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ABSTRACT

Computational geometry is the study of algorithms for
manipulating sets of points, lines, polygons, planes and other
geometric objects. For many problems in this realm, the sets
considered are static and the data structures representing them
do not permit efficient insertion and deletion of objects
(e.g. points). Dynamic problems, in which the set and the
geometric data structure change over time, are also of interest.
The topic of this thesis is the presentation of fast algorithms
for fully dynamic maintenance of some common geometric
structures. The following configurations are examined: planar
nearest-point and farthest-point Voronoi diagrams, convex hulls
(in two and three dimensions), common intersection of halfspaces
(2-D and 3-D), and contour of maximal vectors (2-D and 3-D).
The principal techniques exploited are fast merging of
substructures, and the use of extra storage. Dynamic geometric
search structures based upon the configurations are also
presented. '
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1. Introduction

1.1. Computational Geometry

Computational geometry is concerned with the design and
analysis of algorithms for manipulating sets of points, lines,
polygons, planes and other geometric objects in dimensions two
and higher. Many computational préblems are most naturally cast
in a geometric setting, where fast algorithms can often be
developed which exploit the structure of the problem provided by
the geometry.

Several problem areas within computational geometry have
had considerable research devoted to them. Construction of
convex hulls is one such area (see [Be80]). The convex hull of
a set of points § , mathematically defined to be the smallest
convex set containing all the points of S , is an important
basic geometrical structure that arises in many applications and
as a component in the solution of many more involved problems.

Intersection problems, which occur in applications such as
computer graphics, linear programming, and computer-aided design
(especially integrated circuit design), have also received much
attention recently ([ShHo76], [ChDo80]). Algorithms ;ave been
devised to determine intersections among lines, polygons,

half-spaces and other objects.

Closest point problems (egq. element-uniqueness, finding



the two closest of n points, nearest-neighbor) arise in cluster
analysis, pattern recognition, and construction of minimum
spanning trees (see [Sh78]). The Voronoi diagram of n planar
points is a structure containing proximity information which
allows the efficient solution of many closest-point problems.
There are geometric searching problems associated with Voronoi
diagrams, maximal vectors, rectangular ranges, straight-line
planar graphs and other geometric data structures.

Much of the pioneering work in computational geometry was
done by Shamos, and [Sh78] is an indispensable account of early
work in the discipline. Good surveys of portions of the field
are provided in [MaOt79a] and [Br79]. An extensive bibliography
of papers related to computational geometry is supplied in

[EdvL80].

1.2. Maintenance of Dynamic Structures

For many problems in computational geometry, the sets
considered are usually static and the data structures
representing them are not designed to allow for efficient
insertion and deletion of objects (eg. points). The data
structures can be searched and otherwise manipulated very
efficiently, but for some problems a complete reconstruction of

the static data structure seems to be necessary to support the



insertion or deletion of even a single object.

1.2.1. Decomposable Searching Problems

Bentley [Be79] recently observed that for some problems, a
distributed approach could provide reasonably efficient dynamic
solutions. Rather than maintain the entire set of objects in
one "global" data structure, it can be effective to ©partition
the set into smaller pieces ("blocks"), each statically
organized, and separately maintained. This approach <can fail
completely. It could prove more difficult to query a
partitioned set (if it is indeed possible) than to query a set
represented by a single, global data structure; and the approach
will only be worthwhile if its associated overhead costs can be
kept very low. Bentley [Be79] identified a large class of

common problems (called decomposable searching problems ) for

which this general technique of converting static data
structures into dynamic ones ("dynamization") is applicable.
Bentley and Kung [BeKu79] have described how decomposable
searching problems can be efficiently solved on a parallel
computer,

Definition: A searching problem (or query) Q is said to be

decomposable if for any set of objects S to which it applies and

any partition of S into an arbitrary number of disjoint subsets



("blocks™") Sl""’sk’ the answer Q(S) can be synthesized in O(k)
time from the answers Q(Sl)""’Q(Sk) to the query for each
separate block.

A typical example of a decomposable searching problem is

the nearest-neighbor searching problem:

Problem: Determine which point of a given set is closest to some
arbitrary test point in the plane.

Bentley and Saxe ([Be79], [SaBe79]) have presented several
general dynamization techniques which can be applied to any
decomposable searching problem, resulting in reasonable update
(insertion or deletion) times and without excessively increasing
the query times. An objection to their methods 1is that they
primarily support insertions, deletions being much harder to

handle in their framework,

1.2.2. Dynamization Methods

Every dynamization technique tends to employ its own method
of partitioning a set into blocks and its own procedures for
maintaining this decomposition. Bentley's primary method
maintains a partition of a set of n points into distinct blocks
of size 2i for particular values of i.. There is a block of the
appropriate size for each "1" in the binary representation of n.

There will exist some blocks of large size, but insertions will



most often require a repartition of points only at the "low
end". This method wusually adds a factor of lgn to the
preprocessing time and the query time of the static data
structure. It can be worthwhile to completely avoid large
blocks, and maintain instead a partition of the set in which the
sizes. of the blocks are kept balanced in an optimal way. A
dynamization of this type was exhibited by Maurer and Ottman
[MaOt79b], although their method presupposed a limit on the
largest set-size to occur over time and kept a fixed number of
blocks. An improvement of this was shown by van Leeuwen and
Wood [vLWo80], who present a fully dynamic scheme which adapts
both the size limits on and the number of blocks dynamically at
no extra cost. The worst-case bounds on update and query times
are optimized, regardless of how the set-size varies. A major
advantage of this method is ‘that deletions can be processed
quickly, even if the brute force approach of reconstructing an
entire block as a new static structure afterwards is used. This
is because the blocks which are broken up and rebuilt are much
smaller than a single global block (representing the entire
set). In [vLMa80], modifications to this "equal-blocks method”
of dynamization are shown to improve the average-case bounds on
insertion (and occasionally deletion) times.

As is noted in [vLWo80], it is important to recognize that
general dynamization techniques shouldn't replace ingenuity in
dynamizing a specific problem, but should be brought into action
when individually-tailored approaches fail, Also, even though

the general dynamization techniques for decomposable searching



problems are suitable for a wide variety of problems, there
exist some common geometric configurations (eq. convex hulls
[SaBe79]) for which the techniques are inapplicable. It is not
possible to perform convex hull searching ("is point x inside
the convex hull of point set F?") on a partitioned set. This
is because F can be partitioned into two subsets such that a
point x is not inside the hull of either subset, yet x is inside
the convex hull of F. Some work has been done on dynamically
maintaining non-decomposable geometric configurations including
planar convex hulls. This will be discussed in more detail in

section 4.2.2.

1.3. Topics of the Thesis: Problems and Results

In this thesis, we present several efficient, fully dynamic
maintenance algorithms for a variety of geometric
configurations. These enable the solution in a dynamic setting
of problems which utilize these structures, Some of these
problems are decomposable in Bentley's sense; others are not,.
In many cases, the bounds which we present are the best known to
date, and for some problems full dynamization has not previously
been discussed. The confiqgurations which are studied are the
following:

a) Voronoi diagrams (planar; nearest-point and
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farthest-point).

b) Convex hulls (2-D and 3-D versions).

c) Common intersection of halfspaces (2-D and 3-D
versions).

d) Contour of maximal vectors (2-D and 3-D versions).

important specific results presented in this thesis are:

- the Voronoi diagram of a planar point set can be
dynamically maintained at a cost of O(n) time per insertion
or deletion of a point, such that it can still be searched
in O(lg n) time, where n is the current number of objects
in the set (thus allowing the best known solution to the
dynamic nearest-neighbor searching problem, and other
closest-point problems). (section 2.1.1.2.)

- the convex hull of a planar point set can be maintained
at a cost of O(lg2 n) time per insertion or deletion (a
consequence of an O(lg n) algorithm for computing the union
of disjoint convex sets). (section 4.2.2.)

- the common intersection of a set of 2-D halfspaces can be
maintained at a cost of O(lg2 n) time per insertion or
deletion of a halfspace (accomplished by transforming this
problem to one dealing with convex hulls). (section
5.1.2.)

- the convex hull of a 3-D point set can be maintained at a
cost of O(n) time per 1insertion or deletion (a similar

result is also shown for 3-D halfspaces). (sections 3.2.



and 5.2.2.)
- the contour of maximal vectors of a 3-D point set can be
maintained at a cost of O(n) per insertion or deletion.

(section 6.2.2.)

Applications of these and other results are discussed
throughout the thesis. One of the principal techniques which we
employ 1is the exploitation of fast algorithms for "merging" of
arbitrary or ordered substructures to create dynamic
hierarchical data structures. Other issues considered in the
thesis are the use of extra storage space to improve query and
deletion times, and the investigation of tradeoffs among
resources and solution characteristics. Specifically, a
tradeoff between space and update time is explored, as well as a

query vs. update time tradeoff.

1.4. Preliminary Definitions and Notation

We will characterize fwo distinct types of data structures
for solving searching problems. A static structure 1is built
once and can then be searched repeatedly; insertions and
deletions of eiements are not permitted. We define three

functions of n (the number of elements currently in the set)



which portray the performance of a static structure S

representing the set:

Ps(n) = the preprocessing time required to build S,
Qs(n) = the gquery time required to perform a search in §,

SS(n) the storage space required to represent S.
Unless otherwise stated, we consider worst-case cost functions
throughout this thesis.

Another type of data structure 1is a dynamic structure,
which represents a set whose size changes over time. The
structure can be initially empty, and supports the operations of
inserting a new element, deleting a current element, and
performing a search to answer a query. The following functions

of n (the number of elements currently in the set) are used to

describe the performance of a dynamic structure D representing

the set:
ID(n) = the time required to insert an element into D,
DD(n) = the time required to delete an element from D,

Qp(n) = the query time required to perform a search in D,
SD(n) = the storage space required to represent D,

PD(n) = the "preprocessing" time required to build D

by performing n successive insertions into an
initially empty structure,

k (n)

the number of blocks into which D is partitioned.
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2., Dynamic Voronoi Diagrams

2.1. Nearest-point Voronoi Diagrams

Voronoli diagrams have many applications in computational
geometry as well as in other fields ([Sh78], [Br79]). The
worst-case lower bound for their construction 1is 2 (n lg n)
time. This follows from Yao's Q(n lg n) lower bouﬁd for convex
hulls ({Ya79], and the fact that the convex hull can be derived
from a Voronoi diagram in linear time [Sh78]. Shamos [Sh75]
presents an O(n lg n) time divide-and-conquer algorithm for
constructing the Euclidean Voronoi diagram of a set of n planar
points. Kirkpatrick [Ki79a] has recently shown an O(n lg n)
time algorithm for constructing the Voronoi diagram of n planar
line segments.

Definition: Let F be a set of n points in the plane. The

nearest-point planar Voronoi diagram of F is a network of n

polygonal regions (Figqg. 1). The region R, associated with a
point p; in P is the set of all the points in the plane which
are closer to P; than to any other point in F . The vertices of
the regions are called Voronoi points, and the polygonal
boundaries of the regions form Voronoi polygons. Voronoi
polygons can be bounded or unbounded.

Given an arbitrary point x in the plane, we can determine

the point in F to which x is closest by finding which Voronoi
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polygon contains point x. Thus, we see that searching for a
point in a Voronoi diagram allows us to solve the nearest
neighbor searching problem.

When we delete a point Py from F, the Voronoi diagram of
the revised set may become drastically different. Computing it
can involve a complete reconstruction, costing O(n lg n) time.
Without closer scrutiny, it might appear that inserting a point
into F would also necessitate a total reconstruction.

However, Kirkpatrick [Ki7%9a] showed that two arbitrary

Voronoi diagrams can be "merged" efficiently, linear
separability of the two point sets involved being unnecessary.
More specifically, he demonstrated the following:
LEMMA 2.1. [Ki79a] If A and B are arbitrary sets of planar
points (|A]=n, |B|=m) , then their Voronoi diagrams can be
merged to form the Voronoi diagram of ( A union B ) in O(n + m)
time.

We will show that this result favors efficient dynamic
nearest-neighbor searching and other dynamic applications of

Voronoi diagrams.

2.1.1. Nearest-Neighbor Searching

The problem of static nearest-neighbor searching can be

stated as follows:
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Problem: Preprocess a set of n points in such a way that the
nearest neighbor of a new test point can be found quickly.

As mentioned previously, finding the Voronoi polygon in
which x is located immediately supplies the nearest neighbor of
X. The Voronoi diagram of n points in the plane is a
straight-line planar graph with O{(n) vertices and O(n) edges
[ShHO75]. It can be searched by any method for locating a point
in a planar subdivision.

Shamos [ShHo75] provided an algorithm which performed
planar subdivision search in O(lg n) time, using O(nz) storage
and O(nz) preprocessing time. Lee and Preparata [LePr76] showed
a method with Qs(n) = O(lg2 n), but with Ss(n) = 0O(n) and Ps(n)
= O(n 1g n). Preparata [Pr80] later supplied an alternative
algorithm with QS(n) = 0(lg n), but with SS(n) and Ps(n) both
equal to O(n 1lg n). The most efficient approaches so far to
static nearest-neighbor searching in the plane are represented
by:

LEMMA 2.2. (ILiTa77], [Ki79b]) There exists a planar

subdivision search structure with the following attributes:

Qg(n) = O(lg n)
SS(n) = 0(n)
Ps(n) = O(n 1g n) .

2.1.1.1. Dynamic Nearest-Neighbor Searching
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Nearest-neighbor searching is a decomposable searching problem.
The set S of n points can be partitioned into an arbitrary
number of disjoint subsets Sl"“'sk' and the Voronoi diagrams
of each subset maintained separately. The nearest-neighbor
query Q can now be applied to each subset in turn, and the
answer with minimum distance among all k answers provides the
nearest neighbor to the test point.

The first treatment of dynamic nearest-neighbor searching
was by Bentley [Be79]. His primary technique usually adds a
factor of 1g n to both the preprocessing and Que;y times of the
static déta structure. Using an optimal wunderlying static
structure (eq. lemma 2.2.) , Bentley obtains:
THEOREM 2.1. [Be79] There exists a dynamic nearest-neighbor

search structure with the following characteristics:

Qp(n) = 0(1g% n)
P,(n) = O(n 1g n)
ID(n) = O(n 1lg n)
SD(n) = O(n) .

A méjor drawback of Bentley's method 1is that it only
supports insertion of points; deletions are prohibited.
Overmars and van Leeuwen [OvvL79] presented a fairly intricate
modification of Bentley's. method (allowing slightly variable
block-sizes) which allows deletions, at a cost of DD(n) =
O(n 1g n) .

These results can be improved by exploiting lemma 2.1.

This permits not only linear insertion time but, as observed in
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[SaBe79], efficient merging of substructures 1is superior to
dismantling smaller structures followed by rebuilding larger
structures from scratch. 1In fact, this merging permits us to
shave a factor of 1lg n from the preprocessing time of the
dynamic structure. Thus, employing this speedup on Bentley's
(suitably modified) structure renders the following improved

characteristics:

2
Qp (n) 0(1g“ n)

Pp (n) O(n lg n)

I (n) = O(n)

Dy, (n)

Sp(n) = 0(m) .

O(n 1lg n)

The "equal blocks" dynamization method of van Leeuwen and
Wood [vLWo80] offers possibilities for further improvement.
They use an application-dependent sequence of "switchpoints"” Xy
k21 with the following properties:

a) X, EN
b) X, is a multiple of k
c) xk+1/(k+1) 2 xk/k .

The set being maintained is partitioned into k = k(n) blocks of
approximately n/k elements each and a "dump" (also structured
and varying in size from 0 to about n/k points), whenever n

currently satisfies x

K 's n < x If the value of n falls

k+1°

below X, Or grows to x then the number of blocks and the

k+1’

limits on their size are adapted correspondingly at negligible

cost.
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For dynamic nearest neighbor searching, they define their

switchpoints by

k

X, = the first multiple of k that is > 2" .

k
This makes k = k(n) about lg n. They dynamize an optimal static
solution w.r.t. to the stated switchpoint sequence to yield:

THEOREM 2.2

[vLWo80] There exists a dynamic nearest-neighbor

search structure with the following characteristics:

Qp(n) = O0(lg n ® Q. (n/1g n)) = o(1g® n)
Ih(n) = O(Pg(n/lg n)) = O(n)

Dy(n) = O(Pg(n/lg n)) = O(n)

Sp(n) = O( Sg(n) ) = O(n) .

We can exploit lemma 2.1. to improve upon theorem 2.2.,
achieving Ib(n) = O(n/1lg n).

The general question of optimal tradeoff between query and
update times was thoroughly studied by Edelsbrunner [Ed79].
Using his analytic methods, we arrive at k(n) = n . The

characteristics of the solution become:

op(n) = 0(nl/2 1g n)
ID(n) = Of nl/2 )
DD(n) = O(nl/2 1g n)
SD(n) = O0( n) .

These last two solutions in some sense represent the best
known results for the dynamic nearest neighbor searching
problem. These solutions have required only linear amounts of

storage. We will demonstrate that it- is possible, at the
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expense of a 1limited amount of extra storage but without
sacrificing optimal query time, to improve handling of deletion
so that all updates are equally expensive. As above, the global
static structure can be maintained as a substructure of the
dynamic structure, ensuring that applications aside from queries
can be processed 3just as efficiently as the static case.
Because the nearest neighbor searching problem is decomposable,
it will also be possible to simultaneously trade query time for
update time. These tradeoffs provide a full spectrum of

solutions to the dynamic nearest neighbor searching problem.

2.1.1.2. Using Extra Storage

First we will inveStigate a dynamic structure which uses
some extra storage but does not exploit the decomposability of
the problem. The base level of our structure is comprised of a
system of van Leeuwen-Wood blocks with k(n) = lg n, each block
of size approximately n/lg n. However, in addition to this we
merge these k(n) structures "upward" to obtain a single
top-level structure. This results in a balanced binary tree of
structures, with lg n structures at the leaf level. The height
of this tree 1is 1g 1g n, and the entire set of points is
represented once at each level of the tree. Thus, O(n) storage

is required at each level and the entire dynamic structure needs
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O(n 1g 1g n) space. Since the Voronoi diagram of the complete
set is maintained as the root of the structure, the query time
remains the same as in the static case, namely O(lg n).

Both insertions and deletions in this structure occur at
the leaf level, in the manner specified by van Leeuwen and Wood.
After the changes at the leaf level have occurred, the necessary
upward re-merging is done to reflect the appropriate changes
higher up in the tree, right up to the root. 1Insertion into a
leaf-level structure is performed at a cost proportional to the
O(n/lg n) size of the structure, and the upward remerging phase
takes O(n) time. For deletion, the cost of reconstructing a
leaf-level structure is O((n/lg n) ® 1lg(n/lg n)) = O(n), and the
upward remerging also takes O(n) time., Thus, we have
LEMMA 2.3. There exists a dynamic nearest-neighbor search

structure with the following characteristics:

Qp(n) = O(lg n)
ID(n) = O( n )
Dy(n) = O( n )
SD(n) = O(n 1lg 1lg n) .

This solution clearly exhibits the benefits of exploiting lemma
2.1. (the 1linear time merging of two arbitrary vVoronoi
diagrams).

If we are only willing to use O(n F(n)) storage, where F(n)
< 1lg 1g n, we can demonstrate a structure which uses less
storage at the expense of greater deletion cost. Our structure

becomes "shorter" than before; it is of height F(n). The number
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F(n),

of leaf-level structures, kL(n), is 0(2 Each one of these

structures will be of size approximately n/zF(n). The cost of
performing an insertion remains linear. The dominant cost in
deletion from this dynamic structure 1is the actual cost of

deletion from a leaf-level structure, not the time required for

upward remerging. The deletion time is equal to

F(n), F(n),

Dg (n/2 =o(m/2"™y e 192" ™)) = o((n 19 /2
We thus have the following:

LEMMA 2.4. 1In the case that we have a unique highest-level

structure (the global root structure) and if F(n) is O(lg 1lg n),
then there exists a dynamic nearest neighbor search structure

with the following characteristics:

Qp(n) = O(lg n)

ID(n) = O( n )

Dy(n) = O((n 1g n)/2F (M)
SD(n) = O(n F(n)) .

2.1.1.3. Exploiting Decomposability

Now we will consider a slightly modified hierarchical
dynamic structure, one which exploits the decomposability of the
nearest neighbor searching problem. At the base (leaf) level,

there are kL(n) structures. These are merged upwards as before,
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but only until a height of 1g 1g n is achieved. Note that this
will not necessarily produce a -single root structure. In
general, we will have a certain number of "highest-level"
structures (denoted by H(n)), each of size about n/H(n). The
entire overall structure is a forest of H(n) binary trees. The
total number of leaf structures is kL(n) = H(n) ® 1g n, each 'of
size O(n/(H(n) ® 1g n)). This type of structure can be
interpreted as a "band" of thickness 1lg 1lg n in a binary tree of
structures with a unique global structure at ‘the root and the
individual points stored as leaves. H(n) can range betwen 1 and
n/lg n (i.e. the band can be raised or lowered) to trade off
query time against update time (see Figqg. 2). Querying 1is
always performed on the highest level structures, at a cost of
H(n) ® Qs(n/H(n)). Because the height of our structure
is 1g 1g n, the dominant cost in both insertion and deletion is
the cost of upward remerging. For deletions, the "break even
point" (where the cost of reconstructing a leaf structure equals
the upward remerging cost) occurs when H(n) = 1. At that point,
both costs are O(n). The query-update tradeoff is formulated as
follows:

LEMMA 2.5. 1In the case where F(n) = 1g 1lg n (i.e. the maximum
useful amount of storage is wused) and H(n) highest-level
structures are maintained (1 < H(n) < n/lg n), we have a dynamic

nearest neighbor search structure with attributes:

Qp(n) = O(H(n) ® 1g(n/H(n)))
I(n) = O( n/H(n) )
Dp(n) = O( n/H(n) )



20

SD(n) = O(n 1lg 1lg n) .

We note that a query time-update time product of
O(n ® 1g(n/H(n))) 1is maintained. If we further restrict
ourselves to the use of only O(n F(n)) storage, where F(n)
< 1g 1g n, the result is a dynamic structure with H(n)

highest-level structures and O(H(n) © 2F(n))

leaf-level

structures., We see that the storage-deletion tradeoff can be

incorporated simultaneously with the query-update tradeoff.
Lemma 2.4. and lemma 2.5. can be combined to obtain the

following result:

THEOREM 2.3. If F(n) is O(lg 1g n) and H(n) satisfies 1 < H(n)
< n/lg n, then there exists a dynamic nearest neighbor search
structure with the following attributes:

Qn(n) = O(H(n) ® 1g(n/H(n)))

Sp(n) = O(n F(n))
Ih(n) = O(n/H(n))
D(n) = O( (n 1g n)/(#(m) @ 27 (™)) ),

We note that this implies a wide spectrum of efficient solutions
to the dynamic nearest neighbor searching problem, and unifies,

earlier results.

2.1.2. Other Dynamic Applications
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Recall that the very first hierarchical dynamic Voronoi
diagram structure we discussed (lemma 2.3.) could process both
insertions and deletions in O(n) time. This can be seen from
theorem 2,3. by letting F(n) = 1g 1g n and H(n) = 1. Since
this dynamic structure maintains the entire static Voronoi
diagram as a substructure, other applications of Voronoi
diagrams can be processed with no penalty over the static case.

The All Nearest Neighbors problem can be stated as follows:

Problem: Given a set of n points in the plane, find a nearest
neighbor point (in the set) of each point.

Applications of this problem in mathematical ecology,
geography and molecular physics are cited in [Sh78]. A solution
to this problem is a set of n ordered pairs (a,b), where b is a
nearest neighbor of a. Shamos [Sh78] has shown that, given the
Voronoi diagram of the point set, all nearest neighbors can be
found in linear time. The argument hinges on the fact that
every nearest neighbor of a point Py defines an edge of the
Voronoi polygon V(i). To find a nearest neighbor of P it is
only necessary to examine each edge of V(i). Because every edge
of the Voronoi diagram belongs to two Voronoi polygons, no edge
will be scanned more than twice. Combining Shamos' algorithm
with our dynamic Voronoi diagram structure (lemma 2.3.)
produces the following result:

THEOREM 2.4. The set of All Nearest Neighbors pairs of a set of
n points in the plane can be maintained dynamically at a cost of

O(n) steps per insertion or deletion of a point.
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Since one of these n ordered pairs is a pair of points that
are closest together among all the points in the set, we see
that the Closest Pair can also be dynamically maintained at O(n)
per update.

Shamos [Sh78] defines a triangulation on n points in the
plane to be a planar graph whose edges are straight line
segments which join the points so that every region interior to
the convex hull 1is a triangle. The problem of triangulation
arises in the finite element method and in numerical
interpolation (see [Sh78]). Shamos showed that the
straight-line dual of the Voronoi diagram of a point set is a
Delaunay triangulation.

Definition: A Delaunay triangulation of a point set 1is a

triangulation with the property that the circumcircle of every
triangle contains no points of the set.

Given the Voronoi diagram, the straight-line dual can be
constructed in O(n) time by simply joining the pair of points
that define each Voronoi edge.

THEOREM 2.5. The Delaunay triangulation of a set of n points in
the plane can be maintained dynamically at a cost of O(n) steps

per insertion or deletion of a point.

Definition: The Euclidean minimum spanning tree of n points

in the plane 1is a tree of minimum total length whose vertices
are the given points.
In the general case, construction of a minimum spanning tree is

a graph problem. For arbitrary graphs of e edges and n
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vertices, an O(e 1lg 1lg n) algorithm is presented in [ChTa76].
The Euclidean minimum spanning is described in [Sh78] as a
common component in applications involving communications
networks, clustering, pattern recognition and circuit design,
and in obtaining approximate solutions to the Travelling
Salesman Problem, Shamos [Sh78] shows that the Euclidean
minimum spanning tree is a subgraph of the straight-line dual of
the Voronoi diagram. It is therefore also a minimum spanning
tree of the dual. The dual 1is a planar graph, for which a
minimum spanning tree can be computed in O(n) time [ChTa76], so
using our dynamic Voronoi diagram structure we have

THEOREM 2.6. A Euclidean minimum spanning tree of a set of n
points in the plane can be maintained dynamically at a cost of

O(n) steps per insertion or deletion of a point.

A problem posed in [Sh78] is the Largest Empty Circle.

Problem: Given a set of n points in the plane, find a largest
circle that contains no points of the set yet whose center is
interior to the convex hull,

This is a facility location problem, in which we would 1like to
situate a new facility within a restricted region so that it is
as far as possible from any of n existing ones.

Shamos showed that the convex hull of the set can be found
in O(n) time, given the Voronoi diagram. His algorithm for
solving the Largest Empty Circle problem requires O(n lg n) time
even after the Voronoi diagram of the point set has been

computed. He demonstrates that the center of the largest empty
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circle must lie either at a Voronoi point or at an intersection
of a voronoi edge and a convex hull edge. The hull
intersections he finds in O(n).time, but spends O(n lg n) time
checking all of the Voronoi points for hull inclusion. This
entire checking process can be accomplished 1in a slightly
different manner, in O(n) time,

THEOREM 2.7. The largest empty circle defined by n points in
the plane can be maintained dynamically at a cost of O(n) per
insertion or deletion of a point.

Proof: First, we -examine the semi-infinite rays of the
vVoronoi diagram. Each such ray r either intersects its
corresponding convex hull edge E, or the circumcenter associated
with r lies outside its Delaunay triangle and hence outside the
hull. In the latter case we examine the Voronoi edges adjacent
to r; either they or some edges "descendant" from them will
intersect E. The intersection points are easily computed and
then inspected. After this process has been carried out for all
rays of the Voronoi diagram, the remaining Voronoi points are
guaranteed to be interior to the convex hull, and need merely be
inspected, not checked for hull inclusion. Since the number of
Voronoi edges and Voronoi points are both O(n), this search for
the center of the largest empty circle can be accomplished in

O(n) time, given the Voronoi diagram. O

2.2. Farthest-point Voronoi Diagrams
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Another type of Voronoi diagram, investigated in [ShHo751,
is the planar farthest-point Voronoi diagram (hereafter denoted
by FPVD). Shamos describes an O(n 1lg n) time algorithm for
constructing the FPVD of a set of n planar points.

Definition: An FPVD of a set F of n points in the plane is

a network of polygonal regions. Region Ri is the set of all
points in the plane that are farther from point p; than from any
other point of F (see Fig. 3).

It is significant to note that only points that are
vertices of the convex hull of F have associated farthest point
regions., Furthermore, every farthest point region is unbounded.
The vertices of the regions are called Voronoi points. Each
Voronoi point V of the FPVD is equidistant from the three points
of F. that are farthest from V. A Voronoi point V is the center
of a circle that passes through the three farthest points of F
and contains all of the other n-3 points. Given an arbitrary
~point x in the plane, we can determine the point in F which is
farthest from x by finding which farthest-point Voronoi region
contains point x. Thus, we see that searching for the location
of a point in a FPVD allows us to solve the farthest neighbor
searching problem.

When a point 1is deleted from F, - the FPVD may change
drastically and require complete reconstruction at a cost of
O(n 1g n) time. This is primarily because deletion of a point
on the convex hull of F may cause many points which were
previously interior to become vertices of the hull, Insertion

is somewhat easier to handle. Shamos [ShHo75] outlines a method
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for "merging" the FPVDs of two linearly separated point sets in
O(n) time. We will show that two arbitrary FPVDs can be merged
efficiently, linear separability of the two point sets involved
being unnecessary.

More specifically, we demonstrate the following:

LEMMA 2.6. If P and Q are arbitrary sets of points (|P|=n,

|Q|=m), then their FPVDs can be merged to form the FPVD of (P
union Q) in O(n + m) time.

It follows trivially that maintenance of a FPVD wupon insertion
of a point can be accomplished in only O(n) time. This will aid
efficient dynamic farthest-neighbor searching and other dynamic
applications of FPVDs.

Our algorithm for merging FPVDs is similar in spirit to the
algorithm presented in [Ki79a] for merging closest-point Voronoi
diagrams. Suppose we are given two arbitrary disjoint point
sets P and Q, as well as FPVD(P) and FPVD(Q). - The point sets P
and Q together impose a framework on the plane quite independent
of their individual FPVDs. Defining distance to the set P
(respectively Q) to bé the maximum distance to an element of P
(respectively Q), we can partition the plane into points farther
from P, the P-region, points farther from Q, the Q-region, and
points equidistant from P and Q, called the contour induced by P
and Q. The contour is composed of straight line segments. It
is formed from the edges of FPVD(P union Q) that separate
regions associated with points in P from regions associated with
points in Q. It is also the case that FPVD(P union Q) and

FPVD (P) are identical in the P-region, as are FPVD(P union Q)
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and FPVD(Q) in the Q-region. Thus, FPVD merging can be
interpreted as the process of tracing out the components of the
contour, along with appropriate piecing together of what
remains. In general, the contour may have many connected
components, which we will now describe how to initially locate

and trace to termination.

2.2.1. Tracing the FPVD Contour

Consider, for example, the situation shown in Fig. 4,
where P = {A,B,C} and Q = {D,E,F}. From FPVD(P) and FPVD(Q), it
is trivial to form the convex hulls of both P and Q. Next we
intersect the two hulls; [Sh78] describes how to find the
intersection of a convex m-gon and a convex n-gon in O(m + n)
time. This allows us to form the convex hull of (P union Q). A
list 1is maintained of the new edges introduced between a point
from P and a point from Q. It is these pairs of points which
determine the initiation of contour components. 1In the example,
the vertices of the convex hull of (P union Q) are A, B, E and
F. The "new" edges introduced are (A,F) and (B,E).

Tracing a contour component involves following the
perpendicular bisector of the current farthest point in each
FPVD until either (i) a V-edge 1is «crossed, i.e. a current

farthest point must be updated or (ii) the contour enters a
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region where the two farthest points coincide with another pair
on the "new edge" list, in which case that contour component is
traced out to infinity and terminated. In the example, we
initiate a contour component at infinity, along the
perpendicular bisector of A and F. We trace along this bisector
in a region where A and F are the current farthest points until
we cross the Voronoi edge which is the bisector of A and B (to
determine which V-edge intersects the contour first, scan the
edges of one FPVD in a clockwise direction, those of the other
counterclockwise [Le761]). The current farthest point in P is
updated to become B, and we follow the perpendicular bisecéor of
B and F until we cross the Voronoi edge which is the bisector of
E and F. The new farthest point in Q becomes E, and we follow
the perpendicular bisector of B and E. This bisector is traced
out to infinity because (B,E) exists on the new hull edge list.
In this example, the contour compohent which was just traced to
completion was the only component since it accounted for both of
the new hull edges (A,F) and (B,E). In general, there will be
one half as many contour components as there are edges on the
new edge list. WNotice that the area above the contour component
in Fig. 4 is the Q-region. Therefore, we append the portion of
FPVD(Q) which 1lies 1in this region (the upper piece of the
perpendicular bisector of E and F) to FPVD(P union Q). The
P-region lies beiow the contour, and a corresponding part of
FPVD(P) is also included in FPVD(P union Q).

We see from the construction that FPVD(P union Q) consists

solely of some pieces of FPVD(P), some of FPVD(Q), and the
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contour. It is easy to show that every V-edge (in both FPVD (P)
and FPVD(Q)) is crossed at most twice by the contour,. It
follows that the total cost of tracing the entire contour (i.e.
all components) is proportional to the total number of V-edges.
Our algorithm for computing FPVﬁ(P union Q), given FPVD(P)
and FPVD(Q), runs in O(|P| + |Q]) time and makes no assumptions
about the separability of the point sets P and Q. This result
of course implies that maintenance of an FPVD on n points upon
insertion of a new point can be done in O(n) time. It also
leads in a recursive divide-and-conquer manner to an O(n lg n)

algorithm for computing the FPVD of a set of n points.

2.2.2. Farthest-Neighbor Searching

Farthest-neighbor searching is closely related to

nearest-neighbor searching, which was discussed 1in section
2.1.1.
Problem: Preprocess a set of n points in such a way that the
farthest neighbor of a new test point can be found quickly.
Determining which farthest-point Voronoi region contains
point x provides the farthest neighbor of x. The FPVD of n
points 1is a straight-line planar graph with O(n) vertices and
O(n) edges [ShHo75]. In exact analogy to the nearest-neighbor

case, the FPVD can be searched by any of the methods for
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locating a point in a planar subdivision. We can use (lemma
2.2.) the point-location algorithms of [LiTa77] or [Ki79b] to
achieve the following bounds for static farthest-neighbor
searching in the plane:

Qg (n) = O(lg n)

Pg (n) O(n 1lg n)

Ss(n) O( n) .
Farthest-neighbor searching is also a decomposable
seafching problem. A set S of n points can be partitioned into

an arbitrary number of disjoint subsets Sl,...,S and the

K !
FPVDs of each subset maintained separately. The farthest
neighbor query Q can now be applied to each subset in turn, and
the answer with maximum distance among all k answers provides
the farthest neighbor to the test point.

Since the insertion time for a static FPVD is O(n) and the
deletion time is O(n 1lg n) and we can exploit linear-time
merging, the parameters of the farthest-neighbor searching
problem are identical to those of nearest-neighbor searching.
Therefore, all the previously stated results for dynamic
nearest-neighbor searching apply directly and remain unaltered
for the problem of dynamic farthest neighbor searching. 1In
particular, we can supply a dynamic solution (using only a

linear amount of storage) with the following attributes:

Qp(n) = 0(1g® n)
I (n) = O(n/lg n)
DD(n) = 0( n)
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SD(n) = 0( n) .

The storage-deletion and query-update tradeoffs discussed
in sections 2.1.1.2. and 2.1.1.3. also apply in this new
setting, and can be used to supply a similar wide spectrum of
efficient solutions to the dynamic farthest-neighbor searching

problem (see theorem 2.3.).

THEOREM 2.8. If F(n) is O(lg 1lg n) and H(n) satisfies 1 < H(n)
£ n/lg n , then there exists a dynamic farthest neighbor search
structure with the following attributes:

Qp(n) = O(H(n) ® 1g(n/H(n)))

SD(n) = O(n F(n))
I (n) = O(n/H(n))
Dp(n) = O( (n 1g n)/((n) ® 25 (™)) |

2.2.3. Other Dynamic Applications

Letting F(n) = 1g 1gn and H(n) = 1 in theorem 2.8.
results in a hierarchical dynamic FPVD structure which can
process both insertions and deletions in O(n) time. Recall that

this dynamic structure maintains the entire static FPVD as a
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substructure. This allows other applications of farthest point
Voronoi diagrams to be processed with no penalty over the static
case.

Definition: Given a set S of n points in the plane, the

diameter of the set is the maximum distance between any two of
its points.

In [ShHo75] it is stated that the two farthest points of S can
be found in O(n) time, given FPVD(S). This is done by examining
each edge of the diagram and computing the distance between the
points determining it. The greatest of these distances is the
diameter of S. Combining this algorithm with our dynamic FPVD
structure allows us to maintain a set of points at O(n) time per
update, such that the diameter of the set can be computed 1in
O(n) time when desired. Some applications of set diameter in
clustering are mentioned in [ShHo75]. We will return to the
problem of maintaining set diameter in chapter four.

The Smallest Enclosing Circle problem can be stated as

follows:

Problem: Given n points in the plane, find the smallest circle
enclosing them.

This problem is one of minimax facilities location, in which a
point x (the center of the circle) is sought, whose greatest
distance to any point of the set is a minimum. It is discussed
in [ShHo75], which mentions applications in siting emergency
services, where worst-case response time can be an important
consideration, and in locating radio transmitters.

An algorithm is presented in [ShHo075] which is based on the
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FPVD of the set. The smallest enclosing circle is determined
either by three points of the set or two points which define a
diameter. If the circle determined by the diameter encloses the
set, the problem is solved. Otherwise, it is shown that the
center of the smallest enclosing circle is a vertex of the
farthest point Voronoi diagram. The FPVD contains only O(n)
vertices, so the circumradii can be found in O(n) time, and the
vertex with maximum circumradius is the center of the smallest
enclosing circle. Therefore, the smallest enclosing circle can
be computed in O(n) time, given the FPVD of the point set.
Combining this algorithm from [ShHo75] with our dynamic FPVD
structure results in the following:

THEOREM 2.9. The smallest enclosing circle of n points in the
plane can be maintained dynamically at a cost of O(n) steps per

insertion or deletion of a point.
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3. Restricted Linear Merging and Dynamic 3-D Convex Hulls

3.1. Dynamization using Restricted Linear Merging

In chapter two, we efficiently maintained dynamic Voronoi
diagrams by taking advantage of linear algorithms for the
merging of arbitrary structures (lemma 2.1. and lemma 2.6.) and
the van Leeuwen-Wood [vLWo80] technique for dynamically
maintaining a set. For some other geometric data structures,
there exist 1linear algorithms to merge "separable" structures,
but we know of no such algorithm for the merging of arbitrary
structures. The convex hull of a set of points in 3-space
[PrHo77] is an example of such a geometric data structure. It
turns out that this restricted linear merging speeds up the
dynamic maintenance of the associated data structures by the
same amount as the unrestricted 1linear merging discussed in
chapter two.

The technique described in [vLWo80] basically allows us to
dynamically maintain approximately equal-sized subsets of a set
of n points in logarithmic update time. As presented, the
technique does not directly lend itself to maintaining 1linearly
(or planarly in 3-d) separable subsets of points. However, we
demonstrate that it is possible to preserve separability with no

(asymptotic) increase in the amount of work.
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LEMMA 3.1. If k(n) is monotonic increasing, it is possible to

dynamically maintain a set of n points in O(k(n)) 1linearly (or
planarly) separated subsets each of size O(n/k(n)) at a cost of

O(lg n) steps per update.

Proof: Our technique is a variation on the van Leeuwen-Wood
scheme., The set of n points is maintained in such a manner that
each subset has a size in the range [ |[n/k(n)],2|n/k(n)] + 2 7.
Note that this will automatically also keep the total number of
subsets within bounds. 1If the size of a particular subset lies -
at either extreme of this range, we will call it critical. The
following strategy has the property that it maintains the
invariant condition: all subset sizes lie inside the specified
range and at most k(n) ® (|n/k(n)] + 1) - n subsets are
critical.

All subsets are maintained in a priority queue, ordered by
subset size. Upon insertion (deletion) a dictionary is checked
to determine membership and to identify the subset which should
obtain (contains) the specified element. This appropriate
subset is then updated. Next, assuming at least one subset is
critical, some global maintenance is performed to preserve the
invariant condition. A subset of size |n/k(n)| (or smaller, if
one exists) 1is merged with one of its "neighboring" separated
subsets, and the resulting subset 1is inserted back into the
priority queue. Also, a set of size an/k(n)J + 2 (or larger,
if one exists) is split into two (nearly) equal-sized separated

subsets, both of which are inserted back into the priority
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queue.

Since each update involves at most one dictionary reference
and a constant number of priority queue operations both on sets
of size O{(n), (which are all O(lg n) operations) the result

follows . O

We can now proceed much as we did in the previous chapter,
maintaining a balanced binary tree of geometric data structures,
with the global structure at the root, and k(n) separated subset
structures at the 1leaves., Insertions and deletions are first
processed at the leaf 1level (possibly involving complete
reconstruction of a leaf structure), then the remainder of the
tree is updated by re-merging along the entire path to the root,
as well as where rebalancing has affected the tree. It is
important to preserve the separability condition when
rebalancing takes place.

This technique of using extra storage to improve deletion
cost applies to any data struétures that can be merged
(exploiting “se?arability" if necessary) faster than they can be
totally reconstructed. This efficacy of "separable merging"”
permits some new applications of the basic dynamic tree
technique. 1In the next section , we discuss the dynamization of
the convex hull of points in 3-space. In later chapters we will
see that the technique also applies to the common intersection
of halfspaces in 3-space, and to maximal vectors of a set of

points in 3-space.
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3.2. Dynamic 3-d Convex Hulls

The convex hull of a set of points in 3-space is a
geometric data structure which has applications in computer
graphics, pattern classification, and 1in other problems of
computational geometry ([PrHo77], [Sh78], [Br79]). Preparata
and Hong [PrHo77] supply an algorithm which computes the 3-d
convex hull of n points in O(n 1g n) time. From a dynamic
viewpoint, the deletion of a hull point can necessitate a
complete O(n 1lg n) reconstruction, while a restricted linear
merge permits an O(n) insertion cost. Preparata and Hong
[PrHO77] show that convex hulls of planarly separable point sets
in 3-space can be merged (tq form the convex hull of their
union) in linear time, |

Since we have a linear merge adlgorithm for separable
subsets, we can employ the tree structure of the previous
section for efficient dynamization of 3-d convex hulls. If we
maintéin a tree structure with O(lg n) leaf sets each of size
O(n/lg n), we obtain,

THEOREM 3.1. The convex hull of a set of n points in 3-space
can be maintained dynamically at a cost of O(n) steps per

insertion or deletion.

Note that the tree has height O(lg 1lg n), and thus uses
O(n 1g 1g n) storage. The cost of reconstruction at the leaf

level 1is O((n/lg n) ® 1lg(n/lg n)), that is O(n), which equals
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the cost of updating the remainder of the tree.

The same idea can be wused with a tree of fewer levels,
consequently using less storage. This will have the effect of
saving some storage, at the expense of increased deletion cost.
Let F(n), 1 £ F(n) £ 1lg 1g n, be the height (number of 1levels)
to which we maintain the 3-d convex hull tree structure. Then
the same algorithm leads to,

Corollary 3.1. The 3-d convex hull of a set of n points can be

dynamically maintained in O(n) time per insertion and

0( (n 1g n)/25 (™

) time per deletion, using O(n F(n)) storage.
The problem of determining whether a given test-point is
inside a 3-d convex hull 1is not a decomposable searching
problem; the query cannot be answered by inspecting subsets, but
must refer to the global structure. Since our dynamization
method maintains the entire convex hull, it makes possible fast
dynamic hull inclusion queries. The problem of determining
whether a point in three-space lies within a convex polyhedron
can be transformed to locating a point within two planar
straight-line graphs [Br79], as follows. Break the polyhedron
into UPPER and LOWER parts, and project both parts
orthographically to planar graphs in the xy plane. If a 3-4
point t projects to a 2-d point in region A of the UPPER graph
and region B of the LOWER graph, then t lies within the convex
hull iff t lies below face A and above face B of the polyhedron.
The,pbint location can be solved in O(lg h) time, where h is the

number of hull points (lemma 2.2.).
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If the inclusion query were decomposable, then subset
search structures (analogous to nearest neighbour search
structufes of chapter two) could have been utilized, since they
are compatible with the general dynamization technique. This
would provide the additional tradeoff, between query and update
times. Examples of this are presented in chapters five and six
for decomposable searching problems concerning the common
intersection of halfspaces and the contour of maximal vectors in

three dimensions.
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4., Dynamic Planar Convex Hulls

4,1, Planar Convex Hulls

The convex hull of a set of n points in the plane is defined to
be the smallest convex set that contains all of the points
(Fig. 5). Aside from being a fundamental tool in computational
geometry, convex hulls are important in practical applications
such as cluster analysis and statistics, Shamos [Sh 78]
discusses many different algorithms for determining the convex
hull of a set of n points in the plane. The algorithms usually
run in O(n 1lg n) time, which is optimal [§a79], and operate on a
static set of points. Shamos was the first to suggest and
present an on-line convex hull algorithm, which received one
point at a time and updated the convex hull accordingly.
Preparata [Pr79] recently described an algorithm which
constructed the convex hull by successive insertions, with an
O(1lg n) time bound per insertion.

All of the previous algorithms support only insertions at
best, none being fully dynamic. Restoring the convex hull upon
deletion of points from the set can be a much more difficult
task than insertion. Any fully dynamic convex hull algorithm
cannot discard points in the interior of the current convex
hull, This can be demonstrated as follows. Intuitively, a

stretched rubber band surrounding the set, when released, will
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assume the shape of the convex hull, If we allow a deletion of
a current hull point to occﬁr, the hull can "snap inward",
causing old formerly interior points to become part of the new
updated convex hull, The first fully dynamic convex hull
algorithm was recently presented by Overmars and van Leeuwen
[OvvL80]. They showed that the convex hull of a set of n points
can be dynamically maintained -at a cost of 0(193 n) per
insertion or deletion.

In section 4.2, we will present an O(lg(n+m)) algorithm for
computing the convex hull of the union of two disjoint convex
polygons. Several applications of the algorithm are presented
and discussed. 1In particular, it leads to improvements on the
time bounds claimed by Overmars and van Leeuwen for dynamic

maintenance of planar convex hulls,

4.2. Union of Disjoint Convex Polygons

Consider two linearly separable convex polygons A and B in
the plane, having n and m vertices respectively. - By linearly
separable , we mean that there exists a 1line 1 of some
orientation which isolates the two polygons in separate
half-planes. To find the convex hull of the union of A and B,
it suffices to find the two non-intersecting segments whose

defining 1lines are mutually tangent to A and B, and hence the
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vertices of A and B which are the endpoints of those segments
(see Fig. 6). The two such segments (mutual supporting
tangents, or "bridges") found become edges of the wunion hull,
and the edges of A and B which are inside the resulting polygon
are discarded. This process of- "merging" convex hulls is a
generalization of Preparata's [Pr79] approach to updating planar
convex hulls in real-time (O(lg n) bound on update time per
inserted point; see Fig. 7). |

This same problem of finding "bridges" was solved by Shamos
[Sh78] as a step in computing the Voronoi diagram of a planar
point set; he presented an O(n+m) algorithm. Our faster
solution does not, however, result in an asymptotic improvement
in the run-time of Shamos' O(n 1lg n) Voronoi diagram algorithm.
Preparata and Hong [PrHo77] also find bridges between hulls,
that being the merge step of their divide-and-conquer algorithm
for computing convex hulls of planar point sets. Their merge is
performed in O(n+m) steps. When their merge step is replaced by
one of sublinear complexity (eg. our O(lg(n+m)) algorithm), the
result is an algorithm which finds the convex hull of n points
in only O(n) time, after all the points have been sorted. This
was noted by Overmars and van Leeuwen [OvvL80], who find a
bridge between two separated hulls in O(lgz(n+m)) time as part

of a dynamic convex hull algorithm.

4.2.1., The Algorithm
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When finding bridges, we observe that the upper and lower
portions of the polygons can be treated quite separately. To
find the "tops" and "bottoms" of both convex polygons, we do the
following: consider a line 1 which separates polygon A from
polygon B and project all the vertices of both polygons onto the
perpendicular bisector of line 1 (see Fig. 8). For each polygon
we then find the vertices with minimum and maximum coordinates
on the axis of projection (those vertices marked with X in
Fig. 8). These will be the vertices which split the polygons
into "top" and "bottom" chains, One bridge will connect a
vertex from the top of A to a vertex from the top of B, while
the other bridge connects two vertices from the bottom chains.
Mutual separating tangents, which are discussed in section 3.1,
connect a vertex from the top of A to one from the bottom of B,
and a vertex from the bottom of A to one from the top of B.

For ease of illustration and without loss of generality,
consider the following situation: we have two convex polygons A
and B separated by a vertical line, and we want to find the
"upper" bridge between them (finding the "lower" bridge is
analogous). Observe that this "upper" bridge will -connect two

points from the "upper" chains of edges of A and B (defined with

respect to the leftmost and rightmost points of both A and B ).
The edges of the polygons are in an ordered representation. We
locate - the "middle" edges m, and my of A and B, extend them in

both directions, and examine the three possible cases (see

Fig. 9):
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i.(Fig. 9a) The extensions of m and m "overshoot" (are

A B
above) one another. 1In this case, we find the intersection

point of the extensions of m, and m and determine to which

A B’
side of the dividing 1line it lies. In the example, the

intersection point lies on the same side of the dividing

line as A. By convexity, segments to the left of my have

steeper slopes than My, SO considering their extensions
instead would result in intersection points even further to
the left. Since polygon B is constrained to 1lie to the
right of the separating line and beneath the extension of

My, the edges of A which are to the left of my could not

supply possible tangent vertices and therefore can be

eliminated from further consideration.

ii. (Fig. 9b) The extension of m, overshoots m extension of

A B’
my falls below m, (the opposite situation is analogous). 1In

this case, observe that the edges of B to the 1left of m

B
have even steeper slopes than Mg, hence their extensions
would fall even lower below My . Therefore, their vertices
are impossible candidates for tangent points and are

discarded.

iii.(Fig. 9c) The extensions of my and my "undershoot" (are
below) one another, 1In this case, we see that the edges of
A to the right of my and those of B to the left of my can
both be eliminated from further consideration due to where

the extensions of these‘steeper—sloped edges would lie.
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In each case, after some edges have been discarded, we find
the "middle" edge of the remaining edges in that polygonal
chain, extend it to a line and determine which of the previous
situations occurs. This process is iterated until one of the
polygonal chains is reduced to a unique point (which will be an
endpoint of the upper bridge). At this stage, we find the
corresponding endpoint on the other polygonal chain by
performing a one-point convex hull update [Pr79] at logarithmic
cost.

Observe that at each stage of the algorithm, we discarded
at least half - of the edges of at least one of the polygonal
chains., The "lower" bridge is found analogously. Hence we have
LEMMA 4.1. Let A and B be two disjoint convex polygons in the
plane, with n and m vertices respectively. The two mutual
supporting tangents of A and B can be computed in O(lg (n+m))
time.

We note that in the general case, a separating line between
A and B will not be vertical, but can be found in O(lg (n+m))

time by a method due to Chazelle .and Dobkin [ChDo80] .

4.2.1.1. An Application: Mutual Separating Tangents

A very similar method can be employed to £find the two

mutual separating tangents of two non-intersecting convex
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polygons (see Fig. 10). Without loss of generality, assume we
have two convex polygons A and B separated by a vertical line,
and we want to find the mutual separating tangent between them
which connects a vertex from the top of A to a vertex from the
bottom of B (the case for the mutual separating tangent from
bottom of A to top of B is analogous).We locate the "middle"

edges m, and my of A and B, extend them in both directions, and

examine the three possible distinct cases (Fig. 11):

i, (Fig. 1lla) The extension of m, undershoots m extension

A B’
of my overshoots m, - In this case, we find the intersection

point of the extensions of my and my and determine whether

gt ©f to the left of Mmy. In the

example, it lies to the right of m We note that the edges

it lies to the right of m

B"
of- B which are to the left of My have even steeper slopes

than my and that by convexity A is constrained to lie below

the extension of My - The segments of B to the left of my

would overshoot A even more drastically, and the furthest
left that the intersection point could occur at would be
beneath the 1leftmost point of B.- Hence, the segments of B

to the 1left of mB can be eliminated from further

consideration.

ii. (Fig. 11b) The extension of m, lies above m extension

A B’
of my lies above m, . In this case, we note that the

segments of A to the left of m, have extensions which would

lie even higher above m_ than does the extension of m

B A°®
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Hence, none of their vertices are possible tangent points so
the edges can be discarded.

iii, (Fig. 11lc) The extension of m, lies above m_; extension

A B

of my lies below my . The edges of A to the left of m, can
be discarded by the same reasoning employed in (ii); we also
note that the edges of B to the right of mgy can be discarded
because their slopes are greater and their extensions would
fall even lower below My, SO the points on those edges are

ineligible.

In each case, after edges have been discarded, we find the
"middle" edge of the remaining edges, extend it to a line and
deterﬁine which of the three previous cases occurs, until we
perform a one-point update, as in section 4.2.1. At each stage,
we discarded at least half of the edges of at least one of the
polygonal chains. Hence we have

LEMMA 4.2. Let A and B be two disjoint convex polygons in the

plane, with n and m vertices respectively. The two mutual
separating tangents of A and B can be found in O(lg (n+m)) time.

An interesting observation is that, unlike the algorithm in
section 4.2.1., here we only make use of the orientation of the
separating 1line, not its actual position. We will see in
chapter five the importance of mutual separating tangents in

maintaining the common intersection of a set of halfspaces.
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4,2,2, Dynamically Maintaining Planar Convex Hulls

Most existing convex hull algorithms find the convex hull
»of a static set of n points in the plane in O(n 1lg n) time, and
are not suited for insertions or deletions to the point set.
Preparata [Pr79] exhibits an algorithm for inserting a point
into a set and updating the convex hull accordingly in O(lg n)
time, but his algorithm cannot handle deletions. As previously
mentioned, the first fully dynamic algorithm for maintaining
planar convex hulls is due to Overmars and van Leeuwen [OvvL80]
. They represent separately the right and left faces of the
hull (we will represent the upper and lower faces, for later
convenience; see Fig. 12). They also maintain some information
about the arrangement of the points currently in the interior of
the hull, because interior points could become hull points upon
a deletion. Points of convex hull fragments are stored in
concatenable queues, which are associated with nodes of a
balanced binary search tree. They employ efficient splitting
and joining together of concatenable queues. The clever
data-structuring techniques are necessary to fully exploit a
fast "bridge-finding" hull merge; it 1is necessary to avoid
swamping this sublinear time by the time spent copying portions
of data structures.

More ©precisely, Overmars and van Leeuwen represent
hull-faces of horizontally separated subsets of points, and

"merge" separated hull-faces of n and m points (i.e. find a
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bridge) 1in O(lg2 (n+m)) time. They are thus able to maintain
the convex hull of n points at a cost of O(lg2 n) per insertion
and O(lg3 n) per deletion ([OvvL 80], thm. 4.5). Our improved
hull-merging technique (lemma 4.1.) results in a less expensive

deletion cost, and hence the following:

THEOREM 4.1. : The convex hull of a set of n points in the
plane can be dynamically maintained at a cost of O(—lg2 n) per

insertion or deletion.

4.2.3. Applications of the Dynamic Convex Hull Algorithm

Theorem 4.1. leads to subsequent improvements in the
applications of the dynamic convex hull algorithm investigated

by Overmars and van Leeuwen, for example:

- a set of n points in the plane can be "peeled" in

O(n ng n) steps (important in statistics; previous bound

was O(n lg3 n) ).

- the joint convex layers of a set of n points in the plane

can be computed in O¢(n ng

3

n) steps (previous bound

O(n 1g™ n) ).

- a "spiral" connecting all n points in the plane <can be

2

found in O(n 1lg” n) steps (previously O(n lg3 n) ).
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Saxe and Bentley [SaBe79] posed a problem regarding dynamic

convex hull searching ("is test-point t within the convex hull
of a set of points F ?2"), to which their methods were
inapplicable. Our result improves upon that of Overmars and van
Leeuwen.
THEOREM 4.2. A set F of n points in the plane can be
maintained dynamically at a cost of O(lg2 n) per insertion or
deletion, such that convex hull searching queries can be
answered in only O(lg h) time ( h = number of points on the
hull).

Yet another application involves .separability of two sets
in the plane. Two sets are linearly separable iff their convex
hulls are disjoint ([Sh78]). Employing the static separability
algorithm of Chazelle and Dobkin[ChDo80], we have the following:
THEOREM 4. 3. Two sets A and B in the plane can be maintained
dynamically . at a cost of O(lg2 n) per insertion or deletion ( n
= current size of set), such that separability, whenever
desired, can be decided in O(lg n) time.

Shamos [Sh78] showed that the diameter of a planar point
set ( the maximum distance between any two points) occurs
between two points on the convex hull of the set, and can be
found in time linear in the number of hull points. It follows
that a planar point set can be maintained dynamically at O(lg2
n) per insertion or deletion such that the diameter of the set

can be found in O( h ) time.
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5. Dynamic Intersection of Halfspaces

5.1. Common Intersection of Halfplanes

The common intersection of a set of n halfspaces is a
convex polygonal region (possibly open or empty) bounded by at
most n edges. Shamos [Sh78] showed that the intersection of two
convex planar polygonal regions with n and m edges can be found
in O(n + m) time, and used this to find the common intersection
of n halfplanes in O(n lg n) time. Brown [Br79] wuses a
geometric transform to map the problem of intersecting
halfplanes to two problems of constructing the convex hull of a
planar point set, and a simple intersection problem, also
resulting in an O(n lg n) algorithm. His algorithm works as
follows:

The halfplanes are partitioned into two sets, UPPER and
LOWER, where a halfplane is in UPPER if the line at its boundary
is above the rest of the halfplane (analogously for LOWER).
Then,

a) Construct U, the intersection of the UPPER halfplanes.
b) Construct L, the intersection of the LOWER halfplanes.
c) Find the intersection of regions U and L (involves

finding points of intersection P and Q; see Fig. 13).
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To construct U, Brown uses a transform which maps the UPPER
halfplanes y < a; x + bi to the points (ai,bi). He then proves
that the non-redundant halfplanes correspond to those points
which are on the 1lower face of the convex hull of the points
(ai’bi)' thus reducing the problem of intersecting n UPPER
halfplanes to the problem of constructing the lower face of the

convex hull of n points.

5.1.1. Merging Chains of Halfplanes

Note that non-redundant halfplanes contribute to the common
intersection in the order of their slopes. Using Brown's
transform, we observe that finding the common intersection of
two ordered chains of halfspaces can be accomplished using our
algorithm for wunion of two convex hulls. For example, finding
the point where two chains (ordered by slope) of UPPER
halfplanes intersect transforms to finding the "lower" bridge of
two "lower" convex hulls (see Fig. 14). The two points which
form the endpoints of the bridge map to the two halfplanes which
create the intersection point, and the points which are not on
the newly-updated lower convex hull correspond to the redundant
UPPER halfplanes.

Let {hl, .o 'hn} be a set of n arbitrary halfplanes,

sorted by angle (or slope). We observe that for any 1 < i < n,
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the two "slope-separated" sets of halfspaces {hl cen hi} and

n,

it] hn} are transformed into two separated (by a vertical

line) point sets. Hence, the convex hulls of the point sets
generated by Brown's transform are linearly separable and thus

amenable to the use of our convex hull merging algorithm.

Brown performs the merge step of his algorithm (finding the
common intersection of U and L, 1i.e. finding P and Q in
Fig. 13) in O(n) time, working directly with the chains of
halfspaces. This can be improved to O(lg n)- by using a simple
technique which works with the transformed representation (i.e.
convex hulls). Recall that U, the intersection of the UPPER
halfplanes, 1is represented by a lower convex hull and L by an
upper convex hull., Brown's transform [Br79], which maps the
line y = ax + b to the point (a,b) and the point (a,b) to the
line y = -ax + b, has several interesting features. For
instance, distances in the y-coordinate between points and lines
are preserved by the transform. Thus, the incidence of point on
line is preserved, as well as above-belowness between points and
lines. From the properties of the transform, the two hulls will
be linearly separable (assuming non-empty intersection of U and
L), and hence we can find their two mutual separating tangents
(lineP and lineQ in Fig. 15). These can be found in O(lg n)
time as described earlier ( lemma 4.2.). Note that the case in
which the two hulls are not sepérable (which implies that the
common intersection .of U and L is empty) can be detected in

O(lg n) time by the method of Chazelle and Dobkin [ChDo80].
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The points in Fig,., 15 labelled Uy and L (defining 1line

p P)
correspond to precisely those two halfplanes, one UPPER and one
LOWER, which intersect at point P (see Fig. 13). A similar
situation holds for UQ and LQ. This can be seen from the
following considerations. Points which are inside (U intersect
L) get mapped by the transform to lines which separate the upper
hull from the lower, because all such points are above all the
LOWER halfplanes and below all the UPPER halfplanes. The point
P, which has minimum x-coordinate among all these points, gets
mapped by the transform (recall, (a,b) maps to y = -ax + b) to
the separating line which has maximum slope; and Q (maximum

x—-coordinate) gets mapped to line which is the separating line

o’
with the smallest slope. The separating lines lineP and lineQ
are mutual tangent lines, incident on one point each from the
upper and lower hulls because the transform preserves incidence,
and points P and Q are each incident on one LOWER and one UPPER
halfplane. The points on the (lower) hull between UP and UQ
correspond to those UPPER halfplanes which actually participate
in forming the common intersection of U and L, and similarly for
the points on the (upper) hull between LP and LQ. The encircled
points on the hulls in Fig. 15 correspond to redundant

halfspaces.

5.1.2. Dynamic Halfspace Intersection
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Brown [Br79] mentions dynamic maintenance of the common
intersection of halfspaces as an open problem. Overmars and van
Leeuwen [OvvL80] solve this by representing separately the two
"directions” of halfspaces (left and right, or UPPER and LOWER),
using dynamic data structures similar to the ones used for
planar convex hulls in chapter four. They utilized an 0(lg2 n)
procedure to find the common intersection of two ordered chains
of n halfspaces. Our O(lg n) algorithm for finding the common
intersection 1leads to improvements on the results presented in

[OvvL80].

THEOREM 5.1, The common intersection of a set of n
halfspaces in the plane can be dynamically maintained at a cost
of-O(lg2 n) steps per insertion or deletion.

As mentioned in [OvvL80], a byproduct of such a theorem is
an algorithm to construct the common intersection of a set of
halfspaces which takes only O(n) time after the halfspaces have
been sorted by direction. One application of theorem 5.1, 1is a

halfspace searching problem which is decomposable

([Be79], [SaBe79]) ;it is amenable to general, but in this case
less efficient, dynamization methods.
Problem: Does test-point t belong to the common intersection of

a set F of n halfspaces?".

THEOREM 5.2, The common intersection of a set of n
halfspaces in the plane can be dynamically maintained at a cost

of O(lg2 n) per insertion or deletion, such that a halfspace
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searching query can be answered in O(lg h) time, where h is the

number of non-redundant halfspaces.

Improvements can also be made to two other applications in
[OvvL80] : .
- the kernel of a (simple) n-gon can be maintained at a cost
of O(lg2 n) per insertion or deletion of an edge.
- the feasible region of a linear programming problem in two
variables can be dynamically maintained at a cost of

O(lg2 n) per insertion or deletion of an inequality.

5.2, Common .Intersection of Halfspaces in Three Dimensions

The common intersection of a set of n halfspaces in three
dimensions is a convex polyhedral region bounded by at most n
faces, and having O(n) edges and vertices,. Both Zolnowsky
[Zo78] and Preparata and Muller [PrMu79] have presented
O(n 1lg n) algorithms for solving the general problem of
intersecting three-dimensional halfspaces. Brown [Br79] applies
a (3-d) point/plane transform to construct the intersection of n
UPPER halfspaces in O(n 1g n) time.

The transform used by Brown in three dimensions is a
straightforward extension of the two-dimensional transform;

planes transform to points, and points transform to planes. The
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formulae of the transform are:
z =ax + by +¢ --> (a,b,c) , and

(x,vy,2) --> c = -xa + -yb + z.

The transform preserves the distance between a point and a plane
in the z coordinate, as well as the sense of abéve/belowness (in
the z coordinate) between points and planes.

Brown's algorithm for constructing U (the intersection of
the UPPER halfspaces) in three dimensions is analogous to the
algorithm for the two-dimensional case. He first transforms the
n UPPER halfspaces to n points in abc space and constructs the
bottom part of the convex hull of the points in O(n 1lg n) time.
For the hull construction, he utilizes the 3-d convex hull
algorithm of Preparata and Hong [PrHo77]. Brown proves that the
points above the bottom part of the convex hull correspond to
"redundant" halfspaces and can be discarded. To form U, he then
simply applies an inverse transform to the bottom part of the

convex hull,

5.2.1. Merging Chains of Halfspaces

Let {hl,...,hn} be a set of n arbitrary UPPER halfspaces,

sorted by x-coefficient (i.e. ordered on a's in z > a;x + biy

+ci). We observe that for any 1 < 1i

IA

n, the two "x

slope-separated"” sets of halfspaces {hl...hi} and {hi+l...hn}



58 .

get mapped by Brown's transform into two planarly-separated
point sets. The plane with equation x = a; will serve to
separate the two point sets. Hence, the convex hulls of the
point sets generated by Brown's transform are planarly separable
and thus amenable to the use of the 1linear time convex hull
merging algorithm of Preparata and Hong [PrHo77]. We use this
algorithm to find the (bottom part of the) convex hull of the
union of the two existing planarly separated hulls. The points
which are not on the newly-updated lower convex hull correspond
to the redundant halfspaces. We observe then, that finding the
common intersection of two ordered sets of halfspaces can be
accomplished wusing an algorithm for merging convex hulls (which
works in linear time). '

The common intersection of a set of n LOWER halfspaces,
denoted by L, can be found in a very similar fashion. The major
difference 1is that one constructs the top part of the convex
hull of the points, rather than the bottom. The points below
the top part of the convex hull now correspond to redundant
halfspaces, and the convex hull merging algorithm remains
essentially unchanged because hulls to be merged remain planarly
separated as before.

Separately representing U and L 1is sufficient for most
applications, but a complete representation would also require
finding the common intersection of U and L. It turns out that
the transformed representation (i.e. convex hulls) is also
suitable for this. U is represented by a lower convex hull, and

L by an upper convex hull, From the properties of Brown's
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transform, the two hulls will be planarly separable (assuming
non-empty 1intersection of U and L). Analogously to the
two-dimensional case of section 5.1., we find all the mutual
separating tangent planes of the two hulls. The points on the
hulls incident to these tangent planes correspond to the planes
of U and L which intersect with one another.

The mutual separating tangent planes can be found using the
linear time convex hull merging algorithm of Preparata and Hong
[PrHO77], only slightly modified. Their algorithm essentially

finds all mutual supporting tangent planes between two planarly

separated hulls, starting off with a mutual supporting tangent
line of a projection of the hulls. Instead, we supply a mutual
separating tangent 1line as a start (see section 4.2.1.1.), and
then continue the algorithm. Thus, all the mutual separating
tangent planes and hence the common intersection of U and L, can

be found in linear time.

5.2.2. Dynamic 3-D Halfspace Intersection

In the previous section, we demonstrated how to use 3-d
convex hulls in the representation of the common intersection of
3-d halfspaces. - By exploiting some properties of Brown's
transform [Br79] and a modification of the 3-4 convex hull

algorithm of [PrHo77], we can apply the dynamization results of
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chapter three to arrive at the following:

THEOREM 5.3. The common intersection of a set of n three-
dimensional halfspaces can be dynamically maintained at a cost

of O(n) steps per insertion or deletion (of a halfspace).

An immediate application of theorem 5.3. results in the
following:
Corollary 5.3. The feasible region of a 1linear programming
problem in three variables can be dynamically maintained at a

cost of O(n) per insertion or deletion of an inequality.

Another application of theorem 5,3, is a halfspace
searching problem, which is decomposable. The query involved is
"does test-point t belong to the common intersection of a set of
n three-dimensional halfspaces?". Since the dynamic techniques
of chapters two and three, as previously mentioned, are
compatible with the nature of decomposable searching problems,

we can claim the following result (compare theorem 2.3.):

THEOREM 5.4. If 1 < F(n) < 1g 1g n and 1 < H(n) < n, then there

exists a 3-d halfspace searching structure with attributes:

QD(n) = O( H(n) 1g(n/H(n)) )
Sp(n) = O( n F(n) )
ID(n) = O( n/H(n) + 1g n )

]

Dy(n) = O( (n 1g n)/(Em2 ™y + 190 .
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6. Dynamic Maximal Vectors of a Set

6.1. Maximal Vectors in Two Dimensions

Definition: A vector (point) v in the plane is maximal in a

set S when v € S and none of the other vectors in S are greater
in both x and y coordinates.

The maximal vectoré of a planar set can be considered to
form a one-sided contour, evoking an image of a side of a
"rectilinear convex hull"” (see Fig. 16). Maximal vectors have
applications in pattern classification, operations research and
statistics ([Ku75], [OvvL80]).

RKung, Luccio and Preparata [Ku75] have presented an
algorithm for determining the maximal vectors of a static set of
n planar points in O(n 1lg n) time. Recently, Overmars and van
Leeuwen [OvvL80] have investigated dynamic maintenance of
maximal vectors in two dimensions. They keep the points sorted
by x-coordinate and store the contour of current maximal
elements in a concatenable queue. This allows them, by a simple
binary search on one of the contours to construct the contour of
the union of the contours of two linearly separated subsets in
O(lg n) time.

Their resulting "composite" contour consists of regular
pieces from the contours of both (separated) halves, and they

use a fully dynamic structure resembling their planar convex
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hull structure (see chapter four) to claim the following result:
THEOREM 6.1. [OvvL80] One can dynamically maintain the maximal
elements of a set of n points in the plane, at a cost of only

0(192

n) steps per insertion or deletion.
As they point out, this also permits a new algorithm for
maximal vectors of a static set which, after sorting the points
by x-coordinate, takes only O(n) time. A final application
mentioned in [OvvL80] 1is that the (decomposable) searching
problem "is x dominated by an element of the set" can be

dynamically solved in O(lg n) time at a cost of O(lg2 n) per

update.

6.2. Maximal Vectors in Three Dimensions

Given a set of n vectors in three dimensions, a vector of
the set is maximal if none of the other n-1 vectors are greater
in all three coordinates. Kung, Luccio and Preparata [Ku75]
have shown an (n 1g n) lower bound for the problem of finding
the maximal vectors of a static set of n vectors in three-space.
They have also presented an algorithm that finds the maxima in
O(n (1g n)k—z) time in k > 3 dimensions. Their algorithm thus
runs in O(n lg n) time in three dimensions, but it does not fit
the classic divide-and-conquer mold.

In order to employ the dynamization techniques presented in
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chapter three, we must have a linear-time algorithm to merge two
planarly separable subsets of maximal vectors. We present such

an algorithm in the next section.

©

6.2.1. Description of the Merging Algorithm

Consider a set V of n three-dimensional vectors, where v, =
(xi,yi,zi). V has been sorted by x-coordinate so that
x(v1)> x(v2)> cee > x(vn). The objective is to find Ve the set
of maximal vectors of V, given the maximal vectors of two
planarly separated subsets of V. We use a separating plane.with

equation x = X(Vn/z)? We have a description of RM’ the set of

maximal vectors of the subset { Vir eee Voo }, and of Sy

which is the set of maximal vectors of the subset | Vo 241"t

v 1.
We observe that, because of the x-coordinate ordering, the

elements of RM are also members of VM' The elements of SM;

however, are not necessarily maximal elements of V. 1In fact, an

element of SM

is a member of VM i1ff it is not dominated by any
element in RM (one vector is said to dominate another if it is
greater in all coordinates). Therefore, we want to determine

T the set of elements in Sy which are not dominated by any

MI
element in RM' VM will then become (RM union TM).

The projection onto a plane (e.g. x = 0) of a 3-d contour
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of maximal vectors 1is a planar subdivision composed of
rectilinear regions. Associated with each region is its maximal
element, found at the top right corner of the region.

Illustrated in Fig. 17 is an example of two subsets of
contours of maximal vectors projected onto the yz plane. Note
that RM (shown in thick lines) and SM (shown in thinner 1lines)
constitute two rectilinear planar subdivisions. Each
subdivision is kept triangulated, with triangulation links from
a maximal point to each nonadjacent point of its region (only Sm
is shown triangulated in Fig. 17). The triangulation serves as
a "navigation aid", as we will later explain.

Ry is the "superior" subset with respect to the X
coordinate, and all of RMxis retained in Vy (see Fig. 18). The
principle of the merge algorithm is to trace along the outermost
contour ("profile") of RM’ from vigit to Veinal? recording along
the way which points of Sy are retained and added to the Ry
structure, and discarding the rest of Sme"

As we follow RM's outer contour, starting from Vinit (where

z =0, vy = maximum y of R we must keep track of which region

M)I

of Sy We are located in (i.e. which SM point, 1if any, is
currently dominating). Whenever we intersect a triangulation

link of Sy We eliminate it. Upon intersecting an edge of §S,'s

M

contour, we record the intersection point, and add a
triangulation link from the point to the dominating Sy point of
the current region. We also "snip off" the part of Sy contour

edge which is interior to the profile of R Whenever we turn a

M‘c

corner (i.e. change direction) while following the Ry, profile,
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we set up a triangulation link between the corner point and the
current dominating point of SMu(if one exists). We keep tracing

upward and along the outer contour of R following these rules,

M'

until we have completed it (i.e. reached v ‘The complete

final)”
contour of v, ., the result of the merging algorithm, is depicted

M
in Fig. 18.

Since the Ry profile is monotone nondecreasing and
rectilinear (going from lower right to upper left), it crosses
any contour edge or triangulation link at most once. When the
traced search path enters a particular triangle, it can leave by
only one of two other possible edges. Hence 1if the two
triangulated contours are appropriately represented (each
triangle associated with its bounding edges and vice versa), the
total time for the merge process is proportional to the total
number of contour edges and triangulation 1links. Thus it
requires time which is linear in the total number of vectors.
THEOREM 6.2. Let V be a set of 3-d vectors. Given the maximal
vectors of two planarly-separated subsets of V, their contours

can be merged to form the contour of maximal vectors of V -.in

O(n) time.

6.2.2. Dynamic 3-D Maximal Vectors

Recall that in chapter three we presented techniques for
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dynamically maintaining data structures on separable subsets of
points. The efficient use of these techniques relied upon the
availability of. linear algorithms for merging structures of
separated subsets. Given the merge algorithm of section 6.2.1.,
we can apply the dynamization method of chapter three to obtain
the following result:

THEOREM 6. 3. The maximal vectors of a set of n vectors in
3-space can be maintained dynamically at a cost of O(n) steps

per insertion or deletion.

It should be noted that a complete description of the
contour of maximal vectors is maintained by our scheme, enabling
fast dynamic domination queries.

Definition: A domination query asks whether a given test vector

is dominated by any in the set.

The query can be answered in logarithmic time by performing a
planar subdivision search (see lemma 2.2.) to find which region
of the projection of the contour of maximal vectors (onto the yz
plane) the test vector 1lies 1in. Once the region has been
located, we simply compare the "heights" (x-coordinates) of the
test vector and the region in whose projection it is 1located.
The "height" of the region is the x-coordinate of its dominating
point. If the test vector is above the region's surface, then
it is not dominated by any vector in the set. Just as in two
dimensions, 3-d domination searching is a decomposable searching

problem, We can thus apply the results of chapter three again
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to get the following:
THEOREM 6.4. If 1 < F(n) £ 1g 1g n and 1 < H(n) £ n, then there

exists a dynamic 3-d vector domination search structure with

attributes:
Qp(n) = O(H(n) ® 1g(n/H(n)))
Sp(n) = O(n F(n))
ID(n) = O(n/H(n) + 1lg n) and

Dp(n) = O( ((n 1g n)/(H(n) ® 2°(™)) + 19 n) .
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7. Conclusions

7.1. New Results and Techniques

In this thesis, we have presented several efficient
algorithms for fully dynamic maintenance of a wide wvariety of
geometric structures. We have shown how to reduce the cost of
performing deletions at the expense of using extra storage, a
general technique applicable to any structures which can be
merged asymptotically faster than they can be completely
reconstructed. Linear algorithms have been discussed for
"merging" of separable or (in some cases) arbitrary structures.
Our algorithms also enable the efficient solution of some
searching problems which query dynamic search structures based
upon geometric configurations. The techniques presented are
compatible with but do not depend on the notion of
decomposability. Tradeoffs among resources and solution
characteristics for dynamic geometric search structures have
been explored. A tradeoff between space and update time was
investigated, as well as a query vs. update time tradeoff. We
have also exhibited a logarithmic merging algorithm for some
common planar configurations.

Some of the major new results are:

- The Voronoi diagram of a 2-d point set can be
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dynamically .-maintained in O(n) time per insertion or
deletion of a point. (section 2.1.1.2.)

- The convex hull of a 2-d point set can be maintained in
O(lgzn) time per insertion or deletion. (section 4.2.2.)

- The common intersection of a set of 2-d halfspaces can
be maintained in O(lgzn) time per insertion or deletion of
a halfspace. (section 5.1.2.)

- The convex hull of a 3-d point set can be maintained in
O(n) time per insertion or deletion (a similar result is
also shown for 3-d halfspaces). (sections 3.2. and 5.2.2.)
- The contour of maximal vectors of a 3-4d point set can
be maintained in O(n) time per insertion or deletion.

(section 6.2.2.)

Applications of these and other results have been discussed

throughout the thesis.

7.2. Directions for Further Research

The list below describes several open problems regarding
the work which has been presented in this thesis.

- Prove optimality. of all the worst-case bounds

presented. Otherwise, improve the stated upper bounds.

- Find linear algorithms for merging arbitrary
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substructures of 3-d convex hulls and 3-d contour of
maximal vectors.

- Present other geometric data structures which can be
efficiently dynamized using the methods we have discussed.
- All of our techniques have been aimed at improving the
worst case cost of dynamic maintenance. Devise algorithms
which provide good average case performance. A step in
this direction is provided by van Leeuwen and Maurer

[vLMa80].
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Figure 1.

Figure 2.

Planar nearest-point Voronoi diagram

A band in a tree of structures
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Figure 3.

Planar farthest-point Voronoi diagram
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Figure 4. Merging two arbitrary FPVDs.
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Figure 5. Convex hull 6f a planar point set

Figure 6. Merging convex hulls
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Figure 7. Single point update of convex hull
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Figure 8. Tops and bottoms of convex polygons

79



Figure 9.

Algorithm for mutual supporting tangents
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Figure 10.

Mutual separating tahgents
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Figure 11.

Algorithm for mutual separating tangents
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Figure 12.
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Common intersectioﬁ of halfplanes

' Figure 13.
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Figure 14. Brown's transform for intersecting halfplanes
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Figure 15.

Brown's transform and mutual separating tangents
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Figure 16. Maximal vectors of a planar set
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Figure 18.

Final state of merge algorithm



