
AN APPROACH TO THE ORGANIZATION OF TAXONOMIES

B.Sc. University of B r i t i s h Columbia

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

Department of Computer Science

We accept this thesis as conforming

THE UNIVERSITY OF BRITISH COLUMBIA

CRAIG DAVID BISHOP

by

to the required standard

March, 1981

© Craig David Bishop, 1981

In presenting this thesis in p a r t i a l f u l f i l l m e n t of the requirements for an

advanced degree at the University of B r i t i s h Columbia, I agree that the

Library s h a l l make i t fr e e l y available for reference and study. I further

agree that permission for extensive copying of this thesis for scholarly

purposes may be granted by the Head of my department or his representative.

It i s understood that copying or publication of this thesis for f i n a n c i a l

gain s h a l l not be allowed without my written permission.

Craig Bishop

PAGE i i

Abstract

The ISA hierarchy used by present day i n f e r e n t i a l database systems is d e f i

cient i n that i t does not represent a variety of domain relationships (type

r e l a t i o n s h i p s) . Such hierarchies associate e x p l i c i t l y defined sets with the

leaves of a tree. Non-leaf nodes in the tree i n h e r i t members from their

c h i l d nodes. In keeping with the use of sets, this paper gives motivation

for having type relationships other than subset. Included are union, i n t e r

section and a disjointness condition.

A formalism for the typed database (TDB) i s given, using the monadic f i r s t

order predicate calculus as i t s theoretical basis. Non-unit formulae repre

sent intensional (general) information about the world being represented and

unit ground clauses represent extensional (s p e c i f i c) information. Predi

cates represent types, and constant symbols represent set members. This is

connected to the set concept via predicate extensions. The extension is

that set of constant symbols which are provable as arguments to the given

predicate.

Given the so-called concreteness condition and consistency of the TDB, the

desired set theoretic relationships (union, intersection and disjointness)

of predicate extensions follow. This strengthens the l i n k between the for

malism of the predicate calculus and the more natural set representation.

A canonical form of a TDB is shown that admits an appropriate machine repre

sentation. Using this is can be determined i f a constant symbol as an

PAGE i i i

argument to a given predicate is provable (domain membership) i n constant

time. An update algorithm is developed and is shown to be correct i n that

i t maintains concreteness and consistency. Thus the TDB i s shown to be a

p r a c t i c a l generalization of the ISA hierarchy but is considerably more

expressive.

PAGE i v .

Table of Contents

Page #

Section A Introduction 1

Section B Motivation 4

Section C Formal Preliminaries 7

The TDB 7

Extension 9

A c y c l i c i t y of a TDB 9

ALPHA, BETA and TAU 9

Diagram C.l - Sample TDB Intension 11

Lemma C.l - Generalization 1 2

Co r o l l a r y C.l - Containment 13

Lemma C.2 - Inte r s e c t i o n 13

Section D The D e f i n i t e Component of a TDB .15

The D e f i n i t e Component /\(T) 15

Concreteness 17

The P r o p o s i t i o n a l Component PROPT 17

Lemma D.l - Pro p o s i t i o n a l Equivalence 18

Dead Clauses DEADT 19

Lemma D.2 - Dropping of Dead clauses 19

Theorem D.l - T -/\(T) Equivalence 21

Lemma D.3 - Union 24

Lemma D.4 - Disjointness 25

Coroll a r y D.l - D i s j o i n t Union 25

PAGE v

Table of Contents

Page #

Section E Transformation of a TDB to i t s Reduced Form 26

The Horn Component H(T) 26

Algorithm E . l - DOMAIN^ 27

Sample Run of Algorithm E . l 28

Theorem E . l - Algorithm E . l Correctness 29

Corollary E . l - A(T) - DOMAIN^ Equivalence 32

The Reduced or Canonical TDB, R(T) 32

Lemma E . l - Spanning 33

Theorem E.2 - T - R(T) Equivalence 33

Corollary E.2 . . 34

Corollary E.3 - Concreteness of R(T) 34

Corollary E.4 - Consistency of R(T) 34

Section F Updating a TDB 36

Algorithm F . l - Update 36

Theorem F . l - Algorithm F . l Correctness 37

Sample Run of Algorithm F . l 38

Summary and Conclusions 41

Bibliography 42

Appendix A Dictionary of Symbols 44

PAGE v i

Acknowledgements

I wish to thank Dr. Raymond Reiter of the University of B r i t i s h Columbia for

his perceptive and c r i t i c a l analysis of the ideas that went into this paper.

His dedication and insight into i n f e r e n t i a l database theory has been a

continuing source of enlightenment.

I would also l i k e to thank B e l l Northern Research of Ottawa for the use of

their word processing f a c i l i t i e s in the preparation of this manuscript.

PAGE 1

Section A Introduction

In recent works on r e l a t i o n a l database systems, espe c i a l l y as they arise i n

a r t i f i c i a l i n t e l l i g e n c e , the need for a database of domains (using Codd's

d e f i n i t i o n of Domain^) has become apparent. In simple data process

ing applications, the acceptance or rejection of data i n a domain i s based

on a decision procedure for that domain such as correct alpha/numeric form

or membership in a predefined set. This makes the primary assumption that

each domain i s independant of a l l others. This may be r e a l i s t i c for domains

i n which each entry of one domain is more or less unrelated to other domains

(l i k e numeric ones). However, work in a r t i f i c i a l i n t e l l i g e n c e and i n f e r

e n t i a l database systems acknowledges the dependancies amoung domains.

Winograd led the way by using an ISA hierarchy to relate domains of objects

and their properties, eg. a MOVEABLE-OBJECT ISA PHYSICAL-OBJECTt 1 5^.

McSkimin and Minker formalize the ISA hierarchy by defining a semantic graph

as a labelled tree in which the root node i s the universal category (domain)

and the leaves are primitive categories [7 ,8 ,9]^ j n t h e i r formalism the

elements, which are associated with the primitive categories, are inherited

by the parent categories. As can be seen i n their examples these trees tend

to be "leafy" with many categories, some with unnatural names (such as

non/human/male/mam). There i s much duplication of category names but no

mechanism i s given for insuring that duplicate categories contain the same

elements.

PAGE 2

Also, McSkimin and Minker define a pa r t i t i o n i n g (disjointness condition

between categories) without defining an update algorithm that w i l l maintain

the p a r t i t i o n . In short, though they define the ISA heirarchy, they do not

include a mechanism for enforcing data consistency.

Reiter has adopted the idea of a typed database formalized i n the monadic

predicate calculus ̂ ' 1 1 ^. He replaces the idea of an element being a

member of a domain with the proof theoretic notion of pr o v a b i l i t y . Here the

domain is a monadic predicate i n which the element is i t s argument. The

structure, mathematics and algorithms for this typed database are beyond the

scope of his paper.

It is the purpose of this paper to propose a structure for Reiter's typed

database and develop the necessary mathematics and algorithms.

A domain in Codd's terminology w i l l hereafter be referred to as a TYPE. An

element w i l l be referred to as an INSTANCE. For example, HUMAN i s a TYPE

for which JOHN i s an INSTANCE. JOHN i s said to have the property HUMAN. A

type database (TDB) i s then a l o g i c a l theory i n which groups of TYPEs (and

hence INSTANCES) s a t i s f y certain mathematical relationships c a l l e d type

r e l a t i o n s h i p s .

In order for a TDB to be p r a c t i c a l i t must s a t i s f y certain conditions:

1) It must be des c r i p t i v e l y r i c h , capturing type relationships other

than simple set containment.

PAGE 3

2) It must be structured so as to encourage only the most natural

information content.

3) It must admit algorithms that are computationally e f f i c i e n t in

both time and space.

4) It must admit updates in such a way as to prevent a user from

v i o l a t i n g a type relationship. (i e . enforce i n t e g r i t y con

s t r a i n t s)

Section B motivates the inclu s i o n of type relationships other than set con

tainment. Section C then defines a TDB. Condition 2 i s addressed i n

section C which defines an ac y c l i c TDB and introduces a graphic notation.

Structuring i s completed i n section D by imposing the so-called concreteness

condition on TDBs. With this and consistency a l l the desired set theoretic

properties of the TDB follow. Section E i s devoted to an algorithm for

reducing a given TDB to one which is e f f i c i e n t i n both time and space. The

f i n a l section d e t a i l s an update algorithm which ensures that concreteness

and consistency of the TDB are maintained during updates.

PAGE 4

Section B Motivation

To see why a more robust set of type relationships than simple set contain

ment i s important consider the following statements:

1) JANE i s a WOMAN; hence JANE i s a FEMALE (ISA)

2) JANE i s a FEMALE; hence JANE is a WOMAN

or JANE i s a GIRL (but not both)

3) a) JOHN i s a BACHELOR; hence JOHN i s a MAN (ISA)

b) JOHN i s a BACHELOR; hence JOHN i s SINGLE (ISA)

4) JOHN i s a MAN and JOHN i s SINGLE; hence JOHN i s a BACHELOR

Statements 3a and 3b bear a resemblance to statement 1 i n that both display

set containment. However, in view of statements 2 and 4 we see that some

how FEMALE i s composed of WOMAN and GIRL - WOMAN and GIRL being d i s j o i n t

TYPEs. In contrast MAN and SINGLE intersect to give BACHELOR. The standard

ISA hierarchy does not provide the formal equivalent of statements 2 and 4.

An inference of type 2 i s important i n that we would not want JANE to have

the property FEMALE without her having one of the properties WOMAN or GIRL.

Si m i l a r l y we would not want JANE to have both the properties WOMAN and GIRL.

As seen i n the following sections, "concreteness" s a t i s f i e s the former con

d i t i o n , consistency the l a t t e r .

The type relationship of type 4 i s important when we want to define a TYPE

as having INSTANCES which are common to a set of TYPEs. In an a i r l i n e

reservation system JOHN might have the properties NON-SMOKING, COACH,

PAGE 5

MOVIE-WATCHING and 747 from which the system could i n f e r that JOHN i s a

member of CABIN-B.

The way the above statements pair suggests the need for only two classes

of type r e l a t i o n s h i p s :

A) The TYPE FEMALE i s equivalent to the d i s j o i n t union of the TYPEs

WOMAN and GIRL

B) The TYPE BACHELOR i s equivalent to the i n t e r s e c t i o n of the TYPEs

MAN and SINGLE

The union i n A need not be d i s j o i n t , for example:

C) The TYPE PEOPLE i s equivalent to the union of the TYPEs LEFT—

HANDED and RIGHT-HANDED (allowing for the ambidextrous)

Graphically these are represented as:

A) • B) C)

FEMALE MAN SINGLE PEOPLE

WOMAN GIRL BACHELOR RIGHT- LEFT-

HANDED HANDED

Set t h e o r e t i c a l l y these can be represented as:

A) FEMALE = WOMAN # GIRL

B) BACHELOR = MAN n SINGLE

C) PEOPLE = RIGHT-HANDED U LEFT-HANDED

PAGE 6

In the graphical representation, the more r e s t r i c t e d TYPE i s drawn below

the TYPE of which i t is a subset. The four o r i g i n a l statements can now be

written in terms of sets:

1) JANE £ WOMAN implies JANE £ FEMALE

2) JANE £ FEMALE implies JANE £ WOMAN Q GIRL

3) JOHN £ BACHELOR implies JOHN £ MAN 0 SINGLE

4) JOHN £ MAN fl SINGLE implies JOHN £. BACHELOR

PAGE 7

Section C Formal Preliminaries

The set notation of the previous section is convenient for v i s u a l i z i n g the

TYPE re l a t i o n s h i p s . The f i r s t order predicate calculus, however, offers a
r o 131

well developed proof theory 1 » J . For this reason we s h a l l develop

our results within a f i r s t order framework. Refer to appendix A for the

int e r p r e t a t i o n given to special symbols used i n what follows.

D e f i n i t i o n TYPE Database (TDB)

A TDB is a 4-tuple (C , P, I , E) s a t i s f y i n g :

1) C i s a f i n i t e set of constants.

2) P i s a f i n i t e set of unary predicate signs, c a l l e d TYPES.

3) E i s a f i n i t e set of atomic formulae of the form Pc where

P £ P and c £ C .

E i s called the extension of the TDB.

4) I i s a f i n i t e set of well formed formulae of the form:

i) (x) Px = Pjx A. P 2x A ... P nx or_

i i) (x) Px = Pj^x v P 2x v ... P nx

where [P, P ^ P 2, ... P n] C P.

In the event that I contains a formula of the form (i i) ,

i t may also contain a l l of the formulae:

i i i) (x) ~ (P.jX A P J X) for each 1 <= i < j <= n.

In which case the formula (i i) is said to be exclusive.

I i s called the intension of the TDB.

PAGE 8

For Example:

(C, P, I, E) i s a TDB where:

C = [John, mary] (INSTANCES)

P = [FEMALE, WOMAN, GIRL, MAN, SINGLE, BACHELOR] (TYPES)

I = [(x) BACHELOR x = MAN x A SINGLE x,

(x) FEMALE x = WOMAN x v GIRL x,

(x) ~ (WOMAN x A GIRL x)] (intension)

E = [WOMAN mary, MAN John, SINGLE John] (extension)

Notation:

1) For brevity, the variable 'x' w i l l be dropped where understood.

2) (C, P, I, E) w i l l be referred to as T's constants, predicates,

intension and extension where c l a r i f i c a t i o n i s required.

3) Members of C w i l l be written i n lower case, members of P i n upper

case.

4) For reasons of notational convenience we sometimes write W £ I
T131

where W is actually a clause 1 J«

5) A TDB w i l l be said to be consistent whenever I U E i s .

6) When we write T \— W we w i l l mean I U E \~ W for any formula W.

7) R (U, V) w i l l refer to the resolvents'- 1"^ of the formulae U and V.

With this d e f i n i t i o n of a TDB we can replace the notion of an INSTANCE being

a member of a TYPE (John £ BACHELOR) with the predicate calculus notion of

pr o v a b i l i t y (I U E \~ BACHELOR John). However, we would s t i l l l i k e to view

a type as a set with certain set theoretic relationships.

PAGE 9

D e f i n i t i o n Extension

The extension of P £ P written ||P||^ i s defined:

||P|| t = [c | c £ C, I U E f- Pc]

The subscript on ||P||-J. w i l l be dropped where i m p l i c i t . Hence we can write

c £ ||p|| for T f~ Pc. The set theoretic relationships between extensions of

the l a s t section do not automatically follow. We w i l l give conditions under

which each of the relationships given do follow.

A c y c l i c i t y of a TDB

The idea of a TYPE viewed as an ISA hierarchy i s firmly related to the ideas

of generalization and r e s t r i c t i o n . L o g i c a l l y we would l i k e to think of one

type containing another (i e . ||P|| C ||Q ||). This leads to the notion of a

hierarchy of TYPES, motivating the following a c y c l i c i t y d e f i n i t i o n ^ .

D efinitions ALPHA, BETA and TAU

The relations ALPHAT, BETAT and TAU T are defined on a TDB, T, over

P x P:

1) P ALPHAT Q i f f Q E Pj v P 2 v ... P n £ I such that

P = P^ for some i , 1 <= i <= n

2) P BETAT Q i f f P EE Qx A Q 2 A ... Q n £ I such that

Q = Q i for some i , 1 <= i <= n

3) TAU T = ALPHAT U BETAT

The subscripts on ALPHA^, BETA^, and TAÛ , w i l l be dropped where impli

c i t . A TDB i s said to be a c y c l i c i f f TAU"1" i s i r r e f l e x i v e . i e .

PAGE 10

P Q T A U Pl and Pj T A U P 2 and ... P n - 1 T A U P.

implies not P n T A U P Q (n > 0)

The graphical representation of Section B can be adopted with

P l P2 * ' * P n

representing (x) Px — PjX A P 2x A ... P nx (4i) and with

P

r l r2 * * * r n
representing (x) Px = PjX v P 2x v ... P Rx (4 i i) and f i n a l l y

P

P 2 . . . P n

representing (x) Px = Pjx v P 2x v ... P nx, (x) ~ (P i x A PjX) (4 i i and 4 i i i) ,

Diagram C.l gives an example of this graphical representation of I.

By convention, i f P TAU Q then P is d i r e c t l y below Q in the graph. Thus a

TDB i s a c y c l i c when and only when i t s graph is a c y c l i c . Throughout this

paper the a c y c l i c i t y of a l l TDBs i s assumed.

The following lemma gives us the property of set containment desired:

PERSON

PAGE 12

Lemma C.l Generalization

If T i s a TDB, [P, Q] C P and P TAU+ Q

then T (- (x) Px 3 Qx

Proof: By induction on n i t is s u f f i c i e n t to prove

P TAU Q implies T |~ (x) Px =3 Qx

Case n = 1 P TAU Q

Subcase a P ALPHA Q then Q = P 1 v P 2 v ... P n £ I

such that P = P i, 1 <= i <= n

In clausal form P. v Q £ I or (x) Px D Qx £ I

Subcase b P BETA Q then P = Q 1 A Q 2 A ... Q n £ I

such that Q = Q±, 1 <= i <= n

In clausal form P v Q i £ I or (x) Px 3 Qx £ I

Case n > 1 P TAU n Q

Induction assumption:

P TAU n _ 1 Ql implies T |~ (x) Px 3 Q{x for any Q : £ P

Since P TAU n Q then for some Q-^ £ P,

P TAU n _ 1 Q : and Qx TAU Q

Then T \~ (x) Px 3 Q^x by induction assumption and

T (- (x) Qjx 3 Qx by case n = 1

Therefore T (- (x) Px Z? Qx QED

PAGE 13

Corollary C.l Containment

If T i s a TDB, [P, Q] C P and P TAU+ Q

then ||P||C HQII

In terms of the graph of I, we are assured that i f a path exists between

P and Q i n a ' v e r t i c a l ' d i r e c t i o n then every INSTANCE of the TYPE P is an

INSTANCE of the TYPE Q. We can see now why a c y c l i c i t y is the only p r a c t i c a l

choice for i f P TAU+ Q and Q TAU P then ||p|| C ||Q|| C ||P|| or ||p|| = | | Q | | .

This would c e r t a i n l y be of no use in a p r a c t i c a l TDB.

The following lemma establishes the relationship between set intersection

and part 4i i n the d e f i n i t i o n of a TDB.

Lemma C.2 Intersection

For a TDB, T, i f P = ?l A P 2 A •.. P n £ I

then ||P|| = H p j n ||p2|| n ... ||Pn||

Proof:

Case 1 c £ ||P|| (or T f-Pc)

In clausal form Px v P^x £ I

for each i , 1 <= i <= n

By resolution T \~ P^c implying c £ ||p J| or

c £ IIPJI n ||P 2 || n . . . ||pn||

P A G E 14

^ s e 2 c e Hi?!II n l|p 2 l l n . . . | | P n | |

(or T f- P ic for each i , 1 <= i <= n)

In clausal form Px v P^x v P 2x v ... P nx £. I

By resolution T |— Pc implying c £. ||p||

Section D develops a p a r a l l e l result r e l a t i n g the union of extensions to the

formula P E P , v P~ v ... P .
i z n

PAGE 15

Section D The Definite Component of a TDB

It has been recognized by Reiter' 1 1-' and Minker'^ that r e s t r i c t i n g inten-

sional information to Horn clauses (clauses containing at most one pos i t i v e

l i t e r a l) e f f e c t i v e l y controls the size of the proof search space without

overly constraining the expressiveness of the formalism. This can be seen

by viewing Horn clauses as procedures'^ i n a non-deterministic programming

language similar to MICRO-PLANNER^14^. Ie., the formula,

P 1 A P 2 A ... P n D P,

could be programmed,

THE_CONSEQUENT_OF (P ^ P 2, ... P) IS P;

and the clause,

P[v P^ v ... P^,

could be programmed,

THE_CONSEQUENT_OF (P p ? 2 , ... P) IS INCONSISTENCY.

Proofs done i n this way are reasonably e f f i c i e n t as only unit consequents

are ever generated. Thus the maximum number of procedure f i r i n g s is bounded

by the number of elements i n P.

In this section we w i l l consider clauses of the former form (d e f i n i t e

clauses) to develop the desired result on union of extensions.

D e f i n i t i o n Definite Component

Given a TDB, T = (C, P, I, E), the d e f i n i t e component of T, A (T) , i s

defined as the TDB, (C, P, [W £. I | W i s a de f i n i t e clause], E)

PAGE 16

Note that E contains only d e f i n i t e clauses. We can now see exactly what

parts of a TDB are d e f i n i t e :

W £ I

P EE P 1 A P 2 A ... P n

P EE P^ v P 2 v ... P n

~- (P A Q)

We would l i k e a result p a r a l l e l to lemma C.2 but r e l a t i n g unions of exten

sions to the formula P EE Pj v P 2 v ... P . However, as the following example

shows, i t would not necessarily hold:

FEMALE C = [jane]

P = [FEMALE, GIRL, WOMAN]

I = [FEMALE EE WOMAN v GIRL,

\^ ~ (WOMAN A GIRL)]

GIRL E = [FEMALE jane]

| | F E M A L E | | = [jane] and || WOMAN || = ||GIRL|| = []

since T \h WOMAN jane and T \h GIRL jane.

Clausal Form Definite?

P v P l s P v P 2, ... P v P n yes

P x v P 2 v ... P n v P yes

? l v P, P 2 v P, ... P n v P yes

P v Pĵ v P 2 v ... P n no

P v Q no

WOMAN

So not only do we not have ||FEMALE || = 11WOMAN|| U ||GIRL|| but we have a TDB in

which unnatural information i s contained. It is hard to conceptualize jane

as a "WOMAN or GIRL" without her being either a WOMAN or a GIRL. Actually,

PAGE 17

jane i s one of the two, we just can't determine which. For these reasons we

i n s i s t on a TDB being "concrete".

D e f i n i t i o n Concreteness

1) The formula P EE P̂ v P2 v ••• p
n ^ * i s concrete i f f for every

c £ C , A (T) \~ Pc implies there i s an i such that A (T) (— PjC.

2) A TDB i s concrete i f f every formula of the above form is concrete.

We could have defined concreteness i n terms of p r o v a b i l i t y from T rather

than A(T). Unfortunately as we s h a l l see, i t turns out that at update time

i t would then be excessively d i f f i c u l t to maintain concreteness.

The disadvantage in the approach taken is that equivalence must be' estab

lished between T and A(T) before the result on union of extensions can be

attained. Theorem D.l accomplished t h i s .

The Davis and Putnam r e s u l t u s e d i n the proof of this theorem applies

only for the propositional calculus. The following d e f i n i t i o n and lemma

r e c t i f y t h i s .

D e f i n i t i o n Propositional Component

Given a TDB, T, and c £ C we define the propositional component of T

with respect to c, PROP̂ ,c as:

PROPTc = [P | Pc L E] U [W | (x)Wx t I]

((x)Wx represents any formula in I with free variable x)

PAGE 18

Using the last example:

PROPTJane = [FEMALE, FEMALE = WOMAN v GIRL, ~ (WOMAN A GIRL)]

Lemma D.l Propositional Equivalence

Given a consistent TDB, T, c £ C and P £ P

then T f~ Pc i f f PROPTc (- P

Proof:

Part 1) Assume E U I U [Pc] i s u n s a t i s f i a b l e . By Herbrand's

theorem, i f we replace each clause i n I with the set of clauses

obtained by replacing the free variable 'x' with each member of C

then the remaining set is u n s a t i s f i a b l e . C a l l this the ground form

of I . Since I U E was o r i g i n a l l y consistent, the ground form of

I U E i s . [Pc] cannot resolve against any clause which does not

have c's as i t s ground constant. Therefore a l l the constants i n

C except c are irrelevant to the inconsistency. If we construct

the clause set

[Q | Qc £ E] U [W | Wc £ ground form of I] U [7]

then we have a propositionally u n s a t i s f i a b l e set. Therefore,

PROPTc \~ P.

Part 2) Assume PROPTc U [P] i s un s a t i s f i a b l e . Clearly

[Wc | W £ PROPTc U [P]] i s un s a t i s f i a b l e . This is a ground

substitution of E U I U [Pc]. Therefore T (- Pc.

PAGE 19

Theorem D.l also requires that one factor out certain non-definite clauses.

These are the ones that allow jane to be a "WOMAN or GIRL" without the ne

cessity of her being one of WOMAN or GIRL.

D e f i n i t i o n Dead Clauses

Given a TDB, T and c £ C then the dead clauses of T with respect to c,

DEAD^c i s defined:

DEADTc = [P 3 ?1 v P 2 v . .. P n £ PROPTc | PROP^ T)C \~ P, n > 1]

Lemma D.2 Dropping of Dead Clauses

Given a concrete TDB, T, c £ C and W £ DEADTc

then PROPTc ~ DEADTc (~ W.

Proof:

W = P O Pj v P 2 v ... P n £ DEADTc

and PROP^^c \~ P.

By concreteness for some i , 1 <= i <= n,

PROP A (T)c t - P r

P i subsumes W so PROP^ T^c f~ W.

Now DEADTc contains no de f i n i t e clauses so

PR 0 P ^ T) C C PR0PTc ~DEAD Tc giving

PROPTc ~ DEADTc (- W. QED

PAGE 20

We w i l l now prove equivalence of T and A(T). The strategy w i l l be to cate

gorize the set of clauses produced by resolution within PR0P Tc ~ DEADTc and

show that i f a unit Qc i s provable from T then Q w i l l be in that set.

PAGE 21

Theorem D.l T ~A(T) Equivalence

Given a consistent concrete TDB, T, c £ C and Q £ P

then T |- Qc i f f A(T) \~ Qc.

Proof:

Assume PROPTc \~ Q.

Then PROPTc ~ DEADTc |~ Q by Lemma D.2.

So PROPTc ~DEAD Tc U [Q] i s u n s a t i s f i a b l e .

Define the following sets i t e r a t i v e l y :

T Q = PROPTc ~ DEADTc U [Q]

Ti+1 = T i w h e n Q £• T i ££

when T^ contains no positive units, otherwise

= T ± ~ [X v P v Y £ T i] -~ [X v 7 v Y £ T ±] U

[X v Y | X v 7 v Y £ T i]

where ? i s the lexic o g r a p h i c a l l y f i r s t positive unit

i n T^ and X and Y are negative predicate and positive

predicate disjunctions, (possibly n u l l)

The following i s an invariant statement on T^:

I f W £ T. then

A) W = P such that PROP^ T^c (- P for some P £ P or

B) W = Pj such that P = ? l v P 2 v ... P n £ I

which i s exclusive and

PROP^ (T)c f~ P ± (i 4 j) or

PAGE 22

C) W = Qj v Q 2 v ... Q v P (ra >= 1) such that

P = \°l A P 2 A ... P n £ I and

[Qp Q 2 , ... Q m] C [p x, P 2, ... P n] and

PROP^ T)C r~ W or

D) W £ T Q

The invariant statement is proved by the following subproof:

Subproof: By induction on i

Case i = 0 Clear by condition D

Case i > 0 If W £ T i + 1 then W £ T ± or

W = R (U, V) for [U, V] C T ± with U as the lexic o g r a p h i c a l l y f i r s t

unit in T^.

PROP^ T^ (— U by A and D above.

V i s of the form B, C or D above:

B) V = Pj such that P = ? l v P 2 v ... P n £ I

which i s exclusive and

PROP A (T)c |- P i (i ¥ j)

U = Pj and PROP^ (T) (~ P j .

But P. v Pj £. I by exclusiveness.

This violates the consistency of T, so V ^ P j .

C) V = Ql v Q 2 v ... Q m v P (m >= 1)

P =E P, A P~ A ... P £ 1 and
1 Z n

[Q L F Q 2, . . . Q F F L] C [P l f P 2, . . . P n] and

PROP^ T)C (- V.

PAGE 23

U = for some i , 1 <= i <= m.

Cle a r l y W has the same form as C with PROP^.-^ (— W

unless m = 1 i n which case W = P with PROP^^ \— P

which i s in the form A.

D) V £ PROPTc ~DEAD Tc U [Q]

Case 1 V = P x v P 2 £ I, t r i v i a l l y PROP^ T) C f - V .

U = ? l so PROP^ T) f - P 2 which is of form A.

Case 2 V = pT v PT v ... F v P £ I
i z n

See C above.

Case 3 V = p T v i T (i < j) i J
where P EE P, v P~ v ... P„ £ I which i s exclusive. 1 Z n

Assume without loss of generality that U = P^.

Then W = P.. which is in the form B.

Case 4 V = P v Pj v P 2 v ... P U = P.

Since PROP^ T^c {- P then V £ DEAD^c.

But then V t T Q which is a contradiction.

Case 5 V = " Q

But then U = Q was the lexicographically f i r s t unit in

T^ S O by construction T^ +^ = T^.

This completes the subproof of the invariant statement on T^.

As a corollary, T^ contains no non-unit positive clauses.

By the results of Davis and Putnam'^, T i + 1 i s unsatisfiable whenever T i i s .

Since T Q i s un s a t i s f i a b l e , by induction for a l l i , is u n s a t i s f i a b l e .

PAGE 24

Also, T\ contains a positive unit for every i , for i f not then the i n t e r

pretation i n which every predicate is taken as false is a model for T^.

Note that T^ +^ has at least one less predicate symbol than (the le x i c o

graphically f i r s t unit in T^) unless T i + j = T^. Since T i always contains a

po s i t i v e unit and since P i s f i n i t e , then T^ +^ = for some i . At this

point Q £ T^ since contains a positive unit. By the invariant statement

on T.,

P R O P ^ . - Q C (~ Q QED.

We can now relate part 4 i i in the d e f i n i t i o n of a TDB to the union of exten

sions.

Lemma D.3 Union

Given a consistent concrete TDB, T and a formula

P E P, v P 0 v ... P £ I
l z n

then ||P|| = ||Pl|| U ||P2|| U ... | | P J .

Proof:

Part 1 c £ ||p|| or T (~ Pc.

By theorem D.l, A(T) I -Pc.

By concreteness, for some i , \~ P^c

giving T f - P^c or c £ | | P i | | .

Part 2) c £ ||p±|j or T f- P ic for some i .

In clausal form P^ v P £ I.

By resolution T |— Pc or c £ ||p||.

PAGE 25

U n t i l now we have not d i f f e r e n t i a t e d between d i s j o i n t and non-disjoint union

of extensions of the form P EE P^ v P 2 v ... P n £ I . However, in most (but

not a l l) applications we would l i k e disjointness s t r i c t l y enforced.

Lemma D.4 Disjointness

Given a consistent TDB, T, and an exclusive formula P EE P^ v P 2 v ... P n £ I

then for each i , j , 1 <= i < j <= n, ||pj f) ||Pj|| = [].

Proof: Let c £ ||p.|| f| ||p..||.

Then T (~ P ^ and T |- P^c.

But P i v Pj £ I .

This violates consistency, so no such c e x i s t s .

Corollary D.l D i s j o i n t Union

Given a consistent concrete TDB, T, and an exclusive formula

P EE Pj v P 2 v ... P n £. I

then ||P|| = HPJI • ||P2|| • ... ||PJ.
In summary:

1) For conjunctions ||p|| = H P J f l ||P2II H ... | | P J

Furthermore i f T i s consistent and concrete:

2) For disjunctions ||p|| = HPJI U ||P2|| U ... ||PN||

3) For exclusive disjunctions ||P|| = ||p j || « ||P2|| 9 ... ||Pn||

PAGE 26

Section E Transformation of a TDB to i t s Reduced Form

One use of a TDB i s to answer the question "Is T I - Pc". Reiter for one re

quires this for his "typed u n i f i c a t i o n algorithm" as described i n [10,11]^

Algorithm E . l below computes [P | T f - Pc] given c £ C , for a concrete TDB,

and detects any inconsistency i n PROPTc.

As [P | T (~ Pc] may contain a large number of P f o r any given c, we define

a reduced form of T, R(T), which contains only the Pc's necessary to span E .

This corresponds to associating INSTANCES with primitive semantic categories

in [7,8,9]^ -j^us, we can determine i f c £ ||p|| by looking at the primitive

categories below P.

We have shown that formulae of the form P v P , v P ~ v . . . P £ 1 can be re-
1 z n

moved with no effect when T is both concrete and consistent. This motivates

computing on the Horn component of concrete TDBs.

D e f i n i t i o n Horn Component

Given a TDB, T = (C , P, I , E) , define the Horn component of T, H(T), as

H(T) = (C , P, [W £ I | W i s a Horn clause], E)

Note that E contains only Horn clauses. Looking at this case by case:

W £ I Clausal Form

P E P , A P o A ... P „ P v P, , P v P 9 , ... P v P„ 1 z n I z' n
P, v P 0 v ... P„ v P
1 z n

P IE P 1 v P 2 v ... P n ? 1 v P, P 2 v P, ... P R v P

P v Pj v P 2 v ... P n

~ (P A Q) P v Q

Definite? Horn?

yes yes

yes yes

yes yes

no no

no yes

The following algorithm computes [P | T (— Pc] given c £ C

PAGE 27

Algorithm E . l For computing DOMAIN^c given c £ C

T Q < - PROP H (T)c

s 0 < - []

FOR i = 0 to i n f i n i t y DO

BEGIN

IF contains no positive unit

THEN DOMAIN̂ ,c E E S±,

k < — i , EXIT

P < — the lexicographically f i r s t positive unit in T^

IF 7 £. T.
THEN PR0PTc i s inconsistent,

D0MAINTc i s undefined, EXIT

s 1 + 1 <- S ± U [P]

T 1 + 1 <— T i ~ [X v P v Y £ T ±] ~ [X v P v Y £ T ±]

U [X v Y | X v P v Y £ T i]

where X and Y are disjunctions of negative and posi

t i v e predicates respectively (possibly n u l l) .

END

Example: Using the I of diagram C.l and l e t t i n g :

E = [SINGLE John, MALE John]

and c = John, the algorithm w i l l produce the following values:

PAGE 28

0

PERSON

SINGLE

I T . ^ T 1 + 1 (dropped)

MALE MALE

MAN 3 MALE

BOY 3 MALE

MALE 3 PERSON

— (MALE A FEMALE)

MALE A ADULT 3 MAN

MALE A CHILD 3 BOY

PERSON

FEMALE 3 PERSON

ADULT 3 PERSON

CHILD 3 PERSON

SINGLE

BACHELOR 3 SINGLE

MAIDEN 3 SINGLE

SINGLE 3 ADULT

^(S I N G L E A MARRIED)

MAN A SINGLE 3 BACHELOR

SINGLE A WOMAN 3 MAIDEN

ADULT

MAN 3 ADULT

WOMAN 3 ADULT

MARRIED 3 ADULT

— (ADULT A CHILD)

ADULT 3 MAN

FEMALE A ADULT 3 WOMAN

MAN

BACHELOR 3 MAN

MAN 3 BACHELOR

BACHELOR BACHELOR

T 1 + 1 — T. (added)

ADULT

MAN

PERSON

FEMALE

ADULT 3 MAN

CHILD 3 BOY

ADULT

MARRIED

MAN 3 BACHELOR

WOMAN 3 MAIDEN

CHILD

MAN

FEMALE 3 WOMAN

BACHELOR

PAGE 29

contains no positive unit. Thus:

DOMAIN^John = [MALE, PERSON, SINGLE, ADULT, MAN, BACHELOR]

The algorithm can be implemented by hash indexing predicate symbols into a

copy of the formulae i n I i n which they appear (only one copy is made for

each formula). For e f f i c i e n c y , p ositive units are kept i n a separate l i s t .

When a formula of the form X v P v Y £ I i s to be dropped i t i s tagged as

deleted. When a formula of the form X v P v Y i s to be replaced by X v Y

the predicate symbol P i s deleted from the copy. If a positive unit results

i t i s added to the positive unit l i s t . If the n u l l clause r e s u l t s , DOMAINTc

is declared to be undefined and the o r i g i n a l clause P v Q that caused the

contradiction can be printed for inspection.

I f we assume that the time taken to delete the symbol P from X v P v Y i s

constant, the time taken to add a symbol to the positive unit l i s t i s con

stant and the hash indexing i s performed in constant time (by design) then

the following i s a bound on the time c o m p l e x i t y ^ of the algorithm:

0 # predicate symbols in W

JH(T) r

Theorem E.1 Algorithm E . l Correctness

Given a concrete TDB, T, and c £• C

If PROPTc i s consistent

then DOMAINTc = [P | T (~ Pc]

otherwise DOMAINTc i s undefined

Proof:

F i r s t , note that the class of Horn clauses i s closed under resolution

PAGE 30

(i e . R(Wp W2) i s Horn whenever and W2 are). It follows that

the only p o s i t i v e clauses i n for a l l i are units. This is needed

to apply the Davis and P u t n a m t h e o r e m below.

Case A PROP^c i s consistent

Subcase 1 P £ DOMAIN^c.

For some i , P £ T± giving P R 0 P H (T) C \~ P

and hence PR0P Tc (~ P

Subcase 2 T (- Pc

Assume P $ 7± for a l l i

Define H*(T) = H(T) U [7]

Sta r t i n g the algorithm with H'(T) rather than H(T) we produce

rather than

Note that when defined,

T^ = T. U [7]
The algorithm w i l l terminate i n one of two ways:

1) [P, 7] C T^ for some i

([Q, Q] <£ T[when Q £ P and Q ^ P

since Tg i s consistent)

But then P £ T^ co n t r a d i c t i o n

2) T^ contains no p o s i t i v e unit; but then the i n t e r p r e t a t i o n

i n which every predicate symbol i s f a l s e i s a model f o r

T^. Since T (— Pc by theorem D.l, A(T) (— Pc giving

H(T) (~ Pc or Tg U [P] = Tg i s u n s a t i s f i a b l e . By Davis

and Putnam^, T^ i s unsatisf i a b l e which i s a contradic

t i o n . Therefore P £ T^ for some i .

The algorithm must terminate since T^ +^ contains at least

one fewer predicate symbol then T i.

Case B PROP^c i s u n s a t i s f i a b l e

Statement: PR0P H^ T^c is u n s a t i s f i a b l e

Subproof: By lemma D.2 PR0P Tc ~ DEADTc i s u n s a t i s f i a b l e . If

PAGE 31

we define T Q as PROPTc ~ DEADTc and l e t the algorithm define

for each i , then the invariant statements of theorem D.l hold

with one addition: W £. may be the n u l l clause.

The algorithm w i l l terminate i n one of two ways:

1) [P, P] C for some i where P i s the lexicographically

f i r s t unit i n T^. By statements A and B of theorem D.l,

PROP A(j.)C \~ P and

for some Q £. P, P v Q £ 1 and PROP^^^c |- Q.

Since P v Q £ H(T) and A(T) C H(T), PROP R (- T)c i s inconsis

tent.

2) By the results of Davis and Putnam^, for each i , T^ i s

u n s a t i s f i a b l e . Since T^ +^ contains at least one less l i

t e r a l than T^, for some k, T^ contains no positive l i t e r

a l s . The interpretation i n which every predicate symbol

i s false is a model for T^ unless T^ contains the n u l l

clause. Since T^ i s unsa t i s f i a b l e i t must contain the n u l l

clause. T Q doesn't contain the n u l l clause so for some i ,

[P, P] C T i where P i s the lexicographically f i r s t unit T^.

In this case though, the algorithm w i l l have terminated as

in case A.

This ends the subproof.

As in the subproof, the algorithm w i l l not terminate with T^ con

taining no units (Starting with T Q = PROP^^^c unsatisf i a b l e) .

Therefore, [P, P] C T i for some i . The algorithm w i l l stop with

DOMAINTc undefined. QED

This ends the correctness proof of algorithm E . l

PAGE 32

The following c o r o l l a r y i s used i n the proof of the update algorithm.

Corollary E . l A(T) - DOMAIN^ Equivalence

Given a TDB, T (not necessarily concrete or consistent) and c £. C

1) I f P £ DOMAINTc then A(T) H p c

2) If A(T) h P c t h e n p & DOMAINTc or DOMAINTc i s undefined

Proof:

Part 1 P £ D0MAINTc

The invariant statements of theorem D.l hold with the addition

that W may be the n u l l clause.

Therefore A(T) \~ Pc

Part 2 A(T) h Pc
Hence H(T) (- Pc.

If T i s consistent then by theorem E . l , Case A, subcase 2,

P £• T^ for some i (we do not need theorem D.l here) or

P £ DOMAINTc.

If T i s un s a t i s f i a b l e then by theorem E . l , Case B, H(T) i s

uns a t i s f i a b l e and DOMAINTc i s undefined. QED

As a TDB, T, becomes large, [DOMAINTc | c £ C] may become very large. The

following allows us to save only the Pc that span E. Ie., store only the

'lowest' extensions i n the graph.

D e f i n i t i o n The Reduced or Canonical TDB

Given a consistent concrete TDB,

T = (C, P, I, E), the reduced TDB, R(T), i s defined:

R(T) = (C, P, I, [Pc | P £ DOMAINTc and

i f Q £ DOMAINTc then not Q TAU+ P])

PAGE 33

Using the example of diagram C . l :

[P | Pc £ E] = [SINGLE, MALE]

DOMAINTc = [MALE, PERSON, SINGLE,

ADULT, MAN, BACHELOR]

but [P | Pc £ R(T)*s extension] = [BACHELOR]

This i s a good space reduction. In fa c t , i n no case i s R(T)'s extension

larger than T's. Note that we cannot assume that the concreteness or

consistency of R(T) follows from that of T.

Lemma E . l Spanning

Given a consistent concrete TDB, T,

i f P £ DOMAINTc then for some Q £ P with Qc £ R(T)'s extension,

Q TAU* P

Proof: Assume for each n >= 0 with Qc £ R(T)'s extension, that

not Q TAU n P

By d e f i n i t i o n of R(T)'s extension, Pc £ R(T)'s extension

Choosing n = 0, Q = P we have a contradiction for Q TAU^ P.

R(T)'s extension i s said to span [Pc | T |— Pc].

Getting back to the o r i g i n a l problem, "Is T |— Pc?" we see that we need only

scan R(T)'s extension for Qc such that Q TAU* P.

Theorem E.2 T - R(T) Equivalence

Given a consistent concrete TDB, T,

then i f Pc £ R(T)'s extension then T (- Pc

and i f Pc £ E then R(T) (- Pc

Proof:

Part 1) Assume Pc £ R(T)'s extension.

P £ D0MAINTc so by theorem E . l , T (~ Pc

PAGE 34

Part 2) Assume Pc £ E

or P £ DOMAINTc.

By the spanning lemma (E.l) f o r some Q £ P,

such that Qc £ R(T)'s extension, Q TAU* P.

By the generalization lemma (C . l) , R(T) J— Pc QED

Corollary E.2

Given a consistent concrete TDB, T, c £ C, P £ P,

T f- Pc i f f R(T) f~ Pc

Corollary E.3 Concreteness of R(T)

Given a consistent concrete TDB, T, R(T) i s concrete

Proof:

Let P E P , v P, v ... P £ 1
l l n

Assume for some c £ C , A (R (T)) \~ Pc

Then T f— Pc by theorem E.2

a n d A X T) \~ P c by theorem D.l

a n d A X T) (— P^c by T's concreteness (for some i , 1 <= i <= n)

This gives P ^ £ DOMAINTc by theorem D.l

By the spanning lemma (E . l) , for some Qc £ R(T)'s extension,

Q TAU* P i

By the generalization lemma (C.l) (which resolves only d e f i n i t e

clauses), A (R (T)) (- p i c Q E D

Corollary E.4 Consistency of R(T)

Given a consistent concrete TDB, T, R(T) i s consistent

Proof:

Let S = [Pc | P £ DOMAINTc] U

[Pc | P £ P and P I DOMAINTc]

S i s a model for H (T) [1 2 ^ .

PAGE 35

If i t is not a model for T then for some

P = Pj_ v P 2 v ... Pfl £ I,

P £ DOMAINTc and each P ± $ DOMAINTc, 1 <= i <= n

This contradicts concreteness, so S i s a model for T.

R(T) i s concrete so s i m i l a r l y S i s a model for R(T). QED

Thus R(T) i s a suitable replacement for a consistent TDB, T.

PAGE 36

Section F Updating a TDB

Thus far we have shown that a TDB w i l l have the desired set theoretic pro

perties i f concreteness and consistency are maintained. We have given a

canonical (reduced) form of the TDB that can be e f f i c i e n t l y computed while

conserving both space and time i n answering "Is T (— Pc?". We must now spe

c i f y an algorithm that w i l l update the canonical TDB while guaranteeing con

creteness and consistency.

Given a concrete and consistent TDB, T, and c £. C the algorithm accepts

additions to and deletions from DOMAINTc so as to leave the resulting TDB

concrete and consistent. It i s assumed that o r i g i n a l l y T = R(T). The

algorithm w i l l produce l ' = R (T ') .

Algorithm F . l For updating a canonical TDB T, given c £ C

UPDATETc:

BEGIN

WRITE (c, "has the root properties:", [P | Pc £ E])

S: INPUT (A C P (additions) and D C P (deletions))

IF [Pc | P £ D] <£ E THEN

WRITE (D ~ [P | Pc £ E], "cannot be deleted, t r y again")

GOTO S

L: T* <— (C, P, I, E U [Pc | P £ A] — [Pc | P £ D])

Calculate DOMAINTc

CONCRETE <-- TRUE

E: IF DOMAIN^ic i s undefined (because P v Q £ I) THEN

WRITE (c, "cannot be both a", P, "and a", Q, "try again")

GOTO S

PAGE 37

C: FOR EACH P EE P, v P 9 v ... P £ I such that

P £ DOMAIN^,tc but no DOMAINTc

WRITE ("A", P, "must also be one of", P j , P 2, ... P ,

"add one of them")

CONCRETE <— FALSE

IF NOT CONCRETE THEN

INPUT (A* C p (additions))

A <— A U A*

GOTO L

Calculate R (T ') given DOMAINTc and T ' *

T * < — R (T ') .

WRITE ("update accepted")

END

Note that i n the step marked *, DOMAINTtc^ for c-̂ 4 c need not

be recalculated as DOMAIN^tc^ = DOMAINTc^. The following theorem

gives the update properties desired.

Theorem F . l Algorithm F . l Correctness

Given a consistent concrete and canonical TDB, T and c £ C then the

resultant canonical TDB, T ' , i s consistent and concrete.

Proof:

Part 1 Concreteness

Let P E P j v P 2 v ... P n £ I and /\(T*) (~ Pc

By c o r o l l a r y E . l , since DOMAINTc i s defined i n order for

algorithm termination, P £ DOMAIN^tc. Since the algorithm

terminated (CONCRETE i s TRUE), for some i , ? ± £ DOMAINTc.

Corollary E . l gives A(T') H p i c '

PAGE 38

Part 2 Consistency

If T 1 i s not consistent then since T i s consistent,

PROP^tc must be u n s a t i s f i a b l e . Theorem E . l applies since

T* i s concrete saying DOMAIN^ic i s undefined. This con

tr a d i c t s termination of the algorithm. Therefore T 1 i s con

s i s t e n t .

By c o r o l l a r i e s E.3 and E.4, R (T ') i s concrete and consistent. QED

The following i s a

Input

- Update John

- A=[ADULT]

- A=[MALE,SINGLE]

- Update John

- A=[MARRIED] and

D=[SINGLE]

- A=[MARRIED]

A=[MARRIED] and

D=[BACHELOR]

A=[MALE]

sample update using the I

Response

- John has the root

properties []

- An ADULT must be one of

MARRIED or SINGLE, add

one.

- Update accepted

of diagram C.l and an empty E .

E or E *

E = []

- John has the root

properties [BACHELOR]

- [SINGLE] cannot be

deleted, try again

- John cannot be both

MARRIED and SINGLE, try

again

- An ADULT must be one of

MALE or FEMALE, add one

- Update accepted

E ' = [ADULTJohn]

E ' = [A D U L T J o h n , M A L E J o h n ,

S I N G L E J o h n]

E ' = [B A C H E L O R J o h n]

E = [B A C H E L O R J o h n]

E' = [M A R R I E D J o h n ,

B A C H E L O R J o h n]

E ' = [M A R R I E D J o h n]

E* = [M A R R I E D J o h n , M A L E J o h n]

PAGE 39

It may seem redundant that we must "Add MALE" when we did not e x p l i c i t l y de

lete MALE. However, when BACHELOR i s deleted, the algorithm has no way i n

general of determining i f MAN and/or SINGLE are to remain i n the TDB. Ra

ther than trying to second guess the user, the algorithm asks him to correct

any dropped information.

Before the f i r s t update, when E = [], for the update theorem to apply, T

must be concrete and consistent. It i s c e r t a i n l y concrete. In order for i t

to be consistent, I must be consistent. The interpretation i n which a l l pre

dicate symbols are false under the interpretation i s a model for I, so i t is

consistent. Thus by induction on the update theorem we are assured that i f

we start with E = [] then T w i l l always be concrete and consistent a f t e r

the update.

Although there are no inconsistencies i n I, there may be constraints that

prevent c e r t a i n kinds of updates from taking place. By this we mean that

given some P £ P, for no c £ C i s Pc £ E while T i s consistent.

Ie. ||p|| = [] always.

Therefore i f the TDB i s to be kept consistent, ||P 1 f| = [] always. This i s

c l e a r l y a case of bad structuring of I. It can be avoided by ensuring that

PAGE 40

for a l l P £ P, I U [Px] i s consistent. This can be guaranteed by l e t t i n g

E = [Pc] for any c £ C and calculating DOMAINTc. If undefined, then I i s

badly structured above P.

PAGE 41

Summary and Conclusions

A generalized structure has been proposed for Reiter's typed database

to replace the more r e s t r i c t e d notion of the ISA hierarchy. It provides a

r i c h structuring f a c i l i t y and imposes only the natural requirements of

so-called concreteness and consistency. Results have been given to ensure

that the database has the desired set theoretic properties. An update

algorithm has been specified that guarantees concreteness and consistency

along with a technique for testing i f a s p e c i f i c element is a member of a

given domain. A means for testing a non-atomic formula against the database

was not included and i s an open topic.

While t r a d i t i o n a l r e l a t i o n a l databases suggest no need for a typed database,

work in a r t i f i c i a l i n t e l l i g e n c e and i n f e r e n t i a l database systems often are

d e f i c i e n t because of the need for a more interdependant domain structure.

Since the TDB provides the most rudimentary l e v e l of inferencing i t must be

well structured and mathematically complete i n order that inferencing

mechanisms b u i l t on i t stand on firm ground. It must not l i m i t the descrip

t i v e power of a host i n f e r e n t i a l database system, thereby reducing i t s

a p p l i c a b i l i t y . We suggest that the proposed structure and algorithms for a

typed database are adequate for managing the domain structure of i n f e r e n t i a l

database systems.

PAGE 42

Bibliography

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D. (1974). The Design and Analysis

of Computer Algorithms. Addison-Wesley, Reading, Mass., 1974.

2. Chang, C.L., and Lee, R.C.T. (1973). Symbolic Logic and Mechanical

Theorem Proving. Academic Press, New York, 1973.

3. Date, C.J. (1975). An Introduction to Data Base Systems. Addison-

Wesley, Reading, Mass., 1975.

4. Davis, M., and Putnam, H. (1959). A Computational Proof Procedure.

Rensselaer Polytechnical I n s t i t u t i o n , Troy, New York, AFOSR TR 59-124.

5. G a l l a i r e , H., Minker, J . , and Nicolas, J.M. (1978). An Overview and

Introduction to Logic and Data Bases. Logic and Data Bases, Eds. H.

G a l l a i r e and J . Minker, Plenum Press, New York, 1978, P.12.

6. Gries, D. (1971). Compiler Construction for D i g i t a l Computers. John

Wiley and Sons, Inc., 1971.

7. McSkimin, J.R. (1976). The Use of Semantic Information i n Deductive

Question-Answering Systems. Ph.D. Thesis, Dept. of Computer Science,

Univ. of Maryland, College Park, Md., 1976.

8. McSkimin, J.R., and Minker, J . (1977). The Use of a Semantic Network i n

a Deductive Question-Answering System. Dept. of Computer Science, Univ.

of Maryland Tech. Report TR-506, 1977.

PAGE 43

"9. Minker, J . (1978). An Experimental Relational Data Base System Based on

Logic. Logic and Data Bases, Eds. H. G a l l a i r e and J . Minker, Plenum

Press, New York, 1978.

10. Reiter, R. (1977). An Approach to Deductive Question-Answering. Tech

n i c a l report 3649, Bolt Beranek and Newman Inc., Cambridge, Mass., Sept.

1977.

11. Reiter, R. (1978a). Deductive Question-Answering on Relational Data

Bases. Logic and Data Bases, Eds. H. G a l l a i r e and J. Minker, Plenum

Press, New York, 1978.

12. Reiter, R. (1978b). On closed world data bases. Logic and data bases,

Eds. H. G a l l a i r e and J. Minker, Plenum Press, New York, 1978.

13. Robinson, J.A. (1965). A Machine Oriented Logic Based on the Resolution

P r i n c i p l e . J . ACM 12 (Jan. 1965), 25-41.

14. Sussman, G., Winograd, T., and Charniak, E. (1970). MICRO-PLANNER

Reference Manual. A.I. MEMO no. 203, M.I.T., Cambridge, Mass., 1970.

15. Winograd, T. (1972). Understanding Natural Language. Academic Press,

1972.

PAGE 44

Appendix A Dictionary of Symbols

Sets:

[] - Used in set d e f i n i t i o n s as a replacement for

£ , € ~ Set membership and non-membership

C , <£. - Set i n c l u s i o n and non-inclusion

n, U - Set i n t e r s e c t i o n and union

$ - D i s j o i n t union

- Set difference

| - Set q u a l i f i c a t i o n (read "such that")

||p|| - Extension of a predicate, (see section C)

Predicate Calculus Formulae:

A - Conjunction symbol

v - Disjunction symbol

>̂ - Implication

EE - Equivalence

-"-̂ - Negation

P - Also negation

(x) - Universal quantificaion

|—, |/- - Symbols for provabity and non-provability

R(Wj, W2) - The resolvents of formulae W1 and W2
l J

PAGE 45

Mathematical R e l a t i o n s : ^

ALPHA, BETA and TAU

- Relations defined in section C

R n - Composition of r e l a t i o n R, n times

R + - Tr a n s i t i v e closure of r e l a t i o n R

R - Reflexive t r a n s i t i v e closure of r e l a t i o n R

General Usage:

EE - read " i s defined as", i n de f i n i t i o n s and algorithms

0 - computational complexity of an algorithm (order complexity)^^

