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Abstract

The design and implementation of a language-independent,
interactive system to facilitate the analysis and symbolic
debugging of computér programs written in high-level languages
is presented., The principal features of the system, called
RAIDE, are:

(1) Host source 1language independence 1is supported by the-
abstraction of language entities and constructs (for example,
variables, constants, procedures, statements, and events) with a
language interfacer providing langﬁaqe-dependent details;

(2) Translators can cooperate with RAIDE at varying levels of
detail;

(3) . The user interacts with RAIDE and an executing object
program using an extendable debugging language, called Dispel;
(4) Primitive debugging actions are kept to a minimum and
nonprimitive actions ({(for example, tracing, snapshots, and
postmortem dumping) are provided by user-supplied and library’
procedures written in Dispel; and

{5) The implementation is aided by simulation of a virtual

debugging machine, called SPAN,

To demonstrate RAIDE!'s feasibility, a prototype implementa-
tion was undertaken, including a SPANM simulator and the modifi-
cation of two language translators {(namely, Asple and BCPL) - to
interface with RAIDE.,. Besides describing the external and

internal designs of the debugging system, the abstract machine,



iii

and the debugging 1language, the thesis also discusses the
advantages and shortcomings of each of these components. .
Numerous examples of debugging commands written in Dispel are
given., Two significant side-effects of the research are
reported: reflections on the software tools supporting the
implementation, and suggestions for translator design to

facilitate run-time debugging. . .

The thesis contains a substantial annotated bibliography

and an extensive index, - )
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Preface

/* The langquage is perpetually in flux: it is a living
stream, shifting, changing, receiving new strength from a
thousand tributaries, losing old forms in the backwaters
of time, To suggest that a young writer not swim in the
main stream of this turbulence would be foolish indeed. .
-- Wiliiam Strunk, Jr., [Stru 59:69] */
Altho readers of this thesis may at first be surprised to
encounter certain wunusual spellings, they should find after
reading thru it that any initial difficulties will disappear

even tho their academic +traiming may still inhibit their

acceptance of such usage.
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Chapter I. . Introduction

/* The best may slip, and the most cautious fall;
He's more than mortal that neter erred at all. .

A,  The Problenm

The computer program development cycle consists basically
of six phases: specification, functional decomposition, coding,
testing, debugging, and evaluation.. In Tecent vyears -software
engineers have concentrated on the second and third of these
phases. This is exemplified by the attention paid to 1language
design and the advocacy of structured programming.. Altho these
two points are certainly important in-the production of guality
software, their emphasis has detracted from progress in the
other phases.. It is clear that the best manner of dealing with
a programming bug is to prevent its presence ‘in the first place.
Emphasizing the design of lanquages which make the inclusicn of
logic errors difficult and programming methodologies which
encourage error-free programming is important., Nevertheless, it
is still necessary for all production programs to enter the
iesting and debugging phases [ Halp 65]. -

/* Debugging poorly designed and coded software systems is
veterinary medicine for dinosaurs. .
-- Harlan D, Mills, {Mill 76b:271] */

This thesis presents the design and implementation of a
language-independent, interactive system to facilitate the

analysis and symbolic debugging of computer programs writtemn in
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high-level 1lanquages. The primary purpose of the debugging
system is to provide an environment in which the computer
programmer can detect the presence of errors and trace their
cause and, thereby, reduce the total time spent on the debugging
phase of the program development cycle. The concern of this
thesis is the isolation and correction of errors during program

execution, Detecting syntactic errors is not of interest here.

The debugging process contains three major components:
recognition, diagnosis, and correction., Recognition- of a
program ertor reguires-knoéledge of the anticipated results and
program behavior, and realization of when these expectations are
not mnmet. Qigggg§i§~involves the.identification of the cause of
an error, based on its symptoms. . Altho the diagnostic process
is largely intuitive, it is directed by answering such questions
as "What precisely is wrong with the program?", "{here was the
error detected?”, "Under what conditions does the error manifest
itself?n, and_“How extensive is the error?Y {Brow 73:ch..97., To
be useful, a debugging system must help to answver these
guestions.. Debugging is akin to detectivery; a debugging systenm

is akin to a magnifying glass., .

A debugging system should be Jjust one component of a
collection of software aids available to pfogiémmers to impfove
the quality and gquantity of their software [ Balz 74, Chea 72,
Cclap 74, Davi 75, Ledg 76, Stoc 67, Teit 69, Wilc 76, Wino 75]..
a debugging systeﬁ must maximize the amount of wusable

information available to the programmer., The need for such a
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system is apparent from the proliferation of 1anguaqg'pro¢essing
systems which provide inadequate .run-time debugging aids..  The
user of such language processors must often resort to machine-
language dumps or extensive user-supplied source language

debugging and monitoring routines. .

B. Previous Work
/* No vehement error can exist in this world with impunity.
-~ James Anthony Froude, Spingza-*/
This section describes briefly previous work in the area of
debugging systems. , The reader who is interested in a survey of
dehugging techniques and concepts should consult various of the
following general references: [Brow 73, Evan 66, Fong 73b,
Gain 69, Gell 75, Koch 69, Ledgqg 75, Mann 73, Pool 73, Rain 73,

Satt 75, Schw 71, Scow 72, Seid 68, VvanT 74}.

The concept of an interactive, run-time debugging system is
not new, Before the invention of batch procéssing, debugging
was carried out directly at the operator's console using the
console switches and lights to provide clues as to why a progranm
behaved incorrectly. . After the development of batch processing,
this activity was automated to produce memory and register dumps
{Kirs 74) and program traces.. In the early days of interactive.
computing, the value of interactive debugging systems, which
vere first applied +to the detection of errors in machine-
language programs, became apparent, Virtually every interactive
computing environment provides some such aid [Ball 77, Bern 68,

Blai 71, Cris 65, Evan 65, Evan 66, Gain 69, Gall 74, J8ns 68,
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Jose 69, Kuls 69, Stoc 65, UM 73, Zimm 67 3. The basic
facilities provided by such systems include the ability to
inspect the state of +the run-time environment at particular
points, to set breakpoints in the program, and to trace the
execution of procedures and the values of variables.,  These
systens often allow one to patch object programs during

execution and to change the values of variables. .

Machine-language debugging systems are of 1limited use to
the person who programs in a high-level language.. The trend
avay from machine-language programming has emphasized the need
to develop debugging tools which ©provide the user with the
ability to monitor the execution of a pfogram within. the terms
of sonme high-level source language. K The user vants to refer at
run-time to the program using source-level names and notations
without regard to the results of the translation process. -

/% How tru1y>sad it is that just at the very moment when the
computer has something important to tell us, it starts
speaking gibberish, .

- -- Gerald #¥. ¥einberg, {Wein 71:20871 */

One common way in which some run-time  debugging aid for
high=-1level languages has been provided is thru' language-
proceSsor-supplied symbolic postmortem dumps {e.qg., ALCOR
Algcl 60 [Baye 67, Ferl 71], 'PL/C [Conw 73, Morg 71], Snobold
f{Gris 71b], Algol-W [Satt 72, Site 71], and INP [Step 741). A
symbolic postmortem dump gives the user a picture of the state
of the execution of a program at the point of abnormal

termination by printing the source-level names of variables and
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their values in a form resembling the terminology of the: source
language, A& symbolic traceback of the dynamic procedure
invocation history is usually supplied as well. Using this
information, it should be possible for the programmer to discern

the cause of abnormal termination after the fact.

A significant advance in high-level language debugging has
been afforded by the implementation of special diagnostic trans-
lators. These translators, often called student- compilers-
because  of their orientation toward novice programmers, sacri-
fice efficiency to provide extensive run-time checks to aid in
the detection of program logic errors, , Such errors include out
of range subscripts, mismatched formal and actual parameters,
and accessing uninitialized variables. Examples of translators
oriented toward students include PLUTO [Boul 72], PL/C [Conw 73,
Morg 71], and SPLINTER [Glas 68] for PL/I programs; DITRAN
[ Moul 67] ana Watfiv [{Cres 70] for PFortran programs; Watbol for
Cobol programs; Algol-W [Satt 72, Site 71); and FLASC [Thom 76]

for Algol 68 programs.

Another common way in which the high-level 1language user
has been given access to debugging tools is thru extensions to
the host source language  itself [Bair 75, Bull 72, Con¥ 73,
Glas 68, Gris 71b, 6ris 75, Hans 75, IBM 72, Kemm 76, Leed 66,
Pull 69, Wolm 72]}.. These extensions have 'taken the form of
debugging subroutines which the user can incorporate into a

source language program, and syntactic . extensions of the

language which provide explicit debugging facilities., 1In either
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case, it is the user's responsibility to code into the progranm
information to facilitate its debugging. .  This approach suffers
from the need to carefully preplan the debugging phase of the-
program development cycle. When the programmer discovers some
abnormality in the program, it often becones necessary to
modify, retranslate, and reexecute the program to obtain the

desired debugging information. .

To overcome the disadvantages of user~programmed debugging
aids, systems have been developed to provide high-level language
users with essentially the same facilities available to -the
machine-language user in low-level debugging systems., Hiqh-
level, interactive debugging systems have almost invariably been
developed around one particular source language (e.dg., MANTIS
and Fortran [Ashb 73], EXDAMS and PL/I [Balz 69], the INTERLISP
system [Bobr 72), PL/CT and PL/I [Conw 77, Moor 75], IBM's PL/I
Checkout Compiler [Cuff 727, BUGTRAN and Fortran { Perg 63], AIDS
and Fortran [Gris 70], the LISP/MTS system [ Hall 75, Wilc 741,
HELPER and Fortran [Kuls 71], IF and Fortran {[ORei 76}, SIMDDT
and Simula [Palm 773, DDS and Coral 66 [Pier 74 ], BAIL and Sail
[Reis 75], TALK and <CS-1. [VerS 64#], and PL/I under Multics
[Wolm 72)). . Altho sone of  these systems have involved
integrating debugging capabilities directly into an interpretive
environment . (e.g., INTERLISP, the PL/I Checkout -Compiler, and
IF), others have been designed explicitly as run-time systems
manipulating translated code (e.g., EXDAMS, AIDS, HELPER, and

DDS). Nevertheless, in all cases a debugging ' environment has
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been established which is applicable to a single high-level

language.

In view of the current state of interactive debugging, the
advantages of a single system which is capable of dealing with
programs written in various source languages should be obvious,
A language-independent debugging system minimizes the duplica-
tion of effort needed in providing a debugging environment with
the introduction of new programming languages. . Such a systen
also minimizes the user's overhead in learning a new debugging
system for each new language. 6 A language~independent environ-
ment allows collections of programs writtea -in more than one
source language to be debugged in a uniform manner.,  Multilin-
gual systems are not currently common, due in  part to the
language interface and debugging problems involved,  The
creation of a language-independent programming environment
should result 'in softvare being written in the best available
language for each subtask, rather than in the single lanquage
deemed most generally suitable to the entire project., Finally,
such a debugging system serves as another off-the-shelf
translator writing system resource available to- language imple-
mentors in much the same way general-purpose lexic analyzers and

parser generation systems are currently available,
C. Concurrent Work

Concurrent with the research reported in this thesis has

been the design and development of the DAD (Do-All Debugger)
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debugging system [Vict 76a, Vict 76b, Vict 77}.. It is designed
for use in a multiprogramming, multiprocessing  network
environment, in which components of the system being  dekugged
may be written in different source langquages and may be
executing on different machines., This is accomplished primarily
thru a rigid protocol which must be adhered to by all operating
systems and- language translators involved in the debugging

process.



Chapter II. The Debugging System

/% As a famous philosopher once almost said,
“"Give me a suitable debugging environment and a
tool-building facility powerful (and simple) enough,
and I will debug the world."
-~ Robert M. Balzer, [Balz 69:567] %/
The debugging system described in this thesis 1is <called
RAIDE (Run-time Analysis and Interactive Debugging Environment),

named after another product successfully employed to eliminate-

bugs from the user's environnment., .

A. Design Criteria

/*¥ A good interactive debugging system must be difficult
for the beginner to master [sic)., Its emphasis must

be on completeness, convenience ‘and conciseness,
not on simplicity. .
: -- Butler W. Lampson, [Lamp 65:478] */
Many criteria have been taken into account in the design of
RAIDE [Conw 73, Gain 69, Gris 71a, Mann 73, Pool 737. . The most
important of these 1is that the system should be language-
independent over a large class of user source languages., This
criterion virtually dictates that  the systenm run using

translated code since to provide a system which can interpret a

broad class of source languages is currently infeasible.

Altho the debugging system should be language-independent,
it should appear language-dependent from the user's point of
view, that is, the terminology should be that of ' the source
language as much as possible. For example, if an array bound is

exceeded during program execution, RAIDE should respond with a
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message couched in the terminology of the source langquage. .
Thus, for Algol 68 the message ®INDEX EXCEEDS THE BOUNDS
SPECIFIED IN THE DEFINING OCCURRENCE OF THE MULTIPLE VALUE"

might be produced.

Another goal is that RAIDE should be usable on multilingual
collections of programs.. Thus, the user can debug a set of

programs written in more than one source language, .

Another major design ¢riterion is that the system should be
oriented toward interactive processing, but it ought also to be
usable in a batch processing environment. without substantial
difference from the  user's viewpoint [Goul 75, Gran 66,
Sack 68]. Obviously, many of the interactive features will be
of marginal value from the batch stream..  Nevertheless, there
still exists a kernel of debugging facilities which are

applicable to both environments. .

Another major requirement is that-all debugging should be
done within terms of ‘the source language(sy., Knowledge - of the-
underlying machine environment should not be necessary.. Since
the system will always respond to inguiries in symbolic ternms,
there 1is no need +to- provide core dumps, register dumps, and

other similar machine-language debuqgging facilities, .

Oone consequence of the preceding criterion is that lanquage
translators will need to supply. the debugging system with a
substantial amount of information concerning the source program.

Data such as the identifier table, the type table, and even the-
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source code itself will need to be provided,  Nevertheless, it
should be possible for translators to provide information in
increasing layers of completeness. This uili'enable RAIDE to .be .
used even when the translators are not completely cooperating. .
If the user makes a request to which the system is unable to
respond because of 1lack of translator-supplied information,
RAILE should return a message to that effect and allovw the user

to continue with other requests.

Another design criterion 1is that the system should be
capable of supplying extensive information concerning the state
of program execution.,  Such capabilities will exceed those of
any preceding debugging system. It 1is for this ‘reason that
RAIDE is a run-time apalysis and debugging environment, as
opposed to simply 'a debugging system., Altho some analysis
features (e.g., execution profiles [Conr 70, Inga 72, Knut 711}) -
‘border_on the domain of program testing, as opposed to progran
debugging, such facilities are needed in a powerful program
debugging environment; indeed, the dividing line between progran
testing and debugging is unclear.  Nevertheless, the debugging
information supplied should-never. be overwhelming.,  That is, the
user should see only'uhat is relevant with detailed information

being provided upon a more explicit request. .,

The kernel of the system should be minimal, yet sufficient, .
That is, the system must include a set of primitives 'sufficient
to carry out all of the desired debugging actions; but this set

should not contain primitives which can easily be simulated
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using a combination of the others. = Some overlap may be
necessary, however, to produce a set of primitives easily usable-
by the programmer, This design criterion should minimize the

effort required to implement and transport the systen,,

To further minimize the implementation effort, the systen
must avoid duplicating resources provided by .the host operating.
system;, It 1is assuméd the "user will be familiar with the
operating system so that alternative facilities 'built- into the.

debugging system will merely be a source of confusion., .

One Tfinal <design criterion is that the user should: not be
required to make modifications to the source program to carry
out debugging using RAIDE. It should be possible to specify at
run~time everything the user may need to facilitate  the-
debugging and testing of a program.., This should not, however,
preclude the programmer from desighing some debugging ‘aids into
the program since doing so 1is a - desirable implementation

strategy [Ledg 75].

In summary, and for ease of future reference, the design

criteria discussed above are listed in Table 1. .

B. . Basic RAIDE Concepts
/* Programmers are habituated to .sesquipedalian utterances.
-- Richard L. Wexelblat, [Wexe 76:333] */

The user interfaces with RAIDE solely thru the desbugging

system language. Before it is possible to describe  this 1lan-

guage, however, it 1is necessary to define some terms and to
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1. The system should be source language independent. .
2. . The user interface should be lanquage-dependent.

3., The system should be usable on multilinqual collections of
programs. . : :

4, The system should be interactive-oriented, but usable in
batch. . :

5. Debugging should be done symbolically in  source language
terms., . :

6... Translators should be allowed to supply informatiom in
successive layers of completeness,

7.. The system should provide extensive analytic information at
run-tinme,

8. Information supplied by the system should be concise and
pertinent to the user!s request. .

9, A small, usable, and sufficient set of primitive - actions
should be supplied.

10,  Operating system resources should not be duplicated. .
11.  No translation-time modifications to the source program

should be necessary to carry out debugging.

Table I. Debugging System Design Criteria-

b e S o S Sy - — - — g S S e, S o . S oy - — - — o

explain some basic RAIDE concepts which are reflected in the

debugging system language. itself.

A program is a collection of procedures which interact to
perform one primary task. . Thus, the term as applied " here 1is
equivalent to system of programs used by many people, .- In.other

words, RAIDE is designed to debug a single program during one

interactive session.  This program may, however, consist of a
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main procedure and any number of subprocedures.., It should be
remembered that, from RAIDE's viewpoint, it is not. necessary for
these subprocedures to have all been written in the same ' high-

level language.

One concept which 1is basic to a proper understanding of
RAIDE is the distinction between a specific and a generic.. A
specific is a reference to a particular entity in the user's
program. For example, X might be one particular variable, 10
might be one particular constant, and X := 10 might be one
particular statement. Thus, X, 10, and X 3= 10 are specifics..
On the other hand, a generic-is a set of entities within the
user's program all of one homogeneous variety.. For example,
VARIABLE is a reference to a class of entities of which X is one
particular member, Similarly, CONSTANT and STATEMENT are exam-
ples of generics.,. Furthermore, it is convenient to divide:
generics into  two classes. A segment-generic-is a generic which
refers to some executable segment of a user's program code., For
a block-structured 1language, typical segment~generics are
PROCESS, PROCEDURE, BLOCK, and STATEMENT. K A data-generic-refers
to a particular class of data which the user's program can

manipulate., . Thus, for a block-structured lanquage, VARIABLE,

PARAMETER, and CONSTANT are examples of data-generics. ,:

Generics are host-lanquage-dependent, The only presupposi-
tion which RAIDE makes concerning them is that there are two
classes: ‘segment and data, For each lanquage which is to be

interfaced to RAIDE, it is necessary to: supply a set of
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defined for several well-known programming languages, .
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Table II contains examples of generics which might be-

(r O me W —— - ] — o — N ——— ——— — 2 — i i, S Mot

FORTRAN

LISP 1.5

PL/I1

SNOBOLY

segment-generics.

PROCESS
PROGRAHN
ROUTINE
CLAUSE
UNIT

PROGRAHN .
SUBROUTINE
FUNCTION
STATEMENT

FORM
FUNCTION

TASK
PROCEDURE
BLOCK
ON_UNIT
STATEMENT

FUNCTION-
PREDICATE
OPERATOR
STATEMENT

data-generics-

VARIABLE
IDENTITY
DENOTATION
YIELD '

" VARIABLE

ARGUMENT

_ARRAY

CONSTANT

ATOM
ARGUMENT

VARIABLE
PARAMETER
RETURNED_VALUE
CON-STANT '

VARIABLE
ARGUNMENT

"LITERAL

KEYHORD -

PROPERTY_LIST

Table II. Examples of Possible Generics for Various Langquages

-u-_-—_u__—,_a._“-_.—__-—-—.a-“-—-m-—.«-.--n-_‘-_..-_-“d

The reader may notice a

evidenced by the distinction between segment~ and data-generics. -

subtle

of RAIDE whi

ch 1is

Langquages which make -little or no distinction -between executable

code and data
inclusion within RAIDE even tho their inclusion will: not

sarily be precluded by the system design..

Lisp) are

natural candidates for

- neces- -
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Related to the concept of a generic is that of an incident..
The system defines both segment-incidents and data-incidents to
correspond to segment- and data-generics., The activities which
can be associated with the segment-generics are ENTRY and EXIT.,
Thus, it is possible to speak of PROCEDURE  ENTRY or  STATEMENT
EXIT.  Similarly, the ‘activities associated with the data-
generics are ACCESS and UPDATE for referencing and changing the
value of -an  item of data. Note that it is not necessary that
every data-generic possess both data-incidents, . In particular,
CONSTANTs cannot be UPDATEd.. Unlike generics, incidents are
fixed within RAIDE and are not specified by a host 1language

interfacer, .

Another system concept is that of an event. An gvent-is

any occurrence which can cause the user'®s program to stop

execution leaving RAIDE in the interactive- regu§§§ 'ggQ§,!
Examples of possible events are pressing the attention interrupt
key on the keyboard, an attempt to access a nonexistent element
of an array in a program, and changing the value of some pregran
variable. ., An event which is defined independently of some
particular source progranm (€edas ATTENTION_INTERRUPT and
OVERFLOW) is‘called an- exception., Other events are described by
expressions (e.g., "whem x>y" to represent the event occurring
vhen 'the value of the variable 'x*' exceeds that of the variable
'y*), A number of exceptions are predefined, but language-

dependent exceptions can also be defined... For example, a
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language interfacer for Snobol4 might define STATEMENT_FAILURE..

When the user is interacting directly with RAIDE, many
possible actions can be requested. An action is any primitive
operation which the system can perform. . For example, display is
an action which causes informaticn to be displayed to the user..
execute ‘is another primitive action; it initiates execution .of
the ‘user!'s program by leaving the interactive request mode. . A
deferred action is any action which does not occur immediately
upon its specification., Deferred actions allow the user to set
traps (or demons) within the program., Whenever ~ the  event
associated ‘with a deferred action occurs,  the action is
initiated by the system. - Any action which RAIDE <can - perform
inmediately can also be deferred.. 'The system maintains all

deferred actions on the deferred - action- - list.. Normally, the

sy o s

user must explicitly remove an action from this: list-using the
cancel“action; nonetheless, some deferred actions are automati-
cally removed from the deferred action list when the associated

event occurs. Such an action is called ' a transient  deferred-

Altho the basic actions of the system are fiied, systen
extendability is provided by debugging procedures., A -gggggg;gg
procedure is a subroutine written using the primitive -actions of
RAIDE. A debugging procedure can be called in ' any context in
which an action can occur. . Thus, it is possible to provide the-

user with a library of debugging procedures which perform any.

standard debugging operations which are not  provided as
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primitive actions in RAIDE. . For example, there is no primitive-
RAIDE: action to <cause all procedure invocations to be traced,
altho it 1is ©possible to write a debugging procedure to

acconplish this, The system maintains all debugging procedure

4

{and variable) declarations on the declaration 1list..

- In addition to the debugging procedures provided by a
standard 1library- ahd those written by the user, the systenm
itself provides several built-in functions,. These functions are
brimarily concerned with interrogating the current state of the
debugging system, such as obtaining the name ' of - the nost

recently executing user procedure. - The -built-in - system-

popp

o T R e —

To allow the user greater freedom in identifying specifics
and  generics within the executing program, the system defines a
default reference point. The reference point  always indicates
the program segment currently active when a RAIDE-action is
initiated. . Thus, the reference point is used to  disambiguate
generic and specific references, . For example, if ‘the :progran
contains three procedures, each of which contains a distinct
variable named ?*foo', the user would always have to qualify a
reference to 'foo' to indicate which of the *foo's is desired if
there were no reference point., 6 If exécution of'the'program is
suspended, a reference to 'foo' will auntomatically (thiu the
reference point) refer to the *'foo! in the procedure in which
execution was suspended, or to the closest one accessible-at the

point of suspension.. A user can also establish a reference



Chapter II. The Debugging Systenm ' 19:
point different from the default., -

»Finally, the environment is the state of the  executing
system at any particular time. An environment includes the
values of all of the data in the user?s program, the default.
reference point, and the deferred action list.,. It is possible
in RAIDE to save the current environment by naming it and

placing it on the accessible environment-li

st. - Using a primi-

tive system action, the current environment can always -be
replaced by one on the accessible environment-list, This facil-
ity allows the user to checkpoint the state of the system and to

subsequently restore it.

Once the basic concepts described above are understood, the
"RAIDE user should be capable of ‘learning the system debugging

language. .
C, Overview of the Implementation

Before proceeding with a description of the debugging
system language, it is desirable to present-.an overview of the-
implementation of the debugging system to insure an understand-
ing of 1its components when  they are presented in detail... A
complete;descriétion 0of the  implementation is contained in

Chapter Vv,

Figure II-1 illustrates the debugging environment: provided
by the system,  In this fiqure, the 1lines connecting boxes

indicate intermodular communication.,,6 Each interface is assigned
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requests from the user {(written in Dispel) -

RAIDE's responses to user requests

information supplied to RAIDE by the language interfacers
information supplied to RAIDE by the translators
information supplied to SPAM by the translators

analysis and modification of -the user program by RAIDE
interactions of RAIDE and SPAM

o o

Figure II-1.,. Overview of the Implementation
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a letter for identification, The boxes L1, " «e«., LD Tepresent

the lanquages which are interfaced to RAIDE. . For each. language

using the debugging system, language interfacers must provide:

RAIDE with information that is dependent on each host language .

{C) .+ . This Lnformation, which 1is summarized in - Table 111,

o s W A e W o S d— - s v o oo Y

4, - definitions of generic-related and language-dependent systen

1. definitions of the segment~ and data-generics
2, run-time error messages

3. identification of any language-dependent exceptions
functions

Table III., . Information Supplied to RAIDE by the Lanquage
Interfacers

b e i — e, G — g T o—— T, wioe 2a]

includes the definitions of the segment- and data-generics of
each language, the set of langquage-oriented  run-time error
messages, identification of any 1language-dependent exceptions,
and - the  definitions of any generic-related and  language-

dependent system functions, .

For each language Li interfaced to the system, there must
exist at least one translator Ti which has been constructed or
modified to furnish RAIDE with information - to facilitate - run-
time debugging., As stated previously, the systen runs using
translated source code to expedite implementation and to insure

source language independence. . To accomplish this, a virtual
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debugging machine (which is called SPAM) has been defined and is
described in Chapter IV, £ PFach language translator ‘interfaced to
the system must supply information both to SPAM and directly to

RAIDE., . Table IV outlines the information which the translators

1. . SPAM machine code for the user program
2. . descriptions of all program code segments and data items
3.. run-time type table

4, run-time bounds table

Table IV. Information Supplied to SPAM by the Translators

e M e S N e g SN . g, e s o

must furnish to SPAM (E).. Tramslators using RAIDE must map the

user's source program into SPAM machine code.. In addition, they

mpust supply the virtual machine with a - description of all
program code segments and data items, a type table, and a bounds
table for array subscript ' checking, The  translators mnmust
furnish RAIDE (D) with symbol table information, a description
of the static (i.e., textual) structure of the source progran,
and the sodrce program code itself, This information is

outlined in Table V.,

The user directs the debugging system (A)- from an interac--

tive terminal using the -debugging system language, which is

called Dispel.. This language is described in detail in-Chapter

III. RAIDE's responses to user“reguests {B) ‘are directed back.
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1. . run-time symbol table

2.  static structure of the program in terms of the segment-
generics

3. source program code .

Table V. Information Supplied to RAIDE by the Translators

o e

to the terminal. 6 To process the user's requests, RAIDE uses the
information supplied to it by.the-language.interfacers:(C), the
langquage translators (D), the. translated program.v(f), the
virtual machine (6), and its own record of program and systenm
execution. , To set program traps, to obtain - run-time analysis

information, and to modify the values of progranm variables,

RAIDE must interact directly with the  translated program (F)..

Nevertheless, the translated program is primarily controlled by
the virtual machine, When SPAN detects an error during progran
execution, it supplies RAIDE with information concerning the
error and the state of the program (G).. Likewise,' RAIDE can
interact -directly with SPAM to inguire concerning the state of

program execution and to make certain modifications to it. (G).,

System design criterion 6 states that translators should be

allowed to supply information in successive layers of complete-

ness, The discussion concerning the information which must be-

supplied +to RAIDE, as outlined in Tables III thru V, seems to
imply that fully cooperating translators are necessary; however,

this 1is not the <case as the discussion.so far has centered
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around the most complete debugging configuration. . Table VI
outlines the levels of support at which the debugging system is

capable of running. .

Seven successively more complete layers of debugging sup-
port are defined.. 1In the basic-machipe-level, RAIDE is not
available and the virtual wmachine runs with the nminimum of
overhead, - At this 1level the translators are -only required to
generate SPAM code and descriptors, and to supply the  type and
bounds tables, £ The basic machine level .corresponds to a user
program running on a bare machine  that is more sophisticated
than many currently in existence, The next level of support is

the machine debuggqging  'level.., Altho RAIDE is again not

available, the wvirtual machine will make‘additional'run-time
checks'(e.g., scope violations and mismatched parameters): . which
are not performed in the most basic mode of machine execution. .
These additional checks are not required for " the  machine to
execute properly, but are intended to further the -debugging

process.

RAIDE itself is not a proper component of -the system until
the third level of debugging support, -the sipple-symbolic:level. .
At this level RAIDE is only capable of reporting errors and
- executing simple interactive . .requests, such as inspecting the
value . of a variable., The language interfacers must supply RAIDE
with. enough  information to properly interpret and report the
error conditions detected by SPAM. . Theatranslators-must supply -

some symbol table information so that detailed error messages
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1.

2.

3. .

evel

support -

basic machine

pachine debugging

simple symbolic

symbolic debugging

full debugging

full analysis

deluxe debugging

Table VI, .

module -

translator

SPaHN

RAIDE

SPANM

RAIDE

interfacer

translator

RAIDE

interfacer

translator

RAIDE

translator

RAIDE

RAIDE

translator
RAIDE.

additional activity-

generates SPAMN code and
descriptors,
type ard bounds tables

executes code normally
checking for basic
run-time errors

not available

makes addit ional checks on
operands and interrupt
flags

not available

and supplies

supplies generic information

and error messages
supplies some symbol table

information
available for simple

interactive requests.

"identifies langquage-

dependent exceptions and
defines generic-related
syster functions
supplies complete symbol
table :
available for more complex
interactive requests

describes static progranm
structure

can respond to requests
involving static program
structure -

keeps run~time analysis
statistics

supplies source program code

can respond to requests to
display source code at
run-tine

Levels of Debugging Support-
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can be generated in symbolic terms, TIf the lanquage interfacers
identify = the 1lanqguage-dependent exceptions and define the
generic-related system functions, and the lanquage translators
supply the complete symbol table, RAIDE is capable-of initiating
more complex interactive user requests, such as displaying the
current state of the executing program. This corresponds to the-

symbolic debugging level.

If the translators supply a description of the 'static-
structure of the user program (e.g., information concerning the
nesting of segment-specifics and the scope " of variables), the
full debugging 1level- is entered.. At ‘this level, RAIDE is
capable of initiating requests which involve the * static

structure of the program (e.g., dynamic flowv tracing, postmorten

tracebacks, and the setting of intricate traps). - In the full

apalysis level, RAIDE keeps run-time analysis statistics, such
és how many times each program statement 1is executed or each
variable is -accessed.. In the deluxe debugging level, transla-
tors supply the source program code.. This enables RAIDE to-

respond to a user request to display portions of the source code

at run-time,

For the most part, the user will not need to be: concerned
with the levels of debugging support, since the system will
always inform the user if some requested action <cannot be:

performed due to lack .of information.,,
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Chapter III.,. The Debugging System Language

For the user to communicate with RAIDE, it is necessary to
provide a language embodying the primitive system actions and
supporting future extensions to the debugging environment.  The
debugging language of RAIDE is called Dispel - {Debuggqglng
SPEcification Lanquage), a name chosen more for -its mnemonic:
than for its acronymic value.  The first section of this chapter
describes Dispel's design criteria.. This is followed by a
description of the syntax and semantics of the language itself,
a section containing .several examples of dsbugging regquests
coded using - Dispel, and’ finally a discussion of ho¥ well the

language fulfills its goals,
A. . Design Criteria

The most obvious design criterion of Dispel is that it
should reflect the design criteria of RAIDE itself  and ' should
enbody the basic RAIDE concepts, In particular, the language
must be interactive~oriented and should only contain a small
number of primitive actions,. It is also necessary, however,
that the lanquage satisfy other criteria [Brad 68, Gris 71%a, -

Mann 73, Schw 71].

Dispel should be uniform. £ Uniformity  implies that the.
syntax is clean and consistent since.it connotes the:  existence
of few syntactic exceptions and special cases._ A construct is

always used in the same way regardless of its . context. = Impor-
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tant attributes of a uniform language.  are that it can be

described succinctly (cf., the Algol 68 syntax chart [®Watt 740 -

and that it 1is easy to learn and to implement [ Van¥ 76:sec, .

01 2 ., .

Altho the language should be uniform, it ~must also be
reasonably simple to use,, Uniformity must not introduce unnec-
essary semantic complexity (or deleterious superfluities, as the:
Algol 68 Revised Report [Van¥ 76)] says).., If the language is
complex, the programmer may . have to debug: the debugging.
procedures! This 1is <clearly undesirable:  since the overall
intent of the system is to reduce the total debugging effort, . A

complex system is frequently more of a liability than an asset.,

In addition to simplicity, the lanquage must be readable-
and shodld appear to be a natural extension of the host source.
languages, . But care must be taken to insure that the debugging
language does not become. easily confused with the host

languages., .

To fulfill system design criterion 8 (viz., conciseness and
pertinence of the information: shpplied by the- system), the
syntax of Dispel should discourage voluminous output.,  The user
should be encouraged to carry out the debugging process thought-
fully <. and to avoid -‘debugging by deluge. . Designing a syntax:
which discourages excessive output may conflict with the- goal
that the  1language be concise, It is not obvious where the.

compromise between these two criteria should be-made., :
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The final, important design criterion of Dispel is that the.
syntax should allow for possible extensions of the debugging
envirohment to meet new needs not currently envisioned.. Lan-
guage extendability will be provided thru debugging procedures.
If the debugging sfstem and its language supply sufficient
primitive actions, = debugging procedures will afford the
requisite language extendability. Thus, it should not be neces-
sary to change the  syntax of the language-itself to fulfill

future requirements, ,

In summary, the design criteria discussed above are: 1listed
in Table VII,, After detailing the syntax and semantics of
Dispel and giving a number of examples, a discussion of how well

these criteria are met will be made.

(oA e G e G g —— O (- S G —— . —— — s —

" 2. .- 0nly a small set of primitive actions should be supplied. .

1. The language should be interactive-oriented. .

3. The language should embody the "~basic ~debugging systen
concepts.,

4, .The syntax should be uniform..
5... The language should be simple to use,,

6, It should be easy. to read and understand debugging:
progranms., :

7. . The language should discourage voluminous output. .

8. The language should be extendable, .

Table VII.. Debugging Lanquage Design Criteria -

;.-—_.—-—--._—_..a».-.-.——-.——-—,--_a_—a-d




Chapter I1I. The Debugging System Language 30
B. . Syntax and Semantics

In the ensuing discussion, an outline of the syntax of
Dispel is presented using a variation of the syntactic metalan-
guage Backus-Naur' Form (BNF)., Two extensions to BNF are used: .
square brackets ([ ]) to delimit an optional construct and braces
({}) to group together several comnstructs which are-treated as a-
single unit. Also, the keywords of Dispel (i.e., ' the terminal
symbols) - are in boldface and nonterminal symbols are delimited
by angle brackets (<>). . A ‘more complete syntactic specification
of Dispel, using a syntax chart, is in Appendix B. 6 PFor lack of
a less prosaic substitute, the semantics of Dispel is presented
using the semantic metalanguage English., In the examples to
follow, upper-case identifiers ~represent language-dependant
entities (e.g., generic namés);-incidents, exception names, and
the names of system functions. Lower-case identifiers represent
program-dependent entities (e.q., specific names) and the names

of debugging variables and procedures, .

The fundamental syntactic entity is an <utteranced.,

<utterance> ::= <explanation> ..

| <inquiry> . .

{ <declaration> ..

| <definition> ..

j <command> .

The <utterance> is the basic unit of interactive - input... - Until
the full-stop (.) 1is encountered, the <utterance> is checked
only for syntactic correctness; .the full-stop ipitiates semantic

~interpretation. .
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The syntax of an <expl&natiqn>~is:
{explanation>A::= explain:<keyphrase> .
An <explanation> furnishes the user with an explanation of some
component .of the system, as signified by the <keyphrase>.,  The-
possible <keyphrase>s will not be listed, but they include such
terms as ﬁcpmmaﬂd", "break", *#display®, “"gpecific®, - and
"deferred actionﬁ., The <explanation> <utterance> provides the

rudiments of an interactive document  gquerying facility. -

An <inquiry> has the syntax:
<inquiry> ::= ingquire :<sentence> ..
An <inquiry> enables a link into a natural 1language interroga--
tion system which provides information concerning the debugging-
systenm and the state of program execution by means other than
thru Dispel <command>s, The following is a sample <inquiry>..

.inqguire "In the procedure F0O, what is the value of ‘the
.variable 2 the first time X is greater than Y?"..

An <inguiry> can be used to extract information which the  user
prefers to express in natural language terms,.,, The syntax of a
<sentence> is unspecified as far as the debugging system is

concerned, |

A <declaration> specifies debugging variables, as:.opposed
to user program variables. .

<declaration> ::= <integer-declaration>

| <specific-declaration>
- <integer-declaration> ::= integer { ( <expression>.) ] <id-listd
<specific-declaration> ::= specific [ (. <expression> ) ] <id-list>
<id-1list> ::= <identifier> {, <id-1listd>)]
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As indicated above, the two types of debuggqing variables are
integers and specifics., . The optional <expression> denotes the.
declaration of debugging array variables; it must:evaluate to an
integer value indicating the size of the array.  Elements of
debugging- array variables are selected "using subscripts..
Examples of debugging variables are'éiven in the last section of
this chapter, at which time their..utilitymwill become more

apparent, .

A <definition> identifies a debugging procedure.
<definition> ::= defime <procedure-id> -
. " [ ( <declaration-list> }] as <command>
<declaration-list> ::= <declaration> [ ; <declaration-list>]
The optional <declaration-list> specifies the formal parameters
of the debugging procedure., Whenever initiation of the proce-

dure (as identified by its <procedure-id>) is indicated, the

<command> associated with the <definition> is initiated. .

The most important <utterance> of Dispel is the <command>.

<command> ::= [<vhen-clause>] <action>
<when=clause> ::= [<label-id> :] <when>
<when> ::= whem <condition>

} on <exception-list>

| before <specific-incident-list>

| after <specific~incident-1list>:
<exception-list> ::= <exception> [, <exception-list>]
<specific-incident-1list> ::= <specific-incident>

[ . <specific-incident-1list>]

The <when-clause> of a <command> causes the.assqciated <action>
to become a deferred action..  The <label-id> of the  <when-
clause> 1is used to remove the action from the deferred action
list. For a ‘deferred -action, vhenever  the specified event

occurs, the associated <action> is initiated., <action>s which
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are not deferred are initiated immediately wupon entry by the

user. .

If a <when-clause> is contained within a  debugging
procedure, -any actions deferred by execution of the ©procedure.
are not canceled when the: procedure' is exited.. Thus, the
establishment of deferred actions is independent of procedure
scope, . Furthermore, all <label-id>s are  global and can be:
referenced - regardless of their 'tektual - scope.. If several
<whén—clause>s have been executed for the same event, only the
mostvrecentlf deferred action will be initiated when the ' event
occurs., - Deferred actions for the same event are stacked; the

<cancel-action> is used to remove an action from the stack. .

There are four forms of ‘the <vhen-clause>, - The when
<condition> form specifies that the associated <action> is to be
~initiated wvwhenever the indicated <condition>:  becomes true.,
<condi£ion> can be any expression which yields a boolean value. .
For example, “"when x>y break" means that the interactive request
mode is to be entered (i.e., a break is to-occur) whenever the
value of the variable *x' is greater - than that: of ?y!.= The
means by which this' trap is established is implementation-
dependent. The om <exception-list> form - of -the <when-clause>
specifies that -‘the associated <action> is ‘to be initiated
whenever one of a set of possible <exceptiond>s occurs.,  The
possible <exception>s are not 1listed here, but they include
ATTENTION_INTERRUPT, OVERFLOW, and ZERODIVIDE, For example, "on

ATTENTION_INTERRUPT quit® will cause RAIDE to be exited if the
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attention interrupt key is pressed. The before and after fornms
of the <when-clause> cause the associated <action> to be:
initiated before or after some particular incident occurs.. For
exanmple,
after each STATEMENT in foo break. .
sets a trap after each executable statement in the procedure
tfoo', - "each STATEMENT im foo® is a <specific-incident>; it
pinpoints the setting of a +trap.,. The complete syntax of
<specific-incident> follows. -
<specific-incident> ::= <specificd> [<generic-incident>]
<specific> ::= <variable>
{ [each] <generic> [<segment-qualifier>])
<genperic-incident> ::= <segment-incident> | <data-incident>
<segment-incident> ::= ENTRY | EXIT
<data-~incident> ::= ACCESS | UPDATE
<variable> ::= [<generic> :1 <unqualified-variable>
[<segment-qualifier> ]
<unqualified-variable> ::= <subscripted-variable>
: - [..<unqualified-variabled>].
<subscripted-variable> ::= <variable-id> [ { <expression-list> )]
<segment-qualifier> ::= in <variable>
<expression-list> ::= <expression> {, <expression-list>}
The each form of the <specific> is used to transform a <generic>
into ‘a sequence -of <specific>s, 6 The possible <generic>s are
lanquage-dependent., It should be noted that "each" generates a-
sequence of <specific>s based on their textual organization..
For example, "each VARIABLE  im foo” : identifies all variables
declared- in the procedure 'foo?, not those referenced in-?foo’., .

Likewise, “each  PROCEDURE in-foo" identifies the proceduares

declared local to *foo', not those invoked from 'foo’. .
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It is important that the user understand at what times
<specificb>s are evaluated since this greatly affects the
specification of <utterance>s., = There- - are three  forms of

<specific>- evaluation: static, dynamic, and continual. s During

static evaluatioen, <specific>s are evaluated once, upon specifi--
cation of the <utterance> containing them. - The <specific>s in
the before and after forms of the <when-clause> and all those
not deferred or contained within debugging~ procedures are
evaluated statically. During dynamic- evaluation, <specific>s
are. evaluated once, upon initiation of the <command> containing
them.  The <specific>s contained' within deferred actions and
within the bodies of debugging procedures are evaluated dynami--

cally. . buring continual -evaluation, <specific>s are -evaluated

repeatedly until the deferred actions- containing them are
canceled, The <specific>s within the when <condition> form of

the <wvhen-clause> are evaluated continually,

The basic actions of RAIDE are specified in Dispel as

follows., .
<action> ::= <compound-action> i <gquit-action>
§ <break-action> | <reference=-action>
} <call-action> { <restore-action>
} <cancel=-action> | <save=-action>
} <display-action> } <set-action>
] <execute-action> } <skip—-action>
{ <for-action> ] <system=-action>
| <if-action> { <while-action>
] <input-action>:

These <action>s are described below in alphabetic order of +the-

. keyword which begins each.
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The <compound-action> is a syntactic device to allow the
grouping of multiple actions into one.
<compound-action> ::= begin [ <declaration-list> ;]

<command-list> end
<command-list> ::= <command> {; <command-list>}
<declaration>s within a <compound-action> have a scope and life-
time local to the defined block.. The: <compound-action> allows

an entire series of <command>s to be specified wherever a single

- <action> can be specified. .

fhe <break=-action> indicates that processing is to revert
to the interactive request mode. The <break-action> is designed
for use within deferred actions and debugging procedures only.,
Its syntax is:
<break-action> ::= break [ <message> ] ‘ .
%hen a <break-actiond> is initijiated, the deferred action or
debugging procedure containing the break 1is terminated, the
<message> 1is displayed on the output‘display-device, and RAIDE
enters the request mode waiting for the specification of some

<utterance>.

The <call-action> causes a'debugging'procedure to be called
after evaluation of its arguments.
<call-action> ::= call :<procedure-id> [ { <expression-list> )]
Recursive debugqging procedures are supported.,, The parameter

passing mechanism is call by reference, as in PL/I [IBM 703,

The <cancel-action> causes one or more deferred actions to-

be removed fronm the_deferred action list. .
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<cancel-action> ::= cancel [<cancel-list>]}

<cancel-list> ::= {<label-id> | <variable>}-{, <cancel-list>]}
cancel without an arqument is used only within deferred actions;
it causes the deferred action which contains it to be canceled.
Deferred actions which were given <label-id>s can be canceled by
listing the <label-id> (e.g.,-cancglzfoo).,-lf a deferred action
wWas not labeled, the system;rwill automatically assign a
<label-id> to it; this label is used to cancel it.. The .systemn
function DEFERRED_ACTION_LIST ({cf., Appendir_A)gcan be used as a

<variable> to also identify actions to be canceled, -

‘The <display-action> causes one .or more pieces of . informa-
tion to be displayed on the output display device, or on some-
auxiliary file or device. -

<display-action> ::= display <what-list> [on.-<file-named>]
<what-1list> ::= <expression> {as <type>] [, <what-list>]

When' 'the <display—action>a.-is' -initiated, the designated
<expression>s . are printed on the file <file-name>, - which
- defaults to the output display device, K The syntax of
<file-name> 1is operating—systemfdependentug Unless 1indicated
otherwise, an <expression> villf be: displayed in a format
“suitable to its type attributes; the <type> clause can be -used
.to override this default.: Numerous examples of ‘the <display--
action> are ‘given in the  next section.  ~The. <displayraction>
displayed. - This buffer is presented to the: user either when one
of the format functions PAGE or LINE is displayed (cf., Appendix

A) or when the interactive request mode is. entered,
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The <execute-action> causes the user's program to be execu-
ted, leaving the interactive request mode of RAIDE..

= execute [ <expression> [<segment-generic>]]}
| execute while <condition>

<execute-action> ::
execute without an argument causes the progran..to be resumed at
its pbint of suspension (i.e., the default reference point), or
at its beginning if there is no- suspension - point. The  other
forms of the <execute-action> are the same except that execution
limits are imposed, 6 These execution. limits can be thought of as
transient deferred actions - which :cause  a break when the
apprbgriate event occurs, The first - alternative - of the
<execute-action> causes a . particular number of segment-generics
to be executed. For example, "execute: 3 STATEMENTS" causes -the
user!s préqram to be resumed for theAexecution'of»exactly-three
source-level statements of the: current procedure. . <segment--
generic> defaults to  the lowest-level segment-generic .defined
for the host source language. . This form allows .the user to step
thru execution of the_ program., The other alternative of the
<execute-action> causes the program to- be resumed until the-
indicated <condition> becomes false., It should be noted  that:
resumption of the user's program at-an arbitrary location is not
allcowed 'in' RAIDE. . It is felt that such a facility is not well
structured and is error-prone, and that it should be avoided in
the :debuggingv phase Jjust as unrestricted transfers of control
shouid- be avoided in source langquage programs.,. ¥#With the
addition of the <skip-action>, the user  should  f£find this

constraint toleranle.
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The <for-action> 1is- a control structure which allows
repetitive initiation of some <actiond>.

<for-action> ::= for <specific-list> -> <specific-id>
' do <action> :

The <specific-id> identifies a specific variable which has a
scope encompassing the-  repetitive <action>.. It is implicitly
defined to be of type specific.. The <specific-list> identifies
a set of .specifics, the  members of which are suqcessively
assigned tq the <specific-id>. . -‘Each time the repetitive
<action> 1is initiated, <specific-id> will identify a different
member of the set, The programmer cannot explicitly change this

association within the repetitive <actiond>..

The <if-action> is a control structure vbich,selects:onebcf
tvo possible actions for initiation based on some conditional
expression, . -
<if-action> ::= if <condition> them <action> [else-<action>] £i -
If the 'indicated <condition> 1is true, the <action> following
then is initiated; otherwise the <action> following :else, if

_ present, is initiated. ,

The <input-action>  causes a series of <utterance>s to be
read from some file or device.. Its syntax is:
<input-action> ::= imput [ <file-name>] .
<file~name> is the name- of a file which contains a collection of
<utterance>s which are initiated., The syntax of <file-name> is
operating-system-dependent, and it defaults to some bperatingf

system-dependent - value,, The <input-action> is most useful for
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specifying libraries of canned debugging procedures. .

The <quit-action> causes the debugging system to be - exited
and control returned to the operating system. Its syntax is: .
<guit-action> ::= quit [ <message>] .
If present, the <message> is displayed on the output display

device before termination of the debugging session.,

The <reference-action> establishes a reference point which
is different'f:om the default. .
<reference-action> ::='refetencea[(variable)}
If a <variable> is .indicated, it is used to disambiguate
references to  specifics- and generics - until the next
<reference-action> or <execute-action> is initiated. .  reference:
without an argument causes ‘the reference point to-revert to the.
default reference point (i.e., to the reference point when the

interactive request mode was entered most reCently);,

The <restore-action> reestablishes an environment which was
previously saved by a <save-action>, ,

<restore-action> ::= restore:<file-name> [ saving <file-named>]}
<save-action> ::= save <file-name>

Once an environment has been named and saved in a file, RAIDE
can restore 'that environment using ‘the <restore-action>.  The
saving clause of the <restore-action> is a shorthand - for
specifying a <save-action> immediately preceding a <restore-
action>,. The syntax of <file-name> is operating-system-

dependent,
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The <set-action> changes the value of some user program .or
debugging variable. - -
<set-action> ::= set:<variable> to <expression>
If a user program or debugging <variable> is = designated, its
value is changed to that of the <expression>. If the <variable>
designates a <specific-id> (which must have been declared with a
<specific~-declaration>), the variable is made to reference the

specific indicated by the <expressiond>, .

The <skip-action> causes the value of the default reference-

point to change by skipping execution of the remainder of some
segment of code.
<skip=-action> ::= skip [<segment-genericd>]
The <skipfaction> affords the user the opportunity to abort
eieqution of a segment of the currently suspended program.. This
is especially'useful vhen the user discovers a program error,
but- desires to conﬁinue execution to discover other possible
errors, . 'For example,

skip PROCEDURE, -
execute,

will -cause the user's program to  resume execution din the-
procedure which called the one in which execution was originally
suspended, . Any deferred actions associated with the segment's
exit will be initiated as if ‘the segment terminated by normal

program execution.

The <system-action> allows the  execution of RAIDE to be

temporarily suspended to allow control to pass to the: operating-
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systen,

<system-action> ::= system [<system-command>)

RAIDE will subsequently be reentered with the environment it had
prior to initiation of the <system-action>., If +the host
operating system allows such a facility, the <system-coamand>,
if present, is the single command executed before RAIDE is auto-

matically reentered.,

The <while-action> is another control structure vwhich
allows repetitive initiation of some <action>. .
<while-action> ::= while <condition> do <action>
Until the indicated <condition> becomes false, the specified

<action> will be initiated repeatedly. .

All of - the primitive actions' of RAIDE - have  now been
outlined. The omission of a trace primitive - action,: present in
virtually all previous debugging systems, should be noted, . In
Dispel a trace primitive is unnecessary: tracing can be imple-:
mented using the <when-clause> and ‘the <display-actiond.,
Examples of tracing debugging procedures are given in the next

section. .
C. Exanmples

This section cpntains numerousAexamples of RAIDE - debugging
requests coded in the debugging system lanquage Dispel,  The
examples are designed to show the extent and power of RAIDE as
well as to demonstrate Dispel.. In the examples below, it will

be asSumed that the host source langquage is block-structured and
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contains the segment-generics PROCEDURE, BLOCK, and STATEMENT
and . the data-generics VARIABLE, PARAMETER, and CONSTANT. .
Furthermore, the existence of three segment-generic related
system functions is assumed. They are CURRENT. PROCEDURE,
CURRENT_BLOCK, and CURRENT_STATEMENT, yielding specifics indica-
ting .the procedure, block, or statement most: Trecently active:
when the function is invoked.  Like the  generics, these.
generic-related functions are language-dependent - and ' must be
supplied for each language interfaced to the  system. The.
language=independent RAIDE system  functions  are ‘described as

needed below, and are listed iﬂ'nppendix A, .

The remainder of this section contains examples in this
form: a description of the debugging request desired, the ‘Dispel
code corresponding to the reguést; and an explanation and
comments concerning the.code.i

1. 'Change the value éf the variable 'var' in the procedure

'foo' to the value of 'nt,
set var in foo to n..

This command is given when execution of the  progranm "has been
suspended and RAIDE is in the interactive request mode., If the
program has been interrupted during execution - of *foo! {i.e.,
the reference point is' 'foot*), then the segment=gualifier
n"jn foo" is optional since it will default. .

2., List the names and cﬁrrent~§alues {if any) of.éll variables

declared in the currently executing procedure which have
not been accessed more than 'n' times, =~ '
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for each VARIABLE im CURRENT_PROCEDURE -> var do.
if (#ACCESSES (var) < n)
then display LINE, var, " = v, VALUE{var) .
fi.
#ACCESSES 1is a system function yielding :the number of times
which the indicated data-specific has been accessed during total
program execution. LINE is a system function causing the items
following to be displayed starting on a nev line of the: output
display device.,  Notice that displaying the :specific variable
‘var? causes the source-level name of the variable indicated by
the specific to be printed. - The current value of some specific
is obtained by the VALUE system function,,” The: value  of an
uninitialized variable is displayed as a gquestion mark. .
‘3, . Set a breakpoint when statement '*aA' in the currently:
executing procedure has been' executed *n' times, -
after STATEMENT:m in CURRENT: PROCEDURE

if (#ENTRIES(m) = n)
then begin

cancel ; _
‘break "n-th execution of statement m"
end

f£i.
This is an examnple of a deferred action. It sets a trap :after
statement 'm' in the currently executing procedure., #ENTRIES is
a system function which yields the number of times the indicated
segment-specific has been entered during program execution. . The
prefix -MSTATEMENT:" 1is appended to 'nm' in the»fi:st‘iineasince
the generic type of ‘'a'  may be ambiguous. It could be a
VARIABLE or PROCEDURE, and the system may be unable to determine

which *m*' is being referenced.
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4, . List the source for statements -'m* thru *n' . of the-
procedure 'foo?, .

for. each STATEMENT im RANGE(foo,m,n): -> stmt do:
display LINE, VALUE(stmt). . : :

WSTATEMENT:" is not necessary here unless the  host language
numnbers segments other than STATEHENTs {e.gt,-BLOCKs);;-BANGE is-
a system function which yields a generic value identif?ingv some
particular subrange of another generic value,.
5. List the names of all procedures declared in the procedure-
'main' which have not been executed more than 'n' times. .
for each PROCEDURE im main -> proc do:
if (#ENTRIES{proc) £ n) ‘ '
then display LINE, #ENTRIES({(proc), TAB(10), proc
TAB is a system function which causes:the items following to be
displayed "at the indicated column on the output display device...
Since_the_specific tproc' willindicate only those procedures
whicli are declared in the procedure 'main', the request above
applies only to the top-level procedures in 'maint. .
6. Extend the preceding example  to produce a complete
procedure execution profile and indent -the output +to
- teflect the logical structure of the program, .
define execution_profile (specific-major_proc ;
integer indent) as
for. each PROCEDURE in major_proc =-> proc.do-
begin :
display LINE, TAB{indent), #ENTRIES(proc),
‘TAB(indent+10) , proc ;
call execution_profile(proc,indent+5) -
end., ' '
-callcexeCution;profile(main,O)‘

This is the first example using a debugging  procedure, . Notice "

in particular how the procedure:is called recursively to handle
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the logical nesting of the program., This example demonstrates

the  utility of debugging variables ' (viz.,  *major_proc?',

'indent', and *proc?'). .

7., Write a debugging procedure to trace all calls of a
particular subroutine within a procedure, indicating the

location of the «call, the name of the subroutine called,
and the names and values of all of its formal parameters,

- define trace_proc_calls (specific subr) as

begin
subr_entry_trace: :
before subr ENTRY , |
display LINE, "Trace at statement ", CURRENT STATEMENT,
#-in ", CURRENT_PROCEDURE ; i
subr_entry_trace:
after subr ENTRY
begin
display LINE, CURRENT_PROCEDURE,
" entered with the following parameters:" ;
for each PARAMETER .imn 'CURRENT_PROCEDURE -> parm do.:
display LINE, TAB(10), parm, " = ", VALUE(parm)
end
end..

This example demonstrates another prgcedqre of sufficient
utility to merit inclusion within a debugging procedure library..
ihe definition establishes two deferred actions, = one ‘which is
initiated .in the environmenf.of the calling procedure .(before-
subr ENTRY) and one which is initiated in the environment of the
called subroutine (after subr ENTRY)., Notice how the procedure

is capable of setting many traps, all of which are identified by

only one label, .
8. Disable all of the tracing described in the preceding
’ example. .
cancel ‘subr_entry_trace. .
This one cancel action removes all of the traps set by the:

procedure *trace_proc_calls'..
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9,, Write a debugging procedure to  produce a DO-trace of a
_GQTO-less subroutine [Foul 75}..

. define do_trace (specific subr) as

" for..each BLOCK im subr =-> block do.
do_block_trace:
after block ENTRY
- display " ", CURRENT_STATEMENT..

Iu»a,GOTO-leSS"subroutine,-tracing each‘blOCK rather than  each
statement produces a more compact trace., No essential informa-
tion is lost because, once the  block. -is entered,‘ it is
guaranteed that each statement in that block will be executed
since arbitrary GOTOs are not permitted.. *'do_trace' works by.
simply printing the number of the first statement in each block
which is entered. .
10. . Extend the preceding example to trace .all blocks of all
subroutines declared within some user procedure, .
define do_trace_all (specific:proc) as-
for. each PROCEDURE im proc -> subr do:
‘begin _ : ‘
do_proc_trace:
after subr ENTRY
display .LINE, CURRENT._PROCEDURE, ":" ;
call do_trace(subr)
- end,
Since statement numbering may be done at the procedure level, it
is necessary to identify the name of the procedure entered
before listing statement ‘numbers within that procedure. =
11. Define a mechanism for determining dynamically the nesting
depth of an active program block [Math 75]. .
define block_depth_counter (specific:proc) as
for each PROCEDURE im proc -> subr do

begin
for. each BLOCK im subr =-> block do:
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- begin
block_depth_level:
after block ENTRY
set ‘block_level to block_level + 1 ;
block_depth_level:. -
before ‘block EXIT
set :block_level ‘to block_level - 1.
cend ;:
. call .block_depth_counter (subr)
end. . ' [
% Define and initialize the global block level counter. %
integer block_level.
set block_level to 0.
Invoking ‘'block_depth_counter® with the name of the user's nmain
routine as an arqument will establish breakpoints at the  begin-
ning 'and ending of each block of the user's entire program. The
purpose of these’breakpoints is to increment and decrement. . the
variable 1'block_level?t, Thus once  *block_depth_counter' is
invoked, the value of 'block_level' during execution indicates
the nesting depth of the CURRENT_BLOCK.. With this mechanism it
is possible  to establish various breakpoints based on the
dynamic depth of program execution; see the following two
examples,
12, Using the @mechanism described in :the preceding example,
produce a DO-trace of a program only when the block nesting

level is greater than some constant 'n'. .

vhen (block_level > n)
display’. :COURRENT_BLOCK.

The <when-clause> will be evaluated each time the value of
'*block_level! is changed, which occurs both at the beginning and
ending of each block.,.  Therefore, tracing will occur twice for

each block, at entry and exit. .
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13. - WHrite a debugging procedure to break on the 'n'-th. recur-
sive call of some user procedure.

define recursion_break (specific proc ; integer: n) as
begin '
recursion_break_label:
after proc ENTRY
-set recursion_level to recursion_level + 1

recursion_break_labeli-
before -proc EXIT
set recursion_level to.recursion_level - 1

..

recursion_break_label:

vhen recursion_level = n

.begin -

' cancel .recursion_break_label ; .
set recursion_ level to .0 3
break .

end .

.end.v

% Deflne and ‘initialize the global recursxon counter. % .
integer recursion_level,
set recursion_level to 0.

The action "call recursion_break (foo,10) " causes a break : when

tfoo! is entered recursively for the_fenth'time;;

14, Write a debugging procedure: to produce the Algol-¥W postmor-
: ten dump [Site 71: 125-127].

define ‘postmorten as
begin
specific segment, caller ;.

display PAGE, '"=> Postmortem dump of ‘active ‘segmentsh ;
set segment to CURRENT_BLOCK ;

"while DEPINED (segment) do
begin o ‘
-display LINE(2), "=> Segment name: ", segment, LINE({(2),
" value of local variables:®, LINE ; .
for each PARAMETER in segment -> parm do:
» call 'print_parameter_ value(parm) ;
for each VARIABLE in segment -> var do :
~call print_variable_value{var) ;-
set caller to CALLER{segment) ;
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. if DEFINED({(caller) -
. then display LINE(2), segment, " was activated from ",
caller, ", near coordinate ¥,
CURRENT_STATEMENT in-caller
fi ;
set segment to caller
end ;

display"LINE(Z), "=> End of postmorten duﬁp"
~end. .

Unlike the previous debugging procedures,l'postmoftem’ is con~
cerned primarily with the d?namic execution structure of the
program. Using the ~while: action and appzoptiate' systen
functions, it is possible tovtrace back thru execution of._fhe
program. . The systen functién DEFINED_yieldS a.true va1ue.if*the“
variable. indicated by the argument has a value and yields false
othervwise,. . CALLER is a systen function~ which accepts a
segment-specific'as an argument and yields auspecifiC~indicating
the segmeént which called the argument specific.g’The-procedure
above assumes two debugging procedures ‘?'print_ parameter_value!?
and 'print_variable_value® . have been defined elséwhére.; They
handle the special formats in vwhich the. Algol-w translator

displays variables and. parameters, based on their atfributes. .

- Any debugging system must provide  a mechanisn for
interrogating the current state of not only the exeéﬁting host
program, but of the debugging system itself. For: exémple,‘ the.
user may wish to ‘know the names of all dehugging’procedures
which have been defined, what breakpoints are currently in
effect, -and what the value of -the current reference point is. .

In RAIDE, these requests are facilitated bi introducing systen
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functions to extract status information and by viewing Dispel
éimply as another "hoétﬂ source 1anguéqe.,'Thus, it is possible-
to display segments of Dispel procedures and to write debugging
procedures which affect other debugging -procedures;f In the
examples to follow, it will be assumed that Dispei cb@tains the
segment-generiés COMMAND and ACTION and the. data-generics

VARIABLE and PROCEDURE.

15, . ¥Write a debugging procedure to print the. names of all
actions on the deferred action list. .

define print_deferred_actions as -
‘begin. :

integer counter ; 4

- specific deferred_action ;

- set counter to 1 ;
set ‘deferred_ actlon to DEFERRED_ACTION_LIST{(counter) ;
41sp1ay LINE H ;
while: DEFINED(deferred actlon) do-
begin :

.display deferred act1on, SPACE(3) ;

‘set. counter to counter + 1 ;

set deferred_ actlon to DEFERRED_ACTION_ LIST(counterr
end .
end.

" This exémple uses the system function DEFERRED_ACTION;LIST.to
access the labels associated uith,each.ofsthe=currehtly deferred
actions. Each label is either the one specified, or the default
. label assigned to it by. the system.h Notice that
DEFERRED_ACTION_LIST returns a segmentfspecifiC‘just'as'if'it
was a user program variable, By changing the principal - display
action of *print_deferred_actions' ~to- a cancel, a debugging

procedure to 'cancel_deferred_actions' can be defined.



Chapter III. The Debugging System Language 52
16. #Write a debugging procedure to 1list the source of some
debugging procedure.
define print_debug_proc (specific proc) as
for each ACTION im proc -> action do
display LINE, VALUE(action).,
Initiating the action "call‘ print_debugnprbc(print_debug_proc)"

will cause the for action which constitutes the body of

'print_debug_proc’ to be printed._
D. . Discussion

The purpose of this section is to answer two guestions:
"How well does Dispel fulfill its design criteria?" and "What

are its shortcomings and how can it be improved?", .

‘'The following shows how each of the design criteria of

Table VII is fulfilled:

1. That Dispel is interactive-oriented is supported by its
similarity to other interactive command lanquages., For exampie.
each <utterance> and <action> begins with a keyword and is
terminated by the full-stop syﬁbol ()s . Thew_full;stop.-symbol
initiates immediate incremental -execution: of the ‘utterance..
Altho the control structures {e.g., for and:while)-'givet Dispel
the flavor of a batch-oriented lanquage, these constructs are
used primarily in debugging subroutines, which the ordinary user

is unlikely to define online,

2, The set of primitive Dispel <action>s is small,  Excluding
the control structure <actiond>s, there are only thirteen

primitives, Furthermore, there is a one-to-one ' correspondence
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between these <action>s and the primitive RAIDE actioas.

"3, The basic conceéts of RAIDE  (cf.,  Section II.B) are assimi-
lated into Dispel., This is evidenced by the close correspond-
ence between the syntactic entities of ~ the: language and the.
basic system concepts (e.q., specific variables, the construct
<specific>, and the RAIDE_Concept~ of a. specifig;u the - {vhen—
clause> of a command and a RAIDE event; and £he.teference:

<action> and the RAIDE reference point).

4, The syntax chart of Appendix B attests to the uniformity of
Dispel. The complete syntax is formally SPecifiablé in just a
few pages.. Further, there are. no "semantic® gualifications; a

<variable> is a variable in any context.,.

5. - The claim that Dispel is simple to use is subjective.
Ultimately, this <claim mnust be substantiated by each user

individually.

6. The language has been designed to be “English-1like" -in many
respects and, therefore, easy to read and understand..
Pronouncing a debugging command should be the same as explaining
it., For example, the <utterance>:

before each .STATENENT im foo
display CURRENT_STATEMENT. .

has the pronunciation:

wBefore executing each statement in- the subroutine: 'foo?',
t nu

display its statemen mber." _ ..

This in itself is an explanation of the <utterance>.
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7. The Dispel syntax discourages voluminous output by requir--
ing explicit specifications and assuminq-defaults‘Hhich:result'
in the smallest amount of information. For example:

for each VARIABLE in main ~-> var do«
display -var, " = ¥, VALUE(var). .

displays only the variables . which are: declared - locally to
*maint, not-all variables‘accgssible-thit.ﬁwTo¢get‘aedisplay of
all user variables requires a~recursivejdebnggingmprocedureg

rather than extending the display action.to:“displaygklnaﬁ;;

8, Extendability is afforded in Dispel thru the definition of
debugging procedures by the user and - thru  the definitions- of
language~dependent entities under the control~of5tﬁevlanguage
interfacer.. The numerous examples of the. preceding section
evidence this.; Provided thevinterfacgrvidentifiés the_proPer
generics for a particular language and"the‘ primitive' RAIDE
actions are mathematically "sufficient", Dispelfs procedufes

provide adequate extendability. .

Altho Dispel is believed to be a reasonably good debuqging
language, experience with 1its use has shown where it can be

improved. - Specifically:

1. . It would be convenient to-include initialization as part of
the declarations of debugging variables.”vThe»seguehce:.

integer foobar. .
set - foobar to 0.

is so common as to suggest an extension.such asz: -
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- integer foobar initially O. ' .
The problem with doing this is maintaining;&niformity with
debugging procedure parameter declaratioms. 6 The phrase:

define foo (integer bar initially.0) as ....

is clearly to be avoided.

2. It would be convenient :.to label'a-group-of.deferred;actions.
without repeating the label. The seguence:

<label-id>: before .., <action> ;
<label-id>: after ... <action>

is -common 1in debugging procedures (e:g;,v example7 7 of the
preceding section). Having the same label ‘on several deferred
actions makes camceling them easier., An extension such as:

<label-id>: (before ... <action> ;
-after .,.{(actiona)'

may be called for.

3. . Debugging procedures should be allowed to return values
(i.e., there should be debugging functions).,K For example, it is
currently impossible to define a p:ocedure:=siﬁilar"to the
built-in system function CALLER which returns the 'nt-th caller
of some subroutine, , The straightforward definition would be as
follovws.
define callern (specifzc proc ; integer: level) : specific:as
if (level < 1)

then return CALLER (proc)
.else return callern{CALLER (proc),level~- 1).

4,  The current structure of Dispel places too much . dependence

on global debugging variables.;' As an example, the procedure
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*block_depth_counter' of the preceding section  requires the
global  variable 'block_level?,. Altho it is generally
transparent to the user7(who should need only to: know . about
'block;depth_cdunter'),'what if ‘the user inadvertently redefines
*block_level? in some other context? Clearly; debugging

variable and procedure names need to be protected at times.

5. Having all -deferred action labels known globally likewise
creates problems., For. example, it'might'be.usefni to have two
invocations of ’trace_proc_callsl {exanmple 7). to trace procedure.
calls of the user subroutines *foo' and 'bar!.f Thisrcan be
done, but it is only poésible to cancel both or  neither since-
‘subr_entry_frace' is a global deferred action label,  <Clearly,
such labels should be associated with the invocation- of the
debugging variable, not- its definition.. Ihis' suggests the
addition of debugging vériéble;labels.w Then the=tracihg.routine
could be defined as:

define trace_proc_calls (specific proc ; label:trace_label) as-

R B I BN

and invoked as "call :trace_proc_calls(foo, foo_trace)"..

6. . Debugging variables% can currently be of only two types:
specific and integer. This is expressively limiting; at least
boolean and character need to be added. ., But rather than adding
more declaration types, what | may be  needed is“ a  typeless
debugging variable declaration.  For example, a general-purpose
.procedure_to scan a partiéularsuser subroutine for the names of

all variables with a certain value could ‘be defined'as:
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define variable_scan (declare proc, value) -as
for ‘each VARIABLE im proc -> var do.
if (var = value) , .
then display var.. : _ el
Similarly, a debugging procedure which .  "remembers" all set-
actions'could be defined as: .
- define super_set (declarewfarget, source) as
-begin set max_set_list_index to ,max_set_list_index + 1 ;.
set .set_targets(max_set_1list_index) to:target
set set_sources(max_set_list_index) to-source ;
set target to source
end"‘: . . .
Thenvprocedures to print out the values of 'set_targéts' and

'set_sources' could be defined. .

7. ¥When displaying a variable, it would be more: natural for
its value, rather than itsjname,.to be printed by;defaﬁltp» This
is similar to set, which assumes that the right-hand .expression
yields a value. Thus, if *foo' is a progranm variable with the
value ‘10,
display foo. .
would display "10" rather than “foo", . The VALUE systen function
could then be discarded and a system function NAME could be

added to handle those cases when the variable's name is desired. .

8. The <choice of the keyword inpnt°is'unfortunate;;lihtafy:

would be more accurate and less confusing.

‘9, There is need for at least 'one new system function,
OFFENDER, which returns a segment- or data-spécific value -
-identifying the cause of an exception.., For éxample, the

deferred action:
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on OVERFLOW
begin
display "Overflow detected at statement ¥,
CURRENT_STATEMENT, ™ in ", CURRENT. PROCEDURE, LINE,
“M"yariable "%, OFFENDER, ,
" has the value ¥, VALUE(OFFENDER), LINE ;
break .
- end. .

pinpoints predisely the 1location ‘of an overflow exception..
OFFENDER 1is defined only when there is an outstanding

. exceptional condition.
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Chapter IV. The Virtual Debugging Machine.

The virtual machine .on which translated programs.using the
RAIDE debugging system -run is called SPANM (§pécialized
Prodebugging Abstract Machine). . Unlike the other chnned.product
sharing its name, SPAM's composition is not of concern. to the
user, due to its imperceptibility. The first - section of this
chapter describes SPAM's design criteria. This is followed by a
desc;iption of -the major components of the virtﬁal_machine, its
internal operation, and an outline:of,its.instruction reper-
toire., The chapter is concluded with a discussion of .how SPAM
aids the debugging process and how‘well it nmeets its design-

criteria. .

A. Design Criteria
/* Reqrettably, most programs are required to execute with a
maximum of speed and a minimum . of caution; it is small
wonder, therefore, that we characterize the common result
as a "crash".
-=- John R, Ehrman, { Ehrm 72:20] */
The primary purpose of SPAM 1is to . provide the user’'s
program with a machine environment that is not - hostile to the
debugging process { Ehrm 72, Glas 68, Pyle 71, Zelk 71.). . Most
existing computers have been designed with little consideration
for how the machine itself wmight aid in the‘debugging of

programs; execution speed and efficiency have - always been the-

primary design criteria. .
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The design of SPAM is influenced by the B6700 [Orga 731,
several recent  virtual machines designed to. aid in code
generation [ Boul 72, Pask 73, Wort 721, and a . previous virtual:
machine oriented toward debugging [Pull 6% )., A1l of these are
high~-level m®machines directed toward Algol~1like languages. .
likewise, SPAM is oriented toward block-structured, procedural
languages of the Algol family.. It is stated: in‘.pnevious
chapters that the debugging system is not inherentl? directed
toward one particular class of languages, . . Nevertheless, since
SPAN is. restricted to Algol-like langquages and - since RAIDE can
be used only to debug ptogramslwhich.run on SPAM,  the virtual
machine effectively 1limits the  scope ofathe“entiré dehuggin§
system, . This may at first appear to be a severe restriction of
system design criteria 1. and 3, which ‘state that the systen
should be source language independent and usable on mhltilingual
collections of programs. . Nonétheless, the class of Algol-like
languages is large and diverseﬁv A debugging . systenm which is
usable on any and all lanquages within this class deserves the
attribute "language-independent®. Until the design and
implementation of a truly universal computer (the -machine

equivalent of the proverbial UNCOL), all software. syStems will

of necessity be less than totally langquage-independent.

It must be remembered that SPAM is a tool used in the
implementation of RAIDE, As such, the existence of SPAM is not
vital to the health and well-being of the debugging system. .

SPAM could, in fact, be replaced by some other machine, such as
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the 1IBM System/360/370. This was not done for tvo reasons. .
First, the use of a virtual machine should facilitate portabil~
ity of the'system._»To move RAIDE to another.real machine,. the
language translators need not be remodified; only the SPAM
interpreter and RAIDE need be -bootstraped over to the new
machine, Also, since the virtual machine is ' oriented +toward
debugging, the total implementation effort should be less since
much of the error detection will be done at the ' machine 1level. .
This reduces the implementation . burden of both'RAIDE, which
needs not perform as much error checking, and any translators
interfaced to RAIDE, since they need not generatetaS'mﬁch run-

time error checking code.

Nevertheless, there are two disadvantages to the ' virtual
machine approach;, First, since the. code generated durinq a
debugging run will likely be different from that normally .gener-:
ated, it is not possible to - use RAIDE to track.doun-code
generation errors and other ‘1anguage- translator bugs.y Also,
rewriting or modifying-the code generation phase of most trans-
lators is a nontrivial undertaking. . But as a translator writing
system resource, RAIDE is oriented more toward future translator

implementations than current ones,

B. Machine Architecture
/¥ spam, Spam, SPAM, SPAM, Lovely Spam, Wonderful Spam!
A -~ Monty Python's Flying Circus */
The basic architecture of SPAM is illustrated by Figure

IV-1. There are eight major components in the machine:
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The Virtual Debugging Machine
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1. The type table contains information concerning the types. of
variables, the argumehts of procedures and functions, and the
values yielded by functions._ This information is necessary to
carry out complete rkn-time.type-checking.of variable assign-

ments, and procedure and function invocations. The type table.

is-supplied to SPAM by the language translators..,

2., The :bounds-table contains the lower and upper:bounds-of all
arrays, and the bounds of 'integer subranges (e.g., 1..10 in
Pascal) and scalar variables (e.g., color = (red, white, blde)
in Sue).. This information is necessary to carry out run-time

range checking of variable values.w'The bounds ;ablé is supplied

by the language translators. .

3. The code .area contains only SPAM machine code, which cannot
be modified during execution. The basic unit of machine code is
a syllable; an instruction consists of one .or more Syllables., A
unit of‘executable machine code ‘related togqether by some common
purpose is called a'§ggg§g§., SPAM segments are much like the.
segments of RAIDE (e.gd., procedures, loops, and assignment-
statements)Q, All references to code are made thru - the segment

control stack and segment descriptors. The code area is

supplied by the "language translators. .

4, The entries of the segment control stack:.identify a code
segment and reference the - environment accessible 'by that
segment., .- Since the-complete;siate of an eXecuting'COde:segment

is contained within one segment control stack entry, a new
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segment 1is executed by merely pushing an entry onto this stack..
Likewise, segment exit results in an entry being popped from the
stack. The currently. active segment is~'pointed to by the

segment control stack pointer«(gggggg).”

5.. The entries of the scope stack identify the beginning of
the range of  variables and values accessible ,by each code:
segment. . The top entry of this stack is pointed to by the scope

stack pointer (§§g§£f.-

6. The dypamic storage - stack contains the values of all
variablés-and constants, eicept for those which are'too_long to
fit conveniently within it. - Altho it is called the dynamic
storage stack, its first part contains information . which is
constant during execution of the user program. . This static part
contains templates for.all of,thé.codeﬁsegmentS‘and' data items
of the program.. It must be supplied by the lanquage transla-
tors, All wvariables -and constants ' ‘are: :acceésed by a
item being referenced and corresponds to the logical nesting of
procedures and blocks within the. source;ppogram.,-The order-
indicates which item within the level is desired. - The order is
an offset into the dynamic storage stack; the level identifies a
scope stack entry which refers into the dynamic storage stack, ;

The last valid entry ofjthefdynaminstorage.stack is pointed to

by the dynamic storage stack pointer {dsspir). -
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7. The expression stack contains the values of all intermedi-
ate calculations and is the stack .on which most of the arith-
metic machine instructions'opetate., As with the dynamic storage
stack, ranges of accessible values within the expression stack
are delimited by entries of ‘the scope stack.. The 1last  valid

entry of this stack is pointed to by the expression stack

pointer (esptr)..

8. The free storage area- -contains the values of all strings,

all values which will not fit conveniently within the -dynamic
storage stack, and all values which are allocated outside the
normal sbope:conventions.“ Garbage collection is necessary only

within this area.

The basic- unit of information ;ithin SPAM is the
descriptor. , Descriptors contain ~not only values, but also
extensive information to aid in run-tinme debugging.,'There are
five kinds of descriptors: segment, data, array, segmeht centrol
stack . entry, and scbpe ‘stack  entry. . Each déscriptor is
diagrammed in detailfin'Appendix-C.»‘Segment-descriptors delimit
any section of machine code which the:langﬁagé translators
desire to identify;'they model the segment-specifics- of RAIDE.
Data descriptors describe all program variables and constants..
Array descriptors are similar to data descriptors except . that
they contain an~offset?into the bounds table, Altho arrays can
only be one-dimensional, an element of an array can itself be

another array., K Thus, multidimensional arrays are possible. -


http://esp.tr

Chapter 1V, The Virtual Debugging Machine 66

The formats of the entries in the bounds and type tables
are diagrammed in detail in Appendix D,  The bounds table format
is straightforward and should require no explanation.  The type
table identifies eight basic classes: vprimitive (viz., void,
integer, real, boolean, and string),‘subranger(egga,'1@.10),
scalar (e.g., (apples, oranges)), reference:  (i.e., pointers),

structure, procedure, array, and union.(in'the Algol 68 sense}. .

Given the ' architecture illustrated by Pigure IV-1 and the .
descriptor and table formats contained in Appendixes C and D, it
is possible to describe the actions of the virtual machine and
its dinstructions using a nmicroprogramming language = called
Spamdol (SPAM Descriptive QObject Language).  Spamdol 'is modeled
afte: the machine description language of {wat'72}., The -
notationbbelow should be clear; the only unusual feature is that
Spamdol statement bracketing is accomplished using 'patagraphinq
{i.e., program indenting) rather than more=syntacti¢ally.refined
devices ‘such as begin-end or do-od pairs.u-vAs an exanple of
Spamdol; the following.is the basic instruction execution cycle

of SPAM:

while (scsptr # null) do
:local instr_length, instr_offset
vwith scs[scsptr} do.
if (segtype = procedure) and (lc = external):-
then execute_external;procedu:e(addr),-
o pop_scs
. else if (offset > length)
then pop_scs
else-instr_offset := cao + offset.
instr_1lenqth := i
execute_instruction (instr_offset) -
offset +:= instr_length o .

Notice the declaration of 1local Spamdol - variables (e.gq.,
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instr_length and instr_offset) and the use of Spamdol procedures
(e. g., execute_instruction)., As an example of a Spamdol proce-
dure, the following is the routine which pops an entry from the
segment control stack:
pop_scs: -
- local old_scse
old_scse := scs[scsptr)
CAf old scse.dm and old_scse. 1nterrupt bx
then interrupt - vbefore segment exit"
.if (scsptr # null) and {old_scse.sso #- scsrscsptr-13 sso)

‘then pop_ss
decr scsptr
.if (scsptr # null) and (old_scse.seqgtype # procedure)
then scs scsptr]. offset +:= o0ld_scse.length
.if 0ld_scse.dm and o0ld_scse,interrupt.ax

- then. interrupt "after segment exit" , ..

The ' instruction set of SPAM is described-in“ﬁppendix E.

all instructions have either zZero, one, or two opetands.f Most
instructions reference: either the top of the segment conirol or
expression stack, The = majority of these .instrﬁctions are
straightforwvard. Since  segment ‘control :instructiéhs are the
only ones which differ substantially from those. of other block-
structured, Algol-like machines, an.outline of the Spamdo1 code
defining each of these. instructions is contained in the .
appendix.  Since the SPAN 'éegment»is afbeneralizétiongqf the -
control structures of previdus language-directed .machinés,
segment . control instructions have necessarily been generalized.,
Thus, for example, there are no IF-and FOR- instructions; these
can be constructed- from the instructions provideﬂ) AIOQg-with

the definitions of suitable ségment-,types(,v Owing to the -

author's bias toward structured programaing, SPAM does not
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contain a GOTO instruction. .

Appendix F contains a complete example of a SPAN. object
program, dincluding both the machine code and the descriptdrs
needed for 1its execution.. By following thru  this example
carefully and relating it to the information 'contained in
Appendixes C thru E, the astute reader will appreciafe.the vays

in which SPAM's design facilitates the debugging process. .
C. Discussion

This section discusses the ways in which SPAM's design aids
the debugging process and identifies some of the shortcomings of

the design. .

The primary way in which SPAM's design aids debugging ' is
thru the wuse of highly typed segments and data (i.é;, a tagged
architecture). Each'segmen; bf; SPAM code has ah' associated
descriptor which indicates its segmentvtype_(e;g,;-procedurevor
statement) énd-i;s parameter types as-an offset into _the  type
table, 1This information is used to type-check segment invoca-
tions: agreement in number and type of actual and  formal
parameters, and the wvalidity of values‘yieldedhby segments.j
Each data value has an associated descriptor which indicates its
type ‘as an offset info the'type'table,-whether or not it is a
reference value (i.e., pointet)f wvhether or not- - its current.
value is defined, and whether or not its value is a constant
(i.e., unalterable)., This information 1is  used - to 'type-check

assignments, to insure proper accessing and longevity of

i
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pointers, to prevent accessing undefined values, and to prevent’
inadvertently changing . constant values. . Array desériptors are -
like data descriptors except they contain an additional bounds
table offset field which . is wused for runptime-array bounds

checking,

Another feature of ‘the SPAM descriptors which aids debug-
ging is the interrupt information field. Flags are used to
implement the segment~ and data-incidents of RAIDE (viz., entry,
exit, access, and update). The descriptors thus provide a
convenient method for placing traps at desired segmeht locations
and data values. SPAM detects an enabled interrugt and signals

RAIDE, which finds and executes. the appropriate deferred action. .

Some of the descriptor information is defined solely to aid
in identifying the State of program execution (e,g.,'détermininq
the name of the ‘current procedure)., The identifier field of the
segment descriptor, and the level and order fields of the data

and array descriptors serve this purpose, .

Several of the components of SPAN's architecture are
designed specifically to aid in the detection of run-tinme-
errors. . The type table is used to type-check variable  assign-
ments and procedure and function invocations.. The bounds table
is " used for array bounds <checking and range 'bheéking-'of
enumerated user types. The separation. of the code area from the
various data areas prevents the ubiquitous "eXecuting data® and

Ymanipulating code" errors which are often difficult to diag~-
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nose, The segment control, scépe, and dynamic storage stacks
and their associated pointers aid in interrogating the state of
user program execution: the'invbcation history ‘is  indicated by
the segment control stack, and all accessible values are indi-

cated by the scope and aynamic storage stacks. .

SPAM's design has several inherent shortcomings, and - fur--
ther deficiencies are -evident from experiences with using the
machine, The known failings and suggestions for‘ovetcoming then

follow:

1. Altho it is possible to have  multiple allocations of a
particular array at any one time in SPAM, it is not possible for
each instantiation to have different boundé.ﬁ This is due to the
bounds table being fixed in size at translation-time. 6 The bound
values themselves can be set at: run-tinme (using the . SETBT
instruction), but there . is. - no. mechanism for dynamically
allocating a bounds table entry. -Simply defining a new -Storaqe
management - instruction NEWBT which allocates and initializes a
new bounds table entry, and which automatically .sets the bounds
table - offset of the"associatedv array descriptor, should
alleviate this problen..

2. Similarly, an array  component of a structuré'cannot have
flexible bounds due to the constraints of:the~type”£able format. .
As with the bounds table problem, this may bé.overcome by

allcwing the type table to grow at . run-time, - Nevertheless,

problems with array bounds suggest - possibly that the actual
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bound values should be associated with the array itself (e.g..,
in its descriptor) rather than in a separate bounds table. .
Altho this would complicate the array descriptor format, the

elimination of the bounds table may be.adequatevcompénsation.,

3. SPAM has no primitive bits or powerset types ' nor set-
operators, . Their inclusion is necessary to conveniently. imple-
ment the corresponding features in languages. -such as Pascal and
Algol 68,  But rather than adding more primitive types and data.
classes, it may be more beneficial to provide some means of
dynamically extending the  type facilities of SPAM. : It is not
apparent how - this might be done, whether it is possible or even

whether it is desirable.

4, 1In some ways SPAM is too strongly typed. Many applications
validly require treating something which was once data as code
and vice versa (e.g9., translate-and-go translatots .such as
#atfiv, and dynamically evaluatable.languages-such.as Lisp and
Snobolld) .  This suggests combining the <code . and. free storage
areas and tagging each syllable as either data or cbde;y:Then a
privileged instruction can be added to SPAM. which7 explicitly
resets these tags., It nust also-be possible then to create
segment and data descriptors dynamically, which Trequires the

addition of several other instructions..

5.. At times it would be convenient to temporarily ignore or
override - the type-of~$ome:value (€. g+, while performing -binary

transput, and for implementing. typeless or: ueak1y~ - typed
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- languages such as BCPL).. What may be needed is a privileged
instruction (like the PL/I- UNSPEC-‘funétion)~ to . explicitly
override type-checking or a special mode of execution during

which type-checking is not' performed, 7
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Chapter V. The Implementation

/% Let him choose out of my files,
" his projects to accomplish. .

-- William Shakespeare, Coriolapus-*/
This chapter will discuss in general terms the UBC imple-
mentation of RAIDE, including its scope, the internal design of
RAIDE, how 1languages and traﬁslators-aretinterfaced'tb it, and
some reflections on the various tools used in the implementa-
tion.. In an- attempt. to keep‘this thesis down to a manageable
size and to promote its longevity, the nitty-qritty  details of
the implementation have been avoided here.., The interested

reader is referred to [John 787 for the minutiae. .
A. Scope of the Implementation.

The preceding chapters describe RAIDE as a complete systen
to aid in the run-time analysis and debugging of computer
programs, . This section describes thefﬁragmatic scbpe of the

actual implementation undertaken,

The explain and ingnire;actionsAhave.not-been implenented. .
Altho they are 1important parts of any débugqingvsystem, they
deal with topics not -of 'primary relevahce to. this thesis.
Implemenfation of the explain-action is -a fairly Straightfor--
ward, but tedious, exercise in dinteractive -documentation. It is
basically the operating system's responsibility to provide this
facility. The. inquire-action is in the realm of artificial

intelligence and technigues for itsvimplementationIAre4a subject
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of continuing study in that sector of computer science,..

Of the forms of the <when-clause> of a <command>, the when:
<condition> form has hot.been implemented due to its ramifica-
tions and since it can be simulated using theabgfotet and after
forms, altho not as simply from the usé;'s.vieupoint;%fLikewiSe,
the while <condition> fbrm of the execute‘:action : has ‘not been

implemented. .

Altho the debugging'language.Dispelchnstitutes a-conven-
ient and clean .interface-'between the usera'and'rRAIDE, its
implementation is not ofVpa:amount"importance.to’this thesis,
Thus, user communication with RAIDE has been accopnplished by
extending the macroprocessor TOSI [Vene .76] thru the definition
of macros and TOSI t“events"., Altho TOSI is a fairly
conventional macroprocessing language.[Brou-7uJ,.the,important
semantic effects of function invocations are not output strings,
but rather +the activation of ®"events”, Each.of-the primitive
RAIDE actions is associated with a TOSI event.;which  implements
that action, Since it is possible“using»the'TRQST ttanslator
writing system {Vene 76 ] to translate Dispel -programs. into TOSI
strings; the current interface cam be considered a "low-level?

implementation of the debugging language. -

To demonstrate the debugging system, it is necessary to
modify or write at least one language translator'tb=produce-the
required SPAM code and RAIDE specifications.g Since writing a

translator or even changing. the codetgeneration‘phase of an
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existing one is generally a nontrivial task, and since the
translator 1is necessary only to demonstrate RAIDE and is not
central to the implementation itself, it is desirable to choose
a lanquage which is simpie enough that a reasonabieftranslator
can be provided, yet which is complete enough to be representa-
tive of existing "real" languages._ . The languaqe chosen which
suits these criteria is Asﬁle [Marc 76]. . Asple is a block-
structured, Algol-like lanquage containing integer, boolean, and
referenée- variables;  the. control  structures: assignment,
if-then, if-then-else, input, . output, - and while; and simple
arithmetic expressions, . The principal features missing from
Asple ére.procedure declarations and invocations, and'paraméter
passing.f~since it was felt these are necessary for a truly
representative lanquage, a  dialect of Asple.containing.prode-’

dures (called Aspro) was defined.

Providing ‘a translator from Aspro to SPAM might easily have
beccme a substantial 'prbject unto itself.. Fortunately, a
translator for Asple was already available- [Appe 78). It
translated Asple source. programs into an intermediate qraphic
representation (called GRAIL) which was then toured -by a ' code
generator +to produce 1BM System/360/370 pachine code., Thus,
producing‘the required Aspro translator involved extending the
Asple to GRAIL translator.into an Aspro to GRAIL translator, and
modifying the graph tourer to produce SPAH code~and’uthe"-appro—

priate RAIDE specifications.,
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To verify design criterion 1 (viz., source lanquage
independence), it is necessary to interface more than one
language to RAIDE.. The second language- chosen was BCPL
{Rich 69].,  The readily available implementation of BCPL is a
locally adapted version of  the standard portable translator
called BCPL-V ({Rich 77]. The original translator produces a
parse tree which is toured by semantic routines to output . a
symbolic assembler program for a mythical machine called
MINICODE, . Code generation routines then  translate  this
intermediate representation into the machine code of the host
computer, , BCPL-Y was modified to interface with RAIDE 'by
writing semantic routines which generate SPAM code and RAIDE
specifications directly from the parse tree. A;tho not all
constructs of the original language  are  implemented in the -
modified‘translator, most of those which have not been are

extensions to the standard language anyvay.
B. . Internal Design of RAIDE

The basic information structure of RAIDE is illustrated by

Figure V-1. It has eight major components:

1... The type name table parallels SPANM's type table, - that 1is,
an offset into the type table also indexes the~typé name table. .
The value of a type name table entry: is ‘an offset into the.
string " index table., Thus, given a type table offsét; the name

of that type as a character string is- obtained by' referencing

indirectly thru the type name and string index ‘tables. .
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2.. The Dbounds name - table parallels SPAM's bounds table.
Unlike the type name table, its values do not reference the
names of'bounds,vbut:rather the names of the values of bounds.
For example, the scalar ({red, white, blue) mdy- be  stored
internally as a subrange of integer type (e.g., 0, 1, and 2)..
Nevertheless, for printing purposes,: thetnamezof some bounds
value must be output rather than its internal value (e.g;f"red'

rather than 0). .

3, 'Since the mapping of bounds table offsets and bounds names

is not :one-to—one, the Qgggg§~gggg‘gggggggqggglg»isfneeded to

effect the proper mapping.. For example, the scalar'(red; white,
blue) occupies one entry in both the bounds and the bounds name
tables, . But since three different names must be acéeséible, the
value of the bounds name table entry is anoffset into. the first
of three bounds name mapping table entries which are used . like
the type name table entries to‘reference'indiredtly.thru the
string index table, If scalar types are not supported by the
implementation, both the bounds name and bounds name mapping

tables are superfluous.

4, The entries of the string index table identify the strings

representing identifiers and the  source-level code ' associated
with each program segment, 6 All identifiers (e.g,) type nanmes,
variable names, and the names of generics) :are . referenced thru
the string index table. An. entry cohtainswtwo.fields: the
length of the string and an offset into the string area to the

start of the character string. .
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5. . The string area is an array of characters containing the

strings‘ representing all identifiers as well as the user source

program code...

6.. The symbol ‘table contains entries for .all entities which
are accessible by RAIDE, including .all user program data- and
segment?specifics,-generics, events and deferred actions, :systen
functions, and debugging variables and procedures. . The ' formats
of the entries of the symbol table ‘are diagrammed in detail in
Appendix G. . The linkage of symbol table entries 1is conplex,
owing to the number of ways in which the table must be accessed, .
Examples of RAIDE symbol table ‘entries are - therefore #resented

in Appendix H.

7. The debugging value 'stack:- contains the ~values of all
debugging - variables during éxecutioh.q An entry of this stdckv
contains two fields: a value-defined flag‘and-the value itself.
For an integer variable, the stack contains its actual integral
value; for a specific variable, the 'stack. contains an offset

into ‘the symbol table for the user program entity associated

with the variable, .

8, . To access symbol table entries by name, it is necessary to
hash identifiers thru the identifier §g§gw-§§§;§, ‘ Since one
identifier - can represent several different .entities in RAIDE
{€e e, 'fod"maylbe a user program variable in. two different

scopes and *line' may be a user variable as well as a system

function), the value of an identifier ‘hash table entrYr<identi-
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fies the first of a series of "homonymic" symbol table entries. .

A homonym chain is then used to determine the appropriate entry..

Appendix I contains a .complete example of a RAIDE progranm
specification, including both the data- and segment-épecifics of
the user source progrém.“ The next two  sections below discuss
how ‘the information supplied by a languaqe;interfaCer and a

translator are integrated into RAIDE*'s tables. .
C. Interfacing a Language

Table - I1I summarizes the information 'which a langquage
interfacer must supply for each language interfaced to RAIDE, .
This section will describe in greater detail how the interface

is accomplished. .

" The first pequirementuof,_the. language interfacer is to
identify itself to RAIDE by supplying -a pair of the forn
‘(lc,id), where ?1c' is the .language code of the ~language. mnamed
tid*, *lc' is used in SPAH descriptors {(cf., Figuré‘C~1Lfand in
RAIDE symbol table entries (cf.,, Figure G-5).  to identify the
source. language in which a particular prograa 'segment vas
written._iRAIDE maintains a table of - all language name. pairs

internally. .

For a particular host lanquage, the segment~- and data-
generics are defined as a series of triples of the- fdrm
(gentype,code,id), where *gentype' is a flag indicating whether

the generic. name *'id' is a segment- or data-generic, and . *code!?
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is the type code associated with the generic.. For example, the
triples for a block-structured lanquage might ber

{segment,1,PROCEDURE) - (data,1,VARIABLE) -

{segment, 2, BLOCK) {data,2,CONSTANT) - ,
{segnent, 3, STATEMENT) - {data,3,PARAMETER) .

The definition of these triples results in the ' construction of
generic symbol - table entries (cf., Figure G-3).. %code' is the
segment- or data-genmeric type code used in SPAM  descriptors
(€ege, the 'segtype' field of Figure C-1) -and in RAIDE symbol

table entries (e.g., the *datatype' field of Figure G-T)a;-

The language-oriented run-time error messages are supplied
to RAIDE as an ipdexed,file, vhere the indexes Correspond to
errcr numbers. © SPAM and RAIDE dictate - the- ordering .of error
numbers; the lanquage.interfacer must associate:a,hessage with
each error number., For example,- when'-SPA&. detects ahn array
subscript range error, it reports this "to RAIDE. using a
particular error number. RAIDE uses this number to locate the
appropriate error message for the languaquin‘uhich'thénoffend-

ing program was written, .

The identification of langquage-dependent exceptions is
accomplished as a series of pairs of ‘the form (codeiid), uhére'
tcode' is the exceptionvnumber ‘associated - with thé-'exception-
named 'id', For example, {(10,FAILURE) -might be defined:. for sone
language having statement failure.*b code? = is tﬂe;vexception
nunber used in the SPAM SIGNAL instruction (cf.,“Appéndix E)..
For each language-dependent exéeption identified»by_the<langudge

interfacer, an event symbol table_entryu(cf,,iFignre"G-u}»is
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created. .

Generic-related and lanqguage-dependent system functions are
supplied as a series of pairs of the form (id,routinéenumber),
where *id' is the function's  name  and 'toutine—numbér' is a
nunber which associates the function with an internal list of
routines, Fér each function defined by‘théulanguagé*interfacer,
a system function symbol table eniry  (cf-, Figure>G-5) is

created. .
D. Interfacing a Translator

Tables IV and V summarize the information which a
translator must supply for a source  program to interfage to
RAIDE. -This section will describe in greater: detail how ‘the

interface is accomplished.

An interfaced translator's most basic. regquirement is to
generate a SPAM code version of a user source prbgram., As
exemplifiéd by Pigure F-2, this consists of a ‘seguence of
qperation- and operand codes, ' where each code bccupies one
syllable in SPAM's code area. As part of the SPAH code, the
descriétors associated with all segmeni-' and data—specifics
referenced in the object :program must also be supplied.. These-
descriptors constitute the initial dynamic‘storagé-stack., The
other essential information which a. ‘translator must always
provide is the  initial state of the boﬁnds-and type“tablés.”
Appendix D diagrams the-required formats of these tables. A

translator must supply quintuples of ‘the form (tto,d,c;ib,uby to
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define the bounds table and must supply: triples of the fornm
(class,argl,arg2), where 'argl? ‘and 'arg2?! are depehdentnon the
value of 'class*', to define the type table. . . If a translator
only supplies SPAM code, SPAM. descriptors, and the bounds and
type tables, then RAIDE executes at the basic machine - level of

debugging support,

To execute at the .simple symbolic 1level of support, a
translator must supply enough +translation-time symbol. table
information to enable RAIDE  to construct a skelefglnrun-time
symbol table for the purposes of reporting errors syﬁbolically
and executing simple interactive.commands.  Specifically, pairs
of the form (dsso,id) must be supplied for all user data-
specifics {(e.g., variables and'symbolic cohstantsy, where ?dsso!
is the SPAM dynamic storage stack offset to the template
descriptor associated with the‘specific:nawed *id?, ' These pairs
are used to construct data-specific symbol}table entries (cf.,
Pigure G6-1), . Additionally, a translator must subplylpairs of
the form (tto,type-id), (bto,bnnto), and (bnmto,bohnds-id) to
facilitate construction of the type name‘téhle,,the“bounds name
table, and the bounds name mapping table, respectively.. Since
at the simple'symbolic-level.bf debugging,6n1ywidentifiers are
supplied, RAIDE can only report errors symbolicallyiand,‘perfdrm
interactive vrequests which - are dependént 501ely-on identifier

names (e.q4., "display x.", but not m"display x in foo.").

If a translator provides sufficient ' information to allow

-construction of complete data-specific- symhol table entries
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(viz,, the 'level?, torder®, ‘'datatype', and *link* fields of
Figure G-1), then RAIDE can operate at the symbblic debugging -
level., An example of a such a description 1is presented by
Figure - I-1, . It is then possible to respond to requests such as
"set'x in foo to 10." and “"display. each .VARIABLE.".  Since no
information is yet available concerning the static structure of
a user program, requests such as %for:  each: STATEMENT im foo

+ess ! cannot be honored. .

Segment-specifics are represented to RAIDE as quadruples of
the form (id,segtype,dsso,link), as diagrammed in- Figﬁre' G-2. .
They result -in the construction of“segment-specific'S?ﬁbol table
entries, vhich are RAIDE's way of‘storing‘the~descrip£idnrofvthe
static structure of a user. source progran, ; This.corresponds-to
the full debugging 1evel.of-'support.; An- éxample " of such a
description 1is presented by Fiqure I-2,. With such information
it is possible to respond to interactive requests ihvolving the
static..program structuie, such as the various trace routines of
Sectién\III.C.. If a translatof~additiona11y suppliés RAIDE with
the source: program code (viz., the 3phtases"field~bf«Fiqure

6-2), then the deluxe debugging level of support is entered. .
E. . Reflections on the Implementation Tools

The first component of the system to be implemented was a
simulator for SPAM. . PL/I {IBM 70] was initially chosen as the
: implementation language, but was abandoned after a few weeks for

 the following reasons:
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1. In PL/I the ‘definition of structured types .and the
declaration of variables are combined.. Thus, to declare two
arrays containing the same structures (e.g}, the.dyhami¢ storage
stack and the expressicn stack), either the structure elements
must be written out twice or the LIKE declaration.attribute*must
be used. The former is clearly undesirable since it .is error-
prone-and-makes program modification more.difficult;; The numer-
ous restrictions on the use of LIKE [IéM-70:345-3a63 make it
undesirable as well, 6 Type definitions, in the Pascal Sense, can
be simulated witﬁ a CONTROLLED "variable" declaration, but this
technigue also:suffers from seemingly unnecessaryt-resirictions
besides being an example of tricky’programming (i}e;; say one

thing, but mean another). .

2. Structure declarations in PL/I - cannot contain variant
parts, in fhe Pascal sense,. The SPAM . desériptor‘ fbrmats- mdke
considerable use of this feature (cf., PFiqure €=-2) . - The : DEFINED
declaration-attribuie can be used to simulate variants, but this
. requires -‘allocating all space io acCommodate~'the.'largest
variation and requires the programmmer. to insure prdpeilvstoraqe

alignment of values, This, too, is both tticky and értor-prone.

3. There is no mechanism in.  PL/I - for declaring -arrays of
heterogéneous element types. . This is needed, for éxample, with -
the dynémic storage stack, which is composed'of_ segﬁent,  data,
and array descriptors. .  As with variant parts, an artayvof union
type can be simulated with the DEFINED déclaration. attribute.

This overlaying resulted in numerous inexplicable errors under
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the translator used [Mill 76a], which was the primary motivation
for - the abandonment of PL/I as the éystems implementation

language.

4, The inplementation of a machine  simulator inherently
involves the use of case statement constructs. . Altho an indexed
case statement can often be simulated not too opaguely in PL/I
using a LABEL array and a GOTO, the need for an else clause
forces the use of strung out if-then-else statements instead. .
The latter clearly obscures the: fundameptél structure of the

machine simulator. .

5. . PL/I contains no provision for ‘*named"™ : (i.e., manifest)
constants, : Their use increases the modifiahility of the systen
tremeud§usly.: Named. constants can be- introduced using a
preprocéssor or can be simulated thru the declaration of STATIC
INITIAL‘"variables“., The locally available PL/I preprocessor ‘'is
notorious for - its expense and especially for its téndency to
unprettyprint (uglyprint?) :programs. . Using constants disqguised
as variables can introduce needless run-timenoverhéad; besides

being tricky programming.,

All of the above criticisms. of PL/I point-to the need for a
language which handles types more elegantly.;-Thus, PL/I ¥as
discarded in favor of - Pascal [Jens 7H}L£ Both = the - machine
simulator and RAIDE were implemented usinq:themlocally.évailahle‘
Pascal-translator [Poll 77}, which accepts a somewhat  deviant

dialect of standard Pascal., Altho an attempt'was made to adhere
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to the standard language to facilitate portability, the insidi--
ous lure of the bell and the whistle became overpowering, .
/% Temptétion is an-ifresiStible force
at work on a movable body, -
-- Henry .Louis Hencken */
Overall, Pascal  proved to be a useful systems implementa-
tion language, Nevertheless, it suffers from numerous aminor
defects and omissions which were a continual source of frustra-
tion, ., The deficiencies of Pascal have been well documented in
the 1literature [Conr 76, Habe 73, XKnob 75, LeCa-75}} The first
reference relates best the problems with: using."Pascal- as- a
systems implementation langquage., Most of the’problémsfdescribed
in {Conr 76 were,verified‘by the experiences of implementinq

RAIDE. Some of -these shared experiences.afe:presented here:

1. Pascal has been criticized most severely for.. its 1lack of
dynamic array allocation and the difficultiesl arising from
including array dimensions directly into the: array type
definition [Conr 76:sec, -3.2). . SPAM's tables and several of its
stacks would best be allocated early during execution. Since
this simply was not possible, large chunks of memory were tied

up needlessly to avoid retranslating all subroutines frequently.

2. Syntactically, a Pascal constant cannot be.a translation-
time expression [ Conr 76:sec., 3,3.1].. 'In several instances it
was found that one constant's value was a function of one or
more others {(e.g., length = max_index - min_index ¢ 1)1,. Either

a variable had to be used or the constant defined vwith a:literal
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value along with a comment explaining the origin of the  value.

Neither solution is satisfactory.

‘3. Pascal lacks aunthentic blockatructure [Conr 76:sec, . 4.3, .
411 variables must be declared at the procedure:level,:not at
the level to vhich they are most appropriately locai-;” Altho a
minor annoyance, Sue's [Clar 74] separatibn of,identification

and storage allocation is more desirable..,

4, The . addition of Algol 60 own- {or PL/I STATIC) variables
would, in some instances, reduce parameter ~passing and better
facilitate information hiding‘4[Conr-?ﬁ:éec.,3.7.1]., Again, a

separation of identification and storageilifétime is desirable. .

5. Procedure variables [Conr 76:sec, .3.7.1] were needed in the
implementation of RAIDE since, for example, qederianelated
functions {e.g., CURRENT_PROCEDURE) ‘need not be specified until
run-time, This had to be  simulated uSing .operating-system-
dependent'routines, thus reducing fu:ther’the.portabilitymof-the

implementation. .

6. . Programs would be more concise and clearer if values could
be assigned to the fields of a record variable  in: one statement,

as in Algol-W and Algol 68 [Cohr-?6:sec.;ﬂl2]r,

-The next few criticisms are aimed specifically at standard

Pascal since PASCAL/UBC has bheen extended io‘deal»vith them..

7. . In Pascal a function cannot yield a value of record type or

an array [Conr 76:sec., - 2.17.. This seemingly' nonuniform
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restriction increases the use of var parameters..

8., The case statement of standard Pascal does not contain an
else clause {Conr 76:sec., .2.41)., This often leads to stfung out

if-then-else statements, with a resulting loss of clarity.. An

else clause in the «case: statement is essential for software
which purports to be fail-safe, as is expected of a 'dehugging

systen, .

9. Nesting of if-then statements could be reduced if boolean
expressions are evaluated in the MCCarth# manner [Conr 76:sec,

2.37..

10. - Provision should be made  for initializing all.  values
statically, including arrays [Conr 76:sec. . Q,Z]., Appiications
using decision tables, which are often the .clearest. means of

structuring an algorithm, reguire fconstant" arrays. ,

11.. Separate compilation of procedures - is essential for the
implementation of a large software systen such as RAIDE
[Conr 76:sec.,, 3.7.1).. The expense- of retranslation becomes
intoclerable otherwise, 'Even Fortran is more sophistitated -than

Pascal in this regard. .

The following criticisms are presented in more depth since
they point to problems which have not been dealt with adeguately

in the literature,

12. Assuming that separate procedure compilation is available,

a TrTelated  extension vwhich is needed is global.variablés-(i.es,
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EXTERNAL in the PL/I sense). Altho the extensive use of global
variables is currently being contested amdng lanquége-designers
[Wulf 73], their restrained use does reduce the need for
parameter passing and can aid information- hiding;fv Altho
PASCAL/UBC has been extended to provide‘glébal vatiables. their
implementation is primitive. ' To make even a minor change in the
definition of one global variable may require ,retrénslation of
all procedures, even those which-contain?no:refeiences to the

modified variable.

13. . String  hand1ing‘ is very . poor in Pascal, primarily since
strings are treated as arrays of  characters.. . There‘ are no
variable length strings, no.substring_pseudovariaﬁle:to assign
characters to a segment of a string, and no incore transput.
Altho the RAIDE implementation  is not - particuiérly string-
oriented, these features are especially useful durihq.debugging._

Even a debugging system has to undergo debugging. .

14, Pascal's transput facilities are austere and difficult to

extend, The provision that the first record of a file must be

read when the. file is opened may be acceptable  in a
batch-oriented environment, but,it:makeslinteractiﬁéNprocessinq
unnaturally difficult.. The handling of noﬁtex;files-is likewise
too restrictive, It is sometimes convenient to plaéetrecords of
various types together .in one file or to easily read and write
portions of arrays ' {e.g9., to implement the saVe;and'restdte:
actions of RAIDE). 'The syntax of the Pascal file declaration

ey S w—

makes doing so painfully arduous, .
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15. . Pascal should provide lower and upper bound - functions for
all datatypes.,, Given the scalar = type. *color = (blue; red,
yellow)", it is the programmer's responsibility to.remember that
the  upper bound of 'color! is *yellow®. The.'pred"and"succ'
functions cannot even be-applied effectively to scalar types
without knowing this, . If constants .are allowed to be
translation-time expressions,. then bound functions ﬁill»also be
essential for subrange types, such as the bounds of an array, to

reduce the number of constant definitions necessary. -

16, . In the PASCAL/UBC implementation; - identifiers are only
significant‘to the first ten characters{,' Worse étill, the
language  standard [Jens 741 suggests for portability that
identifiers be unique within their first eight characters. This
is -far too restrictive for = systems programming'épplications
since it encourages the use of . cryptic abbreviations and can
lead to difficult-to-detect errors if two-identifiers are not
unique: within their first ten characters, -~ A - limit of ten
characters is not a ‘significant' improvement over Six, as in

Fortran. .

‘The length of the above comments concerning- Pascal may lead
the reader to believe that ‘its choice as the systems implementa—
tion lanquage was poor. . The criticisnms are meant to be
complete, not scathing. Altho Pascal was -not designed for

systems implementation, it has proved to be a useful tbdl.J



Chapter V. The Implementation 92

Even tho both the SPAM simulator. and RAIDE vere implemented
in Pascal, Dispel was provisionally implemented by».émbedding
Dispel-like commands in the macroprocessor TOSI [ Vene 76]}.  For
example, the Dispel utterance "display:x. im.:foo." has the TOSI
trausliteration “(DISPLAY,(IN,(ID,X),{ID,foo}))".ﬁ TOSIfmacros
were written for each of the primitive actions of Dispel.as vell
as for most of Dispel*s nonterminal symbols}, Altho not elegant
from the user's point of view, this method of interfacing. with
RAIDE - proved expeditious;r"Since~the.macfoprocessdr»interptets
strings directly, there is no need to,tranSlate'utterahces into
an ‘intermediate form. . Thus,.reinvocation-df a&debuggihq:routine
werely involves reinterpreting‘its,string_deiinitiqn‘pi;Further,
TOSI - automatically handles many of -the laborious details, such
as providing the.primitive’arithmetic'jdperatbts and Kreporting

undeclared debugging ﬁariables.w

The primary difficulty with using TOSI ‘was the incomplete-
ness of its documentation {iene:76}.;-.'5evera1 primitive
functions were not described, undocumented iﬁplementation
limitations were wunearthed :painfully, and' there wvere sone
inaccuracies in the documentation, Furthermore, due to limited
use and a low level of support,'the.implemen;ation was somewhat
shaky.,  Executing TOSI  also - proved expensive, “due to its

implementation using the TRUST -translator writing systém.;

The Aspro translator was also implemented wusing - TRUST,
together . with an extension of TRUST‘called-LANCE {Appe 78],

Experiences using TRUST are described elseéhére.{Abra'7lj. The
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most significant criticism of TRUST is that it is poorly
documentea.: As with TOSI, implementation limitations were not

documented, resulting in many hours of frustrating debquing.,

The »best aspect of the Aspro  translator is the code
generator routine, It is an Algol-W program which . tours an
intermediate graphic representation of the user source progranm. ,
- Because of the convenience of the represenfation and  since the
tree tourer is a well-written, readable program, modifying the
Aspro translator to-generate SPAM code was moderately easy,

reguirihg only about two weeks of effort.,

Thé. last phase. of the implementation was modifying the
BCPL-V ' translator to interface - with RAIDE;, The - tténslator,
which itself is written in BCPL, is we11 $tructured in terms of
modular composition. Unfortunately, dits coding is 'poor and

implementation documentation is nearly nonexistent.

Despite the bad example presented by the translator itself,
BCPL proved a good systems implementation langdége.f' Altho
syntactically peculiar, the control structures are natural and
convenient for systems applications. . The typelessness ‘of BCPL
was not a negative feature (as had been ekpécted);-bht a record
type definition facility was missed.,  The moral -is that the
syntax of a language is not as important a considerétionlin its
use- for systems software as is the way in which the.languaqe is
used. In other words, human factors arevmore'sigﬁificantrthan

the choice of language,
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Chapter VI, Summary and Conclusions

The research covered by this thesis involves many facets.

The following are the major accomplishments of this research:

1. . The current state of interactive, run-time program debug-"

ging vas extensively surveyed.

2. A new debugging tool was conceived in response to perceived
deficiencies with existing ones. The systen, RAIDE, was based

features, RAIDE was completely implemented. .

3. A debugging command language, called Dispel, for interact-
ing with RAIDE was designed and evaluated.  Numerous examples of
its use to express debugging requests vere presented.,"Due to
time constraints however, Diépel was not implementéd'as speci-
fied; a lbw-level, transliteral implementation of Dispel using

an interactive macroprocessor was substituted.

4, A virtual machine to facilitate run-time = debugging was

designed and evaluated, ., A simulator for it.vas.impléménted.,

5., Two language translators, for Aspro and BCPL, vwere modified
to interface with RAIDE . to demonstrate -its language-

independence,

6. Reflections on the tools used in the various phases of the

implementation were presented,
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This chapter continues with an exposition of the importance
of RAIDE, a discussion of its shortcomings, some'thouqhts on
possible future extensions to RAIDE and other areas in debugging
worthy of exploratiqn, and some suggestions based on the experi-
ences of the implementation for how translators should be

designed to facilitate run-time debugging. .
A...Importance

The debugging system RAIDE - and its 1language Dispel are
original- and significant contributions to the ‘state of the art

of program debugging for the folloaing_reaSons:

1...  The  kernel of RAIDE contains a small set of primitives
sufficient to implement .all the traditional ' debugging actions.,
Unlike 'previous debugging systens which  have Seen desiqned
rather haphazardly, RAIDE's design is based on the concept of

minimum sufficiency. .

2. The traditional debugging primitives {(e.g., ‘traces, - dumps,
and tréps),-have'been generalized»in RAIDE.; An example of this
generalization is the lack of a primitive' trace- action.- All
traditional - debugging aids are available to . the user thrau
debugging-procedures. This generalization of-debugging concepts
should allow for the easy inclusion of fuiurevdehuggingnaids,
and should allow the system to be extended ‘to  deal with
languages different from the algebraic proéeduralrlanguages on
"which most previous systems have: been based,, RAIDE is a  fresh

approach to interactive, high-1level symbolic debugging.:
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3. . RAIDE is one of the few debugging systems to have language
independence as a primary design  criterion, . 'Vittually all
previous system have been language-dependent by design 6: imple-

mentation,

4, The RAIDE debugging language. .is more extensive and unifornm
than that of any previous debugging system}, Dispel represents a
compromise between an interactive command langhégé- and a
special-purpose programming language., This compromise results
from system design criterion 4 (viz., that the system be: usable

both in batch and interactively). -

5. RAIDE is the first interactive debuqgging system  designed
specifically as a translator writing system resource. = Such
off -the-shelf design should reduce the implementation.buraen of

future language implementors. .

6., RAIDE potentially provides more run~time and analysis
debugging information than most previous systems.;'It‘has been
designed'to filter, not mask, this.infqrmation:southét thé user

can obtain maximum benefit from the debugging environment.

7. . RAIDE is one of the few systems which can be used to debug
multilingual collections of programs, - Several preceding systens
have provided an interface to- machine-language Subroﬁtines;
RAIDE enables sqbroutines- to be written in ahy‘high—level

language for which an interface has been defined.: .
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8, Language translators which are  interfaced to- RAIDE can
supply information in varying levels of detail.. Previous
debuggingfsystems have generally required complete cooperation

from translators.

B. . Shortcomnings
/% When the ‘learned man errs, he errs in a learned wav. .
-- Arabic proverb */
Nothing 1is perfect, and since RAIDE is something, it must
be imperfect. This section will - describe 1limitations in the
deéign and implementation of RAIDE, and shortcominqs which have

become apparent during its development,

1. Whereas language-independence 1is an advance over previous
debugging systems, this approach does have several disadvan- -
tages., - Foremost among these is that run-time changes to correct
the source program are difficult - in ' a nodinterpretive-
environment, . Either the translators mustibe.very coopérating
{i.e., a#ailable on demand at run-time), or temporary‘batches to
the translated program c¢ould be  made at run-time using sone
"universal® programming language {(for which RAIDE has- access. to
a translator). Nevertheless, the‘value'of nonsourcé-l&nguage
changes is dubious since the user is unlikely  to remember to-

modify the .source program to reflect the run-time .changes..

2. . Another disadvantage of the 1language-independent approach
is that wusing one or more of the host source languages to

specify debugging actions may foster confusion., "It is thus



Chapter VI, . Summary and Conclusions 98

desirable to provide a separate debugging language which the
user must learn. K Besides the initial overhead in 1learning a
debugging 1language, many users appear to ‘inherenfly prefer
debugging using the notation of the host source language.
Nevertheless, no existing debugging syStem uses exactly the.
source lanqguage for debugging commands at run-time;  invariably
an extended subset is used. - Since there’is already deviation,
some useré' desire for "compatibility"® ‘must be seen as a

subjective bias.,

3.. A third disadvantage, which is inherent in any language-
independent system, is that it may not always be possible to
cater to the peculiarities qf -particular source languaqes,
either existing or future. It appears impossiblesto.ansuer the
criticism "How do you know that langquage X can »;gg;;x~ be
interfaced to RAIDE?®" without actually attempbing.tb define the

interface. .

i
4, The dimplementation has effectively -excluded interpreted
languages from the class of RAIDE:debuggabie languages. . Using a

virtual machine thus limits the scope of the entire implementa-

tion.

5. The decision to implement RAIDE using a virtual machine has
limited slightly the class of bugs which the system can detedt._
Specifically, translator and-: loader errors cannot be detected
with RAIDE. It is not‘élear, "however, that existing ' systenms

based on freal" machines address this area adequately, or even
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that such errors are significant in comparison to user errors.
The virtual machine implementation of RAIDE may also prevent its
use in detecting wmachine-dependent bugs, such as character
collating sequence depehdencies, and in deﬁeéting implementation
dependencies, that is, the gray areas of a language's design

which are left formallf.undefined.,

6. . Interfacing an existing translatoreto RAIDE is nontrivial,
In fact, if the structure of the tramslator is poor, interfacing
it may be impossible or even more difficult than providing a
simple language-dependent run-time debugging package instead. .
The translators chosen for this thesis were selected primarily
for their modifiability._  Such modificétions‘ are considered
necessary, but not fundamental, for demonstrating the feasibil-
ity of the system. Nevertheless, RAIDE is not aimed at existing
translators. ., It has been designed primarily as a tool for use
with ~implementing future translators. . AS’such, it iS‘much like
any other translator wrixing system resource. . ¥hen a new. parser
generator is ~implemented,. it is not. criticized' for being

difficult to incorporate into existing translators.

7. There is no_obvious way of dealing with the guestion "Can
RAIDE do x?" without actually produging Dispel- utterances to
accomplish - the desired goal., K 1In other vords, how can it be.
"proved"® in some rigoroﬁS'Hay that RAIDE‘S'primitive'actions are
sufficient ¢to carry out all conceivable dehugging requests?
Many of -the +traditional debugging requeéts have been shown

doable by construction thru. the exampies of Section III{C.f
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Thus, the guestion becomes one of proving .that the vprimitives
are sufficiently general and extendable to implement all
"computable" debugging requests,, Since no existing debugging
system has been shown to fulfill this theorem,,in some sense

RAIDE is at least as well designed as other debugging Systems.,

8.  The most serious shortcoming of the work. reported in this
thesis is that it is not user tested.. The implementation has
been primarily undertaken to demonstrate the feasibility of the
system design concepts., . This leaves open gquestions cbncerning
how pleasant the system is to use, which can be answered only by
field teéting and obfaining the views of -actual users, .
Insufficient feedback ‘has also left open the.guesiion as to what
is the implementation overhead in using the systen {Lest 71a,
Lest 71b}. . Aalso, is 'it‘possible to~eva1uate'the~5ystes apart

from user satisfaction and aesthethic considerations? .

C. . Puture Directions
/* Excelsior!?
-- motto of New York state */
The purpose of this section is two-fold: to describe
possible extensions to RAIDE and its implementation, and to
suggest other directions in high-level dehuggingsuhich'might be

fruitful areas for exploration..
There are numerous ways in which RAIDE can be extended:

1. RAIDE can be wextended to handle parallel processing

{fHadj 76, Vict 77].. The Yonly limitingﬂ,factor.at present is
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SPAM, By introducing a process control  stack- and a process-

descriptor, and by spaghetti-stacking the segmént - control,
scope, dynamic storage;' and' expression stacks, SPAMN can be
extended to support parallelﬂ proceSsiﬁgL, It should»then'be
straightforvard to add a process segment-qéneric-and a generic-

related system function CURRENT_PROCESS tdﬂBAIDE.,

2. It would be interesting to- produce a microprogrammed
implementation of SPAM.. This might appease the criticism that
run-time debugging is too expensive, . Much of the.curréntfsystem

overhead is in the simulation of SPAH,.not‘within.RAIDEvproper.J

3, . Producing an implementation of RAIDE uhigh is operating-
system- and machine-independent {Vvict 773,‘but retaining RAIDE's
high-le#el and symbolic'nature, uould.be»udrthwhile.v Altho the
design of RAIDE conforms with this goal, the~current'implementa—

tion is both operating-system- and machine—dependent.,'

4, . It may be possible and desirable to extend RAIDE to include
more program testing aids [Itoh 73, Panz 76), such as test

procedures, A test procedure is a routine whose sole intent is

to verify the correctness of another routinenby.,exércising all
its «control paths and  testing it out on various input data
values,  Since  testing and debugging. are closélyr related
activities, it 1is reasonable to expect“that one .software tool

might be used to aid both. -

5. RBRAIDE is a debugging aid, not a diagnostic system. 1It-

makes no attempt to analyze the cause of an error.} Some work
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has been done on automating the process of tracing an error to .
its cause [Davi 75)}.. It may be possible to add such a

capability to RAIDE.

6. . Adding an undo command to RAIDE, which reverses the. effect
of the previously entered command, may:be a useful addition.
The majbr problem with its_implementation is determining.exactlv
how much and what information must-be saved to enable an undo to

be accomhiished.

7. . Transput is -an area in which RAIDE could successfully be
expanded.  The display‘action is‘deficient., There is a need for
reading and writing, 'noi- only user v&lues,'but'information
concerning the state of'-the' debugging‘ system. . With such
facilities, it may be poséible to implement saveaahd tesiore:as
debugging procedures and thus‘to.remove them from the 1list of
primitive system actions. It should also .be possible ‘then to
implement an. unexecute:action to reverse execution of the user
| program;? Such a capability has been shoWn to be valuable
[Zelk'71,‘Zelk.73J.;-Beéfing up the transput will also make it
possible to keep program execution statistics between runs, thus

enabling cumulative statistics to be maintained.

Besides various extensions to the existing ~ debugging
system, this work and related observations have pointed out

other areas in the realm of debuqging which might be pursueds

1. There is a definite need for empirical studies to validate-

the claim that debugging systems actually do aia significantly
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in the program development process., Some work has been done in

this area [Bier 75, Goul 75, Gran 66], but much more is needed.

2., It is apparent that debugging techniques are not being
taught adequately to novice programmers. More. research is
necessary on effective ways of conveying debugging methods
[#Math 747, . Debugging is  largely an intuitive prbéess at

present, ;. It needs to be systematized more adequately.;r

3. . The RAIDE approach to debugging is to provide one. tool
which 1is useful to users of various sourcetlanguades;,?Another
approach is to design a debuggef generator systen which, given a
language definition, produces a languagefdependent-debugger for
programs written in that language.. This is analogous --to the
table-driven  parser versus parser generator approaches in

translator writing systems research. -
D. Suggestions for Translator Design

In light of the experiences gained in the implementation of
RAIDE, this section will discuss the:.vafious-"uaYS 'in which
translator implementors can facilitate: run-time debuggiﬁg.,
Whether the implementor intends to use RAIDE for debﬁqging or to
provide a language-dependent debugging package,.or'if«théAimple-
mentor wishes only to provide adeguate_hooks for someone . else to
add such a facility, the following points should be kept in
mind:

1., do not throw away translation-time information too readily;
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2. . structure the translator such that information is easy to
obtain;
3. code the translator so that it is easy to read and to
modify;
4, if possible, choose to ' generate. code for a hospitable
object machine;
5. treat run-time error conditions in a dniform-manner;
6. write run-time library routines with -debugging and error
handling in mind;
7. generate object code which 1is easy to understand and to
modify;~and
8. . document!-
Some of these points have been treated preﬁiously to some extent

in [Ashb 73}, They will all be discussed in detail below. .

There 1is 'a tendency among translator implementors to dis-
card translation-time information as soon as there is no further
apparent ‘need for its retention., For eiample, source progranm
code 1is generally eliminated once it has been »syniactically
analyzed and, for block-structured languages, variable symbol
table information is often discarded once the scope-block of the
variable has been‘translated., Undoubtedly, information abanddn—
ment has been motivated by wvalid implementation"Constrainfs:
often .there has been insufficient memory for total retention.
NeVerﬁheless,” the premature discarding.;of- traﬂslatibn-time
information is a major difficulty with interfacing a translator

to a run-tinme debugging system, . Purther, efficiency and



Chapter VI. Summary and Conclusions ‘ 105

resource ;onstraint arguments are becoming more difficult to
sustain in view of the "software crisis™ and continuing advances
in hardware technology. . Even on minicomputer -systems, limited
memory is rapidly being relegated to the histo:y' books. . Also,
translator  execution speed is becoming of less concern in view
of the overall efficiency of the entire software ‘dévelopment'

cycle.

There are basically three classes of information which a
t:anslator should provide to a debugging system:.deSCriptions of
each symbolic data item, descriptions of each impoftant segment
of object code, and the source code broken into ' lexic tokenms. .
For each symbolic data item of the user source program,~the
translatot should provide its:

a. identifier name;

‘b, data type (e.q., variable or constant);

c.  lexic (level,order)-pdit, or other address sbecifica-

tibn;

d. scope with respect to procedures and blocks;

e.. type, including range of values for scalar and enumer-

ated types;

f, dimension and subscript bounds informatioh; where

known, for an array; and

g, initial or constant value, if known,

For each important code»segmeﬁt of the user source program, the

translator should provide its:
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a., label name, if present; :

b. = segment type (e.g., statementﬁorvp:ocedure);-‘

c, . scope (i.e., its relationship to;othe:-codéysegments);

d. parameter and result types, if any:.and

e, ., bounds-within the object code area or file;““
It is convenient, altho not essential, fot' the : translator  to
supply the: debugging system with the uset'sourcewptogram code, ,
It should be decomposed into lexic tokens and 'assoéiated' with
the corresponding object'codefsegment‘descriptions{;-Fo:sRAIDE,
the information: listed above is provided as part: of . the SPaM

descriptors and the RAIDE'program'specificétions.;

When designing the internal structure of a  langquage
translator, it is important to bear in- mind how -difficult it
will be for. the implementor, or someonéwelse, to provide'the
translation-time information which.a‘debugging'systéh willmneed.,
Three areas of designfare of spe¢ia1wimpo:tance:;the.structdre
of ‘the symbol‘table, translator modularization, and the interme-

diate user program representation. .

The translator symbol table should contain all symbol
info:mation'in a centralized, easy.toyaccess,'and,uhdé;standable
format, £ Ideally, it should be possible to aritéaone_module
which, given the symbol table as an argument,;gener6t95~ a file
describing - all progranm data.items in a fotmat-aCceﬁfablettO'the
run-time debugging system.  The decentralization:of Symhol‘table
information was a problem encountered in interfacing the BCPL-V

translator .to RAIDE. . Separate BCPL vectors are used tOg store
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- different symbol attributes, . Undoubtedly it was done this way
due to the absence of record types in BCPL, the language in

which the translator itself is written,

The decomposition of the +translator  into modules is an
important consideration.. The +traditional 7translation'-pha5es
(viz,, lexic scanning,'syntactic analysis, semantic processing,
and code generation) should be  ‘represented by"'Separate'
translator routines.. Such separation nakes uhderstanding the"
translator easier and, hence, makes modifying it to interface to
a debugging systen easiér., Both the BCPL .and Asple translators:
benéfit greatly from this organization, 1In fact, several . other
candidate translators were rejected because of:their'poor,inter-
nal organization., The locally ‘available Pascal trdnslator,' for
instance, 1is a one-pass translator whosefspaghettielike'intér-
mingling of scanning, analysis, semantic. processing} ‘and code
-generationA make it wvirtually unintelligible to all but hearty

souls., .,

Constructing an intermediate user program representation
during translation- greatly facilitates interfacing to a debug-
ging system.  Both the BCPL. and Asple  translators . transfornm
programs into graphic intermediate represehtations on which both
semantic routines and code generators opetate.;- idéally, it
should be possible to write oneAmodule'whidh, given the interme-
diate representation as an argument, generates a file déscribinq
all important program code segments in a format acceptable to-

the run-time debugging system.. A nongraphic intermediate
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1
1

representation is less desirable since it obscures the static

structure of the source program. .

Altho it should go without saying, a translator. should be
coded in a readable and, therefore, easy—tb—modify manner., 1In
particular, variable names should be'mnemonic;-the code . should
be logically indented; and ‘adequate internal documerntation
should exist., . It is lamentable indeed thai'ihere' are so many
poorly coded translators in existence still., It is indefensible
that the translators for a systems implementation . language
(viz., BCPL) and a student-oriented, "structured" language
(viz., Pascal) should be poorly coded. - Regrettably} such was
found to be the case-=wigh:-the BCPL and Pascal translators
locally available.. In contrast, the:_codé. generator for the
Asple. translator was well coded, which explaihé-uhy:it was
possible to completely change the object machine code::generated

in.only-two‘weeks!

If at all possible, the translator implementor should
generate object code for a machine which 1is hbspitable to
run~-time debugging.. SPAM was introduced into the implementation
of RAIDé for just this reason (cf., Section IV.C).. If the
object machine is' inhospitable,  the impleméntpf ‘should not
hesitate to simulate on.the host machine a~'pseudoﬁachiné nore
concordant with -the: goals:  of -debugging, in -particular the
detection of run-time errors.. Argumenfs »that-'interpreting
virtual machine code is inefficient are rapidly losing ground

with the advent of new hardware technologies?snch as micropro-
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gramming., . A translator implementor's best efforts at providing
run-timé debugging aids can be thwarted by - an  object wmachine

vhich is antagonistic toward debugging.

To facilitate run-time debugging, the implementor should
treat all run-time errors detected in a uniform ‘mAnner, for
example, thru a common error handler. . Addiiionally, a.
reasonable recovery should be instituted for each error
condition so that execution can proceed‘logically oﬁce'the“error
- has been corrected or patched by . the: B user .at run-tiﬁe;; The
presence of terminal- (i.e., nonrecoverabley»errdrs should be
avoided'since.they frustrate run-time~debugging.:fTﬂé ~implemen-
tor should also insure:that an executing program . is never left
in an unstable state due to a run~-time . ertor. {e.g9., partially
computed values should not  be 1eftrin-tegistersf§; It can be
extremely~difficult for a = debugging - systemf-to ‘deal with an
unstable machine state,  Ideally, error breaks should occur only
at points corresponding to breaks between statements'vin the
source program code,, It is preferable~tha£tthe machine state be
such that the offending statement can be reexecuted at run-tinme

following error correction Or recovery.

Similarly, any run-time library routines which the imple-
mentor provides should interface cleanly with the . debugqing
system. = Specifically, library routines should detect and treat .
run;time errors in the same manner as error checks compiled
directly into the object program. It is also convenient if the

interface between the object code and library. routines is the
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same as that between the object code and user subroutines, This

avoids special cases which only complicate the debugging System.ﬁ

How the code generators go about producing object code also
affects the ease of interfacing with a debugginq system. , It is
preferable that all data values be accessed uniformiy- to.'avoid
having to handle numerous special cases at run-time. For
example, the BCPL global vector and Fortran COMMON variables may
present difficulties if code for them is generated‘differently
from other program values such as local variables and ‘constants,
The code generators should also- avoid optimizing the obiject
program such that there is-no-ionger-an obvious correspondence
between the source -and object versions of the program,, If too
much rearrangement occufs; it is difficult for -the user to
understand the behavior of the executing program. . The goals of
run—-time debugging and optimization conflict, To facilitate
debugging, it is often necessary to supply more information at
run-time than is normally provided, whereas the goal of optimi-

zation is to provide less information than usual.

" Last, but certainly not least, a translator implementor
should not underestimate the value of well-written and accurate
implementation documentation, . With both the BCPL and Asple
translators, documentation was nonexistent at best and inaccu-
rate at worst! This sorry state greatly hindered interfacing .
the translators to RAIDE, Any programmer who implémentS' soft-
ware and fails to adegquately document it should bé:shot-(i.e.,

fired in an industrial environment, or failed in an acadenmic
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environment)., . No one should assume that a program will never be

modified, or at least looked at, by someone else.

It is hoped that this advice on how translators should be
constructed will not only benefit run-time debugging, but also

benefit the overall gquality of user-oriented software. -
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Glossary

For the convenience of the reader, definitions are provided
below for the debugging terminology used in this thesis. . Altho
an  attempt has been made to conform to the standard information
processing definitions, inevitably some variations in usage have
arisen, .

ANALYSIS INFORMATION: information used to examine the state of
program execution, for example, variable or execution
profiles.,

BREAKPOINT: a particular location in a program or a particular
time during executlon at which some debuqq1nq action is to
be lnltlated

BUG: any error which is associated directly or indirectly with a
computer, a computer program, information entering or
leaving a computer, a computer operator or programmer, oI
anyone related to or anything associated with any person
engaged in an occupation which uses computers.

DEBUGGING: the process of recognizing, isolating, and correcting
mistakes in some computer program.. In this thesis the ternm
is restricted to the detection of 1logic and semantic
errors. The detection of syntactic errors 1s not-referred
to as debugging.

DEBUGGING SYSTEM: a collection of software tools which aid in
the debugging process..,

DUMP: a display of some aspect of the state of a program.. The"
two classes of dumps are: memory: {(or “core®) dumps and
variable dumps. The 1latter are of primary concern in
high-level debugging systems and are of two types: snapshot
and postmortenm. .

ENTCMOLOGY: the study of bugs by ohservation fvanT 7421547, .

EXECUTION PROFILE: a profile of the frequency of executlon of
statements or procedures within a progranm.

FLOW TRACE: a trace of the program labels or source-level
statement numbers  encountered during execution of a
program. . : -

LOGIC ERROR: a deficient implementation of an algorithm, .

POSTMORTEM DUMP: a dump of a program at its point of abnormal
termination. ' '
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PROFILE: a postexecution display of the activity of some aspect:
of a program, primarily.  beneficial for testing and
"optimization purposes., The two classes of profiles are:
variable profiles and. execution (or flow) profiles. .
Profiles can either be complete for the "entire proqtam or
selective within a portlon of the program, .

SEMANTIC ERROR: a misunderstanding .in the use of some construct
in the source language. .

SNAPSHOT DUOMP: a dump. . of an executingvprogram at a Specified
point or time, '

SUBROUTINE TRACE: a trace of the subroutines invoked - (possibly
including their parameter and result- values) durlnq execu-
-tion of a program.,

SYMBOLIC DEBUGGING: the debugging of a program in terms  of the
source-level names and constructs of ‘that progran. .

TESTING: the process of verifying. that a .computeb program
-behaves according to its specifications. .

TRACE: a display of the 'execution path of a program., The three .
classes of +traces are: flow traces, variable traces, and
subroutine traces. Traces can either be complete for the
entire program or selective within a portion .of the
program. -

TRACEBACK: a trace of the procedure invocation state of a
program at a particular point in time.,

VARIABLE PROFILE: a profile of the number of accesses of or
changes to the variables in a progranm. .

VARIABLE TRACE: a trace of the names and values of each variable
accessed or changed during execution of a program.
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[Kuls 6971 Kulsrud, Helene E, HELPER: an interactive extensible
debugging systen. Proceedings o9f the - Second-
Symposium  on Operating Systems -Principles, Princeton.
University (1969 October),. 105-111.. o

Describes HELPER, a machine-language interactive system used

under. the IDA CDC 6600 operating system,. The system itself

contains four parts: an. incremental command :translator, a.

simulator, debugging routines, : and a ' communicator.. Language

translators must be modified to produce .relevant information. .

The. system keeps a history file and has backup. capabilities. .

[Kuls 71] Kulsrud, Helene E. Extending the interactive debug-

ging system HELPER.. In [Rust 71}, 77-91. , 4
Reviews the material presented in [ Kuls 69)] and describes two
recent improvements in the system: an online instruction systen
and an interface enabling Fortran programs. to be debugged using
the systemnm. . :

[ Lamp 65] Lampson, Butler W.. Interactive machine lanquage
programming. . AFIPS - Conference Proceedings, 27:1

(FJCC 1965), 473-481.

[Leca 75] Lecarme, Olivier; and Desjardins, Pierre.. More
comments on the programming lanquage Pascal. Acta-
Informatica, 4 (1975), 231-243, .

s e i S el e &L

Company, 1975. 134pp.. [ISBN 0-8104-5522-67 .
Contains a short section on debugging techniques: top-down
debugging and language- and system-provided debugging aids. .

{Ledg 75] Ledgard, Henry F., Programming Proverbs.. Hayden Book

[Ledg 76} Ledgard, Henry F,; Singer, Andrew; and Hueras, Jon.
"A User's Guide to the PASCAL Assistant".  Technical
Report, University of Massachusetts, 1976 June.
39pp. , _ . _ v

Describes an environment in which Pascal programs can be devel-

oped, tested, and maintained.
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[Leed 66] Leeds, Herbert D.; and Weinberg, Gerald M. Computer:
~Programming Fundamentals. K McGraw-Hill Book Company,
1966, 358-395.
Describes the machlne-language and Fortran debugging facilities
under the SHARE operating system for the IBM 7090.. For both
languages, the programmer must specify A debugging actioans at
translation-time thru lanquage extensions, .

[Lest 71a] Lester, Bruce P.. The cost of debuqging. . Proceedings-
of ‘the Fourth Hawaii International- Conference on
System Sciences, Honolulu, Hawaii (1971 January).,
713-715., .

A condensation of [Lest 71b].

[Lest 71b] Lester, Bruce P,, "Cost  Analysis of Debugging

Systems", Project MAC BReport TR-90, Massachusetts

Institute of Technology, 1971 September.. 112pp. .
Develops a  method for predicting the cost of eight interactive
debugging - system features in an implementation-independent
manner, . The  author uses the Vienna Definition Lanquage to
define an abstract machine on which the features analyzed are
run. To do this he defines a set of primitive actions needed by
an interactive debugging systen,. .

{Mann 73] Hann, George A.. A survey of debug systems.. Honey-

well -Computer Journal, 7:3 (1973), 182-198., -
Identifies five - approaches to debugging: batch, interactive,
internal, external, and playback., The  author 1lists the
desirable features of a language-independent “debugging support
system” and proposes a debugging language. - A brief discussion
of an implementation strategy for such a system is presented.

[Marc 76 ] Marcotty, HMichael; Ledgard, Henry F.; and Bochmann,
Gregor V.. A sampler of formal definitions. . Comput-
ing Surveys, 8:2 (1976 June), 191-276.

[Math 747 Mathis, Robert F.. Teaching debugging.. SIGCSE Bul-
' Describes 5——Egurse in debugglng technlgués‘ with a proposed
syllabus, reading list, ‘and projects list. .

[Math 757 Mathis,  Robert F. . Flow trace of a structured

~ program.,'SIGPLAN Notices, 10:4 (1975 april), 33-37.
Suggests  that program execution flow tracing for structured
programs can be prettyprinted to clarify the 1logical flow of
execution and that variable traces can be paragraphed to display
the scope of variables.
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[(Mill 76a] Miller, Alan., . ®UBC PL/1: 9Using PL/1 at UBCY™,
Computing Centre, University of British Columbia,
1976 June. . BOpp.. '

{mill 76b) Mills, Harlan D., Software Development.,
actions on- Software  Engineering, S

December), 265-273.

[ Moor 75] Hoore, C.G., III; Worona, Steven L.; and Conwvay,

Richard walter, £ "PL/CT --- A Terminal Version of
PL/CHY, Technical Report 75-259, Department of
Computer Science, Cornell University, 1975 September. .
Tpp. . ‘ '

Describes a version of PL/C designed  for wuse on an IBM 2741
typewriter terminal running under the operating system CHMS. A
limited subset of PL/C-like statements can be  entered ' at run-
time as commands; source program changes require: retranslation.

[Morg 71] Horgan, Howard L.; and Wagner, Robert A.. PL/C: the
design of a high-performance compiler for PL/I..
AFIPS Conference Proceedings, = 38 {sacc 1971,
503-510. - _

Describes the design criteria and implementation of the diagnos-

tic PL/I tramnslator PL/C, .

[ "oul 671 Moulton, P.G.; and Huller, HM.E.. DITRAN ~-- a compiler
enphasizing diagnostics. 6 Compunications of ‘the ACH,
10:1.({1967 January), u45-52.
Describes the DITRAN noninteractive debugging system, -which aims .
to detect all nonlogical errors within Fortran = progqrass.  This
is accomplished by maintaining run-time control blocks for each
variable to check initialization, type errors, and range errors,
and 'by maintaining run-time tables of source program statement
offsets and identifiers., The system contains a use monitor and
some facilities to enhance student-<oriented computing. -

[ORei 76] O'Reilly, Dennis., "UBC IF: The Interactive  FORTRAN
Manual", . Computing  Centre, University of British
Columbia, 1976 September..  121pp., }
Describes an interactive, interpretive Fortran language proces-
sor available under the MTS operating system on an IBHM
System/360/370. . Extensive lanquage-dependent debugging aids are
provided, including run-time source statement modification,
variable and parameter checks, ' breakpoints, and subroutine
invocation traces. Programmable breakpoints provide some degree
of system extendability. :
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[Orga 73] Organick, Elliot Irving. - Computer ‘' System- Organiza-

tion: The B5700/B6700 -Series., ACM Monograph Series:
Academic Press, 1973.. 132pp.. [ISBN 0-12-528250-8)

{Palm 77] Palme, Jacob.  SIMDDT -- for conversational debugging
of SIMULA programs, .,  Simula-  Newsletter, 5:2 - (1977
May), 13-16. . N _ ,

Briefly describes the DECsystem=10 Simula debugging systen

(SIMDDT). . Altho the system requires the translator to generate

special tables, little run~time overhead is required unless an

error is detected, .

[Panz .76 ] Panzl, David J, ' Test procedures: a new approach to
software  verification., Proceedings  of the Second-
International Conference-on Software Engineering, San
Francisco, California (1976 October), #77-485.

Presents the concept of a test procedure, a formal specification

of test cases to be applied to one or more target progran

modules, A Test Procedure Language (TPL) . is defined and an
implemented systen employing . it for Fortran programs is
described.

{Pask 73] Pasko, Henry John, YA Pseudo-Machine for Code Gen-
eration". Technical Report CSRG-30, Computer Systens
Research Group, University of Toronto, 1973 December.

91pp. .

[Peck 75] Peck, John E.L. . "The Essence of Computer Science".
. Technical Manual TM-7,. Department of - Computer
Science, University of British Columbia, 1975

October., . 47pp. .

[Pier 74] Pierce, R.H., Source 1language debugging on a small

' computer. . Computer Jourmal, 17:4 (1974 ©November),

. 313-317. , e _
Describes the DDS (Dynamic Debugging-Source) interactive system
for - the Coral 66 programming language on the Arqus 700 -small-
scale computer,, Using translated code, the system can set
breakpoints, resume execution, examine and alter variables and
absolute locations, and alter the source  program.. Alterations
can be  done using only a subset of Coral: since the full
translator is not available during debugging..,

[Poll 771 Pollack, Bary #illiam; and - Fraley, Robert A..
, "PASCAL/UBC User's Guide", Technical Manual TH-2,
Department of Computer Science, University of British

Columbia, 1977 November. . S4pp.
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[Pool 73] Poole, P.C.. Debugging and testing. In [Baue 73],

278-318,
Presents a short tutorial on program debugging and current
~debugging technigues., A 1list of desirable features of an

interactive debugging system is presented, .

[Pull 69] Pullam, John M.  "An Object-time Diagnostic Facility
for High-level Languages". 6 HNaster's Thesis: Depart-
ment of Electrical Engineering, University  of
Toronto, 1969.. 155pp. . -

Describes a noninteractive debugging system for : PL/I  programs

implemented by simulating a debugging-oriented virtual -machine

named. POODL. The system depends on language extensions to

provide flow and variable tracing, .

[Pyle 71) Pyle, I.C.,; McLatchie, R,C.F.; and Grandage, B., A
: second-order bug with delayed effect. . Software =--
Practice and- Experience, 1:3 (1971 July-September),
231-233, o
Relates an experience demonstrating the difficulty of tracking
down ‘a software bug. when the underlying machine architecture
does not prov1de sufficient built-in operand error detection, ,

[Rain 73] Rain, Mark.,6K Two. unusual methods for debuqging systenm
software, , Software.-- Practice-and- Ega_g;gg_g,_ 3:1
(1973 January—march), 61-63, .

Describes two techniques for: testing software' the- bug farm'--'a

program which accepts ~a° valid. program for the systenm being

tested as input and which outputs this program' in a . randomly"

scrambled form, and the  bug contest--- paying users a bounty to

discover and report bugs in a new systen. .

[Reis 75] Reiser, John P,  "BAIL =-- A Debugger. for SAIL"™, .
Technical Report. STAN-CS-75-523, Computer . Science
Department, Stanford University, 1975 October.,  24pp..

Describes BAIL, a language-dependent, interactive .debugging
system for Sail programs ‘running under either. the TENEX or the -
TOPS-10 operating system on a DECsystem-10, ¥hen a breakpoint
occurs, any of the following actions is permitted: a simple Sail
expression can be evaluated, a user-or system procedure - can be"
called, an  assignment <can . be made, or a BAIL command can be-
executed. Only a few system commands are supported; tracing and
the setting of breaks are handled by procedure calls.  Altho
code generation changes are not required, the  translator  must
supply BAIL with descriptions of all variables, .procedures, and
statements, '



References and Annotated Bibliography 130

[Rich 69) Richards, Martin.  BCPL: a tool for compiler writing.
and system programming, AFIPS Conference -Proceed~ -

ings, 34 (SJCC 1969), 557-566. o

[Rich 77] . Richards, Martin; Peck, John E.L,; and Manis, Vincent
Stewvart, "The BCPL Programming. Manual®, Technical
Manual TH-10, Department  of  Computer Science,
University of British Columbia, 1977 December. . 62pp.

{Rust 71] Rustin, Randall {editor)., Debugging Techniques-
Large Systems. . Prentice-Hall, 19 '
0-13-197319-3 _ _

Contains a number of papers related to debugging which wvere

presented at a Courant ‘Institute symposiud_in 1970. . Especially

relevant are [Gris 71a], [Kuls 71], and [Blai 7173.

[Rust 7231 Rustin, Randall (editor).. D
Compilers. . Prentice-Hall, 1

200204-3]

esign and Optimizatio
972, 141 (I 0

0 ti
pp.. [ ISBN 1

[Sack 68] Sackman, H.. Time-sharing versus batch processing:
the experimental evidence.. AFIPS Conference Pro--
ceedings, 32 (SJCC 1968), 1-10. . S ‘

Summarizes the arguments for and against time-sharing and batch

processing... ‘By comparing five previous studies, the author

concludes  that time-shared processing results in greater
programmer productivity and program gquality.,

[Satt 72] sSatterthwaite, ©Edwin Hallowell, Jr.. Debugging tools:
for high level languages. K Software -=-  Practice and-

Describes a modification to the Algol-¥. translator  which
provides run-time symbolic traces, frequency count information,
and a postmortem dump. These facilities must be reguested at
translation-time and are language-dependent., The paper des-
cribes the implementation and contains statistics concerning the
overhead of the debugging facilities. ..

[Satt 75] sSatterthwaite, Edwin Hallowell, Jr.. Source  Language-
Debugging Tools. .  Doctoral Dissertation: Computer
Science Department, Stanford University, . 1975 HMay.
338pp. . [UMI order number 75-25,602 and Technical
Report STAN-CS-75-494] . ,
Elaborates on the material presented in:{Satt 7271 and provides
excruciating details of the implementation.,
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{Schw 71] Schwartz, Jacob T. - An overview of bugs.. 1In

[Rust 71], 1-16, _ _
Gives a broad overview of program bugs and ' the debugging
process.,  The author advocates debugging lanquages which are
"event-oriented®, that is, which consider  time to.  be ' an
important component of the debugging process (e.g., What was the
value of z the first time that x was greater than y?).. -

[Scow 721 Scovwen, R.S.. ™"Debugging Computer Programs =-- A

Survey with Special Emphasis on ALGOL",  Report

NAC-21, National Physical Laboratory, Teddington,

England, 1972 June. . 36pp. . [ (NTIS) N73-11189]
Briefly discusses principles of- debugging, but is primarily
concerned with benchmarking the error diagnostic facilities of
many Algol 60 translators,. The author distinguishes Dbetween
active debugging (requiring user intervention): and passive-
debugging (automatic intervention by the system). .

[Seid 68] Seidel, Kenneth P. . Debugging past .and present, .
Software Age, (1968 August), 22,24,26-28. .

Surveys . the debugging capabilities under 05/360 for programs

written in assembly language, Cobol, Fortran, and PL/I..

{Site 71) sSites, Richard L. “ALGOL-W Reference. Manual®. Tech-
nical Report STAN-CS-71-230, Computer Science Depart-
ment, Stanford University, 1971 August., 169pp. .

[Step 74] Stephens, P.D. The IMP lanqguage and compiler.. Com-
puter Journal, 17:3 (1974 Auqust), 216=-223. .

Briefly mentions that the EMAS translator. for IMP contains a

debugging option which causes code to be generated to check for

such run-time conditions as undefined variables and assignment

truncation, and special code to facilitate a postmortem dump in

source language terms. ,

{Stoc 651 Stockham, Thomas G., Jr., Some methods of graphical
debugging. Proceedings of the IBM Scientific Comput-
ing Symposiumr oQn ﬂag-ﬂachlne Communication, Yorktown
Heights, New York {1965 May), 57-71. .

Describes an early machlne-lanquage graphic dlsplay dehuqqlnq

system which can produce core dumps in octal ‘and can display the

dynamic execution flow of programs as either graphs or flow-

charts, Nongraphic aspects of the system are not discussed. .

[Stoc 67] Stockham, Thomas G., Jr. Report on the working
. conference on online debugging.. - Communications- of-

=

the ACM, 10:9 (1967 September), 590-592.
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Advocates the development of "integrated programming systems".
The conference centered on howvw machine-language: debuqqlnq tech-
niques can be applied to high-level languades, .

[Stru 743 Strunk, ®illiam, Jr.; and White, E. B..'gggwglemggggu
of Style.. Macmillan, 1959, . 71pp., '

{Teit 69] Teitelman, Warren.. Toward a programming laboratory.
Proceedings-of ‘the Interpnational-Joint Conference- on-
Artificial  Intelligence, Washington, D.C.. (1969
May), 1-8a. _ : ) .

Describes the PILOT system at BBN which contains an autcmatic

spelling correction system (DWIM), an editing package, a break-

point package, and an "advising facility" which allows the:
interfaces between modules to be modified easily.., The author
stresses the importance of keeping an execution history, pro-

grammable breakpoints, and the user interface, ,

[Text 78] Texture Support Group.  "Texture User's Hanual®,
- Technical HManual THM-8, Department of Computer
Science, University of British Columbia, 1978 Janu-
ary.. 59pp. .
[ Thom 76] Thomson, C.A. Error checking, tracing, and dumping

in an ALGOL 68 checkout compiler. . g;gggggiggg of ‘the
Fourth 1International- Conference on- the Design-and-
Inplementation of -Algorithmic- Languages, New York,
New York (1976 June), 93-98.
Descrlbes the run-time checks required of Algol 68 proqrams ~and
the facilities provided by the FLASC diagnostic translator for
full-lanquage Algol 68, which include all of +the standard
capabilities except variable tracing. . ' o

[uuy 73] University of Wisconsin at Madison. . "OLDS Reference

Manual for the 1110n, Academic Computing Center,
University of Wisconsin at HMadison, 1973 February. .
20pp.

Describes an online debugging system for the Univac 1110., Altho
designed for debugging machine-lanquage and Fortran progranms,
the system itself provides a debugging 1language - allowing for.
function definitions, 1ist manipulations in the style of Lisp,
and the usual breakpoint and machine-level debuqging facilities.

[Vand 741 van den Bosch, Peter Nico. "The Design and .Implemen-
tation of a Document Processor"., Mastert's Thesis:
Department of Computer Science, University of British
Columbia, 1974 October.. 157pp.. .
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[VanT 74] Van Tassel, Dennie L. . Progranm Style, ‘Design,
_ Efficiency, Debugging, and Testing. Prentice-Hall,
1974, 117-165,, [ISBN 0-13-729939-7]'
Presents a general discussion of debugging,  ways of detecting
and preventing bugs, and a taxonomy of bugs and their causes.,
Only a superficial discussion of automated  debugging aids is
presented,

[Van® 76] van Wijngaarden, Aad; Mailloux, -Barry J.; Peck, John
E.L.; Koster, Cornelis H.A.; Sintzoff, Michel;
Lindsey, C.H.; Meertens, Lambert G.L.,T.; and - Fisker,
R.G. (editors). . Revised Report:-on the Algorithmic-
Lanquage Algol 68. Springer-Verlag, 1976.. 236pp. .
[ISBN 3-540-07592-5 and 0-387-07592~5])

[Vene 76] Venema, Tjeerd. ®"TRUST: User's Guide". Department of
Computer Science, University of British Columbia,
1976 RAugust. 65pp. .

[Vers 641 ver Steeq, R.L.. . TALK -- a high=level source language

. debugging technique with real-time data extraction. .

Communications of -the ACHM, 7:7 (1964 July), 418-419,

Briefly describes the TALK (Take A LooK) debugging system which
is executed as a four step process: translation of the user
program, translation of TALK commands, - program execution, and
TALK debugging output editing., Implemented for the CS-1 pro-
gramming language, no special code‘is produced by the translator
altho a symbol table must be generated. The system allows only
for conditional variable traces. .

[Vict 76a] Victor, Kenneth E. 6 "The Design and Implementation of
DAD, a Multi-Process, Hulti-Machinre, Multi-Language,
Interactive Debugger",, Augmentation Research Center,
SRI International, Menlo. Park, California, 1976
August, ., 51pp.- ' , o

Describes a debugging system design which supports the debugging

of multiprogrammed  software, the components of which may be

written in different high~level 1languages and translated and
running . on machines of ‘varying architectures., DAD is being
implemented in the- National Software Works network environment.

Altho designed as a high-level, symbolic debugging system, the

debugging commands themselves are fairly low-level .and resemble

those of machine-language debugging systems. This report also
contains a brief but useful history of debugging. - '

[Vict 76b] victor, Kenneth E.. "User's Guide to DAD", . Augmenta-
tion Research Center, SRI International, Menlo Park,
California, 1976 September. . T74pp..
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Explains the primitive commands of DAD., The command lanquage is
not uniform due +to the large number of options applicable and
specific to each command.  The language is also low=level in
that it makes extensive. use of special symbols and uses a
positional, assembler-like command - format. 6 The ability to
“program"” the special symbols allows the user to tailor somewhat
the command 1language to resemble a particular host . source
- language.

[Vict 77] Victor, Kenneth E., The design and implementation of
DAD, a multiprocess, multimachine, multilanguage
interactive  debugger. . Proceedings of- the- Tenth-
Hawaii International Conference on-System-Sciences,

Honolulu, Hawaii (1977 January), 196-199.
A condensation of [Vict 76a]. . '

[Watt 741 Watt, J.M.; Peck, John &E.L.; and Sintzoff, Michel..
Revised ALGOL 68 syntax chart, . SIGPLAN Notices, 9:7
(1974 July), 39..

gramming. £ Computer Science Seriess: Van. Nostrand

Reinhold Company, 1971.. 288pp. [ISBN 0-442-29264-3)

[Wein 71] Weinberg, Gerald M. . The Psychology of Computer Pro-

[Wexe 76] Wexelblat, Richard L.. HMaxims for malfeasant design-

ers, or how to design languages to make prograumming

- as difficult as possible. .Proceedings- of -the- Second-

- International Conference on Software Engineering, San
Francisco, California {1976 October), 331-336. .

{Wilc 743 Wilcox,  Bruce; Hafaer, Carole; Friedman, Paul; Hall,
Wayne; McDonald, David Blair; and Davidson, - James
Edward.,, "The LISP/MTS User's Guide", Technical
Manual TM-16, Department of Computer - . Science,
University = of British Columbia, 1974 Septenmber,
65-74, . : , ‘
Describes the langquage-provided debugging aids of the LISP/MTS
system at the University of British Columbia, which include an
evaluation stack dump, function tracing, step execution, a form
of reverse program execution, and the evaluation: of arbitrary
Lisp forms. ' ' ‘

[Wilc 76] Wilcox, Thomas R.; Davis, Alan. Mark; and Tindall,
Michael H, The design and implementation of a table.
driven, interactive.  diagnostic ~ programming system. .
Commupnications  of : the ACHM, 19:11 . (1976 November),
609-616. .
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Provides an overview with examples of- CAPS, an interactive:
diagnostic translator/interpreter - that. - allows beginning
programmers to prepare, debug,. and execute simple programs at a:
PLATO.IV display terminal. 6 CAPS automatically diagnoses (but
does not - correct) errors both at translation- and run-time by
reverse program execution. and interaction with the  user. The
system supports programs written in Fortran, Cobol, and PL/I. .

[¥ino 75] wWinograd, Terry.. ' Breaking . the complexity barrier

again. = SIGPLAN Notices, .10:1 (1975 January), 13-30.
Proposes that what is needed to break the - present- "complexity
barrier" in software development is an integrated programming
system capable of relieving many of the programmer's  tedious
burdens, such as debugging.

rHolm 7271 Wolman, B.L.. Debugging PL/I prdgrams in the Multics

environment. - AFIPS- Conference ' Proceedings, 41:1

~(FJcc 1972), 507-514. :
-Mentions the language extensions and system facilities of-
-Multics PL/I for program debugging., The system  provides,
without  the wuse of a special debugging translator, patching in
source language terms, conditional breakpoints, breakpoint
subroutines, tracing of procedure calls, and profiles of program
execution.

[Wort 7271 Wortman, David Barkley. . "A Study of Language Direc~
. ted Conmputer Design®.. Technical -~ Report  CSRG-20, .
Computer Systenmns Research ' Group, University of

Toronto, 1972 December.  207pp..

[Wulf 73] %ulf, William; and Shaw, Mary.. Global wvariable
considered harmful, . SIGPLAN Notices, 8:2 (1973
February), 28-34.,

{Zelk 71] Zelkowitz, Marvin V.  Reversible ' Execution -as a -
Diagnostic Tool. ' Doctoral Dissertation: Department
of Computer Science, Cornell University, ,1971; Janu-
ary. - 149pp.. [UMI order number 71-17,6761]

Describes an extension to the PL/C lanquaqe and translator which
allows batch programs to be executed in reverse when an error is
detected, Altho the author summarily dismisses online environ-
ments, he advocates the use of extensive interrupt facilities to
aid in program debugging and proposes hardware extensions to aid
debugging.
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[Zelk 73] Zelkowitz, Marvin V. Reversible execution. : Communi-
. cations of the ACM, 16:9 (1973 September), 566.. .
A condensation of [Zelk 711..

[Zipm 67] Zimmerman, Luther L., On-line program debugging -- a
graphic approach. . Computers  and  ‘Automation, 16:10
(1967 November), 30-31,34, .

Briefly describes G&BUG, a graphic display online debugging

system for machine-language programs., The author claims that

speed of information display is the . primary advantagqe of a

graphic debugging systen.
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Appendix A. RAIDE System Functioms

Status Functions

CALLER (£00)
returns a specific value identifying the segment: which
caused entry into the segment-specific 'foo!. . ’

COMMENT (n, foo)
returns the 'n'-th comment of the segment~specific ?*foo!
as a character string.. The null string - is returned if
there is no 'n'-th comment, .

CURRENT_EXCEPTION : :
returns the name (as a character string)-of the currently
active exception, The null string is returned if there is
no currently active exception.

DEBUG_LEVEL
returns an integer indicating the current level of - debug--
ging support in effect. (See Table VI for the range of
result values.) - ' )

DECLARATION_LIST(n) '
‘returns a data-specific value identifying the 'n*-th most
recently declared top-level debugging variable or
procedure. '

DEFERRED_ACTION_LIST (n) -
returns a segment-specific value identifying the *n'-th
most recently deferred action. n=0 identifies the cur-
rently active deferred action, if there is one. '

DEFINED (fo00) -
returns logical true if the data-specific *'foo! currently
has a value; false is returned otherwise,.

ENVIRCNMENT _LIST {(n) _
returns the name (as a character string) of the *'n'-th
most recently saved environment. . n=0 -returns the name of
the  currently active environment, if there is one., The
null string is returned if there is no 'n?-th accessible
environment, .

LANGUAGE (f00)
returns the name (as a character string)  of the source
language in which the segment-specific 'foo' was: written.

RANGE (foo,m,n)
returns a generic value identifying a subrange of the
generic 'foo' between 'm' and 'n?'. .
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3.

REFERENCE_POINT
returns a segment-specific value identifying the current
reference point.

TYPE (foo0)
returns the type (as a character string) of the data-
specific 'foo!.

VALUE {foo0) :
returns the current value of the segment- or data-specific
*foo'. A guestion mark is returned if *foo' is currently

undefined.

Display Format Functions
LINE(n) -
causes the output display device to be advanced *n' lines..
{(The argument is optional ‘and defaults to 1.)
PAGE
causes the output display device to be advanced to the
beginning of a new page. .
SPACE(n) |
causes the output display device to be spaced over 'n!
spaces.  If spacing fills the display buffer, it is
displayed and the output display device is advanced one
line., (The argument is optional and defaults to 1.)
TAB (n)
causes the output display device to be tabbed to column
*n?' of the current (or subsegquent) line. .
Analysis Functions

#ACCESSES (foo) -
returns the number of times the data-specific *foo' has
been accessed since system initialization.

#ALLOCATIONS (type)
returns the number of times dynamic allocations of type
*type' have been made since system initialization..

#ENTRIES(fOO)
returns the number of times the segment-specific *foo® has
been entered since system initialization, .

#EXITS (f00)
returns the number of times the segment-specific *foo! has
been exited since system initialization. .
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#UPDATES {fo0)
returns the number of times the data-specific *foo' has
been updated since system initialization.

4., Language-Dependent System Functions
CURRENT_segment-generic

returns a specific value identifying the currently
executing segment of type 'segment-generict, .
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Appendix B. Dispel Syntax Chart

Legend:
g : T .}
| — : . ! £ , o |
} JAF> B A is defined as 1 1A} choose one of A, B, |
} either B, C, or D | }B] or C 4
| +—>C¢C 1 iCi |
i L-—> D ] v [
i . i . 3
] A}B - A, ABA, ABABA, .,..| abc abc -is optional ]
i ‘ | +-+ |
t . —— -1 . Panas -4
| {A B} treat A and B as one construct |
4 . . N g )
L e |
jutterance|

E ]
: 2 -

l
P
+—>|explanat10n}—> explain- keyphrase ..
I

|

1l e————
}—)llnqu1ry+—> inquire- sentence ..
R —d
|
| r'

+—>1dec1arat10n}- i

|
L

—
3

A o s e e

—

}—)ldeflnltlon]
3

| v
| i .
| Lt-> define- id ( declaratlon], ) as- command ., .
i o, - ————————— -
| .
’ gr——————y | S |
->|command }—> id : |when{ action ..
Lt A=t Ly ‘ 2
P ——— +--+ . |when- condition. i
t———->lon- exceptioni, {
{before - spec1f1c-1nc1dent],]~
lafter- specific-incident}, |
| 2
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oy
jactionj

—> begin declarationj|; 3 command|;

—— s

e
=
=

else- action.

l

| r

i jexpression segment—qenetlci
—> execute - | towo--
| fwhile - condition

‘ i

] L
| :

t—-> for specific|, ~-> id ‘do-
| _ v
> if ~condition then action
1

|

> input file-name

+*
[}

(]
)
]

L]

]

t

+

—> guit- message

——— s e . S o o

—> save file-nanme

> §g§ variable to- expresSion

L-> while condition do - action

£i-
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T . . i
|specific-incident|

— . - 4
|
I
t->ispecific| generic-incident
b e tmneee R bbb bdede b P L2

| .
}—> variable
| L e - s}
L-> each generic |segment-qualifier]
-t L : e
"’*—-.-’-°.--f"-.-;'.f°°+
i . ,
t-> 4in variable

jgeneric-incident|
| : ]
I dlentry |-
> jexit - |
- jaccess| -
lupdate|
R 4

e |

jvariable]

b
R

>

generic : junqualified-variable| segment-qualifier
S et TR e - 4

> {idv (- expressionj, )Y}i{..
tooom—— messssTesst

nonterminals represented by string literals:
file-name, keyphrase, message, sentence, system-command

nonterminals represented by identifiers: =
exception, gemeric, segment-generic, type

lexically primitive nonterminals:
id, integer, real, string

tro e m e et
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r K 0
jcondition|
. 3

i

R

|
I
i->jlogical-tern
| D— - : ) pemem=—e —————

’ .

¥ r= -3
t->]llogical-factor|y and 1logical-term
L 3 - e i e o

"
I

-
-

T R
t-> not  {logical-primary|
; ]

+-+ Ly " -
I o
| <t
| 12 _ o
t-> expression |=| 1logical-primary
1#1
12}
1>1
L. 3
bl T AP G e *

r g " 3

J]expression|
| .
| roaAa .
—> term. |+{ expression
l. #==t |-}

| L 1

|

l o ™ T g | E 2. ]

L->jterm}->)factor| RSN
1 J

1. L .

}—> variable
+—> integer
=> real

+—> string

t-.> ( expression )
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Appendix C, . SPAM Descriptor Formats

r — s 3
I SDb i
F T T ; T g e e s
). type | | { interrupt | . | addr - |
— —— r——4stoldn——y—-——y—y—4level p— S —
| segtypejttojlc|y | .. jbelaejbx}ax] jlengthjcaol
i - PR A A L.l i A A .1 ‘l i 3
type = type information field
segtype = segment type code (e.g., procedure or block) -
tto = the type table offset to the.type.descfihing the
segment (e.g., proc .{int):real)
lc = 1if segtype = procedure,' a code’ indicatinq in
which source language the procedure was written
{The special code "external" indicates that the
procedure is defined externally to the machine.}
sto = the RAIDE symbol table offset to the entrY-associ—
ated with this itenm
dm = a flag to indicate that this segment is execﬁtinq
in debug mode
interrupt = interrupt information field
be = Dbefore entry interrupt enabled flag
ae = after entry .interrupt enabled flag
bx = before(exit-interrupt,enahied flag
ax = after exit interrupt enabled flag
level = the lexic level of ‘this segment
addr = 1if 1lc = extérnal, the address of +the external
‘ routine : :
length = 1if 1c # external, the length of the segment in
syllables
cao = if 1lc ¢+ external, the code area offset to the-

first instruction of the segment

Figure C-1,  Segment Descriptor Format
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type

tto

IrC

sto

interrupt
ba
aa
bu

au -

E | . —
| DD 1
F Ty T 4
| type | | interrupt | i
k T 7111115t 0} T Y -y :Value!
Ittolrcisldicilit] |bajaalbulau| l
L i i 4 i _2_ A4 P A 3 PR N

type information field

= the type table offset to the type describing'the
data item (e.qg., integer, real, scalar, or
structure)

= the number of levels of indirection associated
with the data item {e.g., if rc = 1, the item is
a reference to some other value)

= subrange. of integer or scalar flag_di;e;, the
bounds table contains the bounds for the integer
values which this data item can possess) .

= value field defined flag

= constant: value flag (i.e.} the value of this
data item cannot be altered)

= long value flag (i.e., the actual value of this
item 1is 1in the free storage area, the value
field of this descriptor contains an offset into
the free storage area)

= temporary value flag fused to facilitate garbage
collection}

the RAIDE symbol table offset to the entry associ-
ated with this iten

interrupt information field
= before access interrupt enabled flag
= after access interrupt enabled flag
= before update.intgrrupt enabled flag
= after update interrupt enabled flag

[continued on next bage]

Pigure C-2. .  Data Descriptor Format
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value = value field {The format of this field is dependent
on the type field, and is defined as follows:}

a. 1if rc > 03

t o . R

{ value i

( X | 1

| | offset |

jarea p=———y 4

| Jleveljorder|

1 L " A k §
area = a code for the area to which the reference refers
(e.g9., dynamic storage stack or free storage area)
offset = the offset in the indicated area to the data itenm
level = if area = dynamic storage stack, the lexic level

of the itenm

order = if area = dynanic storagé stack, the order of

the iten

b.. if 1 = true: .
value

PN S

T
lengthjfsao
2.

length = the length of the data item in the free ‘stotage
area
fsao = the offset in the free S€orage area to the first

syllable of the data iten

C. oOthervise:

value = the actual value of the data itenm

Figure C-2, Data Descriptor Format (continued)
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r =y
| AD -
:' G 2 3 , Y =T |
| type { | 1nterrupt | ' i
F r—v—1-71—71-15t0 f==y——y——y——{ bto|value|
lttoirclsldlcllltl | bajaal bulaul § ]
L LLLLLLL vLL.LFJ_‘L--J‘ ¥}
type = type information field (This field has the same .
format as that of a data descriptor, but with
special meaning for the following subfields:}
d = a flag to indicate that storage for the array
has been:-allocated
t = a flag to indicate that the storage referenced

by this descriptor is also referenced by another
descriptor and that it :must not-be deallocated

sto = the RAIDE. symbol table offset to the entry associ-
ated with this itenm

interrupt' = interrupt information .fiela- {This field has the
same format as that of a data descriptor.}.

bto = the offset in the bounds table to the bounds of
the array

value = value field (This field has the same format as

that of a data descriptor for a reference: ({i.e.,
wvhen r1Cc > 0). If area = dynamic storage stack,
the (level,order) pair addresses the first elenment
of the array. The subsequent elements are
addressed (level,order+1), (level, ordeer),.,.,}

Figure C-3. Array Descriptor Format
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.
i SCSED i
: . ; b | " %
| SD | offset | SS0 §
i i A - 3
SD = a field containing the same subfields as that of a
segment descriptor
offset = the offset in the code area (relative to the first
instruction of this segment) to the next instruc-
tion to be executed
sSso = the offset 1in the scope stack to the scope which

is local to this segment

Figure C-4. Segment Control Stack Entry Descriptor Format

SSED

r
€50 | dsso-

i

o -
b s e e

eso = the offset in the expression’stadk to the first
entry available to the seqgment(s) which .index(es) .
this scope stack entry

dsso = the offset in the dynamic storage S£ack to the

first entry available to the segment(s) which
index (es) this scope stack entry

Figure C-5. Scope Stack Entry Descriptor Format
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Appendix D. SPAM Table Entry Formats

r :
} BTE

“-.-_ v [ JOEN

| type | |
F—-v—v=41bjub
jttoldjcl |

L W W

L SR VNI W

type = type information field
tto = the type table offset to_the:subrange 6ffinteger
or scalar type for which this entry defines the
bounds ’
d = bounds fields defined flag
c = constant bounds value flag

1b = lower bound value

ub = upper bound value

Figure D-1. Bounds Table Entry Format
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TTE

L

L § q k2 k 3 ¥ LB
classitto|bto|rc|compsiparnsidin
1 L. i

3 i i

o iy — 1y

b s ol

class = class code {The format of the remaining fields is
dependent on the class field, as follows:}

a, primitive

tto

a self-referent type table offset

b. subrange

tto = the type table offset to the base type of the
subrange
bto = the bounds table offset defining the subrange -

C. scalar

tto = the type table offset to the base type used to-
implement the scalar values :

bto = the bounds table. offsét'defining the subrange
used to implement the scalar values

d. reference

tto = the type table offset to the base type of the.
: - reference
rc = the number of levels of 4indirection associated

with the reference (i.e., reference count) .

e, , structure

comps the number of components constituting the struc-

ture {The components themselves are described by
the succeeding 'comps' type table entries.}

[continued on next pade]

Figure D-2, Type Table Entry Format
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procedure

tto

parms

array

tto

dim

union

comps

deferred

tto

Figure D-2,

= the type table offset to the type yielded by the
procedure (which may, of course, be void)

= the number of parameters which the procédure
~accepts {The parameters themselves are described
by the succeeding *parms' type table entries,}

= the type table. offset to the base
array

type of the

(i;e.,'number of subscripts) -
subscripts themselves arse
succeeding 'dim' type table

= the dimensionality
of the array {The
described by the
entries.,}

= the number of components constituting the union
{The components themselves are described by the
succeed;ng fcomps' type table entries.}

fto indicate that the actual entry descrlptlon is
elsewhere in the type table}

= the type table offset to the actual ehtry

description

Type Table Entry Format :(continued)
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Appendix E. SPAM Instruction Repertoire

/¥ Bloody instructions which, being learned,
return to plague the 1nventor.
-=- William Shakespeare, Macbeth- */

e i

The instructions of SPAM have been divided into seven
classes based on their uée;v For each inStruction,ea mnemonic is
given., . This 1is followed by a list of its operand(s), if-ahy,
and an explanation of its execution,-encloéed in braces., Also,
for some of the instructions, the assoéiated Spamdecl code is
presented in outline form, = Necessary cbnéistency ‘and error

checks have been suppressed to improve overall readability.;
1.. Segment Control Instructions

KMARKSS {Push a new entry onto the scope stack to establish a
new scope.}

push_ss(esptr¥1,dssptr+1)

DEFSEG level, order
{Push a new entry onto the segment control stack to
define a segment whose descriptor is addressed by
the pair (level,order).}

push_scs(dss[leﬁél,order],o,ssptry

DEFDATA 1, loc
{Push n new entries onto the dynamic storage stack and
allocate storage if necessary., The n descriptors
starting at location (0,loc) are templates for the
entries to be made.} '

for i := loc to loctn-1 do
push_dss(dss[ 0, 1})
if dss[dssptr] is array_ descrlptor
then allocate _array
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PARM

CALL

EXITSEG

loc

{The top of the expression stack must contain a
parameter to the procedure whose segment descriptor
must be second from the top. Type-check the parame-
ter, pop it from the expression stack, and push it
onto the dynamic storage stack.. (0,loc) addresses
the template for the procedure's formal parameter,
which is necessary to properly associate formal and
actual parameters.}

local parm_no
parm_no := dssptr - ss[ssptrl.dsso ¢ 2
if ~scs[scsptr].dm or check parameter tvpe(parm no loc)
then push_dss(es[ esptr]) -
dss[dssptr].sto 1= dss(o loc].sto
_ pop_es
else interrupt "parameter type. mismatch"

{The top of the expression stack mnust contain the
descriptor for a segment which is to be called.,. The
parameters to -the segment are all on the dynanmic
storage stack and have been type-checked.. The
segment descriptor 'is popped and a new entry is
pushed onto the segment control stack, thus initi-
ating execution of the segment,)

local no_parms
no_parms := dssptr - ssf{ssptrl.dsso + 1

Cif ﬂscsrscsptr] dm or

check_number_of parameters(no parms)
then push scs(es{esptr],o ssptr)
pop_es. . :
else 'interrupt "wrong number of actual parameters"

segtype

{Pop entries from the segment control stack up thru the
first whose segment type is segtype. If the segment
is returning a value, it must be moved onto the top
of the expression stack.. None of the intermediate
segments popped can return a value.}

local result

.result := es[esptr]

while (scsf scsptr].segtype # seqtype) do .
pop_scs

: if (tt[scs[ scsptr l.tto]l.tto # v01d).

. then if -~scs[scsptr].dm or
. check_result type(tesult type)
then push_es(result) -
else interrupt “result type mismatch®
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CYCLE

SKIP

CASE

2. Data

PUSHV
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segtype

{Pop entries from the segment control stack until +the
first segment whose type is segtype is encountered. .
Reset this segment so that it begins reexecuting
from its 'beginning. None of the intermediate seg-
ments popped can return a value,}

vhilei(scs[scsptr].segtype # segtypé) do
pop_scs
scs[scsptr J.offset := 0

segtype, offset
{The top of the expression stack must contain a boolean
value.. If this value is false, the first segment
whose segment type is segtype continues executing at
the  specified offset,. The boolean is popped fronm
the expression stack.. SKIP cannot be used to exit
thru a segment which returns a value' EXITSEG must
_be used in such c1rcumstances.}

if‘es[esptr].value
then pop_es
else pop_es
while (scs[ scsptr]. seqtype # seqtvpe) do
pop_SCS
scs[ scsptr J.offset := offset

{The top of the expression stack . must contain an
integer value and the next entry must contain an
array descriptor.. After popping the top two stack
entries, the array is indexed to obtain the offset
from which +the current seqment is +to continue
executing.}

if check_array_subscript
then scs] scsptrl.offset := index_array
pop_es .
pop_es
_else interrupt "case range error"

Access Instructions

level, order
{Push the value addressed by the pair (level,order)
onto the expression stack.}
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PUSHR

POP

STORE

COPY

SWAP

SLICE

SELECT

DEREF

level, order
{Push a reference to the.value addressed by the pair
(level,order) onto the expression stack.}

{Pop the top entry from the expression stack.}

{The top of the expression stack must contain a wvalue
which is to be stored into the location indicated by
the reference which is next from the top. These two
stack entries are then popped.. STORE must check for
scope violations involving references; it is not
allowed to assign a value to a reference variable
whose lifetime exceeds that of the value itself.
STORE must also check  for size errors, check for
assignment to a constant, and process the before and
after update interrupts.} ‘

{Duplicate the entry on the top of the expression
stack.}

{Swap the top two entries on the expression stack.}

b

{The top of the expression stack must contain the value
of a subscript into the array described by the entry
second from the top, (This entry must either be an
array descriptor or a reference to an array descrip-
tor.) After popping the  top two stack entries,
SLICE returns on top of the expre551on stack one of
the following:

1... the value of an element of the array,

2., a reference to an element of the array,.

3.. a descriptor for a .subarray of the array, or
4. a reference to a subarray descriptor.}

n )

{The top of the expression stack must contain a
descriptor for a structured value or a reference +to
such a value, This descriptor is replaced by either
the value of the n-th subfield of the structure or
by a reference to the same.}

{The top of the ,hexpression stack. must contain a
. reference value.  This entry is replaced by the
value referenced.}
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3. Arithmetic and String Instructions

None of these instructions operate on arrays. . Also, no
automatic type conversions are performed on operands (i;e., the
operand (s) must be of the correct type). .

a. - binary instructions {The top two entries of the
expre851on stack must contain the operands.}
i. integer or subrange of integer operands
ADD sSUB MUL DIV' MOD LT LE EQ NE GE. GT
ii, real operands _
_ ADD SUB MUL DIV LT LE EQ NE GE GT
iii, boclean operands

AND OR

iv. string operands

. CONCAT

v. reference operands
EQ NE

b.  unary instructions {The top of the expression stack must
contain the operand.}
i. integer or subrange of integer operand
ABS NEG SUCC PRED
ii. real operand

ABS NEG
iii. boolean operand
NOT

SUBSTR {(The top of the expression stack must contain either
two or three operands.,.  If three operands are sup-
plied, the top two entries must contain inteqger
values which represent the length (top . entry) and
starting position (next entry) of the substring to
be obtained, and the third entry from the top nmust-
contain a string value or a reference to a string
from which the substring will be taken. If only two
operands are supplied, the length is assumed to be
the remainder of the string and only . the- "starting
position and base string need to be specified. .
After popplng its operands, SUBSTR returns on. top of
the expression stack either a string or a reference-
to a string which is the substring desired.}

4., Transput Instructions

PUT {The top of the expre551on stack must contain a string
value which is output to the primary output device. .
This string is then popped from the expression
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stack.} p

GET {The next record from the primary input device is read
into a newly allocated string in the free storage
area and a descriptor of this string value is pushed
onto the expression stack. A null string indicates
that the end of the file has been encountered. }

5. Storage Management Instructions

SETBT bto

{The top +two entries of the expression stack must
contain integer or subrange of integer- values.
These two entries are popped and their values placed
into the bounds table at offset bto._ The top entry
defines the dynamic upper bound which is to be
placed into the table; the next entry defines the
lower bound.}

ALLOC tto : , :

{Storage for a structure of type tto is allocated in
the free storage area and a data descriptor of this
type is pushed onto the expression stack,.}

6. Status Instructions

TESTYPE mask
{The type field of the descriptor on top of the
expression stack is checked against the mask and the
entry is replaced by a boolean value which indicates
whether or not the masked bits of the type field are

set.}
LENGTH {The top of the expression stack must contain a string
value. This entry is replaced by the length of the
. string.}

LBOUND {The top of the expression stack must contain an array
descriptor or a value of scalar type. This entry is
replaced by the 1lower bound, obtained from the
bounds table, for the item.}



Appendix E.. SPAM Instruction Repertoire 158

UBOUND {The top of the expression stack must contain an array
descriptor or a value of scalar type. This entry is
replaced by the upper bound, obtained from the
bounds table, for the item.}

7. Miscellaneous Instructions
NOOP {Execution continues with the next instruction.}

CONVERT tto
{The top of the expression stack must contain a value
of primitive, subrange of 1nteqer, scalar, or refer-
ence type.  This entry is replaced with the value
converted to the primitive type tto.}

ASSERT {The top of the expression stack must contain a boolean
' value. This entry is popped and, if its value is
false, an interrupt is generated.}

SIGNAL exception '
{A user-specified interrupt is generated, signaling the
occurrence of some exception.}

STOP {The machine is abnormally terminated.}

DUME code :
{One of the machine areas, stacks, or tables {cf.,
Figure IV-1) is dumped. The code indicates which is
to be dumped.}
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Appendix F. An Example SPAM Object Progranm

/* A really great talent finds its happiness in execution. .
== Johann ¥Wolfgang von Goethe %/
This appendix presents a complete example of a SPAM Oobject
program, including both the wmachine code and the descriptors
needed for its execution. The example chosen is Towers of Hanoi
[Peck 75:30-32]. A source program for it vritten in an Algol-
like language is contained in Figure F-1, and its SPAM transla-
tion is given in Fiqure F-2, The SPAM code is presented in an
assembler-like notation; literal -and variable operands must be
converted 1into offsets 1into the dynémic storagé stack. The
left-most column of Figure P-2 contains the machine code
translation of the SPAM assembler code, . The machine code '‘is
only presented here for conpleteness; no- further explanatioh
will be given., Refer to Appendix E for explanations of ‘the SPAHN
instructions. . The initial states of the dynamic storaqé' stack,
the segment control stack, and the typé table are outlined in
Figqre F-3; only important fields are meﬁtioned., The éxpression

stack and bounds table are initially empty. .
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stot lexic
number level source_code
main:
1 begin
Proc hanoi ({integer value n ;
char value me,de,ma) ;
1 2 if n>0 then- ;
2 hanoi(n-1,me, ma,de) ;
3 print (" MOVE DISK ",n," FROM EEG ",
me," TO PEG ",ma)
4 hanoi {(n-1,de, me,na)
2 £i ; o
5 hanoi (u,"A","B","C")
1 end

Figure F-1,

Towers of Hanoi Sdurce Program
] _

L._.-nm—-..*-n“...‘-—-—--.hﬂ-—-mhd
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machine
code

1
0
32
32
3
32
3
32
3
32
3
4

<

w N )
wn £ W N N
o

- O O Q- OO
&

(4]

3210
32 0 7
78 :

32 0 1
32 1 0
32 0.8
65

32 1 1
32 1 3

32 12

assembler code
DEFSEG STHTS
MARKSS

PUSHV  HANOI
PUSHV 4
PARY N
PUSHYV tal
PARN ME
PUSHV 'B?
PARM DE
PUSHV 1ce
PARM MA
CALL

ORIGIN 51
DEFSEG STHMT1
DEFSEG IF-STMT
PUSHVY N
PUSHYV 0

GT

SKIP ENDIP
DEFSEG STMT?2
MARKSS

PUSHYV HANOI
PUSHYV N
PUSHY 1

SUB

PARHN N
PUSHV ME
PARM ME
PUSHV MA
PARM DE
PUSHV DE
PARHN MA
CALL

e ot s o i e o

initial call to 'hanoi!

pass the first parameter
pass the second parameter
pass the third parameter
pass the "fourth paraméter
now invoke 'hanoi?

start 'hanoi' at offset 51

if statement _
define the bounds of the
if statement _
evaluate the if expression

skip the then clause if false

recursive call to *hanoi?

evaluate *'n-1' and pass it
pass the second parameter

pass the third pdrameter

pass the fourth paranmneter

[continued on next page)

Figure F-2,.

Towers of Hanoi SPAH Code

161
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machine
code assembler code comments
10 18 DEFSEG STHMT3 transput code -
32 09 POSHYV ! MOVE DISK !
32 1 0 PUSHYV N
193 5 CONVERT STRING convert 'n' to type string
82 CONCAT concatenate the six arquments
32 0 10 PUSHY ' FROM PEG ! of 'print' into
82 CONCAT one output string
32 11 PUSHY ME
82 CONCAT
32 0 11 PUSHV ! TO PEG !
82 CONCAT
32 1 3 PUSHY MA
82 CONCAT
96 PUT
10 19 DEFSEG STHMTU4 recursive call to 'hanoi?
0 MARKSS
32 0 1 POSHY HANOI o
32 10 PUSHY N evaluate *n-1' and pass it
32 0 8 PUSHV 1
65 SUB
3 12 PARHY N ,
32 1 2 PUSHY DE pass the second parameter
3 13 PARM ME . .
32 11 PUSHYV ME pass the third parameter
3 14 PARHM DE -
32 1 3 PUSHYV Ma pass the fourth parameter
3 15 PARM MA

4 CALL

Figure F-2. Towers of Hanoi SPAM Code {continued) -
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The initial dynamic storage stack entries:

offset type important field values- comment

0 segment seqgtype=proc tto=1 level=0"

length=28 cao=1 main
1 seqgmnent segtype=proc tto=6 level=1-
~ length=109 cao=51 hanoi

2 data tto=2 1=F value=4 , 4

3 data tto=5 1=T length=1 fsao=1 A"

4 data tto=5 1=T length=1 fsao=2 'B?

5 data - tto=5 1=T length=1 fsao=3 ce

6 segment segtype=xzif-stmt tto=1 level=1 _ ,

length=103 cao=57 if stmt

7 data tto=2 1=F value=0 0

8 data tto=2 1=F value=1 v 1

9 data tto=5 1=T length=11 fsao=4 - ! MOVE DISK !
10 data tto=5 1=T length=10 fsao=15 ' FROM PEG '
1 data tto=5 1=T7 length=8 fsao=25 ' TO PEG ¢
12 data tto=2 4=F n

13 data tto=5 4d=F me

14 data tto=5 4=F de

15 data tto=5 4=F ma

16 segment segtype=stmt length=106 cao=54 stmt. 1

17 segment segtype=stmt length=29 cao=70 stmt 2

18 segment segtype=stmt length=26 cao=102 stmt 3

19 - segment segtype=stmt length=29 cao=131 stmt 4

20 segment segtype=stmt length=25 cao=4 stmt 5

The initial segment control stack entry:

segtype=proc tto=1 length=28 cao=1 offset=0 sso=1.

The initial type table entries:

offset field values comment
1 class=primitive tto=1 void

2 class=primitive tto=2 integer
3 class=primitive tto=3 real ,
y class=primitive tto=4 boolean
5 class=primitive tto=5 string
6 class=procedure parms=4 proc (...) void
7 class=primitive tto=2 integer
8 class=primitive tto=5 string
9 class=primitive tto=5 string
10 class=primitive tto=5 string.

Figure F-3.

Towers of Hanoi Initial SPAM Machine State
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Appendix G. RAIDE Symbol Table Entry Formats

¥ ]
i DSSTE |
} 4
. 3 Bl a R R . E R 3 1
| i | type 1 link J]count| . esto {
|Slt0]hCO} v T T —+ T Y 1 T } Y Y Y 1
i i |leveljorderidatatypejdsso|pstojosto}ssto] a}l ulbajaajbujauni
f i | A <L, i . i N 3 i ¥ 1 ) N i 3

= on
Q w
o

o
1y 1]

I
~g
o]
o

i

level
order
datatype

dsso

link =

psto

osto

ssto

count

esto =

Figure

PR
string index table offset
homonym chain offset
type information field

= the lexic level of the itenm

= the lexic order of the itenm

= data type code {e.g., variable or constant)

= the SPAM dynamic storage stack offset to the
"template descriptor® associated with this iten

linkage information field

= the symbol table offset to the parent at this
level '

= the symbol table offset to an offspring at this
level

= the symbol table offset to a sibling at this
level

a count of the number of times the associated
data-specific has been accessed (a) and updated
(u) since system initialization

the event symbol table offset for ~the deferred
action (if any) associated with the data-incidents
before access (ba), after access (aa), before
update (bu), and after update (au)

G-1. Data-épecific Symbol Table Entry'Formaf
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SSSTE
1 k 3
jcount)  esto jphrases|
1inkF T } ™7 Y + —-r 4
| e] x|belaelbxlax|{phliph2]
a. iR i

E & i i F - A 3

ey i o

L ¥

| i . type
sito|hco}F

k) E ]
} . Jid)|segtype]ldsso
' i i L

(o e e o S

ps s s . 4

site string index table offset (mé? be null)

homonym chain offset (may be'null)-’

I

hco

I

type type information field

id identification field {e.g., a statement'number)

1

segtype segment type code (e.g., procedure or block)

]

the SPAM dynamic storage stack offset to the
"template descriptor” associated with this item

dsso

linkage information field {This field has the same
format as that of a data-specific symbol table
entry.}

link

count = a count of the number of times the associated
segment-specific has been entered (e) and exited
{x) since system initialization

]

the event symbol table offset for: the deferred
action (if any) associated with the segment-
incidents before entry (be), after entry (ae),
before exit (bx), and after exit: (ax)

esto

phrases = an offset 1into the string  index table for the
string phrases which constitute the source program
code of the associated segment~specific {The order
for printing out the code of some node is: phi,
then the code associated with the offspring node,
followed by ph2.}

Figure G-2., Segment-Specific Symbol Table Entry Format
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1 3 -3
| GSTE i
+ =7 1
i | i type- |
Isitolhcoi T i
| | |gentype} codellc|
L A 4. L 4 A ]
sito = string index table offset
hco = homonym chain offset
type = type information field
gentype = a flag to indicate whether the generic is a
segment- or a data-generic
code = the segment- or data-genéric type code of this
generic '
1c = a code indicating for which language this is a
generic

Figure G-3. Generic Symbol Table Entry Format
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sito

hco

type

eCco

lco

class

1c

code

desto

daptr

RAIDE Symbol Table Entry Pormats 167

t g
} ESTE i
[ - ¥ |
o kN L] T L] )
| 1 type o I |
Isitojhco¢ T - T —4ecojlcoi
| lclass|lcicodej{destojdaptr| | |
4 A AL i F AL A ¥ ]

il

L

String index table offset {(may be null) :
homonym chain offset {(may be null)

type information field

a code to identify the entry as a systen
default, a 1lanquage-dependent, or a user-
supplied event {The hierarchy of selection is:
user-supplied, language-de pendent, and system.}

if type = language-dependent, a code - indicating
to which languaqge the entry is associated -

the error code used by SPAM to identify the
event if it is an exception

a symbol table offset to the deferred action
label (if present) associated with the event

a pointér to the deferred action (if any) asso-
ciated with the event

the symbol table offset for the event chain, which
is
ascending order of their 'code' field values

used to chain together all event entries in

the symbol table offset for the label chain, which
is used to chain together all event entries having
the same deferred action label

Pigure G-4, Event Symbol Table Entry Format



Appendix G,

W

sito

hco

lc

routine_no =

RAIDE Symbol Table Entry Formats 168

SFSTE

K] kB ¥ N
sitojhcojlciroutine_no
j

L N

(o Sy
b e D — o

string index table offset

homonym chain offset

a code indicating for which 1langquage this is a
language-dependent system function {A special code

indicates language-independent functions.}

a number used to associate 'the system function
with its internal routine equivalent

Figure G-5.  Systsm Function Symbol Table Entry Format

dtype

ub

]

dvso

DSSTE

Rl

Figure G-6.

L 8 3
i DDSSTE i
} LB R 3 k | 1. B
|dtypelub}dvso]DSSTE|
L i N y: . i |‘

the type. code (viz., integer or specific) of the
debugging entity defined by this entry

the upper bound value for debugging entities which
are declared as arrays {ub = 0 indicates a simple
debugging variable.}

the debugging value stack offset for - the current
value (or values, if ub > 0) of the entity defined
by this entry {dvso = null if the scope of the
entity is -currently inaccessible. The value of a
specific debugging variable is the  symbol . table
offset to the user program entity associated with
the specific.} '

a field containing the same subfields as that of a
data-specific symbol table entry except that the
*dsso!' field is unused {The 'datatype* values for
Dispel are VARIABLE and PROCEDURE.} .

Debugging Data-Specific Symbol Table Entry Format
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i

dtype

esto =

SSSTE

[}

DSSSTE

(o - -~y
e s b v d

L 3 k|
dtypelesto|SSSTE
i i

the type code {viz., deferred action label or
debugging procedure) of the debugging entity
defined by this entry

if dtype = deferred action label, the symbol table
offset to an event associated with the label ({All
deferred actions sharing a label are chained
together by the 'lco' field of the event symbol
table entry.} ,

a field containing the same subfields as that of a
segment-specific symbol table entry except that
the 1'dsso' field contains the address of the

"object code associated with this entry {The ?!seg-

Fiqure G-7. .

type?! values for Dispel are COMMAND and ACTION.}

Debugging Segment-Specific Symbol Table Entry
Format
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Appendix H. . Example RAIDE Symbol Table Entries

This appendix presents several examples of RAIDE symbol
table entries. The first example demonstrates how user program
data-specifics are maintained by RAIDE;,"An outline of a program
in an Aigol—like language is contained in Figure H-1;_' Only
variable and procedure declarations are shown since executable
statements are unimportant here. User.program> entities {e.q.,
variables and procedures) must be accessible in two ways: by
their names and by their (level,order) : pairs. The  former 'is
necessary for interfacing between the user and SPAM (i.e., for
mapping between a name in a Dispel utterance and its actual
machine~level value).  The latter is necessary for interfacing
between SPAM and RAIDE (i.e., when SPAM signals an.error. RAIDE
must determine from the machine state what source-level entities

are involved).

Figure H-2 demonstrates how the variables and procedures of
Figure H-1 are accessed‘ by their identifier names.. Each
identifier is uniquely hashed to an offset into the identifier
hash table. All symbol table entries with identical identifiers
are chained thru the homonym chain. . In the fiquré. each symbol
table entry is represented by a node shoﬁinq oniy three of its
fields: a string index table offset (diagrammed--for simplicity
as a character string reference), a (levei,order) pair, ahd the

homonym chain pointer.
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Figure H-3 demonstrates how user identifiers are accessed
by their (level,order) . pairs.  Each svmbdl table - entry is
represented by a node showing only three of its fields: a strinq
index table offset (diagrammed for simplicity as a character
string reference), an offspring symbol' table offset, and a
sibling symbol table offset. Given the symbol table offset of
'main' and the (level,order) pairs for accessing some desired
identifier, its symbol table entry is located by -chaining thru

the offspring and sibling symbol table entry fields.‘

The first example presented in this appendix deals only
with user program symbol table entries. It must be remembered
that the symbol +table also <contains entries for Qenerics,
events, system functions, and debugging entities (cf.,' Appendix
G). All of these types of ‘entries are connected élonq the
homonym chain for identical identifiers.f To resolve.ambighities
{e.g., the user can define a procedure called 'line® which is
syntactically equivalent to the systenm function 'LINE?), a
hierarchy of access is defined as follows:

1.. all user identifiers in order of their static declarations,
2. a generic,

3. an event,

4, a system function, and

5. all debugging variables and procedures. .

Thus, if a user has a procedure called '1line', it supersedes the

systen function 'LINE?, . Similarly, the user cannot define a
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debugging procedure called

'LINE* will supersede it.

Example RAIDE Symbol Table Entries

'line' since

172

the system function

lexic
order

—_———

lexic
level

0 0

1 0
2 0

Figure H-1. .

P-—-._.u—-.—n—-—-._..-—-———-—_-——_—a.._—-_-—_..c—-—...-..n-—n‘
—
——

source code-
main:
begin
proc-foo
{(int bell)
begin
real

bar ;
o ‘

Program for Demonstrating the RAIDE Symnbol Table

e e W o, Wl O e s WD e s gy N G s s W . i S iy, -, Wl it gy, St Gaoms i}
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Example RAIDE Symbol Table Entries

Appendix H.

> f{foo}

e
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e
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> {bar}
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>4 ,(2;0) /1
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LI |

Ll
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..% N
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iy ﬁ/ %
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£3 | o~ -~
(S99 —2 -
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A —.1! o~
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A A

bt e o — v — ]

i W |

Symbol table entries

identifier
hash table

Accessing a Symbol Table Entry by Identifier

Figure H-2,
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dlevel
r—> {[main}
|
=t
0 | A | |
: B e e
T +—= | / |
| | ISEES W |
i
|
| _ '
| > {foo} r—> {bell} —> {barbell}
Yy o | . 1 _
——+t-— . et r—t—
1 | 4 | | + | ' { + 1
N -t e
I ¢ 1 =+ > / | =4 —=>| ¢+ 1 / |
D O B R e | . [ DU R—
| . t
| ‘ |
| {
} —> {[bell} —> f{bar} ] > {bar}
Y1 ' H Y1
=t -t =4
2 | 4 { ] ¢ i : i S |
: S R A 1
I /7 1 == >1 /71 71 P70 7 1
— a3 R S _ S

Access (level,order) sequencies:

main {0,0) -
foo 0,0) (1,00
bell (0,0 (1,0 (2,0)
bar {0,0) {1,0) 2,1)
bell {(0,0) (1,1
barbell {0,0) {1,2)

bar (0,0)  (1,2)  (2,0)

Figure H-3. Accessing a Symbol Table Entry by (level,order)
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In addition to user proqgram data-specifics, the RAIDE
symbol table also contains the description of the static struc-
ture of a program. This is done by maintaining symbol table
entries for each of the segment-specifics of the source prbgram.f
Figure H-4 demonstrates the entries for the Towers of Hanoi
program of Figure F-1. 1In the figure, each symbol table entry
is represented by a node shbwing seven of its fields:.the
identification field (which is gither a number or a string index
table offset for labeled segment-specifics such as procedpres),
a segment type code, the SPAM dynanmic storagé stack offset to -
the segment's template déscriptor, a sibling symbol table
offset, an offspring symbol table offset, and two string  index
table offsets (diagrammed for simplicity as character string

references) for the source code phrases. .

In general, the *sito' and ?*hco?! fields of segment-specific
symbol table entries are not used since'Segments are'genérally
not accessed by name, The major exceptions are procedurés.,
Since each procedure has both a data-specific entry (which links
together all data values accessible to the procedure) and a
segment-specific entry (which links together'all seQmentsVSubor-
dinate to‘the.procedure), the two entries are connected along
the homonym chain. Thﬁs, given a procedure name, it is possible
to determine both.the variable scope‘sfrdcture‘ and the static

program structure of that procedure.
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Example RAIDE Symbol Table Entries

—> {main} begin}
!%‘! k] I‘ITI
l?lprocl 0|/|fl+1‘+-> {end}
Ld , L L ‘L%J'i
|
'__....._____.J
|
] r—> fhanoi} r———> {proc-hanoi (...) ;}
‘ TTY e k3 o Q%T i ]
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L. 1}1_‘}1 i3
L
r - :
| Y r———> {if-n>0 then}
' ¥ L 1 | k § i 3 l%‘l’ )
I 1listotit16)/i¢i1¢is4+—> {fi :}
' L4 i i JL%,I_ i3
} |
i |
J |
‘ L B B } | d k | [ 4 4 3
l {1 if | 61/141/1/1
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} 1.
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|
| .
' f——-->, {hanOi '(acp)}'

po -y

Y T 1Tt
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1. i 4 31 1

’ b e o

Figure H-4,
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{hanoi {es.)}

> {3}

fprint “(...)}

B}'

fhanoi (..+)}

Example Segment-Specific Symbol Table Entries
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Appendix I. An Example RAIDE Program Specification

This appendix presents the RAIDE program specifications for
the sample program of Figure F-1, Towers of Hanoi.. FPiqure I-1
outlines the RAIDE specifications of the program's data-
specifics and Figure I-2 outlines the same for its seqment-

specifics, . Refer +to Appendix G for deScriptions of the fields

of the data- and segment-specific svmbol‘table entries;'only the

important fields are mentioned here,. See Figure H-4 for a
graphic representation of the information contained in Figure
I-2. There are two further components of a program specifica-
tion not presented here: the initial bounds name table and type
name +table entries.. The bounds name table is empty for this
example and the type name table simply contains the identifier
names of .the primitive types, since there are no user~-defined

types in this example.

[ S s e U o - — o - o ——- d— ——

1 0,0 constant 0 0,2 main

2 1,0 constant 1 0,3 hanoi -
3 2,0 parameter 12 4,0 n

4 2,1 parameter 13 5,0 - me .
5 2,2 parameter 14 6,0 de
6 2,3 parameter 15 0,0 ma

Figure I-1. Towers of Hanoi Data Specifications

B2 s e agme M S ey, Ao e s e s g W
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Pr e G o s M e S s o — o - — 4

offset id  segtype dsso (sib,off) phrases-
1 main - proc 0 0,2 {main: begin,end}
2 hanoi proc 1 8,3  {DPLEQC ses 4}
3 1 stmt 16 0,4 {if -n>0 then,fi ;
4 if-stmt 6 0,5 .3
5 2 stmnt 17 6,0  {hanoi (s.q),3}
6 3 stmt 18 7,0 {print (cco).,:}
7 4 stmt 19 0,0 fhanoi (...),}
8 5 stmt 20 0,0  {hanoi {e..) s}

 Figure I-2. Towers of Hanoi Segment Specifications

bt S iy s, o S st S O e S s i, St 1]
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