THE IMPLEMENTATION OF BCPL ON A MICROCOMPUTER

By
RONALD STEWART HAYTER

B.Sc., The University of British Columbia, 1978

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
| THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in
THE FACULTY OF GRADUATE STUﬁIES

(Department of Computer Science)

We accept this thesis as conforming
to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA
October 1983

()5 Ronald Stewart Hayter, 1983

In presenting this thesis in partial fulfilment of the
requirements for an advanced degree at the University

of British Columbia, I agree that the Library shall make
it freely available for reference and study. I further
agree that permission for extensive copying of this thesis
for scholarly purpdses may be granted by the head of my
department or by his or her representatives.- It is
understood that copying or publication of this thesis

for financial gain shall not be allowed without my written

permission.

Department of Commputer Science .
] . o

The University of British Columbia
1956 Main Mall '

Vancouver, Canada

V6T 1Y3

Date 1993 Oct+ 14

DE-6 (3/81)

ii

Abstract

BCPL/Z80 is a complete system for the development of BCPL
pfograms. It runs en a microcomputer based' on the Zilog 1280
processor and consists of a number of independent programs
coordinated by an operating system. Among these programs are
included an editor, a compiler; and a text formatter, ail of
which were designed for use on cemputers both faster and larger
than an 8-bit machine, The limited resources of a microcomputer
made‘implementationvof avstand—aleee program development 'systeﬁi
.fer a‘:high-le§el iahguage challegging. . This document deseribes

how this task was accomplished.

iii

Table of Contents

Chapter Page

BaCKgrOUNA. st ittt iinieoeeeoneeeeessssenosesonsosnsseeesl
8-Bit Program Development SYStemS.....eeeoeeeeeeesssl
BCPL ON MiCIOCOMPULELS. e eeeeneeeeesessconssacnceeessd
SLIM Intermediate Machine....ii.oveeveeeenenneaneseeb
Z110g ZB0 PrOCESSOCeueceeeerenensnnecssecsansenenessd

Overview Of BCPL/ZB0.uuueeeeeeeeeesoeosooosonsecoaasanoessll
Operating SySteM..uuieeeeeeeeeeeeseoenesnasoasceonaall
Program Development..u.eeeeeeseeeeneecensonnessnnsesl?
File SyStemM..iiiieeeeeeeeereennnescasoeosnnnnoanneel2
2 e L o A

Implementation ISSUES.ieeeeteeeeeeeennososeecesocennnnealb
Operating SyStemM...uuieeeeeeeeeeneseoeeeensscecaasealb
RUN-TIME Library..eeeeeeeeeeeessceceesecasncasneeesl?
Program Development FacilitieS...eeeeeeeoosoesoesaslB
Interpretation vs TranslatioN..eeeeeeeeseseeseseesa20

The FirSt SLIM INterPreter .. e eeeeeeeeeennnenoneeeeessl3
Instruction Interpretation...eeeeeeeeeeseeecneeeeesd23
DA S e e eeeeeeeesesssosansoseccncnnssosansssnncnsesed
INPUL/OULPUL e vt tteeneenensosecsoonnosonseeeeeness2b
= o o 111§ 1 T . -

TC1: SLIM Threaded Code, Version 1.....eeeeeeeeeeesessa28
Threaded COGe..viveriretroseneeeceeonooesssoaenseesslB:
UCSD P=COQE.teuneeeessesseorsscasososnancssccsoenneald
Threaded SLIM....ceeeeseeeooceaseososansscassnsessal0
INnner LoOP.cteieeeeesveosonoserocsscscensensosscanessl2
Improving Size and SPEe@...eeeeeeeeeeesinsasssnnesall
Static vs Dynamic FreQuUenCieS...eeeeeioeeeossesseso3d
INPUEL/OULPUL e ettt eteennncoensorseeseonosssscnoenesalb

TC2: SLIM Threaded Code, Version 2.....eececcececeseess3?
Library ROULINES....eeeteeoeeeeenenonnnooscsnnnneseld’
Peephole Optimization..ieeieeeeeeeneeseeenscnaseees3B
TC2 INSEtruction Set..iieeeeeeeeceeeeensensoncaosoassdl
Effectiveness Of the IMProVer.....eeeeeecessccceess dd
Input/Output.......................................44

Results..oc.....0.t....-..-0ooooc.’o.-uoo.ooo.no-oooooouo47
Benchmarks.0Cooo...o'.o000t.oooo.0000-0000000-00'0-047

iv

9. ConclusSionS.eeeeneeeeeeeneenns cesecaan Ceeecesecssesernans 51
BibliograpPhy . teeeeeeeeeeeeeosnnneennnonnes ceeeserrrsasianes 53
Appendix A: TC2 Code Improvement RULES.!..:eeeeeeeoeeeens . .55
Appendix B: TC2 Instruction EncodingS.....eeeeeess. 1

Appendix C: BCPL/Z80 USer's ManuUal.....eeeeseeesoeessesses59

Acknowledgement

I would like to thank John Peék, my supervisor, for . his
guidance and our many long discussions, and Harvey Abramson for
his comments on this document. I am also indebted to the authors
of some of the programs incorporated into BCPL/Z80: J E L Peck
(the compiler, the CHEF editor, the DORIS formatter), M A Maclean
(CHEF), J D Dyment (DORIS), M Richards (the compiler), and a

large number of others (the compiler).

1. Introduction

A program development system is the set of programs needed
for developing programs in a high-level language. Normally this
set of programs runs on a particular computer under some
operating system. At a minimum, this set includes: a text
editor, for composing and correcting programs and for writing
documentation; and either (depending on the high-level language)
a compiler, for translating programs into executable form, or an
interpreter, for executing programs. Also sometimes included are
a few wutilities: a text formatter, for arranging documentation
on printed pages; a linker, for combining the separately-compiled
parts of a program;. a debugger, for testing programs and
determining the cause of errors; a profiler, for locating
bottlenecks in the execution of a program:; and perhaps a code
optimizer, for improving the size and speed of programs
automatically. BCPL/Z80 is such a program development system,

running on a Z80-based microcomputer.

Chapter 2 provides background for the work on BCPL/Z80. It
describes a number of program development systems for
microcomputers. One such system, the UCSD p-System, is used as a
yardstick for comparison with BCPL/Z80 throughout this document.
Also described are two implementations of BCPL for the 280, the

SLIM intermediate language (a central element in a number of BCPL

implementations at the University of British Columbia, including
BCPL/Z80), and the 280 processor. Chapter 3 gives a brief
description of the BCPL/Z80 hardware and software. Chapter ¢
discusses a number of important implementation issues which were
resolved during the development of BCPL/Z80. 1In particular, the
reasons for choosing to interpret compiled code rather than
translate it to Z80 code are given. The next three chapters
describe the three successive generations of the interpreter used
in BCPL/Z80. Chapter 8 compares the performance of BCPL/Z80 with
other systems. Chapter 9 contains some concluding remarks.

Included as an appendix is the user's manual for the system.

2. Background

In this chapter, a number of program development systems are
briefly described. After this, several implementations of BCPL
are examined. Finally, the SLIM intermediate machine and the

Zilog ZB0 processor are described.

8-Bit Program Development Systems

In the world of 8-bit microcomputers, there are a number of
program development systems for high-level languages available
commercially. Unfortunately, 1little has been published about

them.

A number of these systems are based on the popular CP/M
operating system from Digital Researcﬁ [Kild81]. CP/M is not a
pleasant system for naive users but, being one of the first
available, mucﬁ software has been written for it. From various
software houses are available powerful full-screen editors as
well as compilers for many high-level languages, including
Pascal, C, and PL/I. Most compilers produce native machine code,
usually for the Intel 8080 processor. Some compilers also emit
intermediate code meant for interpretation; by doing so, compile

time is shortened during the early debugging stages when the

-slower speed of program execution is unimportant.

Another program development system is the UCSD p-System
[Over80], developed at the University of California at San Diego.
It is available for a wide range of 8- and 16-bit machines. The
p-System is an easy-to-use system for developing Pascal programs,
although compilers are also available for FORTRAN, COBOL, BASIC,
and Modula-2. The full-screen editor, the compiler, and a number
of utilities are all integrated into an exceptionally pleasant
package. The p-System compiler produces intermediate p-code
which is then intefpreted. The latest version of the p-System
(version 1IV.1) also allows p-code to be translated into native

machine code.

BCPL on Microcomputers

The ianguage BCPL has been implemented on many computers of
all sizés. One reason for its being so widespread is its
portable compiler [Rich71]. This compiler produces code for an
intermediate (hypothetical) machine: either OCODE or INTCODE.
Programs in the form of, say, OCODE can be easily transported by
writing an OCODE interpreter on the new machine. 1In particular,
the compiler, which is written in BCPL, can be transported in

this way.

For most machines, however, this method of transporting

programs 1is used only for bootstrapping, since interpreted
programs generally run much slower than those translated to the
native machine code. Once the compiler, in OCODE form, is
running on the new machine, a trénslator from OCODE to the native
code is usually written. By this use of an intermediate machine
code, BCPL can be implemented on a new machine by writing only an
interpreter and a translator--usually much less work than writing

a whole compiler.

Recently, BCPL was implemented on a Z80-based microcomputer
under CP/M by Cowderoy and Wallis [Cowd82]. They wrote an OCODE
interpreter and transported the compiler to their machine. They
did not, however, write a translator, apparently because of the
limited memory (36 Kbytes) in their machine. Their compiler is
12 Kbytes of OCODE, but it is 19.5 Kbytes when translated into
PDP-11 code; presumably it would be even larger if translated to
280 coée. Rather than reduce the amount of .memory left for the
symbol table and the parse tree, they accepted a slower
compilation speed. They mentioned that their interpreted BCPL
compiler on the 2Z80 is a factor of 8 slower than the
directly-executed PDP-11 version. Unfortunately, they neglected

to mention which model of PDP-11 they used.

BCPL CINTCODE, by Richards Computer Products [RCP81], also
runs under CP/M. Their compiler produces a compact form of
INTCODE rather than OCODE, but their system is also interpreted,

not translated into hative machine code, BCPL CINTCODE is a more

6

ambitious implementation than that of Cowderoy and vWallis,
including not only a compiler and an interpreter but also a
number of utility programs, debugging aids, and support for
overlays and multi-tasking. Although the literature describing
BCPL CINTCODE does not include any quantitative performance

figures, a few comparisons are given:

A typical BCPL program in CINTCODE requires about a third
of the storage of fully compiled Z80 code.

and:

BCPL CINTCODE is significantly more compact than UCSD
Pascal, and runs faster.

SLIM Intermediate Machine

As mentioned above, most BCPL compilers produce either OCODE
or INTCODE as their intermediate code. One exception is a
compiler written at the University of - British Columbia. " This

compiler produces an intermediate code called SLIM [Peck83].
The SLIM machine is a hypothetical one, specifically
designed for compiling BCPL. It has an accumulator, a stack, and

a number of special-purpose registers.

The program counter (C-) register points to the next SLIM

instrﬁction to be executed. It is incremented as each
instruction is executed but it is also changed by the 'jump' (J),
"jump if true' (T), 'jump if false' (F), 'call' (C), and 'return’

(R) instructions.

The environment (E-) register points into the stack to the
parameters and local variables of a procedure; the parameters are
at negative offsets .from the E-register, while the 1local
variables are at positive offsets. It is modified by the 'call'

(C) and 'return' (R) instructions.

The high-point (H-) register points to the current top of
the stack. It is incremented by the 'push' (P), and 'push then
load' (PL) instructions, and changed by the 'modify high-point'

(M), 'call" (C), and 'return' (R) instructions.

The global (G-) register points to the base of a vector of

cells for BCPL global variables.

(The other two registers, the stack limit (S-) and interrupt

(N-) registérs, are not important to this discussion.)
Most SLIM instructions implicitly involve the accumulator,
and most of these also explicitly involve an operand. For

example, in the following sequence of instructions:

LIEt1 +5 SG101

the 'load' (L) instruction loads a value into the accumulator
from the first local variable of the current procedure, then the
'add' (+) instruction adds five to the accumulator, and finally
the 'store' (S) instruction stores the accumulator in global cell

101,

SLIM has been used to transport BCPL to several machines,
ranging in size from an Amdahl 470 to a Data General Nova and,
recently, to a 16-bit microcomputer based on the 1Intel 8088
processor, In all of these‘implementations, SLIM was.translated

into the native machine code.

Because SLIM was designed for the representation of compiled
BCPL programs rather than as the 1instruction set of a real
machine, the encoding of SLIM instructions as bit patterns is not
defined. Such an encoding for a 16-bit machine has been
suggested (chapter 10 of [Peck83]) and it was used in a
microprogrammed implementation of SLIM. This scheme encodes a
SLIM instruction as either one or two 16-bit words. It is
designed so that the instructions that are encountered most
frequently (those with operands which are small constants or
small offsets from base registers) require only one word to
encode. Relatively few instructions require two words. Although
this encoding for SLIM has been suggested, an implementor is free

to choose other encodings.

Zilog Z80 Processor

The Zilog Z80 [Zilo76] is an 8-bit microprocessor. It is a
superset of the earlier (and once very popular) Intel 8080.
Because the Z80 is a superset, it has surpassed the 8080 in
popularity. However, it has inherited an awkward architecture
and, despite 1its new instructions, the instruction set .is

incomplete.

The 280 has three 16-bit general-purpose registers (BC, DE,
and HL) which alternatively may be used as six 8-bit registers
(B, C, D, E, H, and L). It also has an 8-bit accumulator (a),
and a number of other special-purpose registers, including a
program counter (PC), a stack pointer (SP), a pair of index
registers (IX and 1Y), and a flags register (F) for condition

codes.

Ten different addressing modes are defined. Unfortunately,
there are many restrictions placed on their use. Not all
registers may be wused with some modes, and most instructions
allow only cértain modes to be used. As a result, A and HL are
the most wuseful registers and data must often be transferred

between these registers and the others.

Most arithmetic and 1logical instructions involve the

accumulator implicitly. Some of the operations available are:

10

add, subtract, increment, decrement, compare, and, inclusive-or,
exclusive-or, shift, rotate, set bit, reset bit, and test bit.
As well as these 8-bit operations, a few 16-bit ones are also

available: add, subtract, increment, and decrement;

Data can be transferred between registers, or between
registers and memory, either 8 or 16 bits at a time, by the
'load' (LD) instruction. Because of addressing mode
restrictions, however, it is oftén necessary when tranferring

data between registers to use memory temporarily.

The program counter 1is changed by the 'jump' (JP and JR),
'call' (CALL) and 'return' (RET) instructions. Jumps may be
relative to the current PC (JR) or to absolute memory locations
(JP); calls can only be to absolute locations. The PC is pushed
on the stack by a call and popped by a return. There is no
addressing mode which easily allows an arbitrary word in the
stack to be referenced; only the topmost word may be accessed, by

'push' and 'pop'.

"

3. Overview of BCPL/Z80

BCPL/Z80 is a self-contained program development system
consisting of an operating system, a number of independent
utility programs, and a file system. This chapter gives an
overview of the facilities available. The use of BCPL/Z280 is

described more fully in the user's manual [Hayt83] in Appendix C.

Operating System

A program called the Shell allows the user to run any of the
utility programs or any of the user's own. The user can select
the particular utility from a menu of choices simply by typing a

single letter.

Programs normally have their standard input and output
directed to the console. However, 1like the shell of UNIX
[Ritc78], the BCPL/Z80 Shell allows them to be redirected to

files.

A subsystem of the Shell is called the Filer. The Filer is
used for manipulating files: listing, renaming, and destroying
files, and moving files from one disk to another. It, too, 1is

menu-driven.

12

Program Development

Programs and documents may be composed and modified with the
aid of the Editor. 1It inclﬁdes the many features found in most
large-system line-oriented editors, but also allows full-screen
editing. The Compiler translates BCPL programs into SLIM
assembly language. These SLIM programs usually can be made
smaller and faster by the Improver. The Encoder translates SLIM
assembly language programs - into executable code. The
separately-compiled sections of a program are merged by the

Linker. Finally, the Formatter prepares documents for printing.

File System

The BCPL/Z80 file system is organized as a two-level
hierarchy. In the first 1level are two kinds of volumes:
character and block. Typical character volumes are the keyboard,
the screen, the printer, and the modem. Reading from or writing
to a character volume is ;done one character at a time. The
character volumes are known by the names "CONSOLE:" (the keyboard
and the screen), "PRINTER:" (the printer), and "REMOTE:" (the

modem) ,

Block volumes are disks and, for these, information is

13

transferred in blocks of 512 bytes at a time. The names of block
volumes are chosen by the wuser at the time that. a disk is
initialized. Block volumes are structured objects, subdivided
into files (the second level in the hierarchy) and a. difectory.
Just as with character volumes, characteré may be read from or
written to files one character at a time. File names are, of

course, chosen by the user.

Volume and file names are wused for opening streams to
character volumes or files. For example, an input stream from

the modem may be established by calling 'FindInput':
FindInput ("remote:")

Similarly, an output stream may be set up to a file named

"OUT.TEXT" on the disk "WORK:" by calling '"FindOutput':

FindOutput ("work:out.text")

Hardware

BCPL/Z80 was developed on an Exidy Sorcerer microcomputer
having a 2.1 MHz Z80 processor and 55 Kbytes of memory. The
computer has a built-in keyboard and memory-mapped video screen,
as well as both printer and modem interfaces. Attached to the

computer is a North Star mini-floppy disk system consisting of

14

two double-density drives, with a combined capacity of 350

Kbytes.

15

4. Implementation Issues

In implementing something as large as a program development
system for a high-level language, many issues must be resolved.

This chapter discusses how they were resolved for BCPL/Z80.

Operating System

Much of the early development of BCPL/Z80 was done using the
UCSD p-System (version I.5). Superb as it 1is as a program
development system, the p-System was judged to be unsuitable as a
host for BCPL/Z80 for several reasons. The p-System occupies
about one-third of memory, leaving only 40 Kbytes for user
programs. Also, the file system cannot be accessed by a 280
assembly program; all file manipulation must be done by Pascal

code.

The only other operating system available was a primitive
one called the North Star Disk Operating System (DOS). DOS is
much smaller than the p-System: only 4 Kbytes. It does have an
assembly language interface to its file system but the file
system itself is very crude compared to that of the p-System. In
fact, it consists of only three procedures: one to read a disk

directory and locate a file name 1in 1it, another to write a

16

directory back on the disk, and the last to read or write a
number of disk sectors beginning at a given sector. It 1is left
to the programmer to supply procedures which allocate space on
the disk for files, open and close files, and read and write
characters. DOS provides 1little in the way of support for

application programs and, for this reason, it too was rejected.

After the available operating systems were rejected, it was
decided to write a new one in BCPL. This simple operating system
is for a single wuser, and is very similar to the p-System. It
was not only modelled after the p-System, but it also has
compatible disk directory and file structures. This
compatibility was particularly important before BCPL/Z80 had a
full-screen editor. - Because of it, for example, programs could
be composed using the p-System editor and compiled with the

BCPL/Z80 Compiler.

UNIX was another influence on the design of the BCPL/Z80
operating system. The Shells of both systems are simply user
programs (although rather sophisticated user programs) and so may
be replaced with othefs if desired. The other useful idea
borrowed from UNIX is that of the redirection of the‘ standard
input and output of a program. Redirection is not possible in
the early versions of the p-System, but this deficiency has been

corrected in the latest version.

Another possible host for BCPL/Z80 might have been CP/M. It

17

is almost as small as DOS and yet it has the extensive file
system interface that DOS lacks. When a decision had to be made,
however, this operating system was not available for the computer
used. 'Although CP/M is now available, the BCPL/Z80 operating
system works well and is easier to use. Adapting BCPL/Z80 to run
under CP/M would likely be a serious undertaking, but it might be

attempted in the future.

Run-Time Library

One of the distinguishing characteristics of BCPL is that it
is a small language. Many of the facilities that are built into
other languages, such as input/output and storage allocation, are
ordinary procedures in BCPL. The proposed draft BCPL standard
[Eage82] defines a large number of procedures which might be

included in the run-time library.

Many of these procedures are present in BCPL/280, including
the following: the opening and closing of streams to files,
devices, and in—mémory character strings; the reading and writing
of single characters or arbitrary numbers of. characters; the
reading and writing of formatted text: the positioning of streams
to arbitrary points; several string processing operations; the
dynamic allocation of memory from the stack or a heap; and the
calling of assembly language procedures. There are, in addition

to these standard ones, a number of other procedures: for the

18

renaming and destroying of files; for the positioning of the
cursor on the screen of the console; and for the loading and
unloading of program overlays. An optional library permits the
use of coroutines and multi-tasking. All except a very few are
written in BCPL rather than Z80 assembler, making implementation

quick and modification easy.

The BCPL/Z80 run-time library was also influenced by the
UCSD p-System. As mentioﬁed in the previous section, the disk
directories and files used by BCPL/Z80 are compatible with those
of the p-System. 1In addition, the library was designed to be no

more machine-dependent than the p-System.

The p-System runs on many different machines. It is easily
portable because it relies on only a few machine-dependent
procedures (not, of course, including the p-code interpreter
which 1is writéen in the assembly language of the processor).
These procedures read or write disk sectors, and read characters
from or write characters to the console, the printer, and the
modem. These I/O procedures together with code which initially
loads the p-System into memory are all that must be changed to
adapt the p-Systeﬁ to andther machine (having the same
processor). BCPL/Z80 relies on these same machine-dependent
procedures and so should be as portable as the p-System.

However, this claim has not yet been tested.

19

Program Development Facilities

An author of a program development system for BCPL begins
with a head start: BCPL was designed with portability in mingd,
and a number of large and portable programs have been written in

BCPL.

The BCPL/SLIM compiler is one such program. It has been
transferred to a number of different machines at the University
of British Columbia. What is more, it is capable of running on
machines with relatively small memories. It compiles programs in
a few distinct passes and the code for each pass needs to be
present in memory only during that pass. To further save memory,
the internal form of the program (the parse tree plus the symbol

table) may reside in a disk file rather than in memory.

The CHEF text editor [Macl81] is written in BCPL. It has
many powerful operators (cqmmands& includiﬁg 'alter' which allows
full-screen editing. CHEF was also désigﬁed to be portable
[Peck81]. 1Its memory requirements are modest because CHEF uses a
disk file to hold the text being edited. For computers with very
small memories, the code for some of the less commonly-used .
operators can be put into overlays which are only brought into

memory when needed.

The DORIS text formatter [DymeB82] is another BCPL program.

It is quite powerful yet it is small and easy to use. DORIS is

20

also portable, but largely because it uses standard BCPL and is

not big enough to require overlays or temporary disk files.

With these porfable programs available and working, it was
.decided to use them as the heart of BCPL/Z80. Since the compiler
produces a SLIM assembly 1language file, the only missing
compoﬁent needed was a program to put such a file into executable

form: either a SLIM assembler or a SLIM-to-Z80 translator.

Interpretation .vs Translation

Perhaps the two biggest obstacles to successfully
implementing a program development system on an 8-bit
microcomputer are the slow speed of the processér and the small
size of the memory. BCPL/Z80 was developed on a machine with a
2.1 MHz 280 processor and 55 Kbytes of memory. Much effort,
therefore, was expended making the system.small enough to fit yet

fast enough to be useful.

An early (and important) decision was to interpret SLIM
rather than translate it to Z80 machine code. Two considerations
decided the issue in favour of interpretation: the expected size

of BCPL/Z80 programs, ana the expected speed of BCPL/Z80.

The more important consideration was size. The BCPL

compiler and the CHEF editor, the main components of BCPL/Z80,

21

are large programs. Thus it was important to ensure that they
would be small enough to fit in memory. Using the SLIM encoding
for a 16-bit machine mentioned in Chapter 2, the compiler was
estimated to be 25 Kbytes long and CHEF 26 Kbytes. These
estimates do not include the memory needed for data structures;
each requires several thousand mpré bytes and both can make use

of all available memory to improve performance.

The translation of SLIM to 280 machine code is, in a sense,
easy. SLIM is a higher-level machine than the 280 and so almost
every SLIM instruction must be translated into many . Z80
instructions. Consequently, to keep the size of translated
programs reasonable, it 1is necessary to place the zZ80
instructions corresponding to most SLIM instructions into
procedures. The Z80 code generated for a SLIM instruction is
then (usually) a 1load of the operand value into a register,
followed by a call to the procedure implementing the instruction.
If this simple scheme were used, a translated program would be
roughly three times the size of the.encoded program., For small
programs, this inflation in size could be Jjustified by the
increased speed of execution. Programs as large as the compiler
and CHEF, however, would simply be too large to fit into memory.
A more sophisticated algorithm might be able to translate
programs into a number of bytes comparable to the 16-bit

encoding, but this possibility was not explored.

The other consideration was speed. An interpreted program

22

is several times slower than a translated one. However, on a
microcomputer, the absolute speed of a program 1is rarely
important. What is important is whether the program is fast
enough to do 1its job without annoying the user. The example
provided by the UCSD p-System showed that an interpreted system
could be sufficiently fast. Almost the entire p-System,
including both the compiler and the editor, are Pascal programs
translated to p-code and interpreted. The speed of these

programs is impressive and certainly adequate.

Together, these two considerations lead to writing a SLIM
interpreter for BCPL/Z80. A goal has been to equal (or surpass)
the small size and high speed of the p-System. The next three

chapters detail the pursuit of this goal.

23

5. The First SLIM Interpreter

The first SLIM interpreter on the Z80 evolved considerably
during its lifetime. Originally, it was written entirely in UCSD
Pascal. As might be expected of an interpreter which was itself
being interpreted, it was very slow. Its speed was improved by
about 20 times by recoding most of it in 280 assembly language.
It was, however, still quite slow when compared with p-code. It
was eventually abandoned when it seemed that its performance
could not be improved except by using an entirely different

approach.

Instruction Interpretation

This first interpreter used the suggested encoding for a
16-bit machine. Interpretation of each instruction consisted of
several steps:

1. determine the type of the operand of the instruction

2. calculate the modified operand, leaving the C-register

pointing to the next instruction

3. determine the type of the opcode of the instruction

24

4. jump to the appropriate service routine

5. return to step 1.

Trags

Almost all of the interpreter was written in assembly
language. The part written in Pascal was responsible for
initialization and for handling exceptional circumstances. After
loading a SLIM prbgram into memory, the Pascal part called the
assembly procedure 'Execute' which interpreted SLIM instructions

repeatedly.

'"Execute' returned to the Pascal part, an operation known as
trapping, only when something exceptional occurred. A trap could
occur for a number of reasons .including dividing by zero,
executing an illegal instruction, overflowing the SLIM stack,
referencing a bad memory address, calling a missing global
procedure, reaching a user-specified breakpoint, and executing

the 'quit' instruction.

Recognizing a global procedure which had not been loaded
into memory was accomplished by setting all of the cells in the
SLIM global vector initially to negative numbers. The cells

corresponding to the global procedures which were later 1loaded

25

would contain the addresses of the procedures, always positive
numbers. Other cells would remain negative. -The service routine
for the 'call' instruction checked whether the address of the

called procedure was negative and, if so, it caused a trap.

To make it easier to determiﬁe which particular global
procedure was missing, the values initially put into the cells
were the complements of the global cell numbers. When such a
trap occurred, the number of the missing global procedure was

then simply the complement of the C—régister.

Input/Output

As mentioned in the previous chapter, one of the problems
with using the p-System as a host operating system is that it
provides only a Pascal interface to its file system; files cannot
be accessed from assembly language. This problem was overcome by

making use of the trap for missing global procedures.

For most kinds of traps, the Pascal part of the interpreter
displayed the cause of the trap on thé»console:and waited for a
command to be typed. However, if the trap was the result of a
missing global procedure, and if the missing procedure was one of
a small set, the trap was treated differently: not as an error

but rather as a request.

26

Initially, the only procedures in this set were 'RdACh' and
'"WrCh'. 1In response to traps for these BCPL procedures, the
interpreter performed the corresponding Pascal operations, 'Read'
and 'Write', on the console. Later, file input/output was added,
with Pascal array indexes serving as BCPL étreém numbers.
"FindInput' and 'FindOutput' were mapped into 'Reset' and
'Rewrite', respectively, and both 'EndRead' and 'EndWrite' were
implemented by 'Close' (a UCSD Pascal extension). 'SelectInput’',

'SelectOutput', 'Input', and 'Output' manipulated the indexes.

This technique of using the trap for missihg global
procedures proved to be so wuseful that later versions of the
interpreter adopted it. When the p-System was abandoned, these
traps were used as a way to give BCPL names to (a very few)

procedures written in assembly language.

Performance

Despite the fact that most of the interpreter was written in
assembly language for the sake of speed, compared to p-code this
interpreter was still slow: a p-code program was more than twice
as fast as an equivalent SLIM program. By manually counting 280
instructions, it was determined that during the interpretation of
some of the most common SLIM instructions (loads and stores)
about half of the execution time of an instruction was spent in

decoding (steps 1 and 3 above). Decoding was a time-consuming

27

procedure because the 280 1is not well suited to extracting
arbitrary groups of bits from a 16-bit word. Furthermore, to
determine the opcode type of an instruction requires sequentially
testing as many as five such groups of bits, and the operand type

may require another two.

Some speed improvement likely could have been achieved by
streamlining the code of the interpreter further. However, it
was decided instead that a different encoding of the SLIM
instructions might be better suited to the limitations of the

Z80. The technique known as threaded code [Bell73] was tried in

the second SLIM interpreter with great success. Threaded code,
also used in the p-code interpreter, is described in the next

chapter.

28

6. TC1: SLIM Threaded Code, Version 1

The first SLIM interpreter based on threaded code.(explained
below) was called TC1. The use of threaded code helped reduce
the overhead of instruction decoding. As a result, the initial
implementation of the threaded code interpreter was 30 per cent
faster than the interpreter wusing the standard encoding.
Fine-tuning further increased the speed of TC1 until it was twice

as fast, within 15 per cent of the speed of p-code.

Threaded Code

A program compiled to threaded code consists merely of a
sequential 1list of addresses, each possibly followed by data
words. The addresses are those of library routines which perform
operations such as addition, multiplication, function calling,
and array indexing. The data words are the (constant) arguments
of the 1library routines. Interpretation of threaded code

involves the following steps:

1. fetch the address which is in the word pointed to by the

program counter (PC) of the threaded code machine

2. increment the PC

29

3. jump to the library routine at the address just fetched

4. jump back to step 1.

The first three steps form the inner loop of the interpreter

and the jump of step 4 is placed at the end of each library
routine. On the PDP-11, the inner loop is particularly simple;
it requires only a single instruction:
NEXT: JMP @(R)+
where R is the program counter of the threaded code machine.
Following an address of a library routine in the threaded

- code may be data words. Before it jumps back to 'Next', the

routine fetches these values and increments the program counter.

UCSD p-code

The p-code used in the UCSD p-System is a variation of
threaded code. The principal difference is that a p-code program
consists of a 1list of offsets rather than addresses. These
offsets are used in looking up in a table the addresses of the
library routines. The advantage of this scheme is that the

library routines may be modified without the need for recompiling

30

all Pascal programs; only the table changes, not the threaded
code. Since a p-code opcode is not a machine address but rather
an index into a relatively small table, opcodes were defined to

be single bytes; allowing 256 library routines.

A further difference between threaded code and the p-code
variation is that a number of opcodes have an implicit data
value. For example, the first 128 opcodes push a small integer
constant (the opcode value itself) onto the p-machine stack,:
thereby avoiding the need for an explicit data value for this
very common operation. Because of this technique, p-code
programs are very compact and they are probably faster than they

would otherwise be.

Threaded SLIM

Reducing the overhead of instruction decoding required
overcoming two‘ bottlenecks: the extraction of groups of bits
within a word, and the sequential testing of several values. The
first problem was solved bj using only whole bytes or words for
both opcodes and operands, the second by performing a multi-way

jump based on a single value.

SLIM instructions can be divided = into two classes, here
called A and B. Class A instructions take an operand and have

the form:

31

<opcode> <operand>

Class B instructions do not take an operand and so have the

simpler form:
<opcode>

The 'LIEn' instruction is an example'from class A and 'R' is one
from class B. To make it easier to encode SLIM using threaded
code, class A instructions were split into two separate
instructions, one to load the modified operand into a temporary
work register, the W-register, and the other to use the value in
the W-register. For example, the 'LIEn' instruction is replaced
by 'WIEn' and 'LW'. (By coincidence, this idea was conceived
independently by another group [Macl82] at about the same time.)
The new W-register ingtructions ("Wn', 'WIn', 'WCn', 'WICn',
'"WEn', 'WIEn', 'WGn', 'WIGn', 'WH', and 'WIH') are class C, and
the instructions which take the W-register as the operand form

class D.

The instructions in ciasses B ;and D have no explicit
operands. Of the class C instructions, all but 'WH' and 'WIH'
have a raw operand. To simplify decoding, an entire byte was
used for each opcode. The size of SLIM programs was reduced by
providing class C instructions both for raw operands which can be

represented in one byte and those which need a word. In this

32

way, much of the information that the earlier interpreter
obtained by extracting and testing instruction fields (namely,
‘whether the raw operand was a byte or a word, the register by
which the operand was to be modified, and whether indirection was
to be performed) was instead implicitly encoded in the opcode.
Decoding was thus reduced to a simple process of jumping to one
of a number of library routines, each of which knew the form of

the expected operand.

This version of threaded SLIM code was quite similar to
p-code. A major differénce between them was that not all of the
256 possible values of an opcode byte were defined for SLIM. A
SLIM opcode still served as an offset into a table, but instead
of that table containing the 1list of addresses of library
routines, the table contained a list of jumps to those addresses.
Putting jump instructions in the table allowed the inner loop to

be shorter than it would have been otherwise.

Inner Loop

The size of the inner loop is very important to the overall
speed of an interpreter. It was not possible to implement the
inner loop on the 1280 as a single instruction, but it was

nonetheless quite short:

NEXT: LD A, (BC) ; Fetch the opcode byte.
INC BC ; Increment SLIM C-register.

33

ﬁD_ H,LRPAGE ; Calculate location in table

LD L,A H of jump to library routine.

JP (HL) ; Jump to that jump.
After much experimentation, the BC register pair was selected as
the threaded code program counter (the SLIM C-register). The
table of jumps indexed by the opcode byte was located on a page
(256-byte) boundary so that the adaress of the required jump
could be formed in HL by concatenating the page number with the
opcode, 1instead of adding the opcode to the starting address of

the table.

This inner loop uses 28 machine cycles plus 10 for the Jjump
in the table plus a further 10 for the jump at the end of each
library routine. Forty-eight machine cycles translate into 23

microseconds for a Z80 with a 2.1 MHz clock.

Improving Size and Speed

When programs were encoded using the threaded code described
so far, they were about 30 per cent faster than when they were
encoded conventionally.. However, they were also about twice as

large.

A 280 jump instruction is three bytes long and so, using the
opcode byte as an offset into the jump table, there could be at
most 86 library routines (86 = Ceiling (256 div 3)). There are

10 instructions in class B (not counting 'O', 'L$', and 'S$'), 18

34

in class C, and 31 1in class D. 1Initially only the 59 library
routines for these instructions were defined. Soon after, SLIM
programs were made both smaller and faster by defining the 27

remaining possible library routines.

Library routines were defined for the~moét common pairs of
opcodes and operands; in other words, particular class A
instructions were re-introduced and given opcodes. The SLIM code
produced by the Compiler was analyzed so that the opcodes could
be allocated to the most frequently used class A instructions. A
total of over 10,000 instructions were collected from a number of
BCPL programs, including »the Compiler itself, the CHEF editor,
and the BCPL/Z80 run-time system. It was found, for example,
that 10 per cent of all instructions were 'LIEb' (with 'b'
between -8 and 247), and that 'CIGb' (with 'b' between 0 and 255)
made up another 7.5 per cent. The 27 class A instructions which
eventually were chosen accounted for 82 per cent of all
instructions. Allocating an opcode to each, thereby saving a
byte for each use, reduced the size of threaded code programs to
within 15 per cent of the conventional encoding. These changes,
plus some fine-tuning of the interpreter code, also brought the

speed to within 20 per cent of p-code.

Static vs Dynamic Frequencies

The 27 class A instructions that were allocated opcodes were

35

chosen because they were the most common opcode/operand pairs in
the programs analyzed. The number of times an instruction
appears in a piece of code does not necessarily reflect how often
it will be execﬁted, however. As an experiment, the TC1
interpreter was modified to count the number of times each SLIM
instruction was exécuted. Three programs were measured: the
Compiler, CHEF, and DORIS. It was discovered that the
instructions that were dynamically most frequent were usually
those that were also statically most frequent, although there

were a few exceptions.

A large number of 'L@n' instructions were counted but they
were not executed very frequently. The 'L@n' instruction is most
often used 1in two contexts: initializing the global cells
associated with global procedures, and passing format strings to
'WriteF'. The programs analyzed had many global procedures but -
the global cells are initialized only once, and the programs did

not make much use of 'WriteF'.

Also common to the three tests were disproportionately large
numbers of executions of the '=H' and '>H' instructions. It was
found that these instructions Qere used in both 'RACh' and 'WrCh'
for file streams. All three programs used these procedures

heavily.

Selecting 27 class A instructions to optimize based on

static counts results in smaller object programs. In contrast,

36

the wuse of dynamic counts results in faster object programs.
Except for a few anomalies, however, the two counts gave the same
results: 23 of the 27 most often executed class A instructions

were also among the 27 most often counted.

Input/Output

Shortly after the threaded code interpreter was working, the
BCPL/Z80 operating system was written and it became the new host.
_Thé only parts of the system not written in BCPL were a few
simple assembly lanquage device drivers and the interpreter
itself. These device drivers were made to look 1like BCPL
procedures by using the trap for missing global procedures. When
one of these drivers was called, the interpreter intercepted the
trap and called the appropriate assembly language procedure.

After the driver was finished, it returned to 'Next'.

37

7. TC2: SLIM Threaded Code, Version 2

Despite the large improvement in speed gained by using
threaded code, TC! did not quite achieve the goal of equalling
the performance of the p-code interpreter. The next (and final)
interpreter, TC2, is not as radically different from TC1 as TC1
was from its predecessor. However, TC2 is faster than the p-code
interpreter and SLIM programs for it are smaller than when the

standard encoding is used.

Library Routines

The performance of TC! (both in speed of interpretation and
in size of object programs) was greatly improved by using the 27
empty slots in the jump table for librafy routines for class A
instructions. There was not room, unfortunately, for other
common opcode/operand combinations such as 'L%IEb', '<=b', or

'=IEb'.

One idea that was considered was to replace the jump table
with an array of library routine addfesses, as is used in the
p-code interpreter. This method would allow 128 or 256 library
routines to be defined. The idea was rejected because the inner

loop would also be coﬁsiderably slower.

38

Eventually, it was realized that one of the jump table
entries could be used as an escape. The 'Escape' library routine
is very similar to 'Next' except that the byte that follows the
escape byte is used as an index into a second jump table. The
inner loop overhead for an opcode in the seéond table ('Next'
plus 'Escape' plus three jumps) 1is 83 machine‘ cycles, or 40

microseconds.

By removing the limit of 86 library routines in TC1, it was
possible in TC2 to make a number of improvements in performance.
One improvement was to move rarely executed SLIM instructions,

1~y

such as » '==W', and 'X', to the second jump table. The freed

slots were then used for common class A instructions.

Another improvement was to define library routines for
instructions that . frequently have particular raw operands. TC2
has opcodes for such instructions as ’LO', '1', 'L-1', " 'LIE-3',
'LIE1", 'SE1"', T+1', ‘-1, 'L1O0', 'L%0"', 'M-1', and 'M-2',
Defining these 1library routines increased the size of the
interpreter somewhat, but it also significantly reduced the size

of SLIM programs and increased their speed.

Peephole Optimization

It was necessary once again to count SLIM instructions to

39

determine which should be moved into the second jump table, and
which opcode/operand combinations should be allocated slots in
the first. A total of over 28,000 instructions were collected
this time, all from programs running under BCPL/Z80. Instead of
counting the instructions produced directly by the Compilér,
however, the Improver (mentioned in chapter 3) first processed

the SLIM programs.

The Improver uses the technique of peephole optimization,

replacing short sequences of instructions with others which are
better (shorter or faster or both). The Improver was inspired by
the peephole optimizers of Tanenbaum et al [Tane82] and Sweet and
Sandman [Swee82)], but it is simpler than either. Because the
Compiler performs some of its own peephole optimizations, many of
the more sophisticated capabilities of those optimizers were not

needed.

Iﬁstructions are replaced according to rules in a data file.
(Appendix A contains the complete 1list of rules used by the
Improver.) Each rule consists of two parts: a pattern and a
replacement. If the pattern part of a rule can be matched
against a sequence of instructions, the replacement part of the

rule is substituted for them. For example, the following rule:
[Q => CIG98 DO]

replaces a "Q' instruction with a call to global routine 98,

40

which is the routine 'Stop' on BCPL/Z80.

Most characters in a rule stand for themselves. The more
interesting rules 1include pattern variables. The following rule

replaces, for example, '+-1' with '-1';:

[+-r => -r ']

The 'r' matches a raw operand: either a character constant or a

(possibly signed) integer. The variables 's' and 't' also match

raw operands.

Another three variables, 'm', 'n', and 'o', match modified
operands: '"H', 'IH', or raw operands possibly preceded by '@e',

'Ie', 'E', 'IE', 'G', or 'IG'. The next example:
[T=m Tn => =m Fn]

converts a test for inequality to one for equality. Once a
variable has matched a sequence of characters, it stands for

those characters anywhere it appears later in the pattern or the

replacement.

The final variable, 'g', matches a quoted string. The
following two rules delete the debugging code that some versions

" of the BCPL compiler produce:

41

[sqg Der => $q]
[@r:p0 DO Dg =>]

TC2 Instruction Set

Before instructions were allocated library routines, they
were processed by the Improver. This additional step made the

selection of instructions somewhat easier.

One way in which improvement helped was that it reduced the
number of different commonly-used instructions. For example,
SLIM has six comparison operators ('=W', 'T=W', '<W',6 '<=W',
'>W', and '>=W') and two conditional jumps ('TW' and 'FW').
Since almost all comparisons are followed by a jump, and since
the objects being compared are wusually simple variables or
constants, most instruction sequences involving comparisons could
be rewritten wusing only two of the operators: '=W' and '<=W'.

The following rules accomplish this task:

[Lm >=n => Ln <=m]
[<m Fn => >=m Tn]
[<m Tn => >=m Fn]
[>m Fn => <=m Tn]
[>m Tn => <=m Fn]
[T=m Fn => =m Tn]
[“=m Tn => =m Fn]

After a program has been processed by the Improver, there are
very few occurrences of the other four comparison operators.
Thus, the jumps to their library routines were put into the

second jump table.

42

Closely related was the reduction in the number of
commonly-used combinations of opcodes and operands. The

following rules, for example:

[Lr +Im => LIm +r]
[Lr L!Im => LIm L!r]
try to ensure that the operands of '"+W' and 'L!W'" are constants

whenever possible,

The Improver also allowed two small changes to be made to
the SLIM machine. The SLIM document [Peck83] does not specify
the behaviour of 'TW' and 'FW' when the accumulator contains a
value other than 0 ('False') or -1 ('True'). For TC2, 'False' is
defined to be 0 and 'True' is any non-zero value. This
redefinition allows the following rules to be used, speeding up

SLIM programs and making them smaller:

[=0 Tm => Fm]

[=0 Fm => Tm]
(Recall that most '~=0' instructions are translated to '=0' by
the rules given earlier.) Before the Improver was used, the
programs analyzed contained over 200 occurrences of '=0'. After

improving, only 7 remained.

The other change was the addition of a pair of instructions

to increment and decrement a variable. It is quite common in a

43

BCPL program to add or subtract one from a variable, and the step
size in most 'for' commands is also 1 or -1. These new

instructions are put into a program by the Improver:

[LIm +1 Sm => +:m LIm]

[LIm -1 Sm => -:m LIm]
(Note that the variable 'm' appears twice in the pattern part of
the rule.) '+:W' and '-:W' do not affect the accumulator and it
is necessary to explicitly load the result afterwards so that the
same effect as before is achieved. 1In many cases, however, the

result is not needed. These rules catch most of these cases:

[Lm Ln => Ln]
[Lm @r:Ln => @r:Ln
[Lm Cn DO => Cn DO]

The first two rules are for the cases when the accumulator is
immediately relocaded with a new value; only the second value is
needed. In the third rule, the value in the accumulator is
unimportant 1if a procedure is cal}ed and no arguments are passed

to 1it.

The following sequence of instructions 1is typical of the

code that occurs at the end of a "for' command:

LIE1 +1 SE1 @2:LIE1 <=IE2 Te@1

The application of two rules results in the following improved

sequence:

44

+:E1 @2:LIE1 <=IE2 T@1

Appendix B shows the TC2 instruction set, together with its

encoding.

Effectiveness of the Improver

The Improver was useful 1in designing the TC2 instruction
encoding, but it was also intended to be used as an optional step
in compiling a program. After a program has been debugged, its
size and speed can often be improved by the Improver. For some
programs, as much as a 10 per cent improvement in both size and
speed can be realized. However,'it is an optional step because
the degree of improvement is wusually smaller than that.
Typically, a program is reducea in size by about five per cent

and it runs about three per cent faster.

Input/Output

It was stated earlier that TC! did not quite match the speed
of the p-code interpreter. During the development of TC2, it was
discovered that this statement was untrue. The benchmark
programs used for comparison did run faster on the p-System than

they did on BCPL/Z80, but it turned out that this result was due

45

not to the difference in speed of the interpreters. TC1 was, in
fact, about 20 per cent faster than p-code. However,
input/output on BCPL/Z80 was much slower than on the p-System,

and the benchmarks did much I1/0.

The redesign of SLIM instruction encodings for TC2 was
successful in speeding up the benchmark programs, but BCPL/Z80
was only just able to match the p-System. The last major change

to TC2 was to re-implement input/output.

The I/0 system of BCPL/Z80 1is based on two functions:
'ReadBytes' and 'WriteBytes'. They read and write an arbitrary
number of bytes on the current input and output streams,
respectively. The other procedures, 'ReadN', 'ReadS', 'WriteN',
'WriteS', 'WriteF', and even 'RACh' and 'WrCh', are implemented
using these functions. 'ReadBytes' and 'WriteBytes', written in
BCPL, were in turn implemented using a few lower-level procedures
to read and write 512-byte blocks (for diské) or single
characters (for the cbnsole, the printer, and the modem). Thése4
two functions were translated into Z80 assembly language and
incorporated into the interpreter. Doing so increased the size
Qf the interpreter by about 700 bytes, but decreased the size of
the run-time system by about the same amount. It also greatly

sped up input/output.

More speed was gained by also translating 'RACh' and 'WrCh'

and later 'ReadS' and 'WriteS' into assembly language. With

46

these changes, the speed of I/0 was approximately double that in
TC1. BCPL/Z80 at last surpassed the p-System in the benchmark

programs.,

47

8. Results

BCPL/Z80 is now considerably faster than the p-System. In
this chapter, the performance of the BCPL/Z80 system (TC2) is
compared with others, including the previous version of the
system (TC1) and the p-System. Both execution times and program

sizes are used in the comparisons.

Benchmarks

Several benchmark programs have been used to compare each
new version of BCPL/Z80 with its predecessors and with the

p-System. Three of these programs are discussed here.

The first program, Hanoi, 1is a solution to the Towers of
Hanoi problem of six discs. It does not require much
calculation, but it produces a prodigious amount of output on the
screen. The second program, Ack, computes Ackermann's function
with the arguments 3 and 5. It does anlenormous amount of work
(most of it being function calls), but its only output is the
final answer. The last program, Compare, 1is a line-by-line
comparison of two text files. It mainly exercises the system

file 1/0.

48

The following table shows the sizes of these programs for

several systems:

program size in words

Std TC1 TC2 UCcsSD Sirius
Hanoi 85 85 76 102 136
Ack 105 112 92 133 146
Compare 253 258 231 381 378

The column marked Std shows the program sizes when the standard
. encoding is used, as in the first SLIM interpreter 6n the 280,
and the UCSD column is for the p-System (version I.5). The final
column is for an implementation of SLIM for the Sirius (Victor
9000), a machine based on the Intel 8088 16~bit processor. In
this implementation, SLIM 1is translated into the assembly
language of the processor, not interpreted. Translation was the
natural choice for the Sirius because that machine has 128 Kbytes
or more of memory, at least twice what is possible on a Z80-based

machine.

From the above table, it can be seen that TC2 programs are
consistently smaller than others by at least 10 per cent. Not
too surprising is that programs on the Sifius are substantially
larger than TC2. What is surprising, however, is that the
p-System programs are only slightly smaller than those on the

Sirius; p-code was designed to be compact.

49

The table below shows the time taken to run the benchmark

programs:

program time in seconds

Std TC1 TC2 UCSD Sirius
Hanoi 14 8 6 6 2
Ack - 55 41 69 5
Compare - 67 24 53 -

(The only time shown for the standard encoding is for Hanoi.
Unfortunately, a copy of the system for the 280 no longer exists
and the other two benchmarks were not used while it did; the
program sizes given earlier were obtained from a.version of the

iﬁterpreter running on an Amdahl 470/v8.)

The Hanoi program has been used often during the development
of BCPL/Z80 as a benchmark, but it gradually became evident that
the screen output procedures were the bottleneck, not the

interpreter.

The Ack program shows more clearly the differences in speed
of calculation. TC2 is 68 per cent faster than the p-code
interpreter and 34 per cent faster than TC1. Note that TC1 was
also faster than p-code, by 25 per cent. ; The Sirius
implementation 1is almost an order of magnitude faster than even
TC2; a factor of four is perhaps due to the different hardware
(it is a 16-bit machine, not 8-bit, and its clock is 5 MHz, not
2.1 MHz), but the rest must be because SLIM 1is translated to

assembly language rather than interpreted.

50

The Compare program shows the improvehent in the speed of
file 1/0. TC2 is more than twice as fast as the p-System and
almost three times as fast as TCi. TC! is 26 per cent slower

than the p-System.

A quotation in Chapter 2 stated that another implementation
of BCPL for the 280, CINTCODE, was significantly more compact
than UCSD Pascal and that it runs faster. The same can be said

of BCPL/Z80 and TC2.

51

8. Conclusions

BCPL/280 1is a practical program development system running
on a microcomputer. It was built around three existing portable
programs: the BCPL compiler, the CHEF text editor, and the DORIS
text formatter. Because these programs were adopted largely
unmodified and thus there was no need to write comparable

utilities, attention was focussed instead on the interpreter.

With the TC2 interpeter, SLIM programs are small and they
are executed guickly. However, as with any large piece of
software, the performance of TC2 could be improved with some
fine-tuning. For example, it was stated earlier that, in most
cases, comparisons can be rewritten using only two of the six
comparison instructions: '=W' and '<=W'. Since 'True' was
.definea to be' any non-zero value, the '=W' instruction is also
superfluous in moét cbntexts. The following rules would replace

tests for equality with subtractions:

[=m Tn => -m Fn -]
[=m Fn => -m Tn]
With these rules, '=W' would be rarely needed and the slots in

the first jump table used by variations of this instruction could
be used for more common instructions. The saving due to this

pair of rules likeiy would be very small, but other similar

52

improvements are probably possible.

Another improvement would be the elimination of some 'void'
(V) instructions. Currently, the addresses encoded 1in
instructions and held in variables are SLIM addresses, i.e. word,
rather than byte, addresses. As a result, the Encoder is
required to insert 'V' instructions into the code to force
alignment on word boundaries. Most of these addresses, however,
are for the labels wused as targets of 'Jeén', 'T@n', and 'F@n'
instructions. Since only a very few of these labels are
accessible to a BCPL programmer, most need not be aligned on word
boundaries and instead could have byte addresses. Eliminating
many of the 'V' instructions could save as much as 5 per cent in

both size and speed.

A final improvement also affects jump instructions. Target
labels of most jumps are only a short distance away from the
jumps. Althoﬁgh the target address is encoded in an instruction
as an offset relative to the location of the instruction,
currently this offset is encoded in a word, not a byte. If
offsets were encoded in bytes whenever possible, programs would

be about 10 per cent smaller, but about as fast.

A goal throughout the project has been to equal or surpass
the popular UCSD p-System in the size of object programs and the
speed of execution. It required several attempts, but BCPL/Z80

is now faster and smaller than the p-System.

[Bell73]

[CowdB2]
[Dyme82]

[Eage82]

[Hayt83]

[Kild81]

[Macl81]

[Macl182]

[Over80]
[Peck81]

[Peck83]

[RCPB1]

53

Bibliography

J R Bell, "Threaded Code", Communications of the ACM,

vol 16.46 (1973 Jun).

R I Cowderoy and P J L Wallis, "The Transfer of a BCPL
Compiler to the Z80 Microcomputer", Software--Practice
and Experience, vol 12 pp 235-239 (1982).

J D Dyment, "A Tutorial Guide to DORIS (A Text
Formatting Program)", University of British Columbia,
1982 Dec.

R D Eager et al, "Draft BCPL Standard", University of
Kent, 1982 Dec. '

R S Hayter, "The BCPL/Z80 Programming System User's
Manual", University of British Columbia, 1983 Jul,
(included as appendix C).

G Kildall, "CP/M: A Family of 8- and 16-Bit Operating
Systems", Byte, vol 6 #6 (1981 Jun).

M A Maclean and J E L Peck, "CHEF: A Versatile Portable
Text Editor", Software--Practice and Experience, vol 11
pp 467-477 (1981).

M A Maclean, private communication to J E L Peck, 1982
May.
M Overgaard, "UCSD Pascal: A Portable Software

Environment for Small Computers", National Computer
Conference, 1980.

J EL Peck and M A Maclean, "The Construction of a
Portable Editor", Software--Practice and Experience, vol
11 pp 479-489 (1981).

J E L Peck, "The Essence of Portable Programming"
(draft), University of British Columbia, 1983.

Richards Computer Products, "More from the Micro with
BCPL CINTCODE", advertizing literature, 1981,

[Rich71]
[Ritc78]
[SweeB82]

[Tane82]

[2ilo76]

54

M Richards, "The Portability of the BCPL Compiler",

Software--Practice and Experience, vol 1 pp 135-146
(1971).
D M Ritchie and K Thompson, "The UNIX Time-Sharing

System", Bell System Technical Journal, vol 57 #6 part 2
pp 1905-1929 (1978 Jul-Aug). '

R Sweet and J Sandman, "Static Analysis of the Mesa
Instruction Set", Proceedings of the Symposium on
Architectural Support for Programming Languages and
Operating Systems, ACM SIGPLAN Notices, vol 17 #4 (1982
Apr).

A S Tanenbaum, H van Staveren, and J W Stevenson, "Using
Peephole Optimization on Intermediate Code", ACM
Transactions on Programming Languages and Systems, vol 4
1 (1982 Jan).

Zilog, "Z80-CPU Technical Manual", 1976.

Appendix A: TC2 Code Improvement Rules

[LIm +1 Sm => +:m LIm]
[LIm -1 Sm => -:m LIm]
[Lm >=n => Ln <=m]
[Lr +Im => LIm +r]
[PLr +Im => PLIm +r]
[Lr L!Im => LIm L!r]
[Lr S!Im => LIm S!r Lr]
[Lm Ln => Ln]
[Lm @r:Ln => @r:Ln]
{ Lm Cn DO => Cn DO]
[“=m Fn => =m Tn]
[“=m Tn => =m Fn]
[=0 Tm => Fm]
[=0 Fm => Tm]
[==1 Tm => +1 Fm]
[=-1 Fm => +1 Tm]
[=1 Tm => -1 Fm]
[=1 Fm => -1 Tm]
[<m Fn => >=m Tn]
[<m Tn => >=m Fn]
[>m Fn => <=m Tn]
[>m Tn => <=m Fn]
[+-r => -r]
[© => CIG98 DO]
[~ Fm => Tm]
[~ Tm => Fm]
[$q Der => $q]
[@r:D0 DO Dg =>]

Appendix B:

TC2 Instruction Encodings

Encoding Mnemonic

00 Y

FF B

06 xx Wb xx in [0..255]

09 yy xx Wc xxyy in [-32768..32767]
03 02 yy xx WCc xxyy in [-32768..32767]
0C xx WEDb xx-10 in [-10..245]

03 05 yy xx WEC xxyy in [-32768..32767]
03 08 xx WGb xx in [0,.255] .
03 OB xx WGb2 xx+256 in [256..511]

03 OE yy xx WGc xxyy in [-32768..32767]
OF WH

12 yy xx WIiCc xxyy in [-32768..32767]
15 xx WIEb xx-10 in [-10..245]

03 11 yy xx WIEC xxyy in [-32768..32767]
18 xx WIGh xx in [0..255]

1B xx WIGb2 xx+256 in [256..511]

03 14 yy xx WIGc xxyy in [-32768..32767]
03 17 WIH

1E yy xx CICc

21 xx CIGb

03 1A Cw

24 R

27 yy xx JCc

03 1D JW

2A yy xx FCc

03 20 FW

2D yy xx TCc

03 23 T™W

03 26 ?1I

30 ?S

03 29 N

03 2C Q

33 L-1

36 LO

39 L1

3C xx Lb

3F yy xx Lc

42 yy xx LICc

45 LIE-5

48 LIE-4

4B LIE~3

4E LIE1

51 LIE2

54 LIE3

57 LIE4

bA LIES

56

XX
XX
XX

XX
XX

XX

2F

32

XX

Yy
Yy

XX
XX

XX

Yy

XX
XX
XX
35

XX
XX

XX

38
38

3E

41
44

XX
XX

XX
XX

XX

LIED
LIGDb
LIGDb2
LW
Li0
L!b
L!IEDb
L!'w
L%0
L%IEDb
LW
L:W
LRS
PLO
PL1
PLb
PLc
PLICc
PLIE-4
PLIE-3
PLIE1
PLIE2
PLIE3
PLIED
PLIGD
PLIGDb2
PLW
SCc
SE1
SE2
SEb
SGb
SGb2
SwW
S!0
S!'b
S!IEDb
S!'W

57

E7
03
EA
ED
03
03

03
FO
F3
03
F6
F9
FC
03
03
03
03

03
03
03
03
03

XX
47

4A
4D
50

XX

56
XX
XX

59
5C
S5F
62
65
68
6B
6E
71
74

<<W
>>W
/\W
\/W

W

58

Appendix C:

BCPL/Z80 User's Manual

59

60

1. The BCPL/Z80 Programming System

BCPL/Z80 is a complete system for the development of BCPL
programs. It consists of a number of independent programs: the
CHEF Text Editor is used to create and modify both programs and
documents; the Compiler translates BCPL programs into the SLIM
intermediate assembly language; the Improver can be used to make
SLIM programs smaller and faster; the Encoder translates SLIM
programs into executable binary code; the Linker merges
independently-compiled BCPL sections. One of the more useful
utility programs 1is the DORIS Text Formatter which prepares
documents for printing.

In many respects, there 1is a strong resemblance between
BCPL/Z80 and the UCSD p-System. The wuse of the programs
described above is coordinated by an operating system program
(called the Shell) modelled after that in the p-System. There is
a subsystem called the Filer for the manipulation (moving,
renaming, destroying and so on) of files. As well, the BCPL/280
disk directory structure is identical to the p-System's, and text

and data files generated by either system can be read by the
other.

Section 2 introduces the important concepts of devices,
volumes, and files. Subsequent sections describe the Shell, the
Filer and the other programs in more detail.

It is assumed in this document that the reader 1is familiar
with the 1language BCPL. Some knowledge of the UCSD p-System
might also be helpful. The descriptions below apply to the
current version of the system (1983 Jun) for the Exidy Sorcerer
computer with 55 Kbytes of RAM and two double-density North Star
mini-floppy diskettes.

Parts of the BCPL/Z80 system were borrowed from other authors.
The CHEF Text Editor was written by M Maclean and J Peck. The
BCPL Compiler is a descendent of one written by M Richards. The
DORIS Text Formatter was originally written by D Dyment and later
rewritten by J Peck.

61

2. Devices, Volumes, And Files

A typical BCPL/Z80 computer system includes a keyboard, a
screen, and several disk drives. There may also be a printer and
a modem. These are known as input/output devices.

Devices

Devices are divided into two classes: block and character.
For a block device (the disk drives), information is transferred
in blocks of 512 bytes. For a character device (the keyboard,
the screen, the printer, and the modem), only one byte at a time
is transferred.

Associated with each device is a device number:

dev # device

void

screen and keyboard with echo
screen and keyboard without echo
unused

disk drive 1

disk drive 2

printer

unused

modem

disk drive 3

disk drive 4

OWONAOUIIWN —- O

[

(The differences between devices 1 and 2 will be explained
shortly.) Referring to devices by device numbers is awkward at
best. Instead, volume names are used.

Volume Names

A volume name may be up to 7 characters long and it is
always followed by a ":". These characters may be letters,
numbers, ".", "=", " " "/" or "\". All lower case letters are
automatically shifted to upper case.

Character Volumes

The character devices are known as the volumes "CONSOLE:",
"SYSTERM:", "PRINTER:", and "REMOTE:". These volume names may be

62

passed as arguments to 'FindInput' or 'FindOutput' to set up
streams to the associated devices.

"CONSOLE:" (device #1) is the keyboard for input and the
screen for output. As characters are typed at the keyboard, they
are echoed to the screen. 1In addition, the keyboard is buffered:
no characters will be given to a program reading from "CONSOLE:"
until a <cr> (ASCII carriage return) is typed. Buffering allows
the user to correct typing errors. The last character typed can
be erased by typing <bs> (backspace) or (delete), and the
entire line 1is erased when <can> (cancel) is typed. An <etx>
(end of text) is translated to 'EndStreamCh'. There is room in
the buffer for 99 characters. Whenever a <cr> is written to the

'screen, a <lf> (line feed) is automatically written also, so that
subsequent text appears on the next line. Finally, if a <dle>
(data 1link escape) 1is written, the next character written is
taken to be a count (plus 32) of the number of spaces to be
displayed on the screen. This two-character sequence is used by
BCPL/280 to make text files (described below) smaller.

"SYSTERM:" (device #2) 1is similar to "CONSOLE:". One
difference is that the keyboard does not echo characters typed to
the screen. Another 1is that the keyboard is not buffered; a

program will receive characters as they are typed, and it will
receive a <nul> (null character) if no character is available.
The last difference is that a <1lf> is not automatically inserted
after a <cr> when one 1is written to the screen, and the
two-character <dle> sequence is not expanded into a number of
spaces to be displayed. "SYSTERM:" 1is not used as often as
"CONSOLE:" is, but it is occasionally useful.

"PRINTER:" (device #6) is not yet implemented. It will
behave similarly to "SYSTERM:".

"REMOTE:" (device #8) 1is similar to "SYSTERM:" but is
associated with the modem.- A program reading from this volume
will receive characters as they are received by the modem, or a
<nul> if none are available. Characters written are sent by the
modem, and <cr> and <dle> are not treated specially.

In addition to these character volumes, there is another
called "VOID:". "VOID:" (device #0) ignores characters written
to it, and returns 'EndStreamCh' whenever an attempt is made to
read from it.

Block Volumes

Volume names are also associated with disks. However, a
volume name does not refer to the disk drive itself; it refers to
the disk that is in the drive. A disk drive is known by the disk
that 1is mounted 1in 1it, and so, it may have different names at
different times.

63

For convenience, there are two special shorthand volume
names: "*" and ":". The first refers to the system volume, the
disk which was in drive 1 at the time BCPL/Z80 —was started up.
The other name refers to the default volume. Initially, the
default volume is the same as the system volume, but it may be
changed by the 'P(refix' command described later in section 4.

Occasionally it 1is wuseful to refer to volumes by their
corresponding device numbers. The special volume names "#1:",
"#2:", and so on refer to those devices. Note that "#4:" refers
to whatever volume happens to be in drive 1 at the time.

Files

Block volumes, wunlike character volumes, are structured
objects. On each block volume there can be a number of files (up
to 77). A directory on the volume indicates the names of the
files, and the location of the files on the disk, among other
things.

Files are rather similar to character devices in the sense
that characters may be transferred one at a time. The difference
is, of course, that the characters are stored permanently on the
disk.

The name of a file, preceded by the name of the volume it is
on, can be given to 'FindInput' or 'FindOutput' to set up a
stream to the file, If 'FindInput' is used, the file must exist
already on the disk. '"FindOutput' creates a new file with the
name given. To make the new file permanent, the stream must be
closed by calling 'EndWrite'. Failing to do so will cause the
file to disappear when the program stops.

'FindOutput' may be given the name of file which already
exists. In this case also, a new file is created. If 'EndWrite'
is wused to close it, the old file is removed; otherwise, the new
file disappears and the o0ld one remains intact. Requiring an
explicit call to 'EndWrite' protects existing files from being
lost should the system crash.

File Names

A file namé may be up to 15 characters long. As in volume
names, these characters may be letters, numbers, ".", "-", ",
"/", or "\". All lower case letters are automatically shifted to
upper case. ~

64

File Types

There are two types of BCPL/Z80 files: text and data. (The
UCSD p-System has several other file types, but BCPL/Z80 regards
these all as data files.) The names of text files have a suffix
of ".text" and data files do not.

Data files are the simpler of the two types. The bytes in a
data file are exactly those which were written to the file.

To make text files smaller, however, spaces at the beginning
of each line of text are stored as the two-character <dle>

sequence described earlier. This compression is done
automatically as characters are written, and they are expanded
again when they are read. So that BCPL/Z80 text files are

compatible with those of the p-System, the text in such a file is
preceded by a two-block header (1024 bytes) of <nul> characters,
and enough <nul>s follow the text to make the file an even number
of blocks 1long. BCPL/Z80 skips these <nul>s when the file is
later read by a program.

Data bytes should never be put into a text file. The bytes
read from a text file will not be exactly the same as those which
were written into it because of the extra <nul>s and the special
treatment of spaces and <dle>s. 1In contrast, text may be put
into a data file. However, depending on the text, the data file
might be 1longer than the corresponding text file with its
compressed spaces. '

File Sizes

Files each occupy some number of contiguous blocks on the
disk. Normally, when a file 1is created by 'FindOutput', the
largest wunused portion of the disk (the largest hole) is
allocated. If desired, the length may be explicitly given by
appending "[n]" (where 'n' is the requested number of blocks) to
the file name given to 'FindOutput'. For example:

FindOutput ("bcpl:work.space[161")

The blocks are taken from the first hole large enough, searching
from the start of the disk. (A file size may be given when
calling 'FindInput' also, but it is ignored.)

If a file size specification of "[*]" 1is used instead,
either the second biggest hole or one-half of the biggest hole is
allocated, whichever is larger. ‘

65

File Specifications

To summarize, 'FindInput' and 'FindOutput' take a file
specification as an argument. The specification is made up of
three parts: the volume name, the file name, and the file size.

If the volume name is that of a character volume, the file
name and size are ignored. An omitted volume name is assumed to
refer to the default volume. If the size is omitted, the size of
the largest hole is assumed.

Changing Disks

Whenever 'FindInput' or 'FindOutput' 1is given a file
specification in which the volume name is that of a disk (i.e. it
is not a character volume name), BCPL/Z80 searches the disk
drives to see if there is a block volume of that name. If the
volume cannot be found, the user is given an opportunity to put
the disk into a drive. In the example given earlier, if the
volume "BCPL:" could not be found, the following message would be
displayed on the screen:

Put BCPL: in and type <cr> (<esc> to abort).

At this point the user should put "BCPL:" in one of the drives
and then type <cr>. An <esc> (escape) should be typed instead if
the user does not want to put in "BCPL:", perhaps because the
volume name was misspelt.

Usually, the user should not change disks unless told to do
so. Removing a disk with open files on it from a drive will
probably cause data for those files to be lost. Even worse,
putting a different disk into that drive will probably result in
files on the disk being overwritten.

BCPL/Z80 is sometimes, but not always, able to detect when a
disk with open files has been removed. If so, the following
message is displayed: :

Put X: back in and type <cr>.

The system will not continue until the user puts the volume "X:"
back in.

It is always safe to remove or replace a disk if it has no
open files. While in the Shell or in the Filer, there are no
open files and any disks may be removed or replaced. It is also
usually safe to do so whenever a program asks the user for a file
specification, but since this is not always true, it is safer to
allow BCPL/Z80 to prompt for new disks.

Limits

66

Here are collected all the size limits relating to devices,
volumes, and files:

1.

A volume name may be up to 7 characters long, not
including the final ":".

A file ﬁame may be up to 15 characters long.

There may be up to 77 files on a block volume.

Up to 8 files may be open simultaneously.

There are 350 blocks on a disk but; since the directory
occupies the first 10 blocks, a file can be no bigger
than 340 blocks long.

A text file is always an even number of blocks long. It
starts with a two-block header of <nul>s and the text is
padded at the end with more <nul>s. Thus, text files are
at least 4 blocks long.

The "CONSOLE:" keyboard buffer is 99 characters long.

67

3. The Shell

The Shell is the program which runs automatically when
BCPL/Z80 is started. The user may run other programs by typing
commands to the Shell. After each program finishes, the Shell is
run once again.

Startup

After the computer is turned on (or reset), put the system
disk in the left drive and then type:

go dc00

Within a few seconds, the BCPL/2Z80 logo will be displayed on the
screen. Within a few more seconds, the Shell will begin running.

Commands

While the Shell is running, it displays a menu of commands
at the top of the screen:

Shell: C(omp, D(ate, E(dit, F(ile, I(mprove, eN(code, eX(ec?

This menu lists most of the commands which may be used. Another
menu which lists the remaining commands is displayed when a "?"
is typed: :

Shell: A(ssem, L(ink, R(estart?

Any of these commands may be performed by simply typing the
corresponding letter, the one shown before the "(". Although
these letters are shown in upper case, either upper or lower case.
may be typed. The commands are described below.

It is safe to change disks while the Shell is running.
In this section, and in the others to follow, a number of

examples are given. The input that a user would type is
underlined.

68

A(ssem

The 'A(ssem' command is used to run the Z80 assembler. The
Assembler, which is not yet finished and so is not described,
will be in the file "*system.assmbler".

C(omp

The 'C(omp' command is used to run the BCPL Compiler. The
Compiler, described in section 6, is in the file
"*system.compiler™. The files "*system.c.parse",

"*system.c.trans", and "*system.c.error" are used by the
Compiler.

D(ate

The 'D(ate' command 1is used to set the system date. When
the BCPL/Z80 system is started, it displays 1its current date,
usually the date this command was last used. (The BCPL/Z80 does
not include a real-time clock, so the date must, unfortunately,
be set manually.) It is important to keep this date accurate,
since it is used by the system whenever a file 1is created or
modified.

When the command is used, the system displays the current
date and then asks for today's. If it is supplied, the date is
set. The year, the month, and the day must be entered in that
order. Any of them, however, may be omitted and those that are
will not change. If present, the year must be between 1901 and
1999, the day must be between 1 and 31, and at least the first
three letters (upper or lower case) of the month's name must be
given.

Example:

Shell: C(omp, D(ate, E(dit, F(ile, I(mprove, eN(code, eX(ec? a
Current date is 1983 Jun 30

New date? jul 2

Current date is 1983 Jul 2

Shell: C(omp, D(ate, E(dit, F(ile, I(mprove, eN(code, eX(ec?

69

E(dit

The 'E(dit' command is used to run the CHEF Text Editor.
CHEF, described 1in section 5, is in the file "*system.editor".
The file "*system.e.msg" is used by CHEF.

F(ile

The 'F(ile' command is used to enter the Filer subsystem.
The Filer, described 1in section 4, is part of the Shell, not a
separate program, _

I (mprove
The 'I(mprove' command is used to run the Improver. The
Improver, described in section 7, is in the file

"*system, improver".

L(ink

The 'L(ink' command is used to run the Linker. The Linker,
described in section 9, is in the file "*system.linker".

eN(code

The 'eN(code' command 1is used to run the Encoder. The
Encoder, described in section 8, is in the file "*system.linker".

R(estart

The 'R(estart' command is used to re-run the program which
was most recently run. This command is particularly handy when
used after a complicated 'eX(ec' command.

70

eX(ec

The 'eX(ec' command is used to run programs. The Shell asks
which file to run. 1In addition to the program name, the user may
specify the initial input and output streams for the program.
These streams are named in a manner similar to that used on UNIX.
The 1input file specification is prefixed by a "<" and the output
specification is prefixed by a ">". 1If either or both streams
are not redirected in this way, they are initially set to
"CONSOLE:".

When a system program (like the Compiler, for example) is
run using one of the above single-letter commands ('C(omp'), the
input and output streams are set to "CONSOLE:". The 'eX(ec'
command can be used to redirect input or output when running one
of these programs, if required. (Output redirection was used to
produce the examples in this document.) The file names of the

system programs were given with the descriptions of the commands
above,

Example:
Shell: C(omp, D(ate, E(dit, F(ile, I(mprove, eN(code, eX(ec? X

Execute what file? *hanoi <x:h.in.text >x:h.out.text

Shell: C(omp, D(ate, E(dit, F(ile, I(mprove, eN(code, eX(ec?

*system.startup

When the BCPL/Z80 system 1is started, it checks to see if
there is a file called "*system.startup". If so, this program is
run before the Shell. It is this StartUp program that displays
the BCPL/Z80 logo mentioned earlier. 1If desired, another program
can be renamed "*system.startup" and it will then be run whenever
the system is started.

71

4. The Filer

The Filer 1is a subsystem useful for manipulating files. It
is entered by typing the 'F(ile' Shell command.

The Filer is based on a similar program which is part of the
UCSD p-System, The current BCPL/Z80 version is much less
powerful, however. It is intended that this deficiency will be
corrected soon. In the meantime, although it is inconvenient to
do so, the UCSD Filer may be used for those commands not yet
implemented. Only those commands implemented so far are
described here.

Commands

While the Filer is running, it displays a menu of commands
at the top of the screen:

Filer: C(hange, L(ist, P(refix, R(emove, T(ransfer, Q(uit?

These commands are described below. In the examples, the system

volume is assumed to be "BCPLZ80:" and the default volume is
"WORK:".

It is safe to change disks while in the Filer.

C(hange

The 'C(hange' command is used to change the name of a file.
The Filer first asks which file is to be renamed and then for the
new name. When the new name is typed, it is not necessary to
give a volume name; it is ignored since the file stays -on the
same volume. - -

72

Example:
Filer: C(hange, L(ist, P(refix, R(emove, T(ransfer, Q(uit? c

Change what file? *hanoi
To what? system.startup
BCPLZ80:HANOI changed to SYSTEM.STARTUP.

Filer: C(hange, L(ist, P(refix, R(emove, T(ransfer, Q(uit?

L(ist

The 'L(ist' command is used to list the files on a volume.
The Filer asks for the name of a volume. The list which is then
displayed shows, for each file, its name, the date it was created
or last modified, the block number at which it starts, its length
in blocks, the number of bytes used in its last block, and its
type. (As explained earlier, BCPL/Z80 file types are either
"text" or "data", but files created under the p-System may have
other types.) Any unused parts of the disk (holes) are also shown
in the list together with their starting block number and length.
After this list are some statistics: the number of files on the
volume, the number of disk blocks used and unused, and the size
of the largest hole.

73

- Example:

Filer: C(hange, L(ist, P(refix, R(emove, T(ransfer, Q(uit? 1

List the directory of what volume? bcplz80:

BCPLZ80: 1983 Jul 25

SYSTEM.C.ERROR 1982 Jun 4 10 10 512 text
HEADER. B, TEXT 1983 May 19 20 18 512 text
SYSTEM. SHELL 1983 Jun 3 38 10 312 data

SYSTEM.E.MSG 1982 Oct 18 48 10 512 text
SYSTEM.STARTUP 1983 Jul 25 58 4 80 data
SYSTEM.RUNTIMEC 1983 Jul 25 62 32. 512 data
SYSTEM.ENCODER 1983 May 26 94 16 20 data

SYSTEM.LINKER 1983 May 26 110 3 12 data
SYSTEM.IMPROVER 1983 Jun 12 113 9 190 data
SYSTEM.EDITOR 1983 Jun 3 122 49 308 data
SYSTEM.COMPILER 1983 May 27 171 6 202 data

SYSTEM.C.PARSE 1983 May 27 177 19 60 data
SYSTEM.C.TRANS 1983 May 27 196 25 386 data
< unused > 221 129

13 files, using 211 blocks.

129 blocks unused; 129 in largest hole.

Filer: C(hange, L(ist, P(refix, R(emove, T(ransfer, Q(uit?

P(refix

The 'P(refix' command is used to set the name of the default
volume.. If a file specification given to 'FindInput' or
'FindOutput' does not 1include a volume or has a volume name of
":", it is considered to refer to the default volume. Initially,
the default volume is the same as the system volume.

Example:
Filer: C(hange, L(ist, P(refix, R(emové, T(ransfer, Q(uit? p

Prefix names with what volume? work:
New prefix is WORK:.

Filer: C(hange, L(ist, P(refix, R(emove, T(ransfer, Q(uit?

74

R{emove

The 'R(emove' command is used to destroy a file. The Filer
asks which file is to be removed.

Example:
Filer: C(hange, L(ist, P(refix, R(emove, T(ransfer, Q(uit? r

Remove what file? hanoi.s
WORK :HANOI .S removed.

Filer: C(hange, L(ist, P(refix, R(emove, T(ransfer, Q(uit?

T(ransfer

The 'T(ransfer' command is used to make a copy of a file.
The Filer first asks which file is to be transferred and then the
name of the copy. The copy may go to the same volume or to a
different one, and it may have the same name or a different one.

A text file may be displayed on the screen by tranferring it
to "CONSOLE:", and keyboard input (until an <etx> is typed) may
be put into a file by transferring to it from "CONSOLE:".

Example:
Filer: C(hange, L(ist, P(refix, R(emove, T(ransfer, Q(uit? t
Transfer what file? hanoi

To where? *system.startup[4]
WORK :HANOI transferred to BCPLZ80:SYSTEM.STARTUP.

Filer: C(hange, L(ist, P(refix, R(emove, T(ransfer, Q(uit?

Q(uit

The 'Q(uit' command is used to return to the Shell.

75

5. The CHEF Text Editor

CHEF is a general-purpose text editor suitable for the
creation and modification of both programs and documents. The
command language is described in The CHEF Editor.

CHEF is run by typing the 'E(dit' Shell command. It then
prompts for commands.

Only one command has not been implemented: 'QS'. As a
result, it is not possible to execute Shell commands from CHEF,
nor is it possible to temporarily leave CHEF and resume it later.

The BCPL/Z80 version of CHEF has the screen mode 'A'
command. In screen mode a number of special keys are used:

key function

<g-UA> cursor up

<g-DA> cursor down
<g-LA> cursor left
<g-RA> cursor right
<g-i> begin insert mode
<g-e> end insert mode
<g-d> delete character
<gs-I> insert line
<gs-D> delete line
<g-1> exit

<g-2> renew

<g-3> merge

<g-4> mark

<g-5> save

<g-6> ‘inject

where <g-UA> means that the 'up arrow' key on the keypad is typed
while the 'graphic' key is held down, <g-i> means that "i" is
typed with ‘'graphic' held, <gs-I> means that "I" is typed with
both 'graphic' and 'shift' held. For the last 6 functions, the
number keys on the top row should be used, not those on the
keypad. The prompt at the top of the screen while in alter mode

is a reminder of which keys are associated with these 6
functions:

>>g1-Exit,g2-Renew,g3-Merge,g4-Mark,g5-Save,g6-Inject<<

The system disk should never be removed from the drive while
CHEF is running.

Example:

Shell: C(omp, D(ate, E(dit, F(ile, I(mprove, eN(code, eX(ec? e
BCPL/Z80 Editor (CHEF)

Enter H for help (Q for quit)

>ef work:hanoi.b.text
488

...editing commands

>wf.

503

>gq

Shell: C(omp, D(ate, E(dit, F(ile, I(mprove, eN(code, eX(ec?

76

77

6. The BCPL Compiler

The Compiler translates BCPL programs into SLIM assembly
language. The language accepted by the Compiler corresponds
quite closely to that defined in the Draft BCPL Standard (1982
Dec). The standard header file can be included 1In a program by
means of the following get directive:

get "**header.b.text"

The procedures declared in the standard header are described in
more detail in The BCPL/Z80 Run-Time Library.

The Compiler is run by typing the 'C(omp' Shell command. It
then prompts for the name of the file containing the BCPL
program, and for the name of a file to write the SLIM text.
Usually, the BCPL file has a suffix of ".b.text" and the SLIM
file has one of ".s".

A BCPL program is compiled in two passes. 1In the first, a
parse tree is constructed corresponding to the program. A "." is
printed on the screen for each line of the program as it is
processed. Procedure names are also printed as their definitions
are reached. Also, as each get 1is . encountered, a message is
printed. In the second pass, the parse tree is used to generate
an equivalent SLIM program. Again, procedure names are printed,
and a "." 1is printed for each line of SLIM generated. The file
to be compiled may contain any number of BCPL sections.

Should the Compiler detect an error during either pass, an
error message will be displayed. The user then may type either
'C(ontinue' to allow the Compiler to resume, or 'Q(uit' to abort
the compilation and return to the Shell.

The system disk should never be removed from the drive while
the Compiler is running.

Example:
Shell: C(omp, D(ate, E(dit, F(ile, I(mprove, eN(code, eX(ec? c

BCPL/Z80 Compiler
Compile what file? work:hanoi.b.text
Into what file? work:hanoi.s

get *header.b.text

® 5 5 00000 000 08000 0 e s el e et ORI GOOE

STARTI ® ® o & 5 ¢ 5 » 0 0
HANOI * O 0 0 0 0
Tree size = 2304.

START...cevs

HANOI-.'.....I.
No errors detected..

Shell: C(omp, D(ate, E(dit, F(ile, I(mprove, eN(code, eX(ec?

78

79

7. The Improver

A SLIM assembly language program can usually be made both
smaller and faster by the Improver. It uses the technique of
peephole optimization to replaceé short sequences of instructions
by equivalent, but better, sequences. The degree of improvement
possible depends on the SLIM program, but typically the improved
program is 10% smaller and 5% faster. Because these gains are
rather modest, it is probably only worthwhile to improve debugged
and often-used programs.

The Improver is run by typing the 'I(mprove' Shell command.
It then prompts for the name of the file containing the SLIM
program to be improved, and for the name of a file to write the
improved program. Usually, the SLIM file has a suffix of ".s"
and the improved SLIM file has one of ".is".

Procedure names are printed on the screen as they are
processed. Also, a "." is printed for each 1line of SLIM text
written. The file to be improved may contain any number of SLIM
sections.

It is safe to remove any disk from its drive when a file
name is requested.

Example:
Shell: C(omp, D(ate, E(dit, F(ile, I(mprove, eN(code, eX(ec? i

BCPL/Z80 Improver
Improve what file? work:hanoi.s
Into what file? work:hanoi.is

START . veeveasns

HANOI .. ieevnveneasss

78 instructions read and 78 written.
1 successful pattern matches.

Shell: C(omp, D(ate, E(dit, F(ile, I(mprove, eN(code, eX(ec?

80

8. The Encoder

A SLIM assembly language program must be encoded as binary
object code bytes by the Encoder before it can be run.

The Encoder is run by typing the 'eN(code' Shell command.
It then prompts for the name of the file containing the SLIM
program to be encoded, and for the name of a file to write the
binary code. Usually, the assembly language file has a suffix of
".s" or ".is" and the binary file does not have a suffix.

Procedure names are printed on the screen as they are
processed. Also, a "." is printed for each 1line of SLIM text
read. The file to be encoded may contain any number of SLIM
sections.

It is safe to remove any disk from its drive when a file
name is requested.

Example:
Shell: C(omp, D(ate, E(dit, F(ile, I(mprove, eN(code, eX(ec? e

BCPL/280 Encoder
Encode what file? work:hanoi.is
Into what file? work:hanoi

START e e veeceess

HANOI . v vesevocoses

No errors detected.

91 words of SLIM code and 5 relocations.

Shell: C(omp, D(ate, E(dit, F(ile, I(mprove, eN(code, eX(ec?

81

9. The Linker

If a BCPL program has been organized as a number of
separately-compiled sections in separate files, the sections must
be linked together before the program can be run. It is not,
however, necessary to link the sections if they are already in
the same code file.

The Linker is run by typing the 'L(ink' Shell command. It
then prompts for the names of the files containing the SLIM
sections to be linked, and for the name of a file to write the
binary code. Usually, none of the files has a suffix.

It is safe to remove any disk from its drive when a file
name is requested.

Example:
Shell: C(omp, D(ate, E(dit, F(ile, I(mprove, eN(code, eX(ec? 1
BCPL/280 Linker

Input code file? doris:di

Input code file? doris:d2

Input code file? doris:d3

Input code file? doris:d4

Input code file?

4567 words of SLIM code and 224 relocations.
Output code file? doris:doris

Shell: C(omp, D(ate, E(dit, F(ile, I(mprove, eN(code, eX(ec?

82

10. The DORIS Text Formatter

DORIS is a program which formats documents in preparation
for printing them. Although it 1is simple to use, it is also
guite powerful. The use of DORIS 1is described in A Tutorial
Guide To DORIS (A Text Formatting Program).

DORIS 1is run by typing the 'eX(ec' Shell command and is in
the file "doris:doris™. It then prompts for the name of the file
containing the document to be formatted, and for the name of a
file to write the formatted document. It also prompts for the
name of a file to be used in constructing an index, but it is
only necessary to type a name if the document contains '.fil'
commands. Usually, the document file has a suffix of ".di.text",
the formatted file has one of ".do.text", and the index file has
one of ".dx.text".

It is safe to remove any disk from its drive when a file
name is reguested.

Example:
Shell: C(omp, D(ate, E(dit, F(ile, I(mprove, eN(code, eX(ec? X

Execute what file? doris:doris

BCPL/Z80 Text Formatter (DORIS)

Process what file? work:thesis.di.text
Into what file? work:thesis.do.text
Use what index file?

Shell: C(omp, D(ate, E(dit, F(ile, I(mprove, eN(code, eX(ec?

