A MODEL OF THE UNIX TIME-SHARING SYSTEM UNDER DISK SATURATION
By

BARRY JEFFREY BRACHMAN

B.Sc., The University of Regina, 1981

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
TﬂE REQUIREMENTS FOR THE DEGREE' OF
MASTER OF SCIENCE
in
THE FACULTY OF GRADUATE STUDIES

(Department of Computer Science)

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

September 1983

© Barry Jefirey Brachman, 1983



In presenting this thesis in paftial fulfilment of the
requirements for an advanced degree at the University

of British Columbia, I agree that the Library shall make
it freely available for reference and study. I further
agree that permission for extensive copying of this thesis
" for scholarly purposes may be granted by the head of my
department or by his or her representatives. It is
understood that copying or publication of this thesis

for financial gain shall not be allowed without my written

permission.

Department of ConPuTER Sciemvce

The University of British Columbia
1956 Main Mall

Vancouver, Canada

V6T 1Y3

Date LS?”VI' /OJ, /983

DE-6 (3/81)



Abstract

A deterministic model of the UNIX time-sharing system under disk saturation is
presented and a performance experiment on a PDP-11/34 is conducted to establish the
validity and accuracy of the model. The basis of the model is that the ratio of mean
file system access rates between two different systems can provide, under certain cir-
cumstances, a useful performance comparison between the two systems. Given several
workload and syst;e-m parametérs as well ‘as the elapsed time to perform the workload,
the model brédicts from a second Set of .parameters the elapsed. time to perform the

second workload.

Workload, hardware, and int;el;nal system parameters are identified and tools are
constructed to record these parameters. A controlled experiment, using a synthetic
workload, is then conducted. The results are analyzed and the model is evaluated.
The model is extended in response tb regularities discovered in the measurement data.
Sample applications of the model are given. The suitability of the tools developed and

the methods used are discussed.



Table Of Contents

ADSETACH ittt ettt ettt e e et e et e e e e e e s e eennnreeeatssen i1
LISt of TaDles ...cvvviiiiiiiiiiie ettt eeeeae e e e e e s e e e e e e v
List Of FIGUIES ..eiiiiiiiiiiiiiiiiieterite sttt et e st e et e e et e s e e eeenneseenes vi
Acknowledgement ..........cccoveeiriiiieieeeee ettt er e vii
L IDEPOAUCHION <eeoniiiiiiiiiiieiirer ettt er et ee e eeeesas et eeaeesnseeeens 1
1.1 Overview .......... e e s e s s e s e e s aerasasateneeeaenaseteearaeterteeeaeeneeanas 1
1.2 Basic Goals, Approach, Motivation .........cccecceeeeviecieieereciereeeceeceevene 2
2. System DescrIPtION .......icccviiciiniiiiinienieterrte ettt sene e e seee e e e ees 5
2.1 The HAPAWALE ....coceoiiiiiiiiiiieieeeeeeiee ettt ee et e s sn e s e e s aeeeen 5
2.2 The Operating SYStEIM .....c.ceceeveuerrrrereereeieeeieietenceseseseeseeseseseeseseeseeseseessessesens 5
2.2.1 Processes ......ceceeeeeeveeeerveerernninnns rieeeerreeerreennns eeterreete et et ebenaens 6
2.2.2 The Scheduling Process and SWapping .....c..cocveveveiiuiveveeeeeeneeeeveesaenns 7
2.2.3 The Block I/O System .....ccccocceeveeerevrereeerecneennens et r et e naaeanas 10
3. The MOdel ..ottt s et e e e eee e e s e eessssaeeessnneens 12
3.1 Related WOTK ...cooiiiiiiiieeeee ettt ettt st ee et e e e enens 13
3.2 INItIal WOTK oottt st s e s e e s et e e enean 16
3.3 The Basic Model ......cciiriiiiiiiiecieteeiiteecie ettt ee et e e e e seeese e e essnaeean 18
3.3.1 Workload and Hardware Parameters ..........cccoovuvevveveeeeereeeeeieeeeeennennnn. 18
3.3.2 The CPU Bound Case ......cccooimrieeeeiiieeieeeeeeeee et e s 19
3.3.3 The Basic Model .......ooiiuiiiiiiieiiiecec ettt e s 21
4. The Experiment ........ccccccvuvvreeennnnnn.s rerereeeeerereas ereret i et et eteren e e et e e ereterararaeerararaararans 24
4.1 OVEIVIEW .ooeiiiiiiiiiieictceectese e e eetaeeetseeess e e s e e e sabe s seateseaneeeeeneseseseesseseesnes 24
4.2 The Synthetic Workload ........ eeeeeeeeeeeeeeaeaeaaeereeresiraraaaaretatateeeeertetaateaeaaaaaraeaaes 24
4.2.1 Construction of the Prototype Process .......cccccoooveeeeoeoeceviieiiieeeseseseenns 25
4.3 Description of the Measurement To00IS .........cooveuriiiieiiieeeeeeeeeeeereeereeeeeesnns 26
4.4 Design of the EXPEriment .......ccceecvuervierueieieeiiieeiceeeeeeeeeeeeeseeseeeeeseeeesseesenens 30
4.5 Implementation ......ccoccooviiiiiiiiiieiieeenee sttt e e et ene 33
5. Results and ADALYSiS ......ccocueriiiiiniiieeee ettt e et e e e aa s 35
5.1 Experimental Results .....c.cociviiieiiiiiiiiiccee et 35
5.2 Analysis of the Model .....cccooiiiiiiiiiiieee e e 38
5.3 SoUrces Of EITOT ...uviiiiiiiiiiiieeeecceeceeee ettt st e s e e e e e eeaeeens 42
5.4 APPLICALIONS ....oiiuiiiiiiiiiiiienteeteteee ettt eeene 43
B. CONCIUSIONS ...oiiiiiiiiiiiiiiieteit e ettt e st e e seteeseeeeeeaaeeeseseeeseanees 46

ii



6.2 Tools and Method
6.3 Domain of Applicability
6.4 Future Research

Bibliography

...............................................................................................

iv



Table I
Table II
Table III
Table IV
Table V
Table VI
Table VII
Table VIII

List of Tables

RLO1 CharacteristiCs .......ccccccerrrerreeiiieirinernecsseeseeeeessseesssneesessosesesessanes 5

Experimental Factors and Levels ...........cccovvievviiieiiiiiiciiceeeeeee 31
Distributions of Compute Loops .......ccceccveeiveeiiiniiieiieieceeeeeeeeeeseeeens 32
Mean Swap Times ....................... eeeenns ettt ettt ar et et e erase e nrtrneraereens 35
‘Mean Block Read/Write Time .....cccoceceveruneereeceeeerenereeceeie s 35
Results of the Factorial Experiment ................ retteereare et e aeeeraraaeans 38
Supplementary Experimental Results ........cccccooeeviviniiiiniiiiiiiiiennns 38

Standard Deviation in the Predictions ..........cccoecevvviecereneevvrinnecieenn, 39



Figure 1
Figure 2

List of Figures

Output of the Model vs. Measured Values

Elapsed Time vs. PN ....uerrceereveeeernnreeeinnee

.............................................

.............................................

vi



vii

Acknowledgement

I would like to thank Dr. Sam Chanson for his ideas and guidance, careful read-
ings of the thesis, and financial support through research assistantships.

I also thank Dr. Son Vuong for both his suggestions and his readings of the drafts.

I am grateful to the Department of Metallurgical Engineering for giving me unlim-
ited access to their computer facility and its resources.

Finally, I wish to thank my family and friends for their support and encourage-
ment during my research.



Chapter One: Introduction ' Page 1

1. Introduction

1.1 Overview

Time-sharing systems have long been implemented using the memory management
technique of process swapping. Swapping involves exchanging one or more processes
loaded in main memory with one previously written to secondary storage. Normally an
entire process is swappéa out. The technique is commonly used on systems without vir-
tual memory capabili-tiés‘; the entire [;rbcéss oft_eﬁ muét be resident to be executed.
Although the use of viftual étorage has become widespreéd, many Qmall and medium size

time-sharing systems still use swapping.

A primary task of computer systexix performance evaluation is to predict the perfor-
mance of a computer system under a given workload. The improvement study is con-
cerned with modifying an existing system to.increase its performance or decrease its cost,
or both. Upgrading and tuning are two types of improvement study. Upgrading is
replacing or adding one or more h.ardwa're component;s, while tuning is adjusting the sys-
tem parameters to adapt the system to its workload. This thesis concentrates on the
predictive aspect of performance evaluation (See Dowdey et al. [12] for an example of

such a study).

Because performance is a subjective concept, a precisely defined descriptor called a
performance index is used to represent a system's performance or some of its aspects.
Objective measures of performance include throughput rate, response time, and tur-
naround time. Performance analysis involves determining the values of performance
indices for given values of the installation’s parameters. The performance information

required by a study may be obtained from the system itself or from a model of it.



Chapter One: Introduction v Page 2

A number of major obstacles stand between the analyst and both the development
and evaluation of a useful model. First, operating systems are large and complicated
programs, incorporating various strategies to control resource sharing. They are gen-
erally not designed with future performance studies in mind. Events within the system
occur asynchronously. Many complicated, ad hoc methods are often used and the perfor-
mance of these methods in éombination aqd under diverse conditions is often unclear
[21].

A second major diﬂ'icﬁlty in the evaluation of computer systems is the lack of a
quantitative uﬁdefstanaing of the relationship between workload and performance. In
performance evaluation, the real workload is characterized by a workload model which is
used to drive a mo‘dgl of the freal system. Tfie workload model specifies the characteris-
tics of the resource demands placed on the devices by programs. It is not always clear
what a system’s “typical” workload is because the workload often changes from minute
to minute and from day to day. ’fhe anal_y.st is sometimes interested in evaluating a
system’s performance under workloadsi differing from the “normal” workload; e.g., the
performance of the system under heavier than usual load. Characterizing a workload
requires determining with enough detail which of its many aspects influence the System’s
performance and then creating a workload model composed of a set of quantifiable work-
load parameters.. When the production workload cannot be used or does not meet the
study’s needs, a synthetic workload must be constructed and validated. Synthetic work-
loads are compact and reproducible while giving the analyst more control over the exper-

iment. These advantages are often achieved at the cost of representativeness.

1.2 Basic Goals, Approach, and Motivation

The basic goal of this research is to discover the major relationships between swap-



Chapter One: Introduction Page 3

ping activity, hardware characteristics, workload characteristics, and system performance
under the Version 6 UNIX! time-sharing system. A simple model of the computer sys-
tem is hypothesized, then a controlled experiment is conducted to test the validity, accu-

racy, and range of the model.

First, a model of the system is postulated based on major workload and perfor-
mance parameters obtained from earlier work [13,38] as well as from observations of the
system under load. Tools to measure and extract pertinent workload, hardware, and
system information are d'ev‘e'lﬁoped.‘ Several synthetic workloads a;ré‘con_st,ructed and a
controlled experiment; is convdubcted, varying several workload .’parametex"s. The results
are then é.nalyzed and compared to the performance predictions obtained from the
model. Once the ‘a(:curac:_y‘ and domain of validity of the model are determined, the
effect a different number of processes, a different main memory size, or different disk
characteristics would have on system performance can be evaluated. Such information
could be useful in deciding whether the éddition of more main memory or a disk system

upgrade, for example, would be a more cost-effective solution to a performance problem.

A primary motivation for this project is to ﬁrrive at a better understanding of how
swapping influences performance. Some work has been done in this aréa (see Section
3.1), but most research on memory manz;gement techniques in a time-sharing environ-
ment has been concerned with paging systems [9]. It is hoped that better insights into
swapping may be useful in comparing swapping to paging and perhaps any similarities
may allow some of the results obtained from one scheme to be applied to the other.

All experimental work wé.s performed on a UNIX system. The UNIX system is a

popular swapping system? and is becoming the de facto standard for 16-bit computers.

L UNIX is a trademark of Bell Laboratories.

2 The Berkeley UNIX implementation uses paging.



Chapter One: Introduction Page 4

It is hoped that the results of this work will be useful to UNIX installations in particular

and perhaps to other swapping systems as well.

It is obvious that swapping in itself is not a “bad” memory management technique.
If swapping time and overhead are made negligible (say by the introduction of a solid-
state, DMA-based swapping device or by a bank switching mechanism), then it
effectively becomes a physical address extension mechanism while not relieving the vir-
tual address limitations.® Note that if swapping could be performed “instantly”, the sys-
tem would do so after eacﬁ quantum expﬁation or whenever a procéss blocked, which-
ever came first. .As will be seen iﬂ Section 3.2.2, if reasonable séheduling assumptions are
made, CPU bound workloads can execute without swapping significantly impacting per-
formance. It is less apparent how swapping affects the performance of the small-to-
medium-sized machines where disk and memory resources are often at a premium and
where performance is often sensitive to small changes in the workload characteristics.
This thesis is concerned with thé.analysis of swapping on these small systems and the
development of a conceptual model which may be used to estimate performance changes

due to various hardware or workload changes.

Chapter 2 contains a description of the hafdﬁare and software used in this study.
Chapter 3 describes a model of the systém which will be evaluated in Chapter 5.
Chapter 4 deals with the description of the workload and the experimental method. The
results of the experiment are detailed in Chapter 5 and an analysis is conducted. Con-

clusions are presented in Chapter 6.

A basic understanding of operating systems is assumed throughout this thesis,

although prior knowledge of UNIX is not necessary.

3 The same can be said about a solid-state paging device.



Chapter Two: System Description Page §

2. System Description

2.1 The Hardware

The host machine for this project is a Digital Equipment Corporation PDP-11 J34A
(27]. It has 64K words (2 8-bit bytes per word) of main memory (MS11-LB). Memory
may be expanded to the maximum of 248K bytes. >S'econdaljy storage consists of 2 RL0O1
cartridge disk drives which.share a single controller [28]. The PDP-11 allows both the
CPU and disk controllers to be simultaneously active; i.e., (iisk-I/O can be overlapped
with processing. Although the controller used permits a rudimentary overlapped seek
capability, this was not used. The characteristics of the RLO1 disk drive are given in
Table I. The system has four intefactive términéls; three of which are connected to a
DZ11 serial communications interface. Other peripherals include a plotter, DUP11 serial

controller, IEC11 (IEEE-488) bus contrbllér, and a serial line to the campus network.

RLO1 Characteristics
Surfaces: 2
Tracks/Surface: 256
512-byte Blocks/Track: 20
Track-To-Track Seek: .15 msec.
Ave. Latency Time: 12.5 msec.
Ave. Seek Time: 55 msec.
Ave. Access Time: 67.5 msec.
Transfer Rate: 512.5K bytes/sec. (peak)
2.35 usec./byte (ave.)

Table I

2.2 The Operating System



Chapter Two: System Description Page 6

The operating system in use is a locally modified version of the Sixth Edition
UNIX, the earliest distributed system. Overviews of the system can be found in Ritchie
and Thompson [31], while detailed descriptions of the internals can be found in [22] and
[38]. Many of the local modifications to UNIX are not significant to this study; those
that are will be presented shortly. Few UNIX installations run a copy of UNIX that has
not been altered in some way and few hav_e; the same hardware configuration. Because
UNIX systems run primarily on PDP-11 minicomputers, the maximum number of users
is usually less than 30. The maximum process size is al_niost 64K bytes on the smaller
machines and twice that onl PDP-11s with sep#rate instruction and data spaces. Because
there are now several versions of UNIX distributed by Bell Labs, any nonqualified refer-
ence to UNIX in this p:;per wi__ll imply the Sixth Edition version. It is believed that the
other swapping versions of UNIX are similar enough to the Version 6 system that many
of the results of this project apply to them as well, although we do not have access to

these systems to verify our belief.

The following sections provide a brief overview of those areas of UNIX applicable to

this thesis.

2.2.1 Processes

Ritchie and Thompson [31] define an image to be “a computer execution environ-
ment”. The environment includes a memory image, general register values, status of
open files, etc. A process is defined to be the execution of an image. While the processor
is executing on behalf of a process, the image must reside in main memory. During the
execution of other processes it may be swapped-out to secondary storage. The existence
of a process implies appropriate entries in the system data structures [22]. UNIX per-

mits the user to initiate a number of concurrent processes. This particular feature was



Chapter Two: System Description Page 7

utilized by the synthetic workload, which is described in Section 4.2.

The user-memory part of an image is divided into three logical segments: text,
data, and stack. Generally, all three segments are contiguous in main memory. A
swapped-out image is stored contiguously (logically) on the swapping device. It is possi-
ble to separate the program code and to make it sharable among all users. In this case

the read-only program text need never be swapped-out.

2.2.2 Processor Scheduling and Swapping

Since both scheduling and swapping are important to this work they will be dis-

cussed in detail. The information is a summary of Thompson [38].

Process synchronization is accomplishe;i by having procedures wait for events.
Events are, by convention, addresses within the kernel of tables associated with those
events. Processes are suspended when, for example, they wait for the completion of an
I/O request or when they require a resource which is (temporarily) unavailable. When
an event occurs, any processes v&;aiting for the event are awakened. Although this
method is quite simple, it can lead to large inefficiencies. If, for example, a number of
processes are waiting for the same resource to become available and éll have been
swapped-out, then when the resource becomes available all such processes will eventually
be swapped-in. Only the first waiting process swapped-in will get the resource and the

remainder will wait again, possibly being swapped-out.

The system call sleep, which suspends the caller for the number of seconds
specified by the argument, can be especially inefficient. Suppose that one process on a
busy system frequently sleeps for a short period and that a second process has issued a
sleep call with a large argument. Each time the first process awakens, the second pro-

cess will also awaken, be swapped-in, determine that its sleep has not yet expired, and



Chapter Two: System Description Page 8

subsequently be swapped-out. Sleep has been replaced in newer versions of UNIX by a
subroutine of the same name and two new system calls, pause and alarm, which are
more efficient. The System keeps track of alarm requests for each process so that a pro-
cess awakening from a sleep will not disturb other processes which have called the sleep

subroutine.

An integer priority is associat.ed with each process. The priority of a system pro-
cess (i.e., the scheduler or a ‘user-p.roc‘ess exéc‘uting within the kernel) is assigned by the
code which issues the wait on an event. The priority is roughly inversely proportional to
the reaction time that one would expect for such an event. Disk-related events have
high priority, terminal input or output have lpw priority and time-of-day events have
very low priority. Thompson [38] claims that the difference in system process priorities
has little or no performance:impact. All user-process priorities are lower than the lowest
system priority. Since high-priority processes are chosen first by the scheduler, waking
any system process will preempt any currently running user-process. User-process priori-
ties are assigned by an algorithm based on the recent ratio of the amount of compute
time to real time in the last real time unit assigned a low user priority. The system-
process reverting to a user-process will continue to enjoy the high priority until it makes
a system call, initiates a trap, or upon the next one-second clock interrupt, whichever
occurs first. There is no time quantum as sﬁch, but it will generally be at most one

second and looping user processes will be scheduled round-robin.

To support more processes than main memory can simultaneously contain, UNIX
utilizes the memory management technique known as swapping [8]. A process which
cannot be entirely loaded into main memory resides on secondary storage until it can
replace, or be exchanged with one or more loaded processes. The user data segment, the

system data segment and the text segment are swapped-in and swapped-out as needed.



Chapter Two: System Description Page 9

The user data segment and system data segment are kept in contiguous primary
memory to reducelswapping latency. Allocation of both main memory and swap space is
performed by the same first-fit algorithm. Memory compaction is not performed so that
while there may be enough total free memory, there may not be enough contiguous main
memory to load a process. This adds to the swapping load. When a process grows
(UNIX permits a process to dynamically modify the size of its data area), a new piece of
primary memory is allocated. If there is not enough primary memory, the swapping
mechanism i1s used and the process is eventually swapped-in with its new size. The

swapping mechanism may also be invoked when a process “forks” a copy of itself.

The scheduler is implemented as a kernel process. It examines the process table,
looking for the oldest swapped-out process which is ready to run. If there is sufficient
primary memory, the process is sﬁvapped-in and the scheduler continues to look for a
process to swap-in. If there is insufficient free main memory, the scheduler searches for a
loaded process which is waiting for a “slow event” (i.e., a low-priority system event
which tends to take much longer than the execution of a swap, for example, terminal
I/O). If such a process does not exist, the time that the swapped-out process has been
on disk is compared to an integer constant, say MINTIMEOUT. If the process has not
been out at least MINTIMEOUT seconds, the scheduler waits. If the swapped-out process
satisfies this condition, a search is conducted for the oldest resident process. If this pro-
cess has not been loaded for at least MINTIMEIN seconds, the scheduler waits.* Other-
wise this oldest process is swapped-out, its memory is freed, and the scheduler goes back

to look for a process to swap-in.

The scheduler waits for a swap-in or a swap-out to complete. Only one scheduling

4In the distribﬁtion system MINTIMEQUT = 3 seconds and MINTIMEIN = 2 seconds. In this work

both were 3 seconds.



Chapter Two: System Description Page 10

swap can be submitted at a time. If the swap device is connected to the same controller
as a ﬁl¢ system device, swaps are serviced in the same manner as any other disk request.
Thompson [38] observes that if the swapping device is also used for file storage (as it is
on most small systems), the swapping traffic severely impacts the file system traffic. If
the capacity of the drive is small, the swap area is usually placed on the inner-most

tracks of the disk, increasing the seek time involved in a swap.

2.2.3 The Block I/O System

The block I/O 5ystem considers a device to have a numBer ‘of 512-byte memory
blocks. These devices are accessed through a common buffering mechanism [29]. The
system maintains a number of 512-byte buffers in the kernel address space,5 each
assigned a device name and a device address. This buffer pool constitutes a data cache
for the block devices. On a read request, the cache is searched for the desired block. If
the block is found, the data are made availa};le to the requester without any physical
I/O. If the block is not in the caché, the least recently used block in the cache is
renamed, the appropriate device. driver is called to fill up the renamed buffer, and the
data are made available. Write requeéts are handled similarly; however the write is per-
| formed by marking the buffer and phyﬁical I/O is deferred until the buffer is renamed.
If less than a complete block is being wriftén, the block must be read first. A user-
process, /etc/update, executes a system call every 30 seconds which causes all delayed

write operations to be flushed from the queues.

When physical 1/O is required, the appropriate device driver is called to link the

buffer into its queue and to execute the read or write operation. Normally the UNIX

5 On this system, 20.



Chapter Two: System Description : Page 11

RLO1 device driver performs the requests in a first-come first-served manner. The sys-

tem under study, however, was modified to use the LOOK disk scheduling policy [36,37].



Chapter Three: The Model Page 12

3. The Model

A model is a representation built to study a system and comsists of a certain
amount of organized information about it. Models representing the same system may
differ in their purpose, standpoint, or amount of detail. An advantage of modeling over
direct measurement is. that it allows the analyst to obtain results when the target system
is not available; i.e., in the design of new computer systems, in improvement studies
where the effects of new hardware or a reconfigured system are of interest, or where it

would be too costly or impractical to give the analyst direct control.

Verbal and somewhat. superficial models of a real systeﬁl are called conceptual
models. Conceptual models are the basis of measurement techniques and of two major
types of modeling techﬁiques: simulation mélt,hods and analytic methods. Graham [15]
gives a brief overview of modeling. An analytic model is composed of mathematical rela-
tionships which represent the system. Although many simplifying assumptions may
often be made about the workload pz‘a.rameters‘ and the operating system's characteris-
tics, a model can still provide satisf aciory results at a comparatively low cost. Queueing
models [14,19] and models based on operational analysis [4,10] are two such analytic
methods. Grenander and Tsao [16] assert that queuing models alone are insufficient to
study and evaluate cémputing systems, but that they help in understanding the

behaviour of the system.

A simulation model reproduces the behaviour in the time domain of a system
according to some conventions which establish a correspondence between various aspects
of the model and of the system [14]. Simulation is more flexible but is also more costly
than analytic techniques. Simulation may be used when the analytic equations are inso-
luble or an analytic description is unclear. It too suffers as the model grows more com-

plex. It is often necessary to validate the results of simulation with analytic methods or



Chapter Three: The Model Page 13

direct measurement because it is difficult to know if the simulation program itself is
correct. The results of simulation are not always easy to interpret with respect to cause
and effect relationships between load and system parameter and performance measures,
while closed-form analytic solutions often yield such insights [24]. Hybrid simulation
uses an analytic model to replace part of the system being modeled, simplifying the

overall simulation.

The development of a model often produces insights which have greater implica-
tions than the performance study since it requires the analyst to seek out a single,
unified picture ’<‘>f what may often appear compligated and inconsistent. Models not only
provide quantitative results from given values of parameters, but also may play a quali-

tative role by developing thebanalyst,‘s intuition about actual systems.

A drawback to modeling is the possible lack of fidelity to the modeled system. Any
model must be validated before it can be used to produce the information needed for
evaluation. There is no better way of confirming confidence in a model than by experi-
mentation. Of course measurement cannot be used when the modeled system does not

exist or is not available.

3.1 Related Work

Most modeling and analysis of memory management techniques for time-sharing
systems have been directed towards paging rather than swapping. Many studies are
concerned with balancing on-line load with batch load; i.e., the tradeoff between tur-
naround time and system utilization. Work which is related to scheduling methods

designed to reduce swapping will be mentioned here along with modeling work.

Scherr [33] developed one of the first swapping models, constructing a simple model

of the Compatible Time-Sharing System (CTSS). This early interactive system used



Chapter Three: The Model : Page 14

swapping and supported only a single completely loaded process. An interaction was
described by the amount of processor time required during the interaction, including sys-
tem overhead and unoverlapped file system access times, as well as the program size. No
overlapped processing and channel operation was allowed. Both simulation and
continuous-time Markov models were described. In the Markov model, Scherr took the
mean processor time per interaction to include the necessary mean swap time per
ipteraction since the processor was idle while swapping. Distribution based calculations
were used to determine both swappigg and file access times_ in the simulation. The think
time distribution and the CPU service time dist;ibdtion were assumed to be exponen-
tially distributed. Given the number of active users, the x.nean‘response time predicted

by the analytic model was accurate when/compared to the actual measurement data.

Coffman [7] analyzes time-sharing algorithms which are designed primarily to
reduce swapping. The observation made is that to reduce overhead, the time quantum
should decrease until a certain point wi£h increasing load, then increase to reduce swap-
ping. A multiple quantum algorithm is presented. The algorithm retains the general
structure of the round-robin discipline and the multiple-level waiting time distributions
except under heavy load when it avoids saturation conditions by increasing the time-

slice. This increases the efficiency of system operation.

Bernstein and Sharp [2] propose a processor scheduling algorithm designed to
reduce swapping. They claim it is desirable to incorporate into the scheduler a
specification of a minimum level of acceptable service for each class of program.
Scheduling and swapping decisions are made with respect to a family of policy functions
which specify the level of service to be offered to various classes of users. They also sug-
gest that under heavy load both the minimum memory residence time (MINTIMEIN) and

the minimum time spent out on disk (MINTIMEOUT) be increased by a quantity they



Chapter Three: The Model Page 15

term the hysteresis. Hysteresis could also be adjusted according to the size of a process.

In [20], Kleinrock solves a queueing model to calculate the expected swap time
expended on all customers in a system of queues. Both time-shared systems and
processor-shared systems are considered. Processor-shared systems are time-sharing sys-
tems in which the quantum size is allowed to approach zero. In order to apply the
results, the expected wait in queues conditioned on a service requirement must be known

for time-shared systemé which account for swap time.

Nielsen [26] studies the effectiveness of program relocation, rotational delay minimi-
zation, at'lc‘l-swap ‘volume bminimization. ‘teqhniques. . Nielsen uses a set of prototypes in
his simulations with each job type based on seven distributions reflecting a job's resource
needs. The effectiveness of faster ;wa..ppii"lg}dev’ices is shown to depend upon the overall
balance of the syst;em.

A simple model of a multiprogramming system is developed by Tsujigado [39] and
the CPU idle time due to swapping'is aﬁalyzed. ‘The relationship between the number of
channels used for swapping and the rate of idle time generated in the processor is
derived. |

Shemer and Heying [34] analytically model a swapping system designed for batch
and time-sharing users and comparé the results with empirical measurements. The
model parameters are obtained from, berformance statistics and mean values. The
expected response to “typical” interactive user demands is predicted from the number of
concurrent users. Empirical data is used to substantiate the validity of the assumptions
employed in the model and to determine any correlation between measured performance

and the results of the model.

A limiting resource model of the EXEC8 time-sharing system is developed by

Strauss [35] under the assumption of swapping saturation. Swapping saturation is the



Chapter Three: The Model Page 16

initiating of one swap operation as soon as the previous swap completes. This simple
conceptual model predicts the steady-state performance for both interactive and batch
users as a function of configuration and workload. Mean values obtained from direct
measurement are the inputs to the model. The results from the model agreed well with
measured performance values outside the model's range, although no measurements were

available to verify the model under swapping saturation.

Chen (6] studied a closed queueing network with state dependent routing probabili-
ties for swapping based systems. The model predicts mean system response time, and
utilization and queue length of; an individual resource. The probability that a program
must be swapped-in is expressed as a factor of the syst,em.state and system parameters.
An approximate solution is obtained from an .iterative algorithm using Buzen's method
[3]. The resilts of the model ‘are compared with both the classical model and measure-

ment data.

3.2 Initial Work

An initial attempt at understandiné swapping behaviour was directed at investigat-
ing the efficacy of a performénce parameter called the mean time between swaps
(MTBS). We define this to be the mean ani‘oimt of real time which elapses between
complete swaps. This parameter is supposed to be analogous to the mean time between
page faults on a virtual memory system [1]. A prediction of MTBS from hardware and
workload parameters would allow swapping rates to be predicted for simulation pur-
poses. The MTBS could also be used by a queuing network model to obtain estimates of
mean throughput and response time. It could also perhaps lead to a load control policy
based on the shape of the swap lifetime curve, just as the paging lifetime curve is used

for such purposes on a virtual memory system [11]. Although swapping is a syétem-wide



Chapter Three: The Model Page 17

activity while paging activity is a per process characteristic, it was speculated that there
are enough similarities between the two techniques that such an investigation could

prove worthwhile.

A major difference, however, is that while a high page fault rate is never desirable,
it i1s not clear that a high swapping rate is undesirable. As long as swapping does not
interfere with other disk activities and the CPU idle time due to swapping is negligible,
then swapping might as Wéif be performed as~v'ffequehtly as necessary. Ideally, a process
should be swapped-out when it no longer needs the CPU. Another difficulty with this
approach is that the MTBS seems t,;) depend_ upon both the total number of processes
and the process sizes in a complicated manner. Although some empirical results were
studied, it did not appear t;léat researc‘h‘ aloné thfzse lines should be continued for the rea-

sons noted above.

A subsequent effort entailed a deyelopment of a model which could estimate the
ratio of throughput with swappiqg overhead to the throughput without swapping over-
head, given the ratio of “memory quantum” requirement to the mean one-way swap6
time. The memory quantum is equivalent to the time a process should be loaded if the
syste.m is not swap saturated. The model could also account for the percentage of time
during the execution of a workload in which the CPU is idle due to swapping. It might
be assumed that a “large” CPU idle time due to swapping is undesirable. This idle time,
however, may or may not be significant, depending upon the nature of the workload. If
most processes are [/O bound, then the CPU will have a low utilization in any case. If
the system is essentially compute bound, the idle time is significant to system

throughput since productive work could potentially be performed during the swap. The

6 A one-way swap is a swap-in or a swap-out.



Chapter Three: The Model ' Page 18

determination of the memory quantum on an actual system was found to be difficult.

Because of these problems, the model was abandoned.

3.3 The Basic Model

This section describes a simple deterministic model of a swapping system which is
of use when the workload falls within the range of several workload and hardware
parameters. Two extreﬁle cases will be considered: the CPU bound case and the highly
interactive, di;k I/O bound case. To simplify the model, we will assume that the

processes have the same CPU requirements and process size.

3.3.1 Workload and Hardware Parameters

A number of workload parameters will be introduced to characterize the workload
in quantitative terms. Several significant hardware characteristics will also be selected

and defined.

Hardware Parameters:

1. MM: the amount of main memory available to users in “clicks”. Each click is a 64-byte
block of primary memory (the minimum allocation size for PDP-11 memory management
hardware). The value of MM excludes the size of the resident portions of the operating sys-
tem.

2. Tswap: the mean length of time, exclusive of queuing delays, for a one-way swap. Tswap is
defined to be the sum of the mean access time and the mean transfer time as a function of
the size of the swap. Where an empirical result is available for this value it should, of
course, be substituted for the theoretical value. When using a measured result for Tswap, it
should be observed that the total number of processes also contributes to Tswap since longer
seeks may be required.



Chapter Three: The Model Page 19

3. Tblock: the mean time, exclusive of queuing delays, for one file system access (i.e., 2 512-
byte read or write).

Workload Parameters:

4. PN: the number of active processes. A number of relatively idle system programs
(/etc/update, [etc/Init, /bin/sh, the workload startup process, and the measurement
process) will be excluded from this quantity.

5. PS: the swappable process size, in clicks. This value includes the user text and data seg-
ments, the stack and the user’s system data.

6. NL: the maximum number of simﬁltaneously loaded processes. This is defined to be:

7. PC: the mean CPU requirement between I/O requests (i.e., the uniprogramming duration of
a process’ CPU burst). This value is not used by the basic model, but is used in the experi-
ment to determine how PC influences the validity of the model.

8. Nswaps: the sum of the swap-ins and the swap-outs during a measurement period.

3.3.2 The CPU Bound Case

The case when most or all of tﬁe Workload is CPU bound will be briefly mentioned
here. It is assumed that round-robin scheduling is used and that processes are usually
swapped-out after receiving their quantum time, ¢. To simplify the following discussion,
it will be assumed that processes are all of equal size. If the time quantum is also
assumed to be at least as large as the time to replace a loaded process with one from
secondary storage and tHat there are always at least two processes loaded (NL > 1),

then since all swapping can be overlapped with computation (except for



Chapter Three: The Model Page 20

scheduling/swapping code overhead and DMA related memory cycle competition), swap-
ping will have virtually no impact on performance. (Note that response time can possi-
bly be decreased without degrading throughput if Q is reduced to 2 * Tswaf; i.e., if the
time-slice is equal to the time to ready a swapped-out process for execution. As Q
decreases beyond this point, “thrashing” will occur because the amount of productive
work performed between swaps decreases.) Two predictions based on the round-robin
séheduling and equal process size assumptioné may bé made a\nd experimentally verified

for two systems, A and B, as follows:

1. If T, is the running time on system A of a fixed amount of work when no swapping is
required or when all swapping is overlal;bed w’iAtl_l computation, then if PN > 1 and NL=1,
the time to complete the same amount of work oﬁ ”syst,em B will be T4 + Tswap * Nswaps
because no overlap is possible. The general case for arbitrary Tswap, Q, N, and NL under a
compute workload will not be discussed here but the same reasoning may be applied to the

general case. On an actual system, Q would normally be much longer than 2 * Tswap.

2. Given PN > 2 compute bound processes of which .NLA > 1 are simultaneously loadable and
Tswap < @ [ 2, the time T4 to complete a fixed amount of productive work should be
equal (within error) to the time TB.to complete the same work when 1 < NLg < NL,.
This implies that as long as there is sufficient memory to allow one process to execute while
another is being swapped, swapping does not significantly impact system performance. It
should take twice as long to complete double the amount of work (a linear increase in execu-
tion time with increasing PN). Adding extra memory to such a system will not improve

performance nor will substituting a faster swap device since the CPU is the bottleneck.



Chapter Three: The Model Page 21

3.3.3 The Baslc Model

The model makes several assumptions about the characteristics of the workload,
the operating system, and the hardware. The workload is assumed to be of a highly
interactive nature, generating many file system requests and with relatively short CPU
demands relative to the swap time. The volume of this type of workload is further
assumed to be sufficient to cause the system to approach swapping saturation, although
this requirement will be relaxed later. It is assu‘med‘ that the shared swapping/file sys-
tem controller becomes the limiting resource (i.e., bottleneck) to system performance.
Many snmple modelsrére based on a limiting resource assumption of this type [35]. " Such
models are conceptually and analytically simple, but their usefulness depends on the
validity of the original resource assumptio_n.'

It is assumed that round-robin processor scheduling will be employed, that only one
scheduler initiated swap-in or swap-out can be queued at any one time, and that swap
requests are serviced in the saﬁe manner as ordinary file system requests. It is also
assumed for the time being tha_t a single conﬁrdller_ is shared by the disk devices involved
(i.e., swapping is not overlappéd with file system traffic). Since the disk subsystem is
assumed to be the major bottleneck, other peripheral devices are ignored by the model.
Many small to medium sized UNIX facilities meet these assumptions. The highly
interactive naﬁure of the workload (e.g., eaiting, graphics, plotting, file manipulation,
communications, etc.) allows the swapping saturation assumption to be met, because
processes waiting for a slow (relative to a disk) device are usually swapped-out. Also,
given a sufficiently >large workload of this type, think times may be ignored because the

next interaction is often ready when the current one finishes.

The basic concept behind the model is that the ratio of the number of file system

requests (i.e., useful work) queued between swap requests (overhead), adjusted for I/0



Chapter Three: The Model Page 22

times, gives an approximation of the ratio of times to complete the same amount of use-
ful work or the same number of interactions. If more file system accesses can be per-
formed between swaps then more productive work is being done per unit time. The
model assumes that, on average, each process has one file system request in the disk
queue. The basis for this assumption is that when the CPU requirement of a process is
short compared to the time to execute a one-way swap, a new request will be queued
before the currenf, swap-in or swap-out completes. Since the workload is highly interac-
tive, as soon as a swap-in or swap-out completes, another will be queued. Note that as
NL decreases, the éwapping"rate should increase until swap saturation because there is

less file system traffic between swaps.

To illustrate a éimple case, suppose that in configuration A there are four loaded
processes and that in configuration B there are eight loaded processes. Assume that in
either configuration the time to swap and the time to perform a file system request are
respectively the same. Then because B performs about twice as much useful work

between swaps as A, B will take less time to perform the same amount of work.

The analytic model is:

Tg . NL, * NLg * Tblockg + NL4 * Tswapg

£ = . 3.1
T4 NL4 * NLg * Tblocky + NLg * Tswap, (3.1)

RGHOBA =

where T is the time to complete the workload.

The model predicts the total time to accomplish a given amount of work, once a
measurement of the same type of workload under (possibly) different conditions is known
(PN is the same in both cases). From this value, the mean system throughput can be

determined (X = C/ T) and the mean response time is R= T/ C- Z [10], where C is



Chapter Three: The Model Page 23

the number of completed “interactions” and Z is the mean think time. For the interac-
tive user, response time is usually of primary concern. Hellerman [17] suggests that a
better performance indicator than response time is a statistic on the response relative to
the sex;vice time required for the request (sometimes called the “stretch factor” or “dila-
tion”). This is defined as the ratio of response to service time, or its reciprocal. The
output of the model, the relative change in execution time (per workload), is analogous
to the dilation statistic (per process). It is assumed that decreasing the time to perform
a file system access will have no significant effect on the mean queue length; the disk
controller will still be the bottleneck. Note that the utilization of the controller must be

high (greater than about 80 percent) on both of the systems used in Equation 3.1.

The primary advantages of this model over previous models are its simplicity and
deterministic naturé. Chen’s model [68], for example, requires the mean number of disk
I/O requests per interaction to estimate routing frequencies. The probability of a pro-
cess being swapped-in or swapped-out must also be estimated. Other modeling work is
primarily concerned with the balancing of interactive load and batch load to improve
system utilization.

Because the model developed in this chapter is deterministic, neither probabilities
nor a separate queueing network solution step is required. There is also no need for any
of the assumptions used in the theory of stochastic processes. The concepts behind the
model are easy to understand and the model is simple to evaluate. Since the model is

based on operational quantities, its assumptions can be tested and verified.

A weakness of the model is that it relies upon the assumptions of disk saturation

and highly interactive workload.



Chapter Four: The Experiment Page 24

4. The Experiment

4.1 Overview

In this chapter, the experiment conducted will be described in detail. Having
decided to perform an experiment to evaluate the modt_al, the first step is to design the
parameters for a synthetic wofkload and validate bthe workload. Tools are then
developed to measure, extract, and pfocess the system daf:i. The description of both the
system modiﬁcatiéns and the méa.surement program are inclﬁded in this section. The

design and implementation of the experiment are discussed.

The objective of any experimental investigatioﬁ is to learn more about the system
being investigated; i.e., to study the effect of variation of certain factors or the relation
between certain factors in a system. The major difficulty in evaluating computer perfor-
mance is the large number of factors in the pfoblem under investigation. Extraneous
factors which cannot completely be controlled influence the outcome of the evaluation.
The utility of an experimental design is to eliminate these factors if possible, or to
minimize their effects by arranging f,he experiment so that the effects may be expected to
cancel and partially cancel each ovther in the analysis of the resulting empirical data.
Experimentation is an iterative process. An initial conjecture leads to a design, the
design leads to the experiment, and the experiment provides data that are analysed

before forming a new conjecture.

4.2 Synthetic Workload and Model Parameters

When measuring the performance of a system, either the production workload or an
artificial workload can be used to drive the system. The production workload, or a seg-

ment of it, has the advantage of being more representative. Because, however, the



Chapter Four: The Experiment Page 25

workload varies with the time of day, the day of the week, etc., the question of a partic-
ular measurement’s representativeness may arise. Artificial workloads offer reproducibil-
ity, flexibility, and are potentially more compact. They are, however, more expensive to

construct, less representative, and require a dedicated system to run on.

In this work, the production workload was not suitable for direct measurement
although monthly command frequency data suggested the more popular commands. For
the purposes of this thesis, the synthetic workload is the most desirable choice because a
controlled environment is needed to make comparisons between diﬁereﬁt configurations
with the same workload. The changes in performance with changing workload charac-
teristics are also of great interest. A prototype program which became the basis of the

synthetic workload was therefore constructed.

4.2.1 Construction of the Prototype Process

A prototype process consists of 200 “interactions”, each made up of the following:

1. A Compute Loop - the duration of this computation is a command line argument to the pro-

cess when it is invoked.

2. Disk I/O Operations - a number of reads, writes, and seeks are usually performed, although
on occasion no operation will be performed. Note that because of the buffering strategy,

physical I/O may be delayed or may not be required.

3. Pause - to simulate think time, the process is put into a low priority wait for a short time.
This would normally cause the process to be swapped-out. This was implemented by setting

an alarm clock signal and then issuing a read request which could not be satisfied.



Chapter Four: The Experiment Page 26

4. Terminal Output - several 25-character-long strings are printed. The first character of the
string identifies the writing process. An interactive workload usually involves a great deal
of terminal input and output. Because terminal input is difficult to simulate in a synthetic
workload, terminal output was used to cause additional process suspensions. When the ter-
minal output buffer fills, the process is suspended at a priority slightly lower than the input

priority until the characters have been sent to the terminal.

5. Process Size - there is a dummy array in the prototype process which can be statically

varied to alter the size of the process. The process size includes the stack and system data

segments.

The amount of computation, disk I/O, and terminal output, as well as the duration
of the pause are all distribution driven. This adds variability to the workload while
keeping averages constant. In addition, the seed for the random number generator and
the file used for I/O were different for each process. To create the synthetic workload,
the prototype process was duplicated on a pon—sha.rable basis to give the desired number

of processes.

4.3 Description of the Measurement Tools

In order to extract data on the operation of a computer system over a period of
time, measurement monitors are used to record the values of certain variables considered
to be significant for evaluating system operation. Rose [32] discusses measurement pro-
cedures in detail. Monitors use either an event trace policy or a sampling policy and are
implemented using hardware, software, or both. Event trace monitors record informa-

tion when a particular event occurs while sampling monitors record information at



Chapter Four: The Experiment . Page 27

specified time intervals. The event trace policy usually obtains more detailed informa-
tion over a shorter period of time. Data are written to disk or tape for subsequent use
by data reduction software. Large amounts of data afe often collected in the course of a
measurement session and it is important to insure that the collection process does not
interfere significantly with the system being observed. The sampliﬂg policy initiates
data collection activities when a real-time clock signals the end of an interval. The
interval, or time between successive sampling events, is usually‘constant). A less detailed

description of the system is obtained over a longer period of time using sampling.

There are three basic‘ implementations of measurement monitors, each of which
may use either event trace or sampling policies. Hardware monitors are devices attached
to the computer’s circuitry at various points to examine statuses or count events. These
monitors have the advantages of permitting high event rates, making precise measure-
ments, and not interfering with the system being measured. They cannot, however,
reveal the causes behind events and they lack selectivity of measurement. Software
monitors are measurement routines inserted into the system software to record events
and statuses. They can generally record any information available to the operating sys-
tem and offer a great deal of ﬂexibilit& in the selection of the measurement data.
Because they require resources, they may interfere with the system operation which is to
be measured. If a sampling policy is used, the sampling frequency has to be large
enough to provide statistically good results, but must not unduly influence the measure-
ments. The hybrid implementation combines hardware and software but has the disad-
vantage of requiring the monitor software to be able to communicate with the external

hardware monitor.

A number of changes were made to the operating system to conduct the experi-

ment. When the experimental version of UNIX is booted, it allows the user to specify



Chapter Four: The Experiment Page 28

the amount of free user memory to be made available. This allows the parameter NL to
be controlled by adjusting MM. The pause and alarm [18] system calls had previously
been added to the system as well as the Version Seven sleep subroutine which uses these
system calls. The user-process (/etc/update) which flushes the buffer system uses these
new calls to avoid the inefliciencies detailed earlier caused by .the original sleep system
call. A measurement pfogram called iostz;t ﬁas written which is similar to the Seventh
Edition progfam of the same name [18]. dee was added to the kéi-nel which combined
an event trace policy with a éaﬁlbling i)oiicy. Also, /etc/upda.té was made into a pure
text program so that it would never be swapped-out. The kernel was modified to sample
system states at each clock interrupt (60 Hz) as well as to record various transactions.
The clock interrupt handler was modified to record the status of either disk drive (busy
or not busy) and the state of the CPU (bilsy user-mode, busy system-mode, or idle) each
time it was called. The distribution of disk controller queue lengths was also main-
tained. Within thé section of the system u_sed to manage the block 1/O buffers, code was
added to count the number of cache hits, the number of reads, read-aheads, and writes.
The routine to set up a swap was changéd to count the number of swaps and the
number of core clicks which were swapped. The disk driver was modified to count the
number of requests directed to each drive and the number of words transferred by each
drive. It was also responsible for marking the status of either drive for the purpose of
sampling by the clock driver. The total number of seeks for either drive was main-
tained. The terminal driver recorded the number of characters read and the number
printed. All the data were stored in a contiguous data structure so that the iostat

user-process could access them easily.

This particular implementation of performing measurements was chosen because of

its simplicity and because of constraints imposed by the system hardware (or lack



Chapter Four: The Experiment Page 29

thereof). Measurement code could have been designed to write data to secondary
storage, for example. This would allow much more detailed information to be extracted
and studied. Since neither a tape drive nor an additional disk unit was available, simple
operational data would have to suffice. The interference to the system caused by writing
data to the disk devices being observed was deemed to be too large. It would also

increase complexity and introduce another potential source of error.

Some of the quantities recorded are necessary to derive parameters for the model;
others (such as system state distribution) were thought to be useful for the insights they

might give into the experimental results and for possible future research.

The output of iostat consists of the number of disk reads, read-aheads, cache hits,
disk writes, the mean queue length, and the disk queue length distribution. The total
number of requests to each disk and the total amount transferred to and from each disk
are printed. The mean access time, the mean transfer time, and the mean number of
bytes per request are calculated from measurement data and from the manufacturer's
device specifications. Disk utilization and the time the CPU spends waiting for I/O to
complete are printed as well as a system-state/disk;drive-state matrix. The user may

select various subsets of this information.

When iostat is invoked, it simply reads the measurement data from kernel space
and notes the current time of day. It then suspends itself for a given amount of time
using the sleep subroutine. When it awakens, it calculates the elapsed time, reads the
data again, and displays performance parameters based on the difference between the
two sets of data and the real time which elapsed between the readings. If iostat is
interrupted before the given time period expires, it ignores the original time period and
uses the elapsed time to ihe interrupt. Since the pause puts the process in a low priority

wait, iostat will be swapped-out during the measurement session and therefore will not



Chapter Four: The Experiment Page 30

interfere with it. The measurements within the kernel consist of simple increments and

assignments and would contribute little to the system overhead.

The normal system clock is accurate to the nearest one sixtieth of a second. A
more accurate clock is available within the DUP11 synchronous line interface. The
maintenance clock in this interface h_a.s a resqlution of between one and two milliseconds.
A device driver and a system pall were added to the kernel in a preliminary experiment
to allow the maintenance clock to be used as a stopwatch. The clock was calibrated
using the system clock and t.,hen the maiﬁtenancé clock was used to develdp distributions
for the various PC intervals. The code was originally written to make more precise
measurements and to pass data back to a'user-proces;s. A mechanism was developed
whereby part of main memory could be reserved for collection of data. This imple-

mented a simple, low interference trace facility.

4.4 Design of the Experiment

The workload and hardware parameters t;hat the basic model requires were outlined
in Section 3.3.1. When there are interactions among the parameters, it is necessary to
use a factorial design for the eXperiment. In a factorial design all values of each parame-
ter must be v#ried with all values of the other parameters. The model parameters
become the factors of the experiment; i.e., those quantities which are explicitly varied.
The different values of a factor which are used are termed the levels of a factor. The
influences which are not of interest and which must be held constant during the experi-
ment are called secondary factors. This section describes the levels chosen for the fac-
tors and the reasoning behind their choice. A complete factorial experiment was fol-
lowed for the main levels, while several individual experiments were run with different

levels in order to probe for the points where the model breaks down. Also, some combi-



Chapter Four: The Expeﬂment Page 31

nations of levels/factors were not of interest because no swapping would occur (i.e.,

PN < NL). The factors and levels are summarized in Table II.

Experimental Factors and Levels

Factor " Levels
MM 650, 1000, 1280 (clicks)
PN 4, 5, 6, 8, 10, 12 (processes)
PS 157, 314 (clicks)
PC 12 (msec.)

Table II-

Since the natural workload was not suitable for the experiment’s workload or for
determining reasonable levels for the factors, results from a previous experiment helped
to provide some realistic values. Downing [13] measured the production workload on a
similarly configured UNIX system. This workload was highly interactive. The mean
number of processes, the process size distribution, and the distribution of uninterrupted
CPU intervals were determined. It wés found thaf on a busy system there were usually
about 2 ready processes and ffom 12 to 14‘ blc;cked (i.e., waiting) processes. Most
processes were smaller than 200 clicks (6K words) with up to 5 percent over 500 clicks in
size. The mean uninterrupted CPU interval of that production workload was found to
be 12 msec. Although the PC findings were from a differently configured system, the
same levels were used in this work since they were found to be less than, close to, and
greater than the one-way swap service times used.

The level of 12 msec. for the PC factor in the factorial experiment was chosen.

Several supplementary runs were made with larger PC values to determine when the

CPU demands begin to violate the model's workload assumptions. The uninterrupted



Chapter Four: The Experiment : Page 32

CPU requirements were implemented by calling a function having a fixed delay several

times based on a distribution. All PC distributions used in the experiment are given in

Table II1.

Distribution of Compute Loops

(Percent of Occurrences)
Number of Iterations
PC 5 20 200» 5000

(msec.)
12 3 36 100 100
30 1 19 97 - 100
60 1 S 90 100
. 186 1 5 57 - 100
354 1 5 15 100

Table HI

The maximum level for main memory is limited by the maximum amount of free
memory available on the system. The lower level is based on providing just enough
memory so that two of the larger processes could be simultaneously loaded. Several runs

were made with a process size of over 400 clicks so that swap times could be increased.

The distribution for the disk activity was adjusted so that the utilization of the
controller exceeded 90 percent when the maximum level of PN was used. It could be.
argued that the amount of file system traffic generated (about 6 blocks read/written per
interaction) was perhaps greater than that which would be expected from a typical
interactive process. For example, no think times exceeded 3 seconds. This sacrifice in
representativeness was necessary because there was insufficient main memory to create a
high utilization when the larger process sizes were run and because it became too

difficult experimentally (and too lengthy) to use a level of more than 12 processes. Many



Chapter Four: The Experiment Page 33

similar installations run at the maximum main memory capacity (more than twice the

user memory available on this system), naturally creating high controller utilization.

The internal system parameters, such as the number of buffers, the scheduling con-

stants, priorities, etc., were held constant throughout the experiment.

The swapping and file system accesses were directed té separate disk driw./es to
make the mean time to perform either type of disk request easy to determine. It is com-
mon for a UNIX installation tro_ assign user ﬁles”to_a different drive. than that used for
swapping. It would not violate any assumptions made By the model if this were not the

case. All terminal output was sent to the same 9600-baud CRT terminal.

Ideally, it would be better to control NL and Tswap separately. This would allow
runs to be made where a slower disk could be studied with the same number of loaded
processes. Because of the intrqduction of the extra factors and the extra complexity, this
enhancement was not implemented. Further confidence in the model would be obtained

by conducting an additional experiment on a differently configured UNIX system.

The identicél process size of each of the prototypes is, of course, not realistic. This
simplification made the NL parameter easy to calculate and Tswap easier to measure,
reducing the complexity of the experiment. Ca‘lculating ‘NL in an actual system involves
scanning through the system process table, where the mean process size can also be

determined for the calculation of Tswap.

4.5 Implementation

The implementation of this experiment involved changing the operating system as
described in Section 4.3, writing the user-process measurement program, and creating
the prototype processes. Before running the experiment, the length of a session had to

be determined. It is assumed that the accuracy of the values gathered within the system



Chapter Four: The Experiment Page 34

are ergodic; i.e., that the accuracy of the estimations increases as the number of observa-
tions in the series increases. A sample workload was run several times until the number
of iterations within each prototype was enough to make elapsed times for each run rea-
sonably close. The value of 200 iterations provided experimental runs not excessively
long and with differences of less than § percent in elapsed time between identical work-

loads.

To reduce the possibility of introducing error, to simplify the impiementation, and
to minimize possible variations in the start-up précedure, each run was initiated by a
command file and a special start-up program. The start-up program simply read from
the command file, invokéd each prototype process with iis argﬁments, and then waited
until the last process completed before displaying the elapsed time. Once the workload
had stabilized, the iostat program was invoked from a second terminal. The stabiliza-
tion criterion was the same forl each Workload. Since each process identified itself when
it printed its terminal output, it was possible to tell when each of the processes had
begun to execute. At this point iostat was invoked. Upon completion of the start up
program, iostat was manually interrupted, causing it to display the performance data
and then terminate. After a run was completed, the scratch files were reset to their ori-

ginal contents.



Chapter Five: Results

5. Results and Analysis

Page 35

The results of the experiment are presented and the accuracy and utility of the

model are examined in this chapter.

5.1 Experimental Results

The measured and calculated values for swap times and block I/O times are given

in Table IV and Table V, respectively.

Mean Swap Times

PS Measured Calculated

. (msec.)
(clicks) (msec.) Min  Max

157 50.7 91.1 1186

314 69.8 114.7 129.7

425 93.7 146.4 1614

470 - 106.5 1563.2 168.2

Table IV

Measured (msec.)

(Tblock)

Mean Block Read/Write Time

Calculated (msec.)

39.8 +£2.5

68.7

Table V

The large difference between the measured block 1/O times and the times obtained

from the manufacturer’s specifications can be attributed to the physical closeness of the



Chapter Five: Results Page 36

scratch files used by the prototype processes and to the LOOK disk scheduling algo-
rithm.

The measured swap times above are also lower than the calculated times due to the
locality of the seeks. In fact the difference between the mean measured values and the
mean calculated values is approx1mately the mean seek time. The measured times are
approximate because they vary with PN as PN changes, the number of track-to-track
seeks may chénge. The mea.silred Yalues are used whenever possible in subsequent

results.

The results of the factorial part of the experiment are presented in Table VI. The
measured value Qdisk is the mean queue length at the disk controller, including the
request currently being serviced. The experimental error in the measurement of Qdisk

was found to be £0.1.



Chapter Five: Results

Page 37

Results of the Factorial Experiment
PC = 12 msec.

Ps MM . Controller Elapsed Time

(clicks) PN NL  Qdisk Nswaps Utilization (%) (secs.)
157 650 12 4 4.8 3554 95 717
157 650 - 10 4 4.7 3016 95 613
157 650 8 4 46 1937 91 439
157 650 6 4 44 1202 88 358
157 650 5 4 3.4 © 660 78 315
157 1000 12 6. 7.0 2336 96 637
157 1000 10 6 7.2 1889 94 530
157 1000 8 6 6.3 1031 89 423
157 1280 12 8 8.6 1833. 95 623
157 1280 10 8 8.2 1477 93 521
157 1280 8 8 6.5 438 86 403
157 1280 6 6 3.9 5 77 311
157 1280 5 5 2.9 4 68 298
314 650 12 2 2.7 4095 96 1032
314 650 10 2 2.8 3500 - 95 838
314 650 8 2 2.7 2819 94 670
314 650 6 2 2.7 2027 91 510
314 650 5 2 2.6 1602 : 90 433
314 650 4 2 2.3 1064 81 353
314 1000 12 3 4.1 3815 96 920
314 1000 10 3 4.2 3262 97 761
314 1000 8 3 4.2 2500 95 613
314 1000 6 3 4.1 1630 92 453
314 1000 5 3 3.6 1119 86 387
314 1000 4 3 2.7 531 71 307
314 1280 12 4 4.7 3493 96 854
314 1280 10 4 4.8 2865 97 721
314 1280 8 4 4.3 2093 87 669
314 1280 6 4 45 1316 91 422
314 1280 5 4 3.9 691 82 346
314 1280 4 4 24 198 64 289

Table VI



Chapter Flve: Results Page 38

Table VII shows the results of several runs where the CPU interval was increased

from 12 msec.

Supplementary Experimental Results

PC PS MM PN . Controller Elapsed Time
(msec.) (clicks) NL— Qdisk  Nswaps Utilization (%) (secs.)
30 157 1280 . 12 - 8 8.2 1793 95 610
60 157 1280 12 8 .81 2046 93 665
186 187 1280 . 12 8 6.1 2773, 89 797
354 157 1280 12 8 3.8 3240 75 1025
354 157 1280 5 5 1.6 4 40 534
30 314 1280 12 4 4.7 3598 A 96 882
60 314 1280 12 4 4.6 3813 96 908
186 314 1280 12 4 3.7 3935 89 994
12 425 1280 12 3 3.8 4029 98 1045
30 425 1280 12 . 3 3.8 4031 98 1072
60 425 1280 12 3 3.6 4050 95 1095
186 425 1280 12 3 2.9 4053 86 1205
12 470 1280 12 2 29 3921 97 1047
186 157 650 12 4 3.4 - 4425 83 987
12 157/314 1280 12 ~5 5.7 2939 94 724

Table VII

One of the supplementary runs in Table VII consisted of 6 processes of size 157 and 6 of

size 314 clicks. The mean number of loaded processes was estimated to be 5.

5.2 Analysis of the Modelv

Figure 1 illustrates the output of the model versus measured values for several



" Chapter Five: Results Page 39

different sets of parameters. Table VIII shows the standard deviation’ using five of the

measurements to predict a sixth.

Standard Deviation in the Predictions
Measured Elapsed Time Mean Prediction  Standard Deviation

{secs.) (secs.) (secs.)
623 +31.2 684.2 32.5
637 +31.9 680.6 30.0
717 £359 735.1 38.3
854 £42.7 787.3 , 30.0
920 £46.0 . 871.2 41.5
1032 +51.6 1042.8 55.5

Table VIII

The linear trend in elapsed time 'w»ith changing PN is not directly taken into
account by the model; PN is assumed to be-constant for both workloads used by the
model. In Figure 2, a graph is plotted of elapsed time versus PN. The linearity in the
elapsed time is due to the saturation of the disk controller. The relationship between
the bottleneck device and both response time aﬁd throughput is derived by Denning and
Buzen [10]. The fact that the linearity is observed at the lowest PN values (PN = 4)

suggests that the controller is approaching saturation even at that point.

A second extension to the model involves changes of the PC parameter. As PC
increases, the queue length at the disk controller decreases. This occurs because there is
more computation done between disk I/O requests and since PN is not changed, the
mean queue length must decrease. Svimilarly, as PC decreases, the queue length must

increase (up to a point) since requests are being added to the queue after a shorter

7 The standard deviation was calculated using the mean of the predictions as the true mean and the predictions
as the samples.



Page 40

e — — — n|
{ LEGEND I
1166.8 ..[_ X Predicted Value l
X
(@) Correct Vatue }
B ]
0
N X
8 1008.6 4+ x
0] . X
n
@ X
e 0
e 966.0
o X
] X
n + o X
a X
O X
Lid 380.6
X
(¥ X
= 4 X
]
o x 8
u 788.0 4+ X :
: x :
K
g 9]
X i I H 1 i i I 1 1 {
1 l [} { i 1 | B 1 1
£60.0 760.0 800.0 966, 0 1600, 8 1108.8

Measured Elapsed Time [(secs]

Figure 1



Elapsed Time (secs)

1106.

1000.

900.

860.

706.

600.

560.

400.

300.

Page 41

e _
{ LEGEND §
L 4 PS=157. MM = 656 l
4 x PS = 157, MM = 1688 }
1o PS = 157, MM {
O PS = 314, MM = |

:i: A PS =314, MM :
x PSS = 314, MM : |

|

4.0

5.0

6.0 7.8 8.6 9.8

Figure 2



Chapter Five: Results Page 42

period of time. The increase becomes most significant when PC exceeds Tswap. It was
discovered that the ratio of queue lengths provides a good approximation of the ratio of
elapsed times between two workloads which are the same except that one has a large PC

and the other a small PC.

For example, during the run (157,12,12,4)8 the mean queue length was observed to
be 4.8 and the elapsed't,ime was 717 seconds. Dﬁring a different run (157,186,12,4), the
queue length.at the controller was 3.4 and the elapsed time was 987 seconds. The ratio

4.8 / 3.4 is, within éxperimental error, 987 [ 717.

The mean queue length, however, must be known for the workload with the larger
PC since there appears to be no sixhple way It,o predict the change in queue length with a
change in PC. The relatiénship seems to break down in the run where PC = 354 msec.;
the prediction from this data greatly exceeds the measured elapsed time. Presumably
this is because the disk saturation assumption is violated or perhaps another factor
which is not taken into account by the model starts to become influential when PC is
sufficiently large. |

The mean queue length is influenced by both the buffering mechanism and by
/etc/update which flushes the buffers periodically. Because of this, the observed swap-
ping rate does not agree well with the rate predicted by the model. It also appears to be
difficult to predict what the queue length at the controller will be as PC is increased
beyond Tswap. This would probably make the model, as it is, of little use when dealing

with compiling-type workloads.

5.3 Sources of Error

8 The notation (PS PC,PN,NL) will be used in the following discussion to describe the experimental parame-
ters. .



Chapter Five: Results Page 43

There are several potential sources of .error in the experiment. Differences in both
the :;llocation of file space and swap space between runs introduce a certain amount of
error. It is possible that some events were missed because sampling was done at 60Hz.
Errors in the manufacturer’s specifications are also possible. A certain amount of human
error is introduced by the need to manually interrupt the measurement program when
the workload finishes. vThes.e’ sources of error. pfobably account for the 5 percent fluctua-
tion in elapsed time mentioned earlier. A few experimental runs were redone several
times when the accuracy of thé first run was in doubt. Either mean values were used in

such cases or the questionable result was discarded.

5.4 Applications

The following hypothetical situations are presented to indicate areas where the
model and its extensions may find application. In each example it is assumed that both
workloads are fairly uniform and consist mainly of interactive programs or many short

programs which tend to saturate the disk controller.

Suppose there was a UNIX system which had 1280 clicks of available memory, an
average of 10 user processes, 4 of which cou‘ld'; on average, be resident. Assume that
Tblock is 0.05 sec., Tswap is 0.07 sec. and that the think time is negligible. The installa-
tion would like to estimate the effect of doubling the user memory on mean response

time. Substituting into Eqﬁation 3.1,

__ 8 +4+005+ 4 *0.07
8 +4 ¥0.05 + 8 ¥0.07

Ratio

= 0.87

or a 13 percent decrease in elapsed time.



Chapter Five: Results Page 44

A similar method could be followed to determine the influence of a change in Tblock
and/or Tswap. Suppose the installation would like to estimate the effect of decreasing

Tblock to 0.04 sec. and Tswap to 0.055 sec. Substituting into Equation 3.1,

4 ¥4 004 + 4 ¥0.055
4 +4 005+ 4 0070

Ratio =

= 0.80

or a 20 percent decrease in elapsed time.

Suppose that swapping effects were eliminated altogether by keeping all processes

loaded or by the addition of extremely fast swapping hardware. From Equation 3.1,

10 ¥4 +0.05 + 4 *#0.00

tio =
Ratio = 1051 +0.05 + 10 #0.07

= 0.74

the model predicts a 26 percent decrease in elapsed time.

Because of the saturation assumption, the increase or decrease in elapsed time with
a change in PN may be assumed to be linear; e.g., doubling PN should approximately
double the completion time. If Tblock was decreased to 0.04 sec. and PN was increased

by 50 percent, then

4 +4 ¥0.04 + 4 ¥0.07 . 15

tio = =
Ratio = =005+ 17007 © 10

= 1.28

and so the elapsed time would be expected to increase by about 28 percent.



Chapter Five: Results Page 45

If the mean queue length at the controller is known or can be estimated for a
change in the CPU requirements, then the ratio of queue lengths can be used to estimate
the change in elapsed time. Suppose, for example, that the installation would like to
estimate the effect of decreasing Tswap to 0.08 sec. while at the same time increasing PC
from 0.012 sec. to 0.05 sec. and increasing NL to 6 by the addition of memory. The
queue length at the disk controller in the new configuration will be estimated to be

NL + 1, since PC will be less than Tswap. The expected change would be approximately:

. 4 6 *005+4 006 _5
Ratio = * —
4 *¥6 *005+6 007 7

= 0.63



Chapter Six: Conclusions - Page 46

8. Conclusions

8.1 The Model and Validation

A simple, deterministic model of a disk-saturated swapping system was developed
and validated through a controlled experiment. The model was found to provide a good
approximation of the ratio of elapsed times between two workloads with differing param-
eters. As predicted by theory, the change in elapsed time was linear with the change in
the number of processes when the disk controller approached sgturation. When the
CPU requirements of the processes were increased., within limits, the ratio of queue
lengths at the disk controller was found to be a good approximation of the ratio between
elapsed times.

Only one hardware configuration was used to keep the size of the empirical valida-
tion reasonable. A synthetic workload had to be created because the natural workload
was unsatisfactory for validation purposes. Several sample applications were described.
An important characteristic of the model is that since it is deterministic, there is no need
to determine device routing probabilities. Although the model is simple, it can be used
to determine the change in performance with changes in the hardware configuration.
Since the size of main memory is constant, the mean number of processes and the mean
process size can be determined from only one pass through the system process table.
The mean disk [/O times can be easily measured from within the system or can be cal-

culated using the manufacturer’s specifications.

8.2 Tools and Method

The data measurement and extraction tools for the experiment proved very satis-

factory for the nature of the information being collected. The tools are straightforward



Chapter Six: Conclusions Page 47

and because they are written in C, are quite portable and easily understood. The over-

head introduced by the tools is negligible.

The factorial nature of the experiment, chosen to test the model uniformly, proved
satisfactory when supplemented by several additional runs. As mentioned above, testing
the model under various hardware configurations is desirable, but turned out to be
impractical. Similarly, additional factors would significantly increase the size of the

experiment.

6.3 Domain of Applicability

Perhaps the greatest simplification in the experiment was the use of an homogene-
ous synthetic workload. While this does not reflect reality, one experiment where the
process sizes were not identical gave a result close to that predicted by the model (see
the last entry, Table VII). Although more work should be done on this, it is felt that
the model will continue to be useful as long as there are not large differences in the CPU
requirements of the processes which make up the workload. Additional work could

investigate the effect pure, sharable code has on the accuracy of the model.

Regarding workload, the domain is limited to highly interactive environments
where CPU requests are all much less than one second; i.e., where the workload consists
mainly of editing, file manipulation, and execution of programs which are either short or
which interact with the terminal. Obviously the model is restricted to systems which
employ swapping.

Another departure from reality is the absence of terminal input. This was not con-

sidered too significant because a good approximation using terminal output was used.

Because newer versions of UNIX use similar scheduling and swapping strategies, the

model could be applied to them as well. Testing this hypothesis, however, was not



Chapter Six: Conclusions Page 48

possible.

8.4 Future Research

The results of this study could be used as a basis for research into the following:

1. A more general model, not relying on disk saturation,

2. Expanding the model to account for large PC values so that compiling-type

workloads can be considered,

3.  An examination of the diflerences in performance between swapping and paging

on a small machine where the disk is the limiting resource,

4.  Testing the model on a different hardware configuration, perhaps one with over-

lapped file I/O and swapping capability,

5.  Studying the effectiveness of a processor scheduling algorithm which attempts
to balance the characteristics of the loaded processes to reduce the swapping

load.



Bibliography Page 49

10.

11.

12.

BELADY, L.A., AND KUEHNER, C.J. Dynamic space-sharing in computer systems. Com-
munications of the ACM 12, 5 (May 1969), 282-288.

BERNSTEIN, A.J., AND SHARP, J.C. A policy-driven scheduler for a time-sharing system.
Communications of the ACM 14, 2 (February 1971), 74-78.

BUZEN, J. P. Computational algorithms for closed queueing networks with expohential
servers. Communications of the ACM 16, 9 (September 1973), 527-531.

BUZEN, J. P. Fundamental operational laws of computer system performance. Acta Infor-
matica 7, 2 (1976), 167-282.

CHANDY, K. M., AND SAUER, C. H. Approximate methods for analyzing queueing network
models of computer systems. Computing Surveys 10, 3 (September 1978), 281-317.

CHEN, P. P. Queueing network model of interactive computing systems. Proc. of the
IEEFE 68, 6 (June 1975), 954-957.

COFFMAN JR., E. G. Analysis of two time-sharing algorithms designed for limited swap-
ping. Journal of the ACM 15, 3 (July 1968), 341-353.

DEITEL, H. M. An Introduction to Operating Systems, Addison-Wesley, Reading, Mass.,
1983.

DENNING, P. J. Virtual memory. Computing Surveys 2, 3 (September 1970), 153-289.

DENNING, P. J.,, AND BUZEN, J. P. The operational analysis of queueing network models.
Computing Surveys 10, 3 (September 1978), 225-261.

DENNING, P. J., KAHN, K. C., LEROUDIER, J., POTIER, D., AND SURI, R. Optimal mul-
tiprogramming. Acta Informatica 7, 2 (1976), 197-216.

DowbDYy, L. W., AGRAWALA, A. K., GORDON, K. D., AND TRIPATHI, S. K. Computer per-
formance predictions via analytic modeling—an experiment. Conference on Simulation,
Measurement and Modeling of Computer Systems, August 1979, 13-28.



Bibliography Page 50

13.

14.

15.

16.

17.

18.

19.

20.

21.

22

23.

DOWNING, R. A Performance Ezperiment on a UNIX System, M.Sc. Thesis, University of
British Columbia, 1979.

FERRARI, D. Computer Systems Performance Evaluation, Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, 1978.

GRAHAM, G. S. Queueing network models of computer system performance. Computing
Surveys 10, 3 (September 1978), 219-224.

GRENANDER, U., AND TsAO, R. F. Quantitative methods for evaluating computer system
performance: a review and proposals. In Statistical Computer Performance Evaluation, W.
Freiberger (Ed.), Academic Press, New York, N.Y., 1972, 3-24.

HELLERMAN, H. Discussion of session II. In Statistical Computer Performance Evaluation,
W. Freiberger (Ed.), Academic Press, New York, N.Y., 1972, 99-200.

KERNIGHAN, B. W., AND McCILROY, M. D. UNIX Programmer’s Manual, Seventh Edition,
Vol. 1, Bell Labs, January 1979.

KIENZLE, M. G., AND SEVCIK, K. C. Survey of analytic queueing network models of com-
puter systems. Conference on Simulation, Measurement and Modeling of Computer Sys-
tems, August 1979, 113-229.

KLEINROCK, L. Swap-time considerations in time-shared systems. IEEE Transactions on
Computers C-29, 6 (June 1970), 534-540.

LAzowskA, E. D. The benchmarking, tuning, and analytic modeling of VAX/VMS.
Conference on Simulation, Measurement and Modeling of Computer Systems, August 1979,
57-64.

LIONS, J.. A Commentary on the UNIX Operating System, University of New South Wales,
1977.

McKINNEY, J. M. A survey of analytical time-sharing models. Computing Surveys I, 2
(June 1969), 105-216.



Bibliography Page 51

24.

25.

26.

27.
28.
29.

30.

31.

32.

34.

35.

MunTZ, R. R. Analytic modeling of interactive systems. Proc. of the IEEE 63, 6 (June
1975), 946-953.

MunTZ, R. R. Queueing networks: a critique of the state of the art and directions for the
future. Computing Surveys 10, 3 (September 1978), 353-359.

NIELSON, N. R. An analysis of some time-sharing techniques. Communications of the
ACM 14, 2 (February 1971), 79-90.

PDP-11 Processor Handbook. Digital Equipment Corporation, 1981.
Peripherals Handbook. Digital Equipment Corporation, 1981.
RITCHIE, D. M. The UNIX I/O system. Bell Labs Internal Memorandum, 1974.

RITCHIE, D. M. A retrospective. Bell System Technical Journal, Part 2, July /August 1978,
1947-2969.

RITCHIE, D. M., AND THOMPSON, K. The UNIX time-sharing system. Bell System Techni-
cal Journal, Part 2, July /August 1978, 1905-2930.

ROSE, C. A. A measurement procedure for queueing network models of computer systems.
Computing Surveys 10, 3 (September 1978), 263-280.

SCHERR, A. L. An analysis of time-shared computer systems, Research Monograph No. 36,
The M.L.T. Press, Cambridge, Mass., 1967.

SHEMER, J.. E., AND HEYING, D. W. Performance modeling and empirical measurements in
a system designed for batch and time-sharing users. Proc. AFIPS 1969 FJCC, Vol. 35,
AFIPS Press, Montvale, N.J., pp. 17-26.

STRAUSS, J. C. A simple thruput and response model of EXEC8 under swapping satura-
tion. Proc. AFIPS 1971 FJCC, Vol. 39, AFIPS Press, Montvale, N.J., pp. 39-49.



Bibliography Page 52

36.

37.

38.

39.

Teory, T. J. Properties of disk scheduling policies in mﬁltiprogrammed computer sys-
tems. Proc. AFIPS 1972 FJCC, Vol. 41, Part I, AFIPS Press, Montvale, N.J., pp. 1-21.

TeoRY, T. J., AND PINKERTON, T. B. A comparative analysis of disk scheduling policies.
Communications of the ACM 15, 3 (March 1972), 177-284.

THoOMPSON, K. UNIX implementation. Bell System Technical Journal, Part 2,
July /August 1978, 1931-2946.

TSUNGADO, M. Multiprogramming, swapping and program residence priority in the
FACOM 230-60. Proc. AFIPS 1969 SJCC, Vol. 34, AFIPS Press, Montvale, N.J., pp. 223-
228.



