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Abstract

The thesis presents a survey of formalisms for non-monotonic
reasoning, providing a sketch of the "state of the art" in the
field. Reiter's logic for default reasoning is discussed in
detail. Following this, a procedure which can determine the
extensions of general finite default theories is demonstrated.

The potential impact of this procedure on some of the other
research in the field is explored, and some promising areas for
future research are indicated. Grounds for cautious optimism
about the tractibility of default theories capable of

representing a wide variety of common situations are presented.
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AChapter 1

Introduction

Artificial 1Intelligence (AI) researchers have shown a great
deal of interest in the ability to deal with incomplete or
inconsistent information. Much of human intelligent behaviour
apparently derives from this capacity to draw conclusions in the
absence of total knowledge. This suggests that existing
approaches to reasoning and knowledge representation should be
carefully re-examined to capitalize on their strengths and
redress their weaknesses in this area. This thesis examines
several approaches, focussing on the way each attempts to deal
with these problems. Default Logic (Reiter 1980) provides a
suitable framework for studying many knowledge representation
issues. A tractible means for applying Default Logic to many
common problem domains, such as semantic networks and databases,

is presented.

1.1 Incomplete Knowledge

It has been argued that if all of the facts which impinge on
any given decision had to be considered, human reasoning — as it

is commonly experienced — would be impossible. For example, the
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sheer volume of things which are not true about the world has
forced many to treat much of this knowledge as implicit — so
that it need only be represented or manipulated when necessary.

Semantic networks turn this necessity into a virtue. If
large amounts of information can be excluded from the knowledge
base, the interactions between facts during the "deduction"
process are restricted. So constraining the "“combinatorial
explosion" may result in significant improvements in speed.

In database theory, it is also common not to explicitly
represent much of the negative information about a domain (eg
the cities a given airline flight does not connect). The
implication is that anything not (stated to be) true must be
false (cf [Codd 1972, Reiter 198la]).

The problem of representing and using "negative information"
manifests itself in a variety of other ways including, in a
slightly different form, the celebrated "frame problem"
(McCarthy and Hayes 1969, Raphael 1971). Many ideas have been
proposed to help reduce the amount of negative information which
must be dealt with. Most provide mechanisms embodying the rule:
"If you do not 'know' X then infer +X". This rule hinges on an
assumption like: "If X were true, I would Kknow X", or
"Everything about the world is known" (cf Reiter 1978).

Another form of reasoning with incomplete information is
characterized by statements such as: "Most A's are B's" or
"Typical A's are B's". Such statements capture the intuition
underlying network representations of knowledge, that a great

deal of knowledge about the world involves "prototypes" of
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members of classes. Great economies of description can be
obtained in this fashion. It becomes unnecessary to attach all
of the properties associated with members of a class to every
member. When information is required about a particular member
of a class, it can be obtained by consulting the description of
the class prototype.

Prototypic descriptions are often called "default
descriptions" (Reiter 1978a), since they tend to be applied only
in the absence of contradictory evidence. For example, one can
predict that Clyde the elephant is gray without seeing him or
being told his colour, but one must be able to consistently deal
with the fact that Fred — while an elephant - 1is white (or
pink). There 1is a large body of literature detailing attempts
to take advantage of the representational power of prototypic
descriptions, some of which is discussed in the following
chapter.

Prototypic reasoning provides tools which make it easier to
deal with the imprecision encountered in everyday life.
Unfortunately, these tools are not without their own problems.
Admitting imprecision into one's reasoning mechanisms is an open
invitation to imprecision in one's conclusions. This may
manifest itself in situations in which there are no grounds for
deciding between alternatives, or where conclusions drawn are
inconsistent with further specification of thé situation being
reasoned about; (The latter condition 1is a consequence of

non-monotonicity, which is discussed in detail in Chapter 2.)
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1.2 Overview

Chapter 2 considers several aspects of the problem of dealing
with incomplete information, together with some partial
solutions which have been proposed. The latter range from the
very formal to the ad hoc. One of the more formal, "Default
Logic" (Reiter 1980), is examined in detail. This discussion is
intended to provide the reader familiar only with first-order
logic with the concepts necessary to understand the development
of the major contribution of this thesis. This occurs in
Chapter 3, which presents a mechanism for détermining the
beliefs sanctioned by particular default theories.

Chapter 4 outlines directions in which this research might be
extended. The discussion breaks down into two categories:
problems specific to default logic, and problems of determining
the interrelationships between default logic and other work in
the field. It will become apparent that the separation is
somewhat arbitrary; results in either area are likely to have a
significant impact in both.

Chapter 5 evaluates the significance of the results
presented. The effects of the restrictions placed on the
allowabie class of theories is discussed. This is followed by
some speculation concerning the possibility of obtaining more
powerful results along similar lines. The thesis concludes with
a short summary.

The material presented is relatively self-contained, assuming

only a familiarity with traditional first order 1logic (see
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[Mendelson 1964] for an introduction). The later chapters,
however, draw freely on concepts presented earlier. Readers
familiar with non-monotonic reasoning in general, and with
default logic in particular, may wish to merely skim Chapter 2.
Those interested in an only modestly technical overview of non-
monotonic reasoning may wish to restrict themselves to that
chapter. Finally, the proofs of the theorems presented in
Chapter 3 may be skipped without loss of continuity, provided

the theorems themselves are understood.



Chapter 2

Non-Monotonic Reasoning

Traditional logics suffer from
the 'Monotonicity Problem'
— Drew McDermott

In traditional logical systems, extending a set of axioms, S,
can never prevent the derivation of conclusions derivable from S
alone. More formally, if S and S' are arbitrary sets of
formulae then:

sCs' = {w| s} wlC{w| s'} w}.1

The addition of formulae to a set monotonically increases what

can be proved from that set, hence the logics are sometimes
called monotonic.?

More recently, it has been noted that monotonic logics seem
inadequate to capture the tentative nature of human reasoning.
Since peoples’ knowledge about the world 1is necessarily
incomplete, there will always be times when they will be forced

to draw conclusions based on an incomplete specification of

pertinent details of the situation. Under such circumstances,

1 s } w means w is provable from premises S.

2 rhis property has been called the extension property by Hayes
(1973) and others, but the former term appears to be gaining
pre-eminence. For this reason, and because "extension" has been
used in so many ways in the related literature, "monotonic" will
be used in this discussion.




assumptions are made (implicitly or explicitly) about the state

of the unknown factors. Because these assumptions are not
irrefutable, they may have to be withdrawn at some later time
should new evidence prove them invalid. If this happens, the
new evidence will prevent some assumptions from being used;
hence all conclusions which can be arrived at only in
conjunction with those assumptions will no longer be derivable.
This causes any system which attempts to reason consistently
using assumptions to exhibit non-monotonic behavior.

In AI, attempts to solve the problems presented by incomplete
information have fallen into two categories. The first category
includes those which assume that all of the relevant positive
information (eg which individuals exist, which predicates are
satisfied by which individuals) is known. From this assumption,
it follows that anything which is not "known" to be true must be

false. Negative facts3

can thus be omitted, since they can be
inferred from the absence of their positive counterparts. Such
assumptions typify PLANNER's "THNOT" (Hewitt 1972) and related
negation operators in AI programming languages (Reiter 1978a),
as well as Predicate Completion (Clark 1978), Circumscription
(McCarthy 1980) and the Closed World Assumption (Reiter 1978),
all of which are discussed below, and many others.

In contrast, many have wanted to represent and use what would

generally described as "default" or ‘"prototypic" information.

Defaults are wused to fill gaps in knowledge. 1In the absence

3 A fact is negative iff all of the 1literals in 1its clausal
form are negative.



of specific evidence, they allow a system to make (hopefully)

enlightened "guesses" instead of reserving judgement or assuming
that whatever 1is unknown is false. Non-Monotonic Logic
(McDermott and -Doyle 1980), Default Logic (Reiter 1980), Truth
Maintenance Systems (Doyle 1979, McAllester 1978, 1980), and
various frame-based procedural knowledge representation schemes
(Minsky 1975) all embody this idea.

The two approaches are not mutually exclusive — in some
instances, at least, the latter subsumes the former — but
comparisons of their power are most notable for their absence
from the literature. The discussion_in the remainder of this
chapter does not provide such a comparison, although some points

of correspondence are indicated.

2.1 Negation As Failure To Derive

Negative facts — those which state what is NOT true about the
world — vastly outnumber positive facts. For example, in a
discussion at a sufficiently high level, everything which is at
some place is NOT at EVERY other place. Similarly, if Tumnus is
a cat, he is not a dog, fish, tree, etc. The amount of negative
information about a world increases geometrically with the size

4

of the Herbrand Universe. One would like to avoid having to

represent all such information. The information must remain

4 The Herbrand Universe .is the set of all ground terms
constructable from the constants and other function symbols.
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available, however — at some point it may become useful to know
that Tumnus is not a dog.

AI programming languages (eg PROLOG [Roussel 1975], PLANNER)
have often addressed this problem by representing only positive
information, assuming that if something cannot be shown to be
true it must be false. Such systems embody an inference rule of
the form:

If f P then infer-} -P
which can be paraphrased as "If P is not provable from the
database, assume 4P as a lemma of the database". | A derivation
of P thus consists of an unsuccessful exhaustive search for a

derivation of P. This technique is called negation as failure

(NAF) .

Despite its attractiveness as a means of implicitly
representing negative knowledge, NAF is not without shortcomings
and pitfalls. The most obvious of these is that there 1is no
room for incomplete knowledge in such systems — anything which
is not known will be assumed false. Reiter (1978) calls this
assumption of "total knowledge about the domain being

represented" the Closed World Assumption (CWA), since it implies

a closed domain in which all possibilities are known. To see
the problems presented by incomplete information, consider a
database consisting of only BLOCK(A) \/ BLOCK(B). Since it is
impossibie to derive either BLOCK (A) or BLOCK (B) , NAF allows the
derivation of +BLOCK(A) and 4BLOCK(B). It is easy to see that
such situations are not consistent with NAF.

The fact that some classically consistent databases are not
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consistent with the CWA 1leads to the question, "Under what
circumstances can the negation as failure inference rule (and
hence the CWA) be consistently employed?" There is no complete
characterization of suitable databases, but it has been shown

> and

that a sufficient condition is that the database be Horn
consistent. Purely negative information plays no part in
closed-world query evaluation for such databases. It can be
ignored without loss of deductive power (Reiter 1978).

Even though a particular database may be consistent with the
CWA, implementations using NAF are not guaranteed to be
complete. Answers to a query, although implied by the database,
may be missed. It has been noted, for example, that NAF must be
applied only to ground literals if inferences drawn are to be
correct (Clark 1978, Reiter 1978). Significantly, neither
PROLOG nor PLANNER make such stipulations. The following
example illustrates the problems that this may cause. For the
PROLOG database:

EQUAL (x,x) .

BLOCK (A) .

BLOCK (B) .

TWO-BLOCKS (x,y) <— aEQUAL(x,y) & BLOCK(X) & BLOCK (y) -
the query:

<— TWO-BLOCKS (X,Y) .
always fails. PROLOG's selection rule, always resolve on the
leftmost 1literal first, causes the goal -EQUAL(xX,y) to be

selected with the variables x and y unbound. Thus the subgoal

EQUAL(x,y) is not ground and can be proved with the unifying

> A database is Horn if and only if each clause in the clausal
form has at most one positive literal.
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substitution 'x for y'. No failure proof for -EQUAL(x,y) will
be found, even though one exists. 4TWO-BLOCKS (x,y) may be
inferred despite the fact that this is inconsistent with the
database.

It should be remembered that these are problems with
particular implementations of NAF, not with NAF itself. The
requirements for the correct functioning of such systems have
been clearly laid out. Unfortunately, correctness and
completeness are often sacrificed for the sake of sizeable gains
in speed. It 1is assumed that incompleteness is better than
inefficiency. Whether this assumption is appropriate depends on
the application, and the fact that an implementation is

incomplete may not be known to its users.

2.2 Database Completion

NAF allows one to act on the assumption that "the objects
that can be shown to have a certain property, P, by reasoning
from certain facts, A, are all the objects that satisfy p"
(McCarthy 1980). It does not, however, allow the reasoner to
derive this assumption. Such systems can never be "conscious"
of the underlying principles which they are implicitly assuming.
Clark(1978) remedies this shortcoming by making the completeness
assumptions explicit in the database. All of the information
about a particular relation in DB is gathered together and a

completion axiom is added which states that a particular tuple
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satisfies the relation only if DB says it must. Applying this
process to all of the relations in DB yields the

completed database (C(DB)). This completion of the database

makes explicit the assumptions of total world knowledge. For
example, if the database contains:

ON (A,B) and ON (B,C) (1)
and no general rules about the ON relation, then the completion
axiom is:

Vxy.[ON(x,y) D) (x=A A y=B) V (x=B A y=C)] (2)
Combining (1), (2), and 1inequality schemata stating that
different names denote different objects results in the
conclusion that (A,B) and (B,C) form the complete extension for
ON. ‘

Reiter (198la) explores the effects of adding completion
axioms to normal relational databases. He demonstrates that
such techniques provide a means for dealing with types of
incomplete information commonly encountered in the database
field, such as null values and disjunctive information.

Database completion is more powerful than a first order
system augmented by NAF. Clark shows that the structure of a
failure proof is always isomorphic to that of a first order
proof from the completed database. Conversely, the completion
of the database:

DB = { P(a) }
is:

C(DB) = { Wx.[P(x) <=> x=a] }

from which =x.[x#a 7) ~«P(x)] follows by first-order reasoning.
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For any particular x#a, NAF can show -P(x), but the universal
summary is beyond its capabilities.
Another advantage of database completion is that it does not
introduce inconsistencies when applied to databases containing
incomplete information. The database:
BLOCK (A) \/ BLOCK (B),

which is inconsistent with the CWA, can be rewritten as:
Wx.[+BLOCK(A) A x=B D) BLOCK (x)] and:
Vx.[+BLOCK (B) A x=A _) BLOCK (x) ]

From these, the consistent completed database:

" ¥x.[BLOCK (x) <=> (aBLOCK(A) A x=B) \/ (4BLOCK(B) A x=A)]
can be derived. Notice that the disjunction in the original
database has become an "exclusive or" in the completed database,
which states that there 1is exactly one block, and it must be
either A or B.

These techniques do not avoid all of the problems of NAF
simply because all of the deductions are first order. | There
will still be propositions which are undecidable in the
completed database, propositions corresponding to those for
which the exhaustive search for a failure proof never

terminates.

2.3 Circumscription

McCarthy (1980) has proposed a rule of conjecture called

"predicate circumscription”. This rule allows explicit
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completeness assumptions, similar to Clark's completion axioms,
to be derived as they are required.

The formal mechanics of circumscription are beyond the scope
of this discussion. Essentially, however, circumscription
provides a means for closing off the world with respect to a
particular predicate at a particular time. A schema for a set
of first order sentences 1is generated. This schema is then
instantiated by substituting arbitrary predicates for the
predicate variables it contains. The particular substitution(s)
chosen determine which individuals are conjectured to be the
entire extension of the predicate being circumscribed. McCarthy
considers the blocks-world example,- discussed previously, 1in
which all that is known is:

BLOCK (A) \/ BLOCK (B) © (1)
If the predicate variable, ©, in the circumscription of (1):
[6(A) VB8(B)] AVX.[0(%X) => BLOCK(x)] => vx.[BLOCK (x) => ©(x)]
is replaced successively by the predicates (2) and (3):

xX=A (2)
x=B (3)

the conjecture:

Vx. [BLOCK (x) D) x=A] \V ‘x.[BLOCK (x) ) x=B] (4)
can be derived. As did the completed database, (4) says that
there 1is only one block: A or B. Again, the conjecture closes
the world and puts the "exclusive" interpretation on the
original disjunction.

The choice of substituends vitally determines what can be

6 Recall that this database is NOT consistent with the CWA.
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obtained from the circumscription process. It is not clear, in
general, how these substituends are to be chosen. McCar thy
suggests that the desired goal directs the choice of appropriate
substitutions. It remains to be seen whether this is correct.
It is easy to see that Circumscription subsumes NAF (in all
of its forms). McCarthy shows that it can derive the induction
axiom for arithmetic, which suggests that it is more powerful

than database completion.

All of the ideas discussed so far have provided ways of
becoming more “"closed-minded". Each functions by restricting
the set of models for the given axioms. The goal has been to

allow only minimal models (Davis 1980), in which only a minimal

set of predicate instances necessary to satisfy the axioms is
allowed to be true.

The complementary approach also involves restricting the set
of models considered. Rather than focussing on minimality, the
systems discussed in the sequel provide more flexibility in

determining which models are considered "interesting".

2.4 Default Logic

In the following, Default Logic (Reiter 1980, 1981) is
surveyed 1in more detail than those paradigms already discussed.
This is necessary both to familiarize the reader with the

concepts and notation required to understand the results in
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Chapter 3, and to place those results in perspective.

2.4.1 Default Theories

Default Logic is based on a first order language, L,
consisting of the first order well-formed formulae (wffs) formed

from an alphabet, A, consisting of countably many variables: x,

Yr Zy Xy «eei function letters: a, b, ¢, ...; and predicate
symbols: P, OQ, R,. +++; together with the usual punctuation
signs; logical connectives: + (not), A (and), V (or), D)
(implies); and quantifiers: ‘\wx (for all x), Ex'(there exists
an x). |

A wff containing no free variables is said to be closed.

Given an arbitrary set of wffs, S, the logical closure of S,
ThL(S), is defined as:

Thy (S) = {w| we L, w is closed, s } w}.’

A default is any expression of the form:

A(X) : By(X), ..., By(x) 8

W (X)
where A (X), Bi(i), and w(x) are all wffs whose free variables

are among those in X = X7, ..., Xx,. A, B

n and w are called the

i’

7 When the alphabet and/or language are clear from context, the
subscripts on Lp and ThL(S) will be omitted.

8 This notation differs from Reiter's in the omission of the
"M" preceeding each of the B.'s. Since they are implicit in the

positional notation, they have been omitted as a notational
convenilience.
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prerequisite, justifications, and consequent of the default,

respectively. If none of A, B;

i and w contain free variables,

the default is said to be closed. 1If the prerequisite is empty,
it may taken to be any tautologous proposition. Two classes of
defaults having only a single justification, B(x), are
distinguished. Those with B(X) = w(x), are said to be normal,
while those with B(x) = w(X) A C(X), for some C(X), are calléd

semi-normal.

A default theory, 4, is an ordered pair, (D,W). D is a set

of defaults; W is a set of first order formulae. If all of the
defaults in D are normal or semi-normal, A is said to be a

normal or semi-normal default theory, respectively. If each

default of D is closed, A is a closed default theory.

Defaults serve as rules of inference or conjecture,
augmenting those normally provided by first-order logic. Under
certain conditions, they sanction inferences which could not be
made within a strictly first-order framework. If their
prerequisites are known and their justifications are
"consistent" (ie their negations are not provable), then their
consequents can be inferred. Thus the term "justification" is
seen to be somewhat misleading, since justifications need not be
known, merely consistent.9 The consequent's status is akin to
that of a belief, subject to revision should the justifications
be denied at some future time. It is this characteristic which

induces the non-monotonic behavior of defaults.

9 In a modal logic with the operator K (know) the
justifications B; might appear as “K-B;.
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Default rules can be seen to have a great deal in common with
many previously mentioned approaches. For example, the Closed
World Assumption states:

I1f § w infer | aw
which can be represented in Default Logic by:

1w (1)
Iw

In fact, (1) will later be referred to as the "Closed World"
default. The DEFAULT assignments which can be attached to frame
slots in KRL (Bobrow and Winograd 1977) also appear to be
related. KRL provides a mechanism for obtaining a value for a
slot in the absence of a "better" value. A KRL default value,
d, for a slot, s, in a frame instance, f, can be viewed as:
If ¥ s(£)#4d infer } s(f)=4d
or, in Default Logic, as:

:s(f)=d .
s (f)=4d

Similar mechanisms are available in many other frame-based
knowledge representation schemes (Minsky 1975).

A closely related approach is Sandewall's (1972) "Unless"
operator. "Unless (P)" is interpreted as "§ P", and "Unless"
terms are allowed in the construction of wffs, with results
like:

A A Unless(B) 1) C
which correspond roughly to:

A H -|B .
C

"Unless" was originally proposed as a solution to the frame

problem. Rather than having to have explicit axioms stating
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that the properties of objects remained invariant from situation
to situation unless explicitly changed, Sandewall suggested that

these "frame axioms" be replaced by a frame inference rule like:

IS (object,property,situation)
Unless (ENDS (object ,property,Successor (situation,act)))
IS (object,property,Successor (situation,act))

which can be interpreted: If an object has a property in a
situation, it can be concluded to retain that property in the
successor situation resulting from performing 'act', unless it
can be shown otherwise.

No formation rules were provided for "Unless", however, so
questionable formulae such as:

A ) Unless (B)

can be constructed. The semantics of such formulae are, at
best, difficult to determine. Sandewall also fails to provide
any formal understanding of the impact of the "Unless" rule on
the underlying 1logic. Default Logic has, to some extent,

remedied these shortcomings.

2.4.2 Closed Default Theories and Their Extensions

Reiter (1980) describes the extensions of a default theory,
A= (D,W), as being "acceptable sets of beliefs that one may
hold about an incompletely specified world, W'". D is viewed as
extending the first order knowledge of W in order to provide
information not derivable from W.

An extension, E, for A is required to have the following
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properties:

WCE _ (1)
Th; (E) = E (2)
A H Bl, oo oy Bm (3)
For each default, e D, if A€ E, and
W

“By,..., B, ¢ E then w € E.

These properties state that E must contain all the known facts,
that E must be closed under the |} relation, and that the
consequent of any default whose prerequisite is satisfied by E,
and whose justifications are consistent with E, must also be in
E. Reiter defines an extension for a closed default theory to
be a minimal fixed point of an operator having the above
characteristics.

The extensions of a default theory select a restricted subset
of the models of the wunderlying first-order theory, W. Any
model for an extension of A will also be a model for W, but the
converse is generally not true.

There 1is an iterative mechanism for verifying an extension.
The method is, unfortunately, not suitable for constructing
extensions. This 1is because an oracle is required which can
decide whether a wff's negation is in the given extension. The
theorem outlining the mechanism is quoted below, both to provide
a better intuition about extensions and because it will be drawn
on several times in Chapter 3. Note the explicit reference to E
in the definition of E;, ;.
Theorem (Reiter 1980)

Let A = (D,W) be a closed default theory, and E be and arbitrary
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set of formulae. Define:
E0=W

and, for i 2 0:
Ej4] = Th(E;) U

A H Bl' e o o g Bm

{w| € D, A€ E;, “By,..., By € E}
w
@
Then E is an extension for A iff E = U E;.
i=0

Default theories need not always have extensions, even when W
is consistent. There are, however, certain classes of theories
for which the existence of at least one extension is guaranteed.
Normal theories have been shown to always have extensions, and
it appears that this is also true for certain classes of
semi-normal theories (see Chapter 4 for a discussion).

Some examples of defaults were presented in the preceeding
section. . The following example illustrates the extensions
induced by the closed world default on the theory:

W = { BLOCK(A) \ BLOCK (B) }.
The closed world default is really a default schema which is
applicable to any positive ground literal. In this case, it

results in the following set of normal defaults:

D= { :2BLOCK (A) :1BLOCK (B) } .
~BLOCK (A) <2BLOCK (B)

The theory, (D,W), has two extensions, Eq and Es.

E; = Th({-BLOCK(A), BLOCK (B)})

E, = Th({BLOCK(A), -BLOCK (B)})

Note that E = Th({BLOCK(A), BLOCK(B)}) is not an extension.

Like database completion and Circumscription, the closed world
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default gives the exclusive interpretation of disjunctions to
which it is applied. 1Intuitively, this is because the defaults
force as many things to be false as possible, resulting in
extensions whose models may be minimal models for W. More
precisely, E is not an extension because it violates the
minimality condition of the definition of extensions. (Were W
also to contain both BLOCK(A) and BLOCK(B), E would be the only
extension.)

Notice how the extensions Eq and E, manifest W's
inconsistency with the CWA. The inconsistent assignments for
BLOCK(A) and BLOCK(B) are still obtainable, but they are
separated into orthogonal, self-consistent extensions. In fact,
Reiter has shown that the extensions of any default theory will
always be self-consistent provided that the first-order theory W
is consistent, and that all the extensions of a normal default
theory will be mutually inconsistent.

Reiter gives a proof procedure applicable to normal theories,
but no means of determining the extensions of non-normal
theories has heretofore been presented. Such a mechanism,
applicable to arbitrary finite theories, is presented in Chapter

3.

2.4.3 General Default Theories

In contrast to closed defaults, an open default is one in

which at 1least one of A(X), Bi(i), or w(x) contain free
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variables in x. Reiter (1980) defines the extensions of an
arbitrary default theory as follows:

1) The Skolemized form of a default, d, is obtained by replacing
the consequent of O with its Skolemized form (Robinson 1965).

2) A default theory, A = (D,W), is Skolemized if all defaults in
D and all wffs in W are in Skolemized form.

3) If A = (D,W) fs a Skolemized default theory, = is the set §f
Skolem functions of A, and F is the set of function letters
of the alphabet, A, then CLOSED-DEFAULTS () is defined as:

{d(@)] d(x) e D, g€ H(FUS) is a ground tuple}
where H represents the Herbrand Universe.

4) E 1is an extension for a Skolemized default theory, éh iff E
is an extension for the theory (CLOSED-DEFAULTS ) ,W).
An open default is interpreted as standing for the set of

élosed defaults obtainable by replacing its free variables by

ground terms. H(F U X) will generally be countably infinite,
making (CLOSED-DEFAULTSMS)JH a default theory with an infinite
set of defaults. The repercussions of this will become apparent

in Chapter 3.

Most interesting default theories are not closed. Consider

what, by now, must be the archetypal default theory:

W = { Wx. Penguin(x) ) Bird(x),
Wwx. Penguin(x) _) aCan-Fly (x),
Vvx. Dead-Bird (x) ) Bird (x),
ZYx. Dead-Bird (x) _) ~Can-Fly(x),
VX. Ostrich(x) ) Bird(x),
Wx. Ostrich(x) 7) aCan=Fly(x),
Bird (Tweety)

D = { Bird(x) : Can-Fly (x) } .

Can-Fly (x)
The default, which is not closed, might be interpreted_as "If x
is a bird, and it is consistent that x can fly, conclude that it

can". This theory allows one to conclude, for an arbitrary bird
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(eg Tweety), that it can fly — wunless one 1is told that it
cannot, or that it 1is a penguin, an ostrich, or dead. The‘
conclusion may later have to be revoked should Tweety turn out
to be a penguin, but common sense seems to sanction the same
conclusion. This is partly because people tend to assume that
they have the relevant information in most situations (cf
linguists' use of Grice's Conversational Implicatures [Grice
1975]: one of these 1is that all information necessary to
interpret an utterance is expected to be contained in the

utterance.)

2.5 Non-Monotonic Logic

McDermott and Doyle (1980, McDermott 1982) propose a
formalism complementary to Default Logic, which they call
Non-Monotonic Logic (NML). Unlike Default Logic, which uses the
notion of consistency only at the "meta" level (in the inference
rules),tNML centres around the introduction of consistency into
the object language. 1In the first incarnation of NML (McDermott
and Doyle 1980), a standard first-order logic ‘was augmented with
an "M" operator, roughly equivalent to the familiar "§a". The
set of theorems was defined as the intersection of all of the
fixed points of an operator, NM. Essentially, NM produces the
logical closure of the original theory together with as many
assertions of the form Mg as possible. The set of theorems can

be contrasted with the extensions of a default theory, each of
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which is a fixed point. This 1indicates that non-monotonic
theoremhood is, in some sense, a more restrictive concept than
extension membership. In fact, the two areAincomparable in
general. The agreement intuitively expected considering that
any default:

A H Bl, * e o Bm

W
can be approximated in NML by:

AAMB| A ... AMB, Dw
often occurs. There are, however, default theories which have
extensions even though the corresponding non-monotonic theories
have no fixed points, and vice versa (see [Reiter 1980] for
examples).

Davis (1980) suggests that it might be impossible to assign a
reasonable semantics to the M operator were it included in the
object 1language. This and other problems led to the recasting
of the theory in terms of a more classical modal logic
(McDermott 1982).10 The resulting non-monotonic S5 is
unfortunately redundant, since it is no more powerful than 85.
Proofs of the consistency of non-monotonic T and S4 have not
been presented. Such proofs are necessary for NML to be
successful.

In version II of NML, McDermott considers the advantages of
believing formulae other than those in the intersection of all

the fixed points. He proposes a "brave robot" which would

10 A agiscussion of modal logics is beyond the scope of this
thesis. See [Hughes and Cresswel 1968] for an introduction.
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believe all of the formulae of a particular fixed point. Such
an approach is required in order to provide an intuitively
satisfactory semantics for Mp: "p is consistent with what is
believed".

The availability of the "M" terms in the 1language has
advantages and disadvantages. For example, it can be shown that
constructs of the form:

P D Mg
where p and q are arbitrary formulae, are either redundant or
inconsistent. (This follows because the "theorems" of any NML
theory must contain all formulae Mp which are not inconsistent.)
Such constructs cannot be formed in default 1logic, but are
readily available in NML (as they are in Sandewall's formalism).

On the positive side, the default rules can be manipulated by
the theory. For example, in the normal default theory with no

axioms and the defaults:

A : B r A : B
B

nothing can be inferred about B. The corresponding non-
monotonic theory:
{pn AMBDOB , -a AMB DB}

implies MB and MB ) B, from which B <can be inferred. This
appears to be more in accord with normal common sense reasoning.

Finally, Lp <=> p is a thesis of NML. While most modal
logicians would agree that "p is necessarily true" implies "p is
true", the converse 1is usually not. accepted. Hughes and
Cresswell (1968, p28) conclude that "no intuitively plausible

modal system”" would have such a thesis. This indicates that
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there may be fundamental problems with NML.

2.6 Consistency Maintenance

All of the paradigms discussed in this chapter provide means
for Jjumping to conclusions. Jumping to conclusions can be a
risky process, since there is an ever-present possibility of
refutation. Refutation of a conclusion already entered into the
knowledge base has consequences beyond the simple deletion of
the offending fact. Every other conclusion reached on the basis
of the rejected fact must be sought out and itself rejected.
These rejections may have repercussions scattered throughout the
knowledge base.

The "reasoner" must either remember the justifications for
everything it "believes" and be able to unravel a flawed web of
beliefs, or else be prepared to throw everything away and start
again from first principles. The 1latter course is clearly
impractical, but the former is by no means trivial. For
example, although the justifications which were used for
deriving a particular fact may have been invalidated, there may
be independent justifications which remain-valid. To revoke the
fact might recursively force the revoking of a large body of
information which will later have to be rederived. Many "belief
revision" systems have been designed to study the problems of
changing models of situations. Doyle (1979) and McAllester

(1978, 1980) present surveys of the problems which must be dealt
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with, and some suggested approaches.

A discussion of such techniques is outside the intended scope
of this thesis, buf it should be noted that these issues are
real and must be dealt with if any of the material discussed

herein is to be practically applicable.

2.7 Semantic Networks

Type or 1IS-A hierarchies are extremely common in AI. 1In
their simplest form, they correspond to logical structures
consisting of ground literals and simple, universally
quantified, implications of the form WWx.[A(x) ) B(x)],- where A
and B are monadic predicates. "Inferencing" degenerates to path
following (computing the transitive closure of a chain of
implications), with negation achieved by failure proofs. The
logical equivalent of such networks are definite databases.ll
Definite databases are necessarily consistent with the CWA, so
the semantics of such networks can be clearly laid out.

In the 1light of the common need to deal with prototypic
descriptions, it is worth considering whether semantic networks
can deal with exceptions. Simply incorporating exceptions into
the structure described above, as is frequently done, means that

a different semantics must be provided. Otherwise, the

resulting structures would be inconsistent. Traditionally,

11 A definite database is a Horn database in which each clause
has EXACTLY one positive literal.
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networkers have circumvented this problem by allowing
inconsistent information but using an incomplete inference
system incapable of detecting the inconsistencies. Conflicts
are thus resolved by giving preference to whatever can be
derived via the shortest chain of inferences. Not only is it
difficult to determine the semantics of such an inference
system, but the results are sometimes counter-intuitive. For
example, adding a link which summarizes a chain (perhaps to
improve efficiency) might completely change the path lengths and

hence what can be derived from the network.

NETL (Fahlman 1979, Fahlman et al 1981), a system designed to
allow the construction of large-scale 1IS-A hierarchies with
exceptions (MIGHT-BE-A hierarchies), addresses this problem by
making exceptions explicit in the network structure. NETL is
intended to be a massively parallel architecture, with one
processor assigned to each node of the semantic network it
represents. Three of NETL's link types are relevant to this
discussion:

l) vC - dorresponds to the normal ISA link, except that

exceptions (indicated by CANCEL 1links) are
allowed which may disrupt the normal inheritance

structures.
Represented graphically by: >,

2) CANCEL — cancels inheritance by the tail node and all
"lower" nodes of properties associated with the
head node and all "higher" nodes.

Represented by: +}+}>.

3) UNCANCEL — undoes the effect of the CANCEL link at its
head. The node at the tail and its descendants
will inherit as though the CANCEL link were not
there. '

Represented by: --—->.
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NETL graphs can be mapped into monadic semi-normal default
theories (theories involving only monadic predicates), as
follows:

VC links become normal defaults:

A —> B becomes A(x) : B(Xx).
B(x)

CANCEL and UNCANCEL links combine to produce semi-normal
defaults. A CANCEL 1link from A to B on which UNCANCEL
links impinge from Cir ¢e+er Cq (n 2 0) becomes:

A(x) : 4B (Xx) /\-lCl(X) N ... 1Cn(x)

1B (%)

Activation of a node corresponds to asserting a ground
instance of that node.

These three links allow the construction of complex struct-
ures. For example, Figure 2.1 diagrams the NETL structure and
corresponding default theory for the following (Fahlman et al
1981):

A mollusc is a shell-bearer.

Cephalopods are molluscs which are not shéll—bearers.
A nautilus is a cephalopod, but is a shell-bearer.

Shell-bearer .
Mollusc .
Cephalopod . ?
Nautilus ./
Figure 2.la — A typical NETL example.

This figure demonstrates that connections can become rather
complex in naturally occurring situations. It turns out that
inheritance (or inference) in NETL does not have the straight-

forward semantics one might expect. For example, in Figure



Semantic Networks 31

Mollusc (x) : Shell-bearer(x), Cephalopod(x) : Mollusc (x)

Shell-bearer (x) Mollusc (x)
Nautilus(x) : Cephalopod(x), Nautilus(x) : Shell-bearer (x)
Cephalopod (x) Shell-bearer (x)

Cephalopod (x) : =Shell-bearer (x) A aNautilus (x)
wShell-bearer (x)

Figure 2.1b — Default theory for Figure 2.1la.
2.2a, it is unclear to NETIL whether or not A should inherit from

E.

B

E .

0 T‘%

SN

N

Figure 2.2a — A problematic case.

A(x) : B(x), A(x) : C(x), B(x) : D(x)

B (x) C (x) D (x)
C(x) : D(x), D(x) : E(x), C(x) : aE(x)
D (x) E (x) «E (x)
Figure 2.2b - Default theory for Figure 2.2a.

This is because one path (A, B, D, E) indicates "yes" and the
other (A, C, E) "no", because of the CANCEL link from C to E.
While the former interpretation may seem preferable, since there
is a path involving no cancel links, the parallel nature of NETL
forces the latter choice. Since this is somewhat
counterintuitive, such structures are now declared 'ill-formed'
and the user must explicitly resolve the ambiguity. The source
of the problem becomes apparent when the corresponding default
theory (Figure 2.2b) 1is considered. This theory has two

extensions, containing E and +E respectively.
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Such difficulties highlight the need for a sound theoretical
basis for systems which are intended to 'represent and use
knowledge. Default Logic may provide a suitable vehicle for
this work. Chapter 4 surveys this problem in more detail,
indicating that the results presented in Chapter 3 may be useful

in formalizing the semantics of network representations.

2.8 Objections to Non-Monotonic Formalisms

Kramosil (1975) claims to have shown that any formalized
theory which allows unprovability as a premise in deductions
must either be "meaningless", or no more powerful than the
corresponding first order theory without rules involving such
premises, He presents two "proofs" to support his claim.
Careful examination shows that the first result follows from a
definition of "formalized theory" which expressly excludes any
theory which exhibits the types of behavior common to
non-monotonic theories. The second result is based on an
incorrect definition of "proof" and hence of "theoremhood" and
is itself meaningless. As the paper stands, it shows only that
non-monotonic theories must behave differently than monotonic
theories in those cases where the former can derive results
unobtainable using the latter.

Kramosil was not the only one to be uncomfortable with
opening the "Pandora's Box" of non-monotonicity. Sandewall

(1972) notes that the "Unless" operator has "some dirty logical
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properties”. Considering the example:

A

A A Unless(B) ) C

A A Unless(C) 1) B
he observes that either B and C <can be theorems, but, in
general, not both simultaneously. Reiter (1978a) makes a
similar observation in an early paper, stating that:

Such behavior - [is] clearly unacceptable. At the very

least, we must demand of a default theory that it satisfy

a kind of ‘'Church-Rosser' property: No matter what the

order in which the theorems of a theory are derived, the

resulting set of theorems will be unique.
It appears that the Church-Rosser property is a necessary
casualty if non-monotonicity is accepted.

A further problem which must be faced by those embracing
non-monotonicity is that the non-theorems of a first order
theory are not recursively enumerable. This means that the
rules of inference in theories involving the } operator cannot
be effective in general. From this, it follows that the
theorems are not recursively enumerable. By contrast, in
monotonic logics, the rules of inference MUST be effective and
the theorems MUST be recursively enumerable.

Finally, the very non-monotonicity which makes such theories
interesting means that "theorems" may have to be retracted if
the assumptions on which they are based are refuted (either by
new knowledge or changes in the state of the world). To be
useful, a non-monotonic reasoning system must be able to
remember which assumptions underly each theorem and be able to

unwind the potentially complex chain of deductions founded on

retracted justifications.



Chapter 3

Determining the Extensions of Default Theories

3.1 Motivation

In the previous chapter, Reiter's Default Logic was examined
in some detail. It was originally thought that most commonly-
occurring defaults were normal (Reiter 1980) and the results
obtained concerning normal theories seemed most encouraging.
Reiter and Criscuolo (1981) later observed that interacting
defaults could not be satisfactorily dealt with by strictly
normal theories. They considered the example:

Typical adults are employed.
‘Typical high-school dropouts are adults.

Typical high-school dropouts are not employed.

Which could be represented by the following normal theory:

Adult(x) : Employed(x) (1)
Employed (x)
Dropout (x) : Adult (x) (2)
Adult (x)
Dropout (x) : aEmployed (x) (3)

~Employed (x)

Given the fact that John is a dropout, this theory has two
distinct extensions, asserting either that John is employed or
not employed, respectively. Intuitively, it seems more 1likely
that John 1is unemployed. Unfortunately, there is no way to

force this interpretation on the normal default theory without

34
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replacing (3) with a first-order axiom of the form:
VX. [Dropout (x) O) «Employed(x)]. (4)
This fails to capture the tentative nature of the English
description — aiscovering an employed dropout would result in a
logical inconsistency. Using this and several other examples,
Reiter and Criscuolo illustrate a need for semi-normal - defaults
such as:

Adult (x) : Employed(x) /\ aDropout (x) (5)
Employed (x)

instead of (3) or (4), in order to fully characterize common
uses of default reasoning.

‘Semi-normal default theories can be used to represent many
forms of knowledge, including semantic networks, databases, and
the interactions between defaults, This will be little more than
a logical curiosity, however, if the extensions of the resulting
default theories cannot be computed, and the properties of
non-normal default theories have so far been largely unexamined.

The following section addresses this problem.

3.2 A Constructive Mechanism

Reiter provides a test to determine whether a set of formulae
is an extension for an arbitrary default theory, but he provides
no constructive mechanism which yields the extensions of such
theories. Of course, the extensions of default theories are not
recursively enumerable in general (Reiter 1980). All that can

be hoped for is a procedure which yields the extensions of
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theories restricted to decidable subcases of the predicate
calculus (eg sentential, monadic, or finite theories).

This chapter provides such a mechanism applicable to
arbitrary finite default theories. In what follows, the
alphabet, A, discussed in Chapter 2, is restricted to contain
only finitely many variables, constant symbols, and predicate
letters, plus the punctuation signs and logical connectives. No
function letters are allowed (except the O-ary function letters,
or constants). The discussion 1is further restricted by the
requirement that for any given default theory, A = (D,W), D must
be finite.

The effect of the above restricions is to ensure that the
Herbrand Universe associated with A is finite and hence that the
closure of A (discussed previously) is finite. The reasons for
these restrictions, their repercussions, and the effects of
relaxing them are discussed in the following sections.

A definition of an iterative procedure for determining the
extensions of an arbitrary finite default theory is now given.
This is followed by the derivation of the two halves of a
completeness result which shows that the procedure can return
all (Theorem 3.6) and only (Theorem 3.4) the extensions of the

default theory to which it is applied.
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Definition 3.1

Consider an arbitrary closed default theory, A = (D,W). A
sequence of "hypothesized extensions", H;, (i 2 0) is then
defined as follows:

For j > 0 define
hj = Th(w) and GD} = ¢
For i 2 0 let D; be the set of defaults whose precondi-
tions have been satisfied and whose justifications have

not been denied. More precisely:

A : By,...,Bp

pl = {d] 4 = € D,
_ w
A€ hi, «By,..., By ¢ (h] U Hy_;) }
A: By,...,B . .
T Choose &' = L T arbitrarily from (Dg - GD%),

from those defaults eligible to be, but which have not
yet been, applied.

Then define:
Gpl,; = 6pd u {d'}

hi,; = Th(h] U {wh

@ .
i=0

Observe that Hj is logically closed. Since D is finite, i may be
bounded above~ by the cardinality of D without loss of
generality.
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The application of the Th( ) opefator in the above definition
makes it immediately clear that the H;'s will not be well
defined in any situation where first-order theoremhood is un-
decidable. Finite theories, such as those discussed here, are
decidable. This should be kept in mind in the following
discussions.

The following lemmas will be required in order to obtain the

desired completeness result:

Lemma 3.2
For Hj (1 2 0) defined as in Definition 3.1,
A:Bl,o-o,Bm

if d = € D,
w

then w € Th(W) =>V j. w € Hj
The proof is an obvious consequence of the fact that, for all j,

hy = Th(w) and h} C Hj.

The next lemma has a bit more substance.

Lemma 3.3
For Hj and d defined as in Lemma 3.2,
if 1Bl,...,1Bm E (Hj—l U H:I) and A € Hj then w € Hj.
Proof
First, observe that:

Ve.eeH; =>3i.0€h] (i)
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Ve.egH; =>Vi.0ogh] (ii)

It follows that A € Hy => Ji.Aae h;.

Let k be the least such i. Clearly, V ik,

A € h] and +By,...,"By € (Hj_; U H;) =>V i2k. d e b C b.

Let c be the cardinality of D. Since D is finite, ¢ is finite.
It can be shown that de GDE+C, as follows:
Clearly, if GDg ;)GD2+1 for some i, k<i<k+c, then 6 e GD;.
Vi. kSi<k+c:
d 4 GDE+c => card(GD;) must be monotone increasing.
=> card(GD2+c) 2 c
but it must be that GD:1.l C p.

Therefore GD[L_c =D =>d € GDP;+c (contradiction)

1f d € GDJ,, then w € hg,c C Hy.

Thus w € Hj.

QED

The proof of lemma 3.3 relies on the finiteness of D,
explaining the restrictions placed on the alphabet and default
theories at the beginning of this chapter. It is reasonable to
ask whether such restrictions are necessary. The answer to this
question appears to be "yes". Certainly, it can be shown that
the lemma does not hold for infinite D. To see this, consider
the theory with an infinite set of constants, {ai}, an infinite

set of defaults,
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5= { di _ A : P(ai) } 5 { 6 ) A Q(al) },
P(a;) Q(ay)
and W = {A}. It should be obvious that A € Hy and-“that
“Q(ay) € (Hg U Hy). It should also be apparent that the
sequence of h%'s defined by GD% = GD}_l U {di}, (i > 0),
satisfies Definition 3.1, but that Q(al) & Hy.

The related question, whether there is any iterative
mechanism which yields the desired results will be addressed in
Chapter 5.

The term "Hypothesized Extensions" for the H;'s will now be
justified by the first half of a completeness result. The
It is

sequence of H;'s is said to converge if § n. H, = H

n n+l-°

shown that if the sequence of H;'s ever converges, H is an

n
extension. Furthermore, if any of the Hy's is an extension, the

sequence converges at that point.

Theorem 3.4

A sequence Hg, Hy, ... defined as in Definition 3.1 contains
two consecutive, identical elements, Ho_1 and Hy, iff H,_q is an
extension for A.

Proof

(=>) Following Reiter (1980, thm 2.1), define
Eg =W and, for i 2 o,
A : By,...,B

Ejy1 = Th(E;) U {w] € D,
W
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A€Ej, “By,..., By € H}

(00

then H (= H,_;) is an extension for A iff Hp =it;10Ei.

Thus it must be proved that
e o}

(a) U Ey C H, and
i=0
®
(b) Hy C U By
1=0

a) This can be shown by induction.
Clearly Eg C Hp.
Assume E; (C H, and consider o € Ejiq1-
There are two cases for 9:
i) e € Th(E;)
=> © € H, since E; C H, and the H; are closed under
Th( ).
ii) Otherwise 6 is w where:

A . Bl,oo.’Bm

€ D, A€ E;, "By,..., By € H_.
W

But A € E; => A € Hn' Thus, by lemma 3.3, w € Hn‘

@
It follows that U E; C H,.
i=0
)
b) By definition, H, = U hrk‘. It suffices, therefore, to show
i=0
_ o .
that vV k. hf C U E;. This is demonstrated by induction
i=0
on k. The base step is provided by:
@
h§ = Th(W) = Th(Ey) C E; C U

E..
i
1=0
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@
Hence, assume hﬁ_l C UE;, for some k > 0. Consider
i=0

hf = Th(h}_; U {w}).

A : B B
. 1,..-’
Clearly w € {w| e D,
W

A € hf(l—l’ '|B1,-.‘.,'|Bm e (hﬁ_l U Hn_l)}

(Note that (hf_; U Hy_y) = H,.)

@ @
Since U E; is closed under Th( ), and h}_; C U E; by
i=0 i=0

e )
hypothesis, it suffices to show that w € U E;.
i=0

o)
A€hp_;=>A€E UE;. (hypothesis)
i=0

A : Bl,..o,Bm ao
Thus € D, AE€EU
w i=0

Ei, -'Bl’-oo,'|Bm g Hn-

(e o)
Therefore w € U E;. From this, the result follows.
i=0
Combining (a) and (b) yields:
o o
Hn—l = Hn =.U Ei‘
1=0

=> H,_7 is an extension for A.

(<=) It will now be shown that if H,_; is an extension for A
then H,_; = H, by showing that:
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(b) H,_; C H,.

@

By definition, H, = U hj. Induction
k=0

result, as follows:

a) Consider © € H,. There are two cases:

43

ylelds the desired

i) eehj=>eerthw) =hl"tCH _;=>0¢€H_,.

ii) otherwise, assume hf_; C Hy_q-

Thus © € hi => © € Th(hj_; U {w]),

for some d = e DR.
W
— n
=> A € hk_l
=> A € H (hypothesis)
also, -'Bl"..'-'Bm E (hrlé_l U Hn_l)o
=> -|B1'o¢-,'|Bm g Hn_lo
Therefore, w € Ho 1 (lemma 3.3)
=>© € H,_; ‘ (H; closed under Th( ))
w
b) As noted above, H,_; is an extension => H,_; = U Ej.
i=0

e8]
Consider © € H,_; (=> 6 € U E; => ] i. © € E;).

i=0

Continuing by induction, it is shown that 6 € H, as follows:

i) e e Ej => © E W => 06 € h0 => 6 € H,

Therefore Eg C H,.

ii) Assume E; 1 C;Hn for some i > 0.
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A H Bl,ooc,Bm
Then © € E; => © € Th(E;_j) U {w| € D,
W

A€Ej 1, "By,..., By € Hy_;}

Cases:
1l) 6 € Th(Ei—l) => 0 € H, (hypothesis and closure)
A : Bl,...,Bm
2) otherwise, 6 € {w| € D,
w
A€E; q, By,...,"By € H 4]}
A € Ej1 => A € H (hypothesis)

It was proved in (a) above that H, Q;Hn—l'

ThUS -|B1,-oo,1Bm g Hn_l => '1Bl’.oo,'|Bm g Hno
Therefore, by lemma 3.3, 6 € Hp.

Combining (a) and (b) gives the desired result, namely:

Hl’l—l = Hl’l'

QED

The following corollary underlines the stability of the

method.

Corollary 3.5

1f A = (D,W) and H; are defined as in definition 3.1 then:

for arbitrary j > 0 ‘
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jss]
Lt
I
=
]
s

=> H. = Hj+l-

j-1 Hj => Hj is an extension. By Theorem 3.4, Hj = Hj+l'
An example may illustrate the algorithm. Consider the
default theory, A = (D,W), with:

p={d =a:8B,d,=2a: B}

84 ¢ D —
w=1{a2a}

This theory has two extensions:
E; = Th({a, B})
E, = Th({a,-B})

The first iteration of the algorithm results in:
Hy = Th({a})

h§ = H, | GD§ = & D§ = {d;.d,}

At this point there are two ways to proceed, depending on
whether dl or 62 is chosen in forming hi. Each case will be
considered in turn.
l) 1If 61 were chosen:

hi = Th({a,B}) | epi = {d;} pi = {dy}
All succeeding h%.will be identical to h%, since there are no

more eligible defaults. Hence:
@

H; = U hi = Th({a,B}) = E;.

i=0
h3 = Th({a} GDg = ¢ p§ = {d;}
h? = Th({a,B}) ep$ = {d;} p? = {d;}
Hy = Th({A,B}) = E;.
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Of course, this was to be expected: since E; is an extension
for A and H; = E;, Theorem 3.4 guarantees that H, -= Hy. Itscan
easily be seen that the presence of B in Hy prevents the
application of 52 in the generation of Hy and so produces the
desired result.
2) If 62 were chosen:

hi = Th({a,~B}) epl = {d,} p} = {d,}

Again, there are no more eligible defaults, so:

Hy = Th({A,-B}) = E,.
hg = Th({a}) G = ¢ p3 = {d,}
h$ = Th({a,-B}) ep? = {d,} p? = {d,}
Hy, = Th({Aa,~B}) = E,.

Thus the method 1is capable of converging on each of the

extensions for A.

Comforting as the results presented may be, they do nothing
to indicate that the method could ever arrive at an Hy which is,
indeed, an extension. The following theorem partially rectifies
this, proving that for an arbitrary extension, E, there is a
sequence of H;'s which converges to E. In fact, there is a

sequence which converges in a single iteration.

Theorem 3.6

Let A = (D,W) be a default theory with extension E. There is
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a sequence Hg, Hy, ..., Ho_q. Hp ., defined as per definition 3.1,
such that H,_7 = H, = E. 1In particular, there 1is a sequence

such that Hl = H2 = E.

Proof

If W is inconsistent, then E = L. (Reiter 1980, Cor 2.2)
For arbitrary i > 0,
h} = Th(w) = L
Clearly all h:ij CL
@ ",
=> Hi = [;] h=

1
j=0 J

= L = E.

Hence assume that W is consistent.
The set of generating defaults for E with respect to A is
defined as follows (Réiter 1980):
A : Bl""'Bm

GD (E,A) = { €D |A€EE, «Bj,...,nBy € E }
W

Lemma 3.7 (below) shows that a non-trivial subset of the
possible sequences of H;'s defined by definition 3.1 can be
obtained by 1limiting the choice of d at T in the definition to
an arbitrary member of ((Dg - GD;) (D) GD(E,AA)). This device will
be employed to complete the proof.

It suffices to show that Hy = E, since H; = H, then follows

directly from Theorem 3.4.

Clearly, W (C Hy C Th(W U CONSEQUENTS (GD (E,A) ) )
=> Hy C E. (Reiter 1980, Thm 2.5)

It remains to show that E Q;Hl.
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Define E; as before, and recall that, since E is an extension

a
for A, E = U Ej.
i=0

Clearly Ey C H;y.
For i 2 0, assume E: Q;Hl, and consider w € Ej41-

1

There are two cases:
i) we Th(Ei+1) => w € Hy (hypothesis and closure).
ii) Otherwise, there is a default,

A : Bl,...,Bm

d = €D, A€E;, "By,..., By £ E.
W

Clearly, A € E and A € Hy (B C E, hypothesis)

Therefore, d € GD(E,D).

A € Hyis ABys..., B & (HO U Hl) => w € Hy. - #(Lemma 3.3)
It remains, therefore, to show that ABq,...,By & (HO U Hy).
If this is not true, then there are two cases:

i) di. «B; € Hy = Th(W) CE

=> 1B; € E (contradiction)
ii) Ji. By € Hy

It was shoWn_above that Hy C E.

=> 4B; € E (contradiction)

Therefore, “By,..., By € (Hg U Hy).

Thus E;,9 C Hy. It follows by induction that E (C H;.

QED

The above result hinges on the fact that it is always
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possible to restrict the eligible choices of defaults to those
which, in some sense, "must" be made to yield the extension in
question. The following lemma shows that this restriction is
always possible — provided all previous choices have been so

restricted — without eliminating all of the possibilities.

Lemma 3.7
Given a default theory, A = (D,W), with an extension, E, if
Gb} C GD(E,A) then
((0f -6p}) O GD(E,A) = ¢ iff (0} - ap}) = 4
Proof
(<=) Trivial
(=>) The proof proceeds by induction on i.

Note: V i. (hi U Hy) = hi (Hy = Th(W) C h})

As a notational convenience, the eligible defaults, ED%, are

defined as (Dg - GDg): the applicable defaults less those which

have already been applied.

The inductive proof for the i = 0 case hinges on the

following observations:

A H Bl,ooo,Bm

i) p§={d] d =

e D, Ae h%' -'Bll...'-‘Bmg h%}
W

ii) A€ hf="Th(W) =>A€E

iii) +B; # E => -B; € hj
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: 1 _ 1 _ = - =

Assume (GD (E,A) F)ED%) = ¢4 and ED% # .

A :B,,...,B
=>3d = 1 Y e D, A€ Th(wW,
W

"Bl,ooo,"Bm g hél)- = Th(W)’

and, for some i, “B; € E.

Recall that, since E is an extension for A4,

(Reiter 1980, Thm 2.1)

By induction on j, it will be shown that -B; € E.
Clearly Eq = W(C Th(W) => -+B; € E;.
Let Ej C Th(W) and consider Ej+l‘
c H Fl,oo.,Fr

Let Dj = {él d = € D, C e Ejl
v

-|Fl’..o;-'Fr e E}
Ej+l = Th(Ej) U CONSEQUENTS(Dj)
Th(Ej) C Th (W) (hypothesis)
ﬂBi (S Ej+l./\1Bi & Th (W) => 1Bi € CONSEQUENTS(Dj).
But Dy C GD(E,A) and Dy C D§ - EDj
=> Dy C (GD(E,A) () EDJ)
=> D. = ¢

]
=> CONSEQUENTS(Dj) =g
=> Ey41 = Th(E4) C Th'(W)
and -B; ¢ CONSEQUENTS(Dj) (contradiction)

@ _
Thus -~B; € U Ej => -B; € E (contradiction)
j=0
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o
i
o

Therefore (GD(E,AD) () ED%) =g => ED

i>0

For the inductive step, allow the conjecture to hold for ED%_l

and consider ED% (izl).
Assume (GD(E,A) () ED%) = ¢ and ED% £ &,

The discussion below makes use of the following identities:

(GD(E,A) () EDI) = (GD(E,A) () (D - GD}))

((GD(E,A) - @) ) p})

[ (hypothesis)

A H Bl'oo-,Bm

ED% #d => 7 d = € D such that d e ED%.

A
=>depl=>nentA-B,..., By ¢ h}.
demml AdgcepED =>AgE VvV Ti.B; €E.
Clearly, h]i(_:_E (GD%(;GD(E:A))
=> A € E.

Therefore, it must be that -B; € E.

If (GD(E,A) - GD}) = ¢ then
1f d € GD(E,A) then 4 € G}

=> CONSEQUENTS (GD (E,A)) C hi

=> (W U CONSEQUENTS (GD (E,A))) C h}

=> E C hl (closure, Reiter 1980, Thm 2.5)

=> B g E (contradiction)

otherwise d € b} => 4 ¢ (GD(E,A) - ao})
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=> 4 ¢ e (E,4 Vv d e apl.

Thus, if d e D%, there are two cases:

i) de e} CGp(EA) => -B; € E (contradiction)
ii) d ¢ GD(E.A)
=> (0} DGD(EA)) = ¢ (given (i))

C: Fy,...,F
=> {d] 4 = 1 ~enp, cehl,
a

“Fy,...,7F, £ h1} O

c H Fl,..o,Fr

{4] 4 =

u

“Fy,...,"F, € E} = ¢

Observe that C € hi => C € E.
Assume that D% # &g
c T Fl,.--,Fr

=> ((d = € DAC € hi
u

/N "Fl"""'Fr & hi‘) => ak. -le e E )

c M F ¢ o F
l ’ 4

-~ e (ED}_; M oD (E,A))
a

If there is no such d' then, by hypothesis,
EDj_; = ¢ => hi = hi_,
. => EDJl‘ = ¢

Otherwise:
cehnl . Chni, —F F_ & E
i=1 %= Mir FQ ey
But hj C E => ~Fy,..., F, € hl.

Therefore &' € D%,A\ﬂFl’-..,ﬂFr € B
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=>d' eDAcCehtAAF,..., F, € E
=> d e (D% () GD (E, ) (contradiction)
Therefore, D% =g => ED% =g

QED

Given the optimistic nature of these results, one might hope
to be able to strengthen them by showing that all sequences of
H;'s converge on extensions. Unfortunately, this is not true in
general, since it would imply that all default theories have
extensions, which is not the case. (For example, the theory:

w={]
:A A aB, :BA AC, :C/\wAl

A B C

has no extension.) The weaker result, that all sequences of

H;'s converge provided that A has an extension, also fails to

hold for general default theories. The default theory:

{a}

W

A : BA D A : D‘ﬁ\1C B : C
{do= Iél= Iéz= }

B D C

o
"

has an extension, E = Th({A,B,C}). The sequence of H:'s
determined by choosing:
Gp] = ep_; U {4y} 3 > 0, k = (i-1) mod 3
is legal according to Definition 3.1 but never converges,
In general, then, the most that could be hoped for is a
tractible means of determining whether a particular sequence of
H;'s will not converge. Given the finite nature of D, the only

way for a sequence of H;'s not to converge is by the occurrence,
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0 £m< n-1 (ie for

somewhere in the sequence, of an H, = Hp, < le

the sequence to cycle). While theoretically possible, it does

not seem desirable to maintain a complete list of the H:'s and

i
compare each new element with all of its predecessors!
Experience has shown that the occurrence, at any step in the
construction of H;, of a condition where GD; Z:Dg is a reliable
indicator that the sequence is about. to cycle. Intuitively,
this condition indicates that the justifications for a default,

d, which has already been applied, have been denied. Thus, the

consequent of d will not be in H,

j+1- This information, together

with the fact that it is known that there is a sequence of H;'s
which converges immediately (ie without 1looping), might be
applied by a depth-first search for an extension to indicate the
need for backtracking. It has not been determined, however,
whether this rule always holds or would serve only as an
heuristic.

The question for which, if any, classes of - default theories
every sequence of H;'s is guaranteed to converge on an extension
(if there is one) for A remains open. Chapter 4 examines this
problem further, suggesting some promising candidates.

All of the results presented above apply equally well to
closed and open default theories. To see this, it is sufficient
to observe that the Herbrand Universe for a finite - default
theory, A, over a finite alphabet with no function symbols, A,
must be finite. From this it follows that CLOSED-DEFAULTS (A
must also be finite. Thus, all of Reiter's results generalizing

the notion of extension to arbitrary default theories can also
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be applied here, finiteness notwithstanding. The reader is

referred to Reiter's paper for a detailed description of the

machinery involved.



Chapter 4

Directions for Future Research

During the course of the research underlying this thesis, a
numbef of promising avenues for research on related topics
became apparent. :These ranged from extensions of the results
presented here to determining the relationships between default
logic and the many other existing formalisms. Some of the
topics which warrant further exploration are outlined below.
Included in the discussion are possible approaches which may

‘prove fruitful in dealing with the problems.

4.1 Default Type Hierarchies

Hierarchal Taxonomies, or type hierarchies, are extremely
common in AI. The fact that normal IS-A hierarchies are
isomorphic to some underlying first-order logic is now widely
accepted (Woods 1975, Schubert 1976, Hayes 1977). When
exceptions are allowed within the inheritance structure,
however, their semantics are no longer so straightforward.

It appears that semi-normal default theories can be used to
represent type hierarchies with exceptions. Since the
hierarchies are acyclic, the underlying default theories will

also be acyclic — although exactly what constitutes an acyclic

56
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default theory is not necessarily obvious.

During the course of the research reported herein, several
attempts were made to define just this. While a general, formal
definition of acyciic default theories has yet to be obtained, a
characterization which seems to capture the essential features
has been found. As one might expect, given the well-behavedness
of normal default theories, the central feature which must be
dealt with is in those parts of the justifications which make
individual defaults non-normal.

For the restricted class of semi-normal default theories
which correspond to type hierarchies with exceptions, all
defaults must have the form: |
A : B/\Cl/\.../\Cm

B

d =

and all formulae in W must be of the form:
“A :) Bll O[' IIAII
where A, B, and the C;s are positive or negative literals. The

relations < and £ are defined as follows:

deDp =>A<B, +C; <B (1 <1i<m)

(A DB) =>A < B
together with the wusual transitivity relations. If these
relations form a partial order on the alphabet, A, (i

(WA €A) ~(A <A)), the theory 1is called acyclic. Normal
theories, which always have extensions, are all acyclic.  Those
theofies without extensions which have so far been presented (cf
[Reiter 1980, 1981]) are cyclic; This suggests that acyclic
default theories may always have at least one extension. If

this proves to be the case, it should be possible to precisely
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specify the semantics of any semantic network inference system
in terms of a semi-normal default theory. . Thus one could
determine Jjust what inferences the system was justified in
making. Similarly, providing the acyclicity conditions were
met, the system could be assured that there was always at least
one extension for the theory it was working with. This result
would be comforting to those using such a system.

Observation of the conditions which cause - the procedure to
cycle leads to the conjecture that, for the class of theories
described above, the procedure presented in Chapter 3 always
converges., This would provide a deterministic procedure for

determining the extensions of such theories.

4.2 Parallel Inheritance Machines

The work described in this thesis originally derived from an
attempt to use default hierarchies to specify the semantics of
inheritance and cancellation thereof in NETL, a parallél machine
architecture for representing semantic networks. There had been
several efforts made [Fahlman et al 1981, Touretzky 1981] to
provide a mechanism for determining inhéritanée using a parallel
marker passing algorithm with cost proportional to the "height"
of the network. These efforts were plagued by the discovery of
peculiar cases which invalidated each newly proposed marker
passing algorithm. It was hoped that, by expressing the ad hoc

rules of NETL within the formal framework of default logic, the
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underlying principles might be illuminated, thus paving the way
for developing a provably correct inference mechanism.

This work immediately brought encouraging fruit. It was
shown that NETL inheritance structures could be expressed as
monadic, semi-normal, default theories. The fact that
unrestricted inheritance structures caused problems for their
parallel marker-passing algorithms was noticed by Fahlman et al,
and the so-called "naive" scheme was discarded. Examination of
the corresponding default theories.revealed the source of the
problem: the unrestricted theories could have more than one
(possibly orthogonal) extension. NETL's inheritance mechanism
had been trying to derive a set of beliefs, in one parallel pass
without lookahead, which would all belong to one of the possible
extensions. Since extension membership is not a 1locally
determined property, it was apparent that this would be
impossible.

NETL's allowable inheritance structures were then restricted
to prohibit nodes from which alternate pathways could lead to
conflicting conclusions. The effect of these restrictions was
to ensure that the corresponding default theory had exactly one
extension. Attempts to develop a proof theory for the default
logic, so restricted, which would capture the parallelism of
NETL met with frustration. It turned out that any parallel
proof theory which could correctly deal with cases like that
shown in figure 4.1 could not deal with those like figure 4.2,
even though when activated for a particular A (eg a), both have

a unique extension (namely: Th({A(a), B(a), C(a), D(a)})).
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NETL Graph Default Theory

F W= {A(a)}

s
.

-

D E D= {AX) : B(x), B(x) : C(x), C(x) : D(x),
\ B (x) C (x) D(x)
C
A A(x) : E(x), E(x) : aF(x) A ~D(x)}
B E (x) ' -F (X)
\
A
Figure 4.1 — D must be activated before E.
NETL Graph Default Theory
F W= {a(a)}
e
D E D = {A(X) : B(x), B(x) : C(x), C(x) : D(x),
\ B(x) C(x) D (x)
C
A A(x) : E(x), E(x) : aF(x) A aE(x))
B E (x) , aF (x)
\
A
Figure 4.2 — E must be activated before D.

This is because, in Figure 4.1, the "markers" must reach D by
the time they reach E. 1In Figure 4.2, the opposite 1is true.
Due to the locality of reference in NETL's parallel marker
propagation, the required propagation pattern is impossible to
determine in parallel. A new version of inheritance in NETL has
been developed which disallows such constructs. Touretzky
(1981) states that the added restrictions result in a provably
correct scheme. 1If this is so, it will be instructive to
determine how the restrictions on well-formedness of NETL
inheritance hierarchies will affect the expressive power of the
underlying default logic (and hence of NETL) . This

investigation has not yet been undertaken.
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4.3 Truth Maintenance

Anyone familiar with the belief revision literature (see
[Doyle and London 1980] for a survey) will notice certain
similarities between the relaxation process carried out by such
systems during "truth maintenance" and the iterations of the
procedure presented here. The similarity is all the more
compelling when the in- and out-hypotheses in the TMS
justifications are viewed as the prerequisites and
justifications, respectively, of a default theory.

It may be that a formal understanding of the truth
maintenance process can be realized by explicitly detailing this
correspondence. The goal of this research would be to show that
such systems are essentially converging on extensions for some

underlying default theory.

4.4 Theoretical Analysis

As has been mentioned, there has been a dearth of formal
study of the relationships between the capabilities provided by
the various approaches. Due to the 1level of interest in
knowledge representation and reasoning, there has been a
proliferation of ideas. Unfortunately, proponents of these
ideas have not always provided the degree of rigour for which
one might hope. New schemes are conceived without clear

demonstrations that they are superior to (or even significantly
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different from) those already extant.

Rigourous comparisons of approaches would serve not only to
demonstrate which are best suited to particular problems, but to
point out weaknesses. This study might lead to the abandonment
of some and the improvement of others to make them more
universally applicable.

It seems clear that much of the work in the field is closely
intertwined —bperhaps not surprisingly, considering that every-
one involved has the same set of problems with which to deal.
If this intertwining can be unraveled, it should provide insight
into other, more appropriate, ways of attacking the problems.

Approaching the problem from a different angle, there has
been a rich tradition of study, dating back to Aristotle, of the
properties of the wvarious modalities (cf [Lemmon 1977]). The
investigations of McDermott (1982) suggest that there may be
ways to apply the <classical modal 1logics to the problems
addressed by non-monotonic and default logics. There are likely
to be many contributions which modal logic can make to this
domain of inquiry. |

Default Logic avoids the introduction of modalities into the
language. As noted in Chapter 2, this results in advantages and
disadvantages. There 1is, as yet, no characterization of the
costs and benefits of such an approach. For example, Default
Logic's 1inability to combine defaults may be remediable without
seriously distorting the fabric of the logic. The implications

of such alterations invite further investigation.
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Conclusion

5.1 Evaluation of Results

The following discussion places this work in perspective.
There are a variety of «criteria which can be applied when
determining the significance of these or any other theoretical
results. The main dimensiong considered will be the power and
generality of the method and its applicability to common
problems. The intention 1is provide an intuition about the

strengths and shortcomings which have been encountered.

5.1.1 Finiteness Restrictions

As has been mentioned, the method presented is applicable
only to default theories consisting of a finite set of defaults
over a finite alphabet. To the logician, this may seem to be a
disquieting shortcoming. In both database theory and common
type/Ié-A hierarchies, however, the domain of interest usually
is (or is treated to be) finite. The case has been made in this
thesis and elsewhere (cf Reiter 1978, 1978a, 1980, 1981) that
default logic provides a suitable formalism for dealing with
many of the common problems encountered in these areas. It can

63
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be seen that there is a large class of interesting problems to

which the method may be applied.

5.1.2 Infinite Theories

It may still be of interest to consider whether there 1is a
method for «constructing extensions which is not subject to
finiteness restrictions.l There is at least one: Reiter (1980)
has shown that there 1is a sequence EO' El' ..« Ssuch that

a

UE; =E iff there is an extension, E. Furthermore, he has

é;gonstrated that E = Th(W U CONSEQUENTS (GD(E,A))), where
GD (E,A) are the generating defaults of E from A described in
Chapter 3. From this, it 1is not difficult to show that the
sequence of h; obtained as in Definition 3.1, except adding
(GD(E,A () (0] - @pJ)) at each step (at 1), yields.%o hi = E
(=H;) . The only drawback of this approach is that it i:o circ-
ular. E must be known to determine GD(E,A). This is not, then,
a computationally feasible approach.

The existence of one method for arriving at the extensions of
an infinite default theory may suggest that there are other,
more feasible, approaches. Experience has shown that the
immediately apparent or promising methods all fail to achieve

the desired result. This appears to be because any non-circular

method powerful enough to obtain the result corresponding to

1 Given that extensions are not generally recursively
enumerable, this question must be restricted to those theories
with recursive, or at least recursively enumerable, extensions.
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Lemma 3.3 for the infinite case cannot yield that corresponding
to Theorem 3.6, and vice versa. Any procedure which guarantees
including every applicable default seems unable to find all
extensions. This seems to be a consequence of the interactions
between defaults, and of non-monotonicity. Of course, an
algorithm could consist of a breadth-first search for "Reiter's
Sequence", but it is not clear what value breadth-first search
has in a domain with a potentially infinite branching factor.
While this does not constitute a proof, hopefully the reader
is left with an impression of the improbability of overcoming
these 1limitations within the confines of any traditional,
deterministic modél of computation. These pessimistic
indications and the wide applicability of the finite method

provide little motivation for pursuing the matter further.

5.1.3 Computational Considerations

The question of the computational utility of the results is
perhaps the hardest to address. Any formalism rooted, as this
one 1is, in first-order 1logic is bound to be fraught with
computationally expensive operations. As the method stands, it
must compute the logical closure of each hg, of which there are
‘an infinite number. Of course, if the theory 1is finite, all
beyond some finite number will be identical and need not be
computed. Computing the closure 1is still a potentially

expensive, or even non-terminating, operation.
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It may be possible to heuristically limit this computation,
deriving only "relevant" portions of the extension. For
example, all tautologies are contained in every extension — but
they rarely need to be computed. There may be interesting
domains where closure is not necessary. IS-A hierarchies with
exceptions immediately suggest themselves, given the ways in
which these have traditionally been employed.

Another way to address this problem is to reformulate the
procedure slightly. The computation of the logical closure in
the construction of Hy and each hg can be avoided if the
definition of Dg is replaced with:

A: By,...,B
l 14 14 .
T e p, hl | a,

p] = {d] 4 =

W
(h] U Hy_1) ¥ By, ..., By}

Since A must be finite, the references to provability (F) and
unprovability (ff) are all decidable, and the procedure becomes
an algorithm. The resulting H,, should the algorithm converge,
is no longer an extension, since extensions must be 1logically
closed. Th(Hn) will be an extension. For common applications,
however, H, may be sufficient.

Even with this reformulation, consistency tests are expensive
and indispensible (Reiter 1980). There is a great deal of work
being done on ways to circumvent the problems presented both by
the combinatorial explosion and the inherent undecidability of
the wunderlying systems. These 1include theorem provers which
constrain the explosion (cf C-Ordered Linear Resolution [Reiter

19711, SL Resolution [Kowalski and Kuehner 1971]), and various
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heuristic approaches such as resource limited computation (cf
KRL [Bobrow and Winograd 1977, Winograd 1981]1). 1It is beyond
the scope of this thesis to enter into a discussion of such
methods. It remains to be seen whether techniques will be/found
which can make default reasoning in general, and these results
in particular, computationally attractive.

Finally, the fact that Theorem 3.6 shows that extensions can
always be arrived at in a single iteration suggests that the
procedure is too elaborate and could be simplified. Not every
sequence converges immediately, however. The procedure outlined
is general enough to recover from non-optimal choices of which
defaults to apply. It was also designed to be robust enough to
withstand the "discovery" of new consequences of a theory — the
type of effect which might be expecfed were the required

computations heuristically limited in some fashion.

5.2 Summary

A survey of formalisms for non-monotonic reasoning has been
presented, providing a sketch of the "state of the art" in the
field. Reiter's logic for default reasoning has been discussed
in detail. A procedure for determining the extensions of
general finite default theories has been demonstrated.

The potential impact of the procedure on some of the other
research in the field has been explored, indicating some

promising areas for future research. Grounds for cautious
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optimism about the tractibility of default theories capable of
representing a wide variety of common situations have been
provided. This optimism may not turn out to be well-founded,
but it is hoped that this thesis may provide the groundwork for

further development in this area.
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APPENDIX A

Dictionary of Symbols

Symbol Interpretation
O Set intersection
U Set union

- Set difference

] The empty set

{ } The empty set

C Proper subset

74 Not a proper subset
C Subset

Not a subset

Is an element of

wmon N

Is not an element of

| Set qualification (read "such that")

iff If and only if

=> It follows that

) Logical Implication

A\ Logical And

N Logical Or

- Logical Not

3 Existential quantifier

<

Universal quantifier
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Preceeding quantifiers bind to the end of the
sentence or first enclosing right parenthesis

Provability relation

Non-provability
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