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Abstract

This thesis 1is mainly concerned with the mathematical
modelling of some common types of ring networks, i.e., token
rings (both the exhaustive and the non-exhaustive service

disciplines) and slotted rings.

The models described make extensive use of the standard
results of queuing theory. The two service disciplines for the
token ring display tradeoffs between fairness and system
performance. In the case of the slotted rings, an optimum value
for the number of stations on the ring is determined which gives
minimum or near-minimum delays for all 1load levels. The
correctness of the models is verified by comparing the analytic
results with those from simulation. Finally, we summarize
interesting results of our models and offer suggestions for

further research.

The literature contains very 1little work in this area.
Hopefully this thesis has provided new insights into the

behaviour of certain ring type local area networks.
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CHAPTER 1

INTRODUCTION

Local Area Networks {(LANs) have been the subject of
considerable research and development efforts 1in recent
years [4,5,7,9,12,13]. A LAN is generally considered to be one
which covers a "limited" geographical area such as a building or

a group of buildings within a few kilometers of one another.

There are many advantages of interconnecting computing
facilities. Some of them are listed below:

1) allows devices (line printers, disk units, etc.) as well as
software resources such as files and databases to be shared,

2) provides easier access to facilities in different physical
locations,

3) facilitates the co-operation and co-ordination of projects
(mainly due to points 1 and 2 above),

4) performance can be improved as parallel computation of
logically - independent tasks at different nodes becomes
feasible. Furthermore, heavily loaded stations can be
downloaded by distributing the load to other stations,

5) facilitates the implementation of electronic mail systems,

6) allows 1incremental growth of computing power (through the

addition of nodes (or stations) in the network).

Local area networks also exhibit certain characteristics
such as high data rates, a high degree of interconnection

between devices on the network (each station being able to



communicate with every other station).

1.1 An Overview of Ring Networks

Ring networks form an important class of local area
networks. Unlike the carrier sense bus networks, rings are made
up of a series of point-to-point cables between consecutive

repeaters or stations and signals travel in a closed loop.

There are different types of ring networks like the token
ring, the slotted ring, the contention ring and the register
ingsertion ring. Two of the most common types are the token ring
and the slotted ring. We shall consider some aspects of these
two nets in the following sections. A description of the
contention rings and the register insertion rings can be found

in [18].

1.1.1 Token Ring

This type of ring net is characterized by a special bit
pattern called the token which <circulates around the ring.
Typically, it is a series of eight 1's. Obviously, this pattern
must be avoided in the data that is transmitted by the various
stations on the ring by employing techniques such as bit

stuffing.

A station may transmit a packet only if it is in possession
of the token. Thus it examines each passing bit for the special

pattern, thereby introducing a minimum of 1-bit delay on the

line. On getting the token, the station replaces the token by a



different bit pattern, such as changing the last bit from a 1 to
a 0 and then it starts transmitting its data. This bit pattern
of 11111110 is .called the connector. After a station has
finished transmitting its data, it regenerates the token so that
the next station on the ring can transmit 1its data. Thus the
token goes from station to station in a round robin fashion

giving each station on the ring a fair chance to transmit.

There are two different types of service disciplines at the
stations : the exhaustive discipline and the non-exhaustive
discipline. Under the exhaustive discipline, a station is
permitted to transmit all of its waiting packets upon reéeiving
the token. A freshly arrived packet which joins the queue that
is being serviced is also transmitted. There are advantages and
disadvantages with this scheme as we will see later. The second
type of service discipline is called non-exhaustive under which,
a station is permitted' to transmit only a fixed number of

waiting packets (usually one) upon receiving the token.

It 1is worthwhile to note that there can be at most one

station on the ring which is transmitting at any given time.

1.1.2 Slotted Rings

A slotted ring consists of a number of fixed-size slots
which continuously move around the ring. This method requires
one of the stations on the ring to be designated the monitor
station which 1initiates and regulates these sloté; Any station
wishing to transmit a packet must simply wait for an empty slot

to pass by. On getting an empty slot, a station puts its packet



into the slot, marks the slot as full and the destination
station removes this packet and sends an acknowledgement in the
same slot; After getting the acknowledgement, the sending
station marks the slot as empty and passes it down the ring
without using it (to prevent hogging of the ring). Thus, each
slot must have at least one bit to mark its status (full/empty),
and one bit for acknowledgement in addition to other address
bits, checksum, etc. As the slots are of fixed size, if the
packet is too large to fit into a slot, more than one slot will
be required to transmit such a packet. Also, in a slotted ring
with multiple slots, there can be more than one station

transmitting at any given time.

1.1.3 Characterization of Ring Networks

Before we attempt to develop analytic models for the ring
nets, it i1s important to know the various ring parameters which
influence their performance. The "physical length" of a bit 1is
an 1important parameter to be considered. It is the ratio of the
propagation speed of signal to the bandwidth of the ring. If the
physical length of the ring is not large enough to fit in a
certain minimum number of packets, artificial delays will have
to be introduced.by putting shift registers on the ring. The
time that it takes one bit to go once around an idle ring is
called the walk time. The walk time is also a function of the
number of stations on the ring since each station adds some
delay. In the case of slotted rings, there are two additional
parameters - the number of slots and the slot size. The slots

are generally of the same size. In the case of the token rings,



the service discipline (exhaustive or non-exhaustive) must be

specified.

Apart from these physical parameters of the ring nets, the
workload has a significant influence on their performance. In
order to characterize the workload for a given ring net, one
needs to know the distribution of arrival times of packets for
each station and the distribution of packet sizes for each
station. We shall make some simplifying assumptions to make the
analysis mathematically tractable. All stations are assumed to
have identical arrival distributions. The arrival pattern is
assumed to be Poisson (i.e., exponential inter-arrival times)
and all packets are assumed to be of equal length. Furthermore,
in the case of slotted rings, if the packets are too large to
fit into a slot, they must be broken into several minipackets
before transmission and at the destination, these minipackets
will have to be reassembled. If the packets are too small, a lot
of ring bandwidth may be wasted due to the partially filled
slots. In our models, the packet size is assumed equal to the
slot size. With these assumptions, the workload can be specified
simply by the mean network packet arrival rate, which is

represented by A.

The exact distribution of the location of stations on the
ring does not have as much influence on performance as in the
case of broadcast networks such as the Ethernet. The mean
disﬁance between two commuhicating stations can be assumed to be

half the ring length.



1.2 Thesis OQutline

There are very few models in existence which describe ring
networks. The models known to the author make use of processor
sharing concepts. Our models described here wuse queuing
theoretic concepts. The influence of the various parameters on
the performance is tested exhaustively and performance
comparisons are made for the various ring configurations and the

operating modes.

Before we describe our mathematical models (Chapter 3), we
~shall study some of the existing models in Chapter 2. In Chapter
4, we shall study the performance of the two types of ring

networks.



CHAPTER 2

Review of some existing models

Modelling of ring networks does not have a very long
history and there are only a few existing models. We shall start
our review of the various models by first considering the token

ring and then the slotted ring.

2.1 Models of the Token Ring

2.1.1 Tanenbaum's Model [18]

This model forms the basis for our model described in the
next chapter. The service discipline at each station is assumed
to be exhaustive, i.e., each station is permitted to transmit
its entire queue of waiting packets after getting the token. The
packet arrival at each station 'is assumed to have Poisson
distribution and that all stations have the same mean arrival

rate.

The following notations are used in the model.

N - Total number of stations on the ring

A - Total arrival rate for all N stations (packets/sec)

g - Mean number of packets accumulated at each station
during the scan time,

u - Service rate (packets/sec) of each station

w - Walk time (time taken by the token to go once around the
idle ring) |

s - Scan time (time taken by the token to go once around the



ring - a function of the workload).

The scan time consists of two components - the walk time w

and the time taken to service the N.q packets. Therefore,

s =w + N.g (1)
u

It is easy to derive an expression for g, the mean number of

packets that accumulate at a station during a scan time.

g= A.S (2)

s =w+ A .S _ (3)

Hence, s = W (4)
1- N u

If we represent N/ u by p, we get
s = w (5)

p may be interpreted as the utilization of the entire ring (not
just one station). Notice that the scan time tends to infinity
when the total arrival fate of the ring approaches the
transmission rate of a single station and not the total
transmission rates of all stations. This is quite obvious since
only one station is allowed to transmit at any one time though

packets are continuously arriving at all the stations.



Tanenbaum [18] does not derive an expression for the mean
delay suffered by a packet, which can be defined as the delay
from the time of arrival of a packet at the network to the time
it 1is delivered at the destination station. These details,

however, will be discussed in our model.
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2.1.2 Model by Cherukuri et al,

Cherukuri, Li and Louis [3] have derived a model for
general token passing protocols that is extended to include the
ring topology. Their model is based on the analysis of a polling
system with multiple queues, due to Konheim and Meister [11]. In
their paper, Konheim and Meister have analyzed a communication
system consisting of a number of buffered terminals connected to
a computer by a single channel. The arrival distribution at
every terminal is assumed identical. The terminals are polled in
sequence. This general model has been adapted by Cherukuri, et
al. to a token ring where the passing of a token from station to

station is similar to cyclic polling discussed in [11].

In this model, the packet arrival process at each station
is assumed to be Poisson and all stations are assumed to have
identical mean packet arrival rate. The packets are assumed to
be of constant size. Depending on the location of stations on
the ring, the token-passing time between a pair of adjacent
stations varies along the ring. Considering these parameters,

the mean delay time is shown to be given by

delay = 1 + $8%2.a;, + _S + a;(1t - 8)(1t + N.r)
2r 2(1-8) 2 N 1-S
where
a; = time unit by which token-passing time is expressed

a1
1]

mean token-passing time between two stations
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1 { (N-1)(1+d ) + wtd }

N a, a,

w = walk time
d = mean signal propagation delay between any two stations
82 = variance of token-passing time between two stations
= 1 { (N-1)(14@ ~r)? + (w+d - r)?}
N a, a,
S = normalized total network packet arrival rate
N = number of stations on the ring

Based on this model, Cherukuri, et al. have analyzed the
behaviour of token rings. Further discussion about the
comparison of the results of this model with our models will be

taken up in Chapter 4.
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2.1.3 Bux's Model

Werner Bux has modelled both the token ring as well as the
slotted ring [2]. The only performance measure considered is the
delay-throughput characteristic. As in our models, delay is
defined as the time interval between the generation of a packet
- at a station and its delivery at the destination station. This
delay is made up of the queuing and access delay at the
transmitting station, fhe transmission time of the packet and

the propagation delay.

To simplify the mathematical analysis, Eux made some
assumptions. The arrival process at each station is assumed to
be Poisson with the same mean value. The service discipline 1is
assumed to be exhaustive. The distance between sender and

receiver is assumed to be half the ring length.

The symbolic notations used are :
N - Aggregate arrival rate of all stations (packets/sec),
Ld ~ Mean length of data in a packet (bits),
Lh - Length of header (addressing and control information)
C - Transmission rate (bits/sec)
s - Scan time (sec)
Tp - Service time of a packet (sec)
C

si - Time needed for passing the free. token

from station i to station i+1 (assumed constant)

N - Number of queues (stations)
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Figure 1 Token ring model

Figure 1 gives the model of the token ring. It is a single
server queuing model with as many queues as there are stations
on the ring. The rotating switch represents the cyclic servicing
of the queues. The solution for such a queuing system has been
derived by Konheim and Meister [11]. This solution has been

adapted by Bux to obtain the following equation.

delay =_p.E[Tp*Tp] + E[Tp] + s(1-p/N) + s

2(1-p)E[Tp] 2(1-p) 2

where p = A.E[{Tp].
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2.2 Models of the Slotted Ring

2.2.1 Bux's Model

This model for a slotted ring is also contained in [2]. The
protocol for this ring requires the receiving station to return
the slot with an acknowledgement to the sending station, which
then marks the slot as empty and passes it to the next station

downstream.

NN MN )%Q . ~ | f

TP ( PRO’ECSOR SHARING

!
A

A4 A\

,\\a_o:cp LOOP MODEL
OF CMPT)’ SLOT

Figure 2 Slotted Ring Model

Figure 2 shows the model of a slotted ring with only one
slot. Each station on the ring has an associated queue. There is
an extra queue in the model fof the following reason. As we have
seen, upon delivering its packet to the destination station, a
slot travels around the ring to be marked empty by the sender
before it can be used by the next station. This latency is
represented by an extra fictitious customer who simply loops
around for ever. The slot length dt is assumed to shrink to zero
in order to simplify the mathematiés. This 1idea 1is actually
derived from the context of time-sharing systems where the

equivalent of the slot length is the service time quantum. The
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resulting model 1is termed "processor-shared" and is known to
yield good approximations to the finite gquantum model 1if the
guantum is sufficiently small compared to the service
time (i.e., in this case, if the slot size is much smaller than
the packet size). Hence the packet size is assumed to be at
least ten times the slot size. With these assuﬁptions and using
the standard results of queuing theory, the mean transfer time
is shown to be (using the same notation as was used for the

token ring model of the last section)

delay = 2 E[Tp] + s

1-p 2

One more assumption is made at this stage that the slots
will completely fill the ring length without leaving any gap
between slots. Under this condition, the scan time s, the
transmission rate C, the slot length Lh+Ld and the .number of

slots n satisfy the relationship

s.C = n(Lh+Ld)
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2.2.2 Model by King and Mitrani

King and Mitrani [9] have developed a model for the
Cambridge Ring? The Cambridge Ring is a slotted ring 1in which
the slot size is 38 bits. Only 16 out of the 38 bits are used to
carry data and the remaining 22 bits are used to carry the
source and destination addresses and other control information.
This model 1is based on the processor-sharing concepts, as was
discussed under Bux's model for the slotted ring. However, they
have not discussed the mean delay suffered by a packet and hence
there are no expressions for the mean delay. The throughput of
the Cambridge Ring has been analyzed at the hardware 1level and
also with respect to the Basic Block Protocol (see [9] for

further details).
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CHAPTER 3

Modelling of some Ring Networks

3.1 Introduction

This chapter is concerned with deriving mathematical models
for two of the most popular types of ring nets - the token ring
and the slotted ring. In the case of the token ring, both the
exhaustive and the non-exhaustive service discipiines are
considered. The delay characteristics derived here reflect the
behaviour of the networké at the hardware level. The higher
level protocols generally modify these characteristics and these
modifications depend upon the specifications of the protocols.

These aspects fall beyond the scope of our models.

3.2 The Token Ring - Exhaustive Service Discipline

Under the exhaustive service discipline, a station wupon
receiving a token 1is permitted to transmit all the packets
waiting at that station. Here again, there are two modes of
operation - multiple-token and single-token. In the multiple-
token operétion, a station generates a new token immediately
after it has transmitted its last packet and passes this token
to the next station downstream. In the single-token operation,
the sending station waits for its packet(s) to return and a new
token is generated only éftef the packets have been removed from
the ring. From the reliability énd recovery points of view, a

single-token operation is béﬁter than the multiple-token one.
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However, there are some tradeoffs since the single-token mode
gives much higher delays, particularly when the number of

stations on the ring is large.

The following model is for multiple-token mode and can be
easily extended to the single-token mode. We shall assume fhat
the packet arrival has a Poisson distribution (i.e., exponential
inter-arrival times), that the mean arrival rate 1is 1identical
for every station on the ring and the mean service
rate (bits/sec) at each station equals the channel transmission

rate.

The following notations are used:

w = walk time (i.e., the mean time for the token to go
once round an idle ring)(sec),

s = wscan time (i.e., the mean interval between' successive
arrivals of the token at a station)(sec),

N = number of active stations,

A = packet arrival rate at each station (packets/sec),

g = mean number of packets waiting at a station,

PS = mean packet size (bits),

C = mean service rate at each station (bits/sec)

(=transmission rate of the channel).

Since the scan time 1is the sum of the walk time and the mean

time to service all the waiting packets in the net once,

s = w + N.q.PS (1)
C
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The mean number of packets waiting at a station 1is simply the

number of packets that has arrived at the station in between

successive token arrival (i.e.,the scan time). Hence,

Substituting (2) in (1), we get

s = W (3)

1 -~ N.A.PS/C

In the case df single-token operation, the scan time 1is
increased by an extra delay equal to the walk time for each non-
empty station. This is because a non-empty station waits for its
packets to return before it regenerates the token. The number of
non-empty stations in the steady state can be represented by

N.g. Therefore,

s = w + N.g.PS + N.g.w (4)

g = S.A (5)
Substituting (5) into (4), we get

s = W (6)

1 - N.A.PS/C - N.A.w
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Now mean delay time = mean time to wait for the token + mean
time a packet has to wait after the token has arrived before it

is placed onto the ring + mean propagation delay time.

= s + g.PS + w
2 2.C 2

= s + S.A.PS + w (7)

2 2.C 2
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3.3 The Token Ring - Non-Exhaustive Discipline

Under this service discipline, a station can send a maximum
of n packets each time the token comes by. The value of n |is
usually 1. We shall derive an expression for the delay using the

same notations adopted in the last section and with n=1.

The scan time depends on the number of stations N1 with
non-empty queues. If the stations are modelled as M/G/1 queueing
systems then the probability of non-empty queue has been shown
to be the product of the arrival rate (A) and the mean service

‘time (s)(see [10]).

Therefore, N1 = N.A.s ' (8)

Now the expression for s can be written as follows:

s = w + Ni1(PS/C)
= w + N.\A.s(PS/C) (9)
Hence,
s = W (10)
1 - N.A.PS/C

For an M/G/1 gueueing system, the mean queue length is given by
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a = p + p?( 1+ c?)

2(1-p)

where ¢ is the coefficient of wvariation of the service rate
(ratio of standard deviation to the mean) and p is the ratio of

the mean arrival rate to the mean service rate.

We now make the additional assumption that the service time
distribution at the station is exponential (i.e., the system is
M/M/1). The coefficient of variation ¢ for such a system 1is 1.

Then the mean queue length at a station is given by

N/ (1/s)
1 - N/(1/s)

= A. S (11)

1-A.s"

A packet arriving at a station will find g packets ahead of it.

mean time to wait for the token

Now mean delay time
+ g scan times to service the packets ahead
+ packet transmission time

+ mean propagation delay.
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Delay = s + g.s + PS + w (12)

If the scan time is assumed to be a constant, then the service
time becomes deterministic. Such a system is called M/D/1 and
its coefficient of wvariation of the service rate ¢ is 0. This
approximation will be compared to the M/M/1 approximation in
Chapter 4. Both the M/M/1 and the M/D/1 systems are particular

cases of the M/G/1 system.

Now, if single-token operation is assumed then, as in the case
of exhaustive discipline, the scan time is lengthened by an
amount equal to the walk ﬁime for each non-empty station.

i.e., s = w + N.A.s(PS/C + w) (13)

Therefore,

s = W (14)

(1 = N.A.PS/C - N.A.w)

The expression for delay is still (12) with the value of s given

by (14).
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3.4 The Slotted Ring

We shall start by stating our assumptions. First, a message
is assumed to be always correctly received at its destination
station so that there 1is no need for the sending station to
retransmit the same packet. The slots are assumed to be
uniformly distributed over the ring (i.e., the gaps between
slots, if any, are assumed to be equal in size). The packet size
is assumed to be equal to the slot size. We also assume that the
protocol requires a message slot to be emptied by its
sender (i.e., a slot needs to go round the ring once before it

may be used again).

The following notations are used:

N = number of active stations,

n = number of slots on the ring,

A = packet arrival rate at each station (packets/sec),

w = walk time (i.e., time required by a packet to traverse
the ring once) (sec),

p = probability a slot is non-empty.
If the system is not saturated, then

P = N. A.w L (15)

since w is the mean length of time a slot remains nbn—empty

after it is filled with a packet.
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Now the mean number of slots that will pass by the station

before it gets an empty slot is given by

o
EE: pK(1—p).k
K=0 |

= P (16)
(1-p)

Hence the mean time the station waits (from the beginning of a

slot) to find the beginning of an empty slot

= ¥ . _DP
n  (1-p)

. Mean time for a station to put a packet onto the ring

= W ' ' (17)

n(1-p)

This 1s the mean service time for the station and the mean

service rate u is given by its reciprocal.

If the station is modelled as an M/M/1 Queuing system then
the mean time spent by a packet at a station is -simply 1/(mean
service rate - mean arrival rate) where the mean service rate is

given by the reciprocal of Equation (17) and the mean arrival
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rate is A/N. Therefore,

delay = _w + 1 + W (18)
2n u - A/N 2
where TR n(1-p)
W

The first term in the delay expression is the mean time to get
to the beginning of a slot. The second term gives the mean qQueue
wait time a packet spends in the station before being put onto

the ring. The 1last term is the mean propagation delay of the

packet.



27

CHAPTER 4

Performance Comparisons

4,1 Introduction

The mathematical models derived in the last chapter can be
used to study the behaviour of the three types of ring networks.,
We have chosen the mean delay time as our performance
index (mean delay is the time interval between the generation of
a packet at any station and its arrival at the destination
station). We shall study the effect of the various ring
parameters on mean delay time. These parameters include the
network load, the number of active stations on the ring and in
the case of the slotted ring, the number of slots and the slot
size. In the case of the token ring, we shall also analyze the
effect on performance due to the service discipline (exhaustive

or non-exhaustive) and also the mode (single or multiple-token).

One of the advantages of having a local area network is to
provide easy access to the various hardware and software
resources to users spread over various physical locations.
Accessibility may be enhanced by adding more stations onto the
ring. Hence the effect of increasing the number of stations on
performance for a given network load is of interest and shall be

studied.

In the rest of the thesis, the ring bandwidth is assumed to

be 3 MHz, unless otherwise specified.
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In all the graphs in this chapter, mean delay time Iis
plotted against the normalized load. The normalized load can be
defined as the ratio of the total arrival rate for the
network (in bits/sec.) to the channel transmission rate (also in
bits/sec.). There are two reasons for such a choice. Firstly, we
eliminate channel transmission rate as an explicit parameter and
secondly, normalized 1load has more intuitive ‘meaning than
absolute load. The normalized load varies between 0 and 1. When
it 1is 0, there is no network traffic or load at all and when it
is 1, the channel is fully utilized. The delay time 1is also
normalized in order to meaningfully compare delays when
different packet sizes are involved. This is generally done with
a reference packet of size B. The normalized delay for a packet
of size X is its absolute delay multiplied by B and divided by
X. Therefore the normalized delay is the delay to transmit B

bits of information.

4.2 The Token Ring - Exhaustive Service Discipline

We shall study the effect of increasing the load and also
increasing the number of stations on the ring for a given 1load.
The results are shown in Figure 3. For any given N (number of
stations) the delay increases with increasing load. This is due

to the increased queue wait time at a station at higher loads.

Under 1light 1load, most of the delay can be attributed to
the time spent waiting for the token to arrive and the
propagation time (i.e., the_‘walk time 1is the single most

important factor in determining the delay time). Increasing the
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Figure 3 : Absolute Mean Delay vs. Normalized Load
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number of stations for a given load has the effect of increasing
the walk time since each extra station introduces an extra delay
in the ring. This explains fhe increased delay as N increases
when the load 1is 1light. Under heavier 1loads, a greater
proportion of the total delay is due to the queue wait time.
Increasing the number of stations for a given load reduces the
mean gueue length at each station. Due to these two opposing
effects of increased scan time and reduced queue length, the

- curves cross each other as shown in Figure 3.

One other important point to note is that for any given
load 1level (<1), 1increasing the number of spations to a large
value (such as 512) will increase the delay time significantly.
Nonetheless, the system remains stable (i.e., finite delay and
finite queue length). This results from the fact that both the
queue length and the mean delay tend to infinity only when the
scan time tends to infinity, which happens only if the number of

stations N tends to infinity.
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4.3 The Token Ring - Non-exhaustive Service Discipline

Figure 4 plots the absolute delay versus normalized 1load
for a token ring with non-exhaustive service discipliﬁe where
each station can send at most one packet upon receiving the
token. All the ring parameters and the workload parameters are
identical to those in Figure 3. Comparing Fiqgures 3 and 4, we
can see that with the non-exhaustive service discipline the
network saturates at a lighter load than with the exhaustive
discipline. Similar results are reported by Cherukuri, et al.
[3]. Moreover, the smaller N is, the more rapidly the system
saturates. Thus the cross-over points for different N's have
shifted significantly to the left compared to the case of the
exhaustive service discipline. This phenomenon may be explained
by the fact that for a given workload, the smaller the number of
stations N on the network, the larger is the queue of waiting
packets at each station. In the non-exhaustive discipline, each
packet will have a mean wait time in the queue which exceeds
that in the exhaustive discipline by the product of the mean
number of packets in the gueue ahead of it and the scan time.
Thus the smaller N is, the more rapidly the system approaches
saturation. Note also that increasing the number of stations on
the ring makes the behaviour under this scheme more and more
like that of the exhaustive scheme (compare Figures 3 and 4 for
N=512). A qualitative explanation of this behaviour is that with
the 1increase in 'the number of stations for a given load, the
mean queue 1ength at a station will drop below 1 in which case
there is no difference between the two service disciplines. A

quantitative analysis of this scenario is given below.
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Figure 4 : Absolute Mean Delay vs. Normalized Load

for a Token Ring (Non-exhaustive)
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From the delay expression for the token ring (exhaustive)
(Equation (7) of Chapter 3), we see that the delay tends to
infinity (network saturation) when the scan time tends to

infinity. From Equation (3) we have

S = W

1 - N.A.PS/C

Hence the scan time tends to infinity when N.A.PS = C.

i.e., M1limiting) = C ' (19)

In the case of non-exhaustive discipline, the scan time cannot
exceed a certain maximum value, which is the sum of the walk
time and the time to transmit N packets (i.e., when every
station on the ring has at least one packet to transmit).
However, the delay tends to infinity when the queue length

becomes infinite. From (11), the limiting case is reached when

A.s = 1. Substituting for s and simplifying the expression, we
get
AMlimiting) = C (20)
w.C + N.PS

Comparing (19) and (20), it is clear that the saturation load
for the non-exhaustive case is less than that for the exhaustive

case, due to the extra term in the denominator of (20). However,
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with the increase 1in the number of stations (N), the two

limiting loads approach one another.

From the above discussions, one can see the tradeoffs
between the two disciplines. With the exhaustive discipline, a
single station may hog the network, especially under heavy
loads. Such a situation can be avoided by limiting the number of
packets a station can send during each scan of the token. This
however adds extra overhead and gives longer delay times. Under
very light loads, the difference between the two disciplines is

not very significant.

Cherukuri, et al. [3] have discussed qualitatively the
differences between the exhaustive and non-exhaustive service
disciplines. Though they have not presented any expression for
the two 1limiting load levels, their conclusions are similar to
ours. They have also plotted delay versus normalized loads for
N = 10, 500 and 1000 and the graphs show increasing delay with

increasing number of stations.
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4.4 Single-Token versus Multiple-Token

In Chapter 3, we derived expressions for the mean delay for
the multiple-token operation and the models were extended to
include the single-token mode. Figures 5 and 6 show the
differences in performance between the two modes of operation.

The single-token mode is exhibiting longer delays under the same

load than the multiple-token mode both for the exhaustive and
the non-exhaustive service disciplines. This is due to the extra
overhead 1involved. From Figure 5, we can see that with the
increase in the number of stations on the ring, the single-token
mode performs even worse. However, the single-token mode
provides a more reliable operation of the ring and may be
desirable if the network load is known to be very 1light or if

the delays are not critical for the intended applications.



36

Figufe 5 : Single-Token vs. Multiple-Token Modes

for a Token Ring (Exhaustive)
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Multiple-Token Modes
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4,5 Comparison with Simulation Results

In order té check the correctness of the results of the
analytic models, simulation models are designed (see appendix).
The simulation models also make use of some assumptions which
are listed below:

1) the packet arrival process at any station is Markovian,
2) the mean packet arrival rate at every station is identical,

3) all packets are of equal size.

The programming language used for all the simulation work
is Pascal. These are discrete-event simulators with two types of
events -~ the arrival of a packet (at any station) and the
arrival of the token (at any station). A queue of packets is
represented by a linked-list of records (a packet is represented
by a record structure). For ease of implementation, all the N
gueues are combined into a single queue and each packet carries
with it the station number where it belongs. Thus only those
packets which have their station number X are transmitted
(deleted from the 1linked 1list) when station X receives the
token. In order to find the delay suffered by each packet, its
time of arrival at the network 1is stored in the record
structure. The mean delay is computed over a large number of

packets.

A good simulation model should also take into consideration
the start up effects (which must be compensated for), as
otherwise the delays are likely to be wunderestimated. This is
due to the fact that queue lengths are zero when simulation is

started and the first few packets to arrive will suffer delays
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less than those suffered by packets that arrive in the steady
state. Our simulation models eliminate such transient effects by
collecting statistics for delay only after steady state is

reached.

Figure 7 compares the results of our analytic model with
those of our simulation model for the token ring under
exhaustive service discipline (multiple-token mode). Very close
agreement is noticed at all load levels for different number of

stations.

Figure 8 compares similar results in the case of non-
exhaustive service discipline (multiple-token mode). In Chapter
3, we modelled a station at first as an M/M/1 system and then we
proposed an alternative model (M/D/1). The former model assumes
exponential service time distribution and the latter assumes
constant service time. From Figure 8, we see that the M/D/1

model agrees better with the simulation results. This is due to

the fact that the variation in scan time is not significant once
steady state is reached and hence it is more accurate to assume

it to be a constant in our analytic model.
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7 : Comparison of Analytic and Simulation Results
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Figure 8 : Comparison of Analytic and Simulation Results

for a Token Ring (Non-exhaustive)
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4.6 The Slotted Ring

In the case of the slotted ring, there are several
parameters which influence the delay characteristics of the
ring. In addition to the network load, we shall study the effect
on performance due to the number of slots, the slot sizes and
the number of stations on the ring. In Figure 9, the absolute
delay is plotted against the normalized load for a fixed number
of stations (i.e., 128). The slot size is also kept constant at
64 bits. The number of slots on the ring (denoted by n) is
varied from 1 to 8. Artificial delays are added to the
ring (usually implemented by having shift registers on the ring)
in order to accommodate the extra slots whenever the natural

delay of the ring is found insufficient for that purpose.

Under very light load, most of the delay can be attributed
to the time spent waiting for the slot to arrive and the
propagation time. This explains the longer delays with
increasing number of slots under 1light 1loads (since the walk
time increases with the number of slots). However, the
probability of finding an empty slot also increases as the total
number of slots increases. This reduces the mean gqueue wait
time. Under heavier loads, this effect has a greater influence
on the total delay and hence the mean delay time is reduced with

the increase in the number of slots.

Figure 10 shows the effect of varying the number of slots
on the ring when the walk time is fixed. The number of stations
on the ring is kept constant at 128. As the number of slots is

increased, the slot size is correspondingly reduced in order to
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Figure 10 : Normalized Delay vs. Normalized Load

for a Slotted Ring
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maintain the walk time a constant. As different packet sizes are
involved, it is more meaningful to consider the normalized delay
instead of the absolute delay. The reference packet size for
normalizing the delay is 256 bits. From Figure 10 it is clear
that larger packet sizes give lower delay. The reason for the
increased delay with smaller packet sizes is the extra
transmission overhead involved when a larger number of packets

need to be transmitted to carry the same amount of data.

Next, we consider physically lengthening the ring while
keeping the network 1load, the number of stations and the slot
size constant. Obviously the gaps between the slots grow in
size, Whenever the total size of the gaps becomes large enough
to accommodate an extra slot, we shall do so. The initial length
of the ring is just enough to accommodate one slot. Figure 11
shows the effect of lengthening a slotted ring with 10 stations
and with a slot size of 64 bits. Initially as the ring grows,
the walk time increases and the mean delay also increases. When
the gap becomes large enough to accommodate a second slot, there
is a sudden decrease in the delay time as the number of slots is
now increased to 2. If the lengthening of the ring is continued,
one can observe a marked sawtooth effect as shown in Figure 11,
Similar sawtooth effect is also reported by King and Mitrani [9]

in the case of the Cambridge Ring, which is also a slotted ring.

It is therefore clear that other things being equal, performance

is maximized when there is no gap between slots.
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Next we consider the effect of increasing the number of stations
on the ring for a given load. Figure 12 shows the absolute delay
plotted against the normalized 1load for wvarious number of
stations. As we increase the number of stations from 2, the walk
time increases linearly as each extra station adds extra delay.
This explains the increase in delay as N increases under 1light
loads. Under heavier loads, the scenario is a little different
since most of the delay comes from queue wait. When the number
of stations 1is increased from 2 for a given moderate load, the
delay decreases initially. This 1s because the decrease 1in the
arrival rate at a station exceeds the decrease in the service
rate pu. A further increase in the number of stations results in
less rapid reduction of the arrival rate and a more rapid
reduction in the service rate at a station. At some point the
mean delay begins to increase. This suggests the possible
existence of an optimum value for N, For the parameter values
selected here, the optimum N 1is 17. This number is not the
optimum at all load levels but 1is so only near saturation.
However, for lighter loads, this number still gives near-minimum
delays. It 1is possible to find the optimum N analytically, as
will be seen in the next section. This knowledge of optimum N

can be useful in designing a slotted ring.

No such optimum number of stations is found to exist for
the two types of token rings where both the arrival rate at a
station (A/N) and the mean service rate (1/s) of a station
decrease rapidly when N is initially increased from 2 and both

of them taper off to a more gradual decrease for larger N.
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4.7 Optimization of the Number of Stations on a Slotted Ring

At any load level, the optimum N can be deduced by taking
the partial derivative of the mean delay with respect to
N (Eguation (18) of Chapter 3) and equating it to zero. The walk
time w and the mean service rate of a station u are functions of
N but the number of slots n and the load A are independent of N.

We shall denote the mean delay by t.

t =_w + 1 + E

2n u - AN 2
2t = 9 fw o+ wl e+ | 1 o Gen
IN ON Z 2n 2 ON {u - A/N

The walk time w consists of two parts - the delay due to the
physical length of the ring (plus artificial delays) and the
delay 1introduced by the stations. Let k be the delay introduced

by each station.

Then, w = w (length) + k.N
Therefore, a_w_ = k
ON

Similarly, du/dN can be computed from Equation (17) of
Chapter 3, by substituting for p and taking the partial

derivative with respect to N.
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Equating (21) to zero, we get

(w-aN-2{du + 2| = k + x (22)
ON Nz,{ 2 2n
Substituting for u and QJu/ON and assuming k to be 1-bit

delay(i.e., 0.33 microsec. for a 3 MHz rihg), the above equation
can be solved for given wvalues of XA and n. It reduces to a
quadratic.equation in N. When solved, it gives one negative root
and one pdsitive root, the latter one being considered the
optimum value of N. For n=4 and near-saturation '}, the positive
root of Equation 22 is close to 17. This agrees very 1well with
the optimum N observed in Figure 12. As the load is reduced from
‘the saturation wvalue, the optimum value of N also reduces

gradually as one would expect.

Equation (22) is a general one that can be applied to any
ring configuration. The value of optimum N can be computed for
some other combination of ring parameters as well. We can vary
the ring length and the number of slots by the same proportion.
The above configuration had 4 slots and the walk time due to the
natural length of the ring was 100 usec. With 2 slots and a 50
usec. wélk time (i.e.;half the current ring size), the optimum
N (for near-saturation loads) reduces to 12. For 8 slots and a
200 usec. walk time (twice the present ring size), it increases

to 24.
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4.8 Comparison with Simulation Results

As with the case of the token rings, we verify the
correctness of the analytic model by comparing its results with
those from a simulation model (see appendix). This model
simulates a station under the assumption of Markovian arrival of
packets of equal size. No assumption is made about the service
time distribution. This is a discrete-event simulator where the
two events are the arrival of a packet and the arrival of a
slot. However, every arriving slot is not necessarily empty but
may Be full with a certain probability which depends on the
total arrival rate at all the stations. The delay statistics are
collected over a large number of packets. The transient effects
are eliminated by collecting statistics only after the steady-

state has been reached.

Figure 13 compares the results of the analytic model with
those of the simulation model. A close agreement between the
results were observed for various 1load levels and different

number of stations.
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Figure 13 : Comparison of Simulation and Analytic Results

for a Slotted Ring
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CHAPTER 5

Conclusion

In the last four chapters, we have analyzed the two common
types of ring networks - the token ring and the slotted ring.
Analytic models have been developed based on well known results
of queueing theory. Simulation models were also developed which

confirmed the correctness of the analytic models.

In the case of the token rings, two different service
disciplines were considered at the stations - the exhaustive and
the non-exhaustive (sometimes also referred to as the round
robin scheme). Each scheme has its advantages and disadvantages.
The exhaustive discipline gives 1lower delays than the non-
exhaustive one. However, under heavier loads, there is the
possibility of one station hogging the entire network. The non-
exhaustive scheme provides a higher degree of fairness to the
stations on the ring, i.e., it gives each station a fair chance

to transmit at the expense of longer delay time.

There are two modes of operation of the token rings - the
single-token and the multiple-token. Our models were extended to
include these two modes as well. The single-token mode 1is
characterized by having either packets from only one station or
just the token with no data packet cycling in the ring at any
time. It is known to provide higher reliability. However, as was
discussed in Chapter 4, it also gives higher delays than the
multiple-token mode. Hence the choice of the mode is dictated by

the environment and the applications for which the ring is used.
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In the case of the slotted rings, the effects of the
various ring parameters on the delay characteristics were
discussed. For a given ring configuration, an optimum number of
stations was found to exist which gives minimum or near-minimum
delays under all load levels. The value of this optimum number
was also confirmed analytically. No such optimum was found to
exist for the two types of token rings for reasons discussed in

Chapter 4.

A knowledge of the optimum number of stations can be useful
both in the ring design and for tuning an existing network for
better performance. Usually, several terminal devices are hooked
onto a single station on the ring. A knowledge of an optimum
number of stations can be used to redistrib;;e the terminal
devices between the number of stations that would maximize the
performance of the ring. Even when ring expansions are

contemplated, the number of stations for the expanded network

can be planned in advance.

All the models described in this thesis are at the hardware
level with wvery few higher level protocols being considered.
However, these low level models provide us with an understanding
of the behaviour of these ring networks under various
conditions. Such an understanding 1is essential before a more
elaborate model can be designed which takes the higher level
protocols into consideration. It is hoped that the ideas
presented in this thesis will be of help to ring network
designers as well as to researchers in the area of local area

networks.
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Future Research Directions

More work can be done to improve the accuracy of the
analytic models and make them more realistic. For example, the
packet size distribution can be considered in the models instead
of assuming all packets to be of the same size. The mean arrival
rate at every station need not be identical and the distribution
of arrival rates at the various stations can be considered 1in
the models. The mean separation between the sending and the
receiving stations depends on the distribution of stations on
the ring. This separation is equal to half the ring length only
if the stations are uniformly distributed along the ring and 1if
every station 1is egqually 1likely to send packets to any other
station. These details can also be considered 1in the models.
Finally, the higher level protocols have a significant effect on
the delay characteristics and hence should be considered in

future models.

It must however be noted that it is inevitable that some
simplifying assumptions be made in order to make the analysis
mathematically tractable. The simulation models presented in
this thesis are fairly general and can be used to study the
effect of the parameter variations mentioned above. The models
presented 1in this thesis (both analytic and simulation) provide
a good groundwork for further research in the directions cited.
More qguantitative measurements are needed to enhance our

understanding of the performance of ring nets.
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APPENDIX 1
Program Listing for the Simulation of a Token Ring

Program tokenring;

Const N=32; ps=64; c=3000000;

Type
packet = RECORD
arrtime:real;
station:integer;
next:packet;

end;

Var
na, naa, pois, i, stn:integer;
delay, totdelay:real;
t, tpa, tta:real;
head, tail, p1, p2:@packet;
ng: integer;
w: array (1..N) of real;
X, t1, s, walk:real;
lambda:real;
mean,dseed, temp:real;
nr,ier:integer;
found:boolean; {used for non-exhaustive discipline}

exhaustive:boolean; {decides the service discipline}

FUNCTION random(x:real):real; Fortran 'RAND';
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PROCEDURE intpacktime; {inter-arrival times for packets}
begin
:=random(0.0);
t1:=(~-1)*(1.0/lambda)*LN(x);

end;

PROCEDURE initialize:
begin
exhaustive:=FALSE; {i.e.,non-exhaustive}
delay:=0.0;
totdelay:=0.0;
found:=FALSE;
na:=0;
naa:=0;
walk:=0.0001+(N*0.33)*0.000001;
for i:= 1 to N do {for uniform distribution of stations}
w(i):=(0.0001+(N*0,.33)*0.000001)/N;
stn:=1;
head:=nil; tail:=nil;
ng:=0;
t:=0.0;
x:=random(0.7978);
intpacktime;
tpa:=t1;
tta:=walk/2.0;

end; {initialize}



PROCEDURE packetarr; {process arriving packet}
begin
t:=tpa; {advance time}
intpacktime;
tpa:=tpa+t1; {schedule next arrival}
new(p1);
pi@.arrtime:=t;
pl@.station:=1+TRUNC(random(0.0)*N);
pl@.next:=nil;
if ng=0 then {start a queue}
begin
head:=p1;
tail:=pt;
end;
else
begin
tail@.next:=p1;
tail:=p1;
end;
ng:=ng+t1;

end; {packetarr}

PROCEDURE tokenarr; {process arriving token}
begin
t:=tta; {advance time}
if ng >= 1 then {if a gueue exists}

begin
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p2:=head;
while (p2 -~= NIL AND -found) do
begin
if p2@.station = stn then
begin
delay:=t-p2@.arrtime+(walk/2.0)+(ps/c);
if na >500 then
totdelay:=totdelay+delay;
nas=na+1;
_if na > 500 then naa:=naa+1;

if ~exhaustive then found:=TRUE;

ng:=ng-1;

{advance time by packet transmission time}

t:=t+(ps/c);

if t >= tpa then

begin
temp:=t-tpa;
ti=t-temp;
packetarr;
t:=t+temp;
end;
end;
p2:=p2@.next;»
end;
end;
ttas:=t+w(stn); {schedule next arrival}

stn := (stn mod N) + 1; {update station number}



found:=FALSE;

end; {tokenarr}

BEGIN
lambda:=8000;
initialize;
while naa < 1000 do
begin
if tpa <= tta then packetarr;
else tokenarr;
end;
writeln(' ');
writeln(' NORMALIZED LOAD IS ', lambda*ps/c);
writeln(' MEAN DELAY IS ', totdelay/naa);

END,
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APPENDIX I1I
Program Listing for the Simulation of a Slotted Ring

Program slotring;
Const N=32; ps=64; c¢=3000000; no=4;

Type
packet = RECORD
arrtime:real;
next:packet;

end;

Var
na, naa, pois, ng, i:integer;
delay, totdelay:real;
t, tpa, tta:real;
head, tail, p1, p2:@packet;
w,s:real;
x,t1,tempor:real;
lambda:real;
mean,dseed,temp:real;

nr,ier:integer;
FUNCTION random(x:real):real; Fortran 'RAND';:
PROCEDURE intpacktime;

begin

x:=random(0.0);



t1:=(-1)*(1.0/lambda)*LN(x);

end;

PROCEDURE initialize;
begin

delay:=0.0;
totdelay:=0.0;
na:=0;
naa:=0;
w:=0,0001+(N*0.33)*0.000001;
head:=nil; tail:=nil;
ng:=0;
t:=0.0;
x:=random(0.7978);
intpacktime;
tpa:=t1;
tta:=w/no;

end; {initialize}

PROCEDURE packetarr; {process packet arrival}
begin
t:=tpa; {advance time}
intpacktime;
tpa:=tpa+t1; {schedule next arrival}
new(pt);
pl@.arrtime:=t;
p1@.next:=nil;

if ng=0 then {start a queue}
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begin
head£=p1;
tail:=p1;
end;
else
begin
tail@.next:=p1;
tail?=p1;
end;
ng:=ng+1;

end; {packetarr}

PROCEDURE slotarr; {process slot arrival}
begin

t:=tta; {advance time}

tta:=t+(w/no); {schedule next arrival}

if N*lambda*w/no > N/(N+1) then tempor:=N/N+1;

else tempor:=N*lambda*w/no;

if random(0.0) > N*lambda*w/no then {slot empty}

begin
if ng >= 1 then {if a queue exists}
begin

p2:=head;
head:=head@.next;
if head=nil then tail:=nil;
delay:=t-p2@.arrtime+(w/2.0)+(ps/c);
if na > 500 then

totdelay:=totdelay+delay;



na:=na-+it;
if na > 500 then naa:=naa+1;
ng:=ng-1;
fadvance time by packet transmission
:=t+(ps/c);
if t >= tpa then
begin
temp:=t-tpa;
f:=t-temp;
packetarr;
t:=t+temp;
end;
end;
end;

end; {slotarr}

BEGIN
lambda:=1000;
initialize;
while naa < 1000 do
begin
if tpa <= tta then packetarr;
else slotarf;
end;
writeln(' NORMALIZED LOAD IS ',N*lambda*ps/c);
writeln(' MEAN DELAY IS ', totdelay/naa);

END.
$1.63, $1.63T

time}
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