AUTOMATING PHYSICAL REORGANIZATIONAL REQUIREMENTS
AT THE ACCESS PATH LEVEL OF A
RELATIONAL DATABASE MANAGEMENT SYSTEM
by

GRANT EDWIN WEDDELL

BeSCe, University of British Columbia, 1976

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE
in
THE FACULTY OF GRADUATE STUDIES

(Department of Computer Science)

We accept this thesis as conforming
to the required standard.

THE UNIVERSITY OF BRITISH COLUMBIA

February, 1980

(g) Grant Edwin Weddell, 1980

)E«6 BP 75-S11E

In presenting this thesis in partial fulfilment of the requirements for
an advanced degree at the University of British Columbia, I agree that
the Library shall make it freely avai]abTe for reference and study.

I further agree that permission for extensive copying of this thesis
for scholarly purposes may be granted by the Head of my Department or
by his representatives. It is understood that copying or publication
of this thesis for financial gain shall not be allowed without my

written permission.

Department of 6”‘/’“ ter f;,‘g nce

The University of British Columbia
2075 Wesbrook Place

Vancouver, Canada

V6T 1W5

r; /
vate Adarch 3 750

Any design of an access path 1level of a database
management systen must make allowance: for physical
reorganization requirements. The :facilities provided for such
requirements at the. access path 1level have. so far been
primitive in npature (almost always, in fact, requiring
complicated human intervention). This thesis begins to explore
the: notion of increasing the degree:of automation of such
requirements at the access path 1level; to consider the
practical basis for self-adapting or self-organizing data
management systems. Consideration is first given to the
motifation (justification) of such a notion.;Tﬁen, based on a
review of the relevent aspects of a number of existing data
management systems, we present a complete design specification
and outline: for a proposed access path level. Regarding this
system we consider in detail the automation of two major
aspects of physical oréanization: the .clustering of records on
mass storage media and the selection of secondary indices. The
results of our analysis of these problems provides a basis for

the ultimate demonstration of feasibility of such automation. .

Table of Contents

Chapter I. INntroducCtion cecesccccscccsccccccccscsccccccvcsacasc |

A.

Be

Ce.

De

............

Justification For Automation ceeceecsceccceccccccassss8

,PreViouS Systems -..."“‘...'..'..‘......._.O._.'...;_Q;.;"12

Simplifying ASSumptionNS eeececcescceccscsccancessssaasneald

Chapter III: The SYSLEM ecocecsccccceccccccccnscsccccccccssliB

A.

Be

Ce.

D. .

E. .

_Overall DeSign'-éqq;;;ééé;eg;;Q;!é;;;;eq;v;;eQééeo--OQB

_The Primary Index -99é9-99-9!9b~!peoé-eqqe!ééqqug;;;6u

Chapter IV: Future Directions And ConclusionsS ceeeececeees122

A.

,The Next step'iooiioobqoobiob.6.6.oooo.¢qooqqoouqo;o122

[N r

ReférenceS:iii@ioo-.oqq;;;;;;;gqqéqqqgggqqqqqqgqgggquggg131

Appendix A: Base Relations Used By SORAAM cevesscitocecces 139

-ii-

List:of Tables -

II-1. BNF Syntax Of Legal Search Predicates For The RSS
of SYStem R 0!!9999999!99!99!!!.--.-.-_--9!!!!9999969295999213
II-2. Example Effect Of Change In Use Of A Folio In SODMS

III-1. Special Ralaticns Used By SORAAM sececcneesccnccansdlt

III-2. Scan Cost Of A Base Relation Via A Secondary Index

-jiii-

List of Figures

II-2. Horizontal Vs Vertical Clustering eceicecccscccscess3b
I1-3. Example Horizontal Clustering eesssvessssssecsescaces 3B
III-1. Storage Structure Of A Base Relation In SORAAM52
III-2. Example Operation Trees On SORAAM ceeeccoceccsecccccesb3
I1I-3. A K-d Tree Index To "cluster3® (from Figure II-3) .70
III-4, Sorted Order Insertion In A K-d Tr€€ sececcsscsssces!3

ITI-5. Example Base Relation With Primary And Secondary

I1I-6. A Cyclic Dependenby In Secondary Index Selection .100

-iv-

Acknowledgements -

I would like to thank my supervisors Paul Gilmore and Al
Fowler for their invaluable guidance and support. I would also
like. to thank Dave Kirkpatrick and again Paul Gilmore for
their collaboration on the work resulting in Section C of
Chapter III. Many thanks are also due Randy Goebel ‘and the
rest of my fellow graduates for many 1lively discussions
regarding the thesis. Finally I would like to thank Paul and
the Natural Science and Engineering Research Council for their

financial support. .

Introduction ' 1

Chapter 1. Introduction-

Reference will be made throughout this thesis to the
"access path 1level™ of a relational databasel! management
system (RDMS). This 1level 1is defined by Tsichritzis and
Lochovs_ky2 as the level responsible for providing efficient
access on relations. Their definition of access path level
presumes the existence of a "filé system®™ and, in turn,
provides for the implementation of the. "relatibnal 1an§uage"
level (this 1latter 1level represents the lowest level user
interface).

In more abstract terms the access path level represents
the lowest level inte:face between +the conceptual schema
[Nijssen 76a] and physical schema of a RDMS. It provides the
first level of information representation abstraction. .
Clearly, the design of +this 1level is determined almost
entirely by the requirements of the: RDMS data management
language (DML) and data definition language (or DDL, both of
which comprise the user interface to the .relational language
level).

Tsichritzis and Lochovsky are Qery specific about the
responsibilities of the access path level for an RDMS..

Essentially two facilities are called for. The first involves

1The single word "database" instead of "data base" or "data-
base" is used throughout the thesis.

2See pages 243-245 of [Tsichritzis and Lochovsky 77]

Introduction 2

efficient access within a relation. This, in essence, provides
for associative access to records., The second involves
efficient access between relations and is realized, usually,
with a linking convention: Such facilities might, for example,
be used to implement, respectively, the selection and join
operators of the relational algebra [Codd 70]..

In Chapter II (where, among other things, a review will
be made of some existing relational database systems) we will
find the responsibilities of some existing access path levels

" somewhat more extensive than selection and link facilities. .
Additional duties have included:t
(a) management of locking protocols,
(b) provision for a variety of recovery methodology,

{c) automatic transaction deadlock detection and
recovery and even

(d) complex query evaluation. .
To a very limited extent provision at the access path level
has also been made for:

(e) automatic physical <clustering of records on
secondary storage.

We can see, therefore, that the definition of access path

level is by no means clearcut. Nevertheless, many existing

relational database systems (e.g. System R [Astrahan et al. -

1The reader should not think from this list that little remains
to be handled by the "relational 1language"™ 1level.. The
Relational Data System (RDS) of System R [Astrahan et al. 76]
provides for evolving views (or logical subschema), facilities
for integrity assertions and an automatic transaction
triggering facility. .

Introduction 3

76], ZETA [Brodie et al. 75), OMEGA [Schmid et al. 75] and
INGRES [Stonebraker et al. 76]) conform closely to the
hierarchy of levels defined by Tsichritzis and Lochovsky. .

Oour concern in this thesis is to extend the: functionality
of the access path level to the point of automating, as far as
possible, the physical reorganization requirements of a RDMS.
Ssuch requirements (in order of priority) include:

(a) mass storage space management. It is a surprising

fact that some. of the most popular commercial
database management systems (DMS) available at
the time of this writing! require the explicit
allocation and control of fixed size disk
"extents" to their most abstract conceptual

units.

(b) physical reorganization implied by addition and

deletion of tuples and relations.. 1In some
commercial DMSs it is the user's responsibility
to periodically schedule nfile compaction®

utilities for the purpose of reclaiming space
occupied by "deleted" records. . '

(c) physical reorganization implied by changing
patterns of usage of existing relations. .

(d) physical reorganization implied by augmentation
or alteration of the data model itself. .

(¢) physical reorganization implied by the. detection
of faults in the physical (as opposed to logical)
organization of the tuples and relations. .
I am sure the reader will agree that (a) and (b) above
can and should be automated at some level of an RDMS.. A need

to automate (c), (d) and (e), however, is not as evident.

Consider in more detail what is implied by (c). We can include

1For example, TOTAL - a product of Cincom Systems, IncC..
[Datapro 79] in use at more than 2000 installations.

Introduction L

in this area decisions with regard to the archiving of
information, all decisions regarding the clustering of records
and even decisions with regard to the selection of such things
as indices.! 2
The reader may be unclear about the implications of (d)..
To clarify; such physical reo;ganizations might be implied by
the addition of an attribute to a relation or the addition of
a new relation. The automation of such physical reorganization
would further contribute to data independence.3
| There are some interesting thoughts with regard to item
(e). Experience has shown that no matter what the system or
hardware something will at some point in time become very
wrong with the database.* It 1is quite safe. to say that
significant resource in the form of £full time technical
personnél is spent in detecting and correcting such problems

in almost all commercial environments using a DMS

- - -

tRecall that the access path :level must at least provide for
automatic maintenance of such things. .

2At the time of writing the author is not aware:of any existing

DMS (experimental or commercial, relational or otherwise) that
fully automates (or even cones close) ‘to physical
reorganization requirements of item (c) alone. .

3Not having to recompile (rewrite!) all application programs

unaffected by the change in the logical model is certainly
nice. Even more desirable is relief from the. necessity of
reformatting and reloading vast amounts of data due to a minor
alteration in the logical model. .

4] speak from experience when I say that the. mysterious (ie..
unsolved) disappearance of entire tracks of data from a disk
can and will occur.

Introduction 5

(successfully);,Considering the growing complexity of the data
structures involved at the access path level of DMSs it is
clear that automating recovery of physical data integrity is
very desirable.

There is, however, an overriding motivation for such
degrees of automation. This concerns the growing tendency of
operating systems to assume the responsibilities of database
managément systems [Rodriguez and Echhouse 77]._Indeed many
feel that file systems are, in fact, nothing more than a
primitive DMS. We regard the desire of a "RDMS at the file
system level" ("phase four" in [Berryman and Fowler 79]) as
the: prime motivation (justification) for the increased
automation of physical reorganization requirements (the. first
section of Chapter II discusses this more fully). .

Now that we understand the notions "access path level"
and "physical reorganization requirements" we can categorize
the degree of automation of a given access path level:

L1: no reorganizational effort is ever necessary. .

L2: reorganization never is absolutely necessary and
can nevertheless always be accomplished
concurrently with retrieval and alteratione.

13: reorganization is never absolutely necessary but,
once initiated, requires exclusive access to any
affected structures and data (i. €. . no
concurrency)e. .

L4: reorganization can become absolutely necessary
but is entirely predictable and can always be
accomplished concurrently with retrieval and
alteration.

L5: reorganization can become absolutely necessary

and 1is entirely predictable, but once initiated,
requires exclusive access to any affected

Introduction 6

structures and data (almost all commercial DMSs
are no higher than this level).

L6: reorganization can become absolutely necessary
and 1is not predictable and will not permit any
degree of concurrency of use of any affected
structures and data (a garbage collector for a
lisp interpreter is in this category)e..
It is not clear which of L3 or L4 is more desirable. With
respect to this thierarchyt* it is clear that an implementation
should attain a\level as close to L1 as possible.! 1Indeed,
since: 1level L6 above is clearly unacceptable,. an
implementation must achieve a level at least as.good as L5.
The . design specification for the access path 1level
presented in this thesis accomplishes physical
reorganizational requirements concerning a type of record
clustering (i.e. "horizontal™" clustering?) and index
selection. These are realized at. a degree: of automation
corresponding to that of L2 above. The system, itself, is
called SORAAM (for Self-Organizing Relational Associative
Access Method). |
Chapter II is concerned, initially, with a more detailed

discussion of the motivations and justifications for such

automation. A review follows concerning the relevent aspects

——

1There is good reason to believe that achieving level L1 itself
is impossible. As shall be shown, the "optimal" arrangement of
records within pages makes sense only with regard to a
specific characterization of table or relation use (or gquery
history). In a real world environment such a characterization
itself may very from one day to the next..

2gee "Detailed Problem Definition" in Chapter II. .

Introduction 7

of a number of existing RDMSs. Some. detailed problem
definitions for our access path 1level are then presented
followed by an outline of the simplifying assumptions. .

Chapter III is concerned with the design of SORAAM.. An
initial section outlines the design specifications and
presents an overall design of the system. The next two
sections are concerned with the primary indexing and the last
two with the secondary indexing and search strategy.. Such
considerations of SORAAM relate to the two major aspects of
physical organization implied by patterns of usage of Dbase
relations: tuple clustering or blocking and secondary index
selection. .

The first section of Chapter IV presents an outline of
the ™next step" towards a demonstration of feasibility: the
acquisition of some specific empirical evidence and the
testing environment implied. The thesis concludes with an
overall assessment of SORAAM. In particular, advantages
realized over other systems with regard to self-organization
and automatic index selection are given. Unresolved issues and
suggestions for future research comprise:the,laét part of the

assessmnent.

A. Preliminaries 8

Chapter II: Preliminaries-

A, Justification for Automation:

Ample. evidence. exists that suggests a tendency of
operating systems to assume more direct responsibility of such
fhings as DMSs.,Consider, for example, the recent introduction
of System/38 from IBM [Henry 78). In this system, support for
a DMS was thought important enough to warrant the microcoding
of a significant percentage of the required software {[Watson
and Aberle 78). Nevertheless, one may ask what we can expect
of a DMS that a more traditional file system (possibly
including access method utilities) does not provide. .

The - qbvious advantage of a DMS is its greatly'enhanced
capacity for "direct"! information representation. . With
respect to +this an interesting analoqgy can be:drawn between
'DMSs and file systems on one side and high level and low level
programming languages on the other. One may even claim that,
where operating system facilities for procedural specification
(in the form of command languages/interpreters).have evolved
enormously, corresponding facilities for information
representation and wmanipulation have remained at a primitive

lavel,

1The degree of "direct'ness of various DMS's ‘"conceptual

schema" [Nijssen 76a] 1is often used, in fact, as the . most
significant measure of adequacy (for example, evaluations
concerning "relational" verses ‘'network" abstractions in
[McGee 761)..

A. Preliminaries 9

In a DMS, facilities for integrity and security
constraint specification are far more elaborate. Traditional
file systems have provided for a degree of security but only
at a gross file level;iDirect support for the maintenance . .of
physical integqgrity alone in most file systems is minimal. .

In enfofcing a conceptual schema at the operating systenm
level a greater degree of device independence.of "all above
the 0S" is achieved. Users are far 1less capable of taking
advantage of device dependent - knowledge in implementing
applications (this, of course, being the concern of the DNMS
implemehtors). This results in an environment far 1less
susceptible to such things as hardware. upgrades and even
contributes significantly to the overall portability of all
the applications.%

Recovery facilities provided by a DMS are. almost always
more extensive than those of file systems. The latter, for
example, have, in almost all cases, no support for recovery at
the transaction level. A DMS provides greater degrees of
recovery at larger 1levels of concurrency to finer grains of
data.

Theré is a more subtle but extremely important advantage
to +the enforcement of a conceptual schema at the operating

system level (i.e..a DMS instead of a file: system). This

1Should operating system primitives take advantage of a DMS to
perform some of their duties then such a DMS would contribute
directly to the portability of the operating system itself..

A. Preliminaries 10

concerns the resulting integration of all information
representation used by all applications. Such a result would
benefit virtually all 1levels of operating system support.
Consider, for example, that ¢the normal proliferation of
special purpose recovery utilities would essentially be
checked. ? A good case exists that contends such an integration
to be prerequisite to the attainment of higher 1levels of
computing environments.?2

Naturally, a DMS subsuming the .role of file system must
be able to support a variety of "traditional" operating system
facilities. These include:

(a) spooling systens,

(b) message passing systems,

(c) device and network interfaces and even

(d) compiler source code management. .
A remarkable design characteristic of the System/38 from IBN
[IBM 78] is that the .DMS of that machine :provides the basic
support for all of the above, In [McDonell 77] many arguments
are presented in favour of a "homogeneous secondary storage
input-output interface" (based upon the CODASYL DDL/DML,
[CODASYL 71], [CODASYL 73]). In an appendix to his thesis we

are presented with an entire implementation design for a

1This is true since all that would normally be required by most
applications would already be:provided by the DMS. .

2)A complete demonstration of this, however, is considered to be
outside the scope of the thesis.

A. Preliminaries 11

spooling subsystem based on this interface: In hisvthesis,
[Cargill 79] goes to great lengths in directly applying the
information modeling capability of the UNIX file system for
the purposes of compiler source code maintenances?

If we accept that a DMS instead of a file system is both
desirable and non-restrictive then obvious justification
exists for achieving the highest degree of automation possible
for physical reorganization requirements. Clearly, one cannot
allow a situation in which an entire computing system 1is
frequently unavailable because of time-consuming reformatting
or rebuilding phases., We see, therefore, the design of our
access path level appropriate in this more global environment. .

One. last point we shall deal with in +this section
concerns the idea of arriving at our "dream" by simply
implementing our DMS on top of a currently existing file
system. Experience has shown that such an approach eventually
involves either significantly altering the (operating systen
itself or adopting substantial design compromises. The Systenm
R people [Astrahan et al. 76] found it necessary, for example,
to make several extensions to VM/370 (IBM's large-scale
virtual machine facility). Others concur [Berryman and Fowler
79], [G6ray 78] that this is to be expecteds. On the other hand,

consider a decision made by the designers of INGRES:

10ne cannot help feel, when reading the thesis, that his life
would have been made much easier could he have taken advantage
of a more powerful information modeling capability. .

A. Preliminaries 12

"In keeping with the design decision of npnot-
modifying UNIX these considerations? were
incorporated in the design decision not to
support clustering."2

We shall consider ourselves, therefore, to be unconstrained in
the design of our access path 1level by lower levels of

software. Likewise, we shall be forever wary of our commitment

to the relational model of a conceptual schema.

B. Previous Systems -

A number of RDMSs have been developed at various research
centers. .This section first presents a general overview of
some . of these., Emphasis in this overview is placed on their
respective access path levels (as we shall see:the distinction
of an access path level is surprisingly well-defined in most
of these systems).. The physical reorganizational aspects of
the access path level is of particular concern. .

There has been some work concerning self-organization and
the problem of record (tuple) clustering. The:second part of
this section reviews +this work in relation to our notion of

physical reorganizational requirements.

1"'these considerations" involve +the facts that files are

realized in UNIX by small (512 byte) possibly randomly located
physical blocks (certainly an environment inhibiting
consideration of clustering). .

2This passage is taken from page 202 of [Stonebraker et al.
76 Jo .

B. Preliminaries 13

ZETA [Brodie et al. 75)] is a RDMS (relational database
management system) teing developed at +the: University of
Toronto to run on IBM 370 type: machines. The system is
composed of three principal levels termed MINIZ, the EXECUTOR
and the :"language facilities".

The first of these levels, MINIZ, performs the duties
required by our notion of an access path level. This component
implements relations directly as files of data. That is, each
relation in MINIZ is represented as a single file.?! Besides
this initial level of abstraction MINIZ can accomplish single
relation retrievals (requiring no more than one pass) and
tuple-at-a-time modifications. Responsibilities also include a
recovery facility and maintenance of four system relations..
These system relations store all information. describing all
relations, domainé, users and the physical extent and blocking
of relations (the latter is used only by the file system). .

MINIZ is managed by the EXECUTOR. This second level forms
part of +the relational language 1level of ZETA and 1is
responsible for "snapshot"2 relations and multiple relation
queries. .

A "host programming language system" (HLS) and n"self-

contained 1language system" (SLS) comprise: the language

o . > s < S s > — S T " o o2

1Almost all RDMSs we consider take this approach.

2This should not be confused with derived "views" or subschenma.
A snapshot relation is 1ndependent of the relations from which
it is created.

Be Preliminaries 14

facilities (third level) of ZETA. The latter is interesting in
that it is actually a "query language generator system" (QLS)
which is used to generate a tailor-made SLS.

The base relaticns of ZETA must each be assigned a fixed
sized disk extent (which, of course, implies a maximum number
of tuples allowed in any such base relation).! Furthermore,
all tuples are added at the end of a relation (tuple. deletion
results in a simple marking).. To build an appropriately
clustered relation, therefore, a user must first find and
allocate a physical extent (he must anticipate relation size)
then appropriately order his tuples prior ¢to insertion.. To
reclainm storage used by deleted tuples the. user mnmust
essentially rebuild the relation. .

Reorganization appears to be predictable in ZETA. .
However, virtually no automation of physical reorganization
requirements is provided. Also, the search facilities used by
MINIZ are not as sophisticated as other systems (most new
queries involve sequencial scanning of base relations).

Another RDMS developed at the University of Tdrbnto is
the OMEGA system [Schmid et al. 76]. OMEGA was developed to
run under the control of the UNIX operating system on a PDP
11/45 minicomputer. The levels which comprise:OMEGA (excluding
the one represented by the UONIX file system) are entirely

analogous to the ZETA systenm. .

1In fact, an 0S JCL DD card must be provided for each base
relation for any job using ZETA.

Be. . Preliminaries 15

Operations implemented by MINI-OMEGA and by the "data
structures system" comprise the first or access path level.
MINI-OMEGA provides the initial relational abstraction
communicating directly with the UNIX file system. The data
structure system maintains inverted files and. “basic
elements". The latter consists of two varieties corresponding
essentially to internal temporary results and snapshot
relations. .

The second level of OMEGA (termed the "access structure
level" by the implementors), like ZETA, forms part of what we
understand as the relational 1language 1level. This access
structure 1level 1is responsible for the: optimization and
interpretation of a query language, the: consistency of
existing access structures and their creation and destruction.
The query language is called the "link and selector 1language"
(LSL) and must be the result produced by all relational query
languages comprising the user interfaces at the third level.!?

As in ZETA the 1level of automation of physical
reorganizational requirements is relatively 1low. There are,
however, a number of advances ovef ZETA. . The automatic
maintenance of secondary indices is omne example (although the

creation . and deletion of indices is still the responsibility

e e - —— . ——— e ————

1An expression in LSL, as seen at the second 1level, 1is tree

structured. The current OMEGA implementation provides for a
relational query language that maps directly to this tree
structure. .

Be Preliminaries 16

of a humant). Also, the initial tuples of a relation are
stored‘ in a primary area sorted by key value., If access to
tuples is basedvprimarily on tﬁe key domains of the relation
this results in a more desirable (but not necessarily optimal)
clustering of tuples within disk pages. Tuples that are added
following the initial setup are located in an overflow area
which in turn implies a periodic physical reorganization
requirement. .

Another form of tuple. clustering is also realized by
OHEGA.; This involves an ability +to store a logical record
(tuple) split-up into several physical records in separate
physical files (i.e.. the i-th physical records of a set of
physical files comprise the i-th logical record) . The
advantage of this is that many more partial-tuples can now be
stored in a single block of a physical file. Of course, such a
“yertical" partitioning of tuples depends entirely on the
nature of use of the relation. Again, the human is responsible
for determining such a partitioning. Later on in this section
we review a system (SODMS [Kollias et al._ 77])], [Stocker and
Dearnley 74]) which automates this responsibility. .

INGRES [Stonebraker et al. 76] is another RDMS developed
to run under the control of the UNIX operating system. The
structuring of the various components of INGRES, however, is

more involved that either ZETA or OMEGA. Our analogy of these

1In fact, none of the systems we review provide for this degree
of automation.

B. Preliminaries 17

components to the M"access path level" and "relational
language" abstractions of [Tsichritzis and Lochovsky 77] is
somewhat more strained. .

Due mainly to the limited logical address space.of PDP
11s (64k bytes) INGRES is structured as a four level hierarchy
of four communicating processes.. The first of these (top
level) may be an interactive terminal monitor or an executing
user process. The former facilitates direct use .of INGRES by
users and the latter access to INGRES by user programs.

The second 1level process (process 2) has responsibility
for parsing queries, concurrency and security control and
support for integrity control and derived views.! Security and
integrity control and derived views are.accomplished by a
query modification procedure. Concurrency is realized by use
of a 1locking protocol re;trictive enough to not require
transaction deadlock detection and recovery.

.Level three of the process hierarchy is responsible for
query evaluation. This is accoﬁplished by a 'query
decompositicﬁ procedure and a one-variable query processor
(OVQP). Both are concerned to a large extent with optimization
considerations. All other INGRES commands are interpreted by a

set of overlaying utilities at process level four. .

A set of functions used in common by processes two, three

——— —— ———— — o —— o - -

1perived views differ from snapshot relations in that they
always reflect the current state of the base: relations fron
which they are derived.

B. Preliminaries 18

and four is called the "Access Methods Interface" (AMI). This
set-of functions communicates directly with the UNIX file
sjstem to implement the initial relational abstraction. It is
the AMI together with process levels three (or at least O0VQP)
and four that corresponds to our notion of an access path
level, Thé relational language level is provided by processes
one :and tvwo és a query language called QUEL and an embeddedt?
query language calléd EQUEL. .

The AMI supports five different physical organizations of
base relations. These correspond to a "heap" storage'scheme
and "has hed", "compressed hash", "ISAM" and "compressed ISAM"
indexed storage schemes.. The first of these is considered
appropriate for very small relations, transitional storage .and
temporary internal relations. If éccess to a relation is
primarily via a partial match on its key attributes then the
hashed scheme is appropriate. In this case the physical page
location of a tuple is determined by a hash function applied
to an ordered list of values of its key attributes.. The ISAM
scheme 1is to be prefered in situations where access to the
relation has the form of a partial range gquery on 1its key
attributes (i.e. a search condition specifying a range.of
values for each key attribute of the relation). This is
because the physical page location of a tuple:is determined by

a key ordering. As in OMEGA, this results is a clustering (on

- L - wme -

1Embedded, that is, in a general purpose programming language
called "Cvw,

B. Preliminaries 19

the key attribute values) of tuples within disk pages..

INGRES, also like OMEGA, maintains overflow pages for its
base relations (an overflow page is used whenever storage 1is
exhausted in a primary page!). This again requires periodic
physical reorganization. In INGRES, secondary indices are
supported and are. maintained in the same way as any of the
base relations. Overall INGRES is analogous to OMEGA with
respect to its degree of physical reorganizétion requirements

By far the most ambitious RDMS development to date is the
System R project [Astrahan et al.76] undertaken by IBM at
their San Jose research laboratory.. System "R represents an
attempt to provide a complete relational database management
system. In particular, support is provided for a large degree
of 'concurrency and system recovery. A modified host operating
syétem (VM/370) directly supports multithreading (concurrency)
at the level of virtual machines which in turn allows a
productive. use of a mnmultiprocessor environment. Extensive
support for system recovery at the logical transaction 1level
is provided for both soft and hard system failure. A system<
wide monitor program has the responsibility for such recovery
and for the detection and recovery from transaction deadlock
(the level of concurrency in System R 1is such that deadlock
can arise). .

The System R part of each virtual wmachine:is comprised of

- - -

1The number of primary pages of a base relation is fixed at the
time of initial setup.

Be. Preliminaries 20

two major components.. The: Relational Storage .System (RSS)
together with its Relational Storage . Interface (RSI)
corresponds in function to our notion of access path level.
The relational language level is realized by the- Relational
Data System (RDS) of System R together with its Relational
Data Interface (RDI; lowest level wuser interface) the main
component of which 1is the SEQUEL DML/DDL. All application
programs communicate with System R through the RDI. Figure II-

1 below illustrates the basic architecture of System R. .

My | RDS | RSS |__ { |
| N DESCSREEEN PR | | MONITOR |
.. e I PSR

‘e, . | |

- L J |- """ '

— el il { l
1 | (I —th -
ViMn| | RDS. { RSS |__| { |
N PSRN | I MASS |
| STORAGE |
B |

Figure II-1

A major component of the RDS is the optimizer. It is the
responsibility of this component to find the cheapest possible
means of executing SECUEL statements given available links and
iﬁdices defined on the base relations. The optimizer chooses
from a variety of methods to evaluate both restriction on

relations (equivalent to a one variable guery in QUEL under

Be. Preliminaries 21

INGRES) and inter/intra-relation Jjoin operations (multiple
variable queries in QUEL).. This is accomplished primarily
through the use of a variety of statistics maintained for each
base relation.?t

The RDS also has the responsibility for providing for
user defined evolving views, integrity assertions,
authorization and transaction "triggers". The latter facility
is analogous to the antecedent theorem of PLANNER [Hewitt 72]. .
In addition the RDS must provide "advice" to the RSS as to
where new tuples should be located. This is accomplished by
passing a tentative disk address for the new tuples. All the
system catalogue relations are also maintained by the RDS. .
They provide +the information about all other base relations,
views, images, links, integrity assertions and triggers.:

Images and links are special data structures that permit
efficient associative access to tuples in System R. Images are
secondary indices in the form of B-trees [Bayer and McCreight
72] and are defined on an explicit ordered subset of
attributes of single base relations. Links are a multiring
data structure [Wiederhold 77) permitting a direct efficient
means of representing one to many relationships among
aftributes within and between base relations. lLinks defined on

a single attribute in a single relation imply a partial

- i e . > A A e . . . s —— i

1As far as I know, these statistics are not dynamically
maintained but rather are specified by a user at initial
relation definition/setup. .

B. Preliminaries 22

ordering of the tuples on that attribute. Binary links (i.c..
links between attributes in separate relations) are analogous
in concept to a variety of owner coupled set of the DBTG model
(see [CODASYL 71]). Both images and links are maintained and
used by fhe RSS component of System R..

In addition to base relations!, users of System R also
have the responsibility for specifying the RSS access paths
(i.e._images and 1links). Research is currently underway,
however, to automate this function. It should be stressed at
this point that the DML component (including the;.query
facility) of the RDI of System R in no way presumes or permits
any knowledge of the existence of these access paths. Such a
property of the DML is precisely what distinguishes System R
as a RDMS (verses a hierarchic or network DMS). .

The access path level of System R (the RSS) is the most
ambitious and sophisticated we shall review. The RSS provides
the support for both physical (segment‘level) and logical
(transaction level) recovery from transaction deadlock and
system failure. In addition the RSS supports all logical and
physical 1locking requirements and the dynanic creation,
maintenance and deletion of base relations, images and links.
New fields may be added on the right of any existing base
Telation at any time without incurring the: overhead of

database reload or even the immediate wupdate: of the tuples

1Relations, in System R, are actually refered to as "tables",

B. Preliminaries 23

within the base relation.

The searching support of +the. RSS 1is analogous in
capability to the OVQP of the INGRES system. In fact, OVQP and
RSS are of particular interest to us in Jjust this respect
since we shall be adopting this level of search capability as
part of the design specification of our own access path level.
A legal search predicate to the RSS is a boolean expression of
primitives in disjunctive normal form (see. [Selinger et al,.
79))« . Each primitive has the form of a'comparison operator on
an attribute (or field number) and a value. All primitives 1in
a given search predicate must of course.apply to the:same
relation. A more formal illustration of this format is given
in Table II-1 below in terms of a BNF syntax chart. The
symbols "OR" and "AND"™ in the chart denote the 1ogi§a1
disjunction and conjunction operators respectively.

All information in System R (including tuples, indices,
etc) are stored in a set of segments (each of which has its
own logical address space). Unlike:OMEGA all tuples of a given
basel relation are constrained to occur in a single segment. .
Unlike .all other systems, however, a single. segment might
contain more than one relation. Such a "vertical" aggregationt
capability when combined with the link access path can be:used
to greatly enhance the .performance of relational join

operations. .

1Recall in our review of OMEGA that "vertical" partitioning may
also be advantagous.

Be. Preliminaries 24

Recall that the RDS provides tentative disk addresses for

nevw tuples to the RSS. This facility exists for the purpose of

-Legal -Search Predicate§»'

BNF Syntax of Le
for the RSS of -System R-

<legal predicate> ::= <conjunct> |
({legal predicate> OR <conjunct>)

<conjunct> ::= <primitive> |
(<conjunct> AND <primitived)

<primitive> t2= (<field number> <operator> <valued)
.{operator> si= = | = | < | > | L= 1] >=
Table II-1

clustering tuples of base relations in disk pages.. This
clustering capability, however, is 1limited +to at most one
image or link per base relation (clustering on a 1link makes
sense 1in System R because of the allowance for vertical
aggregation). In addition, all such clustering images or 1links
must be explicitly declared through the RDI by the System R
user. Nevertheless, the clustering capability is a fundamental
and important aspect of System R. .

The physical reorganization requirements of System R are
the least of all RDMSs covered in this review. The access path
level (BSS):

", ..supports dynamic addition and deletion of
relations, indexes, and 1links, with full space

reclamation, and the addition of new fields to
existing relations - all without special

Be. Preliminaries 25

utilities or database reorganization.'"?

As we have seen, System R also provides for a clustering
capability. There is, however, much room for improvement.
Users of System R must still allocate disk segments and
suitably distribute base relations among them and they must
still specify which access paths are to exist. Furthermore,
they must understand well enough the use :0of the base relations
to determine an optimal set of clustering images and links.

An interesting approach to a batch oriented DMS is the
SODMS (for Self-Organizing Data Management System) by [Stocker
and Dearnley 74) (see. also [Stocker and Dearmnley 72] and
[Kollias et al. 77)). As the name implies, the _design emphasis
in SODMS is to automate the:selection of data structures and
access methods. Such selections are based on an analysis of a
history of system usage (a query history)..

The. operational environment of SODMS assumes the
following:

A(a) user to user interaction is minimal,

(b) the database functions primarily in responding to
queries and

(c) query and wupdate response or " turnaround is
uncritical (thus permitting use of batching
techniques). .

The breadth of application is, therefore, somewhat more

limited <than a general pu:pose‘ RDMS "such. as System R..

Nevertheless, such restrictions have allowed the experimenters

iThis passage is taken from page 129 of [Astrahan et al. 76].

B. Preliminaries 26

to concentrate on automating control over key physical
organization detéils;.

The - data model presented to users by SODNS is that of a
set of tables or relations. As yet, no subschema or protection
facilities are provided on these (i.e. all users see all
tables).; In anticipation of confusion over terminology the
deSignefs'have labeled these tables as "folios". A folio in
SODMS may be realized by a variety of different files
representing records, sub-records, amendments, directories,
etc. All Jdecisions with regard to the design and creation of
these files>are'made by the system itself and are .based on an
analysis of past use.

Consider, for example, a folio (a relation) comprised of
the five attributes A1 to A5. If the last evaluation of past
use found that the following typified use of the:folio:

(a) given values for A1 and A2 get A4,

(b) given a value for A1 get A5 and

(c) get (order not important) all attributes of all
records,

then we could expect the folio as depicted in Table II-2 (a)e.
(Bracketed attributes in the table denote an ordering on a
file thus permitting associative access to‘ the sub-records
based on those attributes.l) In SODMS evaluations are

periodic. If the next evaluation of this folio were to

———— — — o . > — - - . W — ——— ——

tThe present implementation of +the system, however, allows
orderings in files to be based on at most one . attribute. File
2, therefore, cannot currently be realized. .

B. Preliminaries 27

determine that queries of the form of (a) above no longer
occurred and that different queries of the form:

(d) given a value for A2 get A5. .
took their place then we would see the folio altered as in
Table II-2 (b).. Notice that £file 2 has not simply been
destroyed but instead has been archived to tape. In general
this is true of all information in SODMS. It is the opinion of
the designers, in fact, that no information, once added in a
DMS, should ever be destroyed.! This is not to say, however,
that amendments continue to be applied to file 2.

In [Kollias et al. 77)] we see the application of linear
programming techniques to batched query evaluation and a type
of file archiving. An analogy is made between developing an
execution strategy for small batches of queries.and the "set
covering problem"; also for the allocation of files to on-line
and off-line disc packs and the "knapsack problem".
Consideration is also given to archiving parts of files to
offline disc packs. .

| With respect +to System R, SODMS has autdmated all
allocation of disk storage and the selection of clustering
images (linking data structures as access methods are not
supported in SODMS). This, in itself, is an important

accomnplishment of the system. SODMS 1is, however, much more

—————— ——— — - - . ——— — —

1There are actually many good reasons for this opinion..
Consider, in the case of accounting applications for example,
the wusually unpredictable arrival patterns of government
auditors, law suits, etc. .

B. Preliminaries 28

limited in its range of applications. Excluded from
consideration, for example, are highly dynanmic on-line

environments requiring immediate wupdate and fast query

Example Effect :0of Change-in-Use-

of a Folio-in SODMS -

File Number Attribute(s) Location

1 A1,A2,A3,A4,A5 disk
2 (A1,A2) 24 disk
3 (A1) ,A5 disk

(a) before reorganization

File Number Attribute (s) Location
1 A1,A2,A3,A4,A5 disk
2 (A1,42) A4 tape
3 (A1),A5 disk
4 (32) ,A5 disk

(b) after reorganization
Table II-2

response, Secondary indices (on files) are also not supported. .
Furthermore, experimental results in [Stocker and Dearnley 74)]
suggest that System R's capabability of allowing the dynanmic
augmentation to a file of additional columns or attributes is
highly desirable. .

Unlike System R, SODMS batches all amendments to its
folios. These amendments are then applied during periodic file
(as opposed to folio) reorganization., While:some indexing
methods such as B-trees are unaffect2ad in their performance

with on-going alteration others such as ISAM techniques

B. Preliminaries 29

degrade when such alteration is continually applied. [Yao et
al. 76] have developed a dynamic database reorganization
algorithm that may be used fbr the latter case. Input to their
algorithm requires the following parameters for each' physical
organization occuring in the database:

(a) an initial search cost,

(b) an initial reorganization cost,

(c) a rate of deterioration of the search cost
without reorgamnization,

(d) a rate of deterioration of the search cost
assuming continuous reorganization and

(e) a rate of increase of reorganization cost:

They further consider the more realistic situation entailing
nonlinear search costs and describe a system (called a File
Design Analyser) that outputs search cost estimates for "real
world" physical organizations (such as sequential and ISAM
files). Their system accepts three: basic varieties of
descriptive parameters:

(a) logical record organization (such as number of
attrikutes, record 1length, number of keywords,
etc),

(b) utilization information (such as number of
insertions, deletions and modifications, number

of gqueries, etc) and

(c) physical storage parameters (such as block size,
transfer rate, etc).

The result of their efforts is an approach capable of
automating decisions regarding the scheduling of physical
reorganization implied by record amendment (in our case by the

addition and deletion of tuples from an RDMS). This is clearly

B. Preliminaries 30

relevent to any access path level permitting the existence of

non-dynamic data structures, .

C. Detailed Problem Definition-

Two aspects of physical reorganization implied by
changing' patterns of usage of existing relations are
considered in detail in this thesis (see. Introduction)e.
Informally, what are considered 1is a variety of tuple (or
record) clustering which can be characterized as ‘“horizontal
clustering" and the problem of dynamic secondary index
selection. In terms of System R this concerns the automation
of the: selection of images (both clustering and non-
clustering). This section presents a detailed introduction and
definition of these problems, .

A "base relation"™ in a RDMS corresponds to what might
intuitively be called a stored relation. The .tuples comprising
a base relation physically exist on some form of mass storage
media. In constrast a "derived" relation is defined in terms
of base relations and requires some form of query evaluation
in order to "materialize" its tuples..

Throughout previous sections reference has been made to
the notion of clustering of base relations. In fact a variety
of types of clustering have been mentioned. In the RDMS OMEGA
[Schmid et al.. 76] and in SODMS [Stocker and Dearnley 74] a

base relation may have. its attributes or columns partitioned

Ce. Preliminaries 31

into (not necessarily distinct) subsets of attributes where
each subset is assigned its own file. Such "vertical
partitioning" requires each requested tuple of the base
relation rebuilt from its component sub-tuples from each
subset. In System R a "vertical aggregation" «capability
permits grouping sets of attributes from more than one. base
relation in the same physical segment. In addition, grouping
tuples according to their probability of access is the subject
of additional work on SODMS in [Kollias et al. 76]J]. Clearly
then, clustering support at the access path level of a RDMS is
of fundamental "importance (and up to now we have relied on
reader intuition in understanding this issue). . A more formal
outline is now presented. .

one essential characteristic of all mass storage media is
that they are block oriented. Communication with such media is.
in terms of wusually large (relative to tuple size) physical
blocks. Retrieval of any particular tuple: or partial tuple
always implies retrieval of a much larger block. _ When one
considers that block retrieval time from a mass storage mnedia
is enormously slow in comparison to the time to access main
memory (on the order of five to six orders of magnitude in the
case of moving head disks) it 1is easy to see that the
organization of tuples within blocks (or the:clustering of
tuples) has great impact on the performance of the RDMS. We
define +the problem of tuple: clustering, therefore, as the
following:

D1. clustering - Clustering concerns the placement of

C. Preliminaries 32

tuples of a base relation on mass storage media
in such a way as to minimize block reads/writes
relative to a "characterization of usage" of the
base relation.

From the above definition it is clear that the clustering
organization of tuples 1is relative at the least to each
application of the RDMS. The problem is in fact fundamentally
related to how each application is used (eg. the variety of
queries which arise). It 1is dimportant, therefore, that a
notion of "characterization of usage" be more- fully
understood.

The number and variety of queries on a base relation is
clearly an important component of such a characterization of
use that is possible to be automatically maintained._ Sone
possibilities of how such query use may be characterized are:

(a) an enumeration of all permitted queries,

(b) a sample of (a) above and

(c) query statistics. .
Both (a) and (b) above seem at the least to be somewhat
unwieldy. With respect to controlling our own clustering we
will, in fact, be wusing query statistics., Furthermore,
requiring a priori knowledge of the future. use of a base
relation is not possible to automatically predict. A
characterization of query history is more appropriate for our
purposes. .

A characterization of use of a base relation also

determines what variety of indexing should exist on the base

relation, An index, in our case, 1s a performance

C. Preliminaries 33

consideration. Purthermore, all such indices at the access
path level may be characterized as either a "primary index" or
a "secondary index". This distinction is important enough to
warrant a more complete explanation of fhe,purpose and role of
these two basic varieties of indexing.

In a certain sense their "logical" purpose has been
equivalent., 1In a procedural "tuple-at-a-time" data management
language (DML) operating on a network model, for example, no
distinction' i§ made . between a primary or secondary index
either on initiation or during execution of a navigation
through the network. Khowledge- of a distinction arises in
terms of performance only. Concerning the relational model
scanning a base relation in System R via a clustering image is
much more efficient than via an unclustered image.

The difference between a primary and secondary index,
therefore, is that the former has the additional property of
influencing the physical layout (more usually locatiomn) of a
data entity. In terms of a RDMS the primary index of a base
relation defines the physical location of its tuples. Since
any other purpose of a primary index may be subsumed by
further secondary indexing this role of a primary index is all
important. With respect +to the proposed design of an access

path level of a RDMS the following definitions therefore

C. Preliminaries 34

apply:?
D2. secondary index - As an access path to data a
secondary index is a data structure permitting a
variety of more efficient search capability on a
base relation but with no relationship or bearing
whatever on the clustering nature of the tuples
within that base relation.
D3. primary index - A priméry index is also an access
path to data. It has the additional purpose,
however, of facilitating the desired clustering
of tuples within a base relation.
Consider what is implied by the above definition of a primary
index. By virtue of facilitating clustering, the primary index
provides for the mapping between the tuples of a base relation
and their location on mass storage media. Clustering,in turn,
is determined by a characterization of use (in our case: a
query history statistic).. In an indirect sense, then, a
primary index maps tuples of a base relation to physical store
in a way dependent on how the base relation is used.

There are a number of ways in which the information in a
base relation can be clustered. The vertical partitioning
(OMEGA, SODMS) and vertical aggregation (System R) is one such
approach. In vertical partitioning a base relation is divided
vertically into a set of smaller tables each storing a subset
(possibly non-disjoint) of the attribute values for each tuple

(see Figure Ii—2 (a)). This approach presupposes that each

such subset of the attribute values for the set of tuples is

1Keep in mind, however, that the DML/DDL presented at the

relational language level of a RDMS (or at 1least the DHML
component) has no notion of an index (whether primary or
secondary)e. .

Ce Preliminaries 35

all that is required for a significant fraction of all queries
(a "characterization of use"), Clearly smaller subsets of
attribute values imply smaller partial-tuples. This in turn
favourably impacts mass storage I/O because. of the larger
blocking factor of the partial-tuples within the disk pages
comprising the tables,

The above suggésts the following definition:

D4. vertical clustering - Vertical clustering of a
set of base relations (conceptual) is a
partitioning of their combined set of columns or
attribute values into a set of tables (physical)
in such a way as to reduce. disk reads/vwrites
relative to a characterization of use. .

In [Schkolnich 76] the problem of vertical clustering is
applied to a set of base relations logically related in terms
of a hierarchy. An efficient algorithm is presented which
generates an optimal vertical aggregation of the relations
into a set of tables called linear address spaces or LASs in
the paper. The algorithm is driven by a formulation of
characterization of use of the base relations. The author
mentions that the model for the characterization of use can
easily be expanded to account for other forms of use of the
base relations.

As we have seen, System R supports an ability to store
(or aggregate) more than one base relation in the same file
(thus resulting in iocating tuples from different base
relations in the same block). Such aggregation is controlled

by the clustering option of links d=clared by the systen's

users. With the possible exception of applicability of work

C. Preliminaries 36

(by Schkolnich) introduced above to an RDMS no comnsideration
in the 1literature, as far as the author is aware, has been
given to automating the choice of such clustering images.. The
problem remains open. No further consideration by this thesis

is given, in fact, to the subject of vertical clustering. .

Horizontal vs Vertical Clustering-

{conceptual) (physical)

RyA1 | A2 | A3 1 T4 A1 (A2 | T21 A3 | T3| A2 | A3 |

l----|----|--_-| |----|----| |--,-| l----|----|

| al 11 cft (al 11 { ct | 11 c|
| a 11 di => a | 1 d { i 1 ¢ 4a
I b1 21 c| b I 21 c |
R —— (e

| | |
| i 2 | I c |
SRR | RO PRI | |

(a) Vertical Partitioning Into Tables T1, T2 & T3..

———.—'

(conceptual) (physical)
Ri" At | A2 | A3 | Bt AT | A2 | A3 |
l====l-—==|=---1 {====l====f----{
I at 11 cl I al 1| cl
{ ayf 11 d4d1-> 1 ait 1§ ai|
I b1 21 ci | X DI PR
B2y a | Tl c |
{ b 21 c|

(b) Horizontal Clustering Into Blocks B1 & B2..

Figure II-2

Horizontal clustering is another way in which information
in a base relation can be clustered. Concern here. is with
possible groupings of the tuples (or partial-tuples if

vertical partitioning clustering has been applied) themselves

C. Preliminaries 37

within the physical fpages comprising the table(s) (see Figure
II-2 (b)). In general the sets of elements defined by these
groupings need not be disjoint. In Figure II-2 (b), for
example, two copies of one of the tuples is actually stored..
It is +this form .of clustering that will be :dealt with in
detail by this thesis. Allowing replication of a tuple,
however, will not be considered any further. .

This second dimension of <clustering has the following
definition:

D5. horizontal clustering - Horizontal clustering of
a base relation is a partitioning of its tuples
into fixed sized blocks or disk pages in such a
way as to reduce disk reads/writes relative to a
characterization of use.

Figure I1-3 and Table I1-3 illustrate how a
characterization of query use impacts the performance of
sample horizontal clusterings of a relation in block reads. . As
expected, a random allocation of the tuples to blocks yields
the péorest performance. More interesting is the observation
that sorting does not yield the best. In fact, our approach to
horizontal clustering in this thesis would result in the third
horizontal partitioning of the tuples (i.e. clustef3) which,
as shall be seen, 1is optimal.. This 1leads us to our last
definition concétnihg.clustering:

D6. optimal horizontal <clustering -~ The optimal
horizontal «clustering of a base relation is the
horizontal clustering resulting in the minimal
retrieval cost relative to a characterization of

query history where retrieval cost is defined in
terms. of disk reads/writes.

Some interesting work regarding automation of horizontal

C. Preliminaries 38

FExample -Horizontal -Clustering -

R{AT |A2 | B1| | | B2| I | B3| | | BU4|{ { |
{==={---1 t 112 2 I | 11 31 N I I I |
11 1 31 1| I 3131 t 31 4.1 t 31 214
P11 2 121 21 t 114 (41 4] 41 1
it 1131 P41 21 121 14 1 21 31 141 31
I I I | B U | DU P | Y P | P PN |
210 1| ,
| 21 2 | cluster? (sorted)

t 21 31 ——— — — —
I 21 4 B1| { I B2} i | B3| | | B4 | |
I 31 11 I L t 21 11 I 31 11 T I I |
1 31 21 P12 121 2 | I 31 21 P41 2
I 31 31 11§ 31 121 3| t 31 3| [41 31
I 31 41 [I | I 21 41 I 31 4 (L L
I I | P PR | | DI N | | JRSEICY PEIES | ol
1 41 21
| 4§ 31 cluster3 (multldlmen51ona11y sorted)
| 41 4| — e —— o _— el i
o t__-_{ Bl { | B2j | | B3| | | B4| i {
[T I B L1131 t 31 11 { 31 31
11 2 I 11 41 31 2| 1 31 8 |
124 1 t 21 31 &1 1 t 4 q 31
I 21 24§ t2141 1471 2] I I B
PR PN | | DR B | PESERY S | PN DL |

Figure II-3

clustering concerns document retrieval systems. How such
systems are used diffgrs from "normal" applications of a DMS.
Users of document retrieval systems are usually never certain
of what they wish retrieved. That is, records that may satisfy
the - query according to the user (and should thereforé be
retrieved) may not entirely fulfil the user's attribute/value
consiraints. Furthermore, users of such a system place greater
weight on the system satisfying a "get about n of the most
relevant records" constraint than on the more: usual "get all

and only relevant records".

Ce Preliminaries

39

In [Salton et al. 77] (see also [Salton 79a] and [Salton

79b]) a system is described that facilitates this environment.

Although the horizontal clustering! accommodated by the systen

Cluster Performance Relative-to-a-Query Group-

| clustert | cluster2 | cluster3
Query | cost | cost | cost
s m——— | ettt it R |-========-
{ i [
A1l=1 | 4 { 1 { 2
A1=2 | 3 | 1 | 2
A1=3 | 4 { 1 { 2
| | |
Al=4 3 | 1 i 2
A2=1 | 3 { q { 2
A2=2 | 2 | 4 { 2
{ t |
A2=3 | 3 { 4 { 2
A2=4 | 2 | 4 | 2
{ { |
-------- === |
totals | 24 | 20 { 16
| | |
Table II-3

is more:of a by-product than a design goal its realization is

directly implemented as the set of 1lowest 1level <cluster

groups. Two aspects of search in their system are retrieval

“precision" and "recall". In their words:

"pPrecision is defined as the proportion of
retrieval items actually found relevant, whereas
recall is the proportion of —relevant materials

————— o i i —— - — — — — i = — o -

1Their use of the word "cluster"™ has a different meaning
our own. .

2This paSsage is taken from page 13 of [Salton et al. 77]. .

fron

C. Preliminaries 40

actually retrieved."2

Ssuch characteristics of search will not be considered,
however, in the proposed access path level. The assumption is
made that "those asking" know exactly what they want..
Furthermore, the passive environment of document retrieval 1is
considered overly constaining. In contrast to Salton's static
data structures dynamic support for optimal horizontal
clustering is provided by the access path level. The dynamic
natﬁre.relates to accommodating changing characterizations of
usages .

Another important consideration in determining how to
group the tuples of a base relation within disk blocks
concerns each tuple's probability of access. _ Consider, for
example, a relation R with the attributes SEX and NAME. Assume ~
further that there are 5 tuples in R with SEX=MALE and 95 with
SEX=FEMALE. If each disk block can hold 10 tuples from R and
if half the queries specify SEX=MALE and the other half
SEX=FEMALE then it is obviously desirable to 1locate the 5
tuples in R with SEX=MALE in the same disk block. .

Such a clustering consideration is just another aspect of
our notions of horizontal and vertical clustering since a
characterization of use of R can of course convey information
(such as retrieval probability) on individual tuples and
attributes of R It is nevertheless wuseful to distinguish
tuple retrieval probability or any other information regarding
individual tuples from horizontal clustering considerations.

There are several reasons:

C. Preliminaries 41

(a) Dynamic maintenance of a characterization of use
for the purposes of horizontal clustering is
greatly simplified,

(b) the problem of determining optimal horizontal
clustering becomes much more managable when
information regarding individual tuples does not
have to be taken into account and

(c) in excising individual tuple retrieval
probability fronm horizontal clustering
considerations we divorce the important subject
of information archival.

One: . possible accomnodation for tuple- retrieval
probability might involve considering it a more general
clustering problem than horizontal or vertical clustering.. A
base relation may then be distributed among several levels
(i.e. different areas/types of storage) ; each of which is then
dedicated to storing information with the:same: likelyhood of
retrieval; each of which may then have horizontal and vertical
clustering occurring within. As a result, relation R, above,
would have tuples occurring in at least two levels since those
with SEX=MALE have greater probability of retrieval._ Such
considerations, however, remain in the area of future research
possibilities.! The horizontal clustering support discussed in
the thesis assumes a uniform probability of retrieval of the
tuples of a base relation. .

our definition of a secondary index has so far been very

general. Automating the selection of indices requires a much

———— s ————— . D . s > s = s

10ne applicable reference is work in [Kollias et al. 77]
regarding the automatic allocation of disk files to on=-line
and off-line disk packs.

http://ii.es

C. Preliminaries 42

more explicit understanding of their format and of how they
are <used in query evaluation. Details concerning both these
issues with regard to secondary indexing considered by this
thesis are given in Chapter 1III. There are, however, some
general design characteristics that are common to almost all
secondary indexing considered in the literature.

Secondary .indices are usually implemented by inversions.
This is in contrast to a multilist (Prywes and Gray 63] or
multiring [Wiederhold 77] approach. Comsider that each value
of an indexed attribute has a set of tuples associated with
it. Each tuple can be represented by a tuple pointer that is
the physical address of the tuple in <page,displacement> form. .
An inversion approach physically stores each tuple pointer set
with its respective .value in the index.! In éuch,a scheme it
can be beneficial to compute tuple pointer set intersections
and unions when evaluating queries that provide more than one
indexed (inverted) value..Performing such operations is much
easier and quicker if each;tuple pointer set in the indices is
maintained in sorted order.

The problem of secondary index selection for inversion
approaches has been the subject of some research.. In
[Schkolnick 74] and [Anderson and Berra 77] functions are

derived that produce a cost value for a given permutation of

————— — — —————— — — > . ——— o o ———

1See [Salton et al. 77] for an excellent brief . outline. of
"inverted file" and "multilist" approaches to secondary
indexing. .

C. Preliminaries 43

.indexing on the attributes of a base relation., Schkolnick
demonstrates a "regularity condition" on his cost function
permitting a more efficient algorithm to find the optimal
indexing set whereas Anderson and Berra rely on a brute force
approach. The latter include much more implementation detail
into their cost function however.

Schkclnick assumes that computing intersections and
unions of tuple pointer sets retrieved from secondary indices
can always be accomplished in main memory and therefore
contributes negligibly to overall coste.. His function
incorpofates retrieval and maintenance (i.e. update, insertion
and deletion) costs.

In addition to retrieval and maintenance Anderson and
Berra consider the cost of storage. They also deal in much
more detail with various forms of inversions. In particular
they consider the merits of maintaining sorted +tuple pointer
sets over unsorted sets. |

A much more pragmatic approach +to secondary index
selection is described im [Farley amnd Schuster 753.. The
emphasis in their wpaper is on details concerning query
evaluation on single relations with secondary indices on
single attributes implemented as inversions with sorted tuple
pointer sets. The strategy adopted in query evaluation

incorporates the use of a cost function.! This function can be

1This is true of all query evaluation schemes of all RDMSs
discussed in this thesis.

C. Preliminaries . 4y

used to derive an overall cost of evaluation of any query
given a particﬁlar indexing set. Using this cost function
along with a representative sample of past queries allows then
to measure the performance of any proposed indexing set. As in
{ Anderson and Berra 77] they then follow a brute force
approach in deriving this measurement for each possible
indexing set.

Their approéch, however; fails to take into consideration
both maintenance and storage costs (these considerations along
with the ultimate indexing choice are left to the: database
administrator). Another simplifying assumption adopted by
Farley and Schuster as well as Anderson, Berra and Schkolnick
is that secondary indexing on single. attributes only is
permitted. Recall that‘anAimade in System R can be based on
more than one attribute. The author is not aware of any work
regarding secondary index selection dealing with this
generalization.

The . subject of dynamic secondary index selection is
clearly non-trivial (see for example [Comer 78)]).. As in the
case of clustering, such seiection is determined primarily by
how base relations are used. A suitable characterization of
use, therefore, is as important to secondary index selection
as it is to clustering comnsiderations.

One last issue concerning problem definitions ends this
section., . This concerns terminology used in describing various
query types. All definitions given are relevant to an access

path level of an RDMS. Furthermore, any instance of any of the

C. Preliminaries 45

following query types (the semantics of these is obvious) is
assumed to apply to a relation R with k columns:

D7. partial match - A partial match query provides a
value for a proper subset of the attributes of R. .
It has the form:
{COLn1=VAL1} & {COLn2=VAL2} & & {COLRnj=VALj}
where j<k and the COLni are distinct (i.e._ i-=n
implies ni-~=nnm).

D8. exact match - An exact match query provides a
value for each column of R. Its form is as above
save that j must nov equal k.

D9. partial range guery- - A partial range query
provides a range of values for a proper subset of
the attributes of R. It has the form: .
{COLn1 between VAL11 and VAL12} §&
{COLn2 between VAL21 and VAL22} & eeo.
ese & {COLnj between VALJj1 and VALj2)} where
j<k and the .COLni are dlstlnct.

D10. range guery - A range query provides a range of
values for each attribute of R. Its form is as
above save that j must now equal k..

D11. -intersection guery - Informally, an intersection
query. is disjunctions of the above., It has the
form: v
{01 oOr Q2 Or ... Or Qm} where m>0 and each Qi is
a query of any variety of those above.

D. Simplifying Assumptions-

There are a number of simplifying assumptions regarding
the . hardware environment for a RDMS. The: most important
concerns the mass storage media itself. In particular, tape
storage (along with the sequential mode of use it implies) is
no longer permitted for applications other than information
archival and backup, statistics acquisition and transaction

logging. Currently active base relations are assumed to reside

De Preliminaries 46

on storage media of at least the performance of moving head
hard diskse

Another important assumption concerns the amount of main
memory and centrol prccessing umnit (CPU) overhead required to
support a RDMS. With phenominal +technological advances in
logic densities it is now feasible to assume. an ability to
allocate large amnounts of main menmory to buffering
applications and even to dedicate CPUs to the RDMS software..
Traditional balancing constraints for information control
systems (and even operating systems) such as main memory cost
and CPU overhead are no longer considered to apply. Taking
their place is a requirement for generality, homogeneity and
ease of use, Response time 1is considered a more important
measurement of system performance than either throughput or
minimization of hardware costs.

Several assumptions concerning the applications
environment are made. Dedicated real time control
applications, for example, are not supported by the access
path level. A requirement to ensure a constant upper bound for
any operation provided at the access path 1level wvwould add
considerably to the complexity of the issues considered. .
Furthermore, the very important topic of distributed support
for a RDMS relational 1language level is not considered. .
Because of the emphasis on response time no attempt is made to

apply batching techniques to query evaluation or base relation

De Preliminaries 47

maintenance.?

The -access time for a block on a moving head hard disk is
comprised of three major components. The first of these,
called seek time, 1is the time required to physically move a
read/write head to the desired track. Rotational delay is the
time required <for the read/write head to locate the start of
the desired block on the track. The transfer time taken to
read the desired Dblock .is the 1last of these access time
components,

The problem of locating the blocks containing the tuples
of base relations c¢r the disk in a way that reduces the
overall seek and rotaiional delay times in accessing .these
blocks 1is also not considered by this thesis., Both this and
the scheduling of disk I/0 operations are. considered the

responsibility of lower level software or hardware.

1Recall that the designers of SODMS assumed just the opposite..

A. The Systen 48
Chapter III: The Systenm-

A. Overall Design-:

The first part'of this section concerns the : specification
for a proposed access path level of a RDMS. The overall design
for an implementation called SORAAM (for Self-Organizing
Relational Associative Access Method) that attempts to satisfy
this specification completes the section.

Generally, the access path 1level provides +the initial
relational abstraction. To accomplish this, control over all
phyéical organization details concerning all base relations
resides completely within it. This includes the following
clustering and indexing considerations:

(a) dynamic support for the horizontal clustering of
all base relations and

(b) automatic selection of single-attribute
inversions.

The decisions at the access path 1level with regard to
horizontal clustering and secondary index selection for a base
relation are governed by a variety of statistics that
determine a characterization of use and secondary index
usefulness for the base relation. All statistics used by the
access path level are maintained by it. .

There is good reason, however, to endow the access path
level with an ability to take "advice" in regard to physical
organization details: Such situations requiring this are an

initial base relation creation (when the system has had no

A. The Systen 49

opportunity to acquire a characterization of use. itself) and
the acquisition of a priori knowledge by a user of a dramatic
change in the characterization of use of an existing base
relation (not predictable by the system). The:latter case may
imply an immediate alteration on the currently existing
secondary indexing set. . The advice taking ability is
accomplished by permitting the user to directly override the
control information used by the access path level to govern
physical organization.

support for associative access to information is provided
for single base relations only. This is consistent with the
capabilities of access path 1levels of most existing RDMSs. .
Furthermore, finding all tuples of a base relation satisfying
any given search predicate never requires consideration of a
tuple within the base relation more than once._ That 1is, a
tuple may be accepted or rejected for retrieval on first
examination. In the worst case, therefore, responding to a
query may require at most one complete scan.of all the tuples
within a base relation. Nevertheless, all the following
variety of queries are . directly supported . (see section C of
Chapter II for the definitions):

(a) exact match

(b) partial match

(c) range query

(d) partial range query

(e) intersection Query

In section D of Chapter II a number of simplifying

A. The Systen 50

assumptions concerning the proposed environment were outlined.
Assuming all of these, the access path level still retains a
large measure of suitability for 1its proposed enviroanment
(i.e. . the access path level of a RDMS which replaces the file
system of an operating system). Such an environment, hovwever,
necessitates support for a large measure of concurrency of
access and maintenance on all base relations. This includes
concurrency at both the logical level (more:than one ongoing
access/modification on the same base relation) and physical
level (more than one ongoing access té the same physical block
or disk page). In addition, a type of concurrency permitting
normal use of all base relations during any physical
reorganization is essential (see section A of Chapter II). We
distinguish this latter as "reorganization concurrency" from
the preceeding reference to "user concurrency". In
facilitating reorganization concurrency every effort is made
to minimize the degeneration of retrieval performance of those
base relations undergoing physical reorganization.

User concurrency may be wunderstood as a type of
multiprogramming, In this case the individual "jobs" are
transactions. A transaction in this sense.is a sequence of
(usually more than omne) retrieval and maintenance operations
oﬁ a set of base relations. The "shared resources", therefore,
are the base relations themselves. As a result, locking
requirements arise in order to ensure the logical integrity of
all base relations tc each transaction.

A1l such 1locking vrequirements (both the: logical and

A. The Systen , 51

physical 1levels) are the sole responsibility of the access
path level. Because of this the level of user concurrency that
may arise can result in transaction deadlocking. . The
facilities necessary to support the locking requirements must
theréfore include capabilities for transaction deadlock
detection. Furthermore, recovery facilities necessary for
deadlock recovery (and, of course, system failure) are called
for. All such recovery facilities are also the sole
responsibility of the access path level.

We begin our description of the proposed system by an
introduction of +the 1layout and data structures resident on
mass storage that are used by SORAAM to access and maintain
each base relaticn. Figure III-1 below illustrates the storage
structures involved (the base relation is assumed to have at
least j attributes).

The:primary index of a base relation used to control the
horizontal clustering of the base relation is the k-4 tree
data structure (see [Bentley 75], [Bentley 78a] and [Bentley
78b]). . This data structure is extremely robust in the variety
of queries that it supports. In fact, any instance: of an
intersection query can always be evaluated with the exclusive
use of the k-4 tree primary index. Note therefore that, given
the definition above of the variety of valid queries to our
access path level (see the user interface), the- use of the
primary index is always possible. This fact is incorporated
into the search strategies used (see Section E of this

chapter) .

A. The Systen 52

Storage Structure of a Base-Relation in-SORAAM-

e i e s G G — ot e ot e

_| B-tree |

| el |
{ |
Primary | | Tuple | |
Index ! { pagel t | | | on COLn1 |
| JESCURNY | [DIt N N I DESESEEIRIE Ity |
I | ‘ {_t
{ i 11 ‘ I B tree {-| Secondary
| k-4 tree |==--] | Tuple | | {-1 on COLn2 | | Indices
| PRI | { | page2 | | | 1__ 2 B P
I DRESEDEIULEN [.
| Te . i1 .
- | . i1 .
P 1 e Vb
clustered tuples { | __-------t | | B-tree: |
comprising the |--{ | I { I_} on COLnj |
base relation { | | Tuple { | | {
1 1 | pagei | |
| R l
{ MEEURNNS |

The indexing set is: {n1, n2, e¢ee, nj}

Figure III-1

Another very important property of k-=d trees with respect
to horizontal clustering is that, with a suitable
characterization of use of the base relations and control of
the k-d +trees, optimal horizontal clustering of their tuples
results. Both this property and +the control issues are
discussed in detail in Sections B and C of this chapter. .

The secondary indexing illustrated by Figure III-1

A. The System 53

involves the use of the B-tree data structure.! A B-tree index
may exist for each possible."relation/attribute" pair of the
base relations. In the example illustrated j attributes of the
base relation are each indexed by a B-tree. In SORAAM a base
relation need not be fully inverted (i.e. a B-tree for each
possible attribute)., We denote the set of attributes for a
base relation that are indexed as the "indexing set".

There are three user supplied parameters for ‘each base
relation that controll its indexing set. These'parameters
(Plow, Phigh and S) are introduced below in Table III-1.. The
parameters along with various other statistics (including the
important "global performance measure" or gJg.p.f.) that are
maintained for each base relation are used by our system to
control the selection of the single attribute. inversions.
Section D of this chapter presents more fully the details of
these aspects of SORAAM. .

There are three base relations that must exist in all
implementations of SORAAM (iae. that are required and used by
SORAAM itself) called RELATIONS, ATTRIBUTES and PROCESSES. The
existence of all three is necessary for the proper operation

of the system. The tuples in RELATIONS and ATTRIBUTES define

1For an excellent introduction to B-trees see: [Comer 79] or

[Knuth 73). [Bayer and McCreight 72] first introduced these
structures. There has been much work on B-trees since._ [Bayer
and Scholnick 76], for éxample, discuss an interesting variant
called the prefix B-tree and [Bayer and Unterauer 76] consider
concurrency of operations on them. [Lomet 79] presents an
interesting method of organizing internal nodes of a prefix B-
tree.

A. The Systen 54

the existence, location and format of all base relations and
their attributes respectively. Furthermore, all statistics
used by the access path level are also contained in these
relations. PROCESSES exists for the purpose of those aspects
of SORAAM concerning transaction maintenance. Tuples in
PROCESSES coﬁvey the existence of processes with ongoing
transactions and their respective recovery points (we
elaborate on this in the'outline of the user interface)..
Table I11-1 illustrates the format of these base

relations. The attribute(s) enclosed 1in parenthesis for a

Special Relations Used By SORAAM-

Relation Name- Attribute -List

RELATIONS (Rname), Bsize, N, D, PIB, PIBloc,
Ix, sTpB, ff1, £f2, Psize, g.p.l.,
Plow, Phigh, S, gqno, gqnoold, radixt, .
RDQreads, DQreads, radix2, Pcost,
radix3, buf

ATTRIBUTES (Rname, Aname), COL#, format, n, 4,
Iflag, Isize, SIB, SIBloc, £, folgd,
min, max, b

PROCESSES (process#), quiet#
Table III-1

relation comprise the key to that relations All users (or
processes) are permitted access and maintenance operations on
them (no security considerations are assumed by SORAAM). All
operations on other base relations require their definition by

appropriate entries in RELATIONS and ATTRIBUTES. A description

A. The Systen 55

of each of +the attributes . in Table 1III-1 1is given in
hppendix A.

One of the decisions regarding the user interface to
SORAAM was to require no expression parsing. Because: of this
the user interface are varieties of tree-like structures with
the nodes themselves denoting the operations required and the
conditions for search as well as serving simply as buffers for
tuples and lcg records. In a sense, Yoperation trees"
submitted to SORAAM are analogous to a parse tree created by
the parse phase of a compiler. This approach to interfacing is
not, however, wunique to SORAAM (see for example the LSL
interface of OMEGA in [Schmid et al. 76))..

Communication, therefore, invoclves a variety of sixteen
node . types the first ten of which serve as chéices for the
root node of an "operation tree", EFach of the six non-root
node types is associated also with a "syntactic identifier"
enclosed in brackets of the form "<.,,.,>" which, in turn,‘
denote possible pointer values in the pointer fields of node
types having them. The first field of all node types
identifies the node type to SORAAHM. Ail but one .of the node
types (type 14; or <values>) have a fixed format with a fixed
number of fields. . |

All operations on SORAAM may be categorized as one of
three types: base relation retrieval, base relation
maintenance and' transaction maintenance/recovery/audit
operations. In the following, node types have the fornm

"fn,eee}" (the first field being a numeric value identifying

A. The Systenm _ 56

the node type). Other fields have one of three. other forms: a
value of an attribute as described in Appendix A, a syntactic
identifier denoting a pointer field to other non-root nodes or
a fixed selection of values. Brackets of +the form " ...]"
enclose selections in the latter case. Also, fields tagged
with "%" pust be supplied by the user., We first introduce the
variety of root npde types possible then follow this by a
description of the syntactic identifiers along with their
associated non-root node types.

The reader is encouraged to bear in mind when reading the
following that +the design of the interface to SORAAM is not-
intended as an end user iﬂterface._Knowledge énd use of this
interface is properly the responsibility of a relational

language level that would comprise the top end of a full RDMS. .

Retrieval Operations -

There are two roct node types available for retrieval
operations (for expressing queries). These have the form:

(a) {0*,process#*,Path#,Rnane*,<{predicate>*,<valuesd}

(b) {1*,Path#*,<valuesd}
We note: first that "Process#" identifies the process issuing
the retrieval operation to SORAAM. Both of these conform to a
notion of a "RETRIEVE" and "NEXT" operation respectively that
essentially "linearizes" the returmn from a base. relation of
the tuples satisfying a predicate of a query. For a RETRIEVE

operation SORAAM first assigns a unique "Path#" that is used

A. The Systen 57

by SORAAM to identify the sequence of tuples to be returned..
The first tuple in "Rname" satisfying "<predicate>"! is then
returned in "<values>". Subsequent tuples are. returned via
subsequent user suﬁplied NEXT operations using the'provided
“"pPath#" value,

Such a linearization of retrieval response' is not, of
course, clearly desirable. As a consequence greater
responsibility for retrieval control rests on higher 1level
users {i.e. the relational language level). We feel, however,
that the benefits resulting from greatly simplified buffer
management far outweigh any such disadvantages.

The format of these operations facilitate more than one
ongoing retrieval by the same:process. . Furthermore, no opening
or closing of any form 1is called for. Clearly there is,
however, an implementation issue concerning values of "Path#".
There is a question of under what conditions may a path number
and its associated resources be freed for wuse by other
retrieval operations. Exhausting the set of tuples satisfying
w<predicate>" is one such condition but the question deserves
greater thought. We leave, for now however, this

implementation issue,

Maintenance -Operations -

1If 6 <predicate> is supplied in the RETRIEVE node then all
tuples in "Rname" are assumed to qualify for retrieval. A scan
of all tuples in a base relation is therefore facilitated.

A, The Systen 58

There are three root node types available for maintenance
operations on base relations. Their form is:

(a) {2%,process#*,Rname*,<{values>*}

(b) {3*,process#*,Rname*,<predicated>*}

(c) {4*,process#*,Rname*,<predicated>*,<values>*}
These correspond to "INSERTION", “DELETION" and "OPDATE"
operations respectively. All fields in the. above are user
supplied. Besides identifying the requesting process to SORAAN
the T"process#" field is also necessary for purposes of
transaction recovery. Destructive operations on base relations
are logged along with the value of ‘"process#" to facilitate
this. The role of the other fields in the performance by

SORAAM of these maintenance operations should be:obvious. .

Transaction Maintenance/Recovery/Audit -Operations-

The first four of the root node types described Dbelow
provide for transaction maintenance and recovery. Audit trail
requirements are fécilitated by a 1logging root node ‘type..
These formats are:

(a) {5*,process#*,quiet#}

(b) {6*,process#*}

(c) (7*,process#*,quiet#}

(d) ({8*,process#*,quieti#x}

(e) {9*,processi*, <buffer>*}

These correspond to "begin transaction®" (BEGINTRANS), "end

transaction" (ENDTRANS), "checkpoint" (QUIET), "checkpoint

A. The Systen 59

recovery" (RECOVER) and "LOG" operations respectively. The
first four are entirely analogous to the System R RDI
(Relational Data Interface) operators "BEGIN_TRANS",
WEND_TRANS", "SAVE" and "RESTORE" (see [Astrahan et al.. 76]) ..
A "LOG" operation involves writing the contents of "<buffer>"
to a system log. Recall that maintenance operations use this
same system log (see above).

A1l maintenance operations on base relations must occur
inside "BEGINTRANSY/WENDTRANS" pairs.. In this vay all
processes not currently involved in a transaction can be
assured (for their retrieval operations) of both the 1logical
and physical integrity of the base relations. Furthermore, all
processes with ongoing transactions are "insulated" from
feeling the effects of other ongoing (i.e.. uncompleted)
transactions. . The "QUIET" and "RECOVER" operations are useful
for large transactions involving a great deal of maintenance
on the base relaticns. Recovery from a deadlock may then

involve backup to a more recent "quiet#" of the transaction. .

Syntactic Identifiers and Non-root -Nodes Types-

We now introduce the variety of non-root node types that
~can occur in an operation tree communicated to SORAAM. Each is
associated with a syntactic identifier some of which were :used
to denote pointer fields in the above, A syntactic identifier,
however, may sometimes involve more than one. form. We

therefore deal with each such identifier in turn. .

A. The Systen 60

Retrieval and maintenance operations described above
allow the use of a <predicate>., This has one of three forms
(the first two of which are other syntactic identifiers):

(a) <primitive> |

{(b) <conjunct>

(c) {10*,<conjunct>*,<predi¢ate>*}

Note that the third form of <predicate> is a non-root node
type that permits a pocinter field to another <predicate>. This
third form is interpreted by SORAAM as a disjunction (OR) of
the form's second and third argument. .

A <conjunct> syntéctic identifier has the following twd
possible forms:

(a) <primitive>

(b) {11%,<primitive>*,<conjunct>*}
Note again that the second form of <conjunct> is a non-root
node type that permits a pointer field to another <conjunctd>..
Analogously, this second form is interpreted as a conjunction
(AND) of the form's last two arguments.

A <primitive> syntactic identifier also has two possible

forms. Both of these, however, are non-root node types:

3

(a) [(12%*, Ananme¥*, s Valuex*}

F——_-——q
VVIIAN
[|
h_—-—_—J

where "value" is a value of attribute:"Aname".

A, The Systen 61

r ¥ r 1%
(b) {13%,1low*,|< |,Aname*, < |,high¥*}

1<=] 1 <={

L 4 L 1

where "louw" and "high" are values of the
attribute "Aname",

The first of these non-root node types (note that both are
leaves in an operation tree) 1is interpeted by SORAAM as
specifying an explicit value or an upper or lower bound for amn
attribute. The second is interpreted as specifying a range of
values for an attribute. |

Consider now that- the definition of the <predicate>
syntactic identifier resulting from the above is nothing more
than a tree structured disjunctive normal form expression. The
<primitive> forms allowed, therefore, facilitate the
expression of any instance of an intersection query as a
<predicate> to SORAAM. Furthermore, the tree structure
corresponds to an easily used parse of the query. We shall use
the term "<predicate> instance", therefore; to denote a non-
null <predicate> field occurring in RETRIEVE, DELETION or
UPDATE root node typess

The .two remaining syntactic identifiers used by root node
types are <values> and <buffer>. Both have only one form that
are non-root node typés._The forms for <values> and <buffer>
respectively are:

(a) {1&*,Anéme1*,v1*,Aname2*,v2*,;..,Anamei*,vi*}

where v1%,v2%,,,.,vi* are values of attributes
Anamel,Aname2,...,Anamei respectively..

A. . The System : 62

(b) {15%,10g}

where "log" is the text to be written to
the log file.

The interpretation of the above non-root node types by SORAAN

should be obvious. .

An Exanmple -Retrieval -

We conclude this first section of Chapter III with a much
needed example use of SORAAM. The operation tree:for a query
on an example base relation is given.

Consider that the base relation "PARTS" on which our
query applies has the following attributes (given | in

brackets):

PARTS[P#,PNAME,PCOLOR, PHEIGHT ,QTY]

The key of the relation is the "P#" numeric attribute., Other
numeric attributes are "PWEIGHT" and "QTY". Each tuple in
"pARTS" describes a specific part by its name, color, weight
and quantity. Note that tuples describing "PARTS" must already
reside 'in "RELATIONS" and "ATTRIBUTES" before ahy operation is
possible on it. There are of course six such tuples necessary
(one for the relation entry; five for the attribute entries)..
All six would have been added by prior maintenance operations
on SORAAN. . |

The query we consider may be expressed in English as:

A. The System 63

"Get all bolts more than 10 ounces and nuts of
which we have less than #40."

This immediately decomposes into two different operation trees
corresponding to:
(a) Get the first nut or bolt then

(b) get the rest..

Figure III-2 illustrates the operation trees for both parts..

Example Operation Trees On -SORAAM -

{RETRIEVE,process1,?pathi#,PART,+,+}
e

{12,PWEIGHT,>, 10}
(b) "get the rest"

i v
(a) "get the first | (14,?tuple}
nut or bolt" i
v
{OR,+,+}
|
i v
| {AND,+,+}
{ (|
| | v
| I {12,0TY,<, 40}
| |
i { {12,PNAME,=,nuts}
l |
{NEXT,path#,+} { v
| { {AND,+,+}
v ((|
{14,?2tuple} | | V
{
|
{

e B

12,PNAME,=,bolt}
Figure III-2

For readability, node type fields have been replaced by more-
meaningful mnemonics. . The first defines the. relation and

predicate +to SORAAM. The first tuple is returned in "?tuple"

A. The Systen ' 64

and SORAAM assigns a "path#" value. This value is then used in
the second operation tree by the root "NEXT" node to acquire,
via "?2tuple" again, the next nut or bolt. Successive use of

the second operation tree accomplishes "getting the:rest".

B. The Primary Index

In preceeding sections we have discussed the .role of the
primary index of a base relation. In general, the primary
index determines the clustering of the tuples in fixed sized
blocks, With SORAAM, however, we have limited ourselves to a
consideration of horizontal clustering considerations only..
Recall that such considerations themselves are defined in
terms of a characterization of use of the base relation. .

In this section we introduce our chosen characterization
of use. Consideration is then given of a number of access
methods wused as primary indices to realize desirable
horizontal clustering determined by the characterization._ The
first section of this thesis introduced the particular data
structure that we have adopted for this role as the k-4 tree.
An introduction to k-d trees and an initial demonstration of
their suitability are presented followed by a detailed
examination of the: problems that arise.. The next section
considers in detail the specific problem of "discriminator
selection'.

The characterization of use of a base relation used by

B. The System 65

SORAAM 1is a set of statistics based on the history of queries
on the base relationa_Ali such statistics occur in the special
relations "RELATIONS" and "ATTRIBUTESY as values of the
attributes "qno" and "f", Each base relation has a "qno" value
and a value of "f" associated with each of its attributes. The
"gno" value represents a count of the total number of queries
that have been applied to a base relation and the "f" for each
attribute represent a count of the number of times a value for
each was supplied in past gueries.

The description of the user interface in the preceeding
section introduced and defined the syntactic identifier
"<predicate>". Each occurrence of a <predicate> in a
"RETRIEVE", M"DELETION" or "“UPDATE" root node type of an
operation tree (each <predicate> instance) received by SORAAM
is interpreted as an occurrence of a query. The arrival of one
of these root node types together with its <predicate>,
therefore, signals to SORAAM to increment the "gqno" value of
the associated "Rname"™ (given also in the: root node) in
RELATIONS. PFor each "<primitived>" occurring in the predicate
there. is an associated attribute name "Aname". On <predicate>
arrival these attribute names together with "Rname" of the
root node: are used by SORAAM to locate and increment the
associated "f" values. In this way the following information
regarding a characterization of use of each base relation is
available to SORAAM:

(a) a relative frequency of specification count "f"
for each "Rname/Aname" pair and : :

B. The System 66

(b) with respect to the above a relative count "gno"

of the +total number of queries on a base
relation.

If the maximum value a numeric attribute such as "gno"
may have is a limiting factor then ‘"recovery" from reaching
this maximum is necessary. Clearly there is a danger that the
statistics described above may become useless if the "qgno" and
wfn reach their maximum values and stay that way. . A
particularly simple recovery approach, then, is simply to
divide the "qno" and "f" values of a base. relation in half
whenever "qno" exceeds its maximum. Note that the "f" values,
as a result, are ensured never to exceed the value of "qno"
and, more importantly, stay in proper proportion to each other
and to "gno" (thus 4preserving the quality of the
characterization of use). .

There is an interesting repercussion of this recovery
approach that results from a loss of information whenever a
"divide by 2" is called for. The maximum value then determines
how much of the query history will actually be remembered..
Because . these statistics control horizontal clustering (and
because the support for horizontal clustering imn SORAAM is
dynamic in nature) control over the maximum value yields
control over the rate of adaptation of the horizontal
clustering to changing patterns of use. The attribute "radix1"
in RELATIONS is provided for just this purpose. Reducing the
value of "radix1" increases the rate of adaptation of the
horizontal clustering (and also the system overhead

necessarily involved) while increasing "radix1" results in

B. The Systen 67

greater immunity to short and temporary bursts of unusual use
but less willingness to change.t?!

There are a number of existing access methods that might
be used as the choice for the primary index of base relations
in SORAAM. The access methods we consider take progressively
more advantage of the above frequency of access statistics
comprising the characterization of use. to accomplish
progressively better degrees of horizontal clustering. .

Possibly the 1least 1likely candidates for the primary
index are methods involving hashing techniques. Their most
condemning characteristic is clearly the resulting
"randomization" of the relative physical locations of tuples
in a base relation.2 Regardless of the choice of columns that
comprise the domain of a hash function no significant
relationship can result'for tuples located physically near to
each other: No characterization of use, therefore, can have
any constructive bearing on a primary index based on a hashing
method.

Another major problem with a traditional hash file is the
requirement of knowing‘.in advance the size. of the file
expected (i.e. the number of tuples comprising a base
relation). This is necessary in order to determine - an

appropriate range for the hash function itself. This problen,

1A new insight in cognitive science perhaps.

2Note that general purpose order preserving hashing functions
do not exist.

B. The Systen 68

however, has been recently overcome with the advent of an
"oxtendable hashing® access method first introduced in [Fagin
78). . The expected case performance of retrieval on the hash
key using this method is two block reads for any file size..

other candidates for the primary index are methods
involving tree structures. Of these the. most predominant
currently used by existing RDMSs for both primary and
secondary indexing is the B-tree. There are:. several reasons
for this, For one, a B-tree always remains balanced regardless
of the : iariety and number of insertions and deletions
performed on it. Since no degeneration of search performance
occurs no physical reorganization is ever necessary..
Furthermore, by its nature, a B-tree can be used to maintain a
physical sequence of tuples in a sort order determined by an
ordered subset of the attributes of a base relation.

This second property of B-trees endows them with an
ability to make constructive use of the characterization of
use statistics introduced above. The sort order of the tuples
of a base relation would be chosen as the order implied by the
sequence;resuiting frcm arranging the attributes of the: base
relation . in descending order of their "f" values. The primary
sort column would therefore correspond to the. attribute most
frequently specified in gqueries, Tuples would then be
physically stored nearer those with similar values for this
primary sort attribute. Thus we can see that a beneficial
horizontal: clustering results,

Recall from Figure II-3 and Table II-3, however, that the

B. .The Systen 69

horizontal clustering resulting from the maintenance in sort
order of the tuples of a base relation can be improved upon.
In fact a third clustering, "cluster3%, yielded an absolute
improvement in block reads over a sorted clustering (that
would result from the use of a B-tree as the: primary index)
equaling the improvement gained by the sorted clustering over
a random clustering (that would result from the use of
extendable hashing for example). Figure III-3 illustrates the
realization of "cluster3" in Figure II-3 with a "k-4 tree"
index (another tree structure). Clearly, then, a k~d tree
holds the potential for improved horizontal clustering.

For this reason a k—-d tree data structure was chosen as
the: main contender for the role of primary index of all base
relations in SORAAM. We shall see in the next section that its
suitability for this role is enhanced by the fact that, with
various simple interpretations of our characterization of use,
an optimal horizontal clustering results, . A simple
introduction to k-d trees now follows. .

BEach internal or non-leaf node in a k-d tree has the
fields defined by the layout diagrammed in Figure III-3. The
latter three fields (i.e.. "key value®", "left subtree" and
"right subtree") are entirely analogous in purpose and
function to those of a regular binary tree. The additional
"discriminator" field simply determines the <column or
attribute to which the "key value" applies., '"level 1" of the
k-d tree diagrammed (thé root node) discriminates on the first

column while "level 2" discriminates on the second. Therefore,

B. . The Systen 70

A k-4 Tree Index-to-"cluster3"-
: (from -Figure -II-3)
Internal Node Layout
| [| {
I+ + 1 + 1 + |
N O N EE DO S R
| i l l____-->right subtree
| l (
{ { i - - ->left subtree
| l _
{ e - _--->key value
|
| --->discriminator (colunmn#)
I S
i | { | i |
level 1] | 11 3 1+ | + |
| | BUUEEN JUNEIEN SN SN RN N |
I_ | |
| | IS
- I |
§ v - N o
i l ¥ | { { { { [|
1eve12[|2|3|+|+| |2|3|_+|+|
I DNRSTY RN XN FE R | RSEEEY SNURSEN T CRNN U N |
I_ - I { | i
R | i —— [|
| { i |
v _V —V__ —_—v_
B1} { i B2} | | B3I | | Bl4] i {
BN 111 31 131 1] I 31314
111 2 1148 I 31 21 t 31 4|
21 11 I 21 31 a1 11 i &1 31
1 21 2 21 4 e 12 {41 4
| BENEN PRy | DU e | | BEUREN JRNLEY | | D P

Figure III-3

only tuples with values for their first (second) attribute
greater than or equal to 3, the ‘"key value"s, occur in the
right subtree of the root node (level 2 nodes). .

Searching on a k-d tree is simple. Consider an exact

match query that would arise, for example, from tuple

B. The Systen 71

insertion. Starting at the root node we follow the left or
right pointers as implied by the comparison of the appropriate
attribute value determined by a node's discriminator with the
node's key value, In this way we arrive at a single leaf block
in which we must then search.

In a partial match query, however, a node nRay
discriminate on an attribute for which no value 1is provided.
In this case the search must recurse down both the left and
right subtrees., As an example consider the partial match query
{column# 1=2} applied to the base relation given in Figure III-
3. We would follow the left subtree of the root node since the
first column value provided by the query compares less than
the root node key value of 3. However, since no value is
provided for the second column in our query both the left and
right subtree of the 1level 2 node must be searched. As a
result the first two leaf blocks must be searched for tuples
satisfying our query ({column#1=2}. Note that both range
queries and partial range queries can similarly be
facilitated.

There‘are, however, a number of problems with k-4 trees:

(a) With respect to ourvcharacterization of use how

should discriminator values be selected in order
to arrive: at a best possible horizontal

clustering of the tuples of a base relation?

(b) How do ve ensure balancing of the internal nodes
of a k-d tree? '

(c) How do we cluster the intermnal nodes of a k-d
tree themselves within fixed size blocks in order
to ensure minimal disk accesses?

(d) How do we facilitate: dynamic physical

B. The Systen 72

reorganization of the horizontal clustering
necessitated by a changing characterization of
use? ‘
He defer discussion of the first of these problems until the
next section. The latter three of the problems, however, are
considered. in the remainder of this section.
our first problem, then, concerns balancing of the
internal nodes. Imbalance in a k-4 tree can occur when the
tree itself must be dynamically generated according to the
tuple insertion sequence (i.e.. the sequence. of INSERTION
operations on a base relation submitted to SORAAM). To better
understand how this problem arises it is necessary to have a
clearer idea of the insertion process through the k-d tree
primary index. |
Figure III-4 below illustrates both this insertion
process and a resulting imbalance of the internal nodes (more
specifically the root node) arising when the last tuples are
added. The 1leaf blocks in the figure confain the tuples and
are labelled according to their order of creation. Each 1leaf
block is assumed to have a capacity of at most four tuples. A
label of the form "*n" denotes the order of tuple arrival. .
The phrase "leaf page splitting" best describes the event
resulting in the creation of a new 1leaf block and internal
node. Such page splits occur when a new tuple must be added to
a leaf tuple block already full. The arrival, for example, of
the f£ifth tuple forces both tuple block "B1" in Figure III-
4(a) to be split into two tuple blocks "B1" and "B2" and an

internal node created to distinguish between their tuples in

73

The Systen

Be

-a ‘k=d Tree-

-in

Sorted order Insertion

(a)

(b)

- e - -

-— T o w———— ——

NN

NNmMmm |

N
m

(c)

Figure III-4

fashion tuple block "B2" is

similar

a

In

III-4 (b).

Figure

and +thirteenth

ninth

of the

arrival

on

split twice more

tuples,

74

The Systen

B.

__ '''' - - — i —— — e —
—_— e = :
' . m - m M
— - — —— — L . can ———— ———
—— o w— e e = e W e e e wme — e —

I ¥ | | e |
o ¢ — o —— ._ - N~ ! & e —])
Ilil— +|l— V—] — “lu llllll

! ._ | | m

- e — . aNaNmMmm o -
. : - i) l | . . -
. ” o~ o : Pl e e e ————
S ——" m ™M | }
1 ——— - N]
o —— - _w —— | | |
: — . Wy = v— : T o D = —— —
. - ~ | ‘ |
-— e — ”—]
— e o P e a— S ey TP ae e
| |

) N . - : u
”_ o — : * ——— _r ——— ._ m

S e wme = a— —— b o — — — — e we -
_ 1 - _ | , g
Lol ol K o ———— . - : -N~QO

| | < | |

m - - — NNMm M “—

(cont'd)

Figure III-4

Be .The Systen 75

The first thing to remember about k-d trees is that they

behave exactly as 1-d (or binary) +trees in gexpected case
performance for random tuple insertions: |
"Thus we know that typical insertions and record
lookups in a k-d tree will examine approximately
1.386 log n nodes."!
2
Indeed, should the tuples of Figure III-U have: been inserted
in a random order illustrated by "clusteri" of Figure II-3
instead of the sorted order illustrated by "ciusterZ" of
Figure II-3 the perfectly balanced k-d tree: illustrated in
Figure III-3 would have resulted (the reader is encouraged to
verify this for himself). .

One .must realize, however, that k-4 trees are basically a
static data structure.2 Problems arise when insertions are not
random. In such cases a k-d tree can become: unacceptably
unbalanced (possibly when insertions are made in some sorted
order as in Figure III-4). Balancing '"tricks" used by 1-4
trees such "rotations" in the case of AVL trees and "internal
node splitting" in the case of B-trees cannot generally be

applied to k-d trees. The next best approach, then, is to

design a rebuilding phase that accomplishes balancing but that

A — . A > — Y i > —— ——

1This passage is taken from page 512 of [Bentley 7531..A
derivation of this result for binary trees may be. found on
pages U426-427 of [Knuth 73:]. .

2p "dynanmic multidimensional searching data structure"

appropriate for exact or partial match and range or partial
range searching and efficient in both space and time (no worse
than O[n log n] for either) does not yet exist..

B. The Systen 76

permits concurrent normal use made of +the k-4 tree primary
iﬁdex and base relation. The phase would be initiated upon
detection of a suitable imbalance condition. .

There are many ways that imbalance can be detected. A
particularly simple condition suggested by Knuth (see page 451
of (Kmnuth 73]) that we adopt has the form:

D > c . log (IX+1))
2 .

In the above expression "D® rebresents the maximum depth of a
k-d tree index and "IX" the number of internal nodes. Both
values are automatically maintained by SORAAM and are located
in the "RELATIONS" special base relation (see Appendix A)..
Note +that +the number of 1leaf +tuple blocks equals IX+1, A
minimum value of 1 for the constant "c" implies intolerance
for any but perfectly balanced k-4 trees. Higher values of c
allow éreater degrees of imbalance to exist in the primary
index., For example, c¢=1 vwould imply that the k-d tree in
Figure III-4(e) was imbalanced whereas c=1.5 would not._ The
condition (1) would be checked for a base relation whenever a
page-split results from an insertion operation (thus
incrementing the value of IX for that base relation). .

The rebuilding phase adopted by SORAAM involves the
random deletion and re-insertion of the: tuples of the
imbalanced k-d tree. In this case the value of c¢ should be
chosen to be no less than approximately 1.386 (see. above.
quotation from [Bentley 75])..

The first mechanism used to facilitate:this involves the

B« The System 77

use of a special internal node. Such a node, which we denote
as "N*", differs from a regular internal node in the number of
fields present and its effect on searching and insertion.
Consider, for example, that we have a k-d tree: that has become
unbalanced in the sense that the above. condition (1) has

become true:

I | where "N" are internal nodes and
| { ng" are leaf tuple blocks. .

In this circumstance the special ‘internal node N* is added to
the front of the root node of the root page of the k-4 tree as

follows:

I | where "N" and "L" are defined
i (as above.

No descriminator or key value fields are defined for the N*
node, Furthermore, searching and insertion are affected by NW*
as follows:

(a) All searching recurses unconditionally down both
the left and right subtree of N* and

(b) all insertions are made to the right subtree of

B. The Systen 78

N* only. .

Note that the operation of adding N* to a k-4 tree primary
index can be accomplished gquickly and, once done, allows
continuing use made of the left and/or right subtrees.. Note
also that N* could be inserted prior to any-unbalanced subtree
(a property that might possibly be used to advantage should we
have balancing information pertaining to each individual
internal node of a k-4 tree)..

‘The point of this operatiomn is that it now allows an
v"jdle process" (i.e. a certain utility program executing when
the CPU is idle) to delete and re-insert the tuples of the
left subtree of N* (the old unbalanced k-4 tree). In this way
the left subtree eventually disappears (including N#%) and a
new balanced k-d tree is the result. .

Such a balancing process must ensure that randomness is
introduced in the selection of tuples to delete and re-insert. .
Ideally the randomness should apply to the: set of tuples
comprising the base relation. Unfortunately, random deletion
of tuples from a k-d tree results in an unacceptable space
utilization of the 1leaf tuple blocks. There. arises the
possibility of an arbitrarily large percentage of the. 1leaf
blocks containing only a few tuples each.! #We therefore

introduce randomness in the selection of 1leaf tuple blocks

T s s P < " . . S ——— A — — — o —

1Note that "rotations" used to ensure good space utilization in
B-trees when deleting records cannot be used in the case of k-
d trees.

B. The Systen 79

from which tuples are deleted and re-inserted.

There are many ways in which this may be : accomplished. .
One possibility is to introduce a hash file: (possibly using
Fagin's extendable: hash file scheme) in which to store leaf
tuple block addresses., That is, the address of each new leaf
block arising from a leaf page split would be added to the
hash file. A scan of the hash file in the physical storage
sequence would then introduce the desired randomness in the
selection of leaf tuple blocks. Now when N* is added (due to
imbalance) this hash file is fixed (blocks under the right
subtree ‘of N* are added to another "new" hash file) and the
sequential scan of the fixed hash file is made;,
This scan proceeds as follows:

(a) A fixed number m first blocks (independent of the-
size of the base relation) are considered.

(b) Deletion and re-insertion of tuples from each of
these m blocks is made in turn.

(c) Whenever one of the m blocks is exhausted the
next block is retrieved from the hash file. .

Some .observations apparent with this approach are:

(a) The expected distribution of the fange of values
for all attributes of the tuples in the m blocks
is randomly distributed (m parcels) throughout
the value range .of all attributes.

(b) At most m (a fixed small number) of blocks in the
left subtree cf N* can be poorly utilized. .

The ' occurrence .of imbalance in a k-d tree. primary index
does introduce a significant rebuilding phase. This
rebalancing operation does, however, permit concurrent normal

use of the k-d tree. data structure. 6 Furthmore, such a

B. The Systen 80

rebalancing operation is never absolutely necessary.

Consider now the third problem concerning the clustering
of +the . internal nodes of a k-d tree themselves within fixed
sized disk blocks. An approach is desired that ensures both
good performance in terms of bage'faults that occur while
chasing internal nodes and good disk block utilization..
Furthermore, the approach should facilitate concurrent use of
the primary‘index during its invocation and should be dynanic
in the sense that no reformatting of an entire k-d tree is
ever necessary. . |

The approach taken in SORAAM is very simple. Consider the
following situvation in which a primary index block with a
maximum capacity of six internal nodes of a k-d tree is filled

prior to the arrival of another internal node from below:

B1
N1

‘.

~

In this case a page split occurs creating another primary
index block. As a result the internal node "N1" is sent one

level above:

B. The Systen 81

A o -

Note, therefore, that an internal node can arrive from below
as the result of a leaf tuple block split or an internal node
block split. Iﬂ the above, the ipternal node "N1" may cause
further internal node biock splits above "B1" and “B2",
Because of the prior concern with balancing we are
assured of a reasonable internél node disk block utilization
(approximately 50 percent worst case). The. obvious analogy
with the B*-tree data structure also ensures good performance
in terms of page fault rates. An exact match search on the k-4

tree yields an expected number of disk reads given by:

L R
| 1 + logr 1 (IX+1) | (2)
! 1Ix | I
| i-- +1} |
{PIB |

L p]
where [IX/PIB]+1 is the expected branching factor of each
internal - node block and (IX+1) is the number of leaf tuple

blocks.?! ©Note that allowing only one internal node per

1See Appendix A for a definition of "IX"™ and "PIB".

B. . The Systen 82

internal block (i.e. IX=PIB) yields an expected number of disk
reads given by:
r h |
| 1 + 1log (IX+1) |
[2 |
Since we <can expect at least 50 percent utilization of
internal node blocks the following holds:
h |
(2) 2t 1 + log (IX+1) |
| B- |
2
where ‘"B" is the internal node blocking factor. .

The last problem concerning a k-d tree primary index that
we deal with in this section concerns how a dynamic physical
reorganization of the horizontal clustering necessitated by a
changing characterization of use is facilitated. The problen
is ccmprised of two parts:

(@) determining when a characterization of use has
changed sufficiently to warrant physical
reorganization and

(b) accomplishing the desired reorganization.

In SORAAM the characterization of use that determines the
selection of discriminators during leaf tuple block splits are
the "gnocld" and "fold" values found in the special base
relations RELATIONS and ATTRIBUTES respectively (see
Appendix A). These values therefore determine:the currently
existing horizontal clustering. Now recall from the start of
this section that a characterization of use is dynamically

maintained via the "gno" and “E" values found also in

RELATIONS and ATTRIBUTES,

B. The Systen 83

Determining a sufficient change between the "f" and
"fold" (and similarly the '"qno" and "gnoold") values to
warrant physical reorganization (i.e. re-horizontally cluster;
(a) above) is accomplished in SORAAM in a simple fashion. In
the next section we derive a cost function based on weights
derived from the above and on the "d" values (representing the
number of levels in the k-d tree discriminating on each
attributel), Letting this function be denoted as "C" a
sufficient change is deemed to have occurred by SORAAM when
the following conditicn holds:

C(fold,qnoold) 2> c (3)
C (£,49n0)

where "c" is an experimentally determined constant greater
than 1. The test; then, is simple and overcomes the first part
of our ¢fgroblem ((a) above). We note in passing that a more
elatorate test (weighing the benefits of reorganization vefses
the reorganization cost itself; as in ([Yao et al.. 76])
necessarily involves the introduction of a "characterization
of change of wuse". Such information is not currently
maintained or used by SORAAHN,

Accomplishing the desired reorganization ((b) above) .is
now simple., SORAAM simply reuses the mechanism used to
maintain 'balancing in a k-d tree. That is, when condition (3)

becomes true for a particular base relation:

——— e —— — —— — —— — — —— — -

1Note that the "d" values, themselves, are a function of the
"gnoold" and "fold" values since discriminator selection
determines the former and is determined by the latter.

B. .The Systen 84

(a) the special internal node "N*" is added,

(b) the "qnoold" and "fold" values are reset from the
"gno" and "f" values respectively (for that base
relation) and

(c) the rebalancing prbcess is initiated. .

‘Note from the above that discriminator selection for the right
subtree of N* is now based on the current characterization of
use. Fu:thermore, as with re-balancing, normal concurrent use
of a base relation and the primary index is also facilitated.
We have seen in this section how SORAAM has automated one
aspect of a RDMS's physical reorganizational requirements.
Specifically, all management of horizontal clustering
considerations including a characterization of use have been
described. In the next section we deal with +the. specific

problem of discriminator selection arising from leaf tuple

block splitting.

Recall that +the primary indices in SORAAM grow
dynamicaily ~in the number of internal nodes according to the
size of the base relations. In particular, a new internal node
is generated whenever an insertion operation forces a 1leaf
tuple block split. One of the problems outlined in- the
previous section concerned the problem of selecting the
attribute or column number on which to discriminate between

the two leaf tuple blocks that arise when this event occurs..

C. The Systen 85

Such discriminator selection should clearly be a function of
our chosen characterization of use statistics (in particular:
"fold" and "qnoold" values).

In SORAAM all discriminators occuring in internal nodes
that are at the same level in the k-d tree are equal. We can
therefore characterize the problem of discriminator selection
as the problem of determining a sequence:' of discriminator
values h such that cost functions describing:

P1. average external tuple page visits per query
~ (most importantly) and

P2, average internal node ‘visits per gquery (less
importantly)

are, 1in some sense, minimized. 1In Figqure: III-3 1in the
preceeding section, for example, h = {h1,h2} =
{column#1,column#2} = {1,2}. In the remainder of this section
we outline two cost functions that characterize the first of
these problems based on our chosen characterization of use. An
identical closed form solution to problem P1 above is derived
for both these cost functions and a method for choosing
between the +two is given. Following this we demonstrate that
the two problems above are intimately related and derive a
dynamic algorithm solving both problems that directly
generates h., 'SORAAM's inmplementation of this algorithm
completes the section.

Consider that the characterization of use statistics
"fold" and "gnoold" of a particular base relation R directly-
reflect its quéry history. That is, all queries that have

arrived against R have provided one and only one attribute

C. The Systen 86

value., The probability of a particular attribute i being
specified in a query is then given by:
fold

p = —-===1-
i gnoold

Note that the directness assumption above implies:

k k
— fold
Z—-—.-i- =Zp =1 where k is the number
qnoold i of attributes in R. .
i=1 i=1
Letting D = { {h}1 and di =-1(hj | 1= and 1<{j<D} | where (...}

denotes a set and |{...}| denotes its size we may characterize

P1 as:

k
p-di D
Zp 2 where Zdi=D and 2 is the number (4)
i .
i=1

of leaf tuple blocks in R. .

Taking out constants ' (assuming a fixed sized R) and letting
wi=pi we derive a cost function characterizing external node

visits:

k
-di .
F@) = ,ZE" (5)
1 1

i=1
subject to the constraint Zdi=D
In [Aho and Ullman. 79] we are given an account of a
derivation of a closed form expression yielding optimum
distribution of discriminating bits (determining "bucket"

addresses) among a base relation's attributes for partial

C. The Systenm 87

match retrieval. Their characterization of use, however, is

based on the assumption that attributes are independently-

specified. The probability of a query specifying the first n
of k attributes of R, therefore, would be:

P e« P o,.gq'_._p’in__(1’p)o,obo,o_(“p)

1 2 m m+1 k
or
n k
TTp « T (1-p)
i=1i di=me¢1 i

Similarly, their expression characterizing average bucket
accesses (in our case external node visits) corresponding to

{(4) above is given by:

k r 1
D } pi | =-di
2 P]TU t === 2) : (6)
11-pi| k
i=1 L 4 where P = 7] (1-pi) and
i=1
D, di and pi are defined
as above.

Again taking out constants but now 1letting wi=pi/(1-pi) vwe
have a cost function characterizing external node visits
assuming independently specified attributes:
k .
" -di
G(d)=ﬁ(1+w2) (7)
i i

i=1
subject to the constraint 2di=D.ﬂ

Using the method of Lagrangian multipliers to solve for

the di in (5) above we have:

C. The Systen 88

r h
| r 2l
I k I k -l
d | -di I i1
— 1) w2 + A1 >d -Dlt =0 for i=1,2,e..,k
da | i { i 1
i (i=1 ti=1]
i t 41
L 4
or
-di
- % (ln 2) 2 + A=0
i
or
d =1lcgw - c for some constant c. . (8)
i 2 i

The reader may check that (8) is also derived when we apply
the same method above to solve for the di in (7). . From [Aho

and Ullman 79], then, (8) leads to the closed form:

k
Eilog W (9
2 i

i=1

+ log w +
2 i

Q

it
> | o
F i)

An optimal integer valued solution can now be derived from the
above by a simple rounding process. . The: same reference
demonstrates that the following proceédure yields such an
optimal integer solution:
"Add the fractional parts (which must sum to an
integer) to determine how many di's must be
rounded upe. Select this number of di's having the

largest fractional parts and round ther up; round
the others down."t

1From page 174 of [Aho and Ullman 79]..

C. The Systen 89

Constraining the di in the values they may assume by a lower

and/or upper bound is also easily accommodated. .In (4) and (6)

above, for example, the di are constrained to be non-negative..
[Aho and Ullman 79] give us the following procedure to deal

with such ccnstraints:

(a) From the application of (9) determine all i for
which di is outside a bound.

(b) Set each such di to its nearest bound and then
resolve the system with these di deleted. .

(c) Should other di, as a result, "overstep a limit"
then repeat from (b) above. .

Note that accomplishing step (b) is simple since: (9) implies
that unconstrained di vary with a constant amount in a change
of D.

We have now derived a solution to P1 in the static case
of fixed D yielding a distribution of the discriminator values
di among the attributes of a base relation. The discriminator
value sequence h can now be generated from these di values..
Furthermore, the average:internal node visit cost (P2 above)
can now be expressed as a function of the permutation of the
di within h. 1In the following we derive a dynamic algorithm
for k-4 tree: generation to optimally horizontally cluster
tuples of a base relation according to either of the two
interpretations of our characterization of use. This algorithm
will be seen to minimize both P1 and P2 above.

To reiterate, the two interpretations of our
charécterization of use can be described as follows:

(a) if we map foldi/gnoold <> pi then pi -> wi we are
assuming a direct representation of query history

C. The Systen 90

and
(b) if we map -> pi as in (a) and pi/(1-pi) -> wi we
are assumning an independent representation of
query history. .
Clearly the <choice of mapping depends on which more closely

relates the characterization of use with query history. . The

approach wused in SORAAM to decide among these mappings is the

following:
k
if - 2, fold > c . .qnoold (for some experimentally
i=1 i determined constant c)
pi
then choose =---~ => w (independent model)
(1-pi) i

otherwisg-choose,p_ -> v (direct model)
i i

Regardless of the choice of mappings the functions given
in (W), (5) , (6) and (7) above are all minimized at like:
distributions di of the discriminator wvalues given by h..
Consider now an alternative formulation of (4). .Given a k-d
tree of depth D with the discriminator value sequence (from
root to leaves) h=h1,h2,.e.,hD we define an i-tree of the k-4
tree (1<i<k) as the subtree with the characteristic that all
nodes with discriminator value i have one son only. Given the
k-d tree in Figure III-3, for example, with D=2 and h={1,2}

the 1-tree would be:

C. The Systen 91

e ——

! { where "N" are intermnal nodes and
{ { "L" are leaf tuple blocks. .

L L
and the 2-tree would be:
N

———t— " ——

where "N" and "L" are defined
as above,

[l N
[t o cmm 3 o

Now we can reformulate (4) as:

k
i
H (h) = ZEZW L where h, D, w are defined as (10)
D — i D i i
i=1 above and 1. are the number
D

of leaves in the.i-trees
(a function of h)..

Likewise problem P2 can now be characterized as minimizing the

cost function:

k D-1
i i i
Jd (h) = ZE:" M where M = :E:L (i.es the number
D i?Dd D j of internal nodes
i=1 j=1 of the i-tree)

i
and M =0 (11

1

We .can relate (10) and (11) as follows:

C. The System 92

r b]
k ID-1 | k D-1
{ if i
J (h) = Za i L | Z w L
D if Ji ij
i=1 13=1 | i=1 §=1
L o |
D-2 k k
i
T et
1 j i D-1
=1 i=1 i=1
D-
=J () ¢ H () = J.H (h) , (12)
D-1 b-1 i=1 1

From (9) and its integer solution it is clear that a minimal
Hm (h) and Hh-1(h) (for m<D) have. the property that there

exists a unigue i such that:

(ay 4 =4 . for i-=j and
j 3
m m-1
(b) 4 = 4q¢ + 1 for i=j
3 3
m mj1
where d = {fh {t i=j and 1<{j<n} |
i 3
n

This now suggests how we can generate h to minimize both H and
i
J above, Recalling that L is the number of 1leaves in the
' D
i-tree given by h (with depth D). This may be rewritten as:

C. The Systenm 93

i
D-N (h)
i D n
L (h) = 2 where N (h) is defined as

D m

the number -of h (i<m)
i
such that h =n.
i

The approach involves a Jjudicious choice of a summand i in
(10) vhenever the depth of the k-d tree increases by one. K We
simply choose the 1largest summand i. This approach ensures

that for all 1<m<D the following holds:

j hm
m-N mn=N
m m
w 2 £ w2 for 1<j<Lk
j hm
or
| hm
log w =~ N £ log w - N (13)
2 3 m 2 hm m

Note that an optimal h minimizing H and J may Bnot:- be
unique since, for example, there may be more:than one choice
for hD (i.e. at the 1lowest 1level) satisfying (13).. By
convention SORAAM always chooses the minimal column number for
hm, Specifically, when a leaf tuple block at depth m of base

relation R splits SORAAM behaves as follows:

C. The Systen ' 94

(2a) The set S of constrained discriminator values j

(1<j<k) is determined as those j such that:

J
N +1
m
2 < € «n (for an experimentally
determined constant c)

where n, found in ATTRIBUTES, is the nunber
of distinct values of the attribute
with {Aname=R & COL#=3j}.

(b) The discriminator value i is <chosen as the
' minimal i such that:

j i
logw - N £-logw - N
2 3 m 2 i n

for all i,j not in S. .

3 J '
(c) N is assigned N for (1<j<k) and (j-=i) and
m+1 m
i ' i
N is assigned N + 1,
n+1 m

(d) If wm=D then both D found in RELATIONS with
{Rname=R} and 4d found in ATTRIBUTES with
{Rname=R & COL#=i} are. incremented, .

The:attributes n, d and D used above are 1located in the
special base relations RELATIONS and ATTRIBUTES (see
Appendix A). The N values are represented as a single k-vector
K in each leaf tuple block as follows:
i k
K =N where 2. K = nm
i m i=1 i
Step (c) above, therefore, is accomplished by simply

incrementing Ki.,Lastly, the weights w used in step (b) above

are determined by the appropriate mapping from the "fold" and

C. .The Systenm 95

"qnoold" values found also in the special base.relations.,
According to two fundamentally different interpretations
of our characterization of use, therefore, we have derived a
dynamic algorithm for discriminator selection in primary
indices that realizes an optimal horizontal clustering of the

tuples within base relationmns,

D. Secondary Indexing -

This section deals primarily with the automatic selection
of single attribute inversions on base relations in SORAAM.
Such inversions are called secondary indices and are desirable
for their potential of facilitating more efficient search
within base relations.t

We shall see that automating selection of secondary
indices, however, requires that SORAAM have an intimate
knowledge of both the physical and 1logical aspects of such
indices. For this reason we begin the section with a detailed
presentation of the variety of secondary indexing currently
considered by SORAAM. Consideration is then given of a vafiety
of balancing' constraints used to control the:indexing. The
control parameters adopted by SORAAM for this purpose are then

presented followed by the index selection details themselves. .

———— . —— . - — —— ————— —

1See in Chapter II, Section C our definition of secondary
indexing.

D. The Systen 96

The section concludes with a more gemneral consideration of the
notion of secondary indexing. .

Figure III-5 below presents the example base relation
wpJd" represented in terms of its primary index, leaf tuple
blocks and single secondary index on the: second column
attribute "J#",! The two internal nodes of the primary index
have the form "discriminator#:key value", The tuples in the
leaf tuple blocks of Figure III-5 (b) are addressed by "tuple
identifiers"® or "tids" of +the form tij where i and j index
tuple blocks and tﬁples within blocks respectively.

In SORAAM a secondary index may exist on any of the three
attributes P#, J# and QTY of PJ but not, for example, on a
concatenation of P#+QTY., Furthermore, any such index is an
inversion (not a multilink or multiring). . |

Inversions are actually ccmprised of two compomnents.. The
first is a B-tree index with entries of the form {v,p} where v
is a value of the indexed attribute occurring in the base
relation and p is a pcinter to a physically sequential list of
tids of tuples having that value. The second component of an
inversion is the set of secondary tuple pointer blocks (STPBs)
in which the tid lists thémselves are stored. In Figure III-5
(c) four suéh STPBs are used to contain the four tid 1lists..

Furthermore, all +tids in each tid 1list are maintained in

- —— — ——— — ——— — - ————

1§e may consider that PJ is interpreted by a contracting firm
as representing the gquantity ("QTY") of each part ("P#")
supplied by the firm to each job ("J#"). .

D.

The Systen

Example -Base-Relation With
Primary and -Secondary Indexing:

97

(logical view) {primary.index) -
| | | | { A
PJ| P# | J#% |QTY| { - 1:P3_ -}t - -
[=======-{---| { | | |
| P | J1 (| 4| | \J (|
{ PV | 32 | 11 iy 3“_;;“ { |
Il P1 ¢ J3 1 3 | N | - {
{ { | | { | {
| P1 | J4 | 5 | | n - | - -
| P2 | J1 | 4 | | { I | [
I P2 | J2 1 2 { 1| —_V_ eV —V___ 1
| |] | { t114P1 J2 1 21 P1T J1 4 £31(P3 J2 4| |
| P3 | J2 1 4 | t129P1 J3 3| t221P1 J4 51 t32¢P3 J3 4} |
{| P3 § J3 | 4 1) t131P2 J2 2§ t23{P2 J1 4| +33|P3 J4 3| |
{ P3 | J4 | 3} | { 1 i [t341P4 J3 51 |
[| | (| | SRS, | | DRSS | | PRSI B
I P4 § 33 | 51 1 i
(leaf tuple blocks)
(a)
(b)
(BE-tree -index -on_J#)
I |
jJ1+,32+,33+, Ju+|
Y JUEREY DR b ||
= iy | { (ax
| . SR | ({
{ | (|
—| - =y | 4t .
[.-l { I {
| | SR | 1 -
IV |IV ‘ v II v {
{ |t21*,t23,l|t11*,t13,t31*,||t12* t32%,|(1t34,t22%, t33*| }
1 : AN RSN 1 BN Al S
| |
[- -

(secondary tuple pointer blocks)

sorted order.

©)

Figure III-5

A scan on PJ via the

sequence

of tids

given

J#

inversion

would

produce

the

by their left to right sequence in

D. The Systen 98

Figure III-5 (c). Notice that such a scan visits each STPB
only once. When retrieving the tuple associated with a tid it
may be necessary to retrieve the tuple block, in which it
resides, from mass storage. Such an event is a function of the
relevence to the . scanned attribute of the horizoﬁtal
clustering, of the size of the tid lists themselves and of the
number of main memory buffers available for +the operation,
Assuming that one buffer only is available to contain a leaf
tuple block then scanning PJ via the J# dinversion would
produce seven tuple block reads. Those fids in Figure III-5
(c) causing such reads are postfixed with %", 1In the next
section on search strategy vwe élaborate.on estimating such
costs.

If an insertion or deletion occurs in a base relation
then additional effort is requirsad to suitably alter any
secondary indices on the base relation's attributes. Consider,
for example, an insertion into PJ of the tuple T={P2,J3,6}..
According to the primary index T would be inserted into the
second leaf tuple block and assigned the tid t24. Since the
value "J3" already exists in the B-tree then updating the
secondary index simply involves adding t24 t6 J3's tid 1list.
Another entry in the third STPB would then ensue.. The

resulting STPB would appear as:

v |
1t12,t24,t32,

New STPBs are created whenever tid insertions cause overflows.

D. The Systen 99

Should the maximum capacity of an STPB be three tids and
should T's assigned tid have been t35 then the fourth STPB
would split creating a new STPB in order to accommodate t35 as
follows:

I | v [
jt34,t35,1 1t22,t331
TN B S |

Note from the ébove that J4's tid list pointer mnmust also be
updated.

Further details concerning our variety of secondary
indexing can now be simply deduced. It should be clear, for
example, that the STPBs for a particular index be doubly
linked to one another in the obvious manner. Furthermore; the
splitting approach to STPB creation implies a worst case of 50
percent space utilization. However, thé expected case space.
utilization is much better and is very 1likely uniform for all
secondary indices of any base relation. For each base relation
this expected case utilization is represented as a fractional
value of the attribute "f£f2" in RELATIONS (see Appendix A)..

The reason for our concern with making so explicit the
architecture of permitted secondary indexing is that deciding
which secondary indexing to create and deléteA is intimately
related to search strategy (next section) which in turn is
intimately concefned with cost estimation of query evaluation.
This cycle is illustrated by Figure III-6 below with arrows
denoting the dependencye.

The next thing to consider in automating the selection of

D. The Systenm 100

A Cyclic Dependency In-
Secondary Index Selection-

. -- Cost <-__; ~
I Estimation |
l {
\/ I
Secondary |
Indexing {
{ |
b - -2\ Search
Strategy

Figuré ITI-6

the variety of 1indexing discussed above 1is the specific
control mechanism with which decisions about the choice of
indexing are made., Suppose, for example, that we adopt a
design constraint that requires complete isolation of all
index selection considerations from SORAAM's users. This might
be accommodated by a method based on any of the following:.

(@) All emphasis 1is placed on retrieval performance .
only. That is, no constraint exists in selecting
indices. In this <case all base relations would
exist fully inverted (i.e. with an index on each
attribute).

(b) A1l emphasis 1is placed on minimizing total I/O
traffic to mass storage. In this case the
balancing constraint to index selection is the
increased I/0 implied by maintenance operations.
A secondary index reduces total block reads for
retrieval evaluation and increases block reads
and writes for insertions, updates and deletions.

(c) & global space/time +tradeoff is assumed by
SORAAM. In this case a selection of the most
advantagous subset of the possible:inversions
fitting within the permitted space overhead of a
base relation is made.

Should all base relations be fully inverted then the

problem of index selection is +trivial.. Both the space and

D. The System 101

potentially large maintenance overhead of this approach,
however, are clearly unacceptable in the environment assumed
by SORAAM. Consider, for example, a base relation implementing
a spooling or auditing function. The operations on such a
relation may almost entirely involve insertions and deletions.
Alternatively, in using maintenance I/O0 as a balancing
constraint a tradeoff is assumed between query and maintenance
performance. . SORAAM would unconditionally weight a block read
or write caused by an insertion equal to a block read caused
by a retrieval. There are clearly applications for which Such
a tradeoff would be entifely inappropriate. . Consider, for
example, an on-line critical patient information system for a
hospital. One can understand that retrieval performance would
rank far above maintenance performance for base relatioms
.involved in such an application. This same criticism also
applies in a more obvious manner to an approach involving a
global space/tinme tradeoff assumptioni The retrieval
performance requirement for one base relation can entirely
differ f£rcm another. .

For these reasons a design constraint of complete
isolation of all index selection considerations within SORAAM
has not been adopted. Instead an attempt is made to render the
necessary user communication concerning index selection in as
simple a form as possible. |

Towards +this end SORAAM maintains for each base relation
a measure of the indexing: effectivenessb The global

performance measure (g.p.®.) is simply a ratio of the number

D. The Systen 102

of relevant block reads (i.e. a disk read of a 1leaf tuple
block containing a desired tuple) to total block reads
(including primary index blocks, B-tree blocks and STPBs) for
past retrieval operations. The attributes "g.po.m.", "RDQreads"
and vDQreads"™ in RELATIONS exist <for this purpose (see
Appendix A). In the same way as "radix1" can be used to
control the rate of adaptation of the characterization of use
statistics! the attribute "radix2" can be used +to similarly
control the ga.peMe .

The control over secondary indexing for each base
relation is now accommodated by the use of the following three
user supplied parameters:

(a) Plow, Phigh - These are a lower and upper bound
respectively . on geDe Ba (the retrieval
performance). Increasing Plow would therefore
tend to create further indexing while decreasing
Phigh would tend to delete current indexing. For
each base relation SORAAM attempts to ensure that
the following condition holds:

Plow < ge.pe.l. = RDQreads <£- Phigh
DQreads

(b) S - This parameter conveys the maximum percentage
of indexing storage overhead permitted for the
base relation. All blocks used by the internal
nodes of the primary index and by secondary
indices (both the B-tree nodes and STPBs) are
regarded as storage overhead. .

A11 three of the Plow, Phigh and S are also located in
RELATIONS.

For each base relation the latter parameter S is assunmed

- -

1See beginning of Chapter III Sectiomn B. .

De The Systemn 103

to have :precedence over Plow. That is, should the user implied
minimum retrieval performance imply an indexing set (i.e._ set
of single attribute inversions for a base relation) exceeding
the permitted storage overhead implied by S then SORAAM
derives an alternative indexing set best uatilizing the
permitted storage. Also, should Plow exceed a certain
threshold value then a full inversion of the base relation may
ensue. Setting Plow to a high value: then allows a direct
control of a space/time tradeoff via S by a user. .

In additibn to g.p.m._SORAAM automatically maintains a
vector b on each base relation with elements bi (i>0) of the
relative number of times each possible secondary index would
have been used should it have always existed. Note: that i
denotes a secondary index cn the attribute with {(COL#=i}. With
respect " to _this vector another statistic "Pcost" is also
maintained. Pcost, however, denotes a value comparable to that
of DQreads with the assumption that no indexing has ever
existed. . |

The . value of Pcost is increased by an estimate in block
reads of the cost for each <predicate> instance evaluation via
the primary index. Furthermore, should the maximum depth of
the primary index increase by one then Pcost 1is also
incremented. In this case the discriminator COL# for the new
level.determines the increment, In particular, the increase in
primary index and 1leaf tuple block visits doubles for the
fraction of gqueries not supplying values for the new

discriminating COL#. That is:

D. The Systen 104

gqnoold - fold

Pcost <- Pcost + - 1 -. Pcost

qnoéld

These statistic are primarily maintained by a component
of the search strategies (see Section E of this chapter) which
is. invoked for each such <predicate> instance submitted to
SORAAM. Vector b is stored as values of the attribute "b" in
ATTRIBUTES; Pcost is found in RELATIONS. .

The specific search strategy for evaluating any
individual operation required of SORAAM always involves the
use of a single index only (be it primary or secondary). As a
result of this the bi are independent in their implication of
index apélicahility to query evaluation; that 1is, the sum
bi+bj (i-~=3) makes sense. . SORAAM's approach to index
selection, therefore, ié to apply approximate algorithms for
an appropriately formulated knapsack problem.! In light of

this we define the following benefit vector:

r 1T r b | l
b* = b . max{0,] block reads if f=1 Dblock reads if |}
i i findex i doesn't exist| |index i does exist|
L ¥ | L J
() (B)
-D=-di
where (A) = 2. - . {(IX+1) + PIB} = (IXtPIBt1)
D di
2 2

(i.e. a fraction of tuple blocks + index pages of k-4 tree)

1A family of such algorithms may be found in [Sahni 75]. .

D. . The Systenm 105

D-di
and (B) = loge n 40 + STPB-+ min {N-,2 3
i i t 1 n n
[=== +1] i i
{SIB | (14)
L i 4

(i.e. index block reads + STPB reads + tuple:block reads)

In the above the values of D, di and IX have already been
introduced in previous sections. The other values PIB, ni,
SIBi, STPB and N are maintained in RELATIONS and ATTRIBUTES.
The reader is refered to Appendix A for a description of each.

The benefit vector given by (14) illustrates the
requirement for intimate knowledge of the architecture of the
indexing by index selection components. Cost estimation in
block reads of using the various possible access paths clearly
requires suéh knowledge. The third component of the cost
estimation for (B) above, for example, incorporates the
possible effect of horizontal clusteriné by the primary index.

A cost vector c¢ is defined in terms of the number of

blocks necessary for each index. More specifically:

Q
]

r |
{# of index blocks and STPBs|

i { necessary for index i |
L . 4

SIB + STPB
i

Note that ¢ is defined in terms of storage cost only. Should
one assume that maintenance I/0 overhead is uniform over any
indexing set then such a cost function indirectly incorporates

maintenance cost.

D. The Systen 106

We now wish to calculate a threshold performance
requirement P for a new indexing set. Denoting the current
indexing set as a vector x' where:

r
x' = | 1 if COL#=i currently indexed:?

i { 0 otherwise

L
for i varying over all possible COL# in the base relation of
concern then the following represents another estimate of a

value for DQreads (i.e. block reads for past retrieval

operations) relative to an indexing set:
Pcost - (b'. x')
Allowing Plow = RDQreads/y we have:

Pcost = (b'. . x') = Pcost - P
DQreads y

Now solving for P we have:

P = Pcost - QRDQreads-. Pcost - (b's x?) -
Plow DQreads
= Pcost - depels . fPcost - (b'., x')}
Plow

We can now formally specify the approach used by SORAAM
to determine an indexing set x for a base relation. Whenever
either of the following two conditions occur:

(2a) gepel. < Plow (i.e. not enough indexing)

-iIflag is true in this case (see Appendix A)..

D. The System 107

(b) gepe.m. > Phigh (i.e. too much indexing)
then SORAAM solves the following knapsack problem:
minimize ¢ . X (15)

subject to b'e x > P where x in {0,1}
i

and, similarly, whenever either of the following occur:?
(c) (C « X) + PIB > (S « [IX+1])

(i.e. . above solution (15) requires too much
storage overhead)

(d) (c . x*) +# PIB > (S . [IX+1])

(i.e. current indexing set requires +too much
storage overhead)

then the problem becones:
maximize b'. x (16) -
subject to Cc « . x < (S « [IX+1]) - PIB

The chosen indexing set corresponds to all xi=1 in x. .

Thus we see how SORAAM automates the selection of single-
attribute inversions thereby accomplishing automation of
another major physical organization detail. There are a number
of ways in which these results may be extended. The nmost
obvious .is to add to the choice of indexing data stfuctures
available to SORAAM. Perhaps minimally one should consider
hashing and TRIE techniques and 'even.various other static

searching structures, Linking data structures such as the link

access path in System R are also clearly desirable.

——— i i s ol A . - > e s . -

1Note that in both conditions the cost of the primary index 1is
included,

D. The Systen 108

Consider a situation in which +the constraints of an
aspect of a world model dictate a very regular distribution of
values on a specific attribute of a relation. .Comnsider also
" that the model dictates that the attribute is a key of the
relation. . The obvious representation of an index for this
"pice" attribute would simply be a fixed size: FORTRAN-like
array. Furthermore, such a situation is not so unlikely. The
"entity domains" first presented in [Hall et al.. 76] and
adopted in [Codd 79] are a possible example. Values in entity
- domains are system generated and unseen and unknown to end
users. .

One: may even consider a design decision to not commit
SORAAM to a fixed small number of searching data structures
and search algorithms. 'SORAAM would facilitate the easy
extension of both its secondary indexing capabilities and its
user interface (i.e. augménting the variety of non-root node
types). Justification for such a decision seems all the more
clear when one considers the existence of searching data
structure transformations as in [Bentley 78cl..

Accommodating additional indexing data structures is
relatively simple as long as we maintain a constraint that no
more than one be used to evaluate any given instance of a
<predicate>; as 1long as problems (15) and (16) are well
defined, . Should n different varieties of indexing data
structures be available then for a base relation of k columns
the benefit vector would be of size nk. .

The formulation of the problem of index selection given

D. .The Systen : 109

by (15) and (16), however, seems to fail when arbitrary
combinations of indices are permitted in <predicate>
evaluation. The results also fail to extend nicely when
inversions based on a concatenation of more than one attribute
are permitted to exist. In such situations the values ¢ . x in
(15) and b'. x in (16) no longer make sense. .

We note in concluding this section that a specific multi-
attribute inversion may indeed be implied by statistics
already maintained by SORAAM. We conjecture the implication of
such an inversion 1in situations where the "qgno'" value of a
specific column i greatly exceeds its b value, . This signals
that queries supplying values for column i almost always do so
in combination with at least one other attribute j whose index
is prefered by the search strategies over an index on i in

evaluating such queries.

E. Search Strategies

This final section of Chapter III concerns the: decision
process for ' the selection of access paths to be used in the
searching components of operations on SORAAM. Fundamental to
this selection process 1is a cost estimate of the number of
block reads that would ke incurred for each index available..
The first part of the section presents the method used by
SORAAM to determine such costs and the implied. search

strategy. The section ends with a discussion of related work

E. .The Systen 110

concerning the RDMSs System R and INGRES. .

One -of the simplifying assumptions adopted by SORAAM is
that. the use of one index only is permitted in the evaluation
of any <predicate> instance.! Such an assumption greatly
simplifies the selection of access path and, as we héve seen
in the previous section, the problem of automating index
selection. .

Given a query, therefore, (defined- as a <predicate>
instance) the problem is to determine which of the currently
existing secondary indices or the k-d tree. primary index to
use for the search. letting k be the number of columns in the
base relation and I subset {0,1,...,k} Tepresent the indexing
set (where i>0 in I implies the: attribute with COL#=i has a
secondary index and where i=0 denotes the primary index) then
the problem is to determine the. j in I yielding the least
block reads in the search implied by the query. We now outline
the procedure used by SORAAM to handle this problen.

Recalling that all queries are in disjunctive normal form
we consider this procedure in two parts.. The first, P1,
concerns each <conjunct> (a partial match or partial range
query; see Table II-1 for illustration) and the. second, P2,
the query as a vwhole.

For each <conjunct> P1 returns to P2 a list of the form:

1Throughout this section we will be assuming familiarity with
the design of the user interface outlined in Section A of this
chapter. .

E. The System 11

L = {cost0,costl,...,costk} (17)
denoting estimated cost in block reads to evaluate the query
using the primary index (cost0), a secondary index on the
first column (cost1), on the second (cost2), etc. If i is not
in I then costi is assigned a large number which we,denotev as
LARGENUMBER. Otherwise for each i in I P1 does the following:

T1e . cost- <{- LARGENUMBER
i
2. for each <primitive> in the <conjunct> do
2.1 if COL# -~=1i {where COL# is implied by the
"Aname" field of <primitived}
then repeat from 2 for next <primitived.
2.2 determine the selectivity factor SF
2.3 'temp <- SF o (%)

2.4 if temp < cost then cost <- temp
i i

2.5 repeat from 2 for next <primitive>

3. return.

An introduction to and definition of SF (a selectivity
factor) closely qualifying for our own purposes 1is given in
[Selinger et al.. 79]). Basically, SF 1is an attempt at
estimating the fraction of tuples or blocks that would be
accessed should an 1index i be used with an appropriate
<primitive>. This estimate, a function of the <primitive> and
of information regarding the indexed attribute and maintained
by SORAAM, is calculated as follows: |

(a) For a non-root node type 13 <primitived:

E. .The Systen 112

high - low

SF <= ======= ==
max - min

i i

where max and min are boundary values of the

i i
attibute with COL#=i and are 1located in
ATTRIBUTES. .

(b) For a non-root node type 12 <primi£ive> if the
comparison operator is one of {<,<=} then:

value - min
SF (= —=wmee———— i
max -~ min
i i
or if it is cne of {>,>=} then:

max - value

else if the comparison operator is "-=" or "=
then:

SF <- 1 or SF <&~ -

respectively.

Notice from the above that we are assuming the:validity of the
minus operator for range <primitive>s., There are, of course,
some attributes for which only the "=" and "-~=" comparison
operators would be valid. Notice also that the estimates
assume a uniform distribution of both index values and tuples
on values.

Step 2.3 sets the estimate "temp" of block reads in using
index i with <primitive> as the product of SF and (¥*). (¥*),

therefore, is an estimate of the cost in block reads of a scan

E. The Systen 113

of the entire base relation via index i. In SORAAM this
estimate is a function of:

(a) the number of buffers available to hold index and
tuple blocks read from mass storage. (this is
given by the value of the attribute : "buf" in
ATTRIBUTES),

(b) the nature of the horizontal clustering on the
base relation and

(c) the availability of various scanning algorithms
on the STPBs of the secondary index. .

There are four STPB scanning algorithms considered by SORAAM.
All vary in their implied CPU overhead and minimum number of
required buffers. These. algorithms can be. described as
follows:

SCAN1. A sequential scan of the STPBs. .

SCAN2, An aquisition and sort of all relevant tids..

SCAN3. An aquisition and sort of n STPB blocks of
tids at a time.

SCAN4., Merge of m tid lists. .

Assuming we have j buffers - available then devoting all
but two of them to buffering leaf tuple blocks suggests the
first scan algorithm SCAN1 above., This assumes that the number
of levels is the primary index discfiminating on the relevant
index (di) is large enough. That is, di must partition the set
of leaf tuple blocks into units émall enough such that each
may be entirely contained within the available: main memory
buffers.,

Should this not be the case then we may still consider
intelligent use of the available buffers for buffering index

and STPB blocks themselves. Since tids are almost always much

E. The Systen 114

smaller in size than tuples a much smaller number of buffers
may only be required. SCAN2, therefore, is a simple first step
in this direction. In this case we :require enough buffer
storage to contain all STPB blocks containing all relevant
tids (i.es tids pointing to tuples satisfying the query
<predicate>). .

SCAN1 took advantage of the partitioning of the set of
leaf tuple: blocks by di. Consider now that +this same
partitioning must necessarily apply also to the set of index
and STPB blocks. Each subset of index or STPB blocks resulting
in this partitioning is associated with its own disjoint
subset of leaf tuple blocks. Both SCAN3 and SCAN4 may take
advantage of +this rhenominon. W#We may now ccncern ourselves
with acquiring and sorting the tids for each element of the
STPB partition in the case of SCAN3 or merging the tid lists
for each element of the index block partition in the <case of
SCAN4, Because of the lack of knowledge of the exact location
of thése‘partitions in the case of secondary .indices we can
expect that boundary overlap will roughly double the scan
costs of these approaches over that implied by the use of
SCAN1.1

Finally we note that should the range of index values be

sufficiently small then SCAN4 may also apply. In this case an

————— —— — — T — - — —— —

1If we had adopted the overhead of marking these index and STPB
partitions in the design of our secondary indices (i.e. marked
index values occurring as values in the primary index) then
this doubling of scan cost over best possible would not occur.

E. The System 115

m-way merge of the tid lists 1is performed where m is the
number of index values occurring in the ranges .

Table III-2 below summarizes this variety of scan
algorithm in terms of the minimum number of buffers required
and the resulting cost estimate (*) in block reads for a scan
of the tuples in a base rélation.AThe use of this table by
SORAAM in calculating (*) proceeds as follows:

(a) For each approach for which enough buffers are
available the estimated scan cost is computed.

(b) From these the approach involving the least disk

I/0 and then the least CPU overhead is selected

and (*) is assigned its calculated scan cost.
The approach selection implied by step (b) above is consistent
with the:design emphasis in SORAAM on retrieval response;_With
respect to CPU overhead, if we assume sequential scans are
cheaper that merges which in turn are cheaper than sorts, then
the ordering of approach selection is implied by the top to
bottom ordering of Table III-2.

We have now seen how costi (i>0) is calculated by P1 (the
first part of our search strategies procedure). In estimating
a cost for :the primary index (cost0) SORAAM abbreviates the
representation of a <conjunct> as a partial match query Q
subset {1,..,k} where i in Q implies that an "Aname" in a
<primitive> in the <conjunct> exists such that +the COL#
associated with Aname is i. Using this representation for the

<conjunct> cost0 is calculated by P1 as follows: .

E. The Systen 116

Scan Cost of a -Base-Relation-
o)

Via a Secondary Index -

min. necessary Scan Cost in
Approach # of "buf"fers Algorithm Block Reads
IX + 1. » _
(a) di + 2 SCAN1 Best1
2 . _
- a SCANY4
(B) |SFan | + 2 r 1 Best1
i (n={SF.n {)
i i
r h
(C) [SF.STPB| + 2 SCAN2 Bestt
r - SCAN4
| n | , r]
(D) i | + 2 | n | 2.Best!
| di-1 (m=|-;;;~l)
12 { | di-1y
12 |
r 1 SCAN3
. ISTPB | r 1
(E) | === | + 2 | STPB 1| 2.Best!
{ di-1| (n=]-=---- 1) '
{2 | | di-1|
12 |
(F) 3 ~ SCANT Default?

1Best" is defined as (SIB + STPB + IX + 1); i.e. no index,
i
STPB or tuple block accessed more than once, .

r N |
IN D-dij
2f'pefault" is defined as SIB + STPB + n . min{-,2]« .The
i i in |
L i yl

worst case here occurs when each tuple. reference'by its
tid requires a block read. The third term takes into
account the effect of sorted tuple lists. This effect is
di
felt as 2 approaches n .
: i

Table III-2

E. The System 117

- o - - -

cost0 <- >di . {PIB + IX + 1) (18)

This abbreviation of <conjunct> format in estimating cost0 is
justified' when one considers that range <primitiveds can only
improve the performance of the primary index.. That 1is, the
ratio of relevant leaf tuple block reads to total block reads
(a true measure of index performance) can only improve. Note
that costo0 need only be evaluated once for any predicate
instance.

Now consider that the second part of our index selection
procedure, P2, has for each <conjunct> of the. query
<predicate> a list L given by (17) denotiﬁg estimated costs to
evaluate the <conjunct> for each possible index. The final
index selection by P2 is determined as follows:

(a) Any index i for which costi for any
<conjunct>=LARGENUMBER is disqualified from
consideration. Note that, by this criterion, the
primary index is never disqualified;

(b) 0f those indices remaining the index i chosen has

the minimum of the values:

cost or E cost for i>0.
0 i
<conjunct>
This completes the outline of cost estimation and index
selection used by SORAAM: Notice that the query evaluation

facilitated has (admittedly not gracefully) finessed any

consideration or necessity of performing intersections and

E. The System 118

unions of +tid 1lists: This immediately follows from the
restriction stated at the beginning of this section of
permitting one index only in the evaluation of any <predicate>
instance.

Foliowing the determination of the actual - index to use
for the given predicate instance SORAAM reuses the .preceeding

procedures to determine the most desirable -index (whether or

P~

not it currently exists) for this purpose. Should a secondary
index be chosen in this case then the associated bi value in
ATTRIBUTES is incremented., Furthermore, the. "Pcost" value
associated with the implied base relation 1is incremented by
the estimated value of cost0; by +the value:given in (18)
above., In this way the search strategies maintains the
necessary information for use by the secondary index selection
proceedures outlined in the preceeding section. .

To illustrate the effect of SORAAM's horizontal
clustering together with its various base relation scan
algorithms consider the case of a particular base relation
schema R(a1,2a2,...,ak) where R and ai represent the relation
and attribute names respectively.. Assume that R contains
120,000 tuples in 4,000 leaf tuple blocks at 30 tuples per
block. Assume also that secondary indices exist on the first
two attributes only and that:

(a) D=12; d1=6; d2=6 - implying that access to R is

exclusively via at1 and a2 and that <predicate>s

supply values for al as often as for a2. .

(b) Psize=1000; ff2=2/3 - implying that the number of
STPBs per index is 180.

E. The Systen 119

Approachl(E) using SCAN3 in Table III-2 now tells us that with
just 8 buffers a scan of R via the secondary index on al or a2
yields an expected 8,000 leaf tuple block reads! A mean cost
in leaf +tuple block reads for the complete scan of R via any
secondary index is therefore 8,000 (again assuming Jjust 8
buffers available). This compares very favourably with scan
costs for secondary indices of all BRDMSs reviewed in this
thesis that support them. Consider that [Selinger et al. 79)]
predict a -comparable cost for a base relation scan via
unclustered images in System R as the cardinality of the base
relation. A mean cost of 120,000 tuple block reads therefore
arises even with the availability of hundreds of buffers., In
this case SORAAM exhibits an order of magnitude: decrease 1in
mass storage I/0. .

The search strategies comnponent of SORAAM accomplishes
only a simple part of the more gemneral task of compilihg best
possible deterministic execution strategies from non-
procedural DMLs. That is, the kind of searching implied by a
non-procedural DML of an RDMS is much more complex than that
supported by SORAAM. Aggregation operators such as MAX or AVG
and data relatability operators such the the JOIN opera£or of
the relational algebra contribute enormously fo the difficulty
of the problen,

Literature dealing with the subject of this section,
therefore, usually concerns the more: gemeral setting. In
System R the ‘"optimizer", a component of the RDS (the

relational language level of System R), has full

E. The Systen : 120

responsibility for all searching strategy considerations. This
includes searching within and between base relations. [Blasgen
and Eswaran 77] and more recently [Selinger et al. 79] present
the details of System R's optimizer.

In SORAAM it is necessary to split the responsibility of
search strategy selection bhetween the access path and
relational language levels. SORAAM's commitment to controlling
all clustering and index creation details implies that it must
also be responsible for search strategy within base relations. .
That is, since SORAAM can only know of the existence of a
secondary index at a given point in time.then SORAAM must
decide when such an index is to be used.

SORAAM, however, does not represent a precedent in this
regard. The DML of INGRES called QUEL is based on the
relational calculus. In QUEL the module responsible for
optimizing one-variable queries is distinct from the module
responsible for optimizing multi-variable: queries. The
searching capability of the former (called OVQP!) is analogous
to that provided by SORAAM. For an interesting outline qf the
approach used by INGRES in handling multi-variable queries see
[Wong and Youssefi 76]. .

Query processing in SORAAM is distinct from OVQP of
INGRES and the optimizer of the RDS of System R with respect

to the more complex degree of clustering supported. We have

1See the review of INGRES in Section B of Chapter II..

E. The Systen 121

seen in a preceeding example that enormous reductions in I/0
traffic can ensue from support for multidimensional horizontal

clustering in performing search within base relationmns.

A, Future Directions and Conclusions 122

Chapter IV: Future Directions-and-Conclusions-

A. The Next Step-

In this first section of the final chapter we discuss
vhat may be considered the next logical step in the study of a
self-organizing‘ access path level: a demonstration of
feasibility of the concept of SORAAM. This necessarily
requires further empirical evidence.. The nature of this
evidence and the testing environment necessary to acquire it
are discussed. .

A number of "experimentally determined constants" (or
tuning parameters) were introduced throughout Chapter IIXI. A
test system in which to empirically determine :suitable values
for these constants is clearly necessary. To reitterate, the
problems for which sclutions: involved the use of these
constants can be outlined as follows:

(a) the detection of a suitable imbalance condition

in the primary index of a base relation..In
Section B of Chapter III imbalance was determined

by the value of the condition:

D -2 cl .. 1log (IX+1)
2

Furthermore, we saw that the real valued constant
c1 was constrained to be greater than 1.386. .

(b) the introduction of randomness in the selection
of leaf tuple blocks from which tuples are
deleted and re-inserted according to the
balancing or re-clustering phase of a primary
index. Also in Section B of Chapter III an
integer constant number c2 of leaf tuple blocks
are selected at a time.

(c) The determination of a sufficient change. in the

A. Future Directions and Conclusions 123

characterization of use to warrant re-clustering
of a base relation. Such re-clustering (Section
B; Chapter III) was determined by the value of
the condition:

. C(fold,gqnoold) >-c3
C(£f,qno)

where C is defined as the value of the: functions
F or G (see Section C; Chapter III) and c3 is a
real valued constant greater than 1.

(d) the interpretation of the characterization of use
statistics for +the purpose of discriminator
selection in the primary index. In Section C of
Chapter III the choice for the direct verses
indepentent models was based on the following
condition:

k
. fold > cb4 . qnoold
=11

where cl is again a real valued constant greater
than 1.

(e) the acceptance of a minimal number of unique
existing attribute values for qualification of
discrimination in the primary index. In Section C
of Chapter III we permitted discrimination on an
attribute in a leaf tuple block split only if the
following condition was satisfied:

kj + 1
2 < ¢C5:'en

where c5 is a real valued constant in the range
(0’1)..

In addition to determining suitable values for the
constants c1,..,c5 above a number of other issues requiring
the use of a test system must be resolved. These issues are
outstanding in Tegard to an ultimate demonstration of
feasibility of practical self-organizing or self-adapting
sytems.

In order to make decisions about its physical

A. Future Directions and Conclusions 124

organization SORAAM requires the dynamic maintenance of
various information. This information can be categorized as
follows:

(a) information comprising a characterization of use
and

(b) information regarding anticipated index
effectiveness and ineffectiveness. .

It is certainly not yet clear that dynamic unconditional
maintenance of such information is feasible. . With our high
regard 'for transaction respomnse such "procedural" overhead
must be experimentally demonstrated acceptable.

There are a number of aspects of the kind of horizontal
clustering supported in SORAAM (of the choice of data
structure for the primary index) that are, as yet, unclear..
The most obvious questions one may ask concern comparisons of
our multi-dimensional clustering with traditional 1-
dimensional cluétering in regard to retrieval response., More
succinctly, is it all worth the extra trouble; is mass storage
I/0 per query significantly reduced??

SORAAM has also incurred a rebuilding cost arising from
its selection of a static data structure for the primary
index., It is therefore desirable to acquire a more concrete
measure of this overhead in relation to various tuple
insertion sequences, characterizations of use. and, indeed,

values of c1 above. Recall, for example, that sorted input may

1The simple example given in Section E of Chapter III, however,
must certainly contriktute to one's enthusiasm for k-4 trees..

A. Future Directions and Conclusions 125

imply frequently occurring imbalance in the. grqwth of a
primary index.

In SORAAM the control of secondary index selection is not
entirely transparent._In. particular there were three user
supplied parameters YPlow", "Phigh" and "S" that had great
influence in this regard. Index creation 1is contingent not
only on these parameters but on the nature of use of the base
relation. Consider, for example, that the more complex a given
<predicate> instance becones the more probable the
unconditional selection of the primary index for the query
evaluation by the search strategies:i! A much clearer picture
of the nature of interaction of these user parameters and of
query coﬁplexity is still necessary as well as the
experimental determination of suitable default values for the
parameters themselves.

Although harder to evaluate, some estimation of the
overall effectiveness of the search strategies component of
SORAAM is clearly called for. In particular, the accuracy of
the cost estimation routines in predicting "best possible"
choice of access path is, as yet, unknown. .

We have seen, therefore, a number of outstanding issues
requiring the design and implementation of a test environment

for their resolution., Such a test system would differ markedly

——— D D D D W D > — — > ———

1Surprisingly, should all <predicate> instances be conmplex

enough for a base relation then, no matter how heavily used,
no benefit may accrue from the creation of any- - secondary
~index.

A. Future Directions and Conclusions 126

from a "full-scale" production system in a number of important
ways:

(@) Support for actual storage on mass storage media
is not necessary. Realistic turnaround for
simulations in the test system imply complete
main memory residence. Large numbers of 1leaf
tuple blocks would then imply swmall "toy" buffer
sizes.

(b) The test system would involve the use of an
entirely different user interface, It must be
possible for the user to specify whole sets of
transactions and timing of transaction arrival,
determine the accumulation and reporting of much
more extensive statistical information and have
more effective control over all aspects of the
system (e.g. the values of c1 to c5 above)..

(c) A production system would almost certainly imply
extensive modification to the file system of the
anticipated operating system environment; the
test system wculd not. ‘

The test system would be comprised of four major parts:

(a) a transacticn stream generator (including
maintenance transactions)t,

(b) a test data generatort,

(c) an access methods simulator and

(d) a statistical acquisition and report generator.
Fundamental to the design of the test system would be the
nature of the user interface for the above. Note that the
simple design outline of the components given here of a test
system would have 1little correspondence to those of a
production system. Again we stress that the motivations for a

testing environment discussed here are to facilitate

tSee [Farley and Schuster 75) for a discussion of these
components for an analogous testing environment. .

A. Future Directions and Conclusions 127

acquisition of empirical evidence of feasibility of access

path level design (in particular that of SORAAM).

B. Conclusions

In this thesis we have begun an investigation of
automating physical reorganizational requirements of an RDMS.
A review of "state-of-the-art" experimental systems
appropriate for on-line applications revealed a lack of regard
for this problem. The first section of Chapter II, therefore,
presented arguments strongly motivating additional research. .
We observed the growing tendancy of operating systems to
assume more direct responsibility for support of data
management needs._ In particular, an operating systen
environment in which an RDMS has supplanted the role of a file
system firmly implied the need for such automation.

A design specification and outline for the access path
level of an RDMS appropriate for such an environment (SORAANM)
was giveﬁ; Implicit in this design was the :automation of two
major physical organization details concerning a type of
record or tuple clustering and index selection. Analysis of
these details has yielded an access path level with
significant advantages gained over other systems. We feel the
results of this analysis have contributed.signifiéantly to our
overall optimism for both the desirability and feasibility of

such automation, .

B. Future Directions and Conclusions 128

A complete demonstration of feasibility for our proposed
access path level and for its design principles rests heavily,
however, on future experimental research. We: have outlined
what we believe to be the next such step in the preceeding
section: With regard to the legitimacy of the motivating
notion of an "RDMS instead of a file system™ in a general
purpose computing environment perhaps the only acceptable
evidence: rests with the user feedback from a full-scale
production systems.

In formulating the problems of clustering and index
selection careful attention to the meaning of existing
terminology was necessary. In particular a strong advantage
was realized in distinguishing between a primary index, in
which we dealt with horizontal clustering, and secondary
indices, in which we improved indexing performance (reduced,
that is, the length of access path).

We saw, however, that these two notions are far from
independent. A primary index, by virtue of its effect on tuple
clustering, clearly influenced the selection of a secondary
index for the purpose of query evaluation which in turn
influenced the selection of the secondary indexing set itself,
A more. subtle relationship (not previously discussed) exists
in the opposite direction. The choice of secondary indexing
set can affect the action of the primary index towards tuple
clustering. Should, for example, an attribute A of a base
relation R satisfy the following:

(a) a secondary index always exists on A,

Be Future Directions and Conclusions 129

(b) no queries specify value ranges for A,

(c) the query sequence implies a random distribution
of A-values and

(d) the number of unique values in R for A is close
to the number of tuples in R

then 1little justification exists for ever discriminating on A
in the primary index. The characterization of A given above:is
an example of the sort of attribute for which tuple blocking
can have no beneficial effect. Accounting for such cases in
SORAAM, however, is an open problen.

The architecture of the specific variety of secondary
indexing considered iy SORAAM and the problem of automating
their selection 1led, in an almost obvious wmanner, ¢to a
formulation of +this problem in terms of the well known (and
well studied) "knapsack problem®", The latter is also well
known to be a computationally difficult problem.! In light of
the very basic secondary indexing considered such a result
lends credence to the use of appropriate heuristic approaches
to the problem of secondary index selection in general.

Recall that such a heuristic approach was hinted at the
end of Section D of Chapter III in the extension of SORAAM to
support for multi-attribute inversions as secondary indices..
Such an extension is cne of many possible avenues for future
research. We conclude with some suggestions in this regard:

(a) the extension of SORAAM to support for other

——— e o — — — —— — - o > s i b

11t is a member of the class of such difficult problems denoted
as "NP-complete',

(b)

(<)

(d)

(e)

(£)

B. Future Directions and Conclusions

forms of secondary indexing and index selection
methodology.

consideration for the problem of information
archiving.

the extension of SORAAM to support for large
numbers of small sized base relations. Vertical
clustering of base relations becomes very
significant if base relation size is small
ccmpared to the size of a disk block. We have
clearly concentrated in this thesis on support
for base relations where the opposite:is true.

the design of the relational 1language 1level
(SORAAM's user). .

consideration of the remaining physical
reorganizational requirements (see the
Introduction)._

the implementation of a complete operating systenm
environment including the "integrated" RDMS that

is completely self-organizing with regard to the

physical organization of itself.

130

References 131

References

[Aho and Ullman 79]
Aho, Alfred V. and Ullman, Jeffrey D., "Optimal Partial-
Match Retrieval When Fields Are Independently Specified",
ACM Transactions on Database Systems, Volume 4 Number 2,
ppe . 168-179, June(1979). .

[Anderson and Berra 77]
Anderson, Henry D. and Berra, Bruce. P., "Minimum Cost
Selection of Secondary Indexes for Formatted Files", ACH
Transactions on Database Systems, Volume 2 Number 1, pp..
68-90, Mmarch(1977). .

[Astrahan et al. 76]

Astrahan, M. M., Blasgen, D. D., Chamberlin, D, D.,
Eswaran, K. P., Gray, Je. N., Griffiths, P. P., King, W..
Fe, Lorie, R. A., McJones, P. R., Mehl, J. W., Putzolu,
G. R., Traiger, I. L., Wade, B. W. and Watson, V.,
"System R: Relational Approach to Database Management",
ACM Transactions on Database Systems, Volume 1 Number 2,
ppes 97-137, June (1976) .

[Bayer and McCreight 72] ~
: Bayer, R. . and McCreight, Ea, "Organization and
Maintenance of Large Ordered Indices", Acta Informatica,

Volume 1, Springer-Verlag publisher, pp.. 173-189, (1972). .

[Bayer and Schkolnick 761 . »
Bayer, R. and Schkolnick, M., "Concurrency of Operations
On B-trees", Research Report RJ 1791, 1IBM Research
Laboratory, San Jose, May(1976).

[Bayer and Unterauer 76]
Bayer, Re.. and Unterauver, K., "Prefix B-trees", Research
Report RJ 1796, 1IBM Research Laboratory, San Jose,
June (1976) .

[Bentley 75]
Bentley, Jon Louis, "Multidimentional Binary Search Trees
Used For Associative Searching", CACM Volume 18 Number 9,
pPp. . 509-517, September(19795). .

[Bentley 78a]

References 132

-===-=, "2 Survey of Algorithms and Data Structures for
Range Searching", Technical Report CcMUO-CS-78-136,
Carnegie-Mellon University, August(1978).

[Bentley 78t]
----- ¢ "Multidimensional Binary Search Trees In Database
Applications", Technical Report CMU-CS-78-139, Carnegie-
Mellon University, September (1978).

[Bentley 78c])
———— "Decomposable. Searching Problems", Technical
Report CcMU~-CS-78-145, Carnegie-Mellon University,
August (1978) . .

[Berryman and Fowler 79]
Berryman, J. . and Fowler, A., "Building a Database
Management System Into MTS", Internal Memo, The Computing
Center, University of British Columbia, May(1979)..

[Berstein 79]
Berstein, Philip A. (editor), "Proceedings of the ACH-
SIGMOD International Conference on Management of Data",
May (1979). .

[Blasgen and Eswaran 77)
Blasgen, M. W. and Eswaran, K. P., "Storage and Access in
Relaticnal Data Bases", 1IBM Systems Journal, Volume 16
Number 4, pp. 363<377, November (1977) .

[Brodie et al. 75]
Brodie, M. L. (editor), Chan, S., Czarnik, B., Leong, E..
Schuster, S. and Tsichritzis, D., "ZETA: A Prototype
Relational Data Base Management System", Technical Report
CSRG-51, Computer Science Research Group, University of
Toronto, February(1975).

{Cargill 79] :
Cargill, T. A., "A View of Source Text for Diversely
Configurable Software", proposed Ph.D. thesis, University
of Waterloo, (1979). .

[Chamberlin et al. 76]
Chamberlin, D. D., Astrahan, M. M., Eswaran, K. P.,
Griffiths, P. P., lorie, Re. A., Mehl, J. W., Reisner, P.
and Wade, B. W., "SEQUEL 2: A Unified Approach to Data

References 133

Definition, Manipulation, and Control", 1IBM Journal of
Research and Develorment, November (1976). .

[Chamberlin 76]
Chamberlin, D. D., "Relational Data Base: Management
Systemns™, Research Report RJ 1729, IBM Research
Laboratory, San Jose, February(1976). .

[Codd 70]
Codd, E. F., "A Relational Model of Data For Large Shared
Data Banks", CACM Volume 13 Number 6, pp..377-387,
June (1970) . _

[Codd 79]
----- + "Extending the Database Relational Model To
Capture More Meaning", Supplement to Proceedings of ACM-
SIGMOD International Conference on Management of Data,
PP. . 29-52, see [Berstein 797.

[CODASYL 71]
CODASYL,- "Data Base Task Group Report", CODASYL DBTG,
ACM, New York, April(1971).

[CODASYL 73] :
—---=-, "Data Definition Language Committee Journal of
Development", CODASYL DDLC, IFIP Administrative Data
Processing Group, Amsterdam, June (1973). .

[Comer 78]
Comer, Douglas, "The Difficulty of Optimum Index
Selection", ACM Transactions on Database Systems, Volume
3 Number 4, pp. 440-445, December (1978).

[Ccmer 79]
' -==---, "The Ubiquitous B-Tree", ACM Computing Surveys,
Volume 11 Number 2, pp. 121=137, June (1979).

[Datapro 79
Datapro Research Corp., "TOTAL, Cincom Systems, Inc.",
databook 70 - the EDP buyer's bible, Volume: 3, software
section, (1978).

[Date 77)
Date, C. J., "An Introduction +to Database Systems",

References 134

Second Edition, Addison-Wesley Publishing Company, ISBN
0-201-14456-5, (1977).

[Fagin 78]
Fagin, Ronald, "Extendable Hashing - A Fast Access Method
for Dynamic Files", Research Report RJ 2305, IBM Research
Laboratory, San Jose, July (1978). .

[Farley and Schuster 75
Farley, Gilles J. H. and Schuster, Stewart A., "Query
Execution and Index Selection for Relational Data Bases",
Technical Report CSRG-53, Computer Systenms Research
Group, University of Toronto, March(1975). .

[Gray 78]
Gray, J., "Notes On Data Base Operating Systems",
Research Report RJ 2188, 1IBM Research Laboratory, San
Jose, February(1978).

[Hall et al. 76]
Hall, P., Owlett, J. and Todd, S., "Relations and
Entities", Proceedings IFIP TC-2 Working Conference on
Modelling in Database Management Systenms, pp._ 201-220,
see [Nijssen 76b].

[Henry 78]
Henry, Gs . G., "Introduction to IBM System/38
Architecture", 1IBM S/38 TECHe. DEVe., pp..3-6, see [IBM
787. .

[Hewitt 72]
Hewitt, Carl, "Descriptions and Theoretical Analysis
(using Schemata) of PLANNER: A Language for Proving
Theorems and Manipulating Models in a Robot", Ph.D..
Thesis, AI-TR-258, The Artificial Intelligence
Laboratory, Massachusetts Institute of Technology,
Cambridge, Massachusetts, (1972).

[IBM 78]
IBM, "IBM System/38 Technical Developments", IBM Product
Design and Development, General Systems Division, ISBN O0-
9333186-00-2, (1578). .

(Klimbie and Koffeman 74]
Klimbie, J. W. and Koffeman, K. L. (2ditors), "Data Base

References 135

Management", North-Hclland Publishing Company, North-
Holland ISBN: 0 7204 2809 2, (1974).

[Knuth 73]
Knuth, Donald E., "The Art of Computer Programming -
Sorting and Searching", Volume 3, Addison-Wesley
Publishing Company, ISBN 0-201-03803-X, (1973)..

[Kollias et al. 77)
Kollias, J. G., Stocker, P. M., and Dearnley, P.. A.,
"Improving the. Performance of an Intelligent Data
Management System", The Computer Journal, The British
Computer Society, Volume 20 ©Number 4, ISSN 0010-4620,
November (1977).

[Lomet 79
Lomet, David B., "Multi-Table Search for B-tree Files",
Proceedings of ACM-SIGMOD International Conference on
Management of Data, pp. 35-42, see [Berstein 79]. .

[Lorie 74]
lorie, R. A., "XRM - An Extended (n-ary) Relational
Memory", Technical Report No. 320-2096, IBM Cambridge
Scientific Center, January(1974). . :

[McDonell 77]
McDonell, Ken J., "A Unified Approach To Secondary
Storage Input-Output Operations", Ph.D. Thesis, Technical
Report TR77-6, University of Alberta, September(1977).

[McGee 76
McGee, William C., "“On User Criteria. for Data Model
Evaluation", ACM Transactions on Database Systems, Volume
1 Number 4, ppa. 370-387, December (1976).

[Nijssen 76a]
Nijssen, G. M., "A Gross Architecture. for the Next
Generation Database Management Systems", Proceedings IFIP
TC-2 Working Conference on Modelling in Database
Management Systems, pp. . 1-24, see [Nijssen 76b]. .

[Nijssen 76b]
Nijssen, G. M. (editor), "Modelling in Database
Management Systems", North-Holland Publishing Company,
ISBN 0 7204 0459 2, (1976).

References 136

[Prywes and Gray 63)]
Pryvwes, N. S. and Gray, He J., "The Organization of a
Multilist-Type Asscociative Memory", IEEE Transactions on
Communication and Electronics, PPe . 488-«492,
September (1963) .

- [Rodriguez and Echhouse 77]

Rodriquez, Rosell J. and Echhouse, R., "Management of
Data by Future Operating Systems", New Directions for
Operating Systems, A Workshop Report, Browne, J..C..
(editor), ACM SIGOPS Operating Systems Review, Volume 11
Number 1, pp.23-25, (1977).

[(Sahni 75]
Sahni, Sartaj, "Approximate. Algorithms for the 0/1
Knapsack Problen", Journal of the ACM, Volume 22 ©Number
1, ppe 115-124, January(1975).

[Salton et al. 77]
Salton, Gerard, Bergmark, D. and Wong, A., "Generation
and Search of Clustered Files", Technical Report TR 77-
299, Dept. of Comp. Sci, Cornell University, (1977)._

[Salton 79a])
Salton, Gerard, "Suggestions for a Uniform Representation
of Query and Record Content in Data Base and Document
Retrieval"n, Technical Report TR79-363, Cornell
University, (1979).

[Salton 79b]
————, "A Progress Report On Automatic Information
Retrieval®, Technical Report TR79-368, Cornell
Oniversity, (1979).

[Schkolnick 74] ‘
Schkolnick, M., "The Optimal Selection of Secondary
Indices for Files", Technical Report, Carnegie-Mellon
University, November (1974).

[Schkolnick 76] :
----- ¢ "A Clustering Algorithm for Hierarchical
Structures", Research Report RJ 1806, 1IBM Research
Laboratory, San Jose, July (1976). .

[Schmid et al. 75])

References 137

Schmid, He A. (editor), Bernstein, P. A. . (editor), Arlow,
B., Baker, R. and Pozgaj, S., "The Relational Data Base
System OMEGA (Progress Report)", Technical Report CSRG-
72, Computer Systems Research Group, University of
Toronto, July(1976).

[Selinger et al. 79]
Selinger, P. G., Astrahan, M. M., Chamberlin, D.. D.,
Lorie, R. A. and Price, T. G., "Access Path Selection in
a Relational Database Management System", Proceedings of
ACM-SIGMOD International Conference: on Management of
Data, pp. 23-34, see [Berstein 79]. .

[Stocker and Dearnley 72]
Stocher, P. M. _ and Dearnley, P. A., "Self-Organizing Data
Management Systems", British Computer Journal, Volume 16
Number 2, pp.100-105, (1972). .

[Stocker and Dearnley 74]
---<-, "A Self-Organizing Data Base Management Systenm",
Proceedings IFIP Working Conference Oon Data Base
Management, pp._ 337-349, see [Klimbie and Koffeman 74]. .

[Stonebraker et al. 76]
Stonebraker, M., Wong, E., Kreps, P. and Held, G., "The
Design and Implementation of INGRES" ACM Tranactions on
Database Systems, Volume 1 Number 3, pp. 189-222,
September (1976) « ’

[Todd 76]
Todd, Se Je Po., "The Peterlee Relational Test Vehicle - a
system overview", IBM Systems Journal, Volume 15 ©Number
4, pp. 285-308, (1976)..

[Tsichritzis and Lochovsky 77]
Tsichritzis, Dionysios C. . and Lochovsky, Frederick H.,
"Data Base Management Systems", Academic Press, Inc.,
ISBN 0-12-701740-2, (1977).

[Watson and Aberle 78]
Watson, C. T. and Akerle, G. F., "System/38 Machine Data
Base Support", IBYM S/38 TECH. DEV., pp 59«62, see [IBM
787. .

[Wiederhold 77

References 138

Wiederhold, Gio, "Database Design", McGraw-Hill
publisher, ISBN 0-07-070130-X, (1977).

[Wong and Youssefi 76] .
Wong, Eugene and VYoussefi, Karel, "Decomposition - A
Strategy for Query Processing", ACM Transactions on
Database Systems, Volume 1 Number 3, pp.. 223-241,
September (1976) .

[Yao et al. 76])
Yao, S. B., Das, K. S._ and Teorey, T. J., "A Dynanmic
Database Reorganization Algorithm", ACM Transactions on
Database Systems, Volume 1 Number 2, pp.. 159-174,
June (1976) .

Appendix A. 139

Appendix A. Base Relations Used by SORAAM-

This appendix presents a more detailed introduction to
the three base relations and their attributes used by SORAAM
itself, Table IIT-1 in the first section of Chapter III
outlined the schema for these relatioms.

A description of each of the attributes given in Table
III-1 follows. The descriptions themselves are intentionally
cursory since their motivation and use are a central topic in
Chapter IITI of the thesis., The reader is encouraged to refer
to this appendix during the course of reading Chapter III..

In the following definitions those attributes whose
values are automatically maintained by SORAAM are postfixed
with wxn:

RELATIONS -
Rname = the character string identifier of a base
relation.
Bsize* = blocksize in terms of records per block

of a base relation. .

N* = the number of tuples in a base relation.

Dx = the maximum depth of the primary index
tree structure of a base relation (equals the sum
of the associated attributets "d" values). .

PIB* = the number of disk blocks used for the
primary index of a base relation.

PIBloc* = -the location of the root block for the

- primary index of a base relationm. .

IXx* = the number of internal nodes used in the
primary index of a base relation. .

SIPB* = the number of secondary tuple pointer
buffers per index on a base relation (equals
N/[££2%Psize]) s '

f£1% = -the £ill factor of a secondary index. .

f££2% = +the £ill factor of a tuple pointer
buffer.

Psizex* = the tuple pointer blocksize in terms of
pointers per block.

gsPeMe¥* = the global performance measure of a base

relation (equals RDQreads/DQreads).

Appendix A. .

Plow - = the user supplied 1lower bound on the
JepPels.- 0f a base relation.

Phigh = the user supplied wupper bound on the
JepeMe O0f a base relation.

S = the fraction of storage overhead
permitted for secondary indices on the associated
base relations,

qno¥* - = the relative number to the Wf" of the
associated attributes of queries on the base
relation.

gnoold* = as above but relative instead to the
"fold" of the associated attributes. .

radizxi1 = the maximum permitted "gno" value.

RDQreads* = the relative number to "DQreads" of

relevent block reads for query response of a base-

relation. A relevent block was one that contained
a tuple that was retrieved.

DOreads* = the relative number to "RDQreads" of
total block reads for query response of a base
relation. This includes primary and secondary
index blocks.

radix2 = the maximum permitted "DQreads" value.
Pcost* - = the relative number of the total block

reads for query response, assuming no indexing,
to the "b" of the associated attributes. .

radix3 = the maximum permitted "Pcost" value.
buf = the number of main memory buffers

available for operations on a base relation.

ATTRIBUTES
Aname - = the character string . identifier of an
attribute name.

COL# - = +the column number in which values of an
attribute occur in tuples of a base relation.
format = the storage format for values of an

attritute.
n¥ . = the number of distinct values of an

attribute occurring in a base relation (assumed

140

Appendix A.

not greater than . N ... the number of tuples in
the base relation).

dx* = ngqe conveys attribute dependent
information about +the primary index of a base
relation. Specifically it represents the number
of 1levels 1in the k-d tree discriminating on the
associated attribute. .

Iflag* =-if a secondary index currently exists on
* the associated attribute of a base relation then
Iflag is a true value; otherwise false. .

Isize* - = the index blocksize in terms of attribute.

values per block.

SIB¥ - = the number of secondary index blocks used
if a secondary index exists on the: associated
attribute (equals n/[ff1*Isize]). .

SIBloc* f the 1location of the root block of a
secondary index (should it exist) on the

associated attribute.

£x* =- the relative access frequency to the "“f"
of the other attributes and "qno" of the
associated base relation.

fold* = as above but relative instead to the
"fold" and "gnoold" values.

nin* - =- for numeric attributes the current
minimum value occurring in the base relation,

max* o= for numeric attributes the current
maximum value occurring in the base relation.

b* = the "benefit" value of a secondary index

on +the associated attribute of a base relation..

This value is relative to the "b" of the other
attributes and to "Pcost" of the associated base
relation.

D Bi— 24

process# = the identification of a process using
SORAANM (assigned usually by the operating
system).

quiet# = a "quiet" log record identifier. .

141

