
AN APPROACH TO THE ORGANIZATION OF TAXONOMIES 

B.Sc. University of B r i t i s h Columbia 

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF 

THE REQUIREMENTS FOR THE DEGREE OF 

MASTER OF SCIENCE 

in 

THE FACULTY OF GRADUATE STUDIES 

Department of Computer Science 

We accept this thesis as conforming 

THE UNIVERSITY OF BRITISH COLUMBIA 

CRAIG DAVID BISHOP 

by 

to the required standard 

March, 1981 

© Craig David Bishop, 1981 



In presenting this thesis in p a r t i a l f u l f i l l m e n t of the requirements for an 

advanced degree at the University of B r i t i s h Columbia, I agree that the 

Library s h a l l make i t fr e e l y available for reference and study. I further 

agree that permission for extensive copying of this thesis for scholarly 

purposes may be granted by the Head of my department or his representative. 

It i s understood that copying or publication of this thesis for f i n a n c i a l 

gain s h a l l not be allowed without my written permission. 

Craig Bishop 



PAGE i i 

Abstract 

The ISA hierarchy used by present day i n f e r e n t i a l database systems is d e f i 

cient i n that i t does not represent a variety of domain relationships (type 

r e l a t i o n s h i p s ) . Such hierarchies associate e x p l i c i t l y defined sets with the 

leaves of a tree. Non-leaf nodes in the tree i n h e r i t members from their 

c h i l d nodes. In keeping with the use of sets, this paper gives motivation 

for having type relationships other than subset. Included are union, i n t e r 

section and a disjointness condition. 

A formalism for the typed database (TDB) i s given, using the monadic f i r s t 

order predicate calculus as i t s theoretical basis. Non-unit formulae repre

sent intensional (general) information about the world being represented and 

unit ground clauses represent extensional ( s p e c i f i c ) information. Predi

cates represent types, and constant symbols represent set members. This is 

connected to the set concept via predicate extensions. The extension is 

that set of constant symbols which are provable as arguments to the given 

predicate. 

Given the so-called concreteness condition and consistency of the TDB, the 

desired set theoretic relationships (union, intersection and disjointness) 

of predicate extensions follow. This strengthens the l i n k between the for

malism of the predicate calculus and the more natural set representation. 

A canonical form of a TDB is shown that admits an appropriate machine repre

sentation. Using this is can be determined i f a constant symbol as an 



PAGE i i i 

argument to a given predicate is provable (domain membership) i n constant 

time. An update algorithm is developed and is shown to be correct i n that 

i t maintains concreteness and consistency. Thus the TDB i s shown to be a 

p r a c t i c a l generalization of the ISA hierarchy but is considerably more 

expressive. 
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Section A Introduction 

In recent works on r e l a t i o n a l database systems, espe c i a l l y as they arise i n 

a r t i f i c i a l i n t e l l i g e n c e , the need for a database of domains (using Codd's 

d e f i n i t i o n of Domain^) has become apparent. In simple data process

ing applications, the acceptance or rejection of data i n a domain i s based 

on a decision procedure for that domain such as correct alpha/numeric form 

or membership in a predefined set. This makes the primary assumption that 

each domain i s independant of a l l others. This may be r e a l i s t i c for domains 

i n which each entry of one domain is more or less unrelated to other domains 

( l i k e numeric ones). However, work in a r t i f i c i a l i n t e l l i g e n c e and i n f e r 

e n t i a l database systems acknowledges the dependancies amoung domains. 

Winograd led the way by using an ISA hierarchy to relate domains of objects 

and their properties, eg. a MOVEABLE-OBJECT ISA PHYSICAL-OBJECTt 1 5^. 

McSkimin and Minker formalize the ISA hierarchy by defining a semantic graph 

as a labelled tree in which the root node i s the universal category (domain) 

and the leaves are primitive categories [7 ,8 ,9 ]^ j n t h e i r formalism the 

elements, which are associated with the primitive categories, are inherited 

by the parent categories. As can be seen i n their examples these trees tend 

to be "leafy" with many categories, some with unnatural names (such as 

non/human/male/mam). There i s much duplication of category names but no 

mechanism i s given for insuring that duplicate categories contain the same 

elements. 
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Also, McSkimin and Minker define a pa r t i t i o n i n g (disjointness condition 

between categories) without defining an update algorithm that w i l l maintain 

the p a r t i t i o n . In short, though they define the ISA heirarchy, they do not 

include a mechanism for enforcing data consistency. 

Reiter has adopted the idea of a typed database formalized i n the monadic 

predicate calculus ̂ ' 1 1 ^. He replaces the idea of an element being a 

member of a domain with the proof theoretic notion of pr o v a b i l i t y . Here the 

domain is a monadic predicate i n which the element is i t s argument. The 

structure, mathematics and algorithms for this typed database are beyond the 

scope of his paper. 

It is the purpose of this paper to propose a structure for Reiter's typed 

database and develop the necessary mathematics and algorithms. 

A domain in Codd's terminology w i l l hereafter be referred to as a TYPE. An 

element w i l l be referred to as an INSTANCE. For example, HUMAN i s a TYPE 

for which JOHN i s an INSTANCE. JOHN i s said to have the property HUMAN. A 

type database (TDB) i s then a l o g i c a l theory i n which groups of TYPEs (and 

hence INSTANCES) s a t i s f y certain mathematical relationships c a l l e d type 

r e l a t i o n s h i p s . 

In order for a TDB to be p r a c t i c a l i t must s a t i s f y certain conditions: 

1) It must be des c r i p t i v e l y r i c h , capturing type relationships other 

than simple set containment. 
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2) It must be structured so as to encourage only the most natural 

information content. 

3) It must admit algorithms that are computationally e f f i c i e n t in 

both time and space. 

4) It must admit updates in such a way as to prevent a user from 

v i o l a t i n g a type relationship. ( i e . enforce i n t e g r i t y con

s t r a i n t s ) 

Section B motivates the inclu s i o n of type relationships other than set con

tainment. Section C then defines a TDB. Condition 2 i s addressed i n 

section C which defines an ac y c l i c TDB and introduces a graphic notation. 

Structuring i s completed i n section D by imposing the so-called concreteness 

condition on TDBs. With this and consistency a l l the desired set theoretic 

properties of the TDB follow. Section E i s devoted to an algorithm for 

reducing a given TDB to one which is e f f i c i e n t i n both time and space. The 

f i n a l section d e t a i l s an update algorithm which ensures that concreteness 

and consistency of the TDB are maintained during updates. 
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Section B Motivation 

To see why a more robust set of type relationships than simple set contain

ment i s important consider the following statements: 

1) JANE i s a WOMAN; hence JANE i s a FEMALE (ISA) 

2) JANE i s a FEMALE; hence JANE is a WOMAN 

or JANE i s a GIRL (but not both) 

3) a) JOHN i s a BACHELOR; hence JOHN i s a MAN (ISA) 

b) JOHN i s a BACHELOR; hence JOHN i s SINGLE (ISA) 

4) JOHN i s a MAN and JOHN i s SINGLE; hence JOHN i s a BACHELOR 

Statements 3a and 3b bear a resemblance to statement 1 i n that both display 

set containment. However, in view of statements 2 and 4 we see that some

how FEMALE i s composed of WOMAN and GIRL - WOMAN and GIRL being d i s j o i n t 

TYPEs. In contrast MAN and SINGLE intersect to give BACHELOR. The standard 

ISA hierarchy does not provide the formal equivalent of statements 2 and 4. 

An inference of type 2 i s important i n that we would not want JANE to have 

the property FEMALE without her having one of the properties WOMAN or GIRL. 

Si m i l a r l y we would not want JANE to have both the properties WOMAN and GIRL. 

As seen i n the following sections, "concreteness" s a t i s f i e s the former con

d i t i o n , consistency the l a t t e r . 

The type relationship of type 4 i s important when we want to define a TYPE 

as having INSTANCES which are common to a set of TYPEs. In an a i r l i n e 

reservation system JOHN might have the properties NON-SMOKING, COACH, 
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MOVIE-WATCHING and 747 from which the system could i n f e r that JOHN i s a 

member of CABIN-B. 

The way the above statements pair suggests the need for only two classes 

of type r e l a t i o n s h i p s : 

A) The TYPE FEMALE i s equivalent to the d i s j o i n t union of the TYPEs 

WOMAN and GIRL 

B) The TYPE BACHELOR i s equivalent to the i n t e r s e c t i o n of the TYPEs 

MAN and SINGLE 

The union i n A need not be d i s j o i n t , for example: 

C) The TYPE PEOPLE i s equivalent to the union of the TYPEs LEFT— 

HANDED and RIGHT-HANDED (allowing for the ambidextrous) 

Graphically these are represented as: 

A) • B) C) 

FEMALE MAN SINGLE PEOPLE 

WOMAN GIRL BACHELOR RIGHT- LEFT-

HANDED HANDED 

Set t h e o r e t i c a l l y these can be represented as: 

A) FEMALE = WOMAN # GIRL 

B) BACHELOR = MAN n SINGLE 

C) PEOPLE = RIGHT-HANDED U LEFT-HANDED 
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In the graphical representation, the more r e s t r i c t e d TYPE i s drawn below 

the TYPE of which i t is a subset. The four o r i g i n a l statements can now be 

written in terms of sets: 

1) JANE £ WOMAN implies JANE £ FEMALE 

2) JANE £ FEMALE implies JANE £ WOMAN Q GIRL 

3) JOHN £ BACHELOR implies JOHN £ MAN 0 SINGLE 

4) JOHN £ MAN fl SINGLE implies JOHN £. BACHELOR 
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Section C Formal Preliminaries 

The set notation of the previous section is convenient for v i s u a l i z i n g the 

TYPE re l a t i o n s h i p s . The f i r s t order predicate calculus, however, offers a 
r o 131 

well developed proof theory 1 » J . For this reason we s h a l l develop 

our results within a f i r s t order framework. Refer to appendix A for the 

int e r p r e t a t i o n given to special symbols used i n what follows. 

D e f i n i t i o n TYPE Database (TDB) 

A TDB is a 4-tuple ( C , P, I , E ) s a t i s f y i n g : 

1) C i s a f i n i t e set of constants. 

2) P i s a f i n i t e set of unary predicate signs, c a l l e d TYPES. 

3) E i s a f i n i t e set of atomic formulae of the form Pc where 

P £ P and c £ C . 

E i s called the extension of the TDB. 

4) I i s a f i n i t e set of well formed formulae of the form: 

i ) (x) Px = Pjx A. P 2x A ... P nx or_ 

i i ) (x) Px = Pj^x v P 2x v ... P nx 

where [P, P ^ P 2, ... P n] C P. 

In the event that I contains a formula of the form ( i i ) , 

i t may also contain a l l of the formulae: 

i i i ) (x) ~ (P.jX A P J X ) for each 1 <= i < j <= n. 

In which case the formula ( i i ) is said to be exclusive. 

I i s called the intension of the TDB. 
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For Example: 

(C, P, I, E) i s a TDB where: 

C = [John, mary] (INSTANCES) 

P = [FEMALE, WOMAN, GIRL, MAN, SINGLE, BACHELOR] (TYPES) 

I = [(x) BACHELOR x = MAN x A SINGLE x, 

(x) FEMALE x = WOMAN x v GIRL x, 

( x ) ~ (WOMAN x A GIRL x) ] (intension) 

E = [WOMAN mary, MAN John, SINGLE John] (extension) 

Notation: 

1) For brevity, the variable 'x' w i l l be dropped where understood. 

2) (C, P, I, E) w i l l be referred to as T's constants, predicates, 

intension and extension where c l a r i f i c a t i o n i s required. 

3) Members of C w i l l be written i n lower case, members of P i n upper 

case. 

4) For reasons of notational convenience we sometimes write W £ I 
T131 

where W is actually a clause 1 J« 

5) A TDB w i l l be said to be consistent whenever I U E i s . 

6) When we write T \— W we w i l l mean I U E \~ W for any formula W. 

7) R (U, V) w i l l refer to the resolvents'- 1"^ of the formulae U and V. 

With this d e f i n i t i o n of a TDB we can replace the notion of an INSTANCE being 

a member of a TYPE (John £ BACHELOR) with the predicate calculus notion of 

pr o v a b i l i t y (I U E \~ BACHELOR John). However, we would s t i l l l i k e to view 

a type as a set with certain set theoretic relationships. 
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D e f i n i t i o n Extension 

The extension of P £ P written ||P||^ i s defined: 

||P|| t = [c | c £ C, I U E f- Pc] 

The subscript on ||P||-J. w i l l be dropped where i m p l i c i t . Hence we can write 

c £ ||p|| for T f~ Pc. The set theoretic relationships between extensions of 

the l a s t section do not automatically follow. We w i l l give conditions under 

which each of the relationships given do follow. 

A c y c l i c i t y of a TDB 

The idea of a TYPE viewed as an ISA hierarchy i s firmly related to the ideas 

of generalization and r e s t r i c t i o n . L o g i c a l l y we would l i k e to think of one 

type containing another ( i e . ||P|| C ||Q ||). This leads to the notion of a 

hierarchy of TYPES, motivating the following a c y c l i c i t y d e f i n i t i o n ^ . 

D efinitions ALPHA, BETA and TAU 

The relations ALPHAT, BETAT and TAU T are defined on a TDB, T, over 

P x P: 

1) P ALPHAT Q i f f Q E Pj v P 2 v ... P n £ I such that 

P = P^ for some i , 1 <= i <= n 

2) P BETAT Q i f f P EE Qx A Q 2 A ... Q n £ I such that 

Q = Q i for some i , 1 <= i <= n 

3) TAU T = ALPHAT U BETAT 

The subscripts on ALPHA^, BETA^, and TAÛ , w i l l be dropped where impli

c i t . A TDB i s said to be a c y c l i c i f f TAU"1" i s i r r e f l e x i v e . i e . 
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P Q T A U Pl and Pj T A U P 2 and ... P n - 1 T A U P. 

implies not P n T A U P Q (n > 0) 

The graphical representation of Section B can be adopted with 

P l P2 * ' * P n 

representing (x) Px — PjX A P 2x A ... P nx (4i) and with 

P 

r l r2 * * * r n 
representing (x) Px = PjX v P 2x v ... P Rx ( 4 i i ) and f i n a l l y 

P 

P 2 . . . P n 

representing (x) Px = Pjx v P 2x v ... P nx, ( x ) ~ ( P i x A PjX) ( 4 i i and 4 i i i ) , 

Diagram C.l gives an example of this graphical representation of I. 

By convention, i f P TAU Q then P is d i r e c t l y below Q in the graph. Thus a 

TDB i s a c y c l i c when and only when i t s graph is a c y c l i c . Throughout this 

paper the a c y c l i c i t y of a l l TDBs i s assumed. 

The following lemma gives us the property of set containment desired: 



PERSON 
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Lemma C.l Generalization 

If T i s a TDB, [P, Q] C P and P TAU+ Q 

then T (- (x) Px 3 Qx 

Proof: By induction on n i t is s u f f i c i e n t to prove 

P TAU Q implies T |~ (x) Px =3 Qx 

Case n = 1 P TAU Q 

Subcase a P ALPHA Q then Q = P 1 v P 2 v ... P n £ I 

such that P = P i, 1 <= i <= n 

In clausal form P. v Q £ I or (x) Px D Qx £ I 

Subcase b P BETA Q then P = Q 1 A Q 2 A ... Q n £ I 

such that Q = Q±, 1 <= i <= n 

In clausal form P v Q i £ I or (x) Px 3 Qx £ I 

Case n > 1 P TAU n Q 

Induction assumption: 

P TAU n _ 1 Ql implies T |~ (x) Px 3 Q{x for any Q : £ P 

Since P TAU n Q then for some Q-^ £ P, 

P TAU n _ 1 Q : and Qx TAU Q 

Then T \~ (x) Px 3 Q^x by induction assumption and 

T (- (x) Qjx 3 Qx by case n = 1 

Therefore T (- (x) Px Z? Qx QED 
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Corollary C.l Containment 

If T i s a TDB, [P, Q] C P and P TAU+ Q 

then ||P||C HQII 

In terms of the graph of I, we are assured that i f a path exists between 

P and Q i n a ' v e r t i c a l ' d i r e c t i o n then every INSTANCE of the TYPE P is an 

INSTANCE of the TYPE Q. We can see now why a c y c l i c i t y is the only p r a c t i c a l 

choice for i f P TAU+ Q and Q TAU P then ||p|| C ||Q|| C ||P|| or ||p|| = | | Q | | . 

This would c e r t a i n l y be of no use in a p r a c t i c a l TDB. 

The following lemma establishes the relationship between set intersection 

and part 4i i n the d e f i n i t i o n of a TDB. 

Lemma C.2 Intersection 

For a TDB, T, i f P = ?l A P 2 A •.. P n £ I 

then ||P|| = H p j n ||p2|| n ... ||Pn|| 

Proof: 

Case 1 c £ ||P|| (or T f-Pc) 

In clausal form Px v P^x £ I 

for each i , 1 <= i <= n 

By resolution T \~ P^c implying c £ ||p J| or 

c £ IIPJI n ||P 2 || n . . . ||pn|| 
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^ s e 2 c e Hi?!II n l|p 2 l l n . . . | | P n | | 

(or T f- P ic for each i , 1 <= i <= n) 

In clausal form Px v P^x v P 2x v ... P nx £. I 

By resolution T |— Pc implying c £. ||p|| 

Section D develops a p a r a l l e l result r e l a t i n g the union of extensions to the 

formula P E P , v P~ v ... P . 
i z n 
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Section D The Definite Component of a TDB 

It has been recognized by Reiter' 1 1-' and Minker'^ that r e s t r i c t i n g inten-

sional information to Horn clauses (clauses containing at most one pos i t i v e 

l i t e r a l ) e f f e c t i v e l y controls the size of the proof search space without 

overly constraining the expressiveness of the formalism. This can be seen 

by viewing Horn clauses as procedures'^ i n a non-deterministic programming 

language similar to MICRO-PLANNER^14^. Ie., the formula, 

P 1 A P 2 A ... P n D P, 

could be programmed, 

THE_CONSEQUENT_OF ( P ^ P 2, ... P ) IS P; 

and the clause, 

P[ v P^ v ... P^, 

could be programmed, 

THE_CONSEQUENT_OF ( P p ? 2 , ... P ) IS INCONSISTENCY. 

Proofs done i n this way are reasonably e f f i c i e n t as only unit consequents 

are ever generated. Thus the maximum number of procedure f i r i n g s is bounded 

by the number of elements i n P. 

In this section we w i l l consider clauses of the former form ( d e f i n i t e 

clauses) to develop the desired result on union of extensions. 

D e f i n i t i o n Definite Component 

Given a TDB, T = (C, P, I, E), the d e f i n i t e component of T, A ( T ) , i s 

defined as the TDB, (C, P, [W £. I | W i s a de f i n i t e clause], E) 
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Note that E contains only d e f i n i t e clauses. We can now see exactly what 

parts of a TDB are d e f i n i t e : 

W £ I 

P EE P 1 A P 2 A ... P n 

P EE P^ v P 2 v ... P n 

~- (P A Q) 

We would l i k e a result p a r a l l e l to lemma C.2 but r e l a t i n g unions of exten

sions to the formula P EE Pj v P 2 v ... P . However, as the following example 

shows, i t would not necessarily hold: 

FEMALE C = [jane] 

P = [FEMALE, GIRL, WOMAN] 

I = [FEMALE EE WOMAN v GIRL, 

\^ ~ (WOMAN A GIRL) ] 

GIRL E = [FEMALE jane] 

| | F E M A L E | | = [jane] and || WOMAN || = ||GIRL|| = [ ] 

since T \h WOMAN jane and T \h GIRL jane. 

Clausal Form Definite? 

P v P l s P v P 2, ... P v P n yes 

P x v P 2 v ... P n v P yes 

? l v P, P 2 v P, ... P n v P yes 

P v Pĵ  v P 2 v ... P n no 

P v Q no 

WOMAN 

So not only do we not have ||FEMALE || = 11WOMAN|| U ||GIRL|| but we have a TDB in 

which unnatural information i s contained. It is hard to conceptualize jane 

as a "WOMAN or GIRL" without her being either a WOMAN or a GIRL. Actually, 
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jane i s one of the two, we just can't determine which. For these reasons we 

i n s i s t on a TDB being "concrete". 

D e f i n i t i o n Concreteness 

1) The formula P EE P̂  v P2 v ••• p
n ^ * i s concrete i f f for every 

c £ C , A ( T ) \~ Pc implies there i s an i such that A ( T ) (— PjC. 

2) A TDB i s concrete i f f every formula of the above form is concrete. 

We could have defined concreteness i n terms of p r o v a b i l i t y from T rather 

than A(T). Unfortunately as we s h a l l see, i t turns out that at update time 

i t would then be excessively d i f f i c u l t to maintain concreteness. 

The disadvantage in the approach taken is that equivalence must be' estab

lished between T and A(T) before the result on union of extensions can be 

attained. Theorem D.l accomplished t h i s . 

The Davis and Putnam r e s u l t u s e d i n the proof of this theorem applies 

only for the propositional calculus. The following d e f i n i t i o n and lemma 

r e c t i f y t h i s . 

D e f i n i t i o n Propositional Component 

Given a TDB, T, and c £ C we define the propositional component of T 

with respect to c, PROP̂ ,c as: 

PROPTc = [P | Pc L E] U [W | (x)Wx t I] 

((x)Wx represents any formula in I with free variable x) 
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Using the last example: 

PROPTJane = [FEMALE, FEMALE = WOMAN v GIRL, ~ (WOMAN A GIRL) ] 

Lemma D.l Propositional Equivalence 

Given a consistent TDB, T, c £ C and P £ P 

then T f~ Pc i f f PROPTc (- P 

Proof: 

Part 1) Assume E U I U [Pc] i s u n s a t i s f i a b l e . By Herbrand's 

theorem, i f we replace each clause i n I with the set of clauses 

obtained by replacing the free variable 'x' with each member of C 

then the remaining set is u n s a t i s f i a b l e . C a l l this the ground form 

of I . Since I U E was o r i g i n a l l y consistent, the ground form of 

I U E i s . [Pc] cannot resolve against any clause which does not 

have c's as i t s ground constant. Therefore a l l the constants i n 

C except c are irrelevant to the inconsistency. If we construct 

the clause set 

[Q | Qc £ E ] U [W | Wc £ ground form of I ] U [7] 

then we have a propositionally u n s a t i s f i a b l e set. Therefore, 

PROPTc \~ P. 

Part 2) Assume PROPTc U [P] i s un s a t i s f i a b l e . Clearly 

[Wc | W £ PROPTc U [P]] i s un s a t i s f i a b l e . This is a ground 

substitution of E U I U [Pc]. Therefore T (- Pc. 
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Theorem D.l also requires that one factor out certain non-definite clauses. 

These are the ones that allow jane to be a "WOMAN or GIRL" without the ne

cessity of her being one of WOMAN or GIRL. 

D e f i n i t i o n Dead Clauses 

Given a TDB, T and c £ C then the dead clauses of T with respect to c, 

DEAD^c i s defined: 

DEADTc = [P 3 ?1 v P 2 v . .. P n £ PROPTc | PROP^ T)C \~ P, n > 1] 

Lemma D.2 Dropping of Dead Clauses 

Given a concrete TDB, T, c £ C and W £ DEADTc 

then PROPTc ~ DEADTc (~ W. 

Proof: 

W = P O Pj v P 2 v ... P n £ DEADTc 

and PROP^^c \~ P. 

By concreteness for some i , 1 <= i <= n, 

PROP A ( T )c t - P r 

P i subsumes W so PROP^ T^c f~ W. 

Now DEADTc contains no de f i n i t e clauses so 

PR 0 P ^ T ) C C PR0PTc ~DEAD Tc giving 

PROPTc ~ DEADTc (- W. QED 
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We w i l l now prove equivalence of T and A(T). The strategy w i l l be to cate

gorize the set of clauses produced by resolution within PR0P Tc ~ DEADTc and 

show that i f a unit Qc i s provable from T then Q w i l l be in that set. 
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Theorem D.l T ~A(T) Equivalence 

Given a consistent concrete TDB, T, c £ C and Q £ P 

then T |- Qc i f f A(T) \~ Qc. 

Proof: 

Assume PROPTc \~ Q. 

Then PROPTc ~ DEADTc |~ Q by Lemma D.2. 

So PROPTc ~DEAD Tc U [Q] i s u n s a t i s f i a b l e . 

Define the following sets i t e r a t i v e l y : 

T Q = PROPTc ~ DEADTc U [Q] 

Ti+1 = T i w h e n Q £• T i ££ 

when T^ contains no positive units, otherwise 

= T ± ~ [X v P v Y £ T i] -~ [X v 7 v Y £ T ±] U 

[X v Y | X v 7 v Y £ T i] 

where ? i s the lexic o g r a p h i c a l l y f i r s t positive unit 

i n T^ and X and Y are negative predicate and positive 

predicate disjunctions, (possibly n u l l ) 

The following i s an invariant statement on T^: 

I f W £ T. then 

A) W = P such that PROP^ T^c (- P for some P £ P or 

B) W = Pj such that P = ? l v P 2 v ... P n £ I 

which i s exclusive and 

PROP^ ( T )c f~ P ± ( i 4 j) or 



PAGE 22 

C) W = Qj v Q 2 v ... Q v P (ra >= 1) such that 

P = \°l A P 2 A ... P n £ I and 

[Qp Q 2 , ... Q m] C [p x, P 2, ... P n] and 

PROP^ T)C r~ W or 

D) W £ T Q 

The invariant statement is proved by the following subproof: 

Subproof: By induction on i 

Case i = 0 Clear by condition D 

Case i > 0 If W £ T i + 1 then W £ T ± or 

W = R (U, V) for [U, V] C T ± with U as the lexic o g r a p h i c a l l y f i r s t 

unit in T^. 

PROP^ T^ (— U by A and D above. 

V i s of the form B, C or D above: 

B) V = Pj such that P = ? l v P 2 v ... P n £ I 

which i s exclusive and 

PROP A ( T )c |- P i ( i ¥ j) 

U = Pj and PROP^ ( T ) (~ P j . 

But P. v Pj £. I by exclusiveness. 

This violates the consistency of T, so V ^ P j . 

C) V = Ql v Q 2 v ... Q m v P (m >= 1) 

P =E P, A P~ A ... P £ 1 and 
1 Z n 

[ Q L F Q 2, . . . Q F F L ] C [ P l f P 2, . . . P n] and 

PROP^ T)C (- V. 
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U = for some i , 1 <= i <= m. 

Cle a r l y W has the same form as C with PROP^.-^ (— W 

unless m = 1 i n which case W = P with PROP^^ \— P 

which i s in the form A. 

D) V £ PROPTc ~DEAD Tc U [ Q ] 

Case 1 V = P x v P 2 £ I, t r i v i a l l y PROP^ T ) C f - V . 

U = ? l so PROP^ T) f - P 2 which is of form A. 

Case 2 V = pT v PT v ... F v P £ I 
i z n 

See C above. 

Case 3 V = p T v i T ( i < j) i J 
where P EE P, v P~ v ... P„ £ I which i s exclusive. 1 Z n 

Assume without loss of generality that U = P^. 

Then W = P.. which is in the form B. 

Case 4 V = P v Pj v P 2 v ... P U = P. 

Since PROP^ T^c {- P then V £ DEAD^c. 

But then V t T Q which is a contradiction. 

Case 5 V = " Q 

But then U = Q was the lexicographically f i r s t unit in 

T^ S O by construction T^ +^ = T^. 

This completes the subproof of the invariant statement on T^. 

As a corollary, T^ contains no non-unit positive clauses. 

By the results of Davis and Putnam'^, T i + 1 i s unsatisfiable whenever T i i s . 

Since T Q i s un s a t i s f i a b l e , by induction for a l l i , is u n s a t i s f i a b l e . 
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Also, T\ contains a positive unit for every i , for i f not then the i n t e r 

pretation i n which every predicate is taken as false is a model for T^. 

Note that T^ +^ has at least one less predicate symbol than (the le x i c o 

graphically f i r s t unit in T^) unless T i + j = T^. Since T i always contains a 

po s i t i v e unit and since P i s f i n i t e , then T^ +^ = for some i . At this 

point Q £ T^ since contains a positive unit. By the invariant statement 

on T., 

P R O P ^ . - Q C (~ Q QED. 

We can now relate part 4 i i in the d e f i n i t i o n of a TDB to the union of exten

sions. 

Lemma D.3 Union 

Given a consistent concrete TDB, T and a formula 

P E P, v P 0 v ... P £ I 
l z n 

then ||P|| = ||Pl|| U ||P2|| U ... | | P J . 

Proof: 

Part 1 c £ ||p|| or T (~ Pc. 

By theorem D.l, A(T) I -Pc. 

By concreteness, for some i , \~ P^c 

giving T f - P^c or c £ | | P i | | . 

Part 2) c £ ||p±|j or T f- P ic for some i . 

In clausal form P^ v P £ I. 

By resolution T |— Pc or c £ ||p||. 
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U n t i l now we have not d i f f e r e n t i a t e d between d i s j o i n t and non-disjoint union 

of extensions of the form P EE P^ v P 2 v ... P n £ I . However, in most (but 

not a l l ) applications we would l i k e disjointness s t r i c t l y enforced. 

Lemma D.4 Disjointness 

Given a consistent TDB, T, and an exclusive formula P EE P^ v P 2 v ... P n £ I 

then for each i , j , 1 <= i < j <= n, ||pj f) ||Pj|| = [ ]. 

Proof: Let c £ ||p.|| f| ||p..||. 

Then T (~ P ^ and T |- P^c. 

But P i v Pj £ I . 

This violates consistency, so no such c e x i s t s . 

Corollary D.l D i s j o i n t Union 

Given a consistent concrete TDB, T, and an exclusive formula 

P EE Pj v P 2 v ... P n £. I 

then ||P|| = HPJI • ||P2|| • ... ||PJ. 
In summary: 

1) For conjunctions ||p|| = H P J f l ||P2II H ... | | P J 

Furthermore i f T i s consistent and concrete: 

2) For disjunctions ||p|| = HPJI U ||P2|| U ... ||PN|| 

3) For exclusive disjunctions ||P|| = ||p j || « ||P2|| 9 ... ||Pn|| 
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Section E Transformation of a TDB to i t s Reduced Form 

One use of a TDB i s to answer the question "Is T I - Pc". Reiter for one re

quires this for his "typed u n i f i c a t i o n algorithm" as described i n [10,11]^ 

Algorithm E . l below computes [P | T f - Pc] given c £ C , for a concrete TDB, 

and detects any inconsistency i n PROPTc. 

As [P | T (~ Pc] may contain a large number of P f o r any given c, we define 

a reduced form of T, R(T), which contains only the Pc's necessary to span E . 

This corresponds to associating INSTANCES with primitive semantic categories 

in [7,8,9]^ -j^us, we can determine i f c £ ||p|| by looking at the primitive 

categories below P. 

We have shown that formulae of the form P v P , v P ~ v . . . P £ 1 can be re-
1 z n 

moved with no effect when T is both concrete and consistent. This motivates 

computing on the Horn component of concrete TDBs. 

D e f i n i t i o n Horn Component 

Given a TDB, T = ( C , P, I , E ) , define the Horn component of T, H(T), as 

H(T) = ( C , P, [W £ I | W i s a Horn clause], E ) 

Note that E contains only Horn clauses. Looking at this case by case: 

W £ I Clausal Form 

P E P , A P o A ... P „ P v P, , P v P 9 , ... P v P„ 1 z n I z' n 
P, v P 0 v ... P„ v P 
1 z n 

P IE P 1 v P 2 v ... P n ? 1 v P, P 2 v P, ... P R v P 

P v Pj v P 2 v ... P n 

~ (P A Q) P v Q 

Definite? Horn? 

yes yes 

yes yes 

yes yes 

no no 

no yes 

The following algorithm computes [P | T (— Pc] given c £ C 
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Algorithm E . l For computing DOMAIN^c given c £ C 

T Q < - PROP H ( T )c 

s 0 < - [ ] 

FOR i = 0 to i n f i n i t y DO 

BEGIN 

IF contains no positive unit 

THEN DOMAIN̂ ,c E E S±, 

k < — i , EXIT 

P < — the lexicographically f i r s t positive unit in T^ 

IF 7 £. T. 
THEN PR0PTc i s inconsistent, 

D0MAINTc i s undefined, EXIT 

s 1 + 1 <- S ± U [P] 

T 1 + 1 <— T i ~ [X v P v Y £ T ±] ~ [X v P v Y £ T ±] 

U [X v Y | X v P v Y £ T i] 

where X and Y are disjunctions of negative and posi

t i v e predicates respectively (possibly n u l l ) . 

END 

Example: Using the I of diagram C.l and l e t t i n g : 

E = [SINGLE John, MALE John] 

and c = John, the algorithm w i l l produce the following values: 
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0 

PERSON 

SINGLE 

I T . ^ T 1 + 1 (dropped) 

MALE MALE 

MAN 3 MALE 

BOY 3 MALE 

MALE 3 PERSON 

— (MALE A FEMALE) 

MALE A ADULT 3 MAN 

MALE A CHILD 3 BOY 

PERSON 

FEMALE 3 PERSON 

ADULT 3 PERSON 

CHILD 3 PERSON 

SINGLE 

BACHELOR 3 SINGLE 

MAIDEN 3 SINGLE 

SINGLE 3 ADULT 

^(S I N G L E A MARRIED) 

MAN A SINGLE 3 BACHELOR 

SINGLE A WOMAN 3 MAIDEN 

ADULT 

MAN 3 ADULT 

WOMAN 3 ADULT 

MARRIED 3 ADULT 

— (ADULT A CHILD) 

ADULT 3 MAN 

FEMALE A ADULT 3 WOMAN 

MAN 

BACHELOR 3 MAN 

MAN 3 BACHELOR 

BACHELOR BACHELOR 

T 1 + 1 — T. (added) 

ADULT 

MAN 

PERSON 

FEMALE 

ADULT 3 MAN 

CHILD 3 BOY 

ADULT 

MARRIED 

MAN 3 BACHELOR 

WOMAN 3 MAIDEN 

CHILD 

MAN 

FEMALE 3 WOMAN 

BACHELOR 
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contains no positive unit. Thus: 

DOMAIN^John = [MALE, PERSON, SINGLE, ADULT, MAN, BACHELOR] 

The algorithm can be implemented by hash indexing predicate symbols into a 

copy of the formulae i n I i n which they appear (only one copy is made for 

each formula). For e f f i c i e n c y , p ositive units are kept i n a separate l i s t . 

When a formula of the form X v P v Y £ I i s to be dropped i t i s tagged as 

deleted. When a formula of the form X v P v Y i s to be replaced by X v Y 

the predicate symbol P i s deleted from the copy. If a positive unit results 

i t i s added to the positive unit l i s t . If the n u l l clause r e s u l t s , DOMAINTc 

is declared to be undefined and the o r i g i n a l clause P v Q that caused the 

contradiction can be printed for inspection. 

I f we assume that the time taken to delete the symbol P from X v P v Y i s 

constant, the time taken to add a symbol to the positive unit l i s t i s con

stant and the hash indexing i s performed in constant time (by design) then 

the following i s a bound on the time c o m p l e x i t y ^ of the algorithm: 

0 # predicate symbols in W 

JH(T) r 

Theorem E.1 Algorithm E . l Correctness 

Given a concrete TDB, T, and c £• C 

If PROPTc i s consistent 

then DOMAINTc = [P | T (~ Pc] 

otherwise DOMAINTc i s undefined 

Proof: 

F i r s t , note that the class of Horn clauses i s closed under resolution 
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( i e . R(Wp W2) i s Horn whenever and W2 are). It follows that 

the only p o s i t i v e clauses i n for a l l i are units. This is needed 

to apply the Davis and P u t n a m t h e o r e m below. 

Case A PROP^c i s consistent 

Subcase 1 P £ DOMAIN^c. 

For some i , P £ T± giving P R 0 P H ( T ) C \~ P 

and hence PR0P Tc (~ P 

Subcase 2 T (- Pc 

Assume P $ 7± for a l l i 

Define H*(T) = H(T) U [7] 

Sta r t i n g the algorithm with H'(T) rather than H(T) we produce 

rather than 

Note that when defined, 

T^ = T. U [7] 
The algorithm w i l l terminate i n one of two ways: 

1) [P, 7] C T^ for some i 

([Q, Q] <£ T[ when Q £ P and Q ^ P 

since Tg i s consistent) 

But then P £ T^ co n t r a d i c t i o n 

2) T^ contains no p o s i t i v e unit; but then the i n t e r p r e t a t i o n 

i n which every predicate symbol i s f a l s e i s a model f o r 

T^. Since T (— Pc by theorem D.l, A(T) (— Pc giving 

H(T) (~ Pc or Tg U [P] = Tg i s u n s a t i s f i a b l e . By Davis 

and Putnam^, T^ i s unsatisf i a b l e which i s a contradic

t i o n . Therefore P £ T^ for some i . 

The algorithm must terminate since T^ +^ contains at least 

one fewer predicate symbol then T i. 

Case B PROP^c i s u n s a t i s f i a b l e 

Statement: PR0P H^ T^c is u n s a t i s f i a b l e 

Subproof: By lemma D.2 PR0P Tc ~ DEADTc i s u n s a t i s f i a b l e . If 
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we define T Q as PROPTc ~ DEADTc and l e t the algorithm define 

for each i , then the invariant statements of theorem D.l hold 

with one addition: W £. may be the n u l l clause. 

The algorithm w i l l terminate i n one of two ways: 

1) [P, P] C for some i where P i s the lexicographically 

f i r s t unit i n T^. By statements A and B of theorem D.l, 

PROP A( j.)C \~ P and 

for some Q £. P, P v Q £ 1 and PROP^^^c |- Q. 

Since P v Q £ H(T) and A(T) C H(T), PROP R (- T )c i s inconsis

tent. 

2) By the results of Davis and Putnam^, for each i , T^ i s 

u n s a t i s f i a b l e . Since T^ +^ contains at least one less l i 

t e r a l than T^, for some k, T^ contains no positive l i t e r 

a l s . The interpretation i n which every predicate symbol 

i s false is a model for T^ unless T^ contains the n u l l 

clause. Since T^ i s unsa t i s f i a b l e i t must contain the n u l l 

clause. T Q doesn't contain the n u l l clause so for some i , 

[P, P] C T i where P i s the lexicographically f i r s t unit T^. 

In this case though, the algorithm w i l l have terminated as 

in case A. 

This ends the subproof. 

As in the subproof, the algorithm w i l l not terminate with T^ con

taining no units (Starting with T Q = PROP^^^c unsatisf i a b l e ) . 

Therefore, [P, P] C T i for some i . The algorithm w i l l stop with 

DOMAINTc undefined. QED 

This ends the correctness proof of algorithm E . l 
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The following c o r o l l a r y i s used i n the proof of the update algorithm. 

Corollary E . l A(T) - DOMAIN^ Equivalence 

Given a TDB, T (not necessarily concrete or consistent) and c £. C 

1) I f P £ DOMAINTc then A(T) H p c 

2) If A(T) h P c t h e n p & DOMAINTc or DOMAINTc i s undefined 

Proof: 

Part 1 P £ D0MAINTc 

The invariant statements of theorem D.l hold with the addition 

that W may be the n u l l clause. 

Therefore A(T) \~ Pc 

Part 2 A(T) h Pc 
Hence H(T) (- Pc. 

If T i s consistent then by theorem E . l , Case A, subcase 2, 

P £• T^ for some i (we do not need theorem D.l here) or 

P £ DOMAINTc. 

If T i s un s a t i s f i a b l e then by theorem E . l , Case B, H(T) i s 

uns a t i s f i a b l e and DOMAINTc i s undefined. QED 

As a TDB, T, becomes large, [DOMAINTc | c £ C] may become very large. The 

following allows us to save only the Pc that span E. Ie., store only the 

'lowest' extensions i n the graph. 

D e f i n i t i o n The Reduced or Canonical TDB 

Given a consistent concrete TDB, 

T = (C, P, I, E), the reduced TDB, R(T), i s defined: 

R(T) = (C, P, I, [Pc | P £ DOMAINTc and 

i f Q £ DOMAINTc then not Q TAU+ P]) 
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Using the example of diagram C . l : 

[P | Pc £ E] = [SINGLE, MALE] 

DOMAINTc = [MALE, PERSON, SINGLE, 

ADULT, MAN, BACHELOR] 

but [P | Pc £ R(T)*s extension] = [BACHELOR] 

This i s a good space reduction. In fa c t , i n no case i s R(T)'s extension 

larger than T's. Note that we cannot assume that the concreteness or 

consistency of R(T) follows from that of T. 

Lemma E . l Spanning 

Given a consistent concrete TDB, T, 

i f P £ DOMAINTc then for some Q £ P with Qc £ R(T)'s extension, 

Q TAU* P 

Proof: Assume for each n >= 0 with Qc £ R(T)'s extension, that 

not Q TAU n P 

By d e f i n i t i o n of R(T)'s extension, Pc £ R(T)'s extension 

Choosing n = 0, Q = P we have a contradiction for Q TAU^ P. 

R(T)'s extension i s said to span [Pc | T |— Pc]. 

Getting back to the o r i g i n a l problem, "Is T |— Pc?" we see that we need only 

scan R(T)'s extension for Qc such that Q TAU* P. 

Theorem E.2 T - R(T) Equivalence 

Given a consistent concrete TDB, T, 

then i f Pc £ R(T)'s extension then T (- Pc 

and i f Pc £ E then R(T) (- Pc 

Proof: 

Part 1) Assume Pc £ R(T)'s extension. 

P £ D0MAINTc so by theorem E . l , T (~ Pc 
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Part 2) Assume Pc £ E 

or P £ DOMAINTc. 

By the spanning lemma (E.l) f o r some Q £ P, 

such that Qc £ R(T)'s extension, Q TAU* P. 

By the generalization lemma ( C . l ) , R(T) J— Pc QED 

Corollary E.2 

Given a consistent concrete TDB, T, c £ C, P £ P, 

T f- Pc i f f R(T) f~ Pc 

Corollary E.3 Concreteness of R(T) 

Given a consistent concrete TDB, T, R(T) i s concrete 

Proof: 

Let P E P , v P, v ... P £ 1 
l l n 

Assume for some c £ C , A ( R ( T ) ) \~ Pc 

Then T f— Pc by theorem E.2 

a n d A X T ) \~ P c by theorem D.l 

a n d A X T ) (— P^c by T's concreteness (for some i , 1 <= i <= n) 

This gives P ^ £ DOMAINTc by theorem D.l 

By the spanning lemma ( E . l ) , for some Qc £ R(T)'s extension, 

Q TAU* P i 

By the generalization lemma (C.l) (which resolves only d e f i n i t e 

clauses), A ( R ( T ) ) ( - p i c Q E D 

Corollary E.4 Consistency of R(T) 

Given a consistent concrete TDB, T, R(T) i s consistent 

Proof: 

Let S = [Pc | P £ DOMAINTc] U 

[Pc | P £ P and P I DOMAINTc] 

S i s a model for H ( T ) [ 1 2 ^ . 
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If i t is not a model for T then for some 

P = Pj_ v P 2 v ... Pfl £ I, 

P £ DOMAINTc and each P ± $ DOMAINTc, 1 <= i <= n 

This contradicts concreteness, so S i s a model for T. 

R(T) i s concrete so s i m i l a r l y S i s a model for R(T). QED 

Thus R(T) i s a suitable replacement for a consistent TDB, T. 



PAGE 36 

Section F Updating a TDB 

Thus far we have shown that a TDB w i l l have the desired set theoretic pro

perties i f concreteness and consistency are maintained. We have given a 

canonical (reduced) form of the TDB that can be e f f i c i e n t l y computed while 

conserving both space and time i n answering "Is T (— Pc?". We must now spe

c i f y an algorithm that w i l l update the canonical TDB while guaranteeing con

creteness and consistency. 

Given a concrete and consistent TDB, T, and c £. C the algorithm accepts 

additions to and deletions from DOMAINTc so as to leave the resulting TDB 

concrete and consistent. It i s assumed that o r i g i n a l l y T = R(T). The 

algorithm w i l l produce l ' = R ( T ' ) . 

Algorithm F . l For updating a canonical TDB T, given c £ C 

UPDATETc: 

BEGIN 

WRITE (c, "has the root properties:", [P | Pc £ E]) 

S: INPUT (A C P (additions) and D C P (deletions) ) 

IF [Pc | P £ D] <£ E THEN 

WRITE (D ~ [P | Pc £ E], "cannot be deleted, t r y again") 

GOTO S 

L: T* <— (C, P, I, E U [Pc | P £ A] — [Pc | P £ D]) 

Calculate DOMAINTc 

CONCRETE <-- TRUE 

E: IF DOMAIN^ic i s undefined (because P v Q £ I) THEN 

WRITE (c, "cannot be both a", P, "and a", Q, "try again") 

GOTO S 
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C: FOR EACH P EE P, v P 9 v ... P £ I such that 

P £ DOMAIN^,tc but no DOMAINTc 

WRITE ("A", P, "must also be one of", P j , P 2, ... P , 

"add one of them") 

CONCRETE <— FALSE 

IF NOT CONCRETE THEN 

INPUT (A* C p (additions) ) 

A <— A U A* 

GOTO L 

Calculate R ( T ' ) given DOMAINTc and T ' * 

T * < — R ( T ' ) . 

WRITE ("update accepted") 

END 

Note that i n the step marked *, DOMAINTtc^ for c-̂  4 c need not 

be recalculated as DOMAIN^tc^ = DOMAINTc^. The following theorem 

gives the update properties desired. 

Theorem F . l Algorithm F . l Correctness 

Given a consistent concrete and canonical TDB, T and c £ C then the 

resultant canonical TDB, T ' , i s consistent and concrete. 

Proof: 

Part 1 Concreteness 

Let P E P j v P 2 v ... P n £ I and /\(T*) (~ Pc 

By c o r o l l a r y E . l , since DOMAINTc i s defined i n order for 

algorithm termination, P £ DOMAIN^tc. Since the algorithm 

terminated (CONCRETE i s TRUE), for some i , ? ± £ DOMAINTc. 

Corollary E . l gives A(T') H p i c ' 
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Part 2 Consistency 

If T 1 i s not consistent then since T i s consistent, 

PROP^tc must be u n s a t i s f i a b l e . Theorem E . l applies since 

T* i s concrete saying DOMAIN^ic i s undefined. This con

tr a d i c t s termination of the algorithm. Therefore T 1 i s con

s i s t e n t . 

By c o r o l l a r i e s E.3 and E.4, R ( T ' ) i s concrete and consistent. QED 

The following i s a 

Input 

- Update John 

- A=[ADULT] 

- A=[MALE,SINGLE] 

- Update John 

- A=[MARRIED] and 

D=[SINGLE] 

- A=[MARRIED] 

A=[MARRIED] and 

D=[BACHELOR] 

A=[MALE] 

sample update using the I 

Response 

- John has the root 

properties [ ] 

- An ADULT must be one of 

MARRIED or SINGLE, add 

one. 

- Update accepted 

of diagram C.l and an empty E . 

E or E * 

E = [ ] 

- John has the root 

properties [BACHELOR] 

- [SINGLE] cannot be 

deleted, try again 

- John cannot be both 

MARRIED and SINGLE, try 

again 

- An ADULT must be one of 

MALE or FEMALE, add one 

- Update accepted 

E ' = [ADULTJohn] 

E ' = [ A D U L T J o h n , M A L E J o h n , 

S I N G L E J o h n ] 

E ' = [ B A C H E L O R J o h n ] 

E = [ B A C H E L O R J o h n ] 

E' = [ M A R R I E D J o h n , 

B A C H E L O R J o h n ] 

E ' = [ M A R R I E D J o h n ] 

E* = [ M A R R I E D J o h n , M A L E J o h n ] 
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It may seem redundant that we must "Add MALE" when we did not e x p l i c i t l y de

lete MALE. However, when BACHELOR i s deleted, the algorithm has no way i n 

general of determining i f MAN and/or SINGLE are to remain i n the TDB. Ra

ther than trying to second guess the user, the algorithm asks him to correct 

any dropped information. 

Before the f i r s t update, when E = [ ], for the update theorem to apply, T 

must be concrete and consistent. It i s c e r t a i n l y concrete. In order for i t 

to be consistent, I must be consistent. The interpretation i n which a l l pre

dicate symbols are false under the interpretation i s a model for I, so i t is 

consistent. Thus by induction on the update theorem we are assured that i f 

we start with E = [ ] then T w i l l always be concrete and consistent a f t e r 

the update. 

Although there are no inconsistencies i n I, there may be constraints that 

prevent c e r t a i n kinds of updates from taking place. By this we mean that 

given some P £ P, for no c £ C i s Pc £ E while T i s consistent. 

Ie. ||p|| = [ ] always. 

Therefore i f the TDB i s to be kept consistent, ||P 1 f| = [ ] always. This i s 

c l e a r l y a case of bad structuring of I. It can be avoided by ensuring that 
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for a l l P £ P, I U [Px] i s consistent. This can be guaranteed by l e t t i n g 

E = [Pc] for any c £ C and calculating DOMAINTc. If undefined, then I i s 

badly structured above P. 
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Summary and Conclusions 

A generalized structure has been proposed for Reiter's typed database 

to replace the more r e s t r i c t e d notion of the ISA hierarchy. It provides a 

r i c h structuring f a c i l i t y and imposes only the natural requirements of 

so-called concreteness and consistency. Results have been given to ensure 

that the database has the desired set theoretic properties. An update 

algorithm has been specified that guarantees concreteness and consistency 

along with a technique for testing i f a s p e c i f i c element is a member of a 

given domain. A means for testing a non-atomic formula against the database 

was not included and i s an open topic. 

While t r a d i t i o n a l r e l a t i o n a l databases suggest no need for a typed database, 

work in a r t i f i c i a l i n t e l l i g e n c e and i n f e r e n t i a l database systems often are 

d e f i c i e n t because of the need for a more interdependant domain structure. 

Since the TDB provides the most rudimentary l e v e l of inferencing i t must be 

well structured and mathematically complete i n order that inferencing 

mechanisms b u i l t on i t stand on firm ground. It must not l i m i t the descrip

t i v e power of a host i n f e r e n t i a l database system, thereby reducing i t s 

a p p l i c a b i l i t y . We suggest that the proposed structure and algorithms for a 

typed database are adequate for managing the domain structure of i n f e r e n t i a l 

database systems. 
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Appendix A Dictionary of Symbols  

Sets: 

[ ] - Used in set d e f i n i t i o n s as a replacement for 

£ , € ~ Set membership and non-membership 

C , <£. - Set i n c l u s i o n and non-inclusion 

n, U - Set i n t e r s e c t i o n and union 

$ - D i s j o i n t union 

- Set difference 

| - Set q u a l i f i c a t i o n (read "such that") 

||p|| - Extension of a predicate, (see section C) 

Predicate Calculus Formulae: 

A - Conjunction symbol 

v - Disjunction symbol 

>̂ - Implication 

EE - Equivalence 

-"-̂  - Negation 

P - Also negation 

(x) - Universal quantificaion 

|—, |/- - Symbols for provabity and non-provability 

R(Wj, W2) - The resolvents of formulae W1 and W2
l J 
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Mathematical R e l a t i o n s : ^ 

ALPHA, BETA and TAU 

- Relations defined in section C 

R n - Composition of r e l a t i o n R, n times 

R + - Tr a n s i t i v e closure of r e l a t i o n R 

R - Reflexive t r a n s i t i v e closure of r e l a t i o n R 

General Usage: 

EE - read " i s defined as", i n de f i n i t i o n s and algorithms 

0 - computational complexity of an algorithm (order complexity)^^ 


