
THE IMPLEMENTATION OF BCPL ON A MICROCOMPUTER

By

RONALD STEWART HAYTER

B . S c , The U n i v e r s i t y o f B r i t i s h C o l u m b i a , 1978

A THESIS SUBMITTED I N PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

i n

THE FACULTY OF GRADUATE STUDIES

(D e p a r t m e n t o f Computer S c i e n c e)

We a c c e p t t h i s t h e s i s a s c o n f o r m i n g
t o t h e r e q u i r e d s t a n d a r d

THE UNIVERSITY OF B R I T I S H COLUMBIA

O c t o b e r 1983

R o n a l d S t e w a r t H a y t e r , 1983

In presenting t h i s thesis i n p a r t i a l f u l f i l m e n t of the
requirements f o r an advanced degree at the University
of B r i t i s h Columbia, I agree that the Library s h a l l make
i t f r e e l y a v a i l a b l e f o r reference and study. I further
agree that permission for extensive copying of t h i s t h e s i s
f o r s c h o l a r l y purposes may be granted by the head of my
department or by h i s or her representatives. I t i s
understood that copying or pub l i c a t i o n of t h i s thesis
for f i n a n c i a l gain s h a l l not be allowed without my written
permission.

Department of Co^>u-f-<e*r" "SoV̂ g-̂ og

The University of B r i t i s h Columbia
1956 Main Mall
Vancouver, Canada
V6T 1Y3

Date m ^ , C M - *4

DE-6 (3/81)

i i

Abstract

BCPL/Z80 i s a complete system f o r the development of BCPL

programs. I t runs on a microcomputer based on the Z i l o g Z80

processor and c o n s i s t s of a number of independent programs

c o o r d i n a t e d by an o p e r a t i n g system. Among these programs are

in c l u d e d an e d i t o r , a compiler, and a te x t formatter, a l l of

which were designed f o r use on computers both f a s t e r and l a r g e r

than an 8 - b i t machine. The l i m i t e d resources of a microcomputer

made implementation of a stand-alone program development system

f o r a h i g h - l e v e l language c h a l l e n g i n g . T h i s document d e s c r i b e s

how t h i s task was accomplished.

i i i

Table of Contents

Chapter Page

1 . Introduction 1

2. Background 3
8-Bit Program Development Systems 3
BCPL on Microcomputers 4
SLIM Intermediate Machine 6
Zilog Z80 Processor 9

3. Overview of BCPL/Z80 11
Operating System 11
Program Development 12
F i l e System .12
Hardware 13

4. Implementation Issues 15
Operating System 15
Run-Time Library 17
Program Development F a c i l i t i e s 18
Interpretation vs Translation 20

5. The F i r s t SLIM Interpreter 23
Instruction Interpretation. 23
Traps 24
Input/Output 25
Performance 26

6. TC1: SLIM Threaded Code, Version 1 28
Threaded Code 28
UCSD p-code 29
Threaded SLIM 30
Inner Loop 32
Improving Size and Speed 33
Stati c vs Dynamic Frequencies.. 34
Input/Output 36

7. TC2: SLIM Threaded Code, Version 2..'. 37
Library Routines 37
Peephole Optimization 38
TC2 Instruction Set 41
Effectiveness of the Improver 44
Input/Output 44

8. Results 47
Benchmarks 47

iv

9. Conclusions 51

Bibliography 53

Appendix A: TC2 Code Improvement Rules.' ..55

Appendix B: TC2 Instruction Encodings 56

Appendix C: BCPL/Z80 User's Manual ..59

V

Acknowledgement

I would l i k e to thank John Peck, my supervisor, for - his

guidance and our many long discussions, and Harvey Abramson for

his comments on this document. I am also indebted to the authors

of some of the programs incorporated into BCPL/Z80: J E L Peck

(the compiler, the CHEF editor, the DORIS formatter), M A Maclean

(CHEF), J D Dyment (DORIS), M Richards (the compiler), and a

large number of others (the compiler).

1

J_. I n t r o d u c t i o n

A program development system i s the set of programs needed

f o r d e veloping programs i n a h i g h - l e v e l language. Normally t h i s

set of programs runs on a p a r t i c u l a r computer under some

op e r a t i n g system. At a minimum, t h i s set i n c l u d e s : a tex t

e d i t o r , f o r composing and c o r r e c t i n g programs and f o r w r i t i n g

documentation; and e i t h e r (depending on the h i g h - l e v e l language)

a compiler, f o r t r a n s l a t i n g programs i n t o executable form, or an

i n t e r p r e t e r , f o r executing programs. A l s o sometimes i n c l u d e d are

a few u t i l i t i e s : a t e x t formatter, f o r a r r a n g i n g documentation

on p r i n t e d pages; a l i n k e r , f o r combining the s e p a r a t e l y - c o m p i l e d

p a r t s of a program; a debugger, f o r t e s t i n g programs and

determining the cause of e r r o r s ; a p r o f i l e r , f o r l o c a t i n g

b o t t l e n e c k s i n the execution of a program; and perhaps a code

o p t i m i z e r , f o r improving the s i z e and speed of programs

a u t o m a t i c a l l y . BCPL/Z80 i s such a program development system,

running on a Z80-based microcomputer.

Chapter 2 p r o v i d e s background f o r the work on BCPL/Z80. I t

d e s c r i b e s a number of program development systems f o r

microcomputers. One such system, the UCSD p-System, i s used as a

y a r d s t i c k f o r comparison with BCPL/Z80 throughout t h i s document.

A l s o d e s c r i b e d are two implementations of BCPL f o r the Z80, the

SLIM intermediate language (a c e n t r a l element i n a number of BCPL

2

i m p l e m e n t a t i o n s a t the U n i v e r s i t y of B r i t i s h Columbia, i n c l u d i n g

BCPL/Z80), and the Z80 p r o c e s s o r . Chapter 3 g i v e s a b r i e f

d e s c r i p t i o n of the BCPL/Z80 hardware and s o f t w a r e . Chapter 4

d i s c u s s e s a number of i m p o r t a n t i m p l e m e n t a t i o n i s s u e s w h i c h were

r e s o l v e d d u r i n g the development of BCPL/Z80. In p a r t i c u l a r , the

reasons f o r c h o o s i n g t o i n t e r p r e t c o m p i l e d code r a t h e r than

t r a n s l a t e i t t o Z80 code a r e g i v e n . The next t h r e e c h a p t e r s

d e s c r i b e the t h r e e s u c c e s s i v e g e n e r a t i o n s of the i n t e r p r e t e r used

i n BCPL/Z80. Chapter 8 compares the performance of BCPL/Z80 w i t h

o t h e r systems. Chapter 9 c o n t a i n s some c o n c l u d i n g remarks.

I n c l u d e d as an appendix i s the u s e r ' s manual f o r the system.

3

2. Background

In t h i s chapter, a number of program development systems are

b r i e f l y d e s c r i b e d . A f t e r t h i s , s e v e r a l implementations of BCPL

are examined. F i n a l l y , the SLIM intermediate machine and the

Z i l o g Z80 processor are d e s c r i b e d .

8-Bit Program Development Systems

In the world of 8-bit microcomputers, there are a number of

program development systems f o r h i g h - l e v e l languages a v a i l a b l e

commercially. U n f o r t u n a t e l y , l i t t l e has been p u b l i s h e d about

them.

A number of these systems are based on the popular CP/M

o p e r a t i n g system from D i g i t a l Research [K i l d 8 l] . CP/M i s not a

p l e a s a n t system f o r naive users but, being one of the f i r s t

a v a i l a b l e , much software has been w r i t t e n f o r i t . From v a r i o u s

software houses are a v a i l a b l e powerful f u l l - s c r e e n e d i t o r s as

w e l l as c o m p i l e r s f o r many h i g h - l e v e l languages, i n c l u d i n g

P a s c a l , C, and PL/I. Most compilers produce n a t i v e machine code,

u s u a l l y f o r the I n t e l 8080 p r o c e s s o r . Some compilers a l s o emit

intermediate code meant for i n t e r p r e t a t i o n ; by doing so, compile

time i s shortened d u r i n g the e a r l y debugging stages when the

4

slower speed of program execution is unimportant.

Another program development system i s the UCSD p-System

[Over80], developed at the University of C a l i f o r n i a at San Diego.

It i s available for a wide range of 8- and 16-bit machines. The

p-System i s an easy-to-use system for developing Pascal programs,

although compilers are also available for FORTRAN, COBOL, BASIC,

and Modula-2. The full-screen editor, the compiler, and a number

of u t i l i t i e s are a l l integrated into an exceptionally pleasant

package. The p-System compiler produces intermediate p-code

which i s then interpreted. The lat e s t version of the p-System

(version IV.1) also allows p-code to be translated into native

machine code.

BCPL on Microcomputers

The language BCPL has been implemented on many computers of

a l l sizes. One reason for i t s being so widespread i s i t s

portable compiler [Rich7l], This compiler produces code for an

intermediate (hypothetical) machine: either OCODE or INTCODE.

Programs in the form of, say, OCODE can be e a s i l y transported by

writing an OCODE interpreter on the new machine. In p a r t i c u l a r ,

the compiler, which i s written in BCPL, can be transported in

t h i s way.

For most machines, however, this method of transporting

5

programs i s used only for bootstrapping, since interpreted

programs generally run much slower than those translated to the

native machine code. Once the compiler, in OCODE form, i s

running on the new machine, a translator from OCODE to the native

code is usually written. By t h i s use of an intermediate machine

code, BCPL can be implemented on a new machine by writing only an

interpreter and a t r a n s l a t o r — u s u a l l y much less work than writing

a whole compiler.

Recently, BCPL was implemented on a Z80-based microcomputer

under CP/M by Cowderoy and Wall i s [Cowd82]. They wrote an OCODE

interpreter and transported the compiler to their machine. They

did not, however, write a translator, apparently because of the

limited memory (36 Kbytes) in th e i r machine. Their compiler i s

12 Kbytes of OCODE, but i t i s 19.5 Kbytes when translated into

PDP-11 code; presumably i t would be even larger i f translated to

Z80 code. Rather than red.uce the amount of .memory l e f t for the

symbol table and the parse tree, they accepted a slower

compilation speed. They mentioned that their interpreted BCPL

compiler on the Z80 i s a factor of 8 slower than the

directly-executed PDP-11 version. Unfortunately, they neglected

to mention which model of PDP-11 they used.

BCPL CINTCODE, by Richards Computer Products [RCP81], also

runs under CP/M. Their compiler produces a compact form of

INTCODE rather than OCODE, but their system is also interpreted,

not translated into native machine code. BCPL CINTCODE i s a more

6

ambitious implementation than that of Cowderoy and Wallis,

including not only a compiler and an interpreter but also a

number of u t i l i t y programs, debugging aids, and support for

overlays and multi-tasking. Although the l i t e r a t u r e describing

BCPL CINTCODE does not include any quantitative performance

figures, a few comparisons are given:

A t y p i c a l BCPL program in CINTCODE requires about a t h i r d
of the storage of f u l l y compiled Z80 code.

and:

BCPL CINTCODE i s s i g n i f i c a n t l y more compact than UCSD
Pascal, and runs faster.

SLIM Intermediate Machine

As mentioned above, most BCPL compilers produce either OCODE

or INTCODE as their intermediate code. One exception i s a

compiler written at the University of B r i t i s h Columbia. This

compiler produces an intermediate code c a l l e d SLIM [Peck83].

The SLIM machine i s a hypothetical one, s p e c i f i c a l l y

designed for compiling BCPL. It has an accumulator, a stack, and

a number of special-purpose r e g i s t e r s .

The program counter (C-) register points to the next SLIM

7

instruction to be executed. It i s incremented as each

instruction i s executed but i t i s also changed by the 'jump' (J) ,

'jump i f true' (T), 'jump i f fa l s e ' (F), ' c a l l ' (C), and 'return'

(R) instructions.

The environment (E-) register points into the stack to the

parameters and l o c a l variables of a procedure; the parameters are

at negative offsets from the E-register, while the l o c a l

variables are at positive o f f s e t s . It is modified by the ' c a l l '

(C) and 'return' (R) instructions.

The high-point (H-) register points to the current top of

the stack. It i s incremented by the 'push' (P), and 'push then

load' (PL) instructions, and changed by the 'modify high-point'

(M), ' c a l l ' (C), and 'return' (R) instructions.

The global (G-) register points to the base of a vector of
c e l l s for BCPL global variables.

(The other two registers, the stack l i m i t (S-) and interrupt

(N-) r e g i s t e r s , are not important to this discussion.)

Most SLIM instructions i m p l i c i t l y involve the accumulator,

and most of these also e x p l i c i t l y involve an operand. For

example, in the following sequence of instructions:

LIE1 +5 SG101

8

the 'load' (L) instruction loads a value into the accumulator

from the f i r s t l o c a l variable of the current procedure, then the

'add' (+) instruction adds f i v e to the accumulator, and f i n a l l y

the 'store' (S) instruction stores the accumulator in global c e l l

101.

SLIM has been used to transport BCPL to several machines,

ranging in size from an Amdahl 470 to a Data General Nova and,

recently, to a 16-bit microcomputer based on the Intel 8088

processor. In a l l of these implementations, SLIM was translated

into the native machine code.

Because SLIM was designed for the representation of compiled

BCPL programs rather than as the instruction set of a real

machine, the encoding of SLIM instructions as b i t patterns i s not

defined. Such an encoding for a 16-bit machine has been

suggested (chapter 10 of [Peck83]) and i t was used in a

microprogrammed implementation of SLIM. This scheme encodes a

SLIM instruction as either one or two 16-bit words. It i s

designed so that the instructions that are encountered most

frequently (those with operands which are small constants or

small o f f s e t s from base registers) require only one word to

encode. Relatively few instructions require two words. Although

t h i s encoding for SLIM has been suggested, an implementor i s free

to choose other encodings.

9

Ziloq Z80 Processor

The Zilog Z80 [Zilo76] is an 8 - b i t microprocessor. It i s a

superset of the e a r l i e r (and once very popular) Int e l 8080 .

Because the Z80 i s a superset, i t has surpassed the 8080 in

popularity. However, i t has inherited an awkward architecture

and, despite i t s new instructions, the instruction set i s

incomplete.

The Z80. has three 16-bit general-purpose registers (BC, DE,

and HL) which a l t e r n a t i v e l y may be used as six 8-bit registers

(B, C, D, E, H, and L) . It also has an 8 - b i t accumulator (A),

and a number of other special-purpose re g i s t e r s , including a

program counter (PC), a stack pointer (SP), a pair of index

registers (IX and IY), and a flags register (F) for condition

codes.

Ten d i f f e r e n t addressing modes are defined. Unfortunately,

there are many r e s t r i c t i o n s placed on t h e i r use. Not a l l

registers may be used with some modes, and most instructions

allow only certain modes to be used. As a r e s u l t , A and HL are

the most useful registers and data must often be transferred

between these registers and the others.

Most arithmetic and l o g i c a l instructions involve the

accumulator i m p l i c i t l y . Some of the operations available are:

• 10

add, subtract, increment, decrement, compare, and, inclusive-or,

exclusive-or, s h i f t , rotate, set b i t , reset b i t , and test b i t .

As well as these 8-bit operations, a few 16-bit ones are also

available: add, subtract, increment, and decrement.

Data can be transferred between reg i s t e r s , or between

registers and memory, either 8 or 16 b i t s at a time, by the

'load' (LD) in s t r u c t i o n . Because of addressing mode

r e s t r i c t i o n s , however, i t is often necessary when tranferring

data between registers to use memory temporarily.

The program counter i s changed by the 'jump' (JP and JR),

' c a l l ' (CALL) and 'return' (RET) instructions. Jumps may be

re l a t i v e to the current PC (JR) or to absolute memory locations

(JP); c a l l s can only be to absolute locations. The PC i s pushed

on the stack by a c a l l and popped by a return. There i s no

addressing mode which e a s i l y allows an ar b i t r a r y word in the

stack to be referenced; only the topmost word may be accessed, by

'push' and 'pop'.

11

3. Overview of BCPL/Z80

BCPL/Z80 is a self-contained program development system

consisting of an operating system, a number of independent

u t i l i t y programs, and a f i l e system. This chapter gives an

overview of the f a c i l i t i e s a v a i l a b l e . The use of BCPL/Z80 i s

described more f u l l y in the user's manual [Hayt83] in Appendix C.

Operating System

A program c a l l e d the Shell allows the user to run any of the

u t i l i t y programs or any of the user's own. The user can select

the p a r t i c u l a r u t i l i t y from a menu of choices simply by typing a

single l e t t e r .

Programs normally have their standard input and output

directed to the console. However, l i k e the s h e l l of UNIX

[Ritc78], the BCPL/Z80 Shell allows them to be redirected to

f i l e s .

A subsystem of the Shell i s c a l l e d the F i l e r . The F i l e r i s

used for manipulating f i l e s : l i s t i n g , renaming, and destroying

f i l e s , and moving f i l e s from one disk to another. I t , too, i s

menu-driven.

12

Program Development

Programs and documents may be composed and modified with the

aid of the Editor. It includes the many features found in most

large-system line-oriented editors, but also allows full-screen

e d i t i n g . The Compiler translates BCPL programs into SLIM

assembly language. These SLIM programs usually can be made

smaller and faster by the Improver. The Encoder translates SLIM

assembly language programs • into executable code. The

separately-compiled sections of a program are merged by the

Linker. F i n a l l y , the Formatter prepares documents for prin t i n g .

F i l e System

The BCPL/Z80 f i l e system i s organized as a two-level

hierarchy. In the f i r s t l e v e l are two kinds of volumes:

character and block. Typical character volumes are the keyboard,

the screen, the printer, and the modem. Reading from or writing

to a character volume i s done one character at a time. The

character volumes are known by the names "CONSOLE:" (the keyboard

and the screen), "PRINTER:" (the p r i n t e r) , and "REMOTE:" (the

modem).

Block volumes are disks and, for these, information i s

13

transferred in blocks of 512 bytes at a time. The names of block

volumes are chosen by the user at the time that a disk i s

i n i t i a l i z e d . Block volumes are structured objects, subdivided

into f i l e s (the second l e v e l in the hierarchy) and a directory.

Just as with character volumes, characters may be read from or

written to f i l e s one character at a time. F i l e names are, of

course, chosen by the user.

Volume and f i l e names are used for opening streams to

character volumes or f i l e s . For example, an input stream from

the modem may be established by c a l l i n g 'Findlnput':

Findlnput ("remote:")

Si m i l a r l y , an output stream may be set up to a f i l e named

"OUT.TEXT" on the disk "WORK:" by c a l l i n g 'FindOutput':

FindOutput ("work:out.text")

Hardware

BCPL/Z80 was developed on an Exidy Sorcerer microcomputer

having a 2.1 MHz Z80 processor and 55 Kbytes of memory. The

computer has a b u i l t - i n keyboard and memory-mapped video screen,

as well as both printer and modem interfaces. Attached to the

computer i s a North Star mini-floppy disk system consisting of

1 4

two double-density drives, with a combined capacity of 350
Kbytes.

1 5

4. Implementat ion Issues

In implementing something as large as a program development

system for a high-level language, many issues must be resolved.

This chapter discusses how they were resolved for BCPL/Z80.

Operating System

Much of the early development of BCPL/Z80 was done using the

UCSD p-System (version 1.5). Superb as i t i s as a program

development system, the p-System was judged to be unsuitable as a

host for BCPL/Z80 for several reasons. The p-System occupies

about one-third of memory, leaving only 40 Kbytes for user

programs. Also, the f i l e system cannot be accessed by a Z80

assembly program; a l l f i l e manipulation must be done by Pascal

code.

The only other operating system available was a primitive

one c a l l e d the North Star Disk Operating System (DOS). DOS i s

much smaller than the p-System: only 4 Kbytes. It does have an

assembly language interface to i t s f i l e system but the f i l e

system i t s e l f i s very crude compared to that of the p-System. In

fact, i t consists of only three procedures: one to read a disk

directory and locate a f i l e name in i t , another to write a

16

d i r e c t o r y back on the d i s k , and the l a s t to read or w r i t e a

number of d i s k s e c t o r s beginning at a given s e c t o r . I t i s l e f t

t o the programmer to supply procedures which a l l o c a t e space on

the d i s k f o r f i l e s , open and c l o s e f i l e s , and read and w r i t e

c h a r a c t e r s . DOS p r o v i d e s l i t t l e i n the way of support f o r

a p p l i c a t i o n programs and, f o r t h i s reason, i t too was r e j e c t e d .

A f t e r the a v a i l a b l e o p e r a t i n g systems were r e j e c t e d , i t was

decided to w r i t e a new one i n BCPL. T h i s simple o p e r a t i n g system

i s f o r a s i n g l e user, and i s very s i m i l a r to the p-System. I t

was not only modelled a f t e r the .p-System, but i t a l s o has

compatible d i s k d i r e c t o r y and f i l e s t r u c t u r e s . T h i s

c o m p a t i b i l i t y was p a r t i c u l a r l y important before BCPL/Z80 had a

f u l l - s c r e e n e d i t o r . Because of i t , f o r example, programs c o u l d

be composed using the p-System e d i t o r and compiled with the

BCPL/Z80 Compiler.

UNIX was another i n f l u e n c e on the design of the BCPL/Z80

o p e r a t i n g system. The S h e l l s of both systems are simply user

programs (although r a t h e r s o p h i s t i c a t e d user programs) and so may

be r e p l a c e d with others i f d e s i r e d . The other u s e f u l idea

borrowed from UNIX i s that of the r e d i r e c t i o n of the standard

input and output of a program. R e d i r e c t i o n i s not p o s s i b l e i n

the e a r l y v e r s i o n s of the p-System, but t h i s d e f i c i e n c y has been

c o r r e c t e d i n the l a t e s t v e r s i o n .

Another p o s s i b l e host f o r BCPL/Z80 might have been CP/M. I t

17

i s almost as small as DOS and yet i t has the extensive f i l e

system interface that DOS lacks. When a decision had to be made,

however, this operating system was not available for the computer

used. Although CP/M i s now available, the BCPL/Z80 operating

system works well and i s easier to use. Adapting BCPL/Z80 to run

under CP/M would l i k e l y be a serious undertaking, but i t might be

attempted in the future.

Run-Time Library

One of the distinguishing c h a r a c t e r i s t i c s of BCPL i s that i t

i s a small language. Many of the f a c i l i t i e s that are b u i l t into

other languages, such as input/output and storage a l l o c a t i o n , are

ordinary procedures in BCPL. The proposed draft BCPL standard

[Eage82] defines a large number of procedures which might be

included in the run-time l i b r a r y .

Many of these procedures are present in BCPL/Z80, including

the following: the opening and closing of streams to f i l e s ,

devices, and in-memory character strings; the reading and writing

of single characters or ar b i t r a r y numbers of characters; the

reading and writing of formatted text; the positioning of streams

to a r b i t r a r y points; several s t r i n g processing operations; the

dynamic a l l o c a t i o n of memory from the stack or a heap; and the

c a l l i n g of assembly language procedures. There are, in addition

to these standard ones, a number of other procedures: for the

18

renaming and destroying of f i l e s ; for the positioning of the

cursor on the screen of the console; and for the loading and

unloading of program overlays. An optional l i b r a r y permits the

use of coroutines and multi-tasking. A l l except a very few are

written in BCPL rather than Z80 assembler, making implementation

quick and modification easy.

The BCPL/Z80 run-time l i b r a r y was also influenced by the

UCSD p-System. As mentioned in the previous section, the.disk

d i r e c t o r i e s and f i l e s used by BCPL/Z80 are compatible with those

of the p-System. In addition, the l i b r a r y was designed to be no

more machine-dependent than the p-System.

The p-System runs on many d i f f e r e n t machines. It i s e a s i l y

portable because i t r e l i e s on only a few machine-dependent

procedures (not, of course, including the p-code interpreter

which i s written in the assembly language of the processor).

These procedures read or write disk sectors, and read characters

from or write characters to the console, the p r i n t e r , and the

modem. These I/O procedures together with code which i n i t i a l l y

loads the p-System into memory are a l l that must be changed to

adapt the p-System to another machine (having the same

processor). BCPL/Z80 r e l i e s on these same machine-dependent

procedures and so should be as portable as the p-System.

However, t h i s claim has not yet been tested.

19

Program Development F a c i l i t i e s

An author of a program development system for BCPL begins

with a head s t a r t : BCPL was designed with p o r t a b i l i t y in mind,

and a number of large and portable programs have been written in

BCPL.

The BCPL/SLIM compiler i s one such program. It has been

transferred to a number of d i f f e r e n t machines at the University

of B r i t i s h Columbia. What i s more, i t i s capable of running on

machines with r e l a t i v e l y small memories. It compiles programs in

a few d i s t i n c t passes and the code for each pass needs to be

present in memory only during that pass. To further save memory,

the i nternal form of the program (the parse tree plus the symbol

table) may reside in a disk f i l e rather than in memory.

The CHEF text editor [Macl8l] i s written in BCPL. It has

many powerful operators (commands') including 'alter' which allows

f u l l - s c r e e n e d i t i n g . CHEF was also designed to be portable

[Peck8l]. Its memory requirements are modest because CHEF uses a

disk f i l e to hold the text being edited. For computers with very

small memories, the code for some of the less commonly-used

operators can be put into overlays which are only brought into

memory when needed.

The DORIS text formatter [Dyme82] i s another BCPL program.

It i s quite powerful yet i t i s small and easy to use. DORIS i s

20

also portable, but largely because i t uses standard BCPL and i s

not big enough to require overlays or temporary disk f i l e s .

With these portable programs available and working, i t was

decided to use them as the heart of BCPL/Z80. Since the compiler

produces a SLIM assembly language f i l e , the only missing

component needed was a program to put such a f i l e into executable

form: either a SLIM assembler or a SLIM-to-Z80 translator.

Interpretation vs Translation

Perhaps the two biggest obstacles to successfully

implementing a program development system on an 8-bit

microcomputer are the slow speed of the processor and the small

size of the memory. BCPL/Z80 was developed on a machine with a

2.1 MHz Z80 processor and 55 Kbytes of memory. Much e f f o r t ,

therefore, was expended making the system small enough to f i t yet

fast enough to be useful.

An early (and important) decision was to interpret SLIM

rather than translate i t to Z80 machine code. Two considerations

decided the issue in favour of interpretation: the expected size

of BCPL/Z80 programs, and the expected speed of BCPL/Z80.

The more important consideration was s i z e . The BCPL

compiler and the CHEF editor, the main components of BCPL/Z80,

21

are large programs. Thus i t was important to ensure that they

would be small enough to f i t in memory. Using the SLIM encoding

for a 16-bit machine mentioned in Chapter 2, the compiler was

estimated to be 25 Kbytes long and CHEF 26 Kbytes. These

estimates do not include the memory needed for data structures;

each requires several thousand more bytes and both can make use

of a l l available memory to improve performance.

The translation of SLIM to Z80 machine code i s , in a sense,

easy. SLIM i s a higher-level machine than the Z80 and so almost

every SLIM instruction must be translated into many Z80

i n s t r u c t i o n s . Consequently, to keep the size of translated

programs reasonable, i t i s necessary to place the Z80

instructions corresponding to most SLIM instructions into

procedures. The Z80 code generated for a SLIM instruction is

then (usually) a load of the operand value into a register,

followed by a c a l l to the procedure implementing the in s t r u c t i o n .

If t h i s simple scheme were used, a translated program would be

roughly three times the size of the encoded program. For small

programs, t h i s i n f l a t i o n in size could be j u s t i f i e d by the

increased speed of execution. Programs as large as the compiler

and CHEF, however, would simply be too large to f i t into memory.

A more sophisticated algorithm might be able to translate

programs into a number of bytes comparable to the 16-bit

encoding, but t h i s p o s s i b i l i t y was not explored.

The other consideration was speed. An interpreted program

22

i s several times slower than a translated one. However, on a

microcomputer, the absolute speed of a program i s rarely

important. What i s important is whether the program i s fast

enough to do i t s job without annoying the user. The example

provided by the UCSD p-System showed that an interpreted system

could be s u f f i c i e n t l y fast. Almost the entire p-System,

including both the compiler and the editor, are Pascal programs

translated to p-code and interpreted. The speed of these

programs i s impressive and c e r t a i n l y adequate.

Together, these two considerations lead to writing a SLIM

interpreter for BCPL/Z80. A goal has been to equal (or surpass)

the small size and high speed of the p-System. The next three

chapters d e t a i l the pursuit of t h i s goal.

23

5. The F i r s t SLIM Interpreter

The f i r s t SLIM interpreter .on the Z80 evolved considerably

during i t s l i f e t i m e . O r i g i n a l l y , i t was written e n t i r e l y in UCSD

Pascal. As might be expected of an interpreter which was i t s e l f

being interpreted, i t was very slow. Its speed was improved by

about 20 times by recoding most of i t in Z80 assembly language.

It was, however, s t i l l quite slow when compared with p-code. It

was eventually abandoned when i t seemed that i t s performance

could not be improved except by using an e n t i r e l y d i f f e r e n t

approach.

Instruction Interpretation

This f i r s t interpreter used the suggested encoding for a
16-bit machine. Interpretation of each instruction consisted of
several steps:

1. determine the type of the operand of the instruction

2. calculate the modified operand, leaving the C-register

pointing to the next instruction

3. determine the type of the opcode of the instruction

24

4. jump to the appropriate service routine

5. return to step 1.

Traps

Almost; a l l of the interpreter was written in assembly

language. The part written in Pascal was responsible for

i n i t i a l i z a t i o n and for handling exceptional circumstances. After

loading a SLIM program into memory, the Pascal part c a l l e d the

assembly procedure 'Execute' which interpreted SLIM instructions

repeatedly.

'Execute' returned to the Pascal part, an operation known as

trapping, only when something exceptional occurred. A trap could

occur for a number of reasons including dividing by zero,

executing an i l l e g a l i n s t r u c t i o n , overflowing the SLIM stack,

referencing a bad memory address, c a l l i n g a missing global

procedure, reaching a user-specified breakpoint, and executing

the 'quit' i n s t r u c t i o n .

Recognizing a global procedure which had not been loaded

into memory was accomplished by setting a l l of the c e l l s in the

SLIM global vector i n i t i a l l y to negative numbers. The c e l l s

corresponding to the global procedures which were later loaded

25

would contain the addresses of the procedures, always positive

numbers. Other c e l l s would remain negative. The service routine

for the ' c a l l ' i nstruction checked whether the address of the

c a l l e d procedure was negative and, i f so, i t caused a trap.

To make i t easier to determine which p a r t i c u l a r global

procedure was missing, the values i n i t i a l l y put into the c e l l s

were the complements of the global c e l l numbers. When such a

trap occurred, the number of the missing global procedure was

then simply the complement of the C-register.

Input/Output

As mentioned in the previous chapter, one of the problems

with using the p-System as a host operating system i s that i t

provides only a Pascal interface to i t s f i l e system; f i l e s cannot

be accessed from assembly language. This problem was overcome by

making use of the trap for missing global procedures.

For most kinds of traps, the Pascal part of the interpreter

displayed the cause of the trap on the console and waited for a

command to be typed. However, i f the trap was the result of a

missing global procedure, and i f the missing procedure was one of

a small set, the trap was treated d i f f e r e n t l y : not as an error

but rather as a request.

26

I n i t i a l l y , the only procedures in t h i s set were 'RdCh' and

'WrCh'. In response to traps for these BCPL procedures, the

interpreter performed the corresponding Pascal operations, 'Read'

and 'Write', on the console. Later, f i l e input/output was added,

with Pascal array indexes serving as BCPL stream numbers.

'Findlnput' and 'FindOutput' were mapped into 'Reset' and

'Rewrite', respectively, and both 'EndRead' and 'EndWrite' were

implemented by 'Close' (a UCSD Pascal extension). 'Selectlnput',

'SelectOutput', 'Input', and 'Output' manipulated the indexes.

This technique of using the trap for missing global

procedures proved to be so useful that later versions of the

interpreter adopted i t . When the p-System was abandoned, these

traps were used as a way to give BCPL names to (a very few)

procedures written in assembly language.

Performance

Despite the fact that most of the interpreter was written in

assembly language for the sake of speed, compared to p-code t h i s

interpreter was s t i l l slow: a p-code program was more than twice

as fast as an equivalent SLIM program. By manually counting Z80

instructions, i t was determined that during the interpretation of

some of the most common SLIM instructions (loads and stores)

about half of the execution time of an instruction was spent in

decoding (steps 1 and 3 above). Decoding was a time-consuming

27

procedure because the Z80 i s not well suited to extracting

a r b i t r a r y groups of bi t s from a 16-bit word. Furthermore, to

determine the opcode type of an instruction requires sequentially

testing as many as five such groups of b i t s , and the operand type

may require another two.

Some speed improvement l i k e l y could have been achieved by

streamlining the code of the interpreter further. However, i t

was decided instead that a d i f f e r e n t encoding of the SLIM

instructions might be better suited to the l i m i t a t i o n s of the

Z80. The technique known as threaded code [Bell73] was t r i e d in

the second SLIM interpreter with great success. Threaded code,

also used in the p-code interpreter, i s described in the next

chapter.

28

6. TC1 : SLIM Threaded Code, Version j _

The f i r s t SLIM interpreter based on threaded code (explained

below) was c a l l e d TC1. The use of threaded code helped reduce

the overhead of instruction decoding. As a r e s u l t , the i n i t i a l

implementation of the threaded code interpreter was 30 per cent

faster than the interpreter using the standard encoding.

Fine-tuning further increased the speed of TC1 u n t i l i t was twice

as fast, within 15 per cent of the speed of p-code.

Threaded Code

A program compiled to threaded code consists merely of a

sequential l i s t of addresses, each possibly followed by data

words. The addresses are those of l i b r a r y routines which perform

operations such as addition, m u l t i p l i c a t i o n , function c a l l i n g ,

and array indexing. The data words are the (constant) arguments

of the l i b r a r y routines. Interpretation of threaded code

involves the following steps:

1. fetch the address which i s in the word pointed to by the

program counter (PC) of the threaded code machine

2. increment the PC

29

3. jump to the l i b r a r y routine at the address just fetched

4. jump back to step 1.

The f i r s t three steps form the inner loop of the interpreter

and the jump of step 4 i s placed at the end of each l i b r a r y

routine. On the PDP-11, the inner loop is p a r t i c u l a r l y simple;

i t requires only a single i n s t r u c t i o n :

NEXT: JMP @(R) +

where R i s the program counter of the threaded code machine.

Following an address of a l i b r a r y routine in the threaded

code may be data words. Before i t jumps back to 'Next', the

routine fetches these values and increments the program counter.

UCSD p-code

The p-code used in the UCSD p-System i s a variation of

threaded code. The p r i n c i p a l difference i s that a p-code program

consists of a l i s t of of f s e t s rather than addresses. These

offs e t s are used in looking up in a table the addresses of the

l i b r a r y routines. The advantage of this scheme i s that the

l i b r a r y routines may be modified without the need for recompiling

30

a l l Pascal programs; only the table changes, not the threaded

code. Since a p-code opcode i s not a machine address but rather

an index into a r e l a t i v e l y small table, opcodes were defined to

be single bytes, allowing 256 l i b r a r y routines.

A further difference between threaded code and the p-code

var i a t i o n i s that a number of opcodes have an i m p l i c i t data

value. For example, the f i r s t 128 opcodes push a small integer

constant (the opcode value i t s e l f) onto the p-machine stack,;

thereby avoiding the need for an e x p l i c i t data value for t h i s

very common operation. Because of t h i s technique, p-code

programs are very compact and they are probably faster than they

would otherwise be.

Threaded SLIM

Reducing the overhead of instruction decoding required

overcoming two bottlenecks: the extraction of groups of b i t s

within a word, and the sequential testing of several values. The

f i r s t problem was solved by using only whole bytes or words for

both opcodes and operands, the second by performing a multi-way

jump based on a single value.

SLIM instructions can be divided into two classes, here

c a l l e d A and B. Class A instructions take an operand and have

the form:

31

<opcode> <operand>

Class B instructions do not take an operand and so have the
simpler form:

<opcode>

The 'LIEn' instruction i s an example from class A and 'R' i s one

from class B. To make i t easier to encode SLIM using threaded

code, class A instructions were s p l i t into two separate

instructions, one to load the modified operand into a temporary

work regi s t e r , the W-register, and the other to use the value in

the W-register. For example, the 'LIEn' instruction i s replaced

by 'WIEn' and 'LW'. (By coincidence, t h i s idea was conceived

independently by another group [Macl82] at about the same time.)

The new W-register instructions ('Wn', 'Win', 'WCn', 'WICn!,

'WEn', 'WIEn', 'WGn*, 'WIGn', 'WH', and 'WIH') are class C, and

the instructions which take the W-register as the operand form

class D.

The instructions in classes B and D have no e x p l i c i t

operands. Of the class C instructions, a l l but 'WH' and 'WIH'

have a raw operand. To simplify decoding, an entire byte was

used for each opcode. The size of SLIM programs was reduced by

providing class C instructions both for raw operands which can be

represented in one byte and those which need a word. In t h i s

32

way, much of the information that the e a r l i e r interpreter

obtained by extracting and testing instruction f i e l d s (namely,

whether the raw operand was a byte or a word, the register by

which the operand was to be modified, and whether in d i r e c t i o n was

to be performed) was instead i m p l i c i t l y encoded in the opcode.

Decoding was thus reduced to a simple process of jumping to one

of a number of l i b r a r y routines, each of which knew the form of

the expected operand.

This version of threaded SLIM code was quite similar to

p-code. A major difference between them was that not a l l of the

256 possible values of an opcode byte were defined for SLIM. A

SLIM opcode s t i l l served as an offset into a table, but instead

of that table containing the l i s t of addresses of l i b r a r y

routines, the table contained a l i s t of jumps to those addresses.

Putting jump instructions in the table allowed the inner loop to

be shorter than i t would have been otherwise.

Inner Loop

The size of the inner loop i s very important to the o v e r a l l

speed of an interpreter. It was not possible to implement the

inner loop on the Z80 as a single i n s t r u c t i o n , but i t was

nonetheless quite short:

NEXT: LD A,(BC)
INC BC

; Fetch the opcode byte.
; Increment SLIM C-register.

33

LD
LD
JP

H,LRPAGE
L, A
(HL)

Calculate location in table
of jump to l i b r a r y routine.

Jump to that jump.

After much experimentation, the BC register pair was selected as

the threaded code program counter (the SLIM C-register). The

table of jumps indexed by the opcode byte was located on a page

(256-byte) boundary so that the address of the required jump

could be formed in HL by concatenating the page number with the

opcode, instead of adding the opcode to the s t a r t i n g address of

the table.

This inner loop uses 28 machine cycles plus 10 for the jump

in the table plus a further 10 for the jump at the end of each

l i b r a r y routine. Forty-eight machine cycles translate into 23

microseconds for a Z80 with a 2.1 MHz clock.

Improving Size and Speed

When programs were encoded using the threaded code described

so far, they were about 30 per cent faster than when they were

encoded conventionally. However, they were also about twice as

large.

A Z80 jump instruction i s three bytes long and so, using the

opcode byte as an offset into the jump table, there could be at

most 86 l i b r a r y routines (86 = C e i l i n g (256 div 3)). There are

10 instructions in class B (not counting '0', 'L$', and 'S$'), 18

34

in class C, and 31 in class D. I n i t i a l l y only the 59 l i b r a r y

routines for these instructions were defined. Soon a f t e r , SLIM

programs were made both smaller and faster by defining the 27

remaining possible l i b r a r y routines.

Library routines were defined for the most common pairs of

opcodes and operands; in other words, p a r t i c u l a r class A

instructions were re-introduced and given opcodes. The SLIM code

produced by the Compiler was analyzed so that the opcodes could

be allocated to the most frequently used class A instructions. A

t o t a l of over 10,000 instructions were c o l l e c t e d from a number of

BCPL programs, including the Compiler i t s e l f , the CHEF editor,

and the BCPL/Z80 run-time system. It was found, for example,

that 10 per cent of a l l instructions were 'LIEb' (with 'b'

between -8 and 247), and that 'CIGb' (with 'b' between 0 and 255)

made up another 7.5 per cent. The 27 class A instructions which

eventually were chosen accounted for 82 per cent of a l l

instructions. A l l o c a t i n g an opcode to each, thereby saving a

byte for each use, reduced the size of threaded code programs to

within 15 per cent of the conventional encoding. These changes,

plus some fine-tuning of the interpreter code, also brought the

speed to within 20 per cent of p-code.

Static vs Dynamic Frequencies

The 27 c l a s s A instructions that were allocated opcodes were

35

chosen because they were the most common opcode/operand pairs in

the programs analyzed. The number of times an instruction

appears in a piece of code does not necessarily r e f l e c t how often

i t w i l l be executed, however. As an experiment, the TC1

interpreter was modified to count the number of times each SLIM

instruction was executed. Three programs were measured: the

Compiler, CHEF, and DORIS. It was discovered that the

instructions that were dynamically most frequent were usually

those that were also s t a t i c a l l y most frequent, although there

were a few exceptions.

A large number of 'L@n' instructions were counted but they

were not executed very frequently. The 'L@n' instruction i s most

often used in two contexts: i n i t i a l i z i n g the global c e l l s

associated with global procedures, and passing format strings to

'WriteF'. The programs analyzed had many global procedures but

the global c e l l s are i n i t i a l i z e d only once, and the programs did

not make much use of 'WriteF'.

Also common to the three tests were disproportionately large

numbers of executions of the '=H' and '>H' instructions. It was

found that these instructions were used in both 'RdCh' and 'WrCh'

for f i l e streams. A l l three programs used these procedures

heavily.

Selecting 27 class A instructions to optimize based on

s t a t i c counts results in smaller object programs. In contrast,

36

the use of dynamic counts results in faster object programs.

Except for a few anomalies, however, the two counts gave the same

res u l t s : 23 of the 27 most often executed class A instructions

were also among the 27 most often counted.

Input/Output

Shortly after the threaded code interpreter was working, the

BCPL/Z80 operating system was written and i t became the new host.

The only parts of the system not written in BCPL were a few

simple assembly language device drivers and the interpreter

i t s e l f . These device drivers were made to look l i k e BCPL

procedures by using the trap for missing global procedures. When

one of these drivers was c a l l e d , the interpreter intercepted the

trap and c a l l e d the appropriate assembly language procedure.

After the driver was finished, i t returned to 'Next'.

37

7. TC2: SLIM Threaded Code, Version 2

Despite the large improvement in speed gained by using

threaded code, TCI did not quite achieve the goal of equalling

the performance of the p-code interpreter. The next (and f i n a l)

interpreter, TC2, is not as r a d i c a l l y d i f f e r e n t from TC1 as TC1

was from i t s predecessor. However, TC2 is faster than the p-code

interpreter and SLIM programs for i t are smaller than when the

standard encoding i s used.

Library Routines

The performance of TC1 (both in speed of interpretation and

in size of object programs) was greatly improved by using the 27

empty sl o t s in the jump table for l i b r a r y routines for class A

instructions. There was not room, unfortunately, for other

common opcode/operand combinations such as 'L%IEb', '<=b', or

'=IEb*.

One idea that was considered was to replace the jump table

with an array of l i b r a r y routine addresses, as i s used in the

p-code interpreter. This method would allow 128 or 256 l i b r a r y

routines to be defined. The idea was rejected because the inner

loop would also be considerably slower.

38

Eventually, i t was realized that one of the jump table

entries could be used as an escape. The 'Escape' l i b r a r y routine

is very similar to 'Next' except that the byte that follows the

escape byte i s used as an index into a second jump table. The

inner loop overhead for an opcode in the second table ('Next'

plus 'Escape' plus three jumps) i s 83 machine cycles, or 40

microseconds.

By removing the l i m i t of 86 l i b r a r y routines in TC1, i t was

possible in TC2 to make a number of improvements in performance.

One improvement was to move rarely executed SLIM instructions,

such as '~', '==W, and 'X', to the second jump table. The freed

s l o t s were then used for common class A instructions.

Another improvement was to define l i b r a r y routines for

instructions that . frequently have p a r t i c u l a r raw operands. TC2

has opcodes for such instructions as 'LO', 'L1', 'L-1', 'LIE-3',

'LIE1', 'SET, '+1', '-1', 'L!0', 'L%0', 'M-1', and 'M-2'.

Defining these l i b r a r y routines increased the size of the

interpreter somewhat, but i t also s i g n i f i c a n t l y reduced the size

of SLIM programs and increased t h e i r speed.

Peephole Optimization

It was necessary once again to count SLIM instructions to

39

determine which should be moved into the second jump table, and

which opcode/operand combinations should be allocated s l o t s in

the f i r s t . A t o t a l of over 28,000 instructions were coll e c t e d

t h i s time, a l l from programs running under BCPL/Z80. Instead of

counting the instructions produced d i r e c t l y by the Compiler,

however, the Improver (mentioned in chapter 3) f i r s t processed

the SLIM programs.

The Improver uses the technique of peephole optimization,

replacing short sequences of instructions with others which are

better (shorter or faster or both). The Improver was inspired by

the peephole optimizers of Tanenbaum et a l [Tane82] and Sweet and

Sandman [Swee82], but i t is simpler than either. Because the

Compiler performs some of i t s own peephole optimizations, many of

the more sophisticated c a p a b i l i t i e s of those optimizers were not

needed.

Instructions are replaced according to rules in a data f i l e .

(Appendix A contains the complete l i s t of rules used by the

Improver.) Each rule consists of two parts: a pattern and a

replacement. If the pattern part of a rule can be matched

against a sequence of instructions, the replacement part of the

rule i s substituted for them. For example, the following rule:

[Q => CIG98 DO]

replaces a 'Q' instruction with a c a l l to global routine 98,

40

which i s the routine 'Stop' on BCPL/Z80.

Most characters in a rule stand for themselves. The more

interesting rules include pattern variables. The following rule

replaces, for example, '+-1' with '-1':

[+-r => -r]

The 'r' matches a raw operand: either a character constant or a

(possibly signed) integer. The variables 's' and ' t ' also match

raw operands.

Another three variables, 'm', 'n', and 'o', match modified

operands: 'H' , 'IH', or raw operands possibly preceded by '<§',

'I§', 'E', 'IE', 'G', or 'IG'. The next example:

[~=m Tn => =m Fn]

converts a test for inequality to one for equality. Once a

variable has matched a sequence of characters, i t stands for

those characters anywhere i t appears l a t e r in the pattern or the

replacement.

The f i n a l variable, 'q', matches a quoted s t r i n g . The

following two rules delete the debugging code that some versions

.of the BCPL compiler produce:

41

[$q Ddr => $q]
[@r:DO DO Dq =>]

T C 2 Instruction Set

Before instructions were allocated l i b r a r y routines, they

were processed by the Improver. This additional step made the

selection of instructions somewhat easier.

One way in which improvement helped was that i t reduced the

number of d i f f e r e n t commonly-used instructions. For example,

SLIM has six comparison operators (' =W , '~=W, ' <W , '<=W,

'>W, and '>=W) and two conditional jumps ('TW and 'FW).

Since almost a l l comparisons are followed by a jump, and since

the objects being compared are usually simple variables or

constants, most instruction sequences involving comparisons could

be rewritten using only two of the operators: * =W and '<=W.

The following rules accomplish t h i s task:

[Lm >=n => Ln <=m]
[<m Fn => >=m Tn]
[<m Tn => >=m Fn]
[>m Fn => <=m Tn]
[>m Tn => <=m Fn]
[~=m Fn => =m Tn]
[~=m Tn => =m Fn]

After a program has been processed by the Improver, there are

very few occurrences of the other four comparison operators.

Thus, the jumps to their l i b r a r y routines were put into the

second jump table.

42

Closely related was the reduction in the number of

commonly-used combinations of opcodes and operands. The

following rules, for example:

[Lr +Im => Lim +r]
[Lr L!Im => Lim L!r]

try to ensure that the operands of '+W and 'L!W are constants
whenever possible.

The Improver also allowed two small changes to be made to

the SLIM machine. The SLIM document [Peck83] does not specify

the behaviour of 'TW and 'FW when the accumulator contains a

value other than 0 ('False') or -1 ('True'). For TC2, 'False' i s

defined to be 0 and 'True' i s any non-zero value. This

r e d e f i n i t i o n allows the following rules to be used, speeding up

SLIM programs and making them smaller:

[=0 Tm => Fm]
[=0 Fm => Tm]

(Recall that most '""=0' instructions are translated to '=0' by

the rules given e a r l i e r .) Before the Improver was used, the

programs analyzed contained over 200 occurrences of '=0'. After

improving, only 7 remained.

The other change was the addition of a pair of instructions

to increment and decrement a var i a b l e . It is quite common in a

43

BCPL program to add or subtract one from a variable, and the step

size in most 'for' commands i s also 1 or -1. These new

instructions are put into a program by the Improver:

[LIm +1 Sm => +:m LIm]
[LIm -1 Sm => -:m LIm]

(Note that the variable 'm' appears twice in the pattern part of

the rule.) '+:W and '-:W do not a f f e c t the accumulator and i t

is necessary to e x p l i c i t l y load the result afterwards so that the

same effect as before i s achieved. In many cases, however, the

result i s not needed. These rules catch most of these cases:

[Lm Ln => Ln]
[Lm @r:Ln => @r:Ln 3
[Lm Cn DO => Cn DO]

The f i r s t two rules are for the cases when the accumulator i s

immediately reloaded with a new value; only the second value i s

needed. In the t h i r d rule, the value in the accumulator i s

unimportant i f a procedure i s c a l l e d and no arguments are passed

to i t .

The following sequence of instructions i s t y p i c a l of the

code that occurs at the end of a 'for' command:

LIE1 +1 SE1 §2:LIE1 <=IE2 T@1

The application of two rules r e s u l t s in the following improved

sequence:

44

+:E1 @2:LIE1 <=IE2 T<§1

Appendix B shows the TC2 instruction set, together with i t s
encoding.

Effectiveness of the Improver

The Improver was useful in designing the TC2 instruction

encoding, but i t was also intended to be used as an optional step

in compiling a program. After a program has been debugged, i t s

size and speed can often be improved by the Improver. For some

programs, as much as a 10 per cent improvement in both size and

speed can be realized. However, i t i s an optional step because

the degree of improvement i s usually smaller than that.

T y p i c a l l y , a program i s reduced in size by about f i v e per cent

and i t runs about three per cent faster.

Input/Output

It was stated e a r l i e r that TC1 did not quite match the speed

of the p-code interpreter. During the development of TC2, i t was

discovered that this statement was untrue. The benchmark

programs used for comparison did run faster on the p-System than

they did on BCPL/Z80, but i t turned out that t h i s result was due

45

not to the difference in speed of the interpreters. TC1 was, in

fact, about 20 per cent faster than p-code. However,

input/output on BCPL/Z80 was much slower than on the p-System,

and the benchmarks did much I/O.

The redesign of SLIM instruction encodings for TC2 was

successful in speeding up the benchmark programs, but BCPL/Z80

was only just able to match the p-System. The l a s t major change

to TC2 was to re-implement input/output.

The I/O system of BCPL/Z80 i s based on two functions:

'ReadBytes' and 'WriteBytes'. They read and write an ar b i t r a r y

number of bytes on the current input and output streams,

respectively. The other procedures, 'ReadN', 'Reads', 'WriteN',

'WriteS', 'WriteF', and even 'RdCh' and 'WrCh', are implemented

using these functions. 'ReadBytes' and 'WriteBytes', written in

BCPL, were in turn implemented using a few lower-level procedures

to read and write 512-byte blocks (for disks) or single

characters (for the console, the p r i n t e r , and the modem). These

two functions were translated into Z80 assembly language and

incorporated into the interpreter. Doing so increased the size

of the interpreter by about 700 bytes, but decreased the size of

the run-time system by about the same amount. It also greatly

sped up input/output.

More speed was gained by also translating 'RdCh' and 'WrCh'

and la t e r 'ReadS' and 'WriteS' into assembly language. With

these changes, the speed of I/O was approximately double that

TC1. BCPL/Z80 at last surpassed the p-System in the benchma

programs.

47

8. Results

BCPL/Z80 i s now considerably faster than the p-System. In

thi s chapter, the performance of the BCPL/Z80 system (TC2) i s

compared with others, including the previous version of the

system (TC1) and the p-System. Both execution times and program

sizes are used in the comparisons.

Benchmarks

Several benchmark programs have been used to compare each

new version of BCPL/Z80 with i t s predecessors and with the

p-System. Three of these programs are discussed here.

The f i r s t program, Hanoi, i s a solution to the Towers of

Hanoi problem of six discs. It does not require much

ca l c u l a t i o n , but i t produces a prodigious amount of output on the

screen. The second program, Ack, computes Ackermann's function

with the arguments 3 and 5. It does an enormous amount of work

(most of i t being function c a l l s) , but i t s only output i s the

f i n a l answer. The l a s t program, Compare, i s a l i n e - b y - l i n e

comparison of two text f i l e s . I t mainly exercises the system

f i l e I/O.

48

The following table shows the sizes of these programs for

several systems:

program size in words
Std TC1 TC2 UCSD S i r i u s

Hanoi 85 85 76 1 02 136
Ack 105 1 12 92 1 33 1 46
Compare 253 258 231 381 378

The column marked Std shows the program sizes when the standard

encoding i s used, as in the f i r s t SLIM interpreter on the Z80,

and the UCSD column is for the p-System (version 1.5). The f i n a l

column i s for an implementation of SLIM for the S i r i u s (Victor

9000), a machine based on the Intel 8088 16-bit processor. In

t h i s implementation, SLIM is translated into the assembly

language of the processor, not interpreted. Translation was the

natural choice for the S i r i u s because that machine has 128 Kbytes

or more of memory, at least twice what i s possible on a Z80-based

machine.

From the above table, i t can be seen that TC2 programs are

consistently smaller than others by at least 10 per cent. Not

too surprising i s that programs on the S i r i u s are substantially

larger than TC2. What i s surprising, however, i s that the

p-System programs are only s l i g h t l y smaller than those on the

S i r i u s ; p-code was designed to be compact.

49

The table below shows the time taken to run the benchmark
programs:

program time in seconds
Std TC1 TC2 UCSD S i r i u s

Hanoi 14 8 6 6 2
Ack - 55 41 69 5
Compare — 67 24 53 -

(The only time shown for the standard encoding i s for Hanoi.

Unfortunately, a copy of the system for the Z80 no longer exists

and the other two benchmarks were not used while i t did; the

program sizes given e a r l i e r were obtained from a version of the

interpreter running on an Amdahl 470/V8.)

The Hanoi program has been used often during the development

of BCPL/Z80 as a benchmark, but i t gradually became evident that

the screen output procedures were the bottleneck, not the

interpreter.

The Ack program shows more c l e a r l y the differences in speed

of c a l c u l a t i o n . TC2 i s 68 per cent faster than the p-code

interpreter and 34 per cent faster than TC1. Note that TC1 was

also faster than p-code, by 25 per cent. The S i r i u s

implementation i s almost an order of magnitude faster than even

TC2; a factor of four i s perhaps due to the d i f f e r e n t hardware

(i t i s a 16-bit machine, not 8-bit, and i t s clock i s 5 MHz, not

2.1 MHz), but the rest must be because SLIM i s translated to

assembly language rather than interpreted.

50

The Compare program shows the improvement in the speed of

f i l e I/O. TC2 i s more than twice as fast as the p-System and

almost three times as fast as TC1. TC1 i s 26 per cent slower

than the p-System.

A quotation in Chapter 2 stated that another implementation

of BCPL for the Z80, CINTCODE, was s i g n i f i c a n t l y more compact

than UCSD Pascal and that i t runs faster. The same can be said

of BCPL/Z80 and TC2.

51

9. Conclusions

BCPL/Z80 i s a p r a c t i c a l program development system running

on a microcomputer. It was b u i l t around three ex i s t i n g portable

programs: the BCPL compiler, the CHEF text editor, and the DORIS

text formatter. Because these programs were adopted largely

unmodified and thus there was no need to write comparable

u t i l i t i e s , attention was focussed instead on the interpreter.

With the TC2 interpeter, SLIM programs are small and they

are executed quickly. However, as with any large piece of

software, the performance of TC2 could be improved with some

fine-tuning. For example, i t was stated e a r l i e r that, in most

cases, comparisons can be rewritten using only two of the six

comparison ins t r u c t i o n s : '=W' and '<=W'. Since 'True' was

defined to be any non-zero value, the '=W' instruction i s also

superfluous in most contexts. The following rules would replace

tests for equality with subtractions:

[=m Tn => -m Fn]
[=m Fn => -m Tn]

With these rules, '=W' would be rarely needed and the s l o t s in

the f i r s t jump table used by variations of t h i s instruction could

be used for more common ins t r u c t i o n s . The saving due to t h i s

pair of rules l i k e l y would be very small, but other similar

52

improvements are probably possible.

Another improvement would be the elimination of some 'void'

(V) instructions. Currently, the addresses encoded in

instructions and held in variables are SLIM addresses, i . e . word,

rather than byte, addresses. As a r e s u l t , the Encoder i s

required to insert 'V instructions into the code to force

alignment on word boundaries. Most of these addresses, however,

are for the labels used as targets of 'J@n', 'T@n', and 'F@n'

instructions. Since only a very few of these labels are

accessible to a BCPL programmer, most need not be aligned on word

boundaries and instead could have byte addresses. Eliminating

many of the 'V instructions could save as much as 5 per cent in

both size and speed.

A f i n a l improvement also a f f e c t s jump ins t r u c t i o n s . Target

labels of most jumps are only a short distance away from the

jumps. Although the target address i s encoded in an instruction

as an o f f s e t r e l a t i v e to the location of the in s t r u c t i o n ,

currently t h i s o f f s e t i s encoded in a word, not a byte. If

offs e t s were encoded in bytes whenever possible, programs would

be about 10 per cent smaller, but about as f a s t .

A goal throughout the project has been to equal or surpass

the popular UCSD p-System in the size of object programs and the

speed of. execution. It required several attempts, but BCPL/Z80

i s now faster and smaller than the p-System.

53

Bibliography

[Bell73] J R B e l l , "Threaded Code", Communications of the ACM,
vol 16 #6 (1973 Jun).

[Cowd82] R I Cowderoy and P J L Wallis, "The Transfer of a BCPL
Compiler to the Z80 Microcomputer", Software—Practice
and Experience, vol 12 pp 235-239 (1982).

[Dyme82] J D Dyment, "A T u t o r i a l Guide to DORIS (A Text
Formatting Program)", University of B r i t i s h Columbia,
1982 Dec.

[Eage82] R D Eager et a l , "Draft BCPL Standard", University of
Kent, 1982 Dec.

[Hayt83] R S Hayter, "The BCPL/Z80 Programming System User's
Manual", University of B r i t i s h Columbia, 1983 J u l ,
(included as appendix C).

[K i l d 8 l] G K i l d a l l , "CP/M: A Family of 8- and 16-Bit Operating
Systems", Byte, vol 6 #6 (1981 Jun).

[Macl8l] M A Maclean and J E L Peck, "CHEF: A V e r s a t i l e Portable
Text Editor", Software—Practice and Experience, vol 11
pp 467-477 (1981).

[Macl82] M A Maclean, private communication to J E L Peck, 1982
May.

[Over80] M Overgaard, "UCSD Pascal: A Portable Software
Environment for Small Computers", National Computer
Conference, 1980.

[Peck8l] J E L Peck and M A Maclean, "The Construction of a
Portable Editor", Software—Practice and Experience, vol
11 pp 479-489 (1981).

[Peck83] J E L Peck, "The Essence of Portable Programming"
(d r a f t) , University of B r i t i s h Columbia, 1983.

[RCP81] Richards Computer Products, "More from the Micro with
BCPL CINTCODE", advertizing l i t e r a t u r e , 1981.

54

[Rich7l] M Richards, "The P o r t a b i l i t y of the BCPL Compiler",
Software—Practice and Experience, vol 1 pp 135-146
(1971).

[Ritc78] D M Ritchie and K Thompson, "The UNIX Time-Sharing
System", B e l l System Technical Journal, vol 57 #6 part 2
pp 1905-1929 (1978 Jul-Aug).

[Swee82] R Sweet and J Sandman, "Static Analysis of the Mesa
Instruction Set", Proceedings of the Symposium on
Architectural Support for Programming Languages and
Operating Systems, ACM SIGPLAN Notices, vol 17 #4 (1982
Apr) .

[Tane82] A S Tanenbaum, H van Staveren, and J W Stevenson, "Using
Peephole Optimization on Intermediate Code", ACM
Transactions on Programming Languages and Systems, vol 4
1 (1982 Jan).

[Zilo76] Zilog, "Z80-CPU Technical Manual", 1976.

Appendix A: TC2 Code Improvement Rules

LIm +1 Sm = > +:m LIm
LIm - 1 Sm => -:m LIm
Lm >=n = > Ln <=m
Lr +Im = > LIm +r PLr +Im = > PLIm +r Lr L!Im = > LIm L!r
Lr Slim => LIm S i r Lr Lm Ln = > Ln Lm @r:Ln = > dr :Ln Lm Cn DO => Cn DO ~=m Fn => =m Tn ~=m Tn = > =m Fn = 0 Tm = > Fm = 0 Fm = > Tm
= - 1 Tm => + 1 Fm
= - 1 Fm => + 1 Tm
= 1 Tm = > - 1 Fm
= 1 Fm = > - 1 Tm
<m Fn => >=m Tn
<m Tn => >=m Fn
>m Fn = > <=m Tn
>m Tn = > <=m Fn
+-r => -r
Q => CIG98 DO ~ Fm => Tm ~ Tm = > Fm $q D@r => $q @r:D0 DO Dq =>

$q

56

Appendix B: TC2 Instruct ion Encodings

Encoding Mnemonic
00 V
FF B
06 xx Wb xx in [0. .255]
09 y y X X Wc xxyy in [-32768 . .32767]
03 02 y y X X WCc xxyy in [-32768 . .32767]
OC X X WEb xx-10 in [-10.. 245]
03 05 y y X X WEc xxyy in [-32768 . .32767]
03 08 X X WGb xx in [0. .255] -

03 0B X X WGb2 xx+256 in [256. .511]
03 0E y y X X WGc xxyy in [-32768 . .32767]
OF WH

xxyy in [

12 y y X X WICc xxyy in [-32768 . .32767]
1 5 X X WIEb xx-10 in [-10. . 245]
03 11 y y X X WIEc xxyy in [-32768 . .32767]
18 X X WIGb xx in [0. .255]
1B X X WIGb2 xx+256 in [256. .511]
03 14 y y X X WIGc xxyy in [-32768 ..32767]
03 17 WIH
1E y y X X CICc
21 X X CIGb
03 1A CW
24 R
27 y y X X JCc
03 1D JW
2A y y X X FCc
03 20 FW
2D y y X X TCc
03 23 TW
03 26 ?I
30 ?S
03 29 N
03 2C Q
33 L-1
36 L0
39 L1
3C X X Lb
3F y y X X Lc
42 y y X X LICc
45 LIE-5
48 LIE-4
4B LIE-3
4E LIE1
51 LIE2
54 LIE3
57 LIE4
5A LIE5

5D X X LIEb
60 xx LIGb
63 X X LIGb2
66 LW
69 L!0
6C X X Lib
6F X X L 1 IEb
72 L1W
75 L%0
78 X X L%IEb
7B L%W
03 2F L:W
03 32 LRS
7E PLO
81 PL 1
84 X X PLb
87 yy X X PLc
8A yy X X PLICc
8D PLIE-4
90 PLIE-3
93 PLIE1
96 PLIE2
99 PLIE3
9C X X PLIEb
9F X X PLIGb
A2 X X PLIGb2
A5 PLW
A8 yy X X SCc
AB SE1
AE SE2
B1 X X SEb
B4 X X SGb
B7 X X SGb2
03 35 SW
BA S! 0
BD X X S!b
CO X X S! IEb
C3 S!W
C6 S%0
C9 X X S%IEb
CC S%W
03 38 S:W
03 3B SRS
CF P
03 3E X
D2 M-2
D5 M-1
D8 MW
03 41 |
03 44
DB + 1
DE X X +b
E1 X X +IEb
E4 +w

E7 X X + :Eb
03 47 + :W
EA -1
ED -W
03 4A -:W
03 4D *W
03 50 /w
03 53 /*w -
FO X X =b
F3 =w
03 56 ~=w
F6 X X <=b
F9 X X <=IEb
FC <=W
03 59 <W
03 5C >W
03 5F >=W
03 62 « w
03 65 >>w
03 68 A w 03 6B \/w
03 6E
03 71 ==w
03 74 w

Appendix C: BCPL/Z80 User's Manual

60

!• T n e BCPL/Z80 Programming System

BCPL/Z80 i s a complete system for the development of BCPL
programs. It consists of a number of independent programs: the
CHEF Text Editor i s used to create and modify both programs and
documents; the Compiler translates BCPL programs into the SLIM
intermediate assembly language; the Improver can be used to make
SLIM programs smaller and faster; the Encoder translates SLIM
programs into executable binary code; the Linker merges
independently-compiled BCPL sections. One of the more useful
u t i l i t y programs i s the DORIS Text Formatter which prepares
documents for p r i n t i n g .

In many respects, there i s a strong resemblance between
BCPL/Z80 and the UCSD p-System. The use of the programs
described above i s coordinated by an operating system program
(called the Shell) modelled after that in the p-System. There i s
a subsystem c a l l e d the F i l e r for the manipulation (moving,
renaming, destroying and so on) of f i l e s . As well, the BCPL/Z80
disk directory structure i s i d e n t i c a l to the p-System's, and text
and data f i l e s generated by either system can be read by the
other.

Section 2 introduces the important concepts of devices,
volumes, and f i l e s . Subsequent sections describe the Sh e l l , the
F i l e r and the other programs in more d e t a i l .

It i s assumed in this document that the reader i s familiar
with the language BCPL. Some knowledge of the UCSD p-System
might also be h e l p f u l . The descriptions below apply to the
current version of the system (1983 Jun) for the Exidy Sorcerer
computer with 55 Kbytes of RAM and two double-density North Star
mini-floppy diskettes.

Parts of the BCPL/Z80 system were borrowed from other authors.
The CHEF Text Editor was written by M Maclean and J Peck. The
BCPL Compiler i s a descendent of one written by M Richards. The
DORIS Text Formatter was o r i g i n a l l y written by D Dyment and later
rewritten by J Peck.

61

2. Devices, Volumes, And F i l e s

A t y p i c a l BCPL/Z80 computer system includes a keyboard, a
screen, and several disk drives. There may also be a printer and
a modem. These are known as input/output devices.

Devices

Devices are divided into two classes: block and character.
For a block device (the disk d r i v e s) , information i s transferred
in blocks of 512 bytes. For a character device (the keyboard,
the screen, the printer, and the modem), only one byte at a time
i s transferred.

Associated with each device i s a device number:
dev # device

0 void
1 screen and keyboard with echo
2 screen and keyboard without echo
3 unused
4 disk drive 1
5 disk drive 2
6 printer
7 unused
8 modem
9 disk drive 3

10 disk drive 4

(The differences between devices 1 and 2 w i l l be explained
shortly.) Referring to devices by device numbers i s awkward at
best. Instead, volume names are used.

Volume Names

A volume name may be up to 7 characters long and i t i s
always followed by a ":". These characters may be l e t t e r s ,
numbers, ".", "-", "_", "/", or "\". A l l lower case l e t t e r s are
automatically s h i f t e d to upper case.

Character Volumes

The character devices are known as the volumes "CONSOLE:",
"SYSTERM:", "PRINTER:", and "REMOTE:". These volume names may be

62

passed as arguments to 'Findlnput' or 'FindOutput' to set up
streams to the associated devices.

"CONSOLE:" (device #1) i s the keyboard for input and the
screen for output. As characters are typed at the keyboard, they
are echoed to the screen. In addition, the keyboard i s buffered;
no characters w i l l be given to a program reading from "CONSOLE:"
u n t i l a <cr> (ASCII carriage return) i s typed. Buffering allows
the user to correct typing errors. The la s t character typed can
be erased by typing <bs> (backspace) or (delete), and the
entire l i n e i s erased when <can> (cancel) i s typed. An <etx>
(end of text) i s translated to 'EndStreamCh'. There i s room in
the buffer for 99 characters. Whenever a <cr> i s written to the
screen, a <lf> (li n e feed) i s automatically written also, so that
subsequent text appears on the next l i n e . F i n a l l y , i f a <dle>
(data link escape) i s written, the next character written i s
taken to be a count (plus 32) of the number of spaces to be
displayed on the screen. This two-character sequence i s used by
BCPL/Z80 to make text f i l e s (described below) smaller.

"SYSTERM:" (device #2) i s similar to "CONSOLE:". One
difference is that the keyboard does not echo characters typed to
the screen. Another i s that the keyboard i s not buffered; a
program w i l l receive characters as they are typed, and i t w i l l
receive a <nul> (n u l l character) i f no character i s ava i l a b l e .
The l a s t difference i s that a <lf> i s not automatically inserted
after a <cr> when one i s written to the screen, and the
two-character <dle> sequence i s not expanded into a number of
spaces to be displayed. "SYSTERM:" i s not used as often as
"CONSOLE:" i s , but i t i s occasionally useful.

"PRINTER:" (device #6) i s not yet implemented. It w i l l
behave s i m i l a r l y to "SYSTERM:".

"REMOTE:" (device #8) i s similar to "SYSTERM:" but i s
associated with the modem. A program reading from th i s volume
w i l l receive characters as they are received by the modem, or a
<nul> i f none are av a i l a b l e . Characters written are sent by the
modem, and <cr> and <dle> are not treated s p e c i a l l y .

In addition to these character volumes, there i s another
c a l l e d "VOID:". "VOID:" (device #0) ignores characters written
to i t , and returns 'EndStreamCh' whenever an attempt i s made to
read from i t .

Block Volumes

Volume names are also associated with disks. However, a
volume name does not refer to the disk drive i t s e l f ; i t refers to
the disk that i s in the drive. A disk drive i s known by the disk
that i s mounted in i t , and so, i t may have d i f f e r e n t names at
di f f e r e n t times.

63

For convenience, there are two s p e c i a l shorthand volume
names: "*" and ":". The f i r s t r e f e r s to the system volume, the
di s k which was i n d r i v e 1 at the time BCPL/Z80 was s t a r t e d up.
The other name r e f e r s to the d e f a u l t volume. I n i t i a l l y , the
d e f a u l t volume i s the same as the system volume, but i t may be
changed by the ' P (r e f i x ' command d e s c r i b e d l a t e r i n s e c t i o n 4.

O c c a s i o n a l l y i t i s u s e f u l to r e f e r to volumes by t h e i r
c o rresponding device numbers. The s p e c i a l volume names "#1:",
"#2:", and so on r e f e r t o those d e v i c e s . Note t h a t "#4:" r e f e r s
to whatever volume happens to be i n d r i v e 1 at the time.

F i l e s

Block volumes, u n l i k e c h a r a c t e r volumes, are s t r u c t u r e d
o b j e c t s . On each block volume there can be a number of f i l e s (up
to 77). A d i r e c t o r y on the volume i n d i c a t e s the names of the
f i l e s , and the l o c a t i o n of the f i l e s on the d i s k , among other
t h i n g s .

F i l e s are ra t h e r s i m i l a r to c h a r a c t e r d e v i c e s i n the sense
that c h a r a c t e r s may be t r a n s f e r r e d one at a time. The d i f f e r e n c e
i s , of course, that the c h a r a c t e r s are s t o r e d permanently on the
d i s k .

The name of a f i l e , preceded by the name of the volume i t i s
on, can be given to 'Fin d l n p u t ' or 'FindOutput' to set up a
stream to the f i l e . I f 'Findlnput' i s used, the f i l e must e x i s t
a l r e a d y on the d i s k . 'FindOutput' c r e a t e s a new f i l e w ith the
name g i v e n . To make the new f i l e permanent, the stream must be
c l o s e d by c a l l i n g 'EndWrite'. F a i l i n g to do so w i l l cause the
f i l e to disappear when the program st o p s .

'FindOutput' may be given the name of f i l e which a l r e a d y
e x i s t s . In t h i s case a l s o , a new f i l e i s c r e a t e d . If 'EndWrite'
i s used to c l o s e i t , the o l d f i l e i s removed; otherwise, the new
f i l e d i s a p p e a r s and the o l d one remains i n t a c t . R e q u i r i n g an
e x p l i c i t c a l l to 'EndWrite' p r o t e c t s e x i s t i n g f i l e s from being
l o s t should the system c r a s h .

F i l e Names

A f i l e name may be up to 15 c h a r a c t e r s l o n g . As i n volume
names, these c h a r a c t e r s may be l e t t e r s , numbers, "_",
"/", or "\". A l l lower case l e t t e r s are a u t o m a t i c a l l y s h i f t e d t o
upper case.

64

F i l e Types

There are two types of BCPL/Z80 f i l e s : text and data. (The
UCSD p-System has several other f i l e types, but BCPL/Z80 regards
these a l l as data f i l e s .) The names of text f i l e s have a s u f f i x
of ".text" and data f i l e s do not.

Data f i l e s are the simpler of the two types. The bytes in a
data f i l e are exactly those which were written to the f i l e .

To make text f i l e s smaller, however, spaces at the beginning
of each l i n e of text are stored as the two-character <dle>
sequence described e a r l i e r . This compression i s done
automatically as characters are written, and they are expanded
again when they are read. So that BCPL/Z80 text f i l e s are
compatible with those of the p-System, the text in such a f i l e is
preceded by a two-block header (1024 bytes) of <nul> characters,
and enough <nul>s follow the text to make the f i l e an even number
of blocks long. BCPL/Z80 skips these <nul>s when the f i l e i s
la t e r read by a program.

Data bytes should never be put into a text f i l e . The bytes
read from a text f i l e w i l l not be exactly the same as those which
were written into i t because of the extra <nul>s and the special
treatment of spaces and <dle>s. In contrast, text may be put
into a data f i l e . However, depending on the text, the data f i l e
might be longer than the corresponding text f i l e with i t s
compressed spaces.

F i l e Sizes

F i l e s each occupy some number of contiguous blocks on the
disk. Normally, when a f i l e i s created by 'FindOutput', the
largest unused portion of the disk (the largest hole) i s
allocated. If desired, the length may be e x p l i c i t l y given by
appending "[n]" (where 'n' i s the requested number of blocks) to
the f i l e name given to 'FindOutput'. For example:

FindOutput ("bcpl:work.space[16]")

The blocks are taken from the f i r s t hole large enough, searching
from the start of the disk. (A f i l e size may be given when
c a l l i n g 'Findlnput' also, but i t i s ignored.)

If a f i l e size s p e c i f i c a t i o n of " [*] " i s used instead,
either the second biggest hole or one-half of the biggest hole i s
allocated, whichever i s larger.

6 5

F i l e Specifications

To summarize, 'Findlnput' and 'FindOutput' take a f i l e
s p e c i f i c a t i o n as an argument. The s p e c i f i c a t i o n i s made up of
three parts: the volume name, the f i l e name, and the f i l e s i z e .

If the volume name i s that of a character volume, the f i l e
name and size are ignored. An omitted volume name i s assumed to
refer to the default volume. If the size i s omitted, the size of
the largest hole i s assumed.

Changing Disks

Whenever 'Findlnput' or 'FindOutput' i s given a f i l e
s p e c i f i c a t i o n in which the volume name i s that of a disk (i . e . i t
is not a character volume name), BCPL/Z80 searches the disk
drives to see i f there i s a block volume of that name. If the
volume cannot be found, the user i s given an opportunity to put
the disk into a drive. In the example given e a r l i e r , i f the
volume "BCPL:" could not be found, the following message would be
displayed on the screen:

Put BCPL: in and type <cr> (<esc> to abort).

At t h i s point the user should put "BCPL:" in one of the drives
and then type <cr>. An <esc> (escape) should be typed instead i f
the user does not want to put in "BCPL:", perhaps because the
volume name was misspelt.

Usually, the user should not change disks unless told to do
so. Removing a disk with open f i l e s on i t from a drive w i l l
probably cause data for those f i l e s to be l o s t . Even worse,
putting a d i f f e r e n t disk into that drive w i l l probably result in
f i l e s on the disk being overwritten.

BCPL/Z80 i s sometimes, but not always, able to detect when a
disk with open f i l e s has been removed. If so, the following
message i s displayed:

Put X: back in and type <cr>.

The system w i l l not continue u n t i l the user puts the volume "X:"
back i n .

It i s always safe to remove or replace a disk i f i t has no
open f i l e s . While in the Shell or in the F i l e r , there are no
open f i l e s and any disks may be removed or replaced. It i s also
usually safe to do so whenever a program asks the user for a f i l e
s p e c i f i c a t i o n , but since this i s not always true, i t i s safer to
allow BCPL/Z80 to prompt for new disks.

66

Limits

Here are col l e c t e d a l l the size l i m i t s r e l a t i n g to devices,
volumes, and f i l e s :

1. A volume name may be up to 7 characters long, not
including the f i n a l ":".

2. A f i l e name may be up to 15 characters long.

3. There may be up to 77 f i l e s on a block volume.

4. Up to 8 f i l e s may be open simultaneously.

5. There are 350 blocks on a disk but, since the directory
occupies the f i r s t 10 blocks, a f i l e can be no bigger
than 340 blocks long.

6. A text f i l e i s always an even number of blocks long. It
sta r t s with a two-block header of <nul>s and the text i s
padded at the end with more <nul>s. Thus, text f i l e s are
at least 4 blocks long.

7. The "CONSOLE:" keyboard buffer i s 99 characters long.

67

3. The S h e l l

The S h e l l i s the program which runs a u t o m a t i c a l l y when
BCPL/Z80 i s s t a r t e d . The user may run other programs by t y p i n g
commands to the S h e l l . A f t e r each program f i n i s h e s , the S h e l l i s
run once ag a i n .

S t a r t u p

A f t e r the computer i s turned on (or r e s e t) , put the system
d i s k i n the l e f t d r i v e and then type:

go dcOO

Within a few seconds, the BCPL/Z80 logo w i l l be d i s p l a y e d on the
screen. Within a few more seconds, the S h e l l w i l l begin running.

Commands

While the S h e l l i s running, i t d i s p l a y s a menu of commands
at the top of the screen:

S h e l l : C(omp, D(ate, E (d i t , F (i l e , I(mprove, eN(code, eX(ec?

T h i s menu l i s t s most of the commands which may be used. Another
menu which l i s t s the remaining commands i s d i s p l a y e d when a "?"
i s typed:

S h e l l : A(ssem, L (i n k , R (e s t a r t ?

Any of these commands may be performed by simply t y p i n g the
corresponding l e t t e r , the one shown before the " (" . Although
these l e t t e r s are shown i n upper case, e i t h e r upper or lower case
may be typed. The commands are d e s c r i b e d below.

I t i s safe to change d i s k s while the S h e l l i s running.

In t h i s s e c t i o n , and i n the o t h e r s t o f o l l o w , a number of
examples are g i v e n . The input that a user would type i s
u n d e r l i n e d .

68

A(ssem

The 'A(ssem' command is used to run the Z80 assembler. The
Assembler, which is not yet finished and so i s not described,
w i l l be in the f i l e "*system.assmbler".

C(omp

The 'C(omp' command is used to run the BCPL Compiler. The
Compiler, described in section 6, i s in the f i l e
"*system.compiler"'. The f i l e s "*system.c .parse",
"*system.c.trans", and "*system.c.error" are used by the
Compiler.

D(ate

The 'D(ate' command i s used to set the system date. When
the BCPL/Z80 system i s started, i t displays i t s current date,
usually the date th i s command was la s t used. (The BCPL/Z80 does
not include a real-time clock, so the date must, unfortunately,
be set manually.) It i s important to keep t h i s date accurate,
since i t i s used by the system whenever a f i l e i s created or
modified.

When the command i s used, the system displays the current
date and then asks for today's. If i t i s supplied, the date i s
set. The year, the month, and the day must be entered in that
order. Any of them, however, may be omitted and those that are
w i l l not change. If present, the year must be between 1901 and
1999, the day must be between 1 and 31, and at least the f i r s t
three l e t t e r s (upper or lower case) of the month's name must be
given.

Example:

S h e l l : C(omp, D(ate T E (d i t , F (i l e , I(mprove, eN(code, eX(ec? d

Current date i s 1983 Jun 30
New date? j u l 2
Current date i s 1983 J u l 2

S h e l l : C(omp, D(ate, E (d i t , F (i l e , Kmprove, eN(code, eX(ec?

69

E(dit

The 'E(dit' command i s used to run the CHEF Text Editor.
CHEF, described in section 5, i s in the f i l e "*system.editor".
The f i l e "*system.e.msg" is used by CHEF.

F(i l e

The ' F (i l e ' command i s used to enter the F i l e r subsystem.
The F i l e r , described in section 4, i s part of the Sh e l l , not a
separate program.

I(mprove

The 'I(mprove' command i s used to run the Improver. The
Improver, described in section 7, i s in the f i l e
"*system.improver".

L(ink

The 'L(ink' command is used to run the Linker. The Linker,
described in section 9, i s in the f i l e "*system.linker".

eN(code

The 'eN(code' command i s used to run the Encoder. The
Encoder, described in section 8, i s in the f i l e "*system.linker".

R(estart

The 'R(estart' command i s used to re-run the program which
was most recently run. This command i s p a r t i c u l a r l y handy when
used after a complicated 'eX(ec' command.

70

eX(ec

The 'eX(ec' command i s used to run programs. The Shell asks
which f i l e to run. In addition to the program name, the user may
specify the i n i t i a l input and output streams for the program.
These streams are named in a manner similar to that used on UNIX.
The input f i l e s p e c i f i c a t i o n is prefixed by a "<" and the output
s p e c i f i c a t i o n i s prefixed by a ">". If either or both streams
are not redirected in th i s way, they are i n i t i a l l y set to
"CONSOLE:".

.When a system program (l i k e the Compiler, for example) is
run using one of the above s i n g l e - l e t t e r commands ('C(omp'), the
input and output streams are set to "CONSOLE:". The 'eX(ec'
command can be used to redirect input or output when running one
of these programs, i f required. (Output redirection was used to
produce the examples in t h i s document.) The f i l e names of the
system programs were given with the descriptions of the commands
above.

Example:

S h e l l : C(omp, D(ate, E (d i t , F (i l e , I(mprove, eN(code, eX(ec? x

Execute what f i l e ? *hanoi <x:h.in.text >x:h.out.text

S h e l l : C(omp, D(ate, E (d i t , F (i l e , I(mprove, eN(code, eX(ec?

*system.startup

When the BCPL/Z80 system i s started, i t checks to see i f
there i s a f i l e c a l l e d "*system.startup". If so, this program i s
run before the S h e l l . It i s th i s Startup program that displays
the BCPL/Z80 logo mentioned e a r l i e r . If desired, another program
can be renamed "*system.startup" and i t w i l l then be run whenever
the system i s started.

71

4. The F i l e r

The F i l e r i s a subsystem useful for manipulating f i l e s . It
is entered by typing the ' F (i l e ' Shell command.

The F i l e r i s based on a similar program which i s part of the
UCSD p-System. The current BCPL/Z80 version i s much less
powerful, however. It i s intended that t h i s deficiency w i l l be
corrected soon. In the meantime, although i t i s inconvenient to
do so, the UCSD F i l e r may be used for those commands not yet
implemented. Only those commands implemented so far are
described here.

Commands

While the F i l e r i s running, i t displays a menu of commands
at the top of the screen:

F i l e r : C(hange, L (i s t , P (r e f i x , R(emove, T(ransfer, Q(uit?

These commands are described below. In the examples, the system
volume i s assumed to be "BCPLZ80:" and the default volume i s
"WORK:".

It i s safe to change disks while in the F i l e r .

C(hanqe

The 'C(hange' command i s used to change the name of a f i l e .
The F i l e r f i r s t asks which f i l e i s to be renamed and then for the
new name. When the new name i s typed, i t i s not necessary to
give a volume name; i t i s ignored since the f i l e stays on the
same volume. - ,

72

Example:

F i l e r : C(hange, L (i s t , P (refix, R(emove, T(ransfer, Q(uit? c

Change what f i l e ? ' *hanoi
To what? system.startup
BCPLZ80:HANOI changed to SYSTEM.STARTUP.

F i l e r : C(hange, L (i s t , P (r e f i x , R(emove, T(ransfer, Q(uit?

L (i s t

The ' L (i s t ' command i s used to l i s t the f i l e s on a volume.
The F i l e r asks for the name of a volume. The l i s t which i s then
displayed shows, for each f i l e , i t s name, the date i t was created
or l a s t modified, the block number at which i t s t a r t s , i t s length
in blocks, the number of bytes used in i t s l a s t block, and i t s
type. (As explained e a r l i e r , BCPL/Z80 f i l e types are either
"text" or "data", but f i l e s created under the p-System may have
other types.) Any unused parts of the disk (holes) are also shown
in the l i s t together with t h e i r s t a r t i n g block number and length.
After t h i s l i s t are some s t a t i s t i c s : the number of f i l e s on the
volume, the number of disk blocks used and unused, and the size
of the largest hole.

73

Example:

F i l e r : C(hange, L (i s t , P (r e f i x , R(emove, T(ransfer, Q(uit? 1

L i s t the directory of what volume? bcplz80:

BCPLZ80: 1983 Jul 25
SYSTEM.C.ERROR 1982 Jun 4 10 10 512 text
HEADER.B.TEXT 1 983 May 19 20 18 512 text
SYSTEM.SHELL 1 983 Jun 3 38 10 312 data
SYSTEM.E.MSG 1 982 Oct 18 48 10 512 text
SYSTEM.STARTUP 1983 Jul 25 58 4 80 data
SYSTEM.RUNTIME0 1983 Jul 25 62 32- 512 data
SYSTEM.ENCODER 1983 May 26 94 16 20 data
SYSTEM.LINKER 1 983 May 26 1 10 3 12 data
SYSTEM.IMPROVER 1 983 Jun 1 2 1 13 9 190 data
SYSTEM.EDITOR 1 983 Jun 3 122 49 308 data
SYSTEM.COMPILER 1983 May 27 171 6 202 data
SYSTEM.C.PARSE 1983 May 27 1 77 19 60 data
SYSTEM.C.TRANS 1 983 May 27 1 96 25 386 data
< unused >

May
221 129

13 f i l e s , using 211 blocks.
129 blocks unused; 129 in largest hole.

F i l e r : C(hange, L (i s t , P (r e f i x , R(emove, T(ransfer, Q(uit?

P(refix

The 'P(refix' command i s used to set the name of the default
volume.. If a f i l e s p e c i f i c a t i o n given to 'Findlnput' or
'FindOutput' does not include a volume or has a volume name of
":", i t i s considered to refer to the default volume. I n i t i a l l y ,
the default volume i s the same as the system volume.

Example:

F i l e r : C(hange, L (i s t , P (r e f i x , R(emove, T(ransfer, Q(uit? p_
Prefix names with what volume? work:
New prefi x i s WORK:.

F i l e r : C(hange, L (i s t , P (r e f i x , R(emove, T(ransfer, Q(uit?

74

R(emove

The 'R(emove' command i s used to destroy a f i l e . The F i l e r
asks which f i l e i s to be removed.

Example:

F i l e r : C(hange, L (i s t , P (r e f i x , R(emove, T(ransfer, Q(uit? r

Remove what f i l e ? hanoi.s
WORK:HANOI.S removed.

F i l e r : C(hange, L (i s t , P (r e f i x , R(emove, T(ransfer, Q(uit?

T(ransfer

The 'T(ransf er.' command i s used to make a copy of a f i l e .
The F i l e r f i r s t asks which f i l e i s to be transferred and then the
name of the copy. The copy may go to the same volume or to a
di f f e r e n t one, and i t may have the same name or a d i f f e r e n t one.

A text f i l e may be displayed on the screen by tranferring i t
to "CONSOLE:", and keyboard input (u n t i l an <etx> i s typed) may
be put into a f i l e by trans f e r r i n g to i t from "CONSOLE:".

Example:

F i l e r : C(hange, L (i s t , P (r e f i x , R(emove, T(ransfer, Q(uit? t
Transfer what f i l e ? hanoi
To where? *system.startup[4 3
WORK:HANOI transferred to BCPLZ80:SYSTEM.STARTUP.

F i l e r : C(hange, L (i s t , P (r e f i x , R(emove, T(ransfer, Q(uit?

Q(uit

The 'Q(uit' command i s used to return to the S h e l l .

75

5. The CHEF Text Editor

CHEF i s a general-purpose text editor suitable for the
creation and modification of both programs and documents. The
command language i s described in The CHEF Editor.

CHEF i s run by typing the 'E(dit' Shell command. It then
prompts for commands.

Only one command has not been implemented: 'QS'. As a
resul t , i t i s not possible to execute Shell commands from CHEF,
nor i s i t possible to temporarily leave CHEF and resume i t l a t e r .

The BCPL/Z80 version of CHEF has the screen mode 'A'
command. In screen mode a number of special keys are used:

key function
<g-UA> cursor up
<g-DA> cursor down
<g-LA> cursor l e f t
<g-RA> cursor right
<g-i> begin insert mode
<g-e> end insert, mode
<g-d> delete character
<gs-I> insert l i n e
<gs-D> delete l i n e
<g-1 > exit
<g-2> renew
<g-3> merge
<g-4> ma r k
<g-5> save
<g-6> ' inject

where <g-UA> means that the 'up arrow* key on the keypad i s typed
while the 'graphic' key i s held down, <g-i> means that " i " i s
typed with 'graphic' held, <gs-I> means that " I " i s typed with
both 'graphic' and ' s h i f t ' held. For the la s t 6 functions, the
number keys on the top row should be used, not those on the
keypad. The prompt at the top of the screen while in a l t e r mode
is a reminder of which keys are associated with these 6
functions:

>>g1-Exit,g2-Renew,g3-Merge,g4-Mark,g5-Save,g6-Inject<<

The system disk should never be removed from the drive while
CHEF i s running.

Example:

S h e l l : C(omp, D(ate, E (d i t , F (i l e , l(mprove, eN(code, eX(ec?

BCPL/Z80 Editor (CHEF)

Enter H for help (Q for quit)
>ef work:hanoi.b.text
488
...editing commands

>wf.
503
>2
S h e l l : C(omp, D(ate, E (d i t , F (i l e , I(mprove, eN(code, eX(ec?

77

6. The BCPL Compiler

The Compiler translates BCPL programs into SLIM assembly
language. The language accepted by the Compiler corresponds
quite cl o s e l y to that defined in the Draft BCPL Standard (1982
Dec). The standard header f i l e can be included in a program by
means of the following get d i r e c t i v e :

get "**header.b.text"

The procedures declared in the standard header are described in
more d e t a i l in The BCPL/Z80 Run-Time Library.

The Compiler i s run by typing the 'C(omp' Shell command. It
then prompts for the name of the f i l e containing the BCPL
program, and for the name of a f i l e to write the SLIM text.
Usually, the BCPL f i l e has a s u f f i x of ".b.text" and the SLIM
f i l e has one of ".s".

A BCPL program i s compiled in two passes. In the f i r s t , a
parse tree i s constructed corresponding to the program. A "." is
printed on the screen for each l i n e of the program as i t i s
processed. Procedure names are also printed as their d e f i n i t i o n s
are reached. Also, as each get i s encountered, a message i s
printed. In the second pass, the parse tree i s used to generate
an equivalent SLIM program. Again, procedure names are printed,
and a "." i s printed for each l i n e of SLIM generated. The f i l e
to be compiled may contain any number of BCPL sections.

Should the Compiler detect an error during either pass, an
error message w i l l be displayed. The user then may type either
'C(ontinue' to allow the Compiler to resume, or 'Q(uit' to abort
the compilation and return to the S h e l l .

The system disk should never be removed from the drive while
the Compiler i s running.

Example:

S h e l l : C(omp, D(ate, E (d i t , F (i l e , I(mprove, eN(code, eX(ec? c

BCPL/Z80 Compiler
Compile what f i l e ? work:hanoi.b.text
Into what f i l e ? work:hanoi.s
• • •
get *header.b.text

START
HANOI
Tree size = 2304.

START
HANOI
No errors detected.

S h e l l : C(omp, D(ate, E (d i t , F (i l e , I(mprove, eN(code, eX(ec?

79

1_. The Improver

A SLIM assembly language program can usually be made both
smaller and faster by the Improver. It uses the technique of
peephole optimization to replace short sequences of instructions
by equivalent, but better, sequences. The degree of improvement
possible depends on the SLIM program, but t y p i c a l l y the improved
program is 10% smaller and 5% faster . Because these gains are
rather modest, i t i s probably only worthwhile to improve debugged
and often-used programs.

The Improver i s run by typing the 'I(mprove' Shell command.
It then prompts for the name of the f i l e containing the SLIM
program to be improved, and for the name of a f i l e to write the
improved program. Usually, the SLIM f i l e has a s u f f i x of ".s"
and the improved SLIM f i l e has one of " . i s " .

Procedure names are printed on the screen as they are
processed. Also, a "." i s printed for each l i n e of SLIM text
written. The f i l e to be improved may contain any number of SLIM
sections.

It is safe to remove any disk from i t s drive when a f i l e
name i s requested.

Example:

S h e l l : C(omp, D(ate, E (d i t , F (i l e , I (mprove, eN(code, eX(ec? _i
BCPL/Z80 Improver
Improve what f i l e ? work:hanoi.s
Into what f i l e ? work:hanoi.is
•
START
HANOI
78 instructions read and 78 written.
1 successful pattern matches.

S h e l l : C(omp, D(ate, E (d i t , F (i l e , I(mprove, eN(code, eX(ec?

80

8. The Encoder

A SLIM assembly language program must be encoded as bi n a r y
o b j e c t code bytes by the Encoder before i t can be run.

The Encoder i s run by t y p i n g the 'eN(code' S h e l l command.
It then prompts f o r the name of the f i l e c o n t a i n i n g the SLIM
program to be encoded, and f o r the name of a f i l e to w r i t e the
bin a r y code. U s u a l l y , the assembly language f i l e has a s u f f i x of
" . s " or " . i s " and the binary f i l e does not have a s u f f i x .

Procedure names are p r i n t e d on the screen as they are
processed. A l s o , a "." i s p r i n t e d f o r each l i n e of SLIM tex t
read. The f i l e to be encoded may c o n t a i n any number of SLIM
s e c t i o n s .

I t i s safe to remove any d i s k from i t s d r i v e when a f i l e
name i s requested.

Example:

S h e l l : C(omp, D(ate, E (d i t , F (i l e , I(mprove, eN(code, eX(ec? e

BCPL/Z80 Encoder
Encode what f i l e ? work:hanoi.is
Into what f i l e ? work:hanoi
• •
START
HANOI
No e r r o r s d e t e c t e d .
91 words of SLIM code and 5 r e l o c a t i o n s .

S h e l l : C(omp, D(ate, E (d i t , F (i l e , I(mprove, eN(code, eX(ec?

81

9. The Linker

If a BCPL program has been organized as a number of
separately-compiled sections in separate f i l e s , the sections must
be linked together before the program can be run. It i s not,
however, necessary to l i n k the sections i f they are already in
the same code f i l e .

The Linker i s run by typing the *L(ink' Shell command. It
then prompts for the names of the f i l e s containing the SLIM
sections to be linked, and for the name of a f i l e to write the
binary code. Usually, none of the f i l e s has a s u f f i x .

It i s safe to remove any disk from i t s drive when a f i l e
name i s requested.

Example:

S h e l l : C(omp, D(ate, E (d i t , F (i l e , I(mprove, eN(code, eX(ec? 1
BCPL/Z80 Linker

Input code f i l e ? doris:d1
Input code f i l e ?
Input code f i l e ?
Input code f i l e ?
Input code f i l e ?
4567 words of SLIM
Output code f i l e ?

doris:d2
doris:d3
doris:d4

code and 224
doris:doris

relocations.

S h e l l : C(omp, D(ate, E (d i t , F (i l e , l(mprove, eN(code, eX(ec?

82

10. The DORIS Text Formatter

DORIS i s a program which formats documents in preparation
for p r i n t i n g them. Although i t i s simple to use, i t i s also
quite powerful. The use of DORIS i s described in A T u t o r i a l
Guide To DORIS (A Text Formatting Program).

DORIS i s run by typing the 'eX(ec' Shell command and i s in
the f i l e "doris:doris". It then prompts for the name of the f i l e
containing the document to be formatted, and for the name of a
f i l e to write the formatted document. It also prompts for the
name of a f i l e to be used in constructing an index, but i t i s
only necessary to type a name i f the document contains ' . f i l '
commands. Usually, the document f i l e has a s u f f i x of ".di.text",
the formatted f i l e has one of ".do.text", and the index f i l e has
one of ".dx.text".

It i s safe to remove any disk from i t s drive when a f i l e
name i s requested.

Example;

S h e l l : C(omp, D(ate, E (d i t , F (i l e , I(mprove, eN(code, eX(ec? x

Execute what f i l e ? d o r i s i d o r i s

BCPL/Z80 Text Formatter (DORIS)

Process what f i l e ? work:thesis.di.text
Into what f i l e ? work:thesis.do.text
Use what index f i l e ?

S h e l l : C(omp, D(ate, E (d i t , F (i l e , I(mprove, eN(code, eX(ec?

