possible facts in order to prove a theorem,

101
instead of using the goal, i.e. the theérem to be proven, to
guide the search in a top-down goal-directed fashion.

What seems required is an ability to effectively use all
available knowledge, both P and C at once, to guide the key
search and thus effectively limit the search time. The next
chapter discusses such a bidirectional approach from a con-
ceptual viewpoint as a problem of search, and then identi-
fies the problem of.the search of a tree of fixed structure
with that of the symbolic solution to a set of Boolean equa-
tions. After an unsuccessful attempt to program methods to
symbolically simplify the Boolean equations which constrain
the values 6f the bits of K which maps between a given P-C
pair, a new type of AND/OR tree search is developed. This
new search benefits from all of the minimizations performed
on the S-box functions, and has the additional advantage of

not requiring any backtrack.

Chapter IX

KEY SEARCHES OF GREATER SOPHISTICATION

9.1 COMPUTATIONAL COMPLEXITY AND BIDIRECTIONAL SEARCH

Certain properties of the DES encryption procedure make
it vulnerable to an attack by the methods of bidirectional
search, wunder the assumption of a known plaintext attack.
It has been mentioned that the knowledge possessed by the
cryptanalyst under this assumption is situated at both the
root and the leaves of the cryptanalytic search tree.

The wunidirectional search of the previous chapter at-
tempted to invert the encryption process through the con-
struction of a search tree beginning at the (known) bits of
ciphertext. Hypotheses concerning the values of key bits
and bits 1in earlier blocks of developing ciphertext were
forwarded, based on knowledge of the values of bits 1in
blocks formed later in encryption. The known plaintext bits
were reached after all levels of encryption had been invert-
ed. Backtrack to attempt alternative disjunctive paths in
tree development occured when either plaintext bits did not
agree in value with what the bit values should have been on
the basis of how the encryption was inverted, or when re-

quired assignments of key bit values were contradictory.

- 102 -

103

In addition, during this search, a single key hypothesis
was maintained in a variable globally available for all sub-
tree expansions to update. In retrospect, the "thrashing”
behavior of the unidirectional search may be seen to result
at least partially from the design of the search algorithm
which required such a unique hypothesis to be maintained. In
the AND/OR search which is discussed in section 9.4, this
requirement is removed to allow the search to proceed by
building an expression tree top-down, and then traverse the
tree in a bottom-up fashion, wiEhout the need for any back-
tracking.

It is possible to obtain an estimate of the efficacy of
this search procedure by comparing the worst case number of
trials in an exhaustive key trial approach to DES cryptana-
lysis (2°¢ or on the order of 10*’) to the greatest possible
number of nodes which would have to be developed in the tree
during the search -approach to encryption key discovery. This
compariéon is not altogether reasonable, as exhaustive key
trials would probably be performed‘in special-purpose hgrd—
ware [2], while the search techniques discussed would at
first be implemented in software. However, it would not be
impossible to build a hardware device to perform the opera-
tions involved in the search procedure. As a l6-round DES
encryption requires far more basic operations than the ex-
pansion and traversal of a single search tree node, the

identification of these heterogeneous quantities errs to-

104
wards the conservative. It is crucial to the success of the
attack methods presented here that one accept this idea that
it is reasonable to compare key space size with number of
tree nodes.

A simple argument will quickly demonstrate that the use
of a unidirectional search for cryptanalysis as attempted in
the preceeding chapter is destined to failure, even apart
from considerations of backtracking. (I.e., even 1if each
node in the tree 1is visited only once, a unidirectional
search will fail). For such a search to be useful, the re-
guired branching factor engendered by the S-boxes is so
small so as to be unattainable by means of known Boolean
minimization techniques.

The top level of the search tree contains 64 nodes, one
for each bit of ciphertext. 1In proceeding from one level of
the search tree to the next, each node which represents a
bit in a block of developing ciphertext can requ#re the in-
version of two instances of the function f. 1If some bit po-
sition of some R-block has a value of 1, then the values of
the same bit position of the f function which operates on
the R block of the preceeding level and that of the L block
at the preceeding level must differ, as an XOR indicates
non-equivalence. (See Figure 6, position (2)). would be in-
vestigated, if the search ever backtracked to the node. As
the (Quine McCluskey) representation for any S-box is a p—v

term expression of at most 23 p-terms, each of which is a

105
conjunct of at most 6 literals, the expansion of an FNODE
once in the search, can engender a branching factor of up to
23x6 in the search tree. As two such expansions may be re-
quired per node per level of the search tree (if the first
expansion fails), the worst case number of nodes in the uni-
directional search tree using QM S-box representation for
the inversion of a l16-round DES will be approximately:

15

\ Ci 38 17
64 x / (2 x 23 x 6) = 2.6x10 >> 10

ie1

It may also be calculated that for the number of nodes in
the search tree to be less than the number of possible keys,
again under the highly conservative assumption that all pos-
sible disjunctive paths in the search tree must be followed,
the branching factor caused by the S-boxes must be less than
5. Even the spectral minimization techniques do not allow
such é small expansion factor to be achieved.

Nevertheless, the use of bidirectional search techniques
[18,19] may be shown to upper-bound the number of nodes in
the search tree, even under worst case assumptions, to a
number which is on the order of the key space size. As en-
cryption and decryption procedures are virtually identical
in the DES algorithm, it is then possible to expand the tree
"backwards" from the known plaintext towards the ciphertext,

at the same time as one is expanding the tree forwards, from

the ciphertext. Key bit hypotheses are generated during the

106
course of the expansion in both directions, and standard re-
cursive backtrack occurs within either search (or within
both searches) if mutually incompatible key bit hypotheses
are generated either within one "half" of the search tree,
or if some incompatible hypotheses exist when the union is
taken of the two generated sets of hypotheses. The matching
of the two halves of the tree between rounds 7 and 8 is not
difficult. However, it does imply that to implement the bi-
directional search for a full 16-round DES, enough memory
capacity is avaliable to store the entirety of the middle
(widest) layer of the tree. This layer contains 64(2x13x5)’
nodes.,

It is not difficult to show how the use of such a bidi-
rectional search reduces the number of nodes in the tree.
What the approach achieves may be seen schematically in Fig-
ure 8, Bidirectional Search Tree. The search 1is driven
forwards from both the top and bottom simultaneously, and
meets in the middle of the tree. It is only possible to do
this because the encryption and decryption proceddres are
the same, and the attack assumptions include knowledge of
the plaintext. |

The search now consists of two symmetric searches; each
of which continues for 7 levels beyond the first level at
which the 64 nodes representing the known bits of plain or
cipher text are established. A total of 8 1levels are

searched in each half of the search. Using the same QM S-

107
box approximations as seen 1in the preceeding calculation,
the worst case number of nodes in the bidirectional search
tree is found to be:

7
\ i 19
2 X 64 x / (2 x 23 x 6) = 1.6x10

i-1
Should this search employ the spectrally-minimized S-box
representations, even in the worst case the total number of
nodes expanded in the search tree would be on the order of
the key space size:
7

\ i 16
2 x 64 x / (2 x 13 x 5) = 8.9x10

i-1

It is important to realize that all of the above rough
calculations have assumed worst case conditions for the
search, That is, it has been assumed that all possible dis-
junctive alternatives of all OR nodes must be expanded in
the course of the search, and furthermore that all such ex-
pansions entail in all places the maximum number of branch-
es. In fact, only one S-box has as many as 13 p-terms in
its spectrally minimized form. The mean number of p-term is
about 11. 1In addition, the fact that p-terms are ordered in
the sum-of-products expressions in a "best first" manner

lends a heuristic component to the search; the alternatives

108
most likely to succeed'’ are chosen for expansion first.

It may be possible to quantitatively estimate the advan-
tages of the bidirectional search technique by slightly re-
laxing the worst case assumptions. If the expected branching
factor of the search tree is based upon the average number
of literals per p-term (3.57) instead of the maximum possi-
ble number of such literals (5), the expected number of
nodes in the search tree decreases to 7.68x10'*, This is a
factor of 10 1less than the key space size. The unidirec-
tional search of Chapter 8 was never actually implemented in
the bidirectional manner described so far in this section. A
realization that the structure of the search tree would also
be uniform, regardless of the particular P-C pair cryptana-
lyzed, 1led to the digression of the next section, in which
the cryptanalytic problem is shown to be equivalent to the
simplification of a set of Boolean equations. While experi-
mentation with this technique was limited by the its re-
quirement for very large amounts of memory, this next view
of the cryptanalytic problem was of use, in that it eventu-
ally led to the development of a more sophisticated type of

-search, in which backtracking is unnecessary.

'* This is somewhat simpleminded, as this considers only the
p-terms which "turn on" the S-box functions by them-
selves, and ignores interactions with other branches in
the tree. .

109

9.2 DIGRESSION: SEARCH AS THE SOLUTION OF BOOLEAN
EQUATIONS

During the course of development of the unidirectional
search procedures, it was realized that should it be desired
to invert the action of the DES encryption in making the
output of some f function 0 at some round and position, to
exband the product-of-sums expressions resulting from DeMor-
gan inversion of the QM-minimized S-box functions would make
the search intractable. As a consequence, complements of
the S-boxes were minimized in order to possess sum-of-prod-
ucts expressions for use in such circumstances,?®

What was only realized later was that the use of such
minimizations of the complements of the S-boxes during the
inversion of encryption implied that the structure of the
resulting search tree was always the same, independent of
what P-C pair was used.?®' RNODEs always have another RNODE
(of level 2 less than their father) as a left child, and an
FNODE as a right child. FNODEs have up to 6 XNODE children,
depending on the number of "don't care" positions in the
conjunct term currently being expanded. Each XNODE has an
RNODE as an only child. Expansion of an XNODE also causes

the posting of a key bit hypothesis as a side-effect. (See

*° Quite clearly, a sum-of-products expression of the gener-
al form arising for DES may be potentially satisfied in
far fewer ways than the corresponding product-of-sums ex-
pression resulting from its complementation, due to the
presence of more disjuncts in the latter.

** This is not entirely accurate. An FNODE in the final
state of the treeymay have less than 6 XNODE children, if
the corresponding p-term contains "don't-care" values.

110
Figure 9, 2-Round Search Tree of Uniform Structure).

As the morphology of the tree would thus be constant, re-
gardless of the actual P-C pair for which K was being dis-
covered, there was no longer any need to allocate subtrees
dynamically through the use of the PL/I ALLOC and FREE func-
tioné. The entire tree structure could be pre-allocated, and
the fields in its nodes simply filled in to reflect the tree
contents at any moment. In addition to the resultant time
saving, memory space could also be saved as a result of this
realization, as pointers are only really needed to refer to
a child when the location of the child cannot be determined
when the father is created. With the entire tree structure
known a priori, pointer locations could be determined by ad-
dress calculation, and not explicitly stored with the nodes.

An even more important revelation which followed from
this discovery is that when the form of the tree is predet-
ermined, the entire tree structure can be collapsed into a
set of equations, where the key bits are the unknowns, and
the plain and ciphertext bits are constants. In such a rep-
resentation, the search tree would be present only virtual-
ly, 1implicit in the expression-tree structure of the equa-
tions. The problem of bidirectional key search is
isomorphic to that of solving for ‘the key bits in the equa-
tions implied by the search tree structure.

Furthermore, the process of cryptanalysis by such a meth-

od could be partitioned neatly into a (lengthy) symbolic

111
precomputation procedure, followed by a (fast) application
of the results of this precomputation for the cryptanalysis
of specific P-C pairs. In the precomputation phase, the
constraint equations which contain the key bit variables and
the constants for P and C as symbolic constants would be
simplified through the application of algebraic transforma-
tions. Such a computation would only ever have to be done
once, After these symbolically-simplified equations are pro-
duced, to discover K for any specific P-C pair, one would
substitute the known values for P and C for the symbolic
constants, then simplify the equations further, to discover
the actual values for the bits of K. |

The idea of such a separation of components of a crypta-
nalytic process has been proposed elsewhere [6]. This meth-
od of cryptanalysis would also benefit from all of the
search space size reductions which arise from the functional
and gpectral S-box minimizations discussed in Chapters V and
VII. |

Specifically, the approach to be considered here 1is as
follows: From the details of the DES encryption algorithm
together with the minimized representations for the S-boxes,
a set of 64 equations involving ORs, ANDs, and NOTs with the
56 key bits as unknowns and the 64 positions of P and 64 po-
sitions of C as symbolic constants may be formulated. It
should be observed that for an n-round DES, these equations

have 2n+l AND and OR levels, where the number of levels

112
possessed by a Boolean equation may be defined as the number
of levels in the correponding n-ary?? expression tree.

The symbolic simplification of this set of 64 equations,
one for each bit of C, by means of the application of theo-
rems of Boolean algebra or some other similar simplification
technique Qould constitute the precomputation phase of the
cryptanalysis.

Simplification, in this context, involves the "flatten-
ing" of the implicit expression tree into a 2-level sum-of-
products form, with the removal of redundant terms, and
will be discussed more thoroughly in the following section.
The fashion in which this simplification should be carried
out in order that it not require undue amounts of memory or
processing time is not at all evident. One of the central
problems which must be addressed 1is that the tradeoff which
exists between the advantages of moving negation "inwards"
in the expressions, and those of applying theorems (such as
the absorption or consensus theorems [16]) to reduce the
number of terms in the expression.

If negation is moved inwards by application of the DeMor-
gan theorems in a careless manner, the fact that a complex

subexpression and its complement exist together in conjunc-

*2 OR and AND operators will not be restricted to 2 argqu-
ments, but may operate on n arguments. This convention
will permit an expression a+b+c to be represented in one
expression tree level, as "+" operating on 3 arguments.
Were we forced to consider "+" as a binary predicate, 2
tree levels would be required, to represent the expres-
sion as a+(b+c) or (a+b)+c.

113
tion or disjunction méy be overlooked, a situation which
wastes memory space, and eventually processing time as well.
However, the detection of instances in which theorems such
as the absorption theorem are applicable seems to require
complex and computationally expensive pattern-matching pro-
cedures. In what sequence to apply these simplification
techniques is not evident.

It has been mentioned that the preprocessing phase of the
cryptanalysis consists of the symbolic simplification of the
set of 64 equations relating the variables in K and the con-
stants in the known P to each of the 64 bits of C, respec-
tively. After these equations have been simplified, to dis-
cover K for any known P-C pair, the Boolean constants 1 and
0 are substituted in the equations for the symbolic P and C
constants, and each of the 64 equations is further simpli-
fied as much as possible.

Finally, as the 64 equations themselves must necessarily
be satisfiable together, they are put into conjunction, and
this conjunct further simplified, by the same simplification
process. What must result, for a 1l6-round DES, is the uni-
que conjunction of key bits and complements of key bits

which eqﬁals 1.2® This yields the encryption key, K.

23 For a DES of less than 16 rounds, possibly a disjunction
of such conjunctions may result. This corresponds to the
situation where more than one key performs a specific
P->C mapping in a 2-round DES. It is unknown if this can
occur in a full 16-round DES.

114
9.3 SYMBOLIC SIMPLIFICATION METHODS

A number of potential methods were examined, for the
simplification of the sets of Boolean equations which are
seeén to represent in a new form the cryptanalytic search
tree of the preceeding chapter. As it has been realized
that the expression tree is of fixed structure, it is possi-
ble to calculate the size of such a tree for an n-round DES.
The number of leaf nodes in such a tree is the same as the
number of literal terms in the (unsimplified) expression it
represents, and will wvary as a function of the quality of

the S-box minimization employed.

9.3.1 Expression Size

It is of some interest to determine the theoretical maxi-
mum size of the 64 expressions which result from the flat-
tening of the search tree, as their size will determine the
applicability of various simplification techniques. The
number of literals which will be present in any expression
is identical to the number of 1leaf nodes in the correspond-
ing expression tree, as any Boolean expression is simply an
expression tree with the structure obscured.

With reference to Figure 9, the number of literals in un-
simplified expressions for a 2-round DES may be seen to be:
2(1+ (23)(6)(2(1+ (23)(6)))) = 148326
for each of the 32 subtrees from the leftmost 32 bits of C,
using the conventionally OM-minimized S-boxes, and:

2(1+(23)(6)) = 396

115

for the 32 subtrees from the rightmost 32 bits of C.

9.3.2 Problems of Simplification

In view of the large size of the equations . involved in
the problem, the simplification methods to be employed must
be carefully chosen and implemented to be compuatationally
tractable, even for a 2-round simulation.

Immediately, a Quine-McCluskey simplification may be seen
to be inappropriate. The QM method requires that all prime
implicants for the function be generated, and the resultant
combinatorial explosion renders this impossible in our
56-variable case. For QM to be used, the expressions to be
simplified must first be multiplied out 1into a 2-level sum-
of-products form prior to simplification. While such a form
is the ultimate goal form for our equations, a feasible al-
gorithm should not expand any expression prior to exhausting
all possibilities to reduce its size, due to the already un-
wieldy size of these expressions.

Very little information exists in the literature concern-
ing the automated symbolic simplification of Boolean expres-
sions. A manual application of the theorems of Boolean al-
gebra to an expression will theoretically result in its
reduction to some form of maximal simplicity, if these math-
ematical operations are carried out in the correct order.
One problém with the automation of such a procedure is that
the correct order 1in which to apply the algebraic theorems

is often not at all clear.

116

The only attempt known to the author at an algorithmic
specification of how such a simplification might proceed is
that of Zissos [25]. Zissos presents a somewhat vague "re-
search algorithm" for the symbolic minimization of Boolean
expressions.. This algorithm, while not producing a minimal
form in all circumstances, has the advantage that it does
not entail expansion of the original expression. 1Its disad-
vantage is that the algorithm presented is somewhat obtuse,
and does not seem well suited to computerized implementa-
tion.

In order to carry out the required Boolean simplifica-
tions for the reduction of the equations embodied 1in the
search tree, an admittedly ad hoc system of PROLOG (PROgram-
ming in LOGic) routines was devised and implemented under
UNIX on a DEC PDP 11-45 minicomputer.

PROLOG 1is a very high-level theorem proving language,
with capabilites of automatic recursive backtracking and
pattern-directed procedure invocation. In PROLOG, control is
decoupled from the logic of a program, 1is bﬁilt—in to. the
PROLOG interpreter, and so need not be explicitly specified.
A user of PROLOG simply provides truths to the interpreter
in the form of Horn clause?* axioms and implications, in a
notation similar to that of first-order logic [23]. The
theorem whose proof 1is requested is specified 1in a similar

form, perhaps with some unbound variables, the values of

+ A Horn clause 1is a conjunct of 1logical predicates which
involve no negations.

117
which are determined in the course of satisfaction of the
theorem,

The linear-input resolution theorem-proving methods of
Robinson [21] are then used by PROLOG to affirm the theorem
by the syntactic manipulation of the facts to derive what is
known as the "empty clause." A more detailed description of
the operation of the PROLOG interpreter would serve little
purpose here, and the reader 1is directed to the literature

on the subject [23,24].

9.3.3 A PROLOG Symbolic Simplifier

For the purposes of exploring the possibility of crypta-
nalysis by means of solving the Boolean equations relating
P,C,and K for the unknowns K, a set of PROLOG axioms and im-
plications were developed which were capable of simplifying
arbitrary multi-level Boolean expressions involving ANDs,
ORs, and NOTs into a 2-level sum-of-products form. Appendig
H lists these routines, and a small example of their appli-
cation appears on page 239.

The simplification system relies heavily on the pattern-
matching capabilities built-in to the PROLOG interpreter to
determine the applicability of wvarious simplification theo-
rems. The feature of PROLOG which permits the user to define
new operators was employed to permit the PROLOG interpreter
to parse well-~-formed Boolean formulae which contain tildes
(for negation), ampersands (for conjunction) and backslashes

(for disjunction).

118

To simplify an expression, the predicate "simplify"
iteratively calls the "simp" predicate, until no further
simplifying transformations may be effected. The "simp"
predicate attempts to apply some simplifying transformation
directly to the expression. If this is not possible, it re-
cusively attempts to do the same for subexpressions of the
original expression, until the literals of the expression
are reached.

These simplifying transformations are a PROLOG encapsula-
tion of the pertinent rules of Boolean Algebra, and are rep-
resented by the "s" and "s2" predicates which are activated
by the "simp" predicate. The first two "s" predicates rep-
resent the trivial case of the recursive simplification of
expressions, a bottoming-out on literal atoms which can be
simplified no further.

If these are not satisfied, the next "s" predicate checks
whether the expression to be simplified is a one-level ex-
pression, 1i.e. whether it consists of a conjunct of dis-
juncts of literals. This check was added late in the devel-
opment of the simplification system, as a measure to prevent
the excessive use of stack space by the PROLOG interpreter
in recursing down to the atomic level for all formulae. The
literals in the'expressibn are sorted alphabetically by a-
quicksort, and scanned to effect the transformations:

as&"a -> 0 a&a -> a ala -> a al-a ->1

119

Should the expression not be of a single level, the next
"s" predicate checks for the applicability of the involution
law, and the next two attempt to apply the 2 DeMorgan laws
to move negation inwards. The last "s" predicate activates
the "s2" transformation predicates to match, 2-at-a-time,
the top level terms 1in the expression to be simplified
against the forms of the remaining simplification theorems.
These "s2" simplification predicates include the theorems
of: idempotency, complementarity, distributivity (
(a]b)&(a|c)->a|(b&c)), absorption, consensus, and the other
distributivity theorem (a&(b|c)->a&b | a&c). The system at-
tempts to apply this latter distributivity theorem to multi-
ply conjuncts only if all other simplification theorems fail
to be applicable, as it is this last theorem which can make
expressions larger.

It is wunfortunate that despite their sophisticated na-
ture, these simplification predicates failed to be of much
use in the cryptanalysis of DES. The fact that the PROLOG
interpreter tends to be very inefficient in its utilization
of memory space restricted the application of this elegant
simplification system to problems of a small "toy" nature.
Despite careful use of the PROLOG cut operator (!) to remove
choice points to which backtrack should never return and
thereby save stack space, the. very small core memory space
available on the PDP 11-45 upon which the system was imple-

mented (approximately 256k bytes) made it impossible to ap-

120
ply the system to equations whose size was even a factor of
100 smaller than those involved in a 2-round DES.

As a consequence of this regrettable fact, the PROLOG
system was abandoned in favour of a more sophisticated
search technique, implemented in a conventional language.
The idea of the formulation of Boolean equations which con-
strain the values which the bits of K are free to assume, as

presented above, is central to this new search technique.

9.4 A MODIFIED, KNOWLEDGE-INTENSIVE KEY SEARCH

Another version of a key-search procedure was developed
to once again attempt to empirically demonstrate the feasi-
bility of the attack method which involves the S-box mini-
mizations which have been discussed. This approach utilized
some of the features of the ﬁnidirectional search of the
preceeding chapter, combined with a better use of the avail-
able knowledge concerning P and C, to limit the search tree
size, and thereby decrease the time required for such a
search to within the limit of computer time available. A
listing of the routines discussed in this section may be
found in Appendix 1I.

Viewed from a high level of abstraction, phe decryption
procedure involves two phases. An n-ary Boolean expression
tree containing AND and OR nodes 1is consrtucted for each of
the 64 bits of C, to represent the Boolean algebraic combi-

nation of bits of K required to produce the known value for

121
each of the bits. This tree construction is performed in a
top-down fashion from knowledge of value of the bit of C be-
ing considered, the particular known plaintext block P, and
the details of the DES encryption algorithm.

The expression tree is then evaluated bottom-up, where in
the course of the evaluation the leaves ~contain the re-
striction on K currently required, in a sum-of-products form
represented as a matrix containing values '1l', '0', and 'X'.
Each row of such a matrix corresponds to a single p-term, in
which a '1l' corresponds to the presence of an uncomplemented
variable,. 'C' to the presence of a complemented variable,
and an 'X' to a "don't care", or the absence of a variable.
This representation has been discussed earlier in section
5.1, and will henceforth be referred to as cube notation.
ORs are evaulated by perforﬁing a specific type of "union"
of the key restrictions, while ANDs are evaluated by an "in-
tersection”.

The single sum-of-products expression which results from
such a traversal of the expression tree'represents the dis;
junctive alternatives which constrain the values of the bits
of K which perform the required P->C mapping under the DES
algorithm. As mentioned 1in section 9.2, the final sum-of-
products expression will consist of a single p-term if and
only if a K which maps P->C for the given P-C pair analyzed
is-unique. With a DES of only 2 encryption rounds, it is

possible that many different K could perform the required

mapping.

122

9.4.,1 AND/OR Expression Tree Formation

Given the values of the bits in a plaintext block P, and
the value of a particular bit in some known position of C,
it is possible to construct an AND/OR expression tree at the
leaves of which reside the necessary constraints on a key K
so that K:P->C, If 64 such expression tfees are constructed,
one for each bit position in C, and the key constraints im-
plied by each are ANDed, the key K required to map the 64
bit guantity P to the 64 bit quantity C is uncovered. A de-
scription of the technique whereby each of these 64 trees
may be produced through knowledge of the details of the en-
cryption process follows.

Consider some bit position of the ciphertext, such as the
last bit, 64. Assuming our usual model of a 2-round DES with
no IP or IP-*! permutations, and QM-minimized representation
of the S-boxes and their complements, this is the 32nd bit
of the R block at encryption round 2, which we shall denote
R2%*?, Using the DES equation relating R at some round n to L
and R at round n-1, we see that:

R232 L1z & f22(R1,K2)

RO*? @ f*2(R1,K2) = ----- (1)

by the other DES equation, where f£°2 denotes the 32nd bit of

output from the f function as described in Figure 2 of Fips

Publication 46 [26]. Rearranging equation (1) yields:
f£22(R1,K2) = R2°? ® RO*? = -=---- (2)

where the right hand side of this equation is known, as R0??

is just the 32nd bit of the R block of the plaintext P.

123
To determine which inputs X to the bank of S-boxes fix
the output of the f function, the inverse of the DES P per-
mutation?® and the structure of the bank of S-boxes must be
considered. Bit position 32 mapped through the inverse of
the P permutation yields 25, which indicates that output 25
of the bank of S-boxes is 1involved. This is the 1lst output
of S-box 7. The value of this S-box function may be seen to
be controlled by inputs X°*¢ to X*! of the bank of S-boxes.
The (known) bit value 1 or 0 of the right hand side of
equation (2) determines whether the minimal representation
for S-box 7 output 1 of the representation for its comple-
ment should be employed, respectively. Whichever should be
used, the first 2 levels (OR, then AND) of the AND/OR tree
to be constructed can now be established. For the purposes
of this 1illustrative example, assumel that the right hand
side of eqguation (2) has the value 1. The QM-minimized rep-
resentation of S-box 7 output 1 (uncomplemented) begins (in
cube notation):
| 010100
011101

111100
X10000

This implies that:

x23S'X237X238'X239X240|X241' +

*s Do not confuse the permutation P of the outputs of the
S-boxes with the 64 bit block of plaintext P. When P the
permutation is meant, the word "permutation" will always
be specified.

124

X236"X237X238K239K 2401241 +
X236X237X238KD3I9KD401XD41 " +
X237X238'X239'X24°'X2‘1' + LN B 2 + es e — T TTT (3)

This expression may be represented as an AND/OR tree of 2
levels, with the X literals currently at the leaves of the
tree. (Figure 10 (b)).

Examination of DES to ascertain how the value of an input
to the S-boxes, such as X2°¢' 1is determined , in order to
further expand the X variables currently at the leaves of
the developing tree reveals that such Xs are the result of
the XOR of a particular bit of Rl with a bit of K. Applica-
tion of the inverse of the DES E permutation shows that R132!
is XORed with the bit of K produced by the key schedule gen-
erator in round 2, position 36 (which happens to be K’’, to
produce X23%*°¢', i,e. key bit 7. Thus, X2%*¢'=1l implies:

(R12* & K7)' =1
or R1?!K? + R1?1'K"' =1 = ----- (4)

Equation (4? allows the construction of another 2 levels
of the AND/OR expfession tree. The X2°¢' variable currently
occupying a leaf of the developing tree is replaced by the
OR of two ANDs, with R12! and R12*' as new variables now at
the leaves of the tree, and K’ as a key bit constraint at
what will remain a leaf of the tree (Fiqure 10 (c)).

R1** and the other Rl variables which appear at the
leaves of the tree as a result of expanding other X vari-
ables are then themselves expanded by the same method as was

used to expand the original R2 variable.

125
This process of tree expansion terminates after all X1
variables, i.e. representations of inputs to the S-boxes at
encryption round 1, are expanded. To clearly perceive why
this is so, suppose X1°¢ is at a leaf of the expanding
AND/OR tree. As X1°¢=1 implies:
RO2* ® K" = 1
and as the values of all positions of RO are known (RO is
simply the right half .of the block of plaintext P), the val-
ue of K” 1is thus fixed, and the variable X1°¢ may be re-
placed by the key bit constraint which fixes forever K’=0,
Through the application of such an expansion procedure, all
leaves of the AND/OR search tree are eventually made to con-
tain key bit constraints, and a tree as in Figure 10 (d) is

formed.

9.4.1.1 Implementation of the Tree Formation Algorithm

The above procedure for producing the AND/OR expression
tree corresponding to a particular bit of C was implemented
as a recursive APL procedure, BUILDSUB. (Appendix I, page
240). As Figure 10(d) illustrates, the search tree for a bit
of C encrypted through 2 DES rounds has only 7 levels{ and
so should be built in a depth-first, aé opposed to a
breadth-first fashion, as such a tree may have a branching

factor as high as 23 in some places.?*

¢ Recall that S-box approximations have up to 23 disjunc-
tive p-terms.

126

In order to maximize the speed of execution, the
recursive tree building routine was written as a single pro-
cedure instead of as a set of mutually-recursive modulgs.
The BUILDSUB routine is passed a character type code to in-
dicate what structure is being expanded, as well as the
round of encryption at which the structure occurs (2 or 1,
for our simplified DES), and the position 1in the parallel
vectors representing the tree at which the structure is to
be placed. Upon entry into the routine, a branch is taken to
the section of the program corresponding to the type of
structure being expanded: output from the S-bank, input to
an S-box, etc.

APL was chosen as the language for these tree routines,
as earlier experience had demonstrated that the capacity to
perform interactive debugging of programs which deal with
large and complex tree structures was invaluable. The fact
that APL lacks a built-in capacity for the indirect refer-
encing of memory locations (pointer types) did not cause any
problems in the implementation of the routines to handle the
AND/OR tree construction and traversal, as these algorithms
require no subsequent modifications to the initial structure
of fhese trees. '

The tree nodes are represented in APL across correspond-
ing fields of a set of parallel vectors. When BUILDSUB cre-
ates a tree in a depth-first top-down recursive manner, gaps
are left in the required places in the vectors, to be filled

in, later in the recursion.

127

For example, suppose an AND node is to be created, to
point to 6 children corresponding to non-don't-care posi-
tions in some p-term., The next free slot in the set of par-
allel vectors is located, and the global "free" pointer for
these vectors incremented by 6 positions. Depth-first recur-
sion then occurs to expand the first of the non-don't-care
literals in what was formerly the first free slot. Eventual-
ly, when this recursion retufns, a loop continues, to expand
the second 1literal in the slot immediately after what was
originally the free slot. The automatic stacking of local
variables permits the former "free" location to be retained,
while the depth-first recursion 1is building parts of the
tree at lower levels.

Although the above description 1indicates that the entire
AND/OR tree is built in memory prior to its traversal, there
is no reason why the tree could not be traversed depth-
first, while it 1is being built. Such an implementation,
-while conceptually more complex than the method presented
above, would have the advantage of requiring far less memory
space.

The results of executing BUILDSUB to build the AND/OR ex-
pfession tree which captures the required key bit con-
straints on bit 1 of the ciphertext C which results from en-
crypting a plaintext block which consisted entirely of
O-bits under a key of 56 0-bits is somewhat remarkable. The

routine required just over 4 minutes of CPU time on an Am-

128
dahl 470/V8 using the IBM program IKJETFO0l for batch APL ex-
ecution, and produced an AND/OR tree containing 20082 nodes,
16382 of which were leaves (which contain single key bit hy-
potheses). Although no statistical analysis of the situ-
ation was attempted, due to the extremely complex non-uni-
form discrete distribution nature of the problem, the size
of this tree was significantly 1less than the maximum possi-
ble size of 148326 nodes (section 9.3.1) engendered by the
worst~case branching factor of 23. Further trials of search
. tree formation has indicated that an AND/OR tree size on the
order of 20000 nodes is typical for a 2-round DES, when us-
ing Quine-McCluskey-minimized S-boxes. This means that in

practice, search tree sizes on the order of one seventh of

the theoretical worst-case maximum size may be expected. 1If
it is granted that key trial effort is comparable to that
needed for the expansion and traversal of a tree node, the
cryptanalytic method of tree search presented here is faster
than exhaustive key search.

The processing time requirements for this tree construc-
tion rendered it impossible to construct trees for each of
the 64 bits of C, using these APL routines. PL/I procedures

are currently being devised, for these purposes.

129

9.4.2 AND/OR Expression Tree Traversal

Once a tree as in Figure 10 (d) has been constructed, its
recursive traversal to simplify the embodied constraint ex-
pression on K is a trivial matter. As the tree may be seen
to possess only 7 levels for a 2-round DES (although it is
quite wide), a standard depth-first recursive traversal for
the purposes of evaluating the key constraints described in
the tree is computationally tractable. As the tree is eval-
uated, Kkey constraints expressed in cube notation must be
ORed and ANDed together. Efficient algorithms for performing
such logical operations on 2-level sum-of-product forms were
developed, and are presented in the following seétions.

The APL routine TRAVERSE constitutes a conventional im-
plementation of the technique of depth-first tree traversal.
The routine is passed a single argument: the location in the
parallel vectors at which the node to be expanded is locat-
ed. If the node represents a key bit constraint, i.e. the
node is a 1leaf of the tree, the constraint 1is returned as
the result. Otherwise, if the node is an AND or OR node,'re-
cursion occurs to apply the required logical operation to
all children of the node.

An example of the traversal of a small (63 node) AND/OR
tree (printed out by the PP function) may be seen at the end

of Appendix I, page 249.

130
9.4.2,1 OR-merging of Sum-of-Products Expressions

An OR-merging of a pair of Boolean expressions A and B in
sum-of-products form is performed by considering all p-terms
in either expression as a single set, and removing from this
set those p-terms which are redundantly represented.?’ A p-
term is said to be redundant if removing it from the cover C
of the switching function in which it is a p-term does not
alter C's status as a cover of the function. The algorithm
assumes that no p-terms in either A or B are redundant to
begin with. Specifically, within either of the expressions
to be merged, no 2 p-terms exist which differ only by one
having X(s) (don't care(s)) where the other has 1ls or O0s.
For example, it would be impossible for p-terms X01l and 101
to both exist in one expression; the latter is redundant, as
b'c+ab'c = b'c.

When the 2 sets of p-terms are wunioned to form the OR of
expressions A and B, redundant p-terms must be removed from
the union, to make the resulting sum-of-products expression
minimal. To accomplish this, a special representation of
the p-terms was discovered, and employed together with the
algorithm of Mott [15] for discovering consensus terms. We
call some p-term ¢ the consensus term for terms a and b if

c->a|b.

7 A special case for "don't cares" also requires the modi-
fication of some p-terms which are retained during the
merge.

131

Mott's algorithm for conéensus terms may be employed to
OR two Boolean expressions in the following manner. The set
of all p-terms in either expression is a (non-minimal) ex-
pression for the required OR. Form all possible consensus
terms obtainable from pairs of p-terms in either function,
and replace one or both of these p-terms with any consensus
term which covers it/them. “This process of attempting to
form consensus terms is repeated .for all pairs of p-terms
selected such that one p-term comes from each of the 2 ex-
pressions to be ORed, and continues until no more consensus
termé can be formed.

By using a representation for p-terms different from the
cube notation discussed earlier, both processing time and
memory space may be conserved. Since any variable in a p-
term is in one of 3 different states ('l1','0', or 'X'), it
is wasteful to wuse a character representation (1 byte) to
store such variables. Two bits suffice to distinguish be-
tween 4 states, and if the assignment of bit configurations
to such variable states is done cleverly, substantial compu-
tational time savings may be achieved when ORing aﬁd ANDing
expressions in this notation. Such time savings result from
the ability of a computer based on a k bit wide processor to
OR or AND together 2 strings of k bits in a single processor
cycle.

Let '0' be represented by the pair of bits (0;1), '1l' by

(1,0), and 'X' by (0,0). Any p-term of k variables may then

132
be represented as 2 parallel bit strings of length k: nl to
represent the bits occuring first in each pair, and n2 to
represent the bits occuring second. As an example of this
scheme, the p-term x='010X1' may be represented by 2 bit
strings of length 5, x nl=01001 and x n2=10100.

To form the OR of expressions A and B, compare each p-
term ai in A with each p-term bi in B, where each these p-
terms is represented as a pair of bit strings nl and n2 as
described above. Initially, all p-terms in either A or B are
considered to be terms present in the OR, but terms are re-
moved or modified during the process of the pairwise compar-
ison by means of the following algorithm to be applied for
each pair ai,bi:

l. Form the potential consensus term c¢ where the string

nl for c¢ is produced by ORing the corresponding bits
in the nl strings for ai and bi, and the n2 string

for ¢ is formed as an OR of the n2 strings. That is:

c nl = ainl | bi nl

c n2 = ai n2 | bi n2

2. If c is identical to ai in all bit positions in both
strings nl and n2,2® then ai may be deleted from the
OR as ai is redundant with respect to bi; bi co&ers
ai. The symmetric situation exists if c<=>bi. This

can only occur when the differences between the p-

terms ai and bi are such that ai has X's wherever bi

28 We shall write this as c<=>ai.

133
has literals. In such a case, ai covers bi.
Consider ai='(0xxl'

bi='0101"

Using our new representation,
ai nl=0001 ai n2=1000
bi nl=0101 bi n2=1010
so ¢ nl=0101 ¢ n2=1010
and we see that c<=>bl; ai covers bi.
Otherwise, check to see if ¢ is a consensus term., If
the bitwise AND of ¢ nl with ¢ n2 contains exactly
one 1-bit, then c is a consensus term. The examina-
tion of a bitstring to determine if that bitstring
has precisely one 1-bit may be performed in a compu-
tationally efficient manner by seeing if (c nl & ¢
n2) & ((c nl & ¢ n2)-1) = 0. For example, let:
ai="010"
bi="'000"
Then in the new notation:
ai nl=010 ai n2=101.
bi nl=000 bi n2=111
so:

c nl=010 c n2=111

c nl & c n2 = 010
As this string has precisely one 1l-bit, ¢ is a con-

sensus term. If ¢ is not a consensus term, it is

134
known immediately that both ai and bi must be re-
tained so far in the OR-merge.

If ¢ has been discovered to be a consensus term, it
must be determined which of the p-terms ai and bi (if
any) this consensus term covers. The bitstring (c nl
& ¢ n2) is subtracted from both ¢ nl and ¢ n2 to
"turn off" bits related to the consensus variable.
When performed on the above example, c is left as ¢
nl=000 c n2=101. |

The original operation of ORing nl and n2 bit strings
(as described in step 1) 1is then applied again be-
tween this modified ¢ and both the original ai and
the original bi to form 2 new pairs of strings, ai'’

and bi' respectively.

(a) If ai'<=>ai and bi'<=>bi, then remove ai and re-
place bi with c. This situation arises when the p-
terms ai and bi differ in exactly one bit position,

and neither p-term is 'X' in that position.

(b) Else if ai'<#>ai and bi'<=>bi, then replace bi

with c.

(c) Else if ai'<=>ai and bi'<#>bi then replace ai

with c.

(d) Otherwise, retain both ai and bi.

135

The iterative application of this algorithm between all
pairs of p-terms ai and bi produces a minimal OR of the ex-
pressions A and B. An APL implementation of this algorithm

may be found in Appendix I, under the name 'OR'.

9.4.2.2 AND-merging of Sum-of-Products Expressions

In order to be able to AND together Boolean expressions
in sum-of-products form, it is necessary to be able to AND
p-terms. It is convenient that the bit-string representa-
tion for p-terms developed in section 9.4.2.1 above permits
a computationally-efficient method for this ANDing. To AND
p-térms ai and bi, we form:

cnl =ainl | binl

cn2=ain2 | bin2
by a bitwise OR as is done in step 1 of the OR algorithm. If
there is a 1-bit in any bit position of the bitstring (c¢ nl
& ¢ n2), then the AND of p-terms ai and bi is null, as in
some position ai (in cube notation) has a 'l' where in the
same position bi has a '0' (or vice versa), and as for any
X, X & x'=0, Otherwise, ¢ represents the new p-term result-
ing from the AND of ai and bi, and is to be retained.

In ANDing two sum-of—products.expressions, the above pro-
cedure to AND a pair of p-terms is employed together with
the previously-discussed OR algorithm, in the following man-
ner. The AND of expressions A and B is the AND of p-term al
with the expression B, ORed with the and of a2 with B, and

so forth. Algebraically:

136
AB=
(al+a2+...+an)B =
alB+a2B+...+anB
The AND of a term ai with an expression B may be seen
similarly to be the AND of ai with bl, ORed with the AND of
ai with b2, etcetera. That is:
aiB = ai(bl+b2+...+bn) = aibl+aib2+...+aibn
As a consequence of this, the AND procedure calls the OR
procedure repeatedly. The APL implementation of this algor-

ithm may be seen in Appendix I, under the function name

"AND'.

Chapter X

CONCLUSIONS

The DES cryptographic system has been investigated, and
the strength of the cipher found to lie in the S-box compo-
nents. The S-boxes were examined for the existence of struc-
tural symmetries by the methods of McCluskey [12], and none
Qere discovered.

The principal direction of this thesis has been to map
the cryptanalytic problem into a domain for which powerful
algorithmic and heuristic methods exist. Specifically, the
discovery of the bits of K wunder known plaintext attack as-
sumptions has been viewed as a préblem in search, for which
conventional search trees may be constructed and traversed.
The worst-case size of‘ a bidirectionally-searched AND/OR -
tree which stored key hypotheses at the leaves to avoid
backtrack was shown theoretically in section 9.1 to be on
the order of the key space size. The results of experimenta-
tion with such trees for a 2-round DES model (section
9.4.1.1) has indicated that in practice, tree sizes on the
order of one seventh of the worst case theoretical maximum
can be expected. If it is accepted that the amount of effort
to expand a node 1is less than that involved in a key trial

in exhaustive key search, and given that sufficient memory

- 137 -

138
capacity exists to store the mating halves of the bidirec-
tional search tree, the cryptanalytic technique of bidirec-
tional tree search represents an improvement over that of
exhaustive key search.

In the course of developing a tractable search procedure
for K, compact representations for the functions embodied by
the-S—boxes have been developed. At first, conventional
functional-domain logical minimization techniques such as
the Quine-McCluskey procedure [13,16] were applied to the
S-boxes. The minimized S-box functions which resulted were
theoretically shown to permit a small (and not large enough)
reduction in the.search tree size, More sophisticated spec-
tral-domain minimization techniques [7,8,9,10] were then
programmed and applied to the S-boxes, and these resulted in
a far greater degree of simplification of the S-box func-
tions.

Several attempts to demonstrate the usefulness of such
minimal S-box representations in 1limiting the time required
to uncover K through the upper-bounding of the search tree
branching féctor in a 2~-round model of DES were programmed,
in a variety of computer languages.

The first of these, a unidirectional key search procedure
written in PL/I, failed to operate in tractable time on even
a 2-round DES. _Even when an initial oversight concerning
the expansion of a subtree to represent the output of the

DES f function with a value of 0 was corrected, the program

139
still could not discover K within reasonable computer time
limits.

It was eventually discovered that the failure of this
initial approach to key search could be attributed to two
independent aspects of the search procedure. Firstly, even
the linearization of the S-boxes did not sufficiently reduce
the search tree branching factor to make a unidirectional
key search tractable. Secondly, the maintenance of a single
globally-posted hypothesis for K which was modified as con-
tradictions in key bit values arose anywhere in the tree
caused an excessive backtrack "thrashing" behavior in the
search procedure.

It was demonstrated that the former problem could be
overcome by searching the tree bidirectionally to greatly
reduce the number of nodes which would have to be expanded.
The latter problem was avoided by utilizing a more sophisti-
cated search tree structure, the AND/OR tree. With key con-
straints stored locally at the tree leaves, backtracking was
avoided as each node was visited only once as the tree was
traversed.

After a theoretical investigation of the potential advan-
tages of a bidirectional éearch procedure to expand the
search tree in two directions, from both P and C, simultane-
ously, a realization of the uniform structure of the search
tree led to an ability to formulate the cryptanalytic prob-

lem as a set of Boolean equations to be solved. Essential-

140
ly, the search tree could be "flattened", to reduce the
problem of the discovery of K to that of the symbolic sim-
plification of Boolean equations.

Although this approach initially appeared attractive due
to its mathematical flavour, it was only useful insofar as
it led to the development of the AND/OR tree methods. The
connection between these two methods may be clearly per-
ceived if one views an AND/OR tree as a pre-parsed Boolean
expression containing only the Boolean constants 1 and 0 (no
variables). 1In retrospect, it may be seen as foolhardy to
flatten a tree and remove its structure in order to repre-
sent it mathematically, when the structure must be recov-
ered, in order to symbolically simplify the expressions rep-
resented by the tree. ,

Before this was realized, a series of PROLOG routines
were written to symbolically apply rules of Boolean algebra
to simplify Boolean expressions which contain wvariables,
ANDs, ORs, and NOTs. 1Initially, it was believed that the
constraints on bits of K required for a bit of C to have the
appropriate value, when formulated as a Boolean expression,
could be reduced by this PROLOG system to produce K. Unfor-
tunately, the very limited non-virtual memory'of the DEC ma-
chine on which the routines were implemented led to a fail-
ure of this approach to provide any useful results. In view
of the recursive implementation of PROLOG, a vast amount of
memory would be required in order to simplify the key con-

straint expressions for even a 2-round DES.

141

From ideas about key constraint made evident by the
PROLOG approach, a modification of the original search pro-
cedure was produced, written in APL. This approach generated
an AND/OR expression tree for the key constraint expressions
mentioned above, and then traversed this tree in a recursive
top-down fashion, maintaining key hypotheses locally at the
leaves as the tree was being traversed. These hypotheses
were OR-merged or AND-merged by fast algorithms at appropri-
ate nodes, to accomplish the evaluation of the search tree
and uncover K,

In a number of trials, this method (employed unidirec-
tionally) managed to discover the key K used for encryption
with a 2-round DES. This AND/OR tree search benefits from
the reduction in branching factor resulting from the use of
the linearized S-boxes, and also could be performed in a bi-
directional fashion, although this was never programmed.
Even more significantly, experimentafion with this search
procedure indicated that such trees tend to possess approxi-
mately one seventh of the worst-case maximum possible number
of nodes. |

At least in the case of a 2-round model, the potential
vulnerability of DES to methods of key search combined with
appropriate S-box representations has been empirically dem-
onstrated. Work continues towards the development of more
computationally-efficient routines written in lower-level
languages to experiment more fully with 2-round DES decryp-

tions.

142

It is recommended that the DES algorithm be strengthened

in one or more of the following simple ways, to reduce its
susceptibility to the attacks outlined in this thesis. In-
creasing the number of layers of encryption in the algorithm
by even a few should make the search tree sufficiently large
to render key search as intractable as exhaustive key tri-
als, as the tree grows exponentially in the number of layers
of encryption, and it is only marginally small enough in its
current form to permit our search methods to be applicable.
A more complex use of the bits of K in the course of encryp-
tion would also present difficulties to the attack presented
in this thesis. For instance, a concatenation of bits of K
with developing L and R blocks at each level could serve to
confound our method of cryptanalysis, by introducing far
‘more complex constraint conditions on K. Finally, as other
researchers in the area have 1indicated [2], 1increasing the
length of K would also make DES more resistant to cryptana-
lytic attack. However, this would only cause the tree size
to grow linearly with the increase in K size, whereas the
addition of further rounds of encryption engenders an expo-

nential growth in search tree size.

10.

1l.

12.

13.

REFERENCES

Coppersmith, D. & Grossman, E. Generators for Certain
Alternating Groups with Applications to Cryptography.
SIAM J. Appl. Math. 29, #4, Dec. 1975, pp.624-627.

Diffie, W. & Hellman, M. Exhaustive Cryptanalysis of
the NBS DES Computer #10, June 1977.

Diffie, W. & Hellman, M. New Directions in
Cryptography IEEE Trans. on Info. Th. IT-22 #6, Nov.
1976, pp.644-654. ‘

Feistel, H. Cryptography and Computer Privacy
Scientific American, Vol. 228, May 1973, pp. 15-23.

Hellman, M. et. al. Results of an Initial Attempt to
Cryptanalyze the NBS DES Tech., report SEL 76-042,
Stanford University, 1976.

Hellman, M. A Cryptanalytic Time-Memory Tradeoff IEEE
Trans. on Info. Th., 1980.

Hurst, S.L. (ed.) Conference: Recent Developments ig
Digital Logic Design Conference Proceedings, University
of Bath, Claverton Down, Bath, Sept. 1977, pp.1.0-2.19.

Hurst, S.L. Logical Processing of Digital Signals
Crane Russak, New York, 1978.

Hurst, S.L., Miller, D.M. & Muzio, J.C. Spectral
Method of Boolean Function Complexity Electronics
Letters, Vol. 18, #13, June, 1982. pp. 572-573.

Karpovsky, M.G. Finite Orthogonal Series in the- De51gn
of Digital Devices John Wiley & Son, New York, 1976.

Knuth, D.E. The Art of Computer Programming: Sorting
and Searchlng “Addison-Wesley, Mass., 1969.

McCluskey, E. J. Determlnatlon of Group Invariance or
Total Symmetry of a Boolean Function BSTJ Vol. 35, #5,
Nov. 1956, pp. 1445-1453,

McCluskey, E. J. Minimization of Boolean Functions
BSTJ Vol. 35, #5, Nov., 1956, pp. 1417-1444,

- 143 -

14.

15'

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

144

Miller, D. M. & Muzio, J.C. Detection of Symmetries in
Totally Specified or Partially Specified Combinational

Functions Computers and Digital Techniques, Vol. 2, #¥5,

Oct. 1979 pp.203-209.

Mott, T.H. Determination gg the Irredundant Normal
Forms of a Truth Function by Iterated Consensus of the
Prime Implicants IRE Transactions on Electronic

Computers, June, 1960, pp.245-252.

Mowle, F. J. A Systematic Approach to Digital Logic
Design Addison-Wesley, New York, 1976.

Muzio, J.C., Miller, D.M. & Hurst, S.L. Multi~-variable
Symmetries and Their Detection Unpublished.

Nilsson, N.J. Problem-Solving Methods in Artificial
Intelligence McGraw Hill, New York, 1971.

Pohl, I. Bidirectional and Heuristic Search in Path
Problems Stanford Linear Accelerator Center Report,
#104, May, 1969.

Rivest, R. L. et. al. A Method for Obtaining Digital
Slgnatures and Public Key Cryptosystems CACM Vol. 21,
#2, Feb. 1978, pp. 120-126.

Robinson, J.A. A Machine-Oriented Logic Based on the
Resolution Principle JACM Vol. 12, #¥1,. January 1965,
pp. 23-41.

Shannon, C. E. Communication Theory of Secrecy Systems
BSTJ Vol. 28, Oct. 1949, pp. 656-715.

Van Emden, M.H. & Kowalski, R.A. The Semantics of

Predicate Logic as a Programming Language JACM Vol. 23,
1976, pp.733-742.

Warren, D. Pereira, L.M., & Pereira, F., PROLOG- The
Language and its Implementation Compared with LISP
SIGPLAN Notices (ACM), Vol. 12, #8.

Zissos, D. & Duncan, F.G. Boolean Minimization British
Computer Journal, Vol. 16, #2, 1972, pp. 174-179.

Federal Information Processing Standards Publication.
Announcing the Data Encryption Standard FIPS PUB 46,
Jan. 1977,

TABLE 1 - MINIMAL SUM OF PRODUCT TERMS FOR EACH S-BOX AND OUTPUT.
- terms are ‘ranked’ by weight of contribution to correct s-box output

S-BOX NUMBER 1

kKK KR R Kok Rk R kR

-- output {1-- -- output 2-- ~-- output 3-- -- output 4--
TERM CONTR. TERM CONTR. TERM CONTR. TERM CONTR.

XtX010 0.562 XO0X00 0.562 0010XX 0.562 00X 10X 0.562
X1X111 0.562 OX010X 0.562 O100XX 0.562 X1X000 0.562
O00X00 0.531 1X000X 0.562 X10X1t 0.562 O0110XX 0.562
X00011 0.531 10X00X 0.562 O10X00 0.531 11XX00 0.562
X11001 0.531 ,O01X110 0.531 10X100 0.531 110X0X 0.562
10X01Y 0.53t O01X01t 0.531 X11101 0.531 XO011X1 0.562
001X01 0.531 11110X 0.531 11011X 0.531 0O001X0 0.531
001X10 0.531 1IX1111 0.531 O0X000 0.531 OX1010 0©.531
00X100 0.531 O0OX010 0.531 00X0t1 0.531 1X1000 0.531
010X0t 0.531 O00X11 0.531 001X00 0.531% 1X000t1 0.531
0O10X10 0.53t¢ 001X0t 0.531 10X111 0.531 011X10 0.531
100X01 0.531 X00011 0.531 101X10 ©0.531 1101X0 0.531
1001X0 0.531 1010X0 0.531 11X000 0.531 1100X1 0.531
X01110 0.531 110X10 0.531 1101X1 0.531 10111X 0.531
110X00 0.53t 11011X 0.531 11100X 0.531 101X11 0.531
11001X 0.531 011000 0.516 1X1010 0.531% iIX1111 0.531
101000 0.516 000101 0.516 OoX1101 0.531
100001 0.516 000011 0.516

011110 0O.516 100010 0.516

01011t 0.516

TERMS IN OUTPUT 1 = 17
OUTPUT 2 = 16
CUTPUT 3 = 19
OUTPUT 4 = 20

145

S-BOX NUMBER 2

kA ok kK kKK kK R R K K

~-- output 1--
TERM CONTR.
X00011 O0.53f¢
001X01 ©0.531
1X0010 0.531
101X00 0.531
100X01 0.531
o011Xt 0.531
10X011 0.531
O00OX00 ©0.531
OX0110 ©0.531
O01X000 ©0.531
X10001 0.531
X10111 0.531
X11101 ©.531
X11110 0.531
X00110 0.531
X11000 0.5319
111141X 0.53¢
001010 0.516
110100 0.516
011011 0.516
TERMS IN OUTPUT
QUTPUT
ouUTPUT
CUTPUT

1
2
3
4

-- output 2--
TERM CONTR.
OX 100X 0.562
OOX11X 0.562

1101XX 0.562
0O0X000 0.53t
O10X10 0.531
011X00 0.531
000X11 0.531
O001Xt 0.531
01X001 ©O.S53t¢
10X010 0.531
110X00 0.53t
oX1111 0.531
11X110 0.531
10X100 0.531
1X1011 0.531
1X1101 0.531
110X11 0.531
100001 0.516
= 20

= 18

= 18

= 14

-- output 3--

TERM CONTR.
00OX00X 0.562
O010XX 0.562
XO100X 0.562
X01X11 0.562
0O01X00 0.531
100X10 0.53f1
OX0o111 0.531
1100X% 0.531
X11110 0.531
111X10 0.531%
00011X O0.53t%
O11X01 0.531
10010X 0.531
11X101 0.531
1X0110 0.531%
1111X0 0.531%
010010 0©0.516
010100 0.516

-- output 4--

TERM CONTR.

XOX00t1 0.562

10OX1X0 0.562
X11X11 0.562
OXO0X0 0.562
111X1X 0.562
00X010 ©0.531
010X10 0.531
000X11 0.531
0X1100 0.531
01X101 0.531
X00111 0.531
1010X1 0.531
11X000 0.531
110X01 O

.531

146

Lyt

8F = v LNdlnNo
81 = € INdino
L = € indino
¢C = |} 10diN0O NI Swid3l
. 91G°0 LELLLL
916°0 OO0+
91G°0 O1+ILIO
LES'O LI00LX
91S°0 Okttt 916°0 10110 LES O OO00XO}
915°0 OF100t 916°0 100010 . 91S°0 10010t LES O L IOXO}
LES'O LIOLEX LES'O OFXELE LEG'O HIOX}H LES'O LIOXIO
EG'O0O O1010X LES'O 1001 XI LEG'O OkiXt} LES'O 11HIOXO
LES'O 0000X! LESO L1OOXI LES'O 1XOO0L $ES'O0 OX1000
LEGS'O LEIXELO LEG'O OLOXO0) LEGS'O 010X} LES'O 010X}
FES'O OIXI00 LES'O 110X LES'O OOXO0O0l} LES'O 1OLXO}
LEGS'O LIXOLE LES'O 0O1L0LOX LEG'O XOtH100 LES'O 010t X}
LES'O LEXEOM LES O 10010X LES O OiX00 FES O OLIOXE
tES'O XOOL L 1ES'O L1 LOX VES'O LELEXE LES'O 100X
LEGS O +01XIO LES'O OOXOl1i LEG'O OOXLi |} LEG'O I1OXLIO
LEG O 10OX004 LES O }1000X LES'O 10XIH1IO LES'O 11iX00
LES'O 11 X000 LES'O OLIOXO LEG 'O OIOXOt LEG O XO0t110
LES'O OIXO0IL0 LES'O 000X00 LES'O 11OX00 LEG'O XI0010
LEG'O 001 10X C€9S5°0 XOIXHI IES'O OILOXI0 LES'O O0000X}
LES O 1OOX0O €98°0 XOti1X0 LES'O | XOO00 LEG O OO0LOXO
LEG'O 001 X00 €960 OO0k IXX LES'O O0OO0XI00 LES O 001 X00
€95°'0 OXO00t X €95°'0 OOXI X0 €95°0 XXI0I0 ES'O XO0O00O
"4INGD WydL TYINOD WH3L TYINOD WH3IL "YINOD WH3lL
--p ¥Indino -- --g ¥ndino -- ~~Z ¥Indino -- -~} Indino --

Ak kR Kk kK Kk kA K

€ d3gWNN X0d-S

S-BOX NUMBER 4

ok ook oK ok kK b K Kk K K K K

-- output 1--
TERM CONTR.
X1X111 0.562
O011X1X 0.562
00001X 0.531
0X0100 0.531
0110X0 0.531
X00011 0.53t
Oo11tXy4 0.531
11011X 0.531
O00X0t 0.531
OX1011 0.531
0011X0 0.53t
tOOX00 ©0.53t%
1010X0 0.531
101X01 0.531
10111X 0.531
11000X 0.531
1X1001 0.531
111100 0.516

TERMS IN OUTPUT
ouTPUT
ouUTPUT
ouTPUT

B WN -

-- output 2--

TERM CONTR.
X1X110 0.562
000X00 ©0.531
11X000 ©.531
01110X 0.531
10110X 0.531
00X001 0.531
00X010 0.531
0X0111 0.531
00101X 0.531
0100X1 0.531
0X1010 0.531
10001X 0.531
X00111 0.531
101X00 0.531
1011X0 0.531
11X011 0.531
11100X 0.531
11111X 0.531
110101 0.516
= 18
= 19
= 17
= 18

-- outpﬁt 3--

TERM CONTR.

001X1X 0.562

1000XX 0.562
01001X 0.531
OX1110 0.531
000X00 0.531
0X010t 0.531
0001X0 0.531
X01001 ©0.531
X11011 0.53t
X11101 0.531
1X0t11 0.531
1X1010 0.531
110X00 0.531
1101X0 0.531
11X111 0.531
011000 0.516
101100 0.516

~- output 4--

TERM CONTR.

X1X000 0.562
110X0OX 0.562
X01100 0.531
01100X 0.531
1100X0 0.531
10110X 0.531
1X10t1 0.531
1101X1 0.531
0000X0 0.531
000X0t1 0.531
O0X0110 0.531
o0oX1t1 0.53t
001X11 0.531
01111X 0.531
1000X1 0.531
1X0100 0.531
101X10 0.531
010011 0.516

148

S-BOX NUMBER 5

R

-~ output 1-- -- output 2-- -- output 3-- -- output 4--
TERM CONTR. TERM CONTR. TERM CONTR. TERM CONTR.
X000X1 0.562 0OX0010 0.531 OO1XX0O 0.562 XX0110 0.562
OX110X 0.562 1X0000 0.531 0101XX 0.562 X10X10 0.562
101X1X ©.562 O011X00 0.531 11X00X 0.562 110X1X 0.562
1010X0 0.531% 001X01 0:531 X01X00 0.562 1XX111. 0.562
110X00 0.53t 010X01 0.531 100X10 0.531 0O0X011 0.531
100X01 0.531 X001t 0.531 X010t1 0.531 1100X0 0.531
10X110 0.531 10101X 0.531 X11001 0.531 10X001 0.531
00X010 0.531 1001X1 0.53t 10011X 0.531 O01X110 0.531
OXo1t1 0.531 11X110 0.531 10110X 0.531 1X1010 0.531
O1X000 0.531 00X001 0.531 1100X1 0.531 1111Xt 0.531
0101X1 0.531 OX1000 0.531 0O0000X 0.531 O01X00 0.531
O1X110 0.531 0010Xt 0.531 0000X1 0.531 0011X1. 0.531
11001X 0.531 O10X10 0.53t 000X01 0.531 010X01 0.531
Xi10111 0.531 1OX111 0.531 O0X1100 0.531 0101X0 0.53t
X11110 0.531 1100X1 0.531 X11141 0.531 01100X 0.531
011011 0.516 110X00 0.531 - X00001 0.53t OX10t1 0.531
111001 0.516 X11000 O0.531 111X10 ©0.531 10X100 0.531
1X1011 0.531
000100 0.516
001110 0.516
101100 0.516
Ooti1111 0.516
111101 0.516
TERMS IN OUTPUT 1 = 17
OUTPUT 2 = 23
QUTPUT 3 = 17
CUTPUT 4 = 17

149

S-BOX NUMBER 6

¥k KRR K kKKK KK

-- output {1-- -=- output 2-- -- output 3-- -- output 4--
TERM CONTR. TERM CONTR. TERM CONTR. TERM CONTR.
tX110X 0.562, 00X0t1 0.531 00X100 0.531 O1X01X 0.562
X00OX00 0.562 OX0101 0.531 OX0100- 0.531 01X10X 0.562
IX11X1 0.562 0010X1 0.531 O0OX001 0.531 XO01X01 0.562
OX1000 0.531 010X01 0.531 OX1010 0.531 00100X 0.531
X0110t 0.531% 100X10 0.531 O0110X0 0.531 0011X1 0.531
0101X1 0.531 110X00 0.531% 10001X ©0.531 10X110 0.531
1X1010 ©0.531¢ 001X11 ©0.531 11000X 0.531 1iX111 0.531
101X01 0.531 X01011 0.531 O01101X 0.531 0O00X10 0.53t1
1100X1 0.531 10110X 0.531 11X001 0.53t X00011 0.531
1OX111 0.531 110X11 0.531 1111X0 0.531 011X10 0.531
0000X1 0.531 OX0110 0.531 000X11 0.531 100X00 0.531
00X110 0.531 OX1100 0.531 0O001X0 0.531 10X011 0.531
OX1011 0.53t% O1X010 0.531 OX000t1 0.531 11X000 0.531
Oot111X 0.531 01011X 0.531 X10111 0.531 110X01 0.53t
1000X0 0.531 0110X0 0.531 O011X10 0.531 X11010 0.531
010010 0.516 1001X0 0.531 10010X 0.531 X11100 0.531
110110 0.516 10011X 0.531 1011X1 0.531
111X10 0.531 1X1110 0.531
11141X 0.531% 1X001t 0.531
000000 0.516 11X110 0.531
100001 0.516 101000 0.516
111001 0.516 01110t 0.516
TERMS IN OQUTPUT 1 = {7
OUTPUT 2 = 22
CUTPUT 3 = 22
OUTPUT 4 = 16

150

S-BOX NUMBER 7

* Rk K ok R R R R Kk K KK

TERM CONTR.

XOX110 0.562
1001XX 0.562
1X011X 0.562
X01000 0.531
100X11 0.531
10X10t 0.531
11X001 0.531
X10111 0.531
11X111 0.531
000X0t 0.531
OX0010 ©0.531
00t1Xt1 0.531
001X00 0.531
OX000t 0.531
01101X 0.531
1100X0 0.531
010100 0.516
011101 0.516
111100 0.516

TERMS IN OUTPUT
ouUTPUT
OUTPUT
ouUTPUT

1
2
3
4

-=- output 2--
TERM CONTR.
O0X00X 0.562
XOX110 0.562
OX011X 0.562
XtX111 0.562
O11X00 0.531
100X01 ©0.531
11X0!0 0.531
O11X11 0.531
101X11 0.531
0O10X0t 0©.531
010X10 0.531
100X10 0.531
101X00 0.531
110X11 0.531
110100 0.516
111001 0.516
= 19
= 16
= 18
= 23

0001XX 0.562
O1X0OX1 0.562
X110X1 0.562
1011XX 0.562
000X10 ©0.531
OX0110 0.531
1100X0 0.531
1000X1 0.531
01101X 0.531
101X10 0.531
1X1110 0.531
oX1111 0.531
01000X 0.531
1X0100 0.531
1X110t 0.531
001000 0.516
011100 0.516
110111 O.

-- output 4--

TERM CONTR.

OX1000 0.531

000X01 0.531
100X00 0.531
0001X1 0.531
00X101 0.531
1001X0O 0.531
OX1110 0.531
OoX1011 0.531
1X1010 0.531
1X0011 0.531
1100X1t 0.531
11110X 0.531
110X11 0.531
O10X00 ©0.531
01xX0114 0.531
01010X 0.531
0101X0 0.531
X00101 0.531
10X100 ©0.531
11X010 0.531
000010 0.516
101001 O0.516
101111 0.516

151

S-BOX NU

LR R N 3

TERM
X01010
000X 11
10X010
1X1000
01110X
1100X 1
000X00
X00101
X01100
0100X0
01000X
01011X
101X 11
10110X
1101X0
11010X
11111X
001001
011011

TERMS 1IN

MBER 8

T

CONTR.

.531
.531
.531
.531
.531
.531
.531
531
.531
.53t
.531
.531
.531
.531
531
.531
.531
.516
.516

[eNeleloNeNeoNoNooNoNoNoNoNoNoNRoNoNo Xo)

ouTPUT
QUTPUT
OUTPUT
OUTPUT

BWON =

-- output 2--

TERM CONTR.

X11X00 0.562
X100X1 0.562
X1X011 0.562
OX0110 0.531
X01010 0.531
0X0011 0.531
111410X 0.531t
O0OX000 ©0.531
O0X101 0.531
X01111 0.531
O0X0101 0.531
01X110 0.531
100X00 ©0.531
1001X1 0.531
10X100 0.531
110X10 0.531
101001 0.516
= 19

= 17

= 15

= 18

-- output 3--

TERM CONTR.
OOX01X 0.562
00 1XOX 0.562
O101XX 0.562
O1X11X 0.562
O010X00 0.531
X10100 0.531
X01011 0.531
1011X0 0.531
1001X1 0.531
OX1011 0.531
1000X0 0.531
1X000t1 0.53t4
11X010 0.531
11100X 0.531
1111X1 0.531

-- output 4--

TERM CONTR
1110XX 0.562
100X1X 0.562
01001X 0.531¢
X11000 0.531
OX1110 0.531%
0X1101 0.531%
010X11 0.531
1X0110 0.531
111X00 0.531
110X01 0.531
00000X 0.531
00X011 0.531
000X01 0.531
Q0t1X10 0.53t
0011X0O 0.531
10X000 0.531
1X1111 0.531
010100 0.516

152

TABLE 2 C(F) METRIC FOR S-BOXES BEFORE & AFTER TRANSLATION

OUTPUT #

1 2 3 4
bef, aft bef, aft bef, aft bef, aft
(1) 148 252 156 244 144 248 136 260
(2) 120 252 132 264 144 232 168 252
(3) 112 260 128 252 152 232 128 238
S-BOX (4) 148 248 148 252 148 252 148 248
(5) 148 248 112 244 152 244 152 224
(6) 132 252 120 244 128 236 156 256
(7) 136 244 148 268 136 240 108 252
(8) 140 228 144 252 152 244 140 244

AVERAGE COMPLEXITY BEFORE TRANSLATION: 139

AVERAGE COMPLEXITY AFTER TRANSLATION: 247

7

N ynl'E 2
c(f) = n2 - 2”'2 [Tv]] ry

v=0

C(f) is a spectral-domain measure of function complexity equal to the
classical functional-domain complexity measure which counts the
number of topologically adjacent pairs of assignments for which f
takes the same value for both assignments in the pair.

153

FIGURE 1 Exhaustive Tree Search Using No S-Box Reduction

I1lustrative of how the nonlinear
S-boxes used to compute f cause

a branching factor so large as

to make key search

intractable. //
(ciphertext bit 64) \\\;;;ZEX\\\\\\ 63 1

4_ 0

L3a=0 (R, 16) o L35=1 £ 15’ Ki6) %
1 -\ | -\
i N

R6.4=0 .
14 There exists a branching factor of 32 at

| each of these points in the tree, based on

L64®f64(K, ,)=0 the relationship between 6 bits of Ris
13 13’ 14 and 6 bits of K as defined by the
S-boxes.
Notational Notes: - superscripts indicate bit position in block.

- subscripts indicate encryption round O=r= 16

- after selection from[gbade at Tevel 1 node, select same position

--- level 0

--- level 1

--- Tevel 2

--- Jevel 16
for subtree.

154

FIGURE 2 Complete Partitioning of a Matrix

- an example of the partitioning of a matrix, from McCluskey [7 p.1447)

The matrix X:

000100
001000
100000
000101
000110
001001
0601010
110000
011111

- transcribed results of running the APL routine PARTITION on X:

Row and column slice points:
13489
1235
Partitioned matrix:
0 {0 |01 {00
0 {0 {10 |00
110 {00 |00
0 {0 {01 {01
0 |0 {01 {10
0 {0 {10 |01
0 (0 |10 {10
111 (00 (00
01 (1111
a > ¢

155

FIGURE 3

Essentia1'and Alternative Sum-of-Product Terms

FOR S-BOX 1 OUTPUT 3:

Essential: ,

000101
100001
011110
010X00 ~ q.e.
10X100
X11101
11011X
0010XX
0100XX
X10X11

: X1X2X3X5X6

X4 is a "don't care"

156

Alternative:

00X000 1
0X0000
00X011
0X0011
001X00
X01100

1%?% gg» Note inter-class

01010 28 " occurences of the

101X10 28
1X1010 28
10110 31
1011X0 31
10111X 31
10111X 32

GOXITD 32
X10000 33
11X000 33
1101X1 37
11X101 37
11X000 38%

O 00 B =

same p-term.

T

1110X0 38
11100X 38
11100X 39
111X01 39
1X1010 40
1110X0 40

Example of one of

the many alternative
"classes". One

member of each must
be chosen as a p-term

in the minimal
representation.

FIGURE 4 Representation of Quasi-Best Set Search Tree

7 . . .
& indicates a pointer reference

TREE

[G

term added \\\\\. \\v

\S
{szre”t ORMASK to other level 1 nodes

1 {ter-no | ’l 3 Jow-on |4 (not shown)

A
e

=

S~

T

N\
e
-

—

[l

e

~—a
[»

v
father pointer)
to node at } T¢é
previous level ¢ l
(o]
©
<

157

LEVEL 1

LEVEL 2

FIGURE 5 Permutation Cutoff During N-ary Tree Expansion

S-box 1 output 1, both p-terms 6 and 7
have 4 bits on, in "disjoint" positions.
TREE

KN

¢
e

/ 4 ¢ '
/ ----- K ------------ CUTOFF during

el = tree growth
17—)(1-3—- 1 6 Yy —

{

4 This node is never actually grown
E > one as its ORMASK would be identical
|

to that of another QRMASK
already existing at Tevel 2.

158

FIGURE 6 Partial Search Tree for 2-Round DES

64 nodes, representing
values of bits of C

bit position
-1 encryption round
30 p pemn»

S-box 6,
output 1

I \ | \ []\ suppose S-box & output 1 has
function X XpX3 + X3XpXg

then by DeMorgan, for the

output to be 0, it must be:
(xg+xp+x3) (X 3"%4*%s)

KS(26,1) KS 26 1 <E§§ijjv—_ﬁ\b1t position, as dete;m1ned by
=0 application of E * permutation

K5=0 K5=1

Py

—_———

key bit hypotheses, as produced NOTES

by X node expansion 1) AND nodes labelled
with arcs.

2) OR paths exist simultan-
eoulsy only conceptually.
Alternatives developed iff
backtrack.

3) Circled nodes are search
tree leaves, which may
cause backtrack.

159

FIGURE 7 Nodes in the Cryptanalytic Search Tree

1) SUPER descriptor node

Y]

'R' - type code. this is a descriptor for a type 'R' node
12 - position from §1,32) in R block
2 - round ££1,167 in encryption
) - father pointer
- . - pointer to RNODE
Y
2) Node of type 'RNODE'
'0'B - value of RNODE from §0,13
1 - count. i.e., # of times node expanded from £0,2?
® | _ammn
2 pointer to RNODE 2 levels before /
pointer to an FNODE1l or an FNODEOQ
3) Node of type 'FNODE1'
31 -~ count from [1,232 which conjunct term in sum-of-product
representation is currently used
1 1S

I

to 6 XNODES, expanded in parallel

U

4) Chain of type 'FNODEO' nodes

(*-SUPER of type 'FNODEO'
£ 23 in parallel on linked 1ist

1

2 AT i

k;j%;%/ﬂ = e (¢ "1iteral number from {1,6%

“pointers to XNODEs

5) Node of type 'XNODE'

‘1'B

1

e

value of XNODE from 20,12
count. i.e., # of times node expanded from {0,2}

661nter to an RNODE. (a virtual 2nd pointer affects key bit hypothesis)

160

FIGURE 8 Bidirectional Search Tree

(a) unidirectional search tree

C
64 direction of
15 Tevels, expansion
past root ~)
_’—Y\——-—/

P (plaintext bits)

(b) bidirectional search tree

C
direction of
expansion
7 levels 1
past root v
D
N
7 levels direction of
past roo expansion
)

>

P (

nown bits of plaintext)

- cross-hatched area is an area existing in the unidirectional
search tree, which need never be developed in the bidirectional tree.

- bidirectional search techniques make linear what is exponential.

N\

161

FIGURE 9 2-Round Search Tree of Uniform Structure

note: bit positions (superscripts) not explicitly shown

R and L blocks reversed.

/// \?\\ search tree leaves are

R_q 1s actually
shown underlined.

L.
0 R

162

FIGURE 10 Stages in the Development of the AND/OR Search Tree

(a) R23?
(b) ,/////77/ os \\\\\\\\\\\\
AND. AND AND ~ eeo AND
/f'\\ /N /N /\
yp36" 4537
(c) 0R
7\ T
AND- AND AND ©so AND
/\ a \ /\
OrR D
AN
AND AND
/' \ /\

RIZI_EZ_ Rl21. K7.

(d) OR
AND AND AND °°° AND
IS 7\ 7\
VAN
QR OR OR OR OR OR
AND AND
/N / N\
or K orR K
P AR AT

AND AND AND < AND

AR
7 k34T A

163

APPENDIX A

APL CODE FOR THE DETECTION OF GROUP INVARIANCE OF A
BOOLEAN FUNCTION BY MCCLUSKEY ALGORITHM. .

164

V Z<BINARY DECBOX

(1] A TO CONVERT AN SBOX INTO BINARY FORM
[21] Z«+ 31 2 8& 2 2 2 2 TDECBOX .
v
V Z<«DUPKILL V
[] Z«((rpV)=VAV)/V
v
V Z+<INITPARTIT M;RWT;CWT;RSLICE:;CSLICE
[12 A TO INITIALLY PARTITION A MATRIX INTO SUBMATRICES
[2] RWT<+ /M ‘
[3] CWT«+4#M
[4] +(1=pRWT)/ROWVEC
[5] RSLICE«((1,2/ "1 0 v((T1+1pRWT)(2ppRWT) pRWT) [5121) /1 pRWT) ,
1+14pM ’
[6] +JOIN1
[7] ROWVEC:RSLICE«1;1+14pM
[8] JOIN1:+(1=pCWT)/COLVEC
[9] CSLICE«((1,2z/ "1 0 +((-1+1pCWT)¢(2ppCWT)pCWT)[:12])/1pCWT).
1+ 14+pM
[10] +JOIN?2
[11] COLVEC:CSLICE«1,1+ 14pM
(121 JOIN2:Z2+((1+4[/pM)4RSLICE) ,[0.5](1+[/poM)4CSLICE
v
V Z+IOT4 X
(1] A FOR ENUMERATION OF INCLUSIVELY BOUNDED INTEGER LIST
(2] +(X[21=sx[11)/5cAL
[3] Z«X[13+ 1+1+|=-/X
(4] +0
[5] SCAL:Z+ X[1]
v
V Z«BITPOS ON S
{11 a GIVEN AN SBOX AND OUTPUT BIT POSITION, RETURN THE 32x6§
[2] A MATKIX OF BINARY INPUTS FOR WHICH THE OUTPUT BIT IS 1
[3] Z«(16 16)7TZ+ 1+(,2)/1x/p2+S[;;BITPOS]
[u] Z« 31 2 &2 22 2712
[5] Z+2z[1;331,202;3;1,201;34]

v

165

V Z+«SLICES PARTITCALL M;RSLICE;CSLICE;HEWRSL;NEVCSL;RCTR;C

A RECURSIVE FUNCTION TO FURTHER PARTITION A MATRIX M,
A GIVEN A CURRENT STATE OF PARTITIONING, SLICES.
R SLICES IS A MATRIX WITH 2 ROWS, WHERE FIRST ROW CONTAIRS

A POINTERS BEFORE WHICH ROW SLICES OCCUR, SECOND RGW SAME F

Z+ 0 1 +((MAX+RSLICE),[0.5] MAX4CSLICE), 2 1 poO
+(A/A/(2 2 42)=&(1+4p4),[0.5] 0 0)/TRIV

A ITERATE THROUGH EACH SUBMTX, RECURSIVELY SLICING

(-
E+ 0 1];I0TA 0 "1 +CSLICEL

RECURSE:P«(INITPARTIT SUB) PARTITCALL SUB

A IF NOT AT TOP LEVEL, JUST RETURK NEWRSL, NEWCSL

»[0.51(MAX«(pRSLICE) [pCSLICE) +CSLICE

TRy SUB; P
[1] A
L 2]
[3]
[4]
[5]
OR COLS.
[6] A
[7] +(A/ 1 1 =pM)/TRIV
[8] ESLICE«(SLICES(1;120)/SLICES[1;]
[9] CSLICE«(SLICES[2;120)/SLICES[2;]
[10] MAX«(pRSLICE)[pCSLICE
[11]
[12]
[13] A
[14]
f15] NEWRSL+NEWCSL<«10
[16] CCTR+1
[17] CLOOP: RCTR+«1
[18] RLOOP:SUB+M[IOTA 0 ~1 +RSLICELRCT
CCTR+ 0 111
[19]
[20] NEWRSL«NEWRSL, 1+RSLICE[RCTRI+P[1;)
[21] NEWCSL«NEWCSL, 1+CSLICE[CCTRI+P[2;]
[22] +((RCTR+«RCTR+1)<pRSLICE)/RLOOP
[23] +((CCTR+«CCTR+1)<pCSLICE) /CLOOP
[24] A
[25]
[26] +(~V/RECURSE=0LC) /TOPLEVFEL
[271] Z«(MAX+RSLICE)
[28] Z« 0 "1+ 01 +2
[29] +0
[30] TOPLEVEL:
[31]

[32]

[33]
[34]
[35]

NEWRSL«(r/pM)+(NEWRSLS1+pM)/HEWRSL«NEWRSL[AﬂEWRSL«DUPkILL o4
EWRSL ,RSLICE] '
NEVCSL«(r/pM)+(NEwcszs‘1+pM)/NEWCSL«NEWCSL[ANEWCSL«DUPKILL
NEWCSL ,CSLICE]

Z«NEWRSL ,[0.5] NEWCSL

+0

TRIV:Z+ 2 0 poO

v

166

Z+«PARTITION M;0LDZ

v
[1] A
[2] A TO FULLY PARTITION A MATRIX, M.
[3] R DIVIDE INTO ROWS AND COLUMNS SUCH THAT ALL ROWS/COLS IN 4
SUBMATRIX
| T A HAVE AN EQUAL NUMBER OF 1'S.
[5] A RETURN PARTITION POINTS AS A LIST OF POINTERS INTO M BEFO
RE WHICH '
[6] an DIVISIONS SHOULD OCCUR
[7] A
[8] OLDZ«(INITPARTIT M) PARTITCALL M
[9] LOOP:+(A/A/OLDZ=2+(0LDZ, 2 1 pl+pM) PARTITCALL K)/0
[101] OLDZ+Z '
[11] +LO0P
\
V PARTITIONAALL;BOX;BIT;STD;TR;P
[13 a
[21 p TO PARTITION STANDARD TRANSMISSION MATRICES REPRESENTING
[3] A ELEMENTARY PRODUCT TEREM BOOLEAN FNS FOR EACH OF THE 32
[4] A S-BOX - OUTPUT PAIFRS: :
[5] A
[6] BOX+1
[7] BOXLOOP:BIT+1
[8] BITLOOP:TR«BIT ON BINARY SBOX[BOX::]
[9] n FORM STANDARD MATRIX:
[10] STD«TR#(pTR)pFLIP+(0.5%x14pTR)<+4TR
[11] ARANK SO 1'S INCREASE IN DIRECTIONS -+ AND +
{121 STD«STL[A+/STD;]
[13] STD«STD[;A+#457TD]
[14] A PARTITION THIS MATRIX:
[15] P+«~PARTITION STD
[16] re
[17] '*FOR S-BOX ',(¥BOX),' BIT: ',vBIT
[18] 'ROW SLICES: ', 3 0 w(P[1;:;1>0)/P[1:]
[19] 'COL SLICES: ', 3 0 v(P[2;]>0)/P[2:]
{201 ((14pTFR)=+/P[1;1>0)/'"N0 POSSIBLE ROW PERMUTATIONS'®
[21] ((T14pTRY=+/P[2;1>0)/"'NO POSSIBLE COL PERMUTATIONS®
[22] +((BIT«BIT+1)<u4)/BITLOOP
[23] +((BOX+B0X+1)<8)/BOXLOOP

v

167

1]
2]
3]
4]
5]
6]
73]
8]
9]
[10]

L men I s I s B s I o N e I e I s T e |

111

[12]
r133]
[1y]

v
A
[}

-]

v
A
A
A

A

Z«PARTIT PRINTAPARTIT M;R;C;EX
GIVEN PARTITION POINTS FOR A MATRIX M,
PRINT THE MATRIX IN PARTITIONED FORM.
LEAVE BLANK ROWS/COLUMNS BE?WEEN SUBMATRICES

PARTIT
Z«(M[1;12" ')/ MevM
C+(PARTIT[2;120)/PARTIT(2;]
EX+((pC)+ 14p2Z)p1

F

X[T1+C+1pCl«0

Z+«EX\2Z
R«(PARTITI1;120)/PARTIT[1]
EX<+((pR)+14pZ)p1

EX[1+R+1pR]+«0

Z+«EXXZ

v

Z<RAND

TO GENERATE RANDOM 32x6 BINARY MATRICES IN STANDAKD FOEM

Z+« 1+? 32 6 p2

A PUT INTO STD FORM AND RANK :
2«Z2(pZ2)p(0.5x14pZ)<+¢Z
Z«Z2[A+/2;]

Z«Z[34+421]

v

168

2N S I maa I S B St Y e Y o 8 e WS e 2 e I snn Y e M e B e I e B e W e 1 g |
I Y W W W

NOoO U E WwN [to)

LSS By SRS o N O WO R Y MY | L.J

L18]
[19]

vV SYM
A TR«1 ON BINARY SBOX[1;;]
STD+«TR2(pTE)pFLIP+(0.5x14pTR)<+4TR
FQUAL«(0.5%x14pSTD)=+¢S8TD

A EXCHG ROWS SO NO. 1'S INCREASES + AND +

STD+STDLA+/8TD;]

STD«STD[; PERM+«A+45STD] _

PRIMING+EQUAL\N "1 0 +&((+/EQUAL)p2)T12%+/EQUAL

A PRIMING IS MTX WHOSE ROWS INDICATE POSSIRLE WAYS COLS

R OF STD CAN BE PRIMED

(4]

a PARTITION THE STD MATX

PART<«PARTITION STD

A ELIMINATE SOME OF THE POSSIBLE PRIMING OPERATIONS:

A IF SOME ROW IS ALL 0/1 AND NO ROW AFTER PRIMING IS 0/1,E
p THE PEIAI/G IS NOT POSSIBLE

CONST+

ELIM:KEEPPRIMROV+(1+pPRIMING)p1

K+1 X
REM1:KEEPPRIMROWLK1«~(V/AFCONST=STD YA~V /AFCONST=STD2(pSTD) p

PREIMINGLK;]

[20]
[211]
[22]
[23]
[24]
[2s51]
[26]
[27]
[28]
[29]
r3ol]
311}
[32]
[33]
[34]
[35]
361
[37]
[38]
f39]
[uo]
[u1]
[u2]
f43]
Tuy]
[45]
[u6]

+((K+K+1)<14pPRIMING)/REM1
PRIMING+KEEPPRIMROW{PRIMING
+((CONST+«CORST+1)<1)/ELIM

L]

A ELININATE PRIMINGS IF PRIMED MTX DOES NOT PARTITION AS
A DOFS THE STD MTX.

A SAVE TO COLUMN PERMUTATIONS REQD FOR 1'S -+
SAVEPERMS«(pSTD)p0

K+«1

KEEPPRIMROW«(14pPRIMING)p1
SAVEMTX«(0,pSTD)p0 ‘
REM2:POSSM«STD2(pSTD)pPRIMINGLK;]
POSSM«POSSM[A+ /POSSM;]
POSSH«POSSH[; SAVEPERMS[K ; J«A+#P0OSSH]
SAVEMTX<«SAVEMTX ,[1] POSSM
KERPPRIMROW[K]«A/A/PART=PARTITION POSSM

+((K«K+1)<14pPRIMING) /REM?2
PRIMING«KEEPPRIMROW#PRIMING
SAVEPEFMS+«KEFPPRIMRKOWYSAVEPERMS

A FOR STD + FACH RETAINED PRIMING, CHECK VAR PERM:
SI+«PART PERMUTE STD
PRINTAINVARIANT 1 14pSAVEPERM

A

K+l

GOLOOP:SI+PART PERMUTE SAVEMTX[K;;]
PEINTAINVARIANT SAVEPERM{K;]
+>((K+«E+1)<1+pPRIMING)/GOLOOP

v

169

APPENDIX B

APL CODE FOR QUINE-MCCLUSKEY MINIMIZATION OF S-BOXES.

170

V Z2+«ALT BOXINP
[1] A GIVEN BOX NUMBER AND OUTPUT, RETURN TABLE OF ALTERNATE Sp°
S
C[2] IND«EOXINP[2]+ux 1+BOXINP[1]
[3] Z«(~A/" '=Z)4Z«ALLALTLIOTA,ALLPTR[IND+ 0 1 321:])

v .
V ANALYZE ;SBOXCNT;0UTBIT
1] A '
2] A TO CALC AND SAVE THE ESSENTIAL AND ALTERNATIVE SP TERMS
3] a FOR EACH SBOX AND OUTPUT, IN INDEXED MATRICES ALLESS
i] A AND ALLALT, RESPECTIVELLY

5] ALLALT«< 0 10 p'
6] ALLESS« 0 6 p!' !
71 ALLPTR+« 1 2 p 1 1
81] SBOXCNT+1
BOXLOOP: OUTBIT+1
0] BITLOOP:QM PRIMIMP QUTBIT ON BINARY SBOX[SBOXCRT; ;]
1] ALLESS«ALLESS,[1] ES
2] ALLALT«ALLALT,[1]((14pAL),10)44L
3] ALLESS+ALLESS,[1] 6p* '
4] ALLALT«ALLALT,[1] 10p*
51 ALLPTR<ALLPTR ,[1](14pALLESS) ,14pALLALT
61 +((OUTBIT«OUTBIT+1)<u4)/BITLOOP
7] +((SBOXCNT«SBOXCNT+1)<8)/BOXLOOP
v

[ann Nann N e W W o e W N B e e W W W W W W
w0
—

V. Z«BINARY DECBOX
(1] A T0O CONVERT AN SBOX INTO BINARY FORM
[2] Z+ 31 28& 2 2 2 2 TDECBOX

v

V Z+<ONETERM CONTRIB BOXOUT;SP;ONFOR;0FFOR
(13 a IO DETERMINE CONTRIBUTION TO OVERALL BOX OF ONE SP TERM
[2] A
[31] SP+(32 6)pONETERM
[u4] ONFOR«BOXOUTL2] ON BINARY SBOX[BOXOUT[11;:]
[51] OFFOR«Q(A#~ONFORA . =ALL) /ALL«(6p2)T 1+164
(61 Z++/A/(SP='X")V(SP='0"')20NFOR
(7] Z«Z++/~AN/(SPZ'X'")A(SP='0")20FFOR
[8] Z+«Z:64 ‘
v

1711

V DUMPONS;BOX;BIT;TERM; ONTERMS; T
DUM+100 0OSVO 'TS0O!
TS50«'ALLOC DA(DES.ONFOR) OLD FILE(ONFOR)®
QUT«'ONFOR(APL)'
CTL+'ONFOR(CTL)
111 OSVo 2 3 p'OUTCTL!
DUM<OUT
BOX+1
BOXLOOP:BIT+1
ONTERMS«BIT ON BINARY SBOX[BOX; ;]
BITLOOP: TERM+«1
TERMLOOP: QUT+(T2' ') /T<VYONTERMSLTERM ;]
+((TERM«TERM+1)<32)/TERMLOOP
+((BIT«BIT+1)<4)/BITLOOP
[14] +((BOX+B0OX+1)<8)/BOXLOOP
[15] DUM«[ISVR toUT"
[16] TSO<«*FREE F(ONFOR)'
v

f_!r—lr"lfﬂl'-!'_'if_'\ﬁf-ﬂf—'!hf—!
[N

NROWEVNDUEWN M
Lo S B e J UG ARy R SO W S N TS SO I VO

—
[y
w
—t

V Z+«DUPKILL MAT;T

[1] A REMOVES ANY DUPLICATE ROWS FROM MAT

[2] Z*(KILL*A/(MATV.ZQMAT)VTo;ST*llprAT)fMAT
v ' :

V Z«ESS BOXINP;IND
[1] A GIVEN BOX NUMBER AND OUTPUT, RETURNS TABLE OF ESSENTIAL SP
1] S .
[2] IND«BOXINP[2]+uUx 1+BOXINP[1]
[3] Z«(~A/" '=Z)#Z«ALLESS[IOTA,ALLPTRLIND+ 0 1 3113

v

V Z<MATRIX FINDCOORDS SUBSTRING;MATCH;COORD
[1] A FIND MTX OF COORDS, ONE ROW FOR EACH OCCURENCE OF SUESTRIN
G
[2] A IN THE ROWS OF MATRIX
[3] COORD*Af(Q(¢_1+pMATCH)p-DI0-1p,SUBSTRING)¢MATCH+(.SUBSTRING)
° . =MATRIX
(4] Z*DIO+Q(p000RD)T-DIO-(.COORD)/Ip.COORD

v

172

V Z+«I0TA X
(1] A FOK ENUMERATION OF INCLUSIVELY BOUNDED INTEGER LIST
[2] Z«X[1]+ 1+11+|-/X

v ,

V. Z+«PI MC2 PIT;E;A3;M;ViCiNC N2
1] R THIS FUNCTION FINDS A MINIMAL COVER FROM A PRIME IMPLICAN
TABLE. '
2] Z«<(0,N)poO
3] L1:2+«Z2,[1]J(E«PITV.A1=+/[1] PIT)/[1] PI
4] +(~v/E)/PET
51] +(0=x/pPIT+(~v/[1]) E/[1] PIT)/(~E)/[1] PIT)/O
6] PI«(~E)/[1] PI :
7] PIT«(~v/[1] AA~((1M)°.21M+_1$pPIT)AAAQA+(~QPIT)A.VPIT)/PIT
8] PIT«(V<v/PIT)/[1] PIT
9] PI«V/[1] PI
10] V*“V/AA~((1M)°.ZIM*1+DPIT)AAAQA*(V°.ZV*+/2>PI)A(~PIT)A.VQPI

Lo Bl W W W e W W Wonn W W WU W

[11] PIT«V/[1] PIT
[12] +L1,0pPI«V/[1] PI
(18] PET:V<«((,PITL;144+/[1] PIT1)/1M«14pPIT),0pC«100
L14] SL:>(C<NC«+/+/2>E«PI MC2 PIT,V[11=1M)/EL
[15] C«NC,0pNZ<+FE
[16] EL:+(0zpV<«1+V)/SL
(171 2z«z,[1] w2z
v

V Z<BITPOS ON S
[1] A GIVEN AN SBOX AND OUTPUT BIT POSITION, RETURN THE 32x6
[21] A MATRIX OF BINARY INPUTS FOR WHICH THE OUTPUT BIT IS 1
(3] Z+(16 16)7Z« 1+4(,2)/1x/p2+S[;:BITPOS]
[4] Z« 31 24§ 2222712
(5] 2«Z2[13331,2023;3),201;534]

v -

173

V PIM T2;C;D;NXT;V;T

.. 1] A TAB IS TABLE OF MINTERMS IN BINARY

[2] A N IS NUMBER OF VARIABLES IN FN, PASSED GLOBALLY
£31] A THIS FUNCTION FINDS THE PRIME IMPLICANTS OF A TABLE OF MIN
TERMS.
[u] PI«(0,N)p0,0pT«T2
[5] L1:NXT«(0,N)p0,V«(14pT)p0
[6] L2:4«(~v/((1D)o . >1D+14pA)AAA . =QA) /[1] A+(2xC/[1] D)[(C«1=+/D
«Tz(pT)pT[1;])/[1] T
[71] NXT«NXT,[13(~v/[1] NXTA.=Q4)/[1] 4
[8] »(osz+1+ch.(0pT+ 1 0 ¥7),0pPI+«PI,[1](((~14V)AO=+/C) ,N)pT[1
11)/L2 ,
[9] +(0z14pT«NXT) /L1
[o] PIT«Q((~T2)A.VQPIZ0)AT2A . vQPIZ1
v

174

file:///D-li

v Z2+«PRIMIMP IN;T;BND;K;PI;P2;CMATCH;NOPHEVMATCH;HEWIN
1] [
2] A FOR QUINE+MCCLUSKEY MINIMIZATION OF BOOLEAN FUNCTIONS:
3] A RETURRNS PRIME IMPLICANTS OF GIVEN Nx6& INPUT MATRIX

4] Z«(0, 14pIN)pO

51 A NUMON IS VECTOR PARALLEL TO IN MTX, INDICATING NUMBER OF
6] A BITS ON IN IN ENTRIES, IN SORTED A IN BITS ON

71 R BND IS MTX INDICATING DIVISIONS BETWEEN K AND K+1 BITS ON

8] ITER: IN«INLT<«ANUMON+«+/IN=1;]

9] T«(NUMONZ1ONUMON) /1 pBND+NUMON<«NUMONL T]
[10] BND«(2,pBND)p1 ‘

(113 +(0=pT)/JUSTICLASS

[12] BND«Q(1,1+ 1+7),[0.5] T

[13] JUSTICLASS: NEWIN+(0, 14pIN)pO

[14] K+1

[15] A

[16] NOPREVMATCH«(pIOTA,BND[1;])p1

(17 MATCHLOOP:P1<«IN[IOTA,BND[K;];]

[18] P2«IN[IOTA,BND[K+1;];]

[19] MATCH+1=P1+ ,2QP2

[20] n ANY ROW OF P1 W/ NO MATCHES IS A PRIME IMPLICANT:
[21] 2«Z ,[1](NOPREVMATCHA~V /MATCH) # P1

[22] C+«MATCH FINDCOORDS 1

[23] NOPREVMATCH«~V#MATCH

[24] NEWIN«NEWIN,[1]("1 "1 0 "1 1)03+P1[Cl31];3+P2[C[;2]:1)
[25] +((K«K+1)<14pBND)/MATCHLOOP

[26] R ADD UNMATCHED ELTS OF LAST P2 TO RESULT
[27] 2«Z,0[1] NOPREVMATCH#P?

[28] +(1<14+pIN«NEWIN)/ITER

[29] A ADD LAST POSSIBLE IMPLICANT FROM P2:
[30] Z+«Z,[1] P2[14pP2;]

[31] AR REMOVE POTENTIAL DUPLICATION:

[32] Z+DUPKILL Z

, v

Hrﬂ.,ﬁhﬁhﬁhﬁ

V Z2«SP PROBACORR ONFOR
[11] A
[2] K+«1
[3] L00P:Z+Z+V/A/(SP='X')V(SP='O')z(pSP)pONFOEEK;]
(4] +((K«K+1)S14pONFOR)/LOOP
[5] Z+«Z+14pONFOR
v

v
1] A

Z2«QN MIN;N
QM MINIMIZATION, GIVEN MINTERM NUMBERS IN DECIMAL

(21 PIMR((N« 1420MIN[14VYMIN])p2)TMIN

[3] Z«'01X'[1+PI MC2 PIT]
v
V REDUCE3;SBOXCNT;:OUTBIT
[1] a : _ .
[21 A TO FORM THE GLOBAL 4D MAT SPTERMS (8x4x30x6), WHICH GIVES
[3] m MINIMAL SP FORMS FOR EACH SBOX AND OUTPUT BIT, USING REDU
CEMALTS '
[4] A :
[5] SPTERMS« 8 4 30 6 p' !
[6] SBOXCNT+1
[7] BOXLOOP:O0UTBIT+1
[81 BITLOOP:SPTERMS[SBOXCRT;O0UTBIT;;]l« 30 6 +REDUCEALTS SBOXCH
T,0UTBIT L '
[9] +((QUTBIT«QUTBIT+1)s4)/BITLOOP
[10] +((SBOXCNT+«SBOXCNT+1)<8)/BOXLOOP
[11] SPTERMS«(8 4 ,(+/V#V/VFSPTERMSZ' ') ,6)4SPTERMS

v

176

[an o Ran¥an Nan Fon Won Fon Wan

it e

V Z<REDUCEAALTS BOXOUT;A;T;CLASS;TAB;FREQ;MOSTFREQ;KILL;KI

LLPOS3CLASS ; GRP ’
1] A
2] R TO PICK ALTERNATIVES FOR ACCURATE SP EXPRESSION FOF SBOX
3] AR 1) CHOOSE TERMS MOST FREQUENTLY APPEARING INTER-CLASS
4] A 2) PICK CLASS REP. AS REMAIRING TERM WITH MOST DC'S
5] A ' _
6] CLASS+s2, 0 7 YA«ALT BOXOUT
7] TAB«TA . =QT«Al114pA;:16]
8] REDUCEALOOP:*(1=M0$TFHEQ*r/FREQ*+/TAB)/OUT
9] KILLPOS*(TA.=QT[FREQ1MOSTFREQ;])/11+pT
[10] KILL+(~CLASS€CLASS[KILLPOS])V(loCLASS)=1+KILLPOS
[11] TAB«KILL/KILL#TAB
[12] T<«KILLyT
[13] CLASS+KILL/CLASS
[1u4] +REDUCEALOOP
[15] OUT: m SELECT REPRESENTATIVE FROM EACE CLASS
[16] Z«ESS BOXOUT
[17] SELECTALOOP:NUMDCS++/'X'=GRP+(X+CLASS=1+CLASS)fT
[18] Z«z,[1] GRP[NUMDCS\f/NUMDCS;]
[19] T«(~X)4T
[20] CLASS«(~X)/CLASS
[21] +(02pCLASS)/SELECTALOOP
v
V SELECTASP BOXOUT;AL:ES
[1] A
[2] A TO0 SELECT THE FIRST PRECISE SP EXPRESSION FOR. GIVEN SBOX
(3] A AND OUTPUT FROM QM MINIMIZED EXPRESSION
[uj ES+«ESS BOXOoUT
(5] AL«ALT BOXOUT
[6] O/DUPKILL 0 7 +AL
[7] SP+«ES,[1] KILLAAL[114pAL;16]
I8l SP«(~A/' '=8P)#SP

\

177

V Z«SELECTAALTS;T;CLASS;TAB;FREQ;MOSTFREQ; KILL;KILLPOS;CLA

R

A TO PICK ALTERNATIVES FOR ACCURATE SP EXPRESSION FOE SBOX
A 1) CHOOSE TERMS MOST FREQUENTLY APPEARING INTER-CLASS
A 2) PICK CLASS REP. AS REMAINING TERM WITH MOST DC'S
A

+(0=14pAL)/NOALTS

CLASS«2, 0 7 +AL

TAB«TA . =QT+AL[114pAL;16]
REDUCEALOOP:+(1=MOSTFREQ+«[/FREQ++ /TAB) /OUT
KILLPOS«(TA.=QT[FREQ\MOSTFREQ;1)/\14p7T :
KILL+(~CLASSeCLASSTKILLPOS])V(1pCLASS)=14KILLPOS
TAB«KILL/KILL#TAB

T«KILL#T

CLASS«KILL/CLASS

+REDUCEALOOP

OUT: m SELECT REPRESENTATIVE FROM EACE CLASS

Z+ES

SELECTALOOP: NUMDCS++ /' X" =GRP+(X«CLASS=14CLASS) #T
Z2«Z,01] GRPLNUMDCS AT /NUMDCS ;]

T«(~X)¥¢T

CLASS«(~X)/CLASS

+(0#pCLASS) /SELECTALOOP

'"NUMBER OF P-TEEMS: ',¥14p7Z

+0

NOALTS:Z+ES

v

178

file:///M0STFREQ

'V SPDUMP;BOX3;BIT;TERM
1] DUM«100 NSVO 'TSO*

2] TSO+"ALLOC DA(DES.SPTERMS) OLP FILE(SPF)"

3] OUT+'SPF(APL)!

4] CTL+'SPF(CTL)'

5] 111 0Jsvo 2 3 p'ovurcTL!
6] DUM«OUT

71 BOX<+1

BOXLOOP:BIT+1

9] BITLOOP:TERM+1

1] +((TERM«TERM+1)<23)/TERMLOOP
2] +~((BIT«BIT+1)<4)/BITLOOP

3] +((BOX+B0OX+1)<8)/BOXLOOP

4] DUM<«[ISVE ‘'0UT'

5] ITSO0«'"FREE F(SPF)'

v

¢

Lo e I o Y et W e M B e B e I et I e M e M e W W W |
o]
-

END OF APPENDIX

179

0] TERMLOOP: OUT«SPTERMSLBOX 3 BIT; TERM;]

APPENDIX C

PL/I CODE AND OUTPUT FOR COMBINATORIALLY-EXHAUSTIVE
APPROACH TO BEST-SET DISCOVERY.

180

/* BEST-TERM SELECTION FOR S-BOX APPROXIMATION | E.GULLICHSEN */

AR R A A R A A R AN AR S Al

/: '/
/* CONTRIB PROC OPERATES IN 3 PHASES: v/
/* 1) FORM ARRAY CONTRIB(23.32), INDICATING HOW EACH TERM, v/
/* CONSISTING OF A CONJUNCT OF S-BOX INPUTS ‘COVERS’ THE 32 \¥
/* TERMS FOR WHICH THE SBOX SHOULD BE ON. */
/* 2) USING PROC CHOOSE TO TRY ALL COMBINATIONS OF S.P. TERMS, */
/* BUILD THE ARRAY COVER(5000,23) CONTAINING INDICATION OF */
/* WHICH S.P. TERMS TO TAKE, TO GET BEST APPROX. TO S-BOX, IF */
/* RESTRICTED TO 1,2,...,23 TERMS */
/* 3) SEARCH THE COVER TABLE. TO SEE IF THE SET OF '‘BEST N’ */
/ TERMS IS A SUBSET OF BEST N-1 TERMS */

/**********o**t&***v**:****************w***************************t/

CONTRIB: PROC OPTIONS(MAIN):)
DCL (NUM_TERMS, TERMCNT, INPCNT,LEVEL ,DIFF,NEXTERM) FIXED BIN(15);
DCL TERMS(23,6) CHAR(1):; /* S.P. TERMS AS READ FROM FILE */
DCtL ONFOR(32,6) BIT(1):; /* INPUTS FOR WHICH S-BOX SHOULD BE ON */
DCL COVER(5000.23) BIT(1);
DCL COVERPROB(23) FIXED BIN(15);
DCL (COVERPTS,SEARCHPTS)(24) FIXED BIN(15);
DCL CURR(23) BIT(1); "
DCL XOR_RES(6) BIT(1);
DCL AND RETURNS(BIT(1)): /* ANDING ROUTINE */
DCL ZEROG(6) CHAR(1) INIT((8) (1) '0');:
DCL XSTRG6(6) CHAR(1) INIT((6) (1) 'x’);
DCL (GO,FAIL) BIT(1); /* LOOP FLAGS */
DCL CUMUL_TERMS(23) BIT(1);

COVER(*,*)="0'B;

/* TITLE */

PUT SKIP FILE(SPRINT)
EDIT('BEST-TERM SELECTION FOR S$-BOX APPROXIMATION’,(43)‘*’)
(2 (A,SKIP));

/* READ IN STUFF FOR St, OUTPUT 1 FROM FILES */
CALL READIN;

CONTRIB_CALC: BEGIN;
/* CREATE TABLE OF CONTRIBUTIONS, INDICATING WHICH TERMS ARE
ON FOR WHICH INPUTS */

DCL CONTRIB(NUM_TERMS,32) BIT(1);

DO INPCNT=1 TO 32;
DO TERMCNT=1 TO NUM_TERMS;

/* SINGLE S.P. TERM IS A CONJUNCT, HENCE ‘ALL”.
FLIP BITS WHICH CORR. TO A O IN THE TERM;
OR WITH 1’S FOR DC’S (X’S) IN TERMS */

CALL XOR(ONFOR(INPCNT,*) , (ZERO6 = TERMS(TERMCNT,*))
, XOR_RES);

GONTRIB(TERMCNT, INPCNT)=
AND((XSTR6 = TERMS(TERMCNT,*)) | XOR_RES);

END
END; -

181

/* DUMP THE CONTRIBUTION TABLE */
PUT PAGE FILE(SPRINT) LIST(’ *+* CONTRIBUTION TABLE ***')
PUT SKIP(2) FILE(SPRINT) EDIT('TERM IS ON FOR INPUT’, 'SP TERM',
(I DO I=1 TO 32),(7) " *’ (96)'+")
(COL(40) A SKIP A, X(2),32 F(3),SKIP,A,X(2),A);
PUT SKIP FILE(SPRINT) EDIT((TERMS(I,*),CONTRIB(I, *)
DO I=1 TO NUM_TERMS))(6 A(1),x(5),32 B(3),SKIP);

/* CREATE COVER TABLE ¥/

COVERPTS(1)=1;

PUT PAGE FILE(SPRINT) LIST(’ ¥*¥ COVER TABLE ANALYSIS ***’);

PUT SKIP(2) FILE(SPRINT) EDIT(’# SPTERMS’,’# OF BEST SETS’,
"CORRECTNESS ,(9) '+’ (14) ' ¥' (11}’ +")
(2 (A.COL(15).A.COL(35),A,SKIP));

DO TERMCNT=1 TO NUM_TERMS;

COVER_CALC: BEGIN;
DCL (NEW,OLD)(TERMCNT) FIXED BIN(15);: /* SELECTION INDICES

DCL NUMON FIXED BIN(15);

DCL MOST- INIT(O) FIXED BIN(15); /* MAX OF ABOVE */
DCL SAVE(3000,TERMCNT) FIXED BIN(15):

DCL SAVEPTR INIT(1) FIXED BIN(15);

DCL TEMPBITS(32) BIT(1);

/* SETUP OLD FOR 1ST CALL TO CHOOSE */
DO I=1 TO TERMCNT; NEW(I)=I; END:

DO WHILE(NEW(1) —= 0):
/¥ CALC SUM OF OR OF TERMS CHOSEN */
TEMPBITS(*)="'0'B;
DO I=1 TO TERMCNT;
TEMPBITS(*)=TEMPBITS{*) | CONTRIB(NEW(I), *);
END;

NUMON=0;
DO I=1 70 32;

IF TEMPBITS(I) THEN NUMON=NUMON+1 ;
END;

IF NUMON > MOST THEN DO;
MOST=NUMON
SAVE(1,*)=NEW(*):
SAVEPTR=2;

END ;

ELSE IF NUMON = MOST THEN DO:”~
SAVE(SAVEPTR, *)=NEW(*)
SAVEPTR=SAVEPTR+1;

END; .-

OLD=NEW;
CALL CHOOSE(NUM_TERMS,TERMCNT,OLD,NEW):
END;

/* PUT THE BEST COMBINATIONS (AS SAVED IN THE SAVE ARRAY) INTO
THE COVER TABLE +/

COVERPROB (TERMCNT) =MOST ;

“/

182

DO 1=0 TO SAVEPTR-2;
DO J=1 TO TERMCNT;

COVER(COVERPTS(TERMCNT)+I ,SAVE(I+1t J)) = “1'B;
END :
END;

PUT SKIP FILE(SPRINT) EDIT(TERMCNT,SAVEPTR-1,.5+M0OST/64.)
(x(2),F(4).CcOL(15),F(5),COL(38),F(7,3));

COVERPTS(TERMCNT+1)=COVERPTS{TERMCNT)+SAVEPTR-1;
END COVER_CALC; :
END;

/* SEARCH COVER TABLE, TO DET. MONOTONICITY */

PUT SKIP(3) FILE(SPRINT) LIST(’ = *** COVER TABLE **x');
J=2; ’
DO I=1 TO COVERPTS(NUM_TERMS+1)-1;
PUT SKIP FILE(SPRINT) EDIT(I,’)’.COVER(I,*))
(F(5).A,X(2),23 B(1));
/* SKIP LINES BETWEEN ‘GROUPS‘ */
IF COVERPTS(J)-1=I THEN DO;
PUT SKIP FILE(SPRINT);
J=d+1;
END;
END:

SEARCHPTS(*)=COVERPTS(*);
LEVEL=1;
FAIL="0'8B;
PUT PAGE FILE(SPRINT) EDIT('COVER TABLE SEARCH’,(18)'*")
(2 (A,SKIP));
DO WHILE(LEVEL < NUM_TERMS & -FAIL):
PUT SKIP(2) FILE(SPRINT) EDIT(’CONSIDERING ROW ’, SEARCHPTS(LEVEL),
* AT LEVEL ‘,LEVEL)(A,F(5).A,F(3));
CURR(*)=COVER(SEARCHPTS(LEVEL),*);
LEVEL=LEVEL+1;
GO="1'B;

DO I=COVERPTS(LEVEL) TO COVERPTS(LEVEL+1)-1 WHILE(GO);

/* IF DIFF BETWEEN CURR AND COVER(I,*) EXACTLY ON BIT, THEN
WE HAVE GOT THE TERM NEEDED IN THIS NEXT LEVEL: */

DIFF=0; -

DO J=1 TO NUM_TERMS;
IF CURR(J) -= COVER(I,J) THEN DIFF=DIFF+1;

END;

IF DIFF = 1 THEN GO='0'B;/* QUIT, WE HAVE MATCH AT LEVEL */

END;

/* IF NONE FOUND AT THIS LEVEL, THEN BACKTRACK */
IF GO THEN DO;
PUT SKIP FILE(SPRINT) EDIT(’'NO MATCH FOR CURR AT LEVEL ’,LEVEL)
(A,F(3));
LEVEL=LEVEL-1;
SEARCHPTS(LEVEL)=SEARCHPTS(LEVEL)+12
IF SEARCHPTS(LEVEL)=COVERPTS(LEVEL+1) THEN DO;
PUT SKIP(2) FILE(SPRINT) EDIT(’** LEVEL ‘,LEVEL,’ EXHAUSTED')
(A,F(3),A);
DO I=LEVEL TO 1 BY -1 WHILE(SEARCHRTS(I)+1 >= COVERPTS(I+1));

183

SEARCHPTS(I)=COVERPTS(I1):
END :
LEVEL=I+1;

PUT SKIP FILE(SPRINT) EDIT('BACKTRACK TO LEVEL ‘. LEVEL){(A,F(3));

SEARCHPTS(LEVEL)=SEARCHPTS(LEVEL)+1;
/* 1F FAILED ALL THE WAY BACK TO 1ST LEVEL */
IF LEVEL=1 & SEARCHPTS(LEVEL) = COVERPTS(LEVEL+1) THEN
DO,

FAIL="1'B;
PUT PAGE FILE(SPRINT) LIST(’*** SEARCH FAILED **+«’);
PUT FILE(SPRINT) DATA(SEARCHPTS,COVERPTS,CURR, COVERPROB):
PUT SKIP(3) FILE{SPRINT) LIST(’'COVER TABLE’):
DO I=1 TO COVERPTS(NUM_TERMS);
PUT SKIP FILE(SPRINT) EDIT(I,COVER(I,*))(F(6),%x{(2),23 B(1));
END;
END;

END;
END;

/* ELSE CURR DID MATCH */
ELSE DO;
SEARCHPTS(LEVEL)=1-1;
PUT SKIP FILE(SPRINT) EDIT('CURR MATCHES WITH COVER TERM /,
I-1.° AT LEVEL ’,LEVEL)(A,F(5),A,F(3));

END;
END;

/* SEARCH WAS SUCCESSFUL, PRINT THE RANKED TERMS */
IF ~FAIL THEN DO;
PUT PAGE FILE(SPRINT) LIST(’*¥* SEARCH SUCCESSFUL **x')
PUT SKIP(2) FILE(SPRINT) EDIT(’# TERMS INCLUDED", .
, "TERM SELECTION’, CORRECTNESS’.(16) ¥’ (14) '+ (11)’'*")
(2 (A,COL(22).A,COL(45),A,SKIP));
DO I=1 TO NUM_TERMS;
PUT SKIP FILE(SPRINT) EDIT(I,COVER(SEARCHPTS(I),*
.5+COVERPROB(I1)/64.)
(F(8),co0L(18),23 B(1).,cOL(48).F(7,.3));
END ;

PUT SKIP(2) FILE(SPRINT)
EDIT('TERMS IN THE ORDER OF THEIR ADDITION:‘)(A);
CUMUL_TERMS(*)}='0’B:/* ACCUM BIT POSNS FROM COVER */
DO I=1 TO NUM_TERMS;

NEXTERM=0;

DO J=1 TO 23 WHILE(NEXTERM=0);

IF CUMUL_TERMS(J)='0’B & COVER(SEARCHPTS(I).,J)="1'8
THEN NEXTERM=J;

END;

PUT SKIP FILE(SPRINT) EDIT(TERMS(NEXTERM,*))(X(8).6 A(1)):

CUMUL_TERMS(*)=CUMUL_TERMS(+) | COVER(SEARCHPTS(I),*);
END;

END ;

END CONTRIB_CALC;

184

/V**?***V*"*#ff*****v***f**f****v'*"**VvvvvwvV**t*v*t‘k'/

/* XOR PROC, TO EXCLUSIVE-OR 2 BINARY VECTORS L/

/vkﬁ***'**"'“f'Vt****'*****"‘k#*'*VY***#*******V*V'*V*&/

XOR: PROC(A,B,RES);

DCL (A,B,RES)(*) BIT(1);
RES=(A]|B)&(~(ARB)):
END XOR;

R R A e R L

/* AND, RETURNS 1 IFF ALL ALTS IN ARGUMENT ARRAY ARE 1 ¥/

Kk ko Ok ok ok sk Kk S Kk kK K KK KR KOF k R ko kK ok ok K ko kR kR Kk ok

AND: PROC(BOOL_VEC) RETURNS(BIT(1)):

DCL (RES,BOOL_VEC(*)) BIT(1);

DCL I FIXED BIN(15);

RES='1"8B;

DO I=1 TO HBOUND(BOOL_VEC,1) WHILE(RES);
IF ~BOOL_VEC(I) THEN RES='0'B;

END ;

RETURN(RES);
END AND;
AR e
/* V/
/* INPUT ROUTINE, TO READ THE S.P. TERMS FOR A GIVEN S-BOX, OUTPUT, */
/* AND THE 32 INPUTS FOR WHICH THE OUTPUT IS {1, FROM SEQUENTIAL */
/* MTS FILES "SP" AND "ON", REPECTIVELY */
/* */

/*ki***********t***********k******#*t*t*******************l***********/

READIN:PROC;
DCL (SPFILE,ONFILE) FILE STREAM;
CALL ATTACH('SPFILE=SP’);

CALL ATTACH(’ONFILE=ON’);
OPEM FILE(ONFILE),FILE(SPFILE);

NUM_TERMS=0;
DO I=1 TO 23; /* MAX # S.P. TERMS FOR ANY SBOX, OUTPUT IS 23 */
GET FILE(SPFILE) EDIT(TERMS(I,*))(6 A(1),SKIP):
IF TERMS(I, 1) —= / * THEN NUM_TERMS=NUM_TERMS+1;
END; .
GET FILE(ONFILE) EDIT(((ONFOR(I,J) DO J=1 TO-6) DO I=1 TO 32))
(6 B(1),SKIP);

PUT SKIP FILE(SPRINT) LIST(’SP TERMS:’);

PUT SKIP(2) FILE(SPRINT) EDIT((TERMS(I,*) DO I=1 TO NUM_TERMS))
(6 A(1),SKIP});

PUT SKIP(3) FILE(SPRINT) LIST(’OUTPUT SHOULD BE ON FOR INPUTS:’);

PUT SKIP(2) FILE(SPRINT) EDIT(ONFOR){(6 B(1),SKIP);

CLOSE FILE(ONFILE);
CLOSE FILE(SPFILE);
END READIN;

/KA otk KKK KK KKK R K K K R R KR R KKK O KRR OR R K R KK K KR R KK R R R k¥ ok ko ok Xk ok k[

/* . : . */

185

/¥ THE CHOOSE ROUTINE RETURNS A NEW COMBINATION OF R [TEMS v/

/* CHOSEN FROM A COLLECTION OF N, GIVEN THE PREVIOUS COMB, v/
/¥ OLD. THE NEW COMBINATION RETURNED IS5 A VECTOR OF FIXED BIN ¥/
/* QUANTITIES. E.G., N=5 R=3 0OLD=1 2 4, NEW=>1 2 5 s
/v v/

VAR e R R R O R R R BV ARk Rk kA F ok k

CHOOSE: PROC(N,R,OLD,NEW);
DCL(N.R,I1,J) FIXED BIN(15):
DCL(OLD,NEW)(*) FIXED BIN(15);
DCL GO BIT(1):
NEW=0LD;
GO="1'8B;
DO 1=R TO 1 BY -1 WHILE(GO):
/* 1IF ANY POSN AT ITS MAX, INCREASE PREV POSN */
IF OLD(I) —= N-R+I THEN DO:
GO='0'B:
NEW(I)=NEW(I)+1;
DO J=I+1 TO R;
NEW(J)=NEW(J-1)+1;
END;
END;
END;
IF GO THEN NEW(1)=0; /* IF NO MORE COMES */
END CHOOSE ;

END CONTRIB:

186

BEST-TERM SELECTION FOR S-BOX APPROXIMATION

WA R EF R FRE K KRR R F R R K P F R r ok Wk bk KRR Y KRR Y R R

sp Terms: for S-box 1, Output 1

X1X010
X1x111
000X00
X000 11
X11001
10X0 11
001X01
00 tX10
00X 100
O10X0 1t
010X 10
100X0 1
10Q1X0
X01110
110X00
11001X
101000

OUTPUT SHOULD BE ON FOR INPUTS:

000000
000100
001010
001100
001110
010010
010110
011010
000011
001001
001101
010001
010101
010111
011001
011111
100100
100110
101000
101110
110000
110010
110100
111010
100001
10001 1
100101
101011
110011
110111 ‘
111001
111111

187

188

000} 0}
X004 4
OOXOt L
o1 410X
OX1004
1 OX004
04 X010
LOX0L0
001 X00
01 X100
1OX1 00
LI OXO4
OO b X
b 1 000X
00X000
b XX
OLOX}EX
o ok K 4 Ak
wa3L dSs

QOO0000000000O0OO=~-0
O00Q00000O~-~00000O=-0
OC0O00O0O00C0O0O-00000O0

O000000O0O~-~000000OO0

O 0O O O O

B I R S S S S A N N S N N N N A Y T 0 S S P G S P P

Q00O -00000~000000C

O00000O~+000Q000O0O00OO0

I

Q0000000000000 OO
lololoNeoloNeNoNoRoNoNeoNoNoNoNoNo RN
ool oleleNoleNoRoNoReoNoRe I No NoNo)
[oleReNeleNoReNoNeNollNoNoRoNo NoXo)
Q000000000 +-0000Q00
Q000000 ~+-~0000000ODQ
OC0O0O0000O~+~0000O0O0O0O00
[ejejeRoReNoloNoReNoRoNeReNoRo RN o)
OO0000000O0O0O0O-0000
[SRchegeRojejejofofeloloNoNo o el
C000 000000000000
CO000~-0000000O0O0O0OOO
i cAcleReReNoReRoNoNoRoNoNoNoRe No}
Q00 ~+~000000000O0OO0COC
CO-0000O0 O}D [eleRoNoNoReNeol

O-+-0000000000O0O0OO0 -

00 -00000000000000

lejejololeoNe o NoRoNoReNoRoNoNoRo RN
joeRoN ool NeRoNoNoNoNoRoNoNoNoNe]
O0O0O0000O0OO0~-~0-00C0
[sleleoNeNe I NeNoReNoRoNoRoNoNoNoNo}
[eRejoNoReNoNoRoNoNoNeo R NoNoNoNaNe]
O+-0Q0000Q000VVOOOOO0O
[oleloleleNeNeNoReoRoReoRe Ne NeNo N
[oNoRoNeRoleNoNoNeNoNoNo o NoRoNo!

[ejoRoloRoReNeNoNeRoNoNoNoNoNo RN o

3

LI 91 S v €L 2L LY OL 6 8
INdNTI 404 NO ST Wd3lL

81

bE OC 6C BC LC 9C ST vZ €T TCZ T OT 6t

[4%

3718vLE NOILN3IHINOD + 4

4K

08T

0000000001 0000000000 (EE
0000000000+ 000000000 (ZE

000000000001 000000010k (HE
00000000000001 0000010 (0E
00000000000000 000010 (62T
000000000000000100010KE (8B
0000000000000000I00I0LE (LT
000000000000000000+ L0 (9T
000000001 00000000000k L (ST
000000000t 0000000000 LY (PT
00000000001 0000000004 L (ET
000000000001 00000000 (TT
0000000000000 000000 L (1T
00000000000000010000HLE (0T
0000000000000000L000 LE (61
000000000000000001 00 L (81
000000000000000000L 0k (L}
0000000000000000000 Hi (91
000000001 0000000000004 (G}
000000000+ 00000000000 (¥
0000000000+ OO00000000LE (E
00000000000 000000000HE (T}
0000000000000 00000001 (41
00000000000000 000000 (O}
000000000000000 1 00000 (6

0000000000000000+0000HE (8

00000000C0000000001 0004 (L

000000000000C00000I00KE (9

0000000000000000000L0 L (S

000C0000000000000000HE (b

0000000000000000000004 1 (E

00000000000000000000010 (T
0000000000000 000000000 (1
xxx 378VL H3A0D # ¥

000" b L
y86°0 6 91
6960 (3% St
£66°0 €9 vi
860 99 [

¢C6 ' 0 9t 4
9060 8 [
SL8°0 09 (e}

ty8 0O 8614 6
£18°0 LLE 8
18L°0 9Gv L

Q5L 0 €9t 9
6LL°0 o6} S
889°0 €9 v
969°0 (4} £
GZ9°0 3 4
£96°0 4 3
LRSS IE S NP R R EE] ok kAKX R KK
SS3INLDIYY0D S13S 1S38 40 # SW331dS #

+rs SISATVNV 378VL 43IA0D xax

34)
35)
36)
37)
38)
39)
40)
41)
42)
43)
44)
a45)
46)
47)
48)
49)
50)
51)
52)
53)
54)
55)
56)
57)
58)
59)
60)
61)
€62)
63)
64)
€5)
66)
67)
68)
69)
70)
71)
72)
73)
74)
75)
76)
77)
78)

79)
80)
81)
82)
83)
84)
85)
86)
.87)
88)
89)
90)
91)
92)

110 10000000000 100000000
11001 100000000000000000
110010 10000000000000000
1100100 100000C0000000000
1100 1000 1 00000000000000
1 100 10000 10000000000000
1100 1000000 100000000000
1100 10000000 10000000000
1100 100000000 1000000000
1100 1000000000 100000000
11000 1 10000000000000000
11000 10 1000000000000000
11000 100 100000000000000
11000 1000 0000000000000
11000 100000 100000000000
11000 1000000 10000000000
11000 10000000 1000000000
11000 100000000 100000000
1100001 1000000000000000
110000 10 100000000000000
110000 100 10000000000000
1 10000 10000 100000000000
110000 100000 10000000000
110000 1000000 1000000000
110000 10000000 100000000
1100000 1 100000000000000
1100000 10 10000000000000
1100000 1000 100000000000
1100000 10000 10000000000
1 100000 1000000 100000000
11000000 1 10000000000000
11000000 100 100000000000
11000000 1000 10000000000
11000000 10000 1000000000
11000000 100000 100000000
110000000 10 100000000000
110000000 100 10000000000
110000000 1000 1000000000
110000000 10000 100000000
11000000000 1 10000000000
11000000000 10 1000000000
11000000000 100100000000
110000000000 1 1000000000
110000000000 10 100000000
1100000000000 1 100000000

1111 1000000000000000000
11110010000000000000000
1111000 1000000000C000000
111100000 10000000000000
11110000000 100000000000
111100000000 10000000000
1111000000000 1000000000
11 110000000000 100000000
11101 100000000000000000
111010 10000000000000000
1110100 1000000000000000
111010000 10000000000000
11101000000 100000000000
111010000000 10000000000

190

1766)

17G7)
1768)
1769)
1770)
1771)
1772)
1773)
1774)
1775)
1776)
1777)
1778)
1779)
1780)
1781)
1782)
1783)
1.784)
1785)
1786)
1787)
1788)
1789)
1790)
1791)
1792)
1793)
1794)
1795)
1796)
1797)
1798)
1799)
1800)
1801)
1802)
1803)
1804)
180%5)
1806)
1807)
1808)
1809)
1810)
1811)
1812)
1813)
1814)
1815)
1816)
1817)
1818)
1819)
1820)
1821)
1822)
1823)
1824)

1100111011011 1101000000

11111111110110100000000
11111111011 110100000000
111111110101 11100000000
111111110101 10110000000
1111111101011010 1000000
111111101101 11100000000

111111100111 11100000000

111111100101 11110000000
111111100101 11101000000
11111011111110100000000
1111101111011 1100000000
111110111101101 10000000
111110111101 10101000000
111110110111 11100000000
111110110111101 10000000
11111011011110101000000
11111011010111 110000000
1111101101011 1101000000
111110110101101 11000000
11111010111 111100000000
1111101011011 1110000000
1111010110111 101000000
111110100111 11110000000
11111010011111 101000000
1111101001011 1111000000
111011111111 10100000000
1110111111011 1100000000
111011111101 10110000000
11101111110110101000000
11101111011 111100000000
11101111011 110110000000
11101111011110101000000
111011110101 11110000000
1110111101011 1101000000

1110111101011011 1000000

11101110111111100000000
111011101101 11110000000
111011101101 11101000000
1110111001111 1110000000
1110111001111 1101000000
11101110010111111000000
11011111111110100000000
1101111111011 1100000000
110111111101101 10000000
11011111110110101000000
11011110111 111100000000
1101111011011 11 10000000
11011110110111101000000
11011011111 111100000000
11011011111 110110000000
11011011111110101000000
110110111101 11110000000
11011011110111 101000000
11011011110110111000000
110110101111 11110000000
11011010111111 101000000
11011010110111 111000000
11001t11111111100000000

191

1825)
1826)
1827)
1828)
1829)
1830)
1831)
1832)

1833)
1834)
1835)
1836)
1837)
1838)
1839)
1840)
1841)
1842)
1843)
1844)
1845)
1846)
1847)
1848)
1849)
1850)
1851)
1852)
1853)
1854)
1855)
1856)
1857)
1858)
1859)
1860)
1861)
1862)
1863)
1864)
1865)
1866)
1867)
1868)
1869)
1870)
1871)
1872)
1873)
1874)
1875)
1876)
1877)
1878)
1879)
1880)
1881)
1882)
1883)

110011111111101 10000000
1100111111111010 1000000
1001111110111 110000000
110011111101 11101000000
110011111101101 11000000
11001110111111110000000
1100111011111 1101000000
11001110110111 111000000

1111111111 1110100000000
111111111101 11100000000
111111111101 10110000000
11111111110110101000000
1111111101111 1100000000
111111110111 10110000000
11111111011110101000000
1111411110101 11110000000
11111111010111 101000000
111111110101 10111000000
11111110111111 100000000
111111101101t 1110000000
1111111011011 1 101000000
11111110011111110000000
1111111001111 1101000000
111111100101 11111000000
1111101111111 1100000000
11111011111110110000000
1111101111111010 1000000
111110111101 11110000000
111110111101 11101000000
1111101111011011 1000000
1111101101111 1110000000
11111011011111101000000
111110110111101 11000000
111110110101 11111000000
1111101011111 1110000000
111110101111 11101000000
1111101011011 111000000
1111101001111 1111000000
111011141111 11100000000
111011111111101 10000000
111011111111 10101000000
1110111111011 1110000000
1110111111011 1101000000
1110111111011011 1000000
11101111011111110000000
1110111101111 1101000000
1110111101111011 1000000
11101111010111 111000000
11101110111111110000000
11101110111111101000000
11101110110111111000000
1110111001111 1111000000
1101111111111 1100000000
11011111111110110000000
11011111111110101000000
110111111101111 10000000
1101111111011 1101000000
110111111101 10111000000
110111101111 11110000000

192

1884)
1885)
1886)
1887)
1888)
1889)
1830)
1891)
1832)
1893)
1894)
1895)

1896)
1897)
1898)
1899)
1900)
1901)
1902)
1903)
1904)
1905)
1906)
1907)
1908)
1909)
1910)
1911)
1912)
1913)
1914)
1915)
1916)
1917)
1918)
1919)
1920)
1921)
1922)
1923)
1924)
1925)
1926)
1927)
1928)

1929)
-1930)
1931)
1932)
1933)
1934)
1935)
- 1936)
1937)

1938)

11011110111111101000000
1101111011011 1111000000
110110111111 11110000000
11011011111111 101000000
110110111111101 11000000
11011011110111 111000000
110110101111111 11000000
11001111111111110000000
11001111111111101000000
110011111111101 11000000
1100111111011111 1000000
11001110111111111000000

11111111111111100000000
11111111111110110000000
11111111111110101000000
11111111110111110000000
11111111110111101000000
111111111101101 11000000
11111111011111110000000
11111111011111101000000
1111111101111011 1000000
111111110101 11111000000
111111101111111 10000000
11111110111111 101000000
1111111011011 1111000000
11111110011111111000000
11111011111111110000000
11111011111111101000000
111110111111101 11000000
11111011110111111000000
11111011011111111000000
111110101111111 11000000
11101111111111 110000000
11101111111111101000000
11101111111110111000000
1110111111011 1111000000
11101111011111 111000000
11101110111111 111000000
11011t11111111110000000
11011111111111101000000
1101111111111011 1000000
11011111110111111000000
11011110111111111000000
110110111111111 11000000
11001111111111111000000

1111111111111 1110000000
11411411111111 101000000
111111111111101 11000000
114111111101111 11000000
111111110111111 11000000
11111110111111111000000
11111011111111111000000
11101111411111111000000
11011111111111111000000

111114411111111 11000000

193

COVER TABLE SEARCH

R S R

CONSIDERING RQW 1 AT LEVEL 1
CURR MATCHES WITH COVER TERM 3

CONSIDERING ROW 3 AT LEVEL
CURR MATCHES WITH COVER TERM

CONSIDERING ROW 4 AT LEVEL 3

CURR MATCHES WITH COVER TERM 16
CONSIDERING ROW 16 AT LEVEL 4
CURR MATCHES WITH COVER TERM 79
CONSIDERING ROW 79 AT LEVEL 5

CURR MATCHES WITH COVER TERM 269

CONSIDERING ROW 269 AT LEVEL 6
CURR MATCHES WITH COVER TERM 632

CONSIDERING ROW 632 AT LEVEL 7
CURR MATCHES WITH COVER TERM 1088

CONSIDERING ROW 1088 AT LEVEL 8
CURR MATCHES WITH COVER TERM 1465

CONSIDERING ROW 1465 AT LEVEL 9
CURR MATCHES WITH COVER TERM 1663

CONSIDERING ROW 1663 AT LEVEL 10
CURR MATCHES WITH COVER TERM 1723

' CONSIDERING ROW 1723 AT LEVEL 11
CURR MATCHES WITH COVER TERM 1731

CONSIDERING ROW 1731 AT LEVEL 12
CURR MATCHES WITH COVER' TERM 1767

CONSIDERING ROW 1767 AT LEVEL 13
CURR MATCHES WITH COVER TERM 1833

CONSIDERING ROW 1833 AT LEVEL 14
CURR MATCHES WITH COVER TERM 1896

CONSIDERING ROW 1896 AT LEVEL 15
CURR MATCHES WITH COVER TERM 1929

CONSIDERING ROW 1929 AT LEVEL 16
CURR MATCHES WITH COVER TERM 1938

AT

AT

AT

AT

AT

AT

AT

AT

AT

AT

AT

AT

AT

AT

AT

AT

LEVEL
LEVEL
LEVEL
LEVEL
LEVEL
LEVEL
LEVEL
LEVEL
LEQEL
LEVEL
LEVEL
LEVEL
LEVEL
LEVEL
LEVEL

LEVEL

12

13

16

17

194

¥% SEARCH SUCCESSFUL ***

TERMS INCLUDED TERM SELECTION CORRECTNESS
HE KK R KK Rk K h kR K b ok Kk KK K K K K Yok kR K kK kN
1 10000000000000000000000 0.563

2 1 1000000000000000000000 0.625

3 11 100000000000000000000 0.656

a4 111 10000000000000000000 Q.688

5 11 111000000000000000000 0.719

6 11111010000000000000000 0.750

7 1111101 1000000000000000 0.781

8 11111011010000000000000 0.813

9 1111101 1010100000000000 0.844

10 111110110101 10000000000 0.875

11 111110110101 10100000000 0.906

12 111111110101 10100000000 0.922

13 111111111101 10100000000 0.938

14 © 111111111411110100000000 0.953

15 11111111111111100000000 0.968

16 111111111 11111110000000 0.984

17 . 11111111111111 111000000 1.000

TERMS IN THE ORDER OF THEIR ADDITION:
X1X010
X1x111
000X00
X000 11
X11001
00 1X01
001X 10
010X01
100X0 1
1001X0
110X00
10X011
00X 100
010X 10
X01110
11001X
101000

195

APPENDIX D

PL/T CODE FOR N-ARY TREE APPROACH TO BEST-SET DISCOVERY.

196

//DES JOB

',,,T=10M,L=10,10=20,R=1024K"', 'ERIC GULLICHSEN',CLASS=1

// EXEC PL10OCLG,SIZE=1024K
//PL1.SYSIN DD % -
/¥ DISCOVERY OF SETS OF BEST TERMS FOR S-BOX APPROXIMATION */

(NOSTRG6,NOSUBRG): BEST:. PROC OPTIONS(MAINJ,

/*************************X’***************************‘***‘*’X’Xf*’*/

/X x 7
/* FOR EACH OF THE 4 OUTPUTS FOR EACH OF THE 8 S-BOXES, */

/* WHAT IS THE *BEST* S.P. APPROXIMATION USING N TERMS TO X/
/% THE REAL S-BOX.

x /

/% 1S THERE ALWAYS A BEST SET OF N TERMS WHICH IS A SUBSET */

/% OF A BEST SET OF N+1 TERMS?? 2/

/% x/
/* ALGORITHM. FORM THE COVER TABLE. INDICATING WHICH OF ¥/
/% THE 32 INPUTS FOR WHICH THE OUTPUT SHOULD BE ON THE OUTPUT*/
/% 1S INDEED ON FOR A SINGLE GIVEN TERM. */
/% THEN SEARCH THIS TABLE USING PARALLEL TREES, TO ATTEMPT A/
/* (FOR EACH OUTPUT OF EACH S-BOX) TO FORM A SEQUENCE OF */
/% BEST SETS OF SIZE 1...N (N<=23 FOR ALL OUTPUTS) TO PROVE */
/% THAT A BEST SET EXISTS AT ALL SIZES 1...N UNDER THE x/
/% PROPERTY OF MONOTONIC ADDITION OF TERMS. x/

DCL (SBOX,O0UTBIT) FIXED BIN(15);, /% SBOX & BIT COUNT #*/
DCL (SPFILE,ONFILE) FILE STREAM INPUT,
DCL SYSPRINT FILE STREAM OUTPUT PRINT;

DCL (NUMTERMS, /% # S.P. TERMS IN APPROX */
INPCNT, /% IDX 1..32 FOR ON-INPUTS */
TERMCNT) FIXED BIN(C15); /% IDX 1..N <=23 FOR TERMS */

DCL (I,J) FIXED BIN(15), /% LOOP COUNTERS */
DCL SRCH_EXIST FIXED BIN(15);

DCL ONFOR(32,6) BIT(1), /% INPUTS WHERE SBOX IS ON */
DCL TERMS(23,6) CHAR(1), /* INPUTS WHERE SBOX IS ON */
DCL CONTRIB(23) BIT(32) ALIGNED,; /* CONTRIBUTION TABLE */

DCL MASK BIT(32);

. DCL COMPMASK BIT(32) ALIGNED;

DCL SAVEMASK(23) BIT(32) ALIGNED,
DCL MASKVEC(32) BIT(1) DEFINED MASK;
DCL TERMUSED(23) BIT(1);

DCL NUMON(C23) FIXED BIN(15);
DCL (MAXON,BITSON,BESTON,OLDBESTON) FIXED BIN(15);

197

PAUSE:
DCL SAVEBITSON(23) FIXED BIN{15);

/% VECTOR OF PTRS TO NODES STILL AVAIL FOR EXPANSION */
DCL (OPEN,NEWOPEN)(20000) PTR;
DCL (OPENHI,NEWOPENHI) FIXED BIN(15);

DCL ZERO6(6) CHAR(1) INIT((6) (1) '0');
DCL XSTR6(6) CHAR(1) INIT((6) (1) 'X');
DCL XORES(6) BIT(1);

DCL TEMPBIT BITC(1),

/% ORDER IN WHICH TO MONOTONICALLY ADD TERMS */

DCL ORDER(S8,4,23) FIXED BIN(15);

DCL CUMON(23) FIXED BIN(C15), /% # BITSON IN. ORDER */
DCL PRTMASK(23) BIT(32) ALIGNED, ‘

DCL (P, TOP,CURR,NEW,PREV,FINI) PTR;

/% N-ARY TREE NODE STRUCTURES: */
/% LINK NODE STRUCTURE FOR LIST OF POINTERS X%/
DCL 1 LKNODE BASED,

2 SON PTR,

2 LINK PTR;

/% NODE STRUCTURE TO CONTAIN A TERM x/
DCL 1 NODE BASED,
2 TERM FIXED BIN(C15), /% TERM # %/
2 ORMASK BIT(32), /% CUMUL OUTPUTS COVERED */
2 FATHER PTR, "/* T0 FATHER NODE */
2 LINK PTR;

DCL (GO,FIRST,NOTFND) BIT(1), /% FLAGS */
DCL (SUBSTR,NULL,SUM,EMPTY,ALL,HBOUND,FLOAT) BUILTIN;

/% AREA IN WHICH TO BUILD THE TREE */
DCL TREE AREA(512000);
1 .
ON AREA BEGIN,
PUT SKIP(2) FILE(SYSPRINT) LIST('***x AREA OVERFLOW X*x%x'73;
STOP;
END;
OPEN FILE(SPFILE) TITLE(C'SPFILE");
OPEN FILE(ONFILE) TITLE('ONFILE'),

/* LOOP FOR EACH OF THE 4 OUTPUTS OF EACH SBOX */

DO SBOX=1 7O 1;
DO OUTBIT=1 TO 4;

198

PAUSE:

X/

CALL READIN, /% READ IN SPTERMS AND ONFOR */
/% FOR TABLE OF CONTRIBUTIONS, INDICATING WHICH TERMS
ARE ON FOR WHICH INPUT */
NUMON(*)=0;
DO INPCNT=1 TO 32;
DO TERMCNT=1 TO NUMTERMS;
CALL XOR({ONFOR(INPCNT,*) , (ZERO6=TERMS{TERMCNT,*3)} , XORES

TEMPBIT=AND({ (XSTRB6=TERMS{TERMCNT,*)]) | XORES];
SUBSTR(CONTRIB(TERMCNT), INPCNT, 1)=TEMPBIT;
IF TEMPBIT THEN NUMON(CTERMCNTJ=NUMON(TERMCNT)+1;
END;
END;

/% DUMP THE CONTRIBUTION TABLE */
PUT PAGE FILE(SYSPRINTJ) LIST(' **%* CONTRIBUTION TABLEX**'});
PUT SKIP(2) FILE(SYSPRINT) EDIT('SP TERM', 'INPUT COVER',(7)'%*",
(32)'*')(A,COL(23),A,SKIP,A,COL(12),A);
PUT SKIP FILE(SYSPRINT) EDIT((CTERMS(I,*),CONTRIB(I),NUMONCI)
DO I=1 TO NUMTERMS))(6 A(13),X(5),B(32),F(6),SKIP);

/¥ FORM TOP LEVEL OF TREE FROM SINGLE TERMS WITH MOST 1¥%§ */
OPENHI=1; /* SET HI PTR FOR OPEN NODES */
MAXON=LARGEST (NUMONJ;
FIRST='1'B;
DO I=1 TO NUMTERMS;
IF MAXON=NUMON(I) THEN DO;
ALLOC LKNODE SET(CURR) IN(TREEJ;
IF FIRST THEN DO;
FIRST='0"'B;
PREV, TOP=CURR;
END;
ALLOC NODE SET(P) IN(TREE);
P->NODE.TERM=1; _
P—>NODE.FATHER=NULL; /* NO FATHER FOR TOP LEVEL */
P->NODE.ORMASK=CONTRIB(I);
CURR->LKNODE . SON=P;
OPEN(OPENHI)=P; /* PUT INTO OPEN VECTOR */
OPENHI=OPENHI+1; '
PREV- >LKNODE . LINK=CURR;
PREV=CURR;
END;
END;
CURR-->LKNODE.LINK=NULL; /* LAST LINK POINTER SET NULL */

1/* PROCESS ALL NODES IN OPEN VECTOR TO GET TO NEXT LEVEL IN TREE

PAUSE:

OLDBESTON=0;
G0='1'B,;
DO WHILE(GO),
BESTON=0;
DO I=1 TO OPENHI-1, /* FOR ALL NODES IN OPEN VECTOR %/
FIRST='1"'B;
/* FIND OUT HOW MANY ON IN ORMASK,
GIVEN NEXT BEST TERM CHOICE X/
COMPMASK=0PEN(I)->NODE.ORMASK;
MAXON=0;
DO J=1 TO NUMTERMS;
SAVEMASK(J),MASK=COMPMASKICONTRIB(J);

- SAVEBITSON(J),BITSON=SUM(MASKVEC);

IF BITSON > MAXON THEN MAXON=BITSON;

END; : ‘

/¥ IF BETTER THAN ANYTHING YET ON NEWOPEN, RESET NEWOPEN *

/

IF MAXON > BESTON THEN DO;
BESTON=MAXON;
NEWOPENHI=1,;

END;

1 /% IF BETTER OR AS GOOD, ADD TO NEWOPEN LIST */

IF MAXON >= BESTON THEN DO;
PREV=OPEN(I);
DO J=1 TO NUMTERMS;

IF SAVEBITSON(J) = MAXON THEN DO;
/% EXAMINE NEWOPEN POINTER VECTOR TO DETERMINE IF
MASK TO BE ADDED HAS ALREADY BEEN ADDED AT THIS LEVEL
IF NOT, ADD IT TO THE TREE X/
NOTFND='1'B;
DO SRCH_EXIST=1 TO NEWOPENHI-1 WHILE(NOTFND);
IF SAVEMASK(J)=NEWOPEN(SRCH_EXIST)->NODE.ORMAS
K -

THEN NOTFND='0'B;
END; '
/% ADD IT, IF NOT FOUND */
IF NOTFND THEN DO;
ALLOC LKNODE SET(CURR) IN({TREE);
/%¥ PREV MAY PT TO NODE OR LKNODE: %/
IF FIRST THEN DO;

FIRST='0'8B,;
PREV->NODE . LINK=CURR;
END;
ELSE PREV->LKNODE.LINK=CURR;
PREV=CURR;

200

PAUSE:
ALLOC NODE SET(P) IN(CTREE);
CURR->LKNODE . SON=P;
P->NODE.TERM=J;
P->NODE . ORMASK=SAVEMASK(J);
P->NODE . FATHER=0PEN(I);
/% SEE IF DONE YET */
IF SAVEBITSON({J)=32 THEN DO;

G0='0'8B;
FINI=P; /% LAST NODE FOR TRACEBACK */
END;

/% INSERT INTO NEWOPEN LIST x/
NEWOPEN(NEWOPENHI)=P,
NEWOPENHI=NEWOPENHI+1;
END;
END; /% OF SAVEBITSON IF x/
END; /% OF J FORLOOP x/
CURR->LKNODE . LINK=NULL;
END;
END;

/% TRANSFER NEWOPEN TO OPEN */

DO I=1 TO NEWOPENHI-1,;
OPEN(I)=NEWOPENC(I);

END;

OPENHI=NEWOPENHTI;

/% DEPTH-FIRST SHORTCUT:
IF ONLY ONE BIT ADDED TO ANY ORMASK DURING THIS ITERATION
TO GENERATE NEW TREE LEVEL, WE MAY IMMEDIATELY PENETRATE
D1ST TO END OF TREE, ADDING ANY TERM NOT YET ON A BEST
PATH %/

IF OLDBESTON+1 = BESTON THEN DO;

GO='0'B;, /*STOP THE SEARCH */

CURR=NEWOPEN(1),;

/% FORM MASK TO TERMS USED IN BEST PATH SO FAR */

TERMUSED(*)='0"'B.

DO WHILE(CURR ™= NULL),
"TERMUSED(CURR->NODE.TERM)="'1"'B;
CURR=CURR->NODE . FATHER;

END;

/%¥ FORM A D1ST PATH TO LEVEL N *x/
COMPMASK=NEWOIEN(1)->NODE.ORMASK,;
CURR=NEWOPENT1);
DO J=1 TO NUMTERMS;
IF “TERMUSED(J) THEN DO;
ALLOC NODE SET(P) IN(CTREE],

201

PAUSE :
P->NODE.TERM=J,;
P->NODE . ORMASK=COMPMASKICONTRIB(J).
COMPMASK=P->NODE . ORMASK;
P->NODE.FATHER=CURR,;
CURR=P;
END;
END; .
FINI=CURR, /% SET LAST POINTER %/
END,;

ELSE OLDBESTON=BESTON, /* ELSE CONTINUE TREE BUILDING x/
END, /% WHILE LOOP FOR PROCESSING TREE */

1 /* WHILE LOOP TERMINATED AS SOME ORMASK WAS ALL 111...1
TRACEBACK FROM FINI BY FATHER LINKS %/

CURR=FINI;

DO I=NUMTERMS TO 1 BY -1,
ORDER(SBOX,0UTBIT, I)=CURR->NODE.TERM,
PRTMASK(I),MASK=CURR->NODE.ORMASK;, /* SAVE THE COVER %/
CUMON(I)=SUM(MASKVEC);
CURR=CURR->NODE . FATHER;

END;

/% PRINT TERMS IN ORDER OF ADDITION, TOGETHER WITH THE
VALUES INDICATING PROBABILITY OF CORRECTNESS */
PUT PAGE FILE(SYSPRINTJ) EDIT('# TERMS INCLUDED','INPUT COVER',
"CORRECTNESS', (16)'*',(14)'*"',(11)'*"')
{2 (A,COL(25),A,COL(55),A,SKIP]);
DO I=1 TO NUMTERMS;
PUT SKIP FILE(SYSPRINT) EDIT(ORDER(SBOX,OUTBIT,I),PRTMASK(I],
.54+FLOAT(CUMON(I),6)/64.)(F(8),€0L(21),B(32),COL(S6),F(7,3)

END;
PUT SKIP(2) FILE(SYSPRINT) LIST('+++ END OF TABLE +++');

TREE=EMPTY, /% FREE ENTIRE TREE BY EMPTYING AREA */
END; /% OUTBIT LOOP x/
END; /% SBOX LOOP */
CLOSE FILE(ONFILE),FILE(SPFILE):
1

/% K K K K 3K K K K K 3K Sk K K 3K 3K 3K 3K K 3 K K K K KK KKK K K 3K 3K 3K 3K 3K 3K 3K 3K oK 3K ok oK 3K oK 3K K K KKK K K K K/
/% * /

202

£0c

*xxmmxx*xx*x*m***xx*xxxmxmxxxm*x***xxxxxx*xxxxxxxxxxx*xx****mxxx/

"ONY AaN3

T(S3IYIN¥NLIAY

"aN3

‘8.0.,=534 N3HL (I)O3AT0048. 4I

(53¥3I37IHM (T °03ATT008)0GNNOEH 0L T1=I 04
‘a,1.=s3y

"(STINIG 4d3XId4 I 104

(13118 ((%x)23A7008°53¥) 100
f00131L19ISN¥N13IY (J3AT008)30dd ANV

EXEEEEEKENEEKKKKEKEE KK KRR KK KKK KKK KK KK KKK KKK KKK KKK KKK KR XX/
T JdVY AVYMY LINIWNOY¥Y NI SLV 17V 441 T SNiNL3¥ OGNV x/

*****XX*X*X**********XX****************X**X*M**************X****/

SWY3IL HOIHM ONILVOIAONI “SNOILNGIYLINOD 40 3I18vL ¥04 x/
‘NIQv3I¥ adN3
“CdINS (1)9 9)(¥O04NOILIA3I C(LNIYLSASIITIL4 (ZTIHINS LINd

'SINdNI ¥04 NO 38 QINOHS LNdLNO,J)LSIT (LNI¥dSASI3TI4 (€JdINS Lnd
‘(dIds(1lv 9]

(CSWYILIWAN OL T=I 00 (x I)SW¥3LIILIA3 (LNIYdSASIITI4 (TIHINS LNd

‘(. SW¥IL 10NA0Yd-40-WNS,ILSIT (LNIN4SASIITIS (€)dINS Lnd
reecel4dvl) 2)

NO‘, LI8 LNdLlNO . “X08S‘, X08-S ¥04.)1Id3 (INIMdSASI3ITIS 39vd 1Nd
/x LN4NI 3HL OHO3 x/

‘(d1ds (1)8 9)
(Cze 0L 1=I 0@ (9 0ol T=C 0Q (£ IJ¥04NO0J}IILIA3 (3ITISINO)ITIL 139

' "aN3
CTHSWYILWNAN=SWYILWNAN NIHL + » = (T I)SWH3Ll 4dI
CLdINS(T)V 9)J((x"IJSWY3LILIAE (37144813714 L39

€2 0L 1=I 04
/x X0¥ddV SIHL NI SW¥3L 40 # x/ 0=SWY3ILWNN
00dd NIQV3IY

/*********X*************X****X******X*X*******X*#***X****X******/

/ x x/
/ x CATIVILNGND3S "SYIvd LNdLINO ONV X08-S5 x/
/¥ JH1 ¥04 ‘NO 38 GINO0HS LINdiN0 3AHL HIIHM ¥04 S3INTIVA LNINI x/
/x Z€ 40 135 3IHL ONY SW¥3L "d°S 3IHL Av3d 0L “3INILNOY LNANI x/

e

(L181

-3snvd

PAUSE:

X%/
/* RETURN LARGEST ELEMENT IN A FIXED BIN VECTOR
*/
/% K K 3K 5K K 3K 3K 3K 3K 3K 3K 3K 3K 3K 3K K K 3K KK KK KK K K 3K 3K K 3K 0K 3K 3K 3K K 3K 3K K K KK KK KKK K K K KKK KR K K K K
x*% /

LARGEST: PROC(FBVEC) RETURNS{FIXED BIN(15));
DCL (I,BIG,FBVEC(*)) FIXED BIN(15);
BIG=FBVEC(1]};

DO I=2 TO HBOUND(FBVEC,1),;
IF FBVEC(I) > BIG THEN BIG=FBVEC(I);
END; '
RETURN(BIG),
END LARGEST,

/****************************X‘********’*********‘*****3.’**’****3’;‘:/

/% XOR PROC TO XOR 2 BINARY VECTORS x/
/%K K KK 3K K K ok kK K K K 3K K K 3K 3K K 3K 3K 3K 3K 3K KKK K 3K K K K K K K K KK K K KKK K K K R RO KR K/

XOR:PROC(A,B,RES),
DCL (A,B,RES)(*) BIT(1),
RES=(AIBJ)&(~(A&B)),

END XOR;

END BEST;

//GO.SPFILE DD DSN=GULLICH.DES.SPTERMS,DISP=SHR
//GO.ONFILE DD DSN=GULLICH.DES.ONFOR,DISP=SHR

204

APPENDIX E

APL ROUTINES FOR BOOLEAN MINIMIZATION
BY SPECTRAL TRANSLATION

205

(1]
[2]
[3]
Cu]
[5]
(6]

1]
[2]
(31,

B+«BASIS S;BIG3;POS;N:;K

PP

GIVEN VECTOR S OF SPECTRAL COEFFICIENTS, RETURN BASIS MTX
R INDICATING REQUIRED SPECTRAL TRANSLATIONS TO MAXIMIZE PRI

A COEFFICIENTS
B«(0,N+2@pS)p0

S«|5

S[1]<0

A

R LOOP UNTIL WE HAVE N BASIS VECTORS

A

LOOP:BIG+[/S

S[POS+«S1BIG]+0

B«B,[1]1 POS«(Np2)T 1+P0S

A

A REMOVE ALL LINEAR (XOR) COMBS OF BASIS VECTOES
A FROM FURTHER POSSIBLE CONSIDERATION '
K+1

REM:S5[1+2182/[2] ELK COMB 14pB;1]«0
+((K«K+1)<14pB)/REM

+(N#214pB)/LOOP

A TRANSPOSE AND INVERT TO GET BASIS
B+«INVERSE®B

v

V ReM COMB N

+~(M=1,N)/L1,R1

R«1+(0,(M-1) COMB N-1),[1] ¥ COMB N-1

-0

L1:Re(1N)eo.x11 J
+0

Rl:Re(11)e . x1 N

v

V Z«COMPLEXITY SPECTRUM ;N;ORDER
N<«2®pSPECTRUM _
ORDER++#(6p2)T 1+12%6

2+« (Nx2xH)-(#2%N-2)xORDER+ . xSPECTRUM%?2

v

206

(1]
(2]
(3]
(4]
[s]
(6]

F«FUNC R;P

v

n ,

a GIVEN SPECTRAL COEFFS, RETURN CORR. MINTERMS NUMBERS
A

F«(1#pR)x(TRANS 2@pR)+.xR

F«F/ 1+1pFR

v

V Z<«HAD N3K

Z+« 1 1 p1 -
K<0

LOOP:+(K=N)/O

z2«(2,2),[1] z,-2

K«K+1

+Lo0oP

v

207

V R«INVERSE MAT
[1] A THIS FUNCTION WILL TAKE ANY MATRIX AND RETUEN :
[2] AR 1) THE INVERSE OF THE MATRIX IF IT EXISTS
[3] A 2) A 0 MATRIX OTHERWISE
T 4] A CHECK 3 EXIT CONDITIONS :
[5] AR 1) MATRIX=0
[6] A 2) MATRIX IS NOT SQUARE
[7] A 3) MATRIX IS SCALAR OR NOTHING
L 8] +(~((A/A/TOCT> |MAT)V((14pMAT) 2 (" 14pMAT))V(0=ppMAT)))/START
[9] R RETURN THE 0x0 MATRIX
(101 R« 0 0 po
[11] +0 ‘
[12] A NOW WE KNOW THAT MAT IS SQUARE AND %0
[13] A SAVE DIMERSIONS
[14] START:N«14pMAT
[15] A CATENATE IDENTITY TO MAT
[16] MAT«MAT , ((AN)o.=1N)
[17] R REDUCE MAT TO REDUCED ROW ECHELON FORM, WHICH IN A SQUARE
MATEIX
[18] A IS EQUIVALENT TO TRIANGULATION.
[19] MAT<N REDROWECH MAT
[20] AR CHECK THAT THERE ARE NO O ROWS IN FIRST N COLUMNS
[21] f I.E. RANK(MAT)=N
[221] A FOR NON-SINGULARITY
(23] +(N=MATRANK((N ,N)+MAT))/O0KAY
[24] R ELSE RETURN THE 0x0 MATRIX
[25] E« 0 0 poO
[26] +0
[271] OKAY:R«(O,N)+MAT
v

V R«MATRANK MAT -
1] A THIS FUNCTION WILL DETERMINE THE RANK OF A GIVEN MATEIX
[2] A PUT MATRIX IN ROW ECHELON FORM
[3] MAT« (" 14pMAT) ROWECH MAT
fu] R+ /v/(OCT<MAT) '
[5] +0

v

208

V NEWAS«BAS MAXPRIM S
[1] » GIVEN 4 BASIS MTX. aND VECTOR OF SPECTRAL COEFFS. S,
(2] A PERMUTE THE COEFFICIENTS TO MAXIMIZE PRIMARY ONFES
[3] NEWAS+STA1+21BASZ A(6p2)T 1+164]

v
: V R<N REDROWECH MAT
[1] A TEIS FUNCTION WILL REDUCE ANY GIVEN MATRIX TO A
[2] A REDUCED ROW ECHELON FORM.
[3] R REDUCE MATRIX TO ROWECH FIRST
[4] MAT«<N ROWECH MAT .
[5] A CHECK 3 CONDITIONS TO EXIT
[61 A 1) VECTOR
[7] A 2) MATRIX=0
[8] R 3) SCALAR OR NOTHING
[9] A
[10] +(~((1=ppMAT)v(A/A/DCT>|MAT)v(0=ppMAT)))/R0w0HK

[11] R«MAT
[12] -0
[13] R CHECK LAST ROW : IF =0 RECURSE O SMALLEER
[14] A MATRIX OF M-1 ROWS, N COLUMNS
[15] ROWCHK:+(A/OCT> |MATL 14pMAT ;1N) /RECURSE
[16] R ELSE START REDUCING THIS ROW
[17] R ALL THE ELEMENTS ABOVE THE 1§
18] A FIND COLUMN NUMBER WHERE FIRST NON ZERO ELEMENT IS.
[19] NZC«(v4(OCT<|MAT[14pMAT; 1 N]))11 ‘
[201] A ZERO OUT ELEMENT ABOVE TEIS 1 JUST FOUND
[21] TEMP+(((‘1+1+pMAT),(‘1+pMAT))p.((—MAT[1'1+1+pMAT;NZCJ)o.xMA
TL1+pMAT:]))
[22] MAT[1-1+11pMAT;]+2IMAT[1-1+1+pMAT;]+TEMP
[23] A RECURSE ON SMALLER MATRIX
[24] RECURSE : R+ (N REDROWECH((('1+1+pMAT).(‘1+pMAT))+MAT)).[1J(MA
TL14pMAT;])
[25] A
v

209

file:///MATllfpMAT

V R«N ROWECH MAT

1] a THIS FUNCTION WILL ACCEPT ANY MATRIX AND PUT THE FIRST
2] A N COLUMNS IN ROW-ECHELON FORM.

3])

4] A CHECK 2 EXIT CONDITIONS

5] A 1) MATRIX=0

61 +(~A/A/OCT>| (((14pMAT) ,N)AMAT)) /NEXT

71 ReMAT

8] +0

9] R 2) MAT IS A SCALAR OF NOTHING AT ALL

Lo o e I s o B o I s Bt B e B B e W s B e B e W o W N B R s |

10] NEXT:+(~0=ppMAT)/START

11] F<MAT

121 +0

13] A

14] A CHECK THAT THE NUMBER OF COLUMES PROCESSED IS <N
15] START:+(N=0)/0

16] A '

171 A FIND FIRST NON-ZERO ELEMENT :
18]] NZC - NON ZERO COLUMN INDEX
19] A NZR - NON ZERO ROW INDEX

20] NZC*(VfDCT<|(((1+pMAT),N)+MAT))11
[21] NZR+<(OCT<|MATL ;NZ2CI)1 1

[22] A SWITCH TO PUT ELEMENT A[NZR,NZCJ INTO A[1,NzC]
[23] MAT[1,NZR; J«MATINZR,1;]
[2u] n MAFE Al1,M2C]=1
[25] 701;]+MAT[1 JeMATL1;N2C])
[26] A MAKF COL=NZC ALL ZEROES UNDER A[1,NZC]
[27] MAT[141 1+414pMAT ;1«2 | MAT[1+~ 1+414poMAT; I+ (-MAT[1+1 " 1+14pMAT;
NZC1)e . xMAT[1;]
[28]1 @ A RECURSE ON SMALLER MATRIX
[29] ReMAT[13]1,013(0,((N-1) ROWECH(1 1 +MAT)))
[30] A
v

210

file:///MATl

2]
3]
4]
5]
6]
71
8]
9]
(10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
{33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
fu1]

[u2]"

[43]
Cuy]
[45]
[46]
[u7]

v SPECTRALAMIN ;BOX;BIT; S; NEWS; F;BAS; SPFORM

COMPAOLD*CONPANEW*IO
NTERMSAOLD«NTERMSANEW«10
NDCOLD+NDCNEW+0

BOX+1

BOXLOOP:BIT+«1

BITLOOP: '

'FOR S-BOX ',(%BOX),' OUTPUT '.¥BIT

Pt e T i A A v
Tt

'*MINTERMS:*
(BIT OUTPUT SBOX[BOX;;1)/ 1+164
e :

'OQM MINIMIZATION:'

QM PRIMIMP BIT ON BINARY SBOX[BOX; ;]
(«SPFORM«SELECTAALTS
NTERMSAOLD+NTERMSAOLD ,14pSPFORM
NDCOLD<NDCOLD++/+/'X*=SPFORM

'SPECTRUM: !
(O«S5«SPECTRUM BOX,BIT
COMPAOLD+COMPAOLD ,COMPLEXITY S
'COMPLEXITY: ',% 14COMPAOLD

te
LR

'SPECTRAL TRANSLATION BASIS (BX)'
J«BAS«BASIS S

LI]
te

"TRANSLATED SPECTRUM:*
T«NEWS«BAS MAXPRIM S
COMPANEW<COMPANEW ,COMPLEXITY NEWS
'COMPLEXITY: ',¥ 14COMPANEW

e

'"MINTERMS ‘FOR TRANSLATED FUNCTION:
O«F<«FUNC NEWS

e

'‘OQM MINIMIZATION FOR TRANSLATED FUNCTION
QM PRIMIMPR(6p2)TF
[+«SPFORM«SELECTAALTS
NTERMSANEW<NTERMSANEW ,14pSPFORM

'NDCNEW*NDCNEW++/+/'X'“SPFORM

5p0lTC[2]

A

*((BIT*BIT+1)SQ)/BITLO0P
*((BOX*BOX+1)58)/BOXLO0P

'*NUMBER OF P-TERMS PER FUNCTION BEFORKRFE:

211

[u8]
[49]
[50]
[51]
[52]
53]

[1]
[2]
(3]
[u]
{51
(6]
(7]
L8]

NTERMSAOLD
"AVG. NUMBER OF DC PER P-TERM ',¥(+/NTERMSAOLD):NDCOLD
L8]

'"NUMBER OF P-TERMS PER FUNCTION AFTER:!

NTERMSANEW

"AVG. NUMBER OF DC PER P-TERM ',¥(+/NTERMSANEW)3NDCNEW
v

V K«SPECTRUM BOXOUT;F

A

A GIVEN S-BOX AND OUTPUT BIT, RETURN THE 6% SPECTRAL COEFFS
R«(TRANS 2@pF)+.xF<BOXOUT[2] OUTPUT SBOXLEBOXOUT[11];;]

v

VvV Z«TRANS N;Q
Z+(1,1)p1
+(VN<1)/0

Q<«TRANS N-1
2«(9,9),[11(¢q,-9)
v

V. Z«XOR VEC

R RETURN XOR OF THE BITS IN VECTOR VEC
Z+0x2|+/VEC

v

V Z«B XORMAP INPS;R;C

R T0 MAP Nx6 MTX OF INPUTS THROUGH TREE OF XORS
A AS REPRESENTED BY TRANSLATION MATEIX B
Z+«(pINPS)pO

R+1

RLOOP: C+«1

CLOOP:Z[R;C1«XOR BLC;1/INPS[R;]
+((C«C+1)<6)/CLOOP

+((R+R+1)<14pINPS)/RLOOP

v

END OF APPENDIX

212

APPENDIX F

PL/I ROUTINES FOR UNIDIRECTIONAL KEY SEARCH

213

//DES JOB ',,,T=5M,L=15,10=20,R=768K', 'ERIC GULLICHSEN',6 CLASS=1
// EXEC PL10CG,SIZE=768K
//PL1.SYSIN DD *

x/

X/

/% SEARCH TREE APPROACH TO GIVEN PLAINTEXT DES ATTACK */

/% RECURSIVE BACKTRACK SEARCH TREE TO DISCOVER K FROM KNOWN P-C
PAIRS. B1ST EXPANSION OF NECESSARILY CONJUNCTIVE CONDITIONS,
VIRTUAL D1ST EXPANSION AT CHOICE POINTS WITH FATHER POINTERS T

ENABLE BACKTRACKING ON FAILURE. 6 TYPES OF NODES, TO
REPRESENT THE VARIOUS STRUCTURES IN THE DES ENCRYPTION A*/

SEARCH: PROC OPTIONS(MAIN) REORDER;
DCL TREE AREA(384000); /* AREA FOR TREE GROWTH */

/* FILES x/
DCL SYSPRINT FILE STREAM OUTPUT PRINT;
DCL (SPFILE,SPCFILE,KSFILE,PCFILE) FILE STREAM INPUT,

/¥ Q OF POINTERS TO "OPEN' NODES I.E. THOSE REQ. EXPANSION */
DCL (OPEN,OPENEND) PTR; /% TO START AND END OF Q */
DCL (OPENCURR, OPENPREV) PTR;
DCL 1 OPENNODE BASED,
2 NODE PTR,
2 LINK PTR;

/% DES BLOCKS %/
DCL KEY(64) CHAR(1) INIT((64) (1) ' '), /% K TO DISCOVER IN SEARC

DCL (PTEXT,CTEXT)(64) BIT(1), /% KNOWN P-C PAIR */
DCL NUMNODES FIXED BIN(31) INIT(O0);, /* # OF NODES EXPANDED #*/

DCL SPTERMS(32,23,8) CHAR(1), /¥ S.P. APPROX. TO S-BOXES */
DCL SPCTERMS(32,23,6) CHAR(1), /* S.P. APPROX. TO S-BOX COMPL */
DCL MAXPTERMS FIXED BIN(15) INIT(D); /* MAX PTERMS IN ANY SP FORM

DCL KEYPERM(16,48) FIXED BIN(C15}, /% KEY BIT SELECTION INDICES

/% INVERSES OF PERMUTATIONS IN DES ALGO */

DCL E_PERM_INV(48) FIXED BIN(15)
INIT(32,1,2,3,4,5,4,5,6,7,8,9,8,9,10,11,12,13,12,13,14,15,16,17,
16,17,18,19,20,21,20,21,22,23,24,25,24,25,26,27,28,29,

28,29,30,31,32,1).
DCL P_PERM_INV({32) FIXED BIN(15)
INIT[16 7,20,21,29,12,28,17,1,15,23,26,5,18,31,10,2,8,24,14,
32,27,3,9,19,13,30,6,22,11,4,25);

214

PAUSE:

DCL (NULL, TRUNC, REPEAT,MAX) BUILTIN;

/* TREEDUMP */ DCL TOP(64) PTR; /* PTRS TO TREE TOP LEVEL */

7/* HOW MANY DES ROUNDS WERE USED TO GENERATE CTEXT? %/

DCL NUM_ENCRY_RNDS FIXED BIN(1S5) INIT(2);

1

/* DECLARATIONS OF TYPES OF NODES IN SEARCH TREE */

/% 'SUPER' NODE IS A SET OF DESCRIPTOR FIELDS ASSOCIATED WITH
EACH NODE IN THE SEARCH TREE. CONTENTS INCLUDE A TYPE CODE,
POINTER TO ACTUAL NODE, AND FIELDS COMMON TO ALL TYPES */

DCL 1 SUPER BASED ,

2 TYPE CHAR(13], /* NODE TYPE */
2 P0OS FIXED BIN({15), /% POSITION [1,32] IN BLOCK %/
2 LVL FIXED BIN(15), /% LEVEL IN ENCRYPTION */
2 FATHER PTR, /* FATHER POINTER X/
2 OPENQ PTR, /¥ -> TO OPENNODE */
2 NODE PTR; /¥ -> TO0 ACTUAL NODE */
DCL 1 RNODE BASED , /¥ TYPE 'R' NODE */
2 VAL BIT(1}, /¥ VALUE OF NODE FROM [0,1] */
2 COUNT FIXED BIN(15) INIT(D), /% # TIMES EXPANDED [0,2] */
2 LPTR PTR INIT(NULLJ,
2 RPTR PTR INIT{NULLJ,;

DCL 1 FNODE BASED , /%¥ TYPE 'F' NODE X/
2 VAL BIT(1), :
2 TERMNUM FIXED BIN(15) INIT(O0), /* # OF SP TERM CONSIDERED
X/
2 XPTR(6) PTR INIT{(6) NULL),; /¥ ->'S TO X NODES OF SP TE
RM *x/

DCL 1 XNODE BASED , /%¥ TYPE 'X' NODE X/
2 VAL BIT(1),
2 COUNT FIXED BIN({1S5) INIT(O0),
2 RPTR PTR INIT{NULLY);

ON ERROR BEGIN;
PUT FLOW, /% FOR CHECKOUT */
CALL TREEDUMP(TOP), /* DUMP ENTIRE SEARCH TREE */

215

PAUSE :
STOP;
END;
1.
P2 S MAINLINE —-cmmcmmmmmmpmmmmmmmemmmmmmmm e * /

CALL SETUP; /¥ PERFORM READS AND CREATE TREE TOP LVL */

OPENCURR=0OPEN;

DO WHILE(OPENCURR™=NULL), /% PROCESS Q WHILE IT IS NOT EMPTY */
CALL EXPAND(OPENCURR->OPENNODE.NODE)}; /% EXPAND CURR NODE */
OPENCURR=0PENCURR~->OPENNODE . LINK; /% LOOK AT NEXT NODE */

FREE OPEN->OPENNODE; /* DESTROY PROCESSED NODE POINTER */
OPEN=OPENCURR; /% MOVE START POINTER ALONG */
END;

/% PRINT RESULTS */
PUT SKIP(2) FILE(SYSPRINT) EDIT('TOTAL # OF NODES EXPANDED ', NUMN

ODES)
(A,F(9)3., :
PUT SKIP(2) FILE(SYSPRINT) EDIT('ENCRYPTION KEY DISCOVERED:',KEY,
(64)'.') (A,SKIP,X(10),64 A,SKIP,X(101).,A); '
CALL TREEDUMP(TOP), /* PRINT COMPLETED SEARCH TREE */
/K e e e e mm——— %/
1
/* SELECTION FUNCTION, TO CALL PROPER EXPANSION ROUTINE, BASED ON
THE TYPE OF THE NODE TO BE EXPANDED.
INPUTS: CURR = POINTER TO SUPER NODE FOR NODE TO EXPAND */
EXPAND: PROC(CURR) RECURSIVE;
DCL CURR PTR;
/% DEBUG */ CALL DUMP(CURRJ;
CURR->SUPER.OPENQ=NULL; /* REMOVE ITS REF. TO Q NODE #*/
SELECT(CURR->SUPER.TYPE);
WHEN('R') CALL R_EXPAND(CURR);
WHEN('F') CALL F_EXPAND(CURR]J;
WHEN(C'X') CALL X_EXPAND(CURRY;
END; ’
END EXPAND;
1 .
/% DEBUG */ DUMP: PROC(CURR); /* DUMP SUPER DATA ABOUT NODE CURR)
x/

DCL CURR PTR;
DCL COUNT FIXED BIN(31) STATIC INIT(0), /% # NODES EXPANDED */

216

PAUSE:

IF CURR=NULL THEN PUT SKIP FILE(SYSPRINT) LIST('--- NULL ---");

ELSE DO;
PUT SKIP FILE(SYSPRINT) EDIT(COUNT,')','TYPE:',6 CURR->SUPER.TY
PE,
' POS:. ',CURR->SUPER.POS,' LVL: ',CURR->SUPER.LVL)
(F(B),A,X(S),A, X(1),A,A,F(4),A,F(5)];
COUNT=COUNT+1;

END;

END DUMP;
1

/% TREEDUMP: A ROUTINE TO PRINT THE ENTIRE SEARCH TREE, BY

RECURSIVE INORDER TRAVERSAL. USED FOR DIAGNOSTIC PURPOSES
ON ERROR x/

TREEDUMP: PROC(TOP);

DCL TOP(64) PTR, /* POINTERS TO TREE TOP LEVEL */

DCL (K,LEVEL) FIXED BIN(15);

DCL SIZE FIXED BIN(31), /% # OF NODES IN TREE */

SIZE=0;

PUT PAGE FILE({SYSPRINT) EDIT('TREEDUMP',(8)'*'3(2 (X(50),A,SKIP)

3

PUT SKIP(2) FILE(SYSPRINT) EDIT('ENCRYPTION KEY: ',KEY,(64)'-"')
(65 A,SKIP,X(16),A); '

DO K=1 TO 64; /*FOR ALL TOP LEVEL NODES IN TREE ¥/
LEVEL=0;
PUT SKIP(3) FILE(SYSPRINT) EDIT('FROM CIPHERTEXT BIT: ',
K,(23)'-")(A,F(2),SKIP,A);
CALL NODEPRT(TOP(K]],
END;

PUT SKIP(2) FILE(SYSPRINT) LIST('@ee@e@ TOTAL # OF NODES IN TREE:

SIZE);
1
/% NODEPRT: PRINT NODE POINTED AT BY P, THEN RECURSIVELY
EXPAND THE SUBTREE FROM P x/

NODEPRT: PROC(P) RECURSIVE,;
DCL (P,Q,ACTUAL) PTR;
DCL I FIXED BIN(15),

IF P=NULL THEN RETURN; /* TRIVIAL CASE X/

LEVEL=LEVEL+1, /* ARE PROCESSING ONE LEVEL DOWN IN TREE */
SIZE=SIZE+1; /% INCREMENT TREE SIZE COUNTER */

PUT SKIP FILE(SYSPRINT) EDIT(LEVEL,REPEAT(' ',3%LEVEL),P->SUPER.

217

PAUSE:
TYPE., :

‘ LVL:',P->SUPER.LVL,' POS:',P->SUPER.POSI(F(3),3 A,F(2),A,F
(2)3;

ACTUAL=P->SUPER.NODE;
SELECT(P->SUPER.TYPE);

WHEN('R') DO;
PUT SKIP(O0) FILE(SYSPRINT) EDIT(REPEAT(' ',25+3%LEVEL}],
' VAL:',ACTUAL->RNODE.VAL,' COUNT:',ACTUAL->RNODE.COUNT)
(2 A,B(1),A,F(2)),
CALL NODEPRT(ACTUAL->RNODE.LPTR}; /% RECURSE ON CHILDS x/
CALL NODEPRT(ACTUAL->RNODE.RPTR);
END; *

WHEN('F') DO;
PUT SKIP(O) FILE(SYSPRINT) EDIT(REPEAT(' ', 25+3%LEVEL),
'TERM NUMBER: ', ACTUAL->FNODE.TERMNUM,
' VALUE: ', ACTUAL->FNODE.VALJ)(2 A,F(3),A,B(1)),
DO I=1 TO B, .
IF ACTUAL->FNODE.XPTR(I) ™= NULL THEN
CALL NODEPRT(ACTUAL->FNODE.XPTR(I)),
END;
END,;

WHEN('X') DO;
PUT SKIP(O0) FILE(SYSPRINT) EDIT(REPEAT(' *',41+3*LEVEL),

'VALUE: *,ACTUAL->XNODE. VAL,

"COUNT: ',ACTUAL->XNODE.COUNT,
'=>KEY(',KEYPERM(P->SUPER.LVL,P->SUPER.POS), ')=",
ACTUAL->XNODE . COUNT=1)
(A,A,B(1),X(2),A,F(3),X(2),A,F(2),A,B(1)];

CALL NODEPRT(ACTUAL->XNODE.RPTRJ;
END;

END;
LEVEL=LEVEL-1;, /% AFTER RECURSION, POP UP 1 LVL */

END NODEPRT;

END TREEDUMP;

1

/% BACKTRACK: ATTEMPT EXPANSION OF OTHER DISJUNCTIVE ALTERNATIVES
OF THE FATHER OF THE CURRENT NODE. CALLED WHEN A CONTRACTICTIO

IN KEY HYPOTHESES ARISES.

N.B. THE _EXPAND ROTUINES MUST THEMSELVES CALL BACKTRACK TO
BACKTRACK HIGHER IN THE TREE IF THEY HAVE NO FURTHER ALTERNATI

218

PAUSE:
VE

POSSIBILITIES */

BACKTRACK: PROC(CURR) RECURSIVE;
DCL (CURR,DAD) PTR;
DAD=CURR->SUPER.FATHER;
IF DAD=NULL THEN DO,
PUT SKIP(2) FILE(SYSPRINT) EDIT('+++ ERROR +++',
'"HAVE BACKTRACKED PAST ROOT NODE OF TREE, AT ROOT BIT:')
(A,SKIP,A); '
CALL DUMP(CURR);
STOP;
END;

CALL DELETE((CURR)); /¥ 2 %/
/*¥Z00MX/ PUT SKIP FILE(SYSPRINT) LIST('BACKTRACK TO REEXPAND:');
CALL EXPAND(DAD)Y; ‘
END BACKTRACK;
1 _
/% CREATE: GIVEN NODE TYPE CHARACTER CODE, CREATE SUCH A NODE
(BOTH THE SUPER AND DATA COMPONENT) AND RETURN A POINTER TO IT

INPUT: NODE_TYPE = 1 CHAR CODE.
OUTPUT: P = PTR TO SUPER COMPONENT OF NEW NODE */

CREATE: PROC(NODE_TYPE) RETURNS(PTR];
DCL NODE_TYPE CHAR(1);
DCL (P,Q) PTR;

ON AREA BEGIN, /* IF NO SPACE LEFT FOR TREE */
PUT SKIP(2) FILE(SYSPRINT) LIST('*»** OVERFLOW IN TREE *¥*x',
' TOTAL # OF NODES ALLOCATED: ', NUMNODES),;
CALL TREEDUMP(TOP); :
STOP;
END;

ALLOC SUPER IN(TREE) SET(P};
NUMNODES=NUMNODES+1, /% INCR GLOBAL MAX NODE CTR */
P->SUPER.TYPE=NODE_TYPE, /% SET NODE TYPE */

/% ALLOCATE DATA NODE OF PROPER TYPE X%/
SELECT(NODE_TYPE); :
WHEN(C'R') ALLOC RNODE IN(TREE) SET(Q).
WHEN('F') ALLOC FNODE IN(TREE) SET(Q).
WHENC'X') ALLOC XNODE IN(CTREE) SETC(QJ,
END;

P->SUPER.NODE=Q.

219

PAUSE

*/

T(K}J.

i

1

RETURN(P];
END CREATE,

/* TO CREATE A

NODE OF TYPE R AND INITIALIZE THE FIELDS/

ENCRYPTION
RNODE

INPUTS: POS = POSITION [1,32] IN BLOCK
' LvL = LEVEL [0,3] IN
VAL = VALUE [0,1] OF
OUTPUT: P =

CREATE_RNODE:
DCL (POS,LVL) FIXED BIN(15);
DCL VAL BIT(1); ’

DCL P PTR;

P=CREATE('R'); /% CREATE THE
/% FILL IN THE FIELDS #*/
P->SUPER.P0OS=POS;
P->SUPER.LVL=LVL;
P->SUPER.NODE->RNODE . VAL=VAL;
RETURN(CP);

END CREATE_RNODE;

/* SETUP CAUSES DATA TO BE READ
TOP LEVEL OF THE SEARCH TREE

SETUP: PROC;

DCL K FIXED BIN(153;
DCL P PTR;
CALL READIN,; /% READIN 3 FILES
/% SET UP THE TOP LEVEL OF THE

ALLOC OPENNODE SET(OPEN),;
OPENPREV, OPENCURR=0PEN;

DO K=1 TO 64,
IF K <=

ELSE P=CREATE_RNODE(K-32 ,

/% TREEDUMP %/ TOP(K)=P;
P->SUPER.FAVHER=NULL;
CPENCURR->GPENNODE . NODE=P;

OPENPREV->0PENNODE . LINK=OPENCURR;

OPENPREV=0PENCURR;

220

32 THEN P=CREATE_RNODE(K ,

PTR TO SUPER OF THE NEW NODE x/

PROC(POS,LVL,VAL) RETURNS(PTR]);

NODE x/

IN FROM 3 FILES AND BUILDS THE
FROM RNODES BASED ON KNOWN CIPHER

X/
SEARCH TREE, ADD NODES TO OPEN ¥/
NUM_ENCRY_RNDS , CTEXT(K))
NUM_ENCRY_RNDS-1 , CTEX

/% SET TOP LEVEL PTR ¥/
/%¥ TOP LEVEL NODES ARE FATHERLESS */

/% CHAIN TO OPEN LIST x*x/

PAUSE:

P3J;

1

ALLOC OPENNODE SET(OPENCURR);
END;

FREE OPENCURR->OPENNGDE;
OPENPREV->0PENNODE . LINK=NULL;
OPENEND=OPENPREV,;

/% READIN: T0 READIN DATA FROM 3 FILES:
1) S.P. APPROXIMATIONS FOR S-BOXES FROM SPFILE.
2) SCHEDULE OF KEY INDICES BY LEVEL FROM KSFILE.
3) P-C PAIR FROM PCFILE.
ALL ARE PLACED IN GLOBAL VARIABLES */

READIN: PROC;
DCL (K,OUTPUTS,MAX) FIXED BIN{15);

OPEN FILE(SPFILE),FILE(KSFILE),FILE(PCFILE),FILE(SPCFILE),;
MAX=0,;
/% READIN S.P. TERMS FOR S-BOX FNS UNCOMPLEMENTED %/
DO OUTPUTS=1 TGO 32,
DO K=1 TO 23,
GET FILE(SPFILE) EDIT(SPTERMS({OQUTPUTS,K,*))(6 A(13},SKIPJ,;

IF SPTERMS(OUTPUTS,K,1) "= ' ' THEN MAX=K;
END;
IF MAX>MAXPTERMS THEN MAXPTERMS=MAX;

END,

/% READIN S.P. TERMS FOR S-BOX FNS UNCOMPLEMENTED */
DO OUTPUTS=1 TO 32;
DO K=1 T0O 23;
GET FILE(SPCFILE) EDIT(SPCTERMS(OUTPUTS,K,*))(6 A(1}),SKIP)

IF SPCTERMS(OUTPUTS,K,1) ~= ' ' THEN MAX=K;
END;
IF MAX>MAXPTERMS THEN MAXPTERMS=MAX;
END;

/¥ READIN KEY SCHEDULE %/
GET FILE(KSFILE) EDIT(KEYPERM)(48 F(3),SKIP);

/*¥ READIN (1ST) P-C PAIR */
GET FILE(PCFILE) EDIT(PTEXT,CTEXT)(64 B(1),SKIP),
PUT FILE(CSYSPRINT) EDIT('DES KEY SEARCH', (14)'*"')(2 (X(403,A,SKI

PUT SKIP(2) FILE(SYSPRIMNT) EDIT('PLAINTEXT: ', PTEXT,
'"CIPHERTEXT: ',CTEXT)(2 (A,64 B(1),SKIF));
PUT SKIP FILE(CSYSPRINT) LIST('NUMBER OF ENCRYPTION ROUNDS: ',
NUM_ENCRY_RNDS),

221

PAUSE:
CLOSE FILE(CKSFILE),FILE(SPFILE),FILECPCFILE),FILE(SPCFILE),

END READIN;

END SETUP;
1
/% ADD_TO_OPEN: TO ADD A NODE WHOSE SUPER IS POINTED TO BY P TO T
HE
END OF THE OPEN Q FOR EVENTUAL EXPANSION.
INPUT: P = POINTER TO THE NODE'S SUPER. */
ADD_TO_OPEN: PROC(P];
DCL (NEW,P) PTR;
ALLOC OPENNODE SET(NEW),
NEW->O0PENNODE . NODE=P;
NEW->OPENNODE . LINK=NULL
OPENEND->0PENNODE . LINK=NEW;
OPENEND=NEW;
/% A FIELD IN THE NODE -> TO THE Q NODE WHICH -> IT */
P->SUPER.OPENQ=NEW; ' :
END ADD_TO_OPEN;
1
/% DELETE: TO DELETE THE SUBTREE WHOSE ROCT IS POINTED AT BY CURR
1) SET THE FIELD IN THE FATHER OF CURR WHICH NOW POINTS TO CUR
R
TO BE NULL.
2) RECURSIVELY DELETE THE SUBTREE FROM CURR */
DELETE: PROC(CURRJ;
DCL (CURR,P) PTR:
DCL K FIXED BIN(15);
/% BASED ON THE TYPE OF CURR NODE, DECIDE WHAT TYPE ITS FATHER
COULD BE, AND NULL THE PROPER FIELD OF THE FATHER ACCORDINGLY
x/

IF CURR=NULL THEN RETURN;
/*¥Z00M*/ PUT SKIP FILE(SYSPRINT) LIST('***DELETE FOR NODE:.'};
/*¥Z00M*/ CALL DUMP(CURRIJ;
SELECT(CURR->SUPER.TYPE);

/* IF TYPE 'R', FATHER IS R OR X x/

. 222

PAUSE: |
WHEN('R') IF CURR->SUPER.FATHER->SUPER.TYPE='R'
THEN CURR->SUPER.FATHER->SUPER.NODE->RNODE.LPTR=NULL;
ELSE CURR->SUPER.FATHER->SUPER.NODE->XNODE.RPTR=NULL

/% IF TYPE 'F' FATHER IS TYPE 'R' ¥/
WHEN('F') CURR->SUPER.FATHER->SUPER.NODE->RNODE.RPTR=NULL;

/% IF TYPE 'X' FATHER IS TYPE 'F' %/
WHEN('X')
/¥ ONLY RESET TO NULL THE ONE PARTICULAR XPTR */

DO,
P=CURR->SUPER.FATHER->SUPER.NODE;
DO K=1 TO 6 WHILE(P->FNODE.XPTR(K) "= CURR), END;
P->FNODE.XPTR(K)=NULL;

END;

END; /% SELECT %/

CALL DELETE_SUB(CURR), /% RECURSIVELY DELETE SUBTREE */
1
/% DELETE_SUB: GIVEN POINTER TO A NODE, DESTROY IT AND ITS
SUBTREE OF DESCENDANTS. CALLED FROM DELETE AFTER THE
FATHER'S SON POINTER HAS BEEN NULLED
INPUT: CURR = POINTER:TO SUBTREE TO DESTROY x/

DELETE_SUB: PROC({CURR) RECURSIVE;
DCL (CURR,P,ACTUAL,PREV) PTR;
DCL 60 BIT(1);

DCL K FIXED BIN(15);

IF CURR=NULL THEN RETURN, . /% TRIVIAL CASE */

/¥ IF THE NODE TO BE DELETED IS ON THE OPEN QUEUE,
IT MUST BE REMOVED, TO AVOID TRYING TO EXPAND A
NODE WHICH NO LONGER EXISTS. */

/% IF IT WAS 1ST ON Q, WILL BE KILLED IN MAINLINE ANYHOW */
/% IF NODE IS ON THE OPEN Q, I.E. IF WE ARE DELETING AN
UNEXPANDED NODE */
IF CURR->SUPER.OPENQ ~= NULL THEN DO;
/*Z00M*/ K=0,
PREV=0PENCURR;
DO P=OPENCURR REPEAT P->OPENNODE.LINK

WHILE(P ~= CURR->SUPER.OPENQ);
PREV=P;
/*¥Z00M*/ K=K+1,;

END;

223

PREV->OPENNODE . LINK=P->0PENNODE . LINK;

FREE P->O0OPENNODE;
/% ZOOMX/ PUT SKIP FILE(SYSPRINT) LIST(
/%Z00M*/ *NODE REMOVED FROM OPEN, ',K,' ENTRIES EXAMINED');

END;
1,

PAUSE:

/% DELETE THE NODE AND ITS CHILDREN */

/

ACTUAL=CURR->SUPER.NODE; /% ACTUAL IS PTR TO DATA PART OF NODE
*/

SELECT(CURR->SUPER. TYPE);

WHEN(C'R"') DO,
CALL DELETE_SUB(ACTUAL->RNODE.RPTR);
CALL DELETE_SUB(ACTUAL->RNODE.LPTR);
FREE ACTUAL->RNODE IN(TREE);

END;

WHEN(C'F') DO,
DO K=1 TO 6;
CALL DELETE_SUB(ACTUAL->FNODE.XPTR(KJ}]J,

END;
FREE ACTUAL->FNODE IN(TREE);

END;

WHEN('X') DO,
/¥ REMOVE KEY BIT HYPOTHESIS */
KEY(KEYPERM{CURR->SUPER.LVL,CURR->SUPER.P0S])=" "',
CALL DELETE_SUB(ACTUAL->XNODE.RPTRJ,
FREE ACTUAL->XNODE IN(TREE);

END;
END; /* SELECT */

, FREE CURR->SUPER IN(TREE); /* FREE THE SUPER NODE */
! END DELETE_SUB;

END DELETE;
/* R_EXPAND: TO EXPAND AN RNODE WHOSE SUPER IS POINTER T0 BY CURR
HAVE HIT BOTTOM OF SEARC

i

IF THE LEVEL OF THE RNODE IS 0 OR -1,
TREE, AND MUST CONFIRM KEY HYPOTHSIS VS. KNOWN PLAINTEXT,

BACKTRACK ON CONTRADICTION.
IF RNODE HAS ALREADY BEEN EXPANDED 2 TIMES, NO DISJUNCTIVE

224

PAUSE:
ALTERNATIVES REMAIN, AND WE MUST BACKTRACK. X/

R_EXPAND: PROC(CURR]) RECURSIVE;
DCL (P,CURR,ACTUAL) PTR;
DCL BITPOS FIXED BIN(15),;

IF CURR->SUPER.LVL <= 0 THEN DO;
/% HAVE HIT BOTTOM OF TREE. CHECK KEY HYPOTHESIS x/
/% DECIDE WHAT PLAINTEXT BIT IS REPRESENTED.
(NOTE R3,R1,R-1 FOR LEFT BLOCK OF CIPHERTEXT x*/
BITPOS=CURR->SUPER.POS;
IF CURR->SUPER.LVL=0 THEN BITPOS=BITPOS+32;

/% CHECK WITH PTEXT, BACKTRAVK ON =><= %/
IF CURR->SUPER.NODE->RNODE.VAL ~= PTEXT(BITPOS) THEN
CALL BACKTRACK(CURR); ‘
RETURN;
END;

ACTUAL=CURR->SUPER.NODE, /* SET ACTUAL TO PT TO THE NODE */

/*¥ IF NO EXPANSION ALTERNATIVES REMAIN, BACKTRACK */
IF ACTUAL->RNODE.COUNT = 2 THEN CALL BACKTRACK({CURR);

ELSE DO; /* NODE HAS BEEN EXPANDED 0i1 TIMES */

/% CREATE NEW LEFT SUBTREE x/

IF ACTUAL->RNODE.COUNT=0 :
THEN P=CREATE_RNODE(CURR->SUPER.POS, CURR->SUPER.LVL-2,"'1'BY;
ELSE DO;

/% DELETE OLD RAMIFICATIONS X/

CALL DELETE((ACTUAL->RNODE.LPTR)];

CALL DELETE{(ACTUAL->RNODE.RPTRJ}J,

P=CREATE_RNODE(CURR->SUPER.P0OS, CURR->SUPER.LVL-2,'0'B);
END;

P->SUPER.FATHER=CURR; /% CHAIN LPTR INTO TREE */
ACTUAL->RNODE.LPTR=P;
CALL ADD_TO_OPEN{P);

/¥ ALLOC AN F NODE OF VAL AS RPTR FROM RNODE.

VALUE OF THE FNODE DEPENDS ON THE RNODE COUNT FIELD */
P=CREATE('F');
IF ACTUAL->RNODE.VAL = ACTUAL->RNODE.COUNT

THEN P->SUPER.NODE->FNODE.VAL='1"'B,

ELSE P->SUPER.NODE->FNODE.VAL='0"'B,

/% INIT FIELDS OF THE F NODE */

225

PAUSE:
P->SUPER.POS=P_PERM_INV(CURR->SUPER.PO0OS);
P->SUPER.LVL=CURR->SUPER.LVL;
P->SUPER.FATHER=CURR;

/¥ CHAIN THE RIGHT SUBTREE TO THE NEW RNODE X/
ACTUAL->RNODE.RPTR=P;

CALL ADD_TO_OPEN(PJ,

ACTUAL->RNODE.COUNT=ACTUAL->RNODE.COUNT+1;
END;

END R_EXPAND;

1 .

/% F_EXPAND: TO EXPAND AN FNODE. THIS MAY BE TRIED AS MANY TIMES
AS THERE ARE CONJUNCT TERMS IN THE SP APPROX FOR THE $-BOX
FUNCTION CORRESPONDING TO THE POSITION OF THE FNODE */

F_EXPAND:. PROC(CURR);
DCL (ACTUAL,CURR,P) PTR;
DCL (TERM,K,BITPOS) FIXED BIN(153;

ACTUAL=CURR~->SUPER.NODE;)

/% LOOK AT NEXT DISJUNCTIVE POSSIBILITY FOR THE NODE */
TERM, ACTUAL->FNODE. TERMNUM=ACTUAL->FNODE. TERMNUM+1,;

. /% ESTABLISH WHICH OF THE 32 S-BANK OUTPUTS IS BEING CONSIDERED
X/
"BITPOS=P_PERM_INV{CURR->SUPER.POS);

/% IF THE VALUE OF THE FNODE IS 1, WE USE THE S.P.
REPRESENTATIONS FOR THE UNCOMPLEMENTED S-BOXES */

IF ACTUAL->FNODE.VAL='1'B THEN DO;

/%¥ CHECK FOR NO DISJUNCTIVE POSSIBILITIES LEFT %/

IF TERM>23 | SPTERMS(BITPOS,TERM,1)="' ' THEN CALL BACKTRACK(C
URR); b

ELSE DO K=1 TO 6,

/% DO NOT CHANGE THE XNODE SUBTREE 1IF:
1) SPTERM AT POSITION K IS A D.C. OR

2) SPTERM AT POSITION K IS THE SAME AS IT WAS IN LAST T
ERM */ :

IF SPTERMS(BITPOS, TERM,K)~="'X" &
(TERM=1 | SPTERMS(BITPOS, TERM,K)"=SPTERMS(BITPOS, MAX(1, TERM-1
J,K))
THEN DO;

226

PAUSE:
IF ACTUAL->FNODE.XPTR(K)~=NULL THEN /*KILL XNODE SUB
TREE*/
CALL DELETE((CACTUAL->FNODE.XPTR(KJ})}J;
P=CREATE({'X');
ACTUAL->FNODE . XPTR(K)}=P;
P->SUPER.FATHER=CURR;
P->SUPER.POS=K+ B6XTRUNC((BITPOS-1)/4);
P->SUPER.LVL=CURR->SUPER.LVL;
IF SPTERMS(BITPOS, TERM,K)="1"
THEN P->SUPER.NODE->XNODE.VAL='1"'8B;
ELSE P->SUPER.NODE->XNODE.VAL='0'B;
CALL ADD_TO_OPEN(P);
END;

ELSE IF SPTERMS(BITPOS, TERM,K)}='X"' &
ACTUAL->FNODE . XPTR(KJ)™=NULL
THEN CALL DELETE((ACTUAL->FNODE.XPTR(KJ})JJ,

END;
END;
1
/* ELSE THE FNODE HAS VALUE 0, AND WE USE THE S.P.
REPRESENTATIONS FOR THE COMPLEMENTED S-BOXES */

ELSE DG,

/% CHECK FOR NO DISJUNCTIVE POSSIBILITIES LEFT */

IF TERM»>23 | SPCTERMS{BITPOS,TERM,1J=' ' THEN CALL BACKTRACK(
CURR). :

ELSE DO K=1 TO 6;

/% DO NOT CHANGE THE XNODE SUBTREE IF:
1) SPCTERM AT POSITION K IS A D.C. OR
2) SPCTERM AT POSITION K IS THE SAME AS IT WAS IN LAST T
ERM *x/
IF SPCTERMS(BITPOS, TERM,K)™="'X"' &
(TERM=1 | SPCTERMS(BITPOS, TERM,K)~=SPCTERMS(BITPOS,MAX(1l, TERM-
1),KJ)
THEN DO;

IF ACTUAL->FNODE.XPTR{K)™=NULL THEN /*KILL XNODE SUB
TREE*/
CALL DELETE{(ACTUAL->FNODE.XPTR(KJ}J),
P=CREATE('X"');
ACTUAL->FNODE . XPTR(K)=P;
P->SUPER.FATHER=CURR;
P->SUPER.POS=K+ G6*TRUNC((BITPOS-1)/4);

227

PAUSE:
P->SUPER.LVL=CURR->SUPER.LVL;
IF SPCTERMS(BITPOS, TERM,K)="'1"
THEN P->SUPER.NODE->XNODE.VAL="1"'8B;
ELSE P->SUPER.NODE->XNODE.VAL='0'8B;
CALL ADD_TO_OPEN{PJ];
END;

ELSE IF SPCTERMS(BITPOS, TERM,K)="'X"' &
ACTUAL->FNODE . XPTR(KJ)™=NULL
THEN CALL DELETE({(ACTUAL->FNODE.XPTR(K))J),

END; : ‘
END;

END F_EXPAND;

1

/% X_EXPAND: TO EXPAND AN X NODE. 2 CHOICES FROM XOR ANALOGOUS TO
RNODE EXPANSION, WITH THE EXCEPTION THAT ONLY ONE SUBTREE
GROWS FROM AN XNODE, THE OTHER IS IN THE FORM OF A KEY BIT
HYPOTHESIS X/

X_EXPAND: PROC(CURR) RECURSIVE,
DCL (CURR,ACTUAL,P) PTR;

DCL BITPOS FIXED BIN(15);

DCL HYPSET CHAR(13);

ACTUAL=CURR->SUPER.NODE;
/¥ CHECK FOR NO MORE DISJUNCTIVE POSSIBILITIES */
IF ACTUAL->XNODE.COUNT=2 THEN CALL BACKTRACK(CURR3J,;

ELSE DO; : -
/% IF ONE EXISTS, DELETE OLD SUBTREE X%/
IF ACTUAL->XNODE.COUNT=1 THEN CALL DELETE(C(ACTUAL->XNODE.RPT
R}

IF ACTUAL->XNODE.VAL = ACTUAL->XNODE.COUNT

THEN P=CREATE_RNODE(E_PERM_INV(CURR->SUPER.POS) ,
CURR->SUPER.LVL-1,'0'B);

ELSE P=CREATE_RNODE(E_PERM_INV(CURR->SUPER.POS) ,
CURR->SUPER.LVL-1,"'1'B);

P->SUPER.FATHER=CURR;, /% CHAIN NEW NODE INTO TREE */
ACTUAL->XNODE.RPTR=P;

/*¥ MAKE THE KEY HYPOTHESIS */
/% DETERMINE POSITION OF AFFECTED KEY BIT */

BITPOS=KEYPERM(CURR->SUPER.LVL, CURR->SUPER.POS);
/* DETERMINE WHAT KEY BIT SHOULD BE, BASED ON COUNT x*x/

- 228

PAUSE:

*/

IF ACTUAL->XNODE.COUNT=0 THEN HYPSET='0"';
ELSE HYPSET='1"',;
ACTUAL->XNODE . COUNT=ACTUAL->XNODE.COUNT + 1;

/¥ BACKTRACK IF THIS REPRESENTS A KEY BIT CONTRADICTION */
IF KEY(BITPOS)~=' ' & KEY(BITPOS)™=HYPSET
THEN CALL X_EXPAND(CURR]}, /* RETRY EXPANSION, COUNT INCR

ELSE DO;

KEY(BITPOS)=HYPSET, /% SET KEY BIT %/

CALL ADD_TO_OPEN(P); /* ADD NODE TO OPEN Q */
END;

END;

END X_EXPAND;

END

//6G0.
//6G0.
//60.
//60.

SEARCH;

SPFILE DD DSN=GULLICH.DES.SPTERMS,DISP=SHR
SPCFILE DD DSN=GULLICH.DES.SPTERMSC,DISP=SHR
KSFILE DD DSN=GULLICH.DES.KEYSCHED,DISP=SHR
PCFILE DD DSN=GULLICH.DES.PCPAIRS,DISP=SHR

229

APPENDIX @
APL ROUTINES FOR DES ENCRYPTION

230

L e e B e N e N e e Bame Nan Won Woo Bt W am
~)
—J

[1]
(2]
[3]
(4]
(5]
[6]

[1]
(2]
3]
(4]
[5]
(6]
(71
[8]
L9l
[o]

CT+«KEY DESAENCRYPT PT;LVL; ROUNDS; Ly Ry RNEW ; LNEW
NOTE: NO IP OR IPINV PERMUTATIONS APPLIED,
KEY, PT AND CT ARFE ALL 64 BIT BINARY VECTORS

P D®Q

>

ROUNDS+2
LVL«1

L+324PT

R+~ 324PT

LOOP: LNEW+R :

RNEW«LZR F KEY[KEYSCHEDLLVL;]]
L«LNEW

R<ENEW ,
+((LVL«LVL+1)Y<ROUNDS)/LOOP
CT«R,L

v

V Z«R F K3;X:CT

Z+10

X<«KzR[F]

CT+1

SLOOP:Z+Z,(4p2)TSBOX[FCT%6;1+21X[CT+ 0 5]1;1+21X[CT+14]]
+((CT«CT+6)<49)/SLOOP

Z+<Z2[P]

v

V Z+«GENAKEYSCHED;KIDX; ROUND
A TO GEN 16x48 MTX OF INDICES FOR KEY BIT SELECTION
Z« 0 48 poO '
KIDX<164

KIDX+KIDX[PC1]

ROUND+1

LOOP: a LEFT SHIFTS
KIDX[1283+NUMLSLROUNDIGKIDX[128]
KIDX[28+128]+NUMLS[R0UND]¢KIDX[28+128]

Z«2,01] KIDX(PC2]

+((ROUND+~ROUND+1)<16)/LO0OP

V .

231

V GENAPCPAIRS;K;KEYS;KEY3PT;CT3T
1] PCPAIRS+KEYS+ 0 64 p' !
2] K+1
3] LOOP:KEY+ 1+?64p?2
4] PP+« 1+264p?2
5] CT«KEY DESAENCRYPT PT
6] A
71 A SAVE INTO GLOBAL SCHEDULES
8] PCPAIRS+PCPAIRS,[11(' '2T)/T«wpT
9] "PLAINTEXT!
[10] PPRINT PT
[11] PCPATRS«PCPAIRS,[11(' '27)/T«wCT
[12] *INTO CIPHERTEXT!
[13] PPRINT CT _
[14] KEYS«KEYS,[11(' '27)/TPevKEY
[15] 'BY KEY:'
[161] PPRINT KFY /

et I e M s M e I s B e M e T o |

[17] re

(18] +((K«K+1)<S5)/LoOP

[19] re

[20] 'KEYS:!

[21] '

[22] (5 3 p 30 ¥%15),' " KEYS
v

V PPRINT BIN;T

(1] A IO PEETTY-PRINT A BINARY VECTOR IN BIN AND HEX

[2] (C* '"27)/T«¥BIN)," 's'0123456789ABCDEF'[1+16T218 16 4 pBIN)
v

END OF AFPPENDIX

232

file:///KEYS

APPENDIX = H

PROLOG SYSTEM FOR THE SYMBOLIC SIMPLIFICATION OF
BOOLEAN EXPRESSIONS

233

/% PROLOG axioms and implications ¥/
/¥ to simplify arbitrary boolean expression with ANDs (&),
ORs (\), and NOTs (™) into 2 level sum-of-products %/

/% top level simplification driver.
pattern match with an s simplification pattern,repeatedly */

/¥ operator declarations ¥/

?7-0p(8,fx,"). /% logical negation */
?7-0p(9,xfx,&). /% conjunction */
?7-0p(10,xfx,\). /% disjunction ¥/
simplify(Exp) - simp(Exp,SExp) .,

printstring("SExp: "J),nl,write(SExp),nl,display(SExpl,nl,nl,
((Exp=SExp , write(Expl) .
(', simplify(SExpl)).

simp(Exp,SExp) - s(Exp,SExp)

simp(Larg\Rarg, Res) .- simp(Larg,SLarg) , simp(Rarg, SRarg) , ! .,
((Larg\Rarg = SLarg\SRarg , ! , bind(Res,Larg\Rargl) J}
(!, simp(SLarg\SRarg,Res})J.

simp(Larg&Rarg, Res) .- simp(Larg,SbLarg) , simp(Rarg,SRarg} , ! ,
((Larg&Rarg = SLarg&SRarg , ! , bind(Res,Larg&8Rarg)).,
(', simp(SLarg&SRarg,Res]) 1}J].

/% bottom out on trivial cases %/
/¥ literal atoms can be simplified no further %/

s{X,X) - atomic(X) , ! .
s(“X,"X) - atomic(X) , !

/¥ neither can top-level & or \ composed only of literals */
/*¥ order the literals by quicksort to detect and transform:

a8a->a a8~ a->0 ala->a a\Ta->1 L4
s(X,Y) - mklist(X,0p,List) ,
alliteral(List) , ' , /% X must be a one-level exprn */

sortll(List,Slist,[]) .
scan(0Op,S1ist,Redlist) , /% form reduced list, Redlist */
mklistl(Y,Op,Redlist]. /% back to expression form */

/¥ is a list all literals? */

alliteral([X!1Y]) := Vv , literal(X) , ! , alliteral(Y).
alliteral(X) :- literal(X).

literal(X) .- atomic(X]} , !

literal{(™X) - atomic(X)

/*% to sort a list of literals */

234

sort11([HIT],S,X) - split(H,T,A,B) , ! ,
sortll(A,S,[HIY]),
sortll(B,Y,X).

sortll([].,X,X).

split(H, [AIX],[AIY],Z) :- order(A,H) , split(H,X,Y,2Z).
split(H, [AIX],Y,[AIZ]) - order(H,A) , split(H,X,Y,Z).
split(_,[3,03.01).

/*¥ order predicate determines if 2 literals are in correct order %/
/¥ as name fails for integers 0 and 1 */

order(X,1) :- 1.

order(X,0) :-

|
order(0,X) - ' , fail.
order(1,X) - ! , fail.
order(“X,~Y) = ! , aless(X,Y).
order{™X,Y) = ! , aless(X,Y].
order(X,~Y) = 1 , aless(X,Y).
order(X,Y) .- aless(X,Y).

/¥ alphabetic less-than predicate for atoms */
aless(X,Y) - name(X,L) , name(Y,M) , alessx(L,M).
alessx([3.,[_1_1).

alessx([].[1).

alessx([HIX],[HIY]}) - ' , alessx(X,Y).
alessx{[XI_),I[YI_31) :- X=<Y.

/¥ scan. to look at sorted top level atoms 2-at-a-time,
and perform appropriate reductions %/

scan(&, ("A).A._,[0]) = V.
scan(\, (TA).A._,[1]) - V.
scan(&,A.0._,[0])) .- 1.
scan(\N,A. 1. _,[1]) - .

scan{Op,A.A.X,Y) - ! , scan(0Op,A.X,Y).
scan(Op,A.X,A. Y} - ! , scan(Op,X,Y).
scan(_,A,A) .- atomic(A).

/¥ involution %/

#
s(T(T"X),Y) - b, simp(X,Y).
/% demorgan */
s{ “(X\Y) , 2] D= I, simp(T™X&(TY) , Z).
s(“(X&Y) ,Z) - b, simp(TXN(TY)Y) L, 2.

/¥ driver routine to match combinations of top level \ or &
2 terms at a time against patterns in s2 implications */

s(X,Y) - mklist(X,Op,List), /% break formula X into a list */

235

comb2(List,T1,T2,Remlist), /% select 2 terms from list
Poss =.. [Op,T1,72) , s2(Poss,Simp),

!, append([Simp],Remlist,Simplist),
mklistl(Y,Op,Simplist).

/¥ to break an expression with \ or & into a list */

'mklist(~A,X,X) .- ! , fail.

mklist(Exp,Op,List) -
/*¥ make top 1lvl into a list %/
mklistl(Exp,Op,Toplist),
mklistsub(Toplist,list,Op).

mklistsub([X],[X],0p) - atomic(X) , !
mklistsub([X]1,[X],0p) = ' , mklistl(X,0p2,_) , Op\=0p2.
mklistsub([XIY]),Res,Op) :~ mklist(X,0p,L1) , | ,

mklistsub(Y,L2,0p) , ! ,
append(L1,L2,Res).

/¥ terminator if X cannot be further done:. %/
mklistsub([XIY],[XIL2],0p) -~ ! , mklistsub(Y,L2,0p).

/¥ top level list breaker *x/
mklist1(A&B,&,A.R) :~ mklist1(B,&,RJ.
mklistl1(A\NB,\,A. R} - mklistl1(B,\,RJ.
mklistl(X,&,[X]).

mklistl(X,\,[X]).

/¥ force pattern match %/
bind(X,X). ‘

/*¥ to select all transpositions of combinations
of objects from a list %/

comb2(List,E1,E2,Rest) - member(El,List,Posl),
member(E2,List,Pos2),
Posl \= Pos2,
remelt(El,List, Temp),
remelt(E2, Temp, Rest).

/¥ to remove element from a list */

remelt(X,{1,[1) - . '
remelt(X,[XIY],R) :- ' , rumelt(X,Y,R) .
remelt(X, [AIY], [AIR])Y = ' , remelt(X,Y,R)

/% list membership predicate, including position */

member (X, [XI_],1).
member (X, [_1YJ,P1l) - member(X,Y,P) , Pl is P+1.

236

*/

/¥ list append function ¥/

append([].L.,L).
append([XIL1],L2,[XIL3]) .- append(L1l,L2,L3).

/¥ 2-at-a-time pattern match implications ¥/

s2(X\O , Y} - b, simp(X,Y).
s2(X\1 , 1)} - ', :
s2(X&1 ,Y) - I, simp(X,Y].

s2(X&0 , 03 - 1.

/¥ idempotent */

s2(X\X , Y) L= b, simp(X,Y).
s2(X&X , Y) L - I, simp(X,Y)].
/% comhlementarity */

s2(X&(™X) , 0) S

s2(XN(TX) L, 1) R

/¥ distributivity 1 */

s2([A\B)S[A\C] Y} -

; !, simp(AN(B&C]) , Y).
s2((BNAJ&(ANC) , Y) -~ ', simp(AN(B&C) , Y).
s2((ANBJ&(CNA) , Y) - b, simp(AN{B&C) , Y).
s2((B\NAJ&(CNAY , Y) - ', simp(AN(B&C} , YJ.

/% absorption ¥/

s2(ABB\A&(~B) , Y) - |, simp(A,Y).
s2(BR&ANAR(~B) , Y) - I, simp(A,Y).
s2(ASBN\(“B)&A , Y] - I, simp(A,Y).
s2(B&AN(™B)&A , Y) - L, simp(A,Y).
s2(ANA&B , Y) - ' , simp(A,Y).

s2(A\B&A , Y} - 1 , simp(A,Y).

s2(ARCANB) , Y) - 1, simp(A,Y).
s2(AR(B\A) , Y) - ! , simp(A,Y).
s2(AS(~BJI\B , Y) - | , simp(A\B,Y).
s2((“B)&A\B , Y) - I , simp(A\B,Y).

/% consensus (only 1- that with 2 terms on lhs ¥/

237

s2((X\YJ&(™XN\Z) , A) » simp(X&ZN(TXJ&Y , AJ.
s2(- (YNXJ&(™XNZ)Y , AY ¢ , simp(X&ZN\("X)&Y , A)J.

s2((X\YJ&(ZN{™X)) , A) - b, simp(X8ZN(™X)&Y , A).
s2((YNX)&(ZIN(™X)) , A) .- ', simp(X&ZN(TX)&Y , A).

/% distributivity 2- last as it makes more terms X/
s2(X&(YNZ) , A)Y - | , simp(X&Y\X&Z ,A).
/¥zoom a&b8&c \ alb&x&c -> albl&c kludge */

s2(A\B,S) ' -
mklist(A,&,Al) , alliteral(Al) , ! ,
mklist(B,&,B1) , alliteral(B1l) , !
((subset(Al,B1) , ! , simp(A,S)),
(subset(B1,Al) , ' , simp(B,S)])

’

subset([],Y) .- 1.
subset([AIX]1,Y) - mem(A,Y) , subset(X,Y].

mem(X, [XI_3}) - .
mem(X,[_1Y]) - mem(X,Y).

/¥ utilities %/
printstring([]).

printstring([HIT]) :- put(H) , printstring(T).
testl (- simplify(~((~(a\b)IN(~(c\dIIN("(e\FIII).
test2 :- simplify(~(~a&(~b) \ (~c&(~d)) J)).
test3 - simplify((a&("b)&c&("d)&e \

(T"a)&("bl&(~el)&f \
(T"a)&("b)8&c&(™d) 3 &
(a&(™d)
("a)&("bl)&c&(~d) \
(T"a)&b&(~cl&d&(™f) J).

/¥ editor utility ¥/
ed - shell("ed min"),[Smin].

238

TEST OF SYMBOLIC BOOLEAN SIMPLIFIER
3K KK o K 3K K OK Kk 3K K KK K K KK K KR K K K KK K K K K K

$ prolog
PROLOG Version NU7.1

?7- [min].
min consulted.

yes
?7- listing(testl).

| testl .
- simplify(T(T{a\bIN"{c\dI\"{e\f])).

yes
?7- testl.

SExp .

alcle\b&cleNa&d8e\b&d&e\alc&f\b&c&f\a&d&f\b&d&T
NCN(N(&(a,8(c,e)),&(b,&(c,e))),\(8(a,&(d,e)),&(b,&(d,e))]),
N(\(&(a,&(c,f)),8&8(b,&(c,f))),\(&(a,&(d, f)),&(b,&(d,f)))])

SExp:

a&c8&e\b&c8&8eNakd&8e\b&dR&e\Na&c&f\b&c&f\a&d&f\b&d&f
NINCON(&(a,8&(c,e)).&(b,&(c.el)),\N(8(a,8(d,e)),&(b,8&8(d,e)])).
N(\(8&(a,&(c,f)),8(b,&(c,fII),\(&(a,&(d,f)]),&(b,8&8(d,fJ))])
a8c8&e\b&c&eNald8e\b&d&8eNa&c&f\b&c&f\ald&f\b&d&f

yes .

?7- listing(test2).

test?2
‘- simplify(~(~a& b\~c&"d)].

yes
?7- test?2.

SExp:
a&c\b&c\Na&d\b&d
N(\N(&(a,c),8&(b,c)).\(&(a,d),&(b.,d}))

SExp.
a&c\b&c\a&d\b&d
\N(\(&(a,c),&(b,c)),\(8&8(a,d),&(b,d}))

a8c\b&c\a&d\b&d

yes
7

239

APPENDIX I

APL CODE FOR AND/OR TREE FORMATION AND TRAVERSAL

240

L Ko N N Won W Wan Wen Wo
w
—

[12]
[13]
[14]
[15]

[]

V Z«X AND Y;XMAX;YMAX;XC3;YCy;NEW; ONEXWITHY
+(02(pX)[2])/NOTNULLX

Z«Y

+0

NOTNULLX : XMAX<(pX)[2]

YMAX<(pY)[2])

Z+(2,0, 14pX)poO

XC+1

XLOOP:ONEXWITHY+(2,0, 14pX)p0

YC+1
YLOOP:+(V/A#NEW«X[; ,XC3IvY[;,YC;])/NEXTY
ONEXWITHY«ONEXWITHY OR NEW
NEXTY:+((YC+«YC+1)<SYMAX)/YLOOP
+~(0=(pONEXWITHY)[21)/NEXTX

Z+«7Z OR ONEXWITHY
NEXTX:+((XC+XC+1)<SXMAX)/XLOOP

v

V Z«X AND1 Y

Z+«TOAM1XO0(TOABIT X) AND TOABIT Y
v .

241

‘.
(o N W W B Baes N Ko B

V TYPE BUILDSUB ATALVL;AT;LVL;VAL;SP;NUMSP; TERMNUM ;T3 K:LOC

 TERM; POSN

1] AT«ATALVL[1)]
2] LVL«ATALVL[2]
3] A CHOOSE TYPE OF NODE TO EXPAND
4] +((14TYPE)='T"' ,*P' ,'X" ,'R'")/TOP ,PTERM ,XTERM ,RTERM
5] A :
6] A INITIALIZE GLOBAL TREE IN PARALLEL VECS
7] TOP:TREEATYPE+ 10000 2 pO
8] TREEAPTR<«10000p0
9] TREEANKIDS+10000p0

[10] FREE<+2

[111] VAL+«CTEXT[POS+32xNEOUNDS=212PTEXTL[POS+32xNROUNDS=2]

[12] RPOS«P0OS

[13] +REXPAND

[14] A

(15] e e

[16] PTERM: TREEATYPE[AT; J«AAND

[17] TREEAPTRLAT])<«FREE

(18] TREEARKIDS[AT)«+ /TERMz' X"

[13] POSN«FREE

[20] FREE«FREE++ /TERMZ' X!

[21] a LOOP FOR ALL LITERALS IN TERM

[22] K+<0

(23] LOCTERM«TERM

[24] LITLOOP:+(LOCTERM[K+1]1=*X")/NEXTLIT

[25] A SET PARMS FOR XTERM TO BE EXPANDED

[26] RPOS+E[SEPOXINP+K]

[27] KNUM«~KEYSCHED[LVL; SBOXINP+K]

(28] XVAL«~LOCTERM[K+1]="'1"

[29] *XTERM' BUILDSUB(POSN+K) ,LVL

(301 NEXTLIT:+((K<«K+1)<6)/LITLOOP

[31] +0

[32] A

[33] el dde e Ll L e e

[34] XTERM:+(LVL=1)/BOTTOMOUT

[35] TREEATYPE[AT;)}<«AOR

[36] TREEAPTRLAT])<«FREE

[37] TREEANKIDS[AT]+2

[38] R LEFT SUBTREE OF XOR

[39] TREEATYPE[FREE ; J«AAND

[40] TREEAPTR[FREE]«FREE+?2

(41] ~ TREFANKIDS[LFREE]+2

[42] A RIGHT SUBTREEE OF YOR

[u43] TREEATYPE[FREE+1 ;])<«AAND

(441 TREEAPTRLFREE+1]«FREE+4

[u45] TREEANKIDS[FREE+1]+2

[46] FREE<«FREE+6

[47] POSN+FREE

242

[us]
[49]
[501]
[51]
[52]
[53]
[54]
[55]
[56]
[57]
[58]
[59]
[60]
[61]
[62]
[63]
[6u4]
[65]
[66]
[671]
[68]
[69]
[70]
[71]
[72]
(73]
[74]
[75]
[76]
(773
[78]
[79]
[80]
[81]
[82]
[83]
[8u]
[85]
[86]
871
[88]

A EXPAND RTERMS
RVAL«1 .

'RTERM' BUILDSUB(POSN-4) ,LVL-1
RVAL+«0

'RTERM' BUILDSUB(POSN-2),LVL-1

A SETUP KEY HYP FROM LEFT SUBTREE
TREEATYPE[POSN-3;]«AKEY
TREEAPTRLPOSN-3]«1+(pKEY)[2]
KEY+«KEY ,[2] 2 64 poO

KEY[; (pKEY)[2];KNUMI«~XVAL ,~XVAL

R SETUP KEY HYP FROM RIGHT SUBTREE
TREEATYPE[POSN-1;)«AKEY
TREEAPTRLPOSKR-1]«1+(pKEY)[2]
KEY«KEY ,[2] 2 64 poO

KEYL s (pKFEY)[2] ;KNUM]«XVAL ,~XVAL

+0

BOTTOMOUT: TREEATYPE[AT ; J«AKEY
TREEAPTR{ATI«1+(pKEY)[2]
KEY<KEY,[2] 2 64 poO

KEY[s (pKEY)[213 KNUMI+T ,~T+«PTEXTL[RPOS+32]12XVAL
-0 :

A RPOS ESTAB IN PTERM OR TOP
RTERM:VAL+«RVAL#PTEXT{RPOS]

REXPAND:+(~VAL) /COMPL

SP«SPTERMS[IPLRPOS]I+u;1+4|P[RPOS]-1;3]
+JOIN

COMPL: SP«SPCTERMS[[PLRPOS]IsuU ;144 |P(RPOS]-1:;]
JOINs NUMSP«+ /' '25pP[1]
TREEATYPE[AT ; 1«AOF

TREEAPTR[AT)<«FREE
TREEANKIDS[AT]<«NUMSP

POSN«FREE :

FREF«FREE+NUMSP

SBOXINP«1+6x| (P[RPOS]-1)s4

TERMNUM<0

TERMLOOP: TERM«SPLTERMNUM+1 3]

'PTERM' BUILDSUB(POSN+TERMNUM),LVL
+((TERMNUM<TERMNUM+1)<NUMSP) /TERMLOOP
+0

v

243

file:///PlRP0Sl-l

V KEY+DECRYPT PCPAIR;POS;TOP;MASK;NROUNDS; PTEXT;CTEXT
1] PTEXT<«PCPAIR[1;]
23] CTEXT«PCPAIR[2:]
3] A LEFTMOST 32 BITS HAVE BEEN ENCRYPTED IN 2 ROUNDS
4] NROUNDS+?2
KEY+< 2 0 64 poO
6] A BUILD AND TRAVERSE AND/OR TREE FOFR EACH BIT OF CTEXT
71 POS+1
8] LOOP:'TOP' BUILDSUB 1 ,NROUNDS
9] MASK<TRAVERSE 1
f10] KEY<«KEY AND MASK
[11] POS«POS+1 .
[12] NROUNDS«NROUNDS~P0S=33
[13] POS«P0S-32xP0S=33
[14] +(POS<64)/LOOP

[N Kan N N o Wop Wen Ko
w
(]

v
vV DUMP ‘
[1] e DUMP ALL TREE PARALLEL VECTORS
(2] K«1

(3] LOOP:TREE X
[4] +((K<K+1)<pTEEEAPTR) /LOOP
v

V X<«GEN
] Xe'01X'[2((1+23),4)p3]
\Y

V Z+«MIN1 INTERSECT MIN?
[1] A SET INTERSECTION OF 2 VECTORS OF MINTERM NUKBERS
[2] Z«(V/MIN1e ,=MIN2)/MIN1

v

244

V Z<X OR Y3 XMAX ; YMAX ; XTAKE ; YTAKE ;XC 3 YC ; XCUBE; YCUBE ;C;CY 3CX
s CXEQX i CYEQY '

1] +(0=2(pX)[2])/NOTNULLX
2] VAS
3] +0

4] NOTRULLX:+(3=ppX)/O0KX

5] X«((1tpX),1, 14pX)pX

6] OKX:+(3=ppY)/O0KY

7] Y«((14pY),1, 14pY)pY

8 OKY: XMAX+(pX)[2]

9] YMAX<(pY)[2]

[10] XTAKE+«XMAXp1

[11] YTAKE«YMAXp1

[12] A

{13] XC+«1

[14] XLOOP:XCUBE+X[;XC;]

(151 YC+«1

[16] YLOOP:+(~YTAKE[YC])/NEXTY
[17] YCUBE«Y[;YC;]

[18] C<«XCUBEVYCUEBE

[19] R CEECK IF C SAME AS EITHER ORIGINAL CUBE
[20] +(~A/A/C=XCUBE) /CEECKY

[21] XTAKE[LXC]<«0

[22] +NEXTX

[23] CHECKY:+(~A/AN/C=YCUBE)/CONSENS
[24] YTAKELYC]<0

[25] +NEXTY

[26] A CHECK IF C IS5 A CONSENSUS TERM:
[271] CONSENS:+(12+ /T«AfC) /NEXTY
[28] cl1;]«cl1;]-7

[29] cl2;]«Cl2;:]-7

[30] CX+CVXCURE

[31] CY+«CVYCUBE

[32] CXEQX«A/AN/CX=XCUBE

[33] CYEQY+«A/A/CY=YCUBE

[34] +(~CXEQXACYEQY) /A1

£35] XTAKELXC1+«0

[36] Y[;YC;:1«C

[37] +NEXTX

[38] Al:+(~(~CXEQX)YACYEQY) /A2

[39] Y(;YC;1<C

[40] = -+NEXTY

[41] A2:+(~CXEQXA~CYEQY)/NEXTY
[u2] X[;xC;1«c :

[43] A XCUBE<«X[;XC:]«C +XLOOP ?
[un] NEXTY:+((YC+YC+1)SYMAX)/YLOOP
[45] NEXTX :+((XC«XC+1)<XMAX)/XLOOP
[u46] 2«(XTAKE/[2] Xx),[2] YTAKE/[2]1 ¥
v

PP e

245

3] Z«TOA1XO0(TOABIT X) ORVERB TOABIT Y
v
v PP
[1] 0 PP1 1
v
Vv INDENT PP1 AT:K
[1] +(TREEATYPE[AT;1A.= 2 4 p 1 01 0 0 1 1 0)/AND,OR ,KEY ,NULL
[2] AND: (INDENTp' ') ,'AND'
[31 >JOIN
[4] OR:(INDENTp' '),'OR!'
[s JOIN: m D1ST RECURSE
[6] K+0
[71 LOOP: (INDENT+3) PP1 TREEAPTER[AT]+X
[8] +>((K«K+1)<TREEANKIDSLAT])/LOOP
[9] +0
[10] KEY:(INDENTp' '),T,' KEY BIT ',v('X'z7«,TOA1X0 KEY[s TREEMNPT
RLATI: I 1
[11] +>0
[121] NULL:(INDENTp' '),' &
v
V TESTAND;X;Y;R
[13] O«X<«GEN
[2] . Tty
[3] O«Y+GEN
[4] LN]
{51 R«X AND1 Y
[6] Tt e
[71] "RESULT OF AND:!
[8] R -
[S8) e TEST THAT RESULT IS INTERSECTION OF THE 2 COVEES
(o] (A/(ONFOR R)=(ONFOR X) INTERSECT ONFOR Y)/'%x%x SUCCESS %!

V Z«X OR1 Y

\%

246

- [1]

[2]
[3]
Lu]
[5]
[6]

- [7]
[s81]

(9]
Lo}

[]

vV TESTOR;X;Y:;R
D«X<«GEN

O«Y+«GEN

R+X OR1 Y

LB]

"RESULT OF OR:'

R

A TEST THAT RESULT IS UNION OF THE 2 COVERS
(A/(ONFOR R)=(ONFOE X) UNICN ONFOR Y)/'x%% SUCCESS *x#"
v .

V Z«TOABIT X
Z«(X='1'),[0.5] X='0"
v

V. Z«T0A1X0 X

+(3=ppX) /0K

R HAVE BEEN GIVEN JUST 1 CUBFE
X«((14pX),1, 14pX)pX
OK:X[2;:3«x[2;31vx[1;;]
Z+'X01'[1++4X]

v .

247

.V RES«TRAVERSE ROOT;NUMKIDS;K
1] A TO TRAVERSE AND/OR TREE AND RETURN KEY CONSTRAINT
2] TYPE«TREEATYPE[LROOT;)

3] +(A/TYPE=0AND)/AND
4] +(A/TYPE= AOR)/OR
+(A/TYPE= AKEY)/KEY

6] 'ERRONEOUS TREE TYPE!'

7] 030

8] AND: NUMKIDS+TREEANKIDS[RO0T]

9] X<0
f10] RES+« 2 0 64 poO
[11] ANDLOOP: RES«RES AND TRAVERSE TREEAPTRLROOTI+X
[12] +((K<K+1)<NUMKIDS)/ANDLOOP

Lo B e I e I e I e I v I e B e B |
(6]
-}

[13] +0
[1u] OR:NUMKIDS+«TREEANKIDS[ROOT)
[15] K«0

[16] RES+ 2 0 64 poO
[17] ORLOOP:RES+«RES OR TRAVERSE TREEAPTRLROOTI+X
[18] +((K+K+1)<NUMKIDS)/ORLOOP

191 -0
[20] KEY:RES« 2 1 64 pKEY[;TREEAPTRILROOT];]
v

V Z«TREE L
ril R PRINTOUT ONE SLICE OF THE PARALLFEL
[2] A VECTORS WHICH REP THE TREE
[3] z«((TRFFATYPE[L Ia.= 2 4 p 1010011 O)f 4 3 p'ANDOR KE
Yy v, (vTREFAPTR[L]) ' YTREEANKIDSIL]
v

V Z<MIN1 UNION MIN? ‘
{11 A SET UNION OF 2 VECTORS OF MINTERM NUMBERS
[21] Z+«Z[AZ«MIN1 ,MIN2]
£3] Z+((Z1Z)=1p2Z) /2

v

END OF APPENDIX

248

EXAMPLE OF TREE TRAVERSAL -~w o . S
***********************R* .

cL

vV §

EAR WS

APL

JLOAD SEARCH
SAVED 23:18:53 02/05/83
WSSIZE IS 1890886

/* DISPLAY THE TREE STRUCTURE. x/

OR

PP

AND
OR

OR

AND

XXXXXXXXXXXXXXXXXXXXXXXXXXX1XXXXXXXXXXXXXXXXXXXXXXXXXXXX(28]
XXX1X[55]
XXDXXXXXXXX(48]
XXU[56]

" XXXXXXXXIXXX[9)

AND

AND

AND

XXXXXXXXXXXXXXXXXXXXXﬂXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX[23)

XXXUXXXXXXXXXXXX(44J
XXXXXXXXXXXXXXXXXXXXXXXXXX1XXXXXXXXXXXXXXXXXXXXXXXXXXXXX[273
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXDXXXXXXXXXXXXXXXXXXXX[36]
XX(57]
XXXXXXXXXXXXXXXDXX(16]
XXXXXXXXXX1XXX(11J

XXUXXXXXXXXXXX[45J
XXXX1XXX(5]

XXXDXXXXXXXX(48]
XXXIXX[54]
XXXUXX[54]
XXXXXXXXXXXXXXXXXXXXX1XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX(22)

XXX1XXXXXXXX(48J
XXXXXXXXXXXXX1XX(14)
XHUHXHXKKHKHKHHKXXKKHXKKKKKKKKKXKXKXKKXKKKKKE KKK XK KX XX XXX KKK (ST I
XXDX(SSJ
XX(57)
XXDXXXXXXXXXXXXX(43]

249

\ D 0,0.9,0.9,0.9,9.0:8,0.8,9.¢,9.0.9,9.9.0.9.0.89.9.¢.9.¢.0.9¢.969.669 8966058949605 0{PLY
A 149.9,0.9,0,0.0,0.9,0.8.0.9,9.9.0.9.0.0. 008509 $.9¢.0:¢.0.¢6.96.9 0. $¢ 6689099000 AWXKD
000,9.9.0.9.9,0,0,0,0,0.0.9.9.0,0,0,0.9.09.8.0,0.0.0.9.8.¢.$.$.0.6.9:0.9:00.$.6.000 9 $ 09009 S SV HEVA!
: , 0 9.9,0:9.0.0.0,0.9.0.0.88.9.9.¢9.9.9.0.9.99 6909 6.$6.6¢606989666950¢¢0¢00¢¢0048 KD
- D 2,0:9,0.9,0.0,9,0.0,9 ¢,0.9,9.9.9.9.0.¢.0:0.9.¢.9.0.0.60.9.¢9 63064 ¢5¢¢ S SNV I TSI IIT YA
1 9,0.9,0.9,0.9,9.9.9,0.9,9.8,9.9.9.0.9.8.6.6.9.$.9 696666969606 900¢ 0080 ENINIEID)
ND
1 9,0,0,0.9,0.9,0.0.¢.9.9.9.0,9.99.9.9.0.99.11).9.6:6.60.9 6966066609090 009 WL Y
19,9.9,9,0.0.9,0.9.9.9.9.9.9.9.0.9.0.99.9.9.$09.¢0066606000000 0800038990000V IE YD
119,0,0,0.0,0.9.0.9.0.9.¢.0.¢.9.0.9.999001159896¢68080606898060¢0308¢¢¢0OIWLE
049,9,9,9.9,0/9,0.0,9,0,9,0.0,0.0,9.9.9.0.0.8.9.9.9.¢.0.6.0.0.6.¢ $.{i 6606990616 $$09:9 940 ¢ ¢ -9
19,0.0.8,0.0.9,9.9.9,9.0.0.9.9.0.0.0.0.8.9.9.¢$.9¢¢9.9¢66 0060990090000 SIN OOV
(19:0,0.9,0.8,9.0.9.0.0.9.9.9.9.¢.0.99.0.0.699¢0680¢08900000¢090408434690000(RN
OR
AND
9,9.9,0,0.0.410.9.9,9.0.9.9.9.9:9.9.9$.9.9.9.9.9.9 999669 6000$6609990¢8¢000900¢E:D
09,0.9,9,9.,9,0.0.0,9.9.9,0.9.9.9.¢.0.¢.9.9.9.9.9.¢¢.6.9609¢600080 606966669600 0¢ kD]
19,9,9,0.9,0.9,9.0.0.9.9.9.0.9.09.9.9.9.90.99.9¢96896906$60008009¢8000 ¢S IRYA
19.9,9,9:9,0/:0,9.0.0.9,0.9.¢.0.9.0.9.9.9.9.0..9.9¢.9.¢0.600 0940055 099969099949 ¢ ¢ O aRI D
1 9,9.0.9,0.0.0.81) 0.0.0.9.0.0.9.¢.0.9.0.9.6.0.99.¢ 6900096606809 86$009008¢059¢04E:D
19,0.0.9,0.0.9.9.9.0.0.9.9.0.0.69.99 9999966009080 98069806609¢669¢ kLD
- AND . '
1 9,9,0.415,0,0,0,0.0.0.9,9.9.0.9.9.0.9.9.9.9.9.0.0.0.9¢:¢9.99¢¢609$0600600390000EED
19,0.0,0,0.0.0.0.0 059 0099909909999 600609¢006800600068088800¢¢0IEYD]
b 9,9,0.9.9.0.0,0,9.9.0.0.9.9.9.0.009 99999 096$96¢00¢00680001096$900¢0¢¢ IV
09,9,0,0.0,0,9,9,0.0.9.0.9,0.9.0.¢.¢.:9.9.9.0.9.¢.9.9.9.9.9.9:0.9.9¢¢:699060$$$¢¢60$00 ¢ 0 1INIELD
D 9,9,9,0.0.0,0,9.9.9.9.8.9.9.9.90.6.99.9.9.9.¢¢$990000090¢888996000000¢9¢¢000HEVA
19.9,9.0.9.0,9.9,0.0.0.89.9.9.0.8.9.0.9.9.0.9$0.0.906¢0006¢0999¢009600060¢0 ¢S ISKD

/¥ TRAVERSE THE TREE */

TO_1X0 TRAVERSE 1
0 9,0,9,0,0.6,0,09.0,0.0.0.0.9.0.0.9.0 9 SUID 990 89.9.¢0.9990.9669690000e{1F0 NI
19,9,0.9:0.0.0,89.9.9.0.9,0.9.0.0.9.0.0041)¢0088.9990.996¢8900¢{1DPPOUHNEIIIENI]
19,9.0,0.0.0,0.0.0.80.0.0.0.4i} $.0.0.0.08.¢.9.9.89.9.0.800.0:0.41) ¢0.96 6041196966996 69
1 9.0,9.9.0.6.0.0.0. 88 9.0.9.4119.9.0.¢.9.990085.9.¢ 6966 041ho0¢ ¢ diliFe 869708419899
1 9,0.0,0.0.0.4111) 006900000000 SBF.0.¢0900 000010 ¢ o8 ¢0966011)616 0064 {1)
19,0.0.41,0.0.0.0.0. 88 D.0.0.0.9.¢.0.9088D.9.9.9.900.000 866000615668 811699¢ ¢
15,0.0,0,0.0.4111D.6,0,0.0.0.9.¢.0.09¢894i)980800000i100esP o806 ¢6646$0680¢9¢]

YOFF

250

