
PERFORMANCE CONSIDERATIONS IN

RELATIONAL AND HIERARCHICAL DATA BASE

MANAGEMENT SYSTEMS

by

Mary Kathleen Tod
BSc, Queens University, 1971

A thesis submitted i n p a r t i a l fulfillment of
the requirements for the degree of

MASTER OF SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

(Department of.Computer Science)

We accept this thesis as conforming to
the required standard

THE UNIVERSITY OF BRITISH COLUMBIA
January, 1980

© Mary Kathleen Tod, 1980

In presenting th i s thes is in pa r t i a l fu l f i lment of the requirements for

an advanced degree at the Univers i ty of B r i t i s h Columbia, I agree that

I further agree that permission for extensive copying of th is thesis

for scho lar ly purposes may be granted by the Head of my Department or

by his representat ives. It is understood that copying or pub l i ca t ion

of th is thesis for f inanc ia l gain sha l l not be allowed without my

writ ten permission.

the L ibrary sha l l make i t f ree ly ava i l ab le for reference and study.

Depa rtment

The Univers i ty of B r i t i s h Columbia
2 0 7 5 W e s b r o o k P l a c e
V a n c o u v e r , C a n a d a
V 6 T 1W5

i i

ABSTRACT

This paper w i l l examine two data base management systems;

IMS, an example of a hierarchical data base management system and

System R, a relational system. Each system w i l l be described in

general terms followed by a discussion of their relative performance.

A claim i s made that IMS, because of i t s structure and the

procedural nature of i t s language can be more efficient than System

R. Some examples are given to il l u s t r a t e this claim.

There i s an increasing need today for readily available

information;; thus more and more information i s being stored i n disk

f i l e s to f a c i l i t a t e rapid retrieval. A relational approach to data

base management permits a high-level non-procedural interface for

the user, which i s important i f more people require access to

information i n a flexible fashion and can not afford or wait for

traditional application development. If however a relational data

base management system i s not as efficient as hierarchical or network

systems then new retrieval methods must be found.

Associative processors are introduced as a possible solution .

to this problem and three examples are discussed. RAP, a relational

associative processor developed at the University of Toronto, has

been used i n a performance study to demonstrate the dramatic

performance improvements offered by associative processors . This

is also discussed.

i i i

C O N T E N T S

• V"i"5v?

1.0 Introduction p. 1

2.0 Evolution of Data Base Management Systems p.3

3.0 IMS -- A Hierarchical Data Base Management System p. 9

3.1 Data Base Access Commands p. 12

3.2 Logical Data Bases p. 16

3.3 IMS Storage Structures . p. 21

4.0 Structure has i t s Advantages p. 29

4.1 The Data Base Administrator affects Performance p. 30

4.2 Designer and Programmer affect Performance p. 39

4.3 Conclusions p. 49

5.0 Relational Data Base Management Systems p. 50

5.1 The Relational Model p. 53

5.2 SQL p. 59

5.3 Relational Storage System p. 65

5.4 The Optimizer p. 69

Cont'd.

i v

6.0 Performance Considerations i n System R p. 72

6.1 Other Performance Considerations p. 80

6.2 Another Study p. 84

6.3 Summary p. 86

7.0 Associative Processors p. 87

7.1 Associative Hardware p. 89

7.2 CASSM p. 93

7.3 RARES p. 96

7.4 RAP — A Relational Associative Processor p. 98

7 . 5 RAP Performance p. 106

8.0 Conclusions p. 108

1

1.0 INTRODUCTION

Today information processing is v i t a l to any large or

small organization. Information processing includes the a b i l i t y

to extract information, to maintain and update information, to

analyse information and to rely on the accuracy and currency of

this stored information. Information i s required to perform the

daily business transactions, to plan for the future and to control

the development towards the future.

Information processing is essential to support management

and decision making roles. As a result there are trends i n business

towards large corporate data bases which are accessible to non-dp

personnel using high-level query languages. Thus there i s a

movement away from designing specialized applications to access

data i n the most efficient way possible.

Online banking (including automated funds transfer),

automated manufacturing, inventory control, personnel and payroll

applications a l l involve access to data bases. With this trend to

integrated data base solutions to business systems, the size of data

bases and hence the amount of data stored on machine readable media

is increasing. At the same time computer hardware costs are

decreasing and this w i l l lead eventually to an age where home

terminals are a r e a l i t y . Such terminals w i l l provide numerous

functions relying on large quantities of shared data.

2

With the growing number of areas accessing large data

bases there i s a demand for efficient data retrieval and flexible

high-level tools for data access. The needs for data have changed

dramatically since the early days of computing. The next section

w i l l discuss how data base management systems (DBMS) have changed

over the years to support such new requirements.

3

2.0 EVOLUTION OF DATA BASE MANAGEMENT SYSTEMS

The f i r s t systems that processed information on a large

scale used punched cards, the ultimate i n sequential f i l e s . This

medium was slow and unsuitable for large volumes of data. In

addition, the fixed size of the card was often inappropriate although

techniques were developed to overcome this restriction.

In the early 1950's magnetic tape was introduced as a faster,

more flexible storage medium. Problems of fixed length were solved

since variable length records could be maintained on tape; however,

f i l e s remained sequential.

As more applications were written i t was recognized that

certain operations recurred, for example: sort, delete a record, add

a record, generate a report. It seemed logical and very useful to

generalize these f i l e handling functions Also data sharing

and integrated f i l e s were considered i n an attempt to reduce the

overall programming burden. The new f i e l d of data management had

begun.

Having provided generalized functions for f i l e maintenance,

sorting and report generation, the computing community began exploring

the concept of data sharing. It was recognized that there was l i t t l e

advantage to a business i f one department hoarded i t s own data

forcing a second department to acquire and maintain i t s own set of

overlapping data. This led to a need to define data i n a f i l e i n

4

some standard way so that two (or more) parties could access their

relevant pieces of information. Hence data de"finitionslanguages

were horn, examples of which are, COMPOOL, JOVIAL and COBOL. With

these new generalized methods of defining data, report generation

toolssbecame more sophisticated i n accessing the data. Some

examples of these report generation tools are RPG, MARK I and

MARK II, GIRLS and FFS.

If we look at the parallel developments in storage technology

we see that storage media had undergone a change from punched card

technology to magnetic tape. Thus the access speed was significantly

increased hut the access method remained sequential. Files were

typically read from beginning to end, record by record, in order to

extract the necessary information.

Because pieces of information are inter-related i t became

necessary to add f a c i l i t i e s for data structuring to the l i s t of data

management f a c i l i t i e s . The f i r s t structuring technique that was

used in DBMS was hierarchic. "One of the main advantages of these

structures i s their inherent computer efficiency with regard to

storage space and peripheral storage accesses. Another advantage

i s a correspondence of hierarchic records to the report structures
r 2 7

often required by commercial enterprises." -*

A hierarchy i s a very natural structuring and, to a generation

brought up thinking and using sequential access methods, the a b i l i t y

to flatten a hierarchy into a sequential storage medium proved i t s

5

worth. For example, the f i r s t IMS system demanded requests for

data i n a top to bottom, l e f t to right fashion corresponding with

the way the hierarchy was flattened for storage on tape.

Greater f l e x i b i l i t y i n data access was brought about with

the widespread a v a i l a b i l i t y and increased r e l i a b i l i t y of direct

access storage devices. Random access became truly feasible. This

led to developments of network structures i n data base management

systems; IDS developed by General Electric, TOTAL and ADABAS are

examples. The Codasyl DBTG played a major role in the thrust

toward network systems.

Hierarchic systems also benefitted from direct access

methods. A perfectly f l a t structure was no longer necessary when

implementing a hierarchy.

I

Originally stored and accessed i n the order 1, .2, 3, h, 5? 6J this

hierarchy could be accessed randomly i f direct access pointers are used.

6

It is interesting to note that I M S developed from a

hierarchy implemented in a "flat" fashion to one with pointers

and eventually became a network data base management system, thus

taking advantage of the changing storage and access methods.

Another development in data base management systems stemmed

from the need to define multiple views of one set of data. Schemas

or logical data bases allow one program to access one subset of

data from the entire data base. In this example:

T Y p £ I

I

T Y p t 2. TYPE 3 T V PG 4-

a logical data base could be created consisting only of segments

of type 1, 3, k. In this case the program need not know about type

2 records and in fact is not permitted to access type 2 records.

Hence security measures are introduced.

There are s t i l l problems to be solved. Improved data

independence, high-level access languages, completeness of the data

base model and improved data security and integrity are some areas

of concern.

7

With data independence i t i s possible to change the

physical storage structure of the data or the data access strategy

without affecting any application programs. Current data base

management systems provide some independence but as demonstrated

i n later sections i t is quite limited.

How easy to use and flexible are the current data base
/~3 7

accessing languages? The CODASYL report describes host-

language and self-contained systems. A host-language system

permits data base access from a host-language such as PL/l and

subroutine calls to perform a well defined set of operations

against the data base (eg. retrieve, delete, insert). A self-

contained system'provides an interface suitable for a non-programmer.

This interface usually consists of a highly specialized language

that i s as english-like as possible. Because of the increased

demand for flexible data access to support business functions,

better data base accessing languages must be developed.

Does the data base model have the a b i l i t y to represent

real-world relationships or i s the model too confining? The

hierarchic and network data models impose constraints on the a b i l i t y

to represent relations and thus on the a b i l i t y to model the real-

world.

As data sharing increases so does the importance of security

and data integrity, and the size of any one data base. Hence efficient

access becomes even more important.

8

Data independence, high-level languages, the a b i l i t y to

represent relations, security and integrity and fast access are

important concerns. Relational data base management systems may

solve some of them.

In the following sections a hierarchical DBMS and a relational

DBMS w i l l be compared. A discussion of associative processors i n

Section 7 w i l l show that they permit faster access than conventional

random access disks.

3.0 CURRENT DATA BASE MANAGEMENT SYSTEMS — AN EXAMPLE

In order to ill u s t r a t e the current state of commercially

available DBMS IMS, an IBM product/,will be discussed. The concepts

introduced can, I fee l , be generalized to other systems such as

TOTAL, ADABAS and SYSTEM 2000.

IMS i s a hierarchical data base management system, that i s ,

i t uses a hierarchical structure to represent whatever world i t

models (eg. business organization, personnel information, inventory

systems). If we look back to the days of tape f i l e s or card f i l e s

we can see the beginnings of hierarchical data management. Suppose

we have an employee with certain dependants, job experience and

educational s k i l l s . In early days this information could have

been represented as a series of records, each with a record type

stored i n a predefined order:

o
SmlWv , 3" 0 0 o

1 SmlWv , 3" Z 2 bav-id, "7, M 3 Job «, otonQ

c c
0
4-

O 0
1

0

10

In IMS this information would, be represented with the following

diagram:

£DUfiATiOM

In this example, the "world" consists of any number of employees

and for each employee, three relationships:

1. dependants of the employee.

2. job experience of the employee.

3. educational s k i l l s of the employee.

Notice that these relationships are not ex p l i c i t l y stored i n the

data base. Rather, they are implied by the structure of the data

base. Also, i f the employee has no dependants this information

is represented by having no dependant records i n the data base. The

information e x p l i c i t l y stored i s the various data fields within each

record — or segment to use IMS terminology. In our example the

boxes labelled DEPENDANT, EXPERIENCE, EDUCATION and EMPLOYEE are

11

segments. The EMPLOYEE segment may contain such information as

SEX, SALARY, BIRTHDATE, ADDRESS, etc. Similarily the segment

EDUCATION may contain such information as GRADE, EDUCATIONAL

INSTITUTION, COURSE DATES, COURSE COST and so on. In IMS the

basic unit of retrieval, update, insertion and deletion i s the

segment.

IMS i s a sophisticated data management tool and i t i s

definitely outside the scope of this discussion to f u l l y describe

a l l of IMS's many features. However to prepare the way for

further discussion i t i s necessary to describe the basic data

manipulation commands and logical data bases, and then to discuss

IMS storage structures i n some detail. Finally, several examples

w i l l be given to demonstrate how the typical programmer uses IMS

effi c i e n t l y .

12

3.1 DATA BASE ACCESS COMMANDS

IMS provides f a c i l i t i e s to retrieve, update, insert and

delete segments from a data base. Included are:

IMS COMMAND FUNCTION

GU (GET UNIQUE)

GN (GET NEXT)

ISRT (INSERT)

REPL (BEPLACE)

DLET (DELETE)

direct segment retrieval

get next segment in sequence

add a new segment

update existing segment

delete a specific segment

These commands are best explained with some examples.

In order to maintain some consistency within this paper I w i l l

introduce an application with which I have been involved. This

particular system is an insurance application containing information

on policies, subscribers (those who have policies with the company)

and claims. The exact details of the data bases w i l l not be given

here but where relevant some of the structures w i l l be shown.

13

Le ve.L

PoutS CLAIM

Race FBC£lPT

This structure represents an individual (SUBSCRIBER segment)

who i s enrolled with the insurance company for a certain type of

coverage (POLICY and RULE segments). This individual has a wife

and children (DEPENDANT segment) and over the years has submitted

certain claims to the company (CLAIM and RECEIPT segments). The

level of this hierarchy i s three. Each data base must have a root

segment and the root segment must have a key f i e l d . In this data

base the SUBSCRIBER segment is the root segment and i t s key i s a

social insurance number (SIN(). Non-root segments do not necessarily

have keys.

1 4

GET UNIQUE

In IMS a GU provides random access to a segment with a

given key f i e l d value. When issued a GU ignores any current

positioning information maintained by IMS. Instead, using either

an index or a hashing algorithm IMS finds the specified segment

directly. A GU i s normally used to access a new root with no

relationship to the root previously accessed.

Given a specific SIN i n the SUBSCRIBER data base IMS w i l l

position i t s e l f for processing that root and a l l of i t s child segments.

Child segments are DEPENDENT, POLICY, RULE, CLAIM and RECEIPT

segments pertinent to that root.

GET NEXT

This command directs IMS to move forward i n the data base

from it's current position. To understand i t s use one must under

stand the implied ordering of an IMS data base: top to bottom and

l e f t to right in the hierarchy. For a given SUBSCRIBER, as

established by a GET UNIQUE, successive GN commands would retrieve

DEPENDANT segments, then the POLICY segment (assume only one policy

per individual), a l l RULE segments, then the f i r s t CLAIM segment,

a l l RECEIPT segments for that CLAIM, the second CLAIM segment and

i t s RECEIPT segments, etc. GET NEXT commands may be qualified.

For example i f an inquiry i s issued for a l l claims for a given

subscriber, the following could be done:

1 5

1 . GU for the given SUBSCRIBER, i t s key f i e l d

(SIN) must be supplied.

2. GN qualified to indicate that only CLAIM

segments are to be retrieved.

Note that step 2 would be repeated u n t i l IMS indicated no more

claims for that subscriber exist.

INSERT

Whenever a new segment must be added to the data base the

ISRT command i s used. If a dependent segment i s added i t s parent

must f i r s t exist. IMS provides certain rules for insertion. For

example, a last-in-first-out rule can be applied or segments may

be inserted so that their key f i e l d i s i n a specific order.

REPLACE

REPL is used when updating fields i n a segment. The segment

must have been previously accessed by a special type of retrieval

command, GHU or GHN. These commands operate exactly as GU and GN but

perform the extra function of marking the segment for subsequent

replacement (or deletion). When a segment is marked i n this fashion

i t i s unavailable for other access.

DELETE

DLET i s used to delete segments from the data base. When a

segment is deleted a l l of i t s children are also deleted. Note that

the GHU and GHN are also used with the delete function.

16

3.2 LOGICAL DATA BASES

During the early design phases of the insurance application

the data base design underwent a significant change. I n i t i a l l y

there were thirteen unrelated physical data bases. A l l relational

information was stored as data fields i n the physical data base or

as logic within some particular program. For example:

RULE

Here we have two separate data bases, the SUBSCRIBER and the POLICY

data bases. In the . ENROLMENTcsegment there i s a f i e l d called

POLICY-NUMBER. If we attempt to find details on a l l policies i n which

a subscriber i s enrolled we would construct the following program:

17

1. Issue a GU to the SUBSCRIBER segment

giving the social insurance number of

the particular subscriber.

2. Do u n t i l no more ENROLMENT segments.

3. Get the next ENROLMENT segment.

h. Using the POLICY-NUMBER stored i n

that segment issue a GU to the

POLICY segment i n the POLICY data

base.

There are some problems. One is that duplicate information exists;

the POLICY-NUMBER must be maintained i n two separate places. A

second problem i s that the programmer must be aware of how the

data i s physically separated i n order to access the correct

information. The programmer must know:

1. that the policy-number i s the key in the

policy data base.

2. that the different IMS calls are issued to

two different physical data bases. This i s

required i n the IMS command.

3. that an implied relationship exists between the

SUBSCRIBER data base and the POLICY data base

through the ENROLMENT segment.

Now suppose information i s required about a specific policy and

the various people who subscribe to that policy. The data bases

18

are not organized to suit this query, thus presenting a third

problem. In fact to satisfy such a query the entire SUBSCRIBER

data base would have to be scanned.'

Because there were varied and conflicting requirements

for access to information i n the insurance application, the data

bases were redesigned using logical data bases instead of physical

data bases. In IMS logical data bases are constructed through

the use of pointers. Consider the previous example with SUBSCRIBERS

and POLICIES.

saesc/zieee.

HoU>£&

19

The "arrowed" segments contain pointers from one physical data

base to another. Contrast this with s t r i c t l y physical data bases

i n which data (the POLICY-NUMBER)is used to represent a relationship.

Here the SUBSCRIBER data base i s log i c a l l y connected via the

ENROLMENT segment to the POLICY data base and the POLICY data base

is l o g i c a l l y connected via the POLICY HOLDER segment to the

SUBSCRIBER data base.

Through the use of logical connections a programmer can

now equally readily find a l l policies for a given subscriber or

a l l subscribers for a given policy. This is possible because

logi c a l data bases i n IMS provide more tailored views of the data.

One programmer can work with view A and another with view B, without

knowing that physical separation of data exists.

POi.

pauci

/?Ui-£

20

Someone, such as a data base administrator (DBA), w i l l

describe the physical data bases to IMS and include in that

description information about the different pointer segments (what

physical data base they reside i n and what physical data base

segment they point to for example). A DBA w i l l also describe the

logical data bases as represented i n view A and view B so that IMS

can handle the physical data separation and appropriate pointer

updating.

When a new subscriber is added with a given policy IMS

manages the pointers and can automatically create a POLICY HOLDER

segment once an ENROLMENT segment i s created. Thus improved data

integrity i s provided.

In implementing logical data bases one must be aware that

there i s overhead involved on the part of IMS in maintaining

pointers. Each proposed pointer segment must be examined with particular

emphasis on how often i t is used and the mode of use, batch or

online. Information that is required frequently for online use

is a prime candidate for a pointer segment.

21

3.3 IMS STORAGE STRUCTURES

When using a data base management system such as IMS

the programmer need not be concerned with the physical storage

structure and the access to such storage. Instead the interface

i s through the data management language that has been provided.

This language may consist of a host language such as PL/l and some

predefined subroutine calls or i t may be a specialized self-contained

language designed only to support data access (often these languages

are as english-like as possible).

The data management language must then interface with a

specific access method which i n turn interfaces with the physical

records. For IMS this may be described with the following diagram:

Livterfiicei User /

P/ryramivier-

//WS / 2>Ll

to
Stored
AZsi^oyivuittoti

Hi&rarchic&l
Acdess
/nertoas

/SAM , CSAAt
l/SAM

22

The f i r s t interface was generally considered i n the

explanation of the various IMS calls and the use of logical

data bases.

Through interfaces 2 and 3, the program and the data base

language function without any knowledge of device dependent details

and with a hierarchical picture of the stored segments. A program

"does not know (a) anything about physical records (blocks);

(b) how stored fields are associated to form stored records

(c) how sequencing is performed (eg. i t may be by means of physical

continguity, an index, or a pointer chain); or (d) how direct access
fk 7 . . . i s performed". u -J Knowledge of such details i s provided at

interface k.

There are four hierarchical access methods: HSAM, HISAM,

HDAM and HIDAM. HSAM and HISAM are strongly sequential i n nature,

in fact HSAM can exist on tape. For direct access, most existing IMS

data base implementations use either HDAM, hierarchical direct access

method or HIDAM, hierarchical indexed direct access method. HDAM and

HIDAM use hierarchical and/or child-twin pointers to link segments

together. These pointers provide a mechanism for linking a l l segments

within a root occurrence and for linking root occurrences.

The subscriber data base w i l l be used to indicate how these

two types of pointers di f f e r , and then HDAM and HIDAM are described

in more detail.

C/ii/d - V-t*)Ln. pointers i/t SV8S£&/8£/£. data.. 4a.se..

http://4a.se

24

Hierarchical pointers "begin at the root and follow the

segments from top to bottom and le f t to right through the hierarchy.

Only one pointer exists i n the root segment pointing to the f i r s t

occurrence of the left-most child segment. Each child segment

points either to i t s f i r s t left-most child or to the next occurrence

of that segment type. When there are no more segments of that

type the pointer crosses to the next segment type i n sequence; for

example, the last DEPENDANT segment points to the f i r s t POLICY

segment.

The second diagram illustrates child-twin pointers. In this

example there are three pointers i n the root (SUBSCRIBER) segment,

one for each type of child segment. If the SUBSCRIBER segment had

more children there would be more pointers, always one pointer for

each child type. A child segment then points to i t s next segment

occurrence. If the child segment i t s e l f had children there would be

more pointers, again, one for each child type.

The hierarchical pointer scheme requires less storage while

the child-twin pointer scheme provides faster access to the different

points i n the hierarchy.

25

HDAM

"HDAM provides direct access (by sequence f i e l d value) to

the root segments, via a hashing and chaining technique, together

with pointer access to the subordinate segments." In the

customer account data base the key of the root segment i s the SIN,

this key is supplied with a value, given to the hashing algorithm

and an address is generated. If this i s the f i r s t key value to

hash to the calculated address then no subsequent chaining is

required. However i f the SIN collides with an existing SIN at the

same address, the SIN i s chained to the f i r s t SIN via a pointer. A l l

child segments of the root (and their child segments, etc.) are

held together through the use of hierarchical or twin-child

pointers.

2 7

So, as long as there are a small number of root segments that hash

to the same location the access to a given root segment i s fast.

Dependent segments are placed as physically close as possible to

the root segment i n order to minimize disk seek time when looking

at a root and a l l l i s • children.

28

HIDAM

Instead of direct access to the roots, HIDAM provides

indexed access via the sequence f i e l d of the root to the root

segments and then pointer access to any dependent segments. "A

HIDAM data base actually consists of two data bases: a "data" data

base, which contains the. actual data, and an associated INDEX data

base, which provides the (dense) index. There i s an entry i n the

INDEX data base for each root segment i n the "data" data base."

In the insurance example an index would be established for

the key f i e l d of the SUBSCRIBER segment, social insurance number.

When a social insurance number is provided i n an IMS c a l l , IMS

uses that value to search the index data base. From the index data

base IMS retrieves physical location information so that the actual

data can be found.

data, Aase

2 9

k.O STRUCTURE HAS ITS ADVANTAGES

A data "base management system such as IMS can be c r i t i c i z e d

for i t s lack of data independence or for the a r t i f i c i a l and confining

nature of the hierarchical structures i t imposes on information.

Another disadvantage is the host-language interface through which

a programmer must work in order to communicate with data. Such a

host-language requires a programmer to know too much about the

system; how data i s stored, how i t is accessed, exact record layouts

are examples. These criticisms are warranted i f we could ignore the

incredible growth i n data bases and slow disk access times. As i t

i s , the structure inherent i n IMS (and other hierarchic or network

DBMS) is the mechanism that permits relatively fast access to such

data bases.

There are two major factors to be considered i n designing

data base applications: one i s the amount of storage space required

(eg. the size of the data base) and the second is the speed with

which information can be assembled from the data base. The next

section deals with methods or organizing an IMS data base and

processing data from the data base that w i l l improve response.

In general these methods are related to the data base structure

(the hierarchy).

We w i l l f i r s t examine what a data base administrator can

do and go on to consider what each individual programmer can do. A l l

of these techniques have been employed in the insurance application

mentioned earlier.

30

4.1 THE DATA BASE ADMINISTRATOR AFFECTS PERFORMANCE

Segment P o s i t i o n

We begin with a general purpose statement about IMS that

has bearing on segment p o s i t i o n i n g as w e l l as on several other

areas i n our discussion. "IMS/VS manages the space within the

records, and a l l o c a t e s and reclaims space as segments are inserted

and deleted. In a l l o c a t i n g space, an attempt i s made to keep adjoining

segments i n the h i e r a r c h i c sequence as close together i n storage as

po s s i b l e . " *- - / ('Emphasis added).

/Sao 7

When IMS po s i t i o n s segments f o r t h i s data base i n p h y s i c a l storage

SEG3 i s " c l o s e s t " to the ROOT segment and SEG3 i s "f u r t h e s t " from

the ROOT segment. When segments are close together i t i s l i k e l y that

one p h y s i c a l access to the dis k w i l l b ring these segments i n t o core

together. Thus a r e t r i e v a l of ROOT followed by one or more r e t r i e v a l s

3 1

of SEG.T segments w i l l involve only one access. I f however, access

to t h i s data base record t y p i c a l l y involves ROOT and SEG3 then the

hierarchy should be:

/Zoo —

As a general r u l e segments that are accessed frequently should be

close to the t o p - l e f t i n the hierarchy. Segments that are

accessed infre q u e n t l y and/or i n batch-only processing (where the time,

constraints are not so severe) should be at the bottom-right.

3 2

HDAM vs HIDAM

In the insurance application, because most functions were

done online, direct access to root segments was required hut the

choice had to he made between HDAM and HXHAM data bases. "HIDAM

is useful when both sequential and direct access by root key are
r-Q -7

required." -' HDAM on the other hand i s better for direct

access than HIDAM because the index data base i s removed. HDAM

was chosen for the insurance data bases to f a c i l i t a t e online

processing since the majority of online processes required direct

access. It was decided that although some batch programs required

sequential processing of data, a sort step would provide the

necessary ordering at a small additional cost. The human factor

involved i n online systems demanded fast response.

3 3

ROOT A D D R E S S A B L E A R E A , S Y N O N Y M C H A I N S

An HDAM data base consists of one primary area called the

root addressable area (RAA) and an overflow area.

A

1
l
1

1
S£& &

, —

5£C C 2

Area,
/OL a. OL

C/ ,

cz 82 C3 „

Cr

34

Root segments are stored in the root addressable area their

address being determined by a hashing algorithm chosen by the

data base administrator (DBA). In addition a limited number of

dependent segments are stored i n the RAA, this limit i s set by the

DBA. The length of the RAA is also controlled by the DBA. Row

can the DBA choose the most appropriate (l) size for the root

addressable area (2) hashing algorithm and (3) number of dependent

segments stored i n the RAA?

In the insurance application statistics were gathered to

predict the average, minimum and maximum number of child segments

per parent segment for a l l data base segments.

Armed with these figures the data base administrator could

choose suitable parameters for each physical data.base. In fact these

stati s t i c s led to s p l i t t i n g one data base into three data bases for

better performance.

Given the typical number of child segments per parent the

number of dependent segments stored i n the RAA was determined. It

is important to store as many segments as possible, preferably a l l ,

i n the RAA so as to minimize accesses. This i s valid given the

statement that IMS keeps segments i n a data base record together

i f at a l l possible. Hence one access to the root segment w i l l get

a l l child segments most of the time. "At least root segments should

be stored i n the root addressable area. In addition, active

dependent segments should be placed i n the root addressable area

35

since this w i l l provide fast access to them because of their physical
f~a 7

proximity to the root segment." u -7

The to t a l size of the root addressable area can be

determined knowing the average size of a data base record and the

number of roots. But because a data base i s not static an additional

factor i s the amount of free space necessary so that insertions can

be done within the RAA instead of the overflow area.

MS = N x E
NB x TB~

S MS + MS x F
MS (1 + F)
MS x F 1

where

N = number of bytes i n the average data
base record (including user and IMS
maintained data).

E = expected number of data base records.

NB = number of bytes per block, multiplied
by .8 to keep chaining at a reasonable
level.

MS = minimum size of RAA i n blocks.

FjF 1 = a growth factor, F 1 > 1

S = optimum size of RAA.

1
Note that F , the growth factor must be a function of data base

+ . - + ZT107 activity. *-

3 6

In choosing a hashing algorithm i t is important to choose

one that minimizes the number of synonyms produced and distributes

the data f a i r l y evenly over the root addressable area. To do this

an analysis of root segment keys must be done to determine their

characteristics. Provided with IMS are several hashing modules

and a u t i l i t y which takes as input the root segment keys and

produces a map for each algorithm showing key distribution.

3 7

SECONDARY INDEXES

If a segment i s frequently accessed through a non-key

f i e l d (this i s particularly applicable to root segments),

regardless of the root key f i e l d , then i t i s a candidate for a

secondary index data base. In this situation an index data base

is created, as i n HIDAM data bases, containing one record for each

key of the secondary index data base.

S ec / s e c z

7

38

A secondary index set up for SEG7 w i l l allow access directly to

this segment without f i r s t qualifying the ROOT segment and

SEG6.

3 9

4.2 DESIGNER AND PROGRAMMER AFFECT PERFORMANCE

Having dealt with how a data base administrator can

optimize an IMS application, we turn to the role of designers

and programmers.

BATCH vs ONLINE

Programs within the insurance application were s p l i t into

batch and online transactions. Batch transactions (report writers

and statistics gatherers, for example) usually examine a l l roots of

a particular data base and report on these in order. Hence using

HDAM data bases a sort step is required. This requires additional

time and thus such transactions are not scheduled online where

response time is so important. Rather they are scheduled as overnight

jobs and do not interfere with the online system.

Some insurance programs originally designed to be online

and yet work sequentially through one data base were modified so

that only one root of the data base i s used. For example, an

inquiry transaction designed originally to give information on a l l

insurance claims for a particular subscriber now gives information

on either the most recent insurance claim or a unique insurance claim,

as specified by the user, for a particular subscriber. In another

situation a program was s p l i t into an online portion and a batch

portion to minimize data base a c t i v i t y during an online session.

4 0

Further, batch programs are not run concurrently with

online programs since batch programs tend to make heavy use of

buffers which would in turn slow online performance. If an online

program requests a piece of information i t i s brought into the

IMS bufffer pool, some actions are then performed and information

i s displayed to the terminal. While awaiting the user's response ,

i f a batch program i s working away chances are that the buffers

in the pool w i l l be completely changed before the online program

is able to continue. When the online program does continue i t

w i l l cause another access to be executed, probably for the same

information. If the batch program runs at a different time additional

disk accesses can be minimized.

4 1

LOCALITY OF IMFORMATIOM

Suppose the following data base structure exists:

Roar-

Se6. A sec a

se<s> 2>

It i s always adviseable to retrieve a root segment and process

a l l child segments of that root (two SegAAs, one SegB, one SegC

and three SegD's) before continuing to examine another root segment

either i n the same or a different data base. This w i l l minimize

accesses since a root and i t s child segments can typically be

retrieved with one access.

4 2

As another example of l o c a l i t y consider:

8ooT

sec A

Sad C

Sec a
S£6. H

sec r sec r

43

There are too many segments to retrieve with one access in the

above example. SEGG, SEGH, SEGI, SEGJ are stored i n a separate

block. However, IMS tends to keep segments together according

to structure as much as possible. A programmer should therefore

try to process these segments in order (top to bottom and l e f t to

right) and thus minimize disk access time.

4 4

HIERARCHICAL POINTERS

A programmer need not be aware of hierarchical or child/twin

pointers i n the data base. However, i f hierarchical pointers are

in use, performance can be enhanced i f the program accesses each

segment in order according to the hierarchical pointers.

sea. / s e e . 3

In addition to extra disk accesses as discussed i n the

section on l o c a l i t y , IMS w i l l work much harder following pointers

i f a program asks for SEG1 to SEG8 i n any order other than that

shown above. This is not so with child/twin pointers since the

ROOT segment would then contain a separate pointer for each child

segment type instead of one pointer pointing to SEG1.

45

LOGICAL DATA BASES

6

DA&L 3ase /
2kz&. Suse

U

Segment D i n DATA BASE 1 points to segment 2 i n DATA BASE

2 and segment Y points to segment A. Thus a logical data base

could be constructed joining the two data bases together (data

base 3) . _ A program that needs information from DATA BASE 1 and

DATA BASE 2 could use this logical view however each time segment Z

is accessed that program i s crossing from one physical data base to .

another and i n doing so causes additional accesses.

4 6

8

c X

Att fa. 'Base 3,

A /iojtcaC 2)&fo Base.
V

To reduce this cost, one program i n the insurance application

uses two separate physical data bases, extracts information from

each then sorts and merges the resultant information to achieve

the same effect. It i s important to know when physical boundaries

are crossed.

47

MULTIPLE POSITIONING

For each data base that an application program accesses

IMS maintains a pointer to the current position within the

data base. In most situations this i s sufficient. However, on

occasion a programmer must take advantage of multiple positioning

in IMS. For example:

s e c z

Here i t is necessary to access the f i r s t occurrence of S E G 1 , then

the f i r s t occurrence of S E G 2 , the second occurrence of S E G 1 then

the second occurrence of S E G 2 , etc. With multiple positioning IMS

w i l l maintain a pointer to the current position i n segments of

type S E G 1 and a second pointer for segments of type S E G 2 . The

programmer must specify a request for multiple positioning i n a

situation of this type.

48

OTHER CONSIDERATIONS

A programmer must be aware that a GU c a l l i n IMS is

more expensive than a GN c a l l . Hence once position is established

via a get unique i t i s advantageous to use as much information as

possible from that parent segment via GN calls. This encourages

a programmer to follow the hierarchical structure whenever possible.

Insert and delete operations are expensive i n IMS due to

pointer and space management activities that take place. If at a l l

possible a replace (REEL) should be done instead of a delete followed

by an insert. In the insurance application one data base was

extensively redesigned to use replace calls instead of delete/insert

ca l l s .

A l l calls to IMS should be as f u l l y qualified as possible

thus eliminating much overhead in IMS and potentially reducing the

search time.

49

4 . 3 CONCLUSIONS

An attempt has been made to show that the structure of

a system such as IMS i s one of the features allowing current

DBMS to cope with increasing data base sizes and response demands

of online systems.

In the next section relational data base systems w i l l be

examined and the question of whether these systems can indeed

perform as well as hierarchic or network systems w i l l be

addressed.

50

5.0 RELATIONAL DATA BASE MANAGEMENT SYSTEMS

There are several criticisms of hierarchical and network,

data hase management systems. One criticism is the lack of data

independence that these systems provide, and a second concerns

the cumbersome interface that a programmer must deal with.

Relational datacbase management systems provide a much higher degree

of data independence and a simpler interface.

Because of the growth in data base size, an emphasis on

integrated data and thus shared data, the need for readily

available information and the dynamic nature of such information,

i t has become increasingly important for application programs and

query languages to be independent of changes in the stored

representation of information. The term for this family is data

independence. Systems like IMS have provided some data independence;

logical data bases and schemas are examples. However as E.F. Codd

has written, "Three of the principle kinds of data dependencies

which s t i l l need to be removed are: ordering dependence, indexing

dependence and access path dependence."

IMS can be used to i l l u s t r a t e these different dependencies.

ORDERING DEPENDENCY:

The roots of an IMS data base have some order associated

with them; for example an employee data base could be ordered by

employee number. If the ordering of this f i l e were altered so that

51

a l l employees were ordered by social insurance number, then any

programs depending on an ordering according to employee number

would have to change.

INDEXING DEPENDENCY:

IMS provides indexing f a c i l i t i e s at the non-root level,

these are called secondary indexes. Programs can then be written

that w i l l access data based on the index. If the index is removed

these programs would require modification.

ACCESS PATH DEPENDENCY:

IMS presents a hierarchic picture of data i n a data base.

If this structure, which in effect defines the access path, changes

then the programs using the structure may also have to change.

In particular, i f the hierarchy is being used e f f i c i e n t l y as

explained in the previous chapter the programs would have to change.

Data manipulation languages designed to work with hierarchic

or network DBMS depend heavily on the underlying structure of the

data model. For example, IMS has the commands GN and GNP that

are specifically designed to guide a programmer through a hierarchy

from top to bottom and l e f t to right. In addition the languages

that define structure, logical connections and access path sensitivity

in IMS are not at- a l l consistent with the data manipulation language.

Hence a user must learn several interfaces.

To provide a comparison relational data base management

systems w i l l now be discussed. System R, a prototype under development

52

at IBM is used as an example. Particular attention w i l l be paid

to the underlying storage techniques and basic retrieval

mechanisms that System R provides.

53

5.1 THE RELATIONAL MODEL

A paper by E.F. Codd provides a d e f i n i t i o n of the terra

r e l a t i o n :

"Given s e t s , Ŝ ,, ... S^ (not n e c e s s a r i l y d i s t i n c t) ,

R i s a r e l a t i o n on these n sets i f i t i s a set of n-tuples'each

'of which has i t s f i r s t element from S.̂ , i t s second element from

S„, and so on. We s h a l l r e f e r t o S. as the j t h domain of R. As

de f i n e d above, R i s s a i d t o have degree n." . '"•«.-'

The most convenient way t o represent a r e l a t i o n i s w i t h

a t a b l e . Suppose we consider an insurance a p p l i c a t i o n as mentioned

i n the previous s e c t i o n , t h e f o l l o w i n g r e l a t i o n s could occur:

SUBSCRIBER
RELATION

SIN STATUS NAME • LOCATION BD SEX

S1 ACTIVE JONES VANCOUVER 31 01 50 M
S2 ACTIVE FORD VICTORIA 15 06 he F
S3 CANCELLED KING VANCOUVER 03 03 35 F

ACTIVE BOOTH KAMLOOPS 27 11 hz M

ENROLMENT
RELATION.

GROUP NO. SIN DATE STATUS COMPANY

G1 Sk 1977 ACTIVE A
G2 SI 1976 . ACTIVE B
G2 S3 1976 UNPAID B
G3 S2 1978 ACTIVE C

Gk Sk 1975 CANCELLED D

54

CLAIM
RELATION

. CLAIM NO. SIN DATE STATUS AMOUNT

CI SI 06 06 76 PAID $100

C2 S1 20 09 77 PAID $ 30

C3 S3 04 04 78 REJECTED $ 0

C4 . • S3 15 03 77 PAID • $ 12

C5 S3 31 01 78 PAID $ 39

C6 S4 12 05 75 PAID $ 52

The SUBSCRIBER r e l a t i o n shows a l l subscribers that have contracts

with the insurance company. ENROLMENT states that a p a r t i c u l a r subscriber

belongs to a p a r t i c u l a r group (GROUP NO.), was enrolled i n a given

year (DATE) and has a c e r t a i n status on that group. A l l claims

that have been received are l i s t e d i n the CLAIM r e l a t i o n . For those

claims that are paid (STATUS) the amount of payment i s l i s t e d (AMOUNT).

Consider the d e f i n i t i o n of a r e l a t i o n . This system contains

three r e l a t i o n s (more r e l a t i o n s w i l l be added l a t e r) , the domains

of the SUBSCRIBER r e l a t i o n are SIN, STATUS, NAME, LOCATION, BD and

SEX and the degree of the CLAIM r e l a t i o n i s f i v e . Furthermore,

each row i n a t a b l e represents a tu p l e of the r e l a t i o n , the ordering

of rows i s i n s i g n i f i c a n t , a l l rows are d i s t i n c t and the ordering of

columns i s s i g n i f i c a n t . Each r e l a t i o n has a primary key, one or more

domains which uniquely i d e n t i f y each tuple i n the r e l a t i o n . The

keys i n the above r e l a t i o n s are SIN, GROUP NO. and SIN, and CLAIM NO

r e s p e c t i v e l y . Notice that i n the enrolment r e l a t i o n the two domains

55

SIN and COMPANY could also be a primary key. It is also possible

that a domain of one relation i s a primary key of another

relation, for example SIN i n the CLAIM relation.

There are two basic retrieval languages for relational data

base management systems: relational algebra and relational calculus.

The relational algebra provides basic operations that are performed

on one or more relations to produce a relation as a result. These

basic operations are permutation, projection and join. Permutation

results i n the interchange of two or more columns of a relation and

is necessary because ordering of columns i n a relation i s significant.

Thus one permutation of the CLAIM relation would produce columns

ordered as CLAIM NO., STATUS, DATE, SIN, AMOUNT. Note that the set

of queries answerable by a relation is the same as the set answerable

by any permutation of that relation.

A projection consists of selecting certain columns from a

relation, forming a second relation and removing any duplicates

from that second relation. Using the notation of Date *~ - 1 :

ENROLMENT £"GROUP NO., C0MPANY_7

results i n a relation

GROUP NO. COMPANY
G1 A
G2 B
G3 C
G4 D

56

N o t e t h a t t h e t u p l e G 2 , B e x i s t s o n l y o n c e .

C . J . D a t e d e s c r i b e s t h e j o i n o p e r a t i o n " T w o r e l a t i o n s

w i t h a common d o m a i n , D , c a n b e j o i n e d o v e r t h a t d o m a i n . T h e

r e s u l t i s a r e l a t i o n i n w h i c h e a c h t u p l e c o n s i s t s o f a t u p l e . f r o m

t h e f i r s t r e l a t i o n c o n c a t e n a t e d w i t h a t u p l e f r o m t h e s e c o n d

f i k 7
r e l a t i o n w h i c h c o n t a i n s t h e s a m e D - v a l u e " . ^" - ' T o i l l u s t r a t e

a j o i n o p e r a t i o n a f o u r t h r e l a t i o n i s a d d e d , t h e C O N T R A C T r e l a t i o n .

C O N T R A C T

R E L A T I O N

I GROUP N O . R U L E N O .

G1 R1

G1 R5
G2 R 2

G3 R 2

G3 R 3

Gk Rk
Gk R l

A j o i n o f E N R O L M E N T a n d C O N T R A C T o v e r GROUP N O . , E N R O L M E N T *

C O N T R A C T w o u l d g i v e :

G R O U P N O . S I N D A T E S T A T U S COMPANY R U L E N O .

G1 " Sk 1977 A C T I V E A R1

G1 Sk 1977 A C T I V E A R5

G2 SI 1976 A C T I V E B R2

G2 S 3 1976 U N P A I D B R2

G3 S 2 1978 A C T I V E C R2

G3 S2 1978 A C T I V E C R3
Gk Sk 1975 C A N C E L L E D D Rk
Gk Sk 1975 C A N C E L L E D D R l

5 7

Operations i n the r e l a t i o n a l algebra can, of course, be combined:

ENROLMENT £"SIN, C0MPANY_7 * CONTRACT would r e s u l t i n :

SIN COMPANY RULE NO.

Sk A R1
Sk A R5
SI B R2
S3 B R2
S2 C R2
S2 C R3
Sk D Rk

Sk D R1

The r e l a t i o n a l algebra i s more complex and more procedural than

r e l a t i o n a l c a l c u l u s . I t demands t h a t a user know p r e c i s e l y what

t a b l e s are i n the system, what common domains are i n these t a b l e s

and the order o f domains w i t h i n a t a b l e . Most implementations o f

r e l a t i o n a l DBMS use a h i g h - l e v e l r e l a t i o n a l c a l c u l u s as a user

i n t e r f a c e .

R e l a t i o n a l c a l c u l u s a l l o w s a user t o de f i n e the d e s i r e d

r e s u l t of a query and the u n d e r l y i n g data management system

t r a n s l a t e s t h a t d e f i n i t i o n i n t o a s e r i e s of r e l a t i o n a l o p e r a t i o n s ,

such as p r o j e c t i o n and j o i n .

S p e c i f y i n g a p r o j e c t i o n i n r e l a t i o n a l c a l c u l u s d i f f e r s l i t t l e

from r e l a t i o n a l a l g e b r a :

^ (ENROLMENT. GROUP NO., ENROLMENT. COMPANY)J

58

this is equivalent to

ENROLMENT £ GROUP NO., COMPANYJ

A join operation is easier to specify using relational

calculus:

^('ENROLMENT. SIN, ENROLMENT . COMPANY, CONTRACT. RULE NO.):

ENROLMENT . GROUP NO. = CONTRACT . GROUP NO. ^

this i s equivalent to

ENROLMENT £SIN, COMPANY J * CONTRACT .

The relational calculus allows a user to specify what information i s

required not how to get i t . It i s important to note that the two

methods are equivalent in retrieval power and that an algorithon

exists for converting any calculus expression into an algebra

expression. "̂̂ J7 ^ n e x a m p i e Q f relational calculus w i l l be

given when we deal with System R's retrieval language SQL.

59

5.2 SQL
System R provides a language called SQL, formerly SEQUEL,

which can be used as a stand alone user language or interfaced with

PL/1. SQL is a high-level language used for data retrieval, data

manipulation, data definition and data control. This is i n contrast

with IMS since IMS provides separate and distinct f a c i l i t i e s for

data definition and data control.

SQL QUERY FACILITIES

A l l queries that can be expressed i n SQL have the same basic

format.

SELECT (some type of data)

FROM (a table containing the data)

WHERE (some condition describing the choice of
data)

Using the tables developed earlier we w i l l demonstrate the various

query f a c i l i t i e s .

SELECT SIN

FROM SUBSCRIBER

WHERE SEX = 1 F *

This query might be 'read' as "Select a l l social insurance numbers

for subscribers that are female". Note that the domain name SIN has

been provided and the name of the SUBSCRIBER relation.

Several domains may be selected:

SELECT SIN, NAME

FROM SUBSCRIBER

WHERE SEX = ' F '

A l l domains of a given relation may be selected:

SELECT *

FROM SUBSCRIBER

WHERE SEX = ' F '

A l l entries i n one domain may be selected:

SELECT SIN

FROM SUBSCRIBER

Multiple conditions may be specified:

SELECT SIN

FROM SUBSCRIBER

WHERE SEX = 1 F 1

AND STATUS = ' ACTIVE *

The condition can contain an arithmetic expression:

SELECT CLAIM NO.

FROM CLAIM

WHERE AMOUNT > 2 * DEDUCTIBLE

(This assumes that a value i s assigned to DEDUCTIBLE.)

Built-in functions are available:

SELECT AVG (AMOUNT)

FROM CLAIM

This would give the average amount paid out for a claim.

Multiple relations may be specified:

SELECT CLAIM NO.
FROM - ' CLAIM
WHERE >\TJv •-, SIN =

SELECT SIN
FROM SUBSCRIBER
WHERE SEX •=• ' F 1

61

Other f a c i l i t i e s include specifying the order in which queries

are returned — ascending or descending hy some domain, a SELECT

UNIQUE f a c i l i t y that w i l l eliminate duplicates, reordering of

domains so that they are not i n the same order as in the table,

and the a b i l i t y to retrieve more than one set of information and

perform set operations on the result (UNION, INTERSECTION, MINUS).
- r'VH>' , . /""l6'7

A more complete description of SQL is given by G.H. Denny. - 1

It- should be noted that i n order to form the queries i n

SQL a user must know (l) the exact format of the tables, the

domain names and (2) how information i s stored in the tables,

for example the domain SEX is stored as 'F' for female and 'M' for

male.

62

DATA MANIPULATION

In SQL a user may UPDATE a t u p l e or t u p l e s i n a r e l a t i o n ,

DELETE t u p l e s from a r e l a t i o n and INSERT new t u p l e s i n a r e l a t i o n .

The format of these commands i s very s i m i l a r t o the format of the

SELECT command.

DELETE CLAIM

WHERE DATE < 01 01 77

'Delete a l l claims p r i o r t o January 1, 1977.1

UPDATE ENROLMENT

SET STATUS = ACTIVE

WHERE SIN = 'S3'

'Update the st a t u s o f S3 t o a c t i v e . 1

INSERT INTO CLAIM

<C7, S4, 030077, PAID, $35>

'Insert a p a i d c l a i m i n t o the CLAIM r e l a t i o n . '

Note t h a t the values heing i n s e r t e d must be i n domain order.

6 3

DATA DEFINITION

Definition of new relations is done via a CREATE TABLE

command and relations can be destroyed through a DROP TABLE

command. When creating a table an ordering may be specified

(an ORDER BY clause is used). This ordering has a bearing on

the physical proximity of table entries.

A user who has need of specific tables and specific table

ordering can use the DEFINE VIEW command. This i s similar to a
yf 177

schema as discussed i n Date. *~ ' -'

Another command, EXPAND TABLE, allows for dynamic modification

of relations by adding new fi e l d s .

64

DATA CONTROL

There are four areas concerned with data control:

transactions, authorization, integrity and triggers. A transaction

in System R consists of a series of SQL commands that perform a

function. The importance of transactions i s their relationship

to backup and recovery. The beginning of a transaction defines

a point to which a user may backup.

Authorization refers to the a b i l i t y of a user to read,

insert, delete and update tables within the data base.

Assertions help maintain data integrity. For example,

ASSERT ON INSERT TO CLAIM: AMOUNT > $0 means that no claim can

have an amount less than zero.

Triggers allow a user to define other integrity information.

For example a trigger could be defined so that whenever the STATUS

in the ENROLMENT relation i s set to ACTIVE the STATUS for the same

SIN in the SUBSCRIBER relation i s also set to ACTIVE.

This brief discussion of data management f a c i l i t i e s using

SQL leads to a description of how System R stores information and

f i n a l l y to an outline of the optimizer that determines the optional

way to satisfy a data request i n SQL.

65

5.3 RELATIONAL STORAGE SYSTEM — RSS

A l l data necessary for data base management, including

user data, access path information, catalog information and

intermediate results, i s stored in a collection of logical address

spaces called segments. (This is an unfortunate choice of

terminology since IMS uses the term 'segment' for i t s record level of

information.)

The storage component of RSS manages physical disk space

and to this end maps the segments described above to physical

locations on disk. Each segment i n fact consists of a set of equal

sized pages and the storage component deals with slots on disk the

size of one page. Thus physical page slots are allocated and

freed as required and RSS maintains a page map for each segment.

Relations which consistsof a number of tuples are stored

within segments. "Associated with every tuple of a relation i s a
/"18 7

tuple identifier or TID." '•" -* The RSS is responsible for storing

and accessing tuples and for maintaining the various pointer structures

that link tuples of the same or different relations together. A

tuple identifier i s implemented as shown i n this diagram:

66

A tuple identifier contains a page number and a slot number. The

page number references a particular page within a segment while

the slot number directs the RSS to an area always maintained at the

bottom of the page. From that slot an additional pointer that has

been stored via RSS points to the actual tuple. Since data i s

accessed i n pages this scheme retrieves the requested information

in a single page access, in most cases, once the TID i t s e l f i s

accessed.

67

Tuples are associated with each other either through the

use of images or links which are defined by the user and maintained

through RSS. An image is a logical ordering of an n-ary relation,

with respect to values in one or more sort f i e l d s . Images are

maintained through the use of a multi-page index structure and the

index information is stored on one or more pages within the segment

containing the relation.

While images are used to order tuples within a relation,

links are used to connect tuples i n different relations. The

links perform a similar function to child/twin or hierarchical

pointers in IMS. RSS maintains these links and adds to them as new

tuples are added to the data base.

•St

£2 °~-

SS"

S6

x :

Su£SC£/8e£

Si

£3

S4-

fa lection

Ci

C 2

cr
C8

do

c//

c/z
£13

C/4-

« T -

6LA/M

6 3

In this diagram an image exists for the SUBSCRIBER relation ordering

tuples according to subscriber number. Note that the image is

stored separately from SUBSCRIBER information. A binary link exists

from SUBSCRIBER to claim associating a l l claims with the subscriber

that issued them. A unary link could be added to order claims on

date i f that was a requirement. (Not shown i n the diagram.) Thus

a unary link i s used to order tuples within one relation without

using an image. Note that an image requires extra storage space

and additional 10 processing. Binary links always connect tuples

from two different- relations. The following diagram illustrates how

images are implemented using a VSAM-like tree which is based on the

B-tree concept.

\7&2 ,Tll>3 TiDii Tiiil, 7it>4- II 12. TidS /6 T.J>7

69

5.4 THE OPTIMIZER

"The objective of the optimizer is to find a low cost means

of executing a SEQUEL statement, given the data structures and

access paths available." /J" 19 _7 T n e optimizer has two main

cr i t e r i a i n determining the best access path: minimizing page

fetches and minimizing CPU instructions. In addition the optimizer

can weight CPU cost or l / o cost depending on whether the system i s

compute bound or l / o bound.

As discussed earlier, System R provides for physical

clustering of tuples and relations based on images and links. It

i s the function of the optimizer to take advantage of these properties

whenever possible -in determining the execution of a given query. The

optimizer goes through several steps i n determining the best access.

(1) Classify the statement according to certain

language features such as the user of a join

operator or a simple restriction operator.

(2) Check the system catalogues to determine what

pertinent images and. links are available. For

example:

SELECT A, B

FROM R

WHERE- C IS LESS THAN X

In this query an image on the f i e l d C would be

pertinent to efficient execution.

70

(3) For each language feature mentioned in (l) above the

optimizer can choose from a set of predetermined

methods of execution. One or more methods w i l l

be reasonable for the query. Two methods that

would be reasonable i n the above situation are:

Method A: Use a clustering image which matches

a predicate whose comparison operator is not 1 = '.

• • Method B: Use. a hon-clustering image which matches

a predicate whose comparison operator is not " = ".

(4) Given more than one reasonable method, calculate an

expected cost and choose the minimum cost method.

For method A, assuming half the tuples i n the relation

satisfy the predicate, the expected cost i s R/ (2 x T)

where R is the relation cardinality and T i s the

average number of tuples per data page. For method B,

the expected cost to retrieve a l l tuples i s R/2.

If an image or link exists that w i l l directly f a c i l i t a t e the query, a

method w i l l be chosen that uses i t . In addition, i f more than one

link or image is available, the method which uses the link or image

with a clustering property w i l l be chosen since i t w i l l reduce 10

significantly.

As a further i l l u s t r a t i o n , consider another query.

SELECT A,B

FROM R

WHERE C = X

AND D = Y

71

A clustering image exists on C and a non-clustering image exists

on D. The optimizer w i l l choose to use the clustering image existing

on C. Note that in this case i t would he best to be able to use both

images and compare selected tuple identifiers before accessing any

tuples from the relation. However, the optimizer as described does

not provide this f a c i l i t y .

This section i s intended to b r i e f l y describe the optimizer

f a c i l i t y of System R. A discussion of i t s effectiveness is outside

the scope of this paper since l i t t l e detailed information i s available.

7 2

6.0 PERFORMANCE CONSIDERATIONS IN SYSTEM R

Given a brief explanation of System R the insurance

application w i l l be examined in more detail to compare the

performance of some typical tasks using IMS or System R.

The following relations exist:

SUBSCRIBER SIN ' NAME ADDRESS STATUS AGE

ENROLMENT GROUP NO. SIN DATE STATUS COMPANY

CLAIM CLAIM NO. SIN DATE STATUS ' AMOUNT

RECEIPTS CLAIM NO. DEP TYPE DATE AMOUNT

DEPENDANTS DEP SIN STATUS AGE

CONTRACT GROUP NO. RULE NO.

RULES RULE NO. CATEGORY PERCENT LIMITS

SUBSCRIBER:

DEPENDANTS:

CLAIM:

describes a l l people who have contracts,

a l l dependants of a given subscriber,

a l l claims that have been processed.

7 3

ENROLMENT: the group/company to which a subscriber belongs,

RECEIPTS: details of the claim.

CONTRACT: the contract rules for a particular company.

RULES: details of specific rules.

An IMS version of this data base might be:

sae&c&iseR.

Z>6P£A/MIVTS

/
/

(COA/THIACT)

74

There are three data bases: one with subscriber related information,

one with group/contract information and one describing a l l claims

that.have been processed. Relationships between the •subscriber

and contract information as well as the subscriber and claim

information exist, thus various "logical views" of the data base

can be constructed.

SUBSCRIBER

EXAMPLES OF LOGICAL VIEWS

CLAIM

SUBSCRIBER

SUBSCRIBER

DEPENDANTS

7 5

The f i r s t typical task is to evaluate a new claim for a given

subscriber. Such a process consists of several steps (note that

this i s a simple view of claim evaluation):

1. Does the claim already exist?

2. Does the subscriber exist?

3. For each receipt i n the claim

a) does the dependant exist?
b) is the item covered for the date?

c) determine amount to be paid.

k. Insert the claim i n the data base.

5. For each receipt, insert the receipt information.

It i s assumed that a l l IMS data bases are HDAM, (See Section 3), which

fac i l i t a t e s random processing at the expense of sequential processing.

In System R, i t is assumed that links exist providing clustering so

that the data bases' underlying structure closely resembles that

in IMS. The c r i t i c a l element in this analysis is the number of

disk accesses (10s) that are required to perform the task.

7 6

STEP IMS IOS •SYSTEM R IOs

2.

3a.

3b.

3c.

5..

GU
(claim)

GU
(subscriber)

GNP
(dependant)

GNP.
(enrolment)

GNP
(rules)

ISRT
(claim)

ISRT
(receipts)

0

SELECT

SELECT

SELECT

SELECT

SELECT

INSERT

'INSERT

1 (or more) for index page.
1 for data page.

1 (or more) for index page.
1 ,for data page.

0 i f link exists from
subscriber to dependant.

0 i f link exists to
• cluster information.

0 .for contract information
i f link exists.

T (or more) for index to
.. rule.

1 for rule information.

1 (or more) for index.
1 for data.

0 i f link between claim
and receipts exists.

TOTAL 8 minimum

In this example even when System R has a similar underlying

structure to that of IMS, additional access time i s required :

8 accesses versus h accesses'. This analysis i s generous to

System R since an index access w i l l t y p i c a l l y require as many

accesses as the level of the index. If the index level were two

for each relation then the number of accesses i n System R would

become 12 and an index level of three would force the number of

accesses to 1 6 . The prime reason for additional access time

77

required by System R is the indexing scheme used to implement

images for relations, as discussed earlier. If such an index

scheme were replaced by a hashing scheme as i n HDAM, System R

would lose the f l e x i b i l i t y and relative speed of scanning a

relation effectively which i t must be able to do for proper

performance of join operators, a cornerstone of relational data

base management.

In an ar t i c l e called "Computing Joins of Relations", L.R.

Gotlieb has analyzed different algorithms,? used i n computing

relation joins. He has determined that i/O ac t i v i t y must

be minimized and that ordered key l i s t s when kept on both domains

being joined are the most effective way of minimizing i/Os. These

ordered key l i s t s are similar to images in System R. The concept

of relation joining is not necessary in IMS since relations are

already joined through the hierarchical data base structure of IMS.

In an IMS data base i t is important therefore to structure the

hierarchy to join those relations that are in fact most frequently

joined in the application. Thus for example DEPENDANTS i s a child

segment of SUBSCRIBER since i t is often necessary to join the

SUBSCRIBER and DEPENDANTS relations, similarly RECEIPTS i s a child

segment of CLAIM.

As a second example suppose a user asked the system to " l i s t

a l l paid claims for a subscriber". In System R a SELECT statement

is used:

78

SELECT CLAIM WO.

FROM CLAIM

WHERE STATUS = PAID

AND SIN = S1

Assuming that a link i s provided between the SUBSCRIBER relation

and a l l claims in the CLAIM relation, the above statement would

require one access to index the subscriber and one access to

retrieve the page containing that subscriber's information. In

contrast an IMS programmer would code:

CALL PLITDLI (FOUR,
GU
SUBSCRIBER - POINTER,
RETURN - AREA, ' '
KEY = S1) ;

DO WHILE (SUBSCRIBER - STATUS = BLANK) ;

CALL PLITDLI (FOUR,
GNP,
SUBSCRIBER - POINTER,
RETURN - AREA, ' '
NO'KEY) ;

END ;

79

While this i s obviously not as concise and straight forward as

an equivalent System R statement i t does result in a single access,

i f symbolic pointers are used to implement the logical relationship

between SUBSCRIBER and' CLAIMS.

Another typical task involves enrolling a new subscriber.

To do this both systems w i l l have to:

.1. create a SUBSCRIBER entry.

2. create dependants for this subscriber.

3. link subscriber to an appropriate .group.

STEP IMS

1. ISRT
(subscriber)

2. ISRT
(dependants)

3. ISRT
(enrolment)

I/O SYSTEM R I/O

INSERT 1 (or more) for index.
1 ..for data.

INSERT 0 i f link is '
available.

INSERT 0 i f link i s
available.

TOTAL 1 2 (or more)

The above analysis assumes that no images exist for either SUBSCRIBER

or DEPENDANTS relation. Further IOs are required i f images do exist.

These few examples show situations where System R is not as

efficient as IMS. Assuming for a moment that some other examples can

be constructed showing System R to be more efficient that IMS there

are other aspects of System R.that also degrade performance. These

w i l l be discussed i n the next section.

8 0

6.1 OTHER PERFORMANCE CONSIDERATIONS USING SYSTEM R

The functions of System R's relational storage system

include concurrency control, f a c i l i t i e s for checkpoint and

restart, transaction management, transaction recovery, physical

storage management, maintenance of links and images as well

asddata access. At another level within System R, the Relational

Data System (RDS) "provides high level, data independent f a c i l i t i e s
" " r?A 7

for data retrieval, manipulation, definition and control." *-

What overhead Is involved in providing these functions?

F.H. Lochovsky and D.C. Tsichritzis have examined relational,

network and hierarchical data base management systems with user
/~22 7

performance i n mind. *" m J Three factors were considered:

1 . proportion of correctly coded application

programs.

2. coding time.

3. debugging time.

In their study users were chosen and assigned to one of the three

data base management systems and given time to familiarize themselves

with the user interfaces. Following this, a set of programs were

devised and the users implemented these programs. Results of this

study showed that the relational DBMS provided a better user interface

than the hierarchical DBMS in a l l three areas; correctness, coding

time and debugging time. One of the major problems i n using the

hierarchical DBMS was setting the data base position pointer before

81

"navigating" through the hierarchy, while another was using the

get next within parent (GNP) command correctly. In addition,

some problems were associated with the unnaturalness of hierarchical

DBMS.

The reason for introducing this study i s to emphasize that

the advantages associated with using a relational data base

management system result to a large degree from the high level

user interface provided — for example SQL in System R. However

queries expressed i n SQL must be analyzed by the optimizer. This

involves the overhead of parsing the SQL statement, classifying

the statement according to certain rules, examining various

system catalogs to find suitable links and images and then selecting

the best method of satisfying such a query. A l l this must be done

before any relevant data can be retrieved. A possible solution

would be to perform the above actions at compile time instead of

execution time, however, this i s impossible i f System R i s to

maintain the f l e x i b i l i t y of dynamic link and image definition,

dynamic table definition and dynamic table extension.

Arguments can be made to show that a relational data base

management system, such as System R, requires additional storage

space. Thus, over a wide range of accesses to the data base more

physical IOs w i l l be required. Consider for example such features

as backup page maps used to handle segment recovery. Extra storage

is also required for intermediate relations that are created by

various relational operators. Page maps are maintained for each

82

segment, a segment consists of physical pages and the page map

show the physical location of each page of a segment on disk.

For recoverable segments (intermediate relations are not recoverable

segments) a backup page map i n i t i a l l y has entries identical to

the current page map. As information in the segment changes the

current page map also changes but the backup page map maintains

an old version for possible recovery. Relations require more

storage because the key information has to be stored i n both

"parent" and " child" segments. Consider, for example, the various

relations in the insurance application: SIN is maintained in

SUBSCRIBER and DEPENDANTS relations, CLAIM NO. exists i n CLAIM

and RECEIPTS whereas in ahhierarchical data base SIN occurs once

only i n the SUBSCRIBER segment, CLAIM NO. occurs once only i n the

CLAIM segment.

As mentioned i n the previous discussion, a l l relations in

System R are accessed through an indexing scheme. Thus access to

any tuple or relation directly involves one or more accesses to an

index page followed by one access to a data page. This i s a

distinct disadvantage to System R.

In System R there i s no well defined concept of lo c a l i t y

of information, no equivalent to the "top - l e f t " in a hierarchy

which i s known by a programmer to be close (i.e. : in the same

physical page) to the root segment. A programmer can not therefore

take advantage of segment ordering in order to minimize IOs.

8 3

Because links and images may be defined with a clustering

property i n System R and this clustering property can be defined

dynamically there i s some danger that these w i l l be used

indiscriminately, resulting i n serious fragmentation of relations

and clusters.

These are some areas for concern i n System R and indeed

in any relational DBMS., A summary is provided by an art i c l e i n

Computing Surveys.

"The user of a procedural DSL, like
-the DBTG DML, can select for his
particular interaction the most
efficient access strategy, correspond
ing to a given schema definition. He
can give the system directions for
traversing the ... model to locate the
desired information rather than letting
the system choose a route of i t s own.
In situations where efficiency i s
c r i t i c a l , such a system might be able
to out-perform higher level, less
procedural interactions."

84

6.2 ANOTHER STUDY

In a similar study M. Stonebraker and G. Held have

compared network, hierarchical and relational data base management

systems. This study concentrated on the different languagealevels;

high level non-procedural languages and low level procedural

languages. It was concluded i n the study that non-procedural

languages result i n increased programmer efficiency, increased

data independence and better protection and integrity at the

expense of machine efficiency.

To support the statement concerning machine efficiency

three situations are discussed i n which a procedural system can

be more effective.

1. In some situations i t i s possible to express a

particular query in more than one fashion. It is argued that a

programmer using a procedural language w i l l determine the most

efficient way of implementing the request before carrying out

the programming task. On the other hand, using a non-procedural

language the user is unaware of the fastest method and may not

choose appropriately.

2. Stonebraker and Held demonstrate that a non

procedural language may be inappropriate for certain requests.

The example they use i s to find the member of a particular

department who has the second highest salary. In a procedural

85

system such as IMS i f the segment containing salary is ordered

on salary value then i t is simple to satisfy this request. Expressing

such a request in SQL would require:

SELECT X. SALARY

FROM EMP X, EMP Y

WHERE

COUNT' (X. SALARY BY X. SALARY
'WHERE • X. DEPARTMENT = 12
AND Y. SALARY > X. SALARY) = 2

This i s very d i f f i c u l t to formulate and there i s no guarantee that

the optimizer could determine an efficient way to execute this

request.

3. The third situation deals with an example that

i s similar to those discussed in Section 6.0.

8 6

6.3 SUMMARY

Despite the relative efficiencies of hierarchical systems,

such as IMS, and relational data base management systems, such as

SYSTEM R, there is s t i l l a basic bottleneck to overcome -- the

cost in terms of performance associated with current mass storage

hardware. A query such as "retrieve a l l claims less than one year

old" should not require a DBMS to bring each set of claim information

into core, check whether the condition is satisfied and reject or

accept the claim accordingly. Nor should the DBMS require some

specialized set of pointers based on the claim date in order to

answer such a query. Instead "smart hardware" should be available

that w i l l search the data based on i t s content rather than i t s

physical address. Content addressable memories were proposed as early

as the 1950's, however, due to the high cost associated with them,
they have only been implemented on a very small scale. In the

next section some trends in data base management research w i l l be

discussed, associative memories w i l l be described along with some

specific systems. A more detailed examination of RAP, a system

developed at the University of Toronto w i l l also be given.

87

7.0 ASSOCIATIVE PROCESSORS

The 1977 Conference on Very Large Data Bases included a

session on directions i n data base research. Some quotes from

that session are significant.

"A number of storage techniques and search algorithms

in use i n current data management systems are impractical for

very large data bases. We are interested in new hardware,

probably exploiting LSI technology, that would make those techniques

and algorithms feasible for very large data base systems. An

example would be a novel implementation of various 'key word'
/~2k 7

algorithms for searching free text in a 'smart memory1. ** ~/

"In order to realize an operational data base system i t

is substantial to achieve a reasonable response time. There are

two kinds of very time consuming processes in the system. One

is the problem solving process which appears i n [the} natural

language understanding part and {the| deductive translation part.

We need special purpose hardware such as a LISP machine or more

sophisticated machine. The other-is the data base manipulation

process. We need a very efficient data base machine, especially
when we have a very large data base. The most important and

2
d i f f i c u l t target is to improve the performance of n - type
operations such as join and projection in relational algebra.

88

"Areas of particular interest in very large data base

systems include the following ... specialized hardware. In

addition to back-end data base management systems, we are

interested in associative memories, intelligent disks, intelligent
/~26 7

terminals, and graphics systems."

"Management of very large data bases will be heavily

dependent on new hardware technologies supporting new storage

and retrieval methods. Especially associative memories and
/~27 7

parallel access algorithms seem to be a promising approach."
These quotes highlight certain ideas. It is evident that

there is concern over the ability of current data base management

systems to handle very large data bases. Improved hardware seems

to be the answer considering the comments on associative memories,

LISP machines and data base machines. The join and projection

operations of relational systems are specifically noted to be

problems.

8 9

7.1 ASSOCIATIVE HARDWARE

"Currently, the microprocessor/computer-on-a-chip revolution

i s providing the potential for production of very cost-effective

high-performance computers through u t i l i z a t i o n of a large number
/ * 2 8 7

of these processors in parallel or in a network." ^ An

associative processor, as mentioned earlier, can retrieve stored

data using the content of the data rather than i t s physical address.

In addition, an operation such as retrieval can be performed i n an

associative memory on many pieces of data at the same time. Using
/~29 7

Flynn's terminology ^ - / $o classify computer architecture an

associative processor f a l l s into the SIMD class (parallel processors

also f a l l into this class). SIMD means that there i s a single

instruction stream operation on a multiple data stream. This leads

to the observation that due to this parallelism and the a b i l i t y to

retrieve information based on content, an associative processor

w i l l have a faster data processing rate than traditional devices.

Given a faster data processing rate an associative processor w i l l

be "more effective in handling many types of information processing

problems such as information storage and retrieval of rapidly

changing data bases, fast search of a large data base, arithmetic

and l o s i c a l operation, on large sets o f data" f»-7 and otners.

Associative processors are being used at present for some

highly specialized data processing functions. Because of cost

considerations these processors are small and are used for tasks

90

such as v i r t u a l memory management, resource allocation, interrupt

processing and scheduling tasks. Use of associative processors

w i l l grow in the future but they w i l l remain special purpose to

be used i n applications having a large number of independent

data sets, that 'can be processed in parallel, a need for fast

response and a need for addressing based on content.

It i s beyond the scope of this paper to describe details

of the various hardware techniques used to implement associative

memories and processors however, the main features w i l l be

discussed.

One way to understand an associative memory is to consider

that the input consists of a search argument of x bits and the output-

consists of a bit for each word in the memory indicating success

or failure on matching the search argument.

Search
Argument-

Associative
Memory
(n words)

Search Results
(n bits)

Not a l l systems work in this fashion, some systems output the contents

of those words in memory that matched the original search argument.

On a more detailed level, an associative processor contains

a data register which is loaded with the data to be compared with

91

the data i n memory, A mask register is. used to mask off those

f i e l d s i n the memory that are not included i n the search, a

word select register indicates which words are to be searched,

a results register contains one b i t for each word and the bit i s

turned on i f Its corresponding word matches the search c r i t e r i a .

The number of matches i s contained i n the match indicator and the

multiple match resolver points to the f i r s t word that matched.

A control unit i s used to specify the operation (eg. equals,

greater than, less than) that i s to be performed.

. Consider the query introduced e a r l i e r : retrieve a l l claims

less than one year old. In this example the data register contains

the date, a l l f i e l d s except the date f i e l d are masked off via the

•mask register. The word select register would indicate that a l l

words are to be searched and the operation less than i s put into

the control register.
Data Register

0 0 01 06 77 0 0

Mask Register

0 0 1 0 0

Data

bi
*

S1 06 06 7 6 PAID $ 1 0 0 1 0

C2 SI 2 0 0 9 77 PAID $ 30 1 1

C3 S 3 Ok ok 7 8 REJECTED $.0 1 0

Ck S3 15 03 77 . '..PAID $ 12 1 0

C5 S3 31 01 7 8 PAID $ 3 9 1 1

C6 Sk 12 0 5 7 5 PAID $ 5 2 1 0

l '"word' . • search
select results
register register

92

As a result the match indicator would have a value of two and the

multiple match resolver would point to word two.

To be used effectively for data manipulation an .'associative

processor consists of a number of identical memory ce l l s . In

addition, the retrieval time should be largely independent of the

number of cells and the memory should be modularly expandable.

There are four classifications of associative processors; f u l l y

p a r a l l e l , b i t s e r i a l , word s e r i a l and block oriented. Those that

are f u l l y p a r a l l e l contain comparison logic within the associative

memory for every b i t - c e l l of every word. These are very expensive

to implement. In a b i t - s e r i a l associative processor one bit-column

of a l l the words i n associative memory is operated on at a time.

A word-serial associative processor Is., essentially a hardware implemention

of a program loop to search for a special value. These machines

have the advantage, over standard sequential processors, of reduced

instruction decoding time since only a single instruction i s

required to execute the search. However word-serial associative

processors are slow i n comparison with the other classes. Block-

oriented associative processors use a mass rotating storage device

such as a disk that has some logic associated with each track. Thus

tracks can be search i n par a l l e l . Some example of associative

processors w i l l be discussed i n the next section.

9 3

7.2 CASSM — CONTEXT ADDRESSED SEGMENT SEQUENTIAL MEMORY

The basic concept behind CASSM is that a l l operations to

be performed on the data base are done directly i n disk memory.

This eliminates the need to schedule paging of data between disk

and main memory of the processor. In addition, "parallelism i s used

to make the time to search the data base independent=of the data base

size." *- -* Thus the entire data base can be searched by hardware

for each search instruction. Most high level retrieval languages

allow the user to express parallelism i n their queries, an

architecture that provides parallelism i n retrieval eliminates the

need to translate the query into a long complicated set of procedures

(consider IMS for example).

CASSM consists of identical c e l l s , connected through an 10

bus. In addition each c e l l can connect to two neighboring c e l l s .

A c e l l consists of a segment of memory (for example, a track) and

a large section. " A l l segments of memory circulate concurrently and

in synchronization, while each logic section reads, searches,

modifies and rewrites i t s segment of memory from one end to the

other. Thus, a l l segments of memory are operated on in one
Z~32 7

circulatftonodf memory." - /

A query against a data base can be characterized as having

a specification part and a qualification part. For example,

SUBSCRIBER . SIN : SUBSCRIBER . SEX = M, specifies that a l l

SINs for SUBSCRIBERS are to be retrieved, given the qualification

94

that the SEX of the SUBSCRIBER is male. This query implemention

in CASSM involves searching and marking a l l occurrences that

satisfy the above condition. There are two comparator registers

within each c e l l , one for the specification and one for the

qualification thus allowing the query to be satisfied in one sweep

of memory.

A RAM (one for each cel l) that is one bit wide i s used to

mark the data items satisfying a given query. One bit is maintained

for each data item i n the c e l l and the association i s maintained by

relative position.

5
eoMPfitZiroa.

CcMPAfiiraR.

/?AM

Consider how the SUBSCRIBER relation might be represented

in CASSM.

95

SET
TYPE

LEVEL
WO.

INFORMATION FIELDS

A 1 SUBSCRIBER

A ' 2 SIN STATUS NAME LOCATION • BD . "SEX
V 2 S1 ACTIVE JONES VANCOUVER 31 01 50 M
V 2 CS2 ACTIVE FORD VICTORIA 15 06 46 F
V 2 S3 . CANCELLED KING t • VANCOUVER 03 03 35 F •
V 2 Sk ACTIVE BOOTH ' KAMLOOPS' 27 11 42 M

A set type of A indicates an attribute, whereas V indicates a value.

The level numbers show how the rows of information f i t i n with their

corresponding table. If a second table were included the level number

would be reset to 1 and the attributes of that table shown before values

would be given. The query SUBSCRIBER . SIN : SUBSCRIBER . SEX = M

,would,be answered i n three revolutions of the memory.

SEG;
REV.

1 .

2.

3.

SET
TYPE

A

A

V

LEVEL
NO.

1

2

2

S INFO.

SUBSCRIBER

SIN '

DON'T CARE

Q. INFO.

SUBSCRIBER

SEX

M

96

7.3 RASES : ROTATING ASSOCIATIVE RELATIONAL STORE

RARES can "be implemented on a computer system that

contains a CPU, random-access high speed main memory, and head-

per-fcrack rotating secondary memories. Data i s transferred from

main to secondary memories via channels. An associative memory

is constructed by adding content-addressing hardware to the

secondary memories. Selection of tuples in response to a query

is performed at the secondary storage device ; thus only correct

tuples are sent via the channel to main memory. RARES searches

a l l tracks on the storage device simultaneously. "The net result

is that RARES can decrease the average u t i l i z a t i o n of CPU, main

storage, channels and secondary storage devices by a query. In

many cases this w i l l allow the interface to assume a heavier query

load without degrading response time, or alternatively, to offer a
/~33 7

reduced response time with the same query load." u -*

RARES i s implemented i n much the same fashion of CASSM.

However, the method of storing tuples on the secondary storage

device i s different. Tuples can be read from storage concurrently,

however, the channel can only receive information (tuples) sequentially.

In CASSM tuples are output one at a time from the device thus

requiring several revolutions before a l l marked tuples are output.

This i s an inexpensive solution to the problem. RARES takes the

approach of laying out tuples on the storage device across tracks

rather than along tracks. When a search operation is complete tuples

are then already in a form suitable for fast output.

97

Relations are often stored.'.imnsort order because this allows

queries to be process more ef f i c i e n t l y in many cases. RARES because

of i t s orthogonal layout can preserve this sort order and process

against i t more eff i c i e n t l y than CASSM. In fact the only way for

CASSM to preserve a sort order i s to search one track, at a time.

Using this technique the output rate for CASSM would be much slower

than RARES.

98

7.h RAP : A RELATIONAL ASSOCIATIVE PROCESSOR

This particular system w i l l be described i n more detail

than CASSM or RARES. A vi r t u a l memory system for RAP which

allows large relational data bases w i l l be examined. Then some

performance evaluation statistics comparing RAP to a conventional

relational DBMS w i l l be shown.

Certain features are essential to data base management and

RAP has been implemented with these features in mind:

" (a) A la^ge capacity and modular storage

with low cost per b i t .

(b) A b i l i t y to directly map logical data

structures into physical data structures

without using auxiliary storage structures.

(c) Variable length data formats.

(d) Fast retrieval and update suitable for

on-line concurrent environment.

(e) Context . . . search operations assisted

by t o t a l associativity.

(f) Simple in-place arithmetic computations

and update. "

99

Consider the following overview diagram of RAP:

tell 1

purpose. Cenfro/kr T

set
-fanei. leu

Unit

«
* 0

ce//

RAP is a special purpose processor that communicates with a general

purpose computer. Each c e l l within RAP, as i n the other architectures,

contains a memory component and a logic component. The memory

component i s a track of a disk and the logic component "is a micro

processor which acts as a 'search machine1 on data, directs data

manipulation, and performs limited numeric computations required by
/~35 y

data base processing."' -' The set function unit provides logic

to combine results of a search, for example COUNT, SUM, MAXIMUM,

MINIMUM, AVERAGE?, The controller co-ordinates c e l l searches and

initiates the set function unit i f required.

100

As i n the other associative systems, each c e l l is

searched simultaneously. Thus response time is largely independent

of data base size. A typical query consists of one or more RAP

instructions and each instruction i s executed with one rotation
/ "~36 7

ofrthe,RAP memory. A c e l l is organized as follows: L~

ceU i-l

tcniro /ler

£>&t —

Unit

ceil L-t-/

101

Data i s stored i n the memory area and is read and written

(R and W) via fixed heads. Within one revolution the entire

contents of memory can be read. A buffer with a length of 1024

bits i s used to provide a time delay between reading and writing

information to memory. This time delay allows the ISMU, information

search and manipulation unit, to perform the necessary logic on

the data. The ISMU is also responsible for i n t e r - c e l l communication,

command decoding, i/O data transfers and ALU control.

RAP instructions are provided for retrieval, update,

insertion, deletion, data base create and destroy, control (eg.

branching) and set functions such as SUM̂ COUNT, etc. These are

implemented through the controller. Each RAP instruction i s

executed in parallel by each c e l l within the processor. Thus a

data base operation is executed against every piece of data i n the

data base i n one revolution of the disk.

A general purpose computer interfacing with RAP must provide

data communication f a c i l i t i e s for users, compilation of user

queries into basic RAP instructions, transfer of instructions to

the RAP controller, support of a concurrent processing environment,

and maintenance of data base structure information.

"RAP accomplishes relational data base management without

complex data structures and software aids such as inverted l i s t s and

hashing for multi-key searching required i n conventional systems.

This i s especially important for applications which have extensive
/~37 7

update activity. " L" u

102

To understand more about RAP .it is useful to see how-

relations are stored within memory. ~̂

TM relation domain tuple 1 tuple 2 • • • TKE
name - names

Jn contrast with RARES, RAP stores tuples i n a linear fashion along

a track rather than across several tracks. TM marks the beginning

of the track, following this are stored the relation name, the domain

names and the tuples of that relation. One tuple, TKE, delimits the

end of a relation. Relation and domain names are repeated once

on.each track of a relation. Also, no c e l l can have tuples from

more than one relation although a relation could easily spread over

more than one track.

Each tuple has a delete flag, and four mark bits A, B, C and

D. A tuple with a delete flag on i s liable for garbage collection.

The four mark bits are used to further qualify sets of tuples and

to allow the results of one instruction to be used by another

instruction. For example, i f a query i s given with multiple

qualification phrases then the f i r s t qualification is implemented

with one RAP instruction and appropriate mark bits are set, the

second qualification tests for those mark bits as well as the

second boolean condition of the query.

103

RAP with VIRTUAL MEMORY

One of the problems with current associative memories i s

their size, for example, a RAP processor that can be r e a l i s t i c a l l y

implemented given current LSI technology would contain 10 to 10

bits of memory. Large data bases require much more than this.

To solve this problem a vir t u a l memory system was designed for

RAP.

The overall architecture of a vi r t u a l memory for RAP i s

shown below C^J.

u s e 1*5

104

Bulk memory contains the data base and is divided into fixed size

pages equal to the capacity of one c e l l . Each page contains

information from one relation only so that when a page i s

transferred to a c e l l , the c e l l then contains data from one

relation only, as mentioned in the previous section. Data i s

transferred from hulk memory to RAP under control of the general

purpose computer. The basic concept is that enough data to answer

a query is paged from bulk memory into RAP ce l l s . However, in

order to make this as efficient as possible paging is overlapped

with query processing, and to this end each c e l l contains two

memories, JVLEL, buffer memory for c e l l ^ , that is being loaded with

information and MP , processor memory for c e l l , which i s being used to

execute the currently active query. When a query is complete buffer

memory becomes processor memory and the next query can be executed.

A controller, C, functions as previously explained,

receiving programs from GPC and transferring query results to

GPC. CIO, the 10 controller is connected to GPC via a separate

channel.

Overlapping of paging and query processing can be achieved

relatively easily. Each page holds information for one relation

only and each page has a unique identification. When a query is

specified the relatidntmust also be specified thus i t i s a simple

matter to know, based on a relation name, what pages are to be sent

to RAP for processing. Note that there is an assumption that RAP

105

can contain a l l information required to process any given query

although i t i s not able to contain the entire data base.

A v i r t u a l memory system i s significant to the f e a s i b i l i t y

of a design such as RAP especially when paging can be overlapped

with query processing to improve efficiency. Results of a simulation

study done for this v i r t u a l memory system "̂̂ -7 showed that

response time for an average query is directly proportional to the

size of relations. Considering that a l l pages of a relation must

be i n RAP memory before a query is executed this result i s not

surprising. Locality of information has some bearing on response

time since i t i s assumed that the higher the l o c a l i t y the more

chance there i s that relevant relations w i l l already be i n RAP

memory. If the data base i s very large however, the effect of

lo c a l i t y w i l l diminish.

106

7.5 RAP PERFORMANCE

A study has been done to compare the performance of RAP with

a conventional relational data base management system. Models

developed for the conventional system assumed that inverted l i s t s

were provided for selected attributes of each relation. (The

selection would be made based on frequency of access via any

particular attribute.) The models developed quantified the times

required to perform basic operations such as simple retrieval,

update, .qualified retrieval and implicit join.

On retrieval "RAP's advantage grows in almost direct

proportion to the number of records satisfying the qualification
^̂ *41 T

when inverted l i s t s are used i n the conventional system." ~̂

The advantage ranges from 40$ to 90$ depending on the level of

qualification. For select and update operations RAP also has an

advantage. The operation modelled i n this case involves selecting

a set of tuples based on some qualification and then updating the

selected tuples. Use of inverted l i s t s in the conventional system

causes problems because when an attribute that i s modified (on update)

is an inverted attribute the appropriate inverted l i s t must also be

modified. In contrast, RAP can perform selection and update (remember

the read write heads) within one revolution of RAP memory i n most

cases. Selection followed by deletion involves the same problem

with inverted l i s t s i n a conventional system (remember links and images

in System R).

107

Another operation studied consists of a select, computation

of some value based on the tuples selected and then retrieval

of other tuples based on that value. Because of the need to access

data i n the conventional system through inverted l i s t s RAP has the

advantage i n this operation as well. In fact, the advantage i s

particularly significant when the number of tuples involved in

the computation is large.

As associative processor such as RAP has a significant

performance advantage over conventional hardware i n supporting data

base management. The characteristics of associative processors

that lead to such an advantage are:

1. an a b i l i t y to search data fields i n parallel.

2. search logic imbedded i n the storage device

which allows data comparison to take place

without passing data back to the central

processor.

3. retrieval based on content which means that

complicated pointer schemes and index data

bases and their maintenance are not required.

k. reduced interface problems because the physical

storage of data more closely resembles the

users view of data.

10&V>

8.0 CONCLUSIONS

Data bases are becoming increasing important to today's

business environment. As companies become aware that data i s a

resource to be developed, shared and ef f i c i e n t l y managed, data

bases are increasing i n size and access to them i s more varied.

It i s essential to find efficient ways of accessing data both i n

terms of people time (eg. how long does i t take a person to get

access to required information) and i n terms of machine time.

This paper has described a hierarchical data base management

system, IMS and a relational data base management system, System R.

The focus has been on showing that IMS, because of i t s structured

approach to modelling data, i s more efficient than System R as far

as machine time i s concerned. System R, on the other hand, with

i t s high level data management language SQL is more efficient in

terms of people time.

In discussing associative processors i t i s shown that

implementing a relational data base management system using -

associative processors allows both efficient machine time and people

time.

109

REFERENCES

1. McGee, W.C., "Generalization: Key to Successful -
..Electronic Data Processing", JACM 6,
January 1959? pp. 1 - 23

2 . Senko, M.E. et a l , "Data Structures and Accessing
Database Systems", IBM Systems Journal,
Vol. 1 2 , No. 1, ,1,973, page 2 1 7

3. "Feature Analysis of Generalized Data Base Management
Systems", CODASYL Systems Committee,
May 1971 ; . , ,

4. Date, C.J., "An Introduction to Database Systems",
Addison-Wesley Publishing Co., 1975,
page 21

5. Ibid, page 180

6. Ibid, page 183

7. McGee, W.C., "The Information Management System
.IMS/VS, Part I and Part II", IBM Systems
Journal, Vol. 16, No. 2,.1977? page 109

8. Ibid, page 110

9. "IMS/VS Version I System/Application Design Guide",
IBM Form No. SH20 - 9025-4, page 4 - 40

10. Ibid, page 4.51

11 Codd, E.F., "A Relational Model of Data for Large
Shared Data Banks", CACM Vol.... 13, No. 6,
June 1970, page 377

110

Ibid, page 379

Date, C.J., "An Introduction to Database.-.Systems",
... Addison-Wesley Publishing Co., 1975

Ibid, page 5k

Codd, E.F., "Relational Completeness of Data Base
. Sublanguages", Data Base Systems, Courant
Computer Science Symposia Series, Vol. 6,
Prentice-Hall, 1972

Denny, G.H., "Ah Introduction to SQL, A Structured Query
Language", IBM Research Laboratory, San
Jose, California, RA93, 1977

Date, C.J., "An Introduction to Database Systems",
J Addison-Wesley Publishing Co., 1975

Blasgen, M.W. et a l , "System R : A Relational Approach
to Data.,Base Management, Part 3 : The
Relational Storage System", IBM Technical
Report, 1977

Astrahan, M.M. et a l , "System R : Relational Approach
to Database Management", ACM TODS, Vol. 1,
No. .2, June 1976, page 110

Gotlieb, L.R., "Computing Joins of Relations", ACM SIGMOD
Conference, San Jose, California, May 1975

Astrahan, M.M. et a l , "System R : Relational Approach to
Database ...Management", ACM TODS, Vol. 1,
No. 2, June 1976, page 100,

Lochovsky, F.H. and Tsichr i t z i s , D.C, "User Performance
. Considerations i n DBMS Selection", ACM SIGMOD

International Conference on Management of
Data, Toronto 1977

111

Michaels, A.S. et a l , "A Comparison of the Relational
and CODASYL Approaches to Data-Base
Management", Computing Surveys, Vol. 8 ,
No. 1, March 1976, page 146

Proceedings of the Third International Conference on Very
Large Data.Bases, Tokyo, Japan, 1 9 7 7 ?

page 1 9 5

Ibid, page 196

Ibid, page 1 9 7

Ibid, page 1 9 8

Thurber, K.J. and'Wald, L.D.^ "Associative and Parallel
Processors"', Computing Surveys, Vol. 7,
No. k, December 1 9 7 5 ? page 2 1 5

Flynn, M.J., "Some Computer Organizations and their
.Effectiveness", IEEE Trans. Computers C - 2 1 ,
No. 9 , September 1 9 7 2

Yau, S.S. and Fung, H.S., "Associative Processor
Architecture.-- A Survey", Computing
Surveys, Vol. 9 , No. 1 , March 1 9 7 7 ?

page 3

Copeland G.P. et a l , "The Architecture of CASSM : A Cellular
System for Non-Numeric Processing", Proc. of the
First Annual Symposium on Computer
Architecture, 1 9 7 3 , page 1 2 1

Ibid, page 123

Lin, C.S. et a l , "The Design of a Rotating Associative
Memory for Relational Database Applications",
ACM TODS, Vol. 1, No. 1, March 1976, page.54

112

Ozkarahan, E.A. et a l , "A Data Base Processor", Computer
Systems Research Group, University of
Toronto, Technical Report CSRG - 43, page 8

Ibid, page 10

Ibid, page 14

Schuster, S.A. et a l , "A Virtual Memory System for a
Relational Associative Processor", Computer
Systems Research Group, University of Toronto
Technical Report CSRG - 64, page 6

Ozkarahan, E.A. et a l , "A Data Base Processor", Computer
Systems Research Group, University of
Toronto, Technical Report CSRG - 43, page 28

Schuster, S.A. et a l , "A Virtual Memory System for a
Relational Associative Processor", Computer
Systems Research Group, University of Toronto
Technical Report CSRG - 64, page 12

Ibid, general reference

Ozkarahan, E.A. and Schuster, S.A., "A High-Level Machine
Oriented Language for a Data Base Machine",
Computer Systems Research Group, University
of Toronto, Technical Report CSRG - 65,
page 20

113

BIBLIOGRAPHY

1 . Aron, J.D., "Information Systems in Perspective",
.Computing Surveys, Vol. 1, No. 4, .
December 1 9 6 9

Astrahan, M.M. et a l , "System R: Relational Approach to
Database Management"', ACM TODS, Vol. 1,
No. 2 , June 1 9 7 6

Bachman, C.W., "The Evolution of Storage Structures",
CACM, Vol. 1 5 , -No. 1, July 1972

k. Bachman, C.W., "The Programmer as Navigator", CACM,
Vol. 16, No. 11, November 1 9 7 3

5 . Blasgen, M.W. et a l , "System R : A Relational Approach
to Database Management, Part 3 : The
Relational Storage System", IBM Research
Laboratory, San Jose, California

6. Blasgen, M.W. and Eswaran, K.P., "Storage and Access
in Relational.Data Bases", IBM Systems
Journal, Vol. 16, No. k,_ 1 9 7 7

7 . Chamberlin, D.D. et a l , "SEQUEL 2 : A Unified Approach
to data definition, Manipulation and
Control", IBM Journal of Research and
Development, Vol. 2 0 , No. 6 , , 1 9 7 7

8 . Chamberlin, D.D., "Relational Data Base Management
. Systems", Computing Surveys, Vol. 8 ,
No. 1 , March 1 9 7 6

9 . Codd, E.F. "A Relational Model of Data for Large
Shared Data Banks", CACM, Vol. 13, No. 6 ,
June 1 9 7 0

114

1 0 . Codd, E.F., "Relational Completeness of Data Base
Sublanguages"j Data Base Systems, Courant
Computer Science Sumposia Series, Vol. 6 ,
Prentice-Hall, 1972

1 1 . Copeland, G.P. et a l , "The Architecture of CASSM :
A Cellular System for Non-numeric
Processing", Proceedings of the f i r s t
annual Sumposium on Computer Archietecture,
1 9 7 3

1 2 . Date, C.J., "An Introduction to Database Systems",
Addison-Wesley Publishing Co., 1975

13. Denny, G.H., "An Introduction to SQL, A Structured Query
Language", IBM Research Laboratory, San
Jose, California, R A 9 3 , 1977

14. Dodd, G.C., "Elements of Data Management Systems",
Computing Surveys, Vol. 1, No. 2 ,
June 1 9 6 9

1 5 . Flynn, M.J., "Some Computer Organization and their
Effectiveness", IEEE Trans, Computers,
C - 2 1 , No. 9 , .September 1 9 7 2

16. Fry, J.P. and Sibley, E.H., "Evolution of Data Base
Management Systems", Computing Surveys,
Vol. 8, No. 1 , March 1 9 7 6

1 7 . Gotlieb, L.R., "Computing Joins of Relations", ACM
SIGMOD Conference, San Jose, California,
May 1 9 7 5

18. Hollander, G.L., "Architecture for Large Computer Systems",
.Proc. AFIPS, SJCC, 1 9 6 7

19. Lin, C.S. et a l , "The design of a Rotating Associative
Memory for Relational Database Applications",
ACM TODS, Vol. 1 , No. 1 , March 1 9 7 6

115

Lochovsky, F.H. and Tsichritzis, D..C-., "User Performance
Considerations in DBMS Selection", ACM SIGMOD
International Conference on Management of
Data, Toronto, 1977

Lorie, R.A. and Wade, B.'W., "The Compilation of a Very
High Level Data ..Language", IBM Research
Laboratory, San Jose, California, R J 2 0 0 8 ,

1977

Martin, J.A., "Computer Data Base Organization", Prentice-
Hall Inc., New Jersey, 1975

McGee, W.C., "Generalization : Key to Successful
Electronic Data Processing", JACM, Vol. 6 ;

January 1959 -

McGee, W.C. "The Information Management System IMS/VS".
IBM Systems Journal, Vol. 16, No. 2 , 1.977

Michaels, A.S. et a l , "A Comparison of Relational and CODASYL
Approaches to Data Base Management", Computing
Surveys, Vol, 8 , No. 1 , March 1 9 7 6

Minker, J., "An Overview of Associative or Context-
Addressable Memory Systems and a KWIC Index
to the Literature : 1 9 5 6 - 1 9 7 0 " , Computing
Reviews, October 1 9 7 1

Mowshowitz, A., "The Conquest of Will : Information
Processing i n Human Affairs", Addison-Wesley
Publishing Co., 1 9 7 6

Ozkarahan, E.A. and Sereik, K.C., "Analysis of Archetectural
Features for Enhancing the Performance of a
Database Machine", ACM TODS, Vol. 2 , No. k,
Decefber 1977

Ozkarahan, E.A. et a l , "A Data Base Processor", University
of Toronto, Technical Report, GSRG-43

116

Ozkarahan, E.A. and Schuster, S.A., "A High Level Machine -
Oriented Assembler Language for ..a Data Base
Machine", University of Toronto, Technical
Report,. CSRG-74

Ozkarahan, E.A. et a l , "Performance Evaluation of a
Relational.Associative Processor", University
of Toronto, Technical Report, CSRG-65

Rosen, S., "Electronic Computers : A Historical Survey",
Computing Surveys, Vol. 1, No. 1, March 1969

Schuster, S.A. et a l , "A Virtual Memory System for a
Relational Associative Processor", University
of Toronto, Technical Report, CSRG-64

Senko, M.E. et a l , "Data Structures and Accessing in Database
Systems", IBM Systems Journal, Vol. 12,
No. 1, 1973

Senko, M.E., "Data Structures and Data Accessing in Database
Systems, Past, Present, Future", IBM Systems
Journal, Vol. 16, No. 3,. 1977

Stonebraker, M. and Held, G., "Networks, Hierarchies and
Relations i n Data Base Management Systems",
Proceedings ACM Pacific Conference, San Francisco
Ap r i l 1975

Thurber, K.J. and Wald, L.D., "Associative and Parallel
. .. Processors",..Computing Surveys, Vol. 7> Wo. k,

December 1975

Yau, S.S. and Fung, H.S., "Associative Processor Architecture
A Survey", Computing Surveys, Vol. 9> Wo. 1,
March 1977

"Feature Analysis of Generalized Data Base Management Systems",
CODASYL Systems Committee, May 1971

117

40. "IMS/VS Version 1, System/Application Design Guides,
IBM Form Wo. SH20-9025-4.

41. Third International Conference on Very Large Data Bases,
Tokyo, Japan, 1977

