DESIGNING A PORTABLEYNATURAL LANGUAGE DATABASE INTERFACE
by
ALLAN DAVID BOOTH

B.Sc., University of British Columbia, 1979

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE-DEGREE OF
MASTER OF SCiENCE
in
THE FACULTY OF GRADUATE STUDIES

" DEPARTMENT - OF COMPUTER SCIENCE

We accept this thesis as conforming

to the required standard.

THE UNIVERSITY OF BRITISH COLUMBIA

March, 1983

© Allan David Booth, 1983

In presenting this thesis in partial fulfilment of the
requirements for an advanced degree at the University

of British Columbia, I agree that the Library shall make
it freely available for reference and study. I further
agree that permission for extensive copying of this thesis
for scholarly purposes may be granted by the head of my
department or by his or her representatives. It is
understood that copying or publication of this thesis

for financial gain shall not be allowed without my written

permission.

Department of - CO 1 f u.‘{’ er Sl——.'ey\(.a

The University of British Columbia
1956 Main Mall

Vancouver, Canada

V6T 1Y3:

March 27 149€3

Date

DE-6 (3/81)

ii

Abstract

Allowing a user to inquire into a databése in his native
language 1is becoming an increasingly desirable feature.
Consequently, there have been a number of attempts to attach a
naturalvlanguage front end to an existing database management
system. However, few database systems today are competent in
processing natural language queries. The main stumbling block is
the adaptation of an existing natural lanquage front end to a

new domain of discourse.

The development of a domain independent natural language
interface to an existing database management system is discussed
here. The underlying domain independent features of natural
language are examined and combined into one linguistic core. The
domain specific information 1is gathered into an information
dictionary for the 1linguistic core to process. Finally, the
interface to the database handling routines is modularized with

standard inputs and outputs.

Table of Contents

Table of Contents

1 IntrOdUCtiOn LRI I S IR I O A N A I I A A I R B B B R I B B Y I R I B B I BN B R I IR B B Y I)

Development of Question Answering SysStemsc.ceeeee
Syntax Without Semantics ..iveeeeeeceecesecccnsccnnnons
Semantics Without Syntax ...evececeeeeeecoeeeocannanna

COEXiStence ocoo-...o-.oooc.-..oooo-ooooooo.-oon-aoooa

Summary LR B LR Y B I A B R Y A LR R I B Y IR B Y I I I I O I I I I S O A)

3 Concepts in Natural Language Portability ...ceeeececeencass

3.1

3.3

The Language SEIUCLULE ..ueeieeereneeoonesonnosennonns
3.1.1 Building The Sentence Structurec.ceceeece.
3.1.2 Using The Sentence StructuUre .. eeeeecescececns
3.1.3 Relaxation of Grammatical Rulesco.en.
VOoCabULArY teeeeeeeeseensanoeosossscescascsassscsnsnnss
3.2.1 MOIrPhiNg t.iieieeeeeeocecccccoonssocnanenonsss
3.2.2 1dioms and JArgoN .ceceeseesoescscsacsoscscssosns
3.2.3 Verbs ...iciiiiiiireecnnncans cececcscscscccsssrne
3.2.4 NOUNS i.icuiteueeoessonssesassnsnssessssanonasnans
3.2.5 Adjectives and AQverbSceceeccccnncnncons
3.2.6 PrepoSitionNs tiiiiieeeecececsscccconsccnansonss
Sophistication of Design S
3.3.1 Metaquestions;......;..............
3.3.2 User Interaction and Communication;..

3.3.3 Spelling COrrection .uieeeececcecsccscoccssoasons

iii

1

5
6
11
14
16

18
21

21

24
27

27

28
30
30
31
32
32
33
35

Table of Contents

Table of Contents iv

3.3.4 Knowledge Acquisition ® & & 2 @ O 8 & " S % O e O s O " BSOS SO 35
3.3.5 Making Assumptionsceecececcccccccccccenee 37
3.3.6 Answer Generation ...ceeeeececeocossccccsccenes 37

3.4 Summary [A L I O AR B A B I B I Y O U R I B I Y I B I B I I A IR IR O AN] 39

4 System Design: Part I - The Linguistic Coreceeeeeees. 43
4.1 The NL PArSe€rcecececsesessscsssosssssoscasssassss 45
4.1.1 The ATN ParSereeseescscscscscsscsccnssess 47
4.1.2 The ATN Grammare.ceocsecesesesescsscssssscss 48
4,.1.3 SCANNING tiieeccecsceoscosscssesscsscnscosases 50
4.1.3.1 The Morphereceeeeesscsccnceenesss 50

4.1.3.2 Compound WOrdS ..ceeseesccssssscsaces D53

4,1.,3.3 Abbreviations and Synonyms 54

4.1.4 Semantic Routinesceevvecesecccscnncsnass 54
4.1.4.1- Adding a Noun PhrasSeceeeeeeees. 55

4.1.4.2 Adding a Verb Phraseccecceeeeeees 57

4,1.4.3 Adding Noun Phrase Modifiers 59

4.1.4.4 Preposigional Phrases ...ceceevecssess 60

4.1.4.5 Finding Pronoun Antecedentsc... 61

4.1.4.6 ConJuUNCtioNS .seeeesevececcsoscsssases 62

4.1.5 Local Communicationceeceeseesecsecssases 63

4.2 Syntactic DicCctiONArY s.ceeeeecesoscsccsscocassanneceaes 64
4.2.1 Noun Definition ...ieeeeeecescscescsesassosass 65
4.2.2 Verb Definition vueeeeeseseeeseensensensennens 66
4.2.3 Adjective Definitioniiieveecececcnecneeeess 68
4.2.4 Quantifier Definitioneeeveeeeeoeecenceess 69

4.2.5 Preposition Definitionccc0ivienuenea.. 69

Table of Contents

Table of Contents

4.3

4.2.6 Synonyms and Abbreviationsceeceeeveeess 70

4.2.7

Compound Word Definitionceveeeveecnnnss 72

Knowledge AcQuisSition ..i.eiveeeeeecessnecsccocoscnnane 712

4.3.1

Spelling Correction ..i.eeeeseeecsccceccncenses 74

4.3.2 Database SearCh ® 8 8 2 0 0 0 00 0P e S0 L s s 0Lt 74

4.3.3

4.3.4

Ignoring words L A B S IR B R R I R I I I Y B B B Y A B AN A A A] 75

Entering New Words ® ® 5 5 0 8 50 080 0 000000 e LN e 76

Internal COMMUNICAtION tvvevreenececoaconccceasceaase 76

Building the Standard Sentence Representation (SSR) . 78

4.5'1 ‘Reducing the SSR ® & ® O & 8 O S O P P S B P OSSO OO OB e e e 81

4.5.2
4.5.3
4.5.4
4.5.5
4.5.6
4,5.7
Answver

Summary

Default Search Fieldscveevvesssccssoaces 82

Counting Database Items - *NUMBER0c... 82

Using an

Auxiliary Verb as a Main Verb 84

Verb Phrase EllipsSisS .i.iiveevececncecececeanss 84

Pronoun Reference = *REFveeeeeseaecesess B5

Embedded Noun PhrasesSeeceressavesccecnece 86

Generation ® & 5 5 5 S S O P LS OB SO LS L0 L e S e e e e e 87

-.o-o.ooo..o-.o--oo-.oQon..oo.oooo.nooooaoo.uo 89

5 System Design: Part II - The Application Interfaces 91

5.1

Domain Definition ® 5 52 5 0 6 P 0 0 00 0 P 0 0L E NSO N L E S OB L e Ne 91

5.1.1

Domain DictiOnaryeeceeeeveeecnccenanass ... 94

5.1.1.1

5.1.1.2

The Case

ACtIONS +eieireesesscossossonsssnsnsnse 94
The Fields .iiveeeesececsecncoecasess 95
Terms and JAargonN ...eeseeceosescceees 38
The Field Elementsccevueeneeas 99

List ® 5 8 0 9 6 8 5 0 0 S5 L L LT L e LS e ELOENEOEEODLIGEE 100

Table of Contents

-

Table of Contents vi

5.1.3 1Inverted Databaseiceeeeeccececaccncnaess 101
The Database Interface ...c.eeeceenrccesscecossesass 104
5.2.1 Database Format ROUtINEeS ..ceeeevescoccesaess 106
5.2.2 Data Format ROUtINES ...ceeveecccecscccncseaess 107

Summary ® & & & & 06 8 8 8 0 0 0 ® & & & & 9 0 0 O S0 e P L PGS e e B " e SN0 e e 108

6 A Change Of DOMAINS st veresscsessccccsscsossssscccsssccess 110

6.1

The Definition Process: A Guide to the Perplexed ... 110
6.1.1 Constructing an Inverted Databasecec0.. 111
6.1.2 Database Field Definitions ...veeeeeeeeceeess 112
6.1.3 ACtion Definitions ueueeeeeeeseveeneeeeeeeeees 112
6.1.4 Abbreviations, Synonyms and Jargon 113
The Restaurant DOMAIN ...eeeeeecescssosnssssescseaase 113
Adaptation to the Bibliography Domaincceceeeeee 115
The Conference Domain:......;,......;...... 119

Summary LR Y B S K Y B I Y B I B A I R I Y I I Y Y I S B I B B R I I N) 120

7 Conclusions'.................II...I'......I 121

7.1

Open Issues P B3
7.1.1 Text Retrieval by Content ..cceeeeeececonseees 122
7.1.2 Value JudgementsSceeececccsccccccocnccasnes 122
7.1.3 Multi-Field ANSWEIS ...veeecescesnncasannanas 123
7.1.4 Complex ConjunctionNs ..euieevececcccecsseseeaes 124
7.1.5 Pronoun REfereNCeeeeeeeeeeeseesneacennss 125
7.1.6 Clarification Dialoguecevececsocececsass 125
7.1.7 Sample Sentence Generationcecceceecsecss 125

Problems for Future WOIKcceeececosnssnssnsceasss 126

Table of Contents

Table of Contents vii

7.2.1 Extensions to the Syntactic Compoﬁent ceeeess 126
7.2.2 Extensions to the Semantic Component 126
7.2.3 Adaptation to a New Database System 127
7.2.4 Computational Optimizationeeeeecceccecses 127

7.3 Summary ® & © & B & O 5 O O & O O P B S OO OO T e O e OO e L PP OSSOSO S SN 128
Bibliography ® & & ¢ © 5 & 6 & O 0 B S O S OO OO E S S PPN O e OGS S S eSS SN OLEE 129
Appendix A: Transition Network Grammarc.oceesesesoses 133
Appendix B: Case List e & & 0 & 5 & O & S 0 P S S PO OO PGP P E eSO e 0 e 0P s 0 o0 137
Appendix C: Partial Definition of the Syntactic Dictionary 139
Appendix D: Partial Definition of the Restaurant Domain ... 146

D.1 . The Domain Dictionary ® & & & ¢ & & 0 " 8 s 0 0 .‘I ® & ¢ 0 & & & 5 & 5 5 0 " 0 0 146

D.2 The Case List ® & & & 6 & & 0 & O 8 P " S e O e P E " P S OO S LS 0 e e s e P e 152

D.3 The Inverted Databaseceeecosessscsosccnsseasas 152

Appendix E: Sample SeSSiON .uiiiiereececcccccscacscannsesess 156

Table of Contents

Figures viii
Figures

2.1 Sentence Deep StruCtUre ...cicesescccscsccoscscssosscssces 7
3.1 Current Question Answering SyStemS .ceeeeeececcccssccess 20
3.2 The AMOUNT ATN NetWOrK ...ceeeeceacocssssosssossscannsasns 25
3.3 Proposed Natural Language SYStem ...eccecessnncoccceeess 40
4,1 fhe Linguistic COre .tieeeeescocscessoescnsoscessacasannes 45
4.2 The Natural Language ParSerc.eecescccscsoscccccssss 46
4.3 The Quantifier ATN NetWOrK ..cveeevoecocsonsssssssssesse 49
4.4 The Suffix Tablecceveeesecesascasccsisssccsssssenes D2
4.5 The Standard Sentence Representation ...eeeeeescsssscees 79
5.2 Proposed Natural Language System: A Reviewcceeeses 92
5.2 The Domain Definition Modulecciveeeeesencscnneseass 93
5.3 The Database Interface Modulecceeeeecosccocssnacaas 105
6.3 fhe Fields in the Restaurants Databasec000000.. 114

6.2 The Fields in the Bibliography Database .eeeeeveeennne. 116

6.3 The Fields in the Conference Database ...ccveeecescceess 119

Figures

ix

Acknowledgements

I would like to extend my thanks to Dr. Richard Rosenberg
who initially created and continually increased my interest in

the study of natural language understanding.

I would especially like to thank my parents and friends for
their constant support - without it this thesis would

undoubtedly never have been finished.

Chapter 1

Introduction

One might have thought that the wuse of large database
systems would be widespread by today. People in every walk of
life could benefit from the day to day use of such systems. But
the development has failed to reach this expected level. One of
the major reasons for this failure has been an 1inability to
provide the database with a suitable natural language (NL)
interface. Casual users of a database with no formal training
in the |use of computers invariably balk at having to learn a.
somewhat artificial language in which to communicate with the

machine.

Branches of = Artificial Intelligence (AI) have been
concerned with this problem for some time. They probe into all
aspects of natural language wunderstanding from answering
database queries to automatic translation and paraphrasing. The
guestion answering (Q/A) paradigm has some rather strong
restrictions on the 1inputs allowed and these can help to
simplify the task. For example; when answering questions to a
database, a system need not worry about declarative sentences.
Because information in the database will be associated with one
particular topic, both the number of words which must Dbe

understood and the possible meanings of those words will be

limited. This reduces the occurrence of ambiquity in the subset
of the language which is being processed. But even with all of
these assumptions which limit the language processing
requirements of a Q/A system, there are still few commercially

viable natural language database interfaces on the market.

However, this does not mean that the technology to produce
such an interface does not exist. Many examples of adequate NL
systems can be found in the current literature (Harris 1977a;
Sacerdoti 1977; Waltz et al 1976; Woods et al 1972). The major
"stumbling block in applying this technology seems to be in the
start-up costs of transferring a reasonable portion of any
developed NL system to a new domain or database system. These
start-up costs are usually comparable to the initial development
cost of the entire system. By examining branches of Computer
Science which have already dealt with the issues of portability
(such as compiler design and operating systems research), it
becomes clear that it is possible to apply present AI techniques
to develop Q/A systems into useful tools. Unfortunately one
cannot simply take the current systems and modify them to suit
the needs. The issue of portability must be built in at the

ground level if a system is to remain structurally sound.

Indeed, the problem that will be addressed here is the
issue of portability. How can a NL interface be designed so
that it can be transferred to a different system with minimal

effort and still retain a reasonably high standard of question

answering capability? The poftability issue will be viewed from

two different perspectives: domain portability and database

portability. Domain portability refers to the problems of

applying the NL interface to a new domain of discourse. The
issue of database portability deals with a change in the actual
physical structure and data accessing methods. of the database
management system. All NL systems contain some procedures for
dealing with linguistic features of the language regardless of
the domain or database structure. It is these concepts we wish

to exploit in the design of the system.

The method of achieving portability here has been to
abstract all components of current systems which are domain
independent and combine them together into one "linguistic core"
(Rosenberg 1980). This component consists not only of the
natural language parsing procedures but also of thellﬁser
interaction and answer generation components. The linguistic
core consults with a "domain definition" to retrieve information
about the particular domain in which it 1is working ‘and

communicates with the database through a "database interface".

In Chapter 2 we will review some past and current systems
with a goal toward pointing out some of their achievements as
well as their shortcomings. Next 1s an overview of the
important céncepts of natural language portability in Chapter 3.
A working system embodying these ideas is presented in some

detail in chapters 4 and 5. Chapter 6 contains a description of

the domain modification process which was necessary to change
the domain from the initial restaurant information database to a
bibliography database and then to a conference registration
database. The 1last chapter attempts to summarize the ideas
presented in this thesis as well as provide some directions for

further research.

Chapter 2

The Development of Question Answering Systems

The developmental' path of natural language question
answering (Q/A) systems has taken many twists and turns.
Influenced greatly by Chomsky's research ~in transformational
grammars (Chomsky 1965), researchers 1initially expected that
linguistics was going to play a major role in the field. Early
syétems were developed wifhin the transformationalist approach{
that is, they adhered to a linear paradigm (Rosenberg 1980) in
which the structural description of a query was first obtained
before any semantic processing was initiated (Woods 1967: Woods
et al 1972). However, since -a syntactically directed parse
tends to generate a lgrge number of ambiquous parses from a
natufal language query, many researchers attempted to find a
more data directed method of parsing (Schank 1973; Waltz et al

1976; Marcus 1979).

It was soon realized that, at least in the limited Q/A
paradigm,.the "meaning"” of a query could be extracted by
tailoring a system towards the semantics and paying only little
attention to syntax (Brown et al 1974; Waltz et al 1976;
Sacerdoti 1977). The majof disadvantage of these systems was
that they were built entirely around the vocabulary of the

domain in which they were working and to change the domain meant

to rewrite most of the code.

Today researchers are exploring the middle ground where
both aspects of natural language understanding coexist. Systems
are being built which retain the framework of the purely
syntactic parse but include intermediate interaction with the
semantic coﬁponent to determine meaning and weed out unwanted

parses early (Harris 1977a; Bobrow and Webber 1980).

2.1 Syntax Without Semantics (or Structure Without Meaning)

Work on syntax directed parsing has, for the most part,
been based on the transformational approach of linguists such as
Chomsky (Chomsky 1965), Katz and Postal (Katz and Postal 1964).
An input .sentence was transformed from 1its input "surface
structure"” into a syntactic "deep structure" before any semantic
interpretation was attempted. The deep structure of a sentence
is the level at which the meaning can be obtained, wunder the
1965 "Aspects" (Chomsky 1965) theory. The surface structure, on
the other hand, 1is the uttered form of the sentence. _In
general, one deep structure could correspond to many different

surface structures. For example, the two queries:

Which restaurants take reservations ?

and

Reservations are taken by which restaurants ?

although they have different surface structures, have the same

deep structure (Figure 2.1).

Sentence
/ -/ \
Q Noun Phrase Verb Phrase
| / \ .
Noun Verb Noun Phras
I | I
restaurants take Noun

reservations

Figure 2.1: Sentence Deep Structure

The Augmented Transition Network (ATN) parser (Woods 1970)
is the prime example of work in this direction. The ATN itself
was modelled on the finite state transition gréph, which is a
network of nodes representing states and directed, labelled arcs
governing the conditions for transition from one state to
another. For the purpose of natural language understanding, the
transitions were based on syntactic categories and a variety of

conditions.

The reason for producing the deep structure was to capture
as many of the regularities of a natural language as possible,
thereby reducing the number of possible structures which the
semantic componeniﬁwould have to consider. After producing its
.deep structure, control would be passed to the semantic

processor and the "meaning" extracted. Although there were

distinct advantages to this method, a few major disadvantages

developed.

Because the syntactic processor (usually the ATN parser)
incorporated no semantic information, it could only generate
pure syntactic parses which had no semantic grounding on which
to determine sensibility. Since, even when employing semantic
information, there 1is still ambiguity in the English language,
without it, it became an impossible task to generate the one
correct ©parse. In fact, many spurious parses were usually
generated. Consequently, a "generate and test" strategy was
adopted by some. All possible deep structures were generated
and presented, in turn, to some decision component
(Harris 1977a) wuntil the intended one was found. For example,

the query:
Find a car with a trailer which is red.

is ambiguous because there is no way to decide from syntax alone

whether "red" is the colour of the car or of the trailer.

An even more important problem was that syntactically sound
gueries which had no possibility of success semantically had to
be completely parsed before the semantic decision component
could be consulted. An example from the PLANES system (Waltz et
al 1976) is:

How many engine repairs required maintenance in May ?

If parsed by a purely syntactic processor there would be no way
to discover the subtle fact that "engine repairs" could never

require maintenance.

Additionally, since there were so many possible parses, it
became necessary to show the user that the system had indeed
selected the correct one. This either required the
implementation of a paraphraser (Harris 1977a) or, more often,
required the wuser ' to have a working knowlédge of the system's

internal syntactic sentence representation (Woods et al 1972).

A definite advantage of the "two pass" (syntactic/semantic)
system, although never fully realized, was the ability of the
initial processor, using only syntactic knowledge to remain
relatively independent. of the domain in which it was working.
This means that to change the domain would merely require
modifications to the second, semantic processor. But because
the deep structure prodﬁced'by the syntactic processor had to
contain all of the syntactic information, it was a complex
representation. And because the representation was complex, the
semantic processor had to be complex to "understand” it. Also,
the representation created by the syntactic parse contained
little information which would prove helpful in extracting the
meaning of the original query. Consequently, most of the
"useful" processing had to be done in the semantic phase of the
program. Therefore, the idea that the syntactic phase of the

program should never have to be rewritten was obscured by the

10

fact that the semantic phase was itself 1incredibly 1large and
complex (Woods 1967; Woods et al 1972). Even an aspect such as
anaphora which should ideally be inéiuded within the domain
independent syntactic portion could not be because of its need

for semantic interpretation.

For the naive user to be comfortable with a computer system
it must be fairly flexible. The creation of completely
grammatical queries is both verbose and difficult - especially
"on the fly". Using a strict syntactié parser for the first
pass demanded that the. grammar be reasonably inflexible since
the only information which the parser could employ was
syntactic, If the constructs were not strictly adhered to, many
ambiguities might be introduced and the parser would become
unable to parse the query. One method adopted which helped to
partially alié§iate this problem was to try to parse the query
as a "noun phrase utterance" (Woods et al 1972) or a "sentence
fragment" (Harris 1977a) if it could not be parsed as a complete
query. This, like all "add-on" fixtures, only minimally reduced
problems which were caused by the basic design of the method.
Furthermore, the problem of non-grammatical inputs was still not

addressed.

Some of the parsers which used complete backup (e.g. the
ATN parser) would construct a sentence component such as a noun
phrase and then, 1if the parse failed, the component would be

dissolved. Later, at a different stage of the same parse, the

"

same component might have to be reconstructed. This is clearly
a waste of time and energy and again some work has been done to

remedy this situation (Bobrow and Webber 1980).

The semantic portion - the second pass of the two pass
system - has been handled in a number of ways. The most common
is the "procedural" semantics (Woods 1967; Woods et al 1972)
where patterns in the deep structure trigger the use of certain
procedures. Unfortunately, to update or add a new construct was

a complex task in itself.

2.2 Semantics Without Syntax (or Meaning Without Structure)

Semantically oriented sysfems are tYpicélly data directed,
one pass systems. Much of the justification for this has come
from introspection to find the methods which we ourselves use
for natural language understanding (Schénk 1973). The term data -
directed (as opposed to syntax directed) means that rather than
searching for, say, a prepositional phrase at each stage of a
parse, one would only be looked for after a preposition has
first been found. The concept of one pass means that the
semantic content of each word or phrase 1is introduced
immediately as the word is parsed and, therefore, after just one

parse, the meaning of the entire query should have been found.

The main thrust of the semantically oriented Q/A systems

12

has been. in the area of so called semantic grammars. Semantic
grammars use semantic concepts as the basic building biocks for
developing a sentence representation rather than syntactic ones.
As examples, the SOPHIE system (Brown et al 1974) parses
concepts such as voltages and resistor types, the PLANES system
(Waltz et al 1976) can understand plane types and damage types
and SRI's Naval database called LADDER (Sacerdoti 1977; Hendrix
"~7et al 1978) deals competently with ship types and parts. .Since
the semantic concepts which semantic grammars look for tend to
be relatively unambiguous within a particular domain, many of
the natural ambiguities in the natural language can be ignored.
This type Aof system has demonstrated a high proficiency in
simple domains (Brown et ‘al 1974) and even simple sentence

fragments and non-grammatical input can be handled.

When the semantic units have been formed, they are usuallyi
fitted 1into slots in a predefined pattern to determine
acceptability (Waltz et al 1976; Brown et al 1974). These
patterns define the range of questions which the system can
answer and any deviation from tﬁem will usually result in an
unanswerable query. This is not necessarily worse than the
problems arising with misunderstandings during a syntactic parse
because at least the system did not generate unwanted parses;
however, the system still did not really have a grasp of where
it went wrong and therefore, could rarely provide the user with

any guidance as to why the error may have occurred.

13

Semantic grammars themselves are a method of representing
the domain-specific knowledge in a Q/A system. Unfortunately to
create or modify them, as 1is the case with any coded or
"procedural" semantics (Woods 1967), one requires either a
complete knowledge of the intimate details of the system's
workings or the use of a semantic grammar "generator". LIFER
(Hendrix 1977), used in conjunction with the LADDER
(Sacerdoti 1977) system at SRI is an example of such a
generator. NETEDI (Waltz et al 1976) 1is used in the PLANES
system to modify already created semantic grammars.' However
even with the help of the grammar generator, it is still an
unstructured and somewhat ad hoc process to insert new

grammatical structures into the original code.

Since 1little notice "'is paid to syntax in a semantically
driven system, some of the régularities in English (or any
natural 1language) cannot be easily captured. Without the’
benefit of syntactic structures, the semantic grammar can
degenerate to the level of having to specify or expect every

possible query.

Regardless of the complexity of the representation,
however, a major flaw in the philosophy of semantically oriented
systems is that, being developed around the semantics of a
partidular‘domain, they must be virtually rewritten when applied

to a new situation.

14

2.3 Coexistence

Some current Q/A systems try to take advantage of syntactic
and semantic processing simultaneously. A basically syntactic
parse is performed with intermediate calls to the semantic
routines to determine acceptability and extract meaning (Bobrow
and Webber 1980). The units formed are then combined into the
semantic sentence representation. 1In this way, the systems gain
the syntactic framework of the syntactically oriented systems as
well as the "single pass" advantage of the semantically oriented
ones. Rather than having a distinct syntactic-semantic
processing split, there is a syntactic-semantic knowledge split.
The syntactic knowledge is that which is always true for all
domains, being based on the syntax of the natural language,
whereas the semantic knowledge depends on the domain involved.
The important problem with these systems lies in the search for
an adequate and easily modifiable representation for the

specification of the domain dependent knowledge.

As mentioned before, both semantic grammars and procedural
semantics are means of representing semantic knowledge. The
major disadvantage of these, along with Woods' cascaded ATNs
(Woods 1980), is that they are basically brogram code and to
alter them wusually requires unstructured programming changes.
Clearly, it would be simpler to modify information that was

structured in a dictionary-type, declarative format.

15

The Graceful Interaction (GI) system (Hayes and Reddy 1979)
is an attempt to segregate many different levels of knowledge.
The domain specific (or task specific (Ball and Hayes 1980))
knowledge is represented in a "schema" which is patterned after
Minsky's frame structures (Minsky 1975). These schema capture
the idea that the domain independent information 1in a system
should not only be separable from the overall system, but also
be formally defineable. The GI schema reduce the definition of
a new database to the level of slot filling, thereby reducing
the effort involved in the process while also minimizing the
chance of error. However, because these schema have been
designed to describe computer programs and not real world

situations, they do not deal with incomplete descriptions.

Most database systems are forced to deal with inqomplete
world definitions. Problems usually occur when one tries to
define the possible database elements since in many instances a
field can contain virtually any value. This makes the possible
range ofAvalues infinite and, consequently, hard to define. The
ROBOT system (Harris 1977a) uses an inverted index of the
database as the world knowledge for the system. It is treated
as an extension of the dictionary and so addition of a new
element to the database simply requires an update of the
inverted index. This method allows actual values 1in the
database to take on meanings even if the elements, possibly

jargon, may not be found in a real dictionary.

16

In capturing and exploiting the régularities in a natural
language 1like English, no system seems to have more potential
than the case driven systems (Taylor and Rosenberg 1975). A
case grammar (Fillmore 1968) attempts to capture the purpose of
a word or phrase in a sentence by determining its role in terms

of a system of cases. For example in the query:
Who serves chicken ?

"who" is thé agent of the action, "serves" is the action and
"chicken" is the patient (or the thing being acted upon). Case
systems combine both syntactic structures and semantic.knowledge
into one wunit which can be specified in a concise,
undefstandable and easily modifiable way. In addition, there is
a structure imposed by the case "frames" which provides a basis
.for a formal, structured change to the semantic knowledge. The
case system proposed by Fillmore in 1968 did not define the
actual number of cases ﬁeeded to specify a natural language but
attempts have yielded numbers ranging from a mere five
(Celce-Murcia 1979) on up. The actual number of cases is
irrelevant, however, because it is the ability to specify a
domain simply by specifying the cases that gives the system its

power and elegance.

2.4 Summary

There currently does not appear to be a truly domain or

17

database independent natural language question answering system.
It does appear that the <closest thing to one is the ROBOTY
(Harris 1977a) system, mainly because of its use of an inverted
index of the database as the basic semantic knowledge for the
domain. The RUS parser attached to the PSI-KLONE system (Bobrow
and Webber 1980) at BBN appears to be making headway by
departing from both the syntactically oriented and the
semantically oriented parsing methodsvto combine the two into
one general parse. But even these systems still appear to try
to keep the syntactic and semantic knowledge somewhat separate.
A remedy for this seems to lie in the case driven systems which
allow the. combination of syntax and semantics not only at the

processing level but also at the knowledge level.

+The ROBOT (Harris 1977a) system is now being marketed by the
Artificial Intelligence Corp. under the name Intellect. For
further details see Johnson (1981). :

18

Chapter 3

Concepts in Natural Language Portability

Certainly the idea of a tfansportable computer program is
not a new one., Researchers in compiler deéign and operating
systems have studied this problem for some time now (Johnson and
Ritchie 1978; Richards 1969). These studies have shown that to
make a system transportable, the changeable part must be
separated from the system core. Thé two disciplines do not,
however, split up their projects in the same way. The compiler
design split follows the flow of the program. Usually the "code
generation" phase 1is separate, following the syntactic and
semantic processing phases. The operating systems split, on the
other hand, 1is one of fuq;tional interfaces. The system
dependent routines may be called upon at any time during the

operating system's processing.

Attempts in AI to follow this simple separation idea have
met with modest success. Earlier we examined systems which
follow the compiler design portability method of "flow
separation” where syntactic processing of a guestion is
completed before any semantic processing is started. This is
not necessary. Just as in the operating system where system
dependent routines may play an important role at any time,

domain and database dependent routines may play an important

19

role at any time during NL processing. The important feature of
this type of separation 1is the structured, well-defined

interface between the system dependent and independent routines.

In the past, NL systems which attempted to incorporate any
transportability features have been split into different phases
(Figure 3.1). Each phase of the program, syntacéic, semantic
and retrieval, was forced to operate on its own. Since the
syntactic structural description had to contain any information
which the later phases might require, the structure developed
became extremely complex and convoluted. Furthermore, becausé
the semantic component had to process this relatively complex

structure it had to be fairly complex in design.

The review of various natural language quéstion answering
systems has shown the similarities of their tasks. Whether the
domain involved was for moon rocks or a company payroll, there
were always a number of common functions to perform. This
chapter will examine some of these functions and try to show the
need for simultaneous syntactic and semantic processing.
Additionally it will be shown that each of the tasks contains a
domain dependent as well as a domain independent portion. It is
this difference which is important in a portable question
answering system since it is only the ‘domain dependent
information thch need be modified when changing the domain of

discourse.

user query

/ \
/ syntactic \
\ parser =/

\ /

structural description

/ —\
/ semantic . \
\ translator /

\ /

query language statement

/ \
/ data \ < database
\ retriever /
\ /
answer

Figure 3.1: Current Question Answering Systemst

20

+ taken from Rosenberg (1980) p. 5.

21

3.1 The Language Structure

From the beginning researchers have noticed that structural
features of natural languages help to categorize sentences and
limit the total number of different variations possible.
However, even though the English language imposes a reasonably
strict structure on sentence components and the roles they must
play in a query, there is still much ambiguity to be found among
these components. Solving this ambiguity to determine the
correct sentence structure turns out to be a difficult task.
Efficiently using the structure after it has been built is again
difficult. However, wusing the structure as it is developed
during the building process to provide clues for future

additions will make both processes simpler.

3.1.1 Building The Sentence Structure

The syntax of the language can provide many clues as to the
meaning of a sentence without even taking into account the
actual meanings of the individual words. Examining a typical
guestion answering session might produce a number of queries of

the form:

How many warchen blinges are there?
Which is the best frugle?

Where is the ploon?

When did the muddel frump?

Find all of the blintogs which have punded.

22

In order to build the sentence structure, it 1is not
necessary to know what the warchen blinges, frugles, ploons,
muddels or blintogs are or even to know what it means to frump
or to pund. It 1is, however, mandatory to know which are the
nouns and verbs, and which is the subject and object. This
information 1is, for the most part, either positional (dependent
upon the location of the word in the sentence) or morphological
(dependent upon the structure of the word).

It 1is during the examination of more complex cases that

problems arise. In the sentence:
Have the blintogs punded the frugle with the ploon?

it is impossible to immediately decide on the correct sentence
structure without involving the -meanings of the individual

words. For example with one set of meanings:
Have the bullies hit the-boy with the brick?

the prepositional phrase "with the brick" probably modifies the

verb phrase "hit", while in:
Have the bullies hit the boy with the glasses?
the assumption would be that the prepositional phrase "with the

glasses" is modifying the noun phrase "the boy".

This problem with prepositional phrase modification causes

much ambiguity in the English language. Actually there is no

23

way to determine which is the correct interpretation from the
one sentence alone and possibly none even when the entire
dialogue 1is taken into account. Either ihterpretation is
possible. However, humans would usually prefer one
idterpretation over the other and this preference should somehow

be taken into account.

Regardless of which interpretation the individual words
have, the components noun phrase, verb phrase and prepositional
phrase can be joined into separate units for furthe£ processing.
The ambiguity lies outside the bounds of the individual
components but rather 1in the relationships among them. The
semantics of these units can be used to fit the final sentence
structure together. If information gathered earlier in the
sentence structure building process is used along ‘with the
semantic interpretatioﬁ‘éf the current component to help resolve
the ambiguities, there is a large probability that the correct
overall interpretation of the sentence will be made without the
need for backup. Even if some backup 1is required, the

components can be reorganized without any need to dissolve them.

3.1.2 Using The Sentence Structure

Once the sentence structure has been built, methods
developed in linguistics can be used to find pronoun antecedents
(Hirst 1979). Simple verb phrase ellipsis can also be quite

easily handled once there is a comprehensive sentence structure

24

to work with (Hendrix et al 1978).

There exist universal concepts (not domain dependent) which
can be recognized by their structure. For these particular
linguistic constructs, the idea behind "semantic" grammars may
be helpful. These grammars try to recognize specific constructs
rather than general ones. One of the semantic grammars in the
PLANES (Waltz et al 1976) system is used to recognize "amounts"
(Figure 3.2). It has been designed to recognize constructs such
as "more than three", "more than three but less than five", and
"three or fewer times". If a system tries- to recognize
"amounts" (as in the PLANES (Waltz et al 1976) system) or
"quantifiers" (as 1in this system), as concepts which are
universal in nature and not tied to any domain, the power of the
semantic grammar can be obtained without ha&ing to take along

with it its inherent domain specificity.

3.1.3 Relaxation of Grammatical- Rules

Of course when working with humans, one must remember that
they are fallible. For this reason it is quite important that
all of the grammatical and structural rules be relaxed when they
are not absolutely necessary. For example, lack of number
agreement can ushally be accomodated by a human in the process

of understanding the sentence. An error such as:

Find a books about natural language understanding.

25

(defatn AMOUNT

((*AMOUNT

(AM: <>
(AM:<>:1

(AM:<>:2

(AM:REL
(AM: #
(AM: AMT

(AM:AMT1

(AM:CONJ

(AM:END

(wrd (any some) t
(setr rel '>) (setr # 0) (to AM:END))
(wrd between t
(setr rel '<>) (to AM:<>))
(cat comp (not (wrd between))
(setr rel (selectq *
(atleast
(atmost
(lessthan
(greaterthan
(exactly
nil))

BV AAYV

P N | I |

(to AM:REL))
(jump AM:REL t (setr rel '=)))

(cat integer t (setr # *) (to AM:<>:1)))
(wrd and t (to AM:<>:2)))
(cat integer t

(setr rel '<)

(setr # (max (list $# *)))

(to AM:END)))
(cat integer t (setr # *) (to AM:#)))
(wrd (time times) t (to AM:#))
(cat conj t (eg $rel '=) (to AM:CONJ))
(jump AM:AMT))

(cat conj t (to AM:AMT1))
(jump AM:END))

(push *AMOUNT t (setr pred (list *)) (to AM:END)))

(wrd (fewer less) t (setr rel '<=) (to AM:END))
(wrd more t (setr rel '>=) (to AM:END)))

(wrd (time times) t (to AM:END))
(pop (append (list (buildg (+ +) rel #)) S$pred)))))

Figure 3.2: The AMOUNT ATN Network?

t+ taken from Waltz et al (1976) p. 116. The code has been
somewhat abbreviated from its original form.

26

should be able to be parsed even though there 1is a certain

amount of ambiguity. Similarly, sentence fragments such as:
Books by Chomsky.

should be handled. Simple verb phrase ellipsis would be quite

common in a question answering system. An example of this is:

Who serves spaghetti?
THE "OLD SPAGHETTI FACTORY".

steak?

At this point the system should be able to infer that the

question was really:
Who serves steak?

and act accordingly.

If this relaxation 1is not done, the strict gfammatical
rules will remove any freedom the user once had in specifying
his query - possibly to less than that of an "artificial" query
language. 1In the situations where the system makes allowance
for a grammatical error, there should be some way to tell the
user which interpretation of the sentence was being used. A
common method has been to return a corrected version of the
input sentence to the user for verification. A preferred way
would be to develop an answer generation component which would

somehow incorporate the original question into the final answer.

27

3.2 Vocabulary

As a result of reviewing the semantically driven systems it
can be 'seen that they performed quite well considering that they
were primarily keying on the meanings of specific words and
almost completely ignoring the sentence structure. The
vocabulary used in any one particular domain 1is an extremely
important source of knowledge which cannot be ignored. There
are many facets to the structure and meaning of words and word
groups within any one domain from the simple meanings we attach

to proper nouns to the inferred meanings of idiomatic phrases.

3.2.1 Morphing

Word morphology is the study of the structure of words. 1In
a natural language parser a "morpher" usually refers to a
routine which systematically removes prefixes and suffixes to
find the root of a given word. Because of the structure of
English wofds, this can be done usually by knowing the syntactic
category and use of the word and ignoring the meaning. Then
with the combination of root word meaning and the function of
the prefixes and suffixes, the meaning of the entire word can be
determined.. This process allows a system to understand many
wofds with only a limited dictionary of regular and irregular

words.

28

3.2.2 1dioms and Jargon

In contrast, aspects of natural language such as idioms and
jargon are totally semantically oriented. Some idioms are too
complex to handle even with current AI technology but most
become complicated only if they are parsed with the conventional
methods. Therefore, it would probably be advantageous to
consider these as semantic concepts and handle them 'before any
normal parsing is applied. To do this, access to the semantic

domain knowledge must be provided during the parse.
3.2.3 Verbs

In the Q/A paradigm, the verb performs many different
functions. The first, and most obvious, 1is to designate the

action of the query. For example, in the sentence:
Who serves chicken?
the case frame of the verb "serve" provides slots for the

component noun phrases.

The second common function of the verb is to designate the
operation which is to be performed by the system. When parsing

the input:
Find a cheap Japanese place.

the verb "find" is interpretted as a command to return the name

29

of a restaurant which satisfies the constraints "cheap" and

"Japanese". In the sentence:
Total the salaries of the managers.

"total" is taken to be a command to the system. Obviously, to
process this particular command properly, the system must havé
the capability of "totalling" a field, either within the
database system or within the NL interface itself. This
"function of the verb will be dependent only on the functions

available in the database and not on the domain.
The other major use of the verb is strictly syntactic. 1In
the sentence:
Where is White Spot?
the verb "be" is used to designate the constraint.
Auxiliary verbs are used at the beginning of a sentence to

indicate that the query requires a yes-no response. This can be

shown in the example:
Does Yangtzee open on Thursdays?

where the main verb is "open" and the auxiliary verb "do" is

~used to designate the type of answer desired.

30
3.2.4 Nouns

In this type of system, nouns are usually tied to the
domain in some way. Proper nouns.will almost always be found as
values in the database whereas common nouns will be found not
only as database values but also as general domain jargon. In

the query:
What is on the menu at White Spot?

the proper noun "White Spot" will be found in the database but
the common noun "menu" probably will not. However, both of

these nouns form a part of the domain specific information.

3.2.5 Adjectives and Adverbs

‘.

Many adjectives and adverbs appear, on the surface, to be

domain independent but, in reality, are not. 1In the query:
Which 'is the cheapest Greek restaurant?

the adjective "cheapest" would have a mixture of properties
which would 1include a domain iﬁdependent as well as a domain
dependent part. In a Q/A system, a superlative would usually
indicate that the greatest or least value of a field was
desired. Thisbwould be the domain independent portion of the
meaning. The domain dependency comes in deciding which field is

to be examined and which ordering of field values will be used.

31

When the adjective or adverb is not designating a field, as

in:
Find at least 4 . . .

then the word can be assumed to have only the domain independent
portion of the meaning. Therefore, some adjectives and adverbs
can reside in the syntactic dictionary while others must form a

part of the domain specific information. T

3.2.6 Prepositions

Prepositions play an extremely important role in English,
especially when a case theory is being implemented. By using
these words as flags it 1is possible to determine a 1imifed
nﬁmber of uses of a phrase before actually examining the entire
phrase - in some domains there may pe only one reasonable
meaning. For example, if we have a LOCATION field in our domain

but no TIME field, then:
at the . . .

will most 1likely be designating some form of location.
Obviously the process 1is not as ' simple as this one example
illustrates because in general there are many different "flags"
for any one idea (or case) as well as many different ideas for
any one flag. However this method will, at the very least,
provide a starting point for determining thg correct

interpretation.

32

3.3 Sophistication of Design

To design a working system is not difficult. To design a
usable system, however, is. Among what are classed as aspects
of design sophistication are such -elements as spelling
correction, general user interaction, metaquestions and

knowledge acquisition.

3.3.1 Metaguestions

A major feature of any robust system is its ability to
handle qguestions and explanations about itself, i.e.

"metaquestions"., If asked:
How many records are there?

it would be unreasonable for a system to retrieve every record
from the database and then count them, but it should instead

simply have a count ready. Similarly if asked:
What do you know about?

the system should not dump the contents of the database.

These kinds of questions should be recognized and processed
with little or no database interaction. The componént which
identifies these questions should be domain’independent because
the questions themselves will be the same regardless of which

domain the system is working in. The answers to the questions

33

are, however, both domain and database dependent. But answers
to these questions will probably not be found in the database
directly and therefore they must be considered part of the

domain dependent information.

3.3.2 User Interaction and Communication

Any system which 1is designed to communicate with even
partially naive users must have some way to inform the user when
it 1is confused of needs additional information. This component
of the system need only use the relevant portions of the
semantic meanings of the domain dependent words in its attempts
to extract the required information from the user. This type of
user interaction can be guided by the system and restrict the
possible user answers so that it will obtain the information it
is seeking quickly. Assume a system contains inventory
information for a bookstore and has. never been told that

"purple" is a colour. The question:
Are there any purple pens?

might produce a confusion in the system and a reasonable

response would be:

34

I don't understand the meaning of "purple".

-
n
e
(ad
M
.o

1. quality
2. colour
3. manufacturer

4. something else

This pattern could be generated by knowing the possible
fields in which the word can belong or by making a prediction
based on the part of the sentence processed so far. For example
it might be used if the word could only be found in a few,
equally probable fields and none of the fields had been chosen
as the default. This answer could then be stored 1in the

dictionary for later reference.

This type of menu driven dialogue has been shown to work
well enough to allow the wuser to see where the system is
confused, to allow the user to give a correct, understandable
and concise response without forcing the user to understand the
system's internal representation for queries. Additionally, the
menu driven method gives the user some guidance and assistance
in deéiding what an appropriaté answer would be. In contrast, a

question such as:
What does "purple" mean?

would provide no guidance for the user at all.

35

Most of this menu driven dialogue can be generated by the
component requiring the answer and then passed to a "user
interaction" component to extract the answer from the user.
This allows the user to see one consistent interface regardless
of which part of the system needs the information. The
controlling user interaction component, again, is not dependent

upon domain.

3.3.3 Spelling Correction '

The art of spelling correction is still a very ad hoc, time
consuming and unreliable process. Nevertheless, it should be
done if at all possible in a reasonable (not noticeable to the
user) amount of time. Many software systems now employ some
form of spelling correction procedure. in their makeup, from
simple text processing systems to complex "programmer's
workbench" systems. The algorithms range from simple lookup of
common spelling errors to complicated progedures where a user's

typical mistakes are "remembered" by the system.

3.3.4 Knowledge Acquisition

There are many levels of knowledge acquisition, even in a
simple question answering system. Some of the new knowledge
comes from within the system, such as when a new word is broken
apart and subsequently "understood", while other knowledge comes

directly from the wuser, such as when a new term is defined.

36

Still other information can be derived from the dialogue. Some
work is being done in building a psychological model of the user
as the dialogue progresses. However, all of this leérning -
whether simple or complex - requires some use of a dynamic
knowledge acquisition component which may be involved at any
stage of the dialoéue. A simple "add-on" feature is not enough,
In our previous example, once the system ﬁas found an answer to
its question and now knows what "purple" is, it should be able
to save this information to use at a later date. Any future
references to "purple".should not have to result.in a querf to

the user.

A reasonable system should 1learn from its mistakes and
thereby never make the same mistake twice. This requires
modification of either some part of the program or the data.
The simpler solution is to allo&bﬁhe program to modify its world
definition. 1In the above example, the knowledge that purple is

a colour should be easily stored in this world definition.

Since many of the "meanings" of words will be found in the
database itself, it makes sense to allow the system to query the
database if confused about a term. If the Q/A component is
interfaced to a sufficiently fast database system, and there is
only a narrow range of possible meanings of the term, this
strategy could be adopted. This method has been shown to work
when coupled with an inverted index of the database as discussed

earlier (Harris 1977a) but with the current 1level of database

37

management system technology, it would be too slow to use as the

sole source of semantic knowledge.

3.3.5 Making Assumptions

To allow the use of the system with a minimal amount of
effort, assumptions must be made. Pronouns and idioms which
peopie frequently use when communicating with each other -
usually without thinking much about it - must be handled if the
system is to be robust. Overall, the system must make a number
of assumptions so that the user does not get bogged down by the
unnatural restrictions which computer systems usually impose on
their human users. Since the computer can not currently make
these assumptions on its own, they must be somehow
predetermined. Finding pronoun antecedents is a.generel enough
task that it can be contained in the domain independent portion
of a program. However, the interpretation of an idiom is

usually tied quite closely to the domain.:

3.3.6 Answer Generation

By correcting spelling errors, allowing loose and improper
grammar and generally making unconfirmed assumptions, a system
might suffer from one obvious problem. It is possible that .the
system will answer a question different to the one that was
originally asked. For this reason, the original question (or

what the system believes the question to be) must somehow be

38

incorporated into the answer. 1If the user has asked:

How many purple pens are there?
then, rather than a response of:

42.
a prefefable answer would be:

There are 42 purple pens.

This may seem a trivial point with

this example but the

importance can be seen more readily when the system does not

know the answer. A response of:
None.

could mean:
There are no purple pens.

but it could also mean:

I don't have any information about "purple".

or:

I don't have any information about "pens".

or even:

I don't have any information about "purple" or "pens".

All of these latter answers would be more informative by telling

39
the user exactly what the system does or does not know.

Actually the process of answer generation is a far more
complex one than this description might portray. Some work is
being done in this area but it is not at all clear how one
determines the correct words or phrases to use in the answer.
However, the . specialized answers generated for question
answering systems and the required simplicity of them limits the

task to an almost manageable one.

3.4 Summary

Most of the system components examined require 1little
knowledge of fhe domain in which they are working in order to
function. They do, however, all require a large‘amount of time
to deQelop and this effort should not have to be repeated each
time a new system 1is constructed. The handliﬁg of 1loose
grammar, pronoun reference and verb phrase ellipsis should have
little interaction with the domain specific information. The
controlling portions of thev user interaction, spelling
correction and learning components need only wuse the domain
dependent information as slot fillers. Likewise the answer
generatioﬁ component need only use the information returned from
“the database as slot fillers in the generated answer. All of
these components can be combined together in one domain and

database independent "linguistic core" (Figure 3.3). Since

40

these components are virtually domain independent, they should
never have to be rewritten when the system is adapted to a new

domain.

I-—< user <———-|

NL query NL answer

AEEEEEENNEEEEEEEREEEDR n |

. . = T\ RN

L] domain n s / NL \ / answer \ =

® | dictionary = <—> m \ parser / \ generator / =

=]] \]

. n " linguistic u

] = n core n

s inverted [ENENEN NN ENNE NN EREENEEEENNEN RN

" database = | |

|] n -

L a standard sentence standard data

» u representation ' representation

= case n

= list L] | ,]

| | = ARENEENEEESEEEEN S NEEEEEEEEENEREEEENEAERERDR

| [| | a

n domain = = / \ / \ =

L] definition L =/ SSR \ / data \ =

NN EENEENEEEEEEEER = \ analyser / \\ formatter / =
 \ . / =
L] database "
m interface n
ARNENENEEREERNEECERAEEEENNENEEERENEENRERER

database query raw data

|--——-—-—> database >--————|

Figure 3.3: Proposed Natural Language System

41

While it may seem a little unconventional to suggest that
the first phase of processing (parsing) and the last phase
(answer generation) are combined in the same unit while an
intermediate phase such as database retrieval is not, there are
reasons to support such a structure. It is desirable to have
the information structure which is passed from the parser to the
retrieval routines be as well defined as possible. At the same
time, in order to allow informative answer generation, a large
amount of information both from the original sentence and from
the previous dialogue must be accessable. To combine these two
goals 1in a conventional system, the structure developed by the
parser would have to be very complex' indeed and the answer
generator would have to be very complex to decypher it.
Instead, by combining the natural language parser and the answer
generator, these modules can communicate freely while a strictly
-defined interface between this component and the database

retrieval portion is maintained.

Although parsing many universal constructs (such as
quantifiers) requires little domain knowledge, it wusually does
requiré some. Furthermore, constructs such as simple idioms
which definitely require semantic information can be processed
much more easily if there is access to this information during
the parse. The domain oriented information such as the general
vocabulary, 1idioms, and specific jargon should also be kept in
one unit. To make this module -easily accessible as wvell as

eésily modifiable, a case structured declarative format is

42

suggested. An inverted index of the database would be most
effective as a simple definition of all the world knowledge

residing in the database.

To allow the system to be transferred with a minimal effort
from one database management system (DBMS) to another it should
be designed to query an "idealized database". An idealized
database is one which has a good, basic set of functions and can
be adapted easily to any "real" DBMS. This 1idealized database
should contain only the essential functions, thereby reducing
the effort needed to design the interface between the 1idealized

database and the real database.

There are two separate functions which must be performed in
‘the "database interface". Firstly, the output from the natural
language parser must be translated into a legal database query.
Secondly, the raw data returned by thé database must be

formatted into the structure expected by the answer generator.

43

Chapter 4

System Design: Part I - The Linguistic Core

In an attempt to lend credence to the concept of a domain
and database independent - natural 1language (NL) interface, a
prototype question answering (Q/A) system has been constrﬁcted.
It has been 1logically, 1if not physically, divided into three

completely separate modules.

The user interface or linguistic core incorporates most of

the features now seen 1in conventional Q/A systems. It is
intended to form- an application independent framework for
database queries tb which information.conéerning'the current
domain and database system can be attached. Components- for NL
parsing, knowledge acquisition, and answer generation are all
included in this module. Whereas a structured interface exists
between this 1linguistic core and the other modules, internal
communication has been left fairly unstructured. This internal
communication method, which basically consists of a number of
"registers" and associated values, can be easily added to or

modified to allow as much flexibility as possible.

The second 1logical wunit 1is the domain definition. This

module contains the definition of the particular domain in which

we are working. It is a small, easily modifiable unit, smaller

44

in size than the linguistic core, but central to the ideas
reflected in this thesis. The interface between the domain
definition and the linguistic core must be strictly maintained
since this definition will have to be <changed and updated

constantly, and without any alterations to the core itself.

The last module is also small in size compared with the

linguistic core. This 1is the database interface module. 1Its

purpose is to hide the real, physical database structure from
the 1linguistic core and provide an idealized structure. Unlike
the domain interface, which is based on a declarati?e format,
this module does contain code. Fortunately though, this module
should only have to be modified when adapting the system to a
new database system, not when changing the domain. A formal
strﬁcture has béen defined which provides the basis -for
communication beﬁween the 1linguistic core and the database

interface.

In.this chapter we will concern ourselves with the the
design of the linguistic core (Figure 4.1). The goal is to form
a general purpose Q/A system which receives queries from the
user, translates them 1into a standard sentence representation
(SSR), consults the database (through the database interface)
and formulates an appropriate answer, all with no notion of the
domain in which it is working save for what information it can
extract from the the domain interface. The general design of

the core can be thought of as a three-phase process - NL

45

from user to user

— \ < l
/ knowledge \

] n
a n
B a
] > \ acquisition / L]
= |: \ / =
u B
« T L > /T
n / NL \ <——< syntactic > > / answver \ =
s \ parser / dictionary \ generator / =
] \ / =
| n
|] |]
= l global | L]
L] registers u
[| B
N S P .
s/ SSR \ world L]
m \ formatter / registers L
n : =
n ———[—— =
[] n

to database interface from database interface
Figure 4.1: The Linguistic Core

parsing, SSR building and answer generation. 1In addition, there

is a knowledge aquisition component and a syntactic dictionary

which can be accessed from any of the‘other modules, A system

of registers is used as an internal communication method.

4,1 The NL Parser

The job of the NL parser (Figure 4.2) is to convert an

input sentence in natural language into some internal

46

from user

m / \ —> / \ - =
n / word \ / \ =
s\ scanner / / ATN \ L]
. \ / / grammar \ n
= / \ local L]
= \ / registers .
=/ N\ ATN / .
= / semantic \ \ parser / =
= \ routines / \ L]
o\ / —> \ / L
:Il-lllll-llIIIIIIIII-II.I-.IIIIIIIIIIIIIIIIIIIIIIIIII:

to SSR formatter
Figure 4.2: The Natural Language Parser

representation, while retaining as much of the original meaning
as bossible. The method of parsing used here can be described
as "component parsing”". A small, basic component such as a noun
phrase or verb phrase is first combined together on a syntactic
level and then added into the total internal sentence
representation wusing the semantic interpretation of the
component. In this way, the‘sentence representation is built up
as the sentence is parsed. This may cause problems when it is
found, part way through a parse, that a wrong decision has been
made about the function of a component. However, it does
alleviate the problem of having to keep all ambiguous versions
around until the end of the parse. When the ﬁérser has finally
finished with the sentence, there will be at most one parse

generated. Another benefit of this parsing strategy 1is that

47

individual components, once they have been formed, will not be
split up wunless they fail some semantic test. They may,
however, be switched with other components until an acceptable
structure is found. This makes the parser more efficient
because the components themselves will wusually be correctly
formed on the first attempt, even though their function 1in the

sentence may not be known.

The NL parser is composed of a general augmented transition
network (ATN) grammar parser (Woods 1970), the ATN grammar, and
many small, specialized routines which handle tasks ranging from
the lexical analysis of an input word to the modification of the
current sentence representation to accomodate a new
prepositional phrase. These components will now be examined in

detail.

4.1.1 The ATN Parser

The function of the ATN parser is to produce a structural
representation of the 1input sentence according to the ATN
grammar. During this process, functions designated by the
grammar are invoked to build this representation. The state of
the parser is saved when a particular transition in the grammar
is chosen, thus allowing for complete backup when an error is

detected.

The ATN parser used was originally written in LISP by Dr.

48

R. Reiter (Reiter 1978) and has since been only slightly

modified.

4.1.2 The ATN Grammar

The grammar wused 1in this system is basically a syntactic
grammar, augmented by calls to the semantic routines. It
attempts to represent a sentence 1in terms of its component
syntactic structures. Therefore, portions of ‘the grammar are
devoted to recognizing constructs such as noun phrases, verb
phrases, determiners and quantifiers., The semantic routines are
used both to verify certain semantic tests on the components as
well as combine them together to form the internal sentence
representation. Currently the grammar 1is a small, basic
Qersion; however, it should be able to be - developed
independently of the rest of the system to some degree.
Development of the grammar is an ongoing process and whenever it
is modified, since only linguistic knowledge is reéresénted, the
modifications should benefit all systems currently wusing it.
Transition network diagrams for the grammar used here can be

found in Appendix A.

Some portions of the grammar are modelled on the semantic
grammar concept that constructs are parsed by looking at
specific words and phrases rather than general syntactic
categories. However, unlike true semantic grammars, the

constructs being parsed here are 1linguistic 1in nature (e.q.

49

quantifer) rather than semantic (e.g. planetype (Waltz et
al 1976)). The quantifier network in this system (Figure 4.3)
can recognize such constructs as "at least four" and "more than

three but less than 5".

(quant (wrd at t (to g/super))
(mem (not no) t (setr gneg t) (to q/comp))
(jump q/comp t)
(tst (gvalue *)
(add-quant (getr gconj)
(gvalue *) nil (nvalue *))
(to g/conj))
(jump gq/num t (setr q (gvalue 'exact))))

(gq/comp (cat adv (getf comparative)
(setr g (gvalue *))
(to g/than)))

(g/than (wrd than t (to g/num)))

(g/super (cat adv (getf superlative)
(setr gneg t)
(setr g (gvalue *))
(to g/num)))

(q/num (push number t
(add~-quant (getr gconj) (getr g) (getr gneg) *)
(to g/conj)))

(g/conj (cat conj t
(setr gconj *)
(setr g nil)
(setr gneg nil)
(to quant))
(wrd of t (to g/reset))
(jump g/reset t))

(q/reset (jump q/acc t
(setr quant (get-g (current-g 'quant)))
(reinit-g 'quant)))

(g/acc (pop (getr quant) (getr quant)))))

Figure 4.3: The Quantifier ATN Network

50

Although the semantic grammar idea is useful in this situation,
the database impiementor should not be required to develop new
code when he or she defines a new database. For this reason,
semantic grammars have only been allowed in the linguistic core
portion of the program. The non-programming techniques of
setting up a new domain will be discussed later, but it 1is
sufficient to say now that no modification of the grammar should

be necessary when a new domain is defined.

4.1.3 Scanning

A large part of any NL system 1is devoted to the
identification of the basié units (or words) of the input
sentence. This component is concerned with identifying root
Qords, ‘compound words, abbreviations, synonyms and even database
elements. - In most cases, this is not a deterministic process -
especially 1if it 1is done before the parse begins. In this
system, the scanning is done during the parse in order to allow
as much information as possible to be wused in word
identification. The various scanning procedures will now be

examined.

4.1.3.1 The Morpher

The function of the morpher 1is to strip prefixes and
suffixes from an input word in a systematic fashion to produce

the root form. The rationale for including one in a NL parser

51

is to reduce the actual number. of words needed in the
dictionary. For any word, we should be able to determine its
meaning from the combined meanings of its root and the prefixes
and suffixes attached to it. Unfortunately, this means that the
morphological information must somehow be included with the word
in tﬁe dictionary. For most words this 1is quite a simple

process but for some it can become rather complex (see Section

4.2). T

The root-finding method used in this system is quite simple
and straightforward. In turn, each possible suffix 1is removed
from the «candidate word. If the root is f&und to be in the
dictionary and the word category agrees with that expected, the
new word is entered into the dictionary. A table of some of the

regular suffixes which are examined is in Figure 4.4.

This method works well for régularly inflected words whose
morphological information 1is easy to store in the dictionary.
For example, the morphological information needed for a verb in
this system are the suffixes to add to form the present and past

tenses. They are stored in the syntactic dictionary as:

(SERVE V S-D)
For a noun, the information required is the pluralizing suffix:

(DATUM N A)

and for an adjective, the suffixes required to form the

ending to new ending word features of
remove to add category new word
s s—-noun plural
s s-d-verb present tense &
3rd person singular
s s—-ed-verb present tense &
3rd person singular
es es-noun plural
es es-ed-verb present tense &
_ 3rd person singular
ies y -es-noun plural
ies y es-ed-verb present tense &
3rd person singular
's - s-noun possessive
's es-noun possessive
's proper-noun possessive
's pronoun possessive
s' s proper-noun possessive
s' S es-noun possessive
s’ s s—-noun possessive
ied y es-ed-verb past participle &
2nd person plural
ed es-ed-verb past participle &
singular-plural
ed s-ed-verb past participle &
‘ singular-plural
d -s—-d-verb past participle &
: singular-plural
ing s-d-verb present participle
ing s-ed-verb present participle
ing es-ed-verb present participle
ing irr-verb present participle
ing e s—-d-verb present participle
**ing * s—ed-verb present participle
**ed * s-ed-verb singular-plural
past participle
est er-est-adjective superlative
**est * er-est-adjective superlative
iest y er-est-adjective superlative
st r-st-adjective superlative
er er-est-adjective comparative
**er * er-est—-adjective comparative
ier y er-est-adjective comparative
r r-st-adjective comparative
ices ex es-noun plural
a um a-noun plural

Figure 4.4:

The Suffix Table

52

53

comparative and superlative forms must be available:

(NEW ADJ ER-EST)

Since these words are regularly inflected, certain
linguistic rules can also be applied. One such rule 1is to
double the "n" in "run" before adding "ing" to form the
participle. The root of an irregular word cannot wusually be
found with a word morpher. Therefore, these words must be
initially stored in the dicﬁionary along with all of their

inflections.

4.1.3.2 Compound Words

Compound words are those which, although separate lexical
items, function as a single unit. For these words it appears to
be more beneficial to treat them as a single unit rather than as
separate parts. However, most of the individual words have
'meanings of their own and so the system must allow for
combination errors. The strategy adopted here to allow both
compound words and the individual parts to exist simultaneously,
is to first join the longest stringl which exists in the
dictionary. If the parse'Asubsequently fails, the scanning
routines back up one level and attempt to use the next longest

compound. For example, the name:

University of Illinois Chicago Circle

54

would first be parsed in the full form and then, if the parse

fails, the successively smaller chunks:

1. University of Illinois Chicago
2. University of Illinois

3. University of

would be tried until finally the one word "university" would be
attempted. In this example, "University of Illinois Chicago”
and "University of" would probably not be found in the
dictionary and so they would not be accepted as valid compound

words.

4.1.3.3 Abbreviations and Synonyms

An abbreviation is considered to be a substitution of one
word for another at the lexical level. Therefore, if the word
"can't" 1is defined as an abbreviation of "can not", the
substitution will occur before the word "can't" is ever morphed.
A synonym, on the other hand, is considered to be a substitution
at the root word level. If the verb "display" is defined as a
synonym for "show", then "displaying" will be considered

synonymous with "showing”.

4.1.4 Semantic Routines

Specialized semantic routines are invoked by the grammar to

build an internal representation of the original input sentence.

55

This internél representation is nothing more than a set of
values for the global registers in the linguistic core. These
values are subsequently used to format the standard sentence
representation (SSR) (see Section 4.5). In addition to
processing the sentence components such as noun and verb
phrases, routines are included which handle conjuctions and find

pronoun antecedents.

4:1.4.1 Adding a Noun Phrase

After the noun phrase (NP) has been syntactically
determined, a semantic routine is called to integrate it into
the existing sentence representation. Depending on the
characteristics of the NP and the current representation, a
number of things can happen. The first step is to determine
whether it is the nominative, dative or accusative case. One of
the rules used in this determination is that it will be assumed
to be”nominative if it is the first element of the sentence.
Later, this assumption may have to be revoked owing to the

influences of subsequent components.

In the sentence:
I can be served chicken at which restaurants.

the first NP found is composed of the single pronoun "I". After
determining this, and having no information to the contrary, the

NP will be assumed to be the agent of the sentence. The first

56

noun phrase in the sentence will also be saved for future

pronoun antecedent determination (see Section 4.1.4.5).

Next, the verb phrase (VP) "can be served" will be
constructed and the sentence will be found to be passive (see
Section 4.1.4.2). At this point, the system will notice that it
has made- a judgement error about the role of the first NP and
will have to modify the structure which it has built. The
actual role of the NP "I" in the sentence is in the recipient

case.

The next NP to be constructed will consist of the noun
"chicken". In determining its role, the case filler
restrictions of the verb will be taken into account. Since the
verb "serve" can take a food’type as the patient but ﬁot as the
agent, "chicken" must fill the patient case. The NP constraints

in the final sentence representation will be:
RECIPIENT: I
and:

PATIENT: (FOOD = CHICKEN)

The handling of the prepositional phrase:
at which restaurants

is discussed in Section 4.1.4.4,

57

4.1.4.2 Adding a Verb Phrase

When a verb 1is defined in a particular domain, the cases
the verb allows and the relevant fields which can fill each case
must be specified (see Section 4.2.2). When the parser tries to
add a verb to the current sentence representation, the ﬁajor
task 1is to see that the noun and prepositional phrase units
which have been found so far fit into the designated cases of
the verb. This allows disambiguation of a noun element which
may be found in more than one field. 1If the sentence turns out
to be passive, the role of the initial noun phrase (NP) must be

redetermined. For example, in the previous example:
I can be served chicken at which restaurants.

the NP "I" hés beeﬁ_ foundﬂ before the VP "can be served".
Because of this, the NP "I" was initially assumed to be the
agent of the sentence. When the sentence is deemed to be
passive, the system must find out what the real role of this NP

is.

When adding the main verb to the sentence representation,
the properties of each NP determined are checked to see that
they can indeed fill the case slot of the action to which they
have been designated. If one can not, a number of things may
happen. Sometimes routines are called which will switch the
case filler components until the structure is valid but, usually

the possible roles of a given NP are severly 1limited and when

58
this happens, the parse will usually fail.

Auxiliary verbs contribute little to the overall sentence
representation., Their main functions here are to designate a
YES-NO question when they are found at the beginning of a

sentence as in:
Does White Spot serve chicken?

and to make a sentence passive when found in conjunction with a

main verb:

Chicken is served by which restaurants.

Relative <clauses are sometimes introduced by a verb

participle:
Find a restaurant serving chicken or steak.

When this happens, routines are called which suspend structure
building at the current level and continue at a lower level,
When this lower level processing is completed, the processing of

the original structure is resumed.

Sometimes a situation will occur where the defined format
of a verb should be overridden. Assume that the definition of
the verb "serve", in the restaurant database, takes as a patieni
case the fields "food" or "meals". Then if the parser came

across the unexpected sentence:

59

Who serves Hastings Street?

it should be able to override the definition of serve and

generate the correct parse:

(AND (NAME = ?) (ADDRESS = HASTINGS STREET))

4.1.4.3 Adding Noun Phrase Modifiers

Many things fall into the cateéory of noun phrase modifiers
and they are all handled similarly by the system. Some of thesg
are adjectives, ordinals and quantifiers. 'They are saved in
local registers when found and added into the sentence
representation when the head noun is determined.

For example, in the sentence:

Find all of Schank's recent books.

the possessive "Schank's" would be stored in the register NPMODI

as:
NPMOD1: (AUTHOR = SCHANK)

Next, when "recent"t 1is found, the structure associated with

NPMOD2 will be:

NPMOD2: (DATE > 1980)

t+ The definition of recent wused. here (later than 1980) is
arbitrary. It would be defined by the database administrator
and found in the domain dictionary (see section 5.1.1).

60

After the head noun "books" 1is finally found, all of the NP
modifiers will be combined into one general modifier as:

NPMOD: (AND (AUTHOR = SCHANK) (DATE > 1580))
and this modifier will then be added into the global register

sentence representation,

By creating a new modifier register for each NP modifier
encountered, the system can handle a virtually infinite number

of NP modifiers.

4,1.4.4 Prepositional Phrases

The prepositional phrase (PP) is very important in the Q/A
paradigm. It is with these that many of the gquery constraints
are determined. In a case-driven system such as_this, the
preposition is used to designate the possible cases which the
associated NP can fill. Then, using this information along with
the current sentence representation, the system can determine
the actual function of the attached noun phrase. The definition
of prepositional information will be discussed in the section on

the syntactic dictionary (Section 4.2.5).

For example, if the system has defined the preposition "on"

to handle the location and the time cases, then in the sentence:

Which restaurants are on Granville Street?

61

the system has the choice of either filling the location or the
time case. When the NP "Granville Street" is found to designate
a place, the disambiguation can be done. After the PP parse is

finished, the constraint:
LOCATION: (ADDRESS = GRANVILLE STREET)

will be added into the sentence representation.

4.1.4.5 Finding Pronoun Antecedents '

Only extremely simple pronoun reference 1is currently
handled by the system. Specific pronouns referring to "it" and
"them" are taken to refer to the last item retrieved by the
database routines. Although this is an extremely naive view of
pronoun reference, the methods used here can be expanded to
include more complex cases. The reason for adding this
component at all was that, even with only limited capabilities,
it can help the wuser enormously. This simple solution” can

handle such constructions as:

How many restaurants serve chicken?
THERE ARE 2 REFERENCES.
Who are they?

THEY ARE "STEER AND STEIN" AND "WHITE SPOT".

The simplicity of this system is not inherent in its

design, but rather is a function of the time and effort alloted

62

to the development of the individual components.

4.1,4.6 Conjunctions

Conjunctions cause some of the ambiguity of natural
language. However, they can be used unambiguously and, at least
in this form, must be allowed even for a simple NL system. For

example, the conjunction "and" in:
Find some place which serves steak and lobster.

would cause no ambigquity, generating a query to satisfy the

constraints: N
(AND (FOOD = STEAK) (FOOD = LOBSTER))
On the other hand, the query:
How many people are coming from CMU and SRI?

is a little harder to process. Rather than generating the set

intersection constraint:
(AND (INSTITUTION = CMU) (INSTITUTION = SRI))

which would try to find the people who come from both CMU and

SRI, the user really wants to generate the set union constraint:
(OR (INSTITUTION = CMU) (INSTITUTION = SRI))

which should find people who are coming from either CMU or SRI.

This subtle fact should somehow be recognized by the system. 1In

63

simple cases this can be handled by changing an "and" to an "or"
if the field being processed can have only one value at a time.
In the first case, the FOOD field could have more than one entry
because a restaurant can obviouély serve more than one type of
food. However, in the second case, the INSTITUTION field would
be single-valued because a person would (usually) come from only

one institution.

Simple conjunctions are handled by combining all conjuncted
components under one of the two categories AND or OR. These two
"functions" are represented in the internal sentence
representation (and also in the SSR) by *AND and *OR

respectively and have a syntax of:

(*AND cqnstraint1 constraint2 constraint3 . . .)

(*OR constrainti1 constraint2 constraint3 . . .)

4.1,5 Local Communication

While building the internal sentence representation, -any
values which will be needed by another part of the parser are
put into 1local registers. Later, the routine needing this
information can easily retrieve the contents of the register.
The use 6f these registers closely parallels that of the global
and world registers used to communicate between various parts of
the 1linguistic core. For further details refer to the section

describing the function of these registers (Section 4.4).

64

4.2 Syntactic Dictionary

The syntactic, as compared to the semantic or domain,
dictionary contains information relating to the syntactic and
morphological properties of the words. Words relating
specifically té one database will not be found here. Database
values will probably be found in the inverted index (see Section
5.1.2) and domain specific verbs @and nouns will be found in the
domain dictionary (see Section 5.1.1). Most of the syntactic
dictionary is taken up with common words such as determiners,
pronouns, quantifiers and conjunctions. A large part of this
dictionary is devoted to the definition of prepositions since
they play an important role in most case-driven Q/A systems.
The morphological information included varies with each word
category but usually designates suffixes which might be added to
the root w9rd to form regular conjugations. The kind of

syntactic information present also depends on the word category.

Irregularly inflected words pose quite a different problem.
Any word which will be wused often (such as "be") will be
initially stored in the syntactic dictionary along with all of
its conjugations. However, some words are not common enough to
be 1initially put into the dictionary and some may simply be new
to the system. This is a problem which one might think time
would overcome. Surely, sooner or later all necessary words
would have been entered in the dictionary. Unfortunately this

is not the case and if our system expects this information, it

65

must be present. To aid 1in this task, a 1limited knowledge
acquisition component (see Section 4.3) has been included. This
component allows new words to be entered and spelling errors to

be corrected by the user during the parse.

To see exactly what type of information is included in the
‘'syntactic - dictionary, the definition of nouns, verbs and
prepositions as well as synonyms, abbreviations and compound

words will be discussed;

4,2.1 Noun Definition

Included in the category of nouns are common nouns, proper
nouns and pronouns. The morphological information required for
a common noun is the suffix which must be added to form the

plural. Examples of these are:

(NUMBER N S)
(BOX N ES)
(INFORMATION N MASS)
(DATUM N A)

Proper nouns and pronouns are not commonly pluralized and so, no
morphological information is stored with them. However, the
morpher has been designed to allow reasonable proper noun

pluralizations such as in:

How many McCarthys are coming to the conference?

66

The semantic information included depehds upon the actual
words. Domain specific words are discussed in Section 5.1.1.
Any domain independent common nouns currently have no semgntic
information associated with them and so they are effectively

ignored by the parser.

Pronouns such as he, she, everybody and anybody, have along
with their morphological information, semantic information which
includes both their category (general, question or relative) and

any cases which they may designate. Examples‘ of pronoun

definitions are:

(178 PRO (IT POSS))
(SOMEWHERE PRO * PRO* (GENERAL (CASES (LOCATION))))

(THAT PRO * PRO* (RELATIVE))

There are currently no domain independent proper nouns in

the system.

4,2,2 Verb Definition

There are three <classes of verbs in this system;
auxiliaries, commands and actions.' The definition of an
auxiliary verb includes its root form and any semantic features
such as _ the tense and modal characteristics. Some examples of

auxiliary verb definitions are:

67

(AM V (BE (TNS PRESENT) (PNCODE 3SG)))

(DONE V (DO (TNS PASTPART)))

(CAN Vv * vVv* ((TNS PRESENT) (PNCODE ANY) (AUX MODAL)))

Commands are used to designate possible database functions.

When wused in a sentence as an imperative, the verb takes the

command definition. If we had a system routine DRAW-GRAPH which

we wanted to invoke with the command "graph", it would be

defined as:

(GRAPH COMMAND DRAW-GRAPH)

Actions are usually found only in the domain dictionary

(Section 5.1.1), but some have been included here as examples.

An action 1is defined by its morphological features as well as
its semantic case frame. The morphological features are the

endings to add to form the present and past tenses:

(SERVE V S-D)
(EAT V IRR)

(ATE VvV (EAT (TNS PAST)))

The case frame is implemented here as a list of possible

cases of the verb. Not all possible cases need be included but,

rather, only the ones which are important in the domain. For

example, in the restaurant database "serve" and "eat" are

68

defined as:

(SERVE ACTION (AG NAME PA (FOOD MEALS) RE *HUMAN))

(EAT ACTION (AG *HUMAN PA (FOOD MEALS))

The order in which the fields for each case are listed is
used to determine a default priority ordering on them. For

example, if the question was asked:

What does White Spot serve?

because of the ordering, the constraint which would be generated

would be:
(AND (NAME = WHITE SPOT) (FOOD = ?))
If the type of meals was desired, the query would have to be:

What meals does White Spot serve?

4,2,3 Adjective Definition

As 1is the <case with both nouns and verbs, adjectives are
usually domain specific. The morphological information which
must be supplied is the suffixes required to form the
comparative and.superlative conjuncts. Many times the semantic
information associated with an adjective is arbitrary. 1In the

bibliography database, "recent" is defined as:

(DATE > 1980)

69

and in the restaurant database, "good" is defined as:

(STARS > 3)

4.2.4 Quantifier Definition

Quantifiers are sufficiently general to be -found in the
syntactic dictionary. They wusually have a quantifier value
(QVALUE) and/or a numeric value (NVALUE) associated with them.
Some examples of QVALUEs are EXACf, MORE, and LEss; Examples of
NVALUEs are 0, 1, 2, 3 and ALL, Some examples of quantifier

definitions in this system are:

(COUPLE QVALUE *EXACT NVALUE 2)
(FEW QVALUE *MORE NVALUE 2)

(NONE QVALUE *EXACT NVALUE 0)

4.,2.5 Preposition Definition

Prepositions play an important role in this system.
However, their definition 1is rather simple. The main part of
their definition is a list of which cases they can refer to.

For example the prepositions "at" and "to" are defined as:

(AT PREP* ((CASES LOC TIME)))

(To PREP* ((CASES REC DEST BEN PURP)))

These cases are used to fill slots in the definition of the main

70
verb in the sentence. See Appendix B for the 1list of cases
supplied. Appendix C contains a sample syntactic diétionary

with some prepositions and the cases they flag;

4.2.6 Synonyms and Abbreviations

Synonyms and abbreviations both perform the similar
function of allowing the substitution of one word (or a group of
words) in a sentence for another. The main distinction made
between the two in this implementation 1is that a synonym
substitution occurs at the root word level while an abbreviation
substitution occurs at the lexical level. These concepts are
very important because they allow a small, carefully defined
core of information to be expanded simply into a large subset of

natural langhage.

Synonyms are érimarily used to inform the parser that two
different words have the same meaning. For example, in most Q/A
systems, the meanings of the commands "find", "show", "display",
"print" and "list" would be the same. The definition of these
can be made by defining only one (say "find") completely and

then defining the others as synonyms:

(FIND . . . complete definition)
(SHOW SYNONYM FIND)
(DISPLAY SYNONYM FIND)
(PRINT SYNONYM FIND)

(LIST SYNONYM FIND)

71

As well as allowing different verbs to appear the same, the
synonym feature can also be used to allow different meanings of
the same verb. For example, suppose that in this system, there
exist three different meanings of the verb "take". These could

all be defined by:

TAKE SYNONYM (TAKE1 TAKE2 TAKE3)
TAKE1 . . . first meaning
TAKE2 . . . second meaning

TAKE3 ., . . third meaning

Here the synonym feature 1is used to show that the verbs
TAKE1, TAKE2 and TAKE3 are all really the verb "take". If the

input is:
Who is taking reservations?

then, when the ©parser is trying to understand "taking", these
steps will be followed. First the root word "take" will be
found. Next, the system will discover that the word is a
synonym of TAKE1, TAKE2 and TAKE3. The morpher will then return
the definition of the word TAKE!1 to the parser. It is not until
the parse fails wusing this definition that TAKE2 will be
considered. This means that the definitions of TAKE1 through
TAKE3 should be sorted by plausibility so that the correct one
will be found as soon as possible. The actual meaning
definition of these verbs will be found in the section on verb

definitions (Section 4.2.2).

72

Abbreviations, since they are processed before any normal
parsing 1is initiated, can be wused to define simple lexical
idioms. But the most important use of abbreviations 1is to

define jargon common to the domain (see Section 5.1.1).

4.2.7 Compound Word Definition

Each compound word is defined in the dictionary as a list
of words forming the compound. For example, the restaurant name

"White Spot" might be defined as:
((WHITE SPOT) NPR *)

The system prefers to manipulate the determiner "how many" as a

single unit and so it has been defined as:

((HOW MANY) DET .« e W)

4.3 Knowledge Acquisition

The major knowledge acquisition component in this system is
involved with learning new words. There are several situations
when this will happen. When a word 1is broken apart by the
morphological routines and its properties are determined, this
new word is then entered into the dictionary so that subsequent.
references to the word are found more efficiently. 1If the word

cannot be analyzed by the system, then the ‘user is asked to

73

clarify it. 1If this is successful, the new word is entered into
the dictionary with this definition. The third way for the
system fo "learn" a new word is by querying the database. After
finding the previously unknown term in the database, it will be

entered into the domain definition for future reference.

This sample dialogue from the restaurants database will
show the route taken to determine the meaning of an wunknown

word:

Who serves artichokes?

I CANNOT FIND ' ARTICHOKES ' IN THE DICTIONARY.
DO YOU WANT ME TO STOP PROCESSING THE QUERY?
no

DID YOU MISSPELL ' ARTICHOKES '?
no

'WOULD I FIND ' ARTICHOKES ' IN THE DATABASE?
no '

WOULD IT BE SAFE TO IGNORE THE WORD ' ARTICHOKES '?
no)

DO YOU WISH TO ENTER ' ARTICHOKES ' INTO THE DICTIONARY?
no

ERROR >> ' ARTICHOKES ' CANNOT BE MORPHED.

An important benefit of keeping all of the user interaction
in one unit, besides the obvious one that it is easier to
modify, is that the user is facing a consistent interface and
should know what response was expected from a particular
question. Each of the attempts to learn a new word will now be

examined in detail.

74

4.3.1 Spelling Correction

I1f, when asked:
DID YOU MISSPELL ' ARTICHOKES '?

the user had typed in "yes", he would have been prompted for a
replacement. This replacement would have then been wused

throughout the rest of the parse.

In the current system, there is no attempt at automatic
" spelling correction, but this should certainly be a part of any

real-world NL system.

4.3.2 Database Search

If there exists an inverted index of the database (Section
5.1.2), the possibility is that no intermediate database
searches will be required. However, sometimes the inverted
index has not been kept up-to-date. Then, if the word is not in
the inverted index, it will be necessary to look in the database
for it to make sure that it has not been just recently added.
This can be done automatically by the NLL system if there are
some clues as to the field in which the unknown field might be

found.

In this éystem, if the word can not be found in the

inverted database, the system will ask:

75

WOULD I FIND ' ARTICHOKES ' IN THE DATABASE?

If the user responds with "yes" then the system will ask for the

expected field and then search this field for the value.

4.3.3 1Ignoring Words

When processing any natural language sentence, there occur
many words which could be safely ignored without affecting the
meaning of the entire sentence. This assumes that the word
conveys no useful information to the processipg of the sentence.
Words like "please" and "thank you" can wusually be ignored
wherever they appear in the sentence. Others can only be
ignored at certain points in the parse. It 1is important to
remember, however, that no word can safely be ignored if it
cannot be first identified by the system. Therefore, if ‘the
system does not know the meaning of a word, it must, if all else
fails, ask the user for a definition or if the word can ‘be
safely ignored. The use of such a procedure can be shown ﬁhen

the user enters the query:
How many books did Noam Chomsky write?

Since the system has no information on first names of authors,

it can not identify the word "Noam". It then asks the user:
WOULD IT BE SAFE TO IGNORE THE WORD ' NOAM ' ?

which, when the wuser agrees, will initiate a query satisfying

76

the constraint:
(AUTHOR = CHOMSKY)

Furthermore, the user is given the added information that the
system has no information on "Noam". If it were the case that
first names were in the database but that "Noam"™ was not, the
initial query would have been effectively answered and the
processing could be stopped. While this method requires more
user interaction, it seems superior to simply producing an
answer such as "none" which would not convey the same

information.

4.3.4 Entering New Words

To enter a new word, one must currently give the cdmplete
dictionary definition (Section 4.2) for the new word. However,
a complete NLL system should allow for a smoother user

interaction for the definition.

4,4 Internal Communication

The communication between parts of the parser and between
the parser and other parts of the 1linguistic core is managed

through three sets of registers. The local registers hold

values for a short time and are used primarily within the NL

parser to gather information about a particular construct (such

77

as a noun phrase or a verb phrase) before the component is added
to the internal sentence representation. For example, when

parsing the noun phrase:
a fast food place

after the determiner "a" has been found, the knowledge that the
noun phrase 1is singular can be stored in the local register

NUMBER by: T

(SETR NUMBER 'SG)

The global registers are used to store information about

the portion of the sentence which has already been parsed. For

example, in the sentence:
Who is open for lunch and serves Chinesé food?

the information that the sentence is in the present tense can be
stored in a global register after the first verb phrase has been

added to the internal sentence structure. This is done by:
(SETR-G TENSE 'PRESENT)

The stored information can be retrieved and verified when the

second verb is being parsed by the function call:
(GETR-G TENSE)

which would return the value "present".

78

The third class of registers are the world registers.

These represent the 1long term memory and contain information
about the continuing dialogue. This information 1is currently
only used for finding pronoun antecedents but could also be used
for building a "model" of the user to aid in providing an answer
more' tailored to his needs. An example of what information

might be stored in a world register is:
(SETR-W AGENT (GETR-G AGENT))

which would save the currenf agent for future reference by

copying it from a global to a world register.

4.5 Building the Standard Sentence Representation (SSR)

The .basic units upon which the standard sentence
representation (SSR) is built are the cases. Each component is
assigned a particular case to fill (or function to perform) in
the current structure. Each filled case then becomes a
constraint in the query to the database. The cases are
designated when the verbs of the system are defined (see Section
4.2.2 for the definition of verbs).

After the parsing routines héve developed an internal
sentence representation of the query, the SSR is pfoducéd. This
new structure provides a strictly defined (Figure 4.5)

communication path between the linguistic core and the database

79

SSR ::= (STYPE CONSTRAINT)
STYPE ::= whfind | yes-no
CONSTRAINT ::= SIMPLECONSTRAINT |
(*and CONSTRAINT*) |
(*or CONSTRAINT*) |
(*not CONSTRAINT)
SIMPLECONSTRAINT ::= (FIELD RELATION ELEMENT)
FIELD ::= fieldname | *number | *ref
RELATION ::= = | = | < | <= | > | »>=
ELEMENT ::= elementvalue | ? | *

Figure 4.5: The Standard Sentence Representation

interface. The SSR attempts to capture the portion of a query's
"meaning"” which 1s relevant for extracting the énswer from the
database. Some information is lost in this structure because
attempts are made to make it as simple as possible for the
database interface to interpret and so the possibility always
remains of an incomplete or erroneous answer. To build the SSR,
the relevant portions of the current internal representation of
the query are selected and formatted according to the
definition. By wusing this two step method of internal
representation and SSR, the internal representation can be
modified simply without modification to the database interface
routines. Additfbhally, all information needed for informative
.answer generation and finding a pronoun antecedent can be

retained in the internal representation without cluttering the

80

SSR and without forcing the database routines to understand, or
even simply ignore, this extra information. Some example SSRs

are:

1) Who serves chicken?

(WHFIND
(*AND (NAME
(FOOD

?)
CHICKEN)))

2) Where is the Empress of China?

(WHFIND
(*AND (ADDRESS = ?)
(NAME = EMPRESS OF CHINA)))

3) Find 4 restaurants that serve Japanese food.

(WHFIND
(*AND (NAME = ?)
(*NUMBER = 4)
(FOOD = JAPANESE)))

4) What is on the menu at White Spot?

(WHFIND
(*AND (FOOD = ?)
(NAME = WHITE SPOT)))

The SSR formatting component retrieves its infbrmation from
the registers of the short and 1long term memory (global and
world registers). The "data" for the final SSR is taken from
the case definition registers and the "control information" |is
taken from other, currently somewhat ad hoc, registers in
memory. Only information which provides a constraint for the

query 1is extracted from the registers and used in the SSR. For

example, in the query:

81

Which restaurants will serve me chicken?

the recipient case register will be filled by "me" (in

really contains the

supply no extra information to the query,

creating the SSR:

(WHFIND
(*AND (NAME
(FOOD

?)

4.5.1 Reducing the SSR

After the SSR has

reduce it to a

conjunctions. For example,
Who serves steak and

the initial SSR created will

(WHFIND
(*AND (NAME = ?)
(*AND (FOOD

filler

been

cannonical

fact it

*HUMAN). Since this concept will

it 1is ignored when

CHICKEN)))

built, the formatting routines

form, removing any unnecessary

for the query:

lobster?

be:

STEAK)

(FOOD LOBSTER))))
and the reduced version will be:
(WHFIND
(*AND (NAME = ?)
(FOOD = STEAK)
(FOOD = LOBSTER)))

82

4,5.2 Default Search Fields

During SSR formatting, a check is made to determine the

défault for any ambiguous field. 1In the query:
What does White Spot serve?

it is unclear from the definition of the verb "serve", which is:
(SERVE V S~-D ACTION (AG NAME PA (FOOD MEALS) RE *HUMAN))

whether the field designating a type of food or the field
designating é type of .meal should be searched. Because of the
ordering of the field list at definition time, the "food" field
is taken as default. The SSR produced is:

(WHFIND

(*AND (NAME
(FOOD

WHITE SPOT) *
?)))

4.5.3 Counting Database Items - *NUMBER

Providing a count of items in a certain field.is used so
often in any database query language that it must be somehow be
handled by the overall system. Because many database management
systems will process this type of request faster than complete
retrieval, it has been added as a part of the SSR definition,
thereby allowing the DBMS to know that no actual retrieval of
the records 1is necessary. The method used here to handle this

feature was to use the imaginary field *NUMBER when an item

83

count is to be returned rather than the actual items themselves.

For example, in:

How many foods does the Yangtzee have?

the SSR generated will be:

(WHFIND
(*AND (FOOD = ?)
(*NUMBER = ?)
(NAME = YANGTZEE)))

The reason for handling the count as an imaginary field

rather than as a separate sentence type (e.g; WHCOUNT) can be

seen in the SSR fort:
What is the address and number of dishes of Yangtzee?

\

which would be:

(WHFIND
(*AND (ADDRESS = ?)
(*AND - (FOOD = ?)
(*NUMBER = ?))

(NAME = YANGTZEE)))

which should return a count of the different foods available as

well as the restaurant's location.

to limit the number of

The *NUMBER field 1s also wused

answers printed. For example, the SSR for:
Find at least 4 and not more than 6 Greek restaurants.

system

t Sentences such as this cannot as yet be handled by the
even though the SSR allows for them.

84

will be:

(WHFIND
(*AND (NAME = ?)
(*NUMBER >= 4)
(*NUMBER <= 6)
(FOOD = GREEK)))

4.5.4 Using an Auxiliary Verb as a Main Verb

The check for use of an auxiliary verb as the main verb of

a sentence is done here. At the end of the parse of the query:
Where is the Seven Seas?

the system is 1left expecting a .main verb. The formatter
determines whether the verb "be" is being used as a main or an
auxiliary verb and generates the SSR:

(WHFIND

(*AND (ADDRESS = ?)
(NAME = SEVEN SEAS)))

4.5.5 Verb Phrase Ellipsis

Limited verb phrase ellipsis handling is done by the SSR
formatter. The world registers are used to hold information

from one query to the next. After a sentence such as:
Who serves steak?

the main verb "serve" is stored in one of the world registers.

85

If the next query entered was simply:
Steak?

then the system would infer the query to be:
Who serves steak?

and produce the SSR:

(WHFIND
(*AND (NAME
(FOOD

?)
STEAK)))

4.5.6 Pronoun Reference - *REF

If the antecedent for any pronoun has not already been
found before SSR formatting, it will be found at this time. For
this, another imaginary field " has been included in the SSR
definition - *REF. The only pronoun reference currently handled
by this system is in using the previous result from a search.

If the user has asked:

How many restaurants serve Chinese food?

THERE ARE 14 REFERENCES.
then the next query might be:
What are their names and locations?

which would produce the SSR:

86

(WHFIND
(*AND (*REF
(NAME

= %)
=?)
(ADDRESS =

?2)))

The "constraint":
(*REF = *)

informs the database interface to use the previous result in the

current search.

4.5.7 Embedded Noun Phrases

A problem occurs when parsing sentences such as:
What is the White Spot on Granville's phone number.
Although the SSR generated is:

(WHFIND :
(*AND (NAME = WHITE SPOT)
" (*AND (ADDRESS GRANVILLE STREET)
(PHONE ?2))))

we can see that the constraint:
(PHONE = ?)

has been attached to the SSR in the wroﬁg place. Although the

reduced form will be:

(WHFIND
(*AND (NAME
(ADDRESS
(PHONE

WHITE SPOT)
GRANVILLE STREET)
?2)))

nonn

87
and this, when passed to the database, will generate the correct

answer, the original attachment of a NP which is embedded within

another is still rather limited in capability.

4,6 Answer Generation

The function of the answer generator is to build and return
a meaningful answer to the original question. To do this, it
cannot rely entirely upon the information stored in the SSR.
The communication 1link between the NL parser and answer
generator is buried deep within the registers which form the
long and short term memories. This does not make the system any
less flexible, however, because the entire linguistic core still
remains separate from the application (domain and database)
interfaces. An important difference which this system displays
from previous NL systems is that the in%ormatioh uéed in forming
‘the answer comes from the parser and not from the structure
passed to the database. By this method the SSR can remain
simple while the system, as a whole, can still provide

informative answers.

The first step of the answer generation mechanism is to
extract the answer from the database. It does this by
consulting the database interface. The answer generator passes
the SSR to the database interface and receives a list of the

appropriate answers (see Section 5.2). Information relating to

88

the type of question asked is extracted from the SSR and used to
decypher the returned information. Next, the answer generator
uses control information from the short term memory to limit or
expand the answer to be returned to the user. Words that are to
be included in the returned message are selected and the proper
inflected form is determined. Finally, the answer is formed and

returned to the user.
For example, after parsing the input:
Who serves chicken?

the NL parser will produce the SSR:

(WHFIND
(*AND (NAME
(FOOD

?)
CHICKEN)))

(|}

which is then passed to the database interface (DBI). Returned

by the DBI is the list of answers:
("WHITE SPOT" "STEER AND STEIN")

By using only the information returned by the DBI and that
contained in the SSR, there exists only enough information to
produce this same list of answers. However, by retrieving the
verb from the short term memory (global registers), the system

produces the response:

"WHITE SPOT" AND "STEER AND STEIN" SERVE CHICKEN.

89

4.7 Summary

The linguistic core forms the heart of the NL system. It
has been designed to function as an independent unit with
intermediate calls to the domain definition, database and
possibly even the user to aid in processing the query. The core
is made up of the NL parser, the answer generator and a
communication path of registers betwéen them. By using this
structure, queries to the database are treated as simply one
small step in the total process and the information structure
passed to the database does not have to <contain all of the
information which the answer generator will eventually need. In
addition, the parser can pose queries to the database interface
whenever the need arises during the parse and not have to wait

until the parse has been completed.

The NL pafser processes a-syntactic grammar to exploit the
regularities of the English language while at the same time
provides for intermediate calls to semantic verification and
structure building routines to identify impossible
interpretations early. In this way the general, domain
independent portions of previous syntactically oriented systems
can be captured without the drawback of generating large numbers

of semantically unreasonable parses.

Definition of individual words in the linguistic section is

primarily concerned with their morphological features. There

90

are few completely domain independent nouns and even fewer such
verbs., Verbs are defined in a case frame structure to allow the
greatest ease of both definition and |use. The case frame
definition for a verb is fairly straightforward, being simply a
list of the cases which the verb takes and a list of possible
fields which can fill each case.v To take advantage of these
case frame definitions, the NL parser attempts to £fill the case

slots with information extracted from the query. ~—

The SSR definition is currently quite 1limited 1in scope;
however, this is not a severe limitation at present as it still
allows a reasonable variety of questions to be answered by the
system. Further research should result in a more comprehensive

representation.

Next we will look at the applications interface - the

domain definition and the database interface.

9N

Chapter 5

System Design: Part II - The Application Interfaces

(Domain Definition and Database Interface)

In Chapter 3 we saw that it would be beneficial to design a
natural language question answering system so thét the domain
and database specific knowledge was distinctly separate from the
linguistic core (Figure 5.1). In Chapter 4 we discussed the
functions which were sufficiently domain and database
independent to form a linguistic core. We will now turn our
attention to the application interfaces - the domain definition

and the database interface.

5.1 Domain Definition

The main thesis behind this work has been to attempt to
remove as much domain specific information as possible from the
system and isolate it in a "domain definition" (Figure 5.2). To
make the changes to this definition simply and correctly, a
declarative format has been used (see Appendix D for an
annotated, sample domain definition). With this format it is
hoped that any changes made to the domain wili be reduced to the
level of "slot filling" or "form filiing". By removing the need
for programming, the changes become understandable, even to a

relative novice. The domain definition is broken up into three

92

|————< user <-——|

NL query NL answer

EEEENEEENEENEEEEEEN n n

. . - /T ST

L] domain = n / NL \ / answer \ =

L] dictionary m <—> » \ parser / \ generator / =

- n] / \ / =

n . = linguistic »

n n = core L

[] inverted [ENNNEE NN NS NN IR SN NN AN E NN

L] database = | |

] u

= u standard sentence standard data

n . representation representation

L] case n

" list = |

]] EERNENNEEEREEREEEENENRAREREEEEEEEEEEEEEOER

u o] [}

- domain n L4 \ / \ =

= definition L] s/ SSR \ / data \ =

EEENEENEEEENEEEEEER m \ analyser / \ formatter / m
N\ / \ / =
= database =
n interface =
EEIESSESNSEEEEEEESNEEERNEENNENEERNERNREREEREEN

database query raw data

L————> database >—————|

Figure 5.1: Proposed Natural Language SYstem: A Review

logical sections. These are the domain dictionary, the case

list, and the inverted index of the database.

It was initially hoped that the domain definition could
have remained totally separate from both the linguistic core and

the database interface. Keeping the definition separate from

93

domain
dictionary

|
n
[]
[}
u
u
inverted L] > linguistic
index » ‘core
a
u
u
n
n
[]
]

case
list

E N AN EESNNRENMN

Figure 5.2: The Domain Definition Module

the linguistic core turned out to be a logical step because of
its declarative structure as compared with the procedural
structure of the linguistic core.v However, it became obvious
that any changes to the physical characteristiés of the database
could not help but be fefleCted, at‘least to some degree, in the
domain definition. Consequently, separating the domain
definition from the database interface became a more difficult
task. What resulted was that the domain definition now contains
a domain Qiew of the database. This does not mean a definition
of the entire database, but rather the parts of the database
which will change when the domain changes. Such parts are the
fields and field elements, but not the functions or data

accessing methods.

94

5.1.1 Domain Dictionary

The domain dictionary contains the definitions of the
actions, fields, jargon and even some field elements allowed
within the particular domain. Much as 1in the syntactic
dictionary, all individually defined terms in the domain
dictionary must have morphological and syntactic information
stored with them. Additionally, each category has associated
with it some information which may change according to the
domain. To simplify the definition of "meaning" of the domain
specific terms, a case structure has been employed. The verbs
of the system are defined over a range of cases and the nouns

are placed into one of the case categories.
5.1.1.1 Actions

The verbs in the domain have an "action" definition which
specifies a "conceptual patté%n" to be interpreted by the
grammar. Any relevent cases for the verb, wusually at least
agent (AG), patient (PA) and recipient (RE) cases, are defined

by the fields which can fill them. For example:
(SERVE ACTION (AG NAME PA (FOOD MEALS)))

defines the verb "serve". The definition 1is taken from the

restaurants database and means:

95

(a) that a restaurant can serve something
(b) that a type of food (e.g. Chinese food) or a type of

meal (e.g. breakfast) can be served

5.1.1.2 The Fields

The fields in the domain describe the general category of
things to look for. They specify where to look in the database
but they do not. supply special values of what to lo§k for. For
example, some of the fields in the restaurant domain are COST,

FOOD, RESERVATIONS and ADDRESS.

The marker DBFIELD is used to identify the real, database
name of a field. Since the name of the address field in the
restaurant database is really LOC, it is defined in the domain

dictionary as:

(ADDRESS DBFIELD LOC)

Another semantic marker (DBCAT) is wused to specify the
morphological properties of elements in the database. By

specifying all entries in the COST field as adjectives by:
(COST DBCAT ADJ)

any of the database entries in that field can be inflected to

the comparative or superlative. This "master field" method for

96

specifying all elements of a particular field has the benefit of
allowing a simpler and smaller definition of the inverted
database. It does, however, introduce some problems into the
scanning and morphing routines. Usually all elements of a
particular field would not have the same morphological features.
Take for example the two elements of the FOOD field - "Chinese"
and "chicken". Not only are the morphological entries for these
words completely different, but the words do not even perform
the same 1linguistic function. The word "Chinese", when
referring to "Chinese food" is acting as an adjective while the
word "chicken" is definitely a noun. A small -.change to the
linguistic component, however, adds enough leniency that the

system will now make allowances for these "master fields".

One optional marker which can be giyen to a field is one
which designates ordering of a field. There are two general
ordering types. The firét is a simple numeric or lexical
ordering and can be either ascending or descending. This has
been used in the "date"” field in the bibliography database and

defined as:
(DATE ORDER *ASCENDING)

Subsequently, questions of "before" and "after" can be answered.
As an example, assume that the dates in the database were B.C.
dates. The only change which would have to be made to the

domain definition would be:

(DATE ORDER *DESCENDING)

97

Questions 1involving both B.C. and A.D. dates in the same field
(perhaps flagged by an entry in another field) have not been

addressed here.

The other major type of ordering is not so easy to deal
with. In the restaurants database the "cost" field is a
finite-valued field containing only the values "expensive",
"moderate” and "inexpensive". If the words could have been
chosen differently then it «could be left at a simple lexical

ordering but this rarely occurs. In this field, the query:
Find a cheap Japanese restaurant.

would have no method of order refe;ence. The word "cheap" would

be defined to the system as:
(CHEAP INDF COST INDR *MORE INDE MODERATE)

but without some ordering on the field itself, this ordering
would be of little use. If either *ASCENDING or *DESCENDING
order were used then surely the system would return a faulty
answer, For finite-valued fields (currently there is no way to

handle infinite-valued fields), the definition would be:

(COST ORDER (INEXPENSIVE MODERATE EXPENSIVE))

Another optional marker defines the range of values allowed
in a particular field. Simply because a word does not presently

appear in a certain field in a database does not wusually mean

98

that the word can never appear there. This 1is where the
distinction between INFINITE-VALUED and FINITE-VALUED fields
comes in to play. There are fields which allow only a limited
number of different values to be present. Such a field 1is the
STARS field in the restaurant database where the only possible
values are 0, 1, 2, 3, 4 and 5. The main benefit in making this
distinétion is that when the inverted database handler hés
looked for a wvalue and cannot find 1it, 1if processing a
FINITE-VALUED field it can return immediately to the parser

without invoking a futile database search.

5.1.1.3 Terms and Jargon

Many of the domain specific terms and jargon will indicate
a .speéific field. Again from the restaurant domain, the noun
"menu" would provide a reference to thé FOOD field. There are
“usually many nouns which indicate the same field. For example,
"cost", "expensive", "cheap" and "price" could all indicate a
processing of the COST field. The field indicators are usually
proper nouns, common nouns or adjectives., In addition to the
necessary morphologicall definition of all words, the domain
definition of these particular nouns and adjectives has three

extra components (if relevent):

INDF - indicated field
INDR - relation between field and field element

INDE - indicated field element

99

For example, the definition:
(CHEAP INDF COST INDR *LESS INDE MODERATE)

means that any record with an entry in the COST field less than

"moderate" will be considered to be "cheap".

An important feature that the system needs is the power to
recognize non-database elements as database elements. There are
many times when words which a user may use as jargon may not
actually be 1in the database and therefore not in the index.
However, to make the system usable, it must be able to identify
these terms for what they are. The abbreviation mechanism is
used to handle this problem. An gxample would be if we wanted
to use MIT as an abbreviation for "Massachusetts Institute of
Technology". - The definition allowing this would be included in

the domain dictionary or the inverted database simply as:

(MIT ABBREV "MASSACHUSETTS INSTITUTE OF TECHNOLOGY")

5.1.1.4 The Field Elements

Most field elements are defined simply by their presence in
the inverted database. However, some provide more information
to the query processing than simply a reference to their name
and, therefore, would be found in the domain definition itself.
For example, in the above definition of the adjective "cheap", a

"cheap restaurant" would mean more than just a restaurant in the

100
database with the value "cheap" in the COST field. Actually it
would mean any restaurant with a value in the cost field less

than "moderate".

5.1.2 The Case List

The case list is used for internal manipulation of the case
structures which form the basis of the 1internal semantic
representation of the query. All prepositions and many of the
general, domain independent adverbs are defined in terms of the
caSe list. For example, "at" has been defined as relating to
the "time" and "location" cases. The guestion adverbs "when"
and "where" are also defined in terms of these cases and so, to
make these adverbs functional in a new domain, only the

definition of the "time" and "location" cases must be provided.

The definition of the case 1list simply requires the
designation of which database fields fall into which case
category. A list of possible cases has been provided to help
guide the domain implementor when defining the case list but it
is in no way meant to be exhaustive. The possibility exists for
the domain implementor to add to the case list; however, since
the prepositions have been defined in terms of this particular
list, any changes to it would have to be reflected in the
syntactic dictionary. The case list provided has been modified
only slightly from the case list found in Taylor and Rosenberg

(1975). The complete list of defined cases can be found in

101

Appendix B.

5.1.3 Inverted Database

As in the ROBOT system (Harris 1977a), the inverted index
of the database is used to "define" all of the real worla
knowledge of the system. This is the set of terms found in the
database itself. The use of an inverted database in this system
is not absolutely necessary. The gains made by incorporating it
into the design of the system are 1in query processing time,
With the index, the system does not have to examine the database

for the "meaning" of every database element.

There are times when it is useful to make a quick check in
the database to see if an element is present. If there is an up
to date inverted index it should only be necessary to search the
index but, more often than not, if there is an. index at all, it
is probably out of date. 1In any large database system, updates
to the database are made continually while wupdates to the

inverted index would be done rarely.

There are other times when it would not help to search the
database. If there is a precisely defined field such as COLOUR
with "red", "green" or "blue" entries only, then no amount of
database wupdates will change the fact that red, green and blue
are the only colours allowed. Here we don't want to search the

database (see Section 5.1.1.2). Another reason for not querying

102

the database, but rather querying the user instead, 1is if the
database system 1is slow in responding. This has probably been
the assumption made by most NL system designers until recently
as they wusually try to make only one call to the database.
Actually, if the database system is reasonably fast, the natural
language parser can retrieve an enormous amount of information
from it through intermediate calls. Still another situation
when the parser might not want to search the détabase is when
there is no information to 1indicate the field to search.
Clearl& it would be ridiculous to search every field of the

database to find the element.

The ideal situation would be if the database itself could
be wused - at the base level of the inverted indexﬂ Indeed some
database languages may provide this 'facilfty, but the system
used here provides no such link. If the database language will
not provide an index, it must be built by the database
implementor. Fortunately, this is a task which can be readily
automated. Sometimes, however, building an inverted database
requires more space than the system is allowed to use. 1In this

case, we must fall back on the database search method.

The decision here becomes a classic one of space versus
time and is usually based on machine limits. Since the machine
underlying this particular system has few space problems, time

was seen to be the crucial quantity.

103

Since the construction of an inverted index for a database
is both a time consuming and menial process, a program was
designed to generate an inverted index automatically. The
program was written in the MTS Edit Procedure sublanguage
(Hogg 1980) and 1is designed to take SPIRES database output and

create a LISP dictionary with entries of the general form:

(element ELEMENT-OF field)

A sample inverted database can be found in Appendix D.

In addition to the dictionary of actual database elements,
the inverted index requires the power to 1identify different
elements 1in the database which .are synonymous. Frequently the
database: will contain synonyms and it is only through .
identification of these synonyms that meaningful answers to
gueries can be produced. Take, for example, the case of the
three database elements "burgers", "hamburgers" and

"cheeseburgers". If the query was:
Who serves burgers?

all places with "FOOD = BURGER" as well as all places with
"FOOD = HAMBURGER" and "FOOD = CHEESEBURGER" would be expected
to be found. To handle this feature, a new semantic marker was
created. It is simple to use, requiring a list of all synonyms
found in the database, but must be entered by the domain

implementor. The format to define the above case would be:

104

(BURGER FOOD+ (HAMBURGER CHEESEBURGER))

5.2 The Database Interface

The database interface (Figure 5.3) is designed to proQide
an idealized database to which the system can pose questions.
Not only will there be the one query to find the data to answer
the user query, but also possibly many intermediate gueries to
find information needed to continue processing at any time. All
of the information relevant to a particular database query
language must somehow be incorporated. 1Its purpose is to hide
the actual physical characteristics of the particular database
from the linguistic core. The database interface is combosea‘of
two completely separate secﬁions - the database format routines,
which handle input to the database and the data format routines
‘which handle the database output. In changing the underlying
database these routines would have to be rewritten but the rest

of the system should not have to be modified.

The philosophy behind the entire database interface is
simplicity. Since it is not clear which functions any database
guery language may or may not proviae, assumptions have been
kept to the bare minimum. In this way it should be simple to
adapt this system to any and all database systems. The 1ideal

method of communication with the database, for both the database

105

from linguistic core to linguistic core

|

. | | .
=/ \ n
s / format \ / \ L]
®m \ query / > / save \ < (]
B\ / i \ answer / .
= \ / []
" / \ / \ / \ =
L / format \ <— / selector \ —> / format \ =
. \ YES/NO / \) / \ WHFIND / =
n \ / \ | / \ / =
=/ \ / \ "
s / send \ / receive \ m
= \ query [/ \ data / "
m\ / \ / "
:Il..lIIIIIIIIIIIIlII--l-IIIIIIIIIIIIIIII.I.IIIIIIIIIIIIIIIII:

to database from database

Figure 5.3: The Database Interface Module

format and data format routines, is to pass messages directly
through low level function calls. Unfortunately the database
system linked to 1in this system allows no such communication.
Because of this, a rather roundabout route has to be taken. Two
separate tasks have to be initiated, one running the NL
interface and one running the database management system (DBMS).
The two tasks communicate through a shared file with the
database format routines generating "user"” queries and the data
format routines interpretting the DBMS responses. This method

is extremely awkward and poses more problems than should

106

normally be expected but queries can still be handled in a

reasonably short time.

5.2.1 Database Format Routines

The database format routines transform the standard
sentence representation (SSR) into a query in the data base
guery language. As mentioned earlier, there are two obvious
methods of approaching this problem. One is to communicate
directly with the database through the low level function calls
but, in this particular system, these functions were not
available and the database format routines had to generate a

"user" query to the database.

If a particular function is called for in the SSR, then the
routines should find and call the appropriate database routine.
Also among the responsibilities of these routines 1is the
"faking”" of any functions which the database should provide but
doesn't. A typical example would be if the database were
expected to provide a list of currently searchable fields upon
request. Since this is a common function of many databases, it
would not be an unwarranted expectation and if the database
languége we are communicating with does not provide this

function, then these routines must.

Currently there are only three low 1level functions which

the database 1language 1is expected to handle. These could be

107

expanded but it should be remembered that if an ideal interface
is to be provided, one to which virtually any database language
could adapt, then they Should include only the very common
functions. The three low level functions which would have to be

implemented before a new database could be attached are:

DB-SELECT - which selects the appropriate database

DB-EXIST? - which returns the number of elements
satisfying a certain query.

DB-FIND - which returns the elements specified

by the constraints.

The database format routines for this system were written

in LISP.

5.2.2 Data Format Routines

These routines work on the outﬁﬁt of the database
interface. Their function is to take the output data from the
database as returned by the query language or low level database
functions and return to the Q/A system the portion of the answer
it requires. The standard format that this system expects is a

list of the elements found. The basic structure is:

(FIELD = ELEMENT)

I1f more than one piece of information is to be returned, it will

be returned as a list of lists:

108

((FIELD1 = ELEMENT1)
(FIELD2 = ELEMENT2)
(FIELD3 = ELEMENT3))

The data format routines in this system have. been
implemented partially in LISP, but mostly in the SPIRES Protocol

sublanguage (Buckland 1981).

5.3 Summary

The database interface has been kept as small as possible.
There have been no complex functions such as the identification
and handling 6f metaquestions (see Section 3.3.1) included in
it. Through this simple interface it should be straightforward‘
to attach a new database to tﬁe. NL system; however, as the
questions from the NL system become more involved, the database

interface will undoubtedly have to become more complex itself.

The domain definition Eontains three separate components:
the domain dictionary, the case list and the inverted index for
the database. Together they attempt to provide an information
bank which the NL parser can query to retrieve domain dependent
information. All parts of the domain definition have been
structured 1in a declarative format to facilitate quick and easy

modification.

109

To determine whether or not the domain definition process
was both sufficient and simple, the NL system was transferred to
a new domain of discourse. The next chapter provides a

discussion of this process.

110

. Chapter 6

A Change of Domains

In order to determine whether or not the natural language
database interface created in Chapters 4 and 5 was indeed domain
independent, a test was performed. The test was to adapt the
interface to a new domain of discourse. After developing the
interface to 1interact adequately 1in the initial restaurant
| domain, it was adapted to an AI bibliography domain. Then,
after revisions based on the results of the domain change, the
interface was transferred to a conference dqmain (see Appendix E

for a sample session).

6.1 The Definition Process: A Guide to the Perplexed

The definition process is made up of a few tasks which must
all be performed by someone familiar with the domain and
database system being used. (e.g. the database administrator
(DBA)). It would be helpful if this person had some knowledge
of the NL system but hopefully it has been designed in such a
way that this 1is not really necessary. The tasks to be

performed are:

1) construct an inverted database (if none exists
already)

2) define the database fields to be used

3) define the actions which will be allowed

4) define any abbreviations, synonyms and jargon to be

used

Appendix D contains a sample domain definition.

6.1.1 Constructing an Inverted Database

Sometimes a database system will provide fast access to an
inverted index of the database. More often it will be slow or
non-existent. In these <cases it 1is beneficial to build one
external to'the.-NL and database systems. As discussed in
Chapter 5, the DBMS Spires to which the interface was attached
contained no hooks for an inverted database. However,-since the
information required in the inverted database is only the field
values and the name of the field(s) in which it is located, the
construction was easy to automate. Building the inverted
database for all of.the domains tested was done automatically on
the DBMS output by a procedure written in .the MTS Edit Procedure

sublanguagg,

112

6.1.2 Database Field Definitions

All searchable and non-searchable fields 1in the database
must be defined to the NL parser by the system administrator.
This definition process is currently very simple as few general
features have been implemented. However, the definition should
be able to be extended when any new feature 1is desired. The
field definitions inform the system what the properties of the
particular field are; both mandatory and optional properties
must be defined. Currently there are two field definitions
which are mandatory (DBFIELD and DBCAT) and one optional

property (ORDER) designating the ordering of the field (see

Section 5.1.1.2).

6.1.3 Action Definitions

The actions are defined in a case frame "~ structure as was
discussed in Section 5.1.1.1. Deciding which actions need to be
defined was done, for each domain, by generating a 1list of
sample gquestions and then extracting from this list the domain

specific verbs.

The cases to define for each action were taken from the

case list provided - a copy of which can be found in Appendix B.

113

6.1.4 Abbreviations, Synonyms and Jargon

The definition of domain specific terms and jargon can be
found in Section 5.1.1.3. Many of the terms defined were
actually an extension of the inverted database. In some cases,
common abbreviations (such as "UBC" for "University of British
Columbia") may not be found in the database. To facilitate the
use of these abbreviations, they must be added either to the

domain dictionary or to the inverted database.

Sometimes non-standard abbreviations are used by the trade
(even if a standard exists). Whereas "Comm. ACM" 1is the
standard abbreviation for "Communications of the Association for
Computing Machinery"”", "CACM" is also widely used. By making
both of +them abbreviations to the NL system, the user does not

-have to remember which is the standard.

6.2 The Restaurant Domain

The 1initial database around which the demonstration system
was built holds information concerning restaurants. It 1is the
type of database which might soon be found on a television
information network (e.g. Telidon). Included here are data
concerning the local eating establishments; the types of dishes
they serve, their location, hours of opefation, quality of food

and relative prices. Both searchable and non-searchable fields

114

are included.

The restaurant database used here was developed by the UBC
Computing Centre to demonstrate the SPIRES DBMS. During
demonstrations, new users are encouraged to add data to the
SPIRES subfile and so the resulting database 1is a little

unreliable and inconsistent in naming conventions.

The fields of the restaurant subfile used are shown 1in

Figure 6.1.

Fieldname Description Searchable
name restaurant name ' yes
location address yes
phone . phone number no
cost approx. cost of a meal for 2 yes
food types of food served yes
stars quality of the restaurant yes
meals when is it open yes
comments anything else no

Figure 6.1: The Fields in the Restaurants Database

Some example queries which prospective diners might have

for such a system are:

115

What are some Italian restaurants?

Can you find me a cheap Japanese place?

Which are the best restaurants?

What is on the menu at White Spot?

How many Chinese food places are there?

When does the Yangtze open?

Is there a Turkish place which is open for lunch?.

What is the White Spot on Granville's phone number?

Since this was the initial domain attached to the NL system, its

design was tailored towards answering these questions.

6.3 Adaptation to the Bibliography Domain

After the system was able to function adequately in the
‘restaurant domain system, it was time to turn to another. An
Artificial 1Intelligence (AI) bibliography database was chosen.
The vocabulary of this new domain was dissimilar enough to cause
a potential portability problem even though the structure of the
questions remained similar. Some of the fields involved in this
database were the author, book, subject, publisher, date and
abstract, again including both searchable and non-searchable

fields.

The AI bibliography database has been developed by the UBC

Department of Computer Science primarily as a research aid. The

116

additions to this database are made in a more uniform and
controlled method than the restaurants database and it therefore

presented a more reliable information base.

The actual fields 1in this database used are shown in

Figure 6.2.

Fieldname Description Searchable
author author yes
title title of the work ' yes
date date it was written | yes
type what type of article yes
abstract abstract of the article no
location where the book is physically yes
Akeywords associated topics yes
pub publisher of the book ‘ yes
inst what institution put it out yes

Figure 6.2: The Fields in the Bibliography Database

Some of the questions which were put to this system are:

Who wrote Aspects?
How many papers has Schank written?
How many vision books were written before 19782

Find at least 4 papers by Minsky.

117

The major difference between the databases came in the area
of vocabulary. There seemed to be no general way to define
words and special terms so that they could apply to all
databases simultaneously. For example, whereas 1in the
bibliography database the mention of the word "name" brings
about conflicts between the publisher, author and book title, in
the restaurant database, the word 1is wvirtually unambiguous

(signifying the restaurant name). Conversely, the question:
Where is Schank and Colby's book?

to the bibliography database involves no ambiguity (there was

only one "location" field) whereas the query:
Where is a good steak place?

to the restaurant database does because it could refer to the
name of the restaurant or the addréss. Other words play major
roles in one database (such as "serve" in restaurants, "write"
in bibliography and "register" in conference) but never appear

in the others. -

The database elements were defined by inverting the
database. Although fully automated, the process did require a
substantial amount of CPU time and disk space due to the size of
the database. Additions to the database in terms of
abbreviations and synonyms were made by a manual pass'lover the

inverted database in an editor.

118

Definition of the fields, both in the domain dictionary and
in the case list, was fairly straightforward and quick since the

database had under 10 fields to define.

Next some sample sentences were generated to determine the
domain specific actions and jargon to define. This was the most
time consuming 'process _since there was no formal procedure to
follow. The actual definition of these domain specific terms

(again using the pre-defined case list) was relatively quick.

One shortcoming which was wuncovered during the domain
changing exercise was the omission of an important wuniversal
feature from the 1initial version. Since there was no numeric
ordering of elements in the restaurant system, it had no way to
"handle questions relating to "before™ and "after". There was no
poésibility to simply add to the current definition; the parser
itself had to be modified. The problem was solved by allowing
the values *ASCENDING and *DESCENDING to appear on the marker
ORDER. This turned out to be a simple extension to the field
definition to define it and only a slight modification to the
linguistic core to handlé it. Problems caused by oversight are
bound to happen in any system and no system will ever actually
be complete; however, this oversight was due more to a severly
limited testing stage of the restaurant system than to the

design of the NL parser as a whole,

119

6.4 The Conference Domain

The third database hooked up to the natural language parser
was a conference registration database. It was originally
designed by the Computer Science Department at UBC to contain
information on the participants at the 7th International Joint
Conference on Artificial Intelligence (IJCAI) held at UBC in
1981,

The actual fields used in this database used are shown 1in

Figure 6.3.

Fieldname Description Searchable
name name of the participant : yes

" institute institution the person came from yes
a-time arrival time : _ - yes
o-country country thé person came from yes
type how the person registered yes

Figure 6.3: The Fields in the Conference Database

Some of the questions which were handled by this system

are:

120

Who is coming from SRI?

Has John McCarthy registered?

Find all the people who nave registered as an early-student.
When did Minsky register?

How many people are coming from MIT?

When is Schank coming?

As in the definition of the AI Bibliography domain, the
creation of the inverted database was done automatically. Again
a set of questions were generated in order to extract the domain
dependent actions and jargon. Because there were no new
concepts to handle for this domain, the entire definition

process was completed within a few hours.

6.5 Summary

After the linguistic core had been brought up to a level of
competence where it could handle the simple questions posed, the
definition of a new domain became a straightforward and quick
process. However, the different domains used in this test were
all residing under the same database system and this undoubtedly
played a role in limiting the structure of questions which could

be asked or answered.

121

Chapter 7

Conclusions

The achievements of fhis system lie in the ease with which
it can be adapted to a new domain of discourse. The structure
of the domain dependent information allows a great deal of
guestion answering capability to be defined easily and quickly.
Of course, there remain 1issues of adequacy and extendability
which have not been dealt with satisfactorily. . It has never
been expected that the methods and structures developed here
could be transferred, as is, to a more complex world of general
discourse; however, in the more limited question answering
paradigm they do appear to be reasonably acceptable. The
strategy of separating the knowledge'bése from the linguistic
component does seem useful enough to be a necessary feature in
many domains of discourse. With techniques such as these it
should be possible to develop large natural language database
interfaces which are general enough tﬁat the domain of discourse
can be altered without requiring significant modifications of

the entire system.

During the development of this particular system there have
been a number of 1issues raised which, for some reason or
another, could not be adequately addressed in the current

context. Frequently these problems were set aside because of

122

time constraints but others were just beyond the scope of this

thesis. Next we will briefly consider some of these issues.

7.1 Open Issues

Some of the issues which have not been resolved in this
system are the handling of text, value 3judgements, multi-field
answers, complex conjunctions, pronoun reference, clarification

dialogue and sample sentence generation.

7.1.1 Text Retrieval by Content

The whole subject of retrieving text by content is much too
aifficﬁlt for the current system. This became an issuerin thel
restaurant domain while attempting to process the "comments”
field and again 1in the AI bibliography domain when processing
the field "abstract". However, this is a problem-which has not
yet been adequately addressed by researchers in general. There
are few, if any, current systems which can properly process

text.

7.1.2 Value Judgements

An added benefit of a natural language database query
system would be its ability to make some types of wvalue

judgements. An example of what is meant here is the following:

123

Which is the best restaurant in town?

Of course, methods of answering this will be different in each

database system. In some, the following steps might have to be

performed:

1. Select STARS
2. Sort into descending sequence

3. Return the first record

while in another it might be done more simply. 1In this example,
our semantic (retrieval) component must be able to handle

multi-level commands to the database and this adds complexity.

In this system, "best" has been defined as any entry with
the highest number of stars. The structure passed to the

retrieval component will be
(FIND (NAME = ?) (STARS >= *ANY))

Currently, while this structure can be defined and processed by

the linguistic‘core, it can not be handled by the database

interface.

7.1.3 Multi-Field Answers

In some databases an answer may involve entries in more
than one field. An example of this might be found 1in a

telephone directory system. Assume that the area code was not

124

explicitly stored in the database but could be determined by the

province and city fields together. A query such as:
What is John Smith's phone number?

would have to do some reasonably complex calculations to

determine the answer.

Another type of multi-field answer would arise when the
values of one field depended upon the values of another. This
might happen in a accounting database where one field 1is an
absolute amount and another is a code signifying a debit or a

credit,

7.1.4 <Complex Conjunctions

The processing of simple conjunctions was discussed in
Section 4.1.4.6. When many conjunctions are strung together it
becomes difficult to give any general rules to process them.

For example, in:
Have you seen a dog and a bone or a cat?

the tendency is to join "the dog" and "the bone", while in:
Have you séen a lady and a boy or a girl?

the groﬁping is not quite as obvious. Humans use both context
and semantics to decide the grouping and we cannot expect a

program to handle these types of conjuncted phrases until it can

125

deal competently with these concepts..

7.1.5 Pronoun Reference

Only simple pronoun reference has been dealt with. This
was only partially because of time constraints. The question of
complete pronoun reference (at the human level) 1is far beyond
the ability of most current systems. Fortunately the design of
the syntactic-semantic interface (general registers) allows for

a great deal of flexibility.

7.1.6 Clarification Dialogue

When the system fails in some part of its processing it can
either give up or enter into a clarification dialogue with the
user. This problem has been addressed superficially in Chapters
3 and 4 however it is an important issue which must be explored

more fully (Codd et al 1978).

7.1.7 Sample Sentence Generation

The problem here is how to find out which words should be
defined in a new domain and it is a problem which has been
glossed over during the development of, not only this system,

_but also of most previous systems. The problem is not a totally
trivial and unimportant one if we are to adapt a system to a new

domain quickly. In the domain change undergone to test this

126

system, sample sentence generation was one of the more time
consuming portions of the process. In a real world application,
professionals in the field would be called upon to generate the
sample sentences and then the system would be adjusted to handle

these particular questions.

7.2 Problems for Future Work

There are many problems on which more work must be done.
Some of these are extensions to both the syntactic and semantic
portions of the system, adaptation of the system to a new

database system, and computational optimization.

7.2.1 Extensions to the Syntactic Component

The syntéctic component of this system has been left
incomplete, for obvious reasons. Many additional features of
natural language should be able to be implemented as part of the
current syntactic grammar. Expansion of the syntactic structure
building can be done with 1little or no modification to the

parser.

7.2.2 Extensions to the Semantic Component

Some of the open issues discussed previously'could probably

be resolved with an extension to the semantic component. The

127

internal register structure allows for a great deal of
information to be stored and retrieved at any point of the
parse. Because of this, a new feature can be added or modified

without affecting the entire system.

7.2.3 Adaptation to a New Database System

Although discussed briefly in Chapter 5 and although hooks
for this have been implemented, a change of database systems was
never implemented. This stemmed from the fact that there were
no other database systems available on the MTS system at UBC.
However, we exbect that it should be relatively easy to carry
out such an implementation. The major advantage of the design
of this system with respect to a database system change are in
the modularity of the system as a whole and of the database
interface 1in particular. For example, to define a new database

interface would require the coding of only 3 functions.

7.2.4 Computational Optimization

This system has been built with little regard for either
time or space efficiency - not surprising in an experimental
system. Consequently there are many areas of the program which

could be optimized.

For example, the use of an inverted index reduces the

amount of CPU time required. It does this by cutting down on

128

the database searches (which are costly) but increases the space
requirements if not implemented as part of the original

database.

7.3 Summary

The NL system developed has been split into 3 separate
parts. The linguistic core <contains all of the domain
independent components geen in recent natural language question
answering systems. It parses queries, consults the database

interface for the data and formulates the appropriate reponse.

The domain definition-is a collection of all of the domain
dependent terms and databdse values. It has been désigned in
such a way as to facilitate definition and modification. The
linguistic core consults the domain definition during a parse to
retrieve the domain dependent information it needs to process

the query.

The database interface provides an idealized, well-defined
interface to the real database. Because of the simplicity of
the functions required in this interface, it should be able to

be rewritten for a new database with a minimum of effort.

Bibliography 129

Bibliography

Ball, Eugene and Hayes, Phil (1980), Representation of
Task-Specific Knowledge in a Gracefully Interacting User
Interface, Technical Report, Computer Science Department,
Carnegie-Mellon University, Pittsburgh, P.A.

Bobrow, Robert J., and Webber, Bonnie L. (1980), PSI-KLONE:
Parsing and Semantic Interpretation in the BBN Natural
Language Understanding System, Proceedings 3rd National
CSCSI/SCEIO Conference, Victoria, B.C., pp. 131-142,

Brown, J. S., Burton, R. R. and Bell, A. G. (1974), SOPHIE: A
Sophisticated Instructional Environment for Teaching
Electronic Troubleshooting, Bolt Beranek and Newman, Report
No. 2790, Cambridge, Mass.

Buckland, Tony (1981), An Introduction to SPIRES, University
of British Columbia Computing Centre, Vancouver, B.C.

Celce-Murcia, M. (1979), Paradigms for Sentence Recognition,
System Development Corp., Final Report No. HRT-15092/7907.

Chomsky, Noam (1965), Aspects of the Theory of Syntax, MIT
Press, Cambridge Mass.

Codd, E. F., Arnold, R. S., Cadiou, J-M., Chang, C. L., and
-Roussopoulos, N. (1978), RENDEZVOUS ~ Version 12 An
Experimental English-Language Query Formulation System for
Casual Users of Relational Databases IBM Technical Report
RJ2144, IBM Research Laboratory, San Jose, Ca.

Fillmore, C. J. (1968), The case for case. Universals in
Linguistic Theory, N.Y., Holt, Rinehart and Winston, pp.
1-90.

Harris, Larry R. (1977a), ROBOT: A High Performance Language
Interface for Database Query, Technical Report TR77-1,
Mathematics Department, Dartmouth College, N.H.

Harris, Larry R. (1977b), Natural Language Data Base Query:
Using the data base 1itself as the definition of world
knowledge and as an extension of the dictionary, Technical
Report TR77-2, Mathematics Department, Dartmouth College,

Bibliography

Bibliography 130

N.H.

Hayes, Phil, and Reddy, Raj (1979), An Anatomy of Graceful
Interaction in Spoken and Written Man-Machine
Communication, Technical Report, Computer Science
Department, Carnegie-Mellon University, Pittsburgh, P.A.

Hendrix, G. G. (1977), Human engineering for applied natural
language processing, Fifth Int. Jt. Conf. on Artificial

Intelligence, MIT., pp. 183-191.

Hendrix, G. G., Sacerdoti, E. D., Sagalowicz, D., and Slocum,
J. (1978), Developing a natural 1language interface to
complex data, ACM Transactions on Database Systems, 3(2),
pp. 105-147.

Hirst, Graeme (1979), Anaphora in natural language
understanding: A survey, Technical Report 79-2, Department
of Computer Science, University of British Columbia.

Hogg, John (1980), UBC Edit: The Line File Editor, University
of British Columbia Computing Centre, Vancouver, B.C.

Johnson, Jan (1981), Intellect on Demand, Datamation, 27(12),
pp. 73-78.

Johnson, S. C., and Ritchie, D. M. (1978), Portability of C
Programs and the UNIX System, The Bell System Technical
Journal, 57(6), pp. 2021-2048.

Katz, J. J., and Postal, P. (1964), An Integrated Theory of
Linquistic Description, MIT Press, Cambridge Mass.

Marcus, Mitchell P. (1979), A Theory of Syntactic Recognition
for Natural Language, Artificial 1Intelligence: An MIT
Perspective, Vol 1, eds. P. H. Winston and R. H. Brown MIT
Press, Cambridge Mass.

Minsky, M. (1975), A Framework for Representing Knowledge, The
Psychology of Computer Vision, ed. P. H. Winston, Mcgraw
Hill, pp. 211-277.

Bibliography

Bibliography 131

Rosenberg, Richard S. (1980), Approaching Discourse
Computationally: A Review, Representation and Processing of
Natural Language, Carl Hanser Verlag, pp. 10-83.

Reiter, Ray (1978), The Woods Augmented Transition Network
Parser, Technical Note 78-3, Department of Computer
Science, University of British Columbia.

Richards, M. (1969), BCPL: A Tool For Compiler Writing and
System Programming, Proc. Spring Joint Computer Conf., pp.
557-566.

Sacerdoti, E. D. (1977), Language access to distributed data
with error recovery, Flfth Int. Jt. Conf. on Artificial
Intelligence, MIT., pp. 196-202.

Schank, Roger C. (1972), Conceptual Dependency: A Theory of
Natural Language Understandlng, Cognitive Psychology, 3(4),
pp. 552-631.

Schank, Roger'C. (1973), Conceptualizations Underlying Natural
Language, Computer Models of Thought and Langquage, eds. R.
C. Schank and K. M, Colby, “San Francisco, Freeman and Co.

Taylor, B. H. and Rosenberg, R. S. (1975), A case-driven
parser for natural language, American Journal for
Computational Linquistics, AJCL Microfiche 31.

Waltz, D. L., Finin, T., Green, F., Conrad, F., Goodman, B.,
and Hadden, G. (1976), The PLANES system: natural language
access to a large data base, Technical Report T-34,
Coordinated Science Lab., University of Illinois, Urbana.

Waltz, David L. (1978), An English Language Question Answering
System for a Large Relational Database, Comm. ACM, 21(7),
pp. 526-539,

Woods, W. A. (1967), Semantics for a Question Answering
System, Ph.D. thesis., Report NSF-19, Aiken Computational
Lab., Harvard University, Cambridge, Mass.

Woods, W. A. (1970), Transition Network Grammars for Natural
Language Analysis, Comm. ACM, 13(10), pp. 591-606.

Bibliography

f
i
"

Bibliography 132

Woods, W. A., Kaplan, R. M. and Nash-Webber, B. (1972), The
Lunar Sciences Natural Language Information System: Final
Report, Bolt Beranek and Newman, Report No. 2378,
Cambridge, Mass.

Woods, W. A. (1980), Cascaded ATN Grammars, American Journal
for Computational Linguistics, 6(1), pp. 1-12.

Bibliography

133

Appendix A

Transition Network Grammar

This appendix consists of transition network diagrams for

the grammar described in Section 4.1.2.

134

SENTENCE

Fump ' . PusH wp

Pop

PREPOSHWONAL PHRASE

caAT cond

CAT pro (RELATWVE

TNUMBER

< veT (A - -

135

NowunN_ PHRASE

CAT (ONT

' < DET (AR - B
eush BUg,, & i CAT _PARr

e =

gue®

« .oF\‘

ADT (SWPERLATAVE) _wWRD "THAN"

CAT oRp a3 COMPﬁRﬁr‘vE
J

Jurae

Tump
CAT N
{PosS)
PoP

N cAT Nypy N ' |
NP /HEAD S 3N/ NMog
CAT NPR__> / 4 AN

X C‘ PRO (@.uEST) / . ‘);:

\ » AT _ADY (guest) g
\ N e E AT _PRO_(RELATIWVE) /
e e S A NP e
cay fRo ' '
{GEHERARYS

AT

=N/
PosT Mop

136
QUAMTIFIER

/C

WRD “THAN

(AT]’
!
{

st \@VALUED
coNT ‘

PUSH NUMBER

VERB PHRASE

wap “wNot” . .
coT CONT ~ WRD NoT

Mo
’V\I(DALA (anE)

v
W/g

o v _\eassE At
wRp “nNot” c®

Fur?

w W

wWeRo NoT

AT Vo Pop

WRD 1-0

137

Appendix B

Case List

This appendix consists of a list of cases supplied to the
NL system to simplify the definition process. It is neither an
exhaustive nor completely defined.list. The case list used here
is a slightly modified version of the one found in Taylor and

Rosenberg (1975).

AG - the AGENT of an action

- the one who acts
BEN - the BENEFICIARY of an action

- the one who receives an advantage
CAUS - the CAUSE

- the agent which produées an effect or result
COAG - the COAGENT of an action

- the one who acts with the agent
DEST - the DESTINATION

- where something is directed
EN - to ENABLE

- to make possible
EX - to EXCHANGE

- to give and receive
INST - the IN§TRUMENT of an action

- what it was done with
LOC - the LOCATION of an action

- where it took place

MOT

PATH

PA

PURP

QUAN

RE

SOu

TIME

TOP

the MANNER of an action

- how it was done

the MOTIVE behind an action

- why it was done

the PATH

- the course of action

the PATIENT of an action

- the one which is acted upon

the PURPOSE

- the reason for carrying out the action
the QUANTITY

- the amount

the RECIPIENT of an action

- the one who receives something from the action
the SOURCE of the action |

- the origin

the TIME of the action

- when it took place

the TOPIC of the action

- what it is about

138

139

Appendix C

Partial Definition of the Syntactic Dictionary

This appendix attempts to give a flavor of the entries in
the syntactic dictionary (see Section 4.2). Included here are
the common, domain independent words: the determiners,
quantifiers, prepositions and even some adjectives and adverbs.
Along with the entries is a brief explanation} of the semantic

markers used in their definition.

(","
; the comma is treated as a conjunction to stop parts
H of two different compound words being joined together
CoNg *)
; the '*' just means fhat the conjunction Qill be

treated the same as the next non-* conjunction found;

-e

for example, in "Bill, John or Mary" the comma is

-e

treated as an "or" while in "Bill, John and Mary" it

-e

is treated as an "and"

~-e

(a
DET *
; signifies that "a" is a determiner
DET* ((NUMBER SG) (ARTICLE INDEF))
; the properties that this determiner give to the NP

; following it are "singular" and "indefinite"

+ Any line beginning with ";" is a comment and not part of the
word definition.

140

(AFTER
PREP *
; this word is a preposition
PREP* ((CASES (TIME)))
; it indicates the "time" case
INDR *MORE)
; it indicates the relation ">";
; for example, "after 1970" means "> 1970"
(ALSO '
CONJ AND)
; this conjunction is the same as "and"
:+ the ABBREV marker could also have been used here
(aM

V (BE (TNS PRESENT) (PNCODE 1SG)))

-e

this definition says that "am" is a verb whose root

is "be"

~-e

~e

TNS PRESENT informs the parser that the verb is in the

present tense and

~e

PNCODE 1SG says that it is first person singular

-e

(AN

DET (A))
(AND

CONJ *)
(ANY

QUANT *

NVALUE 0

QVALUE *MORE)

141

; the NVALUE and QVALUE markers define "any” to

; mean "> 0"

(ANYTHING

PRO *

PRO* (GENERAL)

; defines it to be a general pronoun

QVALUE *ONE)

(AR

E

V- (BE (TNS PRESENT) (PNCODE X13SG)))

(AR

(AS

(BE

EN'T
ABBREV (ARE NOT))

; this is how abbreviations are added to the dictionary

ADV *)

;s the '"*' signifies that the verb is irregular and so

-e

"all of it's conjugations must be prestored in the
; dictionary

V* (COPULA (AUX PASSIVE)))

(BEEN

V (BE (TNS PASTPART)))

(BEFORE

PREP *
PREP* ((CASES (LOC TIME BEN)))
; the cases indicated by this preposition are "location",

; "time" and "beneficiary"

INDR *LESS)
(BEING

V (BE (TNS PRESPART)))
(BEST

ADJ (GOOD SUPERLATIVE))
(BETTER

ADJ (GOOD COMPARATIVE))
(BOTH

QUANT *

QVALUE *ALL)
(BUT

CONJ (AND))
(CAN

V*

' v¥* ((TNS PRESENT)‘(PNCOﬁE ANY) (AUX MODAL)))

(COUPLE
QUANT *
NVALUE 2)-

(DATUM

N A)

s morphological information to derive the root from

the plural

~e

(DO

V*

v* ((AUX TNS)))
(EACH

DET *

142

143

QVALUE *ALL)
(EARLY
ADJ ER-EST)
(FOR
PREP ¥
PREP* ((CASES (EX BEN))))
; the cases indicated by this preposition are the
: "exchange" and "beneficiary" cases
(FROM |
PREP *
PREP* ((CASES (SOU METH))))

: this indicates the cases "source" and "method"

(GOOD
ADJ *)
; the actual definition of "good" must be supplied in
: the domain definition since it will change froh domain
: to domaih
(HANDFUL
QUANT *
NVALUE 3)
(HOW
*ADV *

ADV* (QUEST (CASES (MAN))))
((HOW MANY) ‘
; the words are in parenthesis to inform the parser to
; to treat them as a single entry

DET *

144

DET* (QUEST)
PRO *
PRO* (QUEST)
INDF *NUMBER)
(IN
PREP *
PREP* ((CASES (LOC TIME MAN DESC))))

this indicates the cases "location", "time", "manner"

~-e

and "description"

-e

(LEAST
ADJ (LITTLE SUPERLATIVE)
(LITTLE
ADJ *
ADV *
QVALUE *LESS)"
(NONE
QUANT *
NVALUE 0)
(ON
PREP *
PREP* ((CASES (LOC TIME))))
; the cases indicated by this preposition are "location"

; and "time"

(SECOND
ORDINAL * B
NVALUE 2)

(SOME

QUANT *

NVALUE 3)

QVALUE *MORE)
(THE

DET *

DET* ((NUMBER SG-PL) (ARTICLE DEFINITE)))
(THEY

PRO *

PRO* (SUBJ (NUMBER PL) (PNCODE 3PL)))
(WHAT

DET *

DET* (QUEST)

PRO * |

PRO* (QUEST))
(WHEN

ADV *

ADV* (QUEST (CASES (TIME))))

this definition allows "when" to indicate any word

~e

-e

filling the "time" case
(WHERE

ADV *

ADV* (QUEST (CASES (LOC))))

this allows "where" to indicate any word filling the

-e

"location" case

~e

PRO *

PRO* (QUEST RELATIVE))

145

146

Appendix D

Partial Definition of the Restaurant Domain

Each domain definition (see Section 5.1) is composed of a
domain dictionary, case list and an inverted database. Samples
of these are given here along with a brief explanation of their

uset in the NL system.

 D.1 The Domain Dictionary

The domain dictionary contains a definition of the fields
in the database as well as all of the jargon common to the
domain. Items which will be found in the database itself will

not usually be found here.

(ADDRESS

N ES
; morphological information

DBFIELD LOC
; signifies that the name of the address field in the

database is LOC

DBCAT N)

; directs the system to treat entries in the datbase

; field LOC as nouns

+ Any line beginning with ";" is a comment and not part of the
domain definition.

147

(BAD
: morphological information is already in the common
; dictionary so need not be repeated here

INDF STARS INDR *LESS INDE 2)

the 3 tags INDF, INDR and INDE define a restaurant to

-e

be "bad" if the condition "STARS < 2" holds

-

(CHEAP
ADJ *
INDF COST INDR *LESS INDE MODERATE)
; the condition for a "cheap" restaurant is .

"COST < MODERATE"

~e

(cosT
N S
DBFIELD COST
DBCAT.ADJ
; elements of this field are treated as adjectives
ORDER (INEXPENSIVE MODERATE EXPENSIVE))

an ordering is placed on the COST field where

~e

INEXPENSIVE is lower than MODERATE which is lower than

-e

EXPENSIVE

~-e

the orderings are used in answering comparative

~e

; questions - in this case questions relating to
; "cheaper" and "more expensive"
(DRINK
N S
INDF WINE-LIST

V IRR

148

ACTION (AG *HUMAN PA WINE-LIST))
; this ACTION definition says that "humans drink what is
: on the wine list"
(EAT
V IRR
ACTION (AG *HUMAN PA (FOOD MEALS) RE *HUMAN))
; humans eat both food (e.g. chicken) and meals
; (e.g. lunch) ‘
(FOOD
N §
DBFIELD FOOD

DBCAT N)

(GET
SYNONYM EAT) \
; the SYNONYM feature allows us to quickly define many
; words which mean thé same thing
(GooD
INDF STARS INDR *MORE INDE 3)
; definition of "STARS > 3" as being "good" is subjective
; as are all of the adjective definitions in the domain
; dictionary
(HAVE
SYNONYM SERVE)
(LIQUOR
N MASS
INDF WINE-LIST)

(LOCATION

149

N S
SYNONYM ADDRESS)
(MEAL
N S
DBFIELD MEALS
DBCAT N)
; since there are only a few MEALS,\Ehe’order could be
; defined here (as in COST) to facilitate answering
; questions concerning "earlier" and "later"
(MENU
N S
INDF FOOD)
(NAME
N S
DBFIELD NAME
DBCAT NPR)
(NUMBER
N S
INDF PHONE)
(OPEN
V S-ED
ACTION (AG NAME PA MEALS))
; this ACTION definition means that restaurants are open
; for meals (e.g. lunch)
(ORDER
V S-ED

SYNONYM EAT)

150

(PHONE

N S

DBFIELD PHONE

DBCAT N

V S-D

ACTION (AG *HUMAN PA PHONE))
((PHONE NUMBER)

the parenthesis around the dictionary entry mean that

-

the two words "phone" and "number" are to be treated as

~e

; a single entry

N S

INDF PHONE)
(PLACE

NS

INDF NAME)
(PROVIDE

V S-D

SYNONYM SERVE)
(QUALITY

N S

INDF STARS)
(RATE

V S-D

ACTION (AG *HUMAN PA STARS RE NAME))
(RATING

N S

INDF STARS)

151

(RESERVATION
NS
DBFIELD RESERVATIONS
DBCAT N)
(RESTAURANT
N S
INDF NAME)
(SERVE
V $-D
ACTION (AG NAME PA (FOOD MEALS) RE *HUMAN))
(STAR
N S
DBFIELD STARS
DBCAT N)
(STREET
N S
INDF ADDRESS)
(WHO
INDF NAME)
((WINE LIST)
N S
SYNONYM WINE-LIST)
(WINE-LIST
N S
DBFIELD WINE-LIST

DBCAT N)

152

D.2 The Case List

There are only a few cases defined for the restaurant
domain. The cases are the basis for determining the function of
a prepositional phrase as well as general averbial questions

such as "when" and "where". The cases defined are:

(LOCATION (NAME ADDRESS)

(TIME MEALS)

D.3 The Inverted Database

Most of this inverted database was produced automatically
by a Jprogram written in the MTS Edit Sublanguage (Hogg 1980).

Additions were then made to 1t to include abbreviations and

synonyms.,

- Restaurant Names -
(ACROPOL

ELEMENT-OF NAME)

: means that ACROPOL can be fbund in the NAME field

((AKI JAPANESE RESTAURANT NO 2)

ELEMENT-OF NAME)
(AKI

SYNONYM "AKI JAPANESE RESTAURANT NO 2")

; means that "Aki" is a synonym.for "Aki Japanese

153

; Restaurant No 2"
((CANYON GARDENS) ELEMENT-OF NAME)
{GAZEBO ELEMENT-OF NAME)
((IL GIARDINO) ELEMENT-OF NAME)
((LAS TAPAS) ELEMENT-OF NAME)
((SALMON HOUSE ON THE HILL) ELEMENT-OF NAME)
((SEVEN SEAS) ELEMENT-OF NAME)
((WHITE SPOT) ELEMENT-OF NAME)
((WILLIAM TELL) ELEMENT-OF NAME)
((YANGTZE KITCHEN) ELEMENT-OF NAME)

(YANGTZE SYNONYM YANGTZE KITCHEN)

- Types of Food -
(AFGHAN ELEMENT-OF FOOD)
(AMERICANVELEMENT—OF Foob)
(AMERICAN
FOOD+ (BURGER "HOT -DOG" CHICKEN STEAK))
; the FOOD+ designator means that any search for American
; food will also look for "burger", "hot dog", "chicken"
: and "steak"
(BURGER SYNONYM (HAMBURGER CHEESEBURGER))
; directs the database interface to search for "hamburger"”

and "cheeseburger" whenever "burger" is requested

-e

the combined definitions of "American" and "burger" will

-e

cause any request for "American food" to produce a query

~e

looking for any of "American", "burger", "hamburger",

~e

-

"cheeseburger", "hot dog", "chicken" or "steak"

154

(CHINESE ELEMENT-OF FOOD)
(CURRY ELEMENT-OF FOOD)
(HAMBURGER ELEMENT-OF FOOD)
(HAMBURGER FOOD+ BURGER))
(ITALIAN ELEMENT-OF FOOD)
(JAPANESE ELEMENT-OF FOOD)
(LASAGNE ELEMENT-OF FOOD)
(LOBSTER ELEMENT-OF FOOD)
(SCHNITZEL ELEMENT-OF FOOD)
(SEAéoon ELEMENT-OF FOOD)

(STEAK ELEMENT-OF FOOD)

- Types of Meals - -
(BREAKFAST ELEMENT-OF MEALS)
(DINNER ELEMENT-OF MEALS) *
(DINNER MEALS% SUPPER)
((LATE NIGHT)
ABBREV LATE-NIGHT)
: ABBREV is different from SYNONYM in that an abbreviation

; will occur at the lexical level and a synonym will occur

-e

at the root word level g
(LATE-NIGHT ELEMENT-OF MEALS)

(LUNCH ELEMENT-OF MEALS)

(TEA ELEMENT-OF MEALS)

(SUPPER SYNONYM DINNER)

- Types of Costs -

(CHEAP SYNONYM INEXPENSIVE)

(EXPENSIVE ELEMENT-OF COST)

(EXPENSIVE COST+ PROHIBITIVE)
(INEXPENSIVE ELEMENT-OF COST)
(INEXPENSIVE COST+ (CHEAP REASONABLE))
(MODERATE ELEMENT-OF COST)

(REASONABLE SYNONYM INEXPENSIVE)

- Locations -

(BC ABBREV BRITISH COLUMBIA)
(BOULEVARD ELEMENT-OF LOC)
((BRITISH COLUMBIA) ELEMENT-OF LOC)
(GASTOWN ELEMENT-OF LOC)

((PACIFIC CENTRE) ELEMENT-OF LOC)
((PARK ROYAL) ELEMENT-OF LOC)

(VANCOUVER ELEMENT-OF LOC)

- Possible Stars -
(0

ELEMENT-OF STARS)

; the rating goes from a 0 star restaurant to a 5 star

; restaurant
(1 ELEMENT-OF STARS)
(2 ELEMENT-OF STARS)
(3 ELEMENT-OF STARS)
(4 ELEMENT-OF STARS)

(5 ELEMENT-OF STARS)

155

156

Appendix E

Sample Session

This is a sample session of the NL system. The questions
here are indicative of ones which can be answered by the system

and are not intended to show the system limits. Lines prefixed

"~~—with the character ">" were output by the system and lines

prefixed with "*" were input by the user.

Which database do you want to look at?

1 Restaurants

2. AI Bibliography
3. Conference
1
"You are currently examining the RESTAURANTS database.
All of your queries should be entered in upper case ana
should be terminated by either a ' 2 ', ' . ' or ' ! ',
Compound names (e.g. the title of a book) should be
entered with surrounding double guotes vt and

apostrophes may be used to signify possession. No other
punctuation should be used.

To leave the system type STOP., to get more information

HELLO THERE

WHO SERVES CHICKEN?

PARSE:
WHFIND
*AND
NAME = ?
FOOD = CHICKEN

VVVVVVVYV 5 VVVVVVVVVVVVVVVVVYV %*%VVVVVYV

"STEER AND STEIN" AND "WHITE SPOT" SERVE CHICKEN.

VAVVVVVVVVVVVVVVVVYVY *VVVVVVVVVVVVY %VVVVVVVVYVVYV %V

157

WHAT ARE SOME ITALIAN RESTAURANTS?

PARSE:
WHFIND
*AND
*NUMBER = 3
*OR
FOOD = ITALIAN
THEY ARE "CAFFE DE MEDICI", "FRANCESCO ALONGI" AND

"CORSI TRATTORIA".

CAN YOU FIND ME A CHEAP JAPANESE PLACE?

PARSE:
WHFIND
*AND
*AND
*OR
COST = INEXPENSIVE
COST = CHEAP
COST = REASONABLE

*NUMBER = 1
FOOD = JAPANESE

NONE CAN BE FOUND.

WHICH IS THE MOST EXPENSIVE RESTAURANT IN VANCOUVER?

NO

PARSE:
WHF IND
*AND
*AND
*OR
COST = EXPENSIVE
COST = IMMODERATE
COST = PROHIBITIVE
NAME = ?
*OR
LOC = VANCOUVER
LOC = VANC
LOC = VAN

THERE ARE 19 REFERENCES.
DO YOU WANT THEM PRINTED?

*
>
>
>
>
>
>
>
>
>
*
>
>
>
>
>
>
>
>
>
>
>
*
>
>
>
>
>
>
>
>
>
>
>
*
>
>
>
>
>
>
>
>
>
>
*
>
>
>
>
>
>
>
>

WHAT IS ON THE MENU AT STEER AND STEIN?

PARSE:
WHF IND
*AND
NAME = WHITE SPOT
FOOD = ?

.THEY ARE STEAK, SALADS, CHICKEN AND FISH.
IS THERE A SPANISH PLACE WHICH IS OPEN FOR LUNCH?

PARSE:
WHFIND
*AND
*AND
*NUMBER = 1
FOOD = SPANISH
MEALS = LUNCH

IT IS "LAS TAPAS RESTAURANTE".

WHO SERVES CHINESE FOOD?

PARSE:
WHFIND
*AND
NAME = ?
*OR
FOOD = CHINESE
FOOD = INDO-CHINESE

THERE ARE 21 REFERENCES.
DO YOU WANT THEM PRINTED?
OK '
"THE JASMINE INN", "DAI KEE",

"SHANGHAI PALACE RESTAURANT", "NEW DIAMOND RESTAURANT",

158

"HO INN CHOP SUEY", "SNOW GARDEN", "KAM YUEN RESTAURANT",

"PINK PEARL", "VARSITY GRILL", PENINSULA, '
"KEN WONG VILLAGE", "YANGTZE KITCHEN",
"MY TAN RESTAURANT", "DRAGON INN", "CHINA KITCHEN",

"CANTON KITCHEN", "SHANGHAI HOUSE, MANDARIN RESTAURANT",
"HO HO", "THE CATHAYAN", "MY LAI GARDEN RESTAURANT", AND

"NEW WORLD CHOP SUEY" SERVE CHINESE.

DO THEY SERVE CHICKEN?

PARSE:
YES-NO
*AND
*REF = *
FOOD = CHICKEN

NO, THERE ARE NO REFERENCES.

VVVVVVVVY ¥ VVVVVVYVVYVY %V *VVVVVVVVVYVY %VVVVVVVVVVVVV RV

159

IS THERE A FRENCH PLACE IN RICHMOND WHICH IS OPEN FOR LUNCH?

PARSE:
WHFIND
*AND
*AND

*NUMBER = 1
FOOD = FRENCH

*OR

LOC = RICHMOND

MEALS

= LUNCH

IT IS "LE CERCLE".

WHO SERVES DINNER?

PARSE:
WHFIND
*AND
NAME = ?
*OR |
MEALS = DINNER
MEALS = SUPPER
THERE ARE 109 REFERENCES.

DO YOU WANT THEM PRINTED?

NO

WHERE IS KEN WONG VILLAGE?

PARSE:
WHFIND
*AND
NAME
LOC =

= KEN WONG VILLAGE
?

IT IS "1262 BURRARD STREET AND 555 W HASTINGS, VAN. B.C.".

WHEN IS IT OPEN?

PARSE:
WHFIND
*AND
*REF
MEALS

IT IS "LUNCH AND DINNER"

= *
= ?

160

* WHAT DOES WHITE SPOT SERVE?

*VVVVVVVVVVVY ¥VNVVVVVVVYV %VVVVVYVVVYV

PARSE:
WHFIND
*AND
NAME = WHITE SPOT
FOOD = ?

WHITE SPOT SERVES AMERICAN, HAMBURGERS AND CHICKEN.

WHAT MEALS DOES WHITE SPOT SERVE?

PARSE:
WHF IND
*AND
NAME = WHITE SPOT
MEALS = ?

WHITE SPOT SERVES BREAKFAST, LUNCH AND DINNER.

FIND AT LEAST 4 RESTAURANTS THAT HAVE SWISS FOOD.

PARSE:
WHFIND
*AND
*NUMBER = 4
NAME = ?

FOOD = SWISS
THERE ARE ONLY 3 RESTAURANTS THAT FIT THE CONSTRAINTS.
"WILLIAM TELL", "LA RACLETTE" AND "GIZELLA SWISS CHALET"
SERVE SWISS.

STOP.

*FVVVVVVVVVVVVVY %V VVVVVVVYVV ¥ VVVVVVVVYV *VVVVVVVVVYV *VVYVVY

161

Which database do you want to look at?
1. Restaurants

2. AI Bibliography

3. Conference

You are currently examining the AI BIBLIOGRAPHY database.

To leave the system type STOP., to get more information

HELLO THERE

WHO WROTE APSECTS?

PARSE:
WHFIND
*AND
TITLE = ASPECTS
AUTHOR = ?

"CHOMSKY N" WROTE APSECTS.

HOW MANY BOOKS HAS MCCARTHY WRITTEN?

PARSE:
WHFIND
*AND
AUTHOR = MCCARTHY
*AND
*NUMBER = ?
TITLE = ?

THERE ARE 9 BOOKS.

FIND A BOOK WRITTEN BY MINSKY BEFORE 1978.

PARSE:
WHFIND
*AND
*AND
*NUMBER = 1
TITLE = ?
*AND
AUTHOR = MINSKY
*AND

DATE < 1978
IT IS PERCEPTRONS.

STOP.

CVVVVVVVVY *MVVVVYV *NVVVVVVVYV *%VVVVVVVVVY *VVVVYV

162

Which database do you want to look at?
1. Restaurants

2. AI Bibliography

3. Conference -

You are currently examining the IJCAI-81 database.

To leave the system type STOP., to get more information

HELLO THERE T

WHO IS COMING FROM MIT?

PARSE:
WHFIND
*AND
NAME = ?
INST = MIT

THERE ARE 13 REFERENCES.
DO YOU WANT THEM PRINTED?

YES
THEY ARE "GLASS, BRIAN", "MCALLESTER, DAVID", . '
"SUSSMAN, GERALD J.", "WHITE, BARBARA", "DAVIS, RANDALL",
"HEWITT, CARL", "OGILVIE, WILLIAM", "HAWKINSON, LOWELL B",
"HAMSCHER, WALTER", "PITMAN, KENT", "FRY, CHRISTOPHER",

"WATERS, RICHARD C" AND "LESCANE, PIERRE".

WHEN DID "LAM, MONICA" REGISTER?

PARSE:
WHFIND
*AND
NAME = "LAM, MONICA"
TYPE = ?

LAM, MONICA REGISTERS EARLY-STUDENT.

VVVVVVVVYV %%%MVVVVVYV %V %V %V %V YV *

HAS ROSENBERG REGISTERED YET?
I cannot find ' YET ' in the dictionary.
Do you wish to stop processing this query?
NO
Did you misspell ' YET ' ?
NO
Would I find ' YET ' in the database ?
NO :
Would it be safe to ignore the word ' YET '?
YES

PARSE:
YES-NO
NAME = ROSENBERG
YES, THERE ARE 2 REFERENCES.

WHAT ARE THEIR NAMES?

PARSE:
WHFIND
*AND
*REF = *
NAME = ?

THEY ARE "ROSENBERG, RICHARD" AND "ROSENBERG,

STOP.

STEVEN".

163

