PERFORMANCE CONSIDERATIONS IN
- RELATIONAL AND HIERARCHICAL DATA BASE

MANAGEMENT SYSTEMS

by

Mary Kathleen Tod
BSc., Queens University, 1971

A thesis submitted in partial fulfillment of
the requirements for the degree of
MASTER OF SCIENCE :
in
THE FACULTY OF GRADUATE STUDIES

(Department of Computer Science)

We accept this thesis as conforming to
the required standard

THE UNIVERSITY OF BRITiSH COLUMBIA
January,_1980

® Mary Kathleen Tod, 1980



'In.presenting thfiithétfsiin pértféj %bifilméﬁt of the requirements for

an advanced degree afnfhétugivéf;fty'éf Brffish Columbia,vl agfee that
the Library shalllhakg‘if fréé]y.gvailabfe for reference and study.

I further agree‘thaﬁ.pehniﬁsion for extensive copying of-this thesis
for scholérly purposes hay be g}antedvby tﬁg Head of'my Départ%ént or
by his representatives, It is understood thét copyiﬁg or publfcation

of this thesis for financial gain shall not be aillowed without my

written pemission,

Department of __éfjwnzzZ?éV* \QZ/éuvde
7

The University of British Columbia
2075 Wesbrook Place

Vancouver, Canada

V6T 1W5

vate | \Sameiasyy 255 /950
/



11

ABSTRACT

This paper will examine two data base management systems;
IMS, an example of a hierarchical data base management system and
System R, a relational system. Each system Qill be described in
general terms followed by a discussion of their relstive perfqrmance.
A claim is made that IMS, because of its structure and the
procedural nature of its language can be more efficient than System
R. Some examples are given to illustrate this claim.

There is an increasing need today for readily available
information; ; thus more and more information is being stored in disk
files to facilitate rapid retrieval. A relational approach to data
base management permits a high-level non-procedural interface for
the user, which is important if more people require access to
information in a flexible fashion and can not afford or wait for
traditional application development. If however a relational data
base management system is not as efficient as hierarchical or network
systems then néw retrieval methods must be found.

Associative processors are introduced as a possible solution .
to this problem and three examples are discussed. RAP, a relational
associative processor developed at the University of Toronto, has
been used in a performance study to demonstrate the dramatic

performance improvements offered by associative processors . This

is also discussed.



2.0

3.0

L.o

5.0

CONTENTS

Introduction p.- 1
Evolution of Data Base Management Systems p.3

IMS -- A Hierarchical Data Base Management System

3.1 Data Base Access Commands p. 12
3.2 Logical Data Bases p. 16
3.3 IMS Storage Structures . p. 21

Structure has its Advantages p. 29

111

p.

L.t The Data Base Administrator affects Performance
k.2 Designer and Programmer affect Performance p.
4.3 Conclusions p. 49

Relational Data Base Management Systems p. 50

5.1 The Relational Model p. 53

5.2 5QL  p. 59

5.3 Relational Storage System p. 65
5.4 The Optimizer p. 69

Cont‘'d...

39

30



6.0

7.0

8.0

Performance Considerations in System R p. 72
6.1 Other Performance Considerations p. 80
6.2 Another Study p. 84

6.3 Summary p. 86

Associative Processors p. 87

7.1 Associative Hardware p. 89

7.2 CASSM p. 93

7.3 RARES p. 96

7.4 RAP -- A Relational Associative Processor
7.5 RAP Performance p. 106

Conclusions p. 108

iv

98



1.0 INTRODUCTION

Today information processing is vital to any large or
small organization. Information processing includes the ability
to extract information, to maintain and update information, to
analyse information and to rely on the accuracy and currency of
this stored information. Information is required to perform the
dally business transactions, to plan for the future and to control
the development towards the future,

Information processing is essential to support management
and decision making roles. As a result there are trénds in business
towards large corporate data bases which are accessible to non-dp
personnel using high—level,:guerylanguages. Thus there is a
movement away from designing specialized applications to access

data in the most efficient way possible.

Online banking (including automated funds transfer),
automated manufacturing, igventory control, personnel and payroll
applications all involve access to data bases. With this trend to
integrated data base solutions to business systems, the size of data
bases and hence the amount of data stored on machine readable media
is increasing. At the same time computer hardware costs are
decreasing and this will lead eventually to an age where home
terminals are a reality. Such terminals will provide numerous

functions relying on large quantities of shared data.



With the growing number of areas accessing large data
bases there is a demand for efficient data retrieval and flexible
high~level tools for data access. The needs for data have changed
dramatically since the early days of computing. The next section
will discuss how data base management systems (DBMS) have changed

over the years to support such new requirements.



2.0 EVOLUTION OF DATA BASE MANAGEMENT SYSTEMS

The first systems that processed information on a large
scale used punched cards, the ultimate in sequential files. This
medium was slow and unsuitable for large volumes of data. In
addition, the fixed size of the card was often inappropriate although
techniques were developed to overcome this restriction.

In the early 1950's magnetic tape was introduced as a faster,
more flexible storage medium. Problems of fixed length were solved
since variable length records could be maintained on tape; however,
fiies remained sequential.

As more applications were written it was recognized that
certain operations recurred, for example: sort, delete a record, add
a record, generate a report. It seemed logical and very useful to
generalize these file handling functions £T1:7. Also data sharing
and integrated files were considered in an attempt to reduce the
overall programming burden. The new field of data management had
begun.

Having provided generalized functions for file maintenance,
sorting and report generation, the computing community began exploring
the concept of data sharing. It was recognized that there was little
advantage to a business if one department hoarded its own data
forcing a second department to acquire and maintain its own set of

overlapping data. This led to a need to define data in a file in



some standard way so that two (or more) parties could access their
relevant pieces of information; Hence data définitionslanguages
were born, examples of which are, COMPOOL, JOVIAL and COBOL. With
these new generalized methods of defining data, report generation
toolssbecame more sophisticated in accessing the data. Some
examples of these report generation tools are RPG, MARK I and
MARK II, GIRLS and FFS,

If we look at the parallel developments in storage technology
we see that storage media had undergone a change from punched card
technology to magnetic tape. Thus the access speed was significantly
increased but the access method remained sequential. Files were
typically read from beginning to end, record by record, in order to
extract the necessary information.

Because pieces of information are inter-related it became
necessary to add facilities for data structuring to the list of data
management facilities. The first structuring technique that was
used in DBMS was hierarchic. "One of the main advantages of these
structures is their inherent computer efficiency with regard to
storage space and peripheral storage accesses, Another advantage
is a correspondence of hierarchic records to the report structures
often required by commercial enterprises.” [’2;7

A hierarchy is a very natural strﬁcturing and, to a generation
brought up thinking and using sequential access methods, the ability

to flatten a hierarchy into a sequential storage medium proved its



worth. For example, the first IMS system demanded requests for
data in & top to bottom, left to right fashion corresponding with
the way the hierarchy was flattened for storage on tape.

Greater flexibility in data access was brought aboﬁt with
the widespread availability and increased reliability of direct
access storage devices. Random access became truly feasible. This
led to developments of network structures in data base management
systems; IDS developed by General Electric, TOTAL and ADABAS are
examples. The Codasyl DBTG played a major role in the thrust
toward network systems.

Hierarchic systems also benefitted from direct accEss
methods. A perfectly flat structure was no longer necessary when

implementing a hierarchy.

Originally stored and accessed in the order 1, |2, 3, 4, 5, 6, this

ﬁierarchy could be accessed randomly if direct access pointers are used.



It is interest;pg to note that IMS developed from a
hierarchy implemented in a "flat" fashion to one with pointers
and eventually became a network data base management system, thus
taking advantage of the changing storage and access methods.
Another development in data base management systems stemmed
from the need to define multiple views of one set of data. Schemas
or logical data bases allow one program to access one subset of

data from the entire data base. In this example:

TYPE 1

| | |
TYPE 2 TYPE 3 TYPE 4

a logical data base could be created consisting only of segments
of type 1, 3, 4. 1In this case the program need not know about type

2 records and in fact is not permitted to access type 2 records.

Hence security measures are introduced.

There are still problems to be solved. Improved data
independénce, high-level access languages, compléteness of the data
base model and improved date security and integrity are some areas

of concern.



With data independence it is possible to change the
physical storage structure of the data or the data access strategy
without affecting any application programs. Current data base
management systems provide some independence but as demonstrated
in later sections it is quite limited.

How easy to use and flexible are the current data base
accessing languages? The CODASYL report [—3;7 describes host-~
language and self-contained systems. A hostflanguage system
permits data base access from a host-language such as PL/i and
subroutine calls to perform a well defined set of operatiéns
against the data base (eg. retrieve, delete, insert). A self-
contained system'provides an interface suitable for‘a non-programmer,
This interface usually considts of a highly specialized language
that is as english-like as possible. Because of the increased
demand for flexible data access to support business functions,
better déta base accessing languages mﬁst be developed.

Dées thé data base model have the ability to represent
real-world relationships or is the model too confining? The
hierarchic and network data modéls impose constraints 6n fhe ability
to represent relations and thus on the abllity ﬁo model the real-
world.

As data sharing increases so does the importance of security

and data integrity, and the size of any one data base. Hence efficient

access becomes even more important.



Data independence, high-level languages, the ability to
represent relations, security and integrity and fast access are
important concerns. Relational data base management systems may
solve some of them.

In the following sections a hierarchical DBMS and a relational
DBMS will be compared. A discuséion of associative processors in
Section 7 will show that they permit faster access than conventional

random access disks.



3.0 CURRENT DATA BASE MANAGEMENT SYSTEMS -- AN EXAMPLE

In order to illustrate the current state of commercially
available DBMS IMS, an IBM product,will be discussed. The concepts
introducéd can, I feel, be generalized to other systems such as
TOTAL, ADABAS and SYSTEM 2000.

IMS is a hiérarchical data base management system, that is,
it uses é Hierarchicai structure to represent whatever world it
models (eg. business organization, personnel information, inventory
systgms). If we look back to the days of tape files or card files
we can see the beginnings of hierarchical data management. Suppose
we have an employee with certain dependants, job experience and
educational skills. In early days this information could have

been represented as a series of records, each with a record type

stored in a predefined order:

0 )

1 | Smith , T 2 | Carol, 26, F |, 1 David, T, M 3| Jebil, 010178 [.ce
0 . o - ) 0

cce |g|Welding, Zmo. |4|Economics, sdanfl, Taglor, A. coe




10

In IMS this information would be represented with the foldowing

diagram:

EMPLOYEE

DEPENDANT | EXPERIENCE EDUCATION

In this example, the "world" consists of any number of employees

and for each employee; threé relationships:

1. dependants of the employee.
2. Job experience of the employee.
3. educational skills of the employee.

Notice that these relationships are not explicitly stored in the
data base. Rathef, they are implied by the structure of the data
base. Also,-if the employee has no dependants this information

is represented by having no dependant records in the data base. The
information explicitly stored is the various data fields within eéch
record -- or segment to use IMS terminology. In our example the

boxes labelled DEPENDANT, EXPERIENCE, EDUCATION and EMPLOYEE are



1

segments. The EMPLOYEE segment may contain such information as
SEX, SALARY, BIRTHDATE, ADDRESS, etc. Similarily the segment
EDUCATION may contaln such information as GRADE, EDUCATIONAL
INSTITUTION, COURSE DATES, COURSE COST and so on., In IMS the
basic uhit of retrieval, update, insertion and deletion is the
segment.

IMS is a sophisticated data management tool and it is
definiteiy outside the scope of this discussion to fully describe
all of IMS's many features. However to prepare the way for
further discussion it is necessary to describe the basic data
manipulation commands and logical data bases, and then to discuss
IMS storage structures in some detail. Finally, several examples
will be given to demonstrate how the typical programmer uses IMS

efficiently.



3.1

delete s

DATA BASE ACCESS COMMANDS

12

IMS provides facilities to retrieve, update, insert and

egments from a data base.

IMS COMMAND
GU (GET UNIQUE)
aN (GET NEXT)
ISRT (INSERT)
REPL (REPLACE)
DLET

(DELETE)

Included are:

FUNCTION

direct‘segment retrieval

get next segment in sequence
add a new segment

update existing segment

delete a specific segment

These commands are best explained

In order to maintain some

with some examples.

consistency within this paper I will

introduce an application with which I have been involved. This

particular system is an insurance application containing information

on policies, subscribers (those who have policies with the company)

and claims. The exact deiails of the data bases will not be given.

here but wheré relevant some of the structures will be shown.



13

Levey
SUBSCRIBER /
- - ' [
; Z
DEPENDANT PoLicy CLAIM -
1
1 {
RULE RECEIPT _J 3

This structure represents an individual (SUBSCRIBER segment)
who is ehrolled with the insurance company for a certain type of
coverage (POLICY and RULE segments). This individual has a wife
and childfen (DEPENDANTysegment) ahd over the years has submitted
certain claims to the éompany (CLAIM and RECEIPT segments). The
level of this hierarchy is three. Each data base must have a root
segment and the root segment must have a key field. In this data
base ﬂhe SUBSCRIBER segment is tﬁe root segment and its key is a
social insurance number (SIN). Non-root segments do not necessarily

have keys.



14

GET UNIQUE

| In IMS a GU proyides random access to a segment with a
given key field‘value. When issued a GU ignores any current
positioning information maintained by IMS. Instead, using éither
an index or a hashing algorithm IMS finds the specified segment
directly. A GU is normally used to access a new root with no
relationship to the root previously accessed.

Given a specific SIN in the SUBSCRIBER data base IMS will

position itself for processing that root and all of its child segments.
Child segments are DEPENDENT, POLICY, RULE, CLAIM and RECEIPT

segments pertinent to that root.

GET NEXT

o This command directs IMS to move forward in the data base
from it's current position. Té understand its use one must under-
sﬁand the implied ordering of an IMS data base: top to bottom and
left to right in the hierarchy. For a given SUBSCRIBER, as
established by a GET UNIQUE, éuccessiVe\GN commands ﬁould retrieve
DEPENDANT segments,kthen the POLICY segment (assume only one policy
per individual), all RULE segments, then the'first CLAIM segment,
all RECEIPT seéments for that CLAIM, the second CLAIM segment and
its RECEIPT segments, etc. GET NEXT commands may be qualified.
For example if an inguiry is issued for all claims for a given

subscriber, the following could be done:



15

1. GU for the given SUBSCRIBER, its key field
(SIN) must be suppliéd.
2. GN qualified to indicate that only CLAIM
segments are to be retrieved.
Note that step 2 would be repeated until IMS indicated no more

claims for that suﬁscriber exist.

INSERT

Whenever a new segment must be added to the data base the
ISRT command is used. If a dependent segment is added its parent
musf first exist. IMS provides certain rulés for insertion. For
gxample, a last-in-first-out rule can be applied or segments méy

be inserted so that their key field is in a specific order.

BEPLACE

o REPL is used when updating fields in a segment. The segment
must have been previously accessed by a special type of rétrieval
command, GHU or GHN. These commands operate exéétiy és GU and GN but
perform the extra function of marking the segment for subsequent
replacement (or deletion). When a segment is marked in this fashion

it is unavailable for otﬁer access.

DELETE
DLET is used to delete segments from the data base. When a
segment is deleted all of 1its children are also deleted. Note that

the GHU and GHN are also used with the delete function.



16

3.2 LOGICAL DATA BASES

During the early design phases of the insurance application
the data base design underwent a significant change. Initially

there were thirteen unrelated physical data bases. All relational

information was stored as data fields in the physical data base or

as logic within some particular program. For example:

SUBSCRIBER PocicY

| [

Here we have two separate dats bases, the SUBSCRIBER and the POLICY
;iata bases. In the . ENROLMENT:.sggment there i'smé field called
POLICY-NUMBER., If we atﬁempt.to find details on all policies in which

a subscriber is enrolled we would construct the following program:



17

1. Issue a GU to the SUBSCRIBER segment
giving the social insurahce number of

the particular subscriber.

2. Do until no more ENROIMENT segments.
3. Get the next ENROLMENT segment.
k. Using the POLICY-NUMBER stored in

that segment issue a GU to the
POLICY segment in the POLICY data

base.

There are some problems. One is that duplicate information exists;
the POLICY-NUMBER must be maintained in two separate places. A
second pfoblem is that the programmer must be aware of how the
data is physically separated in order to access the correct
information. . The programmer must know:
1. that the pélicy-number is the key in the
policy data base.
2. that the different IMS calls are issued to
two different physical data bases. This is
required in the IMS command.
3. that an implied relationship exists between the
SUBSCRIBER data base and the POLICY data base

through the ENROIMENT segment.

Now suppose information is required about a specific policy and

the various people who subscribe to that policy. The data bases



18

are not organized to suit this query, thus presenting a third
problem. In fact to séfigfysuch a query the entire SUBSCRIBER
data base would have to be scanned!.

Because there were varied and conflicting requirements
for access to information in the insurance application, the data
bases were redesigned using logical data bases instead of physical
data bases. In IMS logical data bases are constructed through
the use of pointers. Consider the previous example with SUBSCRIBERS

and POLICIES.

0l C
SUBSCRIBER P 4

' Pocicy
ENROLMENT > RULE HOLDER >




19

The "arrowed" segments contain pointers from one physical data
base to another. Contrast this with strictly physical data bases
in which data (the POLICY-NUMBER)is used to represent a relationship.
Here the SUBSCRIBER data base is'logically connected via the
ENROILMENT segment‘to the POLICY data base and the POLICY data base
is légically connected via the POLICY HOLDER segment to the
SUBSCRIBER data base.

Through the use of logical connections a programmer can
now equaily readily find all policies for a given subscriber or
all subscribers for a given policy. This is possible because
logical data bases in IMS proviae moré tailored views of the data.
One programmer can work with view A and another with view B, without

knowing that Physical separation of data exists.

SUBSCRIBER PoLicy
POLICY
RULE SuBsCRIBER
RULE
ViEw B

VIEW A



20

Someone, such s g data base administrator (DBRA), will
describe the physical data bases to IMS and includé innthat
description information about the different pointer segments (what
physicﬁl data base they reside in and what physical data base‘
segment they point to for example). A DBA will also describe the
logical data bases as represented”in view A and view B so that IMS
can handle the physical data separation and appropriate pointer‘
updating.

When a new subscriber is added with a given policy IMS
manages the pointers and can automatically create a POLICY HOLDER
segment once an ENROLMENT segment is created. Thus improved défa
iﬁtegrity ié provided.

In implementing logical data bases one must be aware that
there is‘overhead involved on the part §f IMS in maintaining
pointers. Bach proposed pointer segment must be examined with particular
emphasis on how often it is uséd and the mode of use, batch or
online. Information that is required frequently for online use

is a prime candidate for a pointer segment.



21

3.3 IMS STORAGE STRUCTURES

When using a data base management system such as IMS
the prograﬁmer need not be concerned withvthe physical storage
structure and the access to such storage. Instead the interface
is through the data management language that has been provided.
This language may consist of a host language such as 21/1 and some
predefined subroutine calls or it may be a sPecializedmself—contained
language designed only to support data access (often these languages
are as english-like as possible).

The data management 1anéuage must then interface with a
specific‘access method which in turn interfaces with the physicai

records. TFor IMS this may be described with the following diagram:

Lnterface: dser / Tater faces
ijrammer /
Y ]
/
tored
ms / Dl ] n‘ﬁa’yma:fz‘o/;
2 ‘ N |
Hébrarchaical
Aceess .
methods
P I
ISAM , OSAM
VSAM




22

The first interface was generally considered in the
explanation of the various IMS calls and the use of logical
data bases. |

Through interfaces 2 and 3, the program and the data base
language function without any knowledge of device dependent details
and with a hierarchical picture of the stored segments. A program
"does not know (a) anything about physical records (blocks);
(b) how stored fields are associated to form stbredﬂrecordé ool
(c) how sequencing is perférmed (eg. it may be by means of physical
continguity, an index, or a pointer chain); or (d) how direct access
is performed". Le7 Knowledge of such details is provided at
interface k4.

There are four hierarchical access methods : HSAM, HISAM%
HDAM and‘HIDAM. HSAM and HISAM are strdngly sequential in nature,
iﬁffact.HSAM can exist on tééé. For direct access, most existing IMS
data base implementations use either HDAM, hierarchical direct access
method or HIDAM, hierarchical indexed direct access method. HDAM and
HIDAM use hierarchical and/or child-twin pointers to link segments
together. These pointers provide a mechanism for linking all segments
within a root occurrence and for linking root occurrences.

The subscriber data base will be used to indicate how these
two types of pointers differ, and then HDAM and HIDAM are described

in more detail.



23

SuBSCRIBER
ud|
I l
DEPENDANT | . FowrlY i
of =] I

= I 4 -
CLAIM

heerarchical pointers in SuBSCRIBER. data dbase

SUBSCRIBER,
— T T Ptlrlet ~
- ‘ N
7 ) { ~
/s | ! AN
\
/ \ \
r \ \
\ \ =
- DépE’VM""‘rJ PoLICY - \\ — s
il_  CLAM. A

Child - Fwin ,poz‘ﬂfers i SUOBSCRIBEL data KLise .


http://4a.se

24

Hierarchical pointers begin at the root and follow the
segments from top to bottom and left to right through the hierarchy.
Only one pointer exists in the root segment pointing to the fi:st
occurrence of the left-most child segment. ZEach child segment
points either to its first left-most child or to the next occurrence
of that segment typé. When there are no more segments of that
type the pointer crosses to the next segment type in sequence; for
example, the last DEPENDANT segment points to the first POLICY
segment.

. The second diagram illustrates child-twin pointers. In this
example £here are three pointers in the root (SUBSCRIBER) segment,
one for each type of child segment. If the SﬁBSCRIBER ségment had
more children there would be more pointers, always one pointer for
each child type. A child segment then points to its next segment
occurrence. If the child segment itself had children there would be
more pointers, again, one for each child type.

The hierarchical pointer scheme requires less storage while
the child-twin pointer scheme provides faster access to the different

points in the hierarchy.



25

"HDAM provides direct access (by sequence field value) to
the root segments, via a hashing and éhaining technique, together
with pointer access to the subordinate segments.” [75;7 In the
customer account data base the key of the root ségment is the SIN,
this key is supplied with a value, given to the hashing algorithm
and an address is generated. If this is the first key value to
hash to the calculated address then no subsequent chaining is
required. However if the SIN collides with an existing SIN at the
same address, the SIN is chained to the first SIN via a pointer. All
child segments of the root (and their child segments, etc.) are
held together through the uée of hierarchical or twin-child

pointers.



99921/ 704 ——>=

CHASHING
AL&oR1THAM.

EVER V SECAAD

D/GIT7T”

—————a——

9z2/0

796323/ 403 -~

99924709 | Frewpz | o | Fred N %‘j.f;—
HASHNK
ALEOR 1 T

EVERY SECAD

D/ar7

— gJ2/0

4994 2 11 ‘709

FIELD M

CHAIN

79623/ 403

FIELD2 | v e

FIECO N

N Ll
PTAR

26



27

So, as long as there are a small number of root segments that hash
to the same location the access to a given root segment is fast.
Dependent segments are placed as physically close as possible to
the root segment in order to minimize disk seek time when looking

at a root and all :its ‘' children.



28

HIDAM

Instead of direct access to the roots, HIDAM provides
indexed access via the sequence field of the root-to the root
segments and then pointer access to any dependent segments. "A
HIDAM data base actually consists of two data bases: a "data" data
béée, which contains the actual data, and an associated‘INDEk data
base, which provides the (dense) index. There is an entfy in the
INDEX data base for each root ségment in the "data" data base." ZTG?]
o In the insurance example an index wouid beﬂestablished'for
the key field of the SUBSCRIBER segment, sociasl insurance number.
When a socilal insurance number is provided in an IMS call, IMS
uses that value to search the index data base. Ffom the index data
base IMS retrieves physical location information so that the actual

data can be found.

S
St o—-—————-:zf;k

Y

sgmmi-

. ~—
cndex

data base |



29

k.o STRUCTURE HAS ITS ADVANTAGES

A data base management éystem such as IMS can be criticized
for its lack of data independence or for the artifici#al and confining
nature of the hierarchical structures it imposes on information.
Another disadvantage is the host-language interface through which
a programmer must work in order to communicate with data. Such a
host-language requires a programmer to know toco much about the
system; how data is stored, how it is accessed, exact record layouts
are examples. These criticisms are warranted if we could ignore the
incredible growﬁh in data bases and slow disk access times. As it
is, the structure inherent in IMS (and other hierarchic or network
DBMS) is the mechanism that permité relatively fast access to such
ééta”bases. |

There are two major factors to be considered in designing
data base applications: one is the amount of storage space required
(eg. the size of the data base) and the second is the speed with
ﬁhich information can be assemﬁled from the data base. The next
section deals with methods or organizing an IMS data basé and
processing data from the data base that will improve response.

In general these methods are related to the data base structure
(the hierarchy).

We will first examine what a data base administrator can

do and go on to consider what each individual programmer can do. All

of these techniques have been employed in the insurance application

mentioned earlier.



30

b1 THE DATA BASE ADMINISTRATOR AFFECTS PERFORMANCE

Segment Position

We begin ﬁith a general purpose statement about IMS that
has bearing on segment positioning as well as on several other
areas in our discussion. “IMS/VS manages the space within the
records, and allocates and reclaims space as segments are inserted
and deleted. In allocating space, an attempt is made to keep adjolning

segments in the hierarchic sequence as close together in storage as

possible.” L17 (Emphasis added).

AKoo7

SEQ/ SEC2 SEG 3

When IMS positions Segments for this data base in physical storage
SEGA is "closest" to the ROOT segment and SEG3 is "furthest" from
the.ROOTmsegment; When segménts are close together it is likely that
one physical access to the disk will bring these segments into core

together. Thus a retrieval of ROOT followed by one or more retrievals



31

of SEGI segments will involve only one access. If however, access

to this data base record typically involves ROOT and SEG3 then the

hierarchy should be:

RooT

sec 3 ) SE& 2 SEC/

As a general rule segments that are accessed frequently should be
close to the top-left in the hierarchy. Segments that are
accessed infrequently and/or in batch-only processing (where the time,

constraints are not so severe) should be at the bottom;right.



32

HDAM vs HIDAM

In the insurance application, because most functions were
done online, direct access to root segments was required but the
choice had to be made between HDAM and HIBAM data bases. "HIDAM
is useful when both sequential and directAaccess by root kéy are
required." L87 HDAM on the other hand is better for direct
access thén HIDAM because the index data base is removed, HDAM
was chosen fbf the insurance data bases to facilitate online
processing since the majority of online processes required direct
access. It was decided that although some batch programs required
sequentiai processing of data, a sort step would provide the
necessary ordering at a small additional cost. The human factor

involved in online systems demanded fast response.



33

ROOT ADDRESSABLE AREA, SYNONYM CHAINS

An HDAM data base consistsvof one primary area called the

root addressable area (RAA) and an overflow area.

SEGC A
]
i
|
|
SEG 8 2
| T
' I
- -/
|
i — l
S&€ ¢ 2 3 SEC D 2
/ 7/
Koot
Area [secAa | 8/ ] cr
2N YN DY
ﬂrer///ou) c2] o/ | 82 ] c3] .
/rezz I
D2 | . I




34

Root segments are stored in the root addressable area their
address being determined by a hashing algorithm chosen by the

data base administrator (DBA). In addition a limited number of
dependent segments are sﬁore& in the RAA, this iimit is set by the
DBA. The length of the RAA is also controlled by the DBA. How
can the DBA choose the most appropriate (1) size for the root
addressable area (2) hashing algorithm and (3) number of depéndent
segments stored iﬁ £he RAA? o

In the insurance application statistics were gathered to
predict the average, minimum and maximum number of child segments
per parent segment for all data base segments.

Armed with these figures the data base administrator could
choose suitable parameters for each physical data.base. In fact these
statistics led to splitting one data base into three data bases for
better performance.

Given the typical number of child segments per parent the
number of dependent segments stored in the RAA was determined. It
is important to store as many segments as possible, preferably all,
in the RAA so as to minimize accesses. This is valid given the
statement that IMS keeps segments in a data base record together
if at all possible. Hence one access to the root segment will get
all child segments most of the time. "At least root segments should
be stored in the root addressable area; In addition, active

dependent segments should be placed in the root addressable area



35

since this will provide fast access to them because of their physical

proximity to the root segment."

97

The total size of the foot addressable area can be

determined knowing the average size of a data base record and the

nunmber of roots.

But because a data base is not static an additional

factor is the amount of free space necessary so that insertions can

be done within the RAA instead of the overflow area.

where

MS

MS

F,F

MS + MS x F

Ms (1 + F)

MS x F'

number of bytes in the average data
base record (including user and IMS

maintained data).
expected number of data base records.

number of bytes per block, multiplied
by .8 to keep chaining at a reasonable

level.
minimum size of RAA in blocks.
a growth factor, F1 > 1

optimum size of RAA,

Note that F1, the growth factor must be a function of data base

activity.



36

In choosing a hashing algorithm it is important to choose
one that minimizes the number of synonyms produced and distributes
the data fairly evenly over the root addressable area. To do this
an analysis of root segment keys must be done to determihe their
characteristics. Provided with IMS are several hashing modules
and a utility which takes as input the root segment keys and

produces a map for each algorithm showing key distribution.



37

SECONDARY INDEXES

If a segment is frequently accessed through a non-key
field (this is particularly applicable to root segments ),
regardless of the root key field, then it is a candidate for a
secondary index data base. In this situation an index data base
is created, as in HIDAM data bases, containing one record for each

key of the secondary index data base.

KLoo7

SEG 7/ SEC. 2 SEAQ § SEG 6

SEC 7

SEGE8




38

A sécondary index set up for SEGT will allow access directly to
this segment without first qualifying the ROOT segment and

SEGE.



39

h.2 DESIGNER AND PROGRAMMER AFFECT PERFORMANCE

Having dealt with how a data base administrator can
optimize an IMS application, we turn to the role of designers

and programmers.

BATCH vs ONLINE

Proéfams within the insurance application were split into
batch and online transactions. Batch transactions (report writers
and statistics gatherers, for example) usually examine all roots of
a particular data base and report on ﬁhese in order. Hence using
HDAM data bases a sort step is required. This requires additional
time'and thus such transactions are not scheduled online where
response time is so important. Rather they are scheduled as overnight
Jobs and do not interfere with the online system.

Some insurance programs originally designed to be online
and yet work sequentially through one data base were modified so
that only one root of the data base is used. For example, an
inquiry transaction designed originally to give information on all
insurance claims for a particular subscriber now gives information
on either the most recent insurance claim or a unique insurance claim,
as specified by the user, for a particular subscriber. In another
situation a program was split into an online portion and e batch

portion to minimize data base activity during an online session.



Further, batch programs are not run concurrently with
online programs since batch programs tend to make heavy use of
buffers which would in turn slow online performance. If an online
program requests a piece of information it is brought into the
IMS buffer pool, some actions are then performed and information
is displayed to the terminal. While awaiting the user's response ,
if a batch program is working away chances are that the buffers
in the pool will be completely changed before the online program
is able to continue. When the online program does continue it
will cause another access to be executed, probably for the same
information. If the batch program runs at a different time additional

disk accesses can be minimized.



44

LOCALITY OF INFORMATION

Suppose the'following data base structure exists:

ROO7

i
Sec A J | sec B8 SE& C

SES D

It is always adviseable to retrieve a root segment and process

éll child segments of that root (two SegAés, one SegB, one SegC
and three SegD's) before continuing to examine anothér root segment
either in the same or a different data base. This will minimize
accesses since a root and its child segments can typically be

retrieved with one access.



As another example of locality consider:

42

RooT
s€6 A SEG £ SEGC G
SEG ¢
SEC 8
SEGC H
SEC D SEQ E
SEGC T Sec T




43

There are too many segments to retrieve with one access in the
above example. SEGG, SEGH, SEGI, SEGJ are stored in a separate
block, However, IMS tends to kéep segments together according
to structure as mﬁch as possible. A programmer should therefore
try to process these segments in order (top to bottom and left to

right) and thus minimize disk access tiﬁe.



44

HIERARCHICAL POINTERS

A ﬁfogrémmer need not be aware of hierarchical or child/twin
pointers in the data base. However, if hierarchical pointers are
in use, performance can be ehhanced if the program accesses each

segment in order according to the hierarchical pointers.

Lloo7T

e
7 /L“"‘]

SEL / Sea 2 SEC 3F SEQ 8

In addition to extra disk accesses as discussed in the
section 6n locality, IMS will work much harder following pointers
if a program asks for SEG1 to SEG8 in any order other than that
shown above. This is not so with chidd/twin pointers since the
ROOT segment wbuld then contain a separate pointer for each £hild

segment type instead of one pointer pointing to SEGI.



45

LOGICAL DATA BASES

] C :

|

_ &J

< |

‘ v
Deta Base /

Luta Buse X. u

Segment D in DATA BASE 1 points to segment Z in DATA BASE
2 and segment Y bointé ﬁo éégment A. Thus a logical daté.Bésé
could be constructed joining the two déta bases together (data
base 3).. A program that needs information from DATA BASEF1 and
DATA BASE 2 could use this logical view however éaéh time segment‘z;~
is'acéessed that program is crossing from one physical data base to .

another and in doing so causes additional accesses.



46

(J
Data Base 3 I
| . \ v

A Zgu‘cd[ Datr Base.
YZA

To reduce this cost,one program in the insurance application
uses two"separate physical data ﬁases, extracts information from
each then sorts and merges' the resultant information to achieve
the same effect. It is important to know when physical boundaries

are crossed.



47

MULTIPLE POSITIONING

For eéch data base that an application program accesses
IMS maintains a Eointer to the current position within the
data base. In most situations this is sufficient. However, on
occasion a programmer must take advgntage of multiple positioning

in IMS. For example:

Roo 7T

SEK / SEC 2

Here it is necessary to access the first 6ccurrence of SEG1? then
£he first 'occurrence of SEGZ2, the second occurrence of SEG1 then
the second occurrence of SEG2, etc. With multiple positioning IMS
will maintain a pointer to the current position in segments of
type SEG1 and a second pointer for segments of type SEG2. The
programmer must specify a request for multiple positioning in a

situation of this type.



48

OTHER CONSIDERATIONS

A ﬁfogrémmer must be aware that a GU call in IMS is
more expensive than a GN call. Hence once position ié established
via a get unique it is advantagebus to use as much information as
possible from that parent segment via GN calls. This encourages
a programmer to follow the hierartchical structure‘whenéver péssible.

Insert and delete opefations ére expensive in IMS due to
pointer énd space management activities that take place. If at all
possible a replace (REPL) should be done instead of a delete followed
by an insert. In tﬁe inéurance application one data base was
extensively redesigned to use replace calls instead of delete/insert
calls.

All calls to IMS should be as fully qualified as possible
thus eliminating much overhead in IMS and potentially reducing the

search time.



49

4,3 CONCLUSIONS

An attempt has been made to show that the structure of
a system such as IMS is one of the features allowing current
DBMS to cope with.increasing data base sizes and response demands
éf online systems.

In the next section relational data base systems will be
examined"and the question of whether these systems can indeed
perform as well as hierarchic or network systems will be

addressed.



50

5.0 RELATIONAL DATA BASE MANAGEMENT SYSTEMS

There are several criticisms of hierarchical and network
data basé management systems. One criticism is the‘lack of-data
indépendehce thatvthese éystems'provide, and a second concerns
the cumbersome interface that a programmer must deal with.
Relational data&base management systems provide a much higher degree
of data independence and a simpler interface.

Because of the growth in data base size, an emphasis on
integratéd data and thus shared data, the need for readily
avallable information and the dynamic nature of such information,
it has become increasingly important for application programs and
query languages to be independent of changes in the stored
representation of information. The term for this family is data
independence; Systems like IMS héve provided some data indepéndence;
logical data bases and schemas are examples. However as E.F. Codd
has written, "Three of the principle kinds of data dependencies
which still néed to be removed are: ordering dependence, indexing
dependence‘and access path dependeﬁce." 1711'7

IMS can be used to illustrate fhese different dependencies.

ORDERING DEPENDENCY:
o 'Tﬁe roéts of an IMS data base have some order associated
with them; for example aﬁ employee data base could be ordered by

employee number. If the ordering of this file were altered so that



51

all employees were ordered by social insurance number, then any
programs depending on an ordering according to employee number

would have to change.

INDEXING DEPENDENCY:

S VIMS ﬁfo?iaes indexing facilities at the non-root level,
these aré called secondary indexes. Programs can then be ﬁritten
that will access data based on the index, If the index 1s removed

these programs would require modification.

ACCESS PATH DEPENDENCY :
| :iMS bre;eﬁtéwé'hierarchic picture of data in a data base.

If this étructufé, which in effect defines theIaCCess path, changes
then the programs using the structure may also have to change.
In particular, if the hierarchy is being used efficiently as
éxplained in the previous chapter the progfams would have to change.

Data manipulation languages designed to work with hierarchic
or network DBMS depend heavily on the underlying structure of the
data model. For example, IMS has the commands GN and GNP that
are specifically designed ﬁo guide a programmer through a hierarchy
frém top to bottom and left to right. In additibn the languages
that define structure, logical connectiéns and access path sensitivity
in IMS are notbat all consistent with the data manipulation language.
Henée a user must learn several interfaces.

To providé a comparison relational data base management

systems ﬁill now be discussed. System R, a prototype under development



52

at IBM is used as an example. Particular attention will be paid
to ﬁhe underlying storage techniques and basic retrieval

mechanisms that System R provides.



5.1 THE RELATIONAL MODEL

53

A paper by E.F. Codd provides a definition of the term

relation:

"Given sets 81, S

2)

. 8, (not necessarily distinct),

R is a rélation on these n sets if if is a set of n-tuples eaéh

‘of which has its first element from S

S., and so on.

2

defined above, R is said to have degree n.".

s 1ts second element from

We shall refer to S. as the Jjth domain of R. As

[ae]

"The most convenlent way to represent a relation is with

a table.

Suppose we consider an insurance application as mentioned

in the previous section, the following relations could occur:

SUBSCRIBER
RELATION

ENROIMENT
RELATTION,

SIN STATUS NAME - LOCATION BD SEX
S1 ACTIVE JONES VANCOUVER {3101 50| M
S2 ACTIVE FORD VICTORIA 15 06 k6 | F
S3 CANCELLED | KING VANCOUVER | 03.03 35| F
sk " ACTIVE BOOTH KAMLOOPS 27 11 2| M
GROUP NO. SIN DATE STATUS COMPANY

G1 Sh 1977 ACTIVE A

G2 S1 1976 ~ ACTIVE B

G2 S3 1976 UNPAID B

G3 82 - 1978 ACTIVE C

cL sk 1975 CANCELLED D




54

CLAIM | cram no. | sIN DATE STATUS AMOUNT

RELATION : .
c 8 06 06 76 | PAID $100
c2 - S1 20 09 77 PAID $ 30
C3 - S3 o4t o4 78 | REJECTED | '$ O
chy - |- s3 15 03 77 | PAID = $ 12
Cc5 S3 31 01 78 | PAID | $ 39
cé st | 120575 pAaID | $ 52

The SUBSCRIBER relation shows all subscribers that have contracts

with the ihéurance company. ENROLMENT states that a particular subscriber
belongs to a particular group (GRCUP NO.), was enrolled in a given
year (DATE) and has a certain status on that group. All claims

that hévé'Bégh regeived are listéa?iﬁifhe CLAIMVrelation. For those
claims that are paid (STATUS) the amount of>payment is listed (AMOUNT).
| Consider the definition of a felafidn. This system contains
three relations (more relations will be added laﬁer), the domains

of the SUBSCRIBER relation are SIN, STATUS, NAME, LCCATION{'BD and
SEXband the dégree of the CLAIM relation is five. 'Furthermofe;

each row in a table represehté a tuple of the relation, the qrdering
of rows is insignificant, all'rows are distinct~énd the ordering of
columns is significant. BEach relation has a primary key,.one Oor more
domains which uniqueiy identify each tuple in the relation. The

keys in the above relations are SIN, GROUP NO. and SIN, and CLAIM N0

respectively. Notice that in the enrolment relation the two domains



55

SIN and COMPANY could also be a primary key. It is also possible
that a domain of one relation is a primary key‘of another
relation, for example SIN in the CLAIM relation.

There are two bésic retrie&ai languages for relational data
base manégement systems: relational algebra and relational calculus.
The relational algebra provides basic operations that are performed
6n one or more relations to produce a relation as a result. These
basic operations are permutation, projection and join; Permufation
results in the interchange of two or more columns of a relation and
is necessary because ordering of columns in a relation is significant.
Thus one permutation of the CLAIM relation would produce columns
6rdered as CLAIM NO.,, STATUS, DATE, SIN, AMOUNT. DNote that the set
of queries answerable By.a relaﬁion is the sahe as the set answerable
by any bermutation of that relation.

A projection consists of selecting certain columns from a
relation, forming a second relation and‘removing any duplicates

from that second relation. Using the notation of Date [TTSJ7:

ENROIMENT / GROUP NO., COMPANY ]

results in a relation

GROUP NO. COMPANY
G1 A
G2 B
G3 C
D

Gl



Note that the tuple G2, B exists only once.

.56

C.d. Date describes the join operation "Iwo relations

- with a common domain, D, can be Jjoined over that domain

' The

result is a relatlon in Wthh each tuple consists of a tuple from '

- the first relation concatenated w1th a tuple from the second

[m]

relation which contains the same D-value".

To 1llustrate

a join operation a fourth relation is added, the CONTRACT relation.

CONTRACT
RELATION

A join of ENROLMENT and CONTRACT over GROUP NO., ENROLMENT %

FONTRACT would glve‘

i

GROUP NO. RULE NO,
o RI

G1 R5

G2 R2

G3 R2

G3 R3

Gh " R4

Gh R1

GROUP NO. SIN DATE STATUS | COMPANY RULE NO,
Gl . sk 1977 ACTIVE A R1
] ok 1977 ACTIVE A RS
G2 S1 1976 ACTIVE B R2
G2 S3 1976 UNPAID B R2
G3 S2 1978 ACTIVE C R2
G3 s2 1978 ACTIVE C "R3
Gh Sh 1975 CANCELLED D Rh
Gl sh 1975 CANCELLED D R1




57

Operations in the relational algebra can, of course, be combined:

ENROLMENT /[  SIN, COMPANY_] * CONTRACT would result in:

SIN COMPANY RULE NO.
Sk PO R
Sl A RS
s1 B R2
S3 B R2
82 c R2
s2 c R3
sh D Rl
sk D R1

The relational algebra is more complex and more procedural than
felational calculus. It demands that a user know precisely what
tables are in the system; what common domains are in these tables
and the order of domains within a table. Most implementations of
relational DBMS use a high-level relational calculus as a user
interface.

Relational calculus allows a user to define the desired
result of a query and the underlying data management.system
tfanslates that definition into a series of relational operations,
such as projection and join.

Specifying a projection in relational calculus differs little
from relaﬁional algebra:

{ (ENROLMENT. GROUP NO., ENROLMENT. COMPANY)}



58

this is equivalent to

ENROLMENT [ GROUP NO., COMPANY ]

A Jjoin operation is easier to specify using relational
calculus:
{(ENROLMENT SIN, ENROIMENT ., COMPANY, CONTRACT. RULE NO.):
 ENROLMENT . GROUP NO. = CONTRACT . GROUP NO. 3
this is equivalent ﬁb ‘

ENROLMENT [/ SIN, COMPANY ]/ * CONTRACT

The relational calculus allows & user to specify what information is

fequired not how to get it. It is important to note that the two

methods are equivalent in retrieval power and that an algorithon

exists for converting any calculus expression into an algebra
L1157

expression. An example of relational calculus will be

given when we deal with System R's retrieval language SQL.



59

5.2 SaL

Syétem R provides a language called SQL, formerly SEQUEL,
which can be used as a stand.alone user languaée or interfaced with
PL/1. SQL is a high-level language used for data retrieval, data
méﬂipulation, data definition and data control. This is in contrast

with IMS since IMS provides separate and distinct'facilities for

data aefinition'and data control.

SQL QUERY FACILITIES

”‘Ali'qﬁéfies that can be expressed in SQL have the same basic

format.
SELECT ( some type of data )
FROM ( a table containing the data )
WHERE ( some)condition describing the choice of
. data : -

Using the tables developed earlier we will demonstrate the various

query facilities.

SELECT SIN
FROM SUBSCRIBER
WHERE SEX = 'F !

This query might be 'read' as "Select all social insurance numbefs
for subscribers that are female". Note that the domain name SIN has
been provided and the name of tﬁe SUBSCRIBER relation.
Several domains may be_selected:

SELECT SIN, NAME

FROM SUBSCRIBER

WHERE SEX = 'F '



All domains of a given relation may be selected:

SELECT *

FROM SUBSCRIBER
WHERE SEX = 'F

All entriés in one domain may be selected:
SELECT ' SIN
FROM SUBSCRIBER

Multiple conditions may be specified:’

SELECT SIN
FROM SUBSCRIBER

WHERE SEX = 'F°

AND STATUS = ' ACTIVE '

The condition can contain an arithmetic expression:

SELECT CLAIM NO.
FROM CLAIM
WHERE AMOUNT $ 2 * DEDUCTEIBLE

(This assumes that a value is assigned toﬁDﬁDﬁCTiﬁiE.)
éﬁilt-in functions are a#ailable: o
SELECT AVG  (AMOUNT)
FROM crazM
This wouidwgive the average éﬁgﬁﬁt paid out for a claim.

Multiple relations may be specified:

SELECT CLAIM NO.
FROM - CLAIM
WHERE ST% = SIN' =
SELECT  SIN
FROM - SUBSCRIBER

WHERE SEX- = ' F '



61

Other facilities include specifying the order in which queries
are returned -- ascending or descending by some domain, a SELECT
UNIQUE facility that will eliminate duplicates, reordering of
domains so that they are not in the same order as in the table,
and the ablllty to retrieve more than one set of information and
perform set operatlons on the result (UNION, INTERSECTION, MINUS).
A more complete descrlptlon of SQL 1s glven by G H‘ Denﬁy ZT16‘7

It should be noted that in order to form the querles in
SQL a user must know (1) the exact format of the tables, the
doﬁain naﬁes and (2) ﬁoﬁ information is stored in the tables,
for example the domain SEX is stored as 'F' for female and 'M' for

male.



62

DATA MANTIPULATION

in SQL>a user may UPDATE a tuple or tuples in a relation,
DELETE tuples from a relatlon and INSERT new tuples in a relatlon.
The format of these commands is very s1m11ar to the format of the

SELECT command .

DELETE CLAIM
WHERE DATE & 01 01 77

'Delete all claims prior to January 1, 1977.'

UPDATE ~ ENROIMENT
SET STATUS = ACTIVE
WHERE SIN = 's3'

'Update the status of S3 to active.'

INSERT INTO CLAIM
<c7, sk, 030077, PAID, $35%
'Insert a paid claim into the CLAIM relation.'

the that the values being insefted must be in domain order.



63

DATA DEFINITION

" Derinition of new relations is done via a CREATE TABLE
command and relations can be destroyed through a DROP TABLE:‘
command. When creating a table an ordering may bé speéified

(an OEDER BY clausé is used). This ordering has a bearing on
%he_ph&sicél proximity of t;ble}enﬁrieé. |

'. A user who has negd §f specific tables and specific table
ordering;can use the DEFINE VIEW command. This is similar to a
schema és discussed ih Déte. 4717;7

Another command; EXPAND TABLE; allows for dynamic modification

of relations by adding new fieidé.."



64

DATA CONTROL

Thefe are four areas concerned with data control:
transactions, aqﬁhorization, integrity and triggers. A transaction
in Sysfem R coﬂsiéts of a éeriés:of SQL commands that perform a
function., The importance of transactiéns is fheir reiationship
to backup and recovery. The beginning of a transaction defines
a point to which a user méy backup.

Authorization refers”to the ability of a user to read,
insert, aelete and update tables within the data base.

Assertions help maintain data integrity. For example,
ASSERT ON INSERT TO CLAIM: AMOUNT 2 $0 means that no claim can
have an amount less than zero. |

Triggers allow a user to define other integrity information.
For examble a trigger could be defined so that whenever the STATUS
in the ENROIMENT relation is set to ACTIVE theFSTATUS for the same
SIN in the SUBSCRIBER relation is also set to ACTIVE.

This brief discussion of data management facilities using
SQL leads to a description of how System R stores information and
finally to an outline of the optimizer that determines the optional

way to satisfy a data request in SQL.



65

5.3 RELATIONAL STORAGE SYSTEM -- RSS

All data necessary for data base management, including
user data, access path information, catalog information and
intermediate results, is stored in a collection of logical address
spaces called segments. (This is an unfortunate choice of
terminology since IMS uses the term 'segment"for its record level of
information. )

The étorage component of RSS manages physical disk space

and to this end maps the segments described above to physical

locations on disk. Each segment in fact consists of a set of equal

sized pages and the storage component deals with slots on disk the

size of one page. Thus physical page slots are allocated and

freed as required and RSS maintains a page map for-each segment.
Relations which consistsof a number of tuples are stored

within segments. "Associated with every tuple of a relation is a

tuple identifier of TID." [_18;7 The RSS is responsible for storing

and accessing tuples and‘for maintaining the various polnter structures

that link tuples of the same or different relations together. A

tuple identifier is implemented as shown in this diagram:



66

page <

m i | ] | L4k

A tuple identifier contains a page number and a slot number. The
page number references a particular page within a segment whilé
the slot number directs the RSS to an area always maintained at the
bottom of the page. From that 510t an additional pointer that has
been stored via RSS péints to the actual tuple. ©Since data is
accessed in pages this scheme retrieves the requeéted information
in a éingle page access, in most cases, once the TID itself is

accessed.



67

Tuples are associated with each other either through the

use of images or links which are defined by the user and maintained

through RSS. An image is a logical ordering of an n-ary relation,
with respect to values in one or more sort fields. Images are
maintained through the use of a multi-page index strﬁcture and the
index information is stored on one or more pages within the segment
containing the relation.

While images are used to order tuples within a relation,
links are used to connect tuples in different relations. The
links perform a similar function to child/twin or hierarchical
pointers in IMS. RSS maintains these linké and adds to them as new

tuples are added to the data base.

s/ | s/ e ap
s2 °~><: s3 cz2
s3__ & s S~ 3 )
_Ss¢ ss ¢4 4
2 - »
ss S \Cb’ o
s6¢ —+—= |56 o o~
} c7
Image  for SuBScR 185 Py ,
SuBSce ) BER latior: 9
telation &/
crs/
clz |
ar3 ‘ o
s D
s ete.

CLAM
telaliors.



68

In this diagram an igggg'eXigts for - the SUBSCRIBER relation ordering
tuples according to subscriber number._ Note that.the image is
stored separately from SUBSCRIBER jnformation. A binary link exists
from SUBSCRIBER to ciaim éssoéiating all claims with the subscriber
that iséued4£hem. A unary link could be added to order claims on
date if that was a reqﬁirement. (Not shown in the diagram.) Thus
‘a unary link is used to order tupies within-onetfelation wifhout.
using an image. Yote.that an image fequires extra storage épacé

" and additional IO processing. Binary links always connect tﬁples_‘>
from two differéht relations; Thé following diagram illustrates how
images are implemented using a VSAM—like tree which is based on the

B-tree concept.

e

Be |

<

TID2,TID3

BN

7iDi, TIDT, TiD4 / dlmns |2 |78 )| 16 |77 | ¢ | . 70

T




5.4 THE OPTIMIZER

"The objective of the optimizer is to find a low cost means
of executing a SEQUEL statement, given the data structures and
access paths‘ayailabie.". [f 19 7 The optimizer has two main
criteria in determining the best aceess path: minimizing page
fetches and minimizing CPU instructions. In addition the optimizer
can weight CPU cost or 1/0 cost depending on whether the system is
compute bdund 6r?1/0.b§und,' | A

As discussed earlierv,b System R provides for physical
clustering of tuples and'relations based on imagesfand links., It
is the function of the 0ptiﬁizer_to take advantage of these properties
whenever possib;e}in determ;ﬁing the gxecqtioﬂ_of a given queryL‘ The
optimizer goes through severai'steps in deterﬁining the best access.

(1) Classify the statement accdrding to certain

o language features such as the user of a Join

operator or a simple restriction operator.

(2) Check the system catalogues to:determiné what

A perﬁiﬁent.images and links are ayailable.‘AFor

exagplég_ o
SELECT A, B
FROM - R
WHERE . C IS LESS THAN X
In this query.an image on the field C would be

pertinent to efficient execution.



70

(3)  For each language feature mentioned in (1) above the
| optimizerucan éhoose from a ;et ;f ﬁ;edéterﬁiped
metqus qf ekecution. One of more méthbdsuWili_
be ;easonabie for the query. Two methods that
would be ;gaspnable_in the abovevsituatiqn are: .
Methpd A:,uUSe é élusteripgAimage yhich matbhgs
a pfgdicate whose comparison Qpe@ator is noﬁ te o,
i Methpd;B:,dUse é hoﬁ-clustering‘image which matches
a pfédiqate whose compa;isoh dpera£or is n;t "=,
(4) Given more than one régsonable methdd,.calcglate'an
gxpected.cost'and choose the mihimum cost.méthéd.
For method A, -assuning half the tuples in the relation
éatiéfy thevprediééte? the'expected&édst is B/ (2 x T)
wheré R is the relation cardinality and T is the |
avefage number_of tupléé per data page. For methdd B,
the_expected cost to retrieve all tuples is R/Z,
If an image or link eXists that will directly facilitate the query, a
method will be chosen that useé it. In addition, if more than one
link or image is available, the method whiqh uses the link or image
with a clustering property will be chosen since it will reduce IO

significantly.

As a further illustration, consider another query.

SELECT A,B
FROM R
WHERE C = X

AND D = Y



71

A clustering image exists on C and a non-clustering image exists
on D, The optimizer will choose to gse the clustering image existing
on C. Note that in this case it would be best to be able to use both
images and compare selected tuple identifiers before accessing any
tuples from the relation. However, the optimizer as described does
not provide this facility.

This section is intended to briefly describe the optimizer
facility of System R. A discussion of its effectiveness is outside

the scope of this paper since little detailed information is available.



6.0

PERFORMANCE CONSIDERATIONS IN SYSTEM R

72

Given a brief explanation of System R the insurance

application will be examined in more detail to compare the

performance of some typical tasks using IMS or System R.

The following relations exist:

SUBSCRIBER

ENROLMENT

CLATM

RECEIPTS

TIT=, N et N

T
Ve e Do

as
iy

DEPENDANTS

CONTRACT

RULES

SUBSCRIBER:

DEPENDANTS :

GLAIM:

SIN NAME ADDRESS STATUS AGE
GROUP NO. | SIN | DATE STATUS | COMPANY
CLAIM NO. | SIN | DATE STATUS AMOUNT
CLAIM NO, | DEP TYPE DATE AMOUNT
DEP SIN STATUS AGE
GROUP NO. | RULE NO.

RULE NO. CATEGORY ' PERCENT LIMITS

describes all people who have contracts.

all dependants of a given subscriber.

all claims that have been processed.




ENROLMENT :
RECEIPTS:
CONTRACT :

RULES:

73

the group/company to which a subscriber belongs.
details of the claim.
the contract rules for a particular company.

details of specific rules.

An IMS version of this data base might be:

SuUBSCRIBER
DEPEN DANTS | evrocmen7 CLAIM.
7 /
4 /
/
7/ /
' 4
/
// /
7’ /
4 4
cRour
CLAM
(con7rACT )

RULES RECEIPT




T4

There are three data bases: one with subscriber related information,

one with group/contract information and one describing all claims

that have been-proéessed.' Relationships between the subscriber

and contract informatidn as well as the subscriber and claim

information exist, thus various "logical views" of the data base

can be constructed.

GROUP

SUBSCRIBER

SUBSCRIBER

=

DEPENDANTS

CLAIM

RECEIPTS

EXAMPLES OF LOGICAL VIEWS

CLAIM

SUBSCRIBER




75

The first typical task is to evaluate a new claim for a given
subscriber. Such a process consists of several steps (note that

this is a simple view of claim evaluation):

1. Does the claim already exiét?
2. boes the subscriber exist? ,
3. For each receipt in the ciaim

a) does the dependant exist?
b) is the item covered for the date?

c) determine amount to be paid.
L, Insert the claim in the data base.

5. For each receipt, insert the receipt information.

It is assumed that all IMS data bases are HDAM, (See Section 3), which
facilitates random processing at the expense of eequential proeessing.
In System R, it is assumed that links exist providing clustering so
that the data bases' underlying structure closely resembles that

in IMS. The critical element in this analysis is the number of

disk acceeses (I0s) that are required to perform the task.



76

STEP IMS I0S -SYSTEM R I0s

1. GU 1 . SELECT

—

(or more) for index page.

(claim) 1 for data page.
2. GU o SELECT 1 (or more) for index page.
(subscriber) g ' ' : 1 .for data page. '
3a. GNP 0 . SELECT 0 if link exists from
. (dependant) o . subscriber to dependant.
3. GNP 0 SELECT O if link exists to
(enrolment) . : - cluster information.
3c. GNP ‘ 1 ‘ SELECT 0 for contract information
(rules) ‘ . - . if link exists. 4
: 1 (or more) for index to
.rule,
-1 for rule information.
L, ISRT ' 1 . INSERT 1 (or more) for index.
(claim) - 1 for data.
5. " ISRT 0 ~ INSERT - 0 if link between clainm
(receipts) , and receipts exists.
TOTAL ‘ i _ 8 minimum

In this example even when System R has a similar underlying
structure to that of IMS, additional access time is required :
8»accesses versus ﬁ accesses. This»énalysis is generous to |
System R since en index access wili typically reéuire as many
accesses as the level of the index. If‘the‘indeﬁ.level wefe two
for each relation then the number of accesses in.System R weuld
become 12 and an index level of threevwould force the number‘of

accesses to 16. The prime reason for additional access time



7

required by System R is the indexing scheme used to implement
images for relations, as discussed éarlier. If such an index
scheme were repléced by a hashing scheme as ih HDAM, System R
would lose the flexibility and reiative speed of"écanhiﬁg a
relation effectively whiqh it must be able to do for pfoper
performance of Jjoin operators, a cornerstone of felational data
base management.

In an article called "Computing Joins of Relatlons",L R.
Gotlieb has analyzed dlfferent algorlthms, used in computlng
relation Jjoins. ZT ;7 He has determlned that I/O activity must
be minimized and that ordered key lists when kept on both domains
being joined are the most effective way of minimizing IZOS. These
ordered key lists are similar to images in System R. Tﬂe concept
of relétion Jjoining is not necessary in IMS since relgtions are
already Jjoined through the hierarchical aatavbase structure of IMS.
In an IMS data base it is important therefore to structure the
hierarchy to join those relations that are in fact most frequently
Joined in the application. Thus for example DEPENDANTS is a child
segment of SUBSCRIBER since it is often necessary to join the
SUBSCRIBER and DEPENDANTS relations, similarly RECEIPTS is a child
segmenﬁ of CLAIM.

As a second example suppose a user asked the system to “"list
all paid claims for a subscriber". In System R a SELECT statement

is used:



78

SELECT CLAIM NO.

FROM CLAIM

WHERE STATUS = PAID
AND SIN = 81

Assuming that a link is provided between the SUBSCRIBER relation
and all claims in the CLAIM relation, the above Staﬁément would
require one access to iﬁdéx the subscriber and one access to
retrieve the page containing that subscriber's information. In

contrast an IMS programmer would code:

CALL PLITDLI ( FOUR,
QU
SUBSCRIBER - POINTER,
RETURN - AREA,
KEY = 81 ) ;
DO WHILE (SUBSCRIBER - STATUS = BLANK) ;
. CALL PLITDLI ( FOUR, -
’ GNP,
SUBSCRIBER - POINTER,

RETURN - AREA,
NO KEY )



9

While this is 6bviously not as.conéise and straight forwara as

an equivalent System R statemént it does result in a single aécess,
if symbolic pointers are'used to'implement the logica; gelationship
between SUBSCRIBER and’ CLAIMS.

| Another typical faék involves»enrollihg a new subscriber,

" To do this both systems will have to:

1. " create a SUBSCRIBER entry.
2. create depehdanfé for this subscriber.
3. link subscriber to an appropriate .group.
:STEP IM3 I/0 SYSTEM R IZO
N ISRT q ' INSERT 1 (or more) for index.
(subscriber) 4 1 for data.
2. - IsRr o % INSERT 0 if link is’
(dependants) o available,
3. ~ ISRT 0 TNSERT 0 if link is
(enrolment) . . available,
" TOTAL _ 4 1 "~ 2 (or more)

The above analysis assumes that no images exist for ‘either SUBSCRIBER
6r DEPENDANTS relation. Fﬁrther I0s .are required if images db exiét}
Theée few exampleé sﬁow>situations wherg System R is not as
efficienﬁ as IMS, Assuming for a moment that some othef examples can
be constructed showing System R to be more efficient that IMS there
are other aspects of System R .that also degré&e pefformancé. These

will be discussed in the next section.



80

6.1 OTHER PERFORMANCE CONSIDERATIONS USING SYSTEM R

The functions of System R's relational storage system
include concurrency control, facilities for checkpoint and
restart, transaction management, transaction recovery, physical
storage management, maintenance of links and images as well
asddata access. At another level within System R, the Relational
Data System (RDS)i"provides high level, data indepéndent facilities
for data ret;iévgl: manipulation, definition and control." L7
What éverhead is involved in providing these functions?

F.H, Lochovsky and D.C., Tsichritzis have examined'relational,
network énd hierarchical daﬁa baée management systems with user

performance in mind. 1722;7 Three factors were considered:

1. proportion of éorrectly coded application
programs.

2. coding time.

3, debugging time.

In their study users were chosen and assigned to one of the three

data base management systems and given time to familiaiize themselves
with the user interfaces. Following this, a set of programs were
devised and the users impleﬁented these programs. Results of this
study showed that the relational DBMS provided a better user interface
than the hierarchicgl DBMS in allvfhree areas; correctness, coding
time and debugging timél' One of the major problems in using the

hierarchical DBMS was setting the data base position pointer before



81

"navigating" through the hierarchy, while another was using the

éet next within parent (GNP) command correctly. In addition,

some problems were assoéiaﬁéd with the unnaturalnéss of hierarchical
DEMS.

The reason for introducing this study is to emphasize that
the advahtages associated with using a relational data base
management system result to a large degree from the high level
user interfdce provided ;;‘for example SQL in System R. However
queries expressed in SQL must be analyzéd“by the optiﬁizer; This
involves the overhead”of parsing the.SQL statement, classifyihg
the statement according to certain rﬁiéé, exémining various
system catalogs to find suitable links and images and then selecting
the beét method of satisfying such a query. All this muét be done
s before any relevant data can be retrieved. A“possible solution
would be to perform the above actions at compile time instead of
execution time, however, this is impossible if System R is to
maintain the flexibility of dynamic link and image definition,
dynamic table definition and dynamic table extension.

Arguments can be made to show that a relational data base
management system, such as System R, iequires additional storage
space. Thus, over a wide raﬁée of accesses to the data base more
physicalAIOs will be required. Consider for example such features
as backupApage maps used to handle segment recovery. Extra storage
is also required for intermediate relations that are created by

various relational operators. Page maps are maintained for each



82

segment, a segment consists of physical pages and the page map
show the physical location of each page of a segment on disk.

For recoverable segments (intermediate relations are not recoverable
éegments) a backup page mép initially has entries identical to

the currént page map. As information in the segment changes the
current page map also changes but the backup page map maintains

an old version for possible recovery. Relations require more
storage because the key information has to be stored in Dboth
"parent" and " child" segments. Consider, for example, the various
£elatioﬁs in %he insarance applicaﬁion: .SIN is maintained in
SUBSCRIBER and DEPENDANTS relations, CLAIM NO. exists in CLAIM
éﬁa“ﬁECEifTS wﬁéfeas_in‘ahhierarchicaimdé£a>base SIN occuré 6nce
only“ih'fhé"SUBSCRIBER segment, CLAIM NO. occurs ohce only in the
CLAIM segmenﬁ;-'

As mentioned in the previous discussion, all relations in
System R are accessed through an indexing scheme. Thus access to
any tuple or relation directly involves one or more accesses to an
index page followed by one access to a data page. This is a
distinct disadvantage to System R.

In System R there is no well defined concept of locality
of information, no equivalent to the "top - left" in a hierarchy
which is known by a programmer to be ;lose (i.e.; in the same
physical page) to the root segment. A prog;ammef can not therefore

také advantagé of segment ordering in order to minimize IOs.



83

Because links and images may be defined with a clustering

property4in System R and this clustering property can be defined

dynamically there is some danger that these will be used

indiscriminately, resulting in serious fragmentation of relations

and clusters.

These are some areas for concern in System R and indeed

in any rélational DBMS. A summary is providéd by an article in

Computing Surveys.

~[ 257

"The user of a procedural DSL, like
~the DBTG DML, can select for his

particular interaction the most

efficient access strategy, correspond-

ing to a given schema definition.

can give the system directions for

traversing the ... model to locate the
desired information rather than letting

the system choose a route of its own.

In situations where efficiency is

critical, such a syétem might be able

to out-perform higher level, less

procedural interactions."



84

6.2 ANOTHER STUDY

In a similar study M. Stonebraker and G. Held 4:h2-7 have
compared netwerk, hierarchical and relational daté base management
systems. This study concentrated on the different language:levels;
high level'non-procedural languages and low level procedural
languages. It was concluded in the study that non-procedural
languages reéult in increased programmer efficiency, increased
data independence and better protection and integrity at the
expense of machine efficiency.

To support the statement concerning machine efficiency
three situations are discussed in which a procedural system can
be more effective.

1. In some situations it 1s possible to express a
particular query'in more than one fashion., It is argued that a
programmer using a procedural language will determine the most
efficient way of implementing the request before carrying out
the programming task. On the other hand, using a non-procedural
language the user ié unaware of the fastest method and may not
choose appropriately.

2. Stonebraker and Held demonstrate that a non-
procedural languége may be inappfopriate for certain requests.

The example they use is to find the member of a particular

department who has the second highest salary. In a procedural



85

system such as IMS if the segment containing salary is ordered
on salary valuerthen it is simple to satisfy this request. Expressing
such a request‘in SQL would require: -

SELECT ~ X. SALARY |

FRbM"" EMPX, EMP Y

WHERE

ébﬁﬁf (X. SALARY BY X. SALARY

' “WHERE" - X. DEPARTMENT'Z 12
AWD Y. SALARY > X. SALARY ) = 2
This 1s very difficult to formglate and there is no guarantee that
fhe optimizer could determine an efficient way to execute this
request. |
| 3. The third situation deals with an example that

is similar to those discussed in Section 6.0.



86

6.3 SUMMARY

Despite the reiative efficiencles of hierarchical systems,
such as iMsgrand relational data base management systems, such as
SYSTEM R;'there is still a basic bottleneck to overcome ;- the
ébgézin'terms of pefformgnce associated with current mass storage
hardware. A queryvsuqh as "retrieve all claims less than one year
01d" should not require a DRMS to bring each set of claim information
inté core, check wheﬁher tﬁé_condition is satisfied and rejeét or‘
accept the claim acgordingly. Nor should the DBMS require some
specialized set of pointers based on thé claim“aaﬁe in order to
answef such a query. Instead "smart hardware" should be available
that will search the data based on its content rather than its
physical address. Content addressable memories were proposed as early
as the'1950's, however, due to the high cost associated with thenm,
they have oniy been implemented on a very small scale, In the
next section some trends in data base management researcﬁ will be
discussed, associative memories will be described along with some
specific systemé. A more detailed examination of RAP, a system

developed at the University of Toronto will also be given.



87

7.0 ASSOCIATIVE PROCESSORS

The 1977 Conference on.Very Large Data Bases included a
session 6n directions in data base résearcﬁ. Sbme quotes from
that session are signifiqant.

"A number of storage techniques and search algorithms
in use iﬁ current data management systems are impractical for
very large data bases. We are interested in new hardware,
probably exploiting LSI technology, that would make those techniques
and algorithms feasiBlé for very large data base systems. An
example would be a novel implementation of various 'key word'
algorithms for searching free text in a 'smart memory’. [T2h47

"In order to realize an operational data base system it
is substéhtial to achieve a reasonable response time. There are
two kinds of very time consuming processes in the system. One
is the problem solving process which appears in Ehé) natural
language understanding part and Eha deductive translation part.
We need special purpose hardware guch as a LISP machine or more
sophisticated machine. The other.is the dafa base manipulation
process. We need a very‘efficient data base machine, especially
when we have a very large data base. The most important and
difficult target is to improve the performance of n2 - type

[257

operations such as join and projection in relational algebra."



88

"Areas of particular interest in very large data base
systems ihclude the following ... specialized hardware. In
addition to back-end data base management systems, we are‘
interested in associative memories, intelligent disks, intelligent
terminals, and graphics systems." L1267

"Management of very largé data bases will be heavily
dependen£ on new hardware technologies supporting new storage
and retrieval methods. Especially associative memories and

parallel access algorithms seem to be a promising approach." [721;7

These quotes highlight certain ideas. It is evident that
there isAconcern over the ability of current daﬁa base management
systems to handle very large data bases, Improved hardware seems
to be the answer considering the comments 6n associative memories,
LISP machines and data base machines. The Jjoin and projection
éﬁerations of relational systems are spécifically noted to be

problems.



89

7.1 ASSOCIATIVE HARDWAREk

o=

"Currently, the microprocessor/eomputer-on-a—chip revolution
is proviaing the potential for production of very cest—effective
hlgh-performance computers through utlllzatlon of a large number
of these processors in parallel or in a network " [~28;7 An
associative processor, as mentioned earlier, can retrieve stored
data using the content of the data rather than its physical address.
In addition, an operation such as retrieval can be performed in an
éssociative memory on many pieces of data at the same time. Using
Flynn's termlnology lf 9;7 to classify computer architecture an
assoc1at1ve processor falls into the SIMD class (parallel processors
also fall into this class). SIMD means that there is a single
instruction stream operation 65'5 multiple data stream. This leads
to the observation that due te this parallelism and the ability to
retrieve information based on content, an associative processor
will have a faster data processing rate than traditional devices.
Given a fastef data processing rate an associative processor will
be hmore effective in handling many types of information processing
proﬂlems such as information storage and retrieval of rapidly
changieg data bases, fast search of a larée data base, arithmetic
and logical eperations on large sets of data" 1730e7 and others.

Associative processors are being usea at present for some
highly sﬁecialized data processing functions. Because of cost

considerations these processors are small and are used for tasks



90

such as virtual memory management, resource allocation, intgrrupt
processing and scheduling tasks. Use of associative proceésors
will grow in the fuﬁure but they will remain speclal purpose to
be used in épplications having a large number of independent

data sets, that >can be processed in pérallel, a need for fast
response and a need for addressing based én content.

It is beyond the scope of this paper to describe details
of the vérious hardware techniques used to implement associative
memories and processoré however, the main features will be
discussed. |

One way to understand an associative memory is to consider
that the'input consists of a searcﬁ‘argument of x bits and the output
consists ofia bit for each word in the memory indicating success

or failure on matching the search argument.

Search Associative Search Results
Argument 2 Memory A 3 (n bits)
~ (n words)

Not all systems work in this fashion, some systems output the contents
of those words in memory that matched the original search argument.
On a more detailed level, an associative processor contains

a data régister which is loaded with the data to be compared with



91

the data in memory. A mask register iévused to mask oﬁf those
fields in the memory'that ére not included in the searcﬁ,'a
word $elect regiéter ihdicates which words are to be seafched,
a results register c;ntains one bit for each wofd_énd the 5it isr
turned on if its corresponding word‘matches the search criteria.
,The-ﬁumber éf métches is conféined in the match indicator and:the
’ﬁultiple match resolver points to the first wofd that matched.
N A control unit is uSGq to-sPécifyvthe opératién' (eg. equals,‘
éfeafér than, less than) that is to be performgd.q

. Consider the quéry introduced earlier: retfieve all élai@s
}ess thanboné yeér old. .In this exampie the‘data fegistér céntéiﬁs
the date, all~fields’except the date field are masked off via the
mask regiété;f The word seiect ;éé&é%éf ﬁdﬁld‘indicate that all
words are to be searched and the"opéfation‘less thah is pﬁt into

the control registef.

‘Data Register

o | o oroer7 | 0 0
* Mask Reg_i;ster
0 o 1 0 0
" Data -
i | s 06 06 76 |  PAID g0 f 1] |o
c2 s1 20 09 77 PATD | $ 30 1 ) |
3 S3 ok ob 78 REJECITED $ 0 1 0
ch s3 | 15 03 77 UPAID $12 1 0
c5 53 31 01 78 PATD C$ 39 1 1
o sh 12 05 75 ! PAID $ 52 i 0
' A ! : “'word- . - search

select  results
register register



92

As a result the match indicétor would have a value of two‘and the
multiple match resolver would point to word two. 

To be used effectiveiy for data manipulatipn.én_;assopiative
procéssof consists:of a number of identical meméry cel1s;' In
addition, the retrie&al time should be largely independent 6f the
humbgr of cells and the memofy should'be modularly expanaable.
There are four classifications of associaﬁi?e'processors; fdlly
parallel, bit serial, word serial and block brienﬁed. 'Thoée thatb
are fully parallel Contain comparison logic within the'éssociative
memory for ever&Abit—cell of every word. These are very ekpensive
to implement. In a bit-serial associative'processor one bit-column
2of all the wordé in associative memory is operated on at a timé.
‘AAword—serial associative processor is-essentially a hard&are imple@ention
of a program loop to search for a special vélue. These machines
havé.the advantage,‘over standard sequeniial proceésors, of reduced
instruction deéoding time éince only’avsingle instruction is
‘required to execute the search. However word-serial associative
processors afe slow in comparisonAwith the other classes. Block-
oriented associative processors use a mass rotating storagevdeviée
such as a disk that has séme logic associated with each track.' Thus
tracks can be search in paréllel. .Some'examplé of associative

processors will be discussed in the next section.



93

7.2 CASSM -- CONTEXT ADDRESSED SEGMENT SEQUENTIAL MEMORY

The basic concept behind CASSM is that all 0perations to
be perfofmed on the data base are done directly in disk memory.
This eliminates the need to schedule paging of data between dlsk
and main memory of the processor. In addltlon, parallellsm is used
to make the time to search the data-base independentzof the data base
size." ZT31:7f Thus the entire dsta‘base can‘be searched by hardware
for eech search instruction. Most high level retrieval languages
allow the user to express parailelism in their gueries, an
architecture thet prov;desupareiieiiSm in retrieval eliminates the
need to trsnslate fhe_énery into a long complicated set of procedures
(consider IMS for exsmple).

CASSM consists of 1dentlcal cells, connected through an IO
bus. In addltlon each cell can connect to two neighboring cells.
A cell con81sts of a segment of memory (for example, a track) and
a large section. "All segments of memory circulate concurrently and
in synchronization: while each logic section reads, searches,
modifies and rewrites its segment of memory from one end to the
other. Thus, all segments of memory are operated con 1n‘one
c1rcu1atmonoof memory." [T32-7

| A‘query agalnst a data base can be characterized as having

a specificefien part and a qualification part. For example,
SUBSCRIBER . SIN SUBSCRIBER . SEX = M, specifies Bhat all

SINs for SUBSCRIBERS are to be retrleved, given the quallflcatlon



94

that the SEX of the SUBSCRIBER is male. This query implemention
in CASSM involves seaféﬁihé‘éhd marking all occurrences that
satiéf&ifhe above condition. Thefe are two compérafor registers
within each cell, one for the épecification and one for the
quélffication thus allowing the query to be satisfied in one sweep
of memoryQ - .

A.RAM(one'forfeach cell) that is one bit wide is used to
mark the'data £tems satisfying é given query. One bit is maintained
for each déia item in the cell and the aséociation is maintained by

relative position.

S
1 1 COMPARITOR }—1

A&
CoMPARITR |[—

oo

PAM

Consider how the SUBSCRIBER relation might be represented

in CASSM.



95

SET LEVEL INFORVATION FIELDS

TYPE NO.

A 1 . SUBSCRIBER | .

‘A -2 sm STATUS =~ NAME LOCATION - BD . 'sEX
v o 2z s ACTIVE JONES  VANCOUVER 31 01 50 M
v | 2 82 ACTIVE FORD VICTORIA 15 Qé b6 F
v | _ 2 S3 . CANCELLED KING v;" VANCOUVER 03 03 35». F
v 2 s ACTIVE  BOOTH KAMLOOPS 27 11 b2 M

A set type of A indicates an attrlbute, whereas V 1nd1cates a value

The level numbers show how the rows of information fit in with their
correspondinn table. . If a second table were included the level number
would be reset to 1 and the attrlbutes of that table shown before values

would be given, The query SUBSCRIBER . SIN : SUBSCRIBER . SEX = M

.would, be answered in three revolutions of the memory. -

SEG . SET LEVEL S INFO. - Q. INFO,
REV. TYPE NO.

1. A o  SUBSCRIBER SUBSCRIBER
2. A 2 . SIN ° SEX

3. v 2 DON'T CARE M




96

7.3 RARES : ROTATING ASSOCIATIVE RELATIONAL STORE

RARES can be implemented on a computer system that
contains a CPU, randm@éccess high speed main memory, and head-
per-track réﬁating secondary memories. Data is transferred from
main to secondary memories via channels.” An associative memory
1s constructed by adding content-addressing hardware to th¢
secondary memories. Selection of tuples in response to a query
is performed at the sécondary storage device; thus only correct
tuples are sent via the channel to main memory. RARES searches
all tracks on the sto:age dgvice simultaneously. "The net result
is that RARES can decrease the average utilizationméf CPU, main
storage,uéhéﬁnels and secondary storage devices by a qﬁéry. In
many cases this will allow the interface to assume a heavier Query
load without degrading response time, or alternatively, to offler a
reduced respoﬁse time with the same query load." L3357

RARES is implemented in much the same féshion of CASSM.
However, the method of storing tuples on the secondary storage
aevice is different. Tuples can be read from storage concurrently,
however, the channel cén only receive information (tuples) sequentially.
In CASSM tuples are output one at a time from the éevice éhus
fequifiﬁg several revolutions before all marked tuples are output.
This is an inexpensive solution to the problem. RARES takes the
épproach of laying out tuples on the storage device across tracks
rather than along tracks. When a search operation is complete tuples

are then already in a form suitable for fast output.



97

Y . RARES.
\ tuple / ' > é%ycalf

CASSI
“s -y Wy
1 é/ c’uf

fufk fﬁpk 't%m@

1 G e t; = Crack L
/) A
L

Relations are often stored imnsort order because this allows
queries to be process more efficiently in many cases. RARES because
of its orthogonal layout can preserve this sort order and-process
against it more efficiently than CASSM. In fact the only way for
CASSM to preserve a sort order is~£6“3earéh one track at a time.
Uéiﬁg this technique the output rate for CASSM would be much slower

than RARES.



98

7.4 RAP : A RELATIONAL ASSOCIATIVE PROCESSOR

This particular system will be described in more detail
than CASSM or RARES.l A virﬁual memory system fpr RAP which
allowéwiéfge relational dgta‘bases will be examined. Then some
performance evaluation statistics comparing RAP to a cénventional
relational DBMS will be shown.

Cerééih features are essential to data base management and
RAP has been implemgntedeéth these features in mind:

" (a) A laxge capacity and modﬁlar storage

C with low cost per bit.

(v) Ability ‘to directly map logical data

éﬁructures into physical data structures
without using auxiliary storage structures.

(c) Variablé length data formats.

(d) Fast retrieval and update suitable for

o dn-line concurrent environment.

(e) Context . . . search operations assisted

by tétal associativity.

(r) Simple in-place arithmetic computations

and update. " [TSh_]



99

Consider the following overview diagram of RAP:

RAP

cell §

jmém,é cell 3
parpose controller L

(:ony)wfer
set
fune{ ion i
unit C’t’// n

RAP is a special purpose processor that communicates with a general
bﬁfpose computer. Each cell within RAP, as in the other architectures,
contains a memory component and a logic component. The memory
component is a track of a disk and the logic component "is a micro
processor which acts as a 'search machine’ 6n data, directs data
manipulation, and performs limited numeric computations required by
datatbase processing."'-[‘ssg7 The sét functioﬁvunit provides logic
to combine results ofma search, for examplelCOUNT, SUM, MAXIMUM,

MINIMUM, AVERAGEY The controller co-ordinates cell searches and

initiéfés fhé.éet function unit if required.



100

As in the other associative éystems, each cell is
searched simultaneously. Thus response time is largely independent
of data base size. A typiéal query consists of one or more RAP
instructions.and each instruction is executed with one rotatiéﬁ

L3687

of;theERAP‘memory. A cell is organized as follows:

cell i-/ %o IO bus
A
N
D
M
8 £
tontro fler 1/ u M
s A £ o
set M £ F
function (ad e | R
— )
N
cell ¢

cell (+/



101

Data is stored in the memory area and is read and written
(R and Wj via fixed heads. Within one revolution the entire
édntentswof memory can be read. A buffer with a length of 1024
bits is used to provide a time deiay between.reading and writing
information to memory. This time_delay allows the ISMU, information
search and manipulation Qnit,vto perform the necesséfy'iogic on
the data. The ISMU is also responsible for inter-cell communication,
command decbding; I/O datg transfers and ALU control.

RAP instrué%ions are provided for”fetrieval, update,
insertioh:”deletion, data base create and destroy, control (eg.
brancﬁing) and set functiqns such as SUM, COUNT, etc. Thesé are
implementéd through the controller. Each RAPhinstructién is
executed in parallel by each cell within the processor. Thus a
data base operaﬁion is executed against every plece of dafa in the
data base in one revolution of the disk.

A general purpose computer interfacing with RAP must provide
data communication facilities for users, compilation of user
queries into basic RAP instructions, transfer of instructions to
the RAP controller, support of a concurrent processing environment,
and maintenance of data base structure information,

"RA? accomplishes relational data bése management without
complex &aéé structures and software aids such as inverted lists and
hashing for multi-key searching required in conventional systems.

This is especially important for applications which have extensive

w L3717

ﬁpdate activity.



102

To understand more about RAP it is useful to see how

[387

relations are stored within memory.

™ relation domain tuple 1| |tuple 2| ...| TKE
name . - names

In contrast ﬁith RARES, RAP stores tuples in a’linear fashion along
, é tfack rather théﬁ,ééross"several tracks. TM marks the beginning
qf'the track, following this are stored the“felation name, the domain
hames and the tuples of that relation. One tuple, TKE, delimits the
end of a relation. Relation and domain names ére rébeated onqé
on each track of a relation. Also,ghg cell can have taples’from
more than one relati&n although a relation could easily spread over
more than one track.

Each tuple has a delete flag, and four mark blts A, B, C and
D, A tuple with a delete flag on is llable for garbage collectlon.
The four mark blts are used to Turther qualify sets of tuples and
.to allow the results of one instruction to be used by another
instruction. Fof example; if a QQery is given with multiple
qualification phrases then the first qualification is implemented
with one RAP instruction and appropriate mark bits are set, thé
second quéi{fication tests for those mark bits as well as the

second boolean condition of the query.



103

RAP with VIRTUAL MEMORY

Orié.of theﬁplfo‘bllémsl With current associative memories is
their siie, for example, a RAP processor that can be realis;l:ically
implemented given gurrent LSi_mtechnology would contain 10? to 109
bits of memory. Large daté Abases require much more than this.

To slee this proi:lem a virtual memory system was designed for
RAP.

The overall architecture of a virtual memory for RAP is

shown beiow [ 39] :

<>y |
bulk A MB,
mémoriy ] P’ <_ .
J e
faging ,
\-_Z__// = (3][() ”/'p”g
2 k-
r ke
v ; ‘
euneial | ] l
purpose 2 ,ey:am C _1M8,
ckom/oafér data Fe g
MF,
RAP

users



104

Bulk memory contains the data base and is divided into fixed size
pages equal to the capacity of one cell. Each page contains
information from one relation only so that when a page is
transferred to a cell, the cell then contains data from one
relation only, as mentioned in the previous section. Data is
transferred from bulk memory to RAP under control of tﬁe general
purpose computer. The basic conéépt is that enough data to answer
a query is paged frbm bulk memory into RAP cells. However, in
order to make this as efficient as possiﬁle raging is overlapped
with query processing, and to this end each cell contains two
memories, MBi’ buffer_memory for célli, that is being loaded with
information.and MPi’ processor memory for celli, which is being used to
execute the currently active query. When a query is complete buffer
memory becomes processor memory and the next query can be executed.

A controller, C, functions as previously explained,
receiving programs from GPC and transferring query results to
GPC. CIO, the IO controller is connected to GPC via a separate
channel;

Overlapping of paging and query processing can be achieved
relativeiy easily. Each page holds information for one relation
only and each page has a unique identification. When a query is
specified the relatidnimust also be specified thus it is a simple
matter to know, based on a relation name, what pages are to be sent

to RAP for processing., Note that there is an assumption that RAP



105

can contain all information required to process any given query
although it is not able to contain the entire data base.

A virtual memory system is significant to the feasibility
of a design such as RAP especially when paging can be overlapped
with query processing'to improve efficiency. Results of a simulation
study done for this virtual memory system 4?&0:7 showed that
response time for an average query is directly proportional to the
size of relations. ansidering that all pages of a relation must
be in RAP memory before a query is executed this result is not
surprising. Loéality of information has some bearing on response
time since it"is assumed that the higher the locality the more
chance there is that relevant relations will already be in RAP
memory. If the data base 1s very large however, the effect of

locality will diminish.



106

7.5 RAP PERFORMANCE

A study has been done to compare the performance of RAP with
a conventional relational data'base;mapagement system. Models
developed for the conventionalvsystem assumed that inverted lists
were provided for selected attributes of each relation. (The
selection would be made based on frequency of access via ény
particular attribute.) The models developéd quantified the times
required to perform bésié operations such as simple retrieval,
update, qualified retrieval gnd implicit Join.

On retrieval "RAP's advantage grows in almost direct
proportion to the numﬁerxof records satisfying the qualification
when inverted lists are used in the conventional system." LT
The advantage ranges from 40% to 90% depending on the level of
Qualification. For select and update operations RAP also has an
advantage. The operation modelled in this case involves selecting
a set of tupies based on some qualification and then updating the
selected tuples. Use of inverted lists in the conventional system
causes problems because when an attribute that is modified (on update)
is an inverted attribute the appropriate inverted list must”also be
modified. In contrast, RAP can perform selection and update (remember
the read write heads ) within one revolution of RAP memory in aost
cases, Selection foilowed by deletion involves the same problem
with inverted lists in a conventional system (remember links and images

in System R).



107

Another operation studied consists of a select, computation
of some value based on the tuples selected and then retrieval
of other tuples based on that value. Because of the need to access
data in the conventional system through inverted lists RAP has the
advantage in this operation as well. In fact, the advaﬁﬁége is
particularly significant when the numbér of tuples involved in
the computation is large,

As associative processor such as RAP has a significant
performaﬁce advantage over conventional hardware in supporting data
base management. The characteristics of associative processors
that lead to such én advantage are:

1. an ability to search data fields in parallel.

2. search logic imbedded in the storage device

which allows data comparison to take place
without passing data back to the central
processor.,

3. retrieval based on content which means that

complicated pointer schemes and index data
bases and their maintenance are not required.

L, reduced interface problems because the physical

storage of data more closely resembles the

users view of data.



108

8.0 CONCLUSIONS

Data bases are becoming increasing important to todéy's
businessmenvironment. As companies become aware that data is a
resource to be developed, shared and efficiently managed, data
bases are increasing in size and access to them is more varied.

It is essential to find efficient ways of accessing data both in
ferms of people time (eg._how long does it take a person to get
access to required in%ormation) and in terms of machine time.

This paper has describéd a hierarchical data base management
system, iMS and a relational data base management system, System R.
The focué“has been on showing that IMS, because of its structured
épproach to modelling data, is morevefficient than System R as far
as machine time is concerned. System R, on the other hand, with
its high level data management language SQL is more efficient in
terms of people time, |

In discussing associative processors it is shown that
implementing & relational data base management system using -
associative processors allows both efficient machine time and people

time.



109

REFERENCES

10.

11.

McGee, W.C., "Generalization: Key to Successful
_Electronic Data Processing", JACM 6,
January 1959, pp. 1 - 23 .

Senko, M.E. et al, "Data Structures and Accessing
Database Systems", IBM Systems Journal,
Vol. 12, No. 1, 1973, page 217

"Feature Analysis of Generalized Data Base Management
o _ Systems", CODASYL Systems Committee,
' May 1971 - . .

Date, C.J., "An Introduction to Database Systems",
. Addison-Wesley Publishing Co., 1975,
page 21

Ibid, page 180
Ibid, page 183

McGee, W.C., "The Information Management System
_IMS/VS, Part I and Part II", IBM Systems
Journal, Vol. 16, No. 2, 1977, page 109

Ibid, page 110

"IMS/VS Version I System/Application Design Guide",
‘ IBM Form No. SH20 - 9025-L4, page 4 - 4O

Ibid, page 4.51

Codd, E.F., "A Relational Model of Data for Large
. Shared Data Banks", CACM Vol.. 13, No. 6,
June 1970, page 377



12.

13.

14,

15.

16.

17.

18.

19.

20.

2t.

22.

110

Ibid, page 379

Date, C.J.,

Ibid, page

Codd, E.F.,

Denny, G.H.,

Date, C.J.;

"An Introduction to Database Systems",
. Addison-Wesley Publishing Co., 1975

5k

"Relational Completeness of Data Base

. Sublanguages", Data Base Systems, Courant
Computer Science Symposia Series, Vol. 6,
Prentice-Hall, 1972

"An Introduction to SQL, A Structured Query
.Language", IBM Research Laboratory, San
Jose, California, RA93, 1977

"An Introduction to Database Systems",
. Addison-Wesley Publishing Co., 1975

Blasgen, M.W. et al, "System R : A Relational Approach

to Data.Base Management, Part 3 : The
Relational Storage System", IBM Technical
Report, 1977

Astrahan, M.M. et al, "System R : Relational Approach

- to Database Management", ACM TODS, Vol. 1,
No. .2, June 1976, page 110

Gotlieb, L.R., "Computing Joins of Relations™, ACM SIGMOD

~ Conference, San Jose, California, May 1975.

Astrahan, M.M. et al, "System R : Relational Approach to

Database Management", ACM TODS, Vol. 1,
No. 2, June 1976, page 100. ..

Lochovsky, F.H. and Tsichritzis, D.C., "User Performance

Considerations in DBMS Selection", ACM SIGMOD
International Conference on Management of - .
Data, Toronto 1977



23.

24,

25.

26.

a7,

28.

29.

30.

31.

3z.

33.

111

Michaels, A.S. et al, "A Comparison of the Relational
and CODASYL Approaches to Data-Base
Management!, Computing Surveys, Vol. 8,
No. 1, March 1976, page 146

Proceedings of the Third International Conference on Very
Large Data Bases, Tokyo, Japan, 1977,

page 195
Ibid, page 196
Ibid, page 197
Ibid, page 198

Thurber, K.J. and Wald, L.D.; "Associative and Parallel
Processors", Computing Surveys, Vol. 7,
No, 4, December 1975, page 215

Flynn, M.J., "Some Computer Organizations and their
_Effectiveness", IEEE Trans. Computers C-21,
No. 9, OSeptember 1972

Yau, S.S. and Fung, H.S., "Associative Processor
Architecture -- A Surveyy, Computing
Surveys, Vol. 9, No. 1, March 1977,
page 3

Copeland G.P. et al, "The Architecture of CASSM : A Cellular
System for Non-Numeric Processing", Proc. of the
First Annual Symposium on Computer
Architecture, 1973, page 121

Ibid, page 123

Lin, C.S. et al, "The Design of a Rotating Associative
Memory for Relational Database Applications”,
ACM TODS, Vol. 1, No. 1, March 1976, page.5k



3k,

35.

36.

37.

38,

39.

Lo.

L1,

112

Ozkarshan, E.A. et al, "A Data Base Processor", Computer
Systems Research Group, University of
Toronto, Technical Report CSRG - 43, page 8

Ibid, page 10

Ibid, page 1k

Schuster, S.A. et al, "A Virtual Memory System for a
Relational Associative Processor", Computer
Systems Research Group, University of Toronto,
Technical Report CSRG -~ 64, page 6

Ozkarahan, E.A. et al, "A Data Base Processor”, Computer
Systems Research Group, University of
Toronto, Technical Report CSRG - 43, page 28

Schuster, S.A. et al, "A Virtual Memory System for a
Relational Associative Processor", Computer
Systems Research Group, University of Toronto,
Technical Report CSRG - 64, page 12

Ibid, general reference

Ozkarahan, E.A. and Schuster, S.A., "A High-Level Machine
Oriented Language for a Data Base Machine",
Computer Systems Research Group, University
of Tormnto, Technical Report CSRG - 65,
page 20



113

BIBLIOGRAPHY

1. Aron, J.D., "Information Systems in Perspective",
.Computing Surveys, Vol. 1, No. &,
December.}969

2. Astrahan, M.M. et al, "System R: Relational Approach to
Database Management", ACM TODS, Vol. 1,
No. 2, June 1976 '

3. Bachman, C.W., "The Evolution of Storage Structures",
CACM, Vol. 15, No. 7, July 1972

hy, Bachman, C.W., "The Programmer as Navigator", CACM,
Vol. 16, No. 11, November 1973

5. Blasgen, M.W. et al, "System R : A Relational Approach
o to Database Management, Part 3 : The
Relational Storage System”, IBM Research
Laboratory, San Jose, California

6. Blasgen, M.W. ahd Eswaran, K.P., "Storage and Access
in Relational Data Bases", IBM Systems
Journal, Vol. 16, No. 4, 1977

7. Chamberlin, D.D. et al, "SEQUEL 2 : A Unified Approach

‘ ' to data definition, Manipulation and
Control", IBM Journal of Research and
Development, Vol. 20, No. 6, 1977

8. Chamberlin, D.D., "Relational Data Base Management
. Systems", Computing Surveys, Vol. 8,
No. 1, .March 1976 '

9. Codd, E.F.  "A Relational Model of Data for Large
Shared Data Banks", CACM, Vol. 13, No. 6,
June 1970



10.

11.

12.

13.

k.

15.

16.

17.

18.

19.

Codd, E.F.,

14

"Relational Completeness of Data Base
Sublanguages", Data Base Systems, Courant
Computer Science Sumposia Series, Vol. 6,
Prentice-Hall, 1972

Copeland, G.P. et al, "The Architecture of CASSM :

Date,'C,J.,

Denny, G.H.,
Dodd, G.C.,

Flynn, M.dJ.,

A Cellular System for Non-numeric )
Processing", Proceedings of the first
annual Sumposium on Computer Archietecture,

1973 i

"An Introduction to Database Systems",
Addison-Wesley Publishing Co., 1975

"An Introductien to SQL, A Structured Query
Language", IBM Research Laboratory, San
Jose, California, RA93, 1977

"Elements of Data Management Systems",
Computing Surveys, Vol. 1, No, 2,
June 1969

"Some Computer Organization and their

- Effectiveness", IEEE Trans, Computers,

C-21, No. 9, _September 1972

Fry, J.P. and Sibley, E.H., ."Evolution of Data Base

Management Systems", Computing Surveys,
Vol. 8, No. 1, March 1976

Gotlieb, L.R., "Computing Joins of Relations", ACM

Hollander, G.L.,

SIGMOD Conference, San Jose, California,
May 1975

. Proc. AFIPS, SJCC, 1967

Lin, C.S. et al, "The design of a Rotating Associative

Memory for Relational Database Applications",
ACM TODS, Vol. 1, No. 1, March 1976

"Architecture for Large Computer Systems",



20.

a2t.

2z.

23.

2h.

25. .

26.

aT.

28.

29.

115

Lochovsky, F.H. and Tsichritzis, D.C., "User Performance
. Considerations in DBMS Selection", ACM SIGMOD
International Conference on Management of
Data, Toronto, 1977

lorie, R.A., and Wade, B!W., "The Compilation of a Very
High Level Data_language", IBM Research
Laboratory, San Jose, California, RJ2008,
1977

Martin, J.A., "Computer Data Base Organization", Prentice-
Hall Inc., New Jersey, 1975 .

McGee, W.C., "Generalization : Key to Successful
Electronic Data Processing”, JACM, Vol. 6,
January 1959 T i .

McGee, W.C.  "The Information Management System IMS/VS",
IBM Systems Journal, Vol. 16, No. 2, 1977

Michaels, A.S. et al, "A Comparison of Relational and CODASYL
~ Approaches to Data Base Management", Computing
Surveys, Vol, 8, No. 1, March 1976

Minker, J., "An Overview of Associative or Context-
Addressable Memory Systems and a KWIC Index
to the Literature : 1956-1370", Computing
Reviews, October 1971

Mowshowitz, A., "The Conquest of Will : Information
Processing in Human Affairs", Addison-Wesley
Publishing Co., 1976

Ozkarahan, E.A. and Sereik, K.C., "Analysis of Archetectural
Features for Enhancing the Performance of a
Database Machine", ACM TODS, Vol. 2, No. &,
Decefber 1977

Ozkarahan, E.A. et al, "A Data Base Processor", University
of Toronto, Technical Report, CSRG-43



30.

31.

3z.

33.

3.

35.

36,

37.

38.

39.

116

Ozkarahan, E.A. and Schuster, S.A., "A High Level Machine -
Oriented Assembler language for.a Data Base
Machine", University of Toronto, Technical
Report,. CSRG-T4

Ozkarahan, E.A. et al, "Performance Evaluation of a
Relational Associative Processor", University
of Toronto, Technical Report, CSRG-65

Rosen, 8., "Electronic Computers : A Historical Survey",
Computing Surveys, Vol. 1, No. 1, March 1969

Schuster, S.A. et al, "A Virtual Memory System for a
Relational Associative Processor", University
of Toronto, Technical Report, CSRG-6L

Senko, M.E. et al, "Data Structures and Accessing in Database
Systems", IBM Systems Journal, Vol. 12,
No. 1, 1973

Senko, M.E., "Data Structures and Data Accessing in Database
Systems, Past, Present, Future", IBM Systems
Journal, Vol. 16, No. 3, 1977

Stonebraker, M. and Held, G., “Networks, Hierarchies and
' Relations in Data Base Management Systems",
Proceedings ACM Pacific Conference, San Francisco,
April 1975

Thurber, K.J. and Wald, L.D., "Associative and Parallel
Processors", .Computing Surveys, Vol. 7, No. k4,
December 1975

Yau, S.S. and Fung, H.S., "Associative Processor Architecture -
A Survey", Computing Surveys, Vol. 9, No. 1,
March 1977 .

"Feature Analysis of Generalized Data Base Management Systems",
CODASYL Systems Committee, May 1971 .



Lo.

L,

"IMS/VS Version 1, System/Application Design Guides,
IBM Form No. SH20-9025-L.

Third International Conference on Very Large Data Bases,
Tokyo, Japan, 1977

17



