IMPROVING PERFORMANCE BY STRATEGY-INDEPENDENT'PROGRAM

RESTRUCTURING USING BOUNDED LOCALITY INTERVALS
by
BERNARD MING-KI LAW

B.Math., The University of Waterloo, 1978

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in
THE FACULTY OF GRADUATE STUDIES

(Department of Computer Science)

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

July 1981

(c) Bernard Ming-ki Law, 1981

NF-A

In presenting this thesis in partial fulfilment of the
requirements for an advanced degree at the University
of British Columbia, I agree that the Librafy shall make
it freely available for reference and study. I further

agree that permission for extensive copying of this thesis

. for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is
understood that copying or publication of this thesis

for financial gain shall not be allowed without my written

permission.

Department of COMP(IT'C'K SCIEIUCE

The University of British Columbia
2075 Wesbrook Place

Vancouver, Canada

V6T 1W5

rate |7 JULY 196 (

(2 /779)

ii

ABSTRACT

An efficient strategy-independént program restructuring
algorithm based on the empirical studies of phases and
transitions in the symbolic reference strings of real
programs is developed. The algorithm is formulated on the
basis that'the majority of the page faults occurb during
phase transitions. Thus emphasis 1is placed in grouping
those relocatable blocks referenced during phase transitions
in the same pages. Some parameters to characterize program
behavior are also established. The purposé is to study the
relationship between these parémeters and the performance of

the program.

An experiment to compare the performance improvement of
the proposed restructuring algorithm and other major
existing algorithms 1is conducted. The performance indices
choéen are the mean working set size and the page fault
rate. The problem of data dependency, the cost as well as
the portability of program restructuring procedures are

discussed.

- TABLE OF CONTENTS

ABSTRACT . « e v et eevoevsesensensonesnenesneeneenensenena, ii
LIST OF TABLES AND FIGURES. . v euneonsneesnnoenanenens V
ACKNOWLEDGMENT .+ + « v v v e v e vnesenesnesesssneennseioennens Vi

INtrodUCEION . s e e e eesoesooscensssesossancasossss .

— d e b e

1
o1 Program behavior.....evveiveenceseccococosonas |
.2 Program LoCality.eeeuseeeoseseocaosenansocansas 2
.3 Program ResStructuring.....oeeeeeeeeeeecasasces 3
.4 Previous work on Dynamic Restructuring
Algorithm.. it eriveeeeeeneesnnncnocanssnnsoas 4
1.4.1 Nearness Matrix........ ceecesterseseasanssse D
1.4.2 Extension of Nearness MatriX....e.oeeeeeeeeees DO
1.4.3 Critical Least Recently Used (CLRU) Matrix.. 6
1.4.4 Critical Working Set (CWS) MatrixX........... 6
1.5 Examples of Clustering Algorithms............. 8
1.5.1 Nucleus-consStruCting...eeecesescesncosessnes 9
1.5.2 Hierarchical Classification...c.eeee.. R
1.6 ObjectivesS.iveieereereenoesnconns ceersasseeses 12
2 BLI Restructuring Algorithm......ceveveeeee. cees 15
2.1 Phase/Transition Model....cvovev.n e es e . 15
2.2 Bounded Locality Interval..... v e cieene 17
2.3 The BLI Restructuring Algorlthm crreses 21
2.3.1 MOtivation..ieeeeeevveenoensssesssecscs ceees 21
2.3.2 The Algorithm......ceeeeeeereeesocoosnnnns .. 23
2.3.3 Examples of BLI Restructuring Heuristic..... 25
3 Description of the Experiment.......cciveeueeees 27
3.1 Overview,...oeesoens Ceeeeeressscnrsnonasessass 27
3.2 ADPIrOACh. ittt ecterssessessssossensosenssonss 28
3.3 PArAMELerS.veeeecsvesonsossscasossssonsscsssss 29
3.3.1 Performance InNdicesS....eeveeeeeeseeecsoecns .. 29
3.3.2 Controllable FactorS...eeeeeeoesssssasosaess 30
3.3.3 Observable FaCtOrS..cieseseeeossesoscnnnans . 31
3.4 Measurement Tools....... . I
3.4.1 Data Collection and ReductiON...iceessesssss 32
3.4.2 Restructuring Algorithms......cceeveveceees.. 34
3.4.3 Working Set Policy Simulator............... . 35
3.5

Design and ImplementationN.....ceveeeveeveneess 35

iii

Discussion Of ReSULES..eveeeeseerenenesnsnensoss 40

BIBLIOGRAPHY.-....'...0............l'.....l.ll....“..’ 60

APPENDIX I: Reference StringS....eeeeseseeeeseesnessns 64
APPENDIX II: Paging Algorithms......eeveeeeecesceeassas 65
APPENDIX Ila: The Least Recently Used (LUR) paging

: algorithm..... cesesacenonn ce e esasanne 69
APPENDIX IIb: The Working Set paging algorlthm...... 70

APPENDIX III: An Example to illustrate the Hierarchical

Classification Clustering Algorithm..... 71

4

4.1 Performance Improvement...... cec e ceeeesss 40
4,2 Data Sensitivity...eeeeosecoosoosssossnncneses 47
4.3 POrtabilityeeeeeeveeeeeeassocesssssesassanssss 50
4.4 COSEeveneeeeesoesansosssssssssassssssssnsnssns DI
5 "Conclusion and Suggestions for Future Research.. 55
5.1 CONCLlUSION. . eeerenaesscoessssssssessnnssssssss 95
5.2 Suggestions for Future Research........ccce... 56

iv

Table 3.1

Table 4.1

Table 4.2

Table 4.3
Table 4.4
Table 4.5

Table 4.6

Figure 2.1

Figure 4.1

LIST OF TABLES AND FIGURES

Factors and Levels for the Experiment....;.

Comparsion of the 4 restructuring algoritms

on percentage reduction in page fault rate.
Comparsion of the 4 restructuring algoritms
on percentage reduction in average working
Set S1ZE..iciiveisrsoeosecnnnscnsosnncans Ceeeeen

Average transition set sizes and phase set
sizes (blocks)...'..“...l".l'.l....'.l..'

Results of an experiment on input
depPenNAeNCY . v ceeeeosososcstsescasssscosnsasossss

Results of an experiment on input
dependency..eeeeeees C e eererstececnasans s .o

Sample Cost of the Restructuring Procedure.

Hierarchy of BLI's for an example symbolic
reference StrinNg..ieeeeeeescecseccescacncns

~ Working set size distributions of CWS and

TC2 restructuring algorithms..............

39

43

44

45

49

50
53

54

vi
ACKNOWLEDGMENT

I would like to thank Dr; S. Chanson for his ideas and
guidance throughout.this work and for his careful readings
of the thesis. I also greatly appreciate the efforts of
Dr. J. Peck in his reading of the drafts and his comments.
Finally, I would like to acknowledge my family, especially

my father, for their moral and financial support.

Introduction - - R

1 Introduction

1.1 Program Behavior

In a virtual memory system, the performance of a

program in execution depends, to a large extent, on how its
instruction codé and data are distributed between the levels
" of the memory hierarchy, and - on how this information 1is
.accessed. | This is one of the reasons for the interest in
program behavior --- the study of the mechanism wunderlying
the observed memory reference pattern of a program. Because
of the great influence of program behavior on the

performance of systems asvwell as programs‘running on them;
the study of program behavior is essential to the design of

efficient systems and programs.

Various models of program behavior have been developed
since the late sixties, for examples: the Working Set Model
described by Denning [11], Belady's lifetime function [6],
the notion of Bounded Locality Interval (BLI) defined by
Madison aﬁd Batson [25), the LRU Stack Model [31] and the
phase/trénsiton Model deécribed in Graham's Ph.D. thesis in

1876 [32].

Introduction ‘ : . 2.

In order t§ provide the ultimate and indispensable,test
for the validity>of models, measurement is necessary, in'ali
cases, to gather information on how real programs reference
their address spaces. From these measurement data, we'hopé
to gain some insight to questions such as: What_-is fhe
relationship between programming style such aé structurea
programming and reference pattern?v What is the relationship
between program behavior and program performance How
sensifive is program behavibr_to'input data? To this. end,
it was suggested by Batson [2] that measurement and analeis
of program behayior could be doné_ at the symbolic level
rather than aﬁ the level of machine language. This approach
giQes us a clearer picture of the flow of the program during
execution corresponding to the program's high-level

constructs.

1.2 Program Locality

Many measurement experiments have been performed to
study the memory reference behavior. A commonly observed
property is that a program in execution favors a subset of
its segments (blocks) during extended periods of time [18].
This property of reference clustering has come to be known
as program locality or locality of reference. Numerous
studies [26,5,7,8,29] have indicated that locality‘is to be

found in most programs to at least some degree. Also it has

Introduction . o ' o 3

- been repbrted,'[20,22,23,i] that by improving the degree of
locality of thevpfogram through reorganization (see .seCtion
1.2) of its relocatable blocké (arrays, pfocedures etc.),
substantial improvements in program and system performance

can be obtained.
1.3 Program Restructuring

Programs written under the assumption that main memory
is virtually unlimited can, when executing 1in a paging
system, result in situations when much more time is spent
performing paging 1I/0 operations than exécuting the
program's instructions. As the rate of paging 1I/0
increases, system performance degrades. It is obvious that
it would be highly desirable to minimize the page fault
rate. For large programs, some alternatives to complete
rewriting of the codes are clearly desirable. The idea of
program restructuring was initiated by the experiment
performed in 1967 by L.W. Comeau [10]. 1In his experiment,
Comeau pointed out that the rearrangement of relocatable
sectors of code over virtual pages <can have a profound
effect on paging performance. Changing the load-time
ordering of the modules in a monitor system resulted in a
five-to-one reduction in the number of page faults generated

during the course of an assembly.

Introduction) _ o - 4

The = program to be restructured is divided into.
relbcatable blbcks, such és‘arrays, procedures, functions
etc.. We shall assume that the average size of a
relocatable .blo;k (the term "block™ will be used hereafter
to mean a segment of relocatable codes) is small combarea'to
the size of a page (for exémple, between one-tenth and
one-third of the page.size) so that several blocks can be
packed into a page. The objective of restructuringv is to
reorganize the blocks of a program such that those that are
needed within a relatively'short time of oné anothér are
found either in the same virtual page or in pages that would
otherwise tend to be in physical memory at the same time.

This has the effect of reducing the page fault rate.

Program restructuring can generally be. broken down into
two phases:

(1) A preproceésing phase which defines and computes the
"desirability"™ of grouping blocks together based on
examination of the symbolic block reference string.
The information gathered can be stored in a
desirability matrix M where each entry mij bf the
matrix represents the desirability of putting blocks i
and j in the same page.

(2) A clustering phase which groups the strongly related

blocks with high desirability into common pages,

Introduction S .5

subject to the constraint»thafzeéch cluster fits into a

single page.
1.4 Previous work on Dynamic Restructuring Algorithms

Invariably, dynamic réstructuring.algorithms are baéed
on a block reference string, (see Appendix II) collected
during execution, representing the dynamic behavior of the
program to be restructured. 1In the following examples, we
assume that all the entries in the desirability matrix , in

question are initialized to zero.

1.4.1 Nearness Matrix

The 'Nearness Matrix was first introduced by Hatfield
‘and Gerald in 1971 [23]. Matrix A = [aij], is a symmetric
nxn matrix "~ with indices labelled by bioCk numbers, where n
is the total number of blocks in the program. The element
aij is the number of times a reference to block j
immediately follows a reference to block i. That is to say,
aij represents the desirability of placing two blocks i and

j in the same page.

1.4.2 Extension of Nearness Matrix
The algorithm proposed by Masuda [27], is based on an

extended definition of the notion of nearness: two blocks 1

Introduction -~ N E o : 6

and j- are near not only when they are ~conse§utively
referenced} but also when- referencé: to tﬁem foliow each
other at-a shorf distance in time. The desirability -matrix
B=1[bij] is a symmetric nxn matrix with rows and columns.
labelled by the block numbers. At each new reference to
block i, issued at virtual time t by the program,.bij will
be incremented by one, for all j, where j has been
referenced during the virtual time interval (t-T,t) where T

is a chosen constant known as the window size.

1.4.3 Critical Least Recently Used (CLRU) Matrix

The CLRU ‘restructuring method ([22] 1is one of the
restructuring methods that takes the memory management
policy into account. : They' are also. known as
Strategy-Oriented restructuring methods. In this case, the
LRU policy (see Appendix 1Ia) 1is the memory policy in
question. The CLRU matrix C = [cij] is an nxn matrix with
rows and columns labelled by block numbers. By simulating
the demand paging LRU page replacement algorithm on the page
reference string, we could identify when the page -faults
would occur and the set of pages thatvare in main memory at
those times. Assuming a program is given m page frames 1in
main memory, the CLRU algorithm will increment all the
related elements cij by one, where 1 is the block which has

just generated a page fault and j covers the set of m blocks

Introduction _ . o ‘ 7

at the 'fbp' of thevLﬁU blbék‘stackvat the»time’of the page
_fault; The idea is that it is_desirable to put block i in
the same page'.with‘-bne, of the blocks already .in primary
memory aé then the reference.to block i will nof cause a
page fauit. This. philosophy can be used on other memory
management policies such as the working set policy described.

in the next section.

1.4.4 Critical Working Set (CWS) Matrix

The CWS method [22] also belongs to the
‘Strategy-Oriented restructuring family using the Working Set
policy (see Appendix Ib) as the page replacement policy. A
critical reference is one which causes a page fault to
occur. The desirability matrix D = [dij] is a symmetric
nxn matrix with rows and columns labelled by block names.
Similar to the CLRU algorithm, the CWS algorithm increments
all the related elements dij by one, where block i 1is the
critical reference and j is an element in the block working
set W(t,T), for all j in W(t,T).v (A program's block
working set W(t,T) at virtual time t is defined to be the
set of distinct blocks referenced in the time interval

(t-T+1,t) where T is the window size.)

Although the Nearness Matrix is very simple, the main

- weakness of the algorithm is that it only considers adjacent

Introduction _ : ' : ‘ ‘ C 8 .

pairs of réferences.'.Thus it might have troﬁble identifying
the major localities which requires a V‘mbré' global
examination 6f' the reference pattern. The éxtended version
of the Nearness Matrix tries to remedy fhis_.problem by
considering a larger window of T referenceS'(T is usually
much greater than 2). The difficulty here is in the choicé
of T. As loéalities have different sizes and are generally
difficult to predict (often depend on the input data), and
the overheads of the algorithms increase approximately
exponentially with T, it is easy to see why it will -be
difficult'to choose a proper value of T. The
Strategy-Oriented restructuring algorithms work better than
the existing non-strategy-specific ones. The major drawback
is that for some complex memory management policiés, it may
not be possible to find the «corresponding. restructuring
algorithﬁs. If the strategy assumed by the algorithm is
different ffom the one actually wused by the system, the
result could be worse than that resulting from the use of a

strategy-independent restructuring algorithm.
1.5 Examples of Clustering Algorithms
The function of a clustering algorithm is to determine,

based on the desirability matrix, which block§ should be

grouped into common pages, so as to minimize the number of

‘Introduction : " ' N 9

page faults producedrbj’the program. Various methodsA-used
in restfuctﬁring expériments can be founa in the literaturé
[23,27,19,11._ Most of them, as reported, are reasonably
‘efficient algorithms although hone of them.is 6ptimal and
some cost less than the others. The major constraint of a
| clustering algorithm is that the éum of sizes of all blocks.
in.a cluster cannot excéed the page size. - This gives rise
to problems such as aligning blocks to page boundaries,
avoiding overlaps of blocks over page boundaries and
avoiding excessive fragmentation due to wasted space at the
end of pages. Two types of clustering algorithm which have
been used in past experiments are presented in the following
sections. The first is based on a simple method called
nucleus-constructing[1], _ and the 6ther is a more

sophisticated one based on hierarchical classification [1].

1.5.1 Nucleus-constructing

This method presumes that there existé a nucleus of
blocks of the program more freguently used than the others
and it tries to identify such nucleus. The method defines a
weight wi for each block i, such that wi is equal to the sum
of all the elements in row i aﬁd column i of the
desifability matrix. In ofder to take into account the size
of the block, a density function di fér each block 1 is

determined from the weight wi as

~Introduction - 10

S
di = --——- * wi
si
where si = size of block i
S = mean size of all blocks

It ofdérs the blocks in a list>iﬁ décreésing order éf their
densities. Then it places the blocks into a page in the
same order excépt those which cause an overlap, until the
page is filled or the list is completely examined. The next
page is then filled in the same way with é new list composed
of the remaining blocks ordered in the same manner. = This

process is repeated until the entire list is exhausted.

The wasted space at the end of a page, as reported in
[1],was on the average 2 to 8% with the above algorithm. In
general, no compaction is made if the total waste 1is less
than or equal to one virtual page. Hatfield And Gerald [23]
pointed out that it may be better to permit some overlaps to

avoid excessive fragmentation.

Although this is a very fast and inexpensive clﬁstering
algorithm a major pitfall is that it does not lend itself in
finding the different nuclei of a program if they exist.
This is because blocks belonging to different nuclei are

mixed if they happen to have similar densities.

Introduction V 3 ' = 11

The hierarchical classification technique described in

the following section overcomes this problem.

1.5.2 Hierarchical Classification

Let J be the set of blocks to ~be classified. . Let
D=1[dij] be the deéirability matrix obtained 1in the
preprocessing phase. Our goal 1is to <classify J into
subsets, each of which represents a cluster of blocks that
are strongly associated to each other “baséd on the given
desirability measure. Given a list of blocks bi, i=1,..,n
with size si and page size P, the cluste;ing algorithm works

as follows:

The construction of the hierarchy is to be carriéd' out
in- (n-1) steps (n 1is the total number of blocks in J).
Progressing from step (m-1) to step m consists 1in passing
from the set Jm—1 to the set Jm such that:
Jn = Jm-1 - {A} - {B} + {A UB}
where: A, B are elments of Jm-1 and subsets of J such
that dAB is the largest element in ;he desirability

matrix Dm-1 in step (m-1).

J0 = { { bi } | bi is an element of J,i=1,..,n}

In other words, JO is a set of subsets of block(s) (a set of
" clusters), with each subset initially containing a single

block. In each step, we try to merge two clusters together

Introduction ' | o 12

based on the reduced desirability matrix Dm with DO = D, to
form a new cluster'under the constraint that the sum of
sizes of all blocks in the new cluster cannot be greater

“than the page size P,

In detail, step m.consists of the following operations:

(1) From matrix Dm-1, find the largest element AAB, where A
and B are two elements of Jm-1.
If the largest element equals fo zero then the process

is terminated as that indicates no new cluster can be

formed based on Dm-1.

(2) 1f the sum of sA (sum of sizes of all blocks in cluster
A) and sB (sum of sizes of all blocks in cluster B) is
smaller than or equal to P (the page size) then we
merge A and B, i.e. A U B, to form a new subset C and
continue with (3). Otherwise, we replace dAB of Dm-1
with zero, indicating that the merge is unsuccessful,

and then continue with (1) again.

(3) Construct the reduced matrix Dm from Dm-1 by deleting
all the rows and columns associated with A and B. And
then add row C and column C to Dm, such that:

dcCx dAX + dBX

and dxC

dXA + dXB

Introduction ' _ S L ‘ 13

where '_dAx,dXA,dBX,dXB are_elements of Dm-1,
fof,all X in Jm-1 except for A or B
Note that Dm 1is now the new desirabilitykmatrix with

rows and columns labelled by cluster names.

In suhmafy, we start off with JO which is a set of n
clusters, each of which consists bf a single block in set J;
and eventually we end up with Jn which is a set of new
clusters, each of which consists of a subset of bloék(s) and
whose size is less than or equal to the page size. An

example illustrating the method is described in Appendix

ITI.

Optimization of space usage should be done in order to
minimize the wasted space at the end of pages, especially
for small clusters. Placement is made with emphasis on the
size condition rather than on the desirability between two

clusters in this last step.
1.6 Objectives

The main objective of this thesis 1is to develop an
efficient restructuring algorithm which is
strategy-independent. The work is based on the empirical

studies of phases and transitions (details in section 2.1)

Introduction . 14

‘in the symbolic reference strings ;of real - programs,
(specifically Pascal programs). Also we wish to establish
some parameters to characterize programA behavior and fov
analyze ‘the -relationship between these parameters and the

performance of the program.

This brief }introduction in this chapter hopéfully
provides sufficient background on the motivation of program
restructuring and some of the techniques reported 1in the
literature. We then proceed, in chapter 2, to describe in
detail the phase/transition model and the Bounded'vLocality
Interval (BLI) definition which led to the construction of a
new algorithm which we call the BLI restructuring algorithm,
with the emphaéis on phaée transitions. 1In chapter 3, we
describe the setup of the experiment, the measurement ‘tools
involved and the implementation of the BLI restructuring
algorithm. Analysis and discussions of the experimental

results are presented in chapter 4.

BLI Restructuring Algorithm . - ' : 15

2 BLI Restructuring Algorithm

This chapter begins with the introduction of the-

phase/transition model of. program behavior. The strengths

and the weaknesses of the model are briefly discussed. The -

problem of identifying all the distinctive phases is raised
and the concept of Bounded Locality Interval (BLI) is
discussed. A new algorithm based on the concept of BLI 'is

described in-the last section of the chapter.
2.1 Phase/Transition Model

From the viewpoint of program locality, a prograﬁ's
execution time can be regarded as a sequence of locality
phases (or simply phases) separated by transitions.
Informally, a phase is an interval during which the small
set of blocks being referenced is constant; and.a transitioh
denotes the interval of migrating from one phase to another.
By subdividing the program into blocks, the locality set of
a phase (phase sét) is the set of Dblocks activei in that
phase. (A given block 1is considered active in a phase
whenever processing of that phase requires the presence 6f
that block in main memory.) Similarly, the transition set is

the set of blocks active during the transition. As proposed

BLI Restructuring Algorithm _ _ 16

by Spirn [31], the‘exécution.df‘a program may be viewed as a
seqguence o |
{ (P1,11),...(Pi,11),ceuun}
where Pi is the ith locality set or phase set
and 1i is the lifetime of the phase for Pi _

(informally, the lifetime of a phase is the difference

in virtual time between entering and leaving of a phase.)

Thé phase/transition model of program behavior has been
studied in detail by Graham [32] in his doctoral research.
His work deals mainly with the model as a synthetic
generator of reference strings. Though it is interesting
and important' in its own right, the emphasis and
applications of his work are quite different from ours. One
of the major properties of_thé phase/transition model is
that it permits a wide range of detail to be incorporated
with the reference string generation - process. In one
extreme, the model may assume that the lifetimes of all
locality sets have length one in which case the model
consists of the entire reference string. Obviously this
will preserve all the details of the program behavior. 1In
the other extreme, the model may assume that only one
locality set, namely the program space itself, exists during
execution. In this case, a lot of details will be lost.
Clearly, neither of these extremes is reasonable in gaining
a better understanding of locality. Madison and Batson [25]

offered a method for discerning phases and transitions with

BLI Restructuring Algorithm ; 17

the notion of Bounded Locality Interval (BLI) and they
undertook empirical studies of phases and transitions in the

symbolic reference strings of real programs.
2.2 Bounded Locality. Interval

A basic 'difficulty with the phase/transition model is
the one of formulating a procedure which could identify all
the distinctive phases and their corresponding locality sets
given a reference string [15]. The notion of the Bounded
Locality Intefval (BLI) was introduced by Madison and Batson
[25] as a mechanism to overcome this problem. The initial
idea of BLI was triggered by the obervation ~that the
least-fecently—usea (LRU) stack (see Appendix Ia) contains,
at any time t, the blocks arranged in the order of the times
at which they were last referenced, with the

most-recently-used block at the top of the stack.

1f the top i elements in the LRU stack are { Pi } then
‘we can also record fi, the time of formation of this set
{ Pi } and ei, the last time of reference to the block
currently occupying the ith LRU stack position. At any
instant t, an activity set is defined as any { Pi } in which
every element of that set has been referenced more than once

since the set has been formed at the top of the LRU stack.

BLI Restructuring Algorithm ' _ L o 18

The lifetime, 1li, of such an activityfset'is defined to be
the diffence between fi and ei where ei. > fi. A BLI. is the
pair (Ai,li), such that Ai is the activity set and 1li is its

lifetime.

The notion. could be generalized by_defining»an'activity
set as one whose elements have been referenced at least k
times since the set was formed. In particular, the
definition given is for the case when k = 1. Moreover, k is
the ohly parameter of the model and it is independent of any

memory management policies.

Another important characteristic of BLI 1is thevimplicit
hierarchical nature of localities embedded in the
definition. The hierarchy of BLI's is 1illustrated in
Figure 2.1, which shows a segment of a reference string and
the corresponding BLI structure, with the parameter k = 1,
The level of a BLI is defined as its distance down in the
hierarchy. Thus, in Figure 2.1, the "level one" BLI's are
those at the top of the hierarchical structure, partitioning
the reference string into the longest possible éubintervals

of distinctive referencing behavior.

BLI Restructuring Algorithm ' _ 19

ABBBBCDFEBABCDDDCDBBAACBDGFKEDDEEEEEDDDDEEDD
R e R R T L L LT

1 5 10 15 20 25 30 35 40

{B} B {A,B,C,D} {D,E} v(level—one)

N A + Fomm e
{B,C,D} {E} {D} (level-two)
D ks FEMMFRF
{c,D} (level-three)
Fmm———

Figure 2.1. Hierarchy of BLI's for
an example symbolic
reference string.

The development of the concept of the BLI could be used
‘to solve the problem of identifying distinctive major phases
in a given reference strihg, except that we still have to
determine whether a phase 1is really a "major" phase.
Intuitively one would expect that a major phase should have
a reasonably long lifetime. Batson [3] pointed out that the
criterion of "reasonably long" can only be formulated in the
context of the particular virtual memory system upon which
the program will be executed. He suggested that the mean
time required to transfef a block from secondary storage to
main memory can be used to determine a seguence " of major
phases and transitions. If p is the block transfer time,

~each BLI is regarded as a major phase if its 1lifetime 1is

BLI Restructuring Algorithm : - 20

greater than or equal to p.

Besides bthe” importance of the behavior of the major.
phases and their nesting characteristics, there are
significant disruptive' transition-intervals ‘betwéen majsr
phases.. While the major phaseS'dominaterviftual 'time,' the
transitions accsunt for a substaﬁtial part of the pége
faults. It was reported by Kahn [24] that phases covered at
least 98% of virtual time while . the rafe of page faults
during transitions was 100 to 1000 times higher than that
during phases.

A simple way of approximating the BLI concept 1in the
identification of the level-one major and transition phases
- 1s as follow. Scaﬁ the block reference string from the
left. The first repetition of a block reference is the
(possible) beginning of a major phase and also the
(possible) termination of the current transition phase
(depending on whether the eventual length» of the phase
exceeds p). A major phase terminates if a reference is made
to a block not contained in the previous transition phase
set. Our empirical data show that this will obtain almost
identical level-one major and ‘transition phase ssts with
‘much less overheads. Subseqguent results reported 1in this

thesis were obtained using this approximation method.

BLI Restructuring Algorithm = = : 21

2.3 The BLI Restructuring Algorithm
2.3.1 Motivation

it was tﬁe last remark, in the preQious section, about
the effect of trénsitions on program performance that led to
the ideé of the BLI restructuring algorithm. Basically, the
" goal of program restructuring is to reduce the page faﬁlt
rate generated by the program and traditionélly experiments
on program restructuring have concentrated on the major
phases or localities. However, the studies of Denhing and
Kahn [15] indicated that, for exécutable memory size greater
than -the mean phase size, performance was much more
dependent on the characteristics of phase transitions than
either the prograﬁ behavior within phases or' the memory

management algorithm in use.

The BLI restructuring algorithm is constructed with the

following objectives in mind:

(1) Strategy-independent.
The algorithm should be independent of any memory
management policy thus having the widest possible

domain of application.

 BLI Restructuring Algorithm : N v 22 -

(25 Emphasis on phaée transitions,
Besides tfying: to placevall blocks in the major phase
inté common pages, we emphasize on the strength of
"nearness" of blocks durihg transition intervals. This
will achieve better utilization of the information
provided by the program behavior model, and more
importantly we hope to obtain bettér performance by

reducing the page fault rate.

‘The BLI model is the perfect choice for our purboses.
It is strategy-independent and it provides a clear
definition of major phases and transitions given any
reference string. In building the desirability matrix,
unlike other algorithms described in section W;4, we put
more weights on transitions than on phases. We group the
blocks in the transition interval the same way as >the
locality sets or the activity sets despite their very short
lifetimes, as long as the lifetime of each set 1is greater.
than the block transfer time from secondary storage to main

memory.

In the clustering stage, the major constraint is thét
the sum of the sizes of all blocks in a cluster cannot be
greater than the page size. Wasted space at the end of

pages 1is reduced by combining clusters that may fit into a

BLI Restructuring Algorithm o - 23

- page as follows§ The clusters .are listed in deéreasing
order 6f,_theif: sizes. . They are then placed into a page in
the same order skipping thése which cause an overlap, wuntil
the page is filled or the list is completely examined. The
next page is #hen filled in the same way with a new list
éomposed of the remaining clusters ordered 1in the éame
manner. This process is repeated until the entire 1list is

exhausted.
2.3.2 The Algorithm

In detail, the BLI restructuring algorithm consists of

the following steps:

(1) Using the definition of BLI, with a chosen value for
the parameter k (k is used to determine the activity
set) and given the block transfer time p, é sequence of
transitions and major phases can be obtained from any
given block reference string. In order to keep the
cost of the algorithm within reasonable limit, we will
only concern ourselves with the "level one" BLIfs of
the hiérarchy. (To obtain an optimal path through the
hierarchy 1is too costly for program restructuring.
Moreover, the "level one" BLI's are those at the top of

the hierarchical structure (see Figure 2.1),

BLI Restructuring Algorithm ' : 24

(2)

(3)

partitioning the reference string 1into the longest

possible subintervals - of distinctive referencing

behavior.)

Each of the tfansitions and major phases composes of a
set of distinct blocks which are ordered with respect
to their times of first occurrence. Now we have a
choice of considering

(a) the phase sets only

(b) the transition sets only

(c) both the phase sets and the transition sets

Then we have to decide how to determine the

"desirability" of block pairings in each of the sets

 chosen from step (2). The desirability matrix

M=1[mij] is a symmetric nxn matrix with indices
labelled by block numbers, where n is the total number
of blocks in the program. Two methods are described
for the computation of mij, the desirability of placing
two blocks i and j in the same page.
(a) the Neighborhood method
For each set of blocks chosen from step (2),
arrange the blocks in a list in the order of their
occurrence within that phase or transition.

Increment mij by one for any two blocks i and j in

BLI_Restrﬁcturing Algorithm ' _ 25

the list such that block i is followed by block 7,

for all i in the list.

(b) the Combination method
For each set of blocks chosen frbm step' (2), and
for all combination of»bloék paifings i and j in
the set, increment mij by one where i is different

from j.
2.3.3 ‘Examples of BLI Restructuring Heuristic

In effect, we have described a whole category of
Heuristics for program restructuring based on the notibn of
BLI. The fdllowing are two examples of such heuristics from
the category which are found to be particularly interesting

and hence they are chosen to be used in the experiments.

Example 1: Phase-Trénsition—Neighborhood-k=1 (PTN1)
This method uses the BLI definition with k=1. It
considers both the phase sets and the transition sets.
The entries of the desirability matrix are determined
by the Neighborhood method described in 3(a). (This
is, in effect, similar to Hatfield's nearness matrix
except that the weights on block pairings in major

phases are greatly reduced.)

BLI Restructuring Algorithm . | .26

 Example 2: Transition-Combination—k=2‘(TCZ)

In this method, we use k=2 to determine the major
phases and the transitions. However only the

transition sets are examined. (It is observed that a

‘transition set always includes the set of blocks in the

néxt»ﬁajbr phaée. Hence, in effect, we have already
implicitly éonsidered the blocks in the major phases
though their weights are further reduced, despite their
much longer lifetimes.) The desirability of block
pairings 1is computed using the Combination method

described in 3(b).

In the next chapter, we describe the design of the

experiment with the BLI restructuring algorithm. The

objectives of the experiment are two-folded:

(1)

(2)

To evaluate the performance of the BLI restructuring
algorithm compared to other algorithms wused in the
literature.

To study the relationship between some proposed
parameters of program behavior and the performance of

real programs.

Description of Experiment : ‘ | 27

'3 Description of the Experiment
3.1 Ovefyiew

In this chapter, the experiment which was conducted
will be described 1in detail. The main objective of the
experiment 1is to evaluate the performance of the . BLI
restructuring algorithm compared to the other méjor existing
algorithms.. Also we wish to establish some parameters to
characterize program behavior and hopefully to gain some
insight through the analysis of the relationship between

these paramters and the performance of real programs.

Having decided to do a measurement experiment, the
first step is to determine what performance measures to use
and then to identify the major parameters related to the
program behavior model which may influence the selected
'performance indices. The next step is to develop tools to
collect block reference strings from real programs and to
implement the various restructuring algorithms (including
the Nearness Matrix, the Cfitical Working Set restructuring
algorithm'and_ the BLI restructuring algérithms). The
performance of the restructured program is then evaluated by

running the ‘reference string on the simulated memory

Description of Experiment | ' - 28

mahagement program to,compute thevperformance statistics.and
other parémeters. Following this, we discuss the‘ type of
program used in the experiment and the variety of data input
included to test for data dependency. Finally the design .
and implementation of the experimént are discussed in the

last section-of the chapter.
3.2 Approach

The experiment is based on block reference strings (see
Appendix II) gathered from real production programs running
on an AMDAHL 470V/8 computer., These programs consist of
relocatable blocks such as’procedures and functions. They
were executed on the Michigan-Terminal-System (MTS) Symbolic
Debugging. System (SDS) from which symbolic traces of
procedure calls and returns were collected and extracted to
form the resulting block reference strings. At the same
time, the Dblock sizes were recorded for wuse 1in the

clustering phase.

The references weré then fed to the restructuring
programs based on the different restructuring algorithms to
produce the corresponding desirability matrices. Each
matrix was then input to the clustering program which output

a set of virtual pages each of which contained a cluster of

‘Description of Experiment . - 29

blocks.

The performance of the resﬁructuréd '~ program was -
estimated by simulation. - The block reference string was
first transformed into the corresponding bpage reference
strihg_ according to the mapping suggested by the
restructuring and clustering procedures. ’The page reference
string was fed to a memory management simulator which
gathered the desired performance statistics. Because of its
popularity and the relationship to one of the major
festruéturing algorithms (i.e., the Critical Working Set
algorithm), the working set memory management policy was

used throughout the study.
3.3 Parameters
3.3.1 Performance Indices

Traditionally, the page fault rate 1is an important
performance index 1in virtual memory systems. The reason is
that the turnaround time of a program is strongly influenced
by the number of page faults generated during its execution.
This is because the time needed to transfer a page from
secondary. storage ﬁo main memory is about four orders of

magnitude larger than the access time of primary storage.

Description of Experiment' . ‘ ' . 30

Apart from the sizesof main:storage,.the numbeerf page
faults generated during an éxecution depends mainly = on the
behavior of the progfam being executed and on the memory
management policy used by the system._ Since we have decided
to use the working set policy as the replacement - policy:
throughout the experiment, the average workiﬁg set size is a
good indicator of mémory usage during the progrém's

execution.

Thus, the performance indices chosen are the page fault
rate and the mean working set size which together cover, to
certain extent, the space and time components of a

computational activity.
3.3.2 - Controllable Factors

A controllable factor is a factor whose 1levels (or
values) are under the direct control of (and therefore can

be chosen by) the experimenter.

Parameters which may affect the behavior of a given
prdgram are its input data and the order in which its blocks
are stored in the virtual memory space. The influence of
the ordering is due to the fact that the page contents would

generally be different for different orderings. Thus,

. Description of Experiment ' 31

‘different parts of the program are maintained in maiﬁ memory
fof different. ofderingv‘of blocks in the Virtual address
‘space. As described in Chapter 1, the original ordering of
'blocks in the virtual storage can be altered by the use of a
restructuring algorithm and a clustering algorithm. Thus,
the three controllable factors selected for the experiment
are:

(1) input data,

(2) ‘the restructuring‘algorithm;

(3) the clustering algorithm.

Since we have decided to use the working set policy as
the replacement algorithm, we might include the window size
T (the only parameter of the Working Set policy), as the

fourth controllable factor.

These controllable factors are selected with the view
to compare the performance of the BLI restructuring
algorithm with the others. The four controllable factors
and their levels selected are 1listed in Table 3.1 under

section 3.5.
3.3.3 Observable Factors

An observable factor is a factor whose levels can be

Description of Experiment . ’ o 32

measured durihg- the. eipéfiment but they.are not under the
direct_cbntroi of the evaluator. ‘The‘obsefvabie factors' of
our experiment depend very mﬁch on the program behavior

modelvin use. With ﬁhe phase/tfansition model and the
notion of BLI)‘Fthe natural choices are the average
cardinality of ‘the phése sets and of the transition sets.
Intuitively, we expect: (1) the average phase set size to be
approximately egqual to the mean working set size; and
(2) large average transition set size will give rise to high
page fault rate. It is one of ouf goals to see if there is
any correlation between these parameters and the performance

of the measured programs.
3.4 Measurement Tools
3.4.1 Data Collection and Reduction

Data collection was done using the Symbolic Debugging
System (SDS) on the AMDAHL 470V/8 computer which operates
under the Michigan Terminal System (MTS). SDS includes a
simulator (originally designed for the IBM 370/168) which
simulates the instructions step by step. The SDS simulator
provides a TRACE CALL command which can establish
breakpoints at the base of all the control sections

(subroutines) and at their entry points. During the

Description of Experiment - _ j S 33

simulation of an 1nstructlon; if a call 1ntercept (1 €., a
breakpoint) is encountered, the symbollc address vof“ithe-’
routine being called and the return address of - the calling
routine are recorded and a return 1ntercept is establlshedla
at the return -address. Slmllarly, when a return intercept
is encountered the address of the returnlng routlne and Athe
return'.address are recorded and the return 1ntercept.is
removed. Hence after the program's execution (by the
"simulator), a’ trace of subroutine callsi and returns is
recorded. The cost of this TRACE CALL .command is'tfairly
high due to simulation of the instructions and frequent
interference for data collection at the ﬁbreakpoints{ The
cost 1is, as expected,'roughly proportional‘to the number of
"instructions being simulated and the -number of subroutine-

calls made during the execution.

A data reduction program was written to transform the
collected information into a more concise and useful form.
The program includes a mapping of each subroutine or block
name into an unique positine integer and hence reduces the
collected trace into a sequence of positive integers which
represents the flow of execution of the measured program at
the symbolic or subroutine 1level. This sequence of block

numbers is known as the block reference string.

Description ofoExperimentv - _ ‘ 34

The SDS also produced a list of block names of the
measured program and their oorresponding lengths. - This

information was used in the clustering stage.
3.4.2 Restructuring Algorithms

Three types - of restructurihg algorithms vere
implemented. They were Hatfield's Nearnéss Matrix,
Ferrari's Critical Working Set 'and the BLI restructuring
algorithms. All of them were coded in Pascal. Each accepts
a sequence of positve integers as input and scans the entire
string in a 'single- pass, producing the corresponding
desirability matrices. In the case of the BLvarogram, the
user -can specify the required options (such as PTN1, TC2,
etc.) as described in section 2.3.3. In addition to the
desirability matrix, a soquence-of phases and transitions,
each containing a list of distinct block numbers and their

lifetimes is also produced by the BLI algorithm.

Two clustering algorithms, as describéd in section 1.5,
were implemented in Pascal. . Given a desirability matrix,
the block sizes and the size of a page, the clustering
program would produce a set of pages and the block numbers
associated with each page. An approximation of wasted space

is also displayed.

Description of Experiment - h ' '35

3.4.3 Working Set Policy Simulator

: The>func£ion of the simﬁiator is to estimate the
pe;formance of < the restructured program bésed on the
original block reference string collected and the placement
ordering of. blocks suggeSted by the restructuring algorithm.
Given a set of pages (clusters) and their corresponding
block numbers and the window size, the simulator outputs the
number of page faults .ana the average working set size

associated with the restructured program.

Note that the simulator implements the "pure" working
set replacement policy which means only the pages covered by
the window are regarded as the program's working set at any

time instant. The simulator was coded in Pascal.

3.5 Design and Implementation

The program experimented on was a Pascal compiler. It
was written in Pascal and considered to be wéll structured.
It consisted of 336 blocks (procedures and functions) and
about 90% of these had sizes less than 800 bytes. The
average block size was about 600 bytes. Thus for a page

size of 4K (4096) bytes, each page could hold about 7 blocks

Description of Experimént | | | 36

on the average. The compiler consistéd of. about 54Ipages of .

codes.

In section 3.3 we identified the major factors felt to
influence the page fault rate of a_progrém. The differént
values of‘a.factor (both QUantitative and nonguantitative)
are called 1its leveis. The four controllable factors
selected and their corresponding levels for the experiment

are listed in Table 3.1.

The levels for the input data were selected to cover a
variety of Pascal programs to be compiled with respect to
the number of syntactic errors and the length of the
programs. Program P was designed to include most of
statement types 1in Pascal and had about 25 statements. The
first four samples of the input data were modified versions
of program -P ranging from zero to 50 syntactic errors. The
fifth and sixth samples were both error-free programs which
had about 60 and 355 statements respectively. Hopefully
that would allow us to test for data dependence on input of

different nature as well as sizes.

Five restructuring heuristics were selected for
comparsion. The original ordering of the blocks by the

author of the program went through no restructuring and thus

.Description of Experiment | ' 37

served.aslfvthe .contgol' of the experiment. Hatfiéld's:
Nearneseratrix was iﬂcludéd,partly‘for historial reason and
partly because it is still the simplest,
strategy-independént and yet the cheapest restructuring
aléorithm known. The CWS restructuring method was chosen
for obvious reasons: it seems to have the best performance
among the algorithms reported in the literature. It is a
strategy-oriented algorithm and was purposely chosen since
we decided to wuse the workihg set policy for memory

management.

Both the PTN1 and TC2 are members of the BLI
restructuring algorithms. PTN1 resembles the Nearness
Matrix but with less weights on the phase sets. While TC2
is the natural product of our intuition and past experience
that disruptive phase transitions are the major cause of

page faults.

Six block reference strings were gathered from
different input data. Each of them was then fed to the five
restructuring programs and two clustering programs. A total
of 60 sets of clusters was produced. The working set policy
simulator went through all 60 sets of clusters twice, each
time with a different window size. As a result, f20 runs

were made, each of which produced a pair of figures

Description of Experiment 38

repreéeﬁting the number of page faults and the average

working set size.

- Additional runs were performed to test the result of
running all the reference strings with a particulér set of
clusﬁefs chosen from TC2 and to compare the results to the
onéé using the CWS algorithm. This was done to test the

robustness of the two algorithms.

Description of Experiment . 39

Table 3.1 Factors and Levels for the Experiment

Program: a Pascal compiler
Replacement policy: working set policy

FACTORS LEVELS
NAME DESCRIPTION
Input data P1 program P, 25 statements, 50 errors
(program to P2 program P, 25 statements, 25 errors
be compil- P3 program P, 25 statements, 5 errors
ed) P4 ‘ program P, 25 statements, no errors
P5 program Quicksort, 60 stts, no errors
P6 program BLI,355 statements, no errors
Restructur- ORIG original ordering by author
ing NEAR Hatfield's Nearness Matrix
Algorithms CWS Critical-Working-Set
PTN1 Phase-transit-neighbor-k=1 (BLI)
TC2 Transit-combination-k=2 (BLI)
Clustering NUCL Nucleus-constructing
Algorithms HIER Hierarchical classification
Window size 10 small
(reference) 50 large

‘Discussion of Results : : : .40

4 Discussion of Results

Six block reference strings were gathered for a Pascal
~compiler executed with different input data. A number of
simulation funs wéfe performed to evaluate thélresﬁructUring
procedure and several restructuring algorithms as described
in section.3.5. In this chapter, we shall summarize what we
feel to be the most important resﬁlts in the following
areas: performance improvement, data sensitivity,

portability and cost.
4.1 Performance Improvement

Improvements in page fault rate and the average working
set. size by program restructuring are computed, in terms of
percentage reduction in those indices as:

% Reduction = —==---=---- * 100

Po

where Po, Pr are the original and restructured

performance indices respectively.

Before we discuss the performance of different
‘restructuring algorithms, we make the following

observations:

(1) Window Size

Discussion of Results - ‘ : 4

A reasonable.range of window sizes,:from 10 to 100‘page
references, was. tested initially for our performance
evaluation. It was found that smaller window sizes produced
smaller gaih (with recpect to % reduction in page fault
rate). A window size of fifty page reference was found to
be the optimal fcr all restructuring- algorithms in the
experiment ‘and 'was» therefore | chosen for performance

comparsion among the restructuring algorithms throughout the

study.

(2) Clustering Algorithm

Despite the simplicity of the Nucleus Constructing
method '(NUCL), our results showed that clustering by
Hierarchical Classification (HIER) is much superior to NUCL
in all cases. For the same reference string and
restructuring algorithm, HIER outperforms NUCL by an average
of 20% in our experiments. This cén be explained by the
inability of isolating distinct nuclei (a set of blocks
which are clcsely relared with respect to the program's
referencing behavior) by the NUCL method. Thus, we shall
concentrate on the results gathcred from the use of the HIER

method.

In almost all cases and with all four restructuring

algorithms tested, significant performance improvement was

Discussion of Results 42

obtained in both indices (see Table 4.1 and Table 4.2). The
Ppage fault rate was feduéed,frdm 22% to as much as 42.5%.
The averége.wbrking sét size was feduced to about two-thirds
compared to the performance associated Qith. the original
ordering in most cases. In general;,thé origihal layout of
the program hés great influence on the magnitude: of the
improvement. Since our test program, a Pascal compiler, is
considered to be well-structured, the performance

improvement shown is very significant.

Among the four restructuring algorithms, TC2 (a member
of the BLI restructuring algorithm) works extremely well in
reducing the page fault rate and outperforms the others by
non-neglible'amounts. The results of TC2 cdnfirm the claim
that most page faults occur‘ at phase transitions. Hence
putting more ‘weights on the transition blocks can reduce the
page fault rate significantly. While the CWS algorithm
comes second to TC2 in the reduction of page‘faults, in some
comparsions it 1is slightly more effective in reducing the
average working set size. As expected, CWS works best when
the window size selected for the working set policy

simulation matches with the restructuring parameter.

As a matter of fact, both the NEAR and PTN! algorithms,

though inferior to TC2 and CWS, perform reasonably

Discussion of Results :) ‘ _ _- :‘43

safisféctorily for their relative simplicity as well as low
cost. In the case of page fault ;ate,ANEAR and_PTN1 managé
to obtain an averége reduction of 25% and 31% respectively.
The percehtage reduction in the mean working set size for
all four algorithms turned out to have the same order of

‘magnitude.

Table 4.1. Comparsion of the 4 restructuring algorithms

on percentage reduction in page fault rate

reference restructuring algorithms
string -—-----------—-sss—s—-eo—————

NEAR CWS PTN1 TC2

P1 23.4 32.3 32.0 37.8

P2 25.3 33.2 35.4 36.1

P3 22,2 - 28.7 29.9 35.6

P4 26.1 31.5 31.0 41.8

P5 30.8 33.4 33.0 42,5

P6 25.9 35.2 33.7 40.1

Discussion of Results ' 44

Table 4.2. COmparsibn of the 4 restructuring algorithms on

percentage reduction in average working set size

reference restructuring algorithms

string -----——----- e e
NEAR CWS PTN1 TC2
P © 27.5 31.6 27.5 28.6
P2 27.2 27.8 27.2 23.1
p3 25.2 28.7 25.7 25.6
pa 24.7 30.4 23.7 26.3
PS5 28.2 25.2 25.6 30.5

P6 24.8 . 26.9 26.1 28.9

Discussion of Results - - 45

Table 4.3 Average transition set sizes and

- average phase set sizes (blocks)

reference - average ' average

string . -. phase o transition
set size | seﬁ‘size

P1 4,180 . 8.109

P2 4.302- 10.050

p3 4.550 | 10.027

P4 4,397 | 11.830

P5 4,445 10.336

P6 o 4,444 | ' 10.281

Next we examined the performance between TC2 and CWS by
looking at the distributions of working set sizes during the
simulated execution of the restructured program (see
- Figure 4.1). We observed the 5ame kind of behavior in all
cases with various reference strings. Their properties are
described as follows:

(1) Both TC2 and CWS reach almost the same maximum in
working set size. They perform better than NEAR and

PTN1 by 20% and non-restructuring by 40%.

,’Diséussion of Results ‘ - o 46

(2) In‘the»CWS curve (see Figure 4.1), thé'working set size
with the highest ffeQuency‘of occuring were less than
or equél to four pages.: While TC2 had its majority

ranges from 2 to 5.

(3). The ~CWS‘ curve drops ébruptly.aftef the first peak and
then maintain a .gentle slope and forms a tilted
plétform at the end. While TC2 starts to climb very
sharply to the left of the peak, and slides down
smoothly " to the bottom as . the working set size
increases. Thus the probability of having the very

large working sets is less in TC2.

The behavior of the two curves can be better understood
by studying the different nature and objectives of the two
restructuring algorithms. Property (2) can be explained by
the fact that CWS tends to predict the major phases very
well and is thus able to maintain the high frequency working
set sizes to be equal to or less than the average size of
the major phase sets. During phase transitions, the fault
rate as well as the working set size increase. Since TC2 is
designed to group transition blocks together, it manages to
cut down the page fault rate and the frequency of large

working set size. This is indicated by property (3).

Discussion of Results . . 47

4.2 Data Sensitivity

~ As mentioned infsectipn 3.3, the- dynamié behavior of
the progfam to be restructured is affected by the input data
used. Thus it 1is not _clear that a program restructqred
based én a specific set of data will perform -equally well
when the input data are different. We are interested td see
how sensitive the improvement of program restructuring is
with respect to various input. In particular, we would like
to study the robustness of TC2 and CWS, i.e., which one is

less affected by the variation of input data.

Five different block reference stringsiof the Pascal
compiler were obtained using different sets of 1input data.
The Pascal compiler was restruc£ured using first the CWS
algorithm and then the TC2 algorithm based on one set of
input data (P2). The performance of the restructured
program was simulated using the five different block
reference strings corresponding to the five different sets
of input data. The results of the study are summarized 1in
Tablé 4,4 and Table 4.5. Both algorithms appear to adjust
to ‘various input very well and manage to maintain
satisfactory improvement» on performance relative to the

original ordering. Although CWS appears to be more robust

Discussion of Results - - o - 48

than TC2 interms of reduction in page fault rate, TC2 shows
better pefformance than CWS in.all cases. CWS also tends to

be more stable in mean working set size reduction.

Using the BLI definition of.program behavior we can
obtain from a block referenée string a seqﬁence of phaée'and
transition sets. From the latter we can compute the average
transition set size of a particular block reference string.
This observable guantity allows us to predict the
performanée improvement of the program to be restructured
with various data input. We expect large average transition
set size to give rise to higher fault rate and also higher
frequency of 1large working set sizes. As shown in
Table 4.3, the average transition set sizes of the six
reference strings tend to be very close to each other. This
is a rough indication that ‘the program is relatively

insensitive to input data.

It has been confirmed in the literature [20,23] and
from our experiments that most of the Aprograms for which
restructuring is convenient (such as compilérs) are not very
data-dependent. However, to find an optimal layout for a
particulaf program with various‘input remains a noﬁtrival
and expensive task. The task of selecting a "typical" input

for restructuring relies very much on the past experience of

Discussion of Results ' o i 49

the evaluator or the general.opinion of the users.of the

program to be restructured.

Table 4.4. Results of an experiment. on

input depehdency

Performance index: % reduction in page faults
Restructuring Algorithms{ TC2 and CWS
note: Ci stands for. cluster layout from ref. string Pi

where i=1,2,..,6

TC2 CWS
reference —-—--------s-som-mmmmmm—m e

string Ci C2 Ci C2

P1 37.8 26.1 32.3 30.4

P2 36.1 33.2

P3 35.6 32.3 31.8 28.7

P4 41.8 35.5 32.6 31.5

P5 42.5 34.5 33.4 30.7

P6 40.1 32.3 35.2 28.5

Discussion of Results - . B 50

Table 4.5. Results of an experiment'on

input depehdency

Performance Index: % reduction in mean working set size
- Restructuring Algorithms: TC2 and CWS
note: Ci stands for cluster layout from ref. string Pi

where 1=1,2,..,6

TC2 CWS

feference ------------------------------------
| string Ci C2 Ci C2

P1 28.6 17.4 31.6 23.2

P2 23.1 | 27.8

P3 25.6 21.4 28.7 26.4

P4 26.3 21.3 30.4 27.5

P5 30.5 23.9 25,2 24.4

P6 28.9 23.5 26.9 22,7

4,3 Portability

among the four restructuring algorithms, only the CWS

algorithm is dependent on the memory management policy in

‘Discussion of Results ' \ ". N 1 51

uSe.y ﬁheh-a taiioredl_proéram is tfanspofted to. ahothér -
sYétém} with a different memory pblicy, it’ié almost certain
that the performance‘will be degraded. ' Bbth theIINEAR .and
the BLI algorithms (rc2 and PTN1 are members of BLI)Aare.

-straténgindependeht.‘ They make use‘of»only the 'extracted

infdfmatioﬁ"of the p;ogfam reference‘behavio;‘of the program -
and no ‘system‘parametervisvinvolved. Thus»thesé élgorithms

are adaptable to different environment for practical use.

Data collection ‘at the syﬁbolic (or }subroutine) level
also makes the work‘of restructuring more portable. This is-
‘because fwe can deal with the source code of the‘program '
directly especially for those programs written in high-level

languages which encourage structured programming.

4,4 Cost

The costs of restructuring can be analyzed in terms of
the following areas: data collection, preprocessing phase

(constructing the desirability matrix) and clustering phase.

Data collection is the most difficult and costly part
in the procedure, primarily because in most existing
systems, tools (hardware or software) for gathering the

reference trace are not available. An alternative is to run

Discussion of Results = - 52

the prOgram.to be‘restructureé interprétively by a simulator
which, needless to say, is very 'slow and expensive.
Nevertheless the lattef method was - employed in ‘ouf,

experimenfﬂ However, instead of gathering.a cohplete memory
reference string, a trace of subfoutine calls and returns.
was recorded. It is found that vrestructuriné is Jjust és
effective at the symbolic level despite the fact that the
length of the reference string and the cqrresponding cost

are greatly reduced.

The cost of running the restructuring algorithm varies
roughly linearly with the length of the reference string to
be examined. Among the fouf algorithms, the cost (in terms
of computer time) of NEAR 1is the 1least and CWS costs
slightly more than TC2 ahd PTN1. However, the cost of the
restructuring phase is fairly small compared to the cost of
data collection. The cost of clustering depends
quadratically’bn the number of blocks in the program. The
HEIR method 1is much more sophisticated and expensive than
NUCL‘but we still think it is more reasonablevto choose HIER

for the substantially greater improvement.

Discussion of Results ' ' ' : 53

‘Table 4.6 Samplé Cost of the Restructuring Procedure

cost NEAR CWS PTN1 TC2
(CPU sec)

data

collection <---- 900.188 -----—==---- >
restructuring

phase _ 11,51 33.38 13.89 13.05
clustering

phase 39.76 43.61 41,06 42.61

working set ;
simulation <mm== 31.414 =——————————— >

- Discussion of Results _ ' 54

. *
5600 - *
. *
* %
. * %
. * %
. * %
4800 - * %
. * % TC2
* *
. * *
* *
. * *
4000 - * *
. * *
FREQUENCY * *
. * *
. * *
. * *
3200 - + % *
. +4+ % *
. + 4+ % . +
R + * + % 4%
. + * + + %k % % %k %k k%
. + * 4+ + + *
2400 - + x + 4 4+ *
. + * + + ++ *
. + x4 . CWS + *
. -+ * + *
. + * +4+ %
R + * -+ *
1600 - + * ++++++
. + * * ++
. * *k k4 k% +4+4+
* +%+ +
* * ++
. * * o+
800 - * * +
. * . % % +4
. * % * % + 4+
. * * % k% + 4
. * C kkkk 4+ 4
R * k%4
0.0 2.0 4.0 6.0 8.0 10.0 12.0

WORKING SET SIZES (PAGES)
Figure 4.1. Working set size distributions
of CWS and TC2 restructuring algorithms

Conclusion and Suggestions ' . 55

5 Conclusidn and Suggestions for Future Research
5.1 Conclusion

Programbrestructuring has beén shown;tb'be effective to :
improve prograﬁ performance in virtual mehory systems. We
have developed a whole category of heuristics for program
restructuring based on the notion of Bounded Locality
Interval (BLI). 1In particular, the TC2 algorithm gives very
good performance in reducing the page fault rate (an average
of 39% in our experiments). It outperforms other algorithms
including the strétegy—oriented Critiéal-working—set
algorithm by at least-20%. The results of our experiments
justify the observation made in the literature that phase
transitioné during program execution have strong influence
on the page fault rate. The objective of developing an
efficient and strategy-independent restructuring algorithm

is achieved.

Two parameters, the mean t:ansition set size and the
mean phase set size, of the phase/transition program
behavior'model are studied. Unfortunately we are unable to
establish any strong correlation between these parameters

and the performance indices in our experiments. However, it

Conclusion and Suggestions B - 56

is observeav‘fhat if the mean transition set sizes:and»the
mean phase set sizes of a program running on various sets of -
input data are similar, wé can expect the program to be more
or less data-independent and‘vice versa. Moreover, if the
working sét‘ paging algorithm is the memory policy in use,
choosing a window size which is slightly greater than the
mean transition set size will genefally resuit in good
performance. That suggests that, if the window size |is
allowed to vary for different pfograms, the mean transition
set size of the program is a good guideline for the choice

of the window size.
5.2 Suggestions for Future Research

Choosing the right parameters to characterize program
behavior remains one of the important research topics to be
explored. The notion of - Bounded Locality Interval (BLI)
provides us with rich information about major phases and
transitions from a reference string. In our experiment, we
have studied the effect of the mean transition set size and
mean phase set size on performance improvement. An
extension to the study would be a more detail examination of
the distributions of the transtion set sizes and the phase
set sizes. An application of such research would be to.

provide guidelines for membry management policy to adapt to

Conclusion and Suggestions : _ o 57

changes in program behavior so as to optimize performance. . . - ¢

Aévlmeﬁfionéd in>the‘previous chapter,_in'prder to make
program restructuring ~more economical, the cost - of
collecfing the reference strihg_ has Afo;be minimized. An
,alterha?er. solqﬁion to int;epreting"the p:qgfam ‘by a
simﬁlatof‘ is to insert measurement probes into the program
to be restructured and execute the programi after the
modification. | The task becomes even Vsimpler‘ if we are
interested in obtaining a reference 'string only at the
symbolic level. Such modification can be done with the aid
of a clevérv"compiler" which will reduce the cost of data
collection. This 1is because muéh of thé work required can“
be carried out during ﬁhe compilation process with ’oniy'

minor additional effortQ

Specifically, an optimization option for programs to be
compiled and éxecuted can be provided by the compiler. The
user who wants restructuring has to submit the source code
and a set of input data if needed by the program, and turns
on the option swiﬁch; The compiler would be expected to do

the following:

(1) As wusual, generate assembler codes if the program is

~error-free. (It 1is pointless to perform program

' Conclusion and Suggestions 58

restructuring if the program contains errors.)

(2) 1Insert check points (assembly language statements
necessary to updaté a counter), at the entry point of

every relocatable block in the program.

" (3) Run ‘the modified program with the given input and

‘collect the block reference string.

(4) Using the reference. string from (3), perform the
restructuring procedure, specifically the restructuring

phase and the clustering phase.

(5) Reorganize the layout of the object code of the program
based on information obtained in (4) and remove the

checkpoints.

(6) Return the object code to the user and display other
measurement information such as the desirability

matrix, the resulting clusters etc., if requested.

The work of 1inserting measurement probes into the
| object code by the compiler is straight-forward and easy to
do. The entire restructuring procedure can be invoked by
the compiler as an independent process which takes the

modified program to be restructured and produces the

¢

Conclusion and Suggestions T 59

informatioﬁﬁ for lfhe.compiler to‘reorganize‘the.§5jéc£‘Cdde'
'accordfﬁgiy;.'~Considering ‘the reduced cosfl_?of daté

cdllecﬁion and the relafivelyrvlowkcost of reStructuring,
such optimization option for programs to be executed very
frequently - would >,bé- very useful and, cost—effective;
Méreover,»ﬁ the. .near transparency - and ease-of-use
characﬁeristiésvof such feature would be greatly appreciéted

by the computet users.

Bibliography - ' | : : B - ¢

BIBLIOGRAPHY

(1]

[2]

[3]

[6]

M. S. Achard,
J.Y. Babonneau, M.Carpentier, G. Mor1sset M.B.Mounajjed,
"The Clusterlng Algorithms in the Opale Restructuring

System, " Performance of Computer Installation,
D. Ferrari(ed.) CILEA, North-Holland Publishing
Co.,1978.

A. P. Batson and W. Madison, "Measurements of major
locality phases 1in symbolic reference strings,"” in
Proc. Int. Symp. Computer Performance Modeling,
Measurement, and Evaluation, ACM SIGMETRICS and IFIP
WG7.3, Mar. 1976,pp.75-84.

A. P. Batson, "Program behavior at the symbolic
level," Computer, vol.9,no.11,pp.21-28, Nov. 1976.

A. P. Batson, W. E. Blatt, and J. P. Rearns,
"Structure within locality intervals," in Proc. Symp.
Modeling and Performance Evaluation of Computer
Systems, H, Beilner and E. Gelenbe, Eds. Amsterdam,
The Netherlands: North-Holland, Oct. 1977,
pp.221-232,

L. A. Belady, "A study of replacement algorithms for
virtual storage computers," IBM Syst. J., vol.5, no.2,
pp.78-101, 1966.

L. A. Belady, and C. J. Kuehner, "Dynamic space
sharing in computer systems,” Commun. ACM, vol.12,
pp282-288, May 19689.

B. Brawn and F. G. Gustavson, "Program behavior in a
paging environment," in 1968 AFIPS Conf. Proc., Fall
Joint Comput. Conf., vol.33, Washington, DC: Thompson,
1968, pp.1019-1032.

Bibliography . o . | ‘ o ' ¢@};

(8]

(9]
[10]

[11]

[12]
[13]
[14]

[15]

[16]

[17]

‘behavior," Commum. ACM, vol.1l!

W. W. Chu and H. Opderbeck, "The page fault frequency
replacement -algorithm,” Proc. FJCC, 1972, pp.597-609.

W. W. Chu and H. Opderbeck, "Program behavior and ‘the
page fault frequency algorlthm," IEEE Computer 9 11,
Nov. 1976, pp 29-38.

L. W. Comeau, "A study of the effect of user program
optimization in a paging system," in Proc. ACM Symp
Operating Systems Principles, Oct. 1967.

P. J. Denning, "The working set model for program
, Pp.323-333, May 1968.

P. J. Denning and S. C. Schwartz, "Properties of the
working set model," Commum. ACM, vol.15, pp.191-198,
Mar. 1972.

P. J. Denning, "On modeling program behavior,” in 1972
AFIPS Conf. Proc., SJCC, vol.40, Montvale, NJ: AFIPS
Press, 1972, pp.937-944.

P. J. Denning and G. S. Graham, "Multiprogramming

memory management," IEEE Proc., vol.63, pp.924-939,
June 1975.

P. J. Denning and K. C. Kahn, "A study of program
locality and 1lifetime functions,” 1in Proc. 5th ACM
Symp. Operating Systems Principles, Nov. 1975,

pp.207-216.

P. J. Denning and K. C. Kahn, "An L=S criterion for
optimal multiprogramming,” in Proc. Int. Symp.Computer
Performance Modeling, Measurement, and Evaluation, ACM
SIGMETRICS and IFIP WG7.3, Mar. 1976,pp.219-229,.

P. J. Denning, K. C. Kahn, J. Leroudier, D. Potier,
and R. Suri, "Optimal multiprogramming, " Acta
Informatica, vol.7, no.2, pp.197-216, 1976.

(18]

[19]

[7201»

[21]

[22]

[23]
[24]
[zsl

[26]

[27]

[28]

Bibliography - | A 362J

P. J. Denning, "Working Sets Past and ' Present" IEEE
Trans. on Software Engin. Vol.SE-6,No.1, Jan 1980.

D. Ferrari, "Improving ULocality by Critical Working
sets," CACM, vol.17, Nov. 1974, pp.614-620.

. D. Ferrari, "Improving Program Locality by -

Strategy-Oriented ~ Restructuring,”. Information
Processing 74, Proc. IFIP Congress 74, North-Holland,
Amsterdam, 1974, pp266-270.

D. Ferrari, "Tailoring Programs to Models of Program
Behavior," IBM Journal of Research and Development,
vol.19, 3, May 1975, pp.244-251,

D. Ferrari, "The improvement of program behavior,"
IEEE Computer 9 11, Nov. 1976, pp.39-47.

D. J. Hatfield and J. Gerald, "Program restructuring
for wvirtual memory," IBM Sys. J. vol.10, pp.168-192,
1971.

K. C. RKahn, "Program behavior and 1load dependent
system performance," Ph.D. Dissertation, Dep. Computer
Sci., Purdue Univ., W. Lafayette, IN, Aug. 1976,

A. W. Madison and A. P. Batson, "Characteristics of
program localities,” CACM, vol.19, pp.285-294,
May 1976. ‘

T. Masuda, H. Shiota, K. Noguchi, and T. Ohki,
"Optimaztion of program locality by cluster analysis,"
in Proc. IFIP Congress, 1974, pp.261-265.

T. Masuda, "Methods For the Measurement of Memory
Utilization and the Improvement of Program Locality",
IEEE Trans. on Software Engin., vol.SE-5,NO.6,
Nov 1879, ’

A. J. Smith, "A modified working set paging

Bibliography e R

[30]

[31]

[32]

[33]

algorlthm " IEEE Trans. Comput., vol.C- 25 pp 907- 914
Sept 1976.

"J. R. Spirn and P. J. Denning, "Exper1ments with-

program locality,"” in AFIPS Conf. Proc., FJCC, vol.41,

Montvale, NJ: AFIPS Press, 1972, pp.611-621,

J. R.‘Spirn," "Distance stfing models for program
behavior,” Computer, vol.S., pp.14-20, Nov. 1976.

J. R. Spirn, Program Behavior: Models and Measurement.
New York: Elsevier/Noth-Holland, 1977.

G. S. Graham, "A Study of Program-and Memory Policy
Behaviour," (Ph.D. Thesis), Purdue University,
Computer Science Dept, 1976. :

R. L. Mattson, J. Gescei, -D. R. Slutz and

I. L. Traiger, "Evaluation technigques for storage

hierarchies," IBM Sys. J. 9 2 (1970), pp.78-117.

Appendix 1., Reference Strings | | '_Eﬂf

Appendix I. I
Reference Strings

The reference string is defined as the chfonological
sequence of the virtual addresses (aj) referenced by the
program, each with (or without) an indication of the CPU (or
virtual) time tj to the next reference:

{ aj(tj) } (3j=1,2,...,k)
where k is the number of references generated by the

program.

Several other characterizations éan be derived from a
reference string. For example, we may dgroup virtual
addresses into blocks. Given a - set of blocks
B = {b1,b2,...,bn}, we may defined a many-to-one mapping
from the set’' A of virtual addresses to B, so that each aj is
associated with one and only one block bi. This mapping
when applied to each element of the address trace {aj(tj)},
transforms it into the block trace or block reference
‘string: |

{ bi(tj) } C(3=1,2, k)
Each block usually .consists of information 1items having
configuous addresses in virtual space, so that blocks are
treated as single entities during transfers and for

allocation purposes.

Appendix II. Paging Algorithms . S _ @5;*

Appendix II,.
Paéing Algorithmé»

A paged system transfers information ﬁo-and from.ﬁain3
memory in fixed size units. called - pages. The paging
algorithm in such systéms ié responsible for the fetching,
placement and replacement of pages. in main memory. A
prepaging algorithm tries to anticipate page references of a
task in the near future (and brings in those pages before
they are referenced) in an attempt to reduce the page fault
waiting time. However, such predictions are difficult to
make accurately. Thus, except for a few systems
(particularly those that wuse the working set policy for
memory management), most virtual memory systems use demand
paging (i.e., pages are brought into main memory only when

referenced).

Let N = {0,1,2,....,n-1} be the set of pages of a task,
and let M(t) = {0,1,2,....m(t)-1} be the set of page frames
in main memory allocated to the task. We shall assume that
n is constant with 1<=m(t)<n. We call m(t) the memory
allocation of the task at time t. If m(t) is a constant
this is called fixed allocation. When m(t) 1is allowed to
varyb with time, we have a variable or dynamic allocation

scheme.

' Appéhdix:II.:Paging Algorithms = - R . 'f>7"3655 o

-Lét:, the".membry , referenéés“y;off‘ fa‘ 1 taék "-bef‘,
r(1)r(2)r£3f;.,.r(K), Qherev r(t) is thé page réferén¢ed,at*‘
vi;tual‘time t. We éhalliuse S(t)_.to denote the ‘Set of
pages in main memory just after thglrefefence at time £ (the
;S‘stands for "storage"). For ail t, we'have S(t) a subset}
i,of‘N ahdv|§(t)]<%m(t). We shall uée S(O), tb vindicéte tﬂe‘

initial content of memory, before the first reference.

 Formally, the..definition of a strict demand paging
algdrithm givés S(t+1) as a function of S(t):
s(t) if r(t+1) in S(t)
S(t+1) = ‘ '

S(t)+r(t+1)-z(t+1) if r(t+1) not in S(t)

where Z(t+1), the reblaced'page set, is a subset of S(t).
‘In other'wbrdé,.if no page fault occurs, the memory coﬁtent
is ﬁnchanged. 'If r(t+1) is not in S(t), a page fault occurs
and the miSsing page is brought into memory, replacing the
set of pages Z(t+1). If |S(t)|=m (a constant) for all t,

then Z(t) consists of exactly one page z(t), the replaced

page.

Stack algorithms [33] are a particularly interesting
class of fixed-allocation paging algorithms. At each
instant of time, a stack algorithm defines a vector (the
"stack") on some or all of the pages of a task. The stack
at timé t is vs(t)=[s1(t),...,sk(t)], with k<=n, (n is total

number of pages needed by a task) such that if the algorithm-

Appendix II. Paging,Algorithms S o ‘ &@% -

operates -with memory allocation m,’.thén the memory will
contain exaétly the set of pages |
‘ {s1(t),....sm(t)} if me<=k
S(m,t) =
{s1(t),....ek(t)} if m>k |

at time t. By convention, si(t), the first element in the
stack vector, is to be at the top of the stéck, and sk(t) at
the bottom. We .say that si(t) is lower in the stack than -
sj(t) if i>7. The stack distance d(t) is defined to be the
position (or index in the stack) of r(t) in stack vs(t-1).
If r(t)=si(t-1) then d(t)=i, with 1<=i<=k. 1If r(t) does ﬁot
appear anywhere in wvs(t-1), then d(t) is equal to

"infinity".

At each page reference, the stack vector is updated

according to the following three rules:
(1) The page just referenced is moved to the top of stack.

(2) An unreferenced page never moves up the stack. That is
to say, pages above the one referenced can either
remain at their current position or be displaced

downwards according to their priorities.

(3) Pages below the referenced page remain fixed 1in the

stack.

Given a memory allocation of m page frames, the top m

“Appendix II. Paging Algorithms - . v g§f

pages in the stack are alﬁays maintéined in maih memory.
The staék algorithms have two basic advantages. ‘First, the
page fault behavior of a given‘ reference string can be
computed,éffectively for all memory'sizes in one scan of the
reference string. The other advantaée is that for any given.
reference string, the number of page faults produced by a
stack algorithm does not increase as memory allocation (m) -
increases. Due .to the inclusion property of stack
algorithms, the top (m+k) pages (k>0) on the stack always
include the top m pageé. This in turn implies that if a
page fault occurs when the memory allocation is (m+k) where
(k>0), then a page fault must occur if the memory allocation
is reduced to m. The same may not be true for other page

replacement algorithms.

Appendix.II. Paging Algorithms . - A i §8f.’

Appendix_IIa.'
The Least Recently Used (LRU) paging algorithm

The LRU paging aigorithm is a stack ‘algorithm. . This
algorithm chooses for replacement that page in memory which
has not been referenced for the longest period of time. vThe
stack vs(t) for the LRU algorithm consists of all pages of
the task ordered by decreasing time of their most recent
_reference. Thus, si1(t) 1is the most recently used page
(which 1is r(t)), s2(t) is the next most recently used page, .
and sn(t) is the least recently used page. Pageé which have
never been referenced are grouped togetﬁer at the bottom of

the stack in any arbitrary order.

The procedure for updating the LRU stack is conceptually
quite simple. If d(t)=i, then si(t)=r(t), and sj(t5=sj—1(t)
for all j such that 1<j<=i. Each entry.in the stack above
the point of_reférence is moved down by one position. Pages

below the point of reference do not move in the stack.

The stack vector ' for this algorithm is time varying,
and must be updated at every reference. . Suppose
vs(t)=[x1,....,xn], and r(t+1)=xi, then:

vs(t+1) = [xi,x1,...,xi-1,xi+1,...,%xn].

T
oD

Appendix II. Paging Algorithms

Appendix IIb.
. The Working Set paging algorithm

The working set W(t;T)» of a taék at time t has been
vdefined by Denning [11,12] to be tﬁe set of distinct pages
in the T most recent:references r(t-T+1)...r(t). Parameter
T is known as the window size. The working set algorithm
retains exactly the working set in memory at all times.
Péges can join or leave the working set at other than page
fault times, so this is not a strict demand paging algorithm
but a loose 6ne. Since S(t)=W(t,T) at all times, a page can
be removed from main memory only when it has not been

referenced in T consecutive time instants.

'Appendixblli. Example of the HIER Clustering Algorithm ‘;giﬂ-

.Appendix III.
An example to illustrate the Hierarchical Classification

Clustering Algorithm.

Let J = { b1, b2, b3, b4 } be the set of blocks " to.be

classified and thg'desi:ability matrix D be given by:-

{b1} {b2} {b3} {b4}

0 17 47 24 | {b1}
0 0 12 68 {b2}
D = 0 0 0 8 {b3}
0 0 0 0 {b4}

Our goal is to classify J into subsets, each of which.
represents a cluster of blocks that are strongly associated

to each other based on the given desirability measure.

To simplify the probiem, we shall assume that the sizes of
‘the blocks are the same and exactly two blocks can fit into

a page.

Step 1:
We start off with J0 = { {b1}, {b2}, {b3}, {b4} }, a
set of 4 clusters each containing a single block initially.

Let DO = D, the desirability matrix.

(1) Find the largest element in DO, which is d(2,4)=68.
(2) Since the sum of sizes of the 2 <clusters, {b2} and

{b4}, is equal to the page size, we merge {b2} and {b4}

Appendix III. Example of the HIER Clustering Algorithm = &2

to form a new . cluster C={b2,b4}. Now
J1 = { {b1}, {b3}, {b2,b4a} }.

(3) .Construct the reduced matrix D1 from DO as follows:
-~ delete all the rows and columns associated with {b2}
and {b4}

-- and add row C ({b2,b4}) and column C to D1 such that

a(1,c) (of D1) = &(1,2) + d(1.4) (of DO)

d(2,Cc) (of D1)

d(2,3) + d(3,4) (of DO)

{b1} {b3} {b2,b4}

0 47 41 T {b1}
DO ==> D1 = 0 0 20 {b3}
Step 2:

(1) From D1, d4(1,2)=47 is found to be the largest
(2) We merge {b1} and {b3} to form {b1,b3}
(3) J2 = { {b1,b3}, {b2,bs} }

{b1,b3} {b2,b4}

0 108 1 {b1,b3}
D1 ==> D2 = 0 0 {b2,b4}

Step 3:

(1) 108 is the largest in D2

(2) Since the sum of sizes of the 2 clusters exceeds the
page size, we can not merge the clusters together.

Hence we replace d(1,2) of D2 by zero to indicate the

Appendix I11. Example of the HIER Clustering Algorithm fgé ‘

merge is unsuccessful. As a result D3 becomes a zero

matrixvandAJB = J2.

Step 4:
The largest element of D3 equals to zero, the process

is halted since no new cluster can be formed based on

D3.

The final result is J3 which is a set of clusters each
of which consists of a set of 2 blocks and whose size is

equal to the page size.

