PERFORMANCE ASPECTS OF IMS
by

BROBERT GERARD MEAGHER

B.Sc., St. Francis Xavier University, 1978

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE
in
THE FACULTY OF GRADUATE STUDIES

(Department of Computer Science)

We accept this thesis as conforming
to the reguired standard.

THE UNIVERSITY OF BRITISH COLUMBIA

June, 1980

{c) Robert Gerard Meagher, 1980

ii

In presenting this thesis in partial fulfilment of the
requirements for an advanced degree at the University of
British Columbia, I agree that the Library shall make it
freely available for reference and study.

I further agree that permission for extensive .copying of this
thesis for scholarly purposes may be granted by the Head of my
Department or by his representatives. It is understood that
copying or publication of this thesis for financial gain shall
not be allowed without my written permission, .

Department of Computer Science

The University of British Columbia
2075 Wesbrook Place

Vancouver, Canada

VT 1HS

June 25, 1980

iii

Abstract

This paper deals with the tuning of the data Dbase
management éystem IMS.. We will look at IMS in some detail; in
particuiér”'we will'considerv{hose aspects of IMS which - are
thought to have a measurable effect on performance at an IMS
installation. These are: the original design of the data
base, the adoption of logical‘ relationships and secondary
indexes and the choice of access method. Other features are
thought fo have a lesser effect ﬁut‘some of these will also be
considered. These aspects will be evaluafed by their ability
to decreése(processing .time, increase flexibility and/or
decrease storage requirements.

The proposals .presented in the first part of the paper
will Dbe further evaluated in the final chapter. . The
experiences of three IMS users will be incorporated to support
or refute these proposals, as well as to provide inéight into
the kinds of performance. studies being done, when they are

done and what results are expected. .

Table of Contents

AbstraCt-.oo.ooo...o.-coc.n.-ocoo...c.....ooo.ooq

Llst of TableSl L] .. LI] L] ' .. . o LI] * se e
List of FlgureS-.....-......o.-.-.....-.-........

Prelude;....;a...u....-........Q...-QQ...ﬂ§,._
Data Base Management SySteMSeececcescscccocsce .
Information Management SysteDiceececcceccccee.
Performance.....l. P WS SO D O 5 0O C SO0 OO0 SO s 08

SYnOPSls.oooc,o..oooooo.oa....ooocooooooooooc -

IMS Overvlew.............................Q... -

IntroduCtlonll...'....I.l....‘Oll..l.;...l..
Data Base Organlzatlon..;..;....;....;..;...

Data Base DeSlgnoooooo.-oo..o.o..oo.nooo.oon.

Logical RelationshipSeceecececscccacacas

Secondary INAEeXCSeceecscscecccccacccnssss .
Control-.......“.-........................... .
Telecommunlcatlons...ooo;;oou.ooo.;o.;oco..oA

Utllltles.......-.l..l...‘.I.......‘........ -

Checkp01nt/Restart.....................

Statlstlcal Analy51s...................T

Database DeSigNeesccsccencascensscsssscassnna
Introductlon...............................--
Data Model CharacteristicCSciesceccceccscconcees.
The Data Base RECOLdesecesceceseaconccacassins
Logical RelationshipSeececescescccccccccccaca.
Secondary INdeX€Ssasesssceccasssscsacscsacea .

Access Methods..--...........-.‘.............

Introductlon..'....;.........'.‘..‘.......'...‘Q. -

HSAH..I..-..-......I..'...'..............Q‘. B

HISAMI....‘O.I....-..-.......l......‘-...lll

HIDAM..Q.......'...Q...........'.....'...... -

HDAM....-.......--....0.......-.......... LRI)

Space ConsideratioONScecceccccccccccsccaceacss .
Time ConsideratiONSescesscccccccscenccccsces
Constraints and EXteNSiONSeessceacsccsssscnss .
Distributed Free SpPaCCececcscccccscccce.
Multiple Data Set GIrOUPSeeessscssescses .
Root-0Only Access MethodSsecewceccccnsace.
Chlld Twin POlnterS.............-.-....<

iii
vi
vii

Ul W W ot

OO

11

17
21
22
23
23
24

25
25
26
28
36
42

47
47
48
49
54
57
58
66
69
69
71
72
73

iv

5.. Other Performance ConsideratiONSecececccecccceaces .
INtroduCtiONeseecscnsccasasaasnsacssccncsssses .

Fast Path‘....'.;.....;...Q..I.l.l...‘._

EXlt RoutlneSICQOOOOQOQl....;;..‘.....Q_
ReorganizatioNecaceseececassnscccsccecase.

Buffering Faciliti€Sieececaccescccsssconcencon .
Application ProgrammMiNgeeccccececcsccccscccacos .

Maln Storage Requlrements.........'..'...-..

6._ Appllcatlons.............'.....'....-........_
Introductlon..-............;-.........-.-..o R

Case ‘. B C. Hydro..........-.......'.-..I..

Ca.se 2: I C.B C..........‘..'.....'.........V.
Case 3 B C. Tel........Q...‘.C...... -
Concluslons.... ® OO0 9D 90000 800 ...‘. ® o0 000" 80

Footnotes........‘;..........;;;;.;.......'...;QQ,. -

Bibliography...........,.....l...........‘...-...' -

74
74
74
75
75
76
79
81

83
83
84
86
88
9¢C

93
94

Table

Table

Table

Table
Table
Table

Table

2.1

2.2

3.2

4.1

4.3

vi
List of Tables

Processing Routines and Physical Record Interfaces
for use with IMS data bases.

DL/I subroutine codes and descriptions.

Entities, attributes and relationships of the ORDER
data base.

Grouping attribuates into segments.
Abbreviations and descriptions. .
Access method ratings for query response tinme.

Access method constraints.

Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
-Figure
Figure
Figure

Figure

Figure.

Figure.

Figure
Figure

Figure

Figure

Figure
Figure

Figure

vii
List of Figures

Logical data structure of the Parts data base, .

Logical Relationship between Parts and Orders data
bases.

Secondary Indexing.

Access methods and storage structures.
HSAM implementation.

HISAM implementation, .

HDAM implementation.

HIDAM implementation.

IMS/VS system flow. .

ORDER data base - first normal form..
ORDER data base - second normal fornm.
ORDER data base - third normal form. .
ORDER data base - fourth normal form., .
Unidirectional logical relationship. .

Bidirectional logical relationship using physical
pairing.

Bidirectional 1logical relationship using virtual
pairing.

An order processing data base.
Secondary data structure. .

Logical record of an ISAM/0OSAM implementation of a
HISAM data base.. '

Logical record of a VSAM implementation of a HISAM
data base. :

Effect of logical record length on storage space. .
Effect of control interval size on storage space..

Control interval of a HIDAM data base.

viii

Acknowledgenments

I would like to sincerely thank Dr. Paul Gilmore for his
gauidance, constructive criticism and financial support for
this project. I am indebted to Gary Watson of B.C. Hydro,
Salim Nuraney of I.C.B.C. and Emile C3té of B.C. Tel for

their valuable donation of time and experience,

Data Base Management Systems-

As we enter the 80's the data and information processing
requirements of modern society are becoming increasingly
complex and vast. As methods of production and marketing have
progressed in leaps and bounds, so too has the data processing
industry. As recently as 20 years ago, data processing
departments (as we know them today) were nonexistent. Today
they are the very heart of the organization..

As the size and complexity of organizations have

increased, their information needs have increased even more

rapidly. No 1longer 1is it possible for one individual to
understand completely all aspects of the organization.
Hierarchies of control develop.. Jobs become more and more

specialized. Organizations are affected not only by 1local
demands and tastes but also by governmental legislation and
world trade. PFacts and figures must be collected, stored and
made available for future reference - for the day to day
operation of the company, to satisfy legal requirements and

for management decision making.

"The importance of data to the functioning of the
organization, coupled with the large investment in developing
and maintaining the data base, emphasizes that data should be
managed to the same degree as other valuable corporate
resoarces, "1

A data base is a collection of these facts and figures

for use by the organization.. Although not necessarily, the
data base 1is often stored on tape or disk with a computer
being used for storage, retrieval and processing. It is often
the case that these data bases contain great quantities of
data of:vétious kinds'wﬁich are required for a variety of
purposes by several users.. Such a scenario has prompted the
development of a particular pieée of software known as a Data
Base Management System (DBMS).

Basically, a DBMS provides a means by which the data can
be shéred by different uéers to reduce redundancy and,
inconsistency and to enforce standards and security
restrictions. It is, in fact, a tool for managing the data..

‘Many commercial data base management systems have been
developed and marketed.. The generalized features of these
systems make them adaptable to the particular requirements of
different organizations, and once adopted, modifications are
possible to :eflect the changing data processing requirements
of the enterprise. .

Data base management systenms haye beeh on the market for
the past 10 years but only recently have they been used
extensively. New developments in data base technology and
applications are making it increasingly evident that a DBMS is

a requirement in most data processing environments. .

WAt the 1979 Industry Briefing held by International Data
Corporation, it was projected that data management software of
all types will account for over half of +the proprietary
software market revenues 1in 1983 (estimated to be $2.3
billion). A sizeable portion of this amount will be spent
specifically for data base management systems."?2

IBM's Information Management System (IMS) is one of the
oldest data base management systems on the market and yet it
is one of +the most sophisticated in terms of options and
features available, It is also, by far, the most widely used
of all DBMSs.. In 1979 the total number of users of IMS was
approximately 1200.3

IMS has gone through several stages of development. . The
initial implementations ran under the operating system 0S/360
and were known as IMS/360 Version 1 and IMS/360 Version 2.
The current version is IMS/VS Version 1 which runs under 0S/VS
{Operating System/Virtual Storage). This paper will be
concerned with the latter which for the sake of brevity will

be shortened to IMS/VS or simply INS.

With growing information processing demands it becomes
increasingly important that this processing is executed within
an acceptable time frame and for an acceptable cost.. Thus,
the concept of performance, and in this case the performance

of a DBMS, must be considered..

",... performance may be interpreted as the technical
equivalent of the economic notion of vwvalue. That 1is,
performance is what makes a system valuable to its users.
Like value, performance is only one of the two faces of
reality in the economic world, the other side being cost."*

To achieve a specified 1level of performance for all
users, the data base designer must be concerned with the
cost/value tradeoffs associated with each potential use of the
data base and must choose those designs which optimize the
overall performance. ~Such performance evaluation studies are
an ongoing concern and do not yield a permanent solution.. As
an enterprise's data processing requirements change, it will
be necessary to consider these changes (as for the initial
design) from a performance standpoint.

With a -data base managément system at least two aspects
of performance are evident - those which concern the
developers of the DBMS and those which concern the individual
installation and its particular application.. This latter
aspect, which can best be described as tuning, will be the
subject of this paper.. Because of the nature of a DBMS, its
pérformance is very much dependent upon the environment in
which it 1is being.run-and in particular, the data processing
requirements and the nature of the application data of the

installation.

Synopsis -

This paper 1is <concerned with data base management
systems, in particular, IMS/VS. It is also concerned with
performance, in particular, the tuning of IMS/VS.. What will
be presented in the ensuing chapters will be of importance to
system designers and data base administrators both during the
initial design of the IMS application and whenever any major
modifications are made at the installafion. _

Only the nmost ‘importaht aspects - those which affect
performance most - will be considered. One could easily go on
at great length outlining minute details and their probable
effect upon performance, however, if there 1is no noticable
improvement in performance, the study is futile from a
practicalh standpoint, and that is what 1t is about -
practicality. |

In Chapter 2, INMS/VS will be discussed in suﬁficient
detail sc as to briefly introduce the_reader to the subject.
It will then be possible to consider performance in context.
Chapter 3 deals with the design of the IMS.data base - how the
data base should be organized; Chapter 4 <covers the access
methods wused - how the data bases are arranged on secondary
storage; and Chapter 5 treats +three other considerations -
buffering, application programming and main storage
requirements. Chapter 6 will related the tuning experiences
of three 1IMS installations to the aspects of performance

introduced in Chapters 3, 4 and 5.

Chapter 2

Introduction

In this chaptér ah attempt will be made to introduce the
basic struétural entities of IMS. This treatise will in no
way be-éomplete., It is offered here as background material to
the ensuing chapters and hence will be oriented towards those
things which affect the performance of an IMS installation..

For an indepth coverage of +this +topic, the interested
reader is directed to fhe following sources: Chapters 13-18 of
Date[6], pages 84-168 of tﬁe IBM Systems dJdournal [27], the

IMS/VS General 1Information Manual-[16] and the IMS/VS Primer

[19].. All of the above are .very readable and thorough.. For
informdtion not contaihed in these, one should consult the

other IMS/VS manuals listed in the bibliog:aphy--

Data Base Organizatien

INS/VS 1is a hierarchical data base management system. A
particular installation will probably consist of several data

bases such as the one illustrated in Figure 2. 1..

PART

STOCK ORDER

DETAIL

Fig. 2.1 Logical data structure of the PARTS data base.

This is a logical representation of +the physical data
base. Logical réfers to the way in which the data base is
viewed by various users, Physical refers to the way in which
the .data is actually stored on magnetiq tape.or direct access
storage devices.

A hierarchy is made up of parent-child relations. 1In
this example PART is the parent of both STOCK and ORDER
because it is immediately above it in the hierarchy.: In a
similar manner, ORDER is the parent of DETAIL.
Correspondingly, DETAIL is a child of ORDER and both STOCK and
ORDER are children of PART. All children (which are of the
same type) of a given parent are known as twins. For example,
all occurrences of STOCK for a given PART are twins, .

PART is said to be the root of the hierarchy because it

has no parent. Each root occurrence determines one data base
redord which may contain several occurrences of STOCK, ORDER
and DETAIL. There will df course be several occurrences of
PART and‘ ihus several data base records. . PART, STOCK, ORDER
and DETAIL are said fo be segments. The segment 1is the
smailest amount of data which may be transferred by one access
to the data base. However, a segment is made uap of one or
more fields, for example, the PART segment may contain fields
which represent the pért number, the part name and the part
color,

One of the fields of a segment may be designated as the
segment sequence field or key.. If a segment has a key,
segments of that type occur under their parent segment in
ascending or descending key value sequence.. For root
segments, the key must be uﬂigue.. Other segments may have
multiple occurrences of the same key, but when inserting such
a segment it is necessary to specify if it should be placed
FIRST, LASf or HERE (current position in the hierarchy) with
respect to other occurrences of the same key.

The sequence field is also used as all or part of a
symbolic pointer to a segment in a data Dbase.. The symbolic
pointer is actually the. concatenation bf the keys in the
sequence fields of all segments that must be retrieved to
reach the desired segment, including the sequence.field key of
the desired segment,

All segments that fall below another segment (i.e., its

children, its childreﬁ's children, etc.) are known as its

dependents. The hierarchical sequence is the ‘order in which
the hierarchy is stored.. In IMS the hierarchical sequence
folloﬁs a preorder traversal of the tree (see [2], pp.. 84).
When the data base of figure 2.1 is stored, it will consist of
the first occurrence of PART followed by all STOCKs associated
with that PART followed by all ORDERs associated with that
PART. . Each ORDER will be followed immediately by all DETAILs
associated with that ORDER.. All of this comprises one data
base- recofd and will be followed by the next occurrence of

PART and thus the next data base record.

Data Base Design

When designing a‘daté base for a particular installation,
there are many features of IMS which may be adapted to best
suit the_envirohment. Three such things will be outlined
here, namely: 1logical :elafionships, secondary indexes and

access methods.

Logical Relationships

As was noted, each 1IMS location wili probably confain
several'déta bases. It is often the case that the same data
must be carried in several data bases. This redundant data
can result in inconsistencies and increase the work requiréd
in insertion, deletion and updating. To prevent this, logical
relationships should be used. .

Logical relationships provide a facility to interrelate

10

segments from different hierarchies (data bases). In doing
so, new hierarchical structures are defined which provide
additional access capdbilities to the segments involved..
These segments need not come from different data bases,
though, as it is possible to logically relate segments fronm
the same data base. . |

The basic mechanism used to build a logical relationship
is to specify a child segment as a logical child, by relating
it to a second parent, the 1logical parent.. Figure 2.2

illustrates such a logical relationship.

Parts Data Base Orders Data Base
PART l’ ORDER
N
AN
\
AN
N
STOCK : N DETAIL SHIPMENT

~ Fig. 2.2 Logical relationship between Parts and Orders data

bases.

In this illustration, DETAIL and SHIPMENT are Aboth
physicai children of ORDER.. By making_DETAIL a logical child
of PART, PART becomes the logical parent of DETAIL. Thus, two
acéess paths are provided £o DETAIL, through PART and through

ORDER.

1M

Of course, this structure is transparent to the uéer when
he queries the data base.. Special circumstances .arise,
though, when an attempt is made to insert, delete or replace..
For example, what if a hew DETATL segment is to be inserted
and the correspohding PART does not exist? It 1s necessary to
explicitly state thé course of action to be followed if such a

situation arises.

Secondary Indexes

In IMSé a secondary index caﬁ be used to index a given
segment on the basis of any field of that segment or oh the
basis of any field in a dependent of that segment. The field
on which the index is based may Be a concatenation of up to
fi&e such fields (froh the same segment) taken in any order.

Each secondary index represents a different access path
to the daté base other than via the root key.. Such an access
path can provide4faster retrieval of data. Figure 2,3 éhows

an example of a secondary index.

ORDER# Secondary
Parts Data Base. Index Data Base

PART ORDER#

v

/

AN

STOCK DETAIL p

Fig. . 2.3 Secondary indexing.

12

It can be seen from this illustration that a new data
base 1is established which is known as an index data base. 1In
this example, the segment ORDER is the index source segment as
it contains the field ORDER# on which the index is
constructed. Each segment in the index data base contains an
ORDER# field and a pointer to the appropriate segment in the
Parts data base. These segments are known as 1index- pointer
segments and are. ordered on the index field. ’The segment
pointed to by the index daté base is known as the index target
segment. . |

of courée,.the index source segment and the index target
segment may be the same segment. The index target'segmentlis

usually; but not always, the root segment of the data base.

Access Methods

IMS has two access levels for the storage of data base
records. The first level consists of the routines within the
IMS control program.. These routines process' the second level
access methods which reflect the organization of the data on

tape or disk.. See Table 2.1 and Figure 2.4.

13

Processing Routines:

Hierarchical Sequential Access Method (HSAMN)

Hierarchical Direct Access Method (HDAMN)

Hierarchical Indexed Direct Access Method {HIDAM)

Hierarchical Indéxed Sequential Access Method (HISAM) *

Physical Record Interfaces:

0S/VS Indexed Sequential Access Method (ISAM)
0S/VS Sequential Access Method (SAM)
0S/VS Virtual Storage Access Method (VSAM)

IMS/VS Overflow Sequential Accéss Method (0SAM)

¥HISAM can also be used as a physical record interface..

Table 2.1 Processing Routines and Physical Record Interfaces

for use with IMS data béses;.

Processing ,'
Routines HSAM HISAM HIDAM HDAM
Physical [SAM/0 SAI‘J HISAM/OSAM 0SAM
Record SAM or or - or
Interfaces VSAM VSAM VSAM
> >

Data |
Bases HSAM - HISAM HDAM

' N—

Fig. 2.4 Access methods and storage structures. .

14

The actual data is stored in data sets, the organization
of which is determined by the physical record interface.. For
example, an HSAM data base is stored in a SAM data set.. In
the case of a HISAM or a HIDAM data base, two data sets are
needed {one for the index and one for the rest of . the data).
If VSAM is chosen as the physical record interface, the index
data set is known as a Key Sequenced Data Set (KSDS) and the
other data set is kncwn as an Entry Sequenced Data Set (ESDS).
Otherwise, ISAM or HISAM and OSAM are used for these purposes. .

In an HSAM data base, the hierarchical sequence is
represented entirely by physical contiguity. The segments of
each data- base record are stored in hierarchic (preorder)
sequence, 1in one or more consecutive data set records.. The
last segﬁent of one record is followed immediately by the root

segment of the next data base record.. See Figure 2.5 for an

illustration.
SAM
” oo one
PSS AP data base
AP record

Fig. 2.5 HSAM implementation:

HISAM allows for indexed access to the root segment and

15

sequential access to dependent segmehts._ It requires two data
sets for implementation.. These may be ISAM and OSAM or if
VSAM 1is used, these two are replaced by KSDS and ESDS
respectively.

Again, data basé records are stored in physically
contiguous locations in hierarchical sequence.. However, the
storage area is diQided into an indexed area (ISAHN of KSDS)
énd an overflow area (OSAM or ESDS). The root segment and as
many éegments of the data base record as cén be accommodated
are stored in the former, the latter is used to store the
remainder of the record. Physical pointers are used to chain
the index - area part of thé record to the part of tﬂé record
stored in the overflow aréé and to chain subssquent data set

records in the overflow area, if more than one is required.

See Figqure 2.6 for an illustration. .

'ISAM or KSDS | ‘0SAM or ESDS
' - ’ 7777777 H
VA= o

/L

Fig.. 2.6 HISAM implementation..

HDAM provides direct access to the root segment by a

hashing function and chainihg;A The storage area is made up of

16

a series of data sets which are diyided into a root
~addressable area and an overflow area. Either OSAM.or ESDS
are used for these purposes., Each déta set holds all
occurrences of a given set of segment types. The record
structure is maintained by pointers which connect the segments
in hierarchical séguence._

The root addressable area is used to store root segments

and a limited numker of dependent segments. Synonym chains
"are used to connect all root segments that hash to the same
data set record.. Dependent segments of a data base record are

stored in the overflow area and are connected by physical

pointers.. See Figure 2.7..

= OSAM or ESDS

Root
Addressable
V//CI}///I-) Area
Pri , — :
St — =
\ VIV n

‘0SAM or ESDS

,//// : Overflow

= : Area
Secondary

e
Data Set W///A

Fig. 2.7 HDAM implementation.

17

HIDAM is similar to HDAM except that record sequencing is
maintained through an index data base which is implemented as

an ISAM or KSDS data set. See Figure 2.8.

Primary Index Data Base HIDAM Physical Data Base
HISAM or KSDS 0SAM or ESDS

A

Primary
Data Set

——s 7

e

"

OSAM or ESDS

Secondary |
Data Set | W

Fig 2.8 HIDAM implementation. .

INS/VS is a control program that provides data management
and data communication management services., It operates unde;
" the control and with the facilities of 0S/VS as one of the
0S/VS processing programs. It therefdre requires one or more

0S/VS regions which, once created, are referred to as IMS/VS

18

' regions. Figure 2.9 shows the overall system flow..

0S8/Vs

IMS/VS Control Modules

Data Message _ P Application
Commun- | |Scheduler || DL/I Programs
ications s Application |, for
A . Programs ~ .| Batch
o - for Processing
- Message } .
Common Processing | A
Service . " N | | y'y
J §
: Message Batch Message
Control Processing Processing
Region Region - |Region
A\
System
Log'

User. ‘
Terminals

Fige . 2.9 IMS/VS system flow.S5

The 0S/VS nucleus and its resident extensions provide the
service modules and access methods necessary for an INS/VS
application progranm.

The data communication feature of IMS/VS provides

19

facilities that permit .users to communicate through terminals
with a single on-line execution of the éystem;‘ Communication
may take the form of: (1) transmission of messages bétween
terminals’ and‘ user?ﬁritfen application progranmns; (2)
transmission of messages between | terminals; and (3)
transmission of commands and command responses between
terminals and the on-line execution.

When an input message is received from a terminal, the
data communication facilify calls the common service and the
message is logged and queued.. Once messages are queued and
waiting for processing and a region is available for message
processing, control is passed to message scheduling. . There it
is determined from the message prefix which message processing
program is needed.. If necessary; this application program is
loaded; control is then passed to it..

Themappiication program will then ﬁake requests for input
messages and/or data from the data bases.. These requests are
handled by Data Language/I (DL/I) - which references either
common sefvice (for"queued messages) or IMS data bases (for
data base requests). The application program may also
generate its own messages for queuing or make modifications to
the data bases. |

These application proérams are written in a host language
(PL/I; COBOL or Assembler Language) from which DL/I may be
invoked by subroutine calls. There are nine such DL/I

subroutines. . See Table 2.2 for a list and descriptions, .

20

Code Description

GU Get Unigque

GN Get Next

GNP Get Next Within Parent

GHOU Get Hold Unigque

GHN Get Hold Next

GHNP Get Hold Next Within Parent
ISRT _ | Insert .

DLET Delefe

REPL Replace

Table 2.2 DL/I subroutine codes and descriptions.

Tﬁese DL/I éalls enable the . application program to
navigateAthrough‘ﬁhe data base. A position poihter {(as many
as one for each possible path in thefhierarchical tree) marks
the progress.through the data baée in a preorder traversal of
the data base tree. .

When the application program terminates or Trequests
another input meésége, all .its gqueued output messages are
transmitted to the designated output terminals.

IMS/VS can also be used for batch processing.. In this
case, a subset of +the . IMS/VS controlk facility, the Dbatch

application program and DL/I all operate out of a single 0S/VS

region, These batch processing jobs are submitted as ordinary

21

0S/VS Jjobs agd cannot use the IMS/VS data bases concurrently
with the message processing proérams.

For each application program {batch or message
processing) a program spécificafion block. (PSB) 1is created.
It defines the application data structure required by that
application program, . Each Psﬁ contains onhe or more programn
communication block (PCB), one for each logical data base the
program intends to use;‘ The PCB provides a mapping from the
logical data base to the physical data base.i It also
specifies the-kinds of accesses allowed»by the program, ie,.

read only, update, insert, and/or delete.

Telecogggnications

The telecommunications facility of 1IMS/VS provides the
linkage between terminals and the remain@er of the IMS/VS
system. Because of the 1large number of terminal types
supported by IMS/VS, the concept ofla logical terminal has
béen provided. A logical termihal is an abstraction of a real
terminal in which only those aspects necessary for writing
application programs and the operation of the system are
apparent. .

One physical terminal <can have one or more logical
terminals associated with 1it. = The IMS/VS user refers to a
logical terminal and never has to worry about physical

terminal addresses. If a physical terminal 1is rendered

22

inoperative, the logical terminals normally associated with
that terminal can be assigned to another physical terminal. .

The master terminal is a logical.terminal ‘that acts as
the operational centre of 1IMS/VS. It has complete control
over IMS/VS and is responsible for such things as initial
start-up, monitoring and for dynamically altering the
operation of.the systeh._

All input and output messages are writﬁen to a system log
to assist in backout' and recovery. Each message 1is also
queued in main storage with direct access storage for backup
as required. In this way, messages can be received by the
system although the resources necessary to process them may
not be immeaiqtely availabie. |

A message formatting service (MFS) allows application
programs to deal with logical meséages instead of. device
dependent data.. MFS uses information abput the format of
messages going to and coming from devices and application
programs to4do the formatting.h This allows the user to change
the presentation of daté on a‘devicé without actually changing

the application program.

Utilities
IMS/VS provides many utilities to aid in the day to day
ranning = of the systen. Three such utilities will be

introduced here, namely: checkpoint/restart, reorganization

23
and statistical analysis. .

Checkpoint/Restart

To ensure the integrity of its data bases and message
processing, IMS/VsS uses checkpoint/restart. At reqular
intervals during IMS/VS execution, checkpoints are written to
the log tape (see Figuré 2.9) « This is to limit the amount of
reprocessing required in the case of an emergency restart. A
checkpoint 1is taken after a specified number of log records
are written to the log tape or after a checkpoint command is
issued by an application program.

In case of failure, IMS/VS is restarted using the current
log tape. The data Dbase changeé made 'by inconplete
application programs are backed out and oufput messages
generated by these programs are deleted. The input messages
already processed are- then requeued. Méssage processing

programs are then restarted and batch jobs are resubmitted. .

Reorganization

Over time, it may become necessary to reorganize one or
more of the data basess This is expedient when a number of
inserts and deletes cause segments of a data base record to be
no longer physically adjacent or when deleted segments
continue to occupy storagé space. Some structural changes may
be made during reorganization, for instaﬁce, a secondary index
or a logical relationship may be added.

There are three major steps in reorganization: (1) unload

24

the data base; (2) delete the o0ld space, redefine the new
space and optionally make structural changes; aﬁd (3) restore
the data base. Each of these steps involves the running of
several utility programs dependent upon the type of storage
structure used and the number and kind of structural changes

to be made. .

Statistical Analysis

The IMS/VS statistiéal analysis | utilities provide
statistical information about online IMS/VS operation. . The
information is collected from the IMS/VS system log. Various
reports are available giving such things as the number of
messages queued but not sent, message traffic for‘ lines,
physical terminals and logical terminals and total and average
CPU task timés. This Iﬁformation is useful 1in determining

A3

system load characteristics and for detecting bottlenecks. .

25

Chapter 3 Data Base Design

Introduction

The design of an IMS data base is neither unique nor
.straight forward.. Depending on the installation, the design
stage can last for several months to a year and, being a
repeating process, the analysis-design-implementation cycle
will probably exist for the entire life of the application. .

In fhe'past, data base design has been regarded primarily
as a process of conversion - adapting the existing files and
data structures to make theh compatible with the DBMS. A more

open-minded and definitive approach is needed.

"Data base generation should not be regarded as a
conversion problem, but ‘'as an opportunity to plan the
organization, use and management of data.. The emphasis should
be on analysing the data requirements of a business or other
enterprise, and on the accurate reflection of these
requirements in the schemas,"$

Fortunately, the +trial .and error approach to data base

design is being replaced by a more purposive methodology. .

"Data base design has moved a long way from being a black
art toward being a rigorous science, but there is still roon
for the artist. The designer must still discover from time to
time a way of doing something that seems impossible."?

In this chapter the performance components of data base
design will be considered. The characteristics of a data

model which permit +the necessary processing within an

26

organization will be outlined. Following this, the design of
the data base record will be examined and finally the
performance aspects of 1logical relationships and secondary
indexes will be looked at. .

First some definitions. Entities are concepts or objects
of interesf to an organigation, something about which facts
are gathered and 4kept.3 For example, departments and
employees may be Ythought of as entites. An entity may be
connected to anothef entity by a relationship; this defines a
mapping between the two entities. For example, departments
are. made up of émployees; the relationship going from
departments to employees is that of employment.. Entities also
have attributes. An attribute is a property‘of an entity and
would notv normally be meaningfu; except when considered with
the entity to which it beléngs. For exanple; name, salary,
wage and marital status might all be considered atfributes of
an employee, A transaction is the basic building block of an
enterprise's data processing needs.. It is an action or set of
actions which require access to the data base, For example,
an employeé is added to a department or an employee's salary

changes., See Table 3.1 for further'examples.m

Data Model Characteristics
The choice of IMS as a data base management systen

imposes severe constraints on the way in which the data base

27

content may . be viewed. The hierarchical model contains
inherent characteristics which may or may not be present in a
relationall or network model. Because ' of these
characteristics, the appropriateness of the hierarchical model
is dependent wupon the data processing requifements of the
organization.'

In - general, IMS (or any hierarchic DBMS) is most
expedient when the structqre to be modelled is hierarchical in
nature. This occurs when the mapping between entities is
one-to-many.__For example, each\department has many employees
and each shipping order is made up of several parts each of
which may have several components.. Pure hierarchies are hard
to find though - an employee may actually work in two
different departments and what is considered a component for
one order may actually be a partbfof another order. . These
many-to-many relationships, while not impossible to model,
usually entail duplication of stored data or extra processing
when a hierarchical étructure is imposed upon them.

Befdré work can be done on the design of-the data base an
extensive analysis of the organization must be made in order
to determine the data requirements. . In this analysis,
entities, relationships, attributes and transactions Qill be
isolated. Fér each, pertinent information such as probability
frequencies, volumes, sécurity constraints and priority of
access will be collected or projected so that they can be used
in the design stage.

Armed with this information the system designer will set

28

about modelling the organization with IMS data bases.
Entities will be. grouped into one or more data bases. Each
data base will reflect relationships between entities and must
be constructed so that the various transactions can be
performed as eésily and as cheaply as possible without
severely affecting the performance of the systenm. .

The data dictionary is an important %tool which can be
used to assimilate this information and provide the connection
between the analysis and deéign stages. IBM has developéd a
program product known As the Data Base/Data Communication Data
Dictionary (DB/DC Data Dictionary) which supports IMS/VS.
-#hen the DB/DC Data Dictionary ' is adopted the user has a
computer processable dictionary in which. he can étore and
retrieve definitiohs, data descriptions, reiationships of data
and program information. The dicti&nary deals with entities
and the attribuates which characterize entifies and

relationships. For more information see the DB/DC Data

-S43

The Data Base Record

The organization of data into data base records can be
the definitive design choice wifh regard to the system's
performance. A good data base design should: (1) refléct the
organization of the data in the real world, (2) pernmit the

processing of as many different transactions as necessary with

29

a minimal amount of effort, and (3) meet performance standards
so0 as not to over-tax the total systen. These are often
conflicting objectives and the choice of a coméromise design
may be a difficult task.

For each data base if .is first necessary to select a
root._.All other entities in the data Sase must be related
(either directly or through other entities) to the root.in a

parent-child type relationship.

"Unfortunately, hierarchical methods are incapable of
supporting more than a single root; consequently, they have
forced a generation of designers to select a single entity
type as supreme when in fact there are usually several that
are logical peers, that is, neither superior nor inferior,
neither independent nor dependent, neither parent nor child."?

Because of the way IMS data base records are stored, the
root is always the firét segment of the record to be accessed,
making . it faster to retrieve the root than any other segment..
The choice of a root will also determine the number of data
base records - one for each root occurrence - as well as the
order in which the records will be accessed; except for HDAMN,
records are stored in ascending or descending order based on
the value of the root key..

For illustrative ' purposes, a data base which 1is to
consist of the entities, attributes and relationships given in
Table 3.1 will be considered.. Starting from these initial
definitions we will proceed to develop an IMS data base. The
reader should note that the resulting design will not be

optimal, rather, it provides an initial data base upon which

3¢

improvements can be made depending on the wusers own
performance demands. Neither will the resulting design (nor
intermediate designs, for that matter) be unique. Even in the

simple example given there may be choices other than the ones

chosene.
Entities: Attributes:
ORDERS Number
PARTS Number, Coior, Size
CUSTOMERS - Number, Address, City, Routing

Relationships:

Each order has an associated part or parts. .
Each order has an associated customer. .

Each city has an associated routing. .

Table 3.1 Entities, attributes and relationships of the ORDER

data base.

since this data base .is to process transactions
concerning éhe filling and shipping of orders, we will call it
the ORDER data base.. Since both PARTS and CUSTOMERS are
related +to ORDERS we will select ORDERS to be the root of the
data base, leaving the attributes of PARTS and CUSTOMERS to be

dependents of ORDERS. Fiqure 3.1 shows the hierarchical

31

representation of such a data base so far.

ORDERNO .

't PARTNO .| PARTCOLOR | PARTSIZE |CUSTNO.|CUSTADD.|CUSTCITY|{CUSTROUTE

Fig. 3.1 ORDER data base - first normal form. .

We will use normalization (see Date [6] and Gearhart
[12]) to produce a viable.IMS hierarchy.. Figure 3.1 1is said
to be in first normal form, it consisté of a root and all
entities {and their attributes) which are related to the root.

The second normal form cén be achieved by distinguishing
subordinate keys for the various levels in thé hierarchy. .
These keys, when coﬁpounded with the root of the data base
become the concatenated keys of the Segments in the. IMS data
base.. Associated 'wifh each key will be a set of attributés.
Together they form an IMS segment. Figure 3.2 shows the ORDER
data base in second normal form. PARTS and CUSTOMERS have
been broken into two separate segments, the keys of which are

PARTNO. . and CUSTNO.

32

'ORDERNO.

PARTNO. | COLOR | SIZE xCUS_TNO. ADDRESS | CITY | ROUTING

Fig.. 3.2 ORDER data base - second normal form,

At this point it may furn out that some attributes of a
segment are actually related +to other attributes in the
segment.. In this case, third normal form can be obtained by
removing these attributes from the segment, making one of them
the key of a new segment and making the new segment a child of
the o01ld segment. . In fhe case of the ORDER data base, ROUTING
was actually related to city and not CUSTNO., therefore a new
segment was formed with CITY as a key and ROUTING as an
attribute. . Figure 3.3 shovws the data base. in third normal

form. .

33

ORDERNO .

PARTNO. | COLOR| SIZE . , CUSTNO. ADDRESS

CITY | ROUTING

Fig. 3.3 ORDER data base - third normal form. .

»

If a segment has two or more attributes each of which may
také on more than one value for a given Kkey value, further
normalization is necessary. Foufth'normal form requires that
only‘bne of these attributes be kept in the segment and that
the others be removed to a dependent segment. In our example
both COLOR and SIZE are multivalued; each part comes 1in a
number of colors and in a number of sizes. Figure 3.4 shows
the data base in fourth normal form where SIZE is removed to a

dependent segment.

34

ORDERNO.

PARTNO. | COLOR CUSTNO. | ADDRESS

SIZE CITY | ROUTING

Fig.. 3.4 ORDER data base - fourth normal form. .

Such a process of normalization will produce a working
data base, but not necessarily one which is optimal from a
performance standpoint. Several factors must be considered
which will affect the storage requirements and/or access times
of the data base. These factors may dictate that new segments
be created, that two or more segments be consolidated into one
or that subtrees be repositioned.

Table 3.2 summarizes the general guidelines to be

followed to determine whether fields should be grouped 1into

35

one segment or should be left in separate segments. .

Group in one segment <§——— Separate segments

Few occurrences {<3) Multiple occurrences (>10)
Small (<20 bytes) | Large (>100 bytes)
High use {(every accesé to:record) Low use (once a month)
Read—oniy | ?; Update, insert, delete
General . use K Secured use

Table 3.2 Grouping attributes into segments.10

Very large and very small segménts can. have a negative
effect on the data base.. Long segments will require larger
block or control interval sizes leading to wasted space when
smaller segments Aare put in the same block or control
"interval, Performance ié improved when all segments of the
data base are about the same size.

When a segment is exceptionally iong an improvement in
pecrformance may be sought 1in one of two ways. If the long
segment is seldom used it may be desirable to place it in a
separate data set group (see Constraints and Exfensions,
Chapter 4). If the 1long segment ‘has a number of fields
associateq with 1it, it may be possible to break the segment
into two segments based upon the usage of the fields.

However, adding a new segment does increase the processing

36

necessary to access the dependent segment and should only be
undertaken when the advantages are clear, .

If a segment has a variable 1length field, the field
should be placed at the end of fhe segmeﬁt._ Fields that do
not always occar in a segment should be made into variable
length fields so that space ié conserved when the field does
not occur. It should be remembered, though, that variable
length fields increase the amount of processing necessary
especially if a number of insefts and/or deletes are expected.

When developing a final design, it must be remembered
that segménts within a data base record are stored in
hierarchical order.. That is, segments are stofed from top to
bottom within the hierarchy and fron left to right within
subtrees., Therefore, segments that are referenced mdst
frequently should be close to the top left of the hierarchy..
The least frequently accessed segments should be in the bottom
right of the hierarchy. .

It 1is important to note that to access a segment it is
necessary to access all of the segments on the hierarchical
path up to that point, unless a secondary indek is used..
These implied accesses shou;d also be considered when the

ordering of the tree is being determined. .

Logical Relationships

As pointed out earlier, duplication of data not only

37

wastes storage space but also increases the overhead in
maintaining two copies of the data. Logical relationships
reduce these problems by enabling one copy of the data to be
accessed from two different data bases.. These connections
between or within data bases may be eitﬁer unidirectional or
bidirectional, and in the <case of bidirectional, may be
implemented by physical pairing or virtual pairing..

Logical relationships utilize physical or symbolic
pointers to establish the relationships. Physical pointers'
are of the type used to implement physical data bases and
consist of a relative byte address of a segment from the
beginning of a data set. Physical pointers can only be used
with HDAM or HIDAM and not with HISAM data bases. Symbolic
pointers are the conéatenation of the keys in the sequence
fields of all segments that must be retrieved to reach the
desired segment.

A unidirectional logical relationship allows the user to
traverse between the data bases in one directionm only. It is
implemented by placing a logical parent pointer (either
physical or symbolic) in one of the segments.. Figure 3.5

gives an example.

38

Parts Data Base Orders Data Base
PART ' ORDER
v
/s
P :
e
. 7
7
s
” Ve
e
s
7
STOCK v DETAIL

Fige 3.5 Unidirectional logical relationship.

In this case, each STOCK segment will contain a pointer to its
logical‘parent ORDER.

In a bidirecticnal logical relationship using physical
pairing a dependent segment is'repeated.and a logical parent
pointer is placed in each of the two duplicate segments. Two
paths are created each 1in the same way as the single

unidirectional path was created.. See Figure 3.6.

y

39

Parts Data Base . Orders Data Base

PART : _ ORDER
N
\ s
\ s
\ Phd
\ 7
d
/}
P \
< \
sTock |7 \ STOCK DETAIL
Fige. 3.6 Bidirectional 1logical relationship using physical
pairing. .
Partstgta Base Orders Data Base
PART , _V| ORDER
e !
\ rd
A /_/' P
| - -
- e
I s -
e ”~
| 7
e
7
SToCK |& | DETAIL

Fige. 3.7 Bidirectional 1logical relationship using virtual

pairing. .

490

In a bidirectional 1logical relationship using virtual
paifing, the path in one direction is implemented in the sanme
way as for the unidirectional case. The reverse path, in this
case, 1is implemented by chaining ORDER and all associated
STOCKS with logical child and 1logical twin pointers and
placing a physicai parent pointer in each STOCK occurrence.
See Figure 3.7.

Regardless of whether physical or virtual pairing is
used, similar results are reached. Paths are provided fronm
APART through STOCK to ORDER and form ORDER through STOCK to
PART. In the unidirectional case only one of these paths can
exist.. The choice of unidirectional or bidirectional logical
relationships is dependent upon the processing requirements..
The user should realize that more processing and storage
overhead is required when bidirectional logical relationships
are used and so unidirectiqnél relations should be chosen over
bidirectional whenever possible, For a more. detailed

treatment of logical relationships see Chapter 4 of the

—

The ehoice of phfsical or virtual pairing can have a
significant impact on peifofmance. Physical pairing is best
suited to the application in which accesses are made from both
sides of the relations. 1In our.example, this woulﬁ mean that
it dis equally probable to want to go from PART to ORDER as to
go from ORDER to PART.. It must be remembered, though, that
the STOCK segment is repeated and this requires overhead in

storage as well as processing (maintenance of the second copy

41

is the responsibility of the system and not of the user).

This duplicate segment is ‘not required in virtual
pairing. However, virtual pairing heavily favors'one path
over the other.. In our example,lthe path from PART to ORDER
is egquivalent to that in the physical pairing example. . Td go
from ORDER to PART, ﬂowever, requires that a +twin chain be
followed. Each retrieval of a segment along this chdin must
be considered as an I/0 and therefore may require a great deal
more processing (depending on the length of the chain) than
the other path. Because of this, virtual pairing favors the
applications in which accessing is mostly from one side (or in
which the twin chain is assured to be short) and in which the
;umber of updates of the logical child segment is greater than
for physical pairing.‘

A choice must also be made between physicél and symbolic
pointers. Physical pointers provide fast access to the
logical parent, however, symbolic pointers tell more about the
segment being cdnsidered,‘ When physical pointers are used,
the segment must be accessed before its concatenated key can
be determined. If the logical parent's concatenated key (or a
part of it) is used as a search argument, time can be saved by
using a symbolic pointer as it is not necessary to go into the
other data base to determine the key. A symbolic pointer
requires moré storage spacé but this spdce is easily justified
if searches such as this are common.

When symbolic pointers are used exclusively, time is

saved in reorqganizing the data base as it is not necessary to

42

gather, sort, match and apply the addresses used with the
direct pointers,

When virtual pairing is selected it is possible to select
twin forward, twin backward, logical child first or logical
child last pointers or a combination of these. Logical child
last 1is useful when segments are to be inserted or deleted at
the end of the chain and logical child first when segments -are
tb be inserted or deleted at the first of the chain. 'Twin
backward pointers are useful when the segment to be accessed
is 1likely to be near the end of the chainm and twin forward
poiniérs when the segmept to be accessed is likely to be near
the beginning of +the éhain. Combinations of these have the
effect of the ccmbined advantages, however, it should be noted
that each pointer requires additiomal storage space and

additional overhead for maintenance, .

Secondary Indexes

Secondary indexes can be used to_establish an alternate
access path to a data base., They are particularely useful in
data baées with a large‘number of segment types when it is
necessary tc provide direct access to one of the dependent
segment types. Processing time can be saved by going directly
to the desired segment as opposed to tracing the hierarchical
path. They <can also be used to establish a processing order

other than that in which the data base is stored.

43

When secondary indexing 1is used an index data base is
created. . This data base is implemented in a VSAM data set and
contains a search field and a direct address or symbolic
pointer to the target segment. . If HISAM is used the pointer
musi be symbolic. Direct address or symbolic pointers can be
used for HDAM or HIDAM data sets. Secondary indexes are not
allowed in HSAM data sets. The index may be created
selectively or sparsely by suppressing the creation of an
index entry for some of the source segments.

The source field used to define the secondary index need
not be unique. If a non-unique source field 1is used,
subsequent records with the same source field are stored in a
secondary data set and chained to the primary data set.. In
order to produce unique keys (and save having to access a
secondary data set), a subsequence field may be specified..
This field will also be taken from the source segment and 1is
stored in the index data base as;well.

The index data base itself may be used as a small extract
data base. By duplicating a frequently used field the user
can have quick access to this data and the maintenance of the
data base 1is provided by the system (i.e., changes in the
larger data base are reflected in the 1index data base
automatically). .

The records within the index data base are stored in
ascending key value (source field) sequence. This provides
for an alternate processing.sequence. If the target field 1is

the root of the data base, processing of this data base may be

4y

performed in an order other than that in which it 1is stored..
This is particularely useful when several application programs
wish to use the same data base in a number of different ways. .

When a secondary index has been defined, access is
provided (through the index) to the index target segment type
.and all segment +types in the hierarchic path of the index
target segment, This includes the parents as well as the
dependents of the target segment. Figures 3.8 and 3.9
illustrate this point. Figure 3.8 shows a data base for which

a secondary index is to be defined.
A

ORDER
I

CUSTOMER | pART

l

ADDRESS ROUTING SIZE SUPPLIER

1
I |

COLOR QUANTITY DATE

Fig. . 3.8 An order processing data base.

Let us say that the SUPPLIER segment is both the source
and the target segment of a secondary index. Then a secondary

data structure will be defined as shown in‘Figure 3.9. .

45

SUPPLIER

PART QUANTITY DATE

ORDER

Fig. 3.9 Secondary data structure.

The secondary data structure is formed by making the
index target segment type the root. The parent segment types
of the 1index target segment type are then placed in revefse
order in the left-hand subtree. The other dependents of the
target segment type are»vthen placed in the right-hahd
subtrees.

When considering the adoption of a secondary index the
extra processing required to maintain the index data base must

be taken 1into account.. An index allows access to a segment

46

with one I/O in addition to the index I/0. This should be
compared with the number of I/0s normally required to access
the segment. An additional I/0 is required each time an index
record is created or destroyed and two I/0s are required for
each modification. The time required fo create the index data
base initially and to reorganize it shéuld also be considered.
Such things may be outweighed if the number of changes to the
source field is small or if the transactions which will use
the secondary index are of high pricrity.

Not to be neglected are the actual storage reguirements
of the index data base. As was pointed out, each VSAM record
contains a duplicate of the source field and a pointer to the
target segment. 1In addition to this there 1is some control
information and (optionally) subsequence fields. This can run
into a substantial amount of storage space and for this reason
such things as selective indexing or shorter search fields nmay

be considered.

47

Chapter 4 - Access Methods

Introduction

In this chapter the access methods intrbduced in Chapter
2 will be dealt with in more detail. 1In particular, the four
processing routines and their corresponding physical record
intefface (see Fig. 2.4) will be evaluated and compared with
respect to the two performance measures - time and space.

The performance of an access method is dependent upon the
structure of the file in - which the data is stored.. The
problem remains, therefore, to seléct an access method which
is optimal for the data base that is to be stored and for the
queries that are to ke applied to the data base. But as
pointed out by Yao and Merten [42], this may be a difficult

task:

"No universally optimal file structure exists and no
general method 1is available for selecting an optimal file
structure for a particular application."1t

However, the choice of an access method may be one of the
most importamt factors in determining performance at an IMS

installation.

“"Various file organizations seek to perform better in
certain respects for certain data base and typical query
characteristics."12

For these reasons, much of the evaluation contained in

48

this chapter is relative and serves only to compare the éccess
methods.

In what follows, each access method will first be 1looked
at in greater detail. Attention will be paid to the
underlying storage structure and the ideal processing
environment - for each.. Following this each access method will
be considered with regard +to the time/space tradeoff,

Finally, some constraints and extensions will be considered.

In an HSAM data base segments are stored in hierarchical
sequence and so must be loaded in that order. Data base
records are stored in ascending or descending key sequénce (if
a key 1is specified) and must be loaded and retrieved in that
order.

Each SAM data set consists of a number of fixed length
blocks. . The records are stored sequentially starting with the
first record and proceeding in hierarchical sequence for
subordinate segments.. Each block will contain several
segments, If there is not sufficient room at the end of the
block to store a complete segment, the remaining space is left
blank and the segment is stored in the next block. . When one
record gnds the next record follows immediately, in the same
block if possible. . See Figure 2.5.

The only major performance criteria for an HSAM data base

49

is the selection of an optimal block size. The block must be
at least as large as the largest segment and should be
selected so as to mimimize the amount of unused space left at
the end of the block..

Processing is done sequentially through the data base so
that when cné segment is found the search for the next begins
where the last left off. To process the data base randomly it
is necessary to start at the first of the data set for each
search and scan sequentially until the desired segment is
found, .

Gpdating requires that the entire data base be rewritten
onto another tape or disk. 6 For all practical purposes then,
insertion, deletion or replacement of segments is not
possible. .

For these reasons, "‘HSAM data bases are generally only
used for data which is not expected to undergo many changes
and for which sequential processing (eg.. producing reports)
is the usual mode of access.. HSAM is also useful as backup
for other data bases as it requiresv a minimal amount of
storage space and can be kept on tape. Also, 1its structure

lends itself to the dump/reload format of a backup data base. .

HISAM
With a HISAM data base either ISAM/0SAM or VSAM may be

selected as the physical record interface. 1In either case the

50

data base consists of an ISAM or KSDS data set which contains
the root and as many of the dependent segments as can fit in
one record and an OSAM or ESDS data set which <contains the
remainder of the dependents and, in the case of ISAM/0SAM, any
data base records which are inserted after initialization..

Each data set 1is made up of logical records. Each
logical record contains as many segments (in hierarchical
sequence) as will fit, pointers to maintain the hierarchic
sequence amcng logical records and some wunused space. See
Figure 2.6.

For ISAM/0SAM the 1logical record is of the form

illustrated in Figure 4. 1. .

3 byte 1 byte 3 byte
»Rgot Segment | Segment | Segment | Hierarchic | 'Unused
Pointer Code Pointer

Fidgoe. .1 Logical record of an ISAM/0SAM implementation of a

HISAM data base. .

The three byte root pointer specifies the next root in

root-key sequence which has been added since initialization

51

and 1is therefore in the OSAM data set.. The three bhyte
hierarchic pointer specifies the logical record which contains
the next segment in hierarchic sequence.

For VSAM the logical record is of the form illustrated in

Fiqure 4.2.

L byte 1 byte
Hierarchic Segment Segment Segment Unused
Pointer : ' Code '

Fige 4.2 Logical record of a VSAM implementation of a HISAM

data base.

The. four byte hierarchic pointer specifies the logical
record which contains the next segment in hierarchic sequence.
When new data base records are added after initialization they
are inserted in their correct places in the KSDS data set and
existing records are moved as necessary.. Because of this
there is no need to maintain root pointers.

In addition, ©VSAM logical records are stored in control
intervals. Each control interval contains a fixed' naumber of

logical records (some of them unused) and ten bytes of VSAM

52

control information.. Such an implementation minimizes the
number of logical records which mnust be moved when a new
record is inserted. The control intervals are maintained in
B-tree fashion and the ten bytes of controllinfdrmation are
used to maintain this B-tree.

With a HISAﬁ data base, performance is affected by the
choice of logical record length and by the choice of control
interval length. These can affect both space requirements and
access time. Figure 4.3 shows the effect of increasing the
logical record length on the total space required for the data

°

base and on the number of logical records required. .

High
Total Space
= = T Number of
Logical
Records
Low

Logical Record Length —»

Fige.. 4.3 Effect of logical record length on storage space.!l3

The 1logical record must be at least as long as the

longest segment. As the logical record length increases, the

53

number of logical records decreases until the logical record
length is as long as the longest data base record. At this
point the number of lbgical records is equal to the number of
data base records and the logical recordé cur?e goes flat.
Correspondingly, the total storage space tends to rise if thé
logical record length is either too short or too long.
Changing the control interval size will have a similar
effect; however, the storage space curve will be much steeper

in this case as the overhead is greater. See Figure 4.4.

High |
Total Space
— — — Number of
Control
Intervals
Low

Control Interval Length —P

Fig. . 4.4 Effect of control interval size on storage space.

In HISAM deletions are taken care of by setting a flag.
This means that deleted segment space is not available for
reuse (except in the case of root segments in the KSDS data

set under VSAM). Processing can be done either sequentially,

54

by following the hierarchic sequence pointers for each root
segment; or directly, by scanning the index data base for the
appropriate root and then following the hierarchic pointers.
It should be noted, however, that if a data base is very
vo;atile (ieee, has a 1lot of insertions and deletions)
performance can be severly degraded by the need to jump from
the indexed area to the overflow area (and vice versa) when
sequenfially processing the data base.

For these reasons HISAM should be used for data bases 1in
which'.both sequential and direct access by root segment is
required and which do not require extensive segment insertion

or deletion.

A HIDAM data base consists of two parts - the index data
base and the data data base. As with HISAM these are
implemented with KSDS and ESDS - (for VSAM) or with HISAM/OSAMN.
In addition the data portion of the data base is composed of a
'root addressable area and an overflcw area.. See Figure 2.8..

The index data base contains one logical record for each
data base record. Each logical record consists of an index
segment for the root of the data base record and a pointer to
the appropriate logical record.in the ESDS or OSAM data set.
In addition, if HISAM/0OSAM is used, there is also a pointer to

maintain the index sequence when new . roots are added after

55

initialization. The index segment must be uniéue,

The entire data base record is stored in control
intervals in the ESDS or HISAM data set.. Each control
interval contains a free space anchor point, free space
elements, an anchor point area, segments, unused (free) space
and (in the case of a VSAM implementation) seven bytes of

control information. See Figure 4.5.

Free
Space | Anchor _ 7 bytes
Anchor| Point |Segment| Segment |{Pointer |Length |ID |[Unused|Control
Point | Area ’ . Info.

[& ?
——

Free Space Element

Fige. . U#4.5 Control interval of a HIDAM data base (7 bytes of

control information for VSAM.implementation only).

The free space anchor point 1is four bytes long and
contains the offset in bytes to the first free space element
in the control interval.

The free space element is used to identify each area of
free space in the control interval which is eight bytes or
more in length. This free space element is itself eight bytes
Iong and consists of a free space chain pointer field, an
available length field, and a fask ID field to indicate. which

program freed the space. The anchor point area is four bytes

56

long and holds pointers to other control intervals to maintain
the hierarchic‘sequence._

The first control interval of an 0SAM data set or the
second control interval of an ESDS (the first, in the lafter
case, is used for VSAM control information) is reserved for a.
bit map. This bit map is used to determine whether or not
space ‘is available in a particular control interval.
Depending on the size of the control interval and the number
of control intervals used it may be necessary to have several
bit maps in order to cover the entire data base. In this
case, subsequent bit maps are distributed throughout the data
set and chained by an anchor point area at the first of each
bit map control interval.

As with HISAM, an important performance conSideration is
the selection of an optimal control interval size.. Also to be
considered is the wise use of distributed free space ([see
Constraints and Extensions) which can help to minimize the
amount of moving required when new segments are to be
inserted.

Because . of the chaining of free space and the ability to
specify distributed free space, a HIDAM data base is able. to
reuse the space occupied by deleted segments and insert new
segments in proximity to its position in the hierarchical
sequence.. Therefore, HIDAM is useful when both sequential and
direct processing are required and when. many insertions and

deletions are probable, .

57

A data base using the HDAM access method will use the
same storage structure as a HIDAM data base without the index
data base.. See Figure 2.7.. HDAM wuses a hashing function,
instead of an index, to provide direct access to root
segments. This hashing function may be either user supplied
or one of many supplied by Inms.
| When choosing a hashing function the user determines the
size of the root addressable area. The user also specifies
the maximum number of bytes of a data base record to be stored
in the foot‘addressable area; the remainder are stored in the
overflow area. |

The hashing function produces 5 control interval and an
anchor pbint nunber, When multiple key values hash to the
same control interval and anchor point; the synomyms are
chained together in ascending key value sequence. The user
may specify that from one to ten synonym chains be used per
anchor point.

There are many ways in which the performance of a HDAM
data base may be affected. A hashing function should 'be
chosen which provides a good distribution of hash values to
prevent the use of synonym chains whenever possible. .

The size of the root addressable area should not be too
small so as to increase the number of synonyms, nor should it
be too large so as to have too much wasted space.. The number
of bytes of a data base record to be stored in the root

addressable area should not be too small so as to make the

58

time required to follow pointers excessive nor should it be
too 1long so as to waste.space when the data base records are
short, .

Increasing the number of synonym chains will decrease the
length of the individual chains as will increasing the number
of anchor points or the size of the root addressable area.
The shorter the synonym chains the less +ime will be spent
following pointers. |

The HDAM access method provides fast, direct access by
eliminating the need to search an index. However, the key set
should be relatively stable and must be capable of being
randomized. It 1is possible to sequentially process the
records as they are physically stored in the data set buat,
depending on the key and the hashing functibn used, this order
is not necessarily the same as the root key order. This may
make sequential access by root key order impossible.. As for
HIDAM, this method is good when many insertions and deletiomns

are expected.

Space Considerations

One of the most important performance considerations is
the amouﬁt of secondary storage the data base will require.
Our ability +to <calculate accurately the exadt amount of
storage required is hampered by such things as variable sizes

of segments, a variable number of dependents for any parent

http://S_pa.ce

59

and the general vicissitude of the data base. However, we can
make approximations to the storage requirements under the
different access methods and use these figures for comparative
purposes when deciding which écceﬁs method to use.

The following is an attempt to make these approximations. .
For each access method a formula will be derived relating the
total storage requirements to the variables which apply to it.
Table 4.1 contains a 1list of abbreviations used in these

formulas and their meanings.

60

SR Total storage requirement (bytes).
SR1 Storage required for the primary data set (bytes).
SR2 Storage required for secondary data sets (bytes). .
WASS Weighted average of segment size (bytes)..
Si Length of segment i (bytes).
0oi Occurrences of segment i..
Us Unusable space (bytes/unit of storage)..
BF Blocking factor (bytes/block) or (bytes/interval)._
LRL Logical record length (bytes)..
BLOCKS Number of blocks required (blocks)._
RECORDS Namber of logical records required (records).
CNTL . Number of control intervals required (intervals).
n Total number of segments. .
m First segment in secondary data set.
k Number of roots per control interval.
fbff Free block frequency factor (0 to 100 excluding 1).
fspf Free space percentage factor (C to 99).
BMP Storage requirement for bit maps (bytes).
Table 4.1 Abbreviations and descriptions.
The weighted average segment size (WASS) is the product

of the length of each segment and the number of occurrences of

that segment summed over all segments, divided by the total

number of

occurrences:

61

o

The weighted average segment size of segments in the

secondary data sets only (WASS') is given by the formula:
n

E 5104

i=m
WASS®' = -

n

S o

i=m
The total storage requirement (SR) is always the sum of
the storage requirement for the primary data set (SR1) and for

the secondary data sets (SR2) :
SR* = SR1 + SR2

For HSAM the total storage requirement is gifen by the
amount of space needed to store the data plus a portion of

each block which is left unused:

62

n
SR = Sioi + US # BLOCKS
| i=1
where:
WASS
Us = ——,
2
n
E Sioi
. i=1
BIOCKS = .
BE - US

For HISAM .(as for HIDAM and HDAM) the amount of storage
required depends upon whether ISAM/0SAM or VSAM is used.. For
an ISAM/0SAM implementation there is one logical record in the

index for each occurrence of a root segment:

SR1 = IRL * 01

The secondary data sets are made up of the total space
required to store the remaining segments plus the unused space

at the end of each record:

n

E Si0i + US * RECORDS .

i=m

SR2

63

where:
Us = WASS' + 7 ,
2
n _
E SiOi
- i=m
RECORDS = : .
' LRL - US

The VSAM implemehtation is slightly different. Since the
control intervals are maintained like B-trees, on the average
each will only be three quarters full. Each control interval

also has ten bytes of control information:

SRL = LRL * 04 * 4 + 01 * 10 .
| 3 K |

Also, each logical record contains a five byte (vs.. seven for

ISAM/OSAM) pointer, which is considered unused space:

UsS

H

WASS' + 7 .

The other definitions remain the same as for ISAM/OSAN. .
In the ISAM/0SAM implementation of HIDAM each index

record contains the root plus a four byte pointer:

SR1 = (Sl + 4) * 01 .

64

In the secondary data set there is a seven byte pointer

in each control interval:

Uus = WASS + 7

and the total number of control intervals is:

n
E Sioi
i=1
CNTL = .
BF - US

Each bit map is a control interval with eight bytes of
control information. The number of bit maps required depends
on the size of the control interval and the number of control

intervals required tc store the data:

BMP =< CNTL)* BF
BF - B8/

the total storage requirements are then given by

n
SRZ2 = § Si0i + US * CNTL * _fbff =* 1 + BMP
‘ foff-1 1-fgpf

i=1 | 100

65

The significance of fbff and fspf will be introduced later..
With a VSAM implementation of HIDAM, each logical record

in the index data base will only be three quarters full:
. -SR1 = (S1 + 4) * 0q ¥ 4
_ 3

In the secondary data sets each control interval contains

fourteen bytes of control information:

us

i

WASS + 14
-2

And each bit map control interval has fifteen bytes of control
information (there 1is also an extra control interval at the

first of the data set):

BMP = <BCNTL + i) * BF
F - 18

The CNTL and SEK2 definitions are the same.

The HDAM implementation will be the same as the HIDAM
implementation without the index data base.. So, for HDANM

under ISAM/QOSAM:

66

US = _WASS + 7
5=
n
E Sioi
i=1
CNTL =
BF - US
BMP < CNTL)* BF
BF - 8
n
SR = E Si0i + US * BLOCKS| * _fbff * 1 + BMP
o foff-1 1-fspf '
i=1 100

and for a VSAM implementation:

US = WASS + 14

BMP.

CBCNTL + 1>*BF
BF - 1%

Time Considerations

In order to make accurate time estimates of various
queries under the different access methods it would be
necessary to obtain a precise count of the queries and test

them under the access methods or perform some type of

67

simulation[33]). Both of these alternatives are costly and
time consuming, in fact, the former may be prohibitatively so
and the latter lends itself to approximations and assumptions.

A "quick and dirty" method of evaluating the alternatives
is presented. Table 4,2 relates each of the physical fecord
interfaces associated with each access method to seven factors

representative of modes of processing queries. .

Weight| HSAM HISAM HISAM|HIDAM (HIDAM | HDAM | HDAM
SAM |ISAM/]| VSAM|{HISAM/A VSAM | OSAM | VSAM
OosSAM 0SAM
Update 1 3] | 4 5 5 5 5
Insertion 1 3 2 4 4 5 5
Deletion 1 5 5 3 3 4 4
Retrieval ' 2 2 3 4 4 5| |5
Sequential |
Processing 3 3 3 5 5 2 2
Direct Access
Processing 2 3 3 4 4 5 5
Reorganization| 5 4 4 1 1 2 2
Totals

Table 4.2 Access method ratings for query response time. .

Each access method is given a rating for each query type.

A rating of 1 is poor while a rating of 5 indicates that this

68

is the. beét access method to use for this particular type of
querye. . To evaluate the different access methods, a weight
should be applied to each query according to how often sudh a
gquery is expected and the importance the user places on its
guick response. These weights are recorded in the first
column and then applied to each of the ratings. The weight
times the rating is recorded in the second column under the
appropriate access method. These columns are then summed to
provide a comparison of the different access methods.; The
arquments used in assigning these ratings were outlined
earlier in this <chapter when the access methods were
considered in detail.‘

It may be beneficial to include storage costs in this
same way. If storage costs are to be included, ratings can be
assigned using the storage requirements for each access method
and a new row can be added to the table.. The wuser then
assigns a weight to the storage requirements row and the
tqtals calculated will take storage requirements into
consideration. .

Again, it should be noted that this method of comparison
does not provide an absolute measure of the time required to
satisfy a query. Rather, it provides a relative rating. so
that the various access methods may be compared in this

respect. .

69

Constraints and Extensions

When discussing the various methods so far, attention has
been paid to only the basic attribuates "of each method;
however, for each thére are a number of constraints and
extensions that ﬁay apply. .

The constraints are summarized in Table 4.3. These will
be the first eliminating factors when selecting an access
method. Given that an access method is acceptable under these
.conditions, only then will further consideration be necessary.

Extensions exist 1in many forms, but four important ones
are outlined here. Again, one should consult Table 4.3 to

determine which access methods these apply to.

Distributed Free Space

In a data base in which there 1is much segment insert
activity, performance can -be severly degraded if inserted
segments cannot be placed physically adjacent to their related
segments. In order to alleviate this problem, a set amount of
free (unused) space may be distributed throughout the data set
at initialization. . |

Two factors are used to determine how much free space is
set aside.. The free block frequency factor (fbff) specifies
that every nth control interval in the data set will be 1left
as free space. The range of the fbff is from 0 to. 100

excluding 1.

70

HSAM| HISAM|HISAM| HIDAM |[HIDAM | HDAM| HDAM
SAM ISAM/ VSAM}HISAMA VSAM | OSAM] VSAM
OSAM O0SAM

Logical Relations

Supported?- | no yes yes yes yes yes yes
Secondary Indexes

Supported? no yes yes yes yes yes yes
beietéd Segment

Spdce Reusable? no “no no yes yes yes yés
 Distributed Free

Space Factor? no no no yes yes yes yes
Multiple Data Set

Gipups? no yes no yes yes yes yes
Unique Key For

.3oot Required? no yes yes yes yeé no no
Root Only Accegs

Method AvailaBle? yes no yes no no no no
Hierarchy Determines

Physical Contiguity?|yes | yes yes | no |mno no no
Child-Twin Pointers

Supported? no no no yes yes yes yes
Insert, Delete and

Replace Possible? no yes yes yes yes yes vyes
Direct Acceés to ,
Segments Possible? no yes yes yes yes yes yes

Table 4.3 Access method constraints.

71

The free space percenfage factor (fspf) specifies the
minimum percentage of each control interval to be left as free
space. It can take on any value from 0 to 99. . These factors
have been incorporated into the storage requirement formulas
for HIDAM and HDAM data bases.

It should be noted that although you decrease the access
time when vyou increase the amount of free space, you do this
at the'expense of increasing the total amount of storage space
required. It is important to choose values of fbff and fspf

with this trade-off in mind.

Multiple Data Set Groups

Data bases often exist in which the 1lengths of the
segments are quite different. In this c&se; logical record
lengths which are optimal for the short segments may not
qecessarily be appropriate for the longer segments, or vice
versae.

Iin such a case it may be appropriate to have one logical
record 1length for scme of the segments and another length for
other segments.. IMS/VS allows multiple data set groups. This
means that +the secondary dae broken uap into as many as ten
data set groups, each having its own 1§gical record length, .

A case of dramatic perfofmance improvement by using
multiple data set groups has been reported by Bruce Sicherman

in the IMS Newsletter[34]. The most dramatic result was a 95%

reduction in I/0s for a particular transaction, In other data

bases, where multiple data set groups were effective, an

72

average elapsed time improvement of 33% was measured. .
Although multiple data set groups can significantly
decrease the amount of storage space and/or the number of I/0s
required there is an increase in the overhead for maintaining
the different data set dgroups. As well, the physical
proximity of related segments migh£ be affected. . Again, a

trade-off between space and time exists.

Root-0Only Access Method

Two other access methods exist which have not yet beén
discussed. They are the Simple Hierarchic Sequential Access
Method (SHSAM) and the Simple Hierarchic Indexed Sequential
Access Method (SHISAM). . In both caseé the data base record
may consist of only a single segment - the root.. The prefix,
which normally identifies the type of segment, is not needed.

Other than the above two distinctions, a SHSAM data base
is stored similar to a HSAM data base and a SHISAM data base
is stored similar to a HISAM data base. The saving comes in
the form of both time. and space. Less space 1is required
because the prefixes are not needed and less time is needed to
access a segment as there is only one type,. However, SHSAM
and SHISAM only apply to a very unique kind of data base and

cannot normally be used.

Child-Twin Pointers
When pointers are used to access a data base they connect

the segments in hierarchical sequence. To access a particular

73

child of a parent it is necessary to go through all the
children which come .before the desired child in hierarchical
sequence, To provide more direct access to child segments,
child-twin pointers may be Specified.

When <child-twin pcinters are used, a pointer to éach
child is specified in the pointer fields Qf the parent segment
thus enabling you to go directly to the desired child. This
is particularily important in data bases iq which the segment
types are processed randomly.

It should be noted that child-twin pointeré can only be
specified 1in the place of hierarchic pointers - the two kinds
cannot exist together. The type of processing and the
performance expected from each kind must be considered before

one of the two is selected.

T4

Chapter 5 - QOther Performance Considerations

Introduction

In a system as large as IMS there exists a great number
of factors which, in one way or another, determine the
performance of the system.. In the previous two chapters some
of the more prominent issues (i.e., those which are thought to
have the greatest effect on performance) have been discussed.
It is not possible to present here a complete enumeration of
all relevant factors with their various merits, vices and
interactions. Such a study is beyond the scope of this paper
and may well be impracticable. .

For the sake of completeness three more topics will be
covered in some detail =~ buffering facilities, application
programming and main storage requirements. ~Each of these will
be covered in its own section later in this: chapter.

In -addition to_these, there are some other matters which
bear mentioning. These latter topics - thé fast path feature,
user exit routines and data base reorganization - will be
introduced here with what is hoped to be sufficient references

to satisfy the interested reader. .

Fast Path

The fast path feature is an alternate transaction
processing mode. .It is suitable for applications which
require good response characteristics and which may have large

transaction volumes but which only need simple data base

75

structures. Fast path runs in conjunction with the IMS/VS
data communication facility anq does not' replace it.. Data
bases using the fast path feature'can'be accessed by either
fast path or IMS/VS transactions. |

For more information on the fast path feature see the

Fast Path Feature General Information Manualf 14].. In
addition, for design considerations see Chapter 6 of the

System/Application Design Guide[20] and Chapters 1 - 5 of the

System Programming Reference Manual[21].

Exit Routines

IMS provides for the -use of exit routines. - These
routines may be either written by the user or drawn from a
library of routines supplied b& IMNS. Exit routines allow the
use of igternally generated data as well as permitting users
to incorporate proqessing extensions of their . own.. of
particular interest (with -regard to performance) is the
Segment Edit/Compression Exit ﬁhich permits the editing of a
segment during its movement between the data.base buffer pool
and the input/output of the application progran. Thus, one
can compress data for storage and expand it again for
processing.

User ‘exit routines are covered in Charpters 3 and 4 of the

System Programming Reference Manual[21]. . Some design

considerations are given in the System/Application Design

Guide[20] pp. U4.125 - 4.148. .

http://Man.ua
http://Sy.st.em

76

Reorganization

Data base reorganization is a topic which must be
considered in an application which is in any way volatile.
Reorganization ‘is the act of restructuring a data base to
reflect changes in processing or to improve performance in a
data base in which utilization of épace and/or contiguity of
seéments has been degraded due to a number of inserts and
deletes. The actual and CPU time required for such an
operation is usually substantial and must be weighed against
the improved performance expected fron the reorganization. .

Reorganizétion of IMS data bases is discussed in Chapter

5 of the Utilities Reference Manual[22] and more generally in

the System/Application Design Guide[20] pp.. 4.150 - 4.152.

For a discussion of the principles of reorganization see
"Restructuring for Large Data Bases: Three Levels of
Abstraction"[28] and "Database Reorganization - Principles and

Practice"[35].

Buffering Facilities

In IMS/VS pools of‘buffers are maintained to decrease the
required number of accesses to secondary storage by allowing
blocks of data to remain in virtual storage as long as
possible. Three types of buffer pools exist - the ISAM/O0SAM
buffer pool, the VSAM shared resource pool and the DL/I buffer

handler pool.

77

The DL/I buffer handler pool is used in éonjunction with
an ISAM/0SAM buffer pool or .a VSAM shared resource pool
depending on the access method of the data base_in use., . It is
used for recording buffering services activity. This includes
statiétics on buffering services as well as recording calls
for buffering services, open and close of data baseé and
program isolation enqueues and dequeues.

Data Eases that ﬁse‘the VSAM access method share'the use
of buffers in the VSAM shared resource pool, Data bases that
use the ISAM or OSAM access method share the use of buffers in
the ISAM/osAM.buffer pool. . Buffers are combined in subpools;
all buffers within a subpool being of Athe same length.
Buffers are <chained together in a use chain., Empty buffers
are placed at the bottom of the chain and are always ready for
use.. As buffers are accessed they are placed at the top of
the chain.

Wwhen a data set is opened it is assigned a buffer subpool
which contains buffers at least as large as the data set block
or control interval size. When a retrieval request occurs,
the buffer pool is searched, using the use chain, to see 1if
the required segment is in virtual storage. If it is found,
the appropriate buffer is placed at the top of the use chain,
If it is not found, the buffer at the bottom of the chain (the
least recently used) is.selected._ If it contains old data and
that data has been changed, the buffer is written out, The
requested data is then read into the buffer and the buffer is

moved to the top of the use chain..

78

The number and size of each kind of buffer pool 1is
~determined by the user.. A time/space tradeoff exists here
which must be reconciled to provide acceptable performance for
an installation. Providing a variety of buffer subpools and
increasing the total number of buffers will. improve the
response. time as 1less' I/0 will be required to satisfy each
DL/I request., However, this also means. that more virtual
storage is taken up by the buffers - some of which may not be
used at all times.

If it 1is necessary to use buffers which are larger than
the block or control interval size some space will be wasted
at the end of each buffer. The best situation is to have the
buffer size equal to the block(or control interval size Dbut
this may 1limit the number AE data sets which may use a
particular subpool and thus have the whole subpool go to wasté
when no appropriate data set is in use.

A ‘data base with high activity may tend to overload a
particular subpool. . This may be avoided by defining the data
set block or control interval size in such a way that the data
base is assigned a wunique subpool. This will relieve the
strain on other subpools and <reduce contention . among data
sets. .-

When determining which data sets will share .. subpools it
is important to <consider how the application programs will
access the data bases.. For example: Are segments generally
requested ogce-only? Is retrieval of records in hierarchical

or some other order? Are a certain percentage of segments

79
always requested? Contention can be reduced by grouping

together data bases that have similar processing requirements

or which never require the same subpool at the same time..

Application Programming

One of the greatest criticisms of IMS is that it imposes
a hierarchical structure on the data and that it requires a
programmer to be familiar with af least part of this structure
if shes/he is +to write programs which successfully perform
transactions. . To.go oné step further, a more. comprehensive
knowledge of both the data structure and DL/I processing is
necessary if these transactions are to be carried out in an
efficient manner. . |

By being aware of the order in which the data base is
stored +the application progrémmer can greatly reduce £he
number of I/Os by processing the data base in that order
whenever possible.. The existence of secondary indexes or tﬁe
possibility of introducing such indexes should be made known
to all application programmers. Facilities such as these,
which are designed for a specific application, may have a use
in another application as well,

When processing data bases it is best to retrieve a root
segment and process all segments of that record before moving
on to another root or another data base. Sincé a root and its

child segments can typically be retrieved with one access,

80

time is saved by doing as much pfocessing as possible on a
given record when it is in virtual storage.

Search time can be significantly decrease by making all
DL/I <calls as fully qualified as possible.. This entails
specifying a value for each key of each segment on the
hierarchical path £o the desired segment.. This reduces the
number of paths to search and thus eliminates some of the
overhead. |

When a segment is to be retrieved it 1is necessary to
issue ‘a DL/I 'get' call (see Table 2.2 for a summary of DL/I
subroutine calls and descriptions). If this segment is to be
changed in any way a 'get hold' call is required. Because
there is very little perfofmance difference between a ‘'get!
and a *'get hold' call, the.'get hoid' should be used whenever
there is a reasonable chance [about 5% or more) that the
segment will be changed.. This eliminates the need to do both
a 'get!' and a 'get hold',

When inserting and deleting fields or segments it is
important to bear in mind the policy implemented by the access
method beiqg used.. The insertion or deletion of longer or
sho;terA fields or segments may have adverse effects on
performance.. These policies have been discussed in Chapter 4
under the appropriate access methods.. Whenever possible, it
is always better +to use the 'replace' call over a 'delete!
followed by an 'insert' as this eliminates the need to make
changes to pointers and reduces space management overhead..

With each DL/I call one or more optional command codes

81

may be specified.. Of particular interest is the D command

code (for a complete treatment of comand codes see chapter 3

of the Application Progragming Reference Manual[{15])). The D
command code allows the issuance of path calls, A path is a
hierarchical sequence of segments, one per level, leadingAfrom
a segﬁent at a higher level to one at a.louer level.. A path
call enables a hierarchical path of segments to be inserted or

retrieved with one call. .

"The correct usage of path calls can have a significant
performance advantage, You should use it whenever possible,
even if the chance of the ‘existence of the need for the
dependent segment(s) is relatively small.. For instance, if
you would need, in 10% or more of the occurrences, the first
dependent segment -after you. inspect the parent, then it is
generally advantageous to use a path call to retrieve them
both initially. The first dependent segment (in this case) is
retrieved at almost no additional cost."1%

Main Storage Requirements

When a system as large as‘IMS ie installed there is bound
to be an increase in the amount of main and secondary storage
required. The secondary storage requirements for +the data
bases themselves was discussed in Chapter 4.. In addition to
this the amount of main storage required is determined by the
users!' application and environment.. For example; the number
of data bases, the number of users of each data base and the

number of remote +terminals will all have an effect on the

82

total main storage requirements.

In some respects, the amount of main storage required is
determined by what is considered by the user to be
"acceptable" performance levels and which trade-offs are made
to insure that these performance levels are met._. For example,
decisions to use secondary indexes, logical relationships and
fast path processing will each affect the main storage
requirements.,.

In other respects, a certain amount of main storage is
required to support the basic IMS/VS system - independent of
the application, environment or selected optional features.

The developers of a new IMS installation should be aware
of the demands that the adoption of the system will have on
main storage. Similarily, when an existing IMS system is
being tuned the effect of proéosed impro§ements on the main
storage requirements should be known before a final decision
is made. . -

Fortunately, these storage requirements can be easily and

accurately estimated.. Chapter 5 of the Systems Programming

Reference -Manual{ 21] provides a detailed description of these

calculations including worksheets and examples; for this
reason they will not be duplicated here. It is sufficient for
our purposes to note that such a procedure for making accurate
estimates exists as these estimates will be wuseful in a

thorough performance study..

83

Chapter 6 - Applications

Introduction

The role of performance evaluation at a particular
installation may be vastly different from that at another
instaliation. The needs of the user communitf, the data
processing history of the enterpfise, the type of application
and the actual system configuration all combine to determine
the number and kind of performance studies to be <carried out
in the organization. These studies may range from ad hoc
measurements for 1locating bottlenécks when the system 1is
responding poorly to sophisticated monitors which provide
feedback for optimizing file organizations and restructuring
dafa bases, .

In this paper we have :considered ways 1in which the
performance of an INS installation may be improved.. The
question of the practicality of such methods remains
unanswered. There may be a large gap between what in theory
seems to be justified and what in reality 1is actually done..
This 1s not to say that the theory is wrong nor that the
method is correct.. What is important, in this case, 1is that
solutions to performance problems be effective and
implementable. .

In order to obtain a 'real ;orld' perspective, systenms
personnel - from three large IMS installations were interviewed.
The remainder of this chapter is based upon those interviews. .

This is not meant to-be taken as a statistical sample nor

84

would it be appropriate to draw firm conclusions at this
point, however, they do serve to point out the kinds of things
which are being done with regard to performance and may
indicate the appropriateness of the performance issues

presented in this papere.

Case 1: B. C. Hydro:

The IMS application at B. C. Hydro consists of one large
data base with over 60 segments.. This is in contrast to the
arguments presented in Chapter 4 which suggest that data bases
are more efficient if they are smaller. 1In addition, Chapter
3 recommends that data bases be designed with a specific
relationship among the segments, which, in this case, would
imply seve;al smaller data bases.. IMS was first adopted there
in 1971 and at thatltime little was known about IMS and less
about the effects of design on performance. .

The first implementation used HISAM as the access method
primarily because it was well known and had been in use for
several ‘years at many other installations, little was known
about the cther 'new! access methods. However, because the
data base was very volatile and a 1arge number of segments
ended up in the secondary data set, HIDAM was adopted to
reduce - the switching from primary to secondary data sets when

sequentially processing the data base.. It was later realized

that it was never really necessary to process the data base in

85

root key sequence and hence the index was being maintained
uselessly. Because of that HDAM is now being used. .

As can be seen here, the importance of doing a thorough
analysis of the ‘enterprise's data processing needs is an
integral part of the data base design.. This point was made in
Chapter 3 and this example illustrates some of the possible
repercussions.

There is an unofficial policy at B. .C. Hydro to keep the
data base simple. Logical relationships‘and secondary indexes
are not being used because it is thought-that things such as
these will overtax IMS and lead to unnecessary delays due to
increased processing demands. In fact, much of what could be
done by IMS 1is doheA-by special macros or within the
application progranms. The reasoning behind tﬁis is that IMS
is a very generalized system, developed to handle as many
cases as possible.. Therefore, if you write the code yourself,
with only one purpose in mind, you eliminate the overhead
necessary to lcok after a variety of cases.

Although this idea of replacing or supplementing some IMS
tasks has not been discussed previously, it seems to be a
viable solution to some specialized problems.. Difficulities
may arise, though, if the macros make use of IMS internals -
especially when a new release of IMS is issued.

Performance studies -at B. C. Hydro take the .form of
ongoing exception reporting.. Statistics are routinely
collected but a performance study is really only carried out

when response time is degraded or disk space is at a premium.

http://seguen.ce

86

Although éhe data base is very volatile, the total number
of segments does not vary by much. The data processing
requirements are relatively the same from year to year.. For
these reasons, and because HDAM is now being used,
reorganization of the - data base is infrequent and
modifications to the data base structure amount to changes to
only a few sejments per year. Tﬁis seems to be .in agreement

with what would be recommended by using Table #4.2..

The Insurance Corpofation of British Columbia has been
using IMS to look after its data processing needs since 1974.
There -aré over U0 separate data bases in all, dealing with
various facets of employee and.customer relations. Each data
base has relatively few segment types and refiebts a specific
relationship among entities as was recommended in Chapter 3..

Most data -bases are implemented under HDAM but HIDAMNM,
HSAM and SHISAM are also used. . Wﬁen an index is required for
a data base, VSAM is always used. When HDAM is used, all data
base records are oot addressable so that it is never
necessary to use overflow chains. This is possible because
the root keys are evenly distributed.. This distribution ‘is
monitored and the randqmizing routine changed if necessary.
The importance of using aﬁ appropriate randomizing routine and

of reducing the useage of overflow chains was outlined in

87

Chapter 4 and seems to be supported here. .

I. Co Ba. C. handles insurance policies for the whole
province of British Columbia.. This makes it necessarf to
support over 200 user terminals and subply them with good
response times. Over the past three years they have been able
to decrease the average response time from 12 to 2 seconds,
despite the fact that ihe load has increased 10 times to an
average of 60,000 on line transactions per day at present.

Both logical relationships and secondary indexes are used
and significant performance improvements have been gained by
their implementation.. The use of presorts to arrange the
transactibﬁs into the same order as the stored records was
also found to be beneficial in many circumstancés. Macros are
utilized tc provide services not available through IMS and in
some cases to replace inefficient IMS‘réutines..

At I..C..B. C., considerable attention 1is paid to
performance monitoring and ‘improvement. In particular, two
packages - Data Base Monitor and Data Communications Monitor -
are run every day to provide a snapshot report of the usage of
the data bases and communications network. Another monitor -
Control IMS - is <continually recording buffer pool usage,
. queue sizes and terminal activity. The advantages of using
such monitors was discussed in Chapter 2..

To improve. performance, consideration is also given to
such hardware features as disk and channel speeds and the size
of ‘main memory. Because on'line service is provided to remote

stations in all of British Columbia, the way in which these

88

terminals are connected to the central computer has a
significant effect on performance and therefore must also be
taken into <consideration. These topics are beyond the scope
of this paper but in many cases prove to be the bottlenecks to

improved performance. .

Case 3: B. C. Iel:

IMS has been in use at B. C. Tel since 1976. There are
actually three different IMS systems.in operation: one'fof
production, one for development and one for testing.. The
production and testing systems run on the same machine with
other (non-IMS) applications.. A totdl of 25 different data
bases have been developed and approximately 700 terminals all
over British Columbia are in use for on line processing.

HISAM, HIDAM, and HDAM are all being used with VSAY as
the processing routine. The significant performance advantage
of wusing VSAM over ISAM/0SAM has not been articulated in the
previous chapterS'buf seemns to be evident from all three of
these organizations. =~ Both 1logical relations and secondary
indexes have been utilized to create increased flexibility and
ease of access despite the fact that they degrade performance.
Such tradeoffs, as discussed in Chapter 3, were expected.

The B. C. Tel Cusiomef data base occupies four 3350 disks
and absorbs hundreds of changes a day. It experiences a 10 to

15% growth rate each year, but because VSAMN is being used this

89

does not create problems and additicnal space is acquired as
necessary.. The Toll data base thch records customer charges,
nust be reorganized every two weeks requiring about 6 hours of
elapsed time. However, this data base is képt in multiple
data sets which are reorganized individually, cutting down on
the inconvience and time required to reorganize., The
advantages of using multiple data set groups in cases such as
this were presented in Chapter 4. .

Performance is monitored on a daily basis with the Data
Communications Monitor and with>the System Loé._ These provide
information on buffer usage, I/C waits, .page faults,
transaction rates, data base calls, etc. As was discussed in
Chapter 5, the selection of correct buffer sizes can have a
significant effect on performance.. Although these do not
usually precipitate data base or system changes they are
useful when a new application 1is being .developed.y When
problems do arise, a trial and error approach is used to
reconcile the situation although with sbme problems the causes
(and thus the solutions) are more easily perceived;A

At B. C. Tel, a strong emphasis is placed on a thorough
analysis of such things as transaction types and volunmes,
expected response times, call sequences, etc., before a data
base is designed for a'new application, Because of this, new
applications are brought on line with few problems. Emphasis
is also placed on incorporating plans for future applications

into designs whenever possible.

90

Conclusions

In this paper -an effort was made to pinpoint those
aspects. of IMS which affect system performance.. In addition
to this, three IMS ihstallations were examined to test the
ability of such aspects to regulate performance. .

It was found that the fopics covered here are those which
are important from a performance stand point, 0f these, the
choice of access method will probably havg the greatesf
effect. Where possible, HDAM should be used. HIDAM should be
adopted if an index is necessafy. VSAM is the most efficient
physical record interface and its additional storage
requirements are easily justified by its ability to reuse
space. .

It is important to distribute free space throughout the
data sets, but determining the correct amount is dependent
upon the application and in particular, the frequency of
update. Multiple data set groups are useful when the size of
the segments within a data base vary considerably or when the
data base has very few roots, each with a large quantity of
children. . Otherwise, they will increase the amount of storage
required and actually degrade the response time. .

Logical relationships and secondary indexes may be
reqarded as a retrogression.. They do, however, simplify
application programming and may be considered a performance
improvement in the long run. Incorrect or inappropriate usage
of these can have severe negative effects., .

While the design of an IMS data base can affect

91

performance, it is more 1likely to affect the facility of
developing application programs than it is to affect response
times. - The processing order should be kept in mind and
segments should be as close to the same length as possible..

Changes to such things as the number and size of buffer
pools, control interval lengths and blocking factors can
produce noticible improvements. The need for a change 1in
these areas is usually detected by examining the system log or
using some other monitoring tool.. The. degree of change is
usually determined by experimentation. .

IMS is a very large and generalized data base management
system. Because requirements and applications change from
installation to installation there will ofteh be more
efficient ways of doing things than would normally be done by
IMS. These may be used to augmenf IMS but should never
duplicate services that can be done better by IMS nor should
they attempt to manage the data that IMS has control over. .

In many installations there may be other factors which
have an overriding effect on performance. For example, in a
system with remote terminals, where much of the response time
is taken up with data transfer, it will be more beneficial to
look at ways of improving the line speed than attempting to
reduce the processing time. .

Things such as the interface between IMS and the
operating system, network characteristics, the use of
reenterant and reusable code and hardware characteristics have

not been treated here. This is not to say that they are not

92

important, on the contrary, these are often more important,
but fall into a different class of performance study.

In conclusion, it is my opinion that a more rigorous
approach to performance evaluatiqn at the organization .level
is needed. . Performance improvements seem to be done
haphazardly and more by intuition than by reasoning. Tools
such as gqueing theory and simulation have applications here
and could be used at both the design and tuning stages of
systen development. Techniques of system analysis are
necessary to insure that the users needs are being satisfied

and that the system meets these needs in an efficient manner. .

93

. . - Footnotes
1e. CODASYL Systems Committee, "Selection and Acquisition
of Data Base Management Systems," (March 1976), p. U4..

2., Datapro 70 The EDP Buyers Bible, Vol. 3 (Deban,
NoJe: McGraw-Hill, April 1979), p. 70E-010-61A.

3. . Ibidc . p. R 70E"010"61K.

4. Domenico Ferrari, Computer Systems Performance
Evaluation (Englewood Cliffs, N. J.: Prentice-Hall Inc.,
1978), pe 2. ‘

5. IMS/VS Version 1 General Information Manual, Release
1.5, 9th. . ed.. (San Jose: IBM Corp., April 1979) p.. 2.37..

6 D.C. Tsichritzis and F.H. Lochovsky, "Designing the
Data Base," Datamaticn Vol. K 24, No.. 8 (Aug. 1978) p.. 147.

7.. E.M. Gearhart, "IMS Data Base Design," Proceedings
of SHARE 52 (March 1879) p.. 365..

8. D.C. . Tsichritzis and F.H. Lochovsky, "Designing the
Data Base," Datamation Vol. 24, No. 8 (Aug.. 1978) p.. 147.

9. John K. Lyon, The Data Base Administrator {(New York:
John Wiley and Sons,. 1970) p.. 21..

10.. IMS/VS Version 1 Primer, Release 1;5, 1st. ed.

(San Jose: IBM Corp., Sept. - 1978) p. 2.78.

11« . S.B.. Yao and A.Ge._ Merten, "Selection of File
Organization Using an Analytic Model,"™ ACM Transactions on
Database Systems Vol. 1, No.. 2 (June 1976) p. 256.

12. . Alfonso F., Cardenas, "Evaluation and Selection of
File Organization - A Model and Systenm," Communications of the
ACM Vol.. 16, No.. 9 (Sept.. 1973) p.. 547..

13.. IMS/VS Version 1 Systems/Application Design
Release 1.5, 7th.. ede. . (San Jose: IBM Corp., Sept.. 19
4. 25.

14, . IMS/VS Version 1. Primer, Release 1.5, 1st.. ed..

(San Jose: IBM Corp., Sept.. 1978) p.. 4.22..

94

Bibliography
1. "A Buyers Guide to Data Base Management Systems." Datapro
70 The EDP Buyers Bible, Vol. 3. Deban, N. . Je:

McGraw-gill. April 1979. .

2.. Aho, Alfred L., John E._ Hopcroft and Jeffrey D.. Ullman.
The Design and Analysis of Computer Algorithms.. Reading,
Mass.: Addison-Wesley Publishing Co., 1974..

3. . Benwell, Nicholas. Benchmarking: Computer Evaluation and
Measurement. Washington, D.C.: Hemisphere Publishing Corp.,
1974. ’

4, . Cardenas, A.F. "Evaluation and Selection of File
Organization - A Model and System." Communications 0of the
ACM, Vol.. 16, No. 9 (Sept.. 1973) pp. 540-5u48.

5.. M"Data Base Design Methodology -~ Part I." Data Base

Management. Philadelphia: Auerbach Publishers, Inc., 1976. .

6. Date, C.J. An Introduction to- -Database Systems, 2nd. ed.
Reading, Mass.: Addison-Wesley Publishing Co., 1977..

7. DB/DC Data Dictionary General Information Manual, Release
3.0, 3rd.. ed. GH20-9104-2. San Jose: IBM Corp., Oct.. 1978..

8. Dearnley, P.. "Monitoring Database System - Performance."
The Computer Journal, Vol.. 21, No. 1 (Feb. = 1978) pp.
15-19. ‘

9. . Drummond, M.E.. Jr.. "A Perspective on System Performance
Evaluation," IBM Systems Journal, Vol. 8, No.. 4 (1969) pp.
252-263. . '

10. . "Establishing a Framework for Data Base Planning." Data
Base Management. Philadelphia: Auerbach Publishers Inc.,
1976. . ‘ ' ' ‘
11. . Perrari, Domenico. . Computer Systens Performance
Evaluation.. Englewood Cliffs, N.J.: Prentice-Hall 1Inc.,
1978. . ‘

12. . Gearhart, E.M.. "IMS Data Base Design." Proceedings of

13. . Ius Application Develcpment Facility Program
Descripticn/Operators Manual, Version 1, Release 2, 4th. ed.
$G20-1931-3. San Jose: IBM Corp., Nov. 1978, . '

14, . IMS Fast Path Feature General Information Manual, 3rd.
ed. GH20-9069-2. San Jose: IBM Corp., April 1978.

95

15. . IMS/VS Version 1 Application Programming Reference
Manual, Release 1.5, 7th. . ed.. SH20-9026-6.. San Jose: IBM
Corp., Septe. Uel,. .

16. . INS/VS Version 1 General Information Mamual, Release 1.5,
9th. ed.. GH20-1260-8. San Jose: IBM Corp., April 1979..

17. INMS/VS Version 1 Master Index and Glossary, Release 1.5,
4th. ed. SH20-9085-3. San Jose: IBM Corp., Déec. 1978, .

18. . IMS/VS Version 1 Operators Reference Manual, Release 1.5,
7th. ed. .SH20-9028—6. San Jose: IBM Corp., Sept. 1978..

19.. IMS/VS Version 1 Primer, Release 1.5, 1st. . ed.
SH20-9145-0. . San Jose: IBM Corp., Sept.. 1978.. :

20. IMS/V¥S Version 1 Systems/Application - Desiqn Guide,
Release 1.5, 7th. ed. SH20-9035-6. San Jose: IBM Corp.,
Septe . 1978. .

21 IMS/VS Version 1 Systems Programming Reference Manaal,
Release 1.5, 8th. . eds. SH20-9027-7.. San Jose: IBM Corp.,
Octe. . 1978. .

22. . IMS/VS Version 1 Utilities Reference Manual, Release 1.5,
7th. ed. SH20-9029-6. San Jose: IBM Corp., Sept. 1978..

23. . King, John Leslie and Edward L. . Schrems.. "Cost<Benefit
Analysis in Information System Development and Operation."
Computing Surveys, Vol. 10, No. 1 (March 1978) pp. 19-34..

24. Lochovsky, F.H. and D.C. Tsichritzis, Data Base
Management Systems. ‘' New York: Academic Press, 1977.

25.. Lyon, John K. The Database Administrator. New York:

John Wiley and Sons, 1970.

26, . McGee, "HeC. . "Oon User Criteria for Data Model
Evaluation." ACM Transactions on Database Systems, Vol. . 1,
No._. 4 (Dec.. 1976) pp.. 370-387..

27. . McGee, W.C. K "The IMS/VS System." IBM Systems Journal,
Vol. . 16, No. 2 (1977).. ‘

28.. Navathe, S.B.. and J.P. Fry.. "Restructuring for Large
Data Bases: Three Levels of Abstraction." ACM Tramsactions on
Database Systems, Vol.. 1, No.. 2 (June 1976) 'pp.. 138-158..

29, . Nunamaker, J.E. and Benn R.. Konsynski, Jr.. "Computer
Aided Analysis and Design of Information Systems."
Communications of the ACM, Vol. 19, No. 12 {Dec. 1976) ppe.
674-687. '

30. . Raver, N. and G.U._ Hubbard. . ‘"Automated Logical Data

96

— ————— o ———— —— —

Vol. 16, No. 3 (1977) pp. 287-312.

31.. Ross, Ronald G. "Evaluating Data Base Management
Systems. " Journal of Systems Management, Vol.. 27, No.. 1

(Jan. . 1976) pp.. 30-35..

32. "Selection and Acquisition of Data Base Management
Systems." CODASYL Systems Committee.. March 1976..

33. Senko, M.E., Ve Y. Lum and P.dJde. Owens, "A File
Organization Evaluation Model (FOREM)." IFIP Congress (1968)

34. Sicherman, Bruce.. "Dramatic Performance Improvement With
a Simple Technique." IMS Newsletter, Vol. 3, No.. 3 (Nov.
1979) .. 5 :

35. . Sockret, G.H. and ReP. Goldberg. "Database
Reorganization - Principles and Practice." Computing Surveys,

- 36.. Thompson, Steve.. "An Experience in IMS/VS Tuning." IMS
Newsletter, Vcl.. 3, No.. 3 (Nov.. 1979)..

37. Tod, Mary Kathleen. ' "Performahce Considerations 1in
Relational and Hierarchical Data Base Management Systems."
Me SCe . Thesis.. U.B.C.. Feb.. 29, 1980.

38.: Tsichritzis, D.C.. and F.H.. Lochovsky. "Designing the
Data Base." Datamation, Vol. 24, No. 8 (Aug.. 1978) pp.
147-151.

39. . Welsh, Myles E. . "Getting Ready for IMS/VS." Datamation, -
Vol. . 24, No.. 13 (Dec.. 1978) pp.. 109-118..

40, Wiederhold, Gio. Database Design. New York: McGraw-Hill
Book Co., 1977.) ' ’

u1. - Yao, SoBo’, Ko S. - DaS and T.Jo ’ TeOI.'eY. - "A DynaII\iC
Database . Reorganization Algorithm." ACM Transactions on
Database Systems, Vol. 1, No. 2 (June 1976) pp. 159-174,

42. . Yao, S.Ba. and A.G. Merten. "Selection of File
Organization Using an Analytic Model." Proceedings of the
International Ccnference 'on Very Large Data Bases- (Sept..
1975) pp.. 255-267. .

