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ABSTRACT

The correctness (or integrity) of a database may be destroyed
when the database 1is accessed concurrently by a number of
independent transactionse. Part of the job of a database
management system is to control concurrency so that correctness
is guaranteed. This thesis examines concurrency controls in
general, and in particular those provided by the Educational
Data Base System (EDBS). It is concluded that EDBS facilities
are not sufficient to guarantee correctness, Several
alternatives are proposed whereby correctness can be guaranteed.
An approach is selected based on ease of implementation rather
than on the degree of concurrency provided. Guaranteeing
correctness and at the same time providing a high degree of
concurrency turns out to be a very difficult problem both in

theory and in practice. .
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Chapter I: Introduction

This thesis has two major aspects: concurrency and a student
oriented database management systen.,
The student oriented database management system is the

Educational Data Base System (EDBS).. EDBS consists of a number

of APL workspaces.. Users access the system from an APL terminal
to perform various operations on databases.. Utilities are
provided to CREATE, DESTROY, and MAINTAIN databases. Other
commands permit a user to retrieve data from a database, update
data contained in a database, insert new data into a database,
or delete data from a database.

EDBS is intended for wuse 1in teaching database concepts.,
There are at least two possible approaches to using EDBS in an
educational environmente. First, each student could create and
manipulate his own databases.. Second, the instructor could
create a common database to be accessed by all students. .

Concurrency is defined as the simultaneous use of a systenm
by more than one user. When a database system 1is used
concurrently, data in a database may become incorrect. The
objective of concurrency research 1is to provide concurrency
while ensuring database correctness. The usual approach is to
provide a concurrency component for a database management system

which controls concurrency such that correctness is guaranteed.



A. Motivaticn

Concurrency became an issue in relation to EDBS during
installation of the system at UBC. The available version of
EDBS was dependent on the CDC/APL file system.. Before the
system could be installed, it had to be modified to rely on the
available MTS/APL file systen.

The two file systems differ primarily in their data sharing
facilities (i.e., access authorization, concurrency control).
The particular demands that EDBS makes of the file system in
terms of access authorization could be met in a straight forward
manner via the available MTS APL functions. It appeared
impossible, however, to simulate required concurrency coatrol
capabilities, It +thus became necessary to consider very
carefully the issue of concurrency before continuing with the

implementation.

B. . Proposed Work

A major portion of this thesis is concerned with defining
the problem. Two major constraints imppsed on the problem are
the following: First, we are working in an environment of
imperfect information. In particular, it is very difficult to
obtain required information about the existing EDBS concurrency
solution. . Second, our basic approach requires that EDBS should
not be modified, thus limiting the array of practical solutions. .
A summary of proposed work follows:

(1) review +the literature in the area of concurrency

to clarify blasic objectives of concurrency



control.

(2) examine EDBS concurrency control facilities to
determine the extent to which the existing systen
achieves these objectives.

(3) examine other systems to determine usual
solutions.

(4) propose a solution which satisfies +the basic

objectives of concurrency control.

C. Dimensions

—_—— e e s o

This thesis has several dimensions which may be described as

follows:

1. . File Systems

EDBS has been previously modified to convert from a
dependency on the APL*PLUS file system to a dependency on the
CDC/APL file system. Our undertaking then is to convert fronm a
dependency on the CDC/APL file system to a dependency on the
available MTS/APL file system. In this thesis, as part of our
problem definition, we examine EDBS concurrency solutions as
they developed through each file systen. This approach is
motivated by a desire to understand first, what correctness
guarantee was initially intended for EDBS and second, the extent
to which the existing concurrency solution is constrained by the
CDC/APL file system. Hence, one major theme of this thesis is
file systens, in particular their concurrency control

capabilities.



2. Data Models

EDBS supports creation of relational, hierarchical and
network databases., In this thesis we review essential
characteristics of each data model and we examine at least one
system other than EDBS which supports +the data model.. oOur
analysis is aimed at gaining insight into the question of
whether the data model implies a need for a particular type of
concurrency solution. Hence, a second major theme of this
thesis is data models, in particular their concurrency control

requirements,

3. . Correctness

Coﬁcurrency'is not the only factor in a database environment
which jeopardizes correctness. The integrity of a database may
be destroyed due to hardware failures, human errors, or software
errors. Many systems provide integrity assertions for «checking
the validity of database updates and most systems provide a set
of support routines to detect and recover frcm error situations.
In this thesis we attempt to deal with the issue of concurrency
within. the broader framework of correctness in general by
reviewing additional procedures for ensuring correctness

provided by each system and EDBS.



4. Irade offs

In this thesis we are interested in trade offs, two of which
are particularly relevant: the trade off between information
and performance as pointed out by Kung and Papadimitriou (1979)
in relation to concurrency control mechanisms and the trade off
between concurrency and correctness as evidenced by comparing

concurrency soluticns provided by EDBS and other systenms. .

C. Reader's Guide

Chapter II of this thesis reviews the 1literature and
describes concurrency control facilities provided by a number of
systems. Chapter 1III describes EDBS and compares its
concurrency control facilities with those of other systenms.
Chapter III concludes with a statement of the EDBS concurrency
problem.. Chapter IV describes alternatives and selects what we
believe to be an optimum approach. Finally, Chapter V points
directions for further work, .

The reader is advised that this thesis examines many issues
not necessarily related to the final solution. This thesis is
intended to reflect our experience with the EDBS undertaking,
which was basically a search to determine the problem and find

an implementable solution.



This <chapter reviews research to date in the area of
database concurrency. The objective c¢f concurrency research is
to provide concurrency while ensuring database correctness. . One
approach 1is tc provide a "serializability" component for a data
base management system which guarantees that concurrent
transactions will have a serial view of the database. The
performance of such a component is measured in terms of the
amount of concurrency provided. Virtually all solutions
proposed thus far have been based on locking techniques. It
appears that locking unduly restricts the amount of concurrency
which can be provided. Current research tends toward finding
alternative mechanisms to guarantee serializability while
providing a greater degree of concurrency.

Section 1 of this chapter describes basic concepts. .
Section 2 examines in detail the requirements for
serializability as presented by Papadimitriou (1979). Section 3
examines locking protocols. Finally, section 4 reviewvs

concurrency solutions as implemented in a number of systenms.

A. Basic Concepts

A database is defined as a set of entities where each entity

has a name and a value. Users execute actions on the database.

For - the purpose of our analysis we make the following

assumptions about actions:



(1) Actions are executed indivisibly and one before
the other (i.e., actions are executed with zero
concurrency on a serial machine). 1In this sense
we say that actions are atomic.

{(2) The only types of actions are: read, write, create
and destroy. Actions are performed on entities.
We do not consider an action to be sone
computation involving only temporary variables. .
Rather, we view these sorts of computations as

occurring indivisibly with the action. .

A database represents facts about some portion of the real
world. Hence, +there exists a certain set of assertions

(hereafter called consistency constraints) which necessarily

must be satisfied for the database to be correct relative to the
real world. For example, suppose that our database consists of
the entities E1, E2,+.., En. Consistency const;aints applying
to the database might be the following:

E1 is equal to E2

En is egual to n

E2 is the index of E3

A database 1is continuously undergoing changes as user
actions transform it from one state tc another. A database 1is

said to be consistent if its current state satisfies the set of

consistency ccnstraints associated with the database .
Consistency is necessary but not sufficient for
correctness. . For example, if exactly one consistency constraint

applies to the database that "E1<E2", then it is possible for a



user to erroneously update E2 without violating any consistency
constraints. The database will be incorrect, however, because
it does not accurately reflect the current state of that bortion
of the real world which it is intended to represent.

A database must be at least temporarily inconsistent during
update of eqtities which are related to each other by sonme
consistency constraint. For example, "in moving money from one
bank accounf to another there will be an instant during which
one account has been debited and the other not yet credited.
This violates a constraint that the number of dollars in the
system is cojnstant".1

To guarantee correctness at some level, actions by the same

user are grouped into units called transactions. A transaction,

when executed alone, transforms a consistent database state into
a new consistent state. Hence, a transaction serves as a unit
of consistency.

In this section, we will follow a notation similar to that
presented by Eswaran et al. (1976) for representing an action on
a given entity by a particular transaction. For example, the
read of entity E1 by transaction T1 will be represented as
(T1,read,E1). The transaction name (T1 in this case) will be
eliminated if it is clear from context which +transaction is
performing the action. .

To clearly fix the idea of a transaction consider the
following groups of actions, T1 and T2, and suppose that only

one constraint applies to the database: that "E1 is equal to

! This passage is taken from page 624 of Eswaran et al. (1976). .



E2".,

T1

{(read,El), (read,E2), (write,E1), (write,E2)}

T2 {kread,E1), (write,E1)}

In this example, T1 would be a transaction but T2 would not
be a transaétion. T1 is consistency rpreserving since it updates
both EI1 aﬂd E2 (assuming that +the entities are updated
correctly) . Even though the database may be temporarily
inconsistent during execution of T1, it will be consistent upon
completion of T1.. 1In contrast, T2 wupdates E1 but not E2..
Hence, upon completion of T2 the constraint that E1 is equal to
E2 1is violated. T2 is not consistency preserving and therefore
not a transacticn.

Having grouped actions into transactions we want to run
transactions concurrently by interleaving actions from different
transactions. . The resulting sequence of actions is called a
schedule. We assume here that we have a scheduler whose input
is a sequence of arriving transactions and whose output is the
order of execution of actions within the transactions. 1In this
environment interleaving of actions must be restricted such that
each transaction is 1isolated from temporary inconsistencies
induced in the database by other transactions. .

To see the correctness problems associated with running
transactions concurrently, consider our previous database to
which the constraint applies that "E1 is equal to E2".,_  Now,

suppose that two transactions,

T1 {(T1,write,E1), (T1,write,E2)}

T2

{(T2,read,E1), (T2,read,E2)}

are run concurrently according to the following schedule:
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{(T1,write,E1), (T2,read,El1), (T2,read,E2), (T1,write,E2)}

Note that this schedule gives T2 an inconsistent view of
the database (i.e., T2 reads E1 not equal to E2 because T1 has
updated E1 but not E2 at the time of reading). Now, if it had
been intended that transaction T2 should update the same (or
different) entities based on the inconsistent values read, then
the database would be inconsistent upon completion of the
schedule.

Another correctness problem is the classic "lost update
problem" which occurs when two concurrent transactions read the
same value for an entity and then +try +to write back an
incremented value. The result is that +the second update
overwrites the first and one increment is lost. A database is
certainly incorrect if updates get lost, and further it may be
inconsistent if say two entities are related by a consistency
constraint and an update gets lost for one entity but not the
other. .

If transactions are run sequentially (i.e., one after the
other in some order) then the above correctness problems do not
arise. The schedule resulting from sequential execution of a
set of transactions is called a serial schedule. For example,

given our previous transactions, T1 and T2, there are exactly

two possible serial schedules:



1"

SERIAL SCHEDULES

{(*1,write,EY1), (T1,write,E2), (T2,read,E1), (T2,read,E2)}

{(r2,read,E1), (T2,read,E2), (T1,write,E1), (T1,write,E2)}

Figure 1

Serial schedules have a number of desirable properties. .
First, execution of transactions according to a serial schedule
will give each transaction a consistent view of the database.
This 1is Dbecause only one transaction will be active in the
system at any one time.. Second, the database will be consistent
upon completion of a serial schedule because each transaction
will +transform a consistent database into a new consistent
state. Third, the lost update problem cannot occur with a
serial schedule because any read and write of an entity by a
particular transaction «will occur indivisibly. 0f course,
serial schedules do not provide concurrency between transacfions
(Leee, interleaving of actions from different transactions).

The uswal approach (Eswaran et al.. 1976, Papadimitriou
1979, Kedem and Silberschatz 1979) to providing concurrency
while ensuring correctness involves the notion of

serializability. A schedule is said to be serializable if it is

equivalent to some serial schedule(equivalent in the sense that
their outcomes are the same).. The next section examines the

notion of serializability as presented in Papadimitriou (1979)..
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B. . Serializable Schedules

Papadimitriou justifies the appeal of serializability as a
correctness criterion as follows:

"Databases are supposed to be faithful models of parts

of the real world, and user transactions represent

instantaneous changes in the world. Since such

changes are totally oxdered by temporal priority, the

only acceptable interleavings of atomic steps of

different transactions are those that are equivalent

to some sequential execution of these transactions."?t

In this section, we describe Papadimitriou's model of
transactions and characterization of schedule equivalence.. The
reader 1is cautioned that Papadimitriou considers a very narrow
class of transactions. Namely, those that consist of exactly
two actioans: a read followed by a write. This simple
transaction mcdel is used in Papadimitriou (1979) as a framework
for understanding and comparing different philosophies of
serializability.2 We present it here for similar reasons. We
will see this model again in Chapter 3 of this thesis where it
will serve as a means of describing essential characteristics of
our EDBS concurrency problem.

Papadimitriou refers to a schedule as a history and vieus
database entities as yvariables. Transactions are assumed to
consist of two actions: the retrieval of the values of a set of

variables followed by the update of the values of a set of

variables. The read action for transaction Ti is denoted by Ri,

1 This passage is taken from page 632 of Papadimitriou (1979)..

2 The same transaction model is used in Bernstein et al. . (1978)
and Rothnie and Goodman (13877). .
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the write action by Wi. .

The set of variables read by a transaction is <called the
read set of the transaction (denoted by S(Ri) for transaction
Ti). Similarily, the set of variables written, S{(Wi), is called
the write set of Ti. Each transaction is viewed as a set of
uninterpreted function symbols. For example, suppose that
S{Wi)={y} and S{Ri)={x,2}.. Then we can view y as some function
of x and z [i.e., y=fi(x,2z) ].

Consistent with our previous usage of the term, actions

within transactions are assumed to Le atomic. That is, we
assume that values for variables in S(Ri) are read
instantaneously. Similarily, we assunme that values for

variables in S(Wi) are written instantaneously.

Papadimitriou represents a history as follows: Suppose that
the +transactions involved in history h are T1 and T2 where
S(R1)={x}, S(R2)={3}, S(W1)=S(W2)={x,7V}. Suppose also that
actions from T1 and T2 are scheduled in the order {R1,R2,W1,W2}.
Then h would be given by

h = RI[xIW1[x,y welx,yit

Papadimitriou's notion of equivalence of histories is the
foliowing (Let V represent the set of variables in the database
and 1let f£(i,j) be the function associated with the jth variable
in transaction Ti):

"Two histories, h1 and h2, are equivalent if, given any
set of {Vy domains for the variables, any set of

1 In contrast with Papadimitriou's approach we do not show in h
read (write) actions for which the corresponding read (write) set
is empty.
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initial values for the variables from the

corresponding domains, and furthermore any

interpretation of the functions f(i,j), the values of

the variables are identical after execution of both

histories."!

To understand Papadimitriou's syntactic characterization of
history equivalence some terminology must first be introduced.
In particular, given a history h we are concerned with the
"augmented version of h", the "reads from" relation in h, and a

"]live" transaction in h.

The augmented version of h is the history h' derived from h

(1) appending onto the front of h, a transaction T
which writes all variables in the database without
reading any of then

{2) appending onto the end of h, a transaction T!
which reads all variables in the database without

updating any of them.

For example, 1f we 1let V be the set of variables in the
database then h' would be represented as follows:

h' = W[V] eee { h3} eee R'[V]

Now suppose that x S (Ri).. A "reads from" relation in h is

defined as follows:

"Ri reads x from Wj in h if Wj is the latest occurrence
of a write symbol before Ri in h' such that x€ S(Wj)"2

For example, given the augmented version of our previous

! This passage is taken from page 633 of Papadimitriou (1979).

2 This passage is taken from page 634 of Papadimitriou (1979).
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history,
h' = WIVIRI[x JWi[x,yJW2[x,y]JR'[ V]
we say that R1 reads x from W in h.
The definition of a live transaction in h is as follows:
(1) T* is 1live in h,
(2) If £for some 1live tramsaction Tj, Rj reads a
variable from Wi in h, then Ti is also live in h..
Papadimifriou showed that:
"Two histories, h1 and h2, are equivalent if and only
if they have the same set of live transactions and a
live Ri reads x from Wj in h1 if and only if Ri reads

x from Wj in h2."!

Recall that @a serializable history is one which is

equivalent to some serial history. Various notions of
serializability exist 1im the 1literature. A major result
presented in Papadimitriou (1979) is  that  recognizing

transaction histories that are serializable is an NP-complete
problem. In the same paper it is shown that previous notions of
serializability actually provide for various subsets of the set
of serializable histories.

The NP-complete result suggests that there is no efficient
serializer of histories (i.e., algorithm which converts an input
history to it's <closest serializable history)., However,
Papadimitriou also shows that for all efficiently recognizable
subclasses of serializable histories there exists an efficient

scheduler for the class (i.e., an algorithm which transforms an

input history into the closest serializable history within its

1 This passage is taken from page 635 of Papadimitriou (1979)..
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class) . In the next section, we will be concerned with these

efficient schedulers.

C. Locking Prctocols

There are certain difficulties in designing a scheduler 1in
the form envisioned by Papadimitriou (1979). For example, the
scheduler must be provided with syntactic descriptions of all
transactions to be scheduled, and it is unclear to date how this
might be accomplished. With the notable exception of the SDD-1
system (Bernstein et al. 1978) all concurrency solutions
proposed thus far have been based on locking (i.e., semaphores
controlling access to data). Transactions 1lock and unlock

database entities according to a particular locking protocol. A

locking protocol guarantees that if a transaction is run
concurrently with any other set of transactions where each
transaction follows the same 1locking protocol, any possible
resulting schedule will be serializable. An important aspect of
this approach is that it focuses on each transaction
individually and hence the syntactic description of all
transactions to occur in the history need not be Kknown to the
scheduler a priori. In this section, we discuss a number of
issues related to 1locking protocols. We then describe two
locking protocols in detail: two phase locking and the tree
protocol. We conclude the section by relating a few practical

considerations required in implementing a locking protocol. .
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The reader is advised that we are now considering a broader
set of transactions than that considered by Papadimitriou.. In
this section, transactions may consist of more than two actions
and except where otherwise indicated we include actions which

create and destroy entities.

1. Modes of Locking

Various nodes of locking have been proposed in the
literature. A distinction between shared and exclusive access

to an entity 1is often mnade. A shared lock is intended for

reading an entity; an exclusive lock is intended if the entity

is to be modified [see Kedem and Silberschatz {1979) for a

definition of these two 1locking modes].. Gray et al.. (1975)

propose a third mode of 1locking called intention locking in
which a transaction locks a given node in shared or exclusive
mode by first 1locking all ancestors of the node in intention-
shared or intention-exclusive mode. (Lockable resources in. this
context are assumed +to form a directed acyclic graph.)
Yannakakis et al. (1979) generalize locking to d-locking in
which up to d-1 transactions may share an entity (i.e., a 1lock
variable may assume d values 0, 1, ..., d-1 and the locked state
is d-1).
In this section we will be concerned with exclusive locks

the properties of which may be stated as follows:

(a) an entity may be locked by only one transaction

at a time
(b) 1f a transaction Ti cannot lock an entity

(because it is already locked by some other
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transaction Tj) then Ti is suspended until

T4 unlocks the entity.

2. Predicate Locks

_Our previous discussion assumes that entities are accessed
by name. However, in a database-system it would be common for a
transaction to want to access some logical subset of entities by
specifying a condition on their values (i.e., key addressing).
The requirement for accessing logical subsets of entities
suggests the need for some form of logical locking, hereafter

called predicate locking.

Predicate locks orerate as follows (Schlageter 1978): Assume
we have a set of entities described by predicate C which is_ to
be lockéd. Then predicate C is noted down and each entity the
value of which satisfies C is taken for locked.t

Predicate locking has been investigated by many researchers
(Eswaran et al. 1976, Ries and Stonebraker 1977, Schlageter
1978) .. Further examination of this topic is beyond the scope of
this thesis, We note only an example of what has been termed

the "phantom problem" in the context of predicate locking.

1 Schlageter (1978) also . investigates the possibility of
identifying the entities in the set defined by Predicate C and
explicitly locking each such entity. The results are dgenerally
negative,



19

A phantom is an entity that really should not exist given
the current database state. For example, if a transaction locks
a set of entities as given by some predicate.then no entities
should be added to this set by another transaction wuntil the
first transaction terminates. Thus, the nonexistence of
entities must also be locked. These nonexistent entities are
called phantoms. The materialization of phantoms during the
lifetime of a +transaction may result in the transaction
receiving an inconsistent view of the datakase. To illustrate
this, consider the following example as described by Schlageter
(1378) «

I

"A process P searches the same cbject set twice.. The
objects searched for in the first pass satisfy
Predicate A, in the second pass Predicate A & B. As a
result of phantom materialization the set found in the
second pass may not be a subset of the set found in
the first rpass.®t

3. Desirable Properties of a Locking Protocol

The performance of a locking protocol is evaluated in terms
of +the amount of concurrency that it provides. In
Papadimitriou's terms, we could say that the larger the class of
serializable schedules that are possible responses of a locking
protocol, the greater the amount of concurrency provided (i.e.,
if we consider a locking protoccl +to be a scheduler then a
larger class, of recognizable serializable schedules would mean

less reshuffling of the input schedule and fewer delays).

1 This passage is taken from page 267 of Schlageter (1978).. 1In
our terminology substitute the terms transaction for process and
entity for object.,
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Another desirable feature of a loéking protocol, imn addition
to providing a large amount of concurrency, is that it ensures
freedom from deadlcck. . Deadlock arises when say each of two
transactions acquires only some of the entities that it needs
and each waits for the other to unlock entities. The 1issue of
deadlocks is examined in Yannakakis et al. (1979) for a subclass
of locking policies <called L-policies. It is shown that the
problem of deciding whether a set of +transactions is not
deadlock free is NP complete, and that deadlock depends only on
the order in which entities are locked (and not on where they
are unlocked). In the next subsection we examine a locking

protocol which is deadlock free and another which is not.

4. Two Phase Locking Protocol/Tree Protocol

In describing locking‘ protocols we make the following
assumptions:

(a) the locking or unlocking of an entity is an action

(b) a transaction locks each entity which is to be
accessed prior to accessing it

(c) all locks are exclusive locks

(d) all actions (except lock and unlock) modify their
entities (including read)

(e) entities are accessed by name
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Further, we use the following model of serializability
(Eswaran et al. 1976): Construct a directed graph D (S)

(a) with a node corresponding to each +transaction Ti
in Schedule S

(b) with an arc (Ti, Tj) whenever in S the output of
some entity by Ti serves directly as input to Tj

To clarify (b) above, let A1 and A2 be actions and suppose
that |

S = {eees, (Ti, A1, E), eeo,s (Tj, A2, E), eee}
Then the arc (Ti, Tj) would be found in D(S) if no other action
involving entity E occurs between A1 and A2 in S.. It can be
proved (Eswaran et al. _ 1976) that if D(S) is acyclic then S is
serializability.

Given a history of the form used in Papadimitriou (1979) let
us construct the directed graph D(h). The ncdes in D(h) would
not necessarily correspond to 1live +transactions in h. For
example, transactions T1 and T2 are dead in h = R1[X]JR2[X], but
the arc (T1,T2) would appear in D(h).

Since Eswaran et al. assume that all actions are update
actions, arc (T1,T2) will appear in the directed graph for each

0of the following histories:

h1 = RI[X]W2[X]
h2 = WI[XJR2[X]
h3 = WI[XJH2[X]
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In both h1 and h3, output of X by T1 is said to serve as
input to T2 even though in neither history is it the case that
RZ2 reads X from W1l. Note also that R2 reads X from W1 in h2
even though T2 is dead in h2.

The two phase lock (2PL) protocol proposed by Eswaran et

al. (1976) states that once a transaction has unlocked some
entity, it may not lock any more entities. Thus, a transaction
has two phases: a 1locking phase and an unlocking phase, . The
following is an example of a transaction T1 which is 2PL and

another T2 which is not 2PL:

T1 = {(lock, E1), (regd, E1), (lock, E2)
{(unlock, E1), ([(read, E2), {unlock, E2)}
T2 = {({lock, E1), (read, E1), (unlock, E1)

(lock, E2), (read, E2), (unlock, E2)}

T1 1is 2PL because it locks all required entities before
unlocking any. T2 is not 2PL because it reguests a lock on
entity E2 after releasing a lock on E1.. Eswaran et al. . (1976)
have shown that 2PL is sufficient for ensuring serializability
and also necessary in the sense that if a transaction, say Ti,
does not follow 2PL, then there exists sonme Tj such that
concurrent execution of +the pair (Ti, Tj) may produce a non
serializable schedule.

The two phase lock protocol does not ensure freedom from

deadlock. To see this coansider two transactions T1 and T2 where

T1 {(lock, E1), (lock, E2),es.,(unlock, E1), (unlock, E2)}

T2

{{(lock, E2), (lock, E1),...,{unlock, E2), (unlock, E1)3}1?
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Note that both T1 and T2 are 2PL. Now, if T1 and T2 are ran
concurrently such that T1 succeeds in lccking E1 and T2 succeeds
in 1locking E2, then each transaction will wait indefinitely for
the other to unlock its entity.. Hence, T1 and T2 will be
deadlocked.

How 1is it clear that 2PL ensures serializability? Ignoring
deadlock, it is clear that D(S) will be acyclic for every
possible schedule resulting from concurrent execution of a set
of transactions T, if each transaction in T follows 2PL. This
is because 2PL requires that a transaction must lock all its
entities before releasing any. Thus, a situation could not
occur with say two transactions in which Ti updates an entity
before Tj does and Tj updates an entity before Ti does..
Further, the arcs in D (S) represent a binary relation on the set
of +transactions in S and if this relation is acyclic then the
transactions can be embedded in a linear order. |

Although it has been shown that 2PL is essentially necessary
for ensuring serializability when only syntactic information
about the transaction system is available, other lock protocols
have been derived which guarantee serializability by relying on
information about datakase organization.. Kedem and Silberschatz
(1978, 1979) have proposed the Tree Protocol for databases
organized as rooted trees and a DAG protocol for databases
organized as directed acyclic graphs. The structure upon which
these locking policies depend could in practice refer to some

logical or physical organization of entities. For illustration

1 As is usual we show only the lock and unlock steps.
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purposes we focus here on the Tree protocol which may be stated
as follows:

{(a) A transaction may select the first entity in the
database tree to be locked.

(b) Subsequently, the transaction may lock an entity
only if it 1is «currently holding a lock on the
entity's father.

(c) A transaction may unlock an entity at any time,
however a given entity may be locked at most once
within the same transaction.

From (c) above it is clear that the tree protocol may result
in transactions which are not two phase locked. Silberschatz
and Keden (1978) have shown that this protocol quarantees both

serializability and freedom from deadlock.

5.. Practical Considerations

When it is necessary for a transaction to lock entities it
may in practice be more appropriate for the transaction to lock
some larger_ggggg;g of the database which contains the required
entities. A granule in this context might be a record, a page,
a file, a relation, a column of a relation, a tuple, etc. A
small granule size allows a greater amount of concurrency at a
greater cost in managing locks.. A large granule size, on the
other . hand, inhibits ccncurrency but minimizes management of

locks. .
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Ries and Stonebraker (1977) examine by simulation the
overheads involved in locking. The results of this study show
that a fairly large granule size is optimum in terms of such
parameters as system throughout, response time, CPU utilization
and I/0 utilization. Their conclusion based on these resualts
was that coarse granularity such as file or area locking is
preferable to fine granularity such as page or record locking.

In a later study (Ries and Stonebraker 1979) several
alternative assumptions in their model showed that the desirable
granule size is more application dependént. For example, it was
found that 1if all transactions are randomly accessing small
parts of the database then fine granularity 1is preferable.
However, 1f several transactions access large portions of the
database then coarse granularity is again to be preferred. .

These studies are of interest because they indicate that the
cost of managing locks is high, and that any advantages due +to
greater concurrency may be outweighed by this cost.

Another motivation for 1locking, in addition to ensuring
serializability is to facilitate transaction back out
procedures. Back out may be necessary if it is found upon
completion of a transaction that some consistency constraint has
been violated or if deadlock is detected. MNost systems maintain
a log of all changes made to £he database by each transaction.
Back out of a transaction then, involves undoing all changes
made by the transaction as recorded in the log.. It is pointed
out in Davies (1973) and Bjork (1973) that this procedure may
not work correctly if a transaction is permitted to update

uncommitted datae. Uncommitted data is data which has been
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updated by a transaction still in progress which may be later
backed out. .

To see the problem suppose that data updated by some ongoing
transaction T1 is updated by another transaction T2. Then back
out of transaction T1 will undo T2's update. Hence, T2 will
also have to be backed out.

A need for "isolated" backout suggests that locks for update
should be held to the end of a transaction. This is exactly the
technique used in System R (Astrahan et al. 1976). Schlageter
(1978) points out that the two phase lock protocol "prevents the
propagation of rollback due to deadlock"™. Recall that two phase
locking does not require that locks be held to the end of a
transaction. 0f course, propagation of rollback due to other
reasons (i.e., hardware or software errors) is possible with two

phase locking,

D. . Other Systems

This section describes concurrency control facilities

provided by a number cf systems.

1. System R

System R 1is an experimental prototype database management
system developed at the IBM San Jose, Research Laboratory
(Astrahan et al. 1976). The system provides a high level
relational data interface which permits definition of a variety
of views on common underlying data. {The SEQUEL term for an

external relation is a view.)
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The principal language for interacting with System R is the
SEQUEL . data sublanqguage described in Chamberlin and Boyce
(1974) . System R accomplishes the interface between SEQUEL and
the host language by means of a «concept called a cursor, A
cursor 1is a name which identifies an active set of tuples and
marks a particular +tuple within +this set.. A cursor is
positioned by means of the SEQUEL operator which takes as
parameters a SEQUEL guery and a cursor name., The tuples within
an active set may be retrieved one at a time by a user progranm
by means of a FETCH command which takes as an argument a cursor
name. .

An alternative form of the FETCH command is provided. The
FETCH-HOLD ccmmand operates in exactly the same way as the FETCH
command except that it also acquires a hold on the tuple
returned. A hold prevents other users from updating or deleting
the tuple until it is explicitly released( by means of a RELEASE
command) or until the holding transaction has terminated.

System R employs very sophisticated facilities for ensuring
database correctness including integrity assertions, a 1logging
and recovery subsystem, automatic locking, deadlock detection
and transaction back out procedures.

Integrity assertions are specified by means of SEQUEL
predicates. Assertions may describe permissible states of the
database or permissible transitions in the database. The system
automatically rejects any data modification command which
violates an active integrity assertion. Assertions are normally
checked at the end of each transaction, and the transaction is

backed out if some assertion. is violated. If an assertion 1is
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specified as IMMEDIATE it is ~checked after each data
modification command within each transaction.

In the remainder of this subsection we focus on the
following concurrency control features of System R:

(a) user defined traasactions
(b) multiple levels of consistency
(c) locking at various granularities

A user defines his own transactions in System R by means of
the BEGIN-TRANS and END-TRANS operators. Such a transaction is
basically a PL/1 progran ‘containing SEQUEL data manipulation
commands. A user may also specify save points within his
transaction. As long as a transaction is active the user may
backup to the beginning cr to any intermediate save point..

System R supports three distinct 1levels of consistency.
When a user defines his transaction he must specify the level at
which he wishes it to execute. At all three consistency levels
the system guarantees that data modified by a transaction is not
modified by any other until the first +transaction terminates.
Thus, the system can guarantee that backout of modifications by
one transaction will not undo modifications made by other
transactions. The differences 1in consistency levels occur
during read operations.

Level 1 consistency offers the least isolation from other
users. At this level a transaction may read uncomnmitted data.
Such a transaction incurs the risk of reading inconsistent data
values or data values which never existed if the transaction
which set the values is 1later Ftacked out. The possibly

inaccurate data gathered by a 1level 1 transaction would be
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unsuitable as a basis for updating the database or for making
commitments to the outside world. It may be adequate, however,
for statistical reporting. A level 1 transaction may explicitly
employ the HOLD operator to protect itself from seeing
uncommitted modifications or to guard against losing updates..

Level 2 <consistency guarantees that a transaction does not
see uncommitted data. However, the transaction may not see the
same value for an entity each time the entity is accessed (i.e.,
read reproducibility is not guaranteed). At this consistency
level it is possible for'another transaction to modify an entity
and commit the change in the 1interval between two successive
accesses of the entity by a given level 2 transaction. . Recall
that data becomes committed as soon as the transaction which
modifies 1t terminates, The HOLD operator may be used by a
level 2 transaction to ensure read reproducibility and to guard
against losing updates.

A level 3 transaction sees the 1logical eguivalent of a
single user systen. A1l data read is committed and read
reproducibility 1is guaranteed (except, of course, for changes
made by the +transaction itself), This read reproducibility
applies not only to single tuples but also to collections of
tuples. For example, if a level 3 +transaction accesses all
employees whose salary falls within a certain range, the same
answer will occur every time within the transaction. Concurrent
transactions will be prevented not 6n1y from wupdating or
deleting an employee from this set but also from adding an
employee to this set.. Level 3 consistency does not require

explicit HOLDs. The problem of lost updates is eliminated.
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To guarantee consistency at these various levels, System R
sets locks automatically (with the exception of explicit HOLDs
which may be set by level 1 and 2 transactions). To reduce the
overheads required for lock management, 1locks are applied at
various granularities. For example, individual tuple locks are
applied for transactions that access only a few tuples, whereas
a coarser granularity of 1lock (i.e., at the level of a whole
relation) may be <chosen for transactions which access many
tuples., The protccol for requesting locks is that described in
Gray et al. (1976).

System R employs 1locking both at the logical 1level of
relations and tuples and at the physical level of pages. At the
physical 1level, 1locking is used to guard against occurrences
such as the following:

"... a data page may contain several tuples with each
tuple accessed through its tuple identifier, which
requires following a pointer within the data page.

Even if no 1logical conflict occurs between two

transactions because each 1is accessing a different

relation or a different tuple in the same relation, a

problem could occur at the physical 1level if one

transaction follows a pointer to a tuple on some page

while the other transaction updates a second tuple on

the same page and causes a data compaction routine to

reassign tuple locations,"!

A distinction between shared and exclusive locks is made
for 1logical 1locking.. For all three consistency levels if a
tuple is to be inserted or updated by a transaction then an
exclusive lock is held on the tuple (or some superset) until the

transaction terminates., Read reproducibility is achieved for

level 3 transactions by maintaining shared locks on all tuples

1 This passage is taken from page 124 of Astrahan et al. (1976)..

2
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and index values that are read for +the duration of the
transaction. "For transactions with level 2 consistency read
accesses require a shared lock with immediate duration. Such a
lock request is enqueued behind earlier exclusive lock requests
so that the user is assured of reading committed data. The lock
is then released as socn as the request has been granted, since
reads do not have to be repeatable."! For +transactions with
level 1 consistency, nc locks are held for read purposes except

for physical locks on pages as described above. .

2.. INGRES

INGRES (Stonebraker et al. . 1976) is ancother relational DBMS
which, like System R, supports the concept of a view, provides
integrity assertions for checking validity of wupdates, and
proviaes a logging and recovery scheme. The concurrency control
facilities provided by INGRES, however, are limited in
comparison with those provided by System R, largely due to
address space limitaticns of the PDP-11s for which INGRES was
designed. INGRES provides an option whereby concurrency control
can be turned off.

The primary gquery language supported is QUEL., Users may
execute QUEL statements and other INGRES utilities directly from
a terminal, or INGRES may be invoked from within a program
written in EQUEL, ECUEL 1is a special language consisting of

QUEL embedded in the general purpose programming language C.

1 This passage is taken from page 126 of Astrahan et al.. (1976)..
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Integrity assertions are specified by means of QUEL
gualification clauses. A user's request 1is modified before
execution by ANDing appropriate assertions with existing
gualifications. This has the effect that no request can
possibly violate any integrity assertion.. INGRES does not
support the Systen R transition assertions or deferred
assertions.

The reader is cautioned that INGRES writers use the tern
transaction differently than we have been using it. INGRES
transactions are .not necessarily consistency preserving.
Throughout the remainder of +this subsection, whenever INGRES
writers use the term transaction we use term INGRES transaction.

An INGRES transaction 1is defined as one INGRES command
(iees, QUEL data manipulation command or INGRES utility).. The
INGRES designers considered various other alternatives for
defining a transaction including the following:

(a) a collection of INGRES commands with no

intervening C code
(b) a collection of INGRES commands with C code but no
sysfem calls

(c) an arbitrary EQUEL program

Option (a) is perceived by INGRES designers to be a minor
extension of the chosen alternative (one which they promised to
implement given sufficient user demand). Option (b) is seen as
a minor dJeneralization of option {a) not worth the additional
system complexity required for its implementation. .

Defining an INGRES transaction as éﬁ EQUEL program [option

(c)] 1is, in the opinion of the INGRES designers, impossible to
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support. Such a transaction could contain system calls to say
create and destroy files. The overhead of backing out through
intermediate system calls to resolve deadlock is seen by INGRES
designers as prohibitive. It is noted that deadlock cannot be
avoided in this case because execution of a QUEL statement may
depend on results obtained from system calls. Hence, there is
no way to tell in advance that two transactions may deadlock.
It 1s interesting to note that System R supports a transaction
of this type, presumably because System R designers could better
afford the overheads for resolution of deadlock (i.e., the
operating system envircnment for System R is an extended version
of VM/370). .

INGRES designers have chosen to avoid (rather than detect
and resolve) deadlock. The lock protocol used by INGRES
transactions amounts to requiring that a transaction locks all
its entities in one step. This is accomplished via a LOCK
relation which records 1lock requests. An interaction! is not
allowed to proceed unless all lock requests can be
granted. (ieee, The lock relation is physically 1locked and
interrogated for conflicting locks. If no locks conflict then
all required 1locks are inserted into the LOCK relation.
Otherwise, the interaction waits for a fixed interval and tries
again.) It 1is not clear from available documentation whether
both shared and exclusive 1locks are enmployed by the 1lock

protocoli. Locks are released at the end of each interaction.

i An interaction may consist of more than one INGRES transaction.
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It is not «clear what sort of correctness guarantee is
offered by the INGRES lock protocol. If we assume that all
locks are exclusive locks then it appears that the lock protocol
will always output a serializable schedule when used by a set of
consistency preserving transactions. When used by a set of
INGRES transactions, the loék protococl may result in a schedule
which is not consistency preserving. Clearly, any lock protocol
even one that always outputs a serial schedule may result in an
inconsistent schedule when used by non consistency pfeserving
transactions.

It appears also that INGRES may lose updates. If there is
no consistency preserving unit, then there is no way to require
that the read and wupdate of an entity by the same user be
executed indivisibly. Hence, an update of the same entity by a
different user may get interleaved such that an update gets
lost.

We speculate that some protection against lost updates is
offered by INGRES. First, since locks are held for the duration
of an interaction, 1lost updates will be prevented if a user
carefully selects the INGRES commands which will comprise his
interaction.  Second, it appears that INGRES automatically
converts any update command into a retrieval and update command.
This would mean that some lost update situations will be avoided
by not allowing the update of a variable to be based on a
previous and erroneous value read. It appears that the facility
to process several commands as an interaction could be used in
general to define transactions. These statements are highly

speculative, however, as they have not been pointed out by
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INGRES writers.

The granularity of lock is relatively coarse (on domains of
a relation)’ reflecting an environment where core storage for a
large lock table is not available. A predicate locking schene
is proposed in the hope that considerable concurrency may be
provided at an acceptable overhead in lock table spéce and CPU

time.

IMS is a hierarchical DBMS which provides facilities for
running primarily batch applications. A user's external view
consists of a collection of logical databases, each defined by
means of a program control block (PCB) which also specifies a
mapping tc a corresponding physical database. When a user
program is operating on a particular 1logical database the
associated PCB is maintained in storage 'as a means of
communication between the program and IMS.

Each physical database is an ordered set of all occurrences
of one type of physical database record. The following
describes essential features of the IMS hierarchical data model. .
The reader is referred to Date( 1977) for further details:

(a) A database is defined by a tree structure (i.e., a

definition tree). Each node of the definition
tree represents a segment type in the database.

{b) The definition tree .contains exactly one root

segment type. The root may have any number of
child segment types. Each child of the root may

also have any number of child segment types and so
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on to any number of levels. .

(c) A database record consists of the occurrence in
the database of a single root segment and a number
of dependent segments. .

{(d) A database record follows the template imposed by
the definition tree with the exception that for
one occurrence of any given segment type there may
be zero or more occurrences of each of 1its
children,

IMNS provides a complete set of routines to assist in
maintaining database corréctness including checkpoint and
restart procedures, procedures for backing out changes made to a
database by a given program, and procedures for maintaining the
system 1log.

IMS does not explicitly ©provide integrity assertions.
However, as pointed out in Date (1977), there are two features
of IMS that can be viewed as mechanisms for handling consistency
constraints. . First, IMS enforces uniqueness of sequence field
values (for segments which have sequence fields and are not
multiple valued). Second, certain consistency constraints are
enforced by the very hierarchical structure of an IMS database.
For example, suppose that E1 and E2 are segment occurrences and
that a consistency constraint C applies to the database that "E1
cannot exist without E2". If the database is organized such
that the segment type of E2 is superior in the definition tree
to that of E1, then C would be guaranteed by the simple rule for
hierarchical databases that an occurrence of a dependent segment

cannot exist withouat its parent. .
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IMS provides a fairly complete set of concurrency control
facilities. The primary difference between INS and other
systems we have seen in this regard is that IMS leaves most.of
the responsibility for lock protocols up to the user (i.e., no
automatic locking). The remainder of thié section describes IMS
concurrency control facilities.

First, a PCB associated with a user program may specify an
option whereby all occurrences of an entire segment type are
locked iﬁ exclusive mode. IMS will not load and initiate a
program if its PCB entry conflicts with +that of any program
which 1is already executing. Two PCB entries conflict if either
specifies the EXCLUSIVE option for the same segment type.

Second, IMS provides a hold mechanism to guard against lost
updates. Two versions of each retrieval command are provided: a
GET version and a GET-HOLD version. Both forms retrieve a
particular segment occurrence, however a GET-HOLD command also
places the retrieved segment in hold. When a segment is held by
one user it may be retrieved by other users but not via a GET-
HOLD retrieval command. When the holding user issues a modify
command the segment <c¢ccurrence is locked in exclusive
"mode (i.e., other users may neither GET nor GET—HOLD. the
segment) . Note that this procedure ensures that two users will
not read the same value for a ségment with the intention of
updating it. Hence, segment updates cannot be overwritten.

Third, INMS supports shared 1locks on segment occurrences
which may be explicitly set and released by a user prograna.
Although there is a limit to the number of such 1locks that a

program may hold at one time, this facility appears sufficient
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to guarantee consistency (assuming judicious use of a locking
protocol by all concurrent programs). It is interesting to note
that IMS permits a user to delegate different segment
occurrences to various lock <classes. All segments within a
given 1lock <class may then be unlocked in one operation.. The
foliowing is an example of such locking and unlocking:

GU PRESIDENT*QB (NAME='JOHN')

DEQ B

The **Q' in the GET UNIQUE command specifies +that the
retrieved segment should be 1locked in shared mode. The 'B!
following the *Q 1is the lock class. The dequeue command [DEQ)
releases all shared locks on segments in lock class B. Note
that a hold on a segment and shared 1lock on d segment are
functionally identical.

Exclusive 1locks are released when a program terminates or
when a checkpoint operation within +the program is executed..
Shared locks are also released at these times. Backout may be
initiated by a program or by the system. The automatic
unlocking strategy aprears sufficient to guarantee isolated
backout.

Finally, IMS permits specification of an option in the
PCB (called the READ EXFRESS option) whereby a progranm is
allowed to see uncommitted changes made by other concurrent
programs. A prograh which uses the READ EXPRESS option would be

known as a level 1 transaction in System R.
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In this section we review proposals made by the Data Base
Task Grouap (DBTG) for maintaining correctness in a network based
system (CODASYL, 1976). 1In particular, we are interested in the
provisions for specifying integrity constraints in the schena
DDL, and in the DML statements for concurrency control.  We
first briefly review the network datalmodel and the fundamental
notion of currency( not to be confused with concurrency). .

A network 1is a mcre general structure than a hierarchy in
that a given segment occurrence may have any number of immediate
superiors {as well a§ any number of immediate‘dependents). The
network approach uses the term record for segment and incluades

the concept c¢f a set. A set type consists of one owner record

type and one or more member record types. An occurrence of a

set in the database consists of the occurrence .qu one owWner
record and zero or more mémbef fecords; The reader is referred
to Date ({1977) for further details on the network data model.
The DBTG data sublanguage rests on the fundamental notion
of currency. The basic idea is that the DBMS maintains for each
active wuser program a table of database key values which
specifies the most recently referenced record occurrence within
each area,! within each record‘type, within each set type and
within all record types. The most recently referenced record

occurrence within all record types is called the current of run-

unit.

! The storage space for a DBTG database is partitioned into a
number of named areas.



40

The DBTIG proposes specification c¢f integrity constraints in
the form of prccedure declarations in the schema DDL. Such a
procedure 1is autcmatically invoked before, after or on error
during a particular operation affecting a particular object.
The object may be the schema 1tse1f, an area, record, data item
or set.. Exactly when the procedure should be invoked as well as
the object and operation that should trigger the‘ invokation 1is
also specified as part of the schema. Additional constraints
may be specified which are automaticaily checked after execution
of a store or modify operation involving a specified data item.
This feature could &Le used, for example, to specify values or
ranges of values allowed for data itemé.

The DBTG facilities for concurrency control are similar to
those of 1IMS in that they are not applied automatically.
Rather, it is left up to the user to develop his own concurrency
control strategy based on thé available concurrency control
primitives. The remainder of this section describes two such
concurrency control primitives: ﬁsage—mode and monitored-mode,

A user must specify a usage-mode for any area which he
wishes to use. A user indicates two things when he specifies a
usage-mode: First, how he himself wishes to use the area..
Second, how he wishes concurrent dsers to use the area. The
available usage-modes are described below:

{(a) Retrieval - given user wishes to read from this area

- other users may read or write in this area
{b) Update <= given user wishes to write in this area

~ other users may read or write
{c) Protected Retrieval ‘

- given user wishes to¢ read from this area

- other users may read but not write
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(d) Protected Update '

- given user wishes to write in this area
~ other users may read but not write

(¢) Exclusive Retrieval

- given user wishes to read

- other users may neither read nor write
(f) Exclusive Update

- given user wishes to write in this area

- other users may neither read nor write

A user is not allowed access to an area if a conflicting
usage-mode has already been established for that area by some
other user. The facility for ensuring protected or exclusive
use of an area might be effectively used to ensure database
correctness. However, this mechandism severely restricts
concurrency because the unit of locking (i.e., an area) is a
large portion of the database.

The ﬁBTG proposals pro?ide for an additional mechanisnm
which differs from any that we have seen so far in that, rather
than isolating a user from the activities of other concurrent
users, this mechanism  attempts tc notify a wuser of the
activities of other concurrent users. The basitc idea of the
scheme 1is as follows: A user may explicitly place a record into
monitored-mode. If a user, A, has a record in monitored-mode
then an attempt by A to change the record will fail if some
concurrent wuser has <changed the record since A requested
monitored-mode. User A receives an error message and it is up
to him to decide what to do next. Monitored-mode hgs received
criticism in +the literature {Engles 1971, 1977).' The basic
problems are as follows:

(a) When a request to modify a record in monitored-

mode fails, there is no way of forcing the user to
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handle the situation correctly.

(b) No protection is offered against seeing
uncommitted changes;

(c) No mechanism is provided to prevent concurrent
users from changing data that a given user is
currently working on.

{d) One user may transfer another user's current of
run-unit frcm one record occurrence to another, .

(A possible result is that a user, unaware that

his <current of run-unit has been transferred, may

find himself traversing the wrong set occurrence.)
Several proposals have been made to the CODASYL Programming
Language Committee to replace the L[BTG notify protocol with a
locking scheme. One such proposal made by UNIVAC(1976) provides
for a LOCK statement which permits a user to explicitly 1lock a
record and keep it locked even when the record ceases to be the
current of run-unit. [Some similar ideas were proposed earlier
by Hawley et al. [1575).] A unified solution to several DBTG
problems including concurrency has been proposed by Engles

(1976) based on locking and the conecept of a cursor.

E. Current Hot Research Issues

We conclude this chapter with a list of current hot research
issues:
1«  Quantitative measures for evaluating the performance of a
scheduler are neededs To date only gqualitative measures
have been proposed such as the set of all output schedules.

Papadimitriou (1979) suggests one promising direction which
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would be to approximate the total number of delays imposed
on requests by counting the number 0f tramsaction stéps
which cannot execute immediately'upon?arrival.

A basic assumption in Papadimitriou's formalism is that a
syntacti? description of all transactions to occur in a
history is known to the scheduler a priori. In
Papadimitriou's words "it is not clear how to remove this
assumption and still retain the wealth of available
solutions". One approach wou’d be +to have a number of
prototype transactions to which arriving transactions can be
matched. This approach is discussed in Papadimitriou (1979)
and Bernstein et al. {(1977) . Recall that locking protocols
get around this requirement by focusing on each individual
transaction.

Many of the results presented in the literature related to
locking strategies are not adequately generalized to
distinguish between read and write actions.. In general lock
protocols are stated by assuming that all actions modify
their entities. Some generalization of the two phase lock
protocol can be found in Gray et al.. (1975) and Lien and
Weinberger (1978) « Kedem and Silberschatz {(1979), in the
context of their work on lock protocols for database systenms
modéled by directed graphs, note a requirement for continued
investigation "conceining correctness when transactions are
permitted to set shared and exclusive locks",

A major current issue, not discussed anywhere else in this

thesis except here, is distributed data management.. For

discussion purposes we choose the SDD-1 system -~ a prototype
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distributed database system under development by Computer
Corporation of America. The SDD-1 system involves redundant
data stored at a number of network sites. Users interact
with SDD-1 as if it were a non-distributed database system
because SDD-1 handles all issues arising from distribution

which, among many others, include distributed concurrency

control. The concurrency issue here is the same as we haﬁe
been describing except that it is further complicated by the
problems of data distribution and data replication. A
series of papers in ACM Transactions on Database Systems
{1980) describes the SDD-1 system and its concurrency

control mechanism. Further, an analysis of correctness of

the concurrency control mechanism is provided (see Rothnie

et al. 1980, Bernstein et al. 1980, Berstein and
Shipman 1980) . Many researchers have discussed extensions
of their results to distributed databases (i.c.,

Papadimitriou 1979, Kedem and Silberschatz 1979). .

Finally, there is the issue of concurrency in B-trees. A B-
tree (Bayer and McCreight 1972) 1is a data structure for
organizing a database to guarantee efficient access. .
Concurrent operation of processes on a database stored as a
B-tree (or some variant) involves the usual problens
associated with any concurrent system. However, specific
solutions are suggested by tﬁe structure imposed by the B-
tree and by a requirement for a limited set of operations.
See Kwong and Wood (1979, 1980) for a survey of solutions to
the problem of concurrency in B-trees and a discussion of

the many remaining problems.
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Chapter III: Problenm

In general, our EDBS concurrency problem may be stated as
follows: to ensure correctness of data maintained by EDBS when
the system is used concurrently under MTS. This chapter
provides a host of background material required +to understand
the problen. First, we describe EDBS from the user's point of
view and we compare EDBS both in general and in terms of
concurrency control to those systems which have been described
in Chapter 1II. Second, we discuss EDBS implementation of
concurrency control. This has several aspects. EDBS relies on
the file system to do some of the locking required by its
concurrency control mechanisn. EDBS has now been implemented
with ‘three different file systems(i.e., APL*PLUS, CDC/APL,
MTS/APL) . Both the APL*PLUS and CDC/APL implementations are
discussed to provide insight into the concurrency solution which
was initially intended for EDBS. The existing solution may be
constrained by the CDC/APL file systenm, It is our hope to
devise a solution which is independent of previous file systems. .
Third, we describe EDBS concurrency control facilities using
Papadimitriou's transaction model as presented in Chapter II.
Finally, we provide a l1list of key probklems related +to running
EDBS concurrently under MTS.

The reader is cautioned that in this chapter when we use the
term EDBS we are referring to a set of APL functions which may

be used to perform operations on databases.
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A. EDBS Description

EDBS recognizes three types of users: system administrators,
database administrators, and common users. . A systenm
administratecr is responsible for installing, maintaining, and
modifying EDBS. A database administrator (DBA) 1is responsible
for creating, maintaining and granting access to one or more
databases.. A common user is one who has been given permission
by a DBA to access a database., A DBA may also be a common user.

EDBS is <ccmprised of a number of APL workspaces. One
workspace contains all the wutilities required by the systenm
administrator to <carry out his role (such as those required to
install the system). Other workspaces are intended for use by
DBAs and contain utilities for creating, destroying, granting

access to, and maintaining databases,

All three data models -- hierarchical, network, and
relational -- are supported by EDBS.. A separate systen
(workspace) implements each data model. These workspaces are

intended for common users. The reader is referred to Appendix A
for an overview of EDBS workspaces and utilities. .

Although there are many similarities among the commands
available for interacting with the different types of databases,
each system has its own data manipulation language. There are
four categories of commands available with each systen:

(1) Retrieval commands
{2) Modification commands
(3) Buffer ccmmands

(4) Contrcl commands
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Data in a database is not manipulated directly by a user.
Rather, it is moved into a buffer via retrieval commands where
it may be read or modified via buffer ccmmandse Modification
commands take new cr updated data from the buffer and place it
in the database.

Common to all three systems 1is +the concept of a HOLD,
however the unit c¢f holding is different for each system.. As in
other systems (System R, INMNS) EDBS supports ﬁwo versions of each
retrieval ccmmand: GET and GET-HOLD. Both versions retrieve
data. The GET-HOLD also acquires a hcld on the data retrieved.
If a hold is not immediately possible EDBS returns a status code
to the user to advise him to try again later to hold the itemn.

There are three control commands: OPEN and CLOSE for opening
and closing a database and RELEASE.. The RELEASE command
provides a user with the capability of explicitly releasing a
hold which he has acquired by means of a previous GET-HOLD
retrieval command.

EDBS does not provide integrity assertions. Two mechanisms
are provided to recover from a system crash which may leave the
database in an inconsistent state: The first is the MAINTAIN
utility which massages the database into a consistent state
through an interactive dialogue with the DBA. The second
mechanism is the 1logging of all insertions, deletions and
updates;_ A DUMPLOG utility is provided for printing the logged

information. Logged entries may be erased via the ERASELOG
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Utilitye! The reader is referred to Appendix B for a summary of
available EDBS data manipulation commands and utilities.
The objectives of this section are two-fold:

(1) to provide a flavour of how each system within
EDBS differs from those we have seen before (both
in general and in terms of concurrency control). .

(2) to describe in detail +the EDBS concurrency
control facilities available at the user
interface for each systen.

As a means of comparison we choose System R for the EDBS
relational system, IMS for the EDBS hierarchical system and DBTG

for the EDBS network systenm.

1. . Relational System

The EDBS relational system provides simple retrieval,
qualified retrieval, and retrieval from more than one relation.
In addition, a full range of storage operations are provided for
inserting, updating, and deleting tuples. Among other things,
the following <capabilities of the SEQUEL data sublanguage are
not supported by the EDBS relational DML:

{(a) ordering on tuples retrieved

(b) nested mapping

(c) specification of more than two relations in a
retrieval command

(d) explicit -elimination of duplicates from a query

1 The MAINTAIN, DUMPLOG and ERASELCG utilities have not been
implemented at UBC.
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result.

Like SEQUEL, all EDBS storage operations are restricted “to
operate .on a single relation at a time,

The EDBS approach to defining new relations differs from
that of System R. With System R facilities for data definition
and data manipulation are provided in a unified manner by means
of the SEQUEL operator.. A user may create new base relations
and destroy them when they are no longer needed.. EDBS, on the
other hand, distinguishes between data definition and data
manipulation., . A separate utility is provided for defining new
base relations. Only a DBA (not a ccmmon user) may create and
destroy base relations.

The methcd of interfacing the data sublanguage and the host
language is similar with EDBS and System R. Recall that Systen
R accomplishes the interface by means of cursors which identify
active sets of tuples. The tuples may be read by a program by
specifying the appropriate cursor in a FETCH command. . EDBS
maintains active sets of tuples in a buffer. Tuples are
available to an APL program by means of tuffer commands which
require specification of a relation nanme. The relation name
serves the function of a cursor.

The only concurrency control mechanism available with the
EDBS relational system is the HOLD option.. The System R
automatic locking, multiple levels  of consistency and
transaction definition facilities are not sufpported. The HOLD
option operates differently between EDBS and System R: The unit
of hold with EDBS is one relation. The unit of hold with System

R is a single tuple.
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EDBS enforces certain rules on use of the GET-HOLD which may
be stated as follows:
(a) A user must hold a relation prior to updating it.

{(b) A user may hold at most one relation at one time..

{(c) Only buffer ccmmands (or the RELEASE command) may
intervene between the GET-HOLD and UPDATE
commands,

Prior use of the GET-HOLD is not required for imnsertion or
deletion of tuples., EDBS automatically holds the relation in

these instances.

2. Hierarchical Systen

The EDBS data description 1language for hierarchical
databases is similar to that of 1INS. The most notable
difference 1is +that EDBS does not support sequencing of key
values or key values consisting of more than one field value.
The EDBS data manipulation language for hierarchical databases
is also similar to the IMS data sublanguage.. The GET UNIQUE,
GET NEXT, GET NEXT WITHIN PARENT, INSERT, DELETE, and REPLACE
operations are all supported. These cperations may be gualified
by means of comparison and Boolean operators which comprise the
equivalent of an IMS segment search argument.

In terms of concurrency control, only the HOLD option is
supported by EDBS. The HOLD option operates exactly as
described for 1IMS (see Chapter II). EDBS has no facility by
which a user may hold mcre than one segment occurrence at one
time. Recall +that 1IMS provides this facility by means of the

PCB exclusive option or by means of explicit shared locks.
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EDBS enforces the following rules on use of GET-HOLD
retrieval operations:

(a) Except for a root segment, the parent-to-be of
any segment which is to be inserted must first be
held via a GET-HOLD retrieval command.

(b) Any segment which is to be modified or deleted
must first be held wvia a GET-HOLD retrieval
command.

(c) Only buffer commands (or the RELEASE command) may
intervene between a GET-HCLD retrieval command

and any modification ccmmand.

3. Network Systen

The EDBS data description language for network databases is
a rather limited version of the DBTG schema DDL.. Many of the
DBTG features concerned with the storage level of a database
system are not supported by EDBS. Other DBTG options which may
be specified 1in the schema are not supported by EDBS. For
example, the storage class for every member record type in EDBS
is assumed to be MANUAL. That is, when an occurrence of a
member record type is first created and placed in the détabase,
it 1is not automatically inserted as a member of any set
occurrence., . Furthermore, the removal <class for every member
record type in EDBS 1is always OPTIONAL.I This means that an
occurrence of any member record type may exist in the database

without being a member of any set occurrence.
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EDBS does not maintain as many currency indicators as DBTG. .
Since an EDBS database is not divided into named areas, there is

no need to maintain the current record occurrence within each

area. . The most important DBTG currency of all -- the current of
run-unit =-- is not maintained by EDBS. This has obvious
implications in terms of the —respective DMLs., . With DBTG

virtually every operation uses the current of run-unit which is
established via the FIND operation. HWith EDBS operations are
performed -on sedgment occurrences established by means of other
currencies (i.e., record or set pointers).

The concurrency control facilities provided by the EDBS
network system bear no resemblance to those proposed by the
DBTG. . Recall that the DBTG final report (1971) does not provide
for use of holds. The remainder of this subsection describes
the use of holds in the EDBS network systenm.

Five possible modification actions are available:

(a) insertion of a new record

(b) deletion of a fecord

{(c) inclusion of a record in a set occurrence

(d) removal of a record in a set occurrence

(e) update of a.record currently in the database.

The following rules apply‘ to use of holds in the network
system:

{(a) Before a record may be.updated it must be placed
in hold. Upon completion of the update the hold
is automatically removed.

{(b) For INCLUDE and REMOVE the record may optionally

be placed in hold.. A RELEASE command must be
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issued to release the hold.

(c) For deletion the record may optionally be placed
in hold. The hold is automatically released upon
completion of the DELETE command.

(1) A wuser may have at most one record occurrence in

hold at one time.

There are certain difficulties inherent in the EDBS
concurreﬂcy control scheme for netwcrk databases. . As with DBTG
the user is nct completely isolated from the activities of other
concurrent users. The EDBS User's Guide advises that "the
existence of concurrent users necessitates that caution must be
exercised when dealing with record or set pointers". A user may
be affected in onerf the following ways:

(a) A record or set pointer may mark the position of
a record that has been deleted by another user.
If the location remains empty and the poimter is
referenced an error condition will result. If a
new record is stored in the vacant 1location the
prior deletion will be undetectable. .

(b) A set pointer may mark the position of a member
record that has been removed from a set
occurrence by another user. If the pointer is

referenced an error condition will result.
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B. . EDBS Imgplementation

EDBS was designed by the Systems Research Group at
University of Toronto. The implementation was dependent on
availability of +the APL*PLUS file system and used overlay
techniques to fit +the system into a small workspace.. The
University of Calgary installed EDBS on their Control Data
Computer (CDC). Overlay functions were eliminated and the
system was converted to rely on the CDC/APL file system.

With the recent introduction of the MIS/APL file system it
became feasible to install EDBS at UBC. The decision was to use
the CDC/APL version of ELBS. The major requirement of the
implementation was conversion of the file systen. The major
constraint was that the system itself should not be modified.

The general approach (suggested by Yair Wand, Faculty of
Management, University of Calgary) was to provide an interface
file system between EDBS and the MTS/APL file system. The
interface file system is intended to simulate the CDC/APL file
system using the available MTS/AFL functions. The following
diagram represents the relationship between EDBS, the interface
file system and the MTS/APL file systen.

INTERFACE FILE SYSTEHM

f----- > Interface {===== > MTS/APL

Sy e e

i

|{~mmmm { File System [|<-=--=- | File Systen
|
4

Figure 2
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The functions available from the interface file system are
exactly those provided by the CDC/APL file system. When EDBS
calls a particular CDC/APL function it actually calls an
interface function which performs the task that would have been
performed by the CDC function and furthermore returns to EDBS
exactly what it expected when it called the CDC function.

The CDC and MTS APL file systems differ primarily in their
file sharing facilities (i.e., access authorization and
concurrency congrol). With these exceptions, simulation of the
CDC/APL file system using the available MTS APL file system was
a straight forward task.

The EbBS approach to concurrency control requires setting
logical locks on such objects as relations, seghents and recozrds
and physical locks on files. EDBS manages its own logical locks
and relies on the file system tc set physical locks. One
exception to thig is the relational system .of +the APL*PLUS
version of EDBS which does not «rely on the file system for
locking.

The conversion at University of Calgary from APL*PLUS to
CDC/APL involved extensive modification o: the locking .mechanisnm
used by the relational systenm. Modificatiqn of the hierarchical
and network systems was far less extensive involving only the
physical level of locking. A result of modifications made at
University of Calgary was that the locking strategies used by
all three systems are now similar (i.e., the relational systenm
was modified to rely on the CDC/AFL file system just as the

hierarchical and network systems do).
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In this section .we describe the existing EDBS
implementation along a number of dimensions. First, we examine
data usage in general by reviewing 'EDBS files and authorization
at the file system level. Second, we examine implementation of
concurrency control in the APL*PLUS version of EDBS. Third, we
look at major differences in the CDC/APL version. Finally, we

consider EDBS under MTS.

1. . EDBS Files and Authcrization

This section describes EDBJ files ‘and access requirements
at the file system level, Access restrictions are also imposed
by EDBS itself. All of these files LTe cfeated by various DBA
utilities except for the message file, JBA log file and buffer
files. (Seé Appendix C for a graphiéal representation of EDBS
file usage.)

{a) Message File:

The message file contains error messages used by
various EDBS utilities. There Iis one message
file per EDBS installation. Ali users have read
access to this file. Only the systen
administrator is permitted to modify this file. .
The message file is taken from the EDBS
distribution tape.

(b) Translation Table File:

The primary purpose of the translation table is
to provide a directory of all the databases

administered by one  DBA.. There is one

translation table per DBA. All users have read



{c)

(d)

(e)

(£)

access to this file., Only the DBA has complete
access to this file.

Record Table File:

The record table stores’ information about the
physical aspects of relations, segment types, and
record types. There is one record table per DBA.
All users have read access to this file. Only
the DBA has complete access to this file.

Field Table File:

The field table contains information on the
physical <characteristics of domains, fields, and
data items. There is one field téble per DBaA.
All users have read access to this file. Only
the DBA has complete access to this file.

Log File:

The log file is used to keep track of who has the
database open ana to keep a 1log of database
modifications. There is one 1log file per
dafabase. A1l users have read/write access to
this file.

Record File:

The record file is wused to store record
occurrences (segment occurrences or tuples),
inverted 1lists, and locké used to synchronize
sharing of the record +type, segment type 'or
relation. There is one record file per record
type, segment type, or relation. All users have

read/write access to this file.

57
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(9) Buffer File:

The buffer file 1is used to hold data retrieved
from the database. The buffer file is created in
an OPEN command and destroyed in a CLOSE command.
This file can only be accessed by the wuser who
owns 1it. .

(h) DBA Lgg File:

The DBA log file is used to keep track of who the
DBAs are. It consists of exactly one component,
a vector of LCBA account numkers. . There is one
DBA log file per EDBS installation. All users
have read/write access to this file. The DBA log
file is created by the system administrator.

A database consists of n + 1 files where n is the number
of different relations, segment types, or record types in the
database [i.e., n record files and one 1log file). Access to
record files is restricted via the GRANT ACCESS utility at the
database level, record type level or record occurrence level.
With the exception of these restrictions any user has.read/write
access to all database files.

All wusers have read/write access to the DBA log file
because any common user is potentially a DBA and the procedure
for «creating DBAs requires that +the vector of DBA account
numbers be read and updated from the new DBA account. Control
over authorization of DBAs is maintained as follows: Utilities
for creating DBA schema takles and updating the DBA 1log are
stored in fhe system administrator's library.. Only if a common

user has the account of the SA will he be .able to 1load the
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procedure required to install himself as a DBA. Further, the SA
must permit the appropriate workspace for read to those users

who are to become DBAS.

2. . Concurrency control with APL*PLUS

The APL*PLUS version of EDBS makes use of three facilities

to implement the hierarchical and network locking mechanism: a

file interlock function, a hold list and a time out feature. .

The file interlock function is provided by the APL*PLUS
file system and permits a user to explicitly 1lock and unlock
files for exclusive use. Several users requesting amn interlock
on a file are queued in the order of their requests. If a user
does nof place an interlock on a file then he will be able to
access the file even though another user has an interlock on the
file. In order that a user is guaranteed exclusive use of a
file, all wusers must place an interlock on the file prior to
accessing it.

A hold list is a list of all users currently having a hold
on a segment occurrence of a given type. All segment
occurrences of a given type are stored iﬁ one file (i.e., the
record file for the segment type). A hold list is stored as the
first component of each record file.

The hold list contaiﬁs zero or more triples of the fornm
(user ID, logical index, +time stamp)e. The logical index
identifies the held segment, the user ID identifies the holding

user, and the time stamp is the time at which the hold was set..
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When a user requests a hold on a segmenf, the hold list
for the segment type is checked. If the segment 1is not
currently held, then the hold is granted by adding a new triple
to the hold list. 1If the segment is already in hold a status
code is returned to indicate that a hold is not possible.

The time-out feature is used to prevent a segment
occurrence from being unavailable for an excessive period of
time. A hold on a segment is guaranteed to Be in effect for
only five minutes. If another user requests é hold on the
segment after the-time limit has expired then t#e prior hold is
removed. -

During the time a segment is in hold, no 6ther user may
place a hold in the same segment and thus 'no modification
command affecting the segment may be executed. However, other
users may still retrieve the held segment at any‘time.

During actual modification of a segment, access to the
segment type is restricted to the user performing the update.
This restriction is accomplished by placing an interlock on the
segnent type file, . ‘

Since all users must place an interlock onla file prior to
accessing it for the . interlock to be effective, both retriévals
and modifications take place under the protection of an
interlock. To avoid unnecessary delays the interlock is placed
on a file only after all processing not requiring access to the
file has been completed and the interlock is removed as soon as
access to the file ié complete. The exact lock protocol
followed by EDBS is not clear from available documentation for

1

the APL*PLUS version.
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As an integrity measure EDBS also sets its own lock on a
file during modifications. This lock occupies the second
component of each record type file and is a two element vector.
The first element of the lock vector is 0 if the record type is
not locked and 1 if it is. The second elegent of the lock
vector is 0 when no lock is in effect and the time the lock was
set when the record tyre is locked. The lock véctor is checked
on every retrieval and every modification. Ordinarily, if a
user does not 1interrupt a modification the first element will
always be reset to ¢ when the modification complétes. However,
if a modification 1is interrupted and is not ;esumed then the
first element of the lock will remain set to 1 to indicate that
the file 41is in an inconsistent state. In thié event, further
modifications to the record type are prevented, 'but retrievals
are still allcwed. In either case an 'INTEGRITY CHECK!' message
is printed each time the file is accessed until the DBA corrects
the situation.!

The APL*PLUS version of EDBS does not rely on the file

system to implement locking in the relational system. Rather,

the system itself maintains for each relation a reader list and

a lock vector to implement the locking mechanism.,

! This paragraph is taken from documentaticn compiled by the
Computer Systems Research Group, University of Toronto.
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All tuples from the same relaticn are storéd in one file
(the record file). The reader 1list and 1lock vector for a
relation are stored in the first two components of the record
file. A reader list is a matrix containing user IDs for those
users currently reading the relation along with 'the time that
each read was startede A lock vector is a two element numeric
vector. The first element of the 1lock vector is 2 if the
relation 1is being modified, 1 if the relation is being held and
0 if the relation is neither being held nor modified. The
second element of the lock vector is the time that the hold or
nodification was started.
The rules which must be enforced are the following:
(a) at most one user may hold a relation at one time. .
(b) a relation may hot be modified when another user
has it in hold |
{c) no other user may access a relation while one
user is modifying it.
These rules are enforced via the reader 1list and 1lock
vector as follows:
(a) For reading (i.e., the GET command) EDBS waits
for the relation to be unlocked for modification
or in hold and then enters the user number and
time onto the reader list.
(b) For holds (i.e., the GET-HOLD command) EDBS waits
for the relation to be unlocked for modification
or ﬁnheld and then enters a ‘1 into the lock
vector.

(c) For modifications EDBS waits for the relation to
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be unlocked and unheld, writes a 2 into the lock
vector and waits for the reader list to be empty.

To ensure that one user will not +tie up a relation by
never releasing a hold or by interrupting a read, both holds and
reads are timed out after five minutes. Thus, if a user is
recorded as having held a relation for more‘.than five minutes
his hold will be dropped if another user reqhests to hold or
modify the relation. Similarily, any row of the reader 1list
will be ignored if it is more than five minutes old.!

If a relation modification command is interrupted then the
relation may be totally 1locked for any lengt# of time. This
lock is not timed out because the relation file may be in an
inconsistent state. Instead, an 'INTEGRITY CHECk' error message

is printed and neither holds nor modifications are allowed.2

3. Concurrency control with CDC/APL

The CDC/APL implementation of locking for hierarchical and

network databases differs from +the APL*PLUS implementation

mainly in use of the interlock function (which 'is wuanavailable

with the CDC/APL file systenm). Iwo features of the CDC/APL

system are used to accomplish the interlock: a file tie function

{
and an error trapping function.

!
! and 2 These two paragrarhs are taken from documentation
compiled by the Systems Research Group at the ~University of
Toronto. i
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The file tie function (FTIE) takes as arguments a vector
of integers and a matrix of file names. A user must tie a file
prior to accessing it. When a file is tied, it is made known to
the user workspace and the integer provided is gssociated with
the file. Thereaffer, the user references the file by its
number rather +than by its name. 4 file méy be tied in
read/modify mode cr in write mode.!

When a wuser ties a file in read/modify mode he is
indicating that he wishes only to read the file and that he does
not mind if another user modifies the file at {he same time, .
When a wuser ties a file in write mode he is in?icating that he
wishes to modify the file and that he does not wént other users
to modify the file at the same time. Any numberjof users may be
tied to a file in read/modify mode at the same‘time. Only one
user at a time may héve a‘file tied in write mode.. If a second
user attempts to tie a file for write he receives an error
message. The file system also provides a function (FUNTIE) for
untieing files.

The CDC error trapping function takes és an argument a
location in the program to which a branch will' occur in the
event of a system error. An unsuccessful tie for write may be
detected (and appropriate action taken) by means of the error
trapping function. The function of an interlock is achieved via

the file tie and error trapping functicns in the following

manner.

! The CDC/APL file system also permits a file to be tied in read
node which allows other users to read (but not modify) the file
at the same time. This option is not used by EDBS.
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(@) A file is normally tied in read/modify mode. In
fact, the OPEN command ties all datgbase files
for read/modify.

{b) Immediately prior to any write operatién the file
is untied and an attempt is made to tie the file
in write mode. |

(c) If the tie for write succeeds the write operation
is performed. Otherwise, EDBS waiis for one
minute and tries again to tie the file for write.

(d) If a successful tie for write is nof possible
within five minutes EDBS gives up and returns a
status code to indicate an unsuccessful lock. .

(e) Immediately after performing a write: operation
the file is untied and tied again in read/modify
mode.

The CDC/APL version of EDBS (in contrast with the APL*PLUS

version) does rely on the file system to implement locking in

the <relational system. The approach is similar to that for the

hierarchical and network systems.

The file tie and error trapping. functions (not a 1lock
vector) are used to effect locking for modificatiomn. <Component
one of each reéord file contains a hold 1list ([not a —reader
list).. Since a user holds the whcle relation, a hold vector
consists of exactly two elements. Element 1 is the user number
of the wuser <currently holding the relation. Element 2 is the
time at which the hold was started.. If the relation is not 1in

hold the hold vector is (0,0). .



66

The following rrocedure is used by all three systems to
avoid lost updates.. (Suppose that an EDBS data manipulation
command reads and writes variable X from file F):

Loop: Read X from F
Tie F for WRITE
If tie fails go to Wait
Write X to F
Tie F for READ/MCDIFY
Stop
Wait: Delay 1 minute
Tie for READ/MODIFY
Go to Loop

This procedure amounts to back cut of previous operations. .
The read is done and then later if it is.determined that another
user has the file +tied for write, +the read is iénored and
redone. The procedure prevents lost updates bécause a given
user's update is made only if another user was not updating the
file between the given user's read and update, |
There are occasions when a user must lock Imore than one
file at a time. As an example, consider the DELETE command in
the hierarchical system which triggers deletioﬂ from several
record files. The CDC/APL version of EDBS handles this
situation by attempting to tie for write all fequired record
files before updating any of them. If any of ghe-files cannot
immediately be tied for write EDBS unties any that it has
successfully tied, waits and then tries again to tie them all
for write.. Examination of EDBS APL code indicateg that whenever
an EDBS operation(i.e., GET, UPDATE, INSERT, DELETE, CREATEDBA,
DESTROYDBA, GRANTACCESS) must modify data frog more than one
file, all files are tied for write before any of them are

{
modified. ‘
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We conclude this subsection with a brief description of

the CDC file access authorization facilities.

A user controls access to his files by. means of a file
category, password, and mode which may be spécified when the
file 1is <created from APL. via the FCREATE 'function. The
folliowing excerpts from the CDC APL referenge manual (1978)
describe these facilities.

(a) The file category is Qrdinarily privaté. Private

files cannot be accessed by other users. A file
may, altefnatively, be assigned a category of
semiprivate or public. Either of these
categories allows other users to access the file
if they know the password, the name of the file,
and the user number under which it was stored.

{b) The file can be given a password. Only users who
know the password can use the file.

(c) The file mode is used to control the type of
operation another user 'can perform. For files
created by APL (including workspaces) cher users
are ordinarily allowed to read the file (assuming
the password and category do not exclude then)
but are not allowed to alter or destroy the file.
Other users can be given permission to alter the
file by specifying the WR option (for write) when

the file is creategd.
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A file category, password, and mode may also be reassigned
or changed outside the APL environment.. EDBS uses the file
category and mode- to control access to files. The password

option is not used for this purpose.

4,  EDBS Under MIS

In this section we examine the MTS facilities for accesé
authorization and concurrency control and we look into the
details of simulating the corresponding CDC/APL functions via
these facilities., We conclude this section with a description
of the EDBS state at which our problem starts =-- a state in
which all CDC facilities are available via MTS functions with
the exception of concurrency control which is provided via the
MTS automatic locking mechanism. We say that our problem starts
here because this state provides very little concurrency, incurs
the risk of deadlock and jeopardizes database correctness.

The MTS/APL file system allows users to perform operations
on files stored outside the APL environment. The file systenm
consists of a set of functions which may be executed from APL or
from within an APL function. To use the file system a user
takes a copy of it (from a public library or the SA's account)
into his active workspace. Among others, the following MTS
operations are possible from within APL: CREATE, DESTROY, READ,

WRITE, EMPTY, LOCK, UNLK, RENAME, and RENUMBER. .
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A subset of the capabilities prcvided by +the MTS PERMIT
command is available via the MTS/APL SHARE command. This
command allows a user to explicitly permit cther users to read
from or write into his files.

The concurrency control facilities available are basically
those provided by MTS which include three levels of locking,
automatic locking, and explicit locking. The foilowing excerpts
from UBC Files and Devices (1976) and UBC Commands {1977)
describe these facilities:

Three classes of loéking are provided:for maintaining
integrity of a shared file: 1lock for read%ng,' lock for
modification, and 1lock for destruction. The three locking
classes are inclusive in the sehse that lockiﬂg a file for
modification also lécks it for reading and locking a file for
destruction also locks it for reading and modification.

The rules for concurrent use of a file among separate
tasks are the follcwing: '

{(a) Any number of tasks can have a file locked for

reading at the same time as long as no}other task
has the file locked for  modification or
destruction. !

(b) Only one task can have a file 1locked for
modification at one time, and then only if no
other task has the file locked for }eading or
destruction.

(c) Only one task can have a file loerd for

destruction at one time,. and then only if no

other task has the file open or locked for



reading or modification.

Files are implicitly (automatically) locked and unlocked
by MTS whenever a user regquests something of MTS which reguires
locking. . For example, 1f a user 1is operating from the
subroutine level,! on the first call to a subroutine to read or
write a line .from a file, MTS will implicitly lock the file for
reading (or modification) and leave the file 1locked in that
manner until wuse of that file is complete._'In general, the
locking is associated with the FDUB (file or device usage block)
associated with the file and automatic unlocking‘ is done when
the FDUB is released. |

When MTS implicitly locks a file through a particular
FDUB, it may raise2 the locking class but it will never lower
it.. For example,.if a user operating from the subroutine level
first writes a line to a file and then reads a line from the
same file, MTS will implicitly lock the file ﬁor modification
before the first write and 1leave it locked for modification
thereafter. . |

If, while attempting to 1lock a file MTSldetermines that
according to the ccncurrent use rules it cannot lock the file as
requested, MTS implicitly and automatically attémpts to gqueue

the task to wait until the file can be locked. Before doing so,

however, MTS checks to ensure that queuing the job to wait on

1 We distinguish between the MTS ccmmand 1level and the MTS
subroutine level. The facilities available from within APL are
those at the subroutine level. ‘ '

2 Lock for destruction is said to be at a higherllevel than lock

for modification which is, in turn, at a higher level than 1lock
for reading.
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the file will not result in a situation wherein fhe current task
as well as others will be deadlocked indefinitely in .their
respective gqueues. If such is the case, MTS will not allow the
task to wait but instead will return an error indication. .

Files can also be explicitly 1locked and' unlocked fronm
within APL {via the LOCK and UNLK commands). In addition, an
option may be specified to request that no waiting be done if
locking cannot be accomplished.

Implicit 1locks may be removed from within APL via the
FRELEASE command which also <closes +the file.. Otherwise,
implicit locks will remain in effect until the user leaves APL. .

Explicit 1locks may be released explicitly via the UNLK
command (or the FRELEASE command which also closes the file).. A
special function available to EDBS (and not part of the APL file
system) also permits implicit locks to be explicitly reméved
without closing the file.

This concludes our description of the MTS/APL file system. .
We now turn our attention to details of the simulation.. A
description of the simulated functions is available in Appendix
D.. We focus here on the important ones: MTSCREATE, MTSTIE,
MTSUNTIE, and TRAP1.

The MTSCREATE function simulates the CDC FCREATE function.
The syntax of the FCREATE function is as follows:

*file-name[ : password] [ /options]' FCREATE fnunm
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The list of cptions can include any of the following: DA,
¢, HWR, S, or PU to specify direct access, coded, write mode,
semiprivate or public. Since all EDBS files are direct access
files and no EDBS files are coded files, these options were not
simulated (i.e., files are automatically direct access and
structured). Since EDBS does not use the paséword option, it
was not simulated. MTSCREATE accomplishes ithe following
remaining functions: !

(a) An APL internal format file is created whose nanme
is given by file-name. |

(b) If the S or WR options are specified the file is
permitted for read or write respectively via the
MTS/APL SHARE function.

(c) The file tie number (fnum) is inserted into a
table of file tie numbers and the file name 1is
inserted in the same relative position in a table
of file names.

The MTSFTIE function simulates the CDC FTIE function whose

syntax is the following:

|
‘[ *account] file-name [:password] [ /options]*' FTIE fnum

The password option is not used by EDBS and not simulated.

The 1list of options -- RD for read, RM for read/modify, and no
option for write -- are not easy to simulate. We leave this
task for further examinatione. MTSFTIE adcomplishes the

following remaining tasks:
(a) The account number if provided is concatenated to
the file name to produce the MTS name

account:file-name.
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(b) The file 4is tied. That is, the file number and
filename tables are updated.t

The MTSUNTIE function simulates the CDC !FUNTIE function
which takes one argument, a vector of file tie numbers. The
function of MTSUNTIE is to delete the file +tie numbers and
corresponding file names from the file number and file name
tables respectively.

The MTS TRAP1 function is used in place of the CDC error
trapping function. The CDC error trapping fﬁnction does. not
appear possible to simulate. The MTS TRAP1 function gets called

1

from EDBS but does nothing.
Given that all facilities of the CDC/APL file system are
available via the interface file system with the exception of
the CDC locking and error trapping capabilities,' the following
problems can be expected when EDBS is run: under MTS in a
concurrent environment:
(a) very little ccncurrency

{(b) loss of database correctness

(c) deadlock

Very little concurrency is possible because MTS automatic
locks are not autcmatically released until the user holding the
locks signs off from APL. The following examples illustrate
this point for the hierarchical system:

(a) When a user GET-HOLDs a segment, the hold vector

!
1 Each user has his own file number table and file name table

which reside in his active workspace to record files currently
tied and which are destroyed when he leaves APL.
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in the record file must be checked and updated..
When the hold vector is updated the record file is
automatically 1locked by MIS for modification.
Thereafter, other concurrent users = will be
prevented from retrieving segments from the record
file via either the GET or GET-HOLD commands.

(b) If wuser A reads a segment from the récord file,
the file 1is automatically locked for read.
Concurrent users are prevented from holding any
segnent of the same type until user A leaves APL
because the record file cannot be locked for
modification to update the hold vector..

(c) A DBA may not create a new database until all
concurrent users who have read from the schema
tables have signed off from APL. This is becausev
the schema tables may not be 1locked for
modification by the DBA if a common user has thenm

locked for reading.

Within +the MTS APL environment, if two users read from a
file and then both attempt to write into the file they Qill be
deadlocked each waifing for the other to release his shared lock
before 1lock for modification can be accomplisheﬁ. If deadlock
is detected by MTS an error message will be passed back to EDBS
but EDBS will not be able to correctly interpret it. Rather,
EDBS will «ccntinue operation as if both writes had been

successful. Correctness of the database is not maintained

because an intended update has not been made. .
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C. Problem Formulation

EDBS has a logical level of locking and a physical level
of 1locking. The 1logical 1level of 1locking 1is the GET-HOLD
mechanism. Physical level locking is that done by the file
system. With the CDC/APL implementation, physical locking would
include the waiting and checking done by EDBS to determine if a
file is tied for write.

At the logical level, an entity is a segment occurrence,
record occurrence or turple. The granule for read is a segment
occurrence, record occurfence or relation. Tﬂe granule for
modification is a segment type, record type or relation.
Logical level locking refers only to databases created by EDBS.
Other data maintained by EDBS such as those contained in the
schema tables are never locked at a logical ievel. Actions
read, write, create or destroy entities. In the relational
system, for example, the only actions are GET, PUT, UPDATE and
DELETE.

At the physical level entities are records and the granule
is a file. Locking applies to all data maintained by EDBS. An
action 1is a file system operation for reading, writing,
inserting or deleting records. |

This section describes EDBS concurrency control facilities
in terms of the basic concepts presented in chapter II. Eirst,
we define an EDBS transaction as our lasic unit Qf consistency.
Second, we examine the EDBS lock protocol both at the logical
level and at the physical level. Third, we compare the various
EDBS implementations in terms of level of consistency and amount

of concurrency provided. Finally a 1list of key problens
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associated with running EDBS in a concurrent MTS environment is
provided.

The reader is advised that the MTS/APL version of EDBS
referred to in this chapter is the one which is operational in
an MTS environment as a single user system. That is, we assume
that all file system requirements have been simulated except for

concurrency control.

1. Transaction Definition

Recall that a transaction is defined as a group of actions
by the same user which when executed alone transforms a
consistent database into a new consistent state. The following
options were considered for choosing an EDBS transaction:

(a) APL terminal session

(b) APL program containing EDBS function calls

{(c) group of EDBS ccmmands

(d) single EDBS ccmmand

Before one of the above options can be selected, the terms
database, entity, action and user must be defined in the context
of EDBS.

EDBS 1is used to create and manipulate databases which
comprise the record files. In addition, EDBS maintains other
data such as the schema tables and DBA log. 0Our concurreancy
problem is concerned with maintaining correctness of all EDBS
files( not just the 1record files). Hence, we must define a

database as all.data maintained by EDBS.
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There are three users of EDBS: SAs, DBAs and common usSersSe .
Only common users or DBAs who have become common users are
database users( 1i.e., users of databases created by EDBS).
Since our concurrency problem is concerned with all EDBS data,
we must define a user as an EDBS user.

There are several alternativeé for defining an entity.
For example, an entity could be a 1logical ifem such as a
segment, record or tuple or an entity could be‘a physical item
such as a file or file compoment. In addition, an entity could
be something smaller than either of these items such as an index
value, field value or data-item. |

We select a record in a file as an entity because at our
level of concern (the file system level) these are the entities.

A single record is used to store all domains, fields or
data-items within a tuple, segment occurrence or record
occurrence. Thus, in ceftain contexts we will use the tern
entity to refer to a tuple, segment or record occurrence (and
vice versa).

Finally, we must define an action. Actions _read, write,
create or destroy entities. Any other computations are assumred
to occur indivisibly with some action. We choose as actions the
individual file operations for reading, writing, inserting,
deleting records.

There are two broad types of operations supported by EDBS:
Data manipulation commands such as GET, PUT, UPDATE, DELETE and
other wutilities such as those for creating and destroying DBAs,
creating and destroying databases and granting access to

databases., . Execution of each EDBS operation generates a certain
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sequence of actions. For example, consider the DELETE command
in the hierarchical system which performs the following tasks:
(a) Check schema tables to ensure that the user has
the necessary access rights.
(b) Check buffer file to ensure that the segment is
being held. .
(c) Lock record files for segment to be deleted and
for all descendant segments.,
{d) Delete segment and its descendants.

(e) Unlock record filese.

The actions associated with the DELETE command include
reads from the schema tables and deletions from the record
files. We do not consider read/write operations on the buffer
to be actions because the buffer file stores only temporary
information required on a per user basis. Locking done by the
file system is also not considered to be an action. Locking
done by EDBS (i.e., the hold mechanism) does generate an action.
An entity in the record file (the hold vector) is updated. .

As another example, the EDBS utility required to create a
DBA consists of operations +to <create the schema tables and
update the DBA 1log file. Actions associated with CREATEDBA
include creation of a number of entities in the schema tables
and wupdate of an entity.in the DBA log (i.e., the vector of DBA
account numbers).

EDBS does not provide a mechanism whereby actions by the
same user may be grouped into consistency preserving units
called transactions. ( Recall the System R BEGIN-TRANS and END-

TRANS operators for this frurpose.)
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We define an EDBS transaction as a group of , EDBS operations
which have been carefully chosen by a‘ user such that the
resulting sequence of actions is consistency preéerving.

This is cption (c) above. As noted, a problem with EDBS in
its current state is that the concurrency control mechanism has
no way of knowing where one tranéaction ends and .another begins. .

Given that it 1is possible +to support 6ption (c) for
defining a transaction, it would be a minor géneralization to
support option (b), an APL program containing EDBS commands..
The difficulties which concerned INGRES Idesigners when
considering this option are not a concern here because EDBS does
not support transaction backout. Hence, additional overheads
for backout through system calls is not expected;

An APL terminal session [option (a) ] is not!a suitable unit
for defining a transaction because it would be  too restrictive
of concurrency. For example, if it  were deeme% neéessary to
support consistency level 3 of System R, the requirement for
read reproducibility would mean +that another wuser «could not

modify an entity which has been read by a given user from the

time the entity was read until the given user signs off from
|

APL.

An EDBS wutility <could serve by itself as a transaction
because if is consistency preserving. The remainder of this
subsection discusses why option (d), a' siﬁgle EDBS data

manipulation command, could not serve as a transaction. .
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EDBS data manipulation commands are not in general
consistency preserving. Consider the REPLACE command in the
hierarchical system which updates the segment obtained by the
preceding GET-HOLD command. The REPLACE command cannot be
considered to be a transaction because it updates only one
segment occurrence and if a consistency constraint relates two
segment occurrences, this command when executed alone will not

be consistency preserving.

2 Locking Prctoccl

Given that we are able to group actions into transactions
the next step is to provide a 1lock ©protocol which guarantees
that concurrent execution of +transactions will result in
serializable schedules,

The EDBS lock protocol (i.e., the GET-HOLD mechanism) is
not sufficient to guarantee serializable schedules. The major
problem is that the GET-HOLD command is restricted to operate on
at most one relation, segment or record occurrence at one time.
To see the problems associated with this approach consider the
following example:

Suppose that exactly one consistency constraint applies to
the database that "Segment S1 is.egual to Segment S2",  Suppose
also that two EDBS transactions, T1 and T2, update segments S1
and S2 according to the following schedule:

{(tr1, GET-HOLD, S1), (T1, REPLACE, S1),

(T2, GET-HOLD, sS1), (T2, REPLACE, s1),

(2, GET-HOLD, S2), (T2, REPLACE, S2),

(r1, GET-HOLD, S2), (T1, REPLACE, S2)}
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As usual, we do not show buffer commands. Modification of
the segment in the buffer is assumed to occur indivisibly with
the REPLACE command.

The above schedule 1is not serializable 'according to
Eswaran et al. (1976) because T1 updates S1 before T2 does and T2
updates S2 before T1 does.. Thus the EDBS lock . protocol at the
logical level is unsuitable as a mechanism for controlling
concurrency to maintain database correctness.

EDBS physical level locking appears to ser%e two purposes:

(a) to guarantee correctness of a single EDBS

operation

{b) to implement part of the logical level ;ocking

This is not an uncommon approach. Recall the System R lock
mechanism in which physical locks on pages are used to ensure
that operations at the Relational Storage Interface give correct
results. ‘Also, an option is available whereby ﬁhysical locking
may be used to accomplish logical locking.

With regard to (a) above, the only guarantee made by the
CDC/APL implementation is that lost updates will be prevented.
The mechanism for doing so is illustrated in the following
example: (Suppose we have two transactions, T1={R1,W1} and
T2={R2,W2}, such that S(R1)=S({W1)=S{R2)=S(W2)={xX}.) An update
will be lost with either of the following schedules:

SI={R1[XJR2[ X JWI[ X JW2[X ]}

S2={R1[XJR2[ X JW2[ X JW1[X ]}

Recall that these schedules cannot be serializable

according to Papadimitriou (1979) because in s1, T1 is dead and
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in 82, T2 1is dead and there is no serial schedule in which
either transaction would be dead.

CDC/EDBS does not allow either of the above schedules to
occur. We assume that tie for write cccurs indivisibly with the
write. In either schedule according to the lock protocol the
second transaction to attempt to write will redo his read.

The serializability component of EDBS will transform the
input schedules, S1 and S2, into the respective output schedules

S1(output)={R1[XJR2[ X JW1[X JR2[ X JW2[ X ]}

S2 (output)={R1[ X JR2[ X JW2[X JRI[X JWI[ X ]}

Since the reads which are redone are ignored the effective
output schedules are the serial schedules
S1(effective) ={R1[XJWI[XJR2[XJW2[X ]}

S2(effective)={R2[ X]W2[ X JR1[ X JW1[X ]}

With regard to (b) above, the CDC/APL implementation does
not provide the level of isolation from other users originally
intended for the system. Recall that the APL*PLUS
implementaticn guarantees that during execution of any
modification command involving a record (segment, relatiomn) the
user will have exclusive use of the record type (segment type,
relation).

Exclusive use of a file, record type or otherwise, |is
never guaranteed with the CDC/APL implementation. Recall that
the CDC/APL lcck protocol is such that when one user is writing
to a file other users may read from the file..  The CDC/APL
implementation does ensure that during any modification command

other wusers will be prevented from modifying the record type
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(segment ‘type, -relation).

3. Level of Consistency

The System R multiple levels of consistency is concerned
with the view +that a transaction has of the database. Even
though a «certain sequence of actions is not consistency
preserviné, it may have a consistent view of the database.

In this subsection, the System R levels of consistency
will be applied to individual EDBS orperations as a mnheans of
comparing the APL*PLUS and CDC/APL versions of EDBS and to
describe consistency available when EDBS relies solely on MTS
automatic locking for concuarrency control. It is felt that the
System R notion of consistency is useful as an indicator of EDBS
consistency even though we are applying this notion, not at the
level of a transaction as in System R, but at the level of omne
EDBS operation.

Recall the System R levels of consistency:

Level 1 - least isolation from other users
- a transaction may read uncommitted data
Level 2 - a transaction reads only comnmitted data
- read reproducibility is not guaranteed
Level 3 - complete isolation frcm other users

- a transaction reads only committed data
- read reproducibility is guaranteed

The APL*PLUS version of EDBS appears to provide EDBS
operations with something between consistency levels 2 and 3.
Read reproducibility is guaranteed, assuming that a . given file
is interlocked at most once within the same operation., However,

an operation may read uncommitted data because file interlocks
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do not appear to be held to the end of an operation.

The EDBS operations under CDC/APL achieve level 1
consistency. Since the read modify tie permits other users tq
write into the file at the same time, read reproducibility
cannot be guaranteed. Further, an operation may read
uncommitted data, again because a tie for write does not prevent
other users frbm reading( regardless of when the tie for write
is released).

What level of consistency can we expect with MTS automatic
locking? Every wentity read by an operation will be share
locked. Every entity written will be locked for exclusive use.
All locks will be held to the end of each operation.

Read reproducibility will be guaranteed because no other
operation can modify an entity which is locked for read, and an
operation will read only committed data because read is not
possible once an entity is modified by some other user until
that user releases the file containing the entity. This is
level 3 consistency. O0Of course, the price ﬁaid for this level

of consistency is that very little concurrency will be provided.

4, . Amount of Concurrency

Amcunt of concurrency refers to the amount of interleaving

of actions frcm different transactions.
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With EDBS, interleaving of actions from different users is
restricted at a logical level via the GET-HOLD mechanism.
Interleaving is further restricted by physical level locking, .

In this subsection, we compare the relative amounts of
concurrency offered by the APL*¥PLUS, CDC/APL and MTS APL
versions of EDBS at the 1level of individual EDBS operatioans
(iee., interleaving of actions from orerat

The APL*PLUS version supports less concurrency that the
CDC/APL version because the CDC/APL file systen permits
interleaving of reads and writes by different users to the same
file, whereas the APL*¥PLUS implementation does not permit
interleaving of any actions by different users involving the
same file.

To clarify, suppose entities X, ¥, and Z are stored in the
same file and consider the following sequences of actions within
schedules S1, S2 and S3:

S1={eee R1[X]JR2[Y]IR1[Z] ews}

S2={eeo WI[X]JR2[Y]JWI[Z] eesu}

S3={eee WI[XJW2A[Y]IWI[Z] ...}

The CDC/APL 1lock protocol would permit the sequence of
actions shown in schedules S1 and S2 but not S3.  The APL*PLUS
lock protocol would not allow the sequence of actions shown in

any of these schedules.,
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The amount of concurrency expected with EDBS uander MTS
lies somewhere lretween that of +the APL*PLUS and CDC/APL
versions. MTS supports interleaving of reads( but not reads and
writes) by different users involving the same file. That 1is,
schedule St but not schedules S2 and S3 would be possible

responses of the MTS/APL lock protoccl.

5. Key Eroblems

This subsection identifies key problems which must be
solved before EDBS is operational in a concurrent MTS
environment:

(a) EDBS does not support a basic unit of éonsistency.

(b) The lock protccol at the 1logical 1level 1is not

sufficient to guarantee serializable schedules.

(c) Very 1little concurrency is provided due to MTS

automatic locking.

(d) Correctness may be destroyed if a deadlock

situation should arise at the physical level.
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Chapter IV: Recommendations

In this chapter we present several alternative approaches
to permitting concurrent use of the Educational Data Base
System. The objective of each approach is to guarantee
correctness of data maintained by EDBS. We assume that BEGIN-
TRANS and END-TRANS operators are available as a means of
defining transactions. We conclude this chapter by recommending

an approach and specifying supporting routines..

A. Alternatives

In this section we investigate three alternatives.
Alternatives 1 and 2 are similar in that they both recommend
relying on the file system to do logical level locking. The two
alternatives differ in their proposed lock protocols. This has
implications in terms of freedom frcm deadlock and the need for
transaction backout. Alternative 3 proposes not to rely on the
file system to do lcgical level locking. This approach would
require extensive modification of EDBS and is not discussed here

in detail.

Alternative: 1

The lock protocol is described as follows:

(a) A transaction has a locking phase and an unlocking
phase.,

(b) The locking phase is provided by the MTS automatic

locking facilities (i.e., Every entity read by a
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transaction will be 1locked for read immediately
prior to the read action. Every entity written
will be locked for modification immediately prior
to the write action. The lock class for an entity
may be raised within a +transaction but it will
never be lowered).

(c) All 1locks are automatically released as the last

step in the transaction. This constitutes the
unlocking phase of the transaction.

This 1lock protocol is not deadlock free. Transaction
backout procedures are proposed for deadlock resolution.

This approach assumes that, except for deadlock, the MTS
automatic. lock protoccl ensures serializable schedules. The
proposed lock protocol appears to be a simplified version of
that used by System R 1level 3 transactions (i.e., without
intention locking).

The proposal to rely on the file system +to do locking
means that +the actual granule locked will be one file (i.e., a
segment type, record type, relation). Hence, when we say that a
transaction locks an entity we mean that the +transaction locks
the file containing the entity.

The following example illustrates how alternative 1 might
work: Suppose that each of two transactions attempt to wupdate
segments S1 and S2. Suppose also that segments S1 and S2 are of
different types. The following sequence of operations will
result in deadlock:

{(T1, GET-HOLD, S1), (T1, REELACE, S1),

(T2, GET-HOLD, S2), (T2, REELACE, S2),
(T1, GET-HOLD, S2), (T2, GET-HOLD, S1)}
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T1 will be waiting to lock the record file +to read the
hold vector of segment type S2. Similarly, T2 will be waiting
to lock the record file to read the hold vector for segment type
S1. Neither transaction will be able to 1lock 1its respective
record file‘ because the other transaction is holding an
exclusive lock on the file, obtained during the previous GET-
HOLD operation.

MTS will detect this deadlock situation and pass a message
back to one of the transactions indicating that the read (of the
hold vector) has been unsuccessful. This deadlock message could
be a signal for transaction backout. In our example, if T1
receives the deadlock message then the prior update of segment
S1 by T1 should be undone.

The remainder of this subsection discusses implementation
considerations for transaction backout:

EDBS maintains a database log containing a 1list of all
database modifications. A record of the user who performed the
modification is not currently maintained. The existing logging
procedure could be easily modified to record this information.
Also, a record of the time at which the modification was started
would be useful.

Transaction backout would involve undoing database
modifiéations as recorded in the log. The BEGIN-TRANS operator
could record the time at which the transaction was started as a
global variable stored in the user's active work space. If it
becomes necessary to back the transaction out, database
modifications recorded in the log belonging to this user could

be undone so long as the time at which the modification was made
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is later than the time at which the transaction was started.

The System R principle of isolated backout will be
necessary. Hence, the 1lock protoccl must be such that data
modified by a given transaction is not modified by any other
until the given transaction terminates. If locks are released
as part of the END-TRANS operator, isolated backout will be
guaranteed.

A 1log of modifications made to EDBS data, other tham that
contained in the record files, is not currently maintained by
EDBS (i.e., modifications to schema tables and the DBA log).
These modifications could be logged and DBA utilities could then
be handled like any other transactions (bracketed by BEGIN-TRANS

and END-TRANS operators).

Alternative: 2

The lock protocol is described as follows:

(a) All entities required by a transaction are
automaticaily locked 1in the required mode in one
step at the beginning of the transaction.

(b) If the locking mode is to be raised within the
transaction (i.e., from read mode to write mode)
then the highest level locking mode is requested.

{c) All locks are automatically released at the end of

the transaction.
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This alternative has the advantage that transaction
backout procedures for deadlock resoluticn are not required.

The lock protocol is virtually identical to that proposed
by INGRES differing only in its implementation details. Recall
that INGRES avoids deadlock by reqguiring that an interaction
locks all required en£ities before proceeding.

The 1locking phase of the 1lcck protocol could be
implemented via MTS/APL explicit lock facilities as part of the
BEGIN-TRANS operator.,  Similarly, the END-TRANS operator «could
automatically release all locks held by the transaction.

As with Altermnative 1 the proposal is to rely on the file
system to do all locking. Hence, the actual granule locked will
be one file.

The event in which a transaction cannot lock all required
entities will be realized in the form of deadlock. If lock
requests deadlock, then the transaction which receives the MTS
deadlock message could return a status code to the user to
indicate that he should attempt to <run his transaction at a
later time and all locks currently held by the transaction could
be released.  Since the transaction has not yet executed any
actions, transaction backout is not required.

Alternative 2 would be practically impossible to implement
in an EDBS context because it would be difficult to determine
locking reguirements at the beginning of a transaction.
Consider the following rrokblems:

(a) The whole transaction would have to be analyzed

prior to execution to determine which files will

be required.
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{(b) Within a single EDBS data manipulation command or
utility, more than one file may be required.
There 1is no way to determine the files required
by examining the name of the command or utility.

{c) Similarly, the mode of lock cannot be determined
from knowledge of the command or utility.

(d) It 1is often impossible to determine either the
desired mode of 1lock or the files required
because these depend on the results cof previous
actions.

A solution to these problems might be to assume the Worst.
Hence, for all transactions composed by common users we could
assume that read access to the schema tables is required.
Further, we could assume that every transaction requires write
access to all database files. Hence, the n record files and the
database 1log file coculd be 1locked for modification and the
schema tables could be locked for read at the beginning of each
transaction. .

DBA utilities dc not require access to database files. . A
BEGIN-TRANS crerator specific for DBAs could lock the DBA 1log
file and the schema tables for exclusive use.

Both alternatives 1 and 2 are restrictive of concurrency
because locks are held on files rather than on individual
entities. Alternative 2 is more restrictive than Alternative 1
due to the requirement that all locks must be requested at the
beginning of each tramnsaction. The amount of concurrency
provided by Alternative 2 will be further restricted by

implementation requirements if we choose to make worst case
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assumptions about the files required by a transaction. A major
advantage of alternative 2 over alternative 1 1is that
transaction backout procedures for deadlock resolution are not

required.

Alternative: 3

Alternative 3 differs from previous approaches in that we
do not rely on the file system to do logical 1level locking.
Farther, we provide +the user with locking facilities which he
will use as part of a lock protocol to ensure database
correctness. We do not discuss here the special facilities
which a DBA may need. We focus only on locking requirements for
a common user.

Alternative 3 proposes that the user be provided with the
capability of holding more than one logical item at one time.
For simplicity, a lock protocol could be enforced which states
that a user must hold all logical items which he intends to
modify at the beginning of his transaction. Consistent with the
existing approach, a status code could be returned to the user
to indicate an unsuccessful hold if any of the items requested
cannot be immediately placed in hold. This very simple lock'
protocol avoids deadlock and hence deadlock detection and

transaction backout procedures are not reguired.
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The facilities proposed are basically those of the INS
GET~HOLD mechanism.. Recall that 1IMS does not enforce the
restriction {as does EDES) that a user may have at m@most omne
logical entity in hold at one time. Since IMS does not enforce
the simple lock protocol which we have proposed, user prbgrams
may deadlock, and backcut procedures are provided.

When a logical item (i.e., segment, record, relation) is
actually being modified in the database it must be locked for
modification. With the existing approach, EDBS manages its own
locks for read {i.c., holds) and relies on the file system to
lock for modification. .

Alternative 3 delegates additional responsibility to EDBS
for lock management. A lock for each segment, record or
relation 1in the database is already maintained in the form of a
hold list. A code could be added to each (user 1ID, logical
index, time stamp) triple in the hold 1list to distinguish
between a read lock and a write lock. Additional procedures
will be required to set and release locks for modification.

Alternative 3 will require that MTS automatic locks be
released at some appropriate time. MTS locks could be released
immediately after the action responsible for setting them or,
alternatively, automatic locking could remain in effect for the
duration of a single EDBS operation.. Certain EDBS storage
operations may initiate procedures to reorganize inverted 1list
blocks., This provides at least one motivation for maintaining
file locks for the duration of each individual EDBS operation.
Recall that System R physical level locking was motivated by

similar reguirements.



95

Alternative 3 offers a greater amount of concurrency than
alternatives 1 and 2 for the following reasons:

(1) 1logical items (i.e., @a segment) may be locked

rather than requiring that an entire file (i.e.,
the segment type) be locked.

(2) The user has information about his transaction

which he can incorporate into ﬁis ‘lock protocol
to increase concurrency. For example, a user
knows when he is finished with an entity and he
may explicitly RELEASE it for use by other users.

A major disadvantage of alternative 3 is that database
correctness 1is not guafanteed unless all users employ an
appropriate lock protoccl.

In this section we have proposed three alternatives which
may be summarized as follows: Alternatives 1 and 2 nmake two
proposals 1in common: First, +to rely on the file system to do
both 1logical and physical level locking. Second, to
automatically lock all entities required by a transaction thus
freeing the user of the responsibility for any particular
locking protocol. Alternative 1 recommends relying on MTS
automatic locking for the lock phase of its lock protocol. The
lock protocol admits deadlock and transaction backout procedures
are proposed to resolve it. Alternative 2 recommends that
entities required by a transaction be automatically locked via
MTS eiplicit locking at the beginning of a transaction. The
lock protocol is such that if deadlock occurs, any transaction
involved in the deadlock has not yet executed any actions and

hence transaction backout procedures are not required.
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Alternative 3 proposes to provide additional facilities for
locking logical items and to leave most of +the responsibility
for 1lock protocols up to the user. Dependence upon the file

system to do logical level locking is contra-indicated.

B. Selected Approach

Alternative 2 (i.e., automatic locking of all entities at
the beginning of a transaction and release of all locks at the
end of a transaction) is chosen largely due to its
implementation simplicity.

Two types of BEGIN-TRANS and END-TRANS operators are
proposed. These operators will not be stored as part of the
interface file system. Rather, the work spaces intended for
common users will contain BEGIN-TRANS and END-TRANS operators
for common users. Similarly, work spaces intended for DBAs will
contain BEGIN-TRANS and END-TRANS operators for DBAs. The SA is
not provided with transaction definition facilities because his
function is to set up the system initially and to modify the
system 1if required. We do not expect him to be using EDBS
concurrently with L[BAs and common users.

The proposed solution makes use of the following
information abcut EDBS:

(1) Common users do not modify information in the

schema tables,

(2) EDBS data manipulation commands do not require

access to the DBA log file.
.(3) DBA utilities do not require access to database

fi;es.



the BEGIN-TRANS and END-TRANS operators and outlines details

(4)

The

Database files (i.e., record files and database
log) remain tied when EDBS returns control to the

user so long as the database is open.
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remainder of this section provides specifications for

the implementation.

1)

(2)

(3)

DBA Operators

BEGIN-TRANS
- lock the schema tables for destruction
- lock the DBA 1log file for modification

END-TRANS
- release all locks held on schema tables and DBA log file

Operators for Common Users

BEGIN-TRANS

- lock all record files and the log file (belonging
to the currently open database) for modification

- lock the schema tables for read

END-TRANS
- release all locks held on database files and
tables

Inplementation Details

(a)

The BEGIN-TRANS operator for DBAs must lock the
schema tables (2TTABLE, ZERTABLE, ZFTABLE) for
destruction. This lock <class is chosen rather
than modification because at least one of the DBA
utilities (DESTROYDBA) requires that the schenma
tables be locked for destruction. The higher
lock mode is not expected to inhibit concurrency
because the ©IBA is the only user who would

require write access to the schema tables and

of



(b)

(c)

(d)

(e)

lock for destruction by a DBA would not exclude
him from also writing. Common users who require
read access to the schema tables will be excluded
by either locking class.

The BEGIN-TRANS operator for DBAs must lock the
DBA log file fcr modification. The SA's account
number must be known to accomplish the lock. ¥We
recommend storing the system dependent variable
SYSACCNT in all LCBA work spaces.

The BEGIN-TRANS operator for common users must
lock the schema tables for read and database
files for  write. Names of database files are
available from the interface file system variable
FNAMES. Only filenames from FNAMES  whose
corresponding tie number from FNUMS is greater
than 15 should be selected as database files.
Locking the schema tables will require the DBA
accocunt number. .

The END-TRANS ofperator for common users must
unlock the schema tables and database files. The
procedure for locating file names outlined for
the BEGIN-TRANS operator could also be used here.
We recommend that files be locked via the FMTS
LOCK function, and that they ke unlocked via the
FRELEASE function. Recall that FRELEASE also
closes the file. 1Investigations into advantages

of unlocking files without closing them has 1led

- as to conclude that there are none (i.e.,
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reductions in overhead by not closing files would
be insignificant). |

In this chapter we have described three alternatives for
providing concurrent use of the Educational Data Base Systen,
and we have selected an approach based on feasibility of
.implementation. We conclude this chapter with a summary of our
recommendations:

(1) BEGIN-TRANS and END-TRANS operators should be

provided by means of which a user may define his
own transactions.,

(2) Entities required by a transaction should be
automatically 1locked as part of the BEGIN-TRANS
operator and automatically unlocked as part of
the END-TRANS operator.

{3) EDBS should rely on the file system to do all
locking required by its concurrency control
mechanism,

(4) In terms of implementing (2) above, worst case
assumptions should be made ccncerning entities
required by a transaction.

The amount of concurrency provided by our recommended
approach can be summed up as follows: Any number of transactions
may read from the schema tables at the same time. Transactions
may execute concurrently on different databases created and
maintained by EDBS. Otherwise, transactions are executed in a

serial fashion.
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Chapter V: Conclusion

This thesis has described our experience with the EDBS
undertaking and proposed a solution for running EDBS in a
concurrent EDBS environment.

In chapter 2, we «clarified the basic objective of
concurrency control which is to ensure correctness. We then
examined c¢ne approach for obtaining correctness which is to
ensure that actions from transactions are intermingled in a
serializable fashion. Next, we examined two lock protocols
which have been shown to guarantee serializability. Finally, we
reviewed concurrency control facilities provided by a number of
systems.

in chapter 3, we examined EDBS concurrency control
facilities and ccmpared them to those of other systems.. We
provided various analyses of the existing 1lock protocol
including an indication of the amount of concurrency and level
of «consistency provided. Finally, we compiled a list of key
problems requiring resclution before EDBS is operational in a
concurrent MTS environment.

In chapter 4, we rroposed various alternative solutions
which solved the key rroblems and we recommended an approach
based on practical considerations.

The remainder of this.chapter identifies areas requiring
further work.,

1« In this thesis we have restricted our attention to read and
write actions. Those that create and destroy their entities

have noect been <considered in detail. The notion of



2.

101

serializability must be extended to account for actions
which- create and destroy entities. The analyses presented
in chapter 2 and the alternatives proposed in chapter 3
should be examined in terms of this broader notion of
serializability.

We have identified two types of EDBS entities: +those at a
logical level such as segments and those at a physical level
such as records. However, some EDBS transactions access
entities which may not belong to either of these two
categories., For example, when a DBA creates a database he
creates the record files and the database log file. If he
does not also write into these files, then he has created no
entities. This difficulty indicates that additional
synchronization may be required for transactions which
create and destroy such items as the schema tables and
databases. For example, it is not clear how the proposed
solution would handle the situation in which a DBA attempts
to destroy a database while scome user has it open.

The problem of phantoms has not been thoroughly investigated
in the context of EDBS. If a transaction locks a set of
entities as given by sone predicate then other transactions
must be prevented from adding an entity to this set until
the given transaction terminates. Otherwise, if the given
transaction makes a second retrieval based on the same
predicate, a different set of entities will be retrieved.
Thus, the non-existence of an entiity must be locked. This
problem refers to the relational system where sets of

entities (i.e., tuples) are retrieved and it also refers to
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the hierarchical and network systems where only one entiity
at a time is retrieved. For example, in the hierarchical
system, the non-existence of a particular segment must be
locked until the end of a transaction so that the
transaction does not find that the segment did not exist
upon a first retrieval and did exist upon a second
retrieval. The alternatives preéented in chapter 3 should
be evaluated in terms of how they resolve phantcm problens.

EDBS might ©provide a useful environment in which to
investigate the relationship between the lost update problenm
and the problem of ensuring consistency. Papadimitriou's
transaction model assumes that values for variables in a
transaction's read set are read instantaneously and
similarily that values for variables in the write set are
written instantaneously. Given these assumptions, the only
way that a history cannot be serializable is if updates get
lost.  EDBS avoids lost updates at a logical level. Given
that EDBS supports the concept of a transaction, it might be
possible to vary the lock protocecl at a physical 1level to
simulate various conditions for consistency, all the while

being assured that the lost update problem is under control.
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APPENDIX B: EDBS Commands and Utilities

Relational System

GET

GET HOLD

PUT

UPDATE

DELETE

DBA Utilities

CREATEDBA

DESTROYDBA

LISTDATABASES

CREATE

DESTROY

GRANTACCESS

Hierarchical Systenm

GET UNIQUE

GET NEXT

GET NEXT WITHIN FARENT
GET HOLD

INSERT

REPLACE

DELETE

DUMELOG
ERASELOQG
MAINTAIN
MAKEAVAILABLE
MAKUNAVAILABLE

LISTACTIVEUSERS
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Network System

GET RECORD
GET SET
GET HOLD
STORE
DELETE
INCLUDE
REMOVE
MODIFY

CHANGE TO CURRENT
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APPENDIXC : EDBS FILE USAGE
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APPENDIX D: Interface File System Description

This appendix provides a description of the major
functions which comprise our interface file system. There are
basically two categories of functions which had to be simulated. .
First, the CDC/APL file system functions. Second, a number of
systen funetions. Of particular importance in the later
category is the #FI function. 1In the following, each simulated
file system function is described in detail. The simulated
system functions are only briefly described. The reader is
referred to the CDC APL Version 2 Reference Manual for further
details. Oﬁr description of the simulated file systemr functions
is in part a restatement of pages 10.8 to 10.10 of the CDC

Manual,

MISCREATE: 'file-name [/options ]'MTSCREATE fnum
The MTSCREATE function simulates the CDC file create
function (FCREATE). MISCREATE may be used to create a file and

specify options about the type of file. When the file is
created it is tied to the file number fnum. The list of options
may include S or WR to permit the file feor read or read/write,
respectively, to other users. Any other options specified in
the list of options are ignored.. Files created by the MTSCREATE
function are always internal I/0 format MTS line files.

Examples of file creation follow:

'FILE1' MTSCREATE 11 (A file named FILE 1 with 11
as its number)

'"FILE2/DA S WR' MTSCREATE 2 (A file named FILE 2
permitted for RW to
others)
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MISDEL: MTSDEL fnum [, rnum]
The MTISDEL function simulates the CDC file record delete
function (FRDEL). MTSDEL deletes the record rnum from file

fnum., If the record was already absent, nothing is done {(except

that the file position changes) and nc errors result.

MTSERASE: MTSERASE fnunms
The action of the CDC file erase function (FERASE) when
applied to CDC direct access files is simulated by the MTSERASE

function. All files specified by the right argument are

destroyed.

MISFNAMES: result <--- MTSFNAMES

The MTSFNAMES function returns a matrix of names (and user
I.D.s) of files currently tied. MTSFNAMES simulates the CDC
FNAMES function. The number of columns in the matrix returned
is always 13 (i.e., three less than with CDC because MTS user
I.D.s are three characters shorter than CDC user I.D.s). An
examnple follows:

MITSFNAMES
SAMPLE 1

ALGEBRA
*XXAR FILEN1

MTSFNUMS: result <--- MTSFNUMS
The MTSFNUMS function returns a vector of numbers in use
for tied files. The order is the same as the order of file

names in the result from MTISFNAMES. . MTSNUMS simulates the CDC

FNUMS function.
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MTISFTIE: ‘[ *account] file-name[ /options]' FTIE fnum
The MTSFTIIE function simulates the CDC file tie function
(FTIE). MTSFTIE gives the number fnum to the previously stored
file having the indicated name. If a user account (I.D.) is
given, the stored file is sought under than I.D. rather than the
one used for signing onto the system. The list of options if
provided is ignored by the MTSFTIE function. Examples using

MTSFTIE follow:

'FILES' MTSFTIE 7 . (A user ties one
of his own files)

'*XXAR FILE1' MTSFTIE 8 (A user ties a file

belonging to
another user)

—_— e ———— =

MTSFUNTIE simulates the CDC FUNTIE. All files for which
their file numbers appear in the vectcr or scaler right argument

are untied. To untie all tied files, use MTSUNTIE MTSFNUMS. .

MTSREAD: result <--- FREAD fnum {, rnum]
The MTSREAD function reads from the file having fnum as

its file number that record having rnum as its record number.

If rnum is not provided, the current record number is used. If

that record does not exist, an empty numeric vector is returned.

MTSREAD simulates the CBC FREAD function.
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MTISSTAT: result <--- FSTATUS fnum
MTSSTAT simulates a very small subset of the capabilities

provided by the CDC file status function (FSTATUS). MTSSTAT

returns the largest reccrd number currently in use by the file

having fnum as its file number. If the file is empty -1 is

returnede.

MISWERITE: array MTSWRITE fnum [, rnum]

The MTSWRITE function writes its left arqument on the file
having fnum as its number as the record having rnum as its
record number. If rnum is not provided, the current record
number is used. MTSWRITE simulates the CDC FWRITE function,

The $"FI functions ({$"FI1, $"FI2, $"FI3 and $"FIu)
accomplish the interface between EDBS and the functions
described above. The following describes how they work: The CDC
file system functions use the system function #FI to perform all
file operaticons. For example, FCREATE is defined as follows:

"A FCREATE B <1> A #FI 1,B"

The number (1) following thé #FI indicates that #FI should
perform a file create.. Each file system function calls #FI with
a unique number as the first element in the right argument..  The
#F1 function can actually be used directly and is used directly
by EDBS.

The $"FI functions simulate the #FI function. All
references to #FI made by EDBS have been modified to refer to

the appropriate $"FI function.
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Our interface file system includes a number of other
functions.. $"TRAP1 replaces the CDC error trapping function,
#TRAP. . $"LIB1 simulates the CDC system function #LIB. The
MTSID and reverse MTSID (REVMTSID) fumnctions replace EDBS

facilities for decoding and encoding a user account number.



APPENDIX E: Interface File System Functions

FUNCTION NAMES :

MTSCREATE MTSDEL MTSERASE MTSFNAMES MTSFNUMS
MISFTIE MTSFUNTIE MTSID MTSREAD MTSSTAT
MTSUNTIE MTSWRITE $UFI1 $"FI2 $"FI3
SUFI U $"LIBDELETE $"LIBUPDATE $"LIB1

$YREVMTSID $"TRAP1

VARIABLE NAMES :

FNAMES FNOMS

<1>
<2>
<3>
<4>
<5>
<6>
<7>
<8>
<9>
<10>
<11>
<12>
<13>
<14>
<15>
<16>
<17>
<18>
<19>
20>
<21>
<22>
<23>
<24>

‘A MTSCREATE B;FNAME;MSG;OPTIONS
FNAME= (1+A$.'%") $TAA
$*2@d CREATE FILE CALLED FNAME. 23d
$> (0O$EQSEX3$TAMSG=FMTS '"CREATE ',FNAME)%CREATED
MSG
" $>0
CREATED:OPTIONS=(($,FNAME) +1) $DRA
$*»32d UPDATE FILENAME LIST 22@
$ULIBUPDATE FNAME
$*»@d IF SEMIPRIVATE PERMIT FOR READ TO OTHERS 2ad
$> (($,0PTIONS) $LTOPTIONSS. 'S') %UPDATE
$> (0$EQS$EX3$TANSG=FMTS 'SHARE ',FNAME) %SHARED
MSG
$>0
$*2@d IF WRITE OPTION PERMIT FOR WRITE TO OTHERS 233
SHARED:$> (($,0PTICNS) $LTOPTIONS$.'W') %FUPDATE
$> (0$EQ$IEX3$TAMSG=FMTS 'SHARE ',FNAME,' RW') YUPDATE
MSG
$>0
$*2@@d UPDATE FNAMES AND FNUMS dad
UPDATE: $> {($,FNAMES) $EQO0) %FIRST
FNAMES=FNAMES,<1> FNAME, (16-$, FNAME)S$,"' '
$>TIE
FIRST:FNAMES= 1 16 $,FNAME, (16-$,FNAME) $,"
TIE:FNUMS=FNUMS,B :



<1>
<2>
<3>
<4>
<5>
<6>
<7>
<8>
<9>
<10>
<11>
<12>
<13>
<14>
<15>
<16>
<17>
<18>
<18>
<20>

<1>
<2>
<3>
<4>
<5>
<6>
<7>
<8>
<9>
<10>
<11>
<12>
<13>
<14>

<1>
<2>
<3>
<4>
<5>
<6>
<7>
<8>
<9>
<10>
<11>

MTSDEL B;FNUM;RNUM; MSG;FNAME;M;DATA
FNUM=13TAB

FNAME=,FNAMES< (FNUMS$EQFNUM) %$.$,FNUNS;>
$*2@@ SET APL EXTEENAL FORMAT 22@
MSG='EXTERNAL' FSETTYPE FNAME

3*2@d@ SET DIRECT ACCESS MODIFIER 22
#10=0

M=32%,0

M<30>=1

MSG=M FSETMODS FNAME

#10=1

$> (($,RNUM=1$DRB) $EQ0) %SEQ
$*p@@ FIND LINE NO, FOR DIRECT ACCESS WRITE 222
MSG= (RNUM*1000) FSETLINE FNAME
SEQ:$> (0SEQSEX3$TAMSG="'"' FWRITE FNAME)ZRESET
MSG

$>0

RESET:
$*22@d INCREMENT LINE POINTER 2@d
MSG='RNUM' FGETLINE FNAME

14SG= (RNUM+1000) FSETLINE FNAME

MTSERASE A;MSG;FNUM;FNAME;I

I=,1

$> (I1$GT$,,A) %0

FNUM=1$TAIS$TARA

FNAME=,FNAMES< (FNUMS$EQFNUM) %$.$, FNUMS;>
$*2@d UNTIE FILES GIVEN BY A 2@d

MTSUNTIE FNUM
$*2@@ DESTROY FILES GIVEN BY A 23d

$> (0$EQ$EX3$TAMSG=FMTS 'DESTROY ',FNAME) %DONE
MSG

$>0
DONE:I=I+1

$*2@® UPDATE FILENAME LIST @ad
$"LIBDELETE FNAME

$>2

R=MTSFNAMES; I
I=,1 '
R= 0 13 $,*
NEXT: %> (I$GT$, FNUMS)%O
$> (FNAMESKI;5>$EQ':') %ACC
3*22@ COMPOSE FNAME IF NO ACCOUNT NO. GIVEN 2a2d
R=R,<1> ' ' 4$DR,FNAMES<KI;>
$>00T
3*2@2 COMPOSE FNAME IF ACCOUNT NO. GIVEN 2@d

ACC:R=R,<1> '2', (,FNAMES<I;$.4>),* ',7$,58DR,FNAMES<I;>

OUT :I=I+1
$>NEXT
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<1>

<1>
<2>
<3>
<4>
<5>
<6>
<7>
<8>
<9>
<10>
<11>
<12>
<13>
<14>
<15>
<16>
<17>
<18>
<19>
<20>
<21>
<22>
<23>

<1>
<2>
<3>
<4>
<5>
<6>

<1>
<2>
<3>

" RESULT=MTSFNUMS
RESULT=FNUMS

" A MTSFTIE B;MSG;FNAME;STATUS

3%22d COMPOSE FNAME IF ACCOUNT NO. GIVEN 22@

$> (AK1>$NE'@') %ANOACC

FNAME=A<2 3 4 5>,':',(((6$DRA) $NE* ') $.1) $DR5$DRA

FNAME= (1+FNAMES$. '%") $STAFNAME

$*2@@ COMPOSE FNAME IF NO ACCOUNT NO. GIVEN 22d

$>ERRCHK
NOACC:FNAME=(1+A3$.'%"') $TAA
ERRCHK:3> (BSEPFNUMS) %E1
$*222 CHECK THAT FILE PERMITTED Q2@
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$> (0SEQFEX3$TAMNSG=FMTS (* CHKACC ',FNAME) INTO *'STATUS')%O0K

MSG
$>0
OK: $> (STATUS$EQO) %E2
$*2@d UPDATE FNUMS AND FNAMES 22d
$>{($,FNAMES) $EQO) %FIRST
FNAMES=FNAMES,<1> FNAME, (16-$, FNAME)$,"'
$>TIE

FIRST:FNAMES= 1 16 $,FNAME, (16-$,FNAME) $,?
TIE:FNUMS=FNUNS,B

$>0
E1:'TIE NUMBER IN USE!

$>0

E2:'FILE NOT PERMITTED'

" MTSFUNTIE A;I

$*@@2 UNTIIE FILES GIVEN BY A 92d
I=,1
$> (I$GT$,,A) %0
MTSUNTIE 13TAISTAA

I=I+1
$>3
"
W Z=MTSID
$*2@® THIS FUNCTION FINDS THE USER ID a@add
$*@2@® FOR THE CALLING ACCOUNT 22a

Z=,#AV<HIO+ (45,256) SEN1STA#AI>



<1>
<2>
<3>
<y>
<5>
<6>
<7>
<8>
<9>
<10>
<11>
<12>
<13>
<14>
<15>
<16>
<17>
<18>
<19>
<20>
<21
<22>
<23>
<24>
<25>

<1>
<2>
<3>
<4>
<5>
<6>
<7>

<1>
<2>
<3>
<4>
<5>
<6>
<7>
<8>
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# RESULT=MTSREAD E;FNUM;RNUM;MSG;FNAME;M;DATA
FNUM=1$TAR
FNAME=, FNAMES< (FNUMS$EQFNUM) %$.$,FNUNS;>
$*2@d SET APL INTERNAL FORMAT 2@
MSG='INTERNAL' FSETTYPE FNAME
$*@@d SET DIRECT ACCESS MODIFIER 82d
#I10=0
M=32%,0
M<30>=1
MSG=M FSETMODS FNAME
#10=1
$> (($,RNUM=13DRB) $EQ0) %SEQ
$*@@d FIND LINE NG. FOR DIRECT ACCESS READ 222
MSG= (RNUM*1000) FSETLINE FNAME _
SEQ:$> (0SEQ$EX3$TANSG="DATA' FREAD FNAME)%RESET
$> (30$EQ$EX3$TANSG) ANULL
MSG
$>0
NULL:DATA=$.0
$>UNLOCK
RESET:
$*23d INCREMENT LINE POINTER 22d
MSG='RNUM' FGETLINE FNAME
MSG= (RNUM+1000) FSETLINE FNAME
$*2@d UNLOCK IMPLICIT MTS LOCKING 2dd
RESULT=DATA

" RESULT=MTSSTAT A;MSG;FNAME;LINE;FNUM
$*2@@ FIND LAST LINE IN USE IN FILE 2002
FNAME=,FNAMES<(FNUMSS$EQA) %$.3%, FNUMS ;>
MSG=FMTS 'GETLST ',FNAME INTO *LINE!
$> (123EQS$EX3$TAMSG) REOF

RESULT=,LINE/1000
$>0
EQF :RESULT=,1

" MISUNTIE A;Y;FNAME;MSG
$*22@ UNTIE FILE GIVEN BY A add
$> ((FNUMS$.A) $GT$,FNUMS) ERROR
FNAME=,FNAMES< (FNUMS$EQA) %$.$,FNUMS;>
$*2@@ UPDATE FNUMS AND FNAMES 233
FNUMS= (Y= FNUMS$EPA) %FNUMS
FNAMES=Y$CI1FNAMES
$>0

ERROR:'ATTEMETING TO UNTIE AN UNTIED FILE!
"



<1>
<2>
<3>
<4>
<5>
<6>
<7>
<8>
<9>
<18>
<11>
<12>
<13>
<14>
<15>
<16>
<17>
<18>
<19>
<20>

<1>
<2>
<3>
<4>
<5>
<6>
<7>
<8>
<9>
<10>
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A MTSWRITE B;FNUM;RNUM;MSG;FNAME;M; DATA
FNUM=13TAB

FNAME=,FNAMES< (FNUMSS$EQFNUM) %3 5,FNUMS;>
$*»@@ SET APL INTERNAL FORMAT 223
MSG='INTERNAL' FSETTYPE FNAME
$3*2@@d SET DIRECT ACCESS MODIFIER 02a
#10=0

M=32%,0

M<30>=1

MSG=M FSETMODS FNAME

#10=1

$> (($,RNUM=1$DRB) $EQO) %SEQ
$*2@2 FIND LINE NO. FOR DIRECT ACCESS WRITE 2@d
MSG=(RNUM*1000) FSETLINE FNAME
SEQ:3> (0$EQPEX3$TANSG=A FWRITE FNAME)ZRESET
usG

$>0

RESET:
$*2@d INCREMENT LINE POINTER 220d
MSG=*RNUM' FGETLINE FNAME

MSG= (RNUM+1000) FSETLINE FNAME

A $"FI1 B;X
X=1$TAB
$*2@2@ BRANCH TO FUNCTION GIVEN BY B @ad
$> ((X$EQ1), (X$EQ2), (X$EQYU), (X$EQY), (X$EQ10)) %L1,L2,L4,L9,L1
*NOT VALID $"FI1 COMMAND'
L1:A MTSCREATE 1$DRB
>0
L2: A MTSWRITE 13DRBEB
$>0
LY4:MTSERASE A
$>0

<11> LY9:MTSFUNTIE A

<12>

$>0

<13> L10:A MTISFTIE 13DRB

<1>
<2>
<3>
<4>
<5>
<6>
<7>
<8>
<9>

Z=3%3"FI2 B;X
X=1$TAB

$*22@ BRANCH TO FUNCTION GIVEN BY B dadd
$> ({(X$EQ3), (X3EQ7), (X$3EQ8)) %L3,L7,L8
'NOT VALID $"FI2 COMMAND!

L3:Z=MTSREAD 13$DRB
$>0

L7:Z=MTSFNAMES
$>0

L8:Z=MTISFNUMS



" $"FI3 B
<1> $*3@32 CALL FUNCTICON GIVEN BY B 229
<2> MTSDEL 1$DRE

" Z=A $"FI4 B
<1> $*22@ CALL FUNCTION GIVEN BY B 2dd
<2> Z=MTSSTAT A

" $YLIBDELETE FNAME;MSG;X
<1> $*@@® DELETE FILE NAME FROM LIBNAMES 2dd
<2> MSG='INTERNAL' FSETTYPE 'LIBNAMES'
<3>  $> (0$EQ$EX3$TAMSG='X' FREAD 'LIBNAMES') %0K
<4>  MSG
<5>  $>00T
<6> OK:X={ (FNAME, (17-$,FNAME)$,' ')&.$EQSTRX) $C1X
<7> $*»@® RESET RECORD NUMBER TO ONE @2d
<8> MSG=FRELEASE 'LIBNAMES®
<9> MSG='INTERNAL' FSETTYPE 'LIBNAMES!
<10> $> [(0$EQ$EX3$TAMSG=X FWRITE 'LIBNAMES')%OUT
<11> MSG
<12> OUT:MSG=FRELEASE 'LIBNAMES!

" $"LIBUPDATE FNAME;STATUS; MSG;X
<1> $*@d® CHECK IF LIENAMES ALREADY CREATED 2dd
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<2> $> (0$EQFSEX3$TAMSG=FMTS (*CHKACC LIBNAMES') INTO 'STATUS')%RE

<3> $*@@d CREATE LIBNAMES AND PERMIT FOR READ @aa
<4> MSG=FMTS 'CREATE LIBNAMES'

<5> MSG=FMTS *SHARE LIBNAMES'

<6> =017 $,*'

<7> $>WRITE

<8> READ:MSG='"INTERNAL' FSETTYPE 'LIENAMES!
<9> MSG='X" FREAD 'LIENAMES'

<10> MSG=FRELEASE 'LIENAMES'

<11> $*22@ UPDATE LIBNAMES 22

<12> WRITE:X=X,<1> FNAME, (17-$,FNAME) $," ¢
<13> MSG='INTERNAL' FSETTYPE 'LIBNAMES!
<14> MSG=X FWRITE 'LIENAMES'

<15> MSG=FRELEASE 'LIENAMES'
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" Z=$%"LIB1 LIBNO;STATUS; MSG;FNANE
<1> $*@@@ THIS FUNCTION RETURNS A LIST OF FILENAMES aaa
<2> $*@2d CONTAINED IN THE ACCOUNT GIVEN BY LIBNO 200
<3> $> (0$EQS$,LIBNO) %ANOACC
<4> FNAME= (1$DRS5$TALIBNO),*':LIENAMES!
<5> $>NEXT
<6> NOACC:FNAME='LIBNAMES! :
<7> NEXT: $>(0$EQ$EX3$TAMSG FMTS('CHKACC ' ,FNAME) INTO 'STATUS')?%
<8> z= 0 17 $,* !
<9> $>0
<10> READ:MSG='INTERNAL' FSETTYPE FNAMNE
<11> MSG='Z' FREAD FNAME
<12> MSG=FRELEASE FNAME

" 72=$"MTSID LIST
<1> $*2@d THIS FUNCTION FINDS THE USER ID 2@d
<2> $*22@® FOR A LIST OF USERS 200

<3> Z=#AV<#IO+$TR(US$,256) $EN, LIST>
"

" R=$"REVMTSID USER
<1> $*@@@ THIS FUNCTION FINDS THE USER ID 2aa
<2> $*@@@ IN ENCODED FORM FROM CHAR REPN @ad
<3> E=256$DE (#AV$. USER) -#I0

" $UTRAP1 LABEL
<1> $*32@ THIS FUNCTION DOES NOTHING. .IT IS USED TO REMOVE a2ad
<2> $*@@d THE ERROR TRAPPING FACILITIES PROVIDED BY #TRAP @2@

FNAMES
$,3,3EQ 2; $,%EQ 0 16

O #*

3=

FNUMS
$,%,%EQ 1; $,%EQ O

=
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