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Abstract

Hitherto, most relational database design methods are based
on functional dependencies (FDs) and multivalued dependencies

(MVDs). Full mappings are proposed as an alternative to FDs and

MVDs. A mapping between any two sets, apart from being one-one,
many-one, or many-many, is either total or partial on the source
and target sets. An 'into' mapping on a set, expresses the fact
that an element in the set may not be involved in the
mapping. An 'onto' mapping on a set is total on the set. A
many-many (into,onto) mapping from set A to set B is writfen as

i 0
A m-———-n B .

The mappings incorporate more semantic information into
daté dependency specification. It is shown, informally, that the
full méppings are -more expressive than FDs and MVDs.
Transformation rules, to generate Boyce-Codd normal form and
projection-join normal form schemas from the full mappings, -
.are defined. The full mapping/transformation rules provide
a discipline for modeling nonfunctional relationships, within a

synthetic approach.
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CHAPTER I . 1Introduction

This thesis deals mainly with automatic design of
relational database schemas. Most design approaches hitherto
have been based on the functional and multivalued. dependencies.
The dependencies serve as a means‘of expressing relationships -
vand constraints to be observed within the database. A new method
for specifying constraints and relationships, from which

relation schemas can be derived, is proposed.

1.1 General Area of Research
| Database design can be subdivided into three major levels.'
1.) the choice of database models. |
2.) the design of logical database schemas.
3.) the physical database design and loading.
The logical design can be broken down further into
1.) Requirement analysis and conceptual schema design.
2.) Data model-specific schema design.
Database Models provide ways in which data are arranged and

manipulated.

'(Haseman and So 1977) identified these three levels.
i) choice of database models.
ii) the design of database schemas.
iii) the loading of the physical database.



(Haseman and So 1977) 1identified three distinct Ilevels of
database reflection of the reality. The real world, the
conceptual (or information) model and the data model levels. We

can conceive of a modeling continuum as in fiqure 1.

Real Conceptual Data Physical
world model model storage
concepts level level level

Figure 1. Modeling Continuum?

Other views .on levels of abstraction in database design have
been presented (Ullman 1980 and Date 1980). While the
distinction between conceptual model and data model is explicit
in (Haseman and So 1977), it is not fhe case in (Ullman 1980 and
Date 1980).

This thesis deals with the design of relational database
schemas. Following the introduction of the Relational Data Model
(Codd 1970), a lot of work has been done on design and analysis
of relational databases. For some time, two competing approaches
have been the third normal form decomposition (Codd 1971) and
the synthesis of Bernstein and others (Bernstein et al 1975 and
Bernstein 1976). In (Fagin 1977a), the fourth normal form
decﬁmposition was introduced. It takes as input attributes and
semantic information in the form of functional and multivalued
dependencies. Recently, a number of improvéments and other
approaches have been proposed (Ling et al 1981, Wong et al 1980

and Zaniolo & Melkanoff 1981).

21t originally appeared in (Haseman .and So 1977)



1.2 Proposed work

On the modeling continuum (figure 1), our design
considerations lie between the conceptual model and the physical
database. The input to the design process consists of Semantic

and Use information, as depicted in figure 2.

Semantic
information
]
Application Design Database
analysis I process schema
Use

information

Figure 2. Schema Design?
Our design process consists of mapping specifications and a

method for transforming the mappings into relation schemas. A
mapping from one set to another represents a relationship
between any two sets of objects (be it physical, abstract or
structured). While the semantic information models the "real
world", the use information is provided mainiy to guide in the
mapping specification. The semantic information reveals the
inherent facts about the application environment. - The use
information, on the other hand, provides the use characteristics
of the database, such as query types and statistics. The use
information helps determine some relationships that may not be
explicit from the 1inherent facts. 1In this‘ thesis, both

constraint specification and schema design are emphasized.

3The diagram originally appeared in (Haseman and So 1977)



Mapping Apply
specification Transformation
' Rules

Figure 3. The Design Process

Constraints and relationships are represented by mapping types
as' an alternative to functional and multivalued dependencies.
Subsequently, the transformation rules will be proposed. The
rules generate relation schemas that conform to the Boyce-Codd

and Projection-Join normal forms.

1.3 Reading Guide

The thesis is organized as follows. In chapter (2), a
review of some concepts in relational database theory, concepts
in information analysis, and a summary of relational database
design methods are presented. The Full mapping approach to
relational'database design is presented .in chapter (3). Full
mappings, as .a means of specifying relationships between dafa
items, are 'proposed as an alternative to functional and
multivalued dependencies. Transformation rules are formulated to
generate relation schemas from full mapping specifications.
Chapter (4) 1is an evaluation of our theory. The effect of full
mappings on the normalization process is examined. The full
mapping approach 1is also compared with other design methods. A
design example is presented in section 4.3,

Chapter (5) concludes the thesis. It -summarizes our work, -as



well as highlights areas thét need further research.

A reader who s convérsant with the relational database
theory may skip most parts of chapter (2). Section 2.1 is,
however, required to understand the notations and some coﬁéébfs*.
used in the thesis. A reader without much knowledge Afﬁfﬁﬁé 
normalization theory may find it useful to read the section on
"Normalization Process" (section 4.2) before chapters (2) and

(3).



CHAPTER II . Relational Database Design: Framework

The general framework for relational database design is
presented in this chapter. In section 2.1 a review of some basic
concepts in relational database theory and information analysis
are presentéd, in section 2.2, a summary of current design
methodologies; and in section 2.3 appraisals of the design

approaches are given,

2.1 Basic Concepts and Definitions

There are various notations wused in relational database
literature., In this thesis the following will be wused. Letters
A,B,C,... denote single attributes, and W,X,Y,... sets of
attributes. If X and Y are sets of attributes (not necessarily
disjoint), the wunion of the two sets is written as XY. The
projection of a relation R over the set of attributes X 1is
represented by R[X], and the natural join of two relations R(X)
and R(Y) is written as R(X).R(Y). Explanatory definitions of
relevant terms and concepts are presented in the following

subsections. Keywords are underlined.

2.1.1 Information Analysis

Information analysis serves as a prelude to the design
process. However, most works on relational database design
overlook this step. The main method of analysis in this thesis
is to identify the semantic elements similar to those in Chen's

Entity-Relationship model (Chen 1976). The entity sets that are

of interest 1in the application environment are identified. An



entity set is a collection of objects of the same "type" that we
wish to record information about in the database. An object can
be physical or abstract.

The type of an object is not absolute, in the sense that it
can belong to more than one set at different levels of
abstraction. In (Smith and Smith 1977), the notion of
generalizatién was introduced as an abstraction which enables a
class of objects to be thought of generically as a single named
object; A generic hierarchy can also be defined on a set, such
that each 1level consists of objects that share common
properfies. For example, an EMPLOYEE set has common properties
such as (employee-number, name, age and employee-type). Its
lower generic sets could be TRUCKERS, SECRETARIES and ENGINEERS,
each of which we wish to record different additional information
about. (Shipman 1980) also expresses similar ideas about entity
types. Subtypes are defined based on the roles which certain
members of a parent entity set perform.

Other sémantic elements that are of interest are the

property-value sets and the structured entity sets. A structured

entity set represents an association among two or more other
entity sets. We refer to the relationships among entity sets as

entity set associations. A set describing an association among n

entity sets is a subset of the cartesian product of the sets.
This 1is an abstraction in which associations among entity sets
are regarded as higher level objects, which can have properties
.defined on them (Smith and Smith 1977). Properties of entity
;sets are expressed as sets of attribute-value pairs. The

‘collection of values (that are -semantically possible) of an



attribute form a property-value set. Thus an attribute 1is
essentially a function which maps an entity set to a property-

value set. We refer to such functions as value associations.

Hence, at different levels of abstraction, entity sets will be

defihed, named and their intensions clearly stated.

An intension ié supposed to give the meaning of a defined
set of association. It helps to differentiate between
abstraction levels and to resolve ambiguities that might arise
from naming. Sets 1in a generic hierarchy necessarily have the
same underlying domains; this shouid be obvious from their
intensions. The sets, the associations and the statement of
intensions, can be maintained as a database dictionary. Such a
dictionary will not only serve as a basis for database design,
but can be used in guery processing. But dictionary
implementations in the form of a supporting system will not be
suitable. Hitherto, in relational database systems, there has
been no provision for stating the intensions of attributes and
the dependencies among them. We suggest an approach whereby the
dictionary 1information is maintained by the Database Management
System in use, but the idea 1is not pursued further 1in this
thesis. Database kernel and self-referential database is a wide

area of research on its own.

2.1.2 Concepts in Relational Database Theory

A relétion on the set of attributes {a1,A2,...,An} 1is a
subset of the cartesian product Dom(A1) x Dom(A2) x...x Dom(An)
where Dom(Ai)'s are the respective doméins of the attributes.

The elements of the relation-are called tuples. In a database, a



number of restrictions can be placed on a relation. These

restrictions are expressed in a relation schema. A relation

schema 1is a set of attributes along with a set of contraints

(Cadiou 1975 and Fagin 1981). A relation R is said to be a valid
instance of a schema R* if it has the same attributes as the
schema and obeys every constraint of the schema. A property
holds for a relation schema if it holds for all instances of it.

A constraint in relation schemas can be the specification
of a key for the relation, a functional dependency, a
multivalued dependency or a join dependency. Following
(Bernstein 1976), keys and superkeys are defined as follows. Let
R be a relation and let X be a subset of atffibutes of R. Then,
X is a key of R if every attribute of R that is not in X |is
functionally dependent upon X and no subset of X has this
property. The X-values of R determine tuples of R uniquely. A
superkey of R is any set of attributes of R that contains a key
of R. Thus every key is also a superkey. A relation may have
several keys, referred to as candidate keys. One of the keys is
usually chosen as the primary key and by convention, underlined
in the relation schema. The set of candidate keys of R will be
represented by Key(R).

Functional Dependency expresses a constraint that holds

between two sets of attributes of a relation. Given a relation
R, a combination of attributes Y of R is functionally dependent
on atﬁributes X of R if and only if each X-value in R has
associated with it precisely one Y-value in R at any database
instance. The functional dependency of Y on X, usually written

as X--->Y, can be depicted by theAfollowing mapping diagram from
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a set of X-value elements of a relation to the set of Y-value

elements of the relation. An X-value can appear in more than one

X Y

Figure 4. A Mapping Diagram for Functional Dependencies
tuple, but whenever two tuples agree on their X-values, their Y-

values must also be the same. Let X and Y be combinations of

attributes of R. Y is said to be fully functionally dependent on

X if it is functionally dependent on X and not functionally
dependent on any strict subset of X. The above definition of
functionally dependency due to (Date 1980), is valid within the
context of a relation. (Bernstein 1976) defines functional
dependency between two attributes A and B as. a time-varying
function f:Dom(A)--->Dom(B). If £ 1is thought of as a sét of =
ordered pairs {(a,b): a ¢ Dom(A) and b ¢ Dom(B)}, then at any
point in time, for a given value a e¢ Dom(A) there will be at
most one value b ¢ Dom(B). Functional dependency and multivalued
dependency are usually abbreviated as FD and MVD respectively.

Multivalued Dependency 1is defined as follows. Given a

relation schema R(XYZ), the multivalued dependency of Y on X,
usually written as X-->-->Y, holds in R if and only if the set
of Y-values matching a given (X-value,Z-value) pair in R depends

on the X-value and 1is independent of the Z-value. MVD can be
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illustrated by the following relation which originally appeared

in (Zaniolo and Melkanoff 1981).

SUPPLIER ITEM COLOR
WOODMAN TABLE BROWN
WOODMAN SOFA BLACK
HOUSEMAN CARPET RED
HOUSEMAN CARPET YELLOW
HOUSEMAN CARPET BLUE
HOUSEMAN SOFA BLACK
BLAND CARPET RED
BLAND CARPET YELLOW
BLAND CARPET BLUE

Figure 5. Sample Relation for STOCK( SUPPLIER, ITEM, COLOR )

In the sample relation STOCK, there is a multivalued dependency
of COLOR on ITEM. Every pair of (SﬁPPLIER,ITEM) where item is
CARPET implies that the particular supplier supplies the three
colors (RED,YELLOW,BLUE). The dependency does not hold if it 1is
possible to have a sample database as in figqure 5, but with the
last tuple deleted. In such a case, BLAND a supplier of carpet
will supply only RED and YELLOW. From the mapping diagrams in
figure 6, it is clear that multivalued dependency of 'COLOR on
ITEM is another way of stating the fact that the relation schema
STOCK is equal to the join of its projections on (SUPPLIER,ITEM)

and (ITEM,COLOR). A MVD X-->-->Y in a relation R(W) is said to



12

SUPPLIER ITEM ITEM COLOR
WOODMAN
TABLE TABLE
BROWN
HOUSEMAN
| SOFA SOFA
BLACK
BLAND
CARPET  CARPET
RED
YELLOW
BLUE

Figure 6. Mapping Diagram of the MVD in STOCK relation
be trivial if W';'X u Y, that is when X and Y are dichotomies of
R or when Y is'a subset of X.

A Join Dependency (JD) is also a type of constraint that

can be spécified in a relation. A relation R(W) satisfies the
JD*(X,Y¥,...,2) if and only if it is the join of its ‘projections
on X,Y,...,2, where X,Y,...,2 are subsets of attributes of R and
W=XuVYu...u 2, From the definition of MVD, it <can be
observed that join dependency is a generalization of ﬁultivalued
dependency. The relation in. figure 7 illustrates join

dependency. The original version appeared in (Date 1980).
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S P J
s1 pl j2
s p2 j1
s2 pi j1
s pt j1

Figure 7. Sample Relation for SPJ(S,P,J)

The JD*(SP,PJ,JS) holds in relation SPJ. If the pairs (S1,Pt),
(p1,J1) and (J1,S1) appear in SP, PJ and JS columns
respectively, then the tuple (SI,P1,51) must appear in SPJ. Thus
at an instance when the relation contains the first two tuples,
if a tuple (S2,P1,J1) is inserted then (S1,P1,J1) must also be
inserted for the JD constraint to be satisfied. The JD is
illustrated by the mapping diagram in figure 8. |
S P p J J S

s p2 p1 j2 j1 s2

s2 p1 p2 j1 j2 s

Figure 8. Mapping Diagram for the JD in SPJ relation

The relational database normal forms (Codd 1972, Fagin

1977a and others) are aimed mainly at eliminating certain

-anomalies in relations. The outputs from the design
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methodologies, presented 1in the next section, are evaluated in
terms of the normal forms to which they conform. The normal

forms are defined in section 4.1.

2.2 Design Approaches

A lot of work has been done on design methodologies for
relational databases. Two of the earlier competing approaches
are the third normal form decomposition of (Codd 1971) and the
synthetic approach of Bernstein and others (Bernstein et al 1975
and Bernstein 1976). There 1is also the fourth normal form
decomposition of (Fagin 1977a). Recently, (Zaniolo and Melkanoff
1981) proposed a decomposition approach not based on eliminating
anomalies, but on complete data relatability. Other works on
decomposition include those of (Delobel and Casey 1973) and
(Delobel and Léonard 1974). Another approach is based on the
Entity-Relationship model. Rules are presented in (Wong and Katz
1980) to transform a version of the Entity-Relationship -model
into relational database schemas.

A summary of the design approaches is given in figure 9.
In the following paragraphs, a review of the literature on each

of the methodologies is presented.

2.2.1 The Synthetic Approach

A major work on the synthetic approach to relational
database design 1is that of (Bernstein 1976). Third normal form
(3NF) relation schemas are synthesized from a given set of
attributes and the functional dependencies among them. Since an

initial relation is not assumed, the functional dependencies are
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Approach® Inputs Outputs Proponents?®
Synthesis FDs, 3NF relation|Bernstein,
Attributes schemas. Swenson,
Tsichritzis
Decomposition FDs 3NF Casey,Codd,
MVDs. 4NF. Delobel,
Fagin.

Decomposition/ Elementary FDs, |3NF. Melkanoff

Complete Data multiple Zaniolo
Relatability elementary MVDs.

Entity- Entities, 4NF . |Ratz,
Relationship/ |Relationships 4NF. Wong.
Transformation and their

Rules Properties

Figure 9. Summary of Existing Design Approaches
defined as time-varying functions from one domain to another’ as
stated in section 2.1,

The synthesis algorithm produces a nonredundant covering of
the functional dependencies as follows. Let G be the set of FDs.
The closure of G, denoted G*, is the smallest superset of G that
is closed under the following rules.

1.) Reflexivity (X--->X).

2.) Augmentation (if X--->Z then X u Y--->2)

3.) Pseudotransitivity (if X--->Y and Y u Z--->W then
X u Z--->W).

An FD g ¢ G is said to be redundant in G if G* = (G-{g})*. H is

S0Other approaches are not radically different and should fit
into one or more of the categories.
5The lists of the proponents are not exhaustive.
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a nonredundanf covering of a given set of FDs G if G* = H* and H
contains no redundant FDs. The algorithm proceeds by removing
extraneous attributes from the left sides of FDs 1in the
nonredundant covering. An attribute Xi is extraneous in an FD g
e G, g:X1,...,%p--->Y, if Xt,...,Xi-1,Xi+1,...,Xp~--->Y. Removing
extraneous attributes helps to avoid partial dependencies and
superkeys that are not keys.

I1f two relations have keys that are functionally dependent
on each other, that 1is 1if they are equivalent, then the two
relations can be merged together. The synthesis procedure
accomplishes this fact by merging together groups of FDs if
their left sides are functionally equivalent. The nonfunctional
dependency between any two sets of attributes X and Y is
represented by XY--->@, where @ 1is a dummy attribute. The
algorithm essentially creates one relation per nonfunctional
relationship. Third normal form relation schemas are produced.

The uniqueness of FDs between any two sets of attributes
have to be assumed because the treatment of the FDs is strictly
syntactic. If there are two FDs on the same sets of attributes,
then they are the same FD. Some problems resulting from the
unigueness assumption are illustrated by the following example.
Let f1:DEPT4#--->MGR# and f2:MGR4$,FLOOR--->NO-OF-EMP be FDs such
that f1 determines the manager of each department and f2
determines the number of employees working for a particular
manager on a floor. By applying the pseudotransitivity rule to
ftr and f2, we obtain f3:DEPT#,FLOOR-~-->NO-OF-EMP, which
determines the number of employees of the manager on a

particular floor. If we have another FD g:DEPT#,FLOOR--->NO-OF-
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EMP which determines the number of employees of a department on
a particular floor, then the FDs g and f3 are not the same if a
manager can manage two departments. The attribute NO-OF-EMP of g
may have to be renamed to make it distinct from the composition
of £f1 and f2. The problems associated with the uniqueness
assumption 1is due mainly to the lack of expressiveness of FDs.
It is not possible to tell whether a manager can manage

more than one department from, £f1:DEPT#§--->MGR#. These

problems are further discussed in section 2.3.

2.2.2 Decomposition

Codd's third normal form decomposition takes as input an
initial set of relations along with a set of FDs (Codd 1971).
Using the dependency information, the initial set of relation
schemas is converted into 3NF schemas. For a relation to be in
3NF, there must not be a transitive dependency or partial
dependency on a key. Therefore decomposition is carried out to
el&minate transitive and/or partial dependency. In a relation
schema R(A,Q,C,D),, if A--->C holds then R is;decomposed into
R,;(A,C) and R,(A,B,D) to eliminate the partial dependency of C
on the key AB. In cases where there exist transitive
dependencies (say A--->B and B--->C) 1in R(A,B,C,D), R is
decomposed into R;(B,C) and R,(A,B,D). When both types of
dependencies occur in R, a choice has to be made as to which
decomposition should take place.

In (Fagin 1977a), multivalued dependency and fourth normal
form decomposition were proposed. The 4NF decomposition 1is a

generalization of the 3NF decomposition. The MVD models
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nonfunctional relationships between attributes. The design
process takes a set of attributes aiong with a set of FDs and
MVDs as input. A single relation schema consisting of all the
attributes is formed. The basic rule is that if a FD X--->Y or‘a‘
MVD X-->-->Y holds for a relation R(X,Y,z), where Z is the set
of attributes not in X or Y, then the relation can be decomposed
into R,;(X,Y) and R,(X,z) without 1loss of information. In
general, ZXi-->-->Y,|...|Yk holds for R(X,Y,,...,Yk) if and only
if R is the join of its projections R,(X,Y1),R2(X,f2 provides a
necessary and sufficient condition for a relation to be
decomposable into some projections without loss of information;
The decomposition process proceeds until no relation schema has
nontrivial MVDs that are not functional dependencies. That ié,
every nontrivial MVD is implied by a key.

The 4NF decompooition approach provides a discipline for
handling problems related to Bernstein's unigueness assumption
for functional dependencies. New attributes can be introduced in
the 1initial relation schema and renamed after a decomposition.
The uniqueness assumption need only hold within each relation in
the net design. However, the 4NF decomposition 1s also Afaced

with a number of problems. The MVDs are part of the input to the

design process, but they are not easily recognizable within a

relation. The order in which decomposition is carried out also,
affects the design. But choice of decomposition is only based on:
heuristics. It is not clear how to relate order of decomposition
to optimal design or what constitutes an optimal design..

(Rissanen 1977) proposed the notion of independent components

of relations in deciding when a representation is "good",
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Projections of a relation R provide a good representation of R
if all the dependencies in R are "nicely" embedded in the
projections. (Zaniolo and Melkanoff 1981) also deals with these

problems by decomposing for complete data relatability.

2.2.3 Decomposition/Complete Data Relatability

In (Zaniolo and Melkanoff 1981), a new approach to the
design of relational databases based on Complete Relatability of
Data was proposed. Since different decomposition paths can
produce different quality of relations even when they all
conform to the same normal form, eliminating anomalies seems not
to be an adequate criterién for database design. The following
example illustrates the point. A relation schema R(AC#,EM,TX)
rglates employees and their telephone extensions to the accounts
which they manage. Assuming an account has only one manager and
an employee has only one telephone extention, then the
functional dependencies AC#--->EM and EM--->TX hold in R. The FD
AC#--->TX can be inferred by the transitivity rule. Hence the
relation can be decomposed into

1.) R,(AC#,EM) and R,(EM,TX) based on the FD EM--->TX
2.) R,(AC#,EM) and R,(AC#,TX) based on the FD AC§--->EM.

The résulting vschemas in both cases are in Boyce-Codd normal
form, but (1) is a better representation because the transitive
FD AC#--->TX can be inferred from (1) but it is concealed in
(2). The schemas in (1) are said to ensure compl

The design approach assumes an initial set of database
relation schemas with sample relations from which the

dependencies are detected. Elementary FDs and multiple
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elementary MVDs are introduced to simplify the task of detecting

the dependencies in relations. They constitute a small subset of
all FDs and MVDs 1in a relation and they have nondecomposable
structures. All other FDS and MVDs can be inferred from them.
Elementary FDs and MVDs are generated as follows: For a given
relation R(W), a partial order is defined among ordered pairs of
subsets of W such thae

(X,,Y,) £ (X,,Y,) if X, ¢ X, and Y, ¢ Y,.

Let G be the set of MVDs. The minimum members of G are the
elementary MVDs of R, and are denoted G*. Thus X-->-->Y is
elementary if and only if Y n X =@ and there exists no.

distinct MVD X'-->-->Y' where X' ¢ X and Y' c Y. F*, the
elementary FDs for a set F of FDs, is obtained similarly. The
elementary MVDs are further subdivided into single and multiple
elementary MVDs. Single elementary MVDs are those that do not
have the same left side with any other elementary MVD, while
multiple elementary MVDs have one or more other MVDs with the
same left side. The concept of elementary MVDs helps the
designer in characterizing the dependency structure in a given
relation. There 1is an algorithm for generating all multiple
elementary MVDs with left side X if an elementary MVD with a
left‘side Y is known such that Y ¢ X. There is also an algorithm
for generating the multiple elementary MVDs which form the
minimum cover for the MVDs with respect to the reflexivity,
augmentation, additivity and complementation rules for
functional and multivalued dependencies. The ;eference rules for
functional and multivalued dependencies are discussed in (Beeri

et al 1977).
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The decomposition algorithm recursively decomposes
relations into a pair of subprojections according to multiple
elementary MVDs, until a set of atomic relations is obtained. An
atomic relation contains only trivial MvVDs. At completion, the
algorithm produces a set of atomic subrelations and a set of FDs
referred to as ACOVER and ZCOVER respectively. The two sets are
later wused in constructing 3NF relations. The initial relation
is reconstructable as the natural join of the projections, thus
the decomposition is content preserving. Complete data
relatability also demands that the structure (i.e the atiribute
set, the FDs and the MVDs) of the original relations be
preserved. The algorithm selects those elementary MVDs that

ensure preservation of the structural information. In testing

the data relatability condition, the notions of admissibility of
FD covers and §gégg of elementary FD are introduced. The scope
of an FD X--->A is the set X u {A}. A ZCOVER generated from a
relation R is said to be admissible with respect to ACOVER

1.) If the ZCOVER contains an elementary FD with scope X, it
must contain every other elementary FD of R with scope X.
Moreover, if R[X] for such X is atomic, then the ACOVER must
contain it as a member.

2.) If ACOVER contains an atomic projection R[X], then the
ZCOVER must contain every elementarygFD of R having scope X.

In a decomposition of R(2Z) into R,(Y) and R,(X), let F1 and

F2 denote the elementary FDs in R, and R, respectively. The FDs
with scope 2Z in R can not be inferred by Ft and F2; they are

explicitly entered into ZCOVER. The remaining FDs in R(Z), F¥,
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are preserved by selecting a decomposition such that F* can be
inferred from the elementary FDs in the projections; that 1is
F¥ ¢ (F1 u F2)*. This 1is the complete relatability condition
(CRC) for elementary FDs. To avoid redundahcy, decomposition is
based on the multiple elementary MVDs. Hence, the CRC for MVDs
must also be satisfied. However, the reverse projectability rule
does not hold for MVDs. That is, X-->-->Y in a projection of R
does not imply X-->-->Y in R. A weaker property known as
joinability is used to generate the set of MVDs inferable from
‘the elementary MVDs in the projections.

The two resulting sets, ACOVER and ZCOVER, can be used to
~improve 3NF relations using Bernstein's algorithm. The ZCOVER
constitutes a minimal cover for FDs in the original relation R
and can be used as minimum FD cover 1in Bernstein's algorithm.
The algorithm will now produce 3NF relations which completely
vchafacterize the functional relationship in the initial
relation. The nonfunctional relationships are represented by
elements of ACOVER without corresponding FDs in the ZCOVER. Each
of them form a separate relation.

The Decomposition/Complete data relatability have been able
to deal with some of the problems in normal decomposition. The
complete relatability condition 1is able to guide the order in
which decomposition is carried out to produce subrelations that
preserve the dependencies in the original relation.
Characterizing the MVDs have been made easier, but detecting the
initial MvDs from which others can be generated is not trivial.
Like most decomposition methods, a set of initial relations is

assumed. The universal relation assumption .is known to have some
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undesirable consequences. In section 2.3, some of these

consequences, as in (Kent 1981), are discussed.

2.2.4 Entity-Relationship Model/Transformation Rules
(Wong and Katz 1980) proposed a variant of the Entity-
Relationship model as an intermediate design model which is in
turn vttansformed into relation schemas. The following semantic
objects are recognized within the intermediate model.
1.) Entity sets (E(t)): a one parameter family of sets which
changes as members are inserted and deleted.

2.) A Property of an entity set E(t) is a function f mapping
t

E(t) to some set V of values at time instance t. The function is

defined on all of E(t), and for every e € E(t), f (e) is
t

unique.

3.) Relationships: A relationship R among entity sets
t

E1(t),...,En(t) 1is a subset of the cartesian .product
E,(t) x E,(t) x...x En(t). No relationship is derivable from
other relationships; they are independent and nondecomposable.
4.) Properties of relationships: In a similar fashion to
entity sets, properties can be defined on relationships.
5.) Single-valued binary relationships: A binary relationship

R on entity sets E,(t) and E,(t) 1is single-valued 1if each
t .

entity in E,(t) occurs in at most one pair in R .
’ t

6.) Associations: An association is a binary relationship in

which E,(t) entities occurs 1in -exactly one instance. No
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properties are allowed on associations or single-valued
relationships.

The design goal is to prevent "update anomalies”. An update
anomaly is defined as either a fragmentation of the atomic
opérations or uncontrolled side effects. An atomic operation is
one of the following:

1.) Inserting or deleting an entity.

2.) Inserting or deleting an instance of a relationship.

3.) Changing the value of a function (property or association
of ah entity).

Deletion or insertion of an entity do have side effects. The
deletion of an entity causes a deletion of any instance of a
relationship in which it participates. Any entity that has the
deleted entity as its range value in an association 1is also
deleted. The insertion of an entity "e" requires the entity that
is the value of any association of e to already exist. The order
of insertion -of an entity may be constrained by associations.
Thus, a cycle of associations'is not allowed.

| The intermediate model is transformed into relatipn schemas
by the following rules.

1.) Each entity set has an explicit identifier which
represents it globally in the model. An identifier is a one-to-
one property of an entity set.

2.) The identifier of a primitive object together with all its
primary functions are grouped in the same relation. A primary
function is a propérty or an association, and a primitive object
is either a relationship or an entity set in its role as the

domain of a primary function.
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3.) There is one and only one primitive object per relation.

The transformation rules are such that they preserve the
atomicity of upaates and_contfol the side effects. Rule 2 groups
entities together 'Qifﬁ'vtheir corresponding properties and
associations in the 1§éﬁéx felation. It allon deletion and
insertion of an entify to be made along with its associations
and properties in a single relation tuple. A violation of one of
the normal forms (1NF,2NF,3NF,4NF) can be interpreted as a
violation of one of the rules (Wong et al 1980).

1.) The grbuping together of two primitive objects with no
entity in common or a function of an entity and a relationship
involving it, both result in a relation that is not in 2NF.

2.) Putting two functions f1 and £f2 with,different entity sets
as their domains in fﬁe same relation can violate the 2NF, If
the functions are of the form E,--->E,--->S, 3NF is violated.

3.) The grouping of two relationships with a common entity set
together in the same relation can produce a result that 1is not
in 4NF. |
The schemas resulting from the rules, therefore, conform to the

4NF. The following example illustrates the design process.

Entity sets ' Properties
EMP ENAME, BIRTHYR
DEPT DNAME, LOCATION

JOB _ TITLE, SALARY
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Associations

Works-in(EMP, DEPT)

Assignment (EMP, JOB)

Relationships Status Properties
mgr (DEPT, EMP) single-valued nil
qualified(EMP, JOB) - general nil
allocation(DEPT, JOB) general number

The intermediate model consists of the following primiti#e

objects and functions.

Primitive Objects Functions

EMP ENAME, BIRTHYR, works-in, assignment
DEPT DNAME, LOCATION

JOB TITLE, SALARY

mgr ' -

allocation NUMBER

qualified -

The model is transformed into five relations as follows.

EMP (ENO, ENAME , BIRTHYR, ASSIGNMENT, EDEPT)

DEPT (DNO, LOCATION,MGR)

JOB(JID,TITLE, SALARY)

ALLOC (DNO,JID,NUMBER)

QUAL(JID,ENO)

The EntitY—Relationship/Transformaton rules provide a

practical approach to relational database design. But as. noted
by the authors, every 4NF relation schema is not necessarily

generated from the intermediate model via the mapping rules. The
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resulting schema is restricted by the intermediate model. We
believe that the explicit specification of whether the
relationships and funtions are partial or total on the source
and target sets, provides more meaning to the intermediate
model. The additional meaning allows more relaxed rules to be
defined. These points will become more evident in our approach,

presented in chapter 3.

2.3 Appraisal of the Design Approaches

The decomposition approaches to relational database design
share a lot in common. 1In particular, they take as input an
initial relation design. Recently,> the consequences of the
Universal relation and other assumptions were discussed in (Kent
1981). In addition to the specific questions raised in each of
the approaches, the paper provides a common ground for
appraising both the synthetic and decomposition methods. A
‘number of questions concerning the Entity-
Relationship/Transformation rules are raised in section 2.2.4.

The design method is radically different from the others.

2.3.1 Consequences of Universal Relation Assumption
Both the decomposition and synthetic methods make certain
implicit assumptions:

1.) There are no domains: Columns of relations are distinctly
named with no facility for stating the underlying domains that
might be common to several columns.

2.) A join compares columns if and only if they have the same

name.
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An explicit assumption common to most decomposition methods is
the Universal relation assumption. For a given set of relations,
S = {R,(X4),...,Rn(Xn)}, a wuniversal relation U(T) exists such
that

1.) The column names of U consists of all the column names of
the relations in R, that is T = X; u X; u...u Xn.

2.) Each relation in S is a projection of U.
However, these assumptions have implications that are not
compatible with practical database design.

The universal relation aséumption implies that columns have
the same meaning in every relation, because they are projected
from the same source. Therefore, wherever ‘an attribute occurs,
it must necessarily have the same'exfensions. Hence, updates to
relations of the form R,(X,Y) and R,(X,2) must preserve equality
of the projections R,[X] and R,[X]. In essence, we can not use
the same attribute with different intensions in Qarious
relationships. It 1is also not meaningful to have two relations
with identical column names.

In Berntein's synthesis, attributes are allowed to be
renamed in order that the wuniqueness assumption for FDs be
preserved. Decomposition methods do not explicitly require the
uniqueness of FDs, but attributes can also be renamed after the
decomposition of a relation. One consequence of renaming
attributes is that it is not possible to make natural joins over
such distinct attributes even though they share the same
underlying domain. Though in practice some systems allow joins
over different column names, this is only useful if there is a

provision for checking that the column names have the same



29

underlying domain., A <closely related problem 1is that of
expressing relationships existing among attributes of a

relation,

2.3.2 Data Dependencies

Expressing the dependencies between data objects is very
crucial to database design. The synthetic approach takes as
input a set of FDs, but nonfunctional relationships can not be
represented directly. The 4NF decomposition allows nonfunctional
relationships to be expressed as MVDs. However, a MVD is defined
such that it is only recognizable when it coexist with another
one in the same relation. The task of detecting MVDs within a
relation is also not trivial. The MVDs are not only unintuitive,
their properties‘are not well understood. Some MVDs hold 1in a
projection of a relation but not in the original relation. These
are referred to as embedded MVDs. An issue yet unresolved is
whether there exist inference rules (from projections to the
join) 'stronger than the joinability (Zaniolo and Melkanoff
1981). Thus, multivalued dependency is not very suitable as a
means of representing many-many relationships. In general, two
many-many relationships E----S and E----D, will not appear as
multivalued dependencies if there also exists some relationships
involving S and D (Kent 1981). Actually, in a relation schema
R(ESD) containing attributes with the  two many-many -
relationships, if S and D have some relationsips, we have a join
dependency constraint. Clearly, the dependencies are not enough
to specify the relationships that do exist among data items of a

database.
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2.3.3 Decomposition versus the Synthetic Approach

The decomposition and synthetic methods differ mainly 1in
the type of input they take. In general, decomposition takes as
input an initial set of relations, FDs and MVDs. Fagih's 4NF
decomposition accepts sets of attributes, FDs and MVDs, but the
first step converts all the attributes into a single relation.
Only functional dependencies can be specified directly in
synthetic methods, because MVDs can only be defined within the
context of a relation. The MVDs would have to be specifiable 1in
a context-independent form, if the synthetic methods are to
accept them directly as input.

Since synthetic methods do not take 1initial relations as
input, column names are necessarily uniqﬁe. This is also the
case for decomposition when the universal relation is assumed.
With the present state of dependency theory, none of the
approaches is cleariy superior to the other. Synthesis appears
more desiréble in practice, especially for large databases.
Decomposition tends to leave residue relations which soﬁetimes
model relationships that can not be expressed as FDs or MVDs.
But sometimes the attributes of such relations do not bear any
direct relationship.

Kent 1is of the opinion that a more extensive dependency theory,
in which all dependencies could be formally expressed, is
needed. With such a theory, the synthetic approach might be
preferred. Relations capturing all the relationships would be
generated, while decomposition would continue to leave unrelated

elements -aggregated in residue relations (Kent 1981).



31

CHAPTER III . The Full Mapping Approach

This chapter deals with Full Mappings and the
transformation rules. The mappings are proposed as an
alternative to functional and mutivalued dependencies. The
transformation rules generate relation schemas from the full

mapping specifications.

3.1 Full Mapping Specification

A formal information analysi§ of an application environment
reveals relevant entity sets, value sets and associations
(section 2.1.1). We place emphasis on the types of mapping
that exist among the sets. By representing properties with
appropriate attribute-names and the entity sets with. a primary
attribute, the associations can ail be expressed as mappihgs,
between attributes. A primary attribute has to be a property
that provides. a one-to-one correspondence between the entity set
and the property-value set. Hitherto, in relational database
theory, data relationships are expressed as functional,
multivalued or join dependencies. Full Mapping is proposed as a

means of specifying relationships between data items.

3.1.1 Mapping Types

Let A and B be sets acting as source and target of a
mapping respectively. The following mapping types can be
defined.

1.) One-one mapping (A 1----1 B): There 1is a one-to-one
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correspondence between the source and the target elements.

Figure 10. One-to-one Mapping Diagram
2.) Many-one mapping (A m----1 B): Disjoint sets of A-elements

are mapped to unigue elements in B.

A B

) —

) ——

Figure 11. Many-one Mapping Diagram
A one-many mapping from A to B can always be treated as a many-
one mapping from B to A. Hence we do not have to distinguish
between many-one and one-many mapping types.

3.) Many-many mapping (A m----n B): Elements in A are mapped
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to sets in B, but the B-sets are not necessarily disjoint.

A B

—— (3
— (7

Figure 12. Many-many Mapping Diagram

A mapping, apart from being one-one, many-one or many-many,
is either total or partial on the source and target sets.

An into-mapping on a set expresses the fact that an element in

the set may not be involved in the mapping. There is an element
of relativity in deciding whetherba mépping is 'into' or ‘'onto'
a set. Let wus consider an application environment where a
supplier (SNO) of an item stays in a particular CITY and the
cities have STATUS attached to them. Every supplier stays in a
city and every city has a status. The mappings SNO----CITY and
CITY----STATUS appear to be both total on their source and
target sets. However, if we wish it possible to enter the
information that a particular city has a particular status even
when there are no suppliers located in that city, then the
mapping SNO----CITY 1is 'into' CITY. That 1is, at a database
instance, if we match the extension of CITY to that of SNO there
may be cities not mapped to any supplier. An into-mapping on a
set is a generélized form of the conditional association in

(Raver and Hubbard 1977). The conditional association expresses



34

the case where an element 1in the source has exactly one
corresponding target element or none at all.

An onto-mapping on a set is a total mapping on the set. A 'onto'

a set if every element of the set always participate 1in the
mapping. By the definition of into and onto mappings, it is not
possible to have two onto-mappingé on the same set with
different domain extensiohs at any database instance.

There 1is 1inherent semantic information expressed when the
into/onto status of a mapping is stated. This should be combined
with the mapping types to provide more meaning .to data
dependencies. Hence, there are a total of twelve mapping types
which we refer to as full mappings.

An example of a fully defined mapping between two sets A and B

o) i
is many-many (onto, into) written as A m----n B .

3.2 Design of Relation Schemas from Full Mappings

A mapping between two sets X and Y is a binary relation
between the sets. It can be represented by a relation schema
R(X,Y). Such a schema 1is atomic since the mappings are
nondecomposable and are not derivable from other mappings. If
the principal schemas are expressed exclusively -as atomic
relations, then there will be the need to apply n-ary joins ‘to
obtain higher degree relations in order to éefine views and to
represent a broad class of queries. Therefore, the rules are
defined to detect the mapping types that can be combined. The
relational schema design problem is to avoid repeating

.attributes in a large number of low degree relations, as well as
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3.2.1 Transformation Rules for BCNF schemas

A relation schema R is in Boyce-Codd normal form (BCNF) if
for all disjoint and nonempty sets of attributes X and Y 1in R,
if X--->Y then X is a superkey of R (Beeri and Bernstein 1979).
Hence, the rules are such that every determinant is a candidate
key. Every determinant 1is relevant 1in determining the BCNF
schemas. Therefore, we shall include superkeys in the set of
candidate keys. Since proper keys are superkeys, any claim made
for the set of candidéte keys of R is also true for the proper
keys of R.

1.) Exclusive mappings are those that have unigue attributes;
they remain uncombined. The corresponding atomic relation
schemas are in their final form,

Let X and Y.be sets of attributes. A mapping from X to Y can be
transformed into a relation schema R(X,Y), regardless of whether
the mapping is ‘info' or 'onto' X and Y. The candidate keys are
determined as follows: The convention adopted is to leave the
into/onto status of a mapping unspecified if the rule 1is wvalid

for either case.

a) X 1----1 Y key(R) = {X,Y}
b) X m----1 Y ~ key(R) = {X}
c) X mm~--n Y key(R) = {XY}

2.) Common Attribute Groups: The nonexclusive mappings are.
arranged into groups, such that every mapping in a group has a
common attribute with at least one other mapping in the group.

There are no two groups having an attribute in common. Within a
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common attribute group, two mappings from A to B and from B to C
can be combined into a relation schema R(A,B,C) according to the
following rules.

o o

a) A1----1 B + B 1----1C key(R) = {A,B,C}
(o] O

b) A 1----1 B + B m----1C key(R) = {A,B}
O . o}

c) Amm—--n B + B m----n C key(R) = {ABC}
(o] (e}

d) A 1----m B + B m----1 C key(R) = {B}

3.) The resulting schemas from rule (2) can be combined
successively with other mappings in the group as follows:
Let R,(X,A) be a re schema with sets of attribute X and an
attribute A. R, can be combined with a mapping from A to B
into R,(X,A,B). There are three relevant cases depending on
whether B is contained in X. If B is contained in X and X = Y u
B, the resulting schema is R,(Y,A,B). If key(R,) is the set of
candidate keys of R,, the candidate keys, key(R;), of R, is
determined according to the following rules:
Case (i) A e key(R,) and B ¢ X

(0] (o]
a) R, (X,A ) + A 1----1 B; key(R,;) = key(R,;) u {A,B}

(o} (o)
b) R,(X,A ) + A m----1 B; key(R,) = key(R,) u {A}

Case (ii) AB ¢ key(R,) and B c X. This is equivalent to joining

over structured entities.

(o) (o} O (o]

a) Ry(Y,A ,B) + A 1----1 B ; key(R,) = key(R,) u {A,B}
(o} (o} (o] | (o) )

b) R,(Y,A ,B ) + A m---—-1 B ; key(R;) = key(R,) u {A}
O O o] (o]

c) Ry(Y,A ,B ) + A m----n B ; key(R;)

keY(R1)
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Case (iii) AB £ key(R,) and B ¢ X.

o © o o
a) R,(vY,A ,B) +A m----n B ; key(R;) = key(Ry)

4.) Exception to the rules.

All the rules require that the common attribute(s) in a
join be mapped 'onto' in their corresponding mappings. However,
the rules are valid if all the necessary 'ontos' are replaced by
'intos', as long as we can gJuarantee semantically that the
extensionsvof the attributes 1involved will be equal at any
database 1instance. Those attributes are said to have eguivalent
domain extensions., In essence, onto-mappings guarantee

equivalent domain extensions of join attributes.

. 3.2.2 Transformation Rules for PJ/NF Schemas

1.) The exclusive mappings are transformed into relation
schemas as in the BCNF rules.

2.) Common Attribute Groups: Within the .common attribute

groups, the following rules hold.

o o _
a) A1----1 B +B 1----1 C key(R) = {A,B,C}
(o] O
b) A 1----1 B + B m----1C key(R) = {A,B}
(o] [0}
c) Al----mB + B m----10C key(R) = {B}

3.) The resulting schemas from rule (2) can be combined

successively with other mappings in the group as follows:
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Case (i) A e key(R;) and B ¢ X

o (o]
a) Ry(X,A) +A 1----1 B; key(R,)

key(R,)u {A,B}

o o L
b) Ry(X,A ) + A m----1 B; key(R3)

key(R,) u {A}
Case (ii) AB e key(R,) and B g”k;'ﬁét:Y = X - B.

o © o o

a) R;(Y,A ,B ) + A 1----1 B ; key(R;) = key(R,;) u {A,B}
o ©° o] ' 0

b) R,(Y,A ,B ) + A m-—---1 B ; key(R;) = key(R,) u {A}
(o] (o] o} (o]

c) Ry(Y,A ,B ) + A m----n B ; key(R,) = key(R,)

4.) The exception to the rules in section 3.3.1 also holds for

projection-join normal form schemas.

3.3 Basis for.the Transfofmatiopfﬁules

Combining two ér more méppings into a relation schema is
equivalent to joinihg the correéponding atoﬁic relations of the
mappings. Thus, the rules must at least ensure that the joins.

are lossless.

3.3.1 Necessary and Sufficient Condition for a Lossless Join

A join is 1lossless (in the synthesis context) if the
resulting relation can be projected back to the original
relations before the join. That is, if relation schemas R(X,Y)
and R(Y,Z) .are joined over Y into R(X,Y,Z), the join is lossless
if the projections of R(X,Y,Z), R[X,Y] and R[Y,2], are equal to
R(X,Y) and R(Y,2) respectively.
It has been observed in (Codd 1979) that joins lose information

when the relations 1involved do not have equal projections on
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their common attribute(s). The observation 1is not just an

extensional concept; it reveals an important semantic notion.
Claim: A join of relation schemas is lossless if and only

if the common attributes are mapped 'onto' in their

corresponding mappings or the attributes always have identical

domain extensions.

Proof (Sufficiency):

Let R,(X,Y) and R,(Y,z) be relation schemas denoting two
mappings M1(X----Y) and M2(Y----2) respectively. The join of
R,(X,Y) and R,(Y,Z) over Y is |

R(X,Y,2) = {(x,y,z): (x,y) € R,(X,Y) and (y,z) e RZ(Y,Z)}.V If
the extensions of Y in R, and R, are always equal, then at any
database instance, for each "y" in the (x,y)-tuples of R,(X,Y)
there exists at least one identical "y" in the (y,z)-tuples of
R,(Y,2). If a particular "y" occurs n and m times in the Y-
columns of R,(X,Y) and R,(Y,Z) respectively, then the "y" will
occur n x m times in the Y-column of R(X,Y,Z). Hence, every
(x,y) and (y,z) pairs of R,(X,Y) and R,(Y,Z) will appear in the
XY-column and YZ-column of R(X,Y,Z), respectively, at least
once. Therefore, a projection of R(X,Y,Z) over XY and YZ will
reproduce the original relations R,(X,Y) and R,(Y,Z). Repeated

tuples are merged since projection is a set operation.

Proof (Necessary Condition):

Let R(X,Y,z) be the join of R,(X,Y) and R,(Y,Z) as in the
sufficiency proof above. If at any database instance the domain

extension of Y in R, 1is not equal to that of R,, there will
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either be a y in the Y-column of Ry not in the Y-column of R,
i

or ay in the ¥Y-column of R, not in that of R,. Hence, a tuple
]
(x ,vy ) or (y ,z ) will not appear in the XY-column or YZ-column
i1 i3

of R(X,Y,Z) respectively. Therefore, R[X,Y] and R[Y,Z], the
projections of R(X,Y,Z) over XY and YZ will not be equal.to
R,(X,Y) and R,(Y,2). Thus, the 3join will not satisfy the

lossless property.

3.3.2 The Candidate Keys

The candidate keys iﬁ the transformation rules in section
3.3 are derived according to the following claim:
Claim: Let the set of candidate keys of the relation schemas
R,(X,Y) and R,(X,Z) be key(R;) and key(R,) respectively. The new
set of candidaté keys key(R;), after a lossless join of R, and
R, over the set of attribute X, depends on whether X 1is a

candidate key in R, or R,. There are four cases.

1.) If X ¢ key(R,) and X ¢ key(R,) then key(Rj) key(R;).

2.) 1f X £ key(R,;) and X ¢ key(R,) then key(R;) key(R,).

i}

3.) If X e key(R;) and X ¢ key(R,) then key(R;) = {key(Ry) u
key(R;)}
4.) 1f X £ key(R,) and X £ key(R,) then key(R;) = ({key(R;) x
key(R,)1}
proof
Case (1) X e key(R,;) and X ¢ key(R,).
In a lossless join of R;(X,Y) and R,(X,Z) into R;(X,Y,Z),

each tuple of ‘R, will appear once in the :XZ-column of R;. This
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is the case because for every x-value in R, (not necessarily
unique since X £ key(R,)), there is a wunique x-value 1in Ry.
Hence, the number of entries in R; is determined by tuples of
R,. Therefore, tuples of R; are determined uniquely by the keys
of R,.

Case (2) Similarly, when X ¢ key(R,) and X ¢ key(R;), the keys
of R, determine tuples of Rj; uniquely.

Case (3) X ¢ key(R,) and X ¢ key(R;).

There is a one-to-one correspondénce between tuples of R,
and R,. ﬁence tuples of R; are direct concatenation of tuples of .
R, and R, over equal x-values. Therefore, the tuples of R; are
uniquely determined by the keys in key(R,) or key(R,). |
Case (4) X £ key(R,) and X £ key(R;).

In general, every x-value in R, or R, can appear more than
once. For any x-value with n and m entries in R; and Ry,
respectively, tuples containing the particular x-value will
appear n x m times in R;. Since X is not a key in Ry or Ry,
there is at least an x-value in each of the X-columhs of R, and
R, that appears more than once. The cardinality of R; is alwayé
greater than either of R, or R,. Therefore, none of the keys 1in
Key(R,) or key(R,) can uniguely determine tuples of Rj. It is
only a combination of a key in key(R,) and one in key(R,) that
determines tuples of R; uniquely. The new set of candidate keys

is the cartesian product of key(R;) and key(R;).
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3.3.3 The BCNF Rules: Verificafion

The schemas resulting from the transformation rules can be
grouped into two categories; the atomic relation schemas and
those from rules (2) and (3). The candidate keys of an atomic
schema R(X,Y) for X 1----1 Y, X m----1Y and X m----n Y are
{X,Y}, {X} and {XY} respectively. In each case, the determinants
are also candidate keys. The atomic schemas are trivially in
BCNF.

A combination of two or more mappings in rules (2) and (3)
is equivalent to a join of their corresponding atomic relations.
The rules are formulated, such that the Jjoin 1is 1lossless and
every determinant' is a superkey. We ensure lossless join by
combining over attributes which have equivalent domain
extensions = in their corresponding mappings. The join attributes
are either mapped 'onto' or they are involved in 'into' mappings
that always have the same extensions.

In Rule (2), there are eleven distinct combinations. Only
four of them satisfy the BCNF condition.

Let A----B and B----C be two mappings to be combined into a
relation schema R(A,B,C). The set of determinants of R, Det(R),

and key(R) for the various combinations are as follows.

Det (R) Key(R)
(o] O
1.)* A t----1 B + B 1--—-1 C {A,B,C} {A,B,C}
(@] (o}
2.)* A 1--- -1 B + B m----1C {a,B} {A,B}
(o] (o]
3.) A 1----t B + B m----n C {A,B} {BC}
(o] (o]

4,)* A 1----m B + B m----1 C {B} {B}



43

(o] o -

5.) Am---1 B + B 1----1C {A,B,C} {a}
(o] (o]

6.) Am-—-—-1 B + B m----1C {A,B} {n}
(o] (o]

7.) Am---1 B +B 1----m C {A,C} {ac}
(o] (o] )

8.) Am----1 B + B m----n C {a} {ABC}
(o] (]

9.) Am---nB + B 1----1 C {B,C} {AB}

(o] (o] .
10.) Am----n B + B m----1C {B} {AB}
(o] (o]
11.)* Am---n B + B m--—-—-n C {0} {ABC}

The combinations where Det(R) ¢ Key(R) produce schemas that
conform to the Boyce-Codd normal form. The combinations with
asterisks satisfy this condition. They are the only ones allowed
in rule (2).

Rule (3) allows successive combination of mappings with
schemas generated by rule (2). If R,(X,A) is to be combined with
a mapping A----B into RZ(X,A,B),‘theré are four cases to Dbe
considered.

Case (1) B ¢ X and A ¢ key(R,)

Case (2) B ¢ X and A £ key(R,)

Case (3) B ¢ X and AB ¢ key(R;)

Case (4) B ¢ X and AB £ key(R,)

Let Det(R;) and Key(R,;) be the set of determinants and the set
" of candidate keys of R, respectively. The set of determinants
and the set of candidate keys of R, for the various combinations

.are as follows:
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For cases (3) and (4), let Y = X - B,

Case (1) . Det (R;) Key (R;)
(o} (o] ’
a)* R,(X,A ) +A 1----1 B Det(R,) u {B} Key(R,;) u {B}
o (o}
b)* R,(X,A ) + A m----1 B Det(R;) Key(R,)
(o] O
c) Ry(X,A ) + A m—---n B Det(R,) {aB}
(o} (o]
d) Ry(X,A ) +A 1----m B Det(R,) u {B} ({B}
Case (2) Det (R,) Key(R;)
(o] (o}
a) Ry(X,A ) +A 1----1 B Det(R,) u {A,B}
Key(R,)
(o] O )
b) R,;(X,A ) + A m----1 B Det(R;) u {A} Key(R,)
(o] (o]
c) Ry(X,A ) + A m----n B Det(R,) Rey(R,) x {AB}
(o] (o]
d) Ry(X,A ) +A 1----m B Det(R,) u {B} Key(R,) x {B}
Case (3) Det(R,) Key(R,)
(o} [0} (o} o) .
a)* R,(Yy,A ,B ) +A 1----1 B Det(R,) u {A,B}

Key(R,;) u {A,B}

(o} (o] O (o]
b)* R,(Y,A ,B ) +A m----1B Det(R,) u {A} Key(R,) u {a}

(o} [0} (o] ‘ o]
c)* R,(Y,A ,B) +A m----n B Det (R;) Key(R,)
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Case (4) Det (R;) Key(R;)

(o} (o} O (o}
a) Ry(Y,A ,B) + A 1----1 B Det(R;) u {A,B}

KeY(R1)
o o o) ‘ o

b) R,(Y,A ,B ) +A m----1B Det(R,) u {A} Key(R,)
(o] o o o}

c)* R,(Y,A ,B ) + A m----n B Det (R;) Rey(R,)

Given that Det(R;) ¢ Key(R1), the combinations with asterisks
are such that Det(R,) c Key(R,). The combinations form rule (3).
Joins are both commutative and associative (Aho et al 1979),
therefore the order of combination within the groups 1is

immaterial.

3.3.4 The PJ/NF Rules: Verification

A join dependency constraint JD*(X,Y,...,Z) in a relation
schema R, where X,Y,...,2 are combinations of attribﬁtes of R,
states that R is the join of its projections over X,Y,...,Z. A
relation R is in projection-join normal form (PJ/NF) if and only
if every join dependency is implied by a candidate key of R. A
JD*(X,Y,...,2) in R is implied by candidate keys of R 1if the
join attributes in X,Y,...,Z uniquely determine tuples of R.
The atomic relations are trivially 1in PJ/NF since the full
mappings are nondecomposable and no mapping can be derived from
some other mappings.

The rules in (2) and (3) ensure that the joins are lossless
and that the join attributes of all the JDs in a resulting

schema are candidate keys in the schema.
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Let R(X; u...u Xn)‘ be a relation schema resulting from a
combination of n mappings represented by the atomic schemas
R,(X;),...,Rn(Xn) respectively. Let {Y,,...,¥n-1} be the Join

attributes of R,(X,) and R,(X,), R,(X,) and R3(X3),...,
Rn-1(Xn—i) and Rn(Xn) respectively. The JD*(X,,X,,...,Xn) holds
in R. And, since 1lossless joins are both associative and
‘commutative (Aho et al 1979), every (2;3,...,n-1) combinations

of R,(X,),...,Rn(Xn) are JDs in R. The number of such JDs is

given by 1 + I C (Appendix I). There are no other JDs in R
=1 r

apart from those on the join attributes {Y,,.....,¥n-1}. This is
the ‘case because of the necessary and sufficient condition for a

lossless join. For any two of the mappings represented by R (X )
i1

and R (X ), 1if there is an attribute A common to both X and
33 , i i

X , A c Y, or R(X&i not a natural join of R and R . Hence,
i i i i ]

the rules in (2) and (3) need only ensure that the common
attributes in the successive joins are candidate keys.

There are eleven distinct combinations of two mappings of
the form A----B and B----C into a schema R(A,B,C) as in section
3.4.3. Only three of the combinations have the join attribute B
as -a member of the set of candidate keys. Rule (2) consists of
those three combinations. Rule (3) .allows successive combination
of mappings with relation schemas generated by rule (2). Only
five of the distinct combinations have their join attributes as

candidate keys; the rule consists of those combinations.
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CHAPTER IV . Evaluation of the Full Mapping Approach

There are two aspects to this thesis. The full mapping as a
means of expressing relationships between data items of a
database 1is proposed. Transformation rules to generate relation
schemas from the mappings are also presented. An assessment of
the full mappings as an alternative to functional and
multivalued dependencies, and a comparison of schema design via
the transformation rules with other design methods are given in
this chapter. In section 4.1, we run through a series of
examples that show how énomalies are eliminated in the
normalization process. The effect of full mapping and the
transformation rules are discussed with the examples. A design

example is given in section 4.3.

4.1 The Normalization Process

A relation is said to be in a particular normal form if it
satisfies some constraints which are known to prevent certain
update problems. The following examples from (Date 1380)
illustrate the normalization process. The examples are based on
a relation containing information about suppliers of machine
components, the parts/quanfity supplied and cities where

suppliers are located.

4.1.1 The second Normal Form Problem
The information in the supplier-part environment can be
represented as a table with no attribute-values repeated in the

rows. Such a table can be described by a relation schema
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FIRST(SNO, STATUS, CITY, PNO, QTY). The relation is said to be
in first normal form. The funtional dependencies in FIRST are

shown in figure 13.

QTY SNO STATUS

PNO \ CITY

Figure 13. The FDs in Relation schema FIRST

The relation schema FIRST suffers from certain anomalies.

1.) Insertion: It 1is not possible to enter the fact that a
barticular supplier is located in a «city wuntil that supplier
supplies-‘at least one part. This 1is the case because no
component of a primary key may be null.

2.) Deletion: A tuplé containing a supplied part 1is deleted
when the corresponding supplier no longer supplies that part. If
the only tuple for a particular SQpplier is deleted, the
information that the supplier resides in a city is destroyed.

3.) Redundancy: The city-value for a supplier appears in as
many tuples as there are parts supplied by the supplier. The
redundancy causes update search problems and gives room for
potential inconsistencies.

A possible normalization solution 1is to decompose the
relation schema FIRST into .SECOND(§§Q, STATUS, CITY) and
SP(SNO, PNO, QTY). The solution eliminates the nonfull
functional dependencies of STATUS and CITY on the key. The

nonfull functional dependency problem is suffered by-.every
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relation that is not in second normal form (2NF). A relation
is 2NF if and only if it is in first normal form and every
nonkey attribute is fully dependent on the primary key.

A formal analysis of the supplier-part environment will
reveal the following facts from which full mappings can be
derived.

1.) The quantity of a part (QTY) 1is only meaningful when
associated with a part and 1its supplier. Therefore, the
association (PNO----SNO) is indivisible and should be treated as
an entity.

2.) A supplier supplies many parts and a part may be supplied
by many suppliers.

3.) A supplier 1is 1located 1in a city even when he currently
supplies no parts. There may be some cities without suppliers.

The full mappings in the application environment are as follows.

SNO----CITY (many-one, onto - into)
CITY----STATUS (one-one, onto - onto)
SNO----PNO (many-many, into - onto)

(SNO, PNO)----QTY (many-one, onto - onto)

Some facts that are not revealed by the functional dependencies
can now be expressed. The functional dependency of CITY on SNO
is represented by the many-one mapping between SNO and CITY. But
the onto/into status of the full mapping further states that
there can be some cities within the database with no suppliers
residing in them. The update problems in FIRST arise as a result
of combining relations over an attribute involved in 'into' and
'onto' mappings. The schema SP(SNO, PNO, QTY) should never have

been combined with (SNO----CITY).
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4,1.2 The Third Normal Form problem

The relation schema SECOND(SNO, STATUS, CITY) still suffers
from certain update problems.

1.) Insertion: It is not possible to enter (CITY, STATUS) value
until there are some suppliers located in that city.

2.) Deletion: Similarly, if the only supplier 1in a city is
deleted, the city/status information is lost.

3.) Redundancy: There is still some redundancy due to
city/statﬁs value that is being repeated for as many suppliers
in a city.

A normalization solution replaces the relation schema
SECOND by SC(SNO, CITY) and CS( CITY , STATUS). There 1is a
transitive dependence of STATUS on SNO. SECOND is not in third
normal form. A relation is in third normal form (3NF) 1if and
only 1if every nonkey attribute is nontransitively dependent on

the primary key.

From the full mapping viewpoint, (SNO----CITY) and
(CITY----STATUS) are not combinable. The join attribute CITY is
mapped 'onto' in CITY----STATUS and 'into' in SNO----CITY. This

in fact, explains the insertion/deletion problems in SECOND more
than transitive dependency. The insertion and deletion anomalies

will not occur if CITY is mapped 'onto' in both mappings.

4.1.3 The Boyce-Codd Normal Form Problem

The relation schema SCHOOL( STUDENT, SUBJECT, TEACHER)

originally appeared in (Date 1980). The functional dependency

diagram and -a sample relation -are given in figure 14 and 15
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respectively. The following facts are true in the application

STUDENT

| TEACHER

SUBJECT

Figure 14. FDs in Relation Schema SCHOOL
environment.
1.) For every subject, a student is taught by only one teacher.
2.) A  teacher teaches only one subject, but each subject is

taught by several teachers.

STUDENT |SUBJECT |TEACHER =~

SMITH MATH Prof WHITE
SMITH PHYSICS |Prof GREEN
JONES MATH Prof WHITE
JONES PHYSICS |[Prof BROWN'

Figure 15. Sample Relation for schema SCHOOL

The relation SCHOOL is in 3NF, but it suffers from certain
update problems. We can not delete such information as "Jones is
studying physics" without losing the information that prof.
Brown teaches physics. The problem arises from TEACHER being a

determinant, but not a candidate key in the relation. This is
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the Boyce-Codd normal form problem. We recall that a relation R
is in Boyce-Codd normal form if and only if every determinant is
a candidate key in R.

A normalization solution décomposes the schema into ST(

STUDENT, TEACHER.) and TS( TEACHER, SUBJECT). Both ST and TS are

in BCNF and the update problem is taken care of. But different
problems have been introduced. The ST relation does not provide
much useful information. The relationship between a student and
a teacher is only meaningful with respect to subject.

The full mappings for the database are as follows:

o 0
SUBJECT m-—---n STUDENT
o o
(SUBJECT, STUDENT) 1----1 TEACHER
o o
TEACHER m----1 STUDENT

From the BCNF transformation rules, TS( TEACHER, SUBJECT) and

SST( SUBJECT, STUDENT, TEACHER) are generated. The relation

schema SST 1is atomic and can not be decomposed. It is also not
possible to combine TS and SST. This case actually turns out to
be an example where no amount of decomposition will produce the

desired relations.

4,1.4 The fourth Normal Form Problem

A relation schema CTX( COURSE, TEACHER, TEXT ) describes a
situation where, for ény given course, there may exiét any
number of corresponding teachers and texts. TEACHER and TEXT are
assumed to be independent. That 1is, there are multivalued

dependencies COURSE-->-->TEXT and COURSE-=>-->TEACHER in CTX.
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There are no functional dependencies. A sample relation is given

in figure 16.

COURSE TEACHER TEXT

PHYSICS |[Prof. GREEN|BASIC MECHANICS
PHYSICS |Prof. GREEN|PRINCIPLES OF OPTICS
PHYSICS |Prof. BROWN|BASIC MECHANICS
PHYSICS |[Prof. BROWN|PRINCIPLES OF OPTICS
MATH Prof. WHITE |MODERN ALGEBRA

MATH Prof. WHITE |PROJECTIVE GEOMETRY

Figure 16 Sample Relation for CTX

The relation CTX contéins a lot of redundancy. A new text
for a course will require entries for every teacher that teaches
the course. A solution 1is to decompose CTX into CT(COURSE,
TEACHER ) and CX(COURSE, TEXT ) based on the multivalued
dependencies of TEXT and TEACHER on COURSE. The problem is that
CTX is not in fourth normal form.

A relation is in fourth normal form (4NF) 1if and only if
whenever there exists an MVD in R, say A-->-->B, then all
attributes of R are also funcﬁionally dependent on A. |

o o
The full mappings in CTX are TEACHER m----1 COURSE and

o o
TEXT m----1 COURSE .

If the two mappings are combined over COURSE, then a given
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course has to be repeated for all the teacher/text combinations.
This is precisely what fourth normal form 1is to eliminate.
Although we did not define rules for generating 4NF schemas, the
PJ/NF rules will not allow a join of (TEACHER----COURSE) and
(TEXT----COURSE). Projection-join normal form relations also

conform to the fourth normal form (Fagin 1979).

4.1.5 The Projection-join normal form problem

We recall that a join dependency constraint JD*(X,Y,...,Z)
holdsvin a relatién R, if R is equivalent to the join of its
projections over X,Y,...,Z where X,Y,...,Z are combinations of
attributes of R. However, as 1illustrated in section 2,1, JD
constraints are not easy to maintain. The relation SPJ.in figure
7 suffers from a number of update problems due to its JD’
constraint. An insertion of a tuple may call for other tuples to
be inserted. Similarly, a deletion may require that some other
tuples be deleted.

However, not all JD constraints have the update maintenance
problems. Relations with such problem-free JDs are said to be in
projection-join normal form. A relation R is in projection-join
normal form (PJ/NF) if and only if every join dependency in R is
implied by a candidate key of R. A join dependency
JD*(X,Y¥,...,2) in R 1is implied by a candidate key of R if the
join attributes in X,Y,...,Z uniquely determine tuples of R.

The problems in the relation SPJ arise because the join
attributes S, P, and J are not keys. The full mappings for the

o o) o o
relationships in SPJ are S m----n P , P m----n J and
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o} 0
S m----n J . According to the PJ/NF transformation rules, the

relations R(S, P), R(P, J) and R(S, J) are in their final form;

they can not be combined in any way.

4.2 Full Mapping versus FDs and MVDs

Full mapping, as a means of expressing relationships
between data 1items of a database, compares favorably with
functional and multivalued dependencies. Two of the three basic
mapping types can express functional dependency. Let X and Y be
attributes representing some entity or property-value sets.

1.) One-one mapping X 1----1 Y expresses the functional
dependency of Y on X and vice versa. That is, X--->Y and Y--—>X.
The corresponding atomic relation schema is either RI(X, Y) or
R(X, Y).

2.) Many-one mapping X m----1 Y expresses the functional
dependency of Y on X as well as the fact that X 1is not
functionally dependent on Y. That is, X--->Y and Y-/->X. The
corresponding atomic relation schema is R(X, Y).

The mappings explicitly specify functional relationships in
both directions. The same amount of information <can only be
inferred from two or more functional dependencies. In addition,
the into/onto status of the mappings provides some information
that can not be expressed in functional dependency

i o
specifications. A mapping. NAME m----1 PHONE in a company

database expresses the functional dependency of PHONE on NAME.
But in addition, it specifies the fact that,at a database

instance, a name may have no phone associated with it.
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Nonfunctional relationships can be expressed as many-many
or many-one mapping. The many-one mapping, as shown above,
specifies a functional dependency in one direction and
nonfunctional relationship in the other. The many-many mapping
specifies nonfunctional relationship in both directions: X-/->Y
and Y-7/->X. The corresponding relation schema is R(X, ¥).

The multivalued dependency, as a means of expressing
nonfunctional relationsﬁips, is such  that it is only
recognizable when it coexists with another one 1in the same
relation. While an FD X--->Y is defined only in terms of the
sets X and Y, the validity of an MVD X-->-->Y in a relation R(U)
depends on the values of all the attributes in U. The MVD can
not be derived from R[XY].
Let X and Y be subsets of U, and let Z be the complement (in U)
of the union XY. For any ‘relation R(U), the multivalued
dependency X-->-->Y holds in R if and only if R is the natural
join of its projections R[XY] and R[XZ]. The MVD X-->-->Z also
holds in R (Beeri et al 1977). | i

By definition, MVDs are not only unintuitive, but their
properties are not well wunderstood. An MVD may hold 1in a
projection, but not in the parent relation. Such MVDs are said
to be embedded . Some .embedded MVDs can be obtained by
projectability from the MVDs in the parent relation. The
projectability rule states that if X-->-->Y holds in R(U) and
Xc 2 c W, then X-->-->(Y n 2z) holds in R[Z]. The MVDs that can
not be derived are said to be latent in the relation (Zaﬁiolo

‘and Melkanoff 1981),
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The many-many and many-one mappings are equivalent to
trivial MVDs. An MVD X-->-->Y which holds in R(U) is trivial if.
U=ZXuY or Yc X. The relationships between the mappings and
MVDs can be examined in relations derived from ¢two or more
mappings. But the only inference rule from projections to a join
is the joinability rule which states that:
if 1.) R(Wu 2) = S(W).P(2Z)

2.) X-->-->Y holds in S(W), and

3.) Y n Z =@ then X-->-->Y holds in R(W u Z)-(Zaniolo and
Melkanoff 1981).
The joinability rule, as defined above, only deals with cases
where the attributes Y and Z are disjoint. And, as stated in
section 2.3.2, two many-many mappings E m----n S and E m----n D
will, 1in general, not appear as an MVD if there exists some
relationships involving S and D (Kent 1981). Thﬁs, because of
the nature of multivalued dependencies, the relationship between
them and mapping types is not quite clear. However both MVDs and
full mappings model the many-many relationships, but some MVDs
may be hidden iﬁ database relations. The mappings are such that
they can be recovered by projection over the join attributes.
The combination of two mappings X----Y and X----Z results in
MVDs X——>——$Y|Z, if there are no other mappings between Y and 2
in the same relation.‘The into/onto status of full mappings
dictates which mappings can be combined. Hence, given all the
" mappings in an application environment, they can be expressed as
trivial and nontrivial MVDs depending on whichv mappings are
combined. The full mappings provide at least as much information

as the multivalued dependencies.
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4.3 Design Example

The design example in (Wong et al 1980) will be used to
fillustrate the transformation rules for generating relation
échémas from full. mappings. From the example, the following

entity and property-value sets can be identified.

Entity Sets Property-value Sets
EMPNO ENAME, BIRTHYR
DEPTNO DNAME, LOCATION
JOBNO TITLE, SALARY

A property has a one-one or one-many correspondence with an
entity set. Every entity has exactly one property and every
element in a property-value set 1is associated with some

entities. The value associations are as follows.

(o] o]
1.) EMPNO m----1 ENAME

(o] (o]
2.) EMPNO m----1 BIRTHYR

o ‘ o
3.) DEPTNO 1----1 DNAME

(o] (o]

4.) DEPTNO m----1 LOCATION

(o] (o] .
5.) JOBNO m----1 TITLE

(o] o]
6.) JOBNO m----1 SALARY

There are six entity set associations.

o o)
1.) EMPNO m----1 DEPTNO derived from the association
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works—-in{(EMP,DEPT).

o i
2.) EMPNO 1----1 JOBNO derived from assignment(EMP,JOB)

association. It 1is assumed that a job may not be filled. The
assumption is consistent with the example and the definition of
association in (Wong et al 1980).

o) i :
3.) DEPTNO 1----1 EMPNO derived from the mgr(DEPT,EMP)

relationship. A department may have only one manager because the
"mgr" relationship is single-valued.

o o
4.) EMPNO m----n JOBNO derived from the general relationship

qualified(EMP,JOB). Let us assume that every Jjob has some
qualified employee and that an employee 1is qualified for at
least one job.

o . o
5.) DEPTNO m----n JOBNO derived from the relationship

allocation(DEPT,JOB). A job may be allocated to more than one
department and a department may have many jobs.

o o O (o]
6.) (DEPTNO m----n JOBNO ) 1----1 NUMBER defines a property

"number" on the allocation relationship.

Using the transformation rules, BCNF relation schemas can
be generated from the mappings. All the mappings are in one
common attribute group. They can be combined as follows.

o o o O
1.) EMPNO m----1 ENAME + EMPNO m----1 BIRTHYR

o) i o o}
+ EMPNO 1----1 JOBNO + EMPNO m~---1 DEPTNO
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(0] (o] (o] (o]
2.) DEPTNO 1----1 DNAME + DEPTNO m----1 LOCATION
o) i
+ DEPTNO 1----1 EMPNO
(o] (o] (o] (o]
3.) JOBNO 1----1 TITLE + JOBNO m----1 SALARY
(o] (0]
4.) EMPNO m----n JOBNO
. o] o o)
5.) (DEPTNO m----n JOBNO ) 1----1 NUMBER
(o} (o]
+ DEPTNO m----n JOBNO

The corresponding relation schemas and candidate keys are as
follows.
1.) EMP(EMPNO, ENAME, BIRTHYR, bEPTNO, JOBNO)
{EMPNO, JOBNO}
2.) DEPT(DEPTNO, DNAME, LOCATION, EMPNO)
{DEPTNO, DNAME, EMPNO}
3.) JOB(JOBNO, TITLE, SALARY) { JOBNO, TITLE}
4.) QUALIFIED(EMPNO, JOBNO) { EMPNO-JOBNO}

5.) ALLOCATION(DEPTNO, JOBNO, NUMBER) {DEPTNO-JOBNO}

4.4 Full Mapping Approach versus other Design Methods

This section compares the full mapping/transformation
rules, as a design approach, with other methodologies discussed
in chapter (2). The comparison has two sides to it. A comparison
is made between full mappings and the inputs in other methods,
as well as between the nature of the transformation rules and

other design processes.
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4.4.1 Synthetic Methods and the Full Mapping Approach

The full mapping approach to relational database design is
also synthetic in the sense that the design process starts with
a set of attributes and a statement of the relationships among
them. An earlier synthesis algorithm (Bernstein 1976) uses the
minimum cover technique. This involves a purely syntactic
treatment of functional dependencies. The technique demands that
the functional dependency between any two attributes be unique.
But this is not always the case in practice, hence attributes
may have to be renamed to maintain the uniqueness assumption.
The design results, in turn, have to be validated semaﬁtically.

In the full mapping approach, every relationship is
specifiea independent of others. Each mapping has an intension
and can not be derived from other mappings. Consequently, two
mappings with exactly the same specifications are not
necessarily the same. The .mapping X 1----1 Y and X m——--1 Y
together with their into/onto status provides six different ways
of expressing a functional dependency between attributes X and
Y. Thus, full mapping provides a discipline for dealing with the
unigueness assumption and the need for semantic validation of
design results. The problems associated with uncontrolled
'renaming of attributes have been discussed in chapter (2). The
into-mapping allows a relationship to be defined on a subset of
a domain without having to rename the attribute.

The 1input to the synthesis algorithm is also limited to
functional dependencies. Nonfunctional relationships are entered
indirectly. The algorithm essentially generates a relation per

each nonfunctional relationship. And because of the nature of
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multivalued dependency, the synthesis algorithms have not been
extended to 4NF and PJ/NF designs.

The many-many and one-many mapping types describe
nonfunctional relationships between data items. Thus, it is now
possible to model nonfunctional relationships in a context-
independent form, and to generate PJ/NF schemas via the
transformation rules. From a Apractical viewpoint, the rules
appear more desirable than the minimum cover technique. Design
results need not be subjected to semantic validation. All
semantic considerations take place at the mapping specification

stage.

4,4.2 Decomposition and the Full Mapping Approach

The decomposition methods, 1in general, take as input
functional and multivalued dependencies and an initial relation
design. The MVD models nonfunctional relationships. However, as
discussed in section 4.2, the properties of MVDs are not well
understood. Multivalued dependencies are only valid within the
context of a relation and can only be detected 1in relations.
However, they can not be easily detected. There are other
problems relating to embedded and latent dependencies. Different
decomposition paths can lead to different designs of varying
gqualities. Choice of decomposition is mainly based on
heuristics.

Some of these problems are dealt with extensively in
(zaniolo and  Melkanoff 1981). It was noted that some
dependencies are lost 1in a decomposition process. " Hence,

decomposition 1is -based on complete data relatability to ensure
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that all the dependencies are preserved. The data relatability
condition 1is such that the initial dependencies can be inferred
from the projections. Only the paths that preserve the
dependencies are used in decomposition. A limitation to this
approach is brought about by'the properties of MVDs. An MVD can
only be inferred (from a projection to a join) using the
joinability rule. It is not clear whether some other MVDs are
. inferable by stronger rules.

Most decomposition methods also assume an initial relation.
This is referred to as the universal relation assumption (Kent
1981). The consequences of the universal relation assumption, as
discussed in chapter (2), are not compatible with practical
database design. The universal meaning for column names has
associated with it an inter-relational constraint which is not
easy to maintain. Decomposition methods deal with the column
name problem by renaming attributes. But, as mentioned in
chapter (2), uncontrolled renaming of attributes can create join
problems in query pfocessing.

The problems relating ﬁo MVDs can be avoided by using the
full mappings to model nonfunctional relationships. Full
mappings are easy to comprehend and they can express at least as
much information as multivalued dependencies. And since the full
mapping approach is synthetic in nature, assuming an initial
relation and its consequences have been avoided.

A comparison can also be made from the point of view of
synthesis versus decomposition. Decomposition appears superior
to earlier synthetic methods because nonfunctional relationships

can be modeled directly. The full mappings now provide a means
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of modeling nonfunctional relationships within a synthetic
approach. The transformation rules are such that every relation
schema generated can be projected back to the ini@ial mappings.
If it can be shown that the full mappings c$p£u£e¢,311 the
relationships we wish to express, the synthet{éfggbfoach will

clearly be superior to decomposition.

4.4.3 Entity-Relationship Approach and the Full Mapping Rules
The Entity-Relationship apbroach offers a practical method
for database design. It takes as input entity sets,
associations, relationships and properties (Wong et al 1980).
The Full mapping approach can be grouped in the same category as
the Entity-relationship method in the design method summary
(figure 9); they share a lot in commonf )
| The intermediate model in the entity—relationsﬁip approach
can be specified as full mappings. But fuil mappings, through
the into/onto status, alldw moré semantic information to Dbe
specified. Within the E-R approach, the'singlef§alued binary
relationships and the associations also specify implicitly some

into/onto status information. A binary relationship R between
' t

entity sets E,(t) and E,(t) 1is single-valued if -each entity

occurs in at most one instance of R . That is, some entities in
t

E,(t) may not participate in the relationship. An association is
a binary relationship in which E;(t) entities occur in exactly
one instance:; an ‘'onto' mapping is specified on E,(t). Within
the framework of full mappings, relationships and associations

are treated uniformly. The into/onto status ‘information is
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specified for all the sets involved. The properties have many-
one or one-one association with the entity or relationship sets,
and are always ‘'onto'. Thus, more semantic information can be
expressed in the full mappings than the intérmediate model of
the E-R approach.

There are three rules for transforming the E-R intermediate
design model into relation schemas. Rule (1) assigns an explicit
identifier for each entity set. Rule (2) groups the identifier
of a primitive object (an entity set or relationship) with all
its properties or associations in the same relation.

However, it is possible to have two associations (E,(t), Eg(t))
and (E;(t), E,(t)) such that at time t the extensions of E;(t)
in the associations are not equal. The grouping of such
associations together in a relation will prevent insertion of a
tuple when the extensions are not equal. Hence rule (2) may
generate relations with this type of insertion anomaly.

Rule (3) allows one and only one primitive object per relation.
The rule is too restrictive. Two relationships can be grouped
together in a relation as long as they have a set in common and
the set appearing in the two relationships have same domain
extensions. Thus, a violation of rule (3) does not necessarily
result in an 'update anomaly' as defined in (Wong et al 1981).

Both the Entity-Relationship method and the Full mapping
approach offer what seem like a practical design methodology.
The basic difference between the two approaches is in the full
mapping specification which allows more semantic information to
be expressed. The additional information allows a certain kind

of insertion/deletion anomaly to be avoided. It also-allows more
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relaxed rules. The full mapping rules also take advantage of

previous work on relational database theory.
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CHAPTER V . Conclusions

5.1 Achievemeéents

The full mapping approach to relational database design can
be viewea in two ways: the full mappings as a means of
specifying data dependency constraints, and the nature of the
transformation gules. We have been able to incorporate more
semantics into data dependency specification. The into/onto
status information of a' mapping, as discussed in earlier
chapters, can specify certain information that can not be
expressed in a functional dependency. The full mappings also
compare favorably'with multivalued dependency. Two ndnfunctionél
relationships X----Y and X----2 are expressed as a MVD in a
relation schema R(XYZ), if R(XYZ) = R[XY].R[XZ]. Implicitly, the
MVD states that the extension of X in R(XY) is always equal to
its extension in R(XZ). Within the full mapping approach,
nonfunctional relationships are specified as mappings between
two sets. The mappings can be represented by atomic relation
schemas. The condition for a lossless join of the schemas, the
equivalence of domain extensions of the Jjoin attributes, is
derived from the 1into/onto status information. Thus the many-
many relationship between any two data items can be expressed
out of context of a relation. The full mappings, in comparison
to MVDs, are simple and intuitive.

The earlier synthesis algorithmé have not been extended to
fourth normal form schemas because nonfunctional relationships

can not be represented directly. Specifying nonfunctional
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relationships as MVDs necessarily requires an iﬁitial relation.
The grave consequences of the Universal Relation assumption are
discussed in (Kent 1981). But, it is now possible to model
nonfunctional reiationships out of context of a relation, and
hence within a synthetic approach. Transformation rules are
defined to generate BCNF and PJ/NF schemas from full mappings.
Using a decomposition approach to design PJ/NF schemas will
entail detecting the join dependencies in a set of initial
relations. This 1is a tedious task and may not be practicable
even in small databases. As noted in (Date 1980), the process of
determining when a given relation is in 4NF but not PJ/NF (and
hence can be decomposed) is still uhclear.

Full mappings would provide a practical approach to
automatic design of relational database schemas. As noted 1in
(Tsichritzis and Lochovsky 1982), database theory is more of a
schema analysis than schema design. The theory provides deeper
understanding of the data models, the database schemas, and
their properties. But it is not readily applicable. It should be
treated as a tooi for understanding, and not necessarily as a
tool for design. We believe that the full mapping approach lends
itself to practical database design. From an information
analysis of an application environment, the relationships among
the data items can be represented as full mappings. Relation
schemas are generated via the transformation rules.

The are no rules defined for 4NF schemas, because we have
not formally stated the relationships between the mappings and
multivalued dependency. Although some insights into

understanding MVDs have been gained, the relationship between
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the two 1is not guite clearf Two many-many relationships
E m----n S and E m-—---n D in a schema R(ESD) are expressed as a
JD* (ED, ES, SD), rather than as an MVD, if there is a many-many
relationship between S and D. The demarcation between MVDs and
JDs is not very clear. However, transformation rules are defined
for PJ/NF schemas. Projection-join normal form implies fourth
normal form (Fagin 1979).

The sets of transformation rules not only produce relation
schemas that conform to their respective normal forms, but they
also eliminate certain anomalies that may exist in normal form
schemas. For example, let R(A,B,C) be a relation schema. I1f the
only dependencies 1in 'R are A-;—>B and A--->C, then it is in
Boyce-Codd normal fbrm. However, the relationships among A, B

_ i o]
and C may be such that A m----1 B and A m----1 C. The mappings

express the functional dependencies, but in addition A is mapped
'into' in one of the mappings. Therefore, at a database instance
when the extensions of A in the two mappings are not egqual, it
will not be possible to enter a certain tuple‘ without null
values. This type of insertion/deletion anomalies can still ‘be
present in BCNF relations. The BCNF transformation rules
eliminate such anomalies by combining only over attributes with
equivalent domain extensions.

The full mapping approach also provides a discipline for
dealing with some of the problems related to renaming of
attributes and ‘the wuniversal meaning of column names. The
domains of attributes are also given a consideration within the

design approach. The into-mapping allows an association to be
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defined on a subset of a domain without having to rename the
corresponding column name. Thus, attributes or column names do
not necessarily have a universal meaning. The defined sets and
mappings do have intensions. From the intensions, it should be
clear which domains have equivalent extensiohs. Hence, by
referring to the statement of intentions during guery
processing, joins would be carried out only over those domains
that ensure the lossless property. However, it is important that
we are able to keep track of the sets, the mappings and their
intensions. The -topic 1is not considered in this thesis. More
work is needed in this area. It is hoped that the full mappings
would serve as a basis for the kind of generalized
interdependency constraint specification envisaged in (Kent

1981).

5.2 Further Research

As noted above, further work is required on the integrated
data dictionary. This would involve organizing the sets, the
mappings and the stateﬁent of intensions into a structure that
can be managed by the Database Management System in wuse. The
dictionary Qould serve as a kernel, from which the database can
be designed. A related problem is the automation of database
design. From a database kernel, it should be possible to derive
database schemas automatically. The computational problems
relating to the transformation rules may have to be studied.

Another possible research is to reformalize the relational
database theories using the full mapping. approach. 1If the

relationships between full mappings and multivalued dependencies
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can be formally stated, schema analysis might be better
understoéd from the full mapping viewpoint.

Naturally, this work should be extended to the Network and
Hiéféféhical database design., Transformation rules could be
defihgél‘fo generate Network and Hiera schemas from  full
mappings. The work may lead to a comprehensive and automated
design system. If the system is able to generate schemas for the
three conventional models, it might serve as a basis for testing
the.suitability of the data models for different application

environments.
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Appendix I

Let R(X, u X, u...u Xn) be a relation schema resulting from
some n mappings according to the transformation rules. If the
corresponding atomic schemas representing the mappings are
R(X,),...,R(Xn), the JD*(X,,X;,...,Xn) holds in R. The total

number of 3join dependencies based on the join attributes in
JD*(X,,X;,...,Xn) is given by 1 + [ c .

The combination of n mappings, using the transformation
rules, 1is such that the resulting relation schema is a lossless
join of the atomic schemas denoting the mappings. That Iis,
R = R(X,).R(X;).....R(Xn-1).R(Xn). Let {¥Y,,¥2,...,¥n-1}  be

the join attributes of R(X,) and R(X,), R(X;) and R(X3),...,
R(Xn-1) and R(Xn) respectively. Since lossless joins are both
associative and commutative (Aho et al 1979), every (2,
3,...,n-1) combinations of R(X;), R(X;), ..., R(Xn) produces a
JD in R, over the Yi's. | |
'Let us refer to a JD*(Z,,Z,,...,Zn) as an n-component join
dependency. The total number of JDs, based on the join
attributes Yi's, is given by the sum of the number of 2-
component, 3-component, ..., and n-component dependencies. The
2-component dependencies are derived by factoring out the
R(Xi)'s from (R(X,).R(X;).....R(Xn)). For every R(Xi), the
corresponding join is R(Xi).[R(X;).....R(Xi-1) . R(Xi+1).
....R(Xn)]. If X' = X; u...u Xi-1 u Xi+1 u...u Xn, the join
produces a JD*(Xi, X'). The number of such JDs is the same as

the number of ways .an item can be chosen from n items; it is
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n

given by C . Similarly, the number of r-component JDs is the
: .

same as the number of ways of choosing (r-1) items from n jtems
where ordering is immaterial. The number is given by C = (r. =
r-1 -

3,...,n-1). The different ways of factoring out (n41).Ri's
produces the same join dependency. JD*(X,,XZ,...,Xn) is the only
n-component dependency. Other combinations do not produce JDs
that are distinct from JD*(X,,X;,...,%Xn), because of the
associative and commutative properties of lossless joins. Hence,
2 n |

C L
1 r

, n
the total number of JDs over the Yi's is given by 1 +

{3 o I |

r



